python_code
stringlengths 0
1.8M
| repo_name
stringclasses 7
values | file_path
stringlengths 5
99
|
---|---|---|
// SPDX-License-Identifier: GPL-2.0-only
/*
* ati_remote2 - ATI/Philips USB RF remote driver
*
* Copyright (C) 2005-2008 Ville Syrjala <[email protected]>
* Copyright (C) 2007-2008 Peter Stokes <[email protected]>
*/
#include <linux/usb/input.h>
#include <linux/slab.h>
#include <linux/module.h>
#define DRIVER_DESC "ATI/Philips USB RF remote driver"
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR("Ville Syrjala <[email protected]>");
MODULE_LICENSE("GPL");
/*
* ATI Remote Wonder II Channel Configuration
*
* The remote control can be assigned one of sixteen "channels" in order to facilitate
* the use of multiple remote controls within range of each other.
* A remote's "channel" may be altered by pressing and holding the "PC" button for
* approximately 3 seconds, after which the button will slowly flash the count of the
* currently configured "channel", using the numeric keypad enter a number between 1 and
* 16 and then press the "PC" button again, the button will slowly flash the count of the
* newly configured "channel".
*/
enum {
ATI_REMOTE2_MAX_CHANNEL_MASK = 0xFFFF,
ATI_REMOTE2_MAX_MODE_MASK = 0x1F,
};
static int ati_remote2_set_mask(const char *val,
const struct kernel_param *kp,
unsigned int max)
{
unsigned int mask;
int ret;
if (!val)
return -EINVAL;
ret = kstrtouint(val, 0, &mask);
if (ret)
return ret;
if (mask & ~max)
return -EINVAL;
*(unsigned int *)kp->arg = mask;
return 0;
}
static int ati_remote2_set_channel_mask(const char *val,
const struct kernel_param *kp)
{
pr_debug("%s()\n", __func__);
return ati_remote2_set_mask(val, kp, ATI_REMOTE2_MAX_CHANNEL_MASK);
}
static int ati_remote2_get_channel_mask(char *buffer,
const struct kernel_param *kp)
{
pr_debug("%s()\n", __func__);
return sprintf(buffer, "0x%04x\n", *(unsigned int *)kp->arg);
}
static int ati_remote2_set_mode_mask(const char *val,
const struct kernel_param *kp)
{
pr_debug("%s()\n", __func__);
return ati_remote2_set_mask(val, kp, ATI_REMOTE2_MAX_MODE_MASK);
}
static int ati_remote2_get_mode_mask(char *buffer,
const struct kernel_param *kp)
{
pr_debug("%s()\n", __func__);
return sprintf(buffer, "0x%02x\n", *(unsigned int *)kp->arg);
}
static unsigned int channel_mask = ATI_REMOTE2_MAX_CHANNEL_MASK;
#define param_check_channel_mask(name, p) __param_check(name, p, unsigned int)
static const struct kernel_param_ops param_ops_channel_mask = {
.set = ati_remote2_set_channel_mask,
.get = ati_remote2_get_channel_mask,
};
module_param(channel_mask, channel_mask, 0644);
MODULE_PARM_DESC(channel_mask, "Bitmask of channels to accept <15:Channel16>...<1:Channel2><0:Channel1>");
static unsigned int mode_mask = ATI_REMOTE2_MAX_MODE_MASK;
#define param_check_mode_mask(name, p) __param_check(name, p, unsigned int)
static const struct kernel_param_ops param_ops_mode_mask = {
.set = ati_remote2_set_mode_mask,
.get = ati_remote2_get_mode_mask,
};
module_param(mode_mask, mode_mask, 0644);
MODULE_PARM_DESC(mode_mask, "Bitmask of modes to accept <4:PC><3:AUX4><2:AUX3><1:AUX2><0:AUX1>");
static const struct usb_device_id ati_remote2_id_table[] = {
{ USB_DEVICE(0x0471, 0x0602) }, /* ATI Remote Wonder II */
{ }
};
MODULE_DEVICE_TABLE(usb, ati_remote2_id_table);
static DEFINE_MUTEX(ati_remote2_mutex);
enum {
ATI_REMOTE2_OPENED = 0x1,
ATI_REMOTE2_SUSPENDED = 0x2,
};
enum {
ATI_REMOTE2_AUX1,
ATI_REMOTE2_AUX2,
ATI_REMOTE2_AUX3,
ATI_REMOTE2_AUX4,
ATI_REMOTE2_PC,
ATI_REMOTE2_MODES,
};
static const struct {
u8 hw_code;
u16 keycode;
} ati_remote2_key_table[] = {
{ 0x00, KEY_0 },
{ 0x01, KEY_1 },
{ 0x02, KEY_2 },
{ 0x03, KEY_3 },
{ 0x04, KEY_4 },
{ 0x05, KEY_5 },
{ 0x06, KEY_6 },
{ 0x07, KEY_7 },
{ 0x08, KEY_8 },
{ 0x09, KEY_9 },
{ 0x0c, KEY_POWER },
{ 0x0d, KEY_MUTE },
{ 0x10, KEY_VOLUMEUP },
{ 0x11, KEY_VOLUMEDOWN },
{ 0x20, KEY_CHANNELUP },
{ 0x21, KEY_CHANNELDOWN },
{ 0x28, KEY_FORWARD },
{ 0x29, KEY_REWIND },
{ 0x2c, KEY_PLAY },
{ 0x30, KEY_PAUSE },
{ 0x31, KEY_STOP },
{ 0x37, KEY_RECORD },
{ 0x38, KEY_DVD },
{ 0x39, KEY_TV },
{ 0x3f, KEY_PROG1 }, /* AUX1-AUX4 and PC */
{ 0x54, KEY_MENU },
{ 0x58, KEY_UP },
{ 0x59, KEY_DOWN },
{ 0x5a, KEY_LEFT },
{ 0x5b, KEY_RIGHT },
{ 0x5c, KEY_OK },
{ 0x78, KEY_A },
{ 0x79, KEY_B },
{ 0x7a, KEY_C },
{ 0x7b, KEY_D },
{ 0x7c, KEY_E },
{ 0x7d, KEY_F },
{ 0x82, KEY_ENTER },
{ 0x8e, KEY_VENDOR },
{ 0x96, KEY_COFFEE },
{ 0xa9, BTN_LEFT },
{ 0xaa, BTN_RIGHT },
{ 0xbe, KEY_QUESTION },
{ 0xd0, KEY_EDIT },
{ 0xd5, KEY_FRONT },
{ 0xf9, KEY_INFO },
};
struct ati_remote2 {
struct input_dev *idev;
struct usb_device *udev;
struct usb_interface *intf[2];
struct usb_endpoint_descriptor *ep[2];
struct urb *urb[2];
void *buf[2];
dma_addr_t buf_dma[2];
unsigned long jiffies;
int mode;
char name[64];
char phys[64];
/* Each mode (AUX1-AUX4 and PC) can have an independent keymap. */
u16 keycode[ATI_REMOTE2_MODES][ARRAY_SIZE(ati_remote2_key_table)];
unsigned int flags;
unsigned int channel_mask;
unsigned int mode_mask;
};
static int ati_remote2_probe(struct usb_interface *interface, const struct usb_device_id *id);
static void ati_remote2_disconnect(struct usb_interface *interface);
static int ati_remote2_suspend(struct usb_interface *interface, pm_message_t message);
static int ati_remote2_resume(struct usb_interface *interface);
static int ati_remote2_reset_resume(struct usb_interface *interface);
static int ati_remote2_pre_reset(struct usb_interface *interface);
static int ati_remote2_post_reset(struct usb_interface *interface);
static struct usb_driver ati_remote2_driver = {
.name = "ati_remote2",
.probe = ati_remote2_probe,
.disconnect = ati_remote2_disconnect,
.id_table = ati_remote2_id_table,
.suspend = ati_remote2_suspend,
.resume = ati_remote2_resume,
.reset_resume = ati_remote2_reset_resume,
.pre_reset = ati_remote2_pre_reset,
.post_reset = ati_remote2_post_reset,
.supports_autosuspend = 1,
};
static int ati_remote2_submit_urbs(struct ati_remote2 *ar2)
{
int r;
r = usb_submit_urb(ar2->urb[0], GFP_KERNEL);
if (r) {
dev_err(&ar2->intf[0]->dev,
"%s(): usb_submit_urb() = %d\n", __func__, r);
return r;
}
r = usb_submit_urb(ar2->urb[1], GFP_KERNEL);
if (r) {
usb_kill_urb(ar2->urb[0]);
dev_err(&ar2->intf[1]->dev,
"%s(): usb_submit_urb() = %d\n", __func__, r);
return r;
}
return 0;
}
static void ati_remote2_kill_urbs(struct ati_remote2 *ar2)
{
usb_kill_urb(ar2->urb[1]);
usb_kill_urb(ar2->urb[0]);
}
static int ati_remote2_open(struct input_dev *idev)
{
struct ati_remote2 *ar2 = input_get_drvdata(idev);
int r;
dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__);
r = usb_autopm_get_interface(ar2->intf[0]);
if (r) {
dev_err(&ar2->intf[0]->dev,
"%s(): usb_autopm_get_interface() = %d\n", __func__, r);
goto fail1;
}
mutex_lock(&ati_remote2_mutex);
if (!(ar2->flags & ATI_REMOTE2_SUSPENDED)) {
r = ati_remote2_submit_urbs(ar2);
if (r)
goto fail2;
}
ar2->flags |= ATI_REMOTE2_OPENED;
mutex_unlock(&ati_remote2_mutex);
usb_autopm_put_interface(ar2->intf[0]);
return 0;
fail2:
mutex_unlock(&ati_remote2_mutex);
usb_autopm_put_interface(ar2->intf[0]);
fail1:
return r;
}
static void ati_remote2_close(struct input_dev *idev)
{
struct ati_remote2 *ar2 = input_get_drvdata(idev);
dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__);
mutex_lock(&ati_remote2_mutex);
if (!(ar2->flags & ATI_REMOTE2_SUSPENDED))
ati_remote2_kill_urbs(ar2);
ar2->flags &= ~ATI_REMOTE2_OPENED;
mutex_unlock(&ati_remote2_mutex);
}
static void ati_remote2_input_mouse(struct ati_remote2 *ar2)
{
struct input_dev *idev = ar2->idev;
u8 *data = ar2->buf[0];
int channel, mode;
channel = data[0] >> 4;
if (!((1 << channel) & ar2->channel_mask))
return;
mode = data[0] & 0x0F;
if (mode > ATI_REMOTE2_PC) {
dev_err(&ar2->intf[0]->dev,
"Unknown mode byte (%02x %02x %02x %02x)\n",
data[3], data[2], data[1], data[0]);
return;
}
if (!((1 << mode) & ar2->mode_mask))
return;
input_event(idev, EV_REL, REL_X, (s8) data[1]);
input_event(idev, EV_REL, REL_Y, (s8) data[2]);
input_sync(idev);
}
static int ati_remote2_lookup(unsigned int hw_code)
{
int i;
for (i = 0; i < ARRAY_SIZE(ati_remote2_key_table); i++)
if (ati_remote2_key_table[i].hw_code == hw_code)
return i;
return -1;
}
static void ati_remote2_input_key(struct ati_remote2 *ar2)
{
struct input_dev *idev = ar2->idev;
u8 *data = ar2->buf[1];
int channel, mode, hw_code, index;
channel = data[0] >> 4;
if (!((1 << channel) & ar2->channel_mask))
return;
mode = data[0] & 0x0F;
if (mode > ATI_REMOTE2_PC) {
dev_err(&ar2->intf[1]->dev,
"Unknown mode byte (%02x %02x %02x %02x)\n",
data[3], data[2], data[1], data[0]);
return;
}
hw_code = data[2];
if (hw_code == 0x3f) {
/*
* For some incomprehensible reason the mouse pad generates
* events which look identical to the events from the last
* pressed mode key. Naturally we don't want to generate key
* events for the mouse pad so we filter out any subsequent
* events from the same mode key.
*/
if (ar2->mode == mode)
return;
if (data[1] == 0)
ar2->mode = mode;
}
if (!((1 << mode) & ar2->mode_mask))
return;
index = ati_remote2_lookup(hw_code);
if (index < 0) {
dev_err(&ar2->intf[1]->dev,
"Unknown code byte (%02x %02x %02x %02x)\n",
data[3], data[2], data[1], data[0]);
return;
}
switch (data[1]) {
case 0: /* release */
break;
case 1: /* press */
ar2->jiffies = jiffies + msecs_to_jiffies(idev->rep[REP_DELAY]);
break;
case 2: /* repeat */
/* No repeat for mouse buttons. */
if (ar2->keycode[mode][index] == BTN_LEFT ||
ar2->keycode[mode][index] == BTN_RIGHT)
return;
if (!time_after_eq(jiffies, ar2->jiffies))
return;
ar2->jiffies = jiffies + msecs_to_jiffies(idev->rep[REP_PERIOD]);
break;
default:
dev_err(&ar2->intf[1]->dev,
"Unknown state byte (%02x %02x %02x %02x)\n",
data[3], data[2], data[1], data[0]);
return;
}
input_event(idev, EV_KEY, ar2->keycode[mode][index], data[1]);
input_sync(idev);
}
static void ati_remote2_complete_mouse(struct urb *urb)
{
struct ati_remote2 *ar2 = urb->context;
int r;
switch (urb->status) {
case 0:
usb_mark_last_busy(ar2->udev);
ati_remote2_input_mouse(ar2);
break;
case -ENOENT:
case -EILSEQ:
case -ECONNRESET:
case -ESHUTDOWN:
dev_dbg(&ar2->intf[0]->dev,
"%s(): urb status = %d\n", __func__, urb->status);
return;
default:
usb_mark_last_busy(ar2->udev);
dev_err(&ar2->intf[0]->dev,
"%s(): urb status = %d\n", __func__, urb->status);
}
r = usb_submit_urb(urb, GFP_ATOMIC);
if (r)
dev_err(&ar2->intf[0]->dev,
"%s(): usb_submit_urb() = %d\n", __func__, r);
}
static void ati_remote2_complete_key(struct urb *urb)
{
struct ati_remote2 *ar2 = urb->context;
int r;
switch (urb->status) {
case 0:
usb_mark_last_busy(ar2->udev);
ati_remote2_input_key(ar2);
break;
case -ENOENT:
case -EILSEQ:
case -ECONNRESET:
case -ESHUTDOWN:
dev_dbg(&ar2->intf[1]->dev,
"%s(): urb status = %d\n", __func__, urb->status);
return;
default:
usb_mark_last_busy(ar2->udev);
dev_err(&ar2->intf[1]->dev,
"%s(): urb status = %d\n", __func__, urb->status);
}
r = usb_submit_urb(urb, GFP_ATOMIC);
if (r)
dev_err(&ar2->intf[1]->dev,
"%s(): usb_submit_urb() = %d\n", __func__, r);
}
static int ati_remote2_getkeycode(struct input_dev *idev,
struct input_keymap_entry *ke)
{
struct ati_remote2 *ar2 = input_get_drvdata(idev);
unsigned int mode;
int offset;
unsigned int index;
unsigned int scancode;
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
index = ke->index;
if (index >= ATI_REMOTE2_MODES *
ARRAY_SIZE(ati_remote2_key_table))
return -EINVAL;
mode = ke->index / ARRAY_SIZE(ati_remote2_key_table);
offset = ke->index % ARRAY_SIZE(ati_remote2_key_table);
scancode = (mode << 8) + ati_remote2_key_table[offset].hw_code;
} else {
if (input_scancode_to_scalar(ke, &scancode))
return -EINVAL;
mode = scancode >> 8;
if (mode > ATI_REMOTE2_PC)
return -EINVAL;
offset = ati_remote2_lookup(scancode & 0xff);
if (offset < 0)
return -EINVAL;
index = mode * ARRAY_SIZE(ati_remote2_key_table) + offset;
}
ke->keycode = ar2->keycode[mode][offset];
ke->len = sizeof(scancode);
memcpy(&ke->scancode, &scancode, sizeof(scancode));
ke->index = index;
return 0;
}
static int ati_remote2_setkeycode(struct input_dev *idev,
const struct input_keymap_entry *ke,
unsigned int *old_keycode)
{
struct ati_remote2 *ar2 = input_get_drvdata(idev);
unsigned int mode;
int offset;
unsigned int index;
unsigned int scancode;
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
if (ke->index >= ATI_REMOTE2_MODES *
ARRAY_SIZE(ati_remote2_key_table))
return -EINVAL;
mode = ke->index / ARRAY_SIZE(ati_remote2_key_table);
offset = ke->index % ARRAY_SIZE(ati_remote2_key_table);
} else {
if (input_scancode_to_scalar(ke, &scancode))
return -EINVAL;
mode = scancode >> 8;
if (mode > ATI_REMOTE2_PC)
return -EINVAL;
offset = ati_remote2_lookup(scancode & 0xff);
if (offset < 0)
return -EINVAL;
}
*old_keycode = ar2->keycode[mode][offset];
ar2->keycode[mode][offset] = ke->keycode;
__set_bit(ke->keycode, idev->keybit);
for (mode = 0; mode < ATI_REMOTE2_MODES; mode++) {
for (index = 0; index < ARRAY_SIZE(ati_remote2_key_table); index++) {
if (ar2->keycode[mode][index] == *old_keycode)
return 0;
}
}
__clear_bit(*old_keycode, idev->keybit);
return 0;
}
static int ati_remote2_input_init(struct ati_remote2 *ar2)
{
struct input_dev *idev;
int index, mode, retval;
idev = input_allocate_device();
if (!idev)
return -ENOMEM;
ar2->idev = idev;
input_set_drvdata(idev, ar2);
idev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP) | BIT_MASK(EV_REL);
idev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) |
BIT_MASK(BTN_RIGHT);
idev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y);
for (mode = 0; mode < ATI_REMOTE2_MODES; mode++) {
for (index = 0; index < ARRAY_SIZE(ati_remote2_key_table); index++) {
ar2->keycode[mode][index] = ati_remote2_key_table[index].keycode;
__set_bit(ar2->keycode[mode][index], idev->keybit);
}
}
/* AUX1-AUX4 and PC generate the same scancode. */
index = ati_remote2_lookup(0x3f);
ar2->keycode[ATI_REMOTE2_AUX1][index] = KEY_PROG1;
ar2->keycode[ATI_REMOTE2_AUX2][index] = KEY_PROG2;
ar2->keycode[ATI_REMOTE2_AUX3][index] = KEY_PROG3;
ar2->keycode[ATI_REMOTE2_AUX4][index] = KEY_PROG4;
ar2->keycode[ATI_REMOTE2_PC][index] = KEY_PC;
__set_bit(KEY_PROG1, idev->keybit);
__set_bit(KEY_PROG2, idev->keybit);
__set_bit(KEY_PROG3, idev->keybit);
__set_bit(KEY_PROG4, idev->keybit);
__set_bit(KEY_PC, idev->keybit);
idev->rep[REP_DELAY] = 250;
idev->rep[REP_PERIOD] = 33;
idev->open = ati_remote2_open;
idev->close = ati_remote2_close;
idev->getkeycode = ati_remote2_getkeycode;
idev->setkeycode = ati_remote2_setkeycode;
idev->name = ar2->name;
idev->phys = ar2->phys;
usb_to_input_id(ar2->udev, &idev->id);
idev->dev.parent = &ar2->udev->dev;
retval = input_register_device(idev);
if (retval)
input_free_device(idev);
return retval;
}
static int ati_remote2_urb_init(struct ati_remote2 *ar2)
{
struct usb_device *udev = ar2->udev;
int i, pipe, maxp;
for (i = 0; i < 2; i++) {
ar2->buf[i] = usb_alloc_coherent(udev, 4, GFP_KERNEL, &ar2->buf_dma[i]);
if (!ar2->buf[i])
return -ENOMEM;
ar2->urb[i] = usb_alloc_urb(0, GFP_KERNEL);
if (!ar2->urb[i])
return -ENOMEM;
pipe = usb_rcvintpipe(udev, ar2->ep[i]->bEndpointAddress);
maxp = usb_maxpacket(udev, pipe);
maxp = maxp > 4 ? 4 : maxp;
usb_fill_int_urb(ar2->urb[i], udev, pipe, ar2->buf[i], maxp,
i ? ati_remote2_complete_key : ati_remote2_complete_mouse,
ar2, ar2->ep[i]->bInterval);
ar2->urb[i]->transfer_dma = ar2->buf_dma[i];
ar2->urb[i]->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
}
return 0;
}
static void ati_remote2_urb_cleanup(struct ati_remote2 *ar2)
{
int i;
for (i = 0; i < 2; i++) {
usb_free_urb(ar2->urb[i]);
usb_free_coherent(ar2->udev, 4, ar2->buf[i], ar2->buf_dma[i]);
}
}
static int ati_remote2_setup(struct ati_remote2 *ar2, unsigned int ch_mask)
{
int r, i, channel;
/*
* Configure receiver to only accept input from remote "channel"
* channel == 0 -> Accept input from any remote channel
* channel == 1 -> Only accept input from remote channel 1
* channel == 2 -> Only accept input from remote channel 2
* ...
* channel == 16 -> Only accept input from remote channel 16
*/
channel = 0;
for (i = 0; i < 16; i++) {
if ((1 << i) & ch_mask) {
if (!(~(1 << i) & ch_mask))
channel = i + 1;
break;
}
}
r = usb_control_msg(ar2->udev, usb_sndctrlpipe(ar2->udev, 0),
0x20,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
channel, 0x0, NULL, 0, USB_CTRL_SET_TIMEOUT);
if (r) {
dev_err(&ar2->udev->dev, "%s - failed to set channel due to error: %d\n",
__func__, r);
return r;
}
return 0;
}
static ssize_t ati_remote2_show_channel_mask(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct usb_device *udev = to_usb_device(dev);
struct usb_interface *intf = usb_ifnum_to_if(udev, 0);
struct ati_remote2 *ar2 = usb_get_intfdata(intf);
return sprintf(buf, "0x%04x\n", ar2->channel_mask);
}
static ssize_t ati_remote2_store_channel_mask(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct usb_device *udev = to_usb_device(dev);
struct usb_interface *intf = usb_ifnum_to_if(udev, 0);
struct ati_remote2 *ar2 = usb_get_intfdata(intf);
unsigned int mask;
int r;
r = kstrtouint(buf, 0, &mask);
if (r)
return r;
if (mask & ~ATI_REMOTE2_MAX_CHANNEL_MASK)
return -EINVAL;
r = usb_autopm_get_interface(ar2->intf[0]);
if (r) {
dev_err(&ar2->intf[0]->dev,
"%s(): usb_autopm_get_interface() = %d\n", __func__, r);
return r;
}
mutex_lock(&ati_remote2_mutex);
if (mask != ar2->channel_mask) {
r = ati_remote2_setup(ar2, mask);
if (!r)
ar2->channel_mask = mask;
}
mutex_unlock(&ati_remote2_mutex);
usb_autopm_put_interface(ar2->intf[0]);
return r ? r : count;
}
static ssize_t ati_remote2_show_mode_mask(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct usb_device *udev = to_usb_device(dev);
struct usb_interface *intf = usb_ifnum_to_if(udev, 0);
struct ati_remote2 *ar2 = usb_get_intfdata(intf);
return sprintf(buf, "0x%02x\n", ar2->mode_mask);
}
static ssize_t ati_remote2_store_mode_mask(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct usb_device *udev = to_usb_device(dev);
struct usb_interface *intf = usb_ifnum_to_if(udev, 0);
struct ati_remote2 *ar2 = usb_get_intfdata(intf);
unsigned int mask;
int err;
err = kstrtouint(buf, 0, &mask);
if (err)
return err;
if (mask & ~ATI_REMOTE2_MAX_MODE_MASK)
return -EINVAL;
ar2->mode_mask = mask;
return count;
}
static DEVICE_ATTR(channel_mask, 0644, ati_remote2_show_channel_mask,
ati_remote2_store_channel_mask);
static DEVICE_ATTR(mode_mask, 0644, ati_remote2_show_mode_mask,
ati_remote2_store_mode_mask);
static struct attribute *ati_remote2_attrs[] = {
&dev_attr_channel_mask.attr,
&dev_attr_mode_mask.attr,
NULL,
};
static struct attribute_group ati_remote2_attr_group = {
.attrs = ati_remote2_attrs,
};
static int ati_remote2_probe(struct usb_interface *interface, const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(interface);
struct usb_host_interface *alt = interface->cur_altsetting;
struct ati_remote2 *ar2;
int r;
if (alt->desc.bInterfaceNumber)
return -ENODEV;
ar2 = kzalloc(sizeof (struct ati_remote2), GFP_KERNEL);
if (!ar2)
return -ENOMEM;
ar2->udev = udev;
/* Sanity check, first interface must have an endpoint */
if (alt->desc.bNumEndpoints < 1 || !alt->endpoint) {
dev_err(&interface->dev,
"%s(): interface 0 must have an endpoint\n", __func__);
r = -ENODEV;
goto fail1;
}
ar2->intf[0] = interface;
ar2->ep[0] = &alt->endpoint[0].desc;
/* Sanity check, the device must have two interfaces */
ar2->intf[1] = usb_ifnum_to_if(udev, 1);
if ((udev->actconfig->desc.bNumInterfaces < 2) || !ar2->intf[1]) {
dev_err(&interface->dev, "%s(): need 2 interfaces, found %d\n",
__func__, udev->actconfig->desc.bNumInterfaces);
r = -ENODEV;
goto fail1;
}
r = usb_driver_claim_interface(&ati_remote2_driver, ar2->intf[1], ar2);
if (r)
goto fail1;
/* Sanity check, second interface must have an endpoint */
alt = ar2->intf[1]->cur_altsetting;
if (alt->desc.bNumEndpoints < 1 || !alt->endpoint) {
dev_err(&interface->dev,
"%s(): interface 1 must have an endpoint\n", __func__);
r = -ENODEV;
goto fail2;
}
ar2->ep[1] = &alt->endpoint[0].desc;
r = ati_remote2_urb_init(ar2);
if (r)
goto fail3;
ar2->channel_mask = channel_mask;
ar2->mode_mask = mode_mask;
r = ati_remote2_setup(ar2, ar2->channel_mask);
if (r)
goto fail3;
usb_make_path(udev, ar2->phys, sizeof(ar2->phys));
strlcat(ar2->phys, "/input0", sizeof(ar2->phys));
strlcat(ar2->name, "ATI Remote Wonder II", sizeof(ar2->name));
r = sysfs_create_group(&udev->dev.kobj, &ati_remote2_attr_group);
if (r)
goto fail3;
r = ati_remote2_input_init(ar2);
if (r)
goto fail4;
usb_set_intfdata(interface, ar2);
interface->needs_remote_wakeup = 1;
return 0;
fail4:
sysfs_remove_group(&udev->dev.kobj, &ati_remote2_attr_group);
fail3:
ati_remote2_urb_cleanup(ar2);
fail2:
usb_driver_release_interface(&ati_remote2_driver, ar2->intf[1]);
fail1:
kfree(ar2);
return r;
}
static void ati_remote2_disconnect(struct usb_interface *interface)
{
struct ati_remote2 *ar2;
struct usb_host_interface *alt = interface->cur_altsetting;
if (alt->desc.bInterfaceNumber)
return;
ar2 = usb_get_intfdata(interface);
usb_set_intfdata(interface, NULL);
input_unregister_device(ar2->idev);
sysfs_remove_group(&ar2->udev->dev.kobj, &ati_remote2_attr_group);
ati_remote2_urb_cleanup(ar2);
usb_driver_release_interface(&ati_remote2_driver, ar2->intf[1]);
kfree(ar2);
}
static int ati_remote2_suspend(struct usb_interface *interface,
pm_message_t message)
{
struct ati_remote2 *ar2;
struct usb_host_interface *alt = interface->cur_altsetting;
if (alt->desc.bInterfaceNumber)
return 0;
ar2 = usb_get_intfdata(interface);
dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__);
mutex_lock(&ati_remote2_mutex);
if (ar2->flags & ATI_REMOTE2_OPENED)
ati_remote2_kill_urbs(ar2);
ar2->flags |= ATI_REMOTE2_SUSPENDED;
mutex_unlock(&ati_remote2_mutex);
return 0;
}
static int ati_remote2_resume(struct usb_interface *interface)
{
struct ati_remote2 *ar2;
struct usb_host_interface *alt = interface->cur_altsetting;
int r = 0;
if (alt->desc.bInterfaceNumber)
return 0;
ar2 = usb_get_intfdata(interface);
dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__);
mutex_lock(&ati_remote2_mutex);
if (ar2->flags & ATI_REMOTE2_OPENED)
r = ati_remote2_submit_urbs(ar2);
if (!r)
ar2->flags &= ~ATI_REMOTE2_SUSPENDED;
mutex_unlock(&ati_remote2_mutex);
return r;
}
static int ati_remote2_reset_resume(struct usb_interface *interface)
{
struct ati_remote2 *ar2;
struct usb_host_interface *alt = interface->cur_altsetting;
int r = 0;
if (alt->desc.bInterfaceNumber)
return 0;
ar2 = usb_get_intfdata(interface);
dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__);
mutex_lock(&ati_remote2_mutex);
r = ati_remote2_setup(ar2, ar2->channel_mask);
if (r)
goto out;
if (ar2->flags & ATI_REMOTE2_OPENED)
r = ati_remote2_submit_urbs(ar2);
if (!r)
ar2->flags &= ~ATI_REMOTE2_SUSPENDED;
out:
mutex_unlock(&ati_remote2_mutex);
return r;
}
static int ati_remote2_pre_reset(struct usb_interface *interface)
{
struct ati_remote2 *ar2;
struct usb_host_interface *alt = interface->cur_altsetting;
if (alt->desc.bInterfaceNumber)
return 0;
ar2 = usb_get_intfdata(interface);
dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__);
mutex_lock(&ati_remote2_mutex);
if (ar2->flags == ATI_REMOTE2_OPENED)
ati_remote2_kill_urbs(ar2);
return 0;
}
static int ati_remote2_post_reset(struct usb_interface *interface)
{
struct ati_remote2 *ar2;
struct usb_host_interface *alt = interface->cur_altsetting;
int r = 0;
if (alt->desc.bInterfaceNumber)
return 0;
ar2 = usb_get_intfdata(interface);
dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__);
if (ar2->flags == ATI_REMOTE2_OPENED)
r = ati_remote2_submit_urbs(ar2);
mutex_unlock(&ati_remote2_mutex);
return r;
}
module_usb_driver(ati_remote2_driver);
|
linux-master
|
drivers/input/misc/ati_remote2.c
|
/*
* Hisilicon PMIC powerkey driver
*
* Copyright (C) 2013 Hisilicon Ltd.
* Copyright (C) 2015, 2016 Linaro Ltd.
*
* This file is subject to the terms and conditions of the GNU General
* Public License. See the file "COPYING" in the main directory of this
* archive for more details.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/reboot.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/input.h>
#include <linux/slab.h>
/* the held interrupt will trigger after 4 seconds */
#define MAX_HELD_TIME (4 * MSEC_PER_SEC)
static irqreturn_t hi65xx_power_press_isr(int irq, void *q)
{
struct input_dev *input = q;
pm_wakeup_event(input->dev.parent, MAX_HELD_TIME);
input_report_key(input, KEY_POWER, 1);
input_sync(input);
return IRQ_HANDLED;
}
static irqreturn_t hi65xx_power_release_isr(int irq, void *q)
{
struct input_dev *input = q;
pm_wakeup_event(input->dev.parent, MAX_HELD_TIME);
input_report_key(input, KEY_POWER, 0);
input_sync(input);
return IRQ_HANDLED;
}
static irqreturn_t hi65xx_restart_toggle_isr(int irq, void *q)
{
struct input_dev *input = q;
int value = test_bit(KEY_RESTART, input->key);
pm_wakeup_event(input->dev.parent, MAX_HELD_TIME);
input_report_key(input, KEY_RESTART, !value);
input_sync(input);
return IRQ_HANDLED;
}
static const struct {
const char *name;
irqreturn_t (*handler)(int irq, void *q);
} hi65xx_irq_info[] = {
{ "down", hi65xx_power_press_isr },
{ "up", hi65xx_power_release_isr },
{ "hold 4s", hi65xx_restart_toggle_isr },
};
static int hi65xx_powerkey_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct input_dev *input;
int irq, i, error;
input = devm_input_allocate_device(dev);
if (!input) {
dev_err(dev, "failed to allocate input device\n");
return -ENOMEM;
}
input->phys = "hisi_on/input0";
input->name = "HISI 65xx PowerOn Key";
input_set_capability(input, EV_KEY, KEY_POWER);
input_set_capability(input, EV_KEY, KEY_RESTART);
for (i = 0; i < ARRAY_SIZE(hi65xx_irq_info); i++) {
irq = platform_get_irq_byname(pdev, hi65xx_irq_info[i].name);
if (irq < 0)
return irq;
error = devm_request_any_context_irq(dev, irq,
hi65xx_irq_info[i].handler,
IRQF_ONESHOT,
hi65xx_irq_info[i].name,
input);
if (error < 0) {
dev_err(dev, "couldn't request irq %s: %d\n",
hi65xx_irq_info[i].name, error);
return error;
}
}
error = input_register_device(input);
if (error) {
dev_err(dev, "failed to register input device: %d\n", error);
return error;
}
device_init_wakeup(dev, 1);
return 0;
}
static struct platform_driver hi65xx_powerkey_driver = {
.driver = {
.name = "hi65xx-powerkey",
},
.probe = hi65xx_powerkey_probe,
};
module_platform_driver(hi65xx_powerkey_driver);
MODULE_AUTHOR("Zhiliang Xue <[email protected]");
MODULE_DESCRIPTION("Hisi PMIC Power key driver");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/misc/hisi_powerkey.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* ON pin driver for Dialog DA9055 PMICs
*
* Copyright(c) 2012 Dialog Semiconductor Ltd.
*
* Author: David Dajun Chen <[email protected]>
*/
#include <linux/input.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mfd/da9055/core.h>
#include <linux/mfd/da9055/reg.h>
struct da9055_onkey {
struct da9055 *da9055;
struct input_dev *input;
struct delayed_work work;
};
static void da9055_onkey_query(struct da9055_onkey *onkey)
{
int key_stat;
key_stat = da9055_reg_read(onkey->da9055, DA9055_REG_STATUS_A);
if (key_stat < 0) {
dev_err(onkey->da9055->dev,
"Failed to read onkey event %d\n", key_stat);
} else {
key_stat &= DA9055_NOKEY_STS;
/*
* Onkey status bit is cleared when onkey button is released.
*/
if (!key_stat) {
input_report_key(onkey->input, KEY_POWER, 0);
input_sync(onkey->input);
}
}
/*
* Interrupt is generated only when the ONKEY pin is asserted.
* Hence the deassertion of the pin is simulated through work queue.
*/
if (key_stat)
schedule_delayed_work(&onkey->work, msecs_to_jiffies(10));
}
static void da9055_onkey_work(struct work_struct *work)
{
struct da9055_onkey *onkey = container_of(work, struct da9055_onkey,
work.work);
da9055_onkey_query(onkey);
}
static irqreturn_t da9055_onkey_irq(int irq, void *data)
{
struct da9055_onkey *onkey = data;
input_report_key(onkey->input, KEY_POWER, 1);
input_sync(onkey->input);
da9055_onkey_query(onkey);
return IRQ_HANDLED;
}
static int da9055_onkey_probe(struct platform_device *pdev)
{
struct da9055 *da9055 = dev_get_drvdata(pdev->dev.parent);
struct da9055_onkey *onkey;
struct input_dev *input_dev;
int irq, err;
irq = platform_get_irq_byname(pdev, "ONKEY");
if (irq < 0)
return -EINVAL;
onkey = devm_kzalloc(&pdev->dev, sizeof(*onkey), GFP_KERNEL);
if (!onkey) {
dev_err(&pdev->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
input_dev = input_allocate_device();
if (!input_dev) {
dev_err(&pdev->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
onkey->input = input_dev;
onkey->da9055 = da9055;
input_dev->name = "da9055-onkey";
input_dev->phys = "da9055-onkey/input0";
input_dev->dev.parent = &pdev->dev;
input_dev->evbit[0] = BIT_MASK(EV_KEY);
__set_bit(KEY_POWER, input_dev->keybit);
INIT_DELAYED_WORK(&onkey->work, da9055_onkey_work);
err = request_threaded_irq(irq, NULL, da9055_onkey_irq,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
"ONKEY", onkey);
if (err < 0) {
dev_err(&pdev->dev,
"Failed to register ONKEY IRQ %d, error = %d\n",
irq, err);
goto err_free_input;
}
err = input_register_device(input_dev);
if (err) {
dev_err(&pdev->dev, "Unable to register input device, %d\n",
err);
goto err_free_irq;
}
platform_set_drvdata(pdev, onkey);
return 0;
err_free_irq:
free_irq(irq, onkey);
cancel_delayed_work_sync(&onkey->work);
err_free_input:
input_free_device(input_dev);
return err;
}
static int da9055_onkey_remove(struct platform_device *pdev)
{
struct da9055_onkey *onkey = platform_get_drvdata(pdev);
int irq = platform_get_irq_byname(pdev, "ONKEY");
irq = regmap_irq_get_virq(onkey->da9055->irq_data, irq);
free_irq(irq, onkey);
cancel_delayed_work_sync(&onkey->work);
input_unregister_device(onkey->input);
return 0;
}
static struct platform_driver da9055_onkey_driver = {
.probe = da9055_onkey_probe,
.remove = da9055_onkey_remove,
.driver = {
.name = "da9055-onkey",
},
};
module_platform_driver(da9055_onkey_driver);
MODULE_AUTHOR("David Dajun Chen <[email protected]>");
MODULE_DESCRIPTION("Onkey driver for DA9055");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:da9055-onkey");
|
linux-master
|
drivers/input/misc/da9055_onkey.c
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Spreadtrum Communications Inc.
*/
#include <linux/device.h>
#include <linux/input.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/workqueue.h>
#define CUR_DRV_CAL_SEL GENMASK(13, 12)
#define SLP_LDOVIBR_PD_EN BIT(9)
#define LDO_VIBR_PD BIT(8)
#define SC2730_CUR_DRV_CAL_SEL 0
#define SC2730_SLP_LDOVIBR_PD_EN BIT(14)
#define SC2730_LDO_VIBR_PD BIT(13)
struct sc27xx_vibra_data {
u32 cur_drv_cal_sel;
u32 slp_pd_en;
u32 ldo_pd;
};
struct vibra_info {
struct input_dev *input_dev;
struct work_struct play_work;
struct regmap *regmap;
const struct sc27xx_vibra_data *data;
u32 base;
u32 strength;
bool enabled;
};
static const struct sc27xx_vibra_data sc2731_data = {
.cur_drv_cal_sel = CUR_DRV_CAL_SEL,
.slp_pd_en = SLP_LDOVIBR_PD_EN,
.ldo_pd = LDO_VIBR_PD,
};
static const struct sc27xx_vibra_data sc2730_data = {
.cur_drv_cal_sel = SC2730_CUR_DRV_CAL_SEL,
.slp_pd_en = SC2730_SLP_LDOVIBR_PD_EN,
.ldo_pd = SC2730_LDO_VIBR_PD,
};
static const struct sc27xx_vibra_data sc2721_data = {
.cur_drv_cal_sel = CUR_DRV_CAL_SEL,
.slp_pd_en = SLP_LDOVIBR_PD_EN,
.ldo_pd = LDO_VIBR_PD,
};
static void sc27xx_vibra_set(struct vibra_info *info, bool on)
{
const struct sc27xx_vibra_data *data = info->data;
if (on) {
regmap_update_bits(info->regmap, info->base, data->ldo_pd, 0);
regmap_update_bits(info->regmap, info->base,
data->slp_pd_en, 0);
info->enabled = true;
} else {
regmap_update_bits(info->regmap, info->base, data->ldo_pd,
data->ldo_pd);
regmap_update_bits(info->regmap, info->base,
data->slp_pd_en, data->slp_pd_en);
info->enabled = false;
}
}
static int sc27xx_vibra_hw_init(struct vibra_info *info)
{
const struct sc27xx_vibra_data *data = info->data;
if (!data->cur_drv_cal_sel)
return 0;
return regmap_update_bits(info->regmap, info->base,
data->cur_drv_cal_sel, 0);
}
static void sc27xx_vibra_play_work(struct work_struct *work)
{
struct vibra_info *info = container_of(work, struct vibra_info,
play_work);
if (info->strength && !info->enabled)
sc27xx_vibra_set(info, true);
else if (info->strength == 0 && info->enabled)
sc27xx_vibra_set(info, false);
}
static int sc27xx_vibra_play(struct input_dev *input, void *data,
struct ff_effect *effect)
{
struct vibra_info *info = input_get_drvdata(input);
info->strength = effect->u.rumble.weak_magnitude;
schedule_work(&info->play_work);
return 0;
}
static void sc27xx_vibra_close(struct input_dev *input)
{
struct vibra_info *info = input_get_drvdata(input);
cancel_work_sync(&info->play_work);
if (info->enabled)
sc27xx_vibra_set(info, false);
}
static int sc27xx_vibra_probe(struct platform_device *pdev)
{
struct vibra_info *info;
const struct sc27xx_vibra_data *data;
int error;
data = device_get_match_data(&pdev->dev);
if (!data) {
dev_err(&pdev->dev, "no matching driver data found\n");
return -EINVAL;
}
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!info->regmap) {
dev_err(&pdev->dev, "failed to get vibrator regmap.\n");
return -ENODEV;
}
error = device_property_read_u32(&pdev->dev, "reg", &info->base);
if (error) {
dev_err(&pdev->dev, "failed to get vibrator base address.\n");
return error;
}
info->input_dev = devm_input_allocate_device(&pdev->dev);
if (!info->input_dev) {
dev_err(&pdev->dev, "failed to allocate input device.\n");
return -ENOMEM;
}
info->input_dev->name = "sc27xx:vibrator";
info->input_dev->id.version = 0;
info->input_dev->close = sc27xx_vibra_close;
info->data = data;
input_set_drvdata(info->input_dev, info);
input_set_capability(info->input_dev, EV_FF, FF_RUMBLE);
INIT_WORK(&info->play_work, sc27xx_vibra_play_work);
info->enabled = false;
error = sc27xx_vibra_hw_init(info);
if (error) {
dev_err(&pdev->dev, "failed to initialize the vibrator.\n");
return error;
}
error = input_ff_create_memless(info->input_dev, NULL,
sc27xx_vibra_play);
if (error) {
dev_err(&pdev->dev, "failed to register vibrator to FF.\n");
return error;
}
error = input_register_device(info->input_dev);
if (error) {
dev_err(&pdev->dev, "failed to register input device.\n");
return error;
}
return 0;
}
static const struct of_device_id sc27xx_vibra_of_match[] = {
{ .compatible = "sprd,sc2721-vibrator", .data = &sc2721_data },
{ .compatible = "sprd,sc2730-vibrator", .data = &sc2730_data },
{ .compatible = "sprd,sc2731-vibrator", .data = &sc2731_data },
{}
};
MODULE_DEVICE_TABLE(of, sc27xx_vibra_of_match);
static struct platform_driver sc27xx_vibra_driver = {
.driver = {
.name = "sc27xx-vibrator",
.of_match_table = sc27xx_vibra_of_match,
},
.probe = sc27xx_vibra_probe,
};
module_platform_driver(sc27xx_vibra_driver);
MODULE_DESCRIPTION("Spreadtrum SC27xx Vibrator Driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Xiaotong Lu <[email protected]>");
|
linux-master
|
drivers/input/misc/sc27xx-vibra.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AD714X CapTouch Programmable Controller driver supporting AD7142/3/7/8/7A
*
* Copyright 2009-2011 Analog Devices Inc.
*/
#include <linux/device.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/input/ad714x.h>
#include <linux/module.h>
#include "ad714x.h"
#define AD714X_PWR_CTRL 0x0
#define AD714X_STG_CAL_EN_REG 0x1
#define AD714X_AMB_COMP_CTRL0_REG 0x2
#define AD714X_PARTID_REG 0x17
#define AD7142_PARTID 0xE620
#define AD7143_PARTID 0xE630
#define AD7147_PARTID 0x1470
#define AD7148_PARTID 0x1480
#define AD714X_STAGECFG_REG 0x80
#define AD714X_SYSCFG_REG 0x0
#define STG_LOW_INT_EN_REG 0x5
#define STG_HIGH_INT_EN_REG 0x6
#define STG_COM_INT_EN_REG 0x7
#define STG_LOW_INT_STA_REG 0x8
#define STG_HIGH_INT_STA_REG 0x9
#define STG_COM_INT_STA_REG 0xA
#define CDC_RESULT_S0 0xB
#define CDC_RESULT_S1 0xC
#define CDC_RESULT_S2 0xD
#define CDC_RESULT_S3 0xE
#define CDC_RESULT_S4 0xF
#define CDC_RESULT_S5 0x10
#define CDC_RESULT_S6 0x11
#define CDC_RESULT_S7 0x12
#define CDC_RESULT_S8 0x13
#define CDC_RESULT_S9 0x14
#define CDC_RESULT_S10 0x15
#define CDC_RESULT_S11 0x16
#define STAGE0_AMBIENT 0xF1
#define STAGE1_AMBIENT 0x115
#define STAGE2_AMBIENT 0x139
#define STAGE3_AMBIENT 0x15D
#define STAGE4_AMBIENT 0x181
#define STAGE5_AMBIENT 0x1A5
#define STAGE6_AMBIENT 0x1C9
#define STAGE7_AMBIENT 0x1ED
#define STAGE8_AMBIENT 0x211
#define STAGE9_AMBIENT 0x234
#define STAGE10_AMBIENT 0x259
#define STAGE11_AMBIENT 0x27D
#define PER_STAGE_REG_NUM 36
#define STAGE_CFGREG_NUM 8
#define SYS_CFGREG_NUM 8
/*
* driver information which will be used to maintain the software flow
*/
enum ad714x_device_state { IDLE, JITTER, ACTIVE, SPACE };
struct ad714x_slider_drv {
int highest_stage;
int abs_pos;
int flt_pos;
enum ad714x_device_state state;
struct input_dev *input;
};
struct ad714x_wheel_drv {
int abs_pos;
int flt_pos;
int pre_highest_stage;
int highest_stage;
enum ad714x_device_state state;
struct input_dev *input;
};
struct ad714x_touchpad_drv {
int x_highest_stage;
int x_flt_pos;
int x_abs_pos;
int y_highest_stage;
int y_flt_pos;
int y_abs_pos;
int left_ep;
int left_ep_val;
int right_ep;
int right_ep_val;
int top_ep;
int top_ep_val;
int bottom_ep;
int bottom_ep_val;
enum ad714x_device_state state;
struct input_dev *input;
};
struct ad714x_button_drv {
enum ad714x_device_state state;
/*
* Unlike slider/wheel/touchpad, all buttons point to
* same input_dev instance
*/
struct input_dev *input;
};
struct ad714x_driver_data {
struct ad714x_slider_drv *slider;
struct ad714x_wheel_drv *wheel;
struct ad714x_touchpad_drv *touchpad;
struct ad714x_button_drv *button;
};
/*
* information to integrate all things which will be private data
* of spi/i2c device
*/
static void ad714x_use_com_int(struct ad714x_chip *ad714x,
int start_stage, int end_stage)
{
unsigned short data;
unsigned short mask;
mask = ((1 << (end_stage + 1)) - 1) - ((1 << start_stage) - 1);
ad714x->read(ad714x, STG_COM_INT_EN_REG, &data, 1);
data |= 1 << end_stage;
ad714x->write(ad714x, STG_COM_INT_EN_REG, data);
ad714x->read(ad714x, STG_HIGH_INT_EN_REG, &data, 1);
data &= ~mask;
ad714x->write(ad714x, STG_HIGH_INT_EN_REG, data);
}
static void ad714x_use_thr_int(struct ad714x_chip *ad714x,
int start_stage, int end_stage)
{
unsigned short data;
unsigned short mask;
mask = ((1 << (end_stage + 1)) - 1) - ((1 << start_stage) - 1);
ad714x->read(ad714x, STG_COM_INT_EN_REG, &data, 1);
data &= ~(1 << end_stage);
ad714x->write(ad714x, STG_COM_INT_EN_REG, data);
ad714x->read(ad714x, STG_HIGH_INT_EN_REG, &data, 1);
data |= mask;
ad714x->write(ad714x, STG_HIGH_INT_EN_REG, data);
}
static int ad714x_cal_highest_stage(struct ad714x_chip *ad714x,
int start_stage, int end_stage)
{
int max_res = 0;
int max_idx = 0;
int i;
for (i = start_stage; i <= end_stage; i++) {
if (ad714x->sensor_val[i] > max_res) {
max_res = ad714x->sensor_val[i];
max_idx = i;
}
}
return max_idx;
}
static int ad714x_cal_abs_pos(struct ad714x_chip *ad714x,
int start_stage, int end_stage,
int highest_stage, int max_coord)
{
int a_param, b_param;
if (highest_stage == start_stage) {
a_param = ad714x->sensor_val[start_stage + 1];
b_param = ad714x->sensor_val[start_stage] +
ad714x->sensor_val[start_stage + 1];
} else if (highest_stage == end_stage) {
a_param = ad714x->sensor_val[end_stage] *
(end_stage - start_stage) +
ad714x->sensor_val[end_stage - 1] *
(end_stage - start_stage - 1);
b_param = ad714x->sensor_val[end_stage] +
ad714x->sensor_val[end_stage - 1];
} else {
a_param = ad714x->sensor_val[highest_stage] *
(highest_stage - start_stage) +
ad714x->sensor_val[highest_stage - 1] *
(highest_stage - start_stage - 1) +
ad714x->sensor_val[highest_stage + 1] *
(highest_stage - start_stage + 1);
b_param = ad714x->sensor_val[highest_stage] +
ad714x->sensor_val[highest_stage - 1] +
ad714x->sensor_val[highest_stage + 1];
}
return (max_coord / (end_stage - start_stage)) * a_param / b_param;
}
/*
* One button can connect to multi positive and negative of CDCs
* Multi-buttons can connect to same positive/negative of one CDC
*/
static void ad714x_button_state_machine(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_button_plat *hw = &ad714x->hw->button[idx];
struct ad714x_button_drv *sw = &ad714x->sw->button[idx];
switch (sw->state) {
case IDLE:
if (((ad714x->h_state & hw->h_mask) == hw->h_mask) &&
((ad714x->l_state & hw->l_mask) == hw->l_mask)) {
dev_dbg(ad714x->dev, "button %d touched\n", idx);
input_report_key(sw->input, hw->keycode, 1);
input_sync(sw->input);
sw->state = ACTIVE;
}
break;
case ACTIVE:
if (((ad714x->h_state & hw->h_mask) != hw->h_mask) ||
((ad714x->l_state & hw->l_mask) != hw->l_mask)) {
dev_dbg(ad714x->dev, "button %d released\n", idx);
input_report_key(sw->input, hw->keycode, 0);
input_sync(sw->input);
sw->state = IDLE;
}
break;
default:
break;
}
}
/*
* The response of a sensor is defined by the absolute number of codes
* between the current CDC value and the ambient value.
*/
static void ad714x_slider_cal_sensor_val(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
int i;
ad714x->read(ad714x, CDC_RESULT_S0 + hw->start_stage,
&ad714x->adc_reg[hw->start_stage],
hw->end_stage - hw->start_stage + 1);
for (i = hw->start_stage; i <= hw->end_stage; i++) {
ad714x->read(ad714x, STAGE0_AMBIENT + i * PER_STAGE_REG_NUM,
&ad714x->amb_reg[i], 1);
ad714x->sensor_val[i] =
abs(ad714x->adc_reg[i] - ad714x->amb_reg[i]);
}
}
static void ad714x_slider_cal_highest_stage(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx];
sw->highest_stage = ad714x_cal_highest_stage(ad714x, hw->start_stage,
hw->end_stage);
dev_dbg(ad714x->dev, "slider %d highest_stage:%d\n", idx,
sw->highest_stage);
}
/*
* The formulae are very straight forward. It uses the sensor with the
* highest response and the 2 adjacent ones.
* When Sensor 0 has the highest response, only sensor 0 and sensor 1
* are used in the calculations. Similarly when the last sensor has the
* highest response, only the last sensor and the second last sensors
* are used in the calculations.
*
* For i= idx_of_peak_Sensor-1 to i= idx_of_peak_Sensor+1
* v += Sensor response(i)*i
* w += Sensor response(i)
* POS=(Number_of_Positions_Wanted/(Number_of_Sensors_Used-1)) *(v/w)
*/
static void ad714x_slider_cal_abs_pos(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx];
sw->abs_pos = ad714x_cal_abs_pos(ad714x, hw->start_stage, hw->end_stage,
sw->highest_stage, hw->max_coord);
dev_dbg(ad714x->dev, "slider %d absolute position:%d\n", idx,
sw->abs_pos);
}
/*
* To minimise the Impact of the noise on the algorithm, ADI developed a
* routine that filters the CDC results after they have been read by the
* host processor.
* The filter used is an Infinite Input Response(IIR) filter implemented
* in firmware and attenuates the noise on the CDC results after they've
* been read by the host processor.
* Filtered_CDC_result = (Filtered_CDC_result * (10 - Coefficient) +
* Latest_CDC_result * Coefficient)/10
*/
static void ad714x_slider_cal_flt_pos(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx];
sw->flt_pos = (sw->flt_pos * (10 - 4) +
sw->abs_pos * 4)/10;
dev_dbg(ad714x->dev, "slider %d filter position:%d\n", idx,
sw->flt_pos);
}
static void ad714x_slider_use_com_int(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
ad714x_use_com_int(ad714x, hw->start_stage, hw->end_stage);
}
static void ad714x_slider_use_thr_int(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
ad714x_use_thr_int(ad714x, hw->start_stage, hw->end_stage);
}
static void ad714x_slider_state_machine(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx];
struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx];
unsigned short h_state, c_state;
unsigned short mask;
mask = ((1 << (hw->end_stage + 1)) - 1) - ((1 << hw->start_stage) - 1);
h_state = ad714x->h_state & mask;
c_state = ad714x->c_state & mask;
switch (sw->state) {
case IDLE:
if (h_state) {
sw->state = JITTER;
/* In End of Conversion interrupt mode, the AD714X
* continuously generates hardware interrupts.
*/
ad714x_slider_use_com_int(ad714x, idx);
dev_dbg(ad714x->dev, "slider %d touched\n", idx);
}
break;
case JITTER:
if (c_state == mask) {
ad714x_slider_cal_sensor_val(ad714x, idx);
ad714x_slider_cal_highest_stage(ad714x, idx);
ad714x_slider_cal_abs_pos(ad714x, idx);
sw->flt_pos = sw->abs_pos;
sw->state = ACTIVE;
}
break;
case ACTIVE:
if (c_state == mask) {
if (h_state) {
ad714x_slider_cal_sensor_val(ad714x, idx);
ad714x_slider_cal_highest_stage(ad714x, idx);
ad714x_slider_cal_abs_pos(ad714x, idx);
ad714x_slider_cal_flt_pos(ad714x, idx);
input_report_abs(sw->input, ABS_X, sw->flt_pos);
input_report_key(sw->input, BTN_TOUCH, 1);
} else {
/* When the user lifts off the sensor, configure
* the AD714X back to threshold interrupt mode.
*/
ad714x_slider_use_thr_int(ad714x, idx);
sw->state = IDLE;
input_report_key(sw->input, BTN_TOUCH, 0);
dev_dbg(ad714x->dev, "slider %d released\n",
idx);
}
input_sync(sw->input);
}
break;
default:
break;
}
}
/*
* When the scroll wheel is activated, we compute the absolute position based
* on the sensor values. To calculate the position, we first determine the
* sensor that has the greatest response among the 8 sensors that constitutes
* the scrollwheel. Then we determined the 2 sensors on either sides of the
* sensor with the highest response and we apply weights to these sensors.
*/
static void ad714x_wheel_cal_highest_stage(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx];
sw->pre_highest_stage = sw->highest_stage;
sw->highest_stage = ad714x_cal_highest_stage(ad714x, hw->start_stage,
hw->end_stage);
dev_dbg(ad714x->dev, "wheel %d highest_stage:%d\n", idx,
sw->highest_stage);
}
static void ad714x_wheel_cal_sensor_val(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
int i;
ad714x->read(ad714x, CDC_RESULT_S0 + hw->start_stage,
&ad714x->adc_reg[hw->start_stage],
hw->end_stage - hw->start_stage + 1);
for (i = hw->start_stage; i <= hw->end_stage; i++) {
ad714x->read(ad714x, STAGE0_AMBIENT + i * PER_STAGE_REG_NUM,
&ad714x->amb_reg[i], 1);
if (ad714x->adc_reg[i] > ad714x->amb_reg[i])
ad714x->sensor_val[i] =
ad714x->adc_reg[i] - ad714x->amb_reg[i];
else
ad714x->sensor_val[i] = 0;
}
}
/*
* When the scroll wheel is activated, we compute the absolute position based
* on the sensor values. To calculate the position, we first determine the
* sensor that has the greatest response among the sensors that constitutes
* the scrollwheel. Then we determined the sensors on either sides of the
* sensor with the highest response and we apply weights to these sensors. The
* result of this computation gives us the mean value.
*/
static void ad714x_wheel_cal_abs_pos(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx];
int stage_num = hw->end_stage - hw->start_stage + 1;
int first_before, highest, first_after;
int a_param, b_param;
first_before = (sw->highest_stage + stage_num - 1) % stage_num;
highest = sw->highest_stage;
first_after = (sw->highest_stage + stage_num + 1) % stage_num;
a_param = ad714x->sensor_val[highest] *
(highest - hw->start_stage) +
ad714x->sensor_val[first_before] *
(highest - hw->start_stage - 1) +
ad714x->sensor_val[first_after] *
(highest - hw->start_stage + 1);
b_param = ad714x->sensor_val[highest] +
ad714x->sensor_val[first_before] +
ad714x->sensor_val[first_after];
sw->abs_pos = ((hw->max_coord / (hw->end_stage - hw->start_stage)) *
a_param) / b_param;
if (sw->abs_pos > hw->max_coord)
sw->abs_pos = hw->max_coord;
else if (sw->abs_pos < 0)
sw->abs_pos = 0;
}
static void ad714x_wheel_cal_flt_pos(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx];
if (((sw->pre_highest_stage == hw->end_stage) &&
(sw->highest_stage == hw->start_stage)) ||
((sw->pre_highest_stage == hw->start_stage) &&
(sw->highest_stage == hw->end_stage)))
sw->flt_pos = sw->abs_pos;
else
sw->flt_pos = ((sw->flt_pos * 30) + (sw->abs_pos * 71)) / 100;
if (sw->flt_pos > hw->max_coord)
sw->flt_pos = hw->max_coord;
}
static void ad714x_wheel_use_com_int(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
ad714x_use_com_int(ad714x, hw->start_stage, hw->end_stage);
}
static void ad714x_wheel_use_thr_int(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
ad714x_use_thr_int(ad714x, hw->start_stage, hw->end_stage);
}
static void ad714x_wheel_state_machine(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx];
struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx];
unsigned short h_state, c_state;
unsigned short mask;
mask = ((1 << (hw->end_stage + 1)) - 1) - ((1 << hw->start_stage) - 1);
h_state = ad714x->h_state & mask;
c_state = ad714x->c_state & mask;
switch (sw->state) {
case IDLE:
if (h_state) {
sw->state = JITTER;
/* In End of Conversion interrupt mode, the AD714X
* continuously generates hardware interrupts.
*/
ad714x_wheel_use_com_int(ad714x, idx);
dev_dbg(ad714x->dev, "wheel %d touched\n", idx);
}
break;
case JITTER:
if (c_state == mask) {
ad714x_wheel_cal_sensor_val(ad714x, idx);
ad714x_wheel_cal_highest_stage(ad714x, idx);
ad714x_wheel_cal_abs_pos(ad714x, idx);
sw->flt_pos = sw->abs_pos;
sw->state = ACTIVE;
}
break;
case ACTIVE:
if (c_state == mask) {
if (h_state) {
ad714x_wheel_cal_sensor_val(ad714x, idx);
ad714x_wheel_cal_highest_stage(ad714x, idx);
ad714x_wheel_cal_abs_pos(ad714x, idx);
ad714x_wheel_cal_flt_pos(ad714x, idx);
input_report_abs(sw->input, ABS_WHEEL,
sw->flt_pos);
input_report_key(sw->input, BTN_TOUCH, 1);
} else {
/* When the user lifts off the sensor, configure
* the AD714X back to threshold interrupt mode.
*/
ad714x_wheel_use_thr_int(ad714x, idx);
sw->state = IDLE;
input_report_key(sw->input, BTN_TOUCH, 0);
dev_dbg(ad714x->dev, "wheel %d released\n",
idx);
}
input_sync(sw->input);
}
break;
default:
break;
}
}
static void touchpad_cal_sensor_val(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
int i;
ad714x->read(ad714x, CDC_RESULT_S0 + hw->x_start_stage,
&ad714x->adc_reg[hw->x_start_stage],
hw->x_end_stage - hw->x_start_stage + 1);
for (i = hw->x_start_stage; i <= hw->x_end_stage; i++) {
ad714x->read(ad714x, STAGE0_AMBIENT + i * PER_STAGE_REG_NUM,
&ad714x->amb_reg[i], 1);
if (ad714x->adc_reg[i] > ad714x->amb_reg[i])
ad714x->sensor_val[i] =
ad714x->adc_reg[i] - ad714x->amb_reg[i];
else
ad714x->sensor_val[i] = 0;
}
}
static void touchpad_cal_highest_stage(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
sw->x_highest_stage = ad714x_cal_highest_stage(ad714x,
hw->x_start_stage, hw->x_end_stage);
sw->y_highest_stage = ad714x_cal_highest_stage(ad714x,
hw->y_start_stage, hw->y_end_stage);
dev_dbg(ad714x->dev,
"touchpad %d x_highest_stage:%d, y_highest_stage:%d\n",
idx, sw->x_highest_stage, sw->y_highest_stage);
}
/*
* If 2 fingers are touching the sensor then 2 peaks can be observed in the
* distribution.
* The arithmetic doesn't support to get absolute coordinates for multi-touch
* yet.
*/
static int touchpad_check_second_peak(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
int i;
for (i = hw->x_start_stage; i < sw->x_highest_stage; i++) {
if ((ad714x->sensor_val[i] - ad714x->sensor_val[i + 1])
> (ad714x->sensor_val[i + 1] / 10))
return 1;
}
for (i = sw->x_highest_stage; i < hw->x_end_stage; i++) {
if ((ad714x->sensor_val[i + 1] - ad714x->sensor_val[i])
> (ad714x->sensor_val[i] / 10))
return 1;
}
for (i = hw->y_start_stage; i < sw->y_highest_stage; i++) {
if ((ad714x->sensor_val[i] - ad714x->sensor_val[i + 1])
> (ad714x->sensor_val[i + 1] / 10))
return 1;
}
for (i = sw->y_highest_stage; i < hw->y_end_stage; i++) {
if ((ad714x->sensor_val[i + 1] - ad714x->sensor_val[i])
> (ad714x->sensor_val[i] / 10))
return 1;
}
return 0;
}
/*
* If only one finger is used to activate the touch pad then only 1 peak will be
* registered in the distribution. This peak and the 2 adjacent sensors will be
* used in the calculation of the absolute position. This will prevent hand
* shadows to affect the absolute position calculation.
*/
static void touchpad_cal_abs_pos(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
sw->x_abs_pos = ad714x_cal_abs_pos(ad714x, hw->x_start_stage,
hw->x_end_stage, sw->x_highest_stage, hw->x_max_coord);
sw->y_abs_pos = ad714x_cal_abs_pos(ad714x, hw->y_start_stage,
hw->y_end_stage, sw->y_highest_stage, hw->y_max_coord);
dev_dbg(ad714x->dev, "touchpad %d absolute position:(%d, %d)\n", idx,
sw->x_abs_pos, sw->y_abs_pos);
}
static void touchpad_cal_flt_pos(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
sw->x_flt_pos = (sw->x_flt_pos * (10 - 4) +
sw->x_abs_pos * 4)/10;
sw->y_flt_pos = (sw->y_flt_pos * (10 - 4) +
sw->y_abs_pos * 4)/10;
dev_dbg(ad714x->dev, "touchpad %d filter position:(%d, %d)\n",
idx, sw->x_flt_pos, sw->y_flt_pos);
}
/*
* To prevent distortion from showing in the absolute position, it is
* necessary to detect the end points. When endpoints are detected, the
* driver stops updating the status variables with absolute positions.
* End points are detected on the 4 edges of the touchpad sensor. The
* method to detect them is the same for all 4.
* To detect the end points, the firmware computes the difference in
* percent between the sensor on the edge and the adjacent one. The
* difference is calculated in percent in order to make the end point
* detection independent of the pressure.
*/
#define LEFT_END_POINT_DETECTION_LEVEL 550
#define RIGHT_END_POINT_DETECTION_LEVEL 750
#define LEFT_RIGHT_END_POINT_DEAVTIVALION_LEVEL 850
#define TOP_END_POINT_DETECTION_LEVEL 550
#define BOTTOM_END_POINT_DETECTION_LEVEL 950
#define TOP_BOTTOM_END_POINT_DEAVTIVALION_LEVEL 700
static int touchpad_check_endpoint(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
int percent_sensor_diff;
/* left endpoint detect */
percent_sensor_diff = (ad714x->sensor_val[hw->x_start_stage] -
ad714x->sensor_val[hw->x_start_stage + 1]) * 100 /
ad714x->sensor_val[hw->x_start_stage + 1];
if (!sw->left_ep) {
if (percent_sensor_diff >= LEFT_END_POINT_DETECTION_LEVEL) {
sw->left_ep = 1;
sw->left_ep_val =
ad714x->sensor_val[hw->x_start_stage + 1];
}
} else {
if ((percent_sensor_diff < LEFT_END_POINT_DETECTION_LEVEL) &&
(ad714x->sensor_val[hw->x_start_stage + 1] >
LEFT_RIGHT_END_POINT_DEAVTIVALION_LEVEL + sw->left_ep_val))
sw->left_ep = 0;
}
/* right endpoint detect */
percent_sensor_diff = (ad714x->sensor_val[hw->x_end_stage] -
ad714x->sensor_val[hw->x_end_stage - 1]) * 100 /
ad714x->sensor_val[hw->x_end_stage - 1];
if (!sw->right_ep) {
if (percent_sensor_diff >= RIGHT_END_POINT_DETECTION_LEVEL) {
sw->right_ep = 1;
sw->right_ep_val =
ad714x->sensor_val[hw->x_end_stage - 1];
}
} else {
if ((percent_sensor_diff < RIGHT_END_POINT_DETECTION_LEVEL) &&
(ad714x->sensor_val[hw->x_end_stage - 1] >
LEFT_RIGHT_END_POINT_DEAVTIVALION_LEVEL + sw->right_ep_val))
sw->right_ep = 0;
}
/* top endpoint detect */
percent_sensor_diff = (ad714x->sensor_val[hw->y_start_stage] -
ad714x->sensor_val[hw->y_start_stage + 1]) * 100 /
ad714x->sensor_val[hw->y_start_stage + 1];
if (!sw->top_ep) {
if (percent_sensor_diff >= TOP_END_POINT_DETECTION_LEVEL) {
sw->top_ep = 1;
sw->top_ep_val =
ad714x->sensor_val[hw->y_start_stage + 1];
}
} else {
if ((percent_sensor_diff < TOP_END_POINT_DETECTION_LEVEL) &&
(ad714x->sensor_val[hw->y_start_stage + 1] >
TOP_BOTTOM_END_POINT_DEAVTIVALION_LEVEL + sw->top_ep_val))
sw->top_ep = 0;
}
/* bottom endpoint detect */
percent_sensor_diff = (ad714x->sensor_val[hw->y_end_stage] -
ad714x->sensor_val[hw->y_end_stage - 1]) * 100 /
ad714x->sensor_val[hw->y_end_stage - 1];
if (!sw->bottom_ep) {
if (percent_sensor_diff >= BOTTOM_END_POINT_DETECTION_LEVEL) {
sw->bottom_ep = 1;
sw->bottom_ep_val =
ad714x->sensor_val[hw->y_end_stage - 1];
}
} else {
if ((percent_sensor_diff < BOTTOM_END_POINT_DETECTION_LEVEL) &&
(ad714x->sensor_val[hw->y_end_stage - 1] >
TOP_BOTTOM_END_POINT_DEAVTIVALION_LEVEL + sw->bottom_ep_val))
sw->bottom_ep = 0;
}
return sw->left_ep || sw->right_ep || sw->top_ep || sw->bottom_ep;
}
static void touchpad_use_com_int(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
ad714x_use_com_int(ad714x, hw->x_start_stage, hw->x_end_stage);
}
static void touchpad_use_thr_int(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
ad714x_use_thr_int(ad714x, hw->x_start_stage, hw->x_end_stage);
ad714x_use_thr_int(ad714x, hw->y_start_stage, hw->y_end_stage);
}
static void ad714x_touchpad_state_machine(struct ad714x_chip *ad714x, int idx)
{
struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx];
struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx];
unsigned short h_state, c_state;
unsigned short mask;
mask = (((1 << (hw->x_end_stage + 1)) - 1) -
((1 << hw->x_start_stage) - 1)) +
(((1 << (hw->y_end_stage + 1)) - 1) -
((1 << hw->y_start_stage) - 1));
h_state = ad714x->h_state & mask;
c_state = ad714x->c_state & mask;
switch (sw->state) {
case IDLE:
if (h_state) {
sw->state = JITTER;
/* In End of Conversion interrupt mode, the AD714X
* continuously generates hardware interrupts.
*/
touchpad_use_com_int(ad714x, idx);
dev_dbg(ad714x->dev, "touchpad %d touched\n", idx);
}
break;
case JITTER:
if (c_state == mask) {
touchpad_cal_sensor_val(ad714x, idx);
touchpad_cal_highest_stage(ad714x, idx);
if ((!touchpad_check_second_peak(ad714x, idx)) &&
(!touchpad_check_endpoint(ad714x, idx))) {
dev_dbg(ad714x->dev,
"touchpad%d, 2 fingers or endpoint\n",
idx);
touchpad_cal_abs_pos(ad714x, idx);
sw->x_flt_pos = sw->x_abs_pos;
sw->y_flt_pos = sw->y_abs_pos;
sw->state = ACTIVE;
}
}
break;
case ACTIVE:
if (c_state == mask) {
if (h_state) {
touchpad_cal_sensor_val(ad714x, idx);
touchpad_cal_highest_stage(ad714x, idx);
if ((!touchpad_check_second_peak(ad714x, idx))
&& (!touchpad_check_endpoint(ad714x, idx))) {
touchpad_cal_abs_pos(ad714x, idx);
touchpad_cal_flt_pos(ad714x, idx);
input_report_abs(sw->input, ABS_X,
sw->x_flt_pos);
input_report_abs(sw->input, ABS_Y,
sw->y_flt_pos);
input_report_key(sw->input, BTN_TOUCH,
1);
}
} else {
/* When the user lifts off the sensor, configure
* the AD714X back to threshold interrupt mode.
*/
touchpad_use_thr_int(ad714x, idx);
sw->state = IDLE;
input_report_key(sw->input, BTN_TOUCH, 0);
dev_dbg(ad714x->dev, "touchpad %d released\n",
idx);
}
input_sync(sw->input);
}
break;
default:
break;
}
}
static int ad714x_hw_detect(struct ad714x_chip *ad714x)
{
unsigned short data;
ad714x->read(ad714x, AD714X_PARTID_REG, &data, 1);
switch (data & 0xFFF0) {
case AD7142_PARTID:
ad714x->product = 0x7142;
ad714x->version = data & 0xF;
dev_info(ad714x->dev, "found AD7142 captouch, rev:%d\n",
ad714x->version);
return 0;
case AD7143_PARTID:
ad714x->product = 0x7143;
ad714x->version = data & 0xF;
dev_info(ad714x->dev, "found AD7143 captouch, rev:%d\n",
ad714x->version);
return 0;
case AD7147_PARTID:
ad714x->product = 0x7147;
ad714x->version = data & 0xF;
dev_info(ad714x->dev, "found AD7147(A) captouch, rev:%d\n",
ad714x->version);
return 0;
case AD7148_PARTID:
ad714x->product = 0x7148;
ad714x->version = data & 0xF;
dev_info(ad714x->dev, "found AD7148 captouch, rev:%d\n",
ad714x->version);
return 0;
default:
dev_err(ad714x->dev,
"fail to detect AD714X captouch, read ID is %04x\n",
data);
return -ENODEV;
}
}
static void ad714x_hw_init(struct ad714x_chip *ad714x)
{
int i, j;
unsigned short reg_base;
unsigned short data;
/* configuration CDC and interrupts */
for (i = 0; i < STAGE_NUM; i++) {
reg_base = AD714X_STAGECFG_REG + i * STAGE_CFGREG_NUM;
for (j = 0; j < STAGE_CFGREG_NUM; j++)
ad714x->write(ad714x, reg_base + j,
ad714x->hw->stage_cfg_reg[i][j]);
}
for (i = 0; i < SYS_CFGREG_NUM; i++)
ad714x->write(ad714x, AD714X_SYSCFG_REG + i,
ad714x->hw->sys_cfg_reg[i]);
for (i = 0; i < SYS_CFGREG_NUM; i++)
ad714x->read(ad714x, AD714X_SYSCFG_REG + i, &data, 1);
ad714x->write(ad714x, AD714X_STG_CAL_EN_REG, 0xFFF);
/* clear all interrupts */
ad714x->read(ad714x, STG_LOW_INT_STA_REG, &ad714x->l_state, 3);
}
static irqreturn_t ad714x_interrupt_thread(int irq, void *data)
{
struct ad714x_chip *ad714x = data;
int i;
mutex_lock(&ad714x->mutex);
ad714x->read(ad714x, STG_LOW_INT_STA_REG, &ad714x->l_state, 3);
for (i = 0; i < ad714x->hw->button_num; i++)
ad714x_button_state_machine(ad714x, i);
for (i = 0; i < ad714x->hw->slider_num; i++)
ad714x_slider_state_machine(ad714x, i);
for (i = 0; i < ad714x->hw->wheel_num; i++)
ad714x_wheel_state_machine(ad714x, i);
for (i = 0; i < ad714x->hw->touchpad_num; i++)
ad714x_touchpad_state_machine(ad714x, i);
mutex_unlock(&ad714x->mutex);
return IRQ_HANDLED;
}
struct ad714x_chip *ad714x_probe(struct device *dev, u16 bus_type, int irq,
ad714x_read_t read, ad714x_write_t write)
{
int i;
int error;
struct input_dev *input;
struct ad714x_platform_data *plat_data = dev_get_platdata(dev);
struct ad714x_chip *ad714x;
void *drv_mem;
unsigned long irqflags;
struct ad714x_button_drv *bt_drv;
struct ad714x_slider_drv *sd_drv;
struct ad714x_wheel_drv *wl_drv;
struct ad714x_touchpad_drv *tp_drv;
if (irq <= 0) {
dev_err(dev, "IRQ not configured!\n");
error = -EINVAL;
return ERR_PTR(error);
}
if (dev_get_platdata(dev) == NULL) {
dev_err(dev, "platform data for ad714x doesn't exist\n");
error = -EINVAL;
return ERR_PTR(error);
}
ad714x = devm_kzalloc(dev, sizeof(*ad714x) + sizeof(*ad714x->sw) +
sizeof(*sd_drv) * plat_data->slider_num +
sizeof(*wl_drv) * plat_data->wheel_num +
sizeof(*tp_drv) * plat_data->touchpad_num +
sizeof(*bt_drv) * plat_data->button_num,
GFP_KERNEL);
if (!ad714x) {
error = -ENOMEM;
return ERR_PTR(error);
}
ad714x->hw = plat_data;
drv_mem = ad714x + 1;
ad714x->sw = drv_mem;
drv_mem += sizeof(*ad714x->sw);
ad714x->sw->slider = sd_drv = drv_mem;
drv_mem += sizeof(*sd_drv) * ad714x->hw->slider_num;
ad714x->sw->wheel = wl_drv = drv_mem;
drv_mem += sizeof(*wl_drv) * ad714x->hw->wheel_num;
ad714x->sw->touchpad = tp_drv = drv_mem;
drv_mem += sizeof(*tp_drv) * ad714x->hw->touchpad_num;
ad714x->sw->button = bt_drv = drv_mem;
drv_mem += sizeof(*bt_drv) * ad714x->hw->button_num;
ad714x->read = read;
ad714x->write = write;
ad714x->irq = irq;
ad714x->dev = dev;
error = ad714x_hw_detect(ad714x);
if (error)
return ERR_PTR(error);
/* initialize and request sw/hw resources */
ad714x_hw_init(ad714x);
mutex_init(&ad714x->mutex);
/* a slider uses one input_dev instance */
if (ad714x->hw->slider_num > 0) {
struct ad714x_slider_plat *sd_plat = ad714x->hw->slider;
for (i = 0; i < ad714x->hw->slider_num; i++) {
input = devm_input_allocate_device(dev);
if (!input)
return ERR_PTR(-ENOMEM);
__set_bit(EV_ABS, input->evbit);
__set_bit(EV_KEY, input->evbit);
__set_bit(ABS_X, input->absbit);
__set_bit(BTN_TOUCH, input->keybit);
input_set_abs_params(input,
ABS_X, 0, sd_plat->max_coord, 0, 0);
input->id.bustype = bus_type;
input->id.product = ad714x->product;
input->id.version = ad714x->version;
input->name = "ad714x_captouch_slider";
input->dev.parent = dev;
error = input_register_device(input);
if (error)
return ERR_PTR(error);
sd_drv[i].input = input;
}
}
/* a wheel uses one input_dev instance */
if (ad714x->hw->wheel_num > 0) {
struct ad714x_wheel_plat *wl_plat = ad714x->hw->wheel;
for (i = 0; i < ad714x->hw->wheel_num; i++) {
input = devm_input_allocate_device(dev);
if (!input)
return ERR_PTR(-ENOMEM);
__set_bit(EV_KEY, input->evbit);
__set_bit(EV_ABS, input->evbit);
__set_bit(ABS_WHEEL, input->absbit);
__set_bit(BTN_TOUCH, input->keybit);
input_set_abs_params(input,
ABS_WHEEL, 0, wl_plat->max_coord, 0, 0);
input->id.bustype = bus_type;
input->id.product = ad714x->product;
input->id.version = ad714x->version;
input->name = "ad714x_captouch_wheel";
input->dev.parent = dev;
error = input_register_device(input);
if (error)
return ERR_PTR(error);
wl_drv[i].input = input;
}
}
/* a touchpad uses one input_dev instance */
if (ad714x->hw->touchpad_num > 0) {
struct ad714x_touchpad_plat *tp_plat = ad714x->hw->touchpad;
for (i = 0; i < ad714x->hw->touchpad_num; i++) {
input = devm_input_allocate_device(dev);
if (!input)
return ERR_PTR(-ENOMEM);
__set_bit(EV_ABS, input->evbit);
__set_bit(EV_KEY, input->evbit);
__set_bit(ABS_X, input->absbit);
__set_bit(ABS_Y, input->absbit);
__set_bit(BTN_TOUCH, input->keybit);
input_set_abs_params(input,
ABS_X, 0, tp_plat->x_max_coord, 0, 0);
input_set_abs_params(input,
ABS_Y, 0, tp_plat->y_max_coord, 0, 0);
input->id.bustype = bus_type;
input->id.product = ad714x->product;
input->id.version = ad714x->version;
input->name = "ad714x_captouch_pad";
input->dev.parent = dev;
error = input_register_device(input);
if (error)
return ERR_PTR(error);
tp_drv[i].input = input;
}
}
/* all buttons use one input node */
if (ad714x->hw->button_num > 0) {
struct ad714x_button_plat *bt_plat = ad714x->hw->button;
input = devm_input_allocate_device(dev);
if (!input) {
error = -ENOMEM;
return ERR_PTR(error);
}
__set_bit(EV_KEY, input->evbit);
for (i = 0; i < ad714x->hw->button_num; i++) {
bt_drv[i].input = input;
__set_bit(bt_plat[i].keycode, input->keybit);
}
input->id.bustype = bus_type;
input->id.product = ad714x->product;
input->id.version = ad714x->version;
input->name = "ad714x_captouch_button";
input->dev.parent = dev;
error = input_register_device(input);
if (error)
return ERR_PTR(error);
}
irqflags = plat_data->irqflags ?: IRQF_TRIGGER_FALLING;
irqflags |= IRQF_ONESHOT;
error = devm_request_threaded_irq(dev, ad714x->irq, NULL,
ad714x_interrupt_thread,
irqflags, "ad714x_captouch", ad714x);
if (error) {
dev_err(dev, "can't allocate irq %d\n", ad714x->irq);
return ERR_PTR(error);
}
return ad714x;
}
EXPORT_SYMBOL(ad714x_probe);
static int ad714x_suspend(struct device *dev)
{
struct ad714x_chip *ad714x = dev_get_drvdata(dev);
unsigned short data;
dev_dbg(ad714x->dev, "%s enter\n", __func__);
mutex_lock(&ad714x->mutex);
data = ad714x->hw->sys_cfg_reg[AD714X_PWR_CTRL] | 0x3;
ad714x->write(ad714x, AD714X_PWR_CTRL, data);
mutex_unlock(&ad714x->mutex);
return 0;
}
static int ad714x_resume(struct device *dev)
{
struct ad714x_chip *ad714x = dev_get_drvdata(dev);
dev_dbg(ad714x->dev, "%s enter\n", __func__);
mutex_lock(&ad714x->mutex);
/* resume to non-shutdown mode */
ad714x->write(ad714x, AD714X_PWR_CTRL,
ad714x->hw->sys_cfg_reg[AD714X_PWR_CTRL]);
/* make sure the interrupt output line is not low level after resume,
* otherwise we will get no chance to enter falling-edge irq again
*/
ad714x->read(ad714x, STG_LOW_INT_STA_REG, &ad714x->l_state, 3);
mutex_unlock(&ad714x->mutex);
return 0;
}
EXPORT_SIMPLE_DEV_PM_OPS(ad714x_pm, ad714x_suspend, ad714x_resume);
MODULE_DESCRIPTION("Analog Devices AD714X Capacitance Touch Sensor Driver");
MODULE_AUTHOR("Barry Song <[email protected]>");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/misc/ad714x.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Input driver for PCAP events:
* * Power key
* * Headphone button
*
* Copyright (c) 2008,2009 Ilya Petrov <[email protected]>
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/input.h>
#include <linux/mfd/ezx-pcap.h>
#include <linux/slab.h>
struct pcap_keys {
struct pcap_chip *pcap;
struct input_dev *input;
};
/* PCAP2 interrupts us on keypress */
static irqreturn_t pcap_keys_handler(int irq, void *_pcap_keys)
{
struct pcap_keys *pcap_keys = _pcap_keys;
int pirq = irq_to_pcap(pcap_keys->pcap, irq);
u32 pstat;
ezx_pcap_read(pcap_keys->pcap, PCAP_REG_PSTAT, &pstat);
pstat &= 1 << pirq;
switch (pirq) {
case PCAP_IRQ_ONOFF:
input_report_key(pcap_keys->input, KEY_POWER, !pstat);
break;
case PCAP_IRQ_MIC:
input_report_key(pcap_keys->input, KEY_HP, !pstat);
break;
}
input_sync(pcap_keys->input);
return IRQ_HANDLED;
}
static int pcap_keys_probe(struct platform_device *pdev)
{
int err = -ENOMEM;
struct pcap_keys *pcap_keys;
struct input_dev *input_dev;
pcap_keys = kmalloc(sizeof(struct pcap_keys), GFP_KERNEL);
if (!pcap_keys)
return err;
pcap_keys->pcap = dev_get_drvdata(pdev->dev.parent);
input_dev = input_allocate_device();
if (!input_dev)
goto fail;
pcap_keys->input = input_dev;
platform_set_drvdata(pdev, pcap_keys);
input_dev->name = pdev->name;
input_dev->phys = "pcap-keys/input0";
input_dev->id.bustype = BUS_HOST;
input_dev->dev.parent = &pdev->dev;
__set_bit(EV_KEY, input_dev->evbit);
__set_bit(KEY_POWER, input_dev->keybit);
__set_bit(KEY_HP, input_dev->keybit);
err = input_register_device(input_dev);
if (err)
goto fail_allocate;
err = request_irq(pcap_to_irq(pcap_keys->pcap, PCAP_IRQ_ONOFF),
pcap_keys_handler, 0, "Power key", pcap_keys);
if (err)
goto fail_register;
err = request_irq(pcap_to_irq(pcap_keys->pcap, PCAP_IRQ_MIC),
pcap_keys_handler, 0, "Headphone button", pcap_keys);
if (err)
goto fail_pwrkey;
return 0;
fail_pwrkey:
free_irq(pcap_to_irq(pcap_keys->pcap, PCAP_IRQ_ONOFF), pcap_keys);
fail_register:
input_unregister_device(input_dev);
goto fail;
fail_allocate:
input_free_device(input_dev);
fail:
kfree(pcap_keys);
return err;
}
static int pcap_keys_remove(struct platform_device *pdev)
{
struct pcap_keys *pcap_keys = platform_get_drvdata(pdev);
free_irq(pcap_to_irq(pcap_keys->pcap, PCAP_IRQ_ONOFF), pcap_keys);
free_irq(pcap_to_irq(pcap_keys->pcap, PCAP_IRQ_MIC), pcap_keys);
input_unregister_device(pcap_keys->input);
kfree(pcap_keys);
return 0;
}
static struct platform_driver pcap_keys_device_driver = {
.probe = pcap_keys_probe,
.remove = pcap_keys_remove,
.driver = {
.name = "pcap-keys",
}
};
module_platform_driver(pcap_keys_device_driver);
MODULE_DESCRIPTION("Motorola PCAP2 input events driver");
MODULE_AUTHOR("Ilya Petrov <[email protected]>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:pcap_keys");
|
linux-master
|
drivers/input/misc/pcap_keys.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Generic GPIO beeper driver
*
* Copyright (C) 2013-2014 Alexander Shiyan <[email protected]>
*/
#include <linux/input.h>
#include <linux/module.h>
#include <linux/gpio/consumer.h>
#include <linux/of.h>
#include <linux/workqueue.h>
#include <linux/platform_device.h>
#define BEEPER_MODNAME "gpio-beeper"
struct gpio_beeper {
struct work_struct work;
struct gpio_desc *desc;
bool beeping;
};
static void gpio_beeper_toggle(struct gpio_beeper *beep, bool on)
{
gpiod_set_value_cansleep(beep->desc, on);
}
static void gpio_beeper_work(struct work_struct *work)
{
struct gpio_beeper *beep = container_of(work, struct gpio_beeper, work);
gpio_beeper_toggle(beep, beep->beeping);
}
static int gpio_beeper_event(struct input_dev *dev, unsigned int type,
unsigned int code, int value)
{
struct gpio_beeper *beep = input_get_drvdata(dev);
if (type != EV_SND || code != SND_BELL)
return -ENOTSUPP;
if (value < 0)
return -EINVAL;
beep->beeping = value;
/* Schedule work to actually turn the beeper on or off */
schedule_work(&beep->work);
return 0;
}
static void gpio_beeper_close(struct input_dev *input)
{
struct gpio_beeper *beep = input_get_drvdata(input);
cancel_work_sync(&beep->work);
gpio_beeper_toggle(beep, false);
}
static int gpio_beeper_probe(struct platform_device *pdev)
{
struct gpio_beeper *beep;
struct input_dev *input;
beep = devm_kzalloc(&pdev->dev, sizeof(*beep), GFP_KERNEL);
if (!beep)
return -ENOMEM;
beep->desc = devm_gpiod_get(&pdev->dev, NULL, GPIOD_OUT_LOW);
if (IS_ERR(beep->desc))
return PTR_ERR(beep->desc);
input = devm_input_allocate_device(&pdev->dev);
if (!input)
return -ENOMEM;
INIT_WORK(&beep->work, gpio_beeper_work);
input->name = pdev->name;
input->id.bustype = BUS_HOST;
input->id.vendor = 0x0001;
input->id.product = 0x0001;
input->id.version = 0x0100;
input->close = gpio_beeper_close;
input->event = gpio_beeper_event;
input_set_capability(input, EV_SND, SND_BELL);
input_set_drvdata(input, beep);
return input_register_device(input);
}
#ifdef CONFIG_OF
static const struct of_device_id gpio_beeper_of_match[] = {
{ .compatible = BEEPER_MODNAME, },
{ }
};
MODULE_DEVICE_TABLE(of, gpio_beeper_of_match);
#endif
static struct platform_driver gpio_beeper_platform_driver = {
.driver = {
.name = BEEPER_MODNAME,
.of_match_table = of_match_ptr(gpio_beeper_of_match),
},
.probe = gpio_beeper_probe,
};
module_platform_driver(gpio_beeper_platform_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alexander Shiyan <[email protected]>");
MODULE_DESCRIPTION("Generic GPIO beeper driver");
|
linux-master
|
drivers/input/misc/gpio-beeper.c
|
/*
* Marvell 88PM80x ONKEY driver
*
* Copyright (C) 2012 Marvell International Ltd.
* Haojian Zhuang <[email protected]>
* Qiao Zhou <[email protected]>
*
* This file is subject to the terms and conditions of the GNU General
* Public License. See the file "COPYING" in the main directory of this
* archive for more details.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/input.h>
#include <linux/mfd/88pm80x.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#define PM800_LONG_ONKEY_EN (1 << 0)
#define PM800_LONG_KEY_DELAY (8) /* 1 .. 16 seconds */
#define PM800_LONKEY_PRESS_TIME ((PM800_LONG_KEY_DELAY-1) << 4)
#define PM800_LONKEY_PRESS_TIME_MASK (0xF0)
#define PM800_SW_PDOWN (1 << 5)
struct pm80x_onkey_info {
struct input_dev *idev;
struct pm80x_chip *pm80x;
struct regmap *map;
int irq;
};
/* 88PM80x gives us an interrupt when ONKEY is held */
static irqreturn_t pm80x_onkey_handler(int irq, void *data)
{
struct pm80x_onkey_info *info = data;
int ret = 0;
unsigned int val;
ret = regmap_read(info->map, PM800_STATUS_1, &val);
if (ret < 0) {
dev_err(info->idev->dev.parent, "failed to read status: %d\n", ret);
return IRQ_NONE;
}
val &= PM800_ONKEY_STS1;
input_report_key(info->idev, KEY_POWER, val);
input_sync(info->idev);
return IRQ_HANDLED;
}
static SIMPLE_DEV_PM_OPS(pm80x_onkey_pm_ops, pm80x_dev_suspend,
pm80x_dev_resume);
static int pm80x_onkey_probe(struct platform_device *pdev)
{
struct pm80x_chip *chip = dev_get_drvdata(pdev->dev.parent);
struct pm80x_onkey_info *info;
int err;
info = kzalloc(sizeof(struct pm80x_onkey_info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->pm80x = chip;
info->irq = platform_get_irq(pdev, 0);
if (info->irq < 0) {
err = -EINVAL;
goto out;
}
info->map = info->pm80x->regmap;
if (!info->map) {
dev_err(&pdev->dev, "no regmap!\n");
err = -EINVAL;
goto out;
}
info->idev = input_allocate_device();
if (!info->idev) {
dev_err(&pdev->dev, "Failed to allocate input dev\n");
err = -ENOMEM;
goto out;
}
info->idev->name = "88pm80x_on";
info->idev->phys = "88pm80x_on/input0";
info->idev->id.bustype = BUS_I2C;
info->idev->dev.parent = &pdev->dev;
info->idev->evbit[0] = BIT_MASK(EV_KEY);
__set_bit(KEY_POWER, info->idev->keybit);
err = pm80x_request_irq(info->pm80x, info->irq, pm80x_onkey_handler,
IRQF_ONESHOT, "onkey", info);
if (err < 0) {
dev_err(&pdev->dev, "Failed to request IRQ: #%d: %d\n",
info->irq, err);
goto out_reg;
}
err = input_register_device(info->idev);
if (err) {
dev_err(&pdev->dev, "Can't register input device: %d\n", err);
goto out_irq;
}
platform_set_drvdata(pdev, info);
/* Enable long onkey detection */
regmap_update_bits(info->map, PM800_RTC_MISC4, PM800_LONG_ONKEY_EN,
PM800_LONG_ONKEY_EN);
/* Set 8-second interval */
regmap_update_bits(info->map, PM800_RTC_MISC3,
PM800_LONKEY_PRESS_TIME_MASK,
PM800_LONKEY_PRESS_TIME);
device_init_wakeup(&pdev->dev, 1);
return 0;
out_irq:
pm80x_free_irq(info->pm80x, info->irq, info);
out_reg:
input_free_device(info->idev);
out:
kfree(info);
return err;
}
static int pm80x_onkey_remove(struct platform_device *pdev)
{
struct pm80x_onkey_info *info = platform_get_drvdata(pdev);
pm80x_free_irq(info->pm80x, info->irq, info);
input_unregister_device(info->idev);
kfree(info);
return 0;
}
static struct platform_driver pm80x_onkey_driver = {
.driver = {
.name = "88pm80x-onkey",
.pm = &pm80x_onkey_pm_ops,
},
.probe = pm80x_onkey_probe,
.remove = pm80x_onkey_remove,
};
module_platform_driver(pm80x_onkey_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Marvell 88PM80x ONKEY driver");
MODULE_AUTHOR("Qiao Zhou <[email protected]>");
MODULE_ALIAS("platform:88pm80x-onkey");
|
linux-master
|
drivers/input/misc/88pm80x_onkey.c
|
/*
* axp20x power button driver.
*
* Copyright (C) 2013 Carlo Caione <[email protected]>
*
* This file is subject to the terms and conditions of the GNU General
* Public License. See the file "COPYING" in the main directory of this
* archive for more details.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/acpi.h>
#include <linux/errno.h>
#include <linux/irq.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mfd/axp20x.h>
#include <linux/module.h>
#include <linux/platform_data/x86/soc.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#define AXP20X_PEK_STARTUP_MASK (0xc0)
#define AXP20X_PEK_SHUTDOWN_MASK (0x03)
struct axp20x_info {
const struct axp20x_time *startup_time;
unsigned int startup_mask;
const struct axp20x_time *shutdown_time;
unsigned int shutdown_mask;
};
struct axp20x_pek {
struct axp20x_dev *axp20x;
struct input_dev *input;
struct axp20x_info *info;
int irq_dbr;
int irq_dbf;
};
struct axp20x_time {
unsigned int time;
unsigned int idx;
};
static const struct axp20x_time startup_time[] = {
{ .time = 128, .idx = 0 },
{ .time = 1000, .idx = 2 },
{ .time = 3000, .idx = 1 },
{ .time = 2000, .idx = 3 },
};
static const struct axp20x_time axp221_startup_time[] = {
{ .time = 128, .idx = 0 },
{ .time = 1000, .idx = 1 },
{ .time = 2000, .idx = 2 },
{ .time = 3000, .idx = 3 },
};
static const struct axp20x_time shutdown_time[] = {
{ .time = 4000, .idx = 0 },
{ .time = 6000, .idx = 1 },
{ .time = 8000, .idx = 2 },
{ .time = 10000, .idx = 3 },
};
static const struct axp20x_info axp20x_info = {
.startup_time = startup_time,
.startup_mask = AXP20X_PEK_STARTUP_MASK,
.shutdown_time = shutdown_time,
.shutdown_mask = AXP20X_PEK_SHUTDOWN_MASK,
};
static const struct axp20x_info axp221_info = {
.startup_time = axp221_startup_time,
.startup_mask = AXP20X_PEK_STARTUP_MASK,
.shutdown_time = shutdown_time,
.shutdown_mask = AXP20X_PEK_SHUTDOWN_MASK,
};
static ssize_t axp20x_show_attr(struct device *dev,
const struct axp20x_time *time,
unsigned int mask, char *buf)
{
struct axp20x_pek *axp20x_pek = dev_get_drvdata(dev);
unsigned int val;
int ret, i;
ret = regmap_read(axp20x_pek->axp20x->regmap, AXP20X_PEK_KEY, &val);
if (ret != 0)
return ret;
val &= mask;
val >>= ffs(mask) - 1;
for (i = 0; i < 4; i++)
if (val == time[i].idx)
val = time[i].time;
return sprintf(buf, "%u\n", val);
}
static ssize_t axp20x_show_attr_startup(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct axp20x_pek *axp20x_pek = dev_get_drvdata(dev);
return axp20x_show_attr(dev, axp20x_pek->info->startup_time,
axp20x_pek->info->startup_mask, buf);
}
static ssize_t axp20x_show_attr_shutdown(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct axp20x_pek *axp20x_pek = dev_get_drvdata(dev);
return axp20x_show_attr(dev, axp20x_pek->info->shutdown_time,
axp20x_pek->info->shutdown_mask, buf);
}
static ssize_t axp20x_store_attr(struct device *dev,
const struct axp20x_time *time,
unsigned int mask, const char *buf,
size_t count)
{
struct axp20x_pek *axp20x_pek = dev_get_drvdata(dev);
char val_str[20];
size_t len;
int ret, i;
unsigned int val, idx = 0;
unsigned int best_err = UINT_MAX;
val_str[sizeof(val_str) - 1] = '\0';
strncpy(val_str, buf, sizeof(val_str) - 1);
len = strlen(val_str);
if (len && val_str[len - 1] == '\n')
val_str[len - 1] = '\0';
ret = kstrtouint(val_str, 10, &val);
if (ret)
return ret;
for (i = 3; i >= 0; i--) {
unsigned int err;
err = abs(time[i].time - val);
if (err < best_err) {
best_err = err;
idx = time[i].idx;
}
if (!err)
break;
}
idx <<= ffs(mask) - 1;
ret = regmap_update_bits(axp20x_pek->axp20x->regmap, AXP20X_PEK_KEY,
mask, idx);
if (ret != 0)
return -EINVAL;
return count;
}
static ssize_t axp20x_store_attr_startup(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct axp20x_pek *axp20x_pek = dev_get_drvdata(dev);
return axp20x_store_attr(dev, axp20x_pek->info->startup_time,
axp20x_pek->info->startup_mask, buf, count);
}
static ssize_t axp20x_store_attr_shutdown(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct axp20x_pek *axp20x_pek = dev_get_drvdata(dev);
return axp20x_store_attr(dev, axp20x_pek->info->shutdown_time,
axp20x_pek->info->shutdown_mask, buf, count);
}
static DEVICE_ATTR(startup, 0644, axp20x_show_attr_startup,
axp20x_store_attr_startup);
static DEVICE_ATTR(shutdown, 0644, axp20x_show_attr_shutdown,
axp20x_store_attr_shutdown);
static struct attribute *axp20x_attrs[] = {
&dev_attr_startup.attr,
&dev_attr_shutdown.attr,
NULL,
};
ATTRIBUTE_GROUPS(axp20x);
static irqreturn_t axp20x_pek_irq(int irq, void *pwr)
{
struct input_dev *idev = pwr;
struct axp20x_pek *axp20x_pek = input_get_drvdata(idev);
/*
* The power-button is connected to ground so a falling edge (dbf)
* means it is pressed.
*/
if (irq == axp20x_pek->irq_dbf)
input_report_key(idev, KEY_POWER, true);
else if (irq == axp20x_pek->irq_dbr)
input_report_key(idev, KEY_POWER, false);
input_sync(idev);
return IRQ_HANDLED;
}
static int axp20x_pek_probe_input_device(struct axp20x_pek *axp20x_pek,
struct platform_device *pdev)
{
struct axp20x_dev *axp20x = axp20x_pek->axp20x;
struct input_dev *idev;
int error;
axp20x_pek->irq_dbr = platform_get_irq_byname(pdev, "PEK_DBR");
if (axp20x_pek->irq_dbr < 0)
return axp20x_pek->irq_dbr;
axp20x_pek->irq_dbr = regmap_irq_get_virq(axp20x->regmap_irqc,
axp20x_pek->irq_dbr);
axp20x_pek->irq_dbf = platform_get_irq_byname(pdev, "PEK_DBF");
if (axp20x_pek->irq_dbf < 0)
return axp20x_pek->irq_dbf;
axp20x_pek->irq_dbf = regmap_irq_get_virq(axp20x->regmap_irqc,
axp20x_pek->irq_dbf);
axp20x_pek->input = devm_input_allocate_device(&pdev->dev);
if (!axp20x_pek->input)
return -ENOMEM;
idev = axp20x_pek->input;
idev->name = "axp20x-pek";
idev->phys = "m1kbd/input2";
idev->dev.parent = &pdev->dev;
input_set_capability(idev, EV_KEY, KEY_POWER);
input_set_drvdata(idev, axp20x_pek);
error = devm_request_any_context_irq(&pdev->dev, axp20x_pek->irq_dbr,
axp20x_pek_irq, 0,
"axp20x-pek-dbr", idev);
if (error < 0) {
dev_err(&pdev->dev, "Failed to request dbr IRQ#%d: %d\n",
axp20x_pek->irq_dbr, error);
return error;
}
error = devm_request_any_context_irq(&pdev->dev, axp20x_pek->irq_dbf,
axp20x_pek_irq, 0,
"axp20x-pek-dbf", idev);
if (error < 0) {
dev_err(&pdev->dev, "Failed to request dbf IRQ#%d: %d\n",
axp20x_pek->irq_dbf, error);
return error;
}
error = input_register_device(idev);
if (error) {
dev_err(&pdev->dev, "Can't register input device: %d\n",
error);
return error;
}
device_init_wakeup(&pdev->dev, true);
return 0;
}
static bool axp20x_pek_should_register_input(struct axp20x_pek *axp20x_pek)
{
if (IS_ENABLED(CONFIG_INPUT_SOC_BUTTON_ARRAY) &&
axp20x_pek->axp20x->variant == AXP288_ID) {
/*
* On Cherry Trail platforms (hrv == 3), do not register the
* input device if there is an "INTCFD9" or "ACPI0011" gpio
* button ACPI device, as that handles the power button too,
* and otherwise we end up reporting all presses twice.
*/
if (soc_intel_is_cht() &&
(acpi_dev_present("INTCFD9", NULL, -1) ||
acpi_dev_present("ACPI0011", NULL, -1)))
return false;
}
return true;
}
static int axp20x_pek_probe(struct platform_device *pdev)
{
struct axp20x_pek *axp20x_pek;
const struct platform_device_id *match = platform_get_device_id(pdev);
int error;
if (!match) {
dev_err(&pdev->dev, "Failed to get platform_device_id\n");
return -EINVAL;
}
axp20x_pek = devm_kzalloc(&pdev->dev, sizeof(struct axp20x_pek),
GFP_KERNEL);
if (!axp20x_pek)
return -ENOMEM;
axp20x_pek->axp20x = dev_get_drvdata(pdev->dev.parent);
if (axp20x_pek_should_register_input(axp20x_pek)) {
error = axp20x_pek_probe_input_device(axp20x_pek, pdev);
if (error)
return error;
}
axp20x_pek->info = (struct axp20x_info *)match->driver_data;
platform_set_drvdata(pdev, axp20x_pek);
return 0;
}
static int axp20x_pek_suspend(struct device *dev)
{
struct axp20x_pek *axp20x_pek = dev_get_drvdata(dev);
/*
* As nested threaded IRQs are not automatically disabled during
* suspend, we must explicitly disable non-wakeup IRQs.
*/
if (device_may_wakeup(dev)) {
enable_irq_wake(axp20x_pek->irq_dbf);
enable_irq_wake(axp20x_pek->irq_dbr);
} else {
disable_irq(axp20x_pek->irq_dbf);
disable_irq(axp20x_pek->irq_dbr);
}
return 0;
}
static int axp20x_pek_resume(struct device *dev)
{
struct axp20x_pek *axp20x_pek = dev_get_drvdata(dev);
if (device_may_wakeup(dev)) {
disable_irq_wake(axp20x_pek->irq_dbf);
disable_irq_wake(axp20x_pek->irq_dbr);
} else {
enable_irq(axp20x_pek->irq_dbf);
enable_irq(axp20x_pek->irq_dbr);
}
return 0;
}
static int __maybe_unused axp20x_pek_resume_noirq(struct device *dev)
{
struct axp20x_pek *axp20x_pek = dev_get_drvdata(dev);
if (axp20x_pek->axp20x->variant != AXP288_ID)
return 0;
/*
* Clear interrupts from button presses during suspend, to avoid
* a wakeup power-button press getting reported to userspace.
*/
regmap_write(axp20x_pek->axp20x->regmap,
AXP20X_IRQ1_STATE + AXP288_IRQ_POKN / 8,
BIT(AXP288_IRQ_POKN % 8));
return 0;
}
static const struct dev_pm_ops axp20x_pek_pm_ops = {
SYSTEM_SLEEP_PM_OPS(axp20x_pek_suspend, axp20x_pek_resume)
.resume_noirq = pm_sleep_ptr(axp20x_pek_resume_noirq),
};
static const struct platform_device_id axp_pek_id_match[] = {
{
.name = "axp20x-pek",
.driver_data = (kernel_ulong_t)&axp20x_info,
},
{
.name = "axp221-pek",
.driver_data = (kernel_ulong_t)&axp221_info,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(platform, axp_pek_id_match);
static struct platform_driver axp20x_pek_driver = {
.probe = axp20x_pek_probe,
.id_table = axp_pek_id_match,
.driver = {
.name = "axp20x-pek",
.pm = pm_sleep_ptr(&axp20x_pek_pm_ops),
.dev_groups = axp20x_groups,
},
};
module_platform_driver(axp20x_pek_driver);
MODULE_DESCRIPTION("axp20x Power Button");
MODULE_AUTHOR("Carlo Caione <[email protected]>");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/misc/axp20x-pek.c
|
// SPDX-License-Identifier: GPL-2.0
//
// Copyright (C) 2018 BayLibre SAS
// Author: Bartosz Golaszewski <[email protected]>
//
// ONKEY driver for MAXIM 77650/77651 charger/power-supply.
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/mfd/max77650.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#define MAX77650_ONKEY_MODE_MASK BIT(3)
#define MAX77650_ONKEY_MODE_PUSH 0x00
#define MAX77650_ONKEY_MODE_SLIDE BIT(3)
struct max77650_onkey {
struct input_dev *input;
unsigned int code;
};
static irqreturn_t max77650_onkey_falling(int irq, void *data)
{
struct max77650_onkey *onkey = data;
input_report_key(onkey->input, onkey->code, 0);
input_sync(onkey->input);
return IRQ_HANDLED;
}
static irqreturn_t max77650_onkey_rising(int irq, void *data)
{
struct max77650_onkey *onkey = data;
input_report_key(onkey->input, onkey->code, 1);
input_sync(onkey->input);
return IRQ_HANDLED;
}
static int max77650_onkey_probe(struct platform_device *pdev)
{
int irq_r, irq_f, error, mode;
struct max77650_onkey *onkey;
struct device *dev, *parent;
struct regmap *map;
unsigned int type;
dev = &pdev->dev;
parent = dev->parent;
map = dev_get_regmap(parent, NULL);
if (!map)
return -ENODEV;
onkey = devm_kzalloc(dev, sizeof(*onkey), GFP_KERNEL);
if (!onkey)
return -ENOMEM;
error = device_property_read_u32(dev, "linux,code", &onkey->code);
if (error)
onkey->code = KEY_POWER;
if (device_property_read_bool(dev, "maxim,onkey-slide")) {
mode = MAX77650_ONKEY_MODE_SLIDE;
type = EV_SW;
} else {
mode = MAX77650_ONKEY_MODE_PUSH;
type = EV_KEY;
}
error = regmap_update_bits(map, MAX77650_REG_CNFG_GLBL,
MAX77650_ONKEY_MODE_MASK, mode);
if (error)
return error;
irq_f = platform_get_irq_byname(pdev, "nEN_F");
if (irq_f < 0)
return irq_f;
irq_r = platform_get_irq_byname(pdev, "nEN_R");
if (irq_r < 0)
return irq_r;
onkey->input = devm_input_allocate_device(dev);
if (!onkey->input)
return -ENOMEM;
onkey->input->name = "max77650_onkey";
onkey->input->phys = "max77650_onkey/input0";
onkey->input->id.bustype = BUS_I2C;
input_set_capability(onkey->input, type, onkey->code);
error = devm_request_any_context_irq(dev, irq_f, max77650_onkey_falling,
IRQF_ONESHOT, "onkey-down", onkey);
if (error < 0)
return error;
error = devm_request_any_context_irq(dev, irq_r, max77650_onkey_rising,
IRQF_ONESHOT, "onkey-up", onkey);
if (error < 0)
return error;
return input_register_device(onkey->input);
}
static const struct of_device_id max77650_onkey_of_match[] = {
{ .compatible = "maxim,max77650-onkey" },
{ }
};
MODULE_DEVICE_TABLE(of, max77650_onkey_of_match);
static struct platform_driver max77650_onkey_driver = {
.driver = {
.name = "max77650-onkey",
.of_match_table = max77650_onkey_of_match,
},
.probe = max77650_onkey_probe,
};
module_platform_driver(max77650_onkey_driver);
MODULE_DESCRIPTION("MAXIM 77650/77651 ONKEY driver");
MODULE_AUTHOR("Bartosz Golaszewski <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:max77650-onkey");
|
linux-master
|
drivers/input/misc/max77650-onkey.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Azoteq IQS7222A/B/C/D Capacitive Touch Controller
*
* Copyright (C) 2022 Jeff LaBundy <[email protected]>
*/
#include <linux/bits.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/input/touchscreen.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/ktime.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#define IQS7222_PROD_NUM 0x00
#define IQS7222_PROD_NUM_A 840
#define IQS7222_PROD_NUM_B 698
#define IQS7222_PROD_NUM_C 863
#define IQS7222_PROD_NUM_D 1046
#define IQS7222_SYS_STATUS 0x10
#define IQS7222_SYS_STATUS_RESET BIT(3)
#define IQS7222_SYS_STATUS_ATI_ERROR BIT(1)
#define IQS7222_SYS_STATUS_ATI_ACTIVE BIT(0)
#define IQS7222_CHAN_SETUP_0_REF_MODE_MASK GENMASK(15, 14)
#define IQS7222_CHAN_SETUP_0_REF_MODE_FOLLOW BIT(15)
#define IQS7222_CHAN_SETUP_0_REF_MODE_REF BIT(14)
#define IQS7222_CHAN_SETUP_0_CHAN_EN BIT(8)
#define IQS7222_SLDR_SETUP_0_CHAN_CNT_MASK GENMASK(2, 0)
#define IQS7222_SLDR_SETUP_2_RES_MASK GENMASK(15, 8)
#define IQS7222_SLDR_SETUP_2_RES_SHIFT 8
#define IQS7222_SLDR_SETUP_2_TOP_SPEED_MASK GENMASK(7, 0)
#define IQS7222_GPIO_SETUP_0_GPIO_EN BIT(0)
#define IQS7222_SYS_SETUP 0xD0
#define IQS7222_SYS_SETUP_INTF_MODE_MASK GENMASK(7, 6)
#define IQS7222_SYS_SETUP_INTF_MODE_TOUCH BIT(7)
#define IQS7222_SYS_SETUP_INTF_MODE_EVENT BIT(6)
#define IQS7222_SYS_SETUP_PWR_MODE_MASK GENMASK(5, 4)
#define IQS7222_SYS_SETUP_PWR_MODE_AUTO IQS7222_SYS_SETUP_PWR_MODE_MASK
#define IQS7222_SYS_SETUP_REDO_ATI BIT(2)
#define IQS7222_SYS_SETUP_ACK_RESET BIT(0)
#define IQS7222_EVENT_MASK_ATI BIT(12)
#define IQS7222_EVENT_MASK_SLDR BIT(10)
#define IQS7222_EVENT_MASK_TPAD IQS7222_EVENT_MASK_SLDR
#define IQS7222_EVENT_MASK_TOUCH BIT(1)
#define IQS7222_EVENT_MASK_PROX BIT(0)
#define IQS7222_COMMS_HOLD BIT(0)
#define IQS7222_COMMS_ERROR 0xEEEE
#define IQS7222_COMMS_RETRY_MS 50
#define IQS7222_COMMS_TIMEOUT_MS 100
#define IQS7222_RESET_TIMEOUT_MS 250
#define IQS7222_ATI_TIMEOUT_MS 2000
#define IQS7222_MAX_COLS_STAT 8
#define IQS7222_MAX_COLS_CYCLE 3
#define IQS7222_MAX_COLS_GLBL 3
#define IQS7222_MAX_COLS_BTN 3
#define IQS7222_MAX_COLS_CHAN 6
#define IQS7222_MAX_COLS_FILT 2
#define IQS7222_MAX_COLS_SLDR 11
#define IQS7222_MAX_COLS_TPAD 24
#define IQS7222_MAX_COLS_GPIO 3
#define IQS7222_MAX_COLS_SYS 13
#define IQS7222_MAX_CHAN 20
#define IQS7222_MAX_SLDR 2
#define IQS7222_NUM_RETRIES 5
#define IQS7222_REG_OFFSET 0x100
enum iqs7222_reg_key_id {
IQS7222_REG_KEY_NONE,
IQS7222_REG_KEY_PROX,
IQS7222_REG_KEY_TOUCH,
IQS7222_REG_KEY_DEBOUNCE,
IQS7222_REG_KEY_TAP,
IQS7222_REG_KEY_TAP_LEGACY,
IQS7222_REG_KEY_AXIAL,
IQS7222_REG_KEY_AXIAL_LEGACY,
IQS7222_REG_KEY_WHEEL,
IQS7222_REG_KEY_NO_WHEEL,
IQS7222_REG_KEY_RESERVED
};
enum iqs7222_reg_grp_id {
IQS7222_REG_GRP_STAT,
IQS7222_REG_GRP_FILT,
IQS7222_REG_GRP_CYCLE,
IQS7222_REG_GRP_GLBL,
IQS7222_REG_GRP_BTN,
IQS7222_REG_GRP_CHAN,
IQS7222_REG_GRP_SLDR,
IQS7222_REG_GRP_TPAD,
IQS7222_REG_GRP_GPIO,
IQS7222_REG_GRP_SYS,
IQS7222_NUM_REG_GRPS
};
static const char * const iqs7222_reg_grp_names[IQS7222_NUM_REG_GRPS] = {
[IQS7222_REG_GRP_CYCLE] = "cycle-%d",
[IQS7222_REG_GRP_CHAN] = "channel-%d",
[IQS7222_REG_GRP_SLDR] = "slider-%d",
[IQS7222_REG_GRP_TPAD] = "trackpad",
[IQS7222_REG_GRP_GPIO] = "gpio-%d",
};
static const unsigned int iqs7222_max_cols[IQS7222_NUM_REG_GRPS] = {
[IQS7222_REG_GRP_STAT] = IQS7222_MAX_COLS_STAT,
[IQS7222_REG_GRP_CYCLE] = IQS7222_MAX_COLS_CYCLE,
[IQS7222_REG_GRP_GLBL] = IQS7222_MAX_COLS_GLBL,
[IQS7222_REG_GRP_BTN] = IQS7222_MAX_COLS_BTN,
[IQS7222_REG_GRP_CHAN] = IQS7222_MAX_COLS_CHAN,
[IQS7222_REG_GRP_FILT] = IQS7222_MAX_COLS_FILT,
[IQS7222_REG_GRP_SLDR] = IQS7222_MAX_COLS_SLDR,
[IQS7222_REG_GRP_TPAD] = IQS7222_MAX_COLS_TPAD,
[IQS7222_REG_GRP_GPIO] = IQS7222_MAX_COLS_GPIO,
[IQS7222_REG_GRP_SYS] = IQS7222_MAX_COLS_SYS,
};
static const unsigned int iqs7222_gpio_links[] = { 2, 5, 6, };
struct iqs7222_event_desc {
const char *name;
u16 link;
u16 mask;
u16 val;
u16 strict;
u16 enable;
enum iqs7222_reg_key_id reg_key;
};
static const struct iqs7222_event_desc iqs7222_kp_events[] = {
{
.name = "event-prox",
.enable = IQS7222_EVENT_MASK_PROX,
.reg_key = IQS7222_REG_KEY_PROX,
},
{
.name = "event-touch",
.enable = IQS7222_EVENT_MASK_TOUCH,
.reg_key = IQS7222_REG_KEY_TOUCH,
},
};
static const struct iqs7222_event_desc iqs7222_sl_events[] = {
{ .name = "event-press", },
{
.name = "event-tap",
.mask = BIT(0),
.val = BIT(0),
.enable = BIT(0),
.reg_key = IQS7222_REG_KEY_TAP,
},
{
.name = "event-swipe-pos",
.mask = BIT(5) | BIT(1),
.val = BIT(1),
.enable = BIT(1),
.reg_key = IQS7222_REG_KEY_AXIAL,
},
{
.name = "event-swipe-neg",
.mask = BIT(5) | BIT(1),
.val = BIT(5) | BIT(1),
.enable = BIT(1),
.reg_key = IQS7222_REG_KEY_AXIAL,
},
{
.name = "event-flick-pos",
.mask = BIT(5) | BIT(2),
.val = BIT(2),
.enable = BIT(2),
.reg_key = IQS7222_REG_KEY_AXIAL,
},
{
.name = "event-flick-neg",
.mask = BIT(5) | BIT(2),
.val = BIT(5) | BIT(2),
.enable = BIT(2),
.reg_key = IQS7222_REG_KEY_AXIAL,
},
};
static const struct iqs7222_event_desc iqs7222_tp_events[] = {
{
.name = "event-press",
.link = BIT(7),
},
{
.name = "event-tap",
.link = BIT(0),
.mask = BIT(0),
.val = BIT(0),
.enable = BIT(0),
.reg_key = IQS7222_REG_KEY_TAP,
},
{
.name = "event-swipe-x-pos",
.link = BIT(2),
.mask = BIT(2) | BIT(1),
.val = BIT(2),
.strict = BIT(4),
.enable = BIT(1),
.reg_key = IQS7222_REG_KEY_AXIAL,
},
{
.name = "event-swipe-y-pos",
.link = BIT(3),
.mask = BIT(3) | BIT(1),
.val = BIT(3),
.strict = BIT(3),
.enable = BIT(1),
.reg_key = IQS7222_REG_KEY_AXIAL,
},
{
.name = "event-swipe-x-neg",
.link = BIT(4),
.mask = BIT(4) | BIT(1),
.val = BIT(4),
.strict = BIT(4),
.enable = BIT(1),
.reg_key = IQS7222_REG_KEY_AXIAL,
},
{
.name = "event-swipe-y-neg",
.link = BIT(5),
.mask = BIT(5) | BIT(1),
.val = BIT(5),
.strict = BIT(3),
.enable = BIT(1),
.reg_key = IQS7222_REG_KEY_AXIAL,
},
{
.name = "event-flick-x-pos",
.link = BIT(2),
.mask = BIT(2) | BIT(1),
.val = BIT(2) | BIT(1),
.strict = BIT(4),
.enable = BIT(2),
.reg_key = IQS7222_REG_KEY_AXIAL,
},
{
.name = "event-flick-y-pos",
.link = BIT(3),
.mask = BIT(3) | BIT(1),
.val = BIT(3) | BIT(1),
.strict = BIT(3),
.enable = BIT(2),
.reg_key = IQS7222_REG_KEY_AXIAL,
},
{
.name = "event-flick-x-neg",
.link = BIT(4),
.mask = BIT(4) | BIT(1),
.val = BIT(4) | BIT(1),
.strict = BIT(4),
.enable = BIT(2),
.reg_key = IQS7222_REG_KEY_AXIAL,
},
{
.name = "event-flick-y-neg",
.link = BIT(5),
.mask = BIT(5) | BIT(1),
.val = BIT(5) | BIT(1),
.strict = BIT(3),
.enable = BIT(2),
.reg_key = IQS7222_REG_KEY_AXIAL,
},
};
struct iqs7222_reg_grp_desc {
u16 base;
int num_row;
int num_col;
};
struct iqs7222_dev_desc {
u16 prod_num;
u16 fw_major;
u16 fw_minor;
u16 sldr_res;
u16 touch_link;
u16 wheel_enable;
int allow_offset;
int event_offset;
int comms_offset;
bool legacy_gesture;
struct iqs7222_reg_grp_desc reg_grps[IQS7222_NUM_REG_GRPS];
};
static const struct iqs7222_dev_desc iqs7222_devs[] = {
{
.prod_num = IQS7222_PROD_NUM_A,
.fw_major = 1,
.fw_minor = 13,
.sldr_res = U8_MAX * 16,
.touch_link = 1768,
.allow_offset = 9,
.event_offset = 10,
.comms_offset = 12,
.reg_grps = {
[IQS7222_REG_GRP_STAT] = {
.base = IQS7222_SYS_STATUS,
.num_row = 1,
.num_col = 8,
},
[IQS7222_REG_GRP_CYCLE] = {
.base = 0x8000,
.num_row = 7,
.num_col = 3,
},
[IQS7222_REG_GRP_GLBL] = {
.base = 0x8700,
.num_row = 1,
.num_col = 3,
},
[IQS7222_REG_GRP_BTN] = {
.base = 0x9000,
.num_row = 12,
.num_col = 3,
},
[IQS7222_REG_GRP_CHAN] = {
.base = 0xA000,
.num_row = 12,
.num_col = 6,
},
[IQS7222_REG_GRP_FILT] = {
.base = 0xAC00,
.num_row = 1,
.num_col = 2,
},
[IQS7222_REG_GRP_SLDR] = {
.base = 0xB000,
.num_row = 2,
.num_col = 11,
},
[IQS7222_REG_GRP_GPIO] = {
.base = 0xC000,
.num_row = 1,
.num_col = 3,
},
[IQS7222_REG_GRP_SYS] = {
.base = IQS7222_SYS_SETUP,
.num_row = 1,
.num_col = 13,
},
},
},
{
.prod_num = IQS7222_PROD_NUM_A,
.fw_major = 1,
.fw_minor = 12,
.sldr_res = U8_MAX * 16,
.touch_link = 1768,
.allow_offset = 9,
.event_offset = 10,
.comms_offset = 12,
.legacy_gesture = true,
.reg_grps = {
[IQS7222_REG_GRP_STAT] = {
.base = IQS7222_SYS_STATUS,
.num_row = 1,
.num_col = 8,
},
[IQS7222_REG_GRP_CYCLE] = {
.base = 0x8000,
.num_row = 7,
.num_col = 3,
},
[IQS7222_REG_GRP_GLBL] = {
.base = 0x8700,
.num_row = 1,
.num_col = 3,
},
[IQS7222_REG_GRP_BTN] = {
.base = 0x9000,
.num_row = 12,
.num_col = 3,
},
[IQS7222_REG_GRP_CHAN] = {
.base = 0xA000,
.num_row = 12,
.num_col = 6,
},
[IQS7222_REG_GRP_FILT] = {
.base = 0xAC00,
.num_row = 1,
.num_col = 2,
},
[IQS7222_REG_GRP_SLDR] = {
.base = 0xB000,
.num_row = 2,
.num_col = 11,
},
[IQS7222_REG_GRP_GPIO] = {
.base = 0xC000,
.num_row = 1,
.num_col = 3,
},
[IQS7222_REG_GRP_SYS] = {
.base = IQS7222_SYS_SETUP,
.num_row = 1,
.num_col = 13,
},
},
},
{
.prod_num = IQS7222_PROD_NUM_B,
.fw_major = 1,
.fw_minor = 43,
.event_offset = 10,
.comms_offset = 11,
.reg_grps = {
[IQS7222_REG_GRP_STAT] = {
.base = IQS7222_SYS_STATUS,
.num_row = 1,
.num_col = 6,
},
[IQS7222_REG_GRP_CYCLE] = {
.base = 0x8000,
.num_row = 10,
.num_col = 2,
},
[IQS7222_REG_GRP_GLBL] = {
.base = 0x8A00,
.num_row = 1,
.num_col = 3,
},
[IQS7222_REG_GRP_BTN] = {
.base = 0x9000,
.num_row = 20,
.num_col = 2,
},
[IQS7222_REG_GRP_CHAN] = {
.base = 0xB000,
.num_row = 20,
.num_col = 4,
},
[IQS7222_REG_GRP_FILT] = {
.base = 0xC400,
.num_row = 1,
.num_col = 2,
},
[IQS7222_REG_GRP_SYS] = {
.base = IQS7222_SYS_SETUP,
.num_row = 1,
.num_col = 13,
},
},
},
{
.prod_num = IQS7222_PROD_NUM_B,
.fw_major = 1,
.fw_minor = 27,
.reg_grps = {
[IQS7222_REG_GRP_STAT] = {
.base = IQS7222_SYS_STATUS,
.num_row = 1,
.num_col = 6,
},
[IQS7222_REG_GRP_CYCLE] = {
.base = 0x8000,
.num_row = 10,
.num_col = 2,
},
[IQS7222_REG_GRP_GLBL] = {
.base = 0x8A00,
.num_row = 1,
.num_col = 3,
},
[IQS7222_REG_GRP_BTN] = {
.base = 0x9000,
.num_row = 20,
.num_col = 2,
},
[IQS7222_REG_GRP_CHAN] = {
.base = 0xB000,
.num_row = 20,
.num_col = 4,
},
[IQS7222_REG_GRP_FILT] = {
.base = 0xC400,
.num_row = 1,
.num_col = 2,
},
[IQS7222_REG_GRP_SYS] = {
.base = IQS7222_SYS_SETUP,
.num_row = 1,
.num_col = 10,
},
},
},
{
.prod_num = IQS7222_PROD_NUM_C,
.fw_major = 2,
.fw_minor = 6,
.sldr_res = U16_MAX,
.touch_link = 1686,
.wheel_enable = BIT(3),
.event_offset = 9,
.comms_offset = 10,
.reg_grps = {
[IQS7222_REG_GRP_STAT] = {
.base = IQS7222_SYS_STATUS,
.num_row = 1,
.num_col = 6,
},
[IQS7222_REG_GRP_CYCLE] = {
.base = 0x8000,
.num_row = 5,
.num_col = 3,
},
[IQS7222_REG_GRP_GLBL] = {
.base = 0x8500,
.num_row = 1,
.num_col = 3,
},
[IQS7222_REG_GRP_BTN] = {
.base = 0x9000,
.num_row = 10,
.num_col = 3,
},
[IQS7222_REG_GRP_CHAN] = {
.base = 0xA000,
.num_row = 10,
.num_col = 6,
},
[IQS7222_REG_GRP_FILT] = {
.base = 0xAA00,
.num_row = 1,
.num_col = 2,
},
[IQS7222_REG_GRP_SLDR] = {
.base = 0xB000,
.num_row = 2,
.num_col = 10,
},
[IQS7222_REG_GRP_GPIO] = {
.base = 0xC000,
.num_row = 3,
.num_col = 3,
},
[IQS7222_REG_GRP_SYS] = {
.base = IQS7222_SYS_SETUP,
.num_row = 1,
.num_col = 12,
},
},
},
{
.prod_num = IQS7222_PROD_NUM_C,
.fw_major = 1,
.fw_minor = 13,
.sldr_res = U16_MAX,
.touch_link = 1674,
.wheel_enable = BIT(3),
.event_offset = 9,
.comms_offset = 10,
.reg_grps = {
[IQS7222_REG_GRP_STAT] = {
.base = IQS7222_SYS_STATUS,
.num_row = 1,
.num_col = 6,
},
[IQS7222_REG_GRP_CYCLE] = {
.base = 0x8000,
.num_row = 5,
.num_col = 3,
},
[IQS7222_REG_GRP_GLBL] = {
.base = 0x8500,
.num_row = 1,
.num_col = 3,
},
[IQS7222_REG_GRP_BTN] = {
.base = 0x9000,
.num_row = 10,
.num_col = 3,
},
[IQS7222_REG_GRP_CHAN] = {
.base = 0xA000,
.num_row = 10,
.num_col = 6,
},
[IQS7222_REG_GRP_FILT] = {
.base = 0xAA00,
.num_row = 1,
.num_col = 2,
},
[IQS7222_REG_GRP_SLDR] = {
.base = 0xB000,
.num_row = 2,
.num_col = 10,
},
[IQS7222_REG_GRP_GPIO] = {
.base = 0xC000,
.num_row = 1,
.num_col = 3,
},
[IQS7222_REG_GRP_SYS] = {
.base = IQS7222_SYS_SETUP,
.num_row = 1,
.num_col = 11,
},
},
},
{
.prod_num = IQS7222_PROD_NUM_D,
.fw_major = 0,
.fw_minor = 37,
.touch_link = 1770,
.allow_offset = 9,
.event_offset = 10,
.comms_offset = 11,
.reg_grps = {
[IQS7222_REG_GRP_STAT] = {
.base = IQS7222_SYS_STATUS,
.num_row = 1,
.num_col = 7,
},
[IQS7222_REG_GRP_CYCLE] = {
.base = 0x8000,
.num_row = 7,
.num_col = 2,
},
[IQS7222_REG_GRP_GLBL] = {
.base = 0x8700,
.num_row = 1,
.num_col = 3,
},
[IQS7222_REG_GRP_BTN] = {
.base = 0x9000,
.num_row = 14,
.num_col = 3,
},
[IQS7222_REG_GRP_CHAN] = {
.base = 0xA000,
.num_row = 14,
.num_col = 4,
},
[IQS7222_REG_GRP_FILT] = {
.base = 0xAE00,
.num_row = 1,
.num_col = 2,
},
[IQS7222_REG_GRP_TPAD] = {
.base = 0xB000,
.num_row = 1,
.num_col = 24,
},
[IQS7222_REG_GRP_GPIO] = {
.base = 0xC000,
.num_row = 3,
.num_col = 3,
},
[IQS7222_REG_GRP_SYS] = {
.base = IQS7222_SYS_SETUP,
.num_row = 1,
.num_col = 12,
},
},
},
};
struct iqs7222_prop_desc {
const char *name;
enum iqs7222_reg_grp_id reg_grp;
enum iqs7222_reg_key_id reg_key;
int reg_offset;
int reg_shift;
int reg_width;
int val_pitch;
int val_min;
int val_max;
bool invert;
const char *label;
};
static const struct iqs7222_prop_desc iqs7222_props[] = {
{
.name = "azoteq,conv-period",
.reg_grp = IQS7222_REG_GRP_CYCLE,
.reg_offset = 0,
.reg_shift = 8,
.reg_width = 8,
.label = "conversion period",
},
{
.name = "azoteq,conv-frac",
.reg_grp = IQS7222_REG_GRP_CYCLE,
.reg_offset = 0,
.reg_shift = 0,
.reg_width = 8,
.label = "conversion frequency fractional divider",
},
{
.name = "azoteq,rx-float-inactive",
.reg_grp = IQS7222_REG_GRP_CYCLE,
.reg_offset = 1,
.reg_shift = 6,
.reg_width = 1,
.invert = true,
},
{
.name = "azoteq,dead-time-enable",
.reg_grp = IQS7222_REG_GRP_CYCLE,
.reg_offset = 1,
.reg_shift = 5,
.reg_width = 1,
},
{
.name = "azoteq,tx-freq-fosc",
.reg_grp = IQS7222_REG_GRP_CYCLE,
.reg_offset = 1,
.reg_shift = 4,
.reg_width = 1,
},
{
.name = "azoteq,vbias-enable",
.reg_grp = IQS7222_REG_GRP_CYCLE,
.reg_offset = 1,
.reg_shift = 3,
.reg_width = 1,
},
{
.name = "azoteq,sense-mode",
.reg_grp = IQS7222_REG_GRP_CYCLE,
.reg_offset = 1,
.reg_shift = 0,
.reg_width = 3,
.val_max = 3,
.label = "sensing mode",
},
{
.name = "azoteq,iref-enable",
.reg_grp = IQS7222_REG_GRP_CYCLE,
.reg_offset = 2,
.reg_shift = 10,
.reg_width = 1,
},
{
.name = "azoteq,iref-level",
.reg_grp = IQS7222_REG_GRP_CYCLE,
.reg_offset = 2,
.reg_shift = 4,
.reg_width = 4,
.label = "current reference level",
},
{
.name = "azoteq,iref-trim",
.reg_grp = IQS7222_REG_GRP_CYCLE,
.reg_offset = 2,
.reg_shift = 0,
.reg_width = 4,
.label = "current reference trim",
},
{
.name = "azoteq,max-counts",
.reg_grp = IQS7222_REG_GRP_GLBL,
.reg_offset = 0,
.reg_shift = 13,
.reg_width = 2,
.label = "maximum counts",
},
{
.name = "azoteq,auto-mode",
.reg_grp = IQS7222_REG_GRP_GLBL,
.reg_offset = 0,
.reg_shift = 2,
.reg_width = 2,
.label = "number of conversions",
},
{
.name = "azoteq,ati-frac-div-fine",
.reg_grp = IQS7222_REG_GRP_GLBL,
.reg_offset = 1,
.reg_shift = 9,
.reg_width = 5,
.label = "ATI fine fractional divider",
},
{
.name = "azoteq,ati-frac-div-coarse",
.reg_grp = IQS7222_REG_GRP_GLBL,
.reg_offset = 1,
.reg_shift = 0,
.reg_width = 5,
.label = "ATI coarse fractional divider",
},
{
.name = "azoteq,ati-comp-select",
.reg_grp = IQS7222_REG_GRP_GLBL,
.reg_offset = 2,
.reg_shift = 0,
.reg_width = 10,
.label = "ATI compensation selection",
},
{
.name = "azoteq,ati-band",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 0,
.reg_shift = 12,
.reg_width = 2,
.label = "ATI band",
},
{
.name = "azoteq,global-halt",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 0,
.reg_shift = 11,
.reg_width = 1,
},
{
.name = "azoteq,invert-enable",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 0,
.reg_shift = 10,
.reg_width = 1,
},
{
.name = "azoteq,dual-direction",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 0,
.reg_shift = 9,
.reg_width = 1,
},
{
.name = "azoteq,samp-cap-double",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 0,
.reg_shift = 3,
.reg_width = 1,
},
{
.name = "azoteq,vref-half",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 0,
.reg_shift = 2,
.reg_width = 1,
},
{
.name = "azoteq,proj-bias",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 0,
.reg_shift = 0,
.reg_width = 2,
.label = "projected bias current",
},
{
.name = "azoteq,ati-target",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 1,
.reg_shift = 8,
.reg_width = 8,
.val_pitch = 8,
.label = "ATI target",
},
{
.name = "azoteq,ati-base",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 1,
.reg_shift = 3,
.reg_width = 5,
.val_pitch = 16,
.label = "ATI base",
},
{
.name = "azoteq,ati-mode",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 1,
.reg_shift = 0,
.reg_width = 3,
.val_max = 5,
.label = "ATI mode",
},
{
.name = "azoteq,ati-frac-div-fine",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 2,
.reg_shift = 9,
.reg_width = 5,
.label = "ATI fine fractional divider",
},
{
.name = "azoteq,ati-frac-mult-coarse",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 2,
.reg_shift = 5,
.reg_width = 4,
.label = "ATI coarse fractional multiplier",
},
{
.name = "azoteq,ati-frac-div-coarse",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 2,
.reg_shift = 0,
.reg_width = 5,
.label = "ATI coarse fractional divider",
},
{
.name = "azoteq,ati-comp-div",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 3,
.reg_shift = 11,
.reg_width = 5,
.label = "ATI compensation divider",
},
{
.name = "azoteq,ati-comp-select",
.reg_grp = IQS7222_REG_GRP_CHAN,
.reg_offset = 3,
.reg_shift = 0,
.reg_width = 10,
.label = "ATI compensation selection",
},
{
.name = "azoteq,debounce-exit",
.reg_grp = IQS7222_REG_GRP_BTN,
.reg_key = IQS7222_REG_KEY_DEBOUNCE,
.reg_offset = 0,
.reg_shift = 12,
.reg_width = 4,
.label = "debounce exit factor",
},
{
.name = "azoteq,debounce-enter",
.reg_grp = IQS7222_REG_GRP_BTN,
.reg_key = IQS7222_REG_KEY_DEBOUNCE,
.reg_offset = 0,
.reg_shift = 8,
.reg_width = 4,
.label = "debounce entrance factor",
},
{
.name = "azoteq,thresh",
.reg_grp = IQS7222_REG_GRP_BTN,
.reg_key = IQS7222_REG_KEY_PROX,
.reg_offset = 0,
.reg_shift = 0,
.reg_width = 8,
.val_max = 127,
.label = "threshold",
},
{
.name = "azoteq,thresh",
.reg_grp = IQS7222_REG_GRP_BTN,
.reg_key = IQS7222_REG_KEY_TOUCH,
.reg_offset = 1,
.reg_shift = 0,
.reg_width = 8,
.label = "threshold",
},
{
.name = "azoteq,hyst",
.reg_grp = IQS7222_REG_GRP_BTN,
.reg_key = IQS7222_REG_KEY_TOUCH,
.reg_offset = 1,
.reg_shift = 8,
.reg_width = 8,
.label = "hysteresis",
},
{
.name = "azoteq,lta-beta-lp",
.reg_grp = IQS7222_REG_GRP_FILT,
.reg_offset = 0,
.reg_shift = 12,
.reg_width = 4,
.label = "low-power mode long-term average beta",
},
{
.name = "azoteq,lta-beta-np",
.reg_grp = IQS7222_REG_GRP_FILT,
.reg_offset = 0,
.reg_shift = 8,
.reg_width = 4,
.label = "normal-power mode long-term average beta",
},
{
.name = "azoteq,counts-beta-lp",
.reg_grp = IQS7222_REG_GRP_FILT,
.reg_offset = 0,
.reg_shift = 4,
.reg_width = 4,
.label = "low-power mode counts beta",
},
{
.name = "azoteq,counts-beta-np",
.reg_grp = IQS7222_REG_GRP_FILT,
.reg_offset = 0,
.reg_shift = 0,
.reg_width = 4,
.label = "normal-power mode counts beta",
},
{
.name = "azoteq,lta-fast-beta-lp",
.reg_grp = IQS7222_REG_GRP_FILT,
.reg_offset = 1,
.reg_shift = 4,
.reg_width = 4,
.label = "low-power mode long-term average fast beta",
},
{
.name = "azoteq,lta-fast-beta-np",
.reg_grp = IQS7222_REG_GRP_FILT,
.reg_offset = 1,
.reg_shift = 0,
.reg_width = 4,
.label = "normal-power mode long-term average fast beta",
},
{
.name = "azoteq,lower-cal",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_offset = 0,
.reg_shift = 8,
.reg_width = 8,
.label = "lower calibration",
},
{
.name = "azoteq,static-beta",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_key = IQS7222_REG_KEY_NO_WHEEL,
.reg_offset = 0,
.reg_shift = 6,
.reg_width = 1,
},
{
.name = "azoteq,bottom-beta",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_key = IQS7222_REG_KEY_NO_WHEEL,
.reg_offset = 0,
.reg_shift = 3,
.reg_width = 3,
.label = "bottom beta",
},
{
.name = "azoteq,static-beta",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_key = IQS7222_REG_KEY_WHEEL,
.reg_offset = 0,
.reg_shift = 7,
.reg_width = 1,
},
{
.name = "azoteq,bottom-beta",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_key = IQS7222_REG_KEY_WHEEL,
.reg_offset = 0,
.reg_shift = 4,
.reg_width = 3,
.label = "bottom beta",
},
{
.name = "azoteq,bottom-speed",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_offset = 1,
.reg_shift = 8,
.reg_width = 8,
.label = "bottom speed",
},
{
.name = "azoteq,upper-cal",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_offset = 1,
.reg_shift = 0,
.reg_width = 8,
.label = "upper calibration",
},
{
.name = "azoteq,gesture-max-ms",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_key = IQS7222_REG_KEY_TAP,
.reg_offset = 9,
.reg_shift = 8,
.reg_width = 8,
.val_pitch = 16,
.label = "maximum gesture time",
},
{
.name = "azoteq,gesture-max-ms",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_key = IQS7222_REG_KEY_TAP_LEGACY,
.reg_offset = 9,
.reg_shift = 8,
.reg_width = 8,
.val_pitch = 4,
.label = "maximum gesture time",
},
{
.name = "azoteq,gesture-min-ms",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_key = IQS7222_REG_KEY_TAP,
.reg_offset = 9,
.reg_shift = 3,
.reg_width = 5,
.val_pitch = 16,
.label = "minimum gesture time",
},
{
.name = "azoteq,gesture-min-ms",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_key = IQS7222_REG_KEY_TAP_LEGACY,
.reg_offset = 9,
.reg_shift = 3,
.reg_width = 5,
.val_pitch = 4,
.label = "minimum gesture time",
},
{
.name = "azoteq,gesture-dist",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_key = IQS7222_REG_KEY_AXIAL,
.reg_offset = 10,
.reg_shift = 8,
.reg_width = 8,
.val_pitch = 16,
.label = "gesture distance",
},
{
.name = "azoteq,gesture-dist",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_key = IQS7222_REG_KEY_AXIAL_LEGACY,
.reg_offset = 10,
.reg_shift = 8,
.reg_width = 8,
.val_pitch = 16,
.label = "gesture distance",
},
{
.name = "azoteq,gesture-max-ms",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_key = IQS7222_REG_KEY_AXIAL,
.reg_offset = 10,
.reg_shift = 0,
.reg_width = 8,
.val_pitch = 16,
.label = "maximum gesture time",
},
{
.name = "azoteq,gesture-max-ms",
.reg_grp = IQS7222_REG_GRP_SLDR,
.reg_key = IQS7222_REG_KEY_AXIAL_LEGACY,
.reg_offset = 10,
.reg_shift = 0,
.reg_width = 8,
.val_pitch = 4,
.label = "maximum gesture time",
},
{
.name = "azoteq,num-rows",
.reg_grp = IQS7222_REG_GRP_TPAD,
.reg_offset = 0,
.reg_shift = 4,
.reg_width = 4,
.val_min = 1,
.val_max = 12,
.label = "number of rows",
},
{
.name = "azoteq,num-cols",
.reg_grp = IQS7222_REG_GRP_TPAD,
.reg_offset = 0,
.reg_shift = 0,
.reg_width = 4,
.val_min = 1,
.val_max = 12,
.label = "number of columns",
},
{
.name = "azoteq,lower-cal-y",
.reg_grp = IQS7222_REG_GRP_TPAD,
.reg_offset = 1,
.reg_shift = 8,
.reg_width = 8,
.label = "lower vertical calibration",
},
{
.name = "azoteq,lower-cal-x",
.reg_grp = IQS7222_REG_GRP_TPAD,
.reg_offset = 1,
.reg_shift = 0,
.reg_width = 8,
.label = "lower horizontal calibration",
},
{
.name = "azoteq,upper-cal-y",
.reg_grp = IQS7222_REG_GRP_TPAD,
.reg_offset = 2,
.reg_shift = 8,
.reg_width = 8,
.label = "upper vertical calibration",
},
{
.name = "azoteq,upper-cal-x",
.reg_grp = IQS7222_REG_GRP_TPAD,
.reg_offset = 2,
.reg_shift = 0,
.reg_width = 8,
.label = "upper horizontal calibration",
},
{
.name = "azoteq,top-speed",
.reg_grp = IQS7222_REG_GRP_TPAD,
.reg_offset = 3,
.reg_shift = 8,
.reg_width = 8,
.val_pitch = 4,
.label = "top speed",
},
{
.name = "azoteq,bottom-speed",
.reg_grp = IQS7222_REG_GRP_TPAD,
.reg_offset = 3,
.reg_shift = 0,
.reg_width = 8,
.label = "bottom speed",
},
{
.name = "azoteq,gesture-min-ms",
.reg_grp = IQS7222_REG_GRP_TPAD,
.reg_key = IQS7222_REG_KEY_TAP,
.reg_offset = 20,
.reg_shift = 8,
.reg_width = 8,
.val_pitch = 16,
.label = "minimum gesture time",
},
{
.name = "azoteq,gesture-max-ms",
.reg_grp = IQS7222_REG_GRP_TPAD,
.reg_key = IQS7222_REG_KEY_AXIAL,
.reg_offset = 21,
.reg_shift = 8,
.reg_width = 8,
.val_pitch = 16,
.label = "maximum gesture time",
},
{
.name = "azoteq,gesture-max-ms",
.reg_grp = IQS7222_REG_GRP_TPAD,
.reg_key = IQS7222_REG_KEY_TAP,
.reg_offset = 21,
.reg_shift = 0,
.reg_width = 8,
.val_pitch = 16,
.label = "maximum gesture time",
},
{
.name = "azoteq,gesture-dist",
.reg_grp = IQS7222_REG_GRP_TPAD,
.reg_key = IQS7222_REG_KEY_TAP,
.reg_offset = 22,
.reg_shift = 0,
.reg_width = 16,
.label = "gesture distance",
},
{
.name = "azoteq,gesture-dist",
.reg_grp = IQS7222_REG_GRP_TPAD,
.reg_key = IQS7222_REG_KEY_AXIAL,
.reg_offset = 23,
.reg_shift = 0,
.reg_width = 16,
.label = "gesture distance",
},
{
.name = "drive-open-drain",
.reg_grp = IQS7222_REG_GRP_GPIO,
.reg_offset = 0,
.reg_shift = 1,
.reg_width = 1,
},
{
.name = "azoteq,timeout-ati-ms",
.reg_grp = IQS7222_REG_GRP_SYS,
.reg_offset = 1,
.reg_shift = 0,
.reg_width = 16,
.val_pitch = 500,
.label = "ATI error timeout",
},
{
.name = "azoteq,rate-ati-ms",
.reg_grp = IQS7222_REG_GRP_SYS,
.reg_offset = 2,
.reg_shift = 0,
.reg_width = 16,
.label = "ATI report rate",
},
{
.name = "azoteq,timeout-np-ms",
.reg_grp = IQS7222_REG_GRP_SYS,
.reg_offset = 3,
.reg_shift = 0,
.reg_width = 16,
.label = "normal-power mode timeout",
},
{
.name = "azoteq,rate-np-ms",
.reg_grp = IQS7222_REG_GRP_SYS,
.reg_offset = 4,
.reg_shift = 0,
.reg_width = 16,
.val_max = 3000,
.label = "normal-power mode report rate",
},
{
.name = "azoteq,timeout-lp-ms",
.reg_grp = IQS7222_REG_GRP_SYS,
.reg_offset = 5,
.reg_shift = 0,
.reg_width = 16,
.label = "low-power mode timeout",
},
{
.name = "azoteq,rate-lp-ms",
.reg_grp = IQS7222_REG_GRP_SYS,
.reg_offset = 6,
.reg_shift = 0,
.reg_width = 16,
.val_max = 3000,
.label = "low-power mode report rate",
},
{
.name = "azoteq,timeout-ulp-ms",
.reg_grp = IQS7222_REG_GRP_SYS,
.reg_offset = 7,
.reg_shift = 0,
.reg_width = 16,
.label = "ultra-low-power mode timeout",
},
{
.name = "azoteq,rate-ulp-ms",
.reg_grp = IQS7222_REG_GRP_SYS,
.reg_offset = 8,
.reg_shift = 0,
.reg_width = 16,
.val_max = 3000,
.label = "ultra-low-power mode report rate",
},
};
struct iqs7222_private {
const struct iqs7222_dev_desc *dev_desc;
struct gpio_desc *reset_gpio;
struct gpio_desc *irq_gpio;
struct i2c_client *client;
struct input_dev *keypad;
struct touchscreen_properties prop;
unsigned int kp_type[IQS7222_MAX_CHAN][ARRAY_SIZE(iqs7222_kp_events)];
unsigned int kp_code[IQS7222_MAX_CHAN][ARRAY_SIZE(iqs7222_kp_events)];
unsigned int sl_code[IQS7222_MAX_SLDR][ARRAY_SIZE(iqs7222_sl_events)];
unsigned int sl_axis[IQS7222_MAX_SLDR];
unsigned int tp_code[ARRAY_SIZE(iqs7222_tp_events)];
u16 cycle_setup[IQS7222_MAX_CHAN / 2][IQS7222_MAX_COLS_CYCLE];
u16 glbl_setup[IQS7222_MAX_COLS_GLBL];
u16 btn_setup[IQS7222_MAX_CHAN][IQS7222_MAX_COLS_BTN];
u16 chan_setup[IQS7222_MAX_CHAN][IQS7222_MAX_COLS_CHAN];
u16 filt_setup[IQS7222_MAX_COLS_FILT];
u16 sldr_setup[IQS7222_MAX_SLDR][IQS7222_MAX_COLS_SLDR];
u16 tpad_setup[IQS7222_MAX_COLS_TPAD];
u16 gpio_setup[ARRAY_SIZE(iqs7222_gpio_links)][IQS7222_MAX_COLS_GPIO];
u16 sys_setup[IQS7222_MAX_COLS_SYS];
};
static u16 *iqs7222_setup(struct iqs7222_private *iqs7222,
enum iqs7222_reg_grp_id reg_grp, int row)
{
switch (reg_grp) {
case IQS7222_REG_GRP_CYCLE:
return iqs7222->cycle_setup[row];
case IQS7222_REG_GRP_GLBL:
return iqs7222->glbl_setup;
case IQS7222_REG_GRP_BTN:
return iqs7222->btn_setup[row];
case IQS7222_REG_GRP_CHAN:
return iqs7222->chan_setup[row];
case IQS7222_REG_GRP_FILT:
return iqs7222->filt_setup;
case IQS7222_REG_GRP_SLDR:
return iqs7222->sldr_setup[row];
case IQS7222_REG_GRP_TPAD:
return iqs7222->tpad_setup;
case IQS7222_REG_GRP_GPIO:
return iqs7222->gpio_setup[row];
case IQS7222_REG_GRP_SYS:
return iqs7222->sys_setup;
default:
return NULL;
}
}
static int iqs7222_irq_poll(struct iqs7222_private *iqs7222, u16 timeout_ms)
{
ktime_t irq_timeout = ktime_add_ms(ktime_get(), timeout_ms);
int ret;
do {
usleep_range(1000, 1100);
ret = gpiod_get_value_cansleep(iqs7222->irq_gpio);
if (ret < 0)
return ret;
else if (ret > 0)
return 0;
} while (ktime_compare(ktime_get(), irq_timeout) < 0);
return -EBUSY;
}
static int iqs7222_hard_reset(struct iqs7222_private *iqs7222)
{
struct i2c_client *client = iqs7222->client;
int error;
if (!iqs7222->reset_gpio)
return 0;
gpiod_set_value_cansleep(iqs7222->reset_gpio, 1);
usleep_range(1000, 1100);
gpiod_set_value_cansleep(iqs7222->reset_gpio, 0);
error = iqs7222_irq_poll(iqs7222, IQS7222_RESET_TIMEOUT_MS);
if (error)
dev_err(&client->dev, "Failed to reset device: %d\n", error);
return error;
}
static int iqs7222_force_comms(struct iqs7222_private *iqs7222)
{
u8 msg_buf[] = { 0xFF, };
int ret;
/*
* The device cannot communicate until it asserts its interrupt (RDY)
* pin. Attempts to do so while RDY is deasserted return an ACK; how-
* ever all write data is ignored, and all read data returns 0xEE.
*
* Unsolicited communication must be preceded by a special force com-
* munication command, after which the device eventually asserts its
* RDY pin and agrees to communicate.
*
* Regardless of whether communication is forced or the result of an
* interrupt, the device automatically deasserts its RDY pin once it
* detects an I2C stop condition, or a timeout expires.
*/
ret = gpiod_get_value_cansleep(iqs7222->irq_gpio);
if (ret < 0)
return ret;
else if (ret > 0)
return 0;
ret = i2c_master_send(iqs7222->client, msg_buf, sizeof(msg_buf));
if (ret < (int)sizeof(msg_buf)) {
if (ret >= 0)
ret = -EIO;
/*
* The datasheet states that the host must wait to retry any
* failed attempt to communicate over I2C.
*/
msleep(IQS7222_COMMS_RETRY_MS);
return ret;
}
return iqs7222_irq_poll(iqs7222, IQS7222_COMMS_TIMEOUT_MS);
}
static int iqs7222_read_burst(struct iqs7222_private *iqs7222,
u16 reg, void *val, u16 num_val)
{
u8 reg_buf[sizeof(__be16)];
int ret, i;
struct i2c_client *client = iqs7222->client;
struct i2c_msg msg[] = {
{
.addr = client->addr,
.flags = 0,
.len = reg > U8_MAX ? sizeof(reg) : sizeof(u8),
.buf = reg_buf,
},
{
.addr = client->addr,
.flags = I2C_M_RD,
.len = num_val * sizeof(__le16),
.buf = (u8 *)val,
},
};
if (reg > U8_MAX)
put_unaligned_be16(reg, reg_buf);
else
*reg_buf = (u8)reg;
/*
* The following loop protects against an edge case in which the RDY
* pin is automatically deasserted just as the read is initiated. In
* that case, the read must be retried using forced communication.
*/
for (i = 0; i < IQS7222_NUM_RETRIES; i++) {
ret = iqs7222_force_comms(iqs7222);
if (ret < 0)
continue;
ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg));
if (ret < (int)ARRAY_SIZE(msg)) {
if (ret >= 0)
ret = -EIO;
msleep(IQS7222_COMMS_RETRY_MS);
continue;
}
if (get_unaligned_le16(msg[1].buf) == IQS7222_COMMS_ERROR) {
ret = -ENODATA;
continue;
}
ret = 0;
break;
}
/*
* The following delay ensures the device has deasserted the RDY pin
* following the I2C stop condition.
*/
usleep_range(50, 100);
if (ret < 0)
dev_err(&client->dev,
"Failed to read from address 0x%04X: %d\n", reg, ret);
return ret;
}
static int iqs7222_read_word(struct iqs7222_private *iqs7222, u16 reg, u16 *val)
{
__le16 val_buf;
int error;
error = iqs7222_read_burst(iqs7222, reg, &val_buf, 1);
if (error)
return error;
*val = le16_to_cpu(val_buf);
return 0;
}
static int iqs7222_write_burst(struct iqs7222_private *iqs7222,
u16 reg, const void *val, u16 num_val)
{
int reg_len = reg > U8_MAX ? sizeof(reg) : sizeof(u8);
int val_len = num_val * sizeof(__le16);
int msg_len = reg_len + val_len;
int ret, i;
struct i2c_client *client = iqs7222->client;
u8 *msg_buf;
msg_buf = kzalloc(msg_len, GFP_KERNEL);
if (!msg_buf)
return -ENOMEM;
if (reg > U8_MAX)
put_unaligned_be16(reg, msg_buf);
else
*msg_buf = (u8)reg;
memcpy(msg_buf + reg_len, val, val_len);
/*
* The following loop protects against an edge case in which the RDY
* pin is automatically asserted just before the force communication
* command is sent.
*
* In that case, the subsequent I2C stop condition tricks the device
* into preemptively deasserting the RDY pin and the command must be
* sent again.
*/
for (i = 0; i < IQS7222_NUM_RETRIES; i++) {
ret = iqs7222_force_comms(iqs7222);
if (ret < 0)
continue;
ret = i2c_master_send(client, msg_buf, msg_len);
if (ret < msg_len) {
if (ret >= 0)
ret = -EIO;
msleep(IQS7222_COMMS_RETRY_MS);
continue;
}
ret = 0;
break;
}
kfree(msg_buf);
usleep_range(50, 100);
if (ret < 0)
dev_err(&client->dev,
"Failed to write to address 0x%04X: %d\n", reg, ret);
return ret;
}
static int iqs7222_write_word(struct iqs7222_private *iqs7222, u16 reg, u16 val)
{
__le16 val_buf = cpu_to_le16(val);
return iqs7222_write_burst(iqs7222, reg, &val_buf, 1);
}
static int iqs7222_ati_trigger(struct iqs7222_private *iqs7222)
{
struct i2c_client *client = iqs7222->client;
ktime_t ati_timeout;
u16 sys_status = 0;
u16 sys_setup;
int error, i;
/*
* The reserved fields of the system setup register may have changed
* as a result of other registers having been written. As such, read
* the register's latest value to avoid unexpected behavior when the
* register is written in the loop that follows.
*/
error = iqs7222_read_word(iqs7222, IQS7222_SYS_SETUP, &sys_setup);
if (error)
return error;
for (i = 0; i < IQS7222_NUM_RETRIES; i++) {
/*
* Trigger ATI from streaming and normal-power modes so that
* the RDY pin continues to be asserted during ATI.
*/
error = iqs7222_write_word(iqs7222, IQS7222_SYS_SETUP,
sys_setup |
IQS7222_SYS_SETUP_REDO_ATI);
if (error)
return error;
ati_timeout = ktime_add_ms(ktime_get(), IQS7222_ATI_TIMEOUT_MS);
do {
error = iqs7222_irq_poll(iqs7222,
IQS7222_COMMS_TIMEOUT_MS);
if (error)
continue;
error = iqs7222_read_word(iqs7222, IQS7222_SYS_STATUS,
&sys_status);
if (error)
return error;
if (sys_status & IQS7222_SYS_STATUS_RESET)
return 0;
if (sys_status & IQS7222_SYS_STATUS_ATI_ERROR)
break;
if (sys_status & IQS7222_SYS_STATUS_ATI_ACTIVE)
continue;
/*
* Use stream-in-touch mode if either slider reports
* absolute position.
*/
sys_setup |= test_bit(EV_ABS, iqs7222->keypad->evbit)
? IQS7222_SYS_SETUP_INTF_MODE_TOUCH
: IQS7222_SYS_SETUP_INTF_MODE_EVENT;
sys_setup |= IQS7222_SYS_SETUP_PWR_MODE_AUTO;
return iqs7222_write_word(iqs7222, IQS7222_SYS_SETUP,
sys_setup);
} while (ktime_compare(ktime_get(), ati_timeout) < 0);
dev_err(&client->dev,
"ATI attempt %d of %d failed with status 0x%02X, %s\n",
i + 1, IQS7222_NUM_RETRIES, (u8)sys_status,
i + 1 < IQS7222_NUM_RETRIES ? "retrying" : "stopping");
}
return -ETIMEDOUT;
}
static int iqs7222_dev_init(struct iqs7222_private *iqs7222, int dir)
{
const struct iqs7222_dev_desc *dev_desc = iqs7222->dev_desc;
int comms_offset = dev_desc->comms_offset;
int error, i, j, k;
/*
* Acknowledge reset before writing any registers in case the device
* suffers a spurious reset during initialization. Because this step
* may change the reserved fields of the second filter beta register,
* its cache must be updated.
*
* Writing the second filter beta register, in turn, may clobber the
* system status register. As such, the filter beta register pair is
* written first to protect against this hazard.
*/
if (dir == WRITE) {
u16 reg = dev_desc->reg_grps[IQS7222_REG_GRP_FILT].base + 1;
u16 filt_setup;
error = iqs7222_write_word(iqs7222, IQS7222_SYS_SETUP,
iqs7222->sys_setup[0] |
IQS7222_SYS_SETUP_ACK_RESET);
if (error)
return error;
error = iqs7222_read_word(iqs7222, reg, &filt_setup);
if (error)
return error;
iqs7222->filt_setup[1] &= GENMASK(7, 0);
iqs7222->filt_setup[1] |= (filt_setup & ~GENMASK(7, 0));
}
/*
* Take advantage of the stop-bit disable function, if available, to
* save the trouble of having to reopen a communication window after
* each burst read or write.
*/
if (comms_offset) {
u16 comms_setup;
error = iqs7222_read_word(iqs7222,
IQS7222_SYS_SETUP + comms_offset,
&comms_setup);
if (error)
return error;
error = iqs7222_write_word(iqs7222,
IQS7222_SYS_SETUP + comms_offset,
comms_setup | IQS7222_COMMS_HOLD);
if (error)
return error;
}
for (i = 0; i < IQS7222_NUM_REG_GRPS; i++) {
int num_row = dev_desc->reg_grps[i].num_row;
int num_col = dev_desc->reg_grps[i].num_col;
u16 reg = dev_desc->reg_grps[i].base;
__le16 *val_buf;
u16 *val;
if (!num_col)
continue;
val = iqs7222_setup(iqs7222, i, 0);
if (!val)
continue;
val_buf = kcalloc(num_col, sizeof(__le16), GFP_KERNEL);
if (!val_buf)
return -ENOMEM;
for (j = 0; j < num_row; j++) {
switch (dir) {
case READ:
error = iqs7222_read_burst(iqs7222, reg,
val_buf, num_col);
for (k = 0; k < num_col; k++)
val[k] = le16_to_cpu(val_buf[k]);
break;
case WRITE:
for (k = 0; k < num_col; k++)
val_buf[k] = cpu_to_le16(val[k]);
error = iqs7222_write_burst(iqs7222, reg,
val_buf, num_col);
break;
default:
error = -EINVAL;
}
if (error)
break;
reg += IQS7222_REG_OFFSET;
val += iqs7222_max_cols[i];
}
kfree(val_buf);
if (error)
return error;
}
if (comms_offset) {
u16 comms_setup;
error = iqs7222_read_word(iqs7222,
IQS7222_SYS_SETUP + comms_offset,
&comms_setup);
if (error)
return error;
error = iqs7222_write_word(iqs7222,
IQS7222_SYS_SETUP + comms_offset,
comms_setup & ~IQS7222_COMMS_HOLD);
if (error)
return error;
}
if (dir == READ) {
iqs7222->sys_setup[0] &= ~IQS7222_SYS_SETUP_INTF_MODE_MASK;
iqs7222->sys_setup[0] &= ~IQS7222_SYS_SETUP_PWR_MODE_MASK;
return 0;
}
return iqs7222_ati_trigger(iqs7222);
}
static int iqs7222_dev_info(struct iqs7222_private *iqs7222)
{
struct i2c_client *client = iqs7222->client;
bool prod_num_valid = false;
__le16 dev_id[3];
int error, i;
error = iqs7222_read_burst(iqs7222, IQS7222_PROD_NUM, dev_id,
ARRAY_SIZE(dev_id));
if (error)
return error;
for (i = 0; i < ARRAY_SIZE(iqs7222_devs); i++) {
if (le16_to_cpu(dev_id[0]) != iqs7222_devs[i].prod_num)
continue;
prod_num_valid = true;
if (le16_to_cpu(dev_id[1]) < iqs7222_devs[i].fw_major)
continue;
if (le16_to_cpu(dev_id[2]) < iqs7222_devs[i].fw_minor)
continue;
iqs7222->dev_desc = &iqs7222_devs[i];
return 0;
}
if (prod_num_valid)
dev_err(&client->dev, "Unsupported firmware revision: %u.%u\n",
le16_to_cpu(dev_id[1]), le16_to_cpu(dev_id[2]));
else
dev_err(&client->dev, "Unrecognized product number: %u\n",
le16_to_cpu(dev_id[0]));
return -EINVAL;
}
static int iqs7222_gpio_select(struct iqs7222_private *iqs7222,
struct fwnode_handle *child_node,
int child_enable, u16 child_link)
{
const struct iqs7222_dev_desc *dev_desc = iqs7222->dev_desc;
struct i2c_client *client = iqs7222->client;
int num_gpio = dev_desc->reg_grps[IQS7222_REG_GRP_GPIO].num_row;
int error, count, i;
unsigned int gpio_sel[ARRAY_SIZE(iqs7222_gpio_links)];
if (!num_gpio)
return 0;
if (!fwnode_property_present(child_node, "azoteq,gpio-select"))
return 0;
count = fwnode_property_count_u32(child_node, "azoteq,gpio-select");
if (count > num_gpio) {
dev_err(&client->dev, "Invalid number of %s GPIOs\n",
fwnode_get_name(child_node));
return -EINVAL;
} else if (count < 0) {
dev_err(&client->dev, "Failed to count %s GPIOs: %d\n",
fwnode_get_name(child_node), count);
return count;
}
error = fwnode_property_read_u32_array(child_node,
"azoteq,gpio-select",
gpio_sel, count);
if (error) {
dev_err(&client->dev, "Failed to read %s GPIOs: %d\n",
fwnode_get_name(child_node), error);
return error;
}
for (i = 0; i < count; i++) {
u16 *gpio_setup;
if (gpio_sel[i] >= num_gpio) {
dev_err(&client->dev, "Invalid %s GPIO: %u\n",
fwnode_get_name(child_node), gpio_sel[i]);
return -EINVAL;
}
gpio_setup = iqs7222->gpio_setup[gpio_sel[i]];
if (gpio_setup[2] && child_link != gpio_setup[2]) {
dev_err(&client->dev,
"Conflicting GPIO %u event types\n",
gpio_sel[i]);
return -EINVAL;
}
gpio_setup[0] |= IQS7222_GPIO_SETUP_0_GPIO_EN;
gpio_setup[1] |= child_enable;
gpio_setup[2] = child_link;
}
return 0;
}
static int iqs7222_parse_props(struct iqs7222_private *iqs7222,
struct fwnode_handle *reg_grp_node,
int reg_grp_index,
enum iqs7222_reg_grp_id reg_grp,
enum iqs7222_reg_key_id reg_key)
{
u16 *setup = iqs7222_setup(iqs7222, reg_grp, reg_grp_index);
struct i2c_client *client = iqs7222->client;
int i;
if (!setup)
return 0;
for (i = 0; i < ARRAY_SIZE(iqs7222_props); i++) {
const char *name = iqs7222_props[i].name;
int reg_offset = iqs7222_props[i].reg_offset;
int reg_shift = iqs7222_props[i].reg_shift;
int reg_width = iqs7222_props[i].reg_width;
int val_pitch = iqs7222_props[i].val_pitch ? : 1;
int val_min = iqs7222_props[i].val_min;
int val_max = iqs7222_props[i].val_max;
bool invert = iqs7222_props[i].invert;
const char *label = iqs7222_props[i].label ? : name;
unsigned int val;
int error;
if (iqs7222_props[i].reg_grp != reg_grp ||
iqs7222_props[i].reg_key != reg_key)
continue;
/*
* Boolean register fields are one bit wide; they are forcibly
* reset to provide a means to undo changes by a bootloader if
* necessary.
*
* Scalar fields, on the other hand, are left untouched unless
* their corresponding properties are present.
*/
if (reg_width == 1) {
if (invert)
setup[reg_offset] |= BIT(reg_shift);
else
setup[reg_offset] &= ~BIT(reg_shift);
}
if (!fwnode_property_present(reg_grp_node, name))
continue;
if (reg_width == 1) {
if (invert)
setup[reg_offset] &= ~BIT(reg_shift);
else
setup[reg_offset] |= BIT(reg_shift);
continue;
}
error = fwnode_property_read_u32(reg_grp_node, name, &val);
if (error) {
dev_err(&client->dev, "Failed to read %s %s: %d\n",
fwnode_get_name(reg_grp_node), label, error);
return error;
}
if (!val_max)
val_max = GENMASK(reg_width - 1, 0) * val_pitch;
if (val < val_min || val > val_max) {
dev_err(&client->dev, "Invalid %s %s: %u\n",
fwnode_get_name(reg_grp_node), label, val);
return -EINVAL;
}
setup[reg_offset] &= ~GENMASK(reg_shift + reg_width - 1,
reg_shift);
setup[reg_offset] |= (val / val_pitch << reg_shift);
}
return 0;
}
static int iqs7222_parse_event(struct iqs7222_private *iqs7222,
struct fwnode_handle *event_node,
int reg_grp_index,
enum iqs7222_reg_grp_id reg_grp,
enum iqs7222_reg_key_id reg_key,
u16 event_enable, u16 event_link,
unsigned int *event_type,
unsigned int *event_code)
{
struct i2c_client *client = iqs7222->client;
int error;
error = iqs7222_parse_props(iqs7222, event_node, reg_grp_index,
reg_grp, reg_key);
if (error)
return error;
error = iqs7222_gpio_select(iqs7222, event_node, event_enable,
event_link);
if (error)
return error;
error = fwnode_property_read_u32(event_node, "linux,code", event_code);
if (error == -EINVAL) {
return 0;
} else if (error) {
dev_err(&client->dev, "Failed to read %s code: %d\n",
fwnode_get_name(event_node), error);
return error;
}
if (!event_type) {
input_set_capability(iqs7222->keypad, EV_KEY, *event_code);
return 0;
}
error = fwnode_property_read_u32(event_node, "linux,input-type",
event_type);
if (error == -EINVAL) {
*event_type = EV_KEY;
} else if (error) {
dev_err(&client->dev, "Failed to read %s input type: %d\n",
fwnode_get_name(event_node), error);
return error;
} else if (*event_type != EV_KEY && *event_type != EV_SW) {
dev_err(&client->dev, "Invalid %s input type: %d\n",
fwnode_get_name(event_node), *event_type);
return -EINVAL;
}
input_set_capability(iqs7222->keypad, *event_type, *event_code);
return 0;
}
static int iqs7222_parse_cycle(struct iqs7222_private *iqs7222,
struct fwnode_handle *cycle_node, int cycle_index)
{
u16 *cycle_setup = iqs7222->cycle_setup[cycle_index];
struct i2c_client *client = iqs7222->client;
unsigned int pins[9];
int error, count, i;
/*
* Each channel shares a cycle with one other channel; the mapping of
* channels to cycles is fixed. Properties defined for a cycle impact
* both channels tied to the cycle.
*
* Unlike channels which are restricted to a select range of CRx pins
* based on channel number, any cycle can claim any of the device's 9
* CTx pins (CTx0-8).
*/
if (!fwnode_property_present(cycle_node, "azoteq,tx-enable"))
return 0;
count = fwnode_property_count_u32(cycle_node, "azoteq,tx-enable");
if (count < 0) {
dev_err(&client->dev, "Failed to count %s CTx pins: %d\n",
fwnode_get_name(cycle_node), count);
return count;
} else if (count > ARRAY_SIZE(pins)) {
dev_err(&client->dev, "Invalid number of %s CTx pins\n",
fwnode_get_name(cycle_node));
return -EINVAL;
}
error = fwnode_property_read_u32_array(cycle_node, "azoteq,tx-enable",
pins, count);
if (error) {
dev_err(&client->dev, "Failed to read %s CTx pins: %d\n",
fwnode_get_name(cycle_node), error);
return error;
}
cycle_setup[1] &= ~GENMASK(7 + ARRAY_SIZE(pins) - 1, 7);
for (i = 0; i < count; i++) {
if (pins[i] > 8) {
dev_err(&client->dev, "Invalid %s CTx pin: %u\n",
fwnode_get_name(cycle_node), pins[i]);
return -EINVAL;
}
cycle_setup[1] |= BIT(pins[i] + 7);
}
return 0;
}
static int iqs7222_parse_chan(struct iqs7222_private *iqs7222,
struct fwnode_handle *chan_node, int chan_index)
{
const struct iqs7222_dev_desc *dev_desc = iqs7222->dev_desc;
struct i2c_client *client = iqs7222->client;
int num_chan = dev_desc->reg_grps[IQS7222_REG_GRP_CHAN].num_row;
int ext_chan = rounddown(num_chan, 10);
int error, i;
u16 *chan_setup = iqs7222->chan_setup[chan_index];
u16 *sys_setup = iqs7222->sys_setup;
unsigned int val;
if (dev_desc->allow_offset &&
fwnode_property_present(chan_node, "azoteq,ulp-allow"))
sys_setup[dev_desc->allow_offset] &= ~BIT(chan_index);
chan_setup[0] |= IQS7222_CHAN_SETUP_0_CHAN_EN;
/*
* The reference channel function allows for differential measurements
* and is only available in the case of IQS7222A or IQS7222C.
*/
if (dev_desc->reg_grps[IQS7222_REG_GRP_CHAN].num_col > 4 &&
fwnode_property_present(chan_node, "azoteq,ref-select")) {
u16 *ref_setup;
error = fwnode_property_read_u32(chan_node, "azoteq,ref-select",
&val);
if (error) {
dev_err(&client->dev,
"Failed to read %s reference channel: %d\n",
fwnode_get_name(chan_node), error);
return error;
}
if (val >= ext_chan) {
dev_err(&client->dev,
"Invalid %s reference channel: %u\n",
fwnode_get_name(chan_node), val);
return -EINVAL;
}
ref_setup = iqs7222->chan_setup[val];
/*
* Configure the current channel as a follower of the selected
* reference channel.
*/
chan_setup[0] |= IQS7222_CHAN_SETUP_0_REF_MODE_FOLLOW;
chan_setup[4] = val * 42 + 1048;
error = fwnode_property_read_u32(chan_node, "azoteq,ref-weight",
&val);
if (!error) {
if (val > U16_MAX) {
dev_err(&client->dev,
"Invalid %s reference weight: %u\n",
fwnode_get_name(chan_node), val);
return -EINVAL;
}
chan_setup[5] = val;
} else if (error != -EINVAL) {
dev_err(&client->dev,
"Failed to read %s reference weight: %d\n",
fwnode_get_name(chan_node), error);
return error;
}
/*
* Configure the selected channel as a reference channel which
* serves the current channel.
*/
ref_setup[0] |= IQS7222_CHAN_SETUP_0_REF_MODE_REF;
ref_setup[5] |= BIT(chan_index);
ref_setup[4] = dev_desc->touch_link;
if (fwnode_property_present(chan_node, "azoteq,use-prox"))
ref_setup[4] -= 2;
} else if (dev_desc->reg_grps[IQS7222_REG_GRP_TPAD].num_row &&
fwnode_property_present(chan_node,
"azoteq,counts-filt-enable")) {
/*
* In the case of IQS7222D, however, the reference mode field
* is partially repurposed as a counts filter enable control.
*/
chan_setup[0] |= IQS7222_CHAN_SETUP_0_REF_MODE_REF;
}
if (fwnode_property_present(chan_node, "azoteq,rx-enable")) {
/*
* Each channel can claim up to 4 CRx pins. The first half of
* the channels can use CRx0-3, while the second half can use
* CRx4-7.
*/
unsigned int pins[4];
int count;
count = fwnode_property_count_u32(chan_node,
"azoteq,rx-enable");
if (count < 0) {
dev_err(&client->dev,
"Failed to count %s CRx pins: %d\n",
fwnode_get_name(chan_node), count);
return count;
} else if (count > ARRAY_SIZE(pins)) {
dev_err(&client->dev,
"Invalid number of %s CRx pins\n",
fwnode_get_name(chan_node));
return -EINVAL;
}
error = fwnode_property_read_u32_array(chan_node,
"azoteq,rx-enable",
pins, count);
if (error) {
dev_err(&client->dev,
"Failed to read %s CRx pins: %d\n",
fwnode_get_name(chan_node), error);
return error;
}
chan_setup[0] &= ~GENMASK(4 + ARRAY_SIZE(pins) - 1, 4);
for (i = 0; i < count; i++) {
int min_crx = chan_index < ext_chan / 2 ? 0 : 4;
if (pins[i] < min_crx || pins[i] > min_crx + 3) {
dev_err(&client->dev,
"Invalid %s CRx pin: %u\n",
fwnode_get_name(chan_node), pins[i]);
return -EINVAL;
}
chan_setup[0] |= BIT(pins[i] + 4 - min_crx);
}
}
for (i = 0; i < ARRAY_SIZE(iqs7222_kp_events); i++) {
const char *event_name = iqs7222_kp_events[i].name;
u16 event_enable = iqs7222_kp_events[i].enable;
struct fwnode_handle *event_node;
event_node = fwnode_get_named_child_node(chan_node, event_name);
if (!event_node)
continue;
error = fwnode_property_read_u32(event_node,
"azoteq,timeout-press-ms",
&val);
if (!error) {
/*
* The IQS7222B employs a global pair of press timeout
* registers as opposed to channel-specific registers.
*/
u16 *setup = dev_desc->reg_grps
[IQS7222_REG_GRP_BTN].num_col > 2 ?
&iqs7222->btn_setup[chan_index][2] :
&sys_setup[9];
if (val > U8_MAX * 500) {
dev_err(&client->dev,
"Invalid %s press timeout: %u\n",
fwnode_get_name(event_node), val);
fwnode_handle_put(event_node);
return -EINVAL;
}
*setup &= ~(U8_MAX << i * 8);
*setup |= (val / 500 << i * 8);
} else if (error != -EINVAL) {
dev_err(&client->dev,
"Failed to read %s press timeout: %d\n",
fwnode_get_name(event_node), error);
fwnode_handle_put(event_node);
return error;
}
error = iqs7222_parse_event(iqs7222, event_node, chan_index,
IQS7222_REG_GRP_BTN,
iqs7222_kp_events[i].reg_key,
BIT(chan_index),
dev_desc->touch_link - (i ? 0 : 2),
&iqs7222->kp_type[chan_index][i],
&iqs7222->kp_code[chan_index][i]);
fwnode_handle_put(event_node);
if (error)
return error;
if (!dev_desc->event_offset)
continue;
sys_setup[dev_desc->event_offset] |= event_enable;
}
/*
* The following call handles a special pair of properties that apply
* to a channel node, but reside within the button (event) group.
*/
return iqs7222_parse_props(iqs7222, chan_node, chan_index,
IQS7222_REG_GRP_BTN,
IQS7222_REG_KEY_DEBOUNCE);
}
static int iqs7222_parse_sldr(struct iqs7222_private *iqs7222,
struct fwnode_handle *sldr_node, int sldr_index)
{
const struct iqs7222_dev_desc *dev_desc = iqs7222->dev_desc;
struct i2c_client *client = iqs7222->client;
int num_chan = dev_desc->reg_grps[IQS7222_REG_GRP_CHAN].num_row;
int ext_chan = rounddown(num_chan, 10);
int count, error, reg_offset, i;
u16 *event_mask = &iqs7222->sys_setup[dev_desc->event_offset];
u16 *sldr_setup = iqs7222->sldr_setup[sldr_index];
unsigned int chan_sel[4], val;
/*
* Each slider can be spread across 3 to 4 channels. It is possible to
* select only 2 channels, but doing so prevents the slider from using
* the specified resolution.
*/
count = fwnode_property_count_u32(sldr_node, "azoteq,channel-select");
if (count < 0) {
dev_err(&client->dev, "Failed to count %s channels: %d\n",
fwnode_get_name(sldr_node), count);
return count;
} else if (count < 3 || count > ARRAY_SIZE(chan_sel)) {
dev_err(&client->dev, "Invalid number of %s channels\n",
fwnode_get_name(sldr_node));
return -EINVAL;
}
error = fwnode_property_read_u32_array(sldr_node,
"azoteq,channel-select",
chan_sel, count);
if (error) {
dev_err(&client->dev, "Failed to read %s channels: %d\n",
fwnode_get_name(sldr_node), error);
return error;
}
/*
* Resolution and top speed, if small enough, are packed into a single
* register. Otherwise, each occupies its own register and the rest of
* the slider-related register addresses are offset by one.
*/
reg_offset = dev_desc->sldr_res < U16_MAX ? 0 : 1;
sldr_setup[0] |= count;
sldr_setup[3 + reg_offset] &= ~GENMASK(ext_chan - 1, 0);
for (i = 0; i < ARRAY_SIZE(chan_sel); i++) {
sldr_setup[5 + reg_offset + i] = 0;
if (i >= count)
continue;
if (chan_sel[i] >= ext_chan) {
dev_err(&client->dev, "Invalid %s channel: %u\n",
fwnode_get_name(sldr_node), chan_sel[i]);
return -EINVAL;
}
/*
* The following fields indicate which channels participate in
* the slider, as well as each channel's relative placement.
*/
sldr_setup[3 + reg_offset] |= BIT(chan_sel[i]);
sldr_setup[5 + reg_offset + i] = chan_sel[i] * 42 + 1080;
}
sldr_setup[4 + reg_offset] = dev_desc->touch_link;
if (fwnode_property_present(sldr_node, "azoteq,use-prox"))
sldr_setup[4 + reg_offset] -= 2;
error = fwnode_property_read_u32(sldr_node, "azoteq,slider-size", &val);
if (!error) {
if (val > dev_desc->sldr_res) {
dev_err(&client->dev, "Invalid %s size: %u\n",
fwnode_get_name(sldr_node), val);
return -EINVAL;
}
if (reg_offset) {
sldr_setup[3] = val;
} else {
sldr_setup[2] &= ~IQS7222_SLDR_SETUP_2_RES_MASK;
sldr_setup[2] |= (val / 16 <<
IQS7222_SLDR_SETUP_2_RES_SHIFT);
}
} else if (error != -EINVAL) {
dev_err(&client->dev, "Failed to read %s size: %d\n",
fwnode_get_name(sldr_node), error);
return error;
}
if (!(reg_offset ? sldr_setup[3]
: sldr_setup[2] & IQS7222_SLDR_SETUP_2_RES_MASK)) {
dev_err(&client->dev, "Undefined %s size\n",
fwnode_get_name(sldr_node));
return -EINVAL;
}
error = fwnode_property_read_u32(sldr_node, "azoteq,top-speed", &val);
if (!error) {
if (val > (reg_offset ? U16_MAX : U8_MAX * 4)) {
dev_err(&client->dev, "Invalid %s top speed: %u\n",
fwnode_get_name(sldr_node), val);
return -EINVAL;
}
if (reg_offset) {
sldr_setup[2] = val;
} else {
sldr_setup[2] &= ~IQS7222_SLDR_SETUP_2_TOP_SPEED_MASK;
sldr_setup[2] |= (val / 4);
}
} else if (error != -EINVAL) {
dev_err(&client->dev, "Failed to read %s top speed: %d\n",
fwnode_get_name(sldr_node), error);
return error;
}
error = fwnode_property_read_u32(sldr_node, "linux,axis", &val);
if (!error) {
u16 sldr_max = sldr_setup[3] - 1;
if (!reg_offset) {
sldr_max = sldr_setup[2];
sldr_max &= IQS7222_SLDR_SETUP_2_RES_MASK;
sldr_max >>= IQS7222_SLDR_SETUP_2_RES_SHIFT;
sldr_max = sldr_max * 16 - 1;
}
input_set_abs_params(iqs7222->keypad, val, 0, sldr_max, 0, 0);
iqs7222->sl_axis[sldr_index] = val;
} else if (error != -EINVAL) {
dev_err(&client->dev, "Failed to read %s axis: %d\n",
fwnode_get_name(sldr_node), error);
return error;
}
if (dev_desc->wheel_enable) {
sldr_setup[0] &= ~dev_desc->wheel_enable;
if (iqs7222->sl_axis[sldr_index] == ABS_WHEEL)
sldr_setup[0] |= dev_desc->wheel_enable;
}
/*
* The absence of a register offset makes it safe to assume the device
* supports gestures, each of which is first disabled until explicitly
* enabled.
*/
if (!reg_offset)
for (i = 0; i < ARRAY_SIZE(iqs7222_sl_events); i++)
sldr_setup[9] &= ~iqs7222_sl_events[i].enable;
for (i = 0; i < ARRAY_SIZE(iqs7222_sl_events); i++) {
const char *event_name = iqs7222_sl_events[i].name;
struct fwnode_handle *event_node;
enum iqs7222_reg_key_id reg_key;
event_node = fwnode_get_named_child_node(sldr_node, event_name);
if (!event_node)
continue;
/*
* Depending on the device, gestures are either offered using
* one of two timing resolutions, or are not supported at all.
*/
if (reg_offset)
reg_key = IQS7222_REG_KEY_RESERVED;
else if (dev_desc->legacy_gesture &&
iqs7222_sl_events[i].reg_key == IQS7222_REG_KEY_TAP)
reg_key = IQS7222_REG_KEY_TAP_LEGACY;
else if (dev_desc->legacy_gesture &&
iqs7222_sl_events[i].reg_key == IQS7222_REG_KEY_AXIAL)
reg_key = IQS7222_REG_KEY_AXIAL_LEGACY;
else
reg_key = iqs7222_sl_events[i].reg_key;
/*
* The press/release event does not expose a direct GPIO link,
* but one can be emulated by tying each of the participating
* channels to the same GPIO.
*/
error = iqs7222_parse_event(iqs7222, event_node, sldr_index,
IQS7222_REG_GRP_SLDR, reg_key,
i ? iqs7222_sl_events[i].enable
: sldr_setup[3 + reg_offset],
i ? 1568 + sldr_index * 30
: sldr_setup[4 + reg_offset],
NULL,
&iqs7222->sl_code[sldr_index][i]);
fwnode_handle_put(event_node);
if (error)
return error;
if (!reg_offset)
sldr_setup[9] |= iqs7222_sl_events[i].enable;
if (!dev_desc->event_offset)
continue;
/*
* The press/release event is determined based on whether the
* coordinate field reports 0xFFFF and solely relies on touch
* or proximity interrupts to be unmasked.
*/
if (i && !reg_offset)
*event_mask |= (IQS7222_EVENT_MASK_SLDR << sldr_index);
else if (sldr_setup[4 + reg_offset] == dev_desc->touch_link)
*event_mask |= IQS7222_EVENT_MASK_TOUCH;
else
*event_mask |= IQS7222_EVENT_MASK_PROX;
}
/*
* The following call handles a special pair of properties that shift
* to make room for a wheel enable control in the case of IQS7222C.
*/
return iqs7222_parse_props(iqs7222, sldr_node, sldr_index,
IQS7222_REG_GRP_SLDR,
dev_desc->wheel_enable ?
IQS7222_REG_KEY_WHEEL :
IQS7222_REG_KEY_NO_WHEEL);
}
static int iqs7222_parse_tpad(struct iqs7222_private *iqs7222,
struct fwnode_handle *tpad_node, int tpad_index)
{
const struct iqs7222_dev_desc *dev_desc = iqs7222->dev_desc;
struct touchscreen_properties *prop = &iqs7222->prop;
struct i2c_client *client = iqs7222->client;
int num_chan = dev_desc->reg_grps[IQS7222_REG_GRP_CHAN].num_row;
int count, error, i;
u16 *event_mask = &iqs7222->sys_setup[dev_desc->event_offset];
u16 *tpad_setup = iqs7222->tpad_setup;
unsigned int chan_sel[12];
error = iqs7222_parse_props(iqs7222, tpad_node, tpad_index,
IQS7222_REG_GRP_TPAD,
IQS7222_REG_KEY_NONE);
if (error)
return error;
count = fwnode_property_count_u32(tpad_node, "azoteq,channel-select");
if (count < 0) {
dev_err(&client->dev, "Failed to count %s channels: %d\n",
fwnode_get_name(tpad_node), count);
return count;
} else if (!count || count > ARRAY_SIZE(chan_sel)) {
dev_err(&client->dev, "Invalid number of %s channels\n",
fwnode_get_name(tpad_node));
return -EINVAL;
}
error = fwnode_property_read_u32_array(tpad_node,
"azoteq,channel-select",
chan_sel, count);
if (error) {
dev_err(&client->dev, "Failed to read %s channels: %d\n",
fwnode_get_name(tpad_node), error);
return error;
}
tpad_setup[6] &= ~GENMASK(num_chan - 1, 0);
for (i = 0; i < ARRAY_SIZE(chan_sel); i++) {
tpad_setup[8 + i] = 0;
if (i >= count || chan_sel[i] == U8_MAX)
continue;
if (chan_sel[i] >= num_chan) {
dev_err(&client->dev, "Invalid %s channel: %u\n",
fwnode_get_name(tpad_node), chan_sel[i]);
return -EINVAL;
}
/*
* The following fields indicate which channels participate in
* the trackpad, as well as each channel's relative placement.
*/
tpad_setup[6] |= BIT(chan_sel[i]);
tpad_setup[8 + i] = chan_sel[i] * 34 + 1072;
}
tpad_setup[7] = dev_desc->touch_link;
if (fwnode_property_present(tpad_node, "azoteq,use-prox"))
tpad_setup[7] -= 2;
for (i = 0; i < ARRAY_SIZE(iqs7222_tp_events); i++)
tpad_setup[20] &= ~(iqs7222_tp_events[i].strict |
iqs7222_tp_events[i].enable);
for (i = 0; i < ARRAY_SIZE(iqs7222_tp_events); i++) {
const char *event_name = iqs7222_tp_events[i].name;
struct fwnode_handle *event_node;
event_node = fwnode_get_named_child_node(tpad_node, event_name);
if (!event_node)
continue;
if (fwnode_property_present(event_node,
"azoteq,gesture-angle-tighten"))
tpad_setup[20] |= iqs7222_tp_events[i].strict;
tpad_setup[20] |= iqs7222_tp_events[i].enable;
error = iqs7222_parse_event(iqs7222, event_node, tpad_index,
IQS7222_REG_GRP_TPAD,
iqs7222_tp_events[i].reg_key,
iqs7222_tp_events[i].link, 1566,
NULL,
&iqs7222->tp_code[i]);
fwnode_handle_put(event_node);
if (error)
return error;
if (!dev_desc->event_offset)
continue;
/*
* The press/release event is determined based on whether the
* coordinate fields report 0xFFFF and solely relies on touch
* or proximity interrupts to be unmasked.
*/
if (i)
*event_mask |= IQS7222_EVENT_MASK_TPAD;
else if (tpad_setup[7] == dev_desc->touch_link)
*event_mask |= IQS7222_EVENT_MASK_TOUCH;
else
*event_mask |= IQS7222_EVENT_MASK_PROX;
}
if (!iqs7222->tp_code[0])
return 0;
input_set_abs_params(iqs7222->keypad, ABS_X,
0, (tpad_setup[4] ? : 1) - 1, 0, 0);
input_set_abs_params(iqs7222->keypad, ABS_Y,
0, (tpad_setup[5] ? : 1) - 1, 0, 0);
touchscreen_parse_properties(iqs7222->keypad, false, prop);
if (prop->max_x >= U16_MAX || prop->max_y >= U16_MAX) {
dev_err(&client->dev, "Invalid trackpad size: %u*%u\n",
prop->max_x, prop->max_y);
return -EINVAL;
}
tpad_setup[4] = prop->max_x + 1;
tpad_setup[5] = prop->max_y + 1;
return 0;
}
static int (*iqs7222_parse_extra[IQS7222_NUM_REG_GRPS])
(struct iqs7222_private *iqs7222,
struct fwnode_handle *reg_grp_node,
int reg_grp_index) = {
[IQS7222_REG_GRP_CYCLE] = iqs7222_parse_cycle,
[IQS7222_REG_GRP_CHAN] = iqs7222_parse_chan,
[IQS7222_REG_GRP_SLDR] = iqs7222_parse_sldr,
[IQS7222_REG_GRP_TPAD] = iqs7222_parse_tpad,
};
static int iqs7222_parse_reg_grp(struct iqs7222_private *iqs7222,
enum iqs7222_reg_grp_id reg_grp,
int reg_grp_index)
{
struct i2c_client *client = iqs7222->client;
struct fwnode_handle *reg_grp_node;
int error;
if (iqs7222_reg_grp_names[reg_grp]) {
char reg_grp_name[16];
snprintf(reg_grp_name, sizeof(reg_grp_name),
iqs7222_reg_grp_names[reg_grp], reg_grp_index);
reg_grp_node = device_get_named_child_node(&client->dev,
reg_grp_name);
} else {
reg_grp_node = fwnode_handle_get(dev_fwnode(&client->dev));
}
if (!reg_grp_node)
return 0;
error = iqs7222_parse_props(iqs7222, reg_grp_node, reg_grp_index,
reg_grp, IQS7222_REG_KEY_NONE);
if (!error && iqs7222_parse_extra[reg_grp])
error = iqs7222_parse_extra[reg_grp](iqs7222, reg_grp_node,
reg_grp_index);
fwnode_handle_put(reg_grp_node);
return error;
}
static int iqs7222_parse_all(struct iqs7222_private *iqs7222)
{
const struct iqs7222_dev_desc *dev_desc = iqs7222->dev_desc;
const struct iqs7222_reg_grp_desc *reg_grps = dev_desc->reg_grps;
u16 *sys_setup = iqs7222->sys_setup;
int error, i, j;
if (dev_desc->allow_offset)
sys_setup[dev_desc->allow_offset] = U16_MAX;
if (dev_desc->event_offset)
sys_setup[dev_desc->event_offset] = IQS7222_EVENT_MASK_ATI;
for (i = 0; i < reg_grps[IQS7222_REG_GRP_GPIO].num_row; i++) {
u16 *gpio_setup = iqs7222->gpio_setup[i];
gpio_setup[0] &= ~IQS7222_GPIO_SETUP_0_GPIO_EN;
gpio_setup[1] = 0;
gpio_setup[2] = 0;
if (reg_grps[IQS7222_REG_GRP_GPIO].num_row == 1)
continue;
/*
* The IQS7222C and IQS7222D expose multiple GPIO and must be
* informed as to which GPIO this group represents.
*/
for (j = 0; j < ARRAY_SIZE(iqs7222_gpio_links); j++)
gpio_setup[0] &= ~BIT(iqs7222_gpio_links[j]);
gpio_setup[0] |= BIT(iqs7222_gpio_links[i]);
}
for (i = 0; i < reg_grps[IQS7222_REG_GRP_CHAN].num_row; i++) {
u16 *chan_setup = iqs7222->chan_setup[i];
chan_setup[0] &= ~IQS7222_CHAN_SETUP_0_REF_MODE_MASK;
chan_setup[0] &= ~IQS7222_CHAN_SETUP_0_CHAN_EN;
chan_setup[5] = 0;
}
for (i = 0; i < reg_grps[IQS7222_REG_GRP_SLDR].num_row; i++) {
u16 *sldr_setup = iqs7222->sldr_setup[i];
sldr_setup[0] &= ~IQS7222_SLDR_SETUP_0_CHAN_CNT_MASK;
}
for (i = 0; i < IQS7222_NUM_REG_GRPS; i++) {
for (j = 0; j < reg_grps[i].num_row; j++) {
error = iqs7222_parse_reg_grp(iqs7222, i, j);
if (error)
return error;
}
}
return 0;
}
static int iqs7222_report(struct iqs7222_private *iqs7222)
{
const struct iqs7222_dev_desc *dev_desc = iqs7222->dev_desc;
struct i2c_client *client = iqs7222->client;
int num_chan = dev_desc->reg_grps[IQS7222_REG_GRP_CHAN].num_row;
int num_stat = dev_desc->reg_grps[IQS7222_REG_GRP_STAT].num_col;
int error, i, j;
__le16 status[IQS7222_MAX_COLS_STAT];
error = iqs7222_read_burst(iqs7222, IQS7222_SYS_STATUS, status,
num_stat);
if (error)
return error;
if (le16_to_cpu(status[0]) & IQS7222_SYS_STATUS_RESET) {
dev_err(&client->dev, "Unexpected device reset\n");
return iqs7222_dev_init(iqs7222, WRITE);
}
if (le16_to_cpu(status[0]) & IQS7222_SYS_STATUS_ATI_ERROR) {
dev_err(&client->dev, "Unexpected ATI error\n");
return iqs7222_ati_trigger(iqs7222);
}
if (le16_to_cpu(status[0]) & IQS7222_SYS_STATUS_ATI_ACTIVE)
return 0;
for (i = 0; i < num_chan; i++) {
u16 *chan_setup = iqs7222->chan_setup[i];
if (!(chan_setup[0] & IQS7222_CHAN_SETUP_0_CHAN_EN))
continue;
for (j = 0; j < ARRAY_SIZE(iqs7222_kp_events); j++) {
/*
* Proximity state begins at offset 2 and spills into
* offset 3 for devices with more than 16 channels.
*
* Touch state begins at the first offset immediately
* following proximity state.
*/
int k = 2 + j * (num_chan > 16 ? 2 : 1);
u16 state = le16_to_cpu(status[k + i / 16]);
if (!iqs7222->kp_type[i][j])
continue;
input_event(iqs7222->keypad,
iqs7222->kp_type[i][j],
iqs7222->kp_code[i][j],
!!(state & BIT(i % 16)));
}
}
for (i = 0; i < dev_desc->reg_grps[IQS7222_REG_GRP_SLDR].num_row; i++) {
u16 *sldr_setup = iqs7222->sldr_setup[i];
u16 sldr_pos = le16_to_cpu(status[4 + i]);
u16 state = le16_to_cpu(status[6 + i]);
if (!(sldr_setup[0] & IQS7222_SLDR_SETUP_0_CHAN_CNT_MASK))
continue;
if (sldr_pos < dev_desc->sldr_res)
input_report_abs(iqs7222->keypad, iqs7222->sl_axis[i],
sldr_pos);
input_report_key(iqs7222->keypad, iqs7222->sl_code[i][0],
sldr_pos < dev_desc->sldr_res);
/*
* A maximum resolution indicates the device does not support
* gestures, in which case the remaining fields are ignored.
*/
if (dev_desc->sldr_res == U16_MAX)
continue;
if (!(le16_to_cpu(status[1]) & IQS7222_EVENT_MASK_SLDR << i))
continue;
/*
* Skip the press/release event, as it does not have separate
* status fields and is handled separately.
*/
for (j = 1; j < ARRAY_SIZE(iqs7222_sl_events); j++) {
u16 mask = iqs7222_sl_events[j].mask;
u16 val = iqs7222_sl_events[j].val;
input_report_key(iqs7222->keypad,
iqs7222->sl_code[i][j],
(state & mask) == val);
}
input_sync(iqs7222->keypad);
for (j = 1; j < ARRAY_SIZE(iqs7222_sl_events); j++)
input_report_key(iqs7222->keypad,
iqs7222->sl_code[i][j], 0);
}
for (i = 0; i < dev_desc->reg_grps[IQS7222_REG_GRP_TPAD].num_row; i++) {
u16 tpad_pos_x = le16_to_cpu(status[4]);
u16 tpad_pos_y = le16_to_cpu(status[5]);
u16 state = le16_to_cpu(status[6]);
input_report_key(iqs7222->keypad, iqs7222->tp_code[0],
tpad_pos_x < U16_MAX);
if (tpad_pos_x < U16_MAX)
touchscreen_report_pos(iqs7222->keypad, &iqs7222->prop,
tpad_pos_x, tpad_pos_y, false);
if (!(le16_to_cpu(status[1]) & IQS7222_EVENT_MASK_TPAD))
continue;
/*
* Skip the press/release event, as it does not have separate
* status fields and is handled separately.
*/
for (j = 1; j < ARRAY_SIZE(iqs7222_tp_events); j++) {
u16 mask = iqs7222_tp_events[j].mask;
u16 val = iqs7222_tp_events[j].val;
input_report_key(iqs7222->keypad,
iqs7222->tp_code[j],
(state & mask) == val);
}
input_sync(iqs7222->keypad);
for (j = 1; j < ARRAY_SIZE(iqs7222_tp_events); j++)
input_report_key(iqs7222->keypad,
iqs7222->tp_code[j], 0);
}
input_sync(iqs7222->keypad);
return 0;
}
static irqreturn_t iqs7222_irq(int irq, void *context)
{
struct iqs7222_private *iqs7222 = context;
return iqs7222_report(iqs7222) ? IRQ_NONE : IRQ_HANDLED;
}
static int iqs7222_probe(struct i2c_client *client)
{
struct iqs7222_private *iqs7222;
unsigned long irq_flags;
int error, irq;
iqs7222 = devm_kzalloc(&client->dev, sizeof(*iqs7222), GFP_KERNEL);
if (!iqs7222)
return -ENOMEM;
i2c_set_clientdata(client, iqs7222);
iqs7222->client = client;
iqs7222->keypad = devm_input_allocate_device(&client->dev);
if (!iqs7222->keypad)
return -ENOMEM;
iqs7222->keypad->name = client->name;
iqs7222->keypad->id.bustype = BUS_I2C;
/*
* The RDY pin behaves as an interrupt, but must also be polled ahead
* of unsolicited I2C communication. As such, it is first opened as a
* GPIO and then passed to gpiod_to_irq() to register the interrupt.
*/
iqs7222->irq_gpio = devm_gpiod_get(&client->dev, "irq", GPIOD_IN);
if (IS_ERR(iqs7222->irq_gpio)) {
error = PTR_ERR(iqs7222->irq_gpio);
dev_err(&client->dev, "Failed to request IRQ GPIO: %d\n",
error);
return error;
}
iqs7222->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(iqs7222->reset_gpio)) {
error = PTR_ERR(iqs7222->reset_gpio);
dev_err(&client->dev, "Failed to request reset GPIO: %d\n",
error);
return error;
}
error = iqs7222_hard_reset(iqs7222);
if (error)
return error;
error = iqs7222_dev_info(iqs7222);
if (error)
return error;
error = iqs7222_dev_init(iqs7222, READ);
if (error)
return error;
error = iqs7222_parse_all(iqs7222);
if (error)
return error;
error = iqs7222_dev_init(iqs7222, WRITE);
if (error)
return error;
error = iqs7222_report(iqs7222);
if (error)
return error;
error = input_register_device(iqs7222->keypad);
if (error) {
dev_err(&client->dev, "Failed to register device: %d\n", error);
return error;
}
irq = gpiod_to_irq(iqs7222->irq_gpio);
if (irq < 0)
return irq;
irq_flags = gpiod_is_active_low(iqs7222->irq_gpio) ? IRQF_TRIGGER_LOW
: IRQF_TRIGGER_HIGH;
irq_flags |= IRQF_ONESHOT;
error = devm_request_threaded_irq(&client->dev, irq, NULL, iqs7222_irq,
irq_flags, client->name, iqs7222);
if (error)
dev_err(&client->dev, "Failed to request IRQ: %d\n", error);
return error;
}
static const struct of_device_id iqs7222_of_match[] = {
{ .compatible = "azoteq,iqs7222a" },
{ .compatible = "azoteq,iqs7222b" },
{ .compatible = "azoteq,iqs7222c" },
{ .compatible = "azoteq,iqs7222d" },
{ }
};
MODULE_DEVICE_TABLE(of, iqs7222_of_match);
static struct i2c_driver iqs7222_i2c_driver = {
.driver = {
.name = "iqs7222",
.of_match_table = iqs7222_of_match,
},
.probe = iqs7222_probe,
};
module_i2c_driver(iqs7222_i2c_driver);
MODULE_AUTHOR("Jeff LaBundy <[email protected]>");
MODULE_DESCRIPTION("Azoteq IQS7222A/B/C/D Capacitive Touch Controller");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/misc/iqs7222.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* VTI CMA3000_D0x Accelerometer driver
*
* Copyright (C) 2010 Texas Instruments
* Author: Hemanth V <[email protected]>
*/
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/input/cma3000.h>
#include <linux/module.h>
#include "cma3000_d0x.h"
#define CMA3000_WHOAMI 0x00
#define CMA3000_REVID 0x01
#define CMA3000_CTRL 0x02
#define CMA3000_STATUS 0x03
#define CMA3000_RSTR 0x04
#define CMA3000_INTSTATUS 0x05
#define CMA3000_DOUTX 0x06
#define CMA3000_DOUTY 0x07
#define CMA3000_DOUTZ 0x08
#define CMA3000_MDTHR 0x09
#define CMA3000_MDFFTMR 0x0A
#define CMA3000_FFTHR 0x0B
#define CMA3000_RANGE2G (1 << 7)
#define CMA3000_RANGE8G (0 << 7)
#define CMA3000_BUSI2C (0 << 4)
#define CMA3000_MODEMASK (7 << 1)
#define CMA3000_GRANGEMASK (1 << 7)
#define CMA3000_STATUS_PERR 1
#define CMA3000_INTSTATUS_FFDET (1 << 2)
/* Settling time delay in ms */
#define CMA3000_SETDELAY 30
/* Delay for clearing interrupt in us */
#define CMA3000_INTDELAY 44
/*
* Bit weights in mg for bit 0, other bits need
* multiply factor 2^n. Eight bit is the sign bit.
*/
#define BIT_TO_2G 18
#define BIT_TO_8G 71
struct cma3000_accl_data {
const struct cma3000_bus_ops *bus_ops;
const struct cma3000_platform_data *pdata;
struct device *dev;
struct input_dev *input_dev;
int bit_to_mg;
int irq;
int g_range;
u8 mode;
struct mutex mutex;
bool opened;
bool suspended;
};
#define CMA3000_READ(data, reg, msg) \
(data->bus_ops->read(data->dev, reg, msg))
#define CMA3000_SET(data, reg, val, msg) \
((data)->bus_ops->write(data->dev, reg, val, msg))
/*
* Conversion for each of the eight modes to g, depending
* on G range i.e 2G or 8G. Some modes always operate in
* 8G.
*/
static int mode_to_mg[8][2] = {
{ 0, 0 },
{ BIT_TO_8G, BIT_TO_2G },
{ BIT_TO_8G, BIT_TO_2G },
{ BIT_TO_8G, BIT_TO_8G },
{ BIT_TO_8G, BIT_TO_8G },
{ BIT_TO_8G, BIT_TO_2G },
{ BIT_TO_8G, BIT_TO_2G },
{ 0, 0},
};
static void decode_mg(struct cma3000_accl_data *data, int *datax,
int *datay, int *dataz)
{
/* Data in 2's complement, convert to mg */
*datax = ((s8)*datax) * data->bit_to_mg;
*datay = ((s8)*datay) * data->bit_to_mg;
*dataz = ((s8)*dataz) * data->bit_to_mg;
}
static irqreturn_t cma3000_thread_irq(int irq, void *dev_id)
{
struct cma3000_accl_data *data = dev_id;
int datax, datay, dataz, intr_status;
u8 ctrl, mode, range;
intr_status = CMA3000_READ(data, CMA3000_INTSTATUS, "interrupt status");
if (intr_status < 0)
return IRQ_NONE;
/* Check if free fall is detected, report immediately */
if (intr_status & CMA3000_INTSTATUS_FFDET) {
input_report_abs(data->input_dev, ABS_MISC, 1);
input_sync(data->input_dev);
} else {
input_report_abs(data->input_dev, ABS_MISC, 0);
}
datax = CMA3000_READ(data, CMA3000_DOUTX, "X");
datay = CMA3000_READ(data, CMA3000_DOUTY, "Y");
dataz = CMA3000_READ(data, CMA3000_DOUTZ, "Z");
ctrl = CMA3000_READ(data, CMA3000_CTRL, "ctrl");
mode = (ctrl & CMA3000_MODEMASK) >> 1;
range = (ctrl & CMA3000_GRANGEMASK) >> 7;
data->bit_to_mg = mode_to_mg[mode][range];
/* Interrupt not for this device */
if (data->bit_to_mg == 0)
return IRQ_NONE;
/* Decode register values to milli g */
decode_mg(data, &datax, &datay, &dataz);
input_report_abs(data->input_dev, ABS_X, datax);
input_report_abs(data->input_dev, ABS_Y, datay);
input_report_abs(data->input_dev, ABS_Z, dataz);
input_sync(data->input_dev);
return IRQ_HANDLED;
}
static int cma3000_reset(struct cma3000_accl_data *data)
{
int val;
/* Reset sequence */
CMA3000_SET(data, CMA3000_RSTR, 0x02, "Reset");
CMA3000_SET(data, CMA3000_RSTR, 0x0A, "Reset");
CMA3000_SET(data, CMA3000_RSTR, 0x04, "Reset");
/* Settling time delay */
mdelay(10);
val = CMA3000_READ(data, CMA3000_STATUS, "Status");
if (val < 0) {
dev_err(data->dev, "Reset failed\n");
return val;
}
if (val & CMA3000_STATUS_PERR) {
dev_err(data->dev, "Parity Error\n");
return -EIO;
}
return 0;
}
static int cma3000_poweron(struct cma3000_accl_data *data)
{
const struct cma3000_platform_data *pdata = data->pdata;
u8 ctrl = 0;
int ret;
if (data->g_range == CMARANGE_2G) {
ctrl = (data->mode << 1) | CMA3000_RANGE2G;
} else if (data->g_range == CMARANGE_8G) {
ctrl = (data->mode << 1) | CMA3000_RANGE8G;
} else {
dev_info(data->dev,
"Invalid G range specified, assuming 8G\n");
ctrl = (data->mode << 1) | CMA3000_RANGE8G;
}
ctrl |= data->bus_ops->ctrl_mod;
CMA3000_SET(data, CMA3000_MDTHR, pdata->mdthr,
"Motion Detect Threshold");
CMA3000_SET(data, CMA3000_MDFFTMR, pdata->mdfftmr,
"Time register");
CMA3000_SET(data, CMA3000_FFTHR, pdata->ffthr,
"Free fall threshold");
ret = CMA3000_SET(data, CMA3000_CTRL, ctrl, "Mode setting");
if (ret < 0)
return -EIO;
msleep(CMA3000_SETDELAY);
return 0;
}
static int cma3000_poweroff(struct cma3000_accl_data *data)
{
int ret;
ret = CMA3000_SET(data, CMA3000_CTRL, CMAMODE_POFF, "Mode setting");
msleep(CMA3000_SETDELAY);
return ret;
}
static int cma3000_open(struct input_dev *input_dev)
{
struct cma3000_accl_data *data = input_get_drvdata(input_dev);
mutex_lock(&data->mutex);
if (!data->suspended)
cma3000_poweron(data);
data->opened = true;
mutex_unlock(&data->mutex);
return 0;
}
static void cma3000_close(struct input_dev *input_dev)
{
struct cma3000_accl_data *data = input_get_drvdata(input_dev);
mutex_lock(&data->mutex);
if (!data->suspended)
cma3000_poweroff(data);
data->opened = false;
mutex_unlock(&data->mutex);
}
void cma3000_suspend(struct cma3000_accl_data *data)
{
mutex_lock(&data->mutex);
if (!data->suspended && data->opened)
cma3000_poweroff(data);
data->suspended = true;
mutex_unlock(&data->mutex);
}
EXPORT_SYMBOL(cma3000_suspend);
void cma3000_resume(struct cma3000_accl_data *data)
{
mutex_lock(&data->mutex);
if (data->suspended && data->opened)
cma3000_poweron(data);
data->suspended = false;
mutex_unlock(&data->mutex);
}
EXPORT_SYMBOL(cma3000_resume);
struct cma3000_accl_data *cma3000_init(struct device *dev, int irq,
const struct cma3000_bus_ops *bops)
{
const struct cma3000_platform_data *pdata = dev_get_platdata(dev);
struct cma3000_accl_data *data;
struct input_dev *input_dev;
int rev;
int error;
if (!pdata) {
dev_err(dev, "platform data not found\n");
error = -EINVAL;
goto err_out;
}
/* if no IRQ return error */
if (irq == 0) {
error = -EINVAL;
goto err_out;
}
data = kzalloc(sizeof(struct cma3000_accl_data), GFP_KERNEL);
input_dev = input_allocate_device();
if (!data || !input_dev) {
error = -ENOMEM;
goto err_free_mem;
}
data->dev = dev;
data->input_dev = input_dev;
data->bus_ops = bops;
data->pdata = pdata;
data->irq = irq;
mutex_init(&data->mutex);
data->mode = pdata->mode;
if (data->mode > CMAMODE_POFF) {
data->mode = CMAMODE_MOTDET;
dev_warn(dev,
"Invalid mode specified, assuming Motion Detect\n");
}
data->g_range = pdata->g_range;
if (data->g_range != CMARANGE_2G && data->g_range != CMARANGE_8G) {
dev_info(dev,
"Invalid G range specified, assuming 8G\n");
data->g_range = CMARANGE_8G;
}
input_dev->name = "cma3000-accelerometer";
input_dev->id.bustype = bops->bustype;
input_dev->open = cma3000_open;
input_dev->close = cma3000_close;
input_set_abs_params(input_dev, ABS_X,
-data->g_range, data->g_range, pdata->fuzz_x, 0);
input_set_abs_params(input_dev, ABS_Y,
-data->g_range, data->g_range, pdata->fuzz_y, 0);
input_set_abs_params(input_dev, ABS_Z,
-data->g_range, data->g_range, pdata->fuzz_z, 0);
input_set_abs_params(input_dev, ABS_MISC, 0, 1, 0, 0);
input_set_drvdata(input_dev, data);
error = cma3000_reset(data);
if (error)
goto err_free_mem;
rev = CMA3000_READ(data, CMA3000_REVID, "Revid");
if (rev < 0) {
error = rev;
goto err_free_mem;
}
pr_info("CMA3000 Accelerometer: Revision %x\n", rev);
error = request_threaded_irq(irq, NULL, cma3000_thread_irq,
pdata->irqflags | IRQF_ONESHOT,
"cma3000_d0x", data);
if (error) {
dev_err(dev, "request_threaded_irq failed\n");
goto err_free_mem;
}
error = input_register_device(data->input_dev);
if (error) {
dev_err(dev, "Unable to register input device\n");
goto err_free_irq;
}
return data;
err_free_irq:
free_irq(irq, data);
err_free_mem:
input_free_device(input_dev);
kfree(data);
err_out:
return ERR_PTR(error);
}
EXPORT_SYMBOL(cma3000_init);
void cma3000_exit(struct cma3000_accl_data *data)
{
free_irq(data->irq, data);
input_unregister_device(data->input_dev);
kfree(data);
}
EXPORT_SYMBOL(cma3000_exit);
MODULE_DESCRIPTION("CMA3000-D0x Accelerometer Driver");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Hemanth V <[email protected]>");
|
linux-master
|
drivers/input/misc/cma3000_d0x.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Wistron laptop button driver
* Copyright (C) 2005 Miloslav Trmac <[email protected]>
* Copyright (C) 2005 Bernhard Rosenkraenzer <[email protected]>
* Copyright (C) 2005 Dmitry Torokhov <[email protected]>
*/
#include <linux/io.h>
#include <linux/dmi.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/input/sparse-keymap.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/mc146818rtc.h>
#include <linux/module.h>
#include <linux/preempt.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/platform_device.h>
#include <linux/leds.h>
/* How often we poll keys - msecs */
#define POLL_INTERVAL_DEFAULT 500 /* when idle */
#define POLL_INTERVAL_BURST 100 /* when a key was recently pressed */
/* BIOS subsystem IDs */
#define WIFI 0x35
#define BLUETOOTH 0x34
#define MAIL_LED 0x31
MODULE_AUTHOR("Miloslav Trmac <[email protected]>");
MODULE_DESCRIPTION("Wistron laptop button driver");
MODULE_LICENSE("GPL v2");
static bool force; /* = 0; */
module_param(force, bool, 0);
MODULE_PARM_DESC(force, "Load even if computer is not in database");
static char *keymap_name; /* = NULL; */
module_param_named(keymap, keymap_name, charp, 0);
MODULE_PARM_DESC(keymap, "Keymap name, if it can't be autodetected [generic, 1557/MS2141]");
static struct platform_device *wistron_device;
/* BIOS interface implementation */
static void __iomem *bios_entry_point; /* BIOS routine entry point */
static void __iomem *bios_code_map_base;
static void __iomem *bios_data_map_base;
static u8 cmos_address;
struct regs {
u32 eax, ebx, ecx;
};
static void call_bios(struct regs *regs)
{
unsigned long flags;
preempt_disable();
local_irq_save(flags);
asm volatile ("pushl %%ebp;"
"movl %7, %%ebp;"
"call *%6;"
"popl %%ebp"
: "=a" (regs->eax), "=b" (regs->ebx), "=c" (regs->ecx)
: "0" (regs->eax), "1" (regs->ebx), "2" (regs->ecx),
"m" (bios_entry_point), "m" (bios_data_map_base)
: "edx", "edi", "esi", "memory");
local_irq_restore(flags);
preempt_enable();
}
static ssize_t __init locate_wistron_bios(void __iomem *base)
{
static unsigned char __initdata signature[] =
{ 0x42, 0x21, 0x55, 0x30 };
ssize_t offset;
for (offset = 0; offset < 0x10000; offset += 0x10) {
if (check_signature(base + offset, signature,
sizeof(signature)) != 0)
return offset;
}
return -1;
}
static int __init map_bios(void)
{
void __iomem *base;
ssize_t offset;
u32 entry_point;
base = ioremap(0xF0000, 0x10000); /* Can't fail */
offset = locate_wistron_bios(base);
if (offset < 0) {
printk(KERN_ERR "wistron_btns: BIOS entry point not found\n");
iounmap(base);
return -ENODEV;
}
entry_point = readl(base + offset + 5);
printk(KERN_DEBUG
"wistron_btns: BIOS signature found at %p, entry point %08X\n",
base + offset, entry_point);
if (entry_point >= 0xF0000) {
bios_code_map_base = base;
bios_entry_point = bios_code_map_base + (entry_point & 0xFFFF);
} else {
iounmap(base);
bios_code_map_base = ioremap(entry_point & ~0x3FFF, 0x4000);
if (bios_code_map_base == NULL) {
printk(KERN_ERR
"wistron_btns: Can't map BIOS code at %08X\n",
entry_point & ~0x3FFF);
goto err;
}
bios_entry_point = bios_code_map_base + (entry_point & 0x3FFF);
}
/* The Windows driver maps 0x10000 bytes, we keep only one page... */
bios_data_map_base = ioremap(0x400, 0xc00);
if (bios_data_map_base == NULL) {
printk(KERN_ERR "wistron_btns: Can't map BIOS data\n");
goto err_code;
}
return 0;
err_code:
iounmap(bios_code_map_base);
err:
return -ENOMEM;
}
static inline void unmap_bios(void)
{
iounmap(bios_code_map_base);
iounmap(bios_data_map_base);
}
/* BIOS calls */
static u16 bios_pop_queue(void)
{
struct regs regs;
memset(®s, 0, sizeof (regs));
regs.eax = 0x9610;
regs.ebx = 0x061C;
regs.ecx = 0x0000;
call_bios(®s);
return regs.eax;
}
static void bios_attach(void)
{
struct regs regs;
memset(®s, 0, sizeof (regs));
regs.eax = 0x9610;
regs.ebx = 0x012E;
call_bios(®s);
}
static void bios_detach(void)
{
struct regs regs;
memset(®s, 0, sizeof (regs));
regs.eax = 0x9610;
regs.ebx = 0x002E;
call_bios(®s);
}
static u8 bios_get_cmos_address(void)
{
struct regs regs;
memset(®s, 0, sizeof (regs));
regs.eax = 0x9610;
regs.ebx = 0x051C;
call_bios(®s);
return regs.ecx;
}
static u16 bios_get_default_setting(u8 subsys)
{
struct regs regs;
memset(®s, 0, sizeof (regs));
regs.eax = 0x9610;
regs.ebx = 0x0200 | subsys;
call_bios(®s);
return regs.eax;
}
static void bios_set_state(u8 subsys, int enable)
{
struct regs regs;
memset(®s, 0, sizeof (regs));
regs.eax = 0x9610;
regs.ebx = (enable ? 0x0100 : 0x0000) | subsys;
call_bios(®s);
}
/* Hardware database */
#define KE_WIFI (KE_LAST + 1)
#define KE_BLUETOOTH (KE_LAST + 2)
#define FE_MAIL_LED 0x01
#define FE_WIFI_LED 0x02
#define FE_UNTESTED 0x80
static struct key_entry *keymap; /* = NULL; Current key map */
static bool have_wifi;
static bool have_bluetooth;
static int leds_present; /* bitmask of leds present */
static int __init dmi_matched(const struct dmi_system_id *dmi)
{
const struct key_entry *key;
keymap = dmi->driver_data;
for (key = keymap; key->type != KE_END; key++) {
if (key->type == KE_WIFI)
have_wifi = true;
else if (key->type == KE_BLUETOOTH)
have_bluetooth = true;
}
leds_present = key->code & (FE_MAIL_LED | FE_WIFI_LED);
return 1;
}
static struct key_entry keymap_empty[] __initdata = {
{ KE_END, 0 }
};
static struct key_entry keymap_fs_amilo_pro_v2000[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_WIFI, 0x30 },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_END, 0 }
};
static struct key_entry keymap_fs_amilo_pro_v3505[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} }, /* Fn+F1 */
{ KE_KEY, 0x06, {KEY_DISPLAYTOGGLE} }, /* Fn+F4 */
{ KE_BLUETOOTH, 0x30 }, /* Fn+F10 */
{ KE_KEY, 0x31, {KEY_MAIL} }, /* mail button */
{ KE_KEY, 0x36, {KEY_WWW} }, /* www button */
{ KE_WIFI, 0x78 }, /* satellite dish button */
{ KE_END, 0 }
};
static struct key_entry keymap_fs_amilo_pro_v8210[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} }, /* Fn+F1 */
{ KE_KEY, 0x06, {KEY_DISPLAYTOGGLE} }, /* Fn+F4 */
{ KE_BLUETOOTH, 0x30 }, /* Fn+F10 */
{ KE_KEY, 0x31, {KEY_MAIL} }, /* mail button */
{ KE_KEY, 0x36, {KEY_WWW} }, /* www button */
{ KE_WIFI, 0x78 }, /* satelite dish button */
{ KE_END, FE_WIFI_LED }
};
static struct key_entry keymap_fujitsu_n3510[] __initdata = {
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x71, {KEY_STOPCD} },
{ KE_KEY, 0x72, {KEY_PLAYPAUSE} },
{ KE_KEY, 0x74, {KEY_REWIND} },
{ KE_KEY, 0x78, {KEY_FORWARD} },
{ KE_END, 0 }
};
static struct key_entry keymap_wistron_ms2111[] __initdata = {
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x13, {KEY_PROG3} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_END, FE_MAIL_LED }
};
static struct key_entry keymap_wistron_md40100[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_KEY, 0x37, {KEY_DISPLAYTOGGLE} }, /* Display on/off */
{ KE_END, FE_MAIL_LED | FE_WIFI_LED | FE_UNTESTED }
};
static struct key_entry keymap_wistron_ms2141[] __initdata = {
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_WIFI, 0x30 },
{ KE_KEY, 0x22, {KEY_REWIND} },
{ KE_KEY, 0x23, {KEY_FORWARD} },
{ KE_KEY, 0x24, {KEY_PLAYPAUSE} },
{ KE_KEY, 0x25, {KEY_STOPCD} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_END, 0 }
};
static struct key_entry keymap_acer_aspire_1500[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x03, {KEY_POWER} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_WIFI, 0x30 },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_KEY, 0x49, {KEY_CONFIG} },
{ KE_BLUETOOTH, 0x44 },
{ KE_END, FE_UNTESTED }
};
static struct key_entry keymap_acer_aspire_1600[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x03, {KEY_POWER} },
{ KE_KEY, 0x08, {KEY_MUTE} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x13, {KEY_PROG3} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_KEY, 0x49, {KEY_CONFIG} },
{ KE_WIFI, 0x30 },
{ KE_BLUETOOTH, 0x44 },
{ KE_END, FE_MAIL_LED | FE_UNTESTED }
};
/* 3020 has been tested */
static struct key_entry keymap_acer_aspire_5020[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x03, {KEY_POWER} },
{ KE_KEY, 0x05, {KEY_SWITCHVIDEOMODE} }, /* Display selection */
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_KEY, 0x6a, {KEY_CONFIG} },
{ KE_WIFI, 0x30 },
{ KE_BLUETOOTH, 0x44 },
{ KE_END, FE_MAIL_LED | FE_UNTESTED }
};
static struct key_entry keymap_acer_travelmate_2410[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x6d, {KEY_POWER} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_KEY, 0x6a, {KEY_CONFIG} },
{ KE_WIFI, 0x30 },
{ KE_BLUETOOTH, 0x44 },
{ KE_END, FE_MAIL_LED | FE_UNTESTED }
};
static struct key_entry keymap_acer_travelmate_110[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x03, {KEY_POWER} },
{ KE_KEY, 0x08, {KEY_MUTE} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x20, {KEY_VOLUMEUP} },
{ KE_KEY, 0x21, {KEY_VOLUMEDOWN} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_SW, 0x4a, {.sw = {SW_LID, 1}} }, /* lid close */
{ KE_SW, 0x4b, {.sw = {SW_LID, 0}} }, /* lid open */
{ KE_WIFI, 0x30 },
{ KE_END, FE_MAIL_LED | FE_UNTESTED }
};
static struct key_entry keymap_acer_travelmate_300[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x03, {KEY_POWER} },
{ KE_KEY, 0x08, {KEY_MUTE} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x20, {KEY_VOLUMEUP} },
{ KE_KEY, 0x21, {KEY_VOLUMEDOWN} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_WIFI, 0x30 },
{ KE_BLUETOOTH, 0x44 },
{ KE_END, FE_MAIL_LED | FE_UNTESTED }
};
static struct key_entry keymap_acer_travelmate_380[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x03, {KEY_POWER} }, /* not 370 */
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x13, {KEY_PROG3} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_WIFI, 0x30 },
{ KE_END, FE_MAIL_LED | FE_UNTESTED }
};
/* unusual map */
static struct key_entry keymap_acer_travelmate_220[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x11, {KEY_MAIL} },
{ KE_KEY, 0x12, {KEY_WWW} },
{ KE_KEY, 0x13, {KEY_PROG2} },
{ KE_KEY, 0x31, {KEY_PROG1} },
{ KE_END, FE_WIFI_LED | FE_UNTESTED }
};
static struct key_entry keymap_acer_travelmate_230[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_END, FE_WIFI_LED | FE_UNTESTED }
};
static struct key_entry keymap_acer_travelmate_240[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x03, {KEY_POWER} },
{ KE_KEY, 0x08, {KEY_MUTE} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_BLUETOOTH, 0x44 },
{ KE_WIFI, 0x30 },
{ KE_END, FE_UNTESTED }
};
static struct key_entry keymap_acer_travelmate_350[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x13, {KEY_MAIL} },
{ KE_KEY, 0x14, {KEY_PROG3} },
{ KE_KEY, 0x15, {KEY_WWW} },
{ KE_END, FE_MAIL_LED | FE_WIFI_LED | FE_UNTESTED }
};
static struct key_entry keymap_acer_travelmate_360[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x13, {KEY_MAIL} },
{ KE_KEY, 0x14, {KEY_PROG3} },
{ KE_KEY, 0x15, {KEY_WWW} },
{ KE_KEY, 0x40, {KEY_WLAN} },
{ KE_END, FE_WIFI_LED | FE_UNTESTED } /* no mail led */
};
/* Wifi subsystem only activates the led. Therefore we need to pass
* wifi event as a normal key, then userspace can really change the wifi state.
* TODO we need to export led state to userspace (wifi and mail) */
static struct key_entry keymap_acer_travelmate_610[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x13, {KEY_PROG3} },
{ KE_KEY, 0x14, {KEY_MAIL} },
{ KE_KEY, 0x15, {KEY_WWW} },
{ KE_KEY, 0x40, {KEY_WLAN} },
{ KE_END, FE_MAIL_LED | FE_WIFI_LED }
};
static struct key_entry keymap_acer_travelmate_630[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x03, {KEY_POWER} },
{ KE_KEY, 0x08, {KEY_MUTE} }, /* not 620 */
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x13, {KEY_PROG3} },
{ KE_KEY, 0x20, {KEY_VOLUMEUP} },
{ KE_KEY, 0x21, {KEY_VOLUMEDOWN} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_WIFI, 0x30 },
{ KE_END, FE_MAIL_LED | FE_UNTESTED }
};
static struct key_entry keymap_aopen_1559as[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x06, {KEY_PROG3} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_WIFI, 0x30 },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_END, 0 },
};
static struct key_entry keymap_fs_amilo_d88x0[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x08, {KEY_MUTE} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x13, {KEY_PROG3} },
{ KE_END, FE_MAIL_LED | FE_WIFI_LED | FE_UNTESTED }
};
static struct key_entry keymap_wistron_md2900[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_WIFI, 0x30 },
{ KE_END, FE_MAIL_LED | FE_UNTESTED }
};
static struct key_entry keymap_wistron_md96500[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x05, {KEY_SWITCHVIDEOMODE} }, /* Display selection */
{ KE_KEY, 0x06, {KEY_DISPLAYTOGGLE} }, /* Display on/off */
{ KE_KEY, 0x08, {KEY_MUTE} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x20, {KEY_VOLUMEUP} },
{ KE_KEY, 0x21, {KEY_VOLUMEDOWN} },
{ KE_KEY, 0x22, {KEY_REWIND} },
{ KE_KEY, 0x23, {KEY_FORWARD} },
{ KE_KEY, 0x24, {KEY_PLAYPAUSE} },
{ KE_KEY, 0x25, {KEY_STOPCD} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_WIFI, 0x30 },
{ KE_BLUETOOTH, 0x44 },
{ KE_END, 0 }
};
static struct key_entry keymap_wistron_generic[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x02, {KEY_CONFIG} },
{ KE_KEY, 0x03, {KEY_POWER} },
{ KE_KEY, 0x05, {KEY_SWITCHVIDEOMODE} }, /* Display selection */
{ KE_KEY, 0x06, {KEY_DISPLAYTOGGLE} }, /* Display on/off */
{ KE_KEY, 0x08, {KEY_MUTE} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_KEY, 0x13, {KEY_PROG3} },
{ KE_KEY, 0x14, {KEY_MAIL} },
{ KE_KEY, 0x15, {KEY_WWW} },
{ KE_KEY, 0x20, {KEY_VOLUMEUP} },
{ KE_KEY, 0x21, {KEY_VOLUMEDOWN} },
{ KE_KEY, 0x22, {KEY_REWIND} },
{ KE_KEY, 0x23, {KEY_FORWARD} },
{ KE_KEY, 0x24, {KEY_PLAYPAUSE} },
{ KE_KEY, 0x25, {KEY_STOPCD} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_KEY, 0x37, {KEY_DISPLAYTOGGLE} }, /* Display on/off */
{ KE_KEY, 0x40, {KEY_WLAN} },
{ KE_KEY, 0x49, {KEY_CONFIG} },
{ KE_SW, 0x4a, {.sw = {SW_LID, 1}} }, /* lid close */
{ KE_SW, 0x4b, {.sw = {SW_LID, 0}} }, /* lid open */
{ KE_KEY, 0x6a, {KEY_CONFIG} },
{ KE_KEY, 0x6d, {KEY_POWER} },
{ KE_KEY, 0x71, {KEY_STOPCD} },
{ KE_KEY, 0x72, {KEY_PLAYPAUSE} },
{ KE_KEY, 0x74, {KEY_REWIND} },
{ KE_KEY, 0x78, {KEY_FORWARD} },
{ KE_WIFI, 0x30 },
{ KE_BLUETOOTH, 0x44 },
{ KE_END, 0 }
};
static struct key_entry keymap_aopen_1557[] __initdata = {
{ KE_KEY, 0x01, {KEY_HELP} },
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_WIFI, 0x30 },
{ KE_KEY, 0x22, {KEY_REWIND} },
{ KE_KEY, 0x23, {KEY_FORWARD} },
{ KE_KEY, 0x24, {KEY_PLAYPAUSE} },
{ KE_KEY, 0x25, {KEY_STOPCD} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_END, 0 }
};
static struct key_entry keymap_prestigio[] __initdata = {
{ KE_KEY, 0x11, {KEY_PROG1} },
{ KE_KEY, 0x12, {KEY_PROG2} },
{ KE_WIFI, 0x30 },
{ KE_KEY, 0x22, {KEY_REWIND} },
{ KE_KEY, 0x23, {KEY_FORWARD} },
{ KE_KEY, 0x24, {KEY_PLAYPAUSE} },
{ KE_KEY, 0x25, {KEY_STOPCD} },
{ KE_KEY, 0x31, {KEY_MAIL} },
{ KE_KEY, 0x36, {KEY_WWW} },
{ KE_END, 0 }
};
/*
* If your machine is not here (which is currently rather likely), please send
* a list of buttons and their key codes (reported when loading this module
* with force=1) and the output of dmidecode to $MODULE_AUTHOR.
*/
static const struct dmi_system_id dmi_ids[] __initconst = {
{
/* Fujitsu-Siemens Amilo Pro V2000 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
DMI_MATCH(DMI_PRODUCT_NAME, "AMILO Pro V2000"),
},
.driver_data = keymap_fs_amilo_pro_v2000
},
{
/* Fujitsu-Siemens Amilo Pro Edition V3505 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
DMI_MATCH(DMI_PRODUCT_NAME, "AMILO Pro Edition V3505"),
},
.driver_data = keymap_fs_amilo_pro_v3505
},
{
/* Fujitsu-Siemens Amilo Pro Edition V8210 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
DMI_MATCH(DMI_PRODUCT_NAME, "AMILO Pro Series V8210"),
},
.driver_data = keymap_fs_amilo_pro_v8210
},
{
/* Fujitsu-Siemens Amilo M7400 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
DMI_MATCH(DMI_PRODUCT_NAME, "AMILO M "),
},
.driver_data = keymap_fs_amilo_pro_v2000
},
{
/* Maxdata Pro 7000 DX */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "MAXDATA"),
DMI_MATCH(DMI_PRODUCT_NAME, "Pro 7000"),
},
.driver_data = keymap_fs_amilo_pro_v2000
},
{
/* Fujitsu N3510 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"),
DMI_MATCH(DMI_PRODUCT_NAME, "N3510"),
},
.driver_data = keymap_fujitsu_n3510
},
{
/* Acer Aspire 1500 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 1500"),
},
.driver_data = keymap_acer_aspire_1500
},
{
/* Acer Aspire 1600 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 1600"),
},
.driver_data = keymap_acer_aspire_1600
},
{
/* Acer Aspire 3020 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 3020"),
},
.driver_data = keymap_acer_aspire_5020
},
{
/* Acer Aspire 5020 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5020"),
},
.driver_data = keymap_acer_aspire_5020
},
{
/* Acer TravelMate 2100 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 2100"),
},
.driver_data = keymap_acer_aspire_5020
},
{
/* Acer TravelMate 2410 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 2410"),
},
.driver_data = keymap_acer_travelmate_2410
},
{
/* Acer TravelMate C300 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate C300"),
},
.driver_data = keymap_acer_travelmate_300
},
{
/* Acer TravelMate C100 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate C100"),
},
.driver_data = keymap_acer_travelmate_300
},
{
/* Acer TravelMate C110 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate C110"),
},
.driver_data = keymap_acer_travelmate_110
},
{
/* Acer TravelMate 380 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 380"),
},
.driver_data = keymap_acer_travelmate_380
},
{
/* Acer TravelMate 370 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 370"),
},
.driver_data = keymap_acer_travelmate_380 /* keyboard minus 1 key */
},
{
/* Acer TravelMate 220 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 220"),
},
.driver_data = keymap_acer_travelmate_220
},
{
/* Acer TravelMate 260 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 260"),
},
.driver_data = keymap_acer_travelmate_220
},
{
/* Acer TravelMate 230 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 230"),
/* acerhk looks for "TravelMate F4..." ?! */
},
.driver_data = keymap_acer_travelmate_230
},
{
/* Acer TravelMate 280 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 280"),
},
.driver_data = keymap_acer_travelmate_230
},
{
/* Acer TravelMate 240 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 240"),
},
.driver_data = keymap_acer_travelmate_240
},
{
/* Acer TravelMate 250 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 250"),
},
.driver_data = keymap_acer_travelmate_240
},
{
/* Acer TravelMate 2424NWXCi */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 2420"),
},
.driver_data = keymap_acer_travelmate_240
},
{
/* Acer TravelMate 350 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 350"),
},
.driver_data = keymap_acer_travelmate_350
},
{
/* Acer TravelMate 360 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 360"),
},
.driver_data = keymap_acer_travelmate_360
},
{
/* Acer TravelMate 610 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ACER"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 610"),
},
.driver_data = keymap_acer_travelmate_610
},
{
/* Acer TravelMate 620 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 620"),
},
.driver_data = keymap_acer_travelmate_630
},
{
/* Acer TravelMate 630 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 630"),
},
.driver_data = keymap_acer_travelmate_630
},
{
/* AOpen 1559AS */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_PRODUCT_NAME, "E2U"),
DMI_MATCH(DMI_BOARD_NAME, "E2U"),
},
.driver_data = keymap_aopen_1559as
},
{
/* Medion MD 9783 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "MEDIONNB"),
DMI_MATCH(DMI_PRODUCT_NAME, "MD 9783"),
},
.driver_data = keymap_wistron_ms2111
},
{
/* Medion MD 40100 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "MEDIONNB"),
DMI_MATCH(DMI_PRODUCT_NAME, "WID2000"),
},
.driver_data = keymap_wistron_md40100
},
{
/* Medion MD 2900 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "MEDIONNB"),
DMI_MATCH(DMI_PRODUCT_NAME, "WIM 2000"),
},
.driver_data = keymap_wistron_md2900
},
{
/* Medion MD 42200 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Medion"),
DMI_MATCH(DMI_PRODUCT_NAME, "WIM 2030"),
},
.driver_data = keymap_fs_amilo_pro_v2000
},
{
/* Medion MD 96500 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "MEDIONPC"),
DMI_MATCH(DMI_PRODUCT_NAME, "WIM 2040"),
},
.driver_data = keymap_wistron_md96500
},
{
/* Medion MD 95400 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "MEDIONPC"),
DMI_MATCH(DMI_PRODUCT_NAME, "WIM 2050"),
},
.driver_data = keymap_wistron_md96500
},
{
/* Fujitsu Siemens Amilo D7820 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"), /* not sure */
DMI_MATCH(DMI_PRODUCT_NAME, "Amilo D"),
},
.driver_data = keymap_fs_amilo_d88x0
},
{
/* Fujitsu Siemens Amilo D88x0 */
.callback = dmi_matched,
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"),
DMI_MATCH(DMI_PRODUCT_NAME, "AMILO D"),
},
.driver_data = keymap_fs_amilo_d88x0
},
{ NULL, }
};
MODULE_DEVICE_TABLE(dmi, dmi_ids);
/* Copy the good keymap, as the original ones are free'd */
static int __init copy_keymap(void)
{
const struct key_entry *key;
struct key_entry *new_keymap;
unsigned int length = 1;
for (key = keymap; key->type != KE_END; key++)
length++;
new_keymap = kmemdup(keymap, length * sizeof(struct key_entry),
GFP_KERNEL);
if (!new_keymap)
return -ENOMEM;
keymap = new_keymap;
return 0;
}
static int __init select_keymap(void)
{
dmi_check_system(dmi_ids);
if (keymap_name != NULL) {
if (strcmp (keymap_name, "1557/MS2141") == 0)
keymap = keymap_wistron_ms2141;
else if (strcmp (keymap_name, "aopen1557") == 0)
keymap = keymap_aopen_1557;
else if (strcmp (keymap_name, "prestigio") == 0)
keymap = keymap_prestigio;
else if (strcmp (keymap_name, "generic") == 0)
keymap = keymap_wistron_generic;
else {
printk(KERN_ERR "wistron_btns: Keymap unknown\n");
return -EINVAL;
}
}
if (keymap == NULL) {
if (!force) {
printk(KERN_ERR "wistron_btns: System unknown\n");
return -ENODEV;
}
keymap = keymap_empty;
}
return copy_keymap();
}
/* Input layer interface */
static struct input_dev *wistron_idev;
static unsigned long jiffies_last_press;
static bool wifi_enabled;
static bool bluetooth_enabled;
/* led management */
static void wistron_mail_led_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
bios_set_state(MAIL_LED, (value != LED_OFF) ? 1 : 0);
}
/* same as setting up wifi card, but for laptops on which the led is managed */
static void wistron_wifi_led_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
bios_set_state(WIFI, (value != LED_OFF) ? 1 : 0);
}
static struct led_classdev wistron_mail_led = {
.name = "wistron:green:mail",
.brightness_set = wistron_mail_led_set,
};
static struct led_classdev wistron_wifi_led = {
.name = "wistron:red:wifi",
.brightness_set = wistron_wifi_led_set,
};
static void wistron_led_init(struct device *parent)
{
if (leds_present & FE_WIFI_LED) {
u16 wifi = bios_get_default_setting(WIFI);
if (wifi & 1) {
wistron_wifi_led.brightness = (wifi & 2) ? LED_FULL : LED_OFF;
if (led_classdev_register(parent, &wistron_wifi_led))
leds_present &= ~FE_WIFI_LED;
else
bios_set_state(WIFI, wistron_wifi_led.brightness);
} else
leds_present &= ~FE_WIFI_LED;
}
if (leds_present & FE_MAIL_LED) {
/* bios_get_default_setting(MAIL) always retuns 0, so just turn the led off */
wistron_mail_led.brightness = LED_OFF;
if (led_classdev_register(parent, &wistron_mail_led))
leds_present &= ~FE_MAIL_LED;
else
bios_set_state(MAIL_LED, wistron_mail_led.brightness);
}
}
static void wistron_led_remove(void)
{
if (leds_present & FE_MAIL_LED)
led_classdev_unregister(&wistron_mail_led);
if (leds_present & FE_WIFI_LED)
led_classdev_unregister(&wistron_wifi_led);
}
static inline void wistron_led_suspend(void)
{
if (leds_present & FE_MAIL_LED)
led_classdev_suspend(&wistron_mail_led);
if (leds_present & FE_WIFI_LED)
led_classdev_suspend(&wistron_wifi_led);
}
static inline void wistron_led_resume(void)
{
if (leds_present & FE_MAIL_LED)
led_classdev_resume(&wistron_mail_led);
if (leds_present & FE_WIFI_LED)
led_classdev_resume(&wistron_wifi_led);
}
static void handle_key(u8 code)
{
const struct key_entry *key =
sparse_keymap_entry_from_scancode(wistron_idev, code);
if (key) {
switch (key->type) {
case KE_WIFI:
if (have_wifi) {
wifi_enabled = !wifi_enabled;
bios_set_state(WIFI, wifi_enabled);
}
break;
case KE_BLUETOOTH:
if (have_bluetooth) {
bluetooth_enabled = !bluetooth_enabled;
bios_set_state(BLUETOOTH, bluetooth_enabled);
}
break;
default:
sparse_keymap_report_entry(wistron_idev, key, 1, true);
break;
}
jiffies_last_press = jiffies;
} else {
printk(KERN_NOTICE
"wistron_btns: Unknown key code %02X\n", code);
}
}
static void poll_bios(bool discard)
{
u8 qlen;
u16 val;
for (;;) {
qlen = CMOS_READ(cmos_address);
if (qlen == 0)
break;
val = bios_pop_queue();
if (val != 0 && !discard)
handle_key((u8)val);
}
}
static int wistron_flush(struct input_dev *dev)
{
/* Flush stale event queue */
poll_bios(true);
return 0;
}
static void wistron_poll(struct input_dev *dev)
{
poll_bios(false);
/* Increase poll frequency if user is currently pressing keys (< 2s ago) */
if (time_before(jiffies, jiffies_last_press + 2 * HZ))
input_set_poll_interval(dev, POLL_INTERVAL_BURST);
else
input_set_poll_interval(dev, POLL_INTERVAL_DEFAULT);
}
static int wistron_setup_keymap(struct input_dev *dev,
struct key_entry *entry)
{
switch (entry->type) {
/* if wifi or bluetooth are not available, create normal keys */
case KE_WIFI:
if (!have_wifi) {
entry->type = KE_KEY;
entry->keycode = KEY_WLAN;
}
break;
case KE_BLUETOOTH:
if (!have_bluetooth) {
entry->type = KE_KEY;
entry->keycode = KEY_BLUETOOTH;
}
break;
case KE_END:
if (entry->code & FE_UNTESTED)
printk(KERN_WARNING "Untested laptop multimedia keys, "
"please report success or failure to "
"[email protected]\n");
break;
}
return 0;
}
static int setup_input_dev(void)
{
int error;
wistron_idev = input_allocate_device();
if (!wistron_idev)
return -ENOMEM;
wistron_idev->name = "Wistron laptop buttons";
wistron_idev->phys = "wistron/input0";
wistron_idev->id.bustype = BUS_HOST;
wistron_idev->dev.parent = &wistron_device->dev;
wistron_idev->open = wistron_flush;
error = sparse_keymap_setup(wistron_idev, keymap, wistron_setup_keymap);
if (error)
goto err_free_dev;
error = input_setup_polling(wistron_idev, wistron_poll);
if (error)
goto err_free_dev;
input_set_poll_interval(wistron_idev, POLL_INTERVAL_DEFAULT);
error = input_register_device(wistron_idev);
if (error)
goto err_free_dev;
return 0;
err_free_dev:
input_free_device(wistron_idev);
return error;
}
/* Driver core */
static int wistron_probe(struct platform_device *dev)
{
int err;
bios_attach();
cmos_address = bios_get_cmos_address();
if (have_wifi) {
u16 wifi = bios_get_default_setting(WIFI);
if (wifi & 1)
wifi_enabled = wifi & 2;
else
have_wifi = 0;
if (have_wifi)
bios_set_state(WIFI, wifi_enabled);
}
if (have_bluetooth) {
u16 bt = bios_get_default_setting(BLUETOOTH);
if (bt & 1)
bluetooth_enabled = bt & 2;
else
have_bluetooth = false;
if (have_bluetooth)
bios_set_state(BLUETOOTH, bluetooth_enabled);
}
wistron_led_init(&dev->dev);
err = setup_input_dev();
if (err) {
bios_detach();
return err;
}
return 0;
}
static int wistron_remove(struct platform_device *dev)
{
wistron_led_remove();
input_unregister_device(wistron_idev);
bios_detach();
return 0;
}
static int wistron_suspend(struct device *dev)
{
if (have_wifi)
bios_set_state(WIFI, 0);
if (have_bluetooth)
bios_set_state(BLUETOOTH, 0);
wistron_led_suspend();
return 0;
}
static int wistron_resume(struct device *dev)
{
if (have_wifi)
bios_set_state(WIFI, wifi_enabled);
if (have_bluetooth)
bios_set_state(BLUETOOTH, bluetooth_enabled);
wistron_led_resume();
poll_bios(true);
return 0;
}
static const struct dev_pm_ops wistron_pm_ops = {
.suspend = wistron_suspend,
.resume = wistron_resume,
.poweroff = wistron_suspend,
.restore = wistron_resume,
};
static struct platform_driver wistron_driver = {
.driver = {
.name = "wistron-bios",
.pm = pm_sleep_ptr(&wistron_pm_ops),
},
.probe = wistron_probe,
.remove = wistron_remove,
};
static int __init wb_module_init(void)
{
int err;
err = select_keymap();
if (err)
return err;
err = map_bios();
if (err)
goto err_free_keymap;
err = platform_driver_register(&wistron_driver);
if (err)
goto err_unmap_bios;
wistron_device = platform_device_alloc("wistron-bios", -1);
if (!wistron_device) {
err = -ENOMEM;
goto err_unregister_driver;
}
err = platform_device_add(wistron_device);
if (err)
goto err_free_device;
return 0;
err_free_device:
platform_device_put(wistron_device);
err_unregister_driver:
platform_driver_unregister(&wistron_driver);
err_unmap_bios:
unmap_bios();
err_free_keymap:
kfree(keymap);
return err;
}
static void __exit wb_module_exit(void)
{
platform_device_unregister(wistron_device);
platform_driver_unregister(&wistron_driver);
unmap_bios();
kfree(keymap);
}
module_init(wb_module_init);
module_exit(wb_module_exit);
|
linux-master
|
drivers/input/misc/wistron_btns.c
|
/*
* HP i8042 SDC + MSM-58321 BBRTC driver.
*
* Copyright (c) 2001 Brian S. Julin
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL").
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
*
* References:
* System Device Controller Microprocessor Firmware Theory of Operation
* for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
* efirtc.c by Stephane Eranian/Hewlett Packard
*
*/
#include <linux/hp_sdc.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/time.h>
#include <linux/miscdevice.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/poll.h>
#include <linux/rtc.h>
#include <linux/mutex.h>
#include <linux/semaphore.h>
MODULE_AUTHOR("Brian S. Julin <[email protected]>");
MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
MODULE_LICENSE("Dual BSD/GPL");
#define RTC_VERSION "1.10d"
static unsigned long epoch = 2000;
static struct semaphore i8042tregs;
static void hp_sdc_rtc_isr (int irq, void *dev_id,
uint8_t status, uint8_t data)
{
return;
}
static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
{
struct semaphore tsem;
hp_sdc_transaction t;
uint8_t tseq[91];
int i;
i = 0;
while (i < 91) {
tseq[i++] = HP_SDC_ACT_DATAREG |
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
tseq[i++] = 0x01; /* write i8042[0x70] */
tseq[i] = i / 7; /* BBRTC reg address */
i++;
tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */
tseq[i++] = 2; /* expect 1 stat/dat pair back. */
i++; i++; /* buffer for stat/dat pair */
}
tseq[84] |= HP_SDC_ACT_SEMAPHORE;
t.endidx = 91;
t.seq = tseq;
t.act.semaphore = &tsem;
sema_init(&tsem, 0);
if (hp_sdc_enqueue_transaction(&t)) return -1;
/* Put ourselves to sleep for results. */
if (WARN_ON(down_interruptible(&tsem)))
return -1;
/* Check for nonpresence of BBRTC */
if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
tseq[55] | tseq[62] | tseq[34] | tseq[41] |
tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f))
return -1;
memset(rtctm, 0, sizeof(struct rtc_time));
rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
rtctm->tm_wday = (tseq[48] & 0x0f);
rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10;
return 0;
}
static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
{
struct rtc_time tm, tm_last;
int i = 0;
/* MSM-58321 has no read latch, so must read twice and compare. */
if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
if (i++ > 4) return -1;
memcpy(&tm_last, &tm, sizeof(struct rtc_time));
if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
}
memcpy(rtctm, &tm, sizeof(struct rtc_time));
return 0;
}
static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
{
hp_sdc_transaction t;
uint8_t tseq[26] = {
HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
0,
HP_SDC_CMD_READ_T1, 2, 0, 0,
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
HP_SDC_CMD_READ_T2, 2, 0, 0,
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
HP_SDC_CMD_READ_T3, 2, 0, 0,
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
HP_SDC_CMD_READ_T4, 2, 0, 0,
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
HP_SDC_CMD_READ_T5, 2, 0, 0
};
t.endidx = numreg * 5;
tseq[1] = loadcmd;
tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
t.seq = tseq;
t.act.semaphore = &i8042tregs;
/* Sleep if output regs in use. */
if (WARN_ON(down_interruptible(&i8042tregs)))
return -1;
if (hp_sdc_enqueue_transaction(&t)) {
up(&i8042tregs);
return -1;
}
/* Sleep until results come back. */
if (WARN_ON(down_interruptible(&i8042tregs)))
return -1;
up(&i8042tregs);
return (tseq[5] |
((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) |
((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
}
/* Read the i8042 real-time clock */
static inline int hp_sdc_rtc_read_rt(struct timespec64 *res) {
int64_t raw;
uint32_t tenms;
unsigned int days;
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
if (raw < 0) return -1;
tenms = (uint32_t)raw & 0xffffff;
days = (unsigned int)(raw >> 24) & 0xffff;
res->tv_nsec = (long)(tenms % 100) * 10000 * 1000;
res->tv_sec = (tenms / 100) + (time64_t)days * 86400;
return 0;
}
/* Read the i8042 fast handshake timer */
static inline int hp_sdc_rtc_read_fhs(struct timespec64 *res) {
int64_t raw;
unsigned int tenms;
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
if (raw < 0) return -1;
tenms = (unsigned int)raw & 0xffff;
res->tv_nsec = (long)(tenms % 100) * 10000 * 1000;
res->tv_sec = (time64_t)(tenms / 100);
return 0;
}
/* Read the i8042 match timer (a.k.a. alarm) */
static inline int hp_sdc_rtc_read_mt(struct timespec64 *res) {
int64_t raw;
uint32_t tenms;
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
if (raw < 0) return -1;
tenms = (uint32_t)raw & 0xffffff;
res->tv_nsec = (long)(tenms % 100) * 10000 * 1000;
res->tv_sec = (time64_t)(tenms / 100);
return 0;
}
/* Read the i8042 delay timer */
static inline int hp_sdc_rtc_read_dt(struct timespec64 *res) {
int64_t raw;
uint32_t tenms;
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
if (raw < 0) return -1;
tenms = (uint32_t)raw & 0xffffff;
res->tv_nsec = (long)(tenms % 100) * 10000 * 1000;
res->tv_sec = (time64_t)(tenms / 100);
return 0;
}
/* Read the i8042 cycle timer (a.k.a. periodic) */
static inline int hp_sdc_rtc_read_ct(struct timespec64 *res) {
int64_t raw;
uint32_t tenms;
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
if (raw < 0) return -1;
tenms = (uint32_t)raw & 0xffffff;
res->tv_nsec = (long)(tenms % 100) * 10000 * 1000;
res->tv_sec = (time64_t)(tenms / 100);
return 0;
}
static int __maybe_unused hp_sdc_rtc_proc_show(struct seq_file *m, void *v)
{
#define YN(bit) ("no")
#define NY(bit) ("yes")
struct rtc_time tm;
struct timespec64 tv;
memset(&tm, 0, sizeof(struct rtc_time));
if (hp_sdc_rtc_read_bbrtc(&tm)) {
seq_puts(m, "BBRTC\t\t: READ FAILED!\n");
} else {
seq_printf(m,
"rtc_time\t: %ptRt\n"
"rtc_date\t: %ptRd\n"
"rtc_epoch\t: %04lu\n",
&tm, &tm, epoch);
}
if (hp_sdc_rtc_read_rt(&tv)) {
seq_puts(m, "i8042 rtc\t: READ FAILED!\n");
} else {
seq_printf(m, "i8042 rtc\t: %lld.%02ld seconds\n",
(s64)tv.tv_sec, (long)tv.tv_nsec/1000000L);
}
if (hp_sdc_rtc_read_fhs(&tv)) {
seq_puts(m, "handshake\t: READ FAILED!\n");
} else {
seq_printf(m, "handshake\t: %lld.%02ld seconds\n",
(s64)tv.tv_sec, (long)tv.tv_nsec/1000000L);
}
if (hp_sdc_rtc_read_mt(&tv)) {
seq_puts(m, "alarm\t\t: READ FAILED!\n");
} else {
seq_printf(m, "alarm\t\t: %lld.%02ld seconds\n",
(s64)tv.tv_sec, (long)tv.tv_nsec/1000000L);
}
if (hp_sdc_rtc_read_dt(&tv)) {
seq_puts(m, "delay\t\t: READ FAILED!\n");
} else {
seq_printf(m, "delay\t\t: %lld.%02ld seconds\n",
(s64)tv.tv_sec, (long)tv.tv_nsec/1000000L);
}
if (hp_sdc_rtc_read_ct(&tv)) {
seq_puts(m, "periodic\t: READ FAILED!\n");
} else {
seq_printf(m, "periodic\t: %lld.%02ld seconds\n",
(s64)tv.tv_sec, (long)tv.tv_nsec/1000000L);
}
seq_printf(m,
"DST_enable\t: %s\n"
"BCD\t\t: %s\n"
"24hr\t\t: %s\n"
"square_wave\t: %s\n"
"alarm_IRQ\t: %s\n"
"update_IRQ\t: %s\n"
"periodic_IRQ\t: %s\n"
"periodic_freq\t: %ld\n"
"batt_status\t: %s\n",
YN(RTC_DST_EN),
NY(RTC_DM_BINARY),
YN(RTC_24H),
YN(RTC_SQWE),
YN(RTC_AIE),
YN(RTC_UIE),
YN(RTC_PIE),
1UL,
1 ? "okay" : "dead");
return 0;
#undef YN
#undef NY
}
static int __init hp_sdc_rtc_init(void)
{
int ret;
#ifdef __mc68000__
if (!MACH_IS_HP300)
return -ENODEV;
#endif
sema_init(&i8042tregs, 1);
if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
return ret;
proc_create_single("driver/rtc", 0, NULL, hp_sdc_rtc_proc_show);
printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
"(RTC v " RTC_VERSION ")\n");
return 0;
}
static void __exit hp_sdc_rtc_exit(void)
{
remove_proc_entry ("driver/rtc", NULL);
hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
}
module_init(hp_sdc_rtc_init);
module_exit(hp_sdc_rtc_exit);
|
linux-master
|
drivers/input/misc/hp_sdc_rtc.c
|
// SPDX-License-Identifier: GPL-2.0+
/*
* DA7280 Haptic device driver
*
* Copyright (c) 2020 Dialog Semiconductor.
* Author: Roy Im <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pwm.h>
#include <linux/regmap.h>
#include <linux/workqueue.h>
#include <linux/uaccess.h>
/* Registers */
#define DA7280_IRQ_EVENT1 0x03
#define DA7280_IRQ_EVENT_WARNING_DIAG 0x04
#define DA7280_IRQ_EVENT_SEQ_DIAG 0x05
#define DA7280_IRQ_STATUS1 0x06
#define DA7280_IRQ_MASK1 0x07
#define DA7280_FRQ_LRA_PER_H 0x0A
#define DA7280_FRQ_LRA_PER_L 0x0B
#define DA7280_ACTUATOR1 0x0C
#define DA7280_ACTUATOR2 0x0D
#define DA7280_ACTUATOR3 0x0E
#define DA7280_CALIB_V2I_H 0x0F
#define DA7280_CALIB_V2I_L 0x10
#define DA7280_TOP_CFG1 0x13
#define DA7280_TOP_CFG2 0x14
#define DA7280_TOP_CFG4 0x16
#define DA7280_TOP_INT_CFG1 0x17
#define DA7280_TOP_CTL1 0x22
#define DA7280_TOP_CTL2 0x23
#define DA7280_SEQ_CTL2 0x28
#define DA7280_GPI_0_CTL 0x29
#define DA7280_GPI_1_CTL 0x2A
#define DA7280_GPI_2_CTL 0x2B
#define DA7280_MEM_CTL1 0x2C
#define DA7280_MEM_CTL2 0x2D
#define DA7280_TOP_CFG5 0x6E
#define DA7280_IRQ_MASK2 0x83
#define DA7280_SNP_MEM_99 0xE7
/* Register field */
/* DA7280_IRQ_EVENT1 (Address 0x03) */
#define DA7280_E_SEQ_CONTINUE_MASK BIT(0)
#define DA7280_E_UVLO_MASK BIT(1)
#define DA7280_E_SEQ_DONE_MASK BIT(2)
#define DA7280_E_OVERTEMP_CRIT_MASK BIT(3)
#define DA7280_E_SEQ_FAULT_MASK BIT(4)
#define DA7280_E_WARNING_MASK BIT(5)
#define DA7280_E_ACTUATOR_FAULT_MASK BIT(6)
#define DA7280_E_OC_FAULT_MASK BIT(7)
/* DA7280_IRQ_EVENT_WARNING_DIAG (Address 0x04) */
#define DA7280_E_OVERTEMP_WARN_MASK BIT(3)
#define DA7280_E_MEM_TYPE_MASK BIT(4)
#define DA7280_E_LIM_DRIVE_ACC_MASK BIT(6)
#define DA7280_E_LIM_DRIVE_MASK BIT(7)
/* DA7280_IRQ_EVENT_PAT_DIAG (Address 0x05) */
#define DA7280_E_PWM_FAULT_MASK BIT(5)
#define DA7280_E_MEM_FAULT_MASK BIT(6)
#define DA7280_E_SEQ_ID_FAULT_MASK BIT(7)
/* DA7280_IRQ_STATUS1 (Address 0x06) */
#define DA7280_STA_SEQ_CONTINUE_MASK BIT(0)
#define DA7280_STA_UVLO_VBAT_OK_MASK BIT(1)
#define DA7280_STA_SEQ_DONE_MASK BIT(2)
#define DA7280_STA_OVERTEMP_CRIT_MASK BIT(3)
#define DA7280_STA_SEQ_FAULT_MASK BIT(4)
#define DA7280_STA_WARNING_MASK BIT(5)
#define DA7280_STA_ACTUATOR_MASK BIT(6)
#define DA7280_STA_OC_MASK BIT(7)
/* DA7280_IRQ_MASK1 (Address 0x07) */
#define DA7280_SEQ_CONTINUE_M_MASK BIT(0)
#define DA7280_E_UVLO_M_MASK BIT(1)
#define DA7280_SEQ_DONE_M_MASK BIT(2)
#define DA7280_OVERTEMP_CRIT_M_MASK BIT(3)
#define DA7280_SEQ_FAULT_M_MASK BIT(4)
#define DA7280_WARNING_M_MASK BIT(5)
#define DA7280_ACTUATOR_M_MASK BIT(6)
#define DA7280_OC_M_MASK BIT(7)
/* DA7280_ACTUATOR3 (Address 0x0e) */
#define DA7280_IMAX_MASK GENMASK(4, 0)
/* DA7280_TOP_CFG1 (Address 0x13) */
#define DA7280_AMP_PID_EN_MASK BIT(0)
#define DA7280_RAPID_STOP_EN_MASK BIT(1)
#define DA7280_ACCELERATION_EN_MASK BIT(2)
#define DA7280_FREQ_TRACK_EN_MASK BIT(3)
#define DA7280_BEMF_SENSE_EN_MASK BIT(4)
#define DA7280_ACTUATOR_TYPE_MASK BIT(5)
/* DA7280_TOP_CFG2 (Address 0x14) */
#define DA7280_FULL_BRAKE_THR_MASK GENMASK(3, 0)
#define DA7280_MEM_DATA_SIGNED_MASK BIT(4)
/* DA7280_TOP_CFG4 (Address 0x16) */
#define DA7280_TST_CALIB_IMPEDANCE_DIS_MASK BIT(6)
#define DA7280_V2I_FACTOR_FREEZE_MASK BIT(7)
/* DA7280_TOP_INT_CFG1 (Address 0x17) */
#define DA7280_BEMF_FAULT_LIM_MASK GENMASK(1, 0)
/* DA7280_TOP_CTL1 (Address 0x22) */
#define DA7280_OPERATION_MODE_MASK GENMASK(2, 0)
#define DA7280_STANDBY_EN_MASK BIT(3)
#define DA7280_SEQ_START_MASK BIT(4)
/* DA7280_SEQ_CTL2 (Address 0x28) */
#define DA7280_PS_SEQ_ID_MASK GENMASK(3, 0)
#define DA7280_PS_SEQ_LOOP_MASK GENMASK(7, 4)
/* DA7280_GPIO_0_CTL (Address 0x29) */
#define DA7280_GPI0_POLARITY_MASK GENMASK(1, 0)
#define DA7280_GPI0_MODE_MASK BIT(2)
#define DA7280_GPI0_SEQUENCE_ID_MASK GENMASK(6, 3)
/* DA7280_GPIO_1_CTL (Address 0x2a) */
#define DA7280_GPI1_POLARITY_MASK GENMASK(1, 0)
#define DA7280_GPI1_MODE_MASK BIT(2)
#define DA7280_GPI1_SEQUENCE_ID_MASK GENMASK(6, 3)
/* DA7280_GPIO_2_CTL (Address 0x2b) */
#define DA7280_GPI2_POLARITY_MASK GENMASK(1, 0)
#define DA7280_GPI2_MODE_MASK BIT(2)
#define DA7280_GPI2_SEQUENCE_ID_MASK GENMASK(6, 3)
/* DA7280_MEM_CTL2 (Address 0x2d) */
#define DA7280_WAV_MEM_LOCK_MASK BIT(7)
/* DA7280_TOP_CFG5 (Address 0x6e) */
#define DA7280_V2I_FACTOR_OFFSET_EN_MASK BIT(0)
/* DA7280_IRQ_MASK2 (Address 0x83) */
#define DA7280_ADC_SAT_M_MASK BIT(7)
/* Controls */
#define DA7280_VOLTAGE_RATE_MAX 6000000
#define DA7280_VOLTAGE_RATE_STEP 23400
#define DA7280_NOMMAX_DFT 0x6B
#define DA7280_ABSMAX_DFT 0x78
#define DA7280_IMPD_MAX 1500000000
#define DA7280_IMPD_DEFAULT 22000000
#define DA7280_IMAX_DEFAULT 0x0E
#define DA7280_IMAX_STEP 7200
#define DA7280_IMAX_LIMIT 252000
#define DA7280_RESONT_FREQH_DFT 0x39
#define DA7280_RESONT_FREQL_DFT 0x32
#define DA7280_MIN_RESONAT_FREQ_HZ 50
#define DA7280_MAX_RESONAT_FREQ_HZ 300
#define DA7280_SEQ_ID_MAX 15
#define DA7280_SEQ_LOOP_MAX 15
#define DA7280_GPI_SEQ_ID_DFT 0
#define DA7280_GPI_SEQ_ID_MAX 2
#define DA7280_SNP_MEM_SIZE 100
#define DA7280_SNP_MEM_MAX DA7280_SNP_MEM_99
#define DA7280_IRQ_NUM 3
#define DA7280_SKIP_INIT 0x100
#define DA7280_FF_EFFECT_COUNT_MAX 15
/* Maximum gain is 0x7fff for PWM mode */
#define DA7280_MAX_MAGNITUDE_SHIFT 15
enum da7280_haptic_dev_t {
DA7280_LRA = 0,
DA7280_ERM_BAR = 1,
DA7280_ERM_COIN = 2,
DA7280_DEV_MAX,
};
enum da7280_op_mode {
DA7280_INACTIVE = 0,
DA7280_DRO_MODE = 1,
DA7280_PWM_MODE = 2,
DA7280_RTWM_MODE = 3,
DA7280_ETWM_MODE = 4,
DA7280_OPMODE_MAX,
};
#define DA7280_FF_CONSTANT_DRO 1
#define DA7280_FF_PERIODIC_PWM 2
#define DA7280_FF_PERIODIC_RTWM 1
#define DA7280_FF_PERIODIC_ETWM 2
#define DA7280_FF_PERIODIC_MODE DA7280_RTWM_MODE
#define DA7280_FF_CONSTANT_MODE DA7280_DRO_MODE
enum da7280_custom_effect_param {
DA7280_CUSTOM_SEQ_ID_IDX = 0,
DA7280_CUSTOM_SEQ_LOOP_IDX = 1,
DA7280_CUSTOM_DATA_LEN = 2,
};
enum da7280_custom_gpi_effect_param {
DA7280_CUSTOM_GPI_SEQ_ID_IDX = 0,
DA7280_CUSTOM_GPI_NUM_IDX = 2,
DA7280_CUSTOM_GP_DATA_LEN = 3,
};
struct da7280_gpi_ctl {
u8 seq_id;
u8 mode;
u8 polarity;
};
struct da7280_haptic {
struct regmap *regmap;
struct input_dev *input_dev;
struct device *dev;
struct i2c_client *client;
struct pwm_device *pwm_dev;
bool legacy;
struct work_struct work;
int val;
u16 gain;
s16 level;
u8 dev_type;
u8 op_mode;
u8 const_op_mode;
u8 periodic_op_mode;
u16 nommax;
u16 absmax;
u32 imax;
u32 impd;
u32 resonant_freq_h;
u32 resonant_freq_l;
bool bemf_sense_en;
bool freq_track_en;
bool acc_en;
bool rapid_stop_en;
bool amp_pid_en;
u8 ps_seq_id;
u8 ps_seq_loop;
struct da7280_gpi_ctl gpi_ctl[3];
bool mem_update;
u8 snp_mem[DA7280_SNP_MEM_SIZE];
bool active;
bool suspended;
};
static bool da7280_volatile_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case DA7280_IRQ_EVENT1:
case DA7280_IRQ_EVENT_WARNING_DIAG:
case DA7280_IRQ_EVENT_SEQ_DIAG:
case DA7280_IRQ_STATUS1:
case DA7280_TOP_CTL1:
return true;
default:
return false;
}
}
static const struct regmap_config da7280_haptic_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = DA7280_SNP_MEM_MAX,
.volatile_reg = da7280_volatile_register,
};
static int da7280_haptic_mem_update(struct da7280_haptic *haptics)
{
unsigned int val;
int error;
/* The patterns should be updated when haptic is not working */
error = regmap_read(haptics->regmap, DA7280_IRQ_STATUS1, &val);
if (error)
return error;
if (val & DA7280_STA_WARNING_MASK) {
dev_warn(haptics->dev,
"Warning! Please check HAPTIC status.\n");
return -EBUSY;
}
/* Patterns are not updated if the lock bit is enabled */
val = 0;
error = regmap_read(haptics->regmap, DA7280_MEM_CTL2, &val);
if (error)
return error;
if (~val & DA7280_WAV_MEM_LOCK_MASK) {
dev_warn(haptics->dev, "Please unlock the bit first\n");
return -EACCES;
}
/* Set to Inactive mode to make sure safety */
error = regmap_update_bits(haptics->regmap,
DA7280_TOP_CTL1,
DA7280_OPERATION_MODE_MASK,
0);
if (error)
return error;
error = regmap_read(haptics->regmap, DA7280_MEM_CTL1, &val);
if (error)
return error;
return regmap_bulk_write(haptics->regmap, val, haptics->snp_mem,
DA7280_SNP_MEM_MAX - val + 1);
}
static int da7280_haptic_set_pwm(struct da7280_haptic *haptics, bool enabled)
{
struct pwm_state state;
u64 period_mag_multi;
int error;
if (!haptics->gain && enabled) {
dev_err(haptics->dev, "Unable to enable pwm with 0 gain\n");
return -EINVAL;
}
pwm_get_state(haptics->pwm_dev, &state);
state.enabled = enabled;
if (enabled) {
period_mag_multi = (u64)state.period * haptics->gain;
period_mag_multi >>= DA7280_MAX_MAGNITUDE_SHIFT;
/*
* The interpretation of duty cycle depends on the acc_en,
* it should be between 50% and 100% for acc_en = 0.
* See datasheet 'PWM mode' section.
*/
if (!haptics->acc_en) {
period_mag_multi += state.period;
period_mag_multi /= 2;
}
state.duty_cycle = period_mag_multi;
}
error = pwm_apply_state(haptics->pwm_dev, &state);
if (error)
dev_err(haptics->dev, "Failed to apply pwm state: %d\n", error);
return error;
}
static void da7280_haptic_activate(struct da7280_haptic *haptics)
{
int error;
if (haptics->active)
return;
switch (haptics->op_mode) {
case DA7280_DRO_MODE:
/* the valid range check when acc_en is enabled */
if (haptics->acc_en && haptics->level > 0x7F)
haptics->level = 0x7F;
else if (haptics->level > 0xFF)
haptics->level = 0xFF;
/* Set level as a % of ACTUATOR_NOMMAX (nommax) */
error = regmap_write(haptics->regmap, DA7280_TOP_CTL2,
haptics->level);
if (error) {
dev_err(haptics->dev,
"Failed to set level to %d: %d\n",
haptics->level, error);
return;
}
break;
case DA7280_PWM_MODE:
if (da7280_haptic_set_pwm(haptics, true))
return;
break;
case DA7280_RTWM_MODE:
/*
* The pattern will be played by the PS_SEQ_ID and the
* PS_SEQ_LOOP
*/
break;
case DA7280_ETWM_MODE:
/*
* The pattern will be played by the GPI[N] state,
* GPI(N)_SEQUENCE_ID and the PS_SEQ_LOOP. See the
* datasheet for the details.
*/
break;
default:
dev_err(haptics->dev, "Invalid op mode %d\n", haptics->op_mode);
return;
}
error = regmap_update_bits(haptics->regmap,
DA7280_TOP_CTL1,
DA7280_OPERATION_MODE_MASK,
haptics->op_mode);
if (error) {
dev_err(haptics->dev,
"Failed to set operation mode: %d", error);
return;
}
if (haptics->op_mode == DA7280_PWM_MODE ||
haptics->op_mode == DA7280_RTWM_MODE) {
error = regmap_update_bits(haptics->regmap,
DA7280_TOP_CTL1,
DA7280_SEQ_START_MASK,
DA7280_SEQ_START_MASK);
if (error) {
dev_err(haptics->dev,
"Failed to start sequence: %d\n", error);
return;
}
}
haptics->active = true;
}
static void da7280_haptic_deactivate(struct da7280_haptic *haptics)
{
int error;
if (!haptics->active)
return;
/* Set to Inactive mode */
error = regmap_update_bits(haptics->regmap,
DA7280_TOP_CTL1,
DA7280_OPERATION_MODE_MASK, 0);
if (error) {
dev_err(haptics->dev,
"Failed to clear operation mode: %d", error);
return;
}
switch (haptics->op_mode) {
case DA7280_DRO_MODE:
error = regmap_write(haptics->regmap,
DA7280_TOP_CTL2, 0);
if (error) {
dev_err(haptics->dev,
"Failed to disable DRO mode: %d\n", error);
return;
}
break;
case DA7280_PWM_MODE:
if (da7280_haptic_set_pwm(haptics, false))
return;
break;
case DA7280_RTWM_MODE:
case DA7280_ETWM_MODE:
error = regmap_update_bits(haptics->regmap,
DA7280_TOP_CTL1,
DA7280_SEQ_START_MASK, 0);
if (error) {
dev_err(haptics->dev,
"Failed to disable RTWM/ETWM mode: %d\n",
error);
return;
}
break;
default:
dev_err(haptics->dev, "Invalid op mode %d\n", haptics->op_mode);
return;
}
haptics->active = false;
}
static void da7280_haptic_work(struct work_struct *work)
{
struct da7280_haptic *haptics =
container_of(work, struct da7280_haptic, work);
int val = haptics->val;
if (val)
da7280_haptic_activate(haptics);
else
da7280_haptic_deactivate(haptics);
}
static int da7280_haptics_upload_effect(struct input_dev *dev,
struct ff_effect *effect,
struct ff_effect *old)
{
struct da7280_haptic *haptics = input_get_drvdata(dev);
s16 data[DA7280_SNP_MEM_SIZE] = { 0 };
unsigned int val;
int tmp, i, num;
int error;
/* The effect should be uploaded when haptic is not working */
if (haptics->active)
return -EBUSY;
switch (effect->type) {
/* DRO/PWM modes support this type */
case FF_CONSTANT:
haptics->op_mode = haptics->const_op_mode;
if (haptics->op_mode == DA7280_DRO_MODE) {
tmp = effect->u.constant.level * 254;
haptics->level = tmp / 0x7FFF;
break;
}
haptics->gain = effect->u.constant.level <= 0 ?
0 : effect->u.constant.level;
break;
/* RTWM/ETWM modes support this type */
case FF_PERIODIC:
if (effect->u.periodic.waveform != FF_CUSTOM) {
dev_err(haptics->dev,
"Device can only accept FF_CUSTOM waveform\n");
return -EINVAL;
}
/*
* Load the data and check the length.
* the data will be patterns in this case: 4 < X <= 100,
* and will be saved into the waveform memory inside DA728x.
* If X = 2, the data will be PS_SEQ_ID and PS_SEQ_LOOP.
* If X = 3, the 1st data will be GPIX_SEQUENCE_ID .
*/
if (effect->u.periodic.custom_len == DA7280_CUSTOM_DATA_LEN)
goto set_seq_id_loop;
if (effect->u.periodic.custom_len == DA7280_CUSTOM_GP_DATA_LEN)
goto set_gpix_seq_id;
if (effect->u.periodic.custom_len < DA7280_CUSTOM_DATA_LEN ||
effect->u.periodic.custom_len > DA7280_SNP_MEM_SIZE) {
dev_err(haptics->dev, "Invalid waveform data size\n");
return -EINVAL;
}
if (copy_from_user(data, effect->u.periodic.custom_data,
sizeof(s16) *
effect->u.periodic.custom_len))
return -EFAULT;
memset(haptics->snp_mem, 0, DA7280_SNP_MEM_SIZE);
for (i = 0; i < effect->u.periodic.custom_len; i++) {
if (data[i] < 0 || data[i] > 0xff) {
dev_err(haptics->dev,
"Invalid waveform data %d at offset %d\n",
data[i], i);
return -EINVAL;
}
haptics->snp_mem[i] = (u8)data[i];
}
error = da7280_haptic_mem_update(haptics);
if (error) {
dev_err(haptics->dev,
"Failed to upload waveform: %d\n", error);
return error;
}
break;
set_seq_id_loop:
if (copy_from_user(data, effect->u.periodic.custom_data,
sizeof(s16) * DA7280_CUSTOM_DATA_LEN))
return -EFAULT;
if (data[DA7280_CUSTOM_SEQ_ID_IDX] < 0 ||
data[DA7280_CUSTOM_SEQ_ID_IDX] > DA7280_SEQ_ID_MAX ||
data[DA7280_CUSTOM_SEQ_LOOP_IDX] < 0 ||
data[DA7280_CUSTOM_SEQ_LOOP_IDX] > DA7280_SEQ_LOOP_MAX) {
dev_err(haptics->dev,
"Invalid custom id (%d) or loop (%d)\n",
data[DA7280_CUSTOM_SEQ_ID_IDX],
data[DA7280_CUSTOM_SEQ_LOOP_IDX]);
return -EINVAL;
}
haptics->ps_seq_id = data[DA7280_CUSTOM_SEQ_ID_IDX] & 0x0f;
haptics->ps_seq_loop = data[DA7280_CUSTOM_SEQ_LOOP_IDX] & 0x0f;
haptics->op_mode = haptics->periodic_op_mode;
val = FIELD_PREP(DA7280_PS_SEQ_ID_MASK, haptics->ps_seq_id) |
FIELD_PREP(DA7280_PS_SEQ_LOOP_MASK,
haptics->ps_seq_loop);
error = regmap_write(haptics->regmap, DA7280_SEQ_CTL2, val);
if (error) {
dev_err(haptics->dev,
"Failed to update PS sequence: %d\n", error);
return error;
}
break;
set_gpix_seq_id:
if (copy_from_user(data, effect->u.periodic.custom_data,
sizeof(s16) * DA7280_CUSTOM_GP_DATA_LEN))
return -EFAULT;
if (data[DA7280_CUSTOM_GPI_SEQ_ID_IDX] < 0 ||
data[DA7280_CUSTOM_GPI_SEQ_ID_IDX] > DA7280_SEQ_ID_MAX ||
data[DA7280_CUSTOM_GPI_NUM_IDX] < 0 ||
data[DA7280_CUSTOM_GPI_NUM_IDX] > DA7280_GPI_SEQ_ID_MAX) {
dev_err(haptics->dev,
"Invalid custom GPI id (%d) or num (%d)\n",
data[DA7280_CUSTOM_GPI_SEQ_ID_IDX],
data[DA7280_CUSTOM_GPI_NUM_IDX]);
return -EINVAL;
}
num = data[DA7280_CUSTOM_GPI_NUM_IDX] & 0x0f;
haptics->gpi_ctl[num].seq_id =
data[DA7280_CUSTOM_GPI_SEQ_ID_IDX] & 0x0f;
haptics->op_mode = haptics->periodic_op_mode;
val = FIELD_PREP(DA7280_GPI0_SEQUENCE_ID_MASK,
haptics->gpi_ctl[num].seq_id);
error = regmap_update_bits(haptics->regmap,
DA7280_GPI_0_CTL + num,
DA7280_GPI0_SEQUENCE_ID_MASK,
val);
if (error) {
dev_err(haptics->dev,
"Failed to update GPI sequence: %d\n", error);
return error;
}
break;
default:
dev_err(haptics->dev, "Unsupported effect type: %d\n",
effect->type);
return -EINVAL;
}
return 0;
}
static int da7280_haptics_playback(struct input_dev *dev,
int effect_id, int val)
{
struct da7280_haptic *haptics = input_get_drvdata(dev);
if (!haptics->op_mode) {
dev_warn(haptics->dev, "No effects have been uploaded\n");
return -EINVAL;
}
if (likely(!haptics->suspended)) {
haptics->val = val;
schedule_work(&haptics->work);
}
return 0;
}
static int da7280_haptic_start(struct da7280_haptic *haptics)
{
int error;
error = regmap_update_bits(haptics->regmap,
DA7280_TOP_CTL1,
DA7280_STANDBY_EN_MASK,
DA7280_STANDBY_EN_MASK);
if (error) {
dev_err(haptics->dev, "Unable to enable device: %d\n", error);
return error;
}
return 0;
}
static void da7280_haptic_stop(struct da7280_haptic *haptics)
{
int error;
cancel_work_sync(&haptics->work);
da7280_haptic_deactivate(haptics);
error = regmap_update_bits(haptics->regmap, DA7280_TOP_CTL1,
DA7280_STANDBY_EN_MASK, 0);
if (error)
dev_err(haptics->dev, "Failed to disable device: %d\n", error);
}
static int da7280_haptic_open(struct input_dev *dev)
{
struct da7280_haptic *haptics = input_get_drvdata(dev);
return da7280_haptic_start(haptics);
}
static void da7280_haptic_close(struct input_dev *dev)
{
struct da7280_haptic *haptics = input_get_drvdata(dev);
da7280_haptic_stop(haptics);
}
static u8 da7280_haptic_of_mode_str(struct device *dev,
const char *str)
{
if (!strcmp(str, "LRA")) {
return DA7280_LRA;
} else if (!strcmp(str, "ERM-bar")) {
return DA7280_ERM_BAR;
} else if (!strcmp(str, "ERM-coin")) {
return DA7280_ERM_COIN;
} else {
dev_warn(dev, "Invalid string - set to LRA\n");
return DA7280_LRA;
}
}
static u8 da7280_haptic_of_gpi_mode_str(struct device *dev,
const char *str)
{
if (!strcmp(str, "Single-pattern")) {
return 0;
} else if (!strcmp(str, "Multi-pattern")) {
return 1;
} else {
dev_warn(dev, "Invalid string - set to Single-pattern\n");
return 0;
}
}
static u8 da7280_haptic_of_gpi_pol_str(struct device *dev,
const char *str)
{
if (!strcmp(str, "Rising-edge")) {
return 0;
} else if (!strcmp(str, "Falling-edge")) {
return 1;
} else if (!strcmp(str, "Both-edge")) {
return 2;
} else {
dev_warn(dev, "Invalid string - set to Rising-edge\n");
return 0;
}
}
static u8 da7280_haptic_of_volt_rating_set(u32 val)
{
u32 voltage = val / DA7280_VOLTAGE_RATE_STEP + 1;
return min_t(u32, voltage, 0xff);
}
static void da7280_parse_properties(struct device *dev,
struct da7280_haptic *haptics)
{
unsigned int i, mem[DA7280_SNP_MEM_SIZE];
char gpi_str1[] = "dlg,gpi0-seq-id";
char gpi_str2[] = "dlg,gpi0-mode";
char gpi_str3[] = "dlg,gpi0-polarity";
const char *str;
u32 val;
int error;
/*
* If there is no property, then use the mode programmed into the chip.
*/
haptics->dev_type = DA7280_DEV_MAX;
error = device_property_read_string(dev, "dlg,actuator-type", &str);
if (!error)
haptics->dev_type = da7280_haptic_of_mode_str(dev, str);
haptics->const_op_mode = DA7280_DRO_MODE;
error = device_property_read_u32(dev, "dlg,const-op-mode", &val);
if (!error && val == DA7280_FF_PERIODIC_PWM)
haptics->const_op_mode = DA7280_PWM_MODE;
haptics->periodic_op_mode = DA7280_RTWM_MODE;
error = device_property_read_u32(dev, "dlg,periodic-op-mode", &val);
if (!error && val == DA7280_FF_PERIODIC_ETWM)
haptics->periodic_op_mode = DA7280_ETWM_MODE;
haptics->nommax = DA7280_SKIP_INIT;
error = device_property_read_u32(dev, "dlg,nom-microvolt", &val);
if (!error && val < DA7280_VOLTAGE_RATE_MAX)
haptics->nommax = da7280_haptic_of_volt_rating_set(val);
haptics->absmax = DA7280_SKIP_INIT;
error = device_property_read_u32(dev, "dlg,abs-max-microvolt", &val);
if (!error && val < DA7280_VOLTAGE_RATE_MAX)
haptics->absmax = da7280_haptic_of_volt_rating_set(val);
haptics->imax = DA7280_IMAX_DEFAULT;
error = device_property_read_u32(dev, "dlg,imax-microamp", &val);
if (!error && val < DA7280_IMAX_LIMIT)
haptics->imax = (val - 28600) / DA7280_IMAX_STEP + 1;
haptics->impd = DA7280_IMPD_DEFAULT;
error = device_property_read_u32(dev, "dlg,impd-micro-ohms", &val);
if (!error && val <= DA7280_IMPD_MAX)
haptics->impd = val;
haptics->resonant_freq_h = DA7280_SKIP_INIT;
haptics->resonant_freq_l = DA7280_SKIP_INIT;
error = device_property_read_u32(dev, "dlg,resonant-freq-hz", &val);
if (!error) {
if (val < DA7280_MAX_RESONAT_FREQ_HZ &&
val > DA7280_MIN_RESONAT_FREQ_HZ) {
haptics->resonant_freq_h =
((1000000000 / (val * 1333)) >> 7) & 0xFF;
haptics->resonant_freq_l =
(1000000000 / (val * 1333)) & 0x7F;
} else {
haptics->resonant_freq_h = DA7280_RESONT_FREQH_DFT;
haptics->resonant_freq_l = DA7280_RESONT_FREQL_DFT;
}
}
/* If no property, set to zero as default is to do nothing. */
haptics->ps_seq_id = 0;
error = device_property_read_u32(dev, "dlg,ps-seq-id", &val);
if (!error && val <= DA7280_SEQ_ID_MAX)
haptics->ps_seq_id = val;
haptics->ps_seq_loop = 0;
error = device_property_read_u32(dev, "dlg,ps-seq-loop", &val);
if (!error && val <= DA7280_SEQ_LOOP_MAX)
haptics->ps_seq_loop = val;
/* GPI0~2 Control */
for (i = 0; i <= DA7280_GPI_SEQ_ID_MAX; i++) {
gpi_str1[7] = '0' + i;
haptics->gpi_ctl[i].seq_id = DA7280_GPI_SEQ_ID_DFT + i;
error = device_property_read_u32 (dev, gpi_str1, &val);
if (!error && val <= DA7280_SEQ_ID_MAX)
haptics->gpi_ctl[i].seq_id = val;
gpi_str2[7] = '0' + i;
haptics->gpi_ctl[i].mode = 0;
error = device_property_read_string(dev, gpi_str2, &str);
if (!error)
haptics->gpi_ctl[i].mode =
da7280_haptic_of_gpi_mode_str(dev, str);
gpi_str3[7] = '0' + i;
haptics->gpi_ctl[i].polarity = 0;
error = device_property_read_string(dev, gpi_str3, &str);
if (!error)
haptics->gpi_ctl[i].polarity =
da7280_haptic_of_gpi_pol_str(dev, str);
}
haptics->bemf_sense_en =
device_property_read_bool(dev, "dlg,bemf-sens-enable");
haptics->freq_track_en =
device_property_read_bool(dev, "dlg,freq-track-enable");
haptics->acc_en =
device_property_read_bool(dev, "dlg,acc-enable");
haptics->rapid_stop_en =
device_property_read_bool(dev, "dlg,rapid-stop-enable");
haptics->amp_pid_en =
device_property_read_bool(dev, "dlg,amp-pid-enable");
haptics->mem_update = false;
error = device_property_read_u32_array(dev, "dlg,mem-array",
&mem[0], DA7280_SNP_MEM_SIZE);
if (!error) {
haptics->mem_update = true;
memset(haptics->snp_mem, 0, DA7280_SNP_MEM_SIZE);
for (i = 0; i < DA7280_SNP_MEM_SIZE; i++) {
if (mem[i] <= 0xff) {
haptics->snp_mem[i] = (u8)mem[i];
} else {
dev_err(haptics->dev,
"Invalid data in mem-array at %d: %x\n",
i, mem[i]);
haptics->mem_update = false;
break;
}
}
}
}
static irqreturn_t da7280_irq_handler(int irq, void *data)
{
struct da7280_haptic *haptics = data;
struct device *dev = haptics->dev;
u8 events[DA7280_IRQ_NUM];
int error;
/* Check what events have happened */
error = regmap_bulk_read(haptics->regmap, DA7280_IRQ_EVENT1,
events, sizeof(events));
if (error) {
dev_err(dev, "failed to read interrupt data: %d\n", error);
goto out;
}
/* Clear events */
error = regmap_write(haptics->regmap, DA7280_IRQ_EVENT1, events[0]);
if (error) {
dev_err(dev, "failed to clear interrupts: %d\n", error);
goto out;
}
if (events[0] & DA7280_E_SEQ_FAULT_MASK) {
/*
* Stop first if haptic is active, otherwise, the fault may
* happen continually even though the bit is cleared.
*/
error = regmap_update_bits(haptics->regmap, DA7280_TOP_CTL1,
DA7280_OPERATION_MODE_MASK, 0);
if (error)
dev_err(dev, "failed to clear op mode on fault: %d\n",
error);
}
if (events[0] & DA7280_E_SEQ_DONE_MASK)
haptics->active = false;
if (events[0] & DA7280_E_WARNING_MASK) {
if (events[1] & DA7280_E_LIM_DRIVE_MASK ||
events[1] & DA7280_E_LIM_DRIVE_ACC_MASK)
dev_warn(dev, "Please reduce the driver level\n");
if (events[1] & DA7280_E_MEM_TYPE_MASK)
dev_warn(dev, "Please check the mem data format\n");
if (events[1] & DA7280_E_OVERTEMP_WARN_MASK)
dev_warn(dev, "Over-temperature warning\n");
}
if (events[0] & DA7280_E_SEQ_FAULT_MASK) {
if (events[2] & DA7280_E_SEQ_ID_FAULT_MASK)
dev_info(dev, "Please reload PS_SEQ_ID & mem data\n");
if (events[2] & DA7280_E_MEM_FAULT_MASK)
dev_info(dev, "Please reload the mem data\n");
if (events[2] & DA7280_E_PWM_FAULT_MASK)
dev_info(dev, "Please restart PWM interface\n");
}
out:
return IRQ_HANDLED;
}
static int da7280_init(struct da7280_haptic *haptics)
{
unsigned int val = 0;
u32 v2i_factor;
int error, i;
u8 mask = 0;
/*
* If device type is DA7280_DEV_MAX then simply use currently
* programmed mode.
*/
if (haptics->dev_type == DA7280_DEV_MAX) {
error = regmap_read(haptics->regmap, DA7280_TOP_CFG1, &val);
if (error)
goto out_err;
haptics->dev_type = val & DA7280_ACTUATOR_TYPE_MASK ?
DA7280_ERM_COIN : DA7280_LRA;
}
/* Apply user settings */
if (haptics->dev_type == DA7280_LRA &&
haptics->resonant_freq_l != DA7280_SKIP_INIT) {
error = regmap_write(haptics->regmap, DA7280_FRQ_LRA_PER_H,
haptics->resonant_freq_h);
if (error)
goto out_err;
error = regmap_write(haptics->regmap, DA7280_FRQ_LRA_PER_L,
haptics->resonant_freq_l);
if (error)
goto out_err;
} else if (haptics->dev_type == DA7280_ERM_COIN) {
error = regmap_update_bits(haptics->regmap, DA7280_TOP_INT_CFG1,
DA7280_BEMF_FAULT_LIM_MASK, 0);
if (error)
goto out_err;
mask = DA7280_TST_CALIB_IMPEDANCE_DIS_MASK |
DA7280_V2I_FACTOR_FREEZE_MASK;
val = DA7280_TST_CALIB_IMPEDANCE_DIS_MASK |
DA7280_V2I_FACTOR_FREEZE_MASK;
error = regmap_update_bits(haptics->regmap, DA7280_TOP_CFG4,
mask, val);
if (error)
goto out_err;
haptics->acc_en = false;
haptics->rapid_stop_en = false;
haptics->amp_pid_en = false;
}
mask = DA7280_ACTUATOR_TYPE_MASK |
DA7280_BEMF_SENSE_EN_MASK |
DA7280_FREQ_TRACK_EN_MASK |
DA7280_ACCELERATION_EN_MASK |
DA7280_RAPID_STOP_EN_MASK |
DA7280_AMP_PID_EN_MASK;
val = FIELD_PREP(DA7280_ACTUATOR_TYPE_MASK,
(haptics->dev_type ? 1 : 0)) |
FIELD_PREP(DA7280_BEMF_SENSE_EN_MASK,
(haptics->bemf_sense_en ? 1 : 0)) |
FIELD_PREP(DA7280_FREQ_TRACK_EN_MASK,
(haptics->freq_track_en ? 1 : 0)) |
FIELD_PREP(DA7280_ACCELERATION_EN_MASK,
(haptics->acc_en ? 1 : 0)) |
FIELD_PREP(DA7280_RAPID_STOP_EN_MASK,
(haptics->rapid_stop_en ? 1 : 0)) |
FIELD_PREP(DA7280_AMP_PID_EN_MASK,
(haptics->amp_pid_en ? 1 : 0));
error = regmap_update_bits(haptics->regmap, DA7280_TOP_CFG1, mask, val);
if (error)
goto out_err;
error = regmap_update_bits(haptics->regmap, DA7280_TOP_CFG5,
DA7280_V2I_FACTOR_OFFSET_EN_MASK,
haptics->acc_en ?
DA7280_V2I_FACTOR_OFFSET_EN_MASK : 0);
if (error)
goto out_err;
error = regmap_update_bits(haptics->regmap,
DA7280_TOP_CFG2,
DA7280_MEM_DATA_SIGNED_MASK,
haptics->acc_en ?
0 : DA7280_MEM_DATA_SIGNED_MASK);
if (error)
goto out_err;
if (haptics->nommax != DA7280_SKIP_INIT) {
error = regmap_write(haptics->regmap, DA7280_ACTUATOR1,
haptics->nommax);
if (error)
goto out_err;
}
if (haptics->absmax != DA7280_SKIP_INIT) {
error = regmap_write(haptics->regmap, DA7280_ACTUATOR2,
haptics->absmax);
if (error)
goto out_err;
}
error = regmap_update_bits(haptics->regmap, DA7280_ACTUATOR3,
DA7280_IMAX_MASK, haptics->imax);
if (error)
goto out_err;
v2i_factor = haptics->impd * (haptics->imax + 4) / 1610400;
error = regmap_write(haptics->regmap, DA7280_CALIB_V2I_L,
v2i_factor & 0xff);
if (error)
goto out_err;
error = regmap_write(haptics->regmap, DA7280_CALIB_V2I_H,
v2i_factor >> 8);
if (error)
goto out_err;
error = regmap_update_bits(haptics->regmap,
DA7280_TOP_CTL1,
DA7280_STANDBY_EN_MASK,
DA7280_STANDBY_EN_MASK);
if (error)
goto out_err;
if (haptics->mem_update) {
error = da7280_haptic_mem_update(haptics);
if (error)
goto out_err;
}
/* Set PS_SEQ_ID and PS_SEQ_LOOP */
val = FIELD_PREP(DA7280_PS_SEQ_ID_MASK, haptics->ps_seq_id) |
FIELD_PREP(DA7280_PS_SEQ_LOOP_MASK, haptics->ps_seq_loop);
error = regmap_write(haptics->regmap, DA7280_SEQ_CTL2, val);
if (error)
goto out_err;
/* GPI(N) CTL */
for (i = 0; i < 3; i++) {
val = FIELD_PREP(DA7280_GPI0_SEQUENCE_ID_MASK,
haptics->gpi_ctl[i].seq_id) |
FIELD_PREP(DA7280_GPI0_MODE_MASK,
haptics->gpi_ctl[i].mode) |
FIELD_PREP(DA7280_GPI0_POLARITY_MASK,
haptics->gpi_ctl[i].polarity);
error = regmap_write(haptics->regmap,
DA7280_GPI_0_CTL + i, val);
if (error)
goto out_err;
}
/* Mask ADC_SAT_M bit as default */
error = regmap_update_bits(haptics->regmap,
DA7280_IRQ_MASK2,
DA7280_ADC_SAT_M_MASK,
DA7280_ADC_SAT_M_MASK);
if (error)
goto out_err;
/* Clear Interrupts */
error = regmap_write(haptics->regmap, DA7280_IRQ_EVENT1, 0xff);
if (error)
goto out_err;
error = regmap_update_bits(haptics->regmap,
DA7280_IRQ_MASK1,
DA7280_SEQ_FAULT_M_MASK |
DA7280_SEQ_DONE_M_MASK,
0);
if (error)
goto out_err;
haptics->active = false;
return 0;
out_err:
dev_err(haptics->dev, "chip initialization error: %d\n", error);
return error;
}
static int da7280_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct da7280_haptic *haptics;
struct input_dev *input_dev;
struct pwm_state state;
struct ff_device *ff;
int error;
if (!client->irq) {
dev_err(dev, "No IRQ configured\n");
return -EINVAL;
}
haptics = devm_kzalloc(dev, sizeof(*haptics), GFP_KERNEL);
if (!haptics)
return -ENOMEM;
haptics->dev = dev;
da7280_parse_properties(dev, haptics);
if (haptics->const_op_mode == DA7280_PWM_MODE) {
haptics->pwm_dev = devm_pwm_get(dev, NULL);
error = PTR_ERR_OR_ZERO(haptics->pwm_dev);
if (error) {
if (error != -EPROBE_DEFER)
dev_err(dev, "Unable to request PWM: %d\n",
error);
return error;
}
/* Sync up PWM state and ensure it is off. */
pwm_init_state(haptics->pwm_dev, &state);
state.enabled = false;
error = pwm_apply_state(haptics->pwm_dev, &state);
if (error) {
dev_err(dev, "Failed to apply PWM state: %d\n", error);
return error;
}
/*
* Check PWM period, PWM freq = 1000000 / state.period.
* The valid PWM freq range: 10k ~ 250kHz.
*/
if (state.period > 100000 || state.period < 4000) {
dev_err(dev, "Unsupported PWM period: %lld\n",
state.period);
return -EINVAL;
}
}
INIT_WORK(&haptics->work, da7280_haptic_work);
haptics->client = client;
i2c_set_clientdata(client, haptics);
haptics->regmap = devm_regmap_init_i2c(client,
&da7280_haptic_regmap_config);
error = PTR_ERR_OR_ZERO(haptics->regmap);
if (error) {
dev_err(dev, "Failed to allocate register map: %d\n", error);
return error;
}
error = da7280_init(haptics);
if (error) {
dev_err(dev, "Failed to initialize device: %d\n", error);
return error;
}
/* Initialize input device for haptic device */
input_dev = devm_input_allocate_device(dev);
if (!input_dev) {
dev_err(dev, "Failed to allocate input device\n");
return -ENOMEM;
}
input_dev->name = "da7280-haptic";
input_dev->dev.parent = client->dev.parent;
input_dev->open = da7280_haptic_open;
input_dev->close = da7280_haptic_close;
input_set_drvdata(input_dev, haptics);
haptics->input_dev = input_dev;
input_set_capability(haptics->input_dev, EV_FF, FF_PERIODIC);
input_set_capability(haptics->input_dev, EV_FF, FF_CUSTOM);
input_set_capability(haptics->input_dev, EV_FF, FF_CONSTANT);
input_set_capability(haptics->input_dev, EV_FF, FF_GAIN);
error = input_ff_create(haptics->input_dev,
DA7280_FF_EFFECT_COUNT_MAX);
if (error) {
dev_err(dev, "Failed to create FF input device: %d\n", error);
return error;
}
ff = input_dev->ff;
ff->upload = da7280_haptics_upload_effect;
ff->playback = da7280_haptics_playback;
error = input_register_device(input_dev);
if (error) {
dev_err(dev, "Failed to register input device: %d\n", error);
return error;
}
error = devm_request_threaded_irq(dev, client->irq,
NULL, da7280_irq_handler,
IRQF_ONESHOT,
"da7280-haptics", haptics);
if (error) {
dev_err(dev, "Failed to request IRQ %d: %d\n",
client->irq, error);
return error;
}
return 0;
}
static int da7280_suspend(struct device *dev)
{
struct da7280_haptic *haptics = dev_get_drvdata(dev);
mutex_lock(&haptics->input_dev->mutex);
/*
* Make sure no new requests will be submitted while device is
* suspended.
*/
spin_lock_irq(&haptics->input_dev->event_lock);
haptics->suspended = true;
spin_unlock_irq(&haptics->input_dev->event_lock);
da7280_haptic_stop(haptics);
mutex_unlock(&haptics->input_dev->mutex);
return 0;
}
static int da7280_resume(struct device *dev)
{
struct da7280_haptic *haptics = dev_get_drvdata(dev);
int retval;
mutex_lock(&haptics->input_dev->mutex);
retval = da7280_haptic_start(haptics);
if (!retval) {
spin_lock_irq(&haptics->input_dev->event_lock);
haptics->suspended = false;
spin_unlock_irq(&haptics->input_dev->event_lock);
}
mutex_unlock(&haptics->input_dev->mutex);
return retval;
}
#ifdef CONFIG_OF
static const struct of_device_id da7280_of_match[] = {
{ .compatible = "dlg,da7280", },
{ }
};
MODULE_DEVICE_TABLE(of, da7280_of_match);
#endif
static const struct i2c_device_id da7280_i2c_id[] = {
{ "da7280", },
{ }
};
MODULE_DEVICE_TABLE(i2c, da7280_i2c_id);
static DEFINE_SIMPLE_DEV_PM_OPS(da7280_pm_ops, da7280_suspend, da7280_resume);
static struct i2c_driver da7280_driver = {
.driver = {
.name = "da7280",
.of_match_table = of_match_ptr(da7280_of_match),
.pm = pm_sleep_ptr(&da7280_pm_ops),
},
.probe = da7280_probe,
.id_table = da7280_i2c_id,
};
module_i2c_driver(da7280_driver);
MODULE_DESCRIPTION("DA7280 haptics driver");
MODULE_AUTHOR("Roy Im <[email protected]>");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/misc/da7280.c
|
/**
* twl4030-pwrbutton.c - TWL4030 Power Button Input Driver
*
* Copyright (C) 2008-2009 Nokia Corporation
*
* Written by Peter De Schrijver <[email protected]>
* Several fixes by Felipe Balbi <[email protected]>
*
* This file is subject to the terms and conditions of the GNU General
* Public License. See the file "COPYING" in the main directory of this
* archive for more details.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/mfd/twl.h>
#define PWR_PWRON_IRQ (1 << 0)
#define STS_HW_CONDITIONS 0xf
static irqreturn_t powerbutton_irq(int irq, void *_pwr)
{
struct input_dev *pwr = _pwr;
int err;
u8 value;
err = twl_i2c_read_u8(TWL_MODULE_PM_MASTER, &value, STS_HW_CONDITIONS);
if (!err) {
pm_wakeup_event(pwr->dev.parent, 0);
input_report_key(pwr, KEY_POWER, value & PWR_PWRON_IRQ);
input_sync(pwr);
} else {
dev_err(pwr->dev.parent, "twl4030: i2c error %d while reading"
" TWL4030 PM_MASTER STS_HW_CONDITIONS register\n", err);
}
return IRQ_HANDLED;
}
static int twl4030_pwrbutton_probe(struct platform_device *pdev)
{
struct input_dev *pwr;
int irq = platform_get_irq(pdev, 0);
int err;
pwr = devm_input_allocate_device(&pdev->dev);
if (!pwr) {
dev_err(&pdev->dev, "Can't allocate power button\n");
return -ENOMEM;
}
input_set_capability(pwr, EV_KEY, KEY_POWER);
pwr->name = "twl4030_pwrbutton";
pwr->phys = "twl4030_pwrbutton/input0";
pwr->dev.parent = &pdev->dev;
err = devm_request_threaded_irq(&pdev->dev, irq, NULL, powerbutton_irq,
IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING |
IRQF_ONESHOT,
"twl4030_pwrbutton", pwr);
if (err < 0) {
dev_err(&pdev->dev, "Can't get IRQ for pwrbutton: %d\n", err);
return err;
}
err = input_register_device(pwr);
if (err) {
dev_err(&pdev->dev, "Can't register power button: %d\n", err);
return err;
}
device_init_wakeup(&pdev->dev, true);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id twl4030_pwrbutton_dt_match_table[] = {
{ .compatible = "ti,twl4030-pwrbutton" },
{},
};
MODULE_DEVICE_TABLE(of, twl4030_pwrbutton_dt_match_table);
#endif
static struct platform_driver twl4030_pwrbutton_driver = {
.probe = twl4030_pwrbutton_probe,
.driver = {
.name = "twl4030_pwrbutton",
.of_match_table = of_match_ptr(twl4030_pwrbutton_dt_match_table),
},
};
module_platform_driver(twl4030_pwrbutton_driver);
MODULE_ALIAS("platform:twl4030_pwrbutton");
MODULE_DESCRIPTION("Triton2 Power Button");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Peter De Schrijver <[email protected]>");
MODULE_AUTHOR("Felipe Balbi <[email protected]>");
|
linux-master
|
drivers/input/misc/twl4030-pwrbutton.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
*
* Driver is originally developed by Pavel Sokolov <[email protected]>
*/
#include <linux/err.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/serio.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#define ARC_PS2_PORTS 2
#define ARC_ARC_PS2_ID 0x0001f609
#define STAT_TIMEOUT 128
#define PS2_STAT_RX_FRM_ERR (1)
#define PS2_STAT_RX_BUF_OVER (1 << 1)
#define PS2_STAT_RX_INT_EN (1 << 2)
#define PS2_STAT_RX_VAL (1 << 3)
#define PS2_STAT_TX_ISNOT_FUL (1 << 4)
#define PS2_STAT_TX_INT_EN (1 << 5)
struct arc_ps2_port {
void __iomem *data_addr;
void __iomem *status_addr;
struct serio *io;
};
struct arc_ps2_data {
struct arc_ps2_port port[ARC_PS2_PORTS];
void __iomem *addr;
unsigned int frame_error;
unsigned int buf_overflow;
unsigned int total_int;
};
static void arc_ps2_check_rx(struct arc_ps2_data *arc_ps2,
struct arc_ps2_port *port)
{
unsigned int timeout = 1000;
unsigned int flag, status;
unsigned char data;
do {
status = ioread32(port->status_addr);
if (!(status & PS2_STAT_RX_VAL))
return;
data = ioread32(port->data_addr) & 0xff;
flag = 0;
arc_ps2->total_int++;
if (status & PS2_STAT_RX_FRM_ERR) {
arc_ps2->frame_error++;
flag |= SERIO_PARITY;
} else if (status & PS2_STAT_RX_BUF_OVER) {
arc_ps2->buf_overflow++;
flag |= SERIO_FRAME;
}
serio_interrupt(port->io, data, flag);
} while (--timeout);
dev_err(&port->io->dev, "PS/2 hardware stuck\n");
}
static irqreturn_t arc_ps2_interrupt(int irq, void *dev)
{
struct arc_ps2_data *arc_ps2 = dev;
int i;
for (i = 0; i < ARC_PS2_PORTS; i++)
arc_ps2_check_rx(arc_ps2, &arc_ps2->port[i]);
return IRQ_HANDLED;
}
static int arc_ps2_write(struct serio *io, unsigned char val)
{
unsigned status;
struct arc_ps2_port *port = io->port_data;
int timeout = STAT_TIMEOUT;
do {
status = ioread32(port->status_addr);
cpu_relax();
if (status & PS2_STAT_TX_ISNOT_FUL) {
iowrite32(val & 0xff, port->data_addr);
return 0;
}
} while (--timeout);
dev_err(&io->dev, "write timeout\n");
return -ETIMEDOUT;
}
static int arc_ps2_open(struct serio *io)
{
struct arc_ps2_port *port = io->port_data;
iowrite32(PS2_STAT_RX_INT_EN, port->status_addr);
return 0;
}
static void arc_ps2_close(struct serio *io)
{
struct arc_ps2_port *port = io->port_data;
iowrite32(ioread32(port->status_addr) & ~PS2_STAT_RX_INT_EN,
port->status_addr);
}
static void __iomem *arc_ps2_calc_addr(struct arc_ps2_data *arc_ps2,
int index, bool status)
{
void __iomem *addr;
addr = arc_ps2->addr + 4 + 4 * index;
if (status)
addr += ARC_PS2_PORTS * 4;
return addr;
}
static void arc_ps2_inhibit_ports(struct arc_ps2_data *arc_ps2)
{
void __iomem *addr;
u32 val;
int i;
for (i = 0; i < ARC_PS2_PORTS; i++) {
addr = arc_ps2_calc_addr(arc_ps2, i, true);
val = ioread32(addr);
val &= ~(PS2_STAT_RX_INT_EN | PS2_STAT_TX_INT_EN);
iowrite32(val, addr);
}
}
static int arc_ps2_create_port(struct platform_device *pdev,
struct arc_ps2_data *arc_ps2,
int index)
{
struct arc_ps2_port *port = &arc_ps2->port[index];
struct serio *io;
io = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!io)
return -ENOMEM;
io->id.type = SERIO_8042;
io->write = arc_ps2_write;
io->open = arc_ps2_open;
io->close = arc_ps2_close;
snprintf(io->name, sizeof(io->name), "ARC PS/2 port%d", index);
snprintf(io->phys, sizeof(io->phys), "arc/serio%d", index);
io->port_data = port;
port->io = io;
port->data_addr = arc_ps2_calc_addr(arc_ps2, index, false);
port->status_addr = arc_ps2_calc_addr(arc_ps2, index, true);
dev_dbg(&pdev->dev, "port%d is allocated (data = 0x%p, status = 0x%p)\n",
index, port->data_addr, port->status_addr);
serio_register_port(port->io);
return 0;
}
static int arc_ps2_probe(struct platform_device *pdev)
{
struct arc_ps2_data *arc_ps2;
int irq;
int error, id, i;
irq = platform_get_irq_byname(pdev, "arc_ps2_irq");
if (irq < 0)
return -EINVAL;
arc_ps2 = devm_kzalloc(&pdev->dev, sizeof(struct arc_ps2_data),
GFP_KERNEL);
if (!arc_ps2) {
dev_err(&pdev->dev, "out of memory\n");
return -ENOMEM;
}
arc_ps2->addr = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
if (IS_ERR(arc_ps2->addr))
return PTR_ERR(arc_ps2->addr);
dev_info(&pdev->dev, "irq = %d, address = 0x%p, ports = %i\n",
irq, arc_ps2->addr, ARC_PS2_PORTS);
id = ioread32(arc_ps2->addr);
if (id != ARC_ARC_PS2_ID) {
dev_err(&pdev->dev, "device id does not match\n");
return -ENXIO;
}
arc_ps2_inhibit_ports(arc_ps2);
error = devm_request_irq(&pdev->dev, irq, arc_ps2_interrupt,
0, "arc_ps2", arc_ps2);
if (error) {
dev_err(&pdev->dev, "Could not allocate IRQ\n");
return error;
}
for (i = 0; i < ARC_PS2_PORTS; i++) {
error = arc_ps2_create_port(pdev, arc_ps2, i);
if (error) {
while (--i >= 0)
serio_unregister_port(arc_ps2->port[i].io);
return error;
}
}
platform_set_drvdata(pdev, arc_ps2);
return 0;
}
static int arc_ps2_remove(struct platform_device *pdev)
{
struct arc_ps2_data *arc_ps2 = platform_get_drvdata(pdev);
int i;
for (i = 0; i < ARC_PS2_PORTS; i++)
serio_unregister_port(arc_ps2->port[i].io);
dev_dbg(&pdev->dev, "interrupt count = %i\n", arc_ps2->total_int);
dev_dbg(&pdev->dev, "frame error count = %i\n", arc_ps2->frame_error);
dev_dbg(&pdev->dev, "buffer overflow count = %i\n",
arc_ps2->buf_overflow);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id arc_ps2_match[] = {
{ .compatible = "snps,arc_ps2" },
{ },
};
MODULE_DEVICE_TABLE(of, arc_ps2_match);
#endif
static struct platform_driver arc_ps2_driver = {
.driver = {
.name = "arc_ps2",
.of_match_table = of_match_ptr(arc_ps2_match),
},
.probe = arc_ps2_probe,
.remove = arc_ps2_remove,
};
module_platform_driver(arc_ps2_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Pavel Sokolov <[email protected]>");
MODULE_DESCRIPTION("ARC PS/2 Driver");
|
linux-master
|
drivers/input/serio/arc_ps2.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* PS/2 driver library
*
* Copyright (c) 1999-2002 Vojtech Pavlik
* Copyright (c) 2004 Dmitry Torokhov
*/
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/kmsan-checks.h>
#include <linux/serio.h>
#include <linux/i8042.h>
#include <linux/libps2.h>
#define DRIVER_DESC "PS/2 driver library"
#define PS2_CMD_SETSCALE11 0x00e6
#define PS2_CMD_SETRES 0x10e8
#define PS2_CMD_EX_SETLEDS 0x20eb
#define PS2_CMD_SETLEDS 0x10ed
#define PS2_CMD_GETID 0x02f2
#define PS2_CMD_SETREP 0x10f3 /* Set repeat rate/set report rate */
#define PS2_CMD_RESET_BAT 0x02ff
#define PS2_RET_BAT 0xaa
#define PS2_RET_ID 0x00
#define PS2_RET_ACK 0xfa
#define PS2_RET_NAK 0xfe
#define PS2_RET_ERR 0xfc
#define PS2_FLAG_ACK BIT(0) /* Waiting for ACK/NAK */
#define PS2_FLAG_CMD BIT(1) /* Waiting for a command to finish */
#define PS2_FLAG_CMD1 BIT(2) /* Waiting for the first byte of command response */
#define PS2_FLAG_WAITID BIT(3) /* Command executing is GET ID */
#define PS2_FLAG_NAK BIT(4) /* Last transmission was NAKed */
#define PS2_FLAG_PASS_NOACK BIT(5) /* Pass non-ACK byte to receive handler */
static int ps2_do_sendbyte(struct ps2dev *ps2dev, u8 byte,
unsigned int timeout, unsigned int max_attempts)
__releases(&ps2dev->serio->lock) __acquires(&ps2dev->serio->lock)
{
int attempt = 0;
int error;
lockdep_assert_held(&ps2dev->serio->lock);
do {
ps2dev->nak = 1;
ps2dev->flags |= PS2_FLAG_ACK;
serio_continue_rx(ps2dev->serio);
error = serio_write(ps2dev->serio, byte);
if (error)
dev_dbg(&ps2dev->serio->dev,
"failed to write %#02x: %d\n", byte, error);
else
wait_event_timeout(ps2dev->wait,
!(ps2dev->flags & PS2_FLAG_ACK),
msecs_to_jiffies(timeout));
serio_pause_rx(ps2dev->serio);
} while (ps2dev->nak == PS2_RET_NAK && ++attempt < max_attempts);
ps2dev->flags &= ~PS2_FLAG_ACK;
if (!error) {
switch (ps2dev->nak) {
case 0:
break;
case PS2_RET_NAK:
error = -EAGAIN;
break;
case PS2_RET_ERR:
error = -EPROTO;
break;
default:
error = -EIO;
break;
}
}
if (error || attempt > 1)
dev_dbg(&ps2dev->serio->dev,
"%02x - %d (%x), attempt %d\n",
byte, error, ps2dev->nak, attempt);
return error;
}
/**
* ps2_sendbyte - sends a byte to the device and wait for acknowledgement
* @ps2dev: a PS/2 device to send the data to
* @byte: data to be sent to the device
* @timeout: timeout for sending the data and receiving an acknowledge
*
* The function doesn't handle retransmission, the caller is expected to handle
* it when needed.
*
* ps2_sendbyte() can only be called from a process context.
*/
int ps2_sendbyte(struct ps2dev *ps2dev, u8 byte, unsigned int timeout)
{
int retval;
serio_pause_rx(ps2dev->serio);
retval = ps2_do_sendbyte(ps2dev, byte, timeout, 1);
dev_dbg(&ps2dev->serio->dev, "%02x - %x\n", byte, ps2dev->nak);
serio_continue_rx(ps2dev->serio);
return retval;
}
EXPORT_SYMBOL(ps2_sendbyte);
/**
* ps2_begin_command - mark beginning of execution of a complex command
* @ps2dev: a PS/2 device executing the command
*
* Serializes a complex/compound command. Once command is finished
* ps2_end_command() should be called.
*/
void ps2_begin_command(struct ps2dev *ps2dev)
{
struct mutex *m = ps2dev->serio->ps2_cmd_mutex ?: &ps2dev->cmd_mutex;
mutex_lock(m);
}
EXPORT_SYMBOL(ps2_begin_command);
/**
* ps2_end_command - mark end of execution of a complex command
* @ps2dev: a PS/2 device executing the command
*/
void ps2_end_command(struct ps2dev *ps2dev)
{
struct mutex *m = ps2dev->serio->ps2_cmd_mutex ?: &ps2dev->cmd_mutex;
mutex_unlock(m);
}
EXPORT_SYMBOL(ps2_end_command);
/**
* ps2_drain - waits for device to transmit requested number of bytes
* and discards them
* @ps2dev: the PS/2 device that should be drained
* @maxbytes: maximum number of bytes to be drained
* @timeout: time to drain the device
*/
void ps2_drain(struct ps2dev *ps2dev, size_t maxbytes, unsigned int timeout)
{
if (maxbytes > sizeof(ps2dev->cmdbuf)) {
WARN_ON(1);
maxbytes = sizeof(ps2dev->cmdbuf);
}
ps2_begin_command(ps2dev);
serio_pause_rx(ps2dev->serio);
ps2dev->flags = PS2_FLAG_CMD;
ps2dev->cmdcnt = maxbytes;
serio_continue_rx(ps2dev->serio);
wait_event_timeout(ps2dev->wait,
!(ps2dev->flags & PS2_FLAG_CMD),
msecs_to_jiffies(timeout));
ps2_end_command(ps2dev);
}
EXPORT_SYMBOL(ps2_drain);
/**
* ps2_is_keyboard_id - checks received ID byte against the list of
* known keyboard IDs
* @id_byte: data byte that should be checked
*/
bool ps2_is_keyboard_id(u8 id_byte)
{
static const u8 keyboard_ids[] = {
0xab, /* Regular keyboards */
0xac, /* NCD Sun keyboard */
0x2b, /* Trust keyboard, translated */
0x5d, /* Trust keyboard */
0x60, /* NMB SGI keyboard, translated */
0x47, /* NMB SGI keyboard */
};
return memchr(keyboard_ids, id_byte, sizeof(keyboard_ids)) != NULL;
}
EXPORT_SYMBOL(ps2_is_keyboard_id);
/*
* ps2_adjust_timeout() is called after receiving 1st byte of command
* response and tries to reduce remaining timeout to speed up command
* completion.
*/
static int ps2_adjust_timeout(struct ps2dev *ps2dev,
unsigned int command, unsigned int timeout)
{
switch (command) {
case PS2_CMD_RESET_BAT:
/*
* Device has sent the first response byte after
* reset command, reset is thus done, so we can
* shorten the timeout.
* The next byte will come soon (keyboard) or not
* at all (mouse).
*/
if (timeout > msecs_to_jiffies(100))
timeout = msecs_to_jiffies(100);
break;
case PS2_CMD_GETID:
/*
* Microsoft Natural Elite keyboard responds to
* the GET ID command as it were a mouse, with
* a single byte. Fail the command so atkbd will
* use alternative probe to detect it.
*/
if (ps2dev->cmdbuf[1] == 0xaa) {
serio_pause_rx(ps2dev->serio);
ps2dev->flags = 0;
serio_continue_rx(ps2dev->serio);
timeout = 0;
}
/*
* If device behind the port is not a keyboard there
* won't be 2nd byte of ID response.
*/
if (!ps2_is_keyboard_id(ps2dev->cmdbuf[1])) {
serio_pause_rx(ps2dev->serio);
ps2dev->flags = ps2dev->cmdcnt = 0;
serio_continue_rx(ps2dev->serio);
timeout = 0;
}
break;
default:
break;
}
return timeout;
}
/**
* __ps2_command - send a command to PS/2 device
* @ps2dev: the PS/2 device that should execute the command
* @param: a buffer containing parameters to be sent along with the command,
* or place where the results of the command execution will be deposited,
* or both
* @command: command word that encodes the command itself, as well as number of
* additional parameter bytes that should be sent to the device and expected
* length of the command response
*
* Not serialized. Callers should use ps2_begin_command() and ps2_end_command()
* to ensure proper serialization for complex commands.
*/
int __ps2_command(struct ps2dev *ps2dev, u8 *param, unsigned int command)
{
unsigned int timeout;
unsigned int send = (command >> 12) & 0xf;
unsigned int receive = (command >> 8) & 0xf;
int rc;
int i;
u8 send_param[16];
if (receive > sizeof(ps2dev->cmdbuf)) {
WARN_ON(1);
return -EINVAL;
}
if (send && !param) {
WARN_ON(1);
return -EINVAL;
}
memcpy(send_param, param, send);
serio_pause_rx(ps2dev->serio);
ps2dev->cmdcnt = receive;
switch (command) {
case PS2_CMD_GETID:
/*
* Some mice do not ACK the "get ID" command, prepare to
* handle this.
*/
ps2dev->flags = PS2_FLAG_WAITID;
break;
case PS2_CMD_SETLEDS:
case PS2_CMD_EX_SETLEDS:
case PS2_CMD_SETREP:
ps2dev->flags = PS2_FLAG_PASS_NOACK;
break;
default:
ps2dev->flags = 0;
break;
}
if (receive) {
/* Indicate that we expect response to the command. */
ps2dev->flags |= PS2_FLAG_CMD | PS2_FLAG_CMD1;
if (param)
for (i = 0; i < receive; i++)
ps2dev->cmdbuf[(receive - 1) - i] = param[i];
}
/*
* Some devices (Synaptics) perform the reset before
* ACKing the reset command, and so it can take a long
* time before the ACK arrives.
*/
timeout = command == PS2_CMD_RESET_BAT ? 1000 : 200;
rc = ps2_do_sendbyte(ps2dev, command & 0xff, timeout, 2);
if (rc)
goto out_reset_flags;
/* Send command parameters, if any. */
for (i = 0; i < send; i++) {
rc = ps2_do_sendbyte(ps2dev, param[i], 200, 2);
if (rc)
goto out_reset_flags;
}
serio_continue_rx(ps2dev->serio);
/*
* The reset command takes a long time to execute.
*/
timeout = msecs_to_jiffies(command == PS2_CMD_RESET_BAT ? 4000 : 500);
timeout = wait_event_timeout(ps2dev->wait,
!(ps2dev->flags & PS2_FLAG_CMD1), timeout);
if (ps2dev->cmdcnt && !(ps2dev->flags & PS2_FLAG_CMD1)) {
timeout = ps2_adjust_timeout(ps2dev, command, timeout);
wait_event_timeout(ps2dev->wait,
!(ps2dev->flags & PS2_FLAG_CMD), timeout);
}
serio_pause_rx(ps2dev->serio);
if (param) {
for (i = 0; i < receive; i++)
param[i] = ps2dev->cmdbuf[(receive - 1) - i];
kmsan_unpoison_memory(param, receive);
}
if (ps2dev->cmdcnt &&
(command != PS2_CMD_RESET_BAT || ps2dev->cmdcnt != 1)) {
rc = -EPROTO;
goto out_reset_flags;
}
rc = 0;
out_reset_flags:
ps2dev->flags = 0;
serio_continue_rx(ps2dev->serio);
dev_dbg(&ps2dev->serio->dev,
"%02x [%*ph] - %x/%08lx [%*ph]\n",
command & 0xff, send, send_param,
ps2dev->nak, ps2dev->flags,
receive, param ?: send_param);
/*
* ps_command() handles resends itself, so do not leak -EAGAIN
* to the callers.
*/
return rc != -EAGAIN ? rc : -EPROTO;
}
EXPORT_SYMBOL(__ps2_command);
/**
* ps2_command - send a command to PS/2 device
* @ps2dev: the PS/2 device that should execute the command
* @param: a buffer containing parameters to be sent along with the command,
* or place where the results of the command execution will be deposited,
* or both
* @command: command word that encodes the command itself, as well as number of
* additional parameter bytes that should be sent to the device and expected
* length of the command response
*
* Note: ps2_command() serializes the command execution so that only one
* command can be executed at a time for either individual port or the entire
* 8042 controller.
*/
int ps2_command(struct ps2dev *ps2dev, u8 *param, unsigned int command)
{
int rc;
ps2_begin_command(ps2dev);
rc = __ps2_command(ps2dev, param, command);
ps2_end_command(ps2dev);
return rc;
}
EXPORT_SYMBOL(ps2_command);
/**
* ps2_sliced_command - sends an extended PS/2 command to a mouse
* @ps2dev: the PS/2 device that should execute the command
* @command: command byte
*
* The command is sent using "sliced" syntax understood by advanced devices,
* such as Logitech or Synaptics touchpads. The command is encoded as:
* 0xE6 0xE8 rr 0xE8 ss 0xE8 tt 0xE8 uu where (rr*64)+(ss*16)+(tt*4)+uu
* is the command.
*/
int ps2_sliced_command(struct ps2dev *ps2dev, u8 command)
{
int i;
int retval;
ps2_begin_command(ps2dev);
retval = __ps2_command(ps2dev, NULL, PS2_CMD_SETSCALE11);
if (retval)
goto out;
for (i = 6; i >= 0; i -= 2) {
u8 d = (command >> i) & 3;
retval = __ps2_command(ps2dev, &d, PS2_CMD_SETRES);
if (retval)
break;
}
out:
dev_dbg(&ps2dev->serio->dev, "%02x - %d\n", command, retval);
ps2_end_command(ps2dev);
return retval;
}
EXPORT_SYMBOL(ps2_sliced_command);
/**
* ps2_init - initializes ps2dev structure
* @ps2dev: structure to be initialized
* @serio: serio port associated with the PS/2 device
* @pre_receive_handler: validation handler to check basic communication state
* @receive_handler: main protocol handler
*
* Prepares ps2dev structure for use in drivers for PS/2 devices.
*/
void ps2_init(struct ps2dev *ps2dev, struct serio *serio,
ps2_pre_receive_handler_t pre_receive_handler,
ps2_receive_handler_t receive_handler)
{
ps2dev->pre_receive_handler = pre_receive_handler;
ps2dev->receive_handler = receive_handler;
mutex_init(&ps2dev->cmd_mutex);
lockdep_set_subclass(&ps2dev->cmd_mutex, serio->depth);
init_waitqueue_head(&ps2dev->wait);
ps2dev->serio = serio;
serio_set_drvdata(serio, ps2dev);
}
EXPORT_SYMBOL(ps2_init);
/*
* ps2_handle_response() stores device's response to a command and notifies
* the process waiting for completion of the command. Note that there is a
* distinction between waiting for the first byte of the response, and
* waiting for subsequent bytes. It is done so that callers could shorten
* timeouts once first byte of response is received.
*/
static void ps2_handle_response(struct ps2dev *ps2dev, u8 data)
{
if (ps2dev->cmdcnt)
ps2dev->cmdbuf[--ps2dev->cmdcnt] = data;
if (ps2dev->flags & PS2_FLAG_CMD1) {
ps2dev->flags &= ~PS2_FLAG_CMD1;
if (ps2dev->cmdcnt)
wake_up(&ps2dev->wait);
}
if (!ps2dev->cmdcnt) {
ps2dev->flags &= ~PS2_FLAG_CMD;
wake_up(&ps2dev->wait);
}
}
/*
* ps2_handle_ack() processes ACK/NAK of a command from a PS/2 device,
* possibly applying workarounds for mice not acknowledging the "get ID"
* command.
*/
static void ps2_handle_ack(struct ps2dev *ps2dev, u8 data)
{
switch (data) {
case PS2_RET_ACK:
ps2dev->nak = 0;
break;
case PS2_RET_NAK:
ps2dev->flags |= PS2_FLAG_NAK;
ps2dev->nak = PS2_RET_NAK;
break;
case PS2_RET_ERR:
if (ps2dev->flags & PS2_FLAG_NAK) {
ps2dev->flags &= ~PS2_FLAG_NAK;
ps2dev->nak = PS2_RET_ERR;
break;
}
fallthrough;
/*
* Workaround for mice which don't ACK the Get ID command.
* These are valid mouse IDs that we recognize.
*/
case 0x00:
case 0x03:
case 0x04:
if (ps2dev->flags & PS2_FLAG_WAITID) {
ps2dev->nak = 0;
break;
}
fallthrough;
default:
/*
* Do not signal errors if we get unexpected reply while
* waiting for an ACK to the initial (first) command byte:
* the device might not be quiesced yet and continue
* delivering data. For certain commands (such as set leds and
* set repeat rate) that can be used during normal device
* operation, we even pass this data byte to the normal receive
* handler.
* Note that we reset PS2_FLAG_WAITID flag, so the workaround
* for mice not acknowledging the Get ID command only triggers
* on the 1st byte; if device spews data we really want to see
* a real ACK from it.
*/
dev_dbg(&ps2dev->serio->dev, "unexpected %#02x\n", data);
if (ps2dev->flags & PS2_FLAG_PASS_NOACK)
ps2dev->receive_handler(ps2dev, data);
ps2dev->flags &= ~(PS2_FLAG_WAITID | PS2_FLAG_PASS_NOACK);
return;
}
if (!ps2dev->nak)
ps2dev->flags &= ~PS2_FLAG_NAK;
ps2dev->flags &= ~PS2_FLAG_ACK;
if (!ps2dev->nak && data != PS2_RET_ACK)
ps2_handle_response(ps2dev, data);
else
wake_up(&ps2dev->wait);
}
/*
* Clears state of PS/2 device after communication error by resetting majority
* of flags and waking up waiters, if any.
*/
static void ps2_cleanup(struct ps2dev *ps2dev)
{
unsigned long old_flags = ps2dev->flags;
/* reset all flags except last nak */
ps2dev->flags &= PS2_FLAG_NAK;
if (old_flags & PS2_FLAG_ACK)
ps2dev->nak = 1;
if (old_flags & (PS2_FLAG_ACK | PS2_FLAG_CMD))
wake_up(&ps2dev->wait);
}
/**
* ps2_interrupt - common interrupt handler for PS/2 devices
* @serio: serio port for the device
* @data: a data byte received from the device
* @flags: flags such as %SERIO_PARITY or %SERIO_TIMEOUT indicating state of
* the data transfer
*
* ps2_interrupt() invokes pre-receive handler, optionally handles command
* acknowledgement and response from the device, and finally passes the data
* to the main protocol handler for future processing.
*/
irqreturn_t ps2_interrupt(struct serio *serio, u8 data, unsigned int flags) {
struct ps2dev *ps2dev = serio_get_drvdata(serio);
enum ps2_disposition rc;
rc = ps2dev->pre_receive_handler(ps2dev, data, flags);
switch (rc) {
case PS2_ERROR:
ps2_cleanup(ps2dev);
break;
case PS2_IGNORE:
break;
case PS2_PROCESS:
if (ps2dev->flags & PS2_FLAG_ACK)
ps2_handle_ack(ps2dev, data);
else if (ps2dev->flags & PS2_FLAG_CMD)
ps2_handle_response(ps2dev, data);
else
ps2dev->receive_handler(ps2dev, data);
break;
}
return IRQ_HANDLED;
}
EXPORT_SYMBOL(ps2_interrupt);
MODULE_AUTHOR("Dmitry Torokhov <[email protected]>");
MODULE_DESCRIPTION("PS/2 driver library");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/serio/libps2.c
|
/*
* userio kernel serio device emulation module
* Copyright (C) 2015 Red Hat
* Copyright (C) 2015 Stephen Chandler Paul <[email protected]>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
* General Public License for more details.
*/
#include <linux/circ_buf.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/serio.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/sched.h>
#include <linux/poll.h>
#include <uapi/linux/userio.h>
#define USERIO_NAME "userio"
#define USERIO_BUFSIZE 16
static struct miscdevice userio_misc;
struct userio_device {
struct serio *serio;
struct mutex mutex;
bool running;
u8 head;
u8 tail;
spinlock_t buf_lock;
unsigned char buf[USERIO_BUFSIZE];
wait_queue_head_t waitq;
};
/**
* userio_device_write - Write data from serio to a userio device in userspace
* @id: The serio port for the userio device
* @val: The data to write to the device
*/
static int userio_device_write(struct serio *id, unsigned char val)
{
struct userio_device *userio = id->port_data;
unsigned long flags;
spin_lock_irqsave(&userio->buf_lock, flags);
userio->buf[userio->head] = val;
userio->head = (userio->head + 1) % USERIO_BUFSIZE;
if (userio->head == userio->tail)
dev_warn(userio_misc.this_device,
"Buffer overflowed, userio client isn't keeping up");
spin_unlock_irqrestore(&userio->buf_lock, flags);
wake_up_interruptible(&userio->waitq);
return 0;
}
static int userio_char_open(struct inode *inode, struct file *file)
{
struct userio_device *userio;
userio = kzalloc(sizeof(struct userio_device), GFP_KERNEL);
if (!userio)
return -ENOMEM;
mutex_init(&userio->mutex);
spin_lock_init(&userio->buf_lock);
init_waitqueue_head(&userio->waitq);
userio->serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!userio->serio) {
kfree(userio);
return -ENOMEM;
}
userio->serio->write = userio_device_write;
userio->serio->port_data = userio;
file->private_data = userio;
return 0;
}
static int userio_char_release(struct inode *inode, struct file *file)
{
struct userio_device *userio = file->private_data;
if (userio->running) {
/*
* Don't free the serio port here, serio_unregister_port()
* does it for us.
*/
serio_unregister_port(userio->serio);
} else {
kfree(userio->serio);
}
kfree(userio);
return 0;
}
static ssize_t userio_char_read(struct file *file, char __user *user_buffer,
size_t count, loff_t *ppos)
{
struct userio_device *userio = file->private_data;
int error;
size_t nonwrap_len, copylen;
unsigned char buf[USERIO_BUFSIZE];
unsigned long flags;
/*
* By the time we get here, the data that was waiting might have
* been taken by another thread. Grab the buffer lock and check if
* there's still any data waiting, otherwise repeat this process
* until we have data (unless the file descriptor is non-blocking
* of course).
*/
for (;;) {
spin_lock_irqsave(&userio->buf_lock, flags);
nonwrap_len = CIRC_CNT_TO_END(userio->head,
userio->tail,
USERIO_BUFSIZE);
copylen = min(nonwrap_len, count);
if (copylen) {
memcpy(buf, &userio->buf[userio->tail], copylen);
userio->tail = (userio->tail + copylen) %
USERIO_BUFSIZE;
}
spin_unlock_irqrestore(&userio->buf_lock, flags);
if (nonwrap_len)
break;
/* buffer was/is empty */
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
/*
* count == 0 is special - no IO is done but we check
* for error conditions (see above).
*/
if (count == 0)
return 0;
error = wait_event_interruptible(userio->waitq,
userio->head != userio->tail);
if (error)
return error;
}
if (copylen)
if (copy_to_user(user_buffer, buf, copylen))
return -EFAULT;
return copylen;
}
static ssize_t userio_char_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos)
{
struct userio_device *userio = file->private_data;
struct userio_cmd cmd;
int error;
if (count != sizeof(cmd)) {
dev_warn(userio_misc.this_device, "Invalid payload size\n");
return -EINVAL;
}
if (copy_from_user(&cmd, buffer, sizeof(cmd)))
return -EFAULT;
error = mutex_lock_interruptible(&userio->mutex);
if (error)
return error;
switch (cmd.type) {
case USERIO_CMD_REGISTER:
if (!userio->serio->id.type) {
dev_warn(userio_misc.this_device,
"No port type given on /dev/userio\n");
error = -EINVAL;
goto out;
}
if (userio->running) {
dev_warn(userio_misc.this_device,
"Begin command sent, but we're already running\n");
error = -EBUSY;
goto out;
}
userio->running = true;
serio_register_port(userio->serio);
break;
case USERIO_CMD_SET_PORT_TYPE:
if (userio->running) {
dev_warn(userio_misc.this_device,
"Can't change port type on an already running userio instance\n");
error = -EBUSY;
goto out;
}
userio->serio->id.type = cmd.data;
break;
case USERIO_CMD_SEND_INTERRUPT:
if (!userio->running) {
dev_warn(userio_misc.this_device,
"The device must be registered before sending interrupts\n");
error = -ENODEV;
goto out;
}
serio_interrupt(userio->serio, cmd.data, 0);
break;
default:
error = -EOPNOTSUPP;
goto out;
}
out:
mutex_unlock(&userio->mutex);
return error ?: count;
}
static __poll_t userio_char_poll(struct file *file, poll_table *wait)
{
struct userio_device *userio = file->private_data;
poll_wait(file, &userio->waitq, wait);
if (userio->head != userio->tail)
return EPOLLIN | EPOLLRDNORM;
return 0;
}
static const struct file_operations userio_fops = {
.owner = THIS_MODULE,
.open = userio_char_open,
.release = userio_char_release,
.read = userio_char_read,
.write = userio_char_write,
.poll = userio_char_poll,
.llseek = no_llseek,
};
static struct miscdevice userio_misc = {
.fops = &userio_fops,
.minor = USERIO_MINOR,
.name = USERIO_NAME,
};
module_driver(userio_misc, misc_register, misc_deregister);
MODULE_ALIAS_MISCDEV(USERIO_MINOR);
MODULE_ALIAS("devname:" USERIO_NAME);
MODULE_AUTHOR("Stephen Chandler Paul <[email protected]>");
MODULE_DESCRIPTION("Virtual Serio Device Support");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/serio/userio.c
|
// SPDX-License-Identifier: GPL-2.0
/*
* SGI IOC3 PS/2 controller driver for linux
*
* Copyright (C) 2019 Thomas Bogendoerfer <[email protected]>
*
* Based on code Copyright (C) 2005 Stanislaw Skowronek <[email protected]>
* Copyright (C) 2009 Johannes Dickgreber <[email protected]>
*/
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/serio.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <asm/sn/ioc3.h>
struct ioc3kbd_data {
struct ioc3_serioregs __iomem *regs;
struct serio *kbd, *aux;
bool kbd_exists, aux_exists;
int irq;
};
static int ioc3kbd_wait(struct ioc3_serioregs __iomem *regs, u32 mask)
{
unsigned long timeout = 0;
while ((readl(®s->km_csr) & mask) && (timeout < 250)) {
udelay(50);
timeout++;
}
return (timeout >= 250) ? -ETIMEDOUT : 0;
}
static int ioc3kbd_write(struct serio *dev, u8 val)
{
struct ioc3kbd_data *d = dev->port_data;
int ret;
ret = ioc3kbd_wait(d->regs, KM_CSR_K_WRT_PEND);
if (ret)
return ret;
writel(val, &d->regs->k_wd);
return 0;
}
static int ioc3kbd_start(struct serio *dev)
{
struct ioc3kbd_data *d = dev->port_data;
d->kbd_exists = true;
return 0;
}
static void ioc3kbd_stop(struct serio *dev)
{
struct ioc3kbd_data *d = dev->port_data;
d->kbd_exists = false;
}
static int ioc3aux_write(struct serio *dev, u8 val)
{
struct ioc3kbd_data *d = dev->port_data;
int ret;
ret = ioc3kbd_wait(d->regs, KM_CSR_M_WRT_PEND);
if (ret)
return ret;
writel(val, &d->regs->m_wd);
return 0;
}
static int ioc3aux_start(struct serio *dev)
{
struct ioc3kbd_data *d = dev->port_data;
d->aux_exists = true;
return 0;
}
static void ioc3aux_stop(struct serio *dev)
{
struct ioc3kbd_data *d = dev->port_data;
d->aux_exists = false;
}
static void ioc3kbd_process_data(struct serio *dev, u32 data)
{
if (data & KM_RD_VALID_0)
serio_interrupt(dev, (data >> KM_RD_DATA_0_SHIFT) & 0xff, 0);
if (data & KM_RD_VALID_1)
serio_interrupt(dev, (data >> KM_RD_DATA_1_SHIFT) & 0xff, 0);
if (data & KM_RD_VALID_2)
serio_interrupt(dev, (data >> KM_RD_DATA_2_SHIFT) & 0xff, 0);
}
static irqreturn_t ioc3kbd_intr(int itq, void *dev_id)
{
struct ioc3kbd_data *d = dev_id;
u32 data_k, data_m;
data_k = readl(&d->regs->k_rd);
if (d->kbd_exists)
ioc3kbd_process_data(d->kbd, data_k);
data_m = readl(&d->regs->m_rd);
if (d->aux_exists)
ioc3kbd_process_data(d->aux, data_m);
return IRQ_HANDLED;
}
static int ioc3kbd_probe(struct platform_device *pdev)
{
struct ioc3_serioregs __iomem *regs;
struct device *dev = &pdev->dev;
struct ioc3kbd_data *d;
struct serio *sk, *sa;
int irq, ret;
regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(regs))
return PTR_ERR(regs);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -ENXIO;
d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
if (!d)
return -ENOMEM;
sk = kzalloc(sizeof(*sk), GFP_KERNEL);
if (!sk)
return -ENOMEM;
sa = kzalloc(sizeof(*sa), GFP_KERNEL);
if (!sa) {
kfree(sk);
return -ENOMEM;
}
sk->id.type = SERIO_8042;
sk->write = ioc3kbd_write;
sk->start = ioc3kbd_start;
sk->stop = ioc3kbd_stop;
snprintf(sk->name, sizeof(sk->name), "IOC3 keyboard %d", pdev->id);
snprintf(sk->phys, sizeof(sk->phys), "ioc3/serio%dkbd", pdev->id);
sk->port_data = d;
sk->dev.parent = dev;
sa->id.type = SERIO_8042;
sa->write = ioc3aux_write;
sa->start = ioc3aux_start;
sa->stop = ioc3aux_stop;
snprintf(sa->name, sizeof(sa->name), "IOC3 auxiliary %d", pdev->id);
snprintf(sa->phys, sizeof(sa->phys), "ioc3/serio%daux", pdev->id);
sa->port_data = d;
sa->dev.parent = dev;
d->regs = regs;
d->kbd = sk;
d->aux = sa;
d->irq = irq;
platform_set_drvdata(pdev, d);
serio_register_port(d->kbd);
serio_register_port(d->aux);
ret = request_irq(irq, ioc3kbd_intr, IRQF_SHARED, "ioc3-kbd", d);
if (ret) {
dev_err(dev, "could not request IRQ %d\n", irq);
serio_unregister_port(d->kbd);
serio_unregister_port(d->aux);
return ret;
}
/* enable ports */
writel(KM_CSR_K_CLAMP_3 | KM_CSR_M_CLAMP_3, ®s->km_csr);
return 0;
}
static int ioc3kbd_remove(struct platform_device *pdev)
{
struct ioc3kbd_data *d = platform_get_drvdata(pdev);
free_irq(d->irq, d);
serio_unregister_port(d->kbd);
serio_unregister_port(d->aux);
return 0;
}
static struct platform_driver ioc3kbd_driver = {
.probe = ioc3kbd_probe,
.remove = ioc3kbd_remove,
.driver = {
.name = "ioc3-kbd",
},
};
module_platform_driver(ioc3kbd_driver);
MODULE_AUTHOR("Thomas Bogendoerfer <[email protected]>");
MODULE_DESCRIPTION("SGI IOC3 serio driver");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/serio/ioc3kbd.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* GPIO based serio bus driver for bit banging the PS/2 protocol
*
* Author: Danilo Krummrich <[email protected]>
*/
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/serio.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <linux/completion.h>
#include <linux/mutex.h>
#include <linux/preempt.h>
#include <linux/property.h>
#include <linux/of.h>
#include <linux/jiffies.h>
#include <linux/delay.h>
#include <linux/timekeeping.h>
#define DRIVER_NAME "ps2-gpio"
#define PS2_MODE_RX 0
#define PS2_MODE_TX 1
#define PS2_START_BIT 0
#define PS2_DATA_BIT0 1
#define PS2_DATA_BIT1 2
#define PS2_DATA_BIT2 3
#define PS2_DATA_BIT3 4
#define PS2_DATA_BIT4 5
#define PS2_DATA_BIT5 6
#define PS2_DATA_BIT6 7
#define PS2_DATA_BIT7 8
#define PS2_PARITY_BIT 9
#define PS2_STOP_BIT 10
#define PS2_ACK_BIT 11
#define PS2_DEV_RET_ACK 0xfa
#define PS2_DEV_RET_NACK 0xfe
#define PS2_CMD_RESEND 0xfe
/*
* The PS2 protocol specifies a clock frequency between 10kHz and 16.7kHz,
* therefore the maximal interrupt interval should be 100us and the minimum
* interrupt interval should be ~60us. Let's allow +/- 20us for frequency
* deviations and interrupt latency.
*
* The data line must be samples after ~30us to 50us after the falling edge,
* since the device updates the data line at the rising edge.
*
* ___ ______ ______ ______ ___
* \ / \ / \ / \ /
* \ / \ / \ / \ /
* \______/ \______/ \______/ \______/
*
* |-----------------| |--------|
* 60us/100us 30us/50us
*/
#define PS2_CLK_FREQ_MIN_HZ 10000
#define PS2_CLK_FREQ_MAX_HZ 16700
#define PS2_CLK_MIN_INTERVAL_US ((1000 * 1000) / PS2_CLK_FREQ_MAX_HZ)
#define PS2_CLK_MAX_INTERVAL_US ((1000 * 1000) / PS2_CLK_FREQ_MIN_HZ)
#define PS2_IRQ_MIN_INTERVAL_US (PS2_CLK_MIN_INTERVAL_US - 20)
#define PS2_IRQ_MAX_INTERVAL_US (PS2_CLK_MAX_INTERVAL_US + 20)
struct ps2_gpio_data {
struct device *dev;
struct serio *serio;
unsigned char mode;
struct gpio_desc *gpio_clk;
struct gpio_desc *gpio_data;
bool write_enable;
int irq;
ktime_t t_irq_now;
ktime_t t_irq_last;
struct {
unsigned char cnt;
unsigned char byte;
} rx;
struct {
unsigned char cnt;
unsigned char byte;
ktime_t t_xfer_start;
ktime_t t_xfer_end;
struct completion complete;
struct mutex mutex;
struct delayed_work work;
} tx;
};
static int ps2_gpio_open(struct serio *serio)
{
struct ps2_gpio_data *drvdata = serio->port_data;
drvdata->t_irq_last = 0;
drvdata->tx.t_xfer_end = 0;
enable_irq(drvdata->irq);
return 0;
}
static void ps2_gpio_close(struct serio *serio)
{
struct ps2_gpio_data *drvdata = serio->port_data;
flush_delayed_work(&drvdata->tx.work);
disable_irq(drvdata->irq);
}
static int __ps2_gpio_write(struct serio *serio, unsigned char val)
{
struct ps2_gpio_data *drvdata = serio->port_data;
disable_irq_nosync(drvdata->irq);
gpiod_direction_output(drvdata->gpio_clk, 0);
drvdata->mode = PS2_MODE_TX;
drvdata->tx.byte = val;
schedule_delayed_work(&drvdata->tx.work, usecs_to_jiffies(200));
return 0;
}
static int ps2_gpio_write(struct serio *serio, unsigned char val)
{
struct ps2_gpio_data *drvdata = serio->port_data;
int ret = 0;
if (in_task()) {
mutex_lock(&drvdata->tx.mutex);
__ps2_gpio_write(serio, val);
if (!wait_for_completion_timeout(&drvdata->tx.complete,
msecs_to_jiffies(10000)))
ret = SERIO_TIMEOUT;
mutex_unlock(&drvdata->tx.mutex);
} else {
__ps2_gpio_write(serio, val);
}
return ret;
}
static void ps2_gpio_tx_work_fn(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct ps2_gpio_data *drvdata = container_of(dwork,
struct ps2_gpio_data,
tx.work);
drvdata->tx.t_xfer_start = ktime_get();
enable_irq(drvdata->irq);
gpiod_direction_output(drvdata->gpio_data, 0);
gpiod_direction_input(drvdata->gpio_clk);
}
static irqreturn_t ps2_gpio_irq_rx(struct ps2_gpio_data *drvdata)
{
unsigned char byte, cnt;
int data;
int rxflags = 0;
s64 us_delta;
byte = drvdata->rx.byte;
cnt = drvdata->rx.cnt;
drvdata->t_irq_now = ktime_get();
/*
* We need to consider spurious interrupts happening right after
* a TX xfer finished.
*/
us_delta = ktime_us_delta(drvdata->t_irq_now, drvdata->tx.t_xfer_end);
if (unlikely(us_delta < PS2_IRQ_MIN_INTERVAL_US))
goto end;
us_delta = ktime_us_delta(drvdata->t_irq_now, drvdata->t_irq_last);
if (us_delta > PS2_IRQ_MAX_INTERVAL_US && cnt) {
dev_err(drvdata->dev,
"RX: timeout, probably we missed an interrupt\n");
goto err;
} else if (unlikely(us_delta < PS2_IRQ_MIN_INTERVAL_US)) {
/* Ignore spurious IRQs. */
goto end;
}
drvdata->t_irq_last = drvdata->t_irq_now;
data = gpiod_get_value(drvdata->gpio_data);
if (unlikely(data < 0)) {
dev_err(drvdata->dev, "RX: failed to get data gpio val: %d\n",
data);
goto err;
}
switch (cnt) {
case PS2_START_BIT:
/* start bit should be low */
if (unlikely(data)) {
dev_err(drvdata->dev, "RX: start bit should be low\n");
goto err;
}
break;
case PS2_DATA_BIT0:
case PS2_DATA_BIT1:
case PS2_DATA_BIT2:
case PS2_DATA_BIT3:
case PS2_DATA_BIT4:
case PS2_DATA_BIT5:
case PS2_DATA_BIT6:
case PS2_DATA_BIT7:
/* processing data bits */
if (data)
byte |= (data << (cnt - 1));
break;
case PS2_PARITY_BIT:
/* check odd parity */
if (!((hweight8(byte) & 1) ^ data)) {
rxflags |= SERIO_PARITY;
dev_warn(drvdata->dev, "RX: parity error\n");
if (!drvdata->write_enable)
goto err;
}
break;
case PS2_STOP_BIT:
/* stop bit should be high */
if (unlikely(!data)) {
dev_err(drvdata->dev, "RX: stop bit should be high\n");
goto err;
}
/*
* Do not send spurious ACK's and NACK's when write fn is
* not provided.
*/
if (!drvdata->write_enable) {
if (byte == PS2_DEV_RET_NACK)
goto err;
else if (byte == PS2_DEV_RET_ACK)
break;
}
serio_interrupt(drvdata->serio, byte, rxflags);
dev_dbg(drvdata->dev, "RX: sending byte 0x%x\n", byte);
cnt = byte = 0;
goto end; /* success */
default:
dev_err(drvdata->dev, "RX: got out of sync with the device\n");
goto err;
}
cnt++;
goto end; /* success */
err:
cnt = byte = 0;
__ps2_gpio_write(drvdata->serio, PS2_CMD_RESEND);
end:
drvdata->rx.cnt = cnt;
drvdata->rx.byte = byte;
return IRQ_HANDLED;
}
static irqreturn_t ps2_gpio_irq_tx(struct ps2_gpio_data *drvdata)
{
unsigned char byte, cnt;
int data;
s64 us_delta;
cnt = drvdata->tx.cnt;
byte = drvdata->tx.byte;
drvdata->t_irq_now = ktime_get();
/*
* There might be pending IRQs since we disabled IRQs in
* __ps2_gpio_write(). We can expect at least one clock period until
* the device generates the first falling edge after releasing the
* clock line.
*/
us_delta = ktime_us_delta(drvdata->t_irq_now,
drvdata->tx.t_xfer_start);
if (unlikely(us_delta < PS2_CLK_MIN_INTERVAL_US))
goto end;
us_delta = ktime_us_delta(drvdata->t_irq_now, drvdata->t_irq_last);
if (us_delta > PS2_IRQ_MAX_INTERVAL_US && cnt > 1) {
dev_err(drvdata->dev,
"TX: timeout, probably we missed an interrupt\n");
goto err;
} else if (unlikely(us_delta < PS2_IRQ_MIN_INTERVAL_US)) {
/* Ignore spurious IRQs. */
goto end;
}
drvdata->t_irq_last = drvdata->t_irq_now;
switch (cnt) {
case PS2_START_BIT:
/* should never happen */
dev_err(drvdata->dev,
"TX: start bit should have been sent already\n");
goto err;
case PS2_DATA_BIT0:
case PS2_DATA_BIT1:
case PS2_DATA_BIT2:
case PS2_DATA_BIT3:
case PS2_DATA_BIT4:
case PS2_DATA_BIT5:
case PS2_DATA_BIT6:
case PS2_DATA_BIT7:
data = byte & BIT(cnt - 1);
gpiod_set_value(drvdata->gpio_data, data);
break;
case PS2_PARITY_BIT:
/* do odd parity */
data = !(hweight8(byte) & 1);
gpiod_set_value(drvdata->gpio_data, data);
break;
case PS2_STOP_BIT:
/* release data line to generate stop bit */
gpiod_direction_input(drvdata->gpio_data);
break;
case PS2_ACK_BIT:
data = gpiod_get_value(drvdata->gpio_data);
if (data) {
dev_warn(drvdata->dev, "TX: received NACK, retry\n");
goto err;
}
drvdata->tx.t_xfer_end = ktime_get();
drvdata->mode = PS2_MODE_RX;
complete(&drvdata->tx.complete);
cnt = 1;
goto end; /* success */
default:
/*
* Probably we missed the stop bit. Therefore we release data
* line and try again.
*/
gpiod_direction_input(drvdata->gpio_data);
dev_err(drvdata->dev, "TX: got out of sync with the device\n");
goto err;
}
cnt++;
goto end; /* success */
err:
cnt = 1;
gpiod_direction_input(drvdata->gpio_data);
__ps2_gpio_write(drvdata->serio, drvdata->tx.byte);
end:
drvdata->tx.cnt = cnt;
return IRQ_HANDLED;
}
static irqreturn_t ps2_gpio_irq(int irq, void *dev_id)
{
struct ps2_gpio_data *drvdata = dev_id;
return drvdata->mode ? ps2_gpio_irq_tx(drvdata) :
ps2_gpio_irq_rx(drvdata);
}
static int ps2_gpio_get_props(struct device *dev,
struct ps2_gpio_data *drvdata)
{
enum gpiod_flags gflags;
/* Enforce open drain, since this is required by the PS/2 bus. */
gflags = GPIOD_IN | GPIOD_FLAGS_BIT_OPEN_DRAIN;
drvdata->gpio_data = devm_gpiod_get(dev, "data", gflags);
if (IS_ERR(drvdata->gpio_data)) {
dev_err(dev, "failed to request data gpio: %ld",
PTR_ERR(drvdata->gpio_data));
return PTR_ERR(drvdata->gpio_data);
}
drvdata->gpio_clk = devm_gpiod_get(dev, "clk", gflags);
if (IS_ERR(drvdata->gpio_clk)) {
dev_err(dev, "failed to request clock gpio: %ld",
PTR_ERR(drvdata->gpio_clk));
return PTR_ERR(drvdata->gpio_clk);
}
drvdata->write_enable = device_property_read_bool(dev,
"write-enable");
return 0;
}
static int ps2_gpio_probe(struct platform_device *pdev)
{
struct ps2_gpio_data *drvdata;
struct serio *serio;
struct device *dev = &pdev->dev;
int error;
drvdata = devm_kzalloc(dev, sizeof(struct ps2_gpio_data), GFP_KERNEL);
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!drvdata || !serio) {
error = -ENOMEM;
goto err_free_serio;
}
error = ps2_gpio_get_props(dev, drvdata);
if (error)
goto err_free_serio;
if (gpiod_cansleep(drvdata->gpio_data) ||
gpiod_cansleep(drvdata->gpio_clk)) {
dev_err(dev, "GPIO data or clk are connected via slow bus\n");
error = -EINVAL;
goto err_free_serio;
}
drvdata->irq = platform_get_irq(pdev, 0);
if (drvdata->irq < 0) {
error = drvdata->irq;
goto err_free_serio;
}
error = devm_request_irq(dev, drvdata->irq, ps2_gpio_irq,
IRQF_NO_THREAD, DRIVER_NAME, drvdata);
if (error) {
dev_err(dev, "failed to request irq %d: %d\n",
drvdata->irq, error);
goto err_free_serio;
}
/* Keep irq disabled until serio->open is called. */
disable_irq(drvdata->irq);
serio->id.type = SERIO_8042;
serio->open = ps2_gpio_open;
serio->close = ps2_gpio_close;
/*
* Write can be enabled in platform/dt data, but possibly it will not
* work because of the tough timings.
*/
serio->write = drvdata->write_enable ? ps2_gpio_write : NULL;
serio->port_data = drvdata;
serio->dev.parent = dev;
strscpy(serio->name, dev_name(dev), sizeof(serio->name));
strscpy(serio->phys, dev_name(dev), sizeof(serio->phys));
drvdata->serio = serio;
drvdata->dev = dev;
drvdata->mode = PS2_MODE_RX;
/*
* Tx count always starts at 1, as the start bit is sent implicitly by
* host-to-device communication initialization.
*/
drvdata->tx.cnt = 1;
INIT_DELAYED_WORK(&drvdata->tx.work, ps2_gpio_tx_work_fn);
init_completion(&drvdata->tx.complete);
mutex_init(&drvdata->tx.mutex);
serio_register_port(serio);
platform_set_drvdata(pdev, drvdata);
return 0; /* success */
err_free_serio:
kfree(serio);
return error;
}
static int ps2_gpio_remove(struct platform_device *pdev)
{
struct ps2_gpio_data *drvdata = platform_get_drvdata(pdev);
serio_unregister_port(drvdata->serio);
return 0;
}
#if defined(CONFIG_OF)
static const struct of_device_id ps2_gpio_match[] = {
{ .compatible = "ps2-gpio", },
{ },
};
MODULE_DEVICE_TABLE(of, ps2_gpio_match);
#endif
static struct platform_driver ps2_gpio_driver = {
.probe = ps2_gpio_probe,
.remove = ps2_gpio_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = of_match_ptr(ps2_gpio_match),
},
};
module_platform_driver(ps2_gpio_driver);
MODULE_AUTHOR("Danilo Krummrich <[email protected]>");
MODULE_DESCRIPTION("GPIO PS2 driver");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/serio/ps2-gpio.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* OLPC serio driver for multiplexed input from Marvell MMP security processor
*
* Copyright (C) 2011-2013 One Laptop Per Child
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/serio.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/delay.h>
/*
* The OLPC XO-1.75 and XO-4 laptops do not have a hardware PS/2 controller.
* Instead, the OLPC firmware runs a bit-banging PS/2 implementation on an
* otherwise-unused slow processor which is included in the Marvell MMP2/MMP3
* SoC, known as the "Security Processor" (SP) or "Wireless Trusted Module"
* (WTM). This firmware then reports its results via the WTM registers,
* which we read from the Application Processor (AP, i.e. main CPU) in this
* driver.
*
* On the hardware side we have a PS/2 mouse and an AT keyboard, the data
* is multiplexed through this system. We create a serio port for each one,
* and demultiplex the data accordingly.
*/
/* WTM register offsets */
#define SECURE_PROCESSOR_COMMAND 0x40
#define COMMAND_RETURN_STATUS 0x80
#define COMMAND_FIFO_STATUS 0xc4
#define PJ_RST_INTERRUPT 0xc8
#define PJ_INTERRUPT_MASK 0xcc
/*
* The upper byte of SECURE_PROCESSOR_COMMAND and COMMAND_RETURN_STATUS is
* used to identify which port (device) is being talked to. The lower byte
* is the data being sent/received.
*/
#define PORT_MASK 0xff00
#define DATA_MASK 0x00ff
#define PORT_SHIFT 8
#define KEYBOARD_PORT 0
#define TOUCHPAD_PORT 1
/* COMMAND_FIFO_STATUS */
#define CMD_CNTR_MASK 0x7 /* Number of pending/unprocessed commands */
#define MAX_PENDING_CMDS 4 /* from device specs */
/* PJ_RST_INTERRUPT */
#define SP_COMMAND_COMPLETE_RESET 0x1
/* PJ_INTERRUPT_MASK */
#define INT_0 (1 << 0)
/* COMMAND_FIFO_STATUS */
#define CMD_STS_MASK 0x100
struct olpc_apsp {
struct device *dev;
struct serio *kbio;
struct serio *padio;
void __iomem *base;
int open_count;
int irq;
};
static int olpc_apsp_write(struct serio *port, unsigned char val)
{
struct olpc_apsp *priv = port->port_data;
unsigned int i;
u32 which = 0;
if (port == priv->padio)
which = TOUCHPAD_PORT << PORT_SHIFT;
else
which = KEYBOARD_PORT << PORT_SHIFT;
dev_dbg(priv->dev, "olpc_apsp_write which=%x val=%x\n", which, val);
for (i = 0; i < 50; i++) {
u32 sts = readl(priv->base + COMMAND_FIFO_STATUS);
if ((sts & CMD_CNTR_MASK) < MAX_PENDING_CMDS) {
writel(which | val,
priv->base + SECURE_PROCESSOR_COMMAND);
return 0;
}
/* SP busy. This has not been seen in practice. */
mdelay(1);
}
dev_dbg(priv->dev, "olpc_apsp_write timeout, status=%x\n",
readl(priv->base + COMMAND_FIFO_STATUS));
return -ETIMEDOUT;
}
static irqreturn_t olpc_apsp_rx(int irq, void *dev_id)
{
struct olpc_apsp *priv = dev_id;
unsigned int w, tmp;
struct serio *serio;
/*
* Write 1 to PJ_RST_INTERRUPT to acknowledge and clear the interrupt
* Write 0xff00 to SECURE_PROCESSOR_COMMAND.
*/
tmp = readl(priv->base + PJ_RST_INTERRUPT);
if (!(tmp & SP_COMMAND_COMPLETE_RESET)) {
dev_warn(priv->dev, "spurious interrupt?\n");
return IRQ_NONE;
}
w = readl(priv->base + COMMAND_RETURN_STATUS);
dev_dbg(priv->dev, "olpc_apsp_rx %x\n", w);
if (w >> PORT_SHIFT == KEYBOARD_PORT)
serio = priv->kbio;
else
serio = priv->padio;
serio_interrupt(serio, w & DATA_MASK, 0);
/* Ack and clear interrupt */
writel(tmp | SP_COMMAND_COMPLETE_RESET, priv->base + PJ_RST_INTERRUPT);
writel(PORT_MASK, priv->base + SECURE_PROCESSOR_COMMAND);
pm_wakeup_event(priv->dev, 1000);
return IRQ_HANDLED;
}
static int olpc_apsp_open(struct serio *port)
{
struct olpc_apsp *priv = port->port_data;
unsigned int tmp;
unsigned long l;
if (priv->open_count++ == 0) {
l = readl(priv->base + COMMAND_FIFO_STATUS);
if (!(l & CMD_STS_MASK)) {
dev_err(priv->dev, "SP cannot accept commands.\n");
return -EIO;
}
/* Enable interrupt 0 by clearing its bit */
tmp = readl(priv->base + PJ_INTERRUPT_MASK);
writel(tmp & ~INT_0, priv->base + PJ_INTERRUPT_MASK);
}
return 0;
}
static void olpc_apsp_close(struct serio *port)
{
struct olpc_apsp *priv = port->port_data;
unsigned int tmp;
if (--priv->open_count == 0) {
/* Disable interrupt 0 */
tmp = readl(priv->base + PJ_INTERRUPT_MASK);
writel(tmp | INT_0, priv->base + PJ_INTERRUPT_MASK);
}
}
static int olpc_apsp_probe(struct platform_device *pdev)
{
struct serio *kb_serio, *pad_serio;
struct olpc_apsp *priv;
int error;
priv = devm_kzalloc(&pdev->dev, sizeof(struct olpc_apsp), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = &pdev->dev;
priv->base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
if (IS_ERR(priv->base)) {
dev_err(&pdev->dev, "Failed to map WTM registers\n");
return PTR_ERR(priv->base);
}
priv->irq = platform_get_irq(pdev, 0);
if (priv->irq < 0)
return priv->irq;
/* KEYBOARD */
kb_serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!kb_serio)
return -ENOMEM;
kb_serio->id.type = SERIO_8042_XL;
kb_serio->write = olpc_apsp_write;
kb_serio->open = olpc_apsp_open;
kb_serio->close = olpc_apsp_close;
kb_serio->port_data = priv;
kb_serio->dev.parent = &pdev->dev;
strscpy(kb_serio->name, "sp keyboard", sizeof(kb_serio->name));
strscpy(kb_serio->phys, "sp/serio0", sizeof(kb_serio->phys));
priv->kbio = kb_serio;
serio_register_port(kb_serio);
/* TOUCHPAD */
pad_serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!pad_serio) {
error = -ENOMEM;
goto err_pad;
}
pad_serio->id.type = SERIO_8042;
pad_serio->write = olpc_apsp_write;
pad_serio->open = olpc_apsp_open;
pad_serio->close = olpc_apsp_close;
pad_serio->port_data = priv;
pad_serio->dev.parent = &pdev->dev;
strscpy(pad_serio->name, "sp touchpad", sizeof(pad_serio->name));
strscpy(pad_serio->phys, "sp/serio1", sizeof(pad_serio->phys));
priv->padio = pad_serio;
serio_register_port(pad_serio);
error = request_irq(priv->irq, olpc_apsp_rx, 0, "olpc-apsp", priv);
if (error) {
dev_err(&pdev->dev, "Failed to request IRQ\n");
goto err_irq;
}
device_init_wakeup(priv->dev, 1);
platform_set_drvdata(pdev, priv);
dev_dbg(&pdev->dev, "probed successfully.\n");
return 0;
err_irq:
serio_unregister_port(pad_serio);
err_pad:
serio_unregister_port(kb_serio);
return error;
}
static int olpc_apsp_remove(struct platform_device *pdev)
{
struct olpc_apsp *priv = platform_get_drvdata(pdev);
free_irq(priv->irq, priv);
serio_unregister_port(priv->kbio);
serio_unregister_port(priv->padio);
return 0;
}
static const struct of_device_id olpc_apsp_dt_ids[] = {
{ .compatible = "olpc,ap-sp", },
{}
};
MODULE_DEVICE_TABLE(of, olpc_apsp_dt_ids);
static struct platform_driver olpc_apsp_driver = {
.probe = olpc_apsp_probe,
.remove = olpc_apsp_remove,
.driver = {
.name = "olpc-apsp",
.of_match_table = olpc_apsp_dt_ids,
},
};
MODULE_DESCRIPTION("OLPC AP-SP serio driver");
MODULE_LICENSE("GPL");
module_platform_driver(olpc_apsp_driver);
|
linux-master
|
drivers/input/serio/olpc_apsp.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Allwinner A10 PS2 host controller
*
* Author: Vishnu Patekar <[email protected]>
* Aaron.maoye <[email protected]>
*/
#include <linux/module.h>
#include <linux/serio.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#define DRIVER_NAME "sun4i-ps2"
/* register offset definitions */
#define PS2_REG_GCTL 0x00 /* PS2 Module Global Control Reg */
#define PS2_REG_DATA 0x04 /* PS2 Module Data Reg */
#define PS2_REG_LCTL 0x08 /* PS2 Module Line Control Reg */
#define PS2_REG_LSTS 0x0C /* PS2 Module Line Status Reg */
#define PS2_REG_FCTL 0x10 /* PS2 Module FIFO Control Reg */
#define PS2_REG_FSTS 0x14 /* PS2 Module FIFO Status Reg */
#define PS2_REG_CLKDR 0x18 /* PS2 Module Clock Divider Reg*/
/* PS2 GLOBAL CONTROL REGISTER PS2_GCTL */
#define PS2_GCTL_INTFLAG BIT(4)
#define PS2_GCTL_INTEN BIT(3)
#define PS2_GCTL_RESET BIT(2)
#define PS2_GCTL_MASTER BIT(1)
#define PS2_GCTL_BUSEN BIT(0)
/* PS2 LINE CONTROL REGISTER */
#define PS2_LCTL_NOACK BIT(18)
#define PS2_LCTL_TXDTOEN BIT(8)
#define PS2_LCTL_STOPERREN BIT(3)
#define PS2_LCTL_ACKERREN BIT(2)
#define PS2_LCTL_PARERREN BIT(1)
#define PS2_LCTL_RXDTOEN BIT(0)
/* PS2 LINE STATUS REGISTER */
#define PS2_LSTS_TXTDO BIT(8)
#define PS2_LSTS_STOPERR BIT(3)
#define PS2_LSTS_ACKERR BIT(2)
#define PS2_LSTS_PARERR BIT(1)
#define PS2_LSTS_RXTDO BIT(0)
#define PS2_LINE_ERROR_BIT \
(PS2_LSTS_TXTDO | PS2_LSTS_STOPERR | PS2_LSTS_ACKERR | \
PS2_LSTS_PARERR | PS2_LSTS_RXTDO)
/* PS2 FIFO CONTROL REGISTER */
#define PS2_FCTL_TXRST BIT(17)
#define PS2_FCTL_RXRST BIT(16)
#define PS2_FCTL_TXUFIEN BIT(10)
#define PS2_FCTL_TXOFIEN BIT(9)
#define PS2_FCTL_TXRDYIEN BIT(8)
#define PS2_FCTL_RXUFIEN BIT(2)
#define PS2_FCTL_RXOFIEN BIT(1)
#define PS2_FCTL_RXRDYIEN BIT(0)
/* PS2 FIFO STATUS REGISTER */
#define PS2_FSTS_TXUF BIT(10)
#define PS2_FSTS_TXOF BIT(9)
#define PS2_FSTS_TXRDY BIT(8)
#define PS2_FSTS_RXUF BIT(2)
#define PS2_FSTS_RXOF BIT(1)
#define PS2_FSTS_RXRDY BIT(0)
#define PS2_FIFO_ERROR_BIT \
(PS2_FSTS_TXUF | PS2_FSTS_TXOF | PS2_FSTS_RXUF | PS2_FSTS_RXOF)
#define PS2_SAMPLE_CLK 1000000
#define PS2_SCLK 125000
struct sun4i_ps2data {
struct serio *serio;
struct device *dev;
/* IO mapping base */
void __iomem *reg_base;
/* clock management */
struct clk *clk;
/* irq */
spinlock_t lock;
int irq;
};
static irqreturn_t sun4i_ps2_interrupt(int irq, void *dev_id)
{
struct sun4i_ps2data *drvdata = dev_id;
u32 intr_status;
u32 fifo_status;
unsigned char byte;
unsigned int rxflags = 0;
u32 rval;
spin_lock(&drvdata->lock);
/* Get the PS/2 interrupts and clear them */
intr_status = readl(drvdata->reg_base + PS2_REG_LSTS);
fifo_status = readl(drvdata->reg_base + PS2_REG_FSTS);
/* Check line status register */
if (intr_status & PS2_LINE_ERROR_BIT) {
rxflags = (intr_status & PS2_LINE_ERROR_BIT) ? SERIO_FRAME : 0;
rxflags |= (intr_status & PS2_LSTS_PARERR) ? SERIO_PARITY : 0;
rxflags |= (intr_status & PS2_LSTS_PARERR) ? SERIO_TIMEOUT : 0;
rval = PS2_LSTS_TXTDO | PS2_LSTS_STOPERR | PS2_LSTS_ACKERR |
PS2_LSTS_PARERR | PS2_LSTS_RXTDO;
writel(rval, drvdata->reg_base + PS2_REG_LSTS);
}
/* Check FIFO status register */
if (fifo_status & PS2_FIFO_ERROR_BIT) {
rval = PS2_FSTS_TXUF | PS2_FSTS_TXOF | PS2_FSTS_TXRDY |
PS2_FSTS_RXUF | PS2_FSTS_RXOF | PS2_FSTS_RXRDY;
writel(rval, drvdata->reg_base + PS2_REG_FSTS);
}
rval = (fifo_status >> 16) & 0x3;
while (rval--) {
byte = readl(drvdata->reg_base + PS2_REG_DATA) & 0xff;
serio_interrupt(drvdata->serio, byte, rxflags);
}
writel(intr_status, drvdata->reg_base + PS2_REG_LSTS);
writel(fifo_status, drvdata->reg_base + PS2_REG_FSTS);
spin_unlock(&drvdata->lock);
return IRQ_HANDLED;
}
static int sun4i_ps2_open(struct serio *serio)
{
struct sun4i_ps2data *drvdata = serio->port_data;
u32 src_clk = 0;
u32 clk_scdf;
u32 clk_pcdf;
u32 rval;
unsigned long flags;
/* Set line control and enable interrupt */
rval = PS2_LCTL_STOPERREN | PS2_LCTL_ACKERREN
| PS2_LCTL_PARERREN | PS2_LCTL_RXDTOEN;
writel(rval, drvdata->reg_base + PS2_REG_LCTL);
/* Reset FIFO */
rval = PS2_FCTL_TXRST | PS2_FCTL_RXRST | PS2_FCTL_TXUFIEN
| PS2_FCTL_TXOFIEN | PS2_FCTL_RXUFIEN
| PS2_FCTL_RXOFIEN | PS2_FCTL_RXRDYIEN;
writel(rval, drvdata->reg_base + PS2_REG_FCTL);
src_clk = clk_get_rate(drvdata->clk);
/* Set clock divider register */
clk_scdf = src_clk / PS2_SAMPLE_CLK - 1;
clk_pcdf = PS2_SAMPLE_CLK / PS2_SCLK - 1;
rval = (clk_scdf << 8) | clk_pcdf;
writel(rval, drvdata->reg_base + PS2_REG_CLKDR);
/* Set global control register */
rval = PS2_GCTL_RESET | PS2_GCTL_INTEN | PS2_GCTL_MASTER
| PS2_GCTL_BUSEN;
spin_lock_irqsave(&drvdata->lock, flags);
writel(rval, drvdata->reg_base + PS2_REG_GCTL);
spin_unlock_irqrestore(&drvdata->lock, flags);
return 0;
}
static void sun4i_ps2_close(struct serio *serio)
{
struct sun4i_ps2data *drvdata = serio->port_data;
u32 rval;
/* Shut off the interrupt */
rval = readl(drvdata->reg_base + PS2_REG_GCTL);
writel(rval & ~(PS2_GCTL_INTEN), drvdata->reg_base + PS2_REG_GCTL);
synchronize_irq(drvdata->irq);
}
static int sun4i_ps2_write(struct serio *serio, unsigned char val)
{
unsigned long expire = jiffies + msecs_to_jiffies(10000);
struct sun4i_ps2data *drvdata = serio->port_data;
do {
if (readl(drvdata->reg_base + PS2_REG_FSTS) & PS2_FSTS_TXRDY) {
writel(val, drvdata->reg_base + PS2_REG_DATA);
return 0;
}
} while (time_before(jiffies, expire));
return SERIO_TIMEOUT;
}
static int sun4i_ps2_probe(struct platform_device *pdev)
{
struct resource *res; /* IO mem resources */
struct sun4i_ps2data *drvdata;
struct serio *serio;
struct device *dev = &pdev->dev;
int error;
drvdata = kzalloc(sizeof(struct sun4i_ps2data), GFP_KERNEL);
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!drvdata || !serio) {
error = -ENOMEM;
goto err_free_mem;
}
spin_lock_init(&drvdata->lock);
/* IO */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "failed to locate registers\n");
error = -ENXIO;
goto err_free_mem;
}
drvdata->reg_base = ioremap(res->start, resource_size(res));
if (!drvdata->reg_base) {
dev_err(dev, "failed to map registers\n");
error = -ENOMEM;
goto err_free_mem;
}
drvdata->clk = clk_get(dev, NULL);
if (IS_ERR(drvdata->clk)) {
error = PTR_ERR(drvdata->clk);
dev_err(dev, "couldn't get clock %d\n", error);
goto err_ioremap;
}
error = clk_prepare_enable(drvdata->clk);
if (error) {
dev_err(dev, "failed to enable clock %d\n", error);
goto err_clk;
}
serio->id.type = SERIO_8042;
serio->write = sun4i_ps2_write;
serio->open = sun4i_ps2_open;
serio->close = sun4i_ps2_close;
serio->port_data = drvdata;
serio->dev.parent = dev;
strscpy(serio->name, dev_name(dev), sizeof(serio->name));
strscpy(serio->phys, dev_name(dev), sizeof(serio->phys));
/* shutoff interrupt */
writel(0, drvdata->reg_base + PS2_REG_GCTL);
/* Get IRQ for the device */
drvdata->irq = platform_get_irq(pdev, 0);
if (drvdata->irq < 0) {
error = drvdata->irq;
goto err_disable_clk;
}
drvdata->serio = serio;
drvdata->dev = dev;
error = request_irq(drvdata->irq, sun4i_ps2_interrupt, 0,
DRIVER_NAME, drvdata);
if (error) {
dev_err(drvdata->dev, "failed to allocate interrupt %d: %d\n",
drvdata->irq, error);
goto err_disable_clk;
}
serio_register_port(serio);
platform_set_drvdata(pdev, drvdata);
return 0; /* success */
err_disable_clk:
clk_disable_unprepare(drvdata->clk);
err_clk:
clk_put(drvdata->clk);
err_ioremap:
iounmap(drvdata->reg_base);
err_free_mem:
kfree(serio);
kfree(drvdata);
return error;
}
static int sun4i_ps2_remove(struct platform_device *pdev)
{
struct sun4i_ps2data *drvdata = platform_get_drvdata(pdev);
serio_unregister_port(drvdata->serio);
free_irq(drvdata->irq, drvdata);
clk_disable_unprepare(drvdata->clk);
clk_put(drvdata->clk);
iounmap(drvdata->reg_base);
kfree(drvdata);
return 0;
}
static const struct of_device_id sun4i_ps2_match[] = {
{ .compatible = "allwinner,sun4i-a10-ps2", },
{ },
};
MODULE_DEVICE_TABLE(of, sun4i_ps2_match);
static struct platform_driver sun4i_ps2_driver = {
.probe = sun4i_ps2_probe,
.remove = sun4i_ps2_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = sun4i_ps2_match,
},
};
module_platform_driver(sun4i_ps2_driver);
MODULE_AUTHOR("Vishnu Patekar <[email protected]>");
MODULE_AUTHOR("Aaron.maoye <[email protected]>");
MODULE_DESCRIPTION("Allwinner A10/Sun4i PS/2 driver");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/serio/sun4i-ps2.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Amstrad E3 (Delta) keyboard port driver
*
* Copyright (c) 2006 Matt Callow
* Copyright (c) 2010 Janusz Krzysztofik
*
* Thanks to Cliff Lawson for his help
*
* The Amstrad Delta keyboard (aka mailboard) uses normal PC-AT style serial
* transmission. The keyboard port is formed of two GPIO lines, for clock
* and data. Due to strict timing requirements of the interface,
* the serial data stream is read and processed by a FIQ handler.
* The resulting words are fetched by this driver from a circular buffer.
*
* Standard AT keyboard driver (atkbd) is used for handling the keyboard data.
* However, when used with the E3 mailboard that producecs non-standard
* scancodes, a custom key table must be prepared and loaded from userspace.
*/
#include <linux/irq.h>
#include <linux/platform_data/ams-delta-fiq.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/serio.h>
#include <linux/slab.h>
#include <linux/module.h>
#define DRIVER_NAME "ams-delta-serio"
MODULE_AUTHOR("Matt Callow");
MODULE_DESCRIPTION("AMS Delta (E3) keyboard port driver");
MODULE_LICENSE("GPL");
struct ams_delta_serio {
struct serio *serio;
struct regulator *vcc;
unsigned int *fiq_buffer;
};
static int check_data(struct serio *serio, int data)
{
int i, parity = 0;
/* check valid stop bit */
if (!(data & 0x400)) {
dev_warn(&serio->dev, "invalid stop bit, data=0x%X\n", data);
return SERIO_FRAME;
}
/* calculate the parity */
for (i = 1; i < 10; i++) {
if (data & (1 << i))
parity++;
}
/* it should be odd */
if (!(parity & 0x01)) {
dev_warn(&serio->dev,
"parity check failed, data=0x%X parity=0x%X\n", data,
parity);
return SERIO_PARITY;
}
return 0;
}
static irqreturn_t ams_delta_serio_interrupt(int irq, void *dev_id)
{
struct ams_delta_serio *priv = dev_id;
int *circ_buff = &priv->fiq_buffer[FIQ_CIRC_BUFF];
int data, dfl;
u8 scancode;
priv->fiq_buffer[FIQ_IRQ_PEND] = 0;
/*
* Read data from the circular buffer, check it
* and then pass it on the serio
*/
while (priv->fiq_buffer[FIQ_KEYS_CNT] > 0) {
data = circ_buff[priv->fiq_buffer[FIQ_HEAD_OFFSET]++];
priv->fiq_buffer[FIQ_KEYS_CNT]--;
if (priv->fiq_buffer[FIQ_HEAD_OFFSET] ==
priv->fiq_buffer[FIQ_BUF_LEN])
priv->fiq_buffer[FIQ_HEAD_OFFSET] = 0;
dfl = check_data(priv->serio, data);
scancode = (u8) (data >> 1) & 0xFF;
serio_interrupt(priv->serio, scancode, dfl);
}
return IRQ_HANDLED;
}
static int ams_delta_serio_open(struct serio *serio)
{
struct ams_delta_serio *priv = serio->port_data;
/* enable keyboard */
return regulator_enable(priv->vcc);
}
static void ams_delta_serio_close(struct serio *serio)
{
struct ams_delta_serio *priv = serio->port_data;
/* disable keyboard */
regulator_disable(priv->vcc);
}
static int ams_delta_serio_init(struct platform_device *pdev)
{
struct ams_delta_serio *priv;
struct serio *serio;
int irq, err;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->fiq_buffer = pdev->dev.platform_data;
if (!priv->fiq_buffer)
return -EINVAL;
priv->vcc = devm_regulator_get(&pdev->dev, "vcc");
if (IS_ERR(priv->vcc)) {
err = PTR_ERR(priv->vcc);
dev_err(&pdev->dev, "regulator request failed (%d)\n", err);
/*
* When running on a non-dt platform and requested regulator
* is not available, devm_regulator_get() never returns
* -EPROBE_DEFER as it is not able to justify if the regulator
* may still appear later. On the other hand, the board can
* still set full constriants flag at late_initcall in order
* to instruct devm_regulator_get() to returnn a dummy one
* if sufficient. Hence, if we get -ENODEV here, let's convert
* it to -EPROBE_DEFER and wait for the board to decide or
* let Deferred Probe infrastructure handle this error.
*/
if (err == -ENODEV)
err = -EPROBE_DEFER;
return err;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -ENXIO;
err = devm_request_irq(&pdev->dev, irq, ams_delta_serio_interrupt,
IRQ_TYPE_EDGE_RISING, DRIVER_NAME, priv);
if (err < 0) {
dev_err(&pdev->dev, "IRQ request failed (%d)\n", err);
return err;
}
serio = kzalloc(sizeof(*serio), GFP_KERNEL);
if (!serio)
return -ENOMEM;
priv->serio = serio;
serio->id.type = SERIO_8042;
serio->open = ams_delta_serio_open;
serio->close = ams_delta_serio_close;
strscpy(serio->name, "AMS DELTA keyboard adapter", sizeof(serio->name));
strscpy(serio->phys, dev_name(&pdev->dev), sizeof(serio->phys));
serio->dev.parent = &pdev->dev;
serio->port_data = priv;
serio_register_port(serio);
platform_set_drvdata(pdev, priv);
dev_info(&serio->dev, "%s\n", serio->name);
return 0;
}
static int ams_delta_serio_exit(struct platform_device *pdev)
{
struct ams_delta_serio *priv = platform_get_drvdata(pdev);
serio_unregister_port(priv->serio);
return 0;
}
static struct platform_driver ams_delta_serio_driver = {
.probe = ams_delta_serio_init,
.remove = ams_delta_serio_exit,
.driver = {
.name = DRIVER_NAME
},
};
module_platform_driver(ams_delta_serio_driver);
|
linux-master
|
drivers/input/serio/ams_delta_serio.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Input device TTY line discipline
*
* Copyright (c) 1999-2002 Vojtech Pavlik
*
* This is a module that converts a tty line into a much simpler
* 'serial io port' abstraction that the input device drivers use.
*/
#include <linux/uaccess.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/serio.h>
#include <linux/tty.h>
#include <linux/compat.h>
MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
MODULE_DESCRIPTION("Input device TTY line discipline");
MODULE_LICENSE("GPL");
MODULE_ALIAS_LDISC(N_MOUSE);
#define SERPORT_BUSY 1
#define SERPORT_ACTIVE 2
#define SERPORT_DEAD 3
struct serport {
struct tty_struct *tty;
wait_queue_head_t wait;
struct serio *serio;
struct serio_device_id id;
spinlock_t lock;
unsigned long flags;
};
/*
* Callback functions from the serio code.
*/
static int serport_serio_write(struct serio *serio, unsigned char data)
{
struct serport *serport = serio->port_data;
return -(serport->tty->ops->write(serport->tty, &data, 1) != 1);
}
static int serport_serio_open(struct serio *serio)
{
struct serport *serport = serio->port_data;
unsigned long flags;
spin_lock_irqsave(&serport->lock, flags);
set_bit(SERPORT_ACTIVE, &serport->flags);
spin_unlock_irqrestore(&serport->lock, flags);
return 0;
}
static void serport_serio_close(struct serio *serio)
{
struct serport *serport = serio->port_data;
unsigned long flags;
spin_lock_irqsave(&serport->lock, flags);
clear_bit(SERPORT_ACTIVE, &serport->flags);
spin_unlock_irqrestore(&serport->lock, flags);
}
/*
* serport_ldisc_open() is the routine that is called upon setting our line
* discipline on a tty. It prepares the serio struct.
*/
static int serport_ldisc_open(struct tty_struct *tty)
{
struct serport *serport;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
serport = kzalloc(sizeof(struct serport), GFP_KERNEL);
if (!serport)
return -ENOMEM;
serport->tty = tty;
spin_lock_init(&serport->lock);
init_waitqueue_head(&serport->wait);
tty->disc_data = serport;
tty->receive_room = 256;
set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
return 0;
}
/*
* serport_ldisc_close() is the opposite of serport_ldisc_open()
*/
static void serport_ldisc_close(struct tty_struct *tty)
{
struct serport *serport = tty->disc_data;
kfree(serport);
}
/*
* serport_ldisc_receive() is called by the low level tty driver when characters
* are ready for us. We forward the characters and flags, one by one to the
* 'interrupt' routine.
*/
static void serport_ldisc_receive(struct tty_struct *tty, const u8 *cp,
const u8 *fp, size_t count)
{
struct serport *serport = tty->disc_data;
unsigned long flags;
unsigned int ch_flags = 0;
int i;
spin_lock_irqsave(&serport->lock, flags);
if (!test_bit(SERPORT_ACTIVE, &serport->flags))
goto out;
for (i = 0; i < count; i++) {
if (fp) {
switch (fp[i]) {
case TTY_FRAME:
ch_flags = SERIO_FRAME;
break;
case TTY_PARITY:
ch_flags = SERIO_PARITY;
break;
default:
ch_flags = 0;
break;
}
}
serio_interrupt(serport->serio, cp[i], ch_flags);
}
out:
spin_unlock_irqrestore(&serport->lock, flags);
}
/*
* serport_ldisc_read() just waits indefinitely if everything goes well.
* However, when the serio driver closes the serio port, it finishes,
* returning 0 characters.
*/
static ssize_t serport_ldisc_read(struct tty_struct * tty, struct file * file,
u8 *kbuf, size_t nr, void **cookie,
unsigned long offset)
{
struct serport *serport = tty->disc_data;
struct serio *serio;
if (test_and_set_bit(SERPORT_BUSY, &serport->flags))
return -EBUSY;
serport->serio = serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!serio)
return -ENOMEM;
strscpy(serio->name, "Serial port", sizeof(serio->name));
snprintf(serio->phys, sizeof(serio->phys), "%s/serio0", tty_name(tty));
serio->id = serport->id;
serio->id.type = SERIO_RS232;
serio->write = serport_serio_write;
serio->open = serport_serio_open;
serio->close = serport_serio_close;
serio->port_data = serport;
serio->dev.parent = tty->dev;
serio_register_port(serport->serio);
printk(KERN_INFO "serio: Serial port %s\n", tty_name(tty));
wait_event_interruptible(serport->wait, test_bit(SERPORT_DEAD, &serport->flags));
serio_unregister_port(serport->serio);
serport->serio = NULL;
clear_bit(SERPORT_DEAD, &serport->flags);
clear_bit(SERPORT_BUSY, &serport->flags);
return 0;
}
static void serport_set_type(struct tty_struct *tty, unsigned long type)
{
struct serport *serport = tty->disc_data;
serport->id.proto = type & 0x000000ff;
serport->id.id = (type & 0x0000ff00) >> 8;
serport->id.extra = (type & 0x00ff0000) >> 16;
}
/*
* serport_ldisc_ioctl() allows to set the port protocol, and device ID
*/
static int serport_ldisc_ioctl(struct tty_struct *tty, unsigned int cmd,
unsigned long arg)
{
if (cmd == SPIOCSTYPE) {
unsigned long type;
if (get_user(type, (unsigned long __user *) arg))
return -EFAULT;
serport_set_type(tty, type);
return 0;
}
return -EINVAL;
}
#ifdef CONFIG_COMPAT
#define COMPAT_SPIOCSTYPE _IOW('q', 0x01, compat_ulong_t)
static int serport_ldisc_compat_ioctl(struct tty_struct *tty,
unsigned int cmd, unsigned long arg)
{
if (cmd == COMPAT_SPIOCSTYPE) {
void __user *uarg = compat_ptr(arg);
compat_ulong_t compat_type;
if (get_user(compat_type, (compat_ulong_t __user *)uarg))
return -EFAULT;
serport_set_type(tty, compat_type);
return 0;
}
return -EINVAL;
}
#endif
static void serport_ldisc_hangup(struct tty_struct *tty)
{
struct serport *serport = tty->disc_data;
unsigned long flags;
spin_lock_irqsave(&serport->lock, flags);
set_bit(SERPORT_DEAD, &serport->flags);
spin_unlock_irqrestore(&serport->lock, flags);
wake_up_interruptible(&serport->wait);
}
static void serport_ldisc_write_wakeup(struct tty_struct * tty)
{
struct serport *serport = tty->disc_data;
unsigned long flags;
spin_lock_irqsave(&serport->lock, flags);
if (test_bit(SERPORT_ACTIVE, &serport->flags))
serio_drv_write_wakeup(serport->serio);
spin_unlock_irqrestore(&serport->lock, flags);
}
/*
* The line discipline structure.
*/
static struct tty_ldisc_ops serport_ldisc = {
.owner = THIS_MODULE,
.num = N_MOUSE,
.name = "input",
.open = serport_ldisc_open,
.close = serport_ldisc_close,
.read = serport_ldisc_read,
.ioctl = serport_ldisc_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = serport_ldisc_compat_ioctl,
#endif
.receive_buf = serport_ldisc_receive,
.hangup = serport_ldisc_hangup,
.write_wakeup = serport_ldisc_write_wakeup
};
/*
* The functions for insering/removing us as a module.
*/
static int __init serport_init(void)
{
int retval;
retval = tty_register_ldisc(&serport_ldisc);
if (retval)
printk(KERN_ERR "serport.c: Error registering line discipline.\n");
return retval;
}
static void __exit serport_exit(void)
{
tty_unregister_ldisc(&serport_ldisc);
}
module_init(serport_init);
module_exit(serport_exit);
|
linux-master
|
drivers/input/serio/serport.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Raw serio device providing access to a raw byte stream from underlying
* serio port. Closely emulates behavior of pre-2.6 /dev/psaux device
*
* Copyright (c) 2004 Dmitry Torokhov
*/
#include <linux/kref.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/module.h>
#include <linux/serio.h>
#include <linux/major.h>
#include <linux/device.h>
#include <linux/miscdevice.h>
#include <linux/wait.h>
#include <linux/mutex.h>
#define DRIVER_DESC "Raw serio driver"
MODULE_AUTHOR("Dmitry Torokhov <[email protected]>");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
#define SERIO_RAW_QUEUE_LEN 64
struct serio_raw {
unsigned char queue[SERIO_RAW_QUEUE_LEN];
unsigned int tail, head;
char name[16];
struct kref kref;
struct serio *serio;
struct miscdevice dev;
wait_queue_head_t wait;
struct list_head client_list;
struct list_head node;
bool dead;
};
struct serio_raw_client {
struct fasync_struct *fasync;
struct serio_raw *serio_raw;
struct list_head node;
};
static DEFINE_MUTEX(serio_raw_mutex);
static LIST_HEAD(serio_raw_list);
/*********************************************************************
* Interface with userspace (file operations) *
*********************************************************************/
static int serio_raw_fasync(int fd, struct file *file, int on)
{
struct serio_raw_client *client = file->private_data;
return fasync_helper(fd, file, on, &client->fasync);
}
static struct serio_raw *serio_raw_locate(int minor)
{
struct serio_raw *serio_raw;
list_for_each_entry(serio_raw, &serio_raw_list, node) {
if (serio_raw->dev.minor == minor)
return serio_raw;
}
return NULL;
}
static int serio_raw_open(struct inode *inode, struct file *file)
{
struct serio_raw *serio_raw;
struct serio_raw_client *client;
int retval;
retval = mutex_lock_interruptible(&serio_raw_mutex);
if (retval)
return retval;
serio_raw = serio_raw_locate(iminor(inode));
if (!serio_raw) {
retval = -ENODEV;
goto out;
}
if (serio_raw->dead) {
retval = -ENODEV;
goto out;
}
client = kzalloc(sizeof(struct serio_raw_client), GFP_KERNEL);
if (!client) {
retval = -ENOMEM;
goto out;
}
client->serio_raw = serio_raw;
file->private_data = client;
kref_get(&serio_raw->kref);
serio_pause_rx(serio_raw->serio);
list_add_tail(&client->node, &serio_raw->client_list);
serio_continue_rx(serio_raw->serio);
out:
mutex_unlock(&serio_raw_mutex);
return retval;
}
static void serio_raw_free(struct kref *kref)
{
struct serio_raw *serio_raw =
container_of(kref, struct serio_raw, kref);
put_device(&serio_raw->serio->dev);
kfree(serio_raw);
}
static int serio_raw_release(struct inode *inode, struct file *file)
{
struct serio_raw_client *client = file->private_data;
struct serio_raw *serio_raw = client->serio_raw;
serio_pause_rx(serio_raw->serio);
list_del(&client->node);
serio_continue_rx(serio_raw->serio);
kfree(client);
kref_put(&serio_raw->kref, serio_raw_free);
return 0;
}
static bool serio_raw_fetch_byte(struct serio_raw *serio_raw, char *c)
{
bool empty;
serio_pause_rx(serio_raw->serio);
empty = serio_raw->head == serio_raw->tail;
if (!empty) {
*c = serio_raw->queue[serio_raw->tail];
serio_raw->tail = (serio_raw->tail + 1) % SERIO_RAW_QUEUE_LEN;
}
serio_continue_rx(serio_raw->serio);
return !empty;
}
static ssize_t serio_raw_read(struct file *file, char __user *buffer,
size_t count, loff_t *ppos)
{
struct serio_raw_client *client = file->private_data;
struct serio_raw *serio_raw = client->serio_raw;
char c;
ssize_t read = 0;
int error;
for (;;) {
if (serio_raw->dead)
return -ENODEV;
if (serio_raw->head == serio_raw->tail &&
(file->f_flags & O_NONBLOCK))
return -EAGAIN;
if (count == 0)
break;
while (read < count && serio_raw_fetch_byte(serio_raw, &c)) {
if (put_user(c, buffer++))
return -EFAULT;
read++;
}
if (read)
break;
if (!(file->f_flags & O_NONBLOCK)) {
error = wait_event_interruptible(serio_raw->wait,
serio_raw->head != serio_raw->tail ||
serio_raw->dead);
if (error)
return error;
}
}
return read;
}
static ssize_t serio_raw_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos)
{
struct serio_raw_client *client = file->private_data;
struct serio_raw *serio_raw = client->serio_raw;
int retval = 0;
unsigned char c;
retval = mutex_lock_interruptible(&serio_raw_mutex);
if (retval)
return retval;
if (serio_raw->dead) {
retval = -ENODEV;
goto out;
}
if (count > 32)
count = 32;
while (count--) {
if (get_user(c, buffer++)) {
retval = -EFAULT;
goto out;
}
if (serio_write(serio_raw->serio, c)) {
/* Either signal error or partial write */
if (retval == 0)
retval = -EIO;
goto out;
}
retval++;
}
out:
mutex_unlock(&serio_raw_mutex);
return retval;
}
static __poll_t serio_raw_poll(struct file *file, poll_table *wait)
{
struct serio_raw_client *client = file->private_data;
struct serio_raw *serio_raw = client->serio_raw;
__poll_t mask;
poll_wait(file, &serio_raw->wait, wait);
mask = serio_raw->dead ? EPOLLHUP | EPOLLERR : EPOLLOUT | EPOLLWRNORM;
if (serio_raw->head != serio_raw->tail)
mask |= EPOLLIN | EPOLLRDNORM;
return mask;
}
static const struct file_operations serio_raw_fops = {
.owner = THIS_MODULE,
.open = serio_raw_open,
.release = serio_raw_release,
.read = serio_raw_read,
.write = serio_raw_write,
.poll = serio_raw_poll,
.fasync = serio_raw_fasync,
.llseek = noop_llseek,
};
/*********************************************************************
* Interface with serio port *
*********************************************************************/
static irqreturn_t serio_raw_interrupt(struct serio *serio, unsigned char data,
unsigned int dfl)
{
struct serio_raw *serio_raw = serio_get_drvdata(serio);
struct serio_raw_client *client;
unsigned int head = serio_raw->head;
/* we are holding serio->lock here so we are protected */
serio_raw->queue[head] = data;
head = (head + 1) % SERIO_RAW_QUEUE_LEN;
if (likely(head != serio_raw->tail)) {
serio_raw->head = head;
list_for_each_entry(client, &serio_raw->client_list, node)
kill_fasync(&client->fasync, SIGIO, POLL_IN);
wake_up_interruptible(&serio_raw->wait);
}
return IRQ_HANDLED;
}
static int serio_raw_connect(struct serio *serio, struct serio_driver *drv)
{
static atomic_t serio_raw_no = ATOMIC_INIT(-1);
struct serio_raw *serio_raw;
int err;
serio_raw = kzalloc(sizeof(struct serio_raw), GFP_KERNEL);
if (!serio_raw) {
dev_dbg(&serio->dev, "can't allocate memory for a device\n");
return -ENOMEM;
}
snprintf(serio_raw->name, sizeof(serio_raw->name),
"serio_raw%ld", (long)atomic_inc_return(&serio_raw_no));
kref_init(&serio_raw->kref);
INIT_LIST_HEAD(&serio_raw->client_list);
init_waitqueue_head(&serio_raw->wait);
serio_raw->serio = serio;
get_device(&serio->dev);
serio_set_drvdata(serio, serio_raw);
err = serio_open(serio, drv);
if (err)
goto err_free;
err = mutex_lock_killable(&serio_raw_mutex);
if (err)
goto err_close;
list_add_tail(&serio_raw->node, &serio_raw_list);
mutex_unlock(&serio_raw_mutex);
serio_raw->dev.minor = PSMOUSE_MINOR;
serio_raw->dev.name = serio_raw->name;
serio_raw->dev.parent = &serio->dev;
serio_raw->dev.fops = &serio_raw_fops;
err = misc_register(&serio_raw->dev);
if (err) {
serio_raw->dev.minor = MISC_DYNAMIC_MINOR;
err = misc_register(&serio_raw->dev);
}
if (err) {
dev_err(&serio->dev,
"failed to register raw access device for %s\n",
serio->phys);
goto err_unlink;
}
dev_info(&serio->dev, "raw access enabled on %s (%s, minor %d)\n",
serio->phys, serio_raw->name, serio_raw->dev.minor);
return 0;
err_unlink:
list_del_init(&serio_raw->node);
err_close:
serio_close(serio);
err_free:
serio_set_drvdata(serio, NULL);
kref_put(&serio_raw->kref, serio_raw_free);
return err;
}
static int serio_raw_reconnect(struct serio *serio)
{
struct serio_raw *serio_raw = serio_get_drvdata(serio);
struct serio_driver *drv = serio->drv;
if (!drv || !serio_raw) {
dev_dbg(&serio->dev,
"reconnect request, but serio is disconnected, ignoring...\n");
return -1;
}
/*
* Nothing needs to be done here, we just need this method to
* keep the same device.
*/
return 0;
}
/*
* Wake up users waiting for IO so they can disconnect from
* dead device.
*/
static void serio_raw_hangup(struct serio_raw *serio_raw)
{
struct serio_raw_client *client;
serio_pause_rx(serio_raw->serio);
list_for_each_entry(client, &serio_raw->client_list, node)
kill_fasync(&client->fasync, SIGIO, POLL_HUP);
serio_continue_rx(serio_raw->serio);
wake_up_interruptible(&serio_raw->wait);
}
static void serio_raw_disconnect(struct serio *serio)
{
struct serio_raw *serio_raw = serio_get_drvdata(serio);
misc_deregister(&serio_raw->dev);
mutex_lock(&serio_raw_mutex);
serio_raw->dead = true;
list_del_init(&serio_raw->node);
mutex_unlock(&serio_raw_mutex);
serio_raw_hangup(serio_raw);
serio_close(serio);
kref_put(&serio_raw->kref, serio_raw_free);
serio_set_drvdata(serio, NULL);
}
static const struct serio_device_id serio_raw_serio_ids[] = {
{
.type = SERIO_8042,
.proto = SERIO_ANY,
.id = SERIO_ANY,
.extra = SERIO_ANY,
},
{
.type = SERIO_8042_XL,
.proto = SERIO_ANY,
.id = SERIO_ANY,
.extra = SERIO_ANY,
},
{ 0 }
};
MODULE_DEVICE_TABLE(serio, serio_raw_serio_ids);
static struct serio_driver serio_raw_drv = {
.driver = {
.name = "serio_raw",
},
.description = DRIVER_DESC,
.id_table = serio_raw_serio_ids,
.interrupt = serio_raw_interrupt,
.connect = serio_raw_connect,
.reconnect = serio_raw_reconnect,
.disconnect = serio_raw_disconnect,
.manual_bind = true,
};
module_serio_driver(serio_raw_drv);
|
linux-master
|
drivers/input/serio/serio_raw.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* SGI O2 MACE PS2 controller driver for linux
*
* Copyright (C) 2002 Vivien Chappelier
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/serio.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/err.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/ip32/mace.h>
#include <asm/ip32/ip32_ints.h>
MODULE_AUTHOR("Vivien Chappelier <[email protected]");
MODULE_DESCRIPTION("SGI O2 MACE PS2 controller driver");
MODULE_LICENSE("GPL");
#define MACE_PS2_TIMEOUT 10000 /* in 50us unit */
#define PS2_STATUS_CLOCK_SIGNAL BIT(0) /* external clock signal */
#define PS2_STATUS_CLOCK_INHIBIT BIT(1) /* clken output signal */
#define PS2_STATUS_TX_INPROGRESS BIT(2) /* transmission in progress */
#define PS2_STATUS_TX_EMPTY BIT(3) /* empty transmit buffer */
#define PS2_STATUS_RX_FULL BIT(4) /* full receive buffer */
#define PS2_STATUS_RX_INPROGRESS BIT(5) /* reception in progress */
#define PS2_STATUS_ERROR_PARITY BIT(6) /* parity error */
#define PS2_STATUS_ERROR_FRAMING BIT(7) /* framing error */
#define PS2_CONTROL_TX_CLOCK_DISABLE BIT(0) /* inhibit clock signal after TX */
#define PS2_CONTROL_TX_ENABLE BIT(1) /* transmit enable */
#define PS2_CONTROL_TX_INT_ENABLE BIT(2) /* enable transmit interrupt */
#define PS2_CONTROL_RX_INT_ENABLE BIT(3) /* enable receive interrupt */
#define PS2_CONTROL_RX_CLOCK_ENABLE BIT(4) /* pause reception if set to 0 */
#define PS2_CONTROL_RESET BIT(5) /* reset */
struct maceps2_data {
struct mace_ps2port *port;
int irq;
};
static struct maceps2_data port_data[2];
static struct serio *maceps2_port[2];
static struct platform_device *maceps2_device;
static int maceps2_write(struct serio *dev, unsigned char val)
{
struct mace_ps2port *port = ((struct maceps2_data *)dev->port_data)->port;
unsigned int timeout = MACE_PS2_TIMEOUT;
do {
if (port->status & PS2_STATUS_TX_EMPTY) {
port->tx = val;
return 0;
}
udelay(50);
} while (timeout--);
return -1;
}
static irqreturn_t maceps2_interrupt(int irq, void *dev_id)
{
struct serio *dev = dev_id;
struct mace_ps2port *port = ((struct maceps2_data *)dev->port_data)->port;
unsigned long byte;
if (port->status & PS2_STATUS_RX_FULL) {
byte = port->rx;
serio_interrupt(dev, byte & 0xff, 0);
}
return IRQ_HANDLED;
}
static int maceps2_open(struct serio *dev)
{
struct maceps2_data *data = (struct maceps2_data *)dev->port_data;
if (request_irq(data->irq, maceps2_interrupt, 0, "PS2 port", dev)) {
printk(KERN_ERR "Could not allocate PS/2 IRQ\n");
return -EBUSY;
}
/* Reset port */
data->port->control = PS2_CONTROL_TX_CLOCK_DISABLE | PS2_CONTROL_RESET;
udelay(100);
/* Enable interrupts */
data->port->control = PS2_CONTROL_RX_CLOCK_ENABLE |
PS2_CONTROL_TX_ENABLE |
PS2_CONTROL_RX_INT_ENABLE;
return 0;
}
static void maceps2_close(struct serio *dev)
{
struct maceps2_data *data = (struct maceps2_data *)dev->port_data;
data->port->control = PS2_CONTROL_TX_CLOCK_DISABLE | PS2_CONTROL_RESET;
udelay(100);
free_irq(data->irq, dev);
}
static struct serio *maceps2_allocate_port(int idx)
{
struct serio *serio;
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (serio) {
serio->id.type = SERIO_8042;
serio->write = maceps2_write;
serio->open = maceps2_open;
serio->close = maceps2_close;
snprintf(serio->name, sizeof(serio->name), "MACE PS/2 port%d", idx);
snprintf(serio->phys, sizeof(serio->phys), "mace/serio%d", idx);
serio->port_data = &port_data[idx];
serio->dev.parent = &maceps2_device->dev;
}
return serio;
}
static int maceps2_probe(struct platform_device *dev)
{
maceps2_port[0] = maceps2_allocate_port(0);
maceps2_port[1] = maceps2_allocate_port(1);
if (!maceps2_port[0] || !maceps2_port[1]) {
kfree(maceps2_port[0]);
kfree(maceps2_port[1]);
return -ENOMEM;
}
serio_register_port(maceps2_port[0]);
serio_register_port(maceps2_port[1]);
return 0;
}
static int maceps2_remove(struct platform_device *dev)
{
serio_unregister_port(maceps2_port[0]);
serio_unregister_port(maceps2_port[1]);
return 0;
}
static struct platform_driver maceps2_driver = {
.driver = {
.name = "maceps2",
},
.probe = maceps2_probe,
.remove = maceps2_remove,
};
static int __init maceps2_init(void)
{
int error;
error = platform_driver_register(&maceps2_driver);
if (error)
return error;
maceps2_device = platform_device_alloc("maceps2", -1);
if (!maceps2_device) {
error = -ENOMEM;
goto err_unregister_driver;
}
port_data[0].port = &mace->perif.ps2.keyb;
port_data[0].irq = MACEISA_KEYB_IRQ;
port_data[1].port = &mace->perif.ps2.mouse;
port_data[1].irq = MACEISA_MOUSE_IRQ;
error = platform_device_add(maceps2_device);
if (error)
goto err_free_device;
return 0;
err_free_device:
platform_device_put(maceps2_device);
err_unregister_driver:
platform_driver_unregister(&maceps2_driver);
return error;
}
static void __exit maceps2_exit(void)
{
platform_device_unregister(maceps2_device);
platform_driver_unregister(&maceps2_driver);
}
module_init(maceps2_init);
module_exit(maceps2_exit);
|
linux-master
|
drivers/input/serio/maceps2.c
|
/*
* Access to HP-HIL MLC through HP System Device Controller.
*
* Copyright (c) 2001 Brian S. Julin
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL").
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
*
* References:
* HP-HIL Technical Reference Manual. Hewlett Packard Product No. 45918A
* System Device Controller Microprocessor Firmware Theory of Operation
* for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
*
*/
#include <linux/hil_mlc.h>
#include <linux/hp_sdc.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/semaphore.h>
#define PREFIX "HP SDC MLC: "
static hil_mlc hp_sdc_mlc;
MODULE_AUTHOR("Brian S. Julin <[email protected]>");
MODULE_DESCRIPTION("Glue for onboard HIL MLC in HP-PARISC machines");
MODULE_LICENSE("Dual BSD/GPL");
static struct hp_sdc_mlc_priv_s {
int emtestmode;
hp_sdc_transaction trans;
u8 tseq[16];
int got5x;
} hp_sdc_mlc_priv;
/************************* Interrupt context ******************************/
static void hp_sdc_mlc_isr (int irq, void *dev_id,
uint8_t status, uint8_t data)
{
int idx;
hil_mlc *mlc = &hp_sdc_mlc;
write_lock(&mlc->lock);
if (mlc->icount < 0) {
printk(KERN_WARNING PREFIX "HIL Overflow!\n");
up(&mlc->isem);
goto out;
}
idx = 15 - mlc->icount;
if ((status & HP_SDC_STATUS_IRQMASK) == HP_SDC_STATUS_HILDATA) {
mlc->ipacket[idx] |= data | HIL_ERR_INT;
mlc->icount--;
if (hp_sdc_mlc_priv.got5x || !idx)
goto check;
if ((mlc->ipacket[idx - 1] & HIL_PKT_ADDR_MASK) !=
(mlc->ipacket[idx] & HIL_PKT_ADDR_MASK)) {
mlc->ipacket[idx] &= ~HIL_PKT_ADDR_MASK;
mlc->ipacket[idx] |= (mlc->ipacket[idx - 1]
& HIL_PKT_ADDR_MASK);
}
goto check;
}
/* We know status is 5X */
if (data & HP_SDC_HIL_ISERR)
goto err;
mlc->ipacket[idx] =
(data & HP_SDC_HIL_R1MASK) << HIL_PKT_ADDR_SHIFT;
hp_sdc_mlc_priv.got5x = 1;
goto out;
check:
hp_sdc_mlc_priv.got5x = 0;
if (mlc->imatch == 0)
goto done;
if ((mlc->imatch == (HIL_ERR_INT | HIL_PKT_CMD | HIL_CMD_POL))
&& (mlc->ipacket[idx] == (mlc->imatch | idx)))
goto done;
if (mlc->ipacket[idx] == mlc->imatch)
goto done;
goto out;
err:
printk(KERN_DEBUG PREFIX "err code %x\n", data);
switch (data) {
case HP_SDC_HIL_RC_DONE:
printk(KERN_WARNING PREFIX "Bastard SDC reconfigured loop!\n");
break;
case HP_SDC_HIL_ERR:
mlc->ipacket[idx] |= HIL_ERR_INT | HIL_ERR_PERR |
HIL_ERR_FERR | HIL_ERR_FOF;
break;
case HP_SDC_HIL_TO:
mlc->ipacket[idx] |= HIL_ERR_INT | HIL_ERR_LERR;
break;
case HP_SDC_HIL_RC:
printk(KERN_WARNING PREFIX "Bastard SDC decided to reconfigure loop!\n");
break;
default:
printk(KERN_WARNING PREFIX "Unknown HIL Error status (%x)!\n", data);
break;
}
/* No more data will be coming due to an error. */
done:
tasklet_schedule(mlc->tasklet);
up(&mlc->isem);
out:
write_unlock(&mlc->lock);
}
/******************** Tasklet or userspace context functions ****************/
static int hp_sdc_mlc_in(hil_mlc *mlc, suseconds_t timeout)
{
struct hp_sdc_mlc_priv_s *priv;
int rc = 2;
priv = mlc->priv;
/* Try to down the semaphore */
if (down_trylock(&mlc->isem)) {
if (priv->emtestmode) {
mlc->ipacket[0] =
HIL_ERR_INT | (mlc->opacket &
(HIL_PKT_CMD |
HIL_PKT_ADDR_MASK |
HIL_PKT_DATA_MASK));
mlc->icount = 14;
/* printk(KERN_DEBUG PREFIX ">[%x]\n", mlc->ipacket[0]); */
goto wasup;
}
if (time_after(jiffies, mlc->instart + mlc->intimeout)) {
/* printk("!%i %i",
tv.tv_usec - mlc->instart.tv_usec,
mlc->intimeout);
*/
rc = 1;
up(&mlc->isem);
}
goto done;
}
wasup:
up(&mlc->isem);
rc = 0;
done:
return rc;
}
static int hp_sdc_mlc_cts(hil_mlc *mlc)
{
struct hp_sdc_mlc_priv_s *priv;
priv = mlc->priv;
/* Try to down the semaphores -- they should be up. */
BUG_ON(down_trylock(&mlc->isem));
BUG_ON(down_trylock(&mlc->osem));
up(&mlc->isem);
up(&mlc->osem);
if (down_trylock(&mlc->csem)) {
if (priv->trans.act.semaphore != &mlc->csem)
goto poll;
else
goto busy;
}
if (!(priv->tseq[4] & HP_SDC_USE_LOOP))
goto done;
poll:
priv->trans.act.semaphore = &mlc->csem;
priv->trans.actidx = 0;
priv->trans.idx = 1;
priv->trans.endidx = 5;
priv->tseq[0] =
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN | HP_SDC_ACT_SEMAPHORE;
priv->tseq[1] = HP_SDC_CMD_READ_USE;
priv->tseq[2] = 1;
priv->tseq[3] = 0;
priv->tseq[4] = 0;
return __hp_sdc_enqueue_transaction(&priv->trans);
busy:
return 1;
done:
priv->trans.act.semaphore = &mlc->osem;
up(&mlc->csem);
return 0;
}
static int hp_sdc_mlc_out(hil_mlc *mlc)
{
struct hp_sdc_mlc_priv_s *priv;
priv = mlc->priv;
/* Try to down the semaphore -- it should be up. */
BUG_ON(down_trylock(&mlc->osem));
if (mlc->opacket & HIL_DO_ALTER_CTRL)
goto do_control;
do_data:
if (priv->emtestmode) {
up(&mlc->osem);
return 0;
}
/* Shouldn't be sending commands when loop may be busy */
BUG_ON(down_trylock(&mlc->csem));
up(&mlc->csem);
priv->trans.actidx = 0;
priv->trans.idx = 1;
priv->trans.act.semaphore = &mlc->osem;
priv->trans.endidx = 6;
priv->tseq[0] =
HP_SDC_ACT_DATAREG | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_SEMAPHORE;
priv->tseq[1] = 0x7;
priv->tseq[2] =
(mlc->opacket &
(HIL_PKT_ADDR_MASK | HIL_PKT_CMD))
>> HIL_PKT_ADDR_SHIFT;
priv->tseq[3] =
(mlc->opacket & HIL_PKT_DATA_MASK)
>> HIL_PKT_DATA_SHIFT;
priv->tseq[4] = 0; /* No timeout */
if (priv->tseq[3] == HIL_CMD_DHR)
priv->tseq[4] = 1;
priv->tseq[5] = HP_SDC_CMD_DO_HIL;
goto enqueue;
do_control:
priv->emtestmode = mlc->opacket & HIL_CTRL_TEST;
/* we cannot emulate this, it should not be used. */
BUG_ON((mlc->opacket & (HIL_CTRL_APE | HIL_CTRL_IPF)) == HIL_CTRL_APE);
if ((mlc->opacket & HIL_CTRL_ONLY) == HIL_CTRL_ONLY)
goto control_only;
/* Should not send command/data after engaging APE */
BUG_ON(mlc->opacket & HIL_CTRL_APE);
/* Disengaging APE this way would not be valid either since
* the loop must be allowed to idle.
*
* So, it works out that we really never actually send control
* and data when using SDC, we just send the data.
*/
goto do_data;
control_only:
priv->trans.actidx = 0;
priv->trans.idx = 1;
priv->trans.act.semaphore = &mlc->osem;
priv->trans.endidx = 4;
priv->tseq[0] =
HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT | HP_SDC_ACT_SEMAPHORE;
priv->tseq[1] = HP_SDC_CMD_SET_LPC;
priv->tseq[2] = 1;
/* priv->tseq[3] = (mlc->ddc + 1) | HP_SDC_LPS_ACSUCC; */
priv->tseq[3] = 0;
if (mlc->opacket & HIL_CTRL_APE) {
priv->tseq[3] |= HP_SDC_LPC_APE_IPF;
BUG_ON(down_trylock(&mlc->csem));
}
enqueue:
return hp_sdc_enqueue_transaction(&priv->trans);
}
static int __init hp_sdc_mlc_init(void)
{
hil_mlc *mlc = &hp_sdc_mlc;
int err;
#ifdef __mc68000__
if (!MACH_IS_HP300)
return -ENODEV;
#endif
printk(KERN_INFO PREFIX "Registering the System Domain Controller's HIL MLC.\n");
hp_sdc_mlc_priv.emtestmode = 0;
hp_sdc_mlc_priv.trans.seq = hp_sdc_mlc_priv.tseq;
hp_sdc_mlc_priv.trans.act.semaphore = &mlc->osem;
hp_sdc_mlc_priv.got5x = 0;
mlc->cts = &hp_sdc_mlc_cts;
mlc->in = &hp_sdc_mlc_in;
mlc->out = &hp_sdc_mlc_out;
mlc->priv = &hp_sdc_mlc_priv;
err = hil_mlc_register(mlc);
if (err) {
printk(KERN_WARNING PREFIX "Failed to register MLC structure with hil_mlc\n");
return err;
}
if (hp_sdc_request_hil_irq(&hp_sdc_mlc_isr)) {
printk(KERN_WARNING PREFIX "Request for raw HIL ISR hook denied\n");
if (hil_mlc_unregister(mlc))
printk(KERN_ERR PREFIX "Failed to unregister MLC structure with hil_mlc.\n"
"This is bad. Could cause an oops.\n");
return -EBUSY;
}
return 0;
}
static void __exit hp_sdc_mlc_exit(void)
{
hil_mlc *mlc = &hp_sdc_mlc;
if (hp_sdc_release_hil_irq(&hp_sdc_mlc_isr))
printk(KERN_ERR PREFIX "Failed to release the raw HIL ISR hook.\n"
"This is bad. Could cause an oops.\n");
if (hil_mlc_unregister(mlc))
printk(KERN_ERR PREFIX "Failed to unregister MLC structure with hil_mlc.\n"
"This is bad. Could cause an oops.\n");
}
module_init(hp_sdc_mlc_init);
module_exit(hp_sdc_mlc_exit);
|
linux-master
|
drivers/input/serio/hp_sdc_mlc.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2013, Microsoft Corporation.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/completion.h>
#include <linux/hyperv.h>
#include <linux/serio.h>
#include <linux/slab.h>
/*
* Current version 1.0
*
*/
#define SYNTH_KBD_VERSION_MAJOR 1
#define SYNTH_KBD_VERSION_MINOR 0
#define SYNTH_KBD_VERSION (SYNTH_KBD_VERSION_MINOR | \
(SYNTH_KBD_VERSION_MAJOR << 16))
/*
* Message types in the synthetic input protocol
*/
enum synth_kbd_msg_type {
SYNTH_KBD_PROTOCOL_REQUEST = 1,
SYNTH_KBD_PROTOCOL_RESPONSE = 2,
SYNTH_KBD_EVENT = 3,
SYNTH_KBD_LED_INDICATORS = 4,
};
/*
* Basic message structures.
*/
struct synth_kbd_msg_hdr {
__le32 type;
};
struct synth_kbd_msg {
struct synth_kbd_msg_hdr header;
char data[]; /* Enclosed message */
};
union synth_kbd_version {
__le32 version;
};
/*
* Protocol messages
*/
struct synth_kbd_protocol_request {
struct synth_kbd_msg_hdr header;
union synth_kbd_version version_requested;
};
#define PROTOCOL_ACCEPTED BIT(0)
struct synth_kbd_protocol_response {
struct synth_kbd_msg_hdr header;
__le32 proto_status;
};
#define IS_UNICODE BIT(0)
#define IS_BREAK BIT(1)
#define IS_E0 BIT(2)
#define IS_E1 BIT(3)
struct synth_kbd_keystroke {
struct synth_kbd_msg_hdr header;
__le16 make_code;
__le16 reserved0;
__le32 info; /* Additional information */
};
#define HK_MAXIMUM_MESSAGE_SIZE 256
#define KBD_VSC_SEND_RING_BUFFER_SIZE VMBUS_RING_SIZE(36 * 1024)
#define KBD_VSC_RECV_RING_BUFFER_SIZE VMBUS_RING_SIZE(36 * 1024)
#define XTKBD_EMUL0 0xe0
#define XTKBD_EMUL1 0xe1
#define XTKBD_RELEASE 0x80
/*
* Represents a keyboard device
*/
struct hv_kbd_dev {
struct hv_device *hv_dev;
struct serio *hv_serio;
struct synth_kbd_protocol_request protocol_req;
struct synth_kbd_protocol_response protocol_resp;
/* Synchronize the request/response if needed */
struct completion wait_event;
spinlock_t lock; /* protects 'started' field */
bool started;
};
static void hv_kbd_on_receive(struct hv_device *hv_dev,
struct synth_kbd_msg *msg, u32 msg_length)
{
struct hv_kbd_dev *kbd_dev = hv_get_drvdata(hv_dev);
struct synth_kbd_keystroke *ks_msg;
unsigned long flags;
u32 msg_type = __le32_to_cpu(msg->header.type);
u32 info;
u16 scan_code;
switch (msg_type) {
case SYNTH_KBD_PROTOCOL_RESPONSE:
/*
* Validate the information provided by the host.
* If the host is giving us a bogus packet,
* drop the packet (hoping the problem
* goes away).
*/
if (msg_length < sizeof(struct synth_kbd_protocol_response)) {
dev_err(&hv_dev->device,
"Illegal protocol response packet (len: %d)\n",
msg_length);
break;
}
memcpy(&kbd_dev->protocol_resp, msg,
sizeof(struct synth_kbd_protocol_response));
complete(&kbd_dev->wait_event);
break;
case SYNTH_KBD_EVENT:
/*
* Validate the information provided by the host.
* If the host is giving us a bogus packet,
* drop the packet (hoping the problem
* goes away).
*/
if (msg_length < sizeof(struct synth_kbd_keystroke)) {
dev_err(&hv_dev->device,
"Illegal keyboard event packet (len: %d)\n",
msg_length);
break;
}
ks_msg = (struct synth_kbd_keystroke *)msg;
info = __le32_to_cpu(ks_msg->info);
/*
* Inject the information through the serio interrupt.
*/
spin_lock_irqsave(&kbd_dev->lock, flags);
if (kbd_dev->started) {
if (info & IS_E0)
serio_interrupt(kbd_dev->hv_serio,
XTKBD_EMUL0, 0);
if (info & IS_E1)
serio_interrupt(kbd_dev->hv_serio,
XTKBD_EMUL1, 0);
scan_code = __le16_to_cpu(ks_msg->make_code);
if (info & IS_BREAK)
scan_code |= XTKBD_RELEASE;
serio_interrupt(kbd_dev->hv_serio, scan_code, 0);
}
spin_unlock_irqrestore(&kbd_dev->lock, flags);
/*
* Only trigger a wakeup on key down, otherwise
* "echo freeze > /sys/power/state" can't really enter the
* state because the Enter-UP can trigger a wakeup at once.
*/
if (!(info & IS_BREAK))
pm_wakeup_hard_event(&hv_dev->device);
break;
default:
dev_err(&hv_dev->device,
"unhandled message type %d\n", msg_type);
}
}
static void hv_kbd_handle_received_packet(struct hv_device *hv_dev,
struct vmpacket_descriptor *desc,
u32 bytes_recvd,
u64 req_id)
{
struct synth_kbd_msg *msg;
u32 msg_sz;
switch (desc->type) {
case VM_PKT_COMP:
break;
case VM_PKT_DATA_INBAND:
/*
* We have a packet that has "inband" data. The API used
* for retrieving the packet guarantees that the complete
* packet is read. So, minimally, we should be able to
* parse the payload header safely (assuming that the host
* can be trusted. Trusting the host seems to be a
* reasonable assumption because in a virtualized
* environment there is not whole lot you can do if you
* don't trust the host.
*
* Nonetheless, let us validate if the host can be trusted
* (in a trivial way). The interesting aspect of this
* validation is how do you recover if we discover that the
* host is not to be trusted? Simply dropping the packet, I
* don't think is an appropriate recovery. In the interest
* of failing fast, it may be better to crash the guest.
* For now, I will just drop the packet!
*/
msg_sz = bytes_recvd - (desc->offset8 << 3);
if (msg_sz <= sizeof(struct synth_kbd_msg_hdr)) {
/*
* Drop the packet and hope
* the problem magically goes away.
*/
dev_err(&hv_dev->device,
"Illegal packet (type: %d, tid: %llx, size: %d)\n",
desc->type, req_id, msg_sz);
break;
}
msg = (void *)desc + (desc->offset8 << 3);
hv_kbd_on_receive(hv_dev, msg, msg_sz);
break;
default:
dev_err(&hv_dev->device,
"unhandled packet type %d, tid %llx len %d\n",
desc->type, req_id, bytes_recvd);
break;
}
}
static void hv_kbd_on_channel_callback(void *context)
{
struct vmpacket_descriptor *desc;
struct hv_device *hv_dev = context;
u32 bytes_recvd;
u64 req_id;
foreach_vmbus_pkt(desc, hv_dev->channel) {
bytes_recvd = desc->len8 * 8;
req_id = desc->trans_id;
hv_kbd_handle_received_packet(hv_dev, desc, bytes_recvd,
req_id);
}
}
static int hv_kbd_connect_to_vsp(struct hv_device *hv_dev)
{
struct hv_kbd_dev *kbd_dev = hv_get_drvdata(hv_dev);
struct synth_kbd_protocol_request *request;
struct synth_kbd_protocol_response *response;
u32 proto_status;
int error;
reinit_completion(&kbd_dev->wait_event);
request = &kbd_dev->protocol_req;
memset(request, 0, sizeof(struct synth_kbd_protocol_request));
request->header.type = __cpu_to_le32(SYNTH_KBD_PROTOCOL_REQUEST);
request->version_requested.version = __cpu_to_le32(SYNTH_KBD_VERSION);
error = vmbus_sendpacket(hv_dev->channel, request,
sizeof(struct synth_kbd_protocol_request),
(unsigned long)request,
VM_PKT_DATA_INBAND,
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
if (error)
return error;
if (!wait_for_completion_timeout(&kbd_dev->wait_event, 10 * HZ))
return -ETIMEDOUT;
response = &kbd_dev->protocol_resp;
proto_status = __le32_to_cpu(response->proto_status);
if (!(proto_status & PROTOCOL_ACCEPTED)) {
dev_err(&hv_dev->device,
"synth_kbd protocol request failed (version %d)\n",
SYNTH_KBD_VERSION);
return -ENODEV;
}
return 0;
}
static int hv_kbd_start(struct serio *serio)
{
struct hv_kbd_dev *kbd_dev = serio->port_data;
unsigned long flags;
spin_lock_irqsave(&kbd_dev->lock, flags);
kbd_dev->started = true;
spin_unlock_irqrestore(&kbd_dev->lock, flags);
return 0;
}
static void hv_kbd_stop(struct serio *serio)
{
struct hv_kbd_dev *kbd_dev = serio->port_data;
unsigned long flags;
spin_lock_irqsave(&kbd_dev->lock, flags);
kbd_dev->started = false;
spin_unlock_irqrestore(&kbd_dev->lock, flags);
}
static int hv_kbd_probe(struct hv_device *hv_dev,
const struct hv_vmbus_device_id *dev_id)
{
struct hv_kbd_dev *kbd_dev;
struct serio *hv_serio;
int error;
kbd_dev = kzalloc(sizeof(struct hv_kbd_dev), GFP_KERNEL);
hv_serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!kbd_dev || !hv_serio) {
error = -ENOMEM;
goto err_free_mem;
}
kbd_dev->hv_dev = hv_dev;
kbd_dev->hv_serio = hv_serio;
spin_lock_init(&kbd_dev->lock);
init_completion(&kbd_dev->wait_event);
hv_set_drvdata(hv_dev, kbd_dev);
hv_serio->dev.parent = &hv_dev->device;
hv_serio->id.type = SERIO_8042_XL;
hv_serio->port_data = kbd_dev;
strscpy(hv_serio->name, dev_name(&hv_dev->device),
sizeof(hv_serio->name));
strscpy(hv_serio->phys, dev_name(&hv_dev->device),
sizeof(hv_serio->phys));
hv_serio->start = hv_kbd_start;
hv_serio->stop = hv_kbd_stop;
error = vmbus_open(hv_dev->channel,
KBD_VSC_SEND_RING_BUFFER_SIZE,
KBD_VSC_RECV_RING_BUFFER_SIZE,
NULL, 0,
hv_kbd_on_channel_callback,
hv_dev);
if (error)
goto err_free_mem;
error = hv_kbd_connect_to_vsp(hv_dev);
if (error)
goto err_close_vmbus;
serio_register_port(kbd_dev->hv_serio);
device_init_wakeup(&hv_dev->device, true);
return 0;
err_close_vmbus:
vmbus_close(hv_dev->channel);
err_free_mem:
kfree(hv_serio);
kfree(kbd_dev);
return error;
}
static void hv_kbd_remove(struct hv_device *hv_dev)
{
struct hv_kbd_dev *kbd_dev = hv_get_drvdata(hv_dev);
serio_unregister_port(kbd_dev->hv_serio);
vmbus_close(hv_dev->channel);
kfree(kbd_dev);
hv_set_drvdata(hv_dev, NULL);
}
static int hv_kbd_suspend(struct hv_device *hv_dev)
{
vmbus_close(hv_dev->channel);
return 0;
}
static int hv_kbd_resume(struct hv_device *hv_dev)
{
int ret;
ret = vmbus_open(hv_dev->channel,
KBD_VSC_SEND_RING_BUFFER_SIZE,
KBD_VSC_RECV_RING_BUFFER_SIZE,
NULL, 0,
hv_kbd_on_channel_callback,
hv_dev);
if (ret == 0)
ret = hv_kbd_connect_to_vsp(hv_dev);
return ret;
}
static const struct hv_vmbus_device_id id_table[] = {
/* Keyboard guid */
{ HV_KBD_GUID, },
{ },
};
MODULE_DEVICE_TABLE(vmbus, id_table);
static struct hv_driver hv_kbd_drv = {
.name = KBUILD_MODNAME,
.id_table = id_table,
.probe = hv_kbd_probe,
.remove = hv_kbd_remove,
.suspend = hv_kbd_suspend,
.resume = hv_kbd_resume,
.driver = {
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
};
static int __init hv_kbd_init(void)
{
return vmbus_driver_register(&hv_kbd_drv);
}
static void __exit hv_kbd_exit(void)
{
vmbus_driver_unregister(&hv_kbd_drv);
}
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Microsoft Hyper-V Synthetic Keyboard Driver");
module_init(hv_kbd_init);
module_exit(hv_kbd_exit);
|
linux-master
|
drivers/input/serio/hyperv-keyboard.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2013 Aeroflex Gaisler
*
* This driver supports the APBPS2 PS/2 core available in the GRLIB
* VHDL IP core library.
*
* Full documentation of the APBPS2 core can be found here:
* http://www.gaisler.com/products/grlib/grip.pdf
*
* See "Documentation/devicetree/bindings/input/ps2keyb-mouse-apbps2.txt" for
* information on open firmware properties.
*
* Contributors: Daniel Hellstrom <[email protected]>
*/
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/serio.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/io.h>
struct apbps2_regs {
u32 __iomem data; /* 0x00 */
u32 __iomem status; /* 0x04 */
u32 __iomem ctrl; /* 0x08 */
u32 __iomem reload; /* 0x0c */
};
#define APBPS2_STATUS_DR (1<<0)
#define APBPS2_STATUS_PE (1<<1)
#define APBPS2_STATUS_FE (1<<2)
#define APBPS2_STATUS_KI (1<<3)
#define APBPS2_STATUS_RF (1<<4)
#define APBPS2_STATUS_TF (1<<5)
#define APBPS2_STATUS_TCNT (0x1f<<22)
#define APBPS2_STATUS_RCNT (0x1f<<27)
#define APBPS2_CTRL_RE (1<<0)
#define APBPS2_CTRL_TE (1<<1)
#define APBPS2_CTRL_RI (1<<2)
#define APBPS2_CTRL_TI (1<<3)
struct apbps2_priv {
struct serio *io;
struct apbps2_regs __iomem *regs;
};
static int apbps2_idx;
static irqreturn_t apbps2_isr(int irq, void *dev_id)
{
struct apbps2_priv *priv = dev_id;
unsigned long status, data, rxflags;
irqreturn_t ret = IRQ_NONE;
while ((status = ioread32be(&priv->regs->status)) & APBPS2_STATUS_DR) {
data = ioread32be(&priv->regs->data);
rxflags = (status & APBPS2_STATUS_PE) ? SERIO_PARITY : 0;
rxflags |= (status & APBPS2_STATUS_FE) ? SERIO_FRAME : 0;
/* clear error bits? */
if (rxflags)
iowrite32be(0, &priv->regs->status);
serio_interrupt(priv->io, data, rxflags);
ret = IRQ_HANDLED;
}
return ret;
}
static int apbps2_write(struct serio *io, unsigned char val)
{
struct apbps2_priv *priv = io->port_data;
unsigned int tleft = 10000; /* timeout in 100ms */
/* delay until PS/2 controller has room for more chars */
while ((ioread32be(&priv->regs->status) & APBPS2_STATUS_TF) && tleft--)
udelay(10);
if ((ioread32be(&priv->regs->status) & APBPS2_STATUS_TF) == 0) {
iowrite32be(val, &priv->regs->data);
iowrite32be(APBPS2_CTRL_RE | APBPS2_CTRL_RI | APBPS2_CTRL_TE,
&priv->regs->ctrl);
return 0;
}
return -ETIMEDOUT;
}
static int apbps2_open(struct serio *io)
{
struct apbps2_priv *priv = io->port_data;
int limit;
/* clear error flags */
iowrite32be(0, &priv->regs->status);
/* Clear old data if available (unlikely) */
limit = 1024;
while ((ioread32be(&priv->regs->status) & APBPS2_STATUS_DR) && --limit)
ioread32be(&priv->regs->data);
/* Enable reciever and it's interrupt */
iowrite32be(APBPS2_CTRL_RE | APBPS2_CTRL_RI, &priv->regs->ctrl);
return 0;
}
static void apbps2_close(struct serio *io)
{
struct apbps2_priv *priv = io->port_data;
/* stop interrupts at PS/2 HW level */
iowrite32be(0, &priv->regs->ctrl);
}
/* Initialize one APBPS2 PS/2 core */
static int apbps2_of_probe(struct platform_device *ofdev)
{
struct apbps2_priv *priv;
int irq, err;
u32 freq_hz;
priv = devm_kzalloc(&ofdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv) {
dev_err(&ofdev->dev, "memory allocation failed\n");
return -ENOMEM;
}
/* Find Device Address */
priv->regs = devm_platform_get_and_ioremap_resource(ofdev, 0, NULL);
if (IS_ERR(priv->regs))
return PTR_ERR(priv->regs);
/* Reset hardware, disable interrupt */
iowrite32be(0, &priv->regs->ctrl);
/* IRQ */
irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
err = devm_request_irq(&ofdev->dev, irq, apbps2_isr,
IRQF_SHARED, "apbps2", priv);
if (err) {
dev_err(&ofdev->dev, "request IRQ%d failed\n", irq);
return err;
}
/* Get core frequency */
if (of_property_read_u32(ofdev->dev.of_node, "freq", &freq_hz)) {
dev_err(&ofdev->dev, "unable to get core frequency\n");
return -EINVAL;
}
/* Set reload register to core freq in kHz/10 */
iowrite32be(freq_hz / 10000, &priv->regs->reload);
priv->io = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!priv->io)
return -ENOMEM;
priv->io->id.type = SERIO_8042;
priv->io->open = apbps2_open;
priv->io->close = apbps2_close;
priv->io->write = apbps2_write;
priv->io->port_data = priv;
strscpy(priv->io->name, "APBPS2 PS/2", sizeof(priv->io->name));
snprintf(priv->io->phys, sizeof(priv->io->phys),
"apbps2_%d", apbps2_idx++);
dev_info(&ofdev->dev, "irq = %d, base = 0x%p\n", irq, priv->regs);
serio_register_port(priv->io);
platform_set_drvdata(ofdev, priv);
return 0;
}
static int apbps2_of_remove(struct platform_device *of_dev)
{
struct apbps2_priv *priv = platform_get_drvdata(of_dev);
serio_unregister_port(priv->io);
return 0;
}
static const struct of_device_id apbps2_of_match[] = {
{ .name = "GAISLER_APBPS2", },
{ .name = "01_060", },
{}
};
MODULE_DEVICE_TABLE(of, apbps2_of_match);
static struct platform_driver apbps2_of_driver = {
.driver = {
.name = "grlib-apbps2",
.of_match_table = apbps2_of_match,
},
.probe = apbps2_of_probe,
.remove = apbps2_of_remove,
};
module_platform_driver(apbps2_of_driver);
MODULE_AUTHOR("Aeroflex Gaisler AB.");
MODULE_DESCRIPTION("GRLIB APBPS2 PS/2 serial I/O");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/serio/apbps2.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2000-2001 Vojtech Pavlik
* Copyright (c) 2002 Russell King
*/
/*
* Acorn RiscPC PS/2 keyboard controller driver for Linux/ARM
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/serio.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <mach/hardware.h>
#include <asm/hardware/iomd.h>
MODULE_AUTHOR("Vojtech Pavlik, Russell King");
MODULE_DESCRIPTION("Acorn RiscPC PS/2 keyboard controller driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:kart");
struct rpckbd_data {
int tx_irq;
int rx_irq;
};
static int rpckbd_write(struct serio *port, unsigned char val)
{
while (!(iomd_readb(IOMD_KCTRL) & (1 << 7)))
cpu_relax();
iomd_writeb(val, IOMD_KARTTX);
return 0;
}
static irqreturn_t rpckbd_rx(int irq, void *dev_id)
{
struct serio *port = dev_id;
unsigned int byte;
int handled = IRQ_NONE;
while (iomd_readb(IOMD_KCTRL) & (1 << 5)) {
byte = iomd_readb(IOMD_KARTRX);
serio_interrupt(port, byte, 0);
handled = IRQ_HANDLED;
}
return handled;
}
static irqreturn_t rpckbd_tx(int irq, void *dev_id)
{
return IRQ_HANDLED;
}
static int rpckbd_open(struct serio *port)
{
struct rpckbd_data *rpckbd = port->port_data;
/* Reset the keyboard state machine. */
iomd_writeb(0, IOMD_KCTRL);
iomd_writeb(8, IOMD_KCTRL);
iomd_readb(IOMD_KARTRX);
if (request_irq(rpckbd->rx_irq, rpckbd_rx, 0, "rpckbd", port) != 0) {
printk(KERN_ERR "rpckbd.c: Could not allocate keyboard receive IRQ\n");
return -EBUSY;
}
if (request_irq(rpckbd->tx_irq, rpckbd_tx, 0, "rpckbd", port) != 0) {
printk(KERN_ERR "rpckbd.c: Could not allocate keyboard transmit IRQ\n");
free_irq(rpckbd->rx_irq, port);
return -EBUSY;
}
return 0;
}
static void rpckbd_close(struct serio *port)
{
struct rpckbd_data *rpckbd = port->port_data;
free_irq(rpckbd->rx_irq, port);
free_irq(rpckbd->tx_irq, port);
}
/*
* Allocate and initialize serio structure for subsequent registration
* with serio core.
*/
static int rpckbd_probe(struct platform_device *dev)
{
struct rpckbd_data *rpckbd;
struct serio *serio;
int tx_irq, rx_irq;
rx_irq = platform_get_irq(dev, 0);
if (rx_irq < 0)
return rx_irq;
tx_irq = platform_get_irq(dev, 1);
if (tx_irq < 0)
return tx_irq;
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
rpckbd = kzalloc(sizeof(*rpckbd), GFP_KERNEL);
if (!serio || !rpckbd) {
kfree(rpckbd);
kfree(serio);
return -ENOMEM;
}
rpckbd->rx_irq = rx_irq;
rpckbd->tx_irq = tx_irq;
serio->id.type = SERIO_8042;
serio->write = rpckbd_write;
serio->open = rpckbd_open;
serio->close = rpckbd_close;
serio->dev.parent = &dev->dev;
serio->port_data = rpckbd;
strscpy(serio->name, "RiscPC PS/2 kbd port", sizeof(serio->name));
strscpy(serio->phys, "rpckbd/serio0", sizeof(serio->phys));
platform_set_drvdata(dev, serio);
serio_register_port(serio);
return 0;
}
static int rpckbd_remove(struct platform_device *dev)
{
struct serio *serio = platform_get_drvdata(dev);
struct rpckbd_data *rpckbd = serio->port_data;
serio_unregister_port(serio);
kfree(rpckbd);
return 0;
}
static struct platform_driver rpckbd_driver = {
.probe = rpckbd_probe,
.remove = rpckbd_remove,
.driver = {
.name = "kart",
},
};
module_platform_driver(rpckbd_driver);
|
linux-master
|
drivers/input/serio/rpckbd.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 1999-2001 Vojtech Pavlik
*/
/*
* 82C710 C&T mouse port chip driver for Linux
*/
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/serio.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <asm/io.h>
MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
MODULE_DESCRIPTION("82C710 C&T mouse port chip driver");
MODULE_LICENSE("GPL");
/*
* ct82c710 interface
*/
#define CT82C710_DEV_IDLE 0x01 /* Device Idle */
#define CT82C710_RX_FULL 0x02 /* Device Char received */
#define CT82C710_TX_IDLE 0x04 /* Device XMIT Idle */
#define CT82C710_RESET 0x08 /* Device Reset */
#define CT82C710_INTS_ON 0x10 /* Device Interrupt On */
#define CT82C710_ERROR_FLAG 0x20 /* Device Error */
#define CT82C710_CLEAR 0x40 /* Device Clear */
#define CT82C710_ENABLE 0x80 /* Device Enable */
#define CT82C710_IRQ 12
#define CT82C710_DATA ct82c710_iores.start
#define CT82C710_STATUS (ct82c710_iores.start + 1)
static struct serio *ct82c710_port;
static struct platform_device *ct82c710_device;
static struct resource ct82c710_iores;
/*
* Interrupt handler for the 82C710 mouse port. A character
* is waiting in the 82C710.
*/
static irqreturn_t ct82c710_interrupt(int cpl, void *dev_id)
{
return serio_interrupt(ct82c710_port, inb(CT82C710_DATA), 0);
}
/*
* Wait for device to send output char and flush any input char.
*/
static int ct82c170_wait(void)
{
int timeout = 60000;
while ((inb(CT82C710_STATUS) & (CT82C710_RX_FULL | CT82C710_TX_IDLE | CT82C710_DEV_IDLE))
!= (CT82C710_DEV_IDLE | CT82C710_TX_IDLE) && timeout) {
if (inb_p(CT82C710_STATUS) & CT82C710_RX_FULL) inb_p(CT82C710_DATA);
udelay(1);
timeout--;
}
return !timeout;
}
static void ct82c710_close(struct serio *serio)
{
if (ct82c170_wait())
printk(KERN_WARNING "ct82c710.c: Device busy in close()\n");
outb_p(inb_p(CT82C710_STATUS) & ~(CT82C710_ENABLE | CT82C710_INTS_ON), CT82C710_STATUS);
if (ct82c170_wait())
printk(KERN_WARNING "ct82c710.c: Device busy in close()\n");
free_irq(CT82C710_IRQ, NULL);
}
static int ct82c710_open(struct serio *serio)
{
unsigned char status;
int err;
err = request_irq(CT82C710_IRQ, ct82c710_interrupt, 0, "ct82c710", NULL);
if (err)
return err;
status = inb_p(CT82C710_STATUS);
status |= (CT82C710_ENABLE | CT82C710_RESET);
outb_p(status, CT82C710_STATUS);
status &= ~(CT82C710_RESET);
outb_p(status, CT82C710_STATUS);
status |= CT82C710_INTS_ON;
outb_p(status, CT82C710_STATUS); /* Enable interrupts */
while (ct82c170_wait()) {
printk(KERN_ERR "ct82c710: Device busy in open()\n");
status &= ~(CT82C710_ENABLE | CT82C710_INTS_ON);
outb_p(status, CT82C710_STATUS);
free_irq(CT82C710_IRQ, NULL);
return -EBUSY;
}
return 0;
}
/*
* Write to the 82C710 mouse device.
*/
static int ct82c710_write(struct serio *port, unsigned char c)
{
if (ct82c170_wait()) return -1;
outb_p(c, CT82C710_DATA);
return 0;
}
/*
* See if we can find a 82C710 device. Read mouse address.
*/
static int __init ct82c710_detect(void)
{
outb_p(0x55, 0x2fa); /* Any value except 9, ff or 36 */
outb_p(0xaa, 0x3fa); /* Inverse of 55 */
outb_p(0x36, 0x3fa); /* Address the chip */
outb_p(0xe4, 0x3fa); /* 390/4; 390 = config address */
outb_p(0x1b, 0x2fa); /* Inverse of e4 */
outb_p(0x0f, 0x390); /* Write index */
if (inb_p(0x391) != 0xe4) /* Config address found? */
return -ENODEV; /* No: no 82C710 here */
outb_p(0x0d, 0x390); /* Write index */
ct82c710_iores.start = inb_p(0x391) << 2; /* Get mouse I/O address */
ct82c710_iores.end = ct82c710_iores.start + 1;
ct82c710_iores.flags = IORESOURCE_IO;
outb_p(0x0f, 0x390);
outb_p(0x0f, 0x391); /* Close config mode */
return 0;
}
static int ct82c710_probe(struct platform_device *dev)
{
ct82c710_port = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!ct82c710_port)
return -ENOMEM;
ct82c710_port->id.type = SERIO_8042;
ct82c710_port->dev.parent = &dev->dev;
ct82c710_port->open = ct82c710_open;
ct82c710_port->close = ct82c710_close;
ct82c710_port->write = ct82c710_write;
strscpy(ct82c710_port->name, "C&T 82c710 mouse port",
sizeof(ct82c710_port->name));
snprintf(ct82c710_port->phys, sizeof(ct82c710_port->phys),
"isa%16llx/serio0", (unsigned long long)CT82C710_DATA);
serio_register_port(ct82c710_port);
printk(KERN_INFO "serio: C&T 82c710 mouse port at %#llx irq %d\n",
(unsigned long long)CT82C710_DATA, CT82C710_IRQ);
return 0;
}
static int ct82c710_remove(struct platform_device *dev)
{
serio_unregister_port(ct82c710_port);
return 0;
}
static struct platform_driver ct82c710_driver = {
.driver = {
.name = "ct82c710",
},
.probe = ct82c710_probe,
.remove = ct82c710_remove,
};
static int __init ct82c710_init(void)
{
int error;
error = ct82c710_detect();
if (error)
return error;
error = platform_driver_register(&ct82c710_driver);
if (error)
return error;
ct82c710_device = platform_device_alloc("ct82c710", -1);
if (!ct82c710_device) {
error = -ENOMEM;
goto err_unregister_driver;
}
error = platform_device_add_resources(ct82c710_device, &ct82c710_iores, 1);
if (error)
goto err_free_device;
error = platform_device_add(ct82c710_device);
if (error)
goto err_free_device;
return 0;
err_free_device:
platform_device_put(ct82c710_device);
err_unregister_driver:
platform_driver_unregister(&ct82c710_driver);
return error;
}
static void __exit ct82c710_exit(void)
{
platform_device_unregister(ct82c710_device);
platform_driver_unregister(&ct82c710_driver);
}
module_init(ct82c710_init);
module_exit(ct82c710_exit);
|
linux-master
|
drivers/input/serio/ct82c710.c
|
/*
* HP i8042-based System Device Controller driver.
*
* Copyright (c) 2001 Brian S. Julin
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL").
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
*
* References:
* System Device Controller Microprocessor Firmware Theory of Operation
* for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
* Helge Deller's original hilkbd.c port for PA-RISC.
*
*
* Driver theory of operation:
*
* hp_sdc_put does all writing to the SDC. ISR can run on a different
* CPU than hp_sdc_put, but only one CPU runs hp_sdc_put at a time
* (it cannot really benefit from SMP anyway.) A tasket fit this perfectly.
*
* All data coming back from the SDC is sent via interrupt and can be read
* fully in the ISR, so there are no latency/throughput problems there.
* The problem is with output, due to the slow clock speed of the SDC
* compared to the CPU. This should not be too horrible most of the time,
* but if used with HIL devices that support the multibyte transfer command,
* keeping outbound throughput flowing at the 6500KBps that the HIL is
* capable of is more than can be done at HZ=100.
*
* Busy polling for IBF clear wastes CPU cycles and bus cycles. hp_sdc.ibf
* is set to 0 when the IBF flag in the status register has cleared. ISR
* may do this, and may also access the parts of queued transactions related
* to reading data back from the SDC, but otherwise will not touch the
* hp_sdc state. Whenever a register is written hp_sdc.ibf is set to 1.
*
* The i8042 write index and the values in the 4-byte input buffer
* starting at 0x70 are kept track of in hp_sdc.wi, and .r7[], respectively,
* to minimize the amount of IO needed to the SDC. However these values
* do not need to be locked since they are only ever accessed by hp_sdc_put.
*
* A timer task schedules the tasklet once per second just to make
* sure it doesn't freeze up and to allow for bad reads to time out.
*/
#include <linux/hp_sdc.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/time.h>
#include <linux/semaphore.h>
#include <linux/slab.h>
#include <linux/hil.h>
#include <asm/io.h>
/* Machine-specific abstraction */
#if defined(__hppa__)
# include <asm/parisc-device.h>
# define sdc_readb(p) gsc_readb(p)
# define sdc_writeb(v,p) gsc_writeb((v),(p))
#elif defined(__mc68000__)
#include <linux/uaccess.h>
# define sdc_readb(p) in_8(p)
# define sdc_writeb(v,p) out_8((p),(v))
#else
# error "HIL is not supported on this platform"
#endif
#define PREFIX "HP SDC: "
MODULE_AUTHOR("Brian S. Julin <[email protected]>");
MODULE_DESCRIPTION("HP i8042-based SDC Driver");
MODULE_LICENSE("Dual BSD/GPL");
EXPORT_SYMBOL(hp_sdc_request_timer_irq);
EXPORT_SYMBOL(hp_sdc_request_hil_irq);
EXPORT_SYMBOL(hp_sdc_request_cooked_irq);
EXPORT_SYMBOL(hp_sdc_release_timer_irq);
EXPORT_SYMBOL(hp_sdc_release_hil_irq);
EXPORT_SYMBOL(hp_sdc_release_cooked_irq);
EXPORT_SYMBOL(__hp_sdc_enqueue_transaction);
EXPORT_SYMBOL(hp_sdc_enqueue_transaction);
EXPORT_SYMBOL(hp_sdc_dequeue_transaction);
static bool hp_sdc_disabled;
module_param_named(no_hpsdc, hp_sdc_disabled, bool, 0);
MODULE_PARM_DESC(no_hpsdc, "Do not enable HP SDC driver.");
static hp_i8042_sdc hp_sdc; /* All driver state is kept in here. */
/*************** primitives for use in any context *********************/
static inline uint8_t hp_sdc_status_in8(void)
{
uint8_t status;
unsigned long flags;
write_lock_irqsave(&hp_sdc.ibf_lock, flags);
status = sdc_readb(hp_sdc.status_io);
if (!(status & HP_SDC_STATUS_IBF))
hp_sdc.ibf = 0;
write_unlock_irqrestore(&hp_sdc.ibf_lock, flags);
return status;
}
static inline uint8_t hp_sdc_data_in8(void)
{
return sdc_readb(hp_sdc.data_io);
}
static inline void hp_sdc_status_out8(uint8_t val)
{
unsigned long flags;
write_lock_irqsave(&hp_sdc.ibf_lock, flags);
hp_sdc.ibf = 1;
if ((val & 0xf0) == 0xe0)
hp_sdc.wi = 0xff;
sdc_writeb(val, hp_sdc.status_io);
write_unlock_irqrestore(&hp_sdc.ibf_lock, flags);
}
static inline void hp_sdc_data_out8(uint8_t val)
{
unsigned long flags;
write_lock_irqsave(&hp_sdc.ibf_lock, flags);
hp_sdc.ibf = 1;
sdc_writeb(val, hp_sdc.data_io);
write_unlock_irqrestore(&hp_sdc.ibf_lock, flags);
}
/* Care must be taken to only invoke hp_sdc_spin_ibf when
* absolutely needed, or in rarely invoked subroutines.
* Not only does it waste CPU cycles, it also wastes bus cycles.
*/
static inline void hp_sdc_spin_ibf(void)
{
unsigned long flags;
rwlock_t *lock;
lock = &hp_sdc.ibf_lock;
read_lock_irqsave(lock, flags);
if (!hp_sdc.ibf) {
read_unlock_irqrestore(lock, flags);
return;
}
read_unlock(lock);
write_lock(lock);
while (sdc_readb(hp_sdc.status_io) & HP_SDC_STATUS_IBF)
{ }
hp_sdc.ibf = 0;
write_unlock_irqrestore(lock, flags);
}
/************************ Interrupt context functions ************************/
static void hp_sdc_take(int irq, void *dev_id, uint8_t status, uint8_t data)
{
hp_sdc_transaction *curr;
read_lock(&hp_sdc.rtq_lock);
if (hp_sdc.rcurr < 0) {
read_unlock(&hp_sdc.rtq_lock);
return;
}
curr = hp_sdc.tq[hp_sdc.rcurr];
read_unlock(&hp_sdc.rtq_lock);
curr->seq[curr->idx++] = status;
curr->seq[curr->idx++] = data;
hp_sdc.rqty -= 2;
hp_sdc.rtime = ktime_get();
if (hp_sdc.rqty <= 0) {
/* All data has been gathered. */
if (curr->seq[curr->actidx] & HP_SDC_ACT_SEMAPHORE)
if (curr->act.semaphore)
up(curr->act.semaphore);
if (curr->seq[curr->actidx] & HP_SDC_ACT_CALLBACK)
if (curr->act.irqhook)
curr->act.irqhook(irq, dev_id, status, data);
curr->actidx = curr->idx;
curr->idx++;
/* Return control of this transaction */
write_lock(&hp_sdc.rtq_lock);
hp_sdc.rcurr = -1;
hp_sdc.rqty = 0;
write_unlock(&hp_sdc.rtq_lock);
tasklet_schedule(&hp_sdc.task);
}
}
static irqreturn_t hp_sdc_isr(int irq, void *dev_id)
{
uint8_t status, data;
status = hp_sdc_status_in8();
/* Read data unconditionally to advance i8042. */
data = hp_sdc_data_in8();
/* For now we are ignoring these until we get the SDC to behave. */
if (((status & 0xf1) == 0x51) && data == 0x82)
return IRQ_HANDLED;
switch (status & HP_SDC_STATUS_IRQMASK) {
case 0: /* This case is not documented. */
break;
case HP_SDC_STATUS_USERTIMER:
case HP_SDC_STATUS_PERIODIC:
case HP_SDC_STATUS_TIMER:
read_lock(&hp_sdc.hook_lock);
if (hp_sdc.timer != NULL)
hp_sdc.timer(irq, dev_id, status, data);
read_unlock(&hp_sdc.hook_lock);
break;
case HP_SDC_STATUS_REG:
hp_sdc_take(irq, dev_id, status, data);
break;
case HP_SDC_STATUS_HILCMD:
case HP_SDC_STATUS_HILDATA:
read_lock(&hp_sdc.hook_lock);
if (hp_sdc.hil != NULL)
hp_sdc.hil(irq, dev_id, status, data);
read_unlock(&hp_sdc.hook_lock);
break;
case HP_SDC_STATUS_PUP:
read_lock(&hp_sdc.hook_lock);
if (hp_sdc.pup != NULL)
hp_sdc.pup(irq, dev_id, status, data);
else
printk(KERN_INFO PREFIX "HP SDC reports successful PUP.\n");
read_unlock(&hp_sdc.hook_lock);
break;
default:
read_lock(&hp_sdc.hook_lock);
if (hp_sdc.cooked != NULL)
hp_sdc.cooked(irq, dev_id, status, data);
read_unlock(&hp_sdc.hook_lock);
break;
}
return IRQ_HANDLED;
}
static irqreturn_t hp_sdc_nmisr(int irq, void *dev_id)
{
int status;
status = hp_sdc_status_in8();
printk(KERN_WARNING PREFIX "NMI !\n");
#if 0
if (status & HP_SDC_NMISTATUS_FHS) {
read_lock(&hp_sdc.hook_lock);
if (hp_sdc.timer != NULL)
hp_sdc.timer(irq, dev_id, status, 0);
read_unlock(&hp_sdc.hook_lock);
} else {
/* TODO: pass this on to the HIL handler, or do SAK here? */
printk(KERN_WARNING PREFIX "HIL NMI\n");
}
#endif
return IRQ_HANDLED;
}
/***************** Kernel (tasklet) context functions ****************/
unsigned long hp_sdc_put(void);
static void hp_sdc_tasklet(unsigned long foo)
{
write_lock_irq(&hp_sdc.rtq_lock);
if (hp_sdc.rcurr >= 0) {
ktime_t now = ktime_get();
if (ktime_after(now, ktime_add_us(hp_sdc.rtime,
HP_SDC_MAX_REG_DELAY))) {
hp_sdc_transaction *curr;
uint8_t tmp;
curr = hp_sdc.tq[hp_sdc.rcurr];
/* If this turns out to be a normal failure mode
* we'll need to figure out a way to communicate
* it back to the application. and be less verbose.
*/
printk(KERN_WARNING PREFIX "read timeout (%lldus)!\n",
ktime_us_delta(now, hp_sdc.rtime));
curr->idx += hp_sdc.rqty;
hp_sdc.rqty = 0;
tmp = curr->seq[curr->actidx];
curr->seq[curr->actidx] |= HP_SDC_ACT_DEAD;
if (tmp & HP_SDC_ACT_SEMAPHORE)
if (curr->act.semaphore)
up(curr->act.semaphore);
if (tmp & HP_SDC_ACT_CALLBACK) {
/* Note this means that irqhooks may be called
* in tasklet/bh context.
*/
if (curr->act.irqhook)
curr->act.irqhook(0, NULL, 0, 0);
}
curr->actidx = curr->idx;
curr->idx++;
hp_sdc.rcurr = -1;
}
}
write_unlock_irq(&hp_sdc.rtq_lock);
hp_sdc_put();
}
unsigned long hp_sdc_put(void)
{
hp_sdc_transaction *curr;
uint8_t act;
int idx, curridx;
int limit = 0;
write_lock(&hp_sdc.lock);
/* If i8042 buffers are full, we cannot do anything that
requires output, so we skip to the administrativa. */
if (hp_sdc.ibf) {
hp_sdc_status_in8();
if (hp_sdc.ibf)
goto finish;
}
anew:
/* See if we are in the middle of a sequence. */
if (hp_sdc.wcurr < 0)
hp_sdc.wcurr = 0;
read_lock_irq(&hp_sdc.rtq_lock);
if (hp_sdc.rcurr == hp_sdc.wcurr)
hp_sdc.wcurr++;
read_unlock_irq(&hp_sdc.rtq_lock);
if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN)
hp_sdc.wcurr = 0;
curridx = hp_sdc.wcurr;
if (hp_sdc.tq[curridx] != NULL)
goto start;
while (++curridx != hp_sdc.wcurr) {
if (curridx >= HP_SDC_QUEUE_LEN) {
curridx = -1; /* Wrap to top */
continue;
}
read_lock_irq(&hp_sdc.rtq_lock);
if (hp_sdc.rcurr == curridx) {
read_unlock_irq(&hp_sdc.rtq_lock);
continue;
}
read_unlock_irq(&hp_sdc.rtq_lock);
if (hp_sdc.tq[curridx] != NULL)
break; /* Found one. */
}
if (curridx == hp_sdc.wcurr) { /* There's nothing queued to do. */
curridx = -1;
}
hp_sdc.wcurr = curridx;
start:
/* Check to see if the interrupt mask needs to be set. */
if (hp_sdc.set_im) {
hp_sdc_status_out8(hp_sdc.im | HP_SDC_CMD_SET_IM);
hp_sdc.set_im = 0;
goto finish;
}
if (hp_sdc.wcurr == -1)
goto done;
curr = hp_sdc.tq[curridx];
idx = curr->actidx;
if (curr->actidx >= curr->endidx) {
hp_sdc.tq[curridx] = NULL;
/* Interleave outbound data between the transactions. */
hp_sdc.wcurr++;
if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN)
hp_sdc.wcurr = 0;
goto finish;
}
act = curr->seq[idx];
idx++;
if (curr->idx >= curr->endidx) {
if (act & HP_SDC_ACT_DEALLOC)
kfree(curr);
hp_sdc.tq[curridx] = NULL;
/* Interleave outbound data between the transactions. */
hp_sdc.wcurr++;
if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN)
hp_sdc.wcurr = 0;
goto finish;
}
while (act & HP_SDC_ACT_PRECMD) {
if (curr->idx != idx) {
idx++;
act &= ~HP_SDC_ACT_PRECMD;
break;
}
hp_sdc_status_out8(curr->seq[idx]);
curr->idx++;
/* act finished? */
if ((act & HP_SDC_ACT_DURING) == HP_SDC_ACT_PRECMD)
goto actdone;
/* skip quantity field if data-out sequence follows. */
if (act & HP_SDC_ACT_DATAOUT)
curr->idx++;
goto finish;
}
if (act & HP_SDC_ACT_DATAOUT) {
int qty;
qty = curr->seq[idx];
idx++;
if (curr->idx - idx < qty) {
hp_sdc_data_out8(curr->seq[curr->idx]);
curr->idx++;
/* act finished? */
if (curr->idx - idx >= qty &&
(act & HP_SDC_ACT_DURING) == HP_SDC_ACT_DATAOUT)
goto actdone;
goto finish;
}
idx += qty;
act &= ~HP_SDC_ACT_DATAOUT;
} else
while (act & HP_SDC_ACT_DATAREG) {
int mask;
uint8_t w7[4];
mask = curr->seq[idx];
if (idx != curr->idx) {
idx++;
idx += !!(mask & 1);
idx += !!(mask & 2);
idx += !!(mask & 4);
idx += !!(mask & 8);
act &= ~HP_SDC_ACT_DATAREG;
break;
}
w7[0] = (mask & 1) ? curr->seq[++idx] : hp_sdc.r7[0];
w7[1] = (mask & 2) ? curr->seq[++idx] : hp_sdc.r7[1];
w7[2] = (mask & 4) ? curr->seq[++idx] : hp_sdc.r7[2];
w7[3] = (mask & 8) ? curr->seq[++idx] : hp_sdc.r7[3];
if (hp_sdc.wi > 0x73 || hp_sdc.wi < 0x70 ||
w7[hp_sdc.wi - 0x70] == hp_sdc.r7[hp_sdc.wi - 0x70]) {
int i = 0;
/* Need to point the write index register */
while (i < 4 && w7[i] == hp_sdc.r7[i])
i++;
if (i < 4) {
hp_sdc_status_out8(HP_SDC_CMD_SET_D0 + i);
hp_sdc.wi = 0x70 + i;
goto finish;
}
idx++;
if ((act & HP_SDC_ACT_DURING) == HP_SDC_ACT_DATAREG)
goto actdone;
curr->idx = idx;
act &= ~HP_SDC_ACT_DATAREG;
break;
}
hp_sdc_data_out8(w7[hp_sdc.wi - 0x70]);
hp_sdc.r7[hp_sdc.wi - 0x70] = w7[hp_sdc.wi - 0x70];
hp_sdc.wi++; /* write index register autoincrements */
{
int i = 0;
while ((i < 4) && w7[i] == hp_sdc.r7[i])
i++;
if (i >= 4) {
curr->idx = idx + 1;
if ((act & HP_SDC_ACT_DURING) ==
HP_SDC_ACT_DATAREG)
goto actdone;
}
}
goto finish;
}
/* We don't go any further in the command if there is a pending read,
because we don't want interleaved results. */
read_lock_irq(&hp_sdc.rtq_lock);
if (hp_sdc.rcurr >= 0) {
read_unlock_irq(&hp_sdc.rtq_lock);
goto finish;
}
read_unlock_irq(&hp_sdc.rtq_lock);
if (act & HP_SDC_ACT_POSTCMD) {
uint8_t postcmd;
/* curr->idx should == idx at this point. */
postcmd = curr->seq[idx];
curr->idx++;
if (act & HP_SDC_ACT_DATAIN) {
/* Start a new read */
hp_sdc.rqty = curr->seq[curr->idx];
hp_sdc.rtime = ktime_get();
curr->idx++;
/* Still need to lock here in case of spurious irq. */
write_lock_irq(&hp_sdc.rtq_lock);
hp_sdc.rcurr = curridx;
write_unlock_irq(&hp_sdc.rtq_lock);
hp_sdc_status_out8(postcmd);
goto finish;
}
hp_sdc_status_out8(postcmd);
goto actdone;
}
actdone:
if (act & HP_SDC_ACT_SEMAPHORE)
up(curr->act.semaphore);
else if (act & HP_SDC_ACT_CALLBACK)
curr->act.irqhook(0,NULL,0,0);
if (curr->idx >= curr->endidx) { /* This transaction is over. */
if (act & HP_SDC_ACT_DEALLOC)
kfree(curr);
hp_sdc.tq[curridx] = NULL;
} else {
curr->actidx = idx + 1;
curr->idx = idx + 2;
}
/* Interleave outbound data between the transactions. */
hp_sdc.wcurr++;
if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN)
hp_sdc.wcurr = 0;
finish:
/* If by some quirk IBF has cleared and our ISR has run to
see that that has happened, do it all again. */
if (!hp_sdc.ibf && limit++ < 20)
goto anew;
done:
if (hp_sdc.wcurr >= 0)
tasklet_schedule(&hp_sdc.task);
write_unlock(&hp_sdc.lock);
return 0;
}
/******* Functions called in either user or kernel context ****/
int __hp_sdc_enqueue_transaction(hp_sdc_transaction *this)
{
int i;
if (this == NULL) {
BUG();
return -EINVAL;
}
/* Can't have same transaction on queue twice */
for (i = 0; i < HP_SDC_QUEUE_LEN; i++)
if (hp_sdc.tq[i] == this)
goto fail;
this->actidx = 0;
this->idx = 1;
/* Search for empty slot */
for (i = 0; i < HP_SDC_QUEUE_LEN; i++)
if (hp_sdc.tq[i] == NULL) {
hp_sdc.tq[i] = this;
tasklet_schedule(&hp_sdc.task);
return 0;
}
printk(KERN_WARNING PREFIX "No free slot to add transaction.\n");
return -EBUSY;
fail:
printk(KERN_WARNING PREFIX "Transaction add failed: transaction already queued?\n");
return -EINVAL;
}
int hp_sdc_enqueue_transaction(hp_sdc_transaction *this) {
unsigned long flags;
int ret;
write_lock_irqsave(&hp_sdc.lock, flags);
ret = __hp_sdc_enqueue_transaction(this);
write_unlock_irqrestore(&hp_sdc.lock,flags);
return ret;
}
int hp_sdc_dequeue_transaction(hp_sdc_transaction *this)
{
unsigned long flags;
int i;
write_lock_irqsave(&hp_sdc.lock, flags);
/* TODO: don't remove it if it's not done. */
for (i = 0; i < HP_SDC_QUEUE_LEN; i++)
if (hp_sdc.tq[i] == this)
hp_sdc.tq[i] = NULL;
write_unlock_irqrestore(&hp_sdc.lock, flags);
return 0;
}
/********************** User context functions **************************/
int hp_sdc_request_timer_irq(hp_sdc_irqhook *callback)
{
if (callback == NULL || hp_sdc.dev == NULL)
return -EINVAL;
write_lock_irq(&hp_sdc.hook_lock);
if (hp_sdc.timer != NULL) {
write_unlock_irq(&hp_sdc.hook_lock);
return -EBUSY;
}
hp_sdc.timer = callback;
/* Enable interrupts from the timers */
hp_sdc.im &= ~HP_SDC_IM_FH;
hp_sdc.im &= ~HP_SDC_IM_PT;
hp_sdc.im &= ~HP_SDC_IM_TIMERS;
hp_sdc.set_im = 1;
write_unlock_irq(&hp_sdc.hook_lock);
tasklet_schedule(&hp_sdc.task);
return 0;
}
int hp_sdc_request_hil_irq(hp_sdc_irqhook *callback)
{
if (callback == NULL || hp_sdc.dev == NULL)
return -EINVAL;
write_lock_irq(&hp_sdc.hook_lock);
if (hp_sdc.hil != NULL) {
write_unlock_irq(&hp_sdc.hook_lock);
return -EBUSY;
}
hp_sdc.hil = callback;
hp_sdc.im &= ~(HP_SDC_IM_HIL | HP_SDC_IM_RESET);
hp_sdc.set_im = 1;
write_unlock_irq(&hp_sdc.hook_lock);
tasklet_schedule(&hp_sdc.task);
return 0;
}
int hp_sdc_request_cooked_irq(hp_sdc_irqhook *callback)
{
if (callback == NULL || hp_sdc.dev == NULL)
return -EINVAL;
write_lock_irq(&hp_sdc.hook_lock);
if (hp_sdc.cooked != NULL) {
write_unlock_irq(&hp_sdc.hook_lock);
return -EBUSY;
}
/* Enable interrupts from the HIL MLC */
hp_sdc.cooked = callback;
hp_sdc.im &= ~(HP_SDC_IM_HIL | HP_SDC_IM_RESET);
hp_sdc.set_im = 1;
write_unlock_irq(&hp_sdc.hook_lock);
tasklet_schedule(&hp_sdc.task);
return 0;
}
int hp_sdc_release_timer_irq(hp_sdc_irqhook *callback)
{
write_lock_irq(&hp_sdc.hook_lock);
if ((callback != hp_sdc.timer) ||
(hp_sdc.timer == NULL)) {
write_unlock_irq(&hp_sdc.hook_lock);
return -EINVAL;
}
/* Disable interrupts from the timers */
hp_sdc.timer = NULL;
hp_sdc.im |= HP_SDC_IM_TIMERS;
hp_sdc.im |= HP_SDC_IM_FH;
hp_sdc.im |= HP_SDC_IM_PT;
hp_sdc.set_im = 1;
write_unlock_irq(&hp_sdc.hook_lock);
tasklet_schedule(&hp_sdc.task);
return 0;
}
int hp_sdc_release_hil_irq(hp_sdc_irqhook *callback)
{
write_lock_irq(&hp_sdc.hook_lock);
if ((callback != hp_sdc.hil) ||
(hp_sdc.hil == NULL)) {
write_unlock_irq(&hp_sdc.hook_lock);
return -EINVAL;
}
hp_sdc.hil = NULL;
/* Disable interrupts from HIL only if there is no cooked driver. */
if(hp_sdc.cooked == NULL) {
hp_sdc.im |= (HP_SDC_IM_HIL | HP_SDC_IM_RESET);
hp_sdc.set_im = 1;
}
write_unlock_irq(&hp_sdc.hook_lock);
tasklet_schedule(&hp_sdc.task);
return 0;
}
int hp_sdc_release_cooked_irq(hp_sdc_irqhook *callback)
{
write_lock_irq(&hp_sdc.hook_lock);
if ((callback != hp_sdc.cooked) ||
(hp_sdc.cooked == NULL)) {
write_unlock_irq(&hp_sdc.hook_lock);
return -EINVAL;
}
hp_sdc.cooked = NULL;
/* Disable interrupts from HIL only if there is no raw HIL driver. */
if(hp_sdc.hil == NULL) {
hp_sdc.im |= (HP_SDC_IM_HIL | HP_SDC_IM_RESET);
hp_sdc.set_im = 1;
}
write_unlock_irq(&hp_sdc.hook_lock);
tasklet_schedule(&hp_sdc.task);
return 0;
}
/************************* Keepalive timer task *********************/
static void hp_sdc_kicker(struct timer_list *unused)
{
tasklet_schedule(&hp_sdc.task);
/* Re-insert the periodic task. */
mod_timer(&hp_sdc.kicker, jiffies + HZ);
}
/************************** Module Initialization ***************************/
#if defined(__hppa__)
static const struct parisc_device_id hp_sdc_tbl[] __initconst = {
{
.hw_type = HPHW_FIO,
.hversion_rev = HVERSION_REV_ANY_ID,
.hversion = HVERSION_ANY_ID,
.sversion = 0x73,
},
{ 0, }
};
MODULE_DEVICE_TABLE(parisc, hp_sdc_tbl);
static int __init hp_sdc_init_hppa(struct parisc_device *d);
static struct delayed_work moduleloader_work;
static struct parisc_driver hp_sdc_driver __refdata = {
.name = "hp_sdc",
.id_table = hp_sdc_tbl,
.probe = hp_sdc_init_hppa,
};
#endif /* __hppa__ */
static int __init hp_sdc_init(void)
{
char *errstr;
hp_sdc_transaction t_sync;
uint8_t ts_sync[6];
struct semaphore s_sync;
rwlock_init(&hp_sdc.lock);
rwlock_init(&hp_sdc.ibf_lock);
rwlock_init(&hp_sdc.rtq_lock);
rwlock_init(&hp_sdc.hook_lock);
hp_sdc.timer = NULL;
hp_sdc.hil = NULL;
hp_sdc.pup = NULL;
hp_sdc.cooked = NULL;
hp_sdc.im = HP_SDC_IM_MASK; /* Mask maskable irqs */
hp_sdc.set_im = 1;
hp_sdc.wi = 0xff;
hp_sdc.r7[0] = 0xff;
hp_sdc.r7[1] = 0xff;
hp_sdc.r7[2] = 0xff;
hp_sdc.r7[3] = 0xff;
hp_sdc.ibf = 1;
memset(&hp_sdc.tq, 0, sizeof(hp_sdc.tq));
hp_sdc.wcurr = -1;
hp_sdc.rcurr = -1;
hp_sdc.rqty = 0;
hp_sdc.dev_err = -ENODEV;
errstr = "IO not found for";
if (!hp_sdc.base_io)
goto err0;
errstr = "IRQ not found for";
if (!hp_sdc.irq)
goto err0;
hp_sdc.dev_err = -EBUSY;
#if defined(__hppa__)
errstr = "IO not available for";
if (request_region(hp_sdc.data_io, 2, hp_sdc_driver.name))
goto err0;
#endif
errstr = "IRQ not available for";
if (request_irq(hp_sdc.irq, &hp_sdc_isr, IRQF_SHARED,
"HP SDC", &hp_sdc))
goto err1;
errstr = "NMI not available for";
if (request_irq(hp_sdc.nmi, &hp_sdc_nmisr, IRQF_SHARED,
"HP SDC NMI", &hp_sdc))
goto err2;
pr_info(PREFIX "HP SDC at 0x%08lx, IRQ %d (NMI IRQ %d)\n",
hp_sdc.base_io, hp_sdc.irq, hp_sdc.nmi);
hp_sdc_status_in8();
hp_sdc_data_in8();
tasklet_init(&hp_sdc.task, hp_sdc_tasklet, 0);
/* Sync the output buffer registers, thus scheduling hp_sdc_tasklet. */
t_sync.actidx = 0;
t_sync.idx = 1;
t_sync.endidx = 6;
t_sync.seq = ts_sync;
ts_sync[0] = HP_SDC_ACT_DATAREG | HP_SDC_ACT_SEMAPHORE;
ts_sync[1] = 0x0f;
ts_sync[2] = ts_sync[3] = ts_sync[4] = ts_sync[5] = 0;
t_sync.act.semaphore = &s_sync;
sema_init(&s_sync, 0);
hp_sdc_enqueue_transaction(&t_sync);
down(&s_sync); /* Wait for t_sync to complete */
/* Create the keepalive task */
timer_setup(&hp_sdc.kicker, hp_sdc_kicker, 0);
hp_sdc.kicker.expires = jiffies + HZ;
add_timer(&hp_sdc.kicker);
hp_sdc.dev_err = 0;
return 0;
err2:
free_irq(hp_sdc.irq, &hp_sdc);
err1:
release_region(hp_sdc.data_io, 2);
err0:
printk(KERN_WARNING PREFIX ": %s SDC IO=0x%p IRQ=0x%x NMI=0x%x\n",
errstr, (void *)hp_sdc.base_io, hp_sdc.irq, hp_sdc.nmi);
hp_sdc.dev = NULL;
return hp_sdc.dev_err;
}
#if defined(__hppa__)
static void request_module_delayed(struct work_struct *work)
{
request_module("hp_sdc_mlc");
}
static int __init hp_sdc_init_hppa(struct parisc_device *d)
{
int ret;
if (!d)
return 1;
if (hp_sdc.dev != NULL)
return 1; /* We only expect one SDC */
hp_sdc.dev = d;
hp_sdc.irq = d->irq;
hp_sdc.nmi = d->aux_irq;
hp_sdc.base_io = d->hpa.start;
hp_sdc.data_io = d->hpa.start + 0x800;
hp_sdc.status_io = d->hpa.start + 0x801;
INIT_DELAYED_WORK(&moduleloader_work, request_module_delayed);
ret = hp_sdc_init();
/* after successful initialization give SDC some time to settle
* and then load the hp_sdc_mlc upper layer driver */
if (!ret)
schedule_delayed_work(&moduleloader_work,
msecs_to_jiffies(2000));
return ret;
}
#endif /* __hppa__ */
static void hp_sdc_exit(void)
{
/* do nothing if we don't have a SDC */
if (!hp_sdc.dev)
return;
write_lock_irq(&hp_sdc.lock);
/* Turn off all maskable "sub-function" irq's. */
hp_sdc_spin_ibf();
sdc_writeb(HP_SDC_CMD_SET_IM | HP_SDC_IM_MASK, hp_sdc.status_io);
/* Wait until we know this has been processed by the i8042 */
hp_sdc_spin_ibf();
free_irq(hp_sdc.nmi, &hp_sdc);
free_irq(hp_sdc.irq, &hp_sdc);
write_unlock_irq(&hp_sdc.lock);
del_timer_sync(&hp_sdc.kicker);
tasklet_kill(&hp_sdc.task);
#if defined(__hppa__)
cancel_delayed_work_sync(&moduleloader_work);
if (unregister_parisc_driver(&hp_sdc_driver))
printk(KERN_WARNING PREFIX "Error unregistering HP SDC");
#endif
}
static int __init hp_sdc_register(void)
{
hp_sdc_transaction tq_init;
uint8_t tq_init_seq[5];
struct semaphore tq_init_sem;
#if defined(__mc68000__)
unsigned char i;
#endif
if (hp_sdc_disabled) {
printk(KERN_WARNING PREFIX "HP SDC driver disabled by no_hpsdc=1.\n");
return -ENODEV;
}
hp_sdc.dev = NULL;
hp_sdc.dev_err = 0;
#if defined(__hppa__)
if (register_parisc_driver(&hp_sdc_driver)) {
printk(KERN_WARNING PREFIX "Error registering SDC with system bus tree.\n");
return -ENODEV;
}
#elif defined(__mc68000__)
if (!MACH_IS_HP300)
return -ENODEV;
hp_sdc.irq = 1;
hp_sdc.nmi = 7;
hp_sdc.base_io = (unsigned long) 0xf0428000;
hp_sdc.data_io = (unsigned long) hp_sdc.base_io + 1;
hp_sdc.status_io = (unsigned long) hp_sdc.base_io + 3;
if (!copy_from_kernel_nofault(&i, (unsigned char *)hp_sdc.data_io, 1))
hp_sdc.dev = (void *)1;
hp_sdc.dev_err = hp_sdc_init();
#endif
if (hp_sdc.dev == NULL) {
printk(KERN_WARNING PREFIX "No SDC found.\n");
return hp_sdc.dev_err;
}
sema_init(&tq_init_sem, 0);
tq_init.actidx = 0;
tq_init.idx = 1;
tq_init.endidx = 5;
tq_init.seq = tq_init_seq;
tq_init.act.semaphore = &tq_init_sem;
tq_init_seq[0] =
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN | HP_SDC_ACT_SEMAPHORE;
tq_init_seq[1] = HP_SDC_CMD_READ_KCC;
tq_init_seq[2] = 1;
tq_init_seq[3] = 0;
tq_init_seq[4] = 0;
hp_sdc_enqueue_transaction(&tq_init);
down(&tq_init_sem);
up(&tq_init_sem);
if ((tq_init_seq[0] & HP_SDC_ACT_DEAD) == HP_SDC_ACT_DEAD) {
printk(KERN_WARNING PREFIX "Error reading config byte.\n");
hp_sdc_exit();
return -ENODEV;
}
hp_sdc.r11 = tq_init_seq[4];
if (hp_sdc.r11 & HP_SDC_CFG_NEW) {
const char *str;
printk(KERN_INFO PREFIX "New style SDC\n");
tq_init_seq[1] = HP_SDC_CMD_READ_XTD;
tq_init.actidx = 0;
tq_init.idx = 1;
down(&tq_init_sem);
hp_sdc_enqueue_transaction(&tq_init);
down(&tq_init_sem);
up(&tq_init_sem);
if ((tq_init_seq[0] & HP_SDC_ACT_DEAD) == HP_SDC_ACT_DEAD) {
printk(KERN_WARNING PREFIX "Error reading extended config byte.\n");
return -ENODEV;
}
hp_sdc.r7e = tq_init_seq[4];
HP_SDC_XTD_REV_STRINGS(hp_sdc.r7e & HP_SDC_XTD_REV, str)
printk(KERN_INFO PREFIX "Revision: %s\n", str);
if (hp_sdc.r7e & HP_SDC_XTD_BEEPER)
printk(KERN_INFO PREFIX "TI SN76494 beeper present\n");
if (hp_sdc.r7e & HP_SDC_XTD_BBRTC)
printk(KERN_INFO PREFIX "OKI MSM-58321 BBRTC present\n");
printk(KERN_INFO PREFIX "Spunking the self test register to force PUP "
"on next firmware reset.\n");
tq_init_seq[0] = HP_SDC_ACT_PRECMD |
HP_SDC_ACT_DATAOUT | HP_SDC_ACT_SEMAPHORE;
tq_init_seq[1] = HP_SDC_CMD_SET_STR;
tq_init_seq[2] = 1;
tq_init_seq[3] = 0;
tq_init.actidx = 0;
tq_init.idx = 1;
tq_init.endidx = 4;
down(&tq_init_sem);
hp_sdc_enqueue_transaction(&tq_init);
down(&tq_init_sem);
up(&tq_init_sem);
} else
printk(KERN_INFO PREFIX "Old style SDC (1820-%s).\n",
(hp_sdc.r11 & HP_SDC_CFG_REV) ? "3300" : "2564/3087");
return 0;
}
module_init(hp_sdc_register);
module_exit(hp_sdc_exit);
/* Timing notes: These measurements taken on my 64MHz 7100-LC (715/64)
* cycles cycles-adj time
* between two consecutive mfctl(16)'s: 4 n/a 63ns
* hp_sdc_spin_ibf when idle: 119 115 1.7us
* gsc_writeb status register: 83 79 1.2us
* IBF to clear after sending SET_IM: 6204 6006 93us
* IBF to clear after sending LOAD_RT: 4467 4352 68us
* IBF to clear after sending two LOAD_RTs: 18974 18859 295us
* READ_T1, read status/data, IRQ, call handler: 35564 n/a 556us
* cmd to ~IBF READ_T1 2nd time right after: 5158403 n/a 81ms
* between IRQ received and ~IBF for above: 2578877 n/a 40ms
*
* Performance stats after a run of this module configuring HIL and
* receiving a few mouse events:
*
* status in8 282508 cycles 7128 calls
* status out8 8404 cycles 341 calls
* data out8 1734 cycles 78 calls
* isr 174324 cycles 617 calls (includes take)
* take 1241 cycles 2 calls
* put 1411504 cycles 6937 calls
* task 1655209 cycles 6937 calls (includes put)
*
*/
|
linux-master
|
drivers/input/serio/hp_sdc.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2000-2001 Vojtech Pavlik
*
* Based on the work of:
* Richard Zidlicky <[email protected]>
*/
/*
* Q40 PS/2 keyboard controller driver for Linux/m68k
*/
#include <linux/module.h>
#include <linux/serio.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/bitops.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <asm/io.h>
#include <linux/uaccess.h>
#include <asm/q40_master.h>
#include <asm/irq.h>
#include <asm/q40ints.h>
#define DRV_NAME "q40kbd"
MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
MODULE_DESCRIPTION("Q40 PS/2 keyboard controller driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRV_NAME);
struct q40kbd {
struct serio *port;
spinlock_t lock;
};
static irqreturn_t q40kbd_interrupt(int irq, void *dev_id)
{
struct q40kbd *q40kbd = dev_id;
unsigned long flags;
spin_lock_irqsave(&q40kbd->lock, flags);
if (Q40_IRQ_KEYB_MASK & master_inb(INTERRUPT_REG))
serio_interrupt(q40kbd->port, master_inb(KEYCODE_REG), 0);
master_outb(-1, KEYBOARD_UNLOCK_REG);
spin_unlock_irqrestore(&q40kbd->lock, flags);
return IRQ_HANDLED;
}
/*
* q40kbd_flush() flushes all data that may be in the keyboard buffers
*/
static void q40kbd_flush(struct q40kbd *q40kbd)
{
int maxread = 100;
unsigned long flags;
spin_lock_irqsave(&q40kbd->lock, flags);
while (maxread-- && (Q40_IRQ_KEYB_MASK & master_inb(INTERRUPT_REG)))
master_inb(KEYCODE_REG);
spin_unlock_irqrestore(&q40kbd->lock, flags);
}
static void q40kbd_stop(void)
{
master_outb(0, KEY_IRQ_ENABLE_REG);
master_outb(-1, KEYBOARD_UNLOCK_REG);
}
/*
* q40kbd_open() is called when a port is open by the higher layer.
* It allocates the interrupt and enables in in the chip.
*/
static int q40kbd_open(struct serio *port)
{
struct q40kbd *q40kbd = port->port_data;
q40kbd_flush(q40kbd);
/* off we go */
master_outb(-1, KEYBOARD_UNLOCK_REG);
master_outb(1, KEY_IRQ_ENABLE_REG);
return 0;
}
static void q40kbd_close(struct serio *port)
{
struct q40kbd *q40kbd = port->port_data;
q40kbd_stop();
q40kbd_flush(q40kbd);
}
static int q40kbd_probe(struct platform_device *pdev)
{
struct q40kbd *q40kbd;
struct serio *port;
int error;
q40kbd = kzalloc(sizeof(struct q40kbd), GFP_KERNEL);
port = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!q40kbd || !port) {
error = -ENOMEM;
goto err_free_mem;
}
q40kbd->port = port;
spin_lock_init(&q40kbd->lock);
port->id.type = SERIO_8042;
port->open = q40kbd_open;
port->close = q40kbd_close;
port->port_data = q40kbd;
port->dev.parent = &pdev->dev;
strscpy(port->name, "Q40 Kbd Port", sizeof(port->name));
strscpy(port->phys, "Q40", sizeof(port->phys));
q40kbd_stop();
error = request_irq(Q40_IRQ_KEYBOARD, q40kbd_interrupt, 0,
DRV_NAME, q40kbd);
if (error) {
dev_err(&pdev->dev, "Can't get irq %d.\n", Q40_IRQ_KEYBOARD);
goto err_free_mem;
}
serio_register_port(q40kbd->port);
platform_set_drvdata(pdev, q40kbd);
printk(KERN_INFO "serio: Q40 kbd registered\n");
return 0;
err_free_mem:
kfree(port);
kfree(q40kbd);
return error;
}
static int q40kbd_remove(struct platform_device *pdev)
{
struct q40kbd *q40kbd = platform_get_drvdata(pdev);
/*
* q40kbd_close() will be called as part of unregistering
* and will ensure that IRQ is turned off, so it is safe
* to unregister port first and free IRQ later.
*/
serio_unregister_port(q40kbd->port);
free_irq(Q40_IRQ_KEYBOARD, q40kbd);
kfree(q40kbd);
return 0;
}
static struct platform_driver q40kbd_driver = {
.driver = {
.name = "q40kbd",
},
.remove = q40kbd_remove,
};
module_platform_driver_probe(q40kbd_driver, q40kbd_probe);
|
linux-master
|
drivers/input/serio/q40kbd.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Xilinx XPS PS/2 device driver
*
* (c) 2005 MontaVista Software, Inc.
* (c) 2008 Xilinx, Inc.
*/
#include <linux/module.h>
#include <linux/serio.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#define DRIVER_NAME "xilinx_ps2"
/* Register offsets for the xps2 device */
#define XPS2_SRST_OFFSET 0x00000000 /* Software Reset register */
#define XPS2_STATUS_OFFSET 0x00000004 /* Status register */
#define XPS2_RX_DATA_OFFSET 0x00000008 /* Receive Data register */
#define XPS2_TX_DATA_OFFSET 0x0000000C /* Transmit Data register */
#define XPS2_GIER_OFFSET 0x0000002C /* Global Interrupt Enable reg */
#define XPS2_IPISR_OFFSET 0x00000030 /* Interrupt Status register */
#define XPS2_IPIER_OFFSET 0x00000038 /* Interrupt Enable register */
/* Reset Register Bit Definitions */
#define XPS2_SRST_RESET 0x0000000A /* Software Reset */
/* Status Register Bit Positions */
#define XPS2_STATUS_RX_FULL 0x00000001 /* Receive Full */
#define XPS2_STATUS_TX_FULL 0x00000002 /* Transmit Full */
/*
* Bit definitions for ISR/IER registers. Both the registers have the same bit
* definitions and are only defined once.
*/
#define XPS2_IPIXR_WDT_TOUT 0x00000001 /* Watchdog Timeout Interrupt */
#define XPS2_IPIXR_TX_NOACK 0x00000002 /* Transmit No ACK Interrupt */
#define XPS2_IPIXR_TX_ACK 0x00000004 /* Transmit ACK (Data) Interrupt */
#define XPS2_IPIXR_RX_OVF 0x00000008 /* Receive Overflow Interrupt */
#define XPS2_IPIXR_RX_ERR 0x00000010 /* Receive Error Interrupt */
#define XPS2_IPIXR_RX_FULL 0x00000020 /* Receive Data Interrupt */
/* Mask for all the Transmit Interrupts */
#define XPS2_IPIXR_TX_ALL (XPS2_IPIXR_TX_NOACK | XPS2_IPIXR_TX_ACK)
/* Mask for all the Receive Interrupts */
#define XPS2_IPIXR_RX_ALL (XPS2_IPIXR_RX_OVF | XPS2_IPIXR_RX_ERR | \
XPS2_IPIXR_RX_FULL)
/* Mask for all the Interrupts */
#define XPS2_IPIXR_ALL (XPS2_IPIXR_TX_ALL | XPS2_IPIXR_RX_ALL | \
XPS2_IPIXR_WDT_TOUT)
/* Global Interrupt Enable mask */
#define XPS2_GIER_GIE_MASK 0x80000000
struct xps2data {
int irq;
spinlock_t lock;
void __iomem *base_address; /* virt. address of control registers */
unsigned int flags;
struct serio *serio; /* serio */
struct device *dev;
};
/************************************/
/* XPS PS/2 data transmission calls */
/************************************/
/**
* xps2_recv() - attempts to receive a byte from the PS/2 port.
* @drvdata: pointer to ps2 device private data structure
* @byte: address where the read data will be copied
*
* If there is any data available in the PS/2 receiver, this functions reads
* the data, otherwise it returns error.
*/
static int xps2_recv(struct xps2data *drvdata, u8 *byte)
{
u32 sr;
int status = -1;
/* If there is data available in the PS/2 receiver, read it */
sr = in_be32(drvdata->base_address + XPS2_STATUS_OFFSET);
if (sr & XPS2_STATUS_RX_FULL) {
*byte = in_be32(drvdata->base_address + XPS2_RX_DATA_OFFSET);
status = 0;
}
return status;
}
/*********************/
/* Interrupt handler */
/*********************/
static irqreturn_t xps2_interrupt(int irq, void *dev_id)
{
struct xps2data *drvdata = dev_id;
u32 intr_sr;
u8 c;
int status;
/* Get the PS/2 interrupts and clear them */
intr_sr = in_be32(drvdata->base_address + XPS2_IPISR_OFFSET);
out_be32(drvdata->base_address + XPS2_IPISR_OFFSET, intr_sr);
/* Check which interrupt is active */
if (intr_sr & XPS2_IPIXR_RX_OVF)
dev_warn(drvdata->dev, "receive overrun error\n");
if (intr_sr & XPS2_IPIXR_RX_ERR)
drvdata->flags |= SERIO_PARITY;
if (intr_sr & (XPS2_IPIXR_TX_NOACK | XPS2_IPIXR_WDT_TOUT))
drvdata->flags |= SERIO_TIMEOUT;
if (intr_sr & XPS2_IPIXR_RX_FULL) {
status = xps2_recv(drvdata, &c);
/* Error, if a byte is not received */
if (status) {
dev_err(drvdata->dev,
"wrong rcvd byte count (%d)\n", status);
} else {
serio_interrupt(drvdata->serio, c, drvdata->flags);
drvdata->flags = 0;
}
}
return IRQ_HANDLED;
}
/*******************/
/* serio callbacks */
/*******************/
/**
* sxps2_write() - sends a byte out through the PS/2 port.
* @pserio: pointer to the serio structure of the PS/2 port
* @c: data that needs to be written to the PS/2 port
*
* This function checks if the PS/2 transmitter is empty and sends a byte.
* Otherwise it returns error. Transmission fails only when nothing is connected
* to the PS/2 port. Thats why, we do not try to resend the data in case of a
* failure.
*/
static int sxps2_write(struct serio *pserio, unsigned char c)
{
struct xps2data *drvdata = pserio->port_data;
unsigned long flags;
u32 sr;
int status = -1;
spin_lock_irqsave(&drvdata->lock, flags);
/* If the PS/2 transmitter is empty send a byte of data */
sr = in_be32(drvdata->base_address + XPS2_STATUS_OFFSET);
if (!(sr & XPS2_STATUS_TX_FULL)) {
out_be32(drvdata->base_address + XPS2_TX_DATA_OFFSET, c);
status = 0;
}
spin_unlock_irqrestore(&drvdata->lock, flags);
return status;
}
/**
* sxps2_open() - called when a port is opened by the higher layer.
* @pserio: pointer to the serio structure of the PS/2 device
*
* This function requests irq and enables interrupts for the PS/2 device.
*/
static int sxps2_open(struct serio *pserio)
{
struct xps2data *drvdata = pserio->port_data;
int error;
u8 c;
error = request_irq(drvdata->irq, &xps2_interrupt, 0,
DRIVER_NAME, drvdata);
if (error) {
dev_err(drvdata->dev,
"Couldn't allocate interrupt %d\n", drvdata->irq);
return error;
}
/* start reception by enabling the interrupts */
out_be32(drvdata->base_address + XPS2_GIER_OFFSET, XPS2_GIER_GIE_MASK);
out_be32(drvdata->base_address + XPS2_IPIER_OFFSET, XPS2_IPIXR_RX_ALL);
(void)xps2_recv(drvdata, &c);
return 0; /* success */
}
/**
* sxps2_close() - frees the interrupt.
* @pserio: pointer to the serio structure of the PS/2 device
*
* This function frees the irq and disables interrupts for the PS/2 device.
*/
static void sxps2_close(struct serio *pserio)
{
struct xps2data *drvdata = pserio->port_data;
/* Disable the PS2 interrupts */
out_be32(drvdata->base_address + XPS2_GIER_OFFSET, 0x00);
out_be32(drvdata->base_address + XPS2_IPIER_OFFSET, 0x00);
free_irq(drvdata->irq, drvdata);
}
/**
* xps2_of_probe - probe method for the PS/2 device.
* @of_dev: pointer to OF device structure
* @match: pointer to the structure used for matching a device
*
* This function probes the PS/2 device in the device tree.
* It initializes the driver data structure and the hardware.
* It returns 0, if the driver is bound to the PS/2 device, or a negative
* value if there is an error.
*/
static int xps2_of_probe(struct platform_device *ofdev)
{
struct resource r_mem; /* IO mem resources */
struct xps2data *drvdata;
struct serio *serio;
struct device *dev = &ofdev->dev;
resource_size_t remap_size, phys_addr;
unsigned int irq;
int error;
dev_info(dev, "Device Tree Probing \'%pOFn\'\n", dev->of_node);
/* Get iospace for the device */
error = of_address_to_resource(dev->of_node, 0, &r_mem);
if (error) {
dev_err(dev, "invalid address\n");
return error;
}
/* Get IRQ for the device */
irq = irq_of_parse_and_map(dev->of_node, 0);
if (!irq) {
dev_err(dev, "no IRQ found\n");
return -ENODEV;
}
drvdata = kzalloc(sizeof(struct xps2data), GFP_KERNEL);
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!drvdata || !serio) {
error = -ENOMEM;
goto failed1;
}
spin_lock_init(&drvdata->lock);
drvdata->irq = irq;
drvdata->serio = serio;
drvdata->dev = dev;
phys_addr = r_mem.start;
remap_size = resource_size(&r_mem);
if (!request_mem_region(phys_addr, remap_size, DRIVER_NAME)) {
dev_err(dev, "Couldn't lock memory region at 0x%08llX\n",
(unsigned long long)phys_addr);
error = -EBUSY;
goto failed1;
}
/* Fill in configuration data and add them to the list */
drvdata->base_address = ioremap(phys_addr, remap_size);
if (drvdata->base_address == NULL) {
dev_err(dev, "Couldn't ioremap memory at 0x%08llX\n",
(unsigned long long)phys_addr);
error = -EFAULT;
goto failed2;
}
/* Disable all the interrupts, just in case */
out_be32(drvdata->base_address + XPS2_IPIER_OFFSET, 0);
/*
* Reset the PS2 device and abort any current transaction,
* to make sure we have the PS2 in a good state.
*/
out_be32(drvdata->base_address + XPS2_SRST_OFFSET, XPS2_SRST_RESET);
dev_info(dev, "Xilinx PS2 at 0x%08llX mapped to 0x%p, irq=%d\n",
(unsigned long long)phys_addr, drvdata->base_address,
drvdata->irq);
serio->id.type = SERIO_8042;
serio->write = sxps2_write;
serio->open = sxps2_open;
serio->close = sxps2_close;
serio->port_data = drvdata;
serio->dev.parent = dev;
snprintf(serio->name, sizeof(serio->name),
"Xilinx XPS PS/2 at %08llX", (unsigned long long)phys_addr);
snprintf(serio->phys, sizeof(serio->phys),
"xilinxps2/serio at %08llX", (unsigned long long)phys_addr);
serio_register_port(serio);
platform_set_drvdata(ofdev, drvdata);
return 0; /* success */
failed2:
release_mem_region(phys_addr, remap_size);
failed1:
kfree(serio);
kfree(drvdata);
return error;
}
/**
* xps2_of_remove - unbinds the driver from the PS/2 device.
* @of_dev: pointer to OF device structure
*
* This function is called if a device is physically removed from the system or
* if the driver module is being unloaded. It frees any resources allocated to
* the device.
*/
static int xps2_of_remove(struct platform_device *of_dev)
{
struct xps2data *drvdata = platform_get_drvdata(of_dev);
struct resource r_mem; /* IO mem resources */
serio_unregister_port(drvdata->serio);
iounmap(drvdata->base_address);
/* Get iospace of the device */
if (of_address_to_resource(of_dev->dev.of_node, 0, &r_mem))
dev_err(drvdata->dev, "invalid address\n");
else
release_mem_region(r_mem.start, resource_size(&r_mem));
kfree(drvdata);
return 0;
}
/* Match table for of_platform binding */
static const struct of_device_id xps2_of_match[] = {
{ .compatible = "xlnx,xps-ps2-1.00.a", },
{ /* end of list */ },
};
MODULE_DEVICE_TABLE(of, xps2_of_match);
static struct platform_driver xps2_of_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = xps2_of_match,
},
.probe = xps2_of_probe,
.remove = xps2_of_remove,
};
module_platform_driver(xps2_of_driver);
MODULE_AUTHOR("Xilinx, Inc.");
MODULE_DESCRIPTION("Xilinx XPS PS/2 driver");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/serio/xilinx_ps2.c
|
/*
* drivers/input/serio/gscps2.c
*
* Copyright (c) 2004-2006 Helge Deller <[email protected]>
* Copyright (c) 2002 Laurent Canet <[email protected]>
* Copyright (c) 2002 Thibaut Varene <[email protected]>
*
* Pieces of code based on linux-2.4's hp_mouse.c & hp_keyb.c
* Copyright (c) 1999 Alex deVries <[email protected]>
* Copyright (c) 1999-2000 Philipp Rumpf <[email protected]>
* Copyright (c) 2000 Xavier Debacker <[email protected]>
* Copyright (c) 2000-2001 Thomas Marteau <[email protected]>
*
* HP GSC PS/2 port driver, found in PA/RISC Workstations
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* TODO:
* - Dino testing (did HP ever shipped a machine on which this port
* was usable/enabled ?)
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/serio.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/parisc-device.h>
MODULE_AUTHOR("Laurent Canet <[email protected]>, Thibaut Varene <[email protected]>, Helge Deller <[email protected]>");
MODULE_DESCRIPTION("HP GSC PS2 port driver");
MODULE_LICENSE("GPL");
#define PFX "gscps2.c: "
/*
* Driver constants
*/
/* various constants */
#define ENABLE 1
#define DISABLE 0
#define GSC_DINO_OFFSET 0x0800 /* offset for DINO controller versus LASI one */
/* PS/2 IO port offsets */
#define GSC_ID 0x00 /* device ID offset (see: GSC_ID_XXX) */
#define GSC_RESET 0x00 /* reset port offset */
#define GSC_RCVDATA 0x04 /* receive port offset */
#define GSC_XMTDATA 0x04 /* transmit port offset */
#define GSC_CONTROL 0x08 /* see: Control register bits */
#define GSC_STATUS 0x0C /* see: Status register bits */
/* Control register bits */
#define GSC_CTRL_ENBL 0x01 /* enable interface */
#define GSC_CTRL_LPBXR 0x02 /* loopback operation */
#define GSC_CTRL_DIAG 0x20 /* directly control clock/data line */
#define GSC_CTRL_DATDIR 0x40 /* data line direct control */
#define GSC_CTRL_CLKDIR 0x80 /* clock line direct control */
/* Status register bits */
#define GSC_STAT_RBNE 0x01 /* Receive Buffer Not Empty */
#define GSC_STAT_TBNE 0x02 /* Transmit Buffer Not Empty */
#define GSC_STAT_TERR 0x04 /* Timeout Error */
#define GSC_STAT_PERR 0x08 /* Parity Error */
#define GSC_STAT_CMPINTR 0x10 /* Composite Interrupt = irq on any port */
#define GSC_STAT_DATSHD 0x40 /* Data Line Shadow */
#define GSC_STAT_CLKSHD 0x80 /* Clock Line Shadow */
/* IDs returned by GSC_ID port register */
#define GSC_ID_KEYBOARD 0 /* device ID values */
#define GSC_ID_MOUSE 1
static irqreturn_t gscps2_interrupt(int irq, void *dev);
#define BUFFER_SIZE 0x0f
/* GSC PS/2 port device struct */
struct gscps2port {
struct list_head node;
struct parisc_device *padev;
struct serio *port;
spinlock_t lock;
char __iomem *addr;
u8 act, append; /* position in buffer[] */
struct {
u8 data;
u8 str;
} buffer[BUFFER_SIZE+1];
int id;
};
/*
* Various HW level routines
*/
#define gscps2_readb_input(x) readb((x)+GSC_RCVDATA)
#define gscps2_readb_control(x) readb((x)+GSC_CONTROL)
#define gscps2_readb_status(x) readb((x)+GSC_STATUS)
#define gscps2_writeb_control(x, y) writeb((x), (y)+GSC_CONTROL)
/*
* wait_TBE() - wait for Transmit Buffer Empty
*/
static int wait_TBE(char __iomem *addr)
{
int timeout = 25000; /* device is expected to react within 250 msec */
while (gscps2_readb_status(addr) & GSC_STAT_TBNE) {
if (!--timeout)
return 0; /* This should not happen */
udelay(10);
}
return 1;
}
/*
* gscps2_flush() - flush the receive buffer
*/
static void gscps2_flush(struct gscps2port *ps2port)
{
while (gscps2_readb_status(ps2port->addr) & GSC_STAT_RBNE)
gscps2_readb_input(ps2port->addr);
ps2port->act = ps2port->append = 0;
}
/*
* gscps2_writeb_output() - write a byte to the port
*
* returns 1 on success, 0 on error
*/
static inline int gscps2_writeb_output(struct gscps2port *ps2port, u8 data)
{
unsigned long flags;
char __iomem *addr = ps2port->addr;
if (!wait_TBE(addr)) {
printk(KERN_DEBUG PFX "timeout - could not write byte %#x\n", data);
return 0;
}
while (gscps2_readb_status(addr) & GSC_STAT_RBNE)
/* wait */;
spin_lock_irqsave(&ps2port->lock, flags);
writeb(data, addr+GSC_XMTDATA);
spin_unlock_irqrestore(&ps2port->lock, flags);
/* this is ugly, but due to timing of the port it seems to be necessary. */
mdelay(6);
/* make sure any received data is returned as fast as possible */
/* this is important e.g. when we set the LEDs on the keyboard */
gscps2_interrupt(0, NULL);
return 1;
}
/*
* gscps2_enable() - enables or disables the port
*/
static void gscps2_enable(struct gscps2port *ps2port, int enable)
{
unsigned long flags;
u8 data;
/* now enable/disable the port */
spin_lock_irqsave(&ps2port->lock, flags);
gscps2_flush(ps2port);
data = gscps2_readb_control(ps2port->addr);
if (enable)
data |= GSC_CTRL_ENBL;
else
data &= ~GSC_CTRL_ENBL;
gscps2_writeb_control(data, ps2port->addr);
spin_unlock_irqrestore(&ps2port->lock, flags);
wait_TBE(ps2port->addr);
gscps2_flush(ps2port);
}
/*
* gscps2_reset() - resets the PS/2 port
*/
static void gscps2_reset(struct gscps2port *ps2port)
{
unsigned long flags;
/* reset the interface */
spin_lock_irqsave(&ps2port->lock, flags);
gscps2_flush(ps2port);
writeb(0xff, ps2port->addr + GSC_RESET);
gscps2_flush(ps2port);
spin_unlock_irqrestore(&ps2port->lock, flags);
}
static LIST_HEAD(ps2port_list);
/**
* gscps2_interrupt() - Interruption service routine
*
* This function reads received PS/2 bytes and processes them on
* all interfaces.
* The problematic part here is, that the keyboard and mouse PS/2 port
* share the same interrupt and it's not possible to send data if any
* one of them holds input data. To solve this problem we try to receive
* the data as fast as possible and handle the reporting to the upper layer
* later.
*/
static irqreturn_t gscps2_interrupt(int irq, void *dev)
{
struct gscps2port *ps2port;
list_for_each_entry(ps2port, &ps2port_list, node) {
unsigned long flags;
spin_lock_irqsave(&ps2port->lock, flags);
while ( (ps2port->buffer[ps2port->append].str =
gscps2_readb_status(ps2port->addr)) & GSC_STAT_RBNE ) {
ps2port->buffer[ps2port->append].data =
gscps2_readb_input(ps2port->addr);
ps2port->append = ((ps2port->append+1) & BUFFER_SIZE);
}
spin_unlock_irqrestore(&ps2port->lock, flags);
} /* list_for_each_entry */
/* all data was read from the ports - now report the data to upper layer */
list_for_each_entry(ps2port, &ps2port_list, node) {
while (ps2port->act != ps2port->append) {
unsigned int rxflags;
u8 data, status;
/* Did new data arrived while we read existing data ?
If yes, exit now and let the new irq handler start over again */
if (gscps2_readb_status(ps2port->addr) & GSC_STAT_CMPINTR)
return IRQ_HANDLED;
status = ps2port->buffer[ps2port->act].str;
data = ps2port->buffer[ps2port->act].data;
ps2port->act = ((ps2port->act+1) & BUFFER_SIZE);
rxflags = ((status & GSC_STAT_TERR) ? SERIO_TIMEOUT : 0 ) |
((status & GSC_STAT_PERR) ? SERIO_PARITY : 0 );
serio_interrupt(ps2port->port, data, rxflags);
} /* while() */
} /* list_for_each_entry */
return IRQ_HANDLED;
}
/*
* gscps2_write() - send a byte out through the aux interface.
*/
static int gscps2_write(struct serio *port, unsigned char data)
{
struct gscps2port *ps2port = port->port_data;
if (!gscps2_writeb_output(ps2port, data)) {
printk(KERN_DEBUG PFX "sending byte %#x failed.\n", data);
return -1;
}
return 0;
}
/*
* gscps2_open() is called when a port is opened by the higher layer.
* It resets and enables the port.
*/
static int gscps2_open(struct serio *port)
{
struct gscps2port *ps2port = port->port_data;
gscps2_reset(ps2port);
/* enable it */
gscps2_enable(ps2port, ENABLE);
gscps2_interrupt(0, NULL);
return 0;
}
/*
* gscps2_close() disables the port
*/
static void gscps2_close(struct serio *port)
{
struct gscps2port *ps2port = port->port_data;
gscps2_enable(ps2port, DISABLE);
}
/**
* gscps2_probe() - Probes PS2 devices
* @return: success/error report
*/
static int __init gscps2_probe(struct parisc_device *dev)
{
struct gscps2port *ps2port;
struct serio *serio;
unsigned long hpa = dev->hpa.start;
int ret;
if (!dev->irq)
return -ENODEV;
/* Offset for DINO PS/2. Works with LASI even */
if (dev->id.sversion == 0x96)
hpa += GSC_DINO_OFFSET;
ps2port = kzalloc(sizeof(struct gscps2port), GFP_KERNEL);
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!ps2port || !serio) {
ret = -ENOMEM;
goto fail_nomem;
}
dev_set_drvdata(&dev->dev, ps2port);
ps2port->port = serio;
ps2port->padev = dev;
ps2port->addr = ioremap(hpa, GSC_STATUS + 4);
if (!ps2port->addr) {
ret = -ENOMEM;
goto fail_nomem;
}
spin_lock_init(&ps2port->lock);
gscps2_reset(ps2port);
ps2port->id = readb(ps2port->addr + GSC_ID) & 0x0f;
snprintf(serio->name, sizeof(serio->name), "gsc-ps2-%s",
(ps2port->id == GSC_ID_KEYBOARD) ? "keyboard" : "mouse");
strscpy(serio->phys, dev_name(&dev->dev), sizeof(serio->phys));
serio->id.type = SERIO_8042;
serio->write = gscps2_write;
serio->open = gscps2_open;
serio->close = gscps2_close;
serio->port_data = ps2port;
serio->dev.parent = &dev->dev;
ret = -EBUSY;
if (request_irq(dev->irq, gscps2_interrupt, IRQF_SHARED, ps2port->port->name, ps2port))
goto fail_miserably;
if (ps2port->id != GSC_ID_KEYBOARD && ps2port->id != GSC_ID_MOUSE) {
printk(KERN_WARNING PFX "Unsupported PS/2 port at 0x%08lx (id=%d) ignored\n",
hpa, ps2port->id);
ret = -ENODEV;
goto fail;
}
#if 0
if (!request_mem_region(hpa, GSC_STATUS + 4, ps2port->port.name))
goto fail;
#endif
pr_info("serio: %s port at 0x%08lx irq %d @ %s\n",
ps2port->port->name,
hpa,
ps2port->padev->irq,
ps2port->port->phys);
serio_register_port(ps2port->port);
list_add_tail(&ps2port->node, &ps2port_list);
return 0;
fail:
free_irq(dev->irq, ps2port);
fail_miserably:
iounmap(ps2port->addr);
release_mem_region(dev->hpa.start, GSC_STATUS + 4);
fail_nomem:
kfree(ps2port);
kfree(serio);
return ret;
}
/**
* gscps2_remove() - Removes PS2 devices
* @return: success/error report
*/
static void __exit gscps2_remove(struct parisc_device *dev)
{
struct gscps2port *ps2port = dev_get_drvdata(&dev->dev);
serio_unregister_port(ps2port->port);
free_irq(dev->irq, ps2port);
gscps2_flush(ps2port);
list_del(&ps2port->node);
iounmap(ps2port->addr);
#if 0
release_mem_region(dev->hpa, GSC_STATUS + 4);
#endif
dev_set_drvdata(&dev->dev, NULL);
kfree(ps2port);
}
static const struct parisc_device_id gscps2_device_tbl[] __initconst = {
{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x00084 }, /* LASI PS/2 */
#ifdef DINO_TESTED
{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x00096 }, /* DINO PS/2 */
#endif
{ 0, } /* 0 terminated list */
};
MODULE_DEVICE_TABLE(parisc, gscps2_device_tbl);
static struct parisc_driver parisc_ps2_driver __refdata = {
.name = "gsc_ps2",
.id_table = gscps2_device_tbl,
.probe = gscps2_probe,
.remove = __exit_p(gscps2_remove),
};
static int __init gscps2_init(void)
{
register_parisc_driver(&parisc_ps2_driver);
return 0;
}
static void __exit gscps2_exit(void)
{
unregister_parisc_driver(&parisc_ps2_driver);
}
module_init(gscps2_init);
module_exit(gscps2_exit);
|
linux-master
|
drivers/input/serio/gscps2.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/input/serio/sa1111ps2.c
*
* Copyright (C) 2002 Russell King
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/serio.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <asm/io.h>
#include <asm/hardware/sa1111.h>
#define PS2CR 0x0000
#define PS2STAT 0x0004
#define PS2DATA 0x0008
#define PS2CLKDIV 0x000c
#define PS2PRECNT 0x0010
#define PS2CR_ENA 0x08
#define PS2CR_FKD 0x02
#define PS2CR_FKC 0x01
#define PS2STAT_STP 0x0100
#define PS2STAT_TXE 0x0080
#define PS2STAT_TXB 0x0040
#define PS2STAT_RXF 0x0020
#define PS2STAT_RXB 0x0010
#define PS2STAT_ENA 0x0008
#define PS2STAT_RXP 0x0004
#define PS2STAT_KBD 0x0002
#define PS2STAT_KBC 0x0001
struct ps2if {
struct serio *io;
struct sa1111_dev *dev;
void __iomem *base;
int rx_irq;
int tx_irq;
unsigned int open;
spinlock_t lock;
unsigned int head;
unsigned int tail;
unsigned char buf[4];
};
/*
* Read all bytes waiting in the PS2 port. There should be
* at the most one, but we loop for safety. If there was a
* framing error, we have to manually clear the status.
*/
static irqreturn_t ps2_rxint(int irq, void *dev_id)
{
struct ps2if *ps2if = dev_id;
unsigned int scancode, flag, status;
status = readl_relaxed(ps2if->base + PS2STAT);
while (status & PS2STAT_RXF) {
if (status & PS2STAT_STP)
writel_relaxed(PS2STAT_STP, ps2if->base + PS2STAT);
flag = (status & PS2STAT_STP ? SERIO_FRAME : 0) |
(status & PS2STAT_RXP ? 0 : SERIO_PARITY);
scancode = readl_relaxed(ps2if->base + PS2DATA) & 0xff;
if (hweight8(scancode) & 1)
flag ^= SERIO_PARITY;
serio_interrupt(ps2if->io, scancode, flag);
status = readl_relaxed(ps2if->base + PS2STAT);
}
return IRQ_HANDLED;
}
/*
* Completion of ps2 write
*/
static irqreturn_t ps2_txint(int irq, void *dev_id)
{
struct ps2if *ps2if = dev_id;
unsigned int status;
spin_lock(&ps2if->lock);
status = readl_relaxed(ps2if->base + PS2STAT);
if (ps2if->head == ps2if->tail) {
disable_irq_nosync(irq);
/* done */
} else if (status & PS2STAT_TXE) {
writel_relaxed(ps2if->buf[ps2if->tail], ps2if->base + PS2DATA);
ps2if->tail = (ps2if->tail + 1) & (sizeof(ps2if->buf) - 1);
}
spin_unlock(&ps2if->lock);
return IRQ_HANDLED;
}
/*
* Write a byte to the PS2 port. We have to wait for the
* port to indicate that the transmitter is empty.
*/
static int ps2_write(struct serio *io, unsigned char val)
{
struct ps2if *ps2if = io->port_data;
unsigned long flags;
unsigned int head;
spin_lock_irqsave(&ps2if->lock, flags);
/*
* If the TX register is empty, we can go straight out.
*/
if (readl_relaxed(ps2if->base + PS2STAT) & PS2STAT_TXE) {
writel_relaxed(val, ps2if->base + PS2DATA);
} else {
if (ps2if->head == ps2if->tail)
enable_irq(ps2if->tx_irq);
head = (ps2if->head + 1) & (sizeof(ps2if->buf) - 1);
if (head != ps2if->tail) {
ps2if->buf[ps2if->head] = val;
ps2if->head = head;
}
}
spin_unlock_irqrestore(&ps2if->lock, flags);
return 0;
}
static int ps2_open(struct serio *io)
{
struct ps2if *ps2if = io->port_data;
int ret;
ret = sa1111_enable_device(ps2if->dev);
if (ret)
return ret;
ret = request_irq(ps2if->rx_irq, ps2_rxint, 0,
SA1111_DRIVER_NAME(ps2if->dev), ps2if);
if (ret) {
printk(KERN_ERR "sa1111ps2: could not allocate IRQ%d: %d\n",
ps2if->rx_irq, ret);
sa1111_disable_device(ps2if->dev);
return ret;
}
ret = request_irq(ps2if->tx_irq, ps2_txint, 0,
SA1111_DRIVER_NAME(ps2if->dev), ps2if);
if (ret) {
printk(KERN_ERR "sa1111ps2: could not allocate IRQ%d: %d\n",
ps2if->tx_irq, ret);
free_irq(ps2if->rx_irq, ps2if);
sa1111_disable_device(ps2if->dev);
return ret;
}
ps2if->open = 1;
enable_irq_wake(ps2if->rx_irq);
writel_relaxed(PS2CR_ENA, ps2if->base + PS2CR);
return 0;
}
static void ps2_close(struct serio *io)
{
struct ps2if *ps2if = io->port_data;
writel_relaxed(0, ps2if->base + PS2CR);
disable_irq_wake(ps2if->rx_irq);
ps2if->open = 0;
free_irq(ps2if->tx_irq, ps2if);
free_irq(ps2if->rx_irq, ps2if);
sa1111_disable_device(ps2if->dev);
}
/*
* Clear the input buffer.
*/
static void ps2_clear_input(struct ps2if *ps2if)
{
int maxread = 100;
while (maxread--) {
if ((readl_relaxed(ps2if->base + PS2DATA) & 0xff) == 0xff)
break;
}
}
static unsigned int ps2_test_one(struct ps2if *ps2if,
unsigned int mask)
{
unsigned int val;
writel_relaxed(PS2CR_ENA | mask, ps2if->base + PS2CR);
udelay(10);
val = readl_relaxed(ps2if->base + PS2STAT);
return val & (PS2STAT_KBC | PS2STAT_KBD);
}
/*
* Test the keyboard interface. We basically check to make sure that
* we can drive each line to the keyboard independently of each other.
*/
static int ps2_test(struct ps2if *ps2if)
{
unsigned int stat;
int ret = 0;
stat = ps2_test_one(ps2if, PS2CR_FKC);
if (stat != PS2STAT_KBD) {
printk("PS/2 interface test failed[1]: %02x\n", stat);
ret = -ENODEV;
}
stat = ps2_test_one(ps2if, 0);
if (stat != (PS2STAT_KBC | PS2STAT_KBD)) {
printk("PS/2 interface test failed[2]: %02x\n", stat);
ret = -ENODEV;
}
stat = ps2_test_one(ps2if, PS2CR_FKD);
if (stat != PS2STAT_KBC) {
printk("PS/2 interface test failed[3]: %02x\n", stat);
ret = -ENODEV;
}
writel_relaxed(0, ps2if->base + PS2CR);
return ret;
}
/*
* Add one device to this driver.
*/
static int ps2_probe(struct sa1111_dev *dev)
{
struct ps2if *ps2if;
struct serio *serio;
int ret;
ps2if = kzalloc(sizeof(struct ps2if), GFP_KERNEL);
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!ps2if || !serio) {
ret = -ENOMEM;
goto free;
}
serio->id.type = SERIO_8042;
serio->write = ps2_write;
serio->open = ps2_open;
serio->close = ps2_close;
strscpy(serio->name, dev_name(&dev->dev), sizeof(serio->name));
strscpy(serio->phys, dev_name(&dev->dev), sizeof(serio->phys));
serio->port_data = ps2if;
serio->dev.parent = &dev->dev;
ps2if->io = serio;
ps2if->dev = dev;
sa1111_set_drvdata(dev, ps2if);
spin_lock_init(&ps2if->lock);
ps2if->rx_irq = sa1111_get_irq(dev, 0);
if (ps2if->rx_irq <= 0) {
ret = ps2if->rx_irq ? : -ENXIO;
goto free;
}
ps2if->tx_irq = sa1111_get_irq(dev, 1);
if (ps2if->tx_irq <= 0) {
ret = ps2if->tx_irq ? : -ENXIO;
goto free;
}
/*
* Request the physical region for this PS2 port.
*/
if (!request_mem_region(dev->res.start,
dev->res.end - dev->res.start + 1,
SA1111_DRIVER_NAME(dev))) {
ret = -EBUSY;
goto free;
}
/*
* Our parent device has already mapped the region.
*/
ps2if->base = dev->mapbase;
sa1111_enable_device(ps2if->dev);
/* Incoming clock is 8MHz */
writel_relaxed(0, ps2if->base + PS2CLKDIV);
writel_relaxed(127, ps2if->base + PS2PRECNT);
/*
* Flush any pending input.
*/
ps2_clear_input(ps2if);
/*
* Test the keyboard interface.
*/
ret = ps2_test(ps2if);
if (ret)
goto out;
/*
* Flush any pending input.
*/
ps2_clear_input(ps2if);
sa1111_disable_device(ps2if->dev);
serio_register_port(ps2if->io);
return 0;
out:
sa1111_disable_device(ps2if->dev);
release_mem_region(dev->res.start, resource_size(&dev->res));
free:
sa1111_set_drvdata(dev, NULL);
kfree(ps2if);
kfree(serio);
return ret;
}
/*
* Remove one device from this driver.
*/
static void ps2_remove(struct sa1111_dev *dev)
{
struct ps2if *ps2if = sa1111_get_drvdata(dev);
serio_unregister_port(ps2if->io);
release_mem_region(dev->res.start, resource_size(&dev->res));
sa1111_set_drvdata(dev, NULL);
kfree(ps2if);
}
/*
* Our device driver structure
*/
static struct sa1111_driver ps2_driver = {
.drv = {
.name = "sa1111-ps2",
.owner = THIS_MODULE,
},
.devid = SA1111_DEVID_PS2,
.probe = ps2_probe,
.remove = ps2_remove,
};
static int __init ps2_init(void)
{
return sa1111_driver_register(&ps2_driver);
}
static void __exit ps2_exit(void)
{
sa1111_driver_unregister(&ps2_driver);
}
module_init(ps2_init);
module_exit(ps2_exit);
MODULE_AUTHOR("Russell King <[email protected]>");
MODULE_DESCRIPTION("SA1111 PS2 controller driver");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/serio/sa1111ps2.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* The Serio abstraction module
*
* Copyright (c) 1999-2004 Vojtech Pavlik
* Copyright (c) 2004 Dmitry Torokhov
* Copyright (c) 2003 Daniele Bellucci
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/stddef.h>
#include <linux/module.h>
#include <linux/serio.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/mutex.h>
MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
MODULE_DESCRIPTION("Serio abstraction core");
MODULE_LICENSE("GPL");
/*
* serio_mutex protects entire serio subsystem and is taken every time
* serio port or driver registered or unregistered.
*/
static DEFINE_MUTEX(serio_mutex);
static LIST_HEAD(serio_list);
static void serio_add_port(struct serio *serio);
static int serio_reconnect_port(struct serio *serio);
static void serio_disconnect_port(struct serio *serio);
static void serio_reconnect_subtree(struct serio *serio);
static void serio_attach_driver(struct serio_driver *drv);
static int serio_connect_driver(struct serio *serio, struct serio_driver *drv)
{
int retval;
mutex_lock(&serio->drv_mutex);
retval = drv->connect(serio, drv);
mutex_unlock(&serio->drv_mutex);
return retval;
}
static int serio_reconnect_driver(struct serio *serio)
{
int retval = -1;
mutex_lock(&serio->drv_mutex);
if (serio->drv && serio->drv->reconnect)
retval = serio->drv->reconnect(serio);
mutex_unlock(&serio->drv_mutex);
return retval;
}
static void serio_disconnect_driver(struct serio *serio)
{
mutex_lock(&serio->drv_mutex);
if (serio->drv)
serio->drv->disconnect(serio);
mutex_unlock(&serio->drv_mutex);
}
static int serio_match_port(const struct serio_device_id *ids, struct serio *serio)
{
while (ids->type || ids->proto) {
if ((ids->type == SERIO_ANY || ids->type == serio->id.type) &&
(ids->proto == SERIO_ANY || ids->proto == serio->id.proto) &&
(ids->extra == SERIO_ANY || ids->extra == serio->id.extra) &&
(ids->id == SERIO_ANY || ids->id == serio->id.id))
return 1;
ids++;
}
return 0;
}
/*
* Basic serio -> driver core mappings
*/
static int serio_bind_driver(struct serio *serio, struct serio_driver *drv)
{
int error;
if (serio_match_port(drv->id_table, serio)) {
serio->dev.driver = &drv->driver;
if (serio_connect_driver(serio, drv)) {
serio->dev.driver = NULL;
return -ENODEV;
}
error = device_bind_driver(&serio->dev);
if (error) {
dev_warn(&serio->dev,
"device_bind_driver() failed for %s (%s) and %s, error: %d\n",
serio->phys, serio->name,
drv->description, error);
serio_disconnect_driver(serio);
serio->dev.driver = NULL;
return error;
}
}
return 0;
}
static void serio_find_driver(struct serio *serio)
{
int error;
error = device_attach(&serio->dev);
if (error < 0 && error != -EPROBE_DEFER)
dev_warn(&serio->dev,
"device_attach() failed for %s (%s), error: %d\n",
serio->phys, serio->name, error);
}
/*
* Serio event processing.
*/
enum serio_event_type {
SERIO_RESCAN_PORT,
SERIO_RECONNECT_PORT,
SERIO_RECONNECT_SUBTREE,
SERIO_REGISTER_PORT,
SERIO_ATTACH_DRIVER,
};
struct serio_event {
enum serio_event_type type;
void *object;
struct module *owner;
struct list_head node;
};
static DEFINE_SPINLOCK(serio_event_lock); /* protects serio_event_list */
static LIST_HEAD(serio_event_list);
static struct serio_event *serio_get_event(void)
{
struct serio_event *event = NULL;
unsigned long flags;
spin_lock_irqsave(&serio_event_lock, flags);
if (!list_empty(&serio_event_list)) {
event = list_first_entry(&serio_event_list,
struct serio_event, node);
list_del_init(&event->node);
}
spin_unlock_irqrestore(&serio_event_lock, flags);
return event;
}
static void serio_free_event(struct serio_event *event)
{
module_put(event->owner);
kfree(event);
}
static void serio_remove_duplicate_events(void *object,
enum serio_event_type type)
{
struct serio_event *e, *next;
unsigned long flags;
spin_lock_irqsave(&serio_event_lock, flags);
list_for_each_entry_safe(e, next, &serio_event_list, node) {
if (object == e->object) {
/*
* If this event is of different type we should not
* look further - we only suppress duplicate events
* that were sent back-to-back.
*/
if (type != e->type)
break;
list_del_init(&e->node);
serio_free_event(e);
}
}
spin_unlock_irqrestore(&serio_event_lock, flags);
}
static void serio_handle_event(struct work_struct *work)
{
struct serio_event *event;
mutex_lock(&serio_mutex);
while ((event = serio_get_event())) {
switch (event->type) {
case SERIO_REGISTER_PORT:
serio_add_port(event->object);
break;
case SERIO_RECONNECT_PORT:
serio_reconnect_port(event->object);
break;
case SERIO_RESCAN_PORT:
serio_disconnect_port(event->object);
serio_find_driver(event->object);
break;
case SERIO_RECONNECT_SUBTREE:
serio_reconnect_subtree(event->object);
break;
case SERIO_ATTACH_DRIVER:
serio_attach_driver(event->object);
break;
}
serio_remove_duplicate_events(event->object, event->type);
serio_free_event(event);
}
mutex_unlock(&serio_mutex);
}
static DECLARE_WORK(serio_event_work, serio_handle_event);
static int serio_queue_event(void *object, struct module *owner,
enum serio_event_type event_type)
{
unsigned long flags;
struct serio_event *event;
int retval = 0;
spin_lock_irqsave(&serio_event_lock, flags);
/*
* Scan event list for the other events for the same serio port,
* starting with the most recent one. If event is the same we
* do not need add new one. If event is of different type we
* need to add this event and should not look further because
* we need to preseve sequence of distinct events.
*/
list_for_each_entry_reverse(event, &serio_event_list, node) {
if (event->object == object) {
if (event->type == event_type)
goto out;
break;
}
}
event = kmalloc(sizeof(struct serio_event), GFP_ATOMIC);
if (!event) {
pr_err("Not enough memory to queue event %d\n", event_type);
retval = -ENOMEM;
goto out;
}
if (!try_module_get(owner)) {
pr_warn("Can't get module reference, dropping event %d\n",
event_type);
kfree(event);
retval = -EINVAL;
goto out;
}
event->type = event_type;
event->object = object;
event->owner = owner;
list_add_tail(&event->node, &serio_event_list);
queue_work(system_long_wq, &serio_event_work);
out:
spin_unlock_irqrestore(&serio_event_lock, flags);
return retval;
}
/*
* Remove all events that have been submitted for a given
* object, be it serio port or driver.
*/
static void serio_remove_pending_events(void *object)
{
struct serio_event *event, *next;
unsigned long flags;
spin_lock_irqsave(&serio_event_lock, flags);
list_for_each_entry_safe(event, next, &serio_event_list, node) {
if (event->object == object) {
list_del_init(&event->node);
serio_free_event(event);
}
}
spin_unlock_irqrestore(&serio_event_lock, flags);
}
/*
* Locate child serio port (if any) that has not been fully registered yet.
*
* Children are registered by driver's connect() handler so there can't be a
* grandchild pending registration together with a child.
*/
static struct serio *serio_get_pending_child(struct serio *parent)
{
struct serio_event *event;
struct serio *serio, *child = NULL;
unsigned long flags;
spin_lock_irqsave(&serio_event_lock, flags);
list_for_each_entry(event, &serio_event_list, node) {
if (event->type == SERIO_REGISTER_PORT) {
serio = event->object;
if (serio->parent == parent) {
child = serio;
break;
}
}
}
spin_unlock_irqrestore(&serio_event_lock, flags);
return child;
}
/*
* Serio port operations
*/
static ssize_t serio_show_description(struct device *dev, struct device_attribute *attr, char *buf)
{
struct serio *serio = to_serio_port(dev);
return sprintf(buf, "%s\n", serio->name);
}
static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct serio *serio = to_serio_port(dev);
return sprintf(buf, "serio:ty%02Xpr%02Xid%02Xex%02X\n",
serio->id.type, serio->id.proto, serio->id.id, serio->id.extra);
}
static ssize_t type_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct serio *serio = to_serio_port(dev);
return sprintf(buf, "%02x\n", serio->id.type);
}
static ssize_t proto_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct serio *serio = to_serio_port(dev);
return sprintf(buf, "%02x\n", serio->id.proto);
}
static ssize_t id_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct serio *serio = to_serio_port(dev);
return sprintf(buf, "%02x\n", serio->id.id);
}
static ssize_t extra_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct serio *serio = to_serio_port(dev);
return sprintf(buf, "%02x\n", serio->id.extra);
}
static ssize_t drvctl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct serio *serio = to_serio_port(dev);
struct device_driver *drv;
int error;
error = mutex_lock_interruptible(&serio_mutex);
if (error)
return error;
if (!strncmp(buf, "none", count)) {
serio_disconnect_port(serio);
} else if (!strncmp(buf, "reconnect", count)) {
serio_reconnect_subtree(serio);
} else if (!strncmp(buf, "rescan", count)) {
serio_disconnect_port(serio);
serio_find_driver(serio);
serio_remove_duplicate_events(serio, SERIO_RESCAN_PORT);
} else if ((drv = driver_find(buf, &serio_bus)) != NULL) {
serio_disconnect_port(serio);
error = serio_bind_driver(serio, to_serio_driver(drv));
serio_remove_duplicate_events(serio, SERIO_RESCAN_PORT);
} else {
error = -EINVAL;
}
mutex_unlock(&serio_mutex);
return error ? error : count;
}
static ssize_t serio_show_bind_mode(struct device *dev, struct device_attribute *attr, char *buf)
{
struct serio *serio = to_serio_port(dev);
return sprintf(buf, "%s\n", serio->manual_bind ? "manual" : "auto");
}
static ssize_t serio_set_bind_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct serio *serio = to_serio_port(dev);
int retval;
retval = count;
if (!strncmp(buf, "manual", count)) {
serio->manual_bind = true;
} else if (!strncmp(buf, "auto", count)) {
serio->manual_bind = false;
} else {
retval = -EINVAL;
}
return retval;
}
static ssize_t firmware_id_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct serio *serio = to_serio_port(dev);
return sprintf(buf, "%s\n", serio->firmware_id);
}
static DEVICE_ATTR_RO(type);
static DEVICE_ATTR_RO(proto);
static DEVICE_ATTR_RO(id);
static DEVICE_ATTR_RO(extra);
static struct attribute *serio_device_id_attrs[] = {
&dev_attr_type.attr,
&dev_attr_proto.attr,
&dev_attr_id.attr,
&dev_attr_extra.attr,
NULL
};
static const struct attribute_group serio_id_attr_group = {
.name = "id",
.attrs = serio_device_id_attrs,
};
static DEVICE_ATTR_RO(modalias);
static DEVICE_ATTR_WO(drvctl);
static DEVICE_ATTR(description, S_IRUGO, serio_show_description, NULL);
static DEVICE_ATTR(bind_mode, S_IWUSR | S_IRUGO, serio_show_bind_mode, serio_set_bind_mode);
static DEVICE_ATTR_RO(firmware_id);
static struct attribute *serio_device_attrs[] = {
&dev_attr_modalias.attr,
&dev_attr_description.attr,
&dev_attr_drvctl.attr,
&dev_attr_bind_mode.attr,
&dev_attr_firmware_id.attr,
NULL
};
static const struct attribute_group serio_device_attr_group = {
.attrs = serio_device_attrs,
};
static const struct attribute_group *serio_device_attr_groups[] = {
&serio_id_attr_group,
&serio_device_attr_group,
NULL
};
static void serio_release_port(struct device *dev)
{
struct serio *serio = to_serio_port(dev);
kfree(serio);
module_put(THIS_MODULE);
}
/*
* Prepare serio port for registration.
*/
static void serio_init_port(struct serio *serio)
{
static atomic_t serio_no = ATOMIC_INIT(-1);
__module_get(THIS_MODULE);
INIT_LIST_HEAD(&serio->node);
INIT_LIST_HEAD(&serio->child_node);
INIT_LIST_HEAD(&serio->children);
spin_lock_init(&serio->lock);
mutex_init(&serio->drv_mutex);
device_initialize(&serio->dev);
dev_set_name(&serio->dev, "serio%lu",
(unsigned long)atomic_inc_return(&serio_no));
serio->dev.bus = &serio_bus;
serio->dev.release = serio_release_port;
serio->dev.groups = serio_device_attr_groups;
if (serio->parent) {
serio->dev.parent = &serio->parent->dev;
serio->depth = serio->parent->depth + 1;
} else
serio->depth = 0;
lockdep_set_subclass(&serio->lock, serio->depth);
}
/*
* Complete serio port registration.
* Driver core will attempt to find appropriate driver for the port.
*/
static void serio_add_port(struct serio *serio)
{
struct serio *parent = serio->parent;
int error;
if (parent) {
serio_pause_rx(parent);
list_add_tail(&serio->child_node, &parent->children);
serio_continue_rx(parent);
}
list_add_tail(&serio->node, &serio_list);
if (serio->start)
serio->start(serio);
error = device_add(&serio->dev);
if (error)
dev_err(&serio->dev,
"device_add() failed for %s (%s), error: %d\n",
serio->phys, serio->name, error);
}
/*
* serio_destroy_port() completes unregistration process and removes
* port from the system
*/
static void serio_destroy_port(struct serio *serio)
{
struct serio *child;
while ((child = serio_get_pending_child(serio)) != NULL) {
serio_remove_pending_events(child);
put_device(&child->dev);
}
if (serio->stop)
serio->stop(serio);
if (serio->parent) {
serio_pause_rx(serio->parent);
list_del_init(&serio->child_node);
serio_continue_rx(serio->parent);
serio->parent = NULL;
}
if (device_is_registered(&serio->dev))
device_del(&serio->dev);
list_del_init(&serio->node);
serio_remove_pending_events(serio);
put_device(&serio->dev);
}
/*
* Reconnect serio port (re-initialize attached device).
* If reconnect fails (old device is no longer attached or
* there was no device to begin with) we do full rescan in
* hope of finding a driver for the port.
*/
static int serio_reconnect_port(struct serio *serio)
{
int error = serio_reconnect_driver(serio);
if (error) {
serio_disconnect_port(serio);
serio_find_driver(serio);
}
return error;
}
/*
* Reconnect serio port and all its children (re-initialize attached
* devices).
*/
static void serio_reconnect_subtree(struct serio *root)
{
struct serio *s = root;
int error;
do {
error = serio_reconnect_port(s);
if (!error) {
/*
* Reconnect was successful, move on to do the
* first child.
*/
if (!list_empty(&s->children)) {
s = list_first_entry(&s->children,
struct serio, child_node);
continue;
}
}
/*
* Either it was a leaf node or reconnect failed and it
* became a leaf node. Continue reconnecting starting with
* the next sibling of the parent node.
*/
while (s != root) {
struct serio *parent = s->parent;
if (!list_is_last(&s->child_node, &parent->children)) {
s = list_entry(s->child_node.next,
struct serio, child_node);
break;
}
s = parent;
}
} while (s != root);
}
/*
* serio_disconnect_port() unbinds a port from its driver. As a side effect
* all children ports are unbound and destroyed.
*/
static void serio_disconnect_port(struct serio *serio)
{
struct serio *s = serio;
/*
* Children ports should be disconnected and destroyed
* first; we travel the tree in depth-first order.
*/
while (!list_empty(&serio->children)) {
/* Locate a leaf */
while (!list_empty(&s->children))
s = list_first_entry(&s->children,
struct serio, child_node);
/*
* Prune this leaf node unless it is the one we
* started with.
*/
if (s != serio) {
struct serio *parent = s->parent;
device_release_driver(&s->dev);
serio_destroy_port(s);
s = parent;
}
}
/*
* OK, no children left, now disconnect this port.
*/
device_release_driver(&serio->dev);
}
void serio_rescan(struct serio *serio)
{
serio_queue_event(serio, NULL, SERIO_RESCAN_PORT);
}
EXPORT_SYMBOL(serio_rescan);
void serio_reconnect(struct serio *serio)
{
serio_queue_event(serio, NULL, SERIO_RECONNECT_SUBTREE);
}
EXPORT_SYMBOL(serio_reconnect);
/*
* Submits register request to kseriod for subsequent execution.
* Note that port registration is always asynchronous.
*/
void __serio_register_port(struct serio *serio, struct module *owner)
{
serio_init_port(serio);
serio_queue_event(serio, owner, SERIO_REGISTER_PORT);
}
EXPORT_SYMBOL(__serio_register_port);
/*
* Synchronously unregisters serio port.
*/
void serio_unregister_port(struct serio *serio)
{
mutex_lock(&serio_mutex);
serio_disconnect_port(serio);
serio_destroy_port(serio);
mutex_unlock(&serio_mutex);
}
EXPORT_SYMBOL(serio_unregister_port);
/*
* Safely unregisters children ports if they are present.
*/
void serio_unregister_child_port(struct serio *serio)
{
struct serio *s, *next;
mutex_lock(&serio_mutex);
list_for_each_entry_safe(s, next, &serio->children, child_node) {
serio_disconnect_port(s);
serio_destroy_port(s);
}
mutex_unlock(&serio_mutex);
}
EXPORT_SYMBOL(serio_unregister_child_port);
/*
* Serio driver operations
*/
static ssize_t description_show(struct device_driver *drv, char *buf)
{
struct serio_driver *driver = to_serio_driver(drv);
return sprintf(buf, "%s\n", driver->description ? driver->description : "(none)");
}
static DRIVER_ATTR_RO(description);
static ssize_t bind_mode_show(struct device_driver *drv, char *buf)
{
struct serio_driver *serio_drv = to_serio_driver(drv);
return sprintf(buf, "%s\n", serio_drv->manual_bind ? "manual" : "auto");
}
static ssize_t bind_mode_store(struct device_driver *drv, const char *buf, size_t count)
{
struct serio_driver *serio_drv = to_serio_driver(drv);
int retval;
retval = count;
if (!strncmp(buf, "manual", count)) {
serio_drv->manual_bind = true;
} else if (!strncmp(buf, "auto", count)) {
serio_drv->manual_bind = false;
} else {
retval = -EINVAL;
}
return retval;
}
static DRIVER_ATTR_RW(bind_mode);
static struct attribute *serio_driver_attrs[] = {
&driver_attr_description.attr,
&driver_attr_bind_mode.attr,
NULL,
};
ATTRIBUTE_GROUPS(serio_driver);
static int serio_driver_probe(struct device *dev)
{
struct serio *serio = to_serio_port(dev);
struct serio_driver *drv = to_serio_driver(dev->driver);
return serio_connect_driver(serio, drv);
}
static void serio_driver_remove(struct device *dev)
{
struct serio *serio = to_serio_port(dev);
serio_disconnect_driver(serio);
}
static void serio_cleanup(struct serio *serio)
{
mutex_lock(&serio->drv_mutex);
if (serio->drv && serio->drv->cleanup)
serio->drv->cleanup(serio);
mutex_unlock(&serio->drv_mutex);
}
static void serio_shutdown(struct device *dev)
{
struct serio *serio = to_serio_port(dev);
serio_cleanup(serio);
}
static void serio_attach_driver(struct serio_driver *drv)
{
int error;
error = driver_attach(&drv->driver);
if (error)
pr_warn("driver_attach() failed for %s with error %d\n",
drv->driver.name, error);
}
int __serio_register_driver(struct serio_driver *drv, struct module *owner, const char *mod_name)
{
bool manual_bind = drv->manual_bind;
int error;
drv->driver.bus = &serio_bus;
drv->driver.owner = owner;
drv->driver.mod_name = mod_name;
/*
* Temporarily disable automatic binding because probing
* takes long time and we are better off doing it in kseriod
*/
drv->manual_bind = true;
error = driver_register(&drv->driver);
if (error) {
pr_err("driver_register() failed for %s, error: %d\n",
drv->driver.name, error);
return error;
}
/*
* Restore original bind mode and let kseriod bind the
* driver to free ports
*/
if (!manual_bind) {
drv->manual_bind = false;
error = serio_queue_event(drv, NULL, SERIO_ATTACH_DRIVER);
if (error) {
driver_unregister(&drv->driver);
return error;
}
}
return 0;
}
EXPORT_SYMBOL(__serio_register_driver);
void serio_unregister_driver(struct serio_driver *drv)
{
struct serio *serio;
mutex_lock(&serio_mutex);
drv->manual_bind = true; /* so serio_find_driver ignores it */
serio_remove_pending_events(drv);
start_over:
list_for_each_entry(serio, &serio_list, node) {
if (serio->drv == drv) {
serio_disconnect_port(serio);
serio_find_driver(serio);
/* we could've deleted some ports, restart */
goto start_over;
}
}
driver_unregister(&drv->driver);
mutex_unlock(&serio_mutex);
}
EXPORT_SYMBOL(serio_unregister_driver);
static void serio_set_drv(struct serio *serio, struct serio_driver *drv)
{
serio_pause_rx(serio);
serio->drv = drv;
serio_continue_rx(serio);
}
static int serio_bus_match(struct device *dev, struct device_driver *drv)
{
struct serio *serio = to_serio_port(dev);
struct serio_driver *serio_drv = to_serio_driver(drv);
if (serio->manual_bind || serio_drv->manual_bind)
return 0;
return serio_match_port(serio_drv->id_table, serio);
}
#define SERIO_ADD_UEVENT_VAR(fmt, val...) \
do { \
int err = add_uevent_var(env, fmt, val); \
if (err) \
return err; \
} while (0)
static int serio_uevent(const struct device *dev, struct kobj_uevent_env *env)
{
const struct serio *serio;
if (!dev)
return -ENODEV;
serio = to_serio_port(dev);
SERIO_ADD_UEVENT_VAR("SERIO_TYPE=%02x", serio->id.type);
SERIO_ADD_UEVENT_VAR("SERIO_PROTO=%02x", serio->id.proto);
SERIO_ADD_UEVENT_VAR("SERIO_ID=%02x", serio->id.id);
SERIO_ADD_UEVENT_VAR("SERIO_EXTRA=%02x", serio->id.extra);
SERIO_ADD_UEVENT_VAR("MODALIAS=serio:ty%02Xpr%02Xid%02Xex%02X",
serio->id.type, serio->id.proto, serio->id.id, serio->id.extra);
if (serio->firmware_id[0])
SERIO_ADD_UEVENT_VAR("SERIO_FIRMWARE_ID=%s",
serio->firmware_id);
return 0;
}
#undef SERIO_ADD_UEVENT_VAR
#ifdef CONFIG_PM
static int serio_suspend(struct device *dev)
{
struct serio *serio = to_serio_port(dev);
serio_cleanup(serio);
return 0;
}
static int serio_resume(struct device *dev)
{
struct serio *serio = to_serio_port(dev);
int error = -ENOENT;
mutex_lock(&serio->drv_mutex);
if (serio->drv && serio->drv->fast_reconnect) {
error = serio->drv->fast_reconnect(serio);
if (error && error != -ENOENT)
dev_warn(dev, "fast reconnect failed with error %d\n",
error);
}
mutex_unlock(&serio->drv_mutex);
if (error) {
/*
* Driver reconnect can take a while, so better let
* kseriod deal with it.
*/
serio_queue_event(serio, NULL, SERIO_RECONNECT_PORT);
}
return 0;
}
static const struct dev_pm_ops serio_pm_ops = {
.suspend = serio_suspend,
.resume = serio_resume,
.poweroff = serio_suspend,
.restore = serio_resume,
};
#endif /* CONFIG_PM */
/* called from serio_driver->connect/disconnect methods under serio_mutex */
int serio_open(struct serio *serio, struct serio_driver *drv)
{
serio_set_drv(serio, drv);
if (serio->open && serio->open(serio)) {
serio_set_drv(serio, NULL);
return -1;
}
return 0;
}
EXPORT_SYMBOL(serio_open);
/* called from serio_driver->connect/disconnect methods under serio_mutex */
void serio_close(struct serio *serio)
{
if (serio->close)
serio->close(serio);
serio_set_drv(serio, NULL);
}
EXPORT_SYMBOL(serio_close);
irqreturn_t serio_interrupt(struct serio *serio,
unsigned char data, unsigned int dfl)
{
unsigned long flags;
irqreturn_t ret = IRQ_NONE;
spin_lock_irqsave(&serio->lock, flags);
if (likely(serio->drv)) {
ret = serio->drv->interrupt(serio, data, dfl);
} else if (!dfl && device_is_registered(&serio->dev)) {
serio_rescan(serio);
ret = IRQ_HANDLED;
}
spin_unlock_irqrestore(&serio->lock, flags);
return ret;
}
EXPORT_SYMBOL(serio_interrupt);
struct bus_type serio_bus = {
.name = "serio",
.drv_groups = serio_driver_groups,
.match = serio_bus_match,
.uevent = serio_uevent,
.probe = serio_driver_probe,
.remove = serio_driver_remove,
.shutdown = serio_shutdown,
#ifdef CONFIG_PM
.pm = &serio_pm_ops,
#endif
};
EXPORT_SYMBOL(serio_bus);
static int __init serio_init(void)
{
int error;
error = bus_register(&serio_bus);
if (error) {
pr_err("Failed to register serio bus, error: %d\n", error);
return error;
}
return 0;
}
static void __exit serio_exit(void)
{
bus_unregister(&serio_bus);
/*
* There should not be any outstanding events but work may
* still be scheduled so simply cancel it.
*/
cancel_work_sync(&serio_event_work);
}
subsys_initcall(serio_init);
module_exit(serio_exit);
|
linux-master
|
drivers/input/serio/serio.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* linux/drivers/input/serio/ambakmi.c
*
* Copyright (C) 2000-2003 Deep Blue Solutions Ltd.
* Copyright (C) 2002 Russell King.
*/
#include <linux/module.h>
#include <linux/serio.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/amba/bus.h>
#include <linux/amba/kmi.h>
#include <linux/clk.h>
#include <asm/io.h>
#include <asm/irq.h>
#define KMI_BASE (kmi->base)
struct amba_kmi_port {
struct serio *io;
struct clk *clk;
void __iomem *base;
unsigned int irq;
unsigned int divisor;
unsigned int open;
};
static irqreturn_t amba_kmi_int(int irq, void *dev_id)
{
struct amba_kmi_port *kmi = dev_id;
unsigned int status = readb(KMIIR);
int handled = IRQ_NONE;
while (status & KMIIR_RXINTR) {
serio_interrupt(kmi->io, readb(KMIDATA), 0);
status = readb(KMIIR);
handled = IRQ_HANDLED;
}
return handled;
}
static int amba_kmi_write(struct serio *io, unsigned char val)
{
struct amba_kmi_port *kmi = io->port_data;
unsigned int timeleft = 10000; /* timeout in 100ms */
while ((readb(KMISTAT) & KMISTAT_TXEMPTY) == 0 && --timeleft)
udelay(10);
if (timeleft)
writeb(val, KMIDATA);
return timeleft ? 0 : SERIO_TIMEOUT;
}
static int amba_kmi_open(struct serio *io)
{
struct amba_kmi_port *kmi = io->port_data;
unsigned int divisor;
int ret;
ret = clk_prepare_enable(kmi->clk);
if (ret)
goto out;
divisor = clk_get_rate(kmi->clk) / 8000000 - 1;
writeb(divisor, KMICLKDIV);
writeb(KMICR_EN, KMICR);
ret = request_irq(kmi->irq, amba_kmi_int, IRQF_SHARED, "kmi-pl050",
kmi);
if (ret) {
printk(KERN_ERR "kmi: failed to claim IRQ%d\n", kmi->irq);
writeb(0, KMICR);
goto clk_disable;
}
writeb(KMICR_EN | KMICR_RXINTREN, KMICR);
return 0;
clk_disable:
clk_disable_unprepare(kmi->clk);
out:
return ret;
}
static void amba_kmi_close(struct serio *io)
{
struct amba_kmi_port *kmi = io->port_data;
writeb(0, KMICR);
free_irq(kmi->irq, kmi);
clk_disable_unprepare(kmi->clk);
}
static int amba_kmi_probe(struct amba_device *dev,
const struct amba_id *id)
{
struct amba_kmi_port *kmi;
struct serio *io;
int ret;
ret = amba_request_regions(dev, NULL);
if (ret)
return ret;
kmi = kzalloc(sizeof(struct amba_kmi_port), GFP_KERNEL);
io = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!kmi || !io) {
ret = -ENOMEM;
goto out;
}
io->id.type = SERIO_8042;
io->write = amba_kmi_write;
io->open = amba_kmi_open;
io->close = amba_kmi_close;
strscpy(io->name, dev_name(&dev->dev), sizeof(io->name));
strscpy(io->phys, dev_name(&dev->dev), sizeof(io->phys));
io->port_data = kmi;
io->dev.parent = &dev->dev;
kmi->io = io;
kmi->base = ioremap(dev->res.start, resource_size(&dev->res));
if (!kmi->base) {
ret = -ENOMEM;
goto out;
}
kmi->clk = clk_get(&dev->dev, "KMIREFCLK");
if (IS_ERR(kmi->clk)) {
ret = PTR_ERR(kmi->clk);
goto unmap;
}
kmi->irq = dev->irq[0];
amba_set_drvdata(dev, kmi);
serio_register_port(kmi->io);
return 0;
unmap:
iounmap(kmi->base);
out:
kfree(kmi);
kfree(io);
amba_release_regions(dev);
return ret;
}
static void amba_kmi_remove(struct amba_device *dev)
{
struct amba_kmi_port *kmi = amba_get_drvdata(dev);
serio_unregister_port(kmi->io);
clk_put(kmi->clk);
iounmap(kmi->base);
kfree(kmi);
amba_release_regions(dev);
}
static int amba_kmi_resume(struct device *dev)
{
struct amba_kmi_port *kmi = dev_get_drvdata(dev);
/* kick the serio layer to rescan this port */
serio_reconnect(kmi->io);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(amba_kmi_dev_pm_ops, NULL, amba_kmi_resume);
static const struct amba_id amba_kmi_idtable[] = {
{
.id = 0x00041050,
.mask = 0x000fffff,
},
{ 0, 0 }
};
MODULE_DEVICE_TABLE(amba, amba_kmi_idtable);
static struct amba_driver ambakmi_driver = {
.drv = {
.name = "kmi-pl050",
.owner = THIS_MODULE,
.pm = pm_sleep_ptr(&amba_kmi_dev_pm_ops),
},
.id_table = amba_kmi_idtable,
.probe = amba_kmi_probe,
.remove = amba_kmi_remove,
};
module_amba_driver(ambakmi_driver);
MODULE_AUTHOR("Russell King <[email protected]>");
MODULE_DESCRIPTION("AMBA KMI controller driver");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/serio/ambakmi.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/input/serio/pcips2.c
*
* Copyright (C) 2003 Russell King, All Rights Reserved.
*
* I'm not sure if this is a generic PS/2 PCI interface or specific to
* the Mobility Electronics docking station.
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/input.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/serio.h>
#include <linux/delay.h>
#include <asm/io.h>
#define PS2_CTRL (0)
#define PS2_STATUS (1)
#define PS2_DATA (2)
#define PS2_CTRL_CLK (1<<0)
#define PS2_CTRL_DAT (1<<1)
#define PS2_CTRL_TXIRQ (1<<2)
#define PS2_CTRL_ENABLE (1<<3)
#define PS2_CTRL_RXIRQ (1<<4)
#define PS2_STAT_CLK (1<<0)
#define PS2_STAT_DAT (1<<1)
#define PS2_STAT_PARITY (1<<2)
#define PS2_STAT_RXFULL (1<<5)
#define PS2_STAT_TXBUSY (1<<6)
#define PS2_STAT_TXEMPTY (1<<7)
struct pcips2_data {
struct serio *io;
unsigned int base;
struct pci_dev *dev;
};
static int pcips2_write(struct serio *io, unsigned char val)
{
struct pcips2_data *ps2if = io->port_data;
unsigned int stat;
do {
stat = inb(ps2if->base + PS2_STATUS);
cpu_relax();
} while (!(stat & PS2_STAT_TXEMPTY));
outb(val, ps2if->base + PS2_DATA);
return 0;
}
static irqreturn_t pcips2_interrupt(int irq, void *devid)
{
struct pcips2_data *ps2if = devid;
unsigned char status, scancode;
int handled = 0;
do {
unsigned int flag;
status = inb(ps2if->base + PS2_STATUS);
if (!(status & PS2_STAT_RXFULL))
break;
handled = 1;
scancode = inb(ps2if->base + PS2_DATA);
if (status == 0xff && scancode == 0xff)
break;
flag = (status & PS2_STAT_PARITY) ? 0 : SERIO_PARITY;
if (hweight8(scancode) & 1)
flag ^= SERIO_PARITY;
serio_interrupt(ps2if->io, scancode, flag);
} while (1);
return IRQ_RETVAL(handled);
}
static void pcips2_flush_input(struct pcips2_data *ps2if)
{
unsigned char status, scancode;
do {
status = inb(ps2if->base + PS2_STATUS);
if (!(status & PS2_STAT_RXFULL))
break;
scancode = inb(ps2if->base + PS2_DATA);
if (status == 0xff && scancode == 0xff)
break;
} while (1);
}
static int pcips2_open(struct serio *io)
{
struct pcips2_data *ps2if = io->port_data;
int ret, val = 0;
outb(PS2_CTRL_ENABLE, ps2if->base);
pcips2_flush_input(ps2if);
ret = request_irq(ps2if->dev->irq, pcips2_interrupt, IRQF_SHARED,
"pcips2", ps2if);
if (ret == 0)
val = PS2_CTRL_ENABLE | PS2_CTRL_RXIRQ;
outb(val, ps2if->base);
return ret;
}
static void pcips2_close(struct serio *io)
{
struct pcips2_data *ps2if = io->port_data;
outb(0, ps2if->base);
free_irq(ps2if->dev->irq, ps2if);
}
static int pcips2_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
struct pcips2_data *ps2if;
struct serio *serio;
int ret;
ret = pci_enable_device(dev);
if (ret)
goto out;
ret = pci_request_regions(dev, "pcips2");
if (ret)
goto disable;
ps2if = kzalloc(sizeof(struct pcips2_data), GFP_KERNEL);
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!ps2if || !serio) {
ret = -ENOMEM;
goto release;
}
serio->id.type = SERIO_8042;
serio->write = pcips2_write;
serio->open = pcips2_open;
serio->close = pcips2_close;
strscpy(serio->name, pci_name(dev), sizeof(serio->name));
strscpy(serio->phys, dev_name(&dev->dev), sizeof(serio->phys));
serio->port_data = ps2if;
serio->dev.parent = &dev->dev;
ps2if->io = serio;
ps2if->dev = dev;
ps2if->base = pci_resource_start(dev, 0);
pci_set_drvdata(dev, ps2if);
serio_register_port(ps2if->io);
return 0;
release:
kfree(ps2if);
kfree(serio);
pci_release_regions(dev);
disable:
pci_disable_device(dev);
out:
return ret;
}
static void pcips2_remove(struct pci_dev *dev)
{
struct pcips2_data *ps2if = pci_get_drvdata(dev);
serio_unregister_port(ps2if->io);
kfree(ps2if);
pci_release_regions(dev);
pci_disable_device(dev);
}
static const struct pci_device_id pcips2_ids[] = {
{
.vendor = 0x14f2, /* MOBILITY */
.device = 0x0123, /* Keyboard */
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.class = PCI_CLASS_INPUT_KEYBOARD << 8,
.class_mask = 0xffff00,
},
{
.vendor = 0x14f2, /* MOBILITY */
.device = 0x0124, /* Mouse */
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.class = PCI_CLASS_INPUT_MOUSE << 8,
.class_mask = 0xffff00,
},
{ 0, }
};
MODULE_DEVICE_TABLE(pci, pcips2_ids);
static struct pci_driver pcips2_driver = {
.name = "pcips2",
.id_table = pcips2_ids,
.probe = pcips2_probe,
.remove = pcips2_remove,
};
module_pci_driver(pcips2_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Russell King <[email protected]>");
MODULE_DESCRIPTION("PCI PS/2 keyboard/mouse driver");
|
linux-master
|
drivers/input/serio/pcips2.c
|
/*
* HIL MLC state machine and serio interface driver
*
* Copyright (c) 2001 Brian S. Julin
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL").
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
*
* References:
* HP-HIL Technical Reference Manual. Hewlett Packard Product No. 45918A
*
*
* Driver theory of operation:
*
* Some access methods and an ISR is defined by the sub-driver
* (e.g. hp_sdc_mlc.c). These methods are expected to provide a
* few bits of logic in addition to raw access to the HIL MLC,
* specifically, the ISR, which is entirely registered by the
* sub-driver and invoked directly, must check for record
* termination or packet match, at which point a semaphore must
* be cleared and then the hil_mlcs_tasklet must be scheduled.
*
* The hil_mlcs_tasklet processes the state machine for all MLCs
* each time it runs, checking each MLC's progress at the current
* node in the state machine, and moving the MLC to subsequent nodes
* in the state machine when appropriate. It will reschedule
* itself if output is pending. (This rescheduling should be replaced
* at some point with a sub-driver-specific mechanism.)
*
* A timer task prods the tasklet once per second to prevent
* hangups when attached devices do not return expected data
* and to initiate probes of the loop for new devices.
*/
#include <linux/hil_mlc.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/list.h>
MODULE_AUTHOR("Brian S. Julin <[email protected]>");
MODULE_DESCRIPTION("HIL MLC serio");
MODULE_LICENSE("Dual BSD/GPL");
EXPORT_SYMBOL(hil_mlc_register);
EXPORT_SYMBOL(hil_mlc_unregister);
#define PREFIX "HIL MLC: "
static LIST_HEAD(hil_mlcs);
static DEFINE_RWLOCK(hil_mlcs_lock);
static struct timer_list hil_mlcs_kicker;
static int hil_mlcs_probe, hil_mlc_stop;
static void hil_mlcs_process(unsigned long unused);
static DECLARE_TASKLET_DISABLED_OLD(hil_mlcs_tasklet, hil_mlcs_process);
/* #define HIL_MLC_DEBUG */
/********************** Device info/instance management **********************/
static void hil_mlc_clear_di_map(hil_mlc *mlc, int val)
{
int j;
for (j = val; j < 7 ; j++)
mlc->di_map[j] = -1;
}
static void hil_mlc_clear_di_scratch(hil_mlc *mlc)
{
memset(&mlc->di_scratch, 0, sizeof(mlc->di_scratch));
}
static void hil_mlc_copy_di_scratch(hil_mlc *mlc, int idx)
{
memcpy(&mlc->di[idx], &mlc->di_scratch, sizeof(mlc->di_scratch));
}
static int hil_mlc_match_di_scratch(hil_mlc *mlc)
{
int idx;
for (idx = 0; idx < HIL_MLC_DEVMEM; idx++) {
int j, found = 0;
/* In-use slots are not eligible. */
for (j = 0; j < 7 ; j++)
if (mlc->di_map[j] == idx)
found++;
if (found)
continue;
if (!memcmp(mlc->di + idx, &mlc->di_scratch,
sizeof(mlc->di_scratch)))
break;
}
return idx >= HIL_MLC_DEVMEM ? -1 : idx;
}
static int hil_mlc_find_free_di(hil_mlc *mlc)
{
int idx;
/* TODO: Pick all-zero slots first, failing that,
* randomize the slot picked among those eligible.
*/
for (idx = 0; idx < HIL_MLC_DEVMEM; idx++) {
int j, found = 0;
for (j = 0; j < 7 ; j++)
if (mlc->di_map[j] == idx)
found++;
if (!found)
break;
}
return idx; /* Note: It is guaranteed at least one above will match */
}
static inline void hil_mlc_clean_serio_map(hil_mlc *mlc)
{
int idx;
for (idx = 0; idx < HIL_MLC_DEVMEM; idx++) {
int j, found = 0;
for (j = 0; j < 7 ; j++)
if (mlc->di_map[j] == idx)
found++;
if (!found)
mlc->serio_map[idx].di_revmap = -1;
}
}
static void hil_mlc_send_polls(hil_mlc *mlc)
{
int did, i, cnt;
struct serio *serio;
struct serio_driver *drv;
i = cnt = 0;
did = (mlc->ipacket[0] & HIL_PKT_ADDR_MASK) >> 8;
serio = did ? mlc->serio[mlc->di_map[did - 1]] : NULL;
drv = (serio != NULL) ? serio->drv : NULL;
while (mlc->icount < 15 - i) {
hil_packet p;
p = mlc->ipacket[i];
if (did != (p & HIL_PKT_ADDR_MASK) >> 8) {
if (drv && drv->interrupt) {
drv->interrupt(serio, 0, 0);
drv->interrupt(serio, HIL_ERR_INT >> 16, 0);
drv->interrupt(serio, HIL_PKT_CMD >> 8, 0);
drv->interrupt(serio, HIL_CMD_POL + cnt, 0);
}
did = (p & HIL_PKT_ADDR_MASK) >> 8;
serio = did ? mlc->serio[mlc->di_map[did-1]] : NULL;
drv = (serio != NULL) ? serio->drv : NULL;
cnt = 0;
}
cnt++;
i++;
if (drv && drv->interrupt) {
drv->interrupt(serio, (p >> 24), 0);
drv->interrupt(serio, (p >> 16) & 0xff, 0);
drv->interrupt(serio, (p >> 8) & ~HIL_PKT_ADDR_MASK, 0);
drv->interrupt(serio, p & 0xff, 0);
}
}
}
/*************************** State engine *********************************/
#define HILSEN_SCHED 0x000100 /* Schedule the tasklet */
#define HILSEN_BREAK 0x000200 /* Wait until next pass */
#define HILSEN_UP 0x000400 /* relative node#, decrement */
#define HILSEN_DOWN 0x000800 /* relative node#, increment */
#define HILSEN_FOLLOW 0x001000 /* use retval as next node# */
#define HILSEN_MASK 0x0000ff
#define HILSEN_START 0
#define HILSEN_RESTART 1
#define HILSEN_DHR 9
#define HILSEN_DHR2 10
#define HILSEN_IFC 14
#define HILSEN_HEAL0 16
#define HILSEN_HEAL 18
#define HILSEN_ACF 21
#define HILSEN_ACF2 22
#define HILSEN_DISC0 25
#define HILSEN_DISC 27
#define HILSEN_MATCH 40
#define HILSEN_OPERATE 41
#define HILSEN_PROBE 44
#define HILSEN_DSR 52
#define HILSEN_REPOLL 55
#define HILSEN_IFCACF 58
#define HILSEN_END 60
#define HILSEN_NEXT (HILSEN_DOWN | 1)
#define HILSEN_SAME (HILSEN_DOWN | 0)
#define HILSEN_LAST (HILSEN_UP | 1)
#define HILSEN_DOZE (HILSEN_SAME | HILSEN_SCHED | HILSEN_BREAK)
#define HILSEN_SLEEP (HILSEN_SAME | HILSEN_BREAK)
static int hilse_match(hil_mlc *mlc, int unused)
{
int rc;
rc = hil_mlc_match_di_scratch(mlc);
if (rc == -1) {
rc = hil_mlc_find_free_di(mlc);
if (rc == -1)
goto err;
#ifdef HIL_MLC_DEBUG
printk(KERN_DEBUG PREFIX "new in slot %i\n", rc);
#endif
hil_mlc_copy_di_scratch(mlc, rc);
mlc->di_map[mlc->ddi] = rc;
mlc->serio_map[rc].di_revmap = mlc->ddi;
hil_mlc_clean_serio_map(mlc);
serio_rescan(mlc->serio[rc]);
return -1;
}
mlc->di_map[mlc->ddi] = rc;
#ifdef HIL_MLC_DEBUG
printk(KERN_DEBUG PREFIX "same in slot %i\n", rc);
#endif
mlc->serio_map[rc].di_revmap = mlc->ddi;
hil_mlc_clean_serio_map(mlc);
return 0;
err:
printk(KERN_ERR PREFIX "Residual device slots exhausted, close some serios!\n");
return 1;
}
/* An LCV used to prevent runaway loops, forces 5 second sleep when reset. */
static int hilse_init_lcv(hil_mlc *mlc, int unused)
{
time64_t now = ktime_get_seconds();
if (mlc->lcv && (now - mlc->lcv_time) < 5)
return -1;
mlc->lcv_time = now;
mlc->lcv = 0;
return 0;
}
static int hilse_inc_lcv(hil_mlc *mlc, int lim)
{
return mlc->lcv++ >= lim ? -1 : 0;
}
#if 0
static int hilse_set_lcv(hil_mlc *mlc, int val)
{
mlc->lcv = val;
return 0;
}
#endif
/* Management of the discovered device index (zero based, -1 means no devs) */
static int hilse_set_ddi(hil_mlc *mlc, int val)
{
mlc->ddi = val;
hil_mlc_clear_di_map(mlc, val + 1);
return 0;
}
static int hilse_dec_ddi(hil_mlc *mlc, int unused)
{
mlc->ddi--;
if (mlc->ddi <= -1) {
mlc->ddi = -1;
hil_mlc_clear_di_map(mlc, 0);
return -1;
}
hil_mlc_clear_di_map(mlc, mlc->ddi + 1);
return 0;
}
static int hilse_inc_ddi(hil_mlc *mlc, int unused)
{
BUG_ON(mlc->ddi >= 6);
mlc->ddi++;
return 0;
}
static int hilse_take_idd(hil_mlc *mlc, int unused)
{
int i;
/* Help the state engine:
* Is this a real IDD response or just an echo?
*
* Real IDD response does not start with a command.
*/
if (mlc->ipacket[0] & HIL_PKT_CMD)
goto bail;
/* Should have the command echoed further down. */
for (i = 1; i < 16; i++) {
if (((mlc->ipacket[i] & HIL_PKT_ADDR_MASK) ==
(mlc->ipacket[0] & HIL_PKT_ADDR_MASK)) &&
(mlc->ipacket[i] & HIL_PKT_CMD) &&
((mlc->ipacket[i] & HIL_PKT_DATA_MASK) == HIL_CMD_IDD))
break;
}
if (i > 15)
goto bail;
/* And the rest of the packets should still be clear. */
while (++i < 16)
if (mlc->ipacket[i])
break;
if (i < 16)
goto bail;
for (i = 0; i < 16; i++)
mlc->di_scratch.idd[i] =
mlc->ipacket[i] & HIL_PKT_DATA_MASK;
/* Next step is to see if RSC supported */
if (mlc->di_scratch.idd[1] & HIL_IDD_HEADER_RSC)
return HILSEN_NEXT;
if (mlc->di_scratch.idd[1] & HIL_IDD_HEADER_EXD)
return HILSEN_DOWN | 4;
return 0;
bail:
mlc->ddi--;
return -1; /* This should send us off to ACF */
}
static int hilse_take_rsc(hil_mlc *mlc, int unused)
{
int i;
for (i = 0; i < 16; i++)
mlc->di_scratch.rsc[i] =
mlc->ipacket[i] & HIL_PKT_DATA_MASK;
/* Next step is to see if EXD supported (IDD has already been read) */
if (mlc->di_scratch.idd[1] & HIL_IDD_HEADER_EXD)
return HILSEN_NEXT;
return 0;
}
static int hilse_take_exd(hil_mlc *mlc, int unused)
{
int i;
for (i = 0; i < 16; i++)
mlc->di_scratch.exd[i] =
mlc->ipacket[i] & HIL_PKT_DATA_MASK;
/* Next step is to see if RNM supported. */
if (mlc->di_scratch.exd[0] & HIL_EXD_HEADER_RNM)
return HILSEN_NEXT;
return 0;
}
static int hilse_take_rnm(hil_mlc *mlc, int unused)
{
int i;
for (i = 0; i < 16; i++)
mlc->di_scratch.rnm[i] =
mlc->ipacket[i] & HIL_PKT_DATA_MASK;
printk(KERN_INFO PREFIX "Device name gotten: %16s\n",
mlc->di_scratch.rnm);
return 0;
}
static int hilse_operate(hil_mlc *mlc, int repoll)
{
if (mlc->opercnt == 0)
hil_mlcs_probe = 0;
mlc->opercnt = 1;
hil_mlc_send_polls(mlc);
if (!hil_mlcs_probe)
return 0;
hil_mlcs_probe = 0;
mlc->opercnt = 0;
return 1;
}
#define FUNC(funct, funct_arg, zero_rc, neg_rc, pos_rc) \
{ HILSE_FUNC, { .func = funct }, funct_arg, zero_rc, neg_rc, pos_rc },
#define OUT(pack) \
{ HILSE_OUT, { .packet = pack }, 0, HILSEN_NEXT, HILSEN_DOZE, 0 },
#define CTS \
{ HILSE_CTS, { .packet = 0 }, 0, HILSEN_NEXT | HILSEN_SCHED | HILSEN_BREAK, HILSEN_DOZE, 0 },
#define EXPECT(comp, to, got, got_wrong, timed_out) \
{ HILSE_EXPECT, { .packet = comp }, to, got, got_wrong, timed_out },
#define EXPECT_LAST(comp, to, got, got_wrong, timed_out) \
{ HILSE_EXPECT_LAST, { .packet = comp }, to, got, got_wrong, timed_out },
#define EXPECT_DISC(comp, to, got, got_wrong, timed_out) \
{ HILSE_EXPECT_DISC, { .packet = comp }, to, got, got_wrong, timed_out },
#define IN(to, got, got_error, timed_out) \
{ HILSE_IN, { .packet = 0 }, to, got, got_error, timed_out },
#define OUT_DISC(pack) \
{ HILSE_OUT_DISC, { .packet = pack }, 0, 0, 0, 0 },
#define OUT_LAST(pack) \
{ HILSE_OUT_LAST, { .packet = pack }, 0, 0, 0, 0 },
static const struct hilse_node hil_mlc_se[HILSEN_END] = {
/* 0 HILSEN_START */
FUNC(hilse_init_lcv, 0, HILSEN_NEXT, HILSEN_SLEEP, 0)
/* 1 HILSEN_RESTART */
FUNC(hilse_inc_lcv, 10, HILSEN_NEXT, HILSEN_START, 0)
OUT(HIL_CTRL_ONLY) /* Disable APE */
CTS
#define TEST_PACKET(x) \
(HIL_PKT_CMD | (x << HIL_PKT_ADDR_SHIFT) | x << 4 | x)
OUT(HIL_DO_ALTER_CTRL | HIL_CTRL_TEST | TEST_PACKET(0x5))
EXPECT(HIL_ERR_INT | TEST_PACKET(0x5),
2000, HILSEN_NEXT, HILSEN_RESTART, HILSEN_RESTART)
OUT(HIL_DO_ALTER_CTRL | HIL_CTRL_TEST | TEST_PACKET(0xa))
EXPECT(HIL_ERR_INT | TEST_PACKET(0xa),
2000, HILSEN_NEXT, HILSEN_RESTART, HILSEN_RESTART)
OUT(HIL_CTRL_ONLY | 0) /* Disable test mode */
/* 9 HILSEN_DHR */
FUNC(hilse_init_lcv, 0, HILSEN_NEXT, HILSEN_SLEEP, 0)
/* 10 HILSEN_DHR2 */
FUNC(hilse_inc_lcv, 10, HILSEN_NEXT, HILSEN_START, 0)
FUNC(hilse_set_ddi, -1, HILSEN_NEXT, 0, 0)
OUT(HIL_PKT_CMD | HIL_CMD_DHR)
IN(300000, HILSEN_DHR2, HILSEN_DHR2, HILSEN_NEXT)
/* 14 HILSEN_IFC */
OUT(HIL_PKT_CMD | HIL_CMD_IFC)
EXPECT(HIL_PKT_CMD | HIL_CMD_IFC | HIL_ERR_INT,
20000, HILSEN_DISC, HILSEN_DHR2, HILSEN_NEXT )
/* If devices are there, they weren't in PUP or other loopback mode.
* We're more concerned at this point with restoring operation
* to devices than discovering new ones, so we try to salvage
* the loop configuration by closing off the loop.
*/
/* 16 HILSEN_HEAL0 */
FUNC(hilse_dec_ddi, 0, HILSEN_NEXT, HILSEN_ACF, 0)
FUNC(hilse_inc_ddi, 0, HILSEN_NEXT, 0, 0)
/* 18 HILSEN_HEAL */
OUT_LAST(HIL_CMD_ELB)
EXPECT_LAST(HIL_CMD_ELB | HIL_ERR_INT,
20000, HILSEN_REPOLL, HILSEN_DSR, HILSEN_NEXT)
FUNC(hilse_dec_ddi, 0, HILSEN_HEAL, HILSEN_NEXT, 0)
/* 21 HILSEN_ACF */
FUNC(hilse_init_lcv, 0, HILSEN_NEXT, HILSEN_DOZE, 0)
/* 22 HILSEN_ACF2 */
FUNC(hilse_inc_lcv, 10, HILSEN_NEXT, HILSEN_START, 0)
OUT(HIL_PKT_CMD | HIL_CMD_ACF | 1)
IN(20000, HILSEN_NEXT, HILSEN_DSR, HILSEN_NEXT)
/* 25 HILSEN_DISC0 */
OUT_DISC(HIL_PKT_CMD | HIL_CMD_ELB)
EXPECT_DISC(HIL_PKT_CMD | HIL_CMD_ELB | HIL_ERR_INT,
20000, HILSEN_NEXT, HILSEN_DSR, HILSEN_DSR)
/* Only enter here if response just received */
/* 27 HILSEN_DISC */
OUT_DISC(HIL_PKT_CMD | HIL_CMD_IDD)
EXPECT_DISC(HIL_PKT_CMD | HIL_CMD_IDD | HIL_ERR_INT,
20000, HILSEN_NEXT, HILSEN_DSR, HILSEN_START)
FUNC(hilse_inc_ddi, 0, HILSEN_NEXT, HILSEN_START, 0)
FUNC(hilse_take_idd, 0, HILSEN_MATCH, HILSEN_IFCACF, HILSEN_FOLLOW)
OUT_LAST(HIL_PKT_CMD | HIL_CMD_RSC)
EXPECT_LAST(HIL_PKT_CMD | HIL_CMD_RSC | HIL_ERR_INT,
30000, HILSEN_NEXT, HILSEN_DSR, HILSEN_DSR)
FUNC(hilse_take_rsc, 0, HILSEN_MATCH, 0, HILSEN_FOLLOW)
OUT_LAST(HIL_PKT_CMD | HIL_CMD_EXD)
EXPECT_LAST(HIL_PKT_CMD | HIL_CMD_EXD | HIL_ERR_INT,
30000, HILSEN_NEXT, HILSEN_DSR, HILSEN_DSR)
FUNC(hilse_take_exd, 0, HILSEN_MATCH, 0, HILSEN_FOLLOW)
OUT_LAST(HIL_PKT_CMD | HIL_CMD_RNM)
EXPECT_LAST(HIL_PKT_CMD | HIL_CMD_RNM | HIL_ERR_INT,
30000, HILSEN_NEXT, HILSEN_DSR, HILSEN_DSR)
FUNC(hilse_take_rnm, 0, HILSEN_MATCH, 0, 0)
/* 40 HILSEN_MATCH */
FUNC(hilse_match, 0, HILSEN_NEXT, HILSEN_NEXT, /* TODO */ 0)
/* 41 HILSEN_OPERATE */
OUT(HIL_PKT_CMD | HIL_CMD_POL)
EXPECT(HIL_PKT_CMD | HIL_CMD_POL | HIL_ERR_INT,
20000, HILSEN_NEXT, HILSEN_DSR, HILSEN_NEXT)
FUNC(hilse_operate, 0, HILSEN_OPERATE, HILSEN_IFC, HILSEN_NEXT)
/* 44 HILSEN_PROBE */
OUT_LAST(HIL_PKT_CMD | HIL_CMD_EPT)
IN(10000, HILSEN_DISC, HILSEN_DSR, HILSEN_NEXT)
OUT_DISC(HIL_PKT_CMD | HIL_CMD_ELB)
IN(10000, HILSEN_DISC, HILSEN_DSR, HILSEN_NEXT)
OUT(HIL_PKT_CMD | HIL_CMD_ACF | 1)
IN(10000, HILSEN_DISC0, HILSEN_DSR, HILSEN_NEXT)
OUT_LAST(HIL_PKT_CMD | HIL_CMD_ELB)
IN(10000, HILSEN_OPERATE, HILSEN_DSR, HILSEN_DSR)
/* 52 HILSEN_DSR */
FUNC(hilse_set_ddi, -1, HILSEN_NEXT, 0, 0)
OUT(HIL_PKT_CMD | HIL_CMD_DSR)
IN(20000, HILSEN_DHR, HILSEN_DHR, HILSEN_IFC)
/* 55 HILSEN_REPOLL */
OUT(HIL_PKT_CMD | HIL_CMD_RPL)
EXPECT(HIL_PKT_CMD | HIL_CMD_RPL | HIL_ERR_INT,
20000, HILSEN_NEXT, HILSEN_DSR, HILSEN_NEXT)
FUNC(hilse_operate, 1, HILSEN_OPERATE, HILSEN_IFC, HILSEN_PROBE)
/* 58 HILSEN_IFCACF */
OUT(HIL_PKT_CMD | HIL_CMD_IFC)
EXPECT(HIL_PKT_CMD | HIL_CMD_IFC | HIL_ERR_INT,
20000, HILSEN_ACF2, HILSEN_DHR2, HILSEN_HEAL)
/* 60 HILSEN_END */
};
static inline void hilse_setup_input(hil_mlc *mlc, const struct hilse_node *node)
{
switch (node->act) {
case HILSE_EXPECT_DISC:
mlc->imatch = node->object.packet;
mlc->imatch |= ((mlc->ddi + 2) << HIL_PKT_ADDR_SHIFT);
break;
case HILSE_EXPECT_LAST:
mlc->imatch = node->object.packet;
mlc->imatch |= ((mlc->ddi + 1) << HIL_PKT_ADDR_SHIFT);
break;
case HILSE_EXPECT:
mlc->imatch = node->object.packet;
break;
case HILSE_IN:
mlc->imatch = 0;
break;
default:
BUG();
}
mlc->istarted = 1;
mlc->intimeout = usecs_to_jiffies(node->arg);
mlc->instart = jiffies;
mlc->icount = 15;
memset(mlc->ipacket, 0, 16 * sizeof(hil_packet));
BUG_ON(down_trylock(&mlc->isem));
}
#ifdef HIL_MLC_DEBUG
static int doze;
static int seidx; /* For debug */
#endif
static int hilse_donode(hil_mlc *mlc)
{
const struct hilse_node *node;
int nextidx = 0;
int sched_long = 0;
unsigned long flags;
#ifdef HIL_MLC_DEBUG
if (mlc->seidx && mlc->seidx != seidx &&
mlc->seidx != 41 && mlc->seidx != 42 && mlc->seidx != 43) {
printk(KERN_DEBUG PREFIX "z%i \n {%i}", doze, mlc->seidx);
doze = 0;
}
seidx = mlc->seidx;
#endif
node = hil_mlc_se + mlc->seidx;
switch (node->act) {
int rc;
hil_packet pack;
case HILSE_FUNC:
BUG_ON(node->object.func == NULL);
rc = node->object.func(mlc, node->arg);
nextidx = (rc > 0) ? node->ugly :
((rc < 0) ? node->bad : node->good);
if (nextidx == HILSEN_FOLLOW)
nextidx = rc;
break;
case HILSE_EXPECT_LAST:
case HILSE_EXPECT_DISC:
case HILSE_EXPECT:
case HILSE_IN:
/* Already set up from previous HILSE_OUT_* */
write_lock_irqsave(&mlc->lock, flags);
rc = mlc->in(mlc, node->arg);
if (rc == 2) {
nextidx = HILSEN_DOZE;
sched_long = 1;
write_unlock_irqrestore(&mlc->lock, flags);
break;
}
if (rc == 1)
nextidx = node->ugly;
else if (rc == 0)
nextidx = node->good;
else
nextidx = node->bad;
mlc->istarted = 0;
write_unlock_irqrestore(&mlc->lock, flags);
break;
case HILSE_OUT_LAST:
write_lock_irqsave(&mlc->lock, flags);
pack = node->object.packet;
pack |= ((mlc->ddi + 1) << HIL_PKT_ADDR_SHIFT);
goto out;
case HILSE_OUT_DISC:
write_lock_irqsave(&mlc->lock, flags);
pack = node->object.packet;
pack |= ((mlc->ddi + 2) << HIL_PKT_ADDR_SHIFT);
goto out;
case HILSE_OUT:
write_lock_irqsave(&mlc->lock, flags);
pack = node->object.packet;
out:
if (!mlc->istarted) {
/* Prepare to receive input */
if ((node + 1)->act & HILSE_IN)
hilse_setup_input(mlc, node + 1);
}
write_unlock_irqrestore(&mlc->lock, flags);
if (down_trylock(&mlc->osem)) {
nextidx = HILSEN_DOZE;
break;
}
up(&mlc->osem);
write_lock_irqsave(&mlc->lock, flags);
if (!mlc->ostarted) {
mlc->ostarted = 1;
mlc->opacket = pack;
rc = mlc->out(mlc);
nextidx = HILSEN_DOZE;
write_unlock_irqrestore(&mlc->lock, flags);
if (rc) {
hil_mlc_stop = 1;
return 1;
}
break;
}
mlc->ostarted = 0;
mlc->instart = jiffies;
write_unlock_irqrestore(&mlc->lock, flags);
nextidx = HILSEN_NEXT;
break;
case HILSE_CTS:
write_lock_irqsave(&mlc->lock, flags);
rc = mlc->cts(mlc);
nextidx = rc ? node->bad : node->good;
write_unlock_irqrestore(&mlc->lock, flags);
if (rc) {
hil_mlc_stop = 1;
return 1;
}
break;
default:
BUG();
}
#ifdef HIL_MLC_DEBUG
if (nextidx == HILSEN_DOZE)
doze++;
#endif
while (nextidx & HILSEN_SCHED) {
unsigned long now = jiffies;
if (!sched_long)
goto sched;
if (time_after(now, mlc->instart + mlc->intimeout))
goto sched;
mod_timer(&hil_mlcs_kicker, mlc->instart + mlc->intimeout);
break;
sched:
tasklet_schedule(&hil_mlcs_tasklet);
break;
}
if (nextidx & HILSEN_DOWN)
mlc->seidx += nextidx & HILSEN_MASK;
else if (nextidx & HILSEN_UP)
mlc->seidx -= nextidx & HILSEN_MASK;
else
mlc->seidx = nextidx & HILSEN_MASK;
if (nextidx & HILSEN_BREAK)
return 1;
return 0;
}
/******************** tasklet context functions **************************/
static void hil_mlcs_process(unsigned long unused)
{
struct list_head *tmp;
read_lock(&hil_mlcs_lock);
list_for_each(tmp, &hil_mlcs) {
struct hil_mlc *mlc = list_entry(tmp, hil_mlc, list);
while (hilse_donode(mlc) == 0) {
#ifdef HIL_MLC_DEBUG
if (mlc->seidx != 41 &&
mlc->seidx != 42 &&
mlc->seidx != 43)
printk(KERN_DEBUG PREFIX " + ");
#endif
}
}
read_unlock(&hil_mlcs_lock);
}
/************************* Keepalive timer task *********************/
static void hil_mlcs_timer(struct timer_list *unused)
{
if (hil_mlc_stop) {
/* could not send packet - stop immediately. */
pr_warn(PREFIX "HIL seems stuck - Disabling HIL MLC.\n");
return;
}
hil_mlcs_probe = 1;
tasklet_schedule(&hil_mlcs_tasklet);
/* Re-insert the periodic task. */
if (!timer_pending(&hil_mlcs_kicker))
mod_timer(&hil_mlcs_kicker, jiffies + HZ);
}
/******************** user/kernel context functions **********************/
static int hil_mlc_serio_write(struct serio *serio, unsigned char c)
{
struct hil_mlc_serio_map *map;
struct hil_mlc *mlc;
struct serio_driver *drv;
uint8_t *idx, *last;
map = serio->port_data;
BUG_ON(map == NULL);
mlc = map->mlc;
BUG_ON(mlc == NULL);
mlc->serio_opacket[map->didx] |=
((hil_packet)c) << (8 * (3 - mlc->serio_oidx[map->didx]));
if (mlc->serio_oidx[map->didx] >= 3) {
/* for now only commands */
if (!(mlc->serio_opacket[map->didx] & HIL_PKT_CMD))
return -EIO;
switch (mlc->serio_opacket[map->didx] & HIL_PKT_DATA_MASK) {
case HIL_CMD_IDD:
idx = mlc->di[map->didx].idd;
goto emu;
case HIL_CMD_RSC:
idx = mlc->di[map->didx].rsc;
goto emu;
case HIL_CMD_EXD:
idx = mlc->di[map->didx].exd;
goto emu;
case HIL_CMD_RNM:
idx = mlc->di[map->didx].rnm;
goto emu;
default:
break;
}
mlc->serio_oidx[map->didx] = 0;
mlc->serio_opacket[map->didx] = 0;
}
mlc->serio_oidx[map->didx]++;
return -EIO;
emu:
drv = serio->drv;
BUG_ON(drv == NULL);
last = idx + 15;
while ((last != idx) && (*last == 0))
last--;
while (idx != last) {
drv->interrupt(serio, 0, 0);
drv->interrupt(serio, HIL_ERR_INT >> 16, 0);
drv->interrupt(serio, 0, 0);
drv->interrupt(serio, *idx, 0);
idx++;
}
drv->interrupt(serio, 0, 0);
drv->interrupt(serio, HIL_ERR_INT >> 16, 0);
drv->interrupt(serio, HIL_PKT_CMD >> 8, 0);
drv->interrupt(serio, *idx, 0);
mlc->serio_oidx[map->didx] = 0;
mlc->serio_opacket[map->didx] = 0;
return 0;
}
static int hil_mlc_serio_open(struct serio *serio)
{
struct hil_mlc_serio_map *map;
struct hil_mlc *mlc;
if (serio_get_drvdata(serio) != NULL)
return -EBUSY;
map = serio->port_data;
BUG_ON(map == NULL);
mlc = map->mlc;
BUG_ON(mlc == NULL);
return 0;
}
static void hil_mlc_serio_close(struct serio *serio)
{
struct hil_mlc_serio_map *map;
struct hil_mlc *mlc;
map = serio->port_data;
BUG_ON(map == NULL);
mlc = map->mlc;
BUG_ON(mlc == NULL);
serio_set_drvdata(serio, NULL);
serio->drv = NULL;
/* TODO wake up interruptable */
}
static const struct serio_device_id hil_mlc_serio_id = {
.type = SERIO_HIL_MLC,
.proto = SERIO_HIL,
.extra = SERIO_ANY,
.id = SERIO_ANY,
};
int hil_mlc_register(hil_mlc *mlc)
{
int i;
unsigned long flags;
BUG_ON(mlc == NULL);
mlc->istarted = 0;
mlc->ostarted = 0;
rwlock_init(&mlc->lock);
sema_init(&mlc->osem, 1);
sema_init(&mlc->isem, 1);
mlc->icount = -1;
mlc->imatch = 0;
mlc->opercnt = 0;
sema_init(&(mlc->csem), 0);
hil_mlc_clear_di_scratch(mlc);
hil_mlc_clear_di_map(mlc, 0);
for (i = 0; i < HIL_MLC_DEVMEM; i++) {
struct serio *mlc_serio;
hil_mlc_copy_di_scratch(mlc, i);
mlc_serio = kzalloc(sizeof(*mlc_serio), GFP_KERNEL);
mlc->serio[i] = mlc_serio;
if (!mlc->serio[i]) {
for (; i >= 0; i--)
kfree(mlc->serio[i]);
return -ENOMEM;
}
snprintf(mlc_serio->name, sizeof(mlc_serio->name)-1, "HIL_SERIO%d", i);
snprintf(mlc_serio->phys, sizeof(mlc_serio->phys)-1, "HIL%d", i);
mlc_serio->id = hil_mlc_serio_id;
mlc_serio->id.id = i; /* HIL port no. */
mlc_serio->write = hil_mlc_serio_write;
mlc_serio->open = hil_mlc_serio_open;
mlc_serio->close = hil_mlc_serio_close;
mlc_serio->port_data = &(mlc->serio_map[i]);
mlc->serio_map[i].mlc = mlc;
mlc->serio_map[i].didx = i;
mlc->serio_map[i].di_revmap = -1;
mlc->serio_opacket[i] = 0;
mlc->serio_oidx[i] = 0;
serio_register_port(mlc_serio);
}
mlc->tasklet = &hil_mlcs_tasklet;
write_lock_irqsave(&hil_mlcs_lock, flags);
list_add_tail(&mlc->list, &hil_mlcs);
mlc->seidx = HILSEN_START;
write_unlock_irqrestore(&hil_mlcs_lock, flags);
tasklet_schedule(&hil_mlcs_tasklet);
return 0;
}
int hil_mlc_unregister(hil_mlc *mlc)
{
struct list_head *tmp;
unsigned long flags;
int i;
BUG_ON(mlc == NULL);
write_lock_irqsave(&hil_mlcs_lock, flags);
list_for_each(tmp, &hil_mlcs)
if (list_entry(tmp, hil_mlc, list) == mlc)
goto found;
/* not found in list */
write_unlock_irqrestore(&hil_mlcs_lock, flags);
tasklet_schedule(&hil_mlcs_tasklet);
return -ENODEV;
found:
list_del(tmp);
write_unlock_irqrestore(&hil_mlcs_lock, flags);
for (i = 0; i < HIL_MLC_DEVMEM; i++) {
serio_unregister_port(mlc->serio[i]);
mlc->serio[i] = NULL;
}
tasklet_schedule(&hil_mlcs_tasklet);
return 0;
}
/**************************** Module interface *************************/
static int __init hil_mlc_init(void)
{
timer_setup(&hil_mlcs_kicker, &hil_mlcs_timer, 0);
mod_timer(&hil_mlcs_kicker, jiffies + HZ);
tasklet_enable(&hil_mlcs_tasklet);
return 0;
}
static void __exit hil_mlc_exit(void)
{
del_timer_sync(&hil_mlcs_kicker);
tasklet_kill(&hil_mlcs_tasklet);
}
module_init(hil_mlc_init);
module_exit(hil_mlc_exit);
|
linux-master
|
drivers/input/serio/hil_mlc.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* i8042 keyboard and mouse controller driver for Linux
*
* Copyright (c) 1999-2004 Vojtech Pavlik
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/serio.h>
#include <linux/err.h>
#include <linux/rcupdate.h>
#include <linux/platform_device.h>
#include <linux/i8042.h>
#include <linux/slab.h>
#include <linux/suspend.h>
#include <linux/property.h>
#include <asm/io.h>
MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
MODULE_DESCRIPTION("i8042 keyboard and mouse controller driver");
MODULE_LICENSE("GPL");
static bool i8042_nokbd;
module_param_named(nokbd, i8042_nokbd, bool, 0);
MODULE_PARM_DESC(nokbd, "Do not probe or use KBD port.");
static bool i8042_noaux;
module_param_named(noaux, i8042_noaux, bool, 0);
MODULE_PARM_DESC(noaux, "Do not probe or use AUX (mouse) port.");
static bool i8042_nomux;
module_param_named(nomux, i8042_nomux, bool, 0);
MODULE_PARM_DESC(nomux, "Do not check whether an active multiplexing controller is present.");
static bool i8042_unlock;
module_param_named(unlock, i8042_unlock, bool, 0);
MODULE_PARM_DESC(unlock, "Ignore keyboard lock.");
static bool i8042_probe_defer;
module_param_named(probe_defer, i8042_probe_defer, bool, 0);
MODULE_PARM_DESC(probe_defer, "Allow deferred probing.");
enum i8042_controller_reset_mode {
I8042_RESET_NEVER,
I8042_RESET_ALWAYS,
I8042_RESET_ON_S2RAM,
#define I8042_RESET_DEFAULT I8042_RESET_ON_S2RAM
};
static enum i8042_controller_reset_mode i8042_reset = I8042_RESET_DEFAULT;
static int i8042_set_reset(const char *val, const struct kernel_param *kp)
{
enum i8042_controller_reset_mode *arg = kp->arg;
int error;
bool reset;
if (val) {
error = kstrtobool(val, &reset);
if (error)
return error;
} else {
reset = true;
}
*arg = reset ? I8042_RESET_ALWAYS : I8042_RESET_NEVER;
return 0;
}
static const struct kernel_param_ops param_ops_reset_param = {
.flags = KERNEL_PARAM_OPS_FL_NOARG,
.set = i8042_set_reset,
};
#define param_check_reset_param(name, p) \
__param_check(name, p, enum i8042_controller_reset_mode)
module_param_named(reset, i8042_reset, reset_param, 0);
MODULE_PARM_DESC(reset, "Reset controller on resume, cleanup or both");
static bool i8042_direct;
module_param_named(direct, i8042_direct, bool, 0);
MODULE_PARM_DESC(direct, "Put keyboard port into non-translated mode.");
static bool i8042_dumbkbd;
module_param_named(dumbkbd, i8042_dumbkbd, bool, 0);
MODULE_PARM_DESC(dumbkbd, "Pretend that controller can only read data from keyboard");
static bool i8042_noloop;
module_param_named(noloop, i8042_noloop, bool, 0);
MODULE_PARM_DESC(noloop, "Disable the AUX Loopback command while probing for the AUX port");
static bool i8042_notimeout;
module_param_named(notimeout, i8042_notimeout, bool, 0);
MODULE_PARM_DESC(notimeout, "Ignore timeouts signalled by i8042");
static bool i8042_kbdreset;
module_param_named(kbdreset, i8042_kbdreset, bool, 0);
MODULE_PARM_DESC(kbdreset, "Reset device connected to KBD port");
#ifdef CONFIG_X86
static bool i8042_dritek;
module_param_named(dritek, i8042_dritek, bool, 0);
MODULE_PARM_DESC(dritek, "Force enable the Dritek keyboard extension");
#endif
#ifdef CONFIG_PNP
static bool i8042_nopnp;
module_param_named(nopnp, i8042_nopnp, bool, 0);
MODULE_PARM_DESC(nopnp, "Do not use PNP to detect controller settings");
#endif
#define DEBUG
#ifdef DEBUG
static bool i8042_debug;
module_param_named(debug, i8042_debug, bool, 0600);
MODULE_PARM_DESC(debug, "Turn i8042 debugging mode on and off");
static bool i8042_unmask_kbd_data;
module_param_named(unmask_kbd_data, i8042_unmask_kbd_data, bool, 0600);
MODULE_PARM_DESC(unmask_kbd_data, "Unconditional enable (may reveal sensitive data) of normally sanitize-filtered kbd data traffic debug log [pre-condition: i8042.debug=1 enabled]");
#endif
static bool i8042_present;
static bool i8042_bypass_aux_irq_test;
static char i8042_kbd_firmware_id[128];
static char i8042_aux_firmware_id[128];
static struct fwnode_handle *i8042_kbd_fwnode;
#include "i8042.h"
/*
* i8042_lock protects serialization between i8042_command and
* the interrupt handler.
*/
static DEFINE_SPINLOCK(i8042_lock);
/*
* Writers to AUX and KBD ports as well as users issuing i8042_command
* directly should acquire i8042_mutex (by means of calling
* i8042_lock_chip() and i8042_unlock_chip() helpers) to ensure that
* they do not disturb each other (unfortunately in many i8042
* implementations write to one of the ports will immediately abort
* command that is being processed by another port).
*/
static DEFINE_MUTEX(i8042_mutex);
struct i8042_port {
struct serio *serio;
int irq;
bool exists;
bool driver_bound;
signed char mux;
};
#define I8042_KBD_PORT_NO 0
#define I8042_AUX_PORT_NO 1
#define I8042_MUX_PORT_NO 2
#define I8042_NUM_PORTS (I8042_NUM_MUX_PORTS + 2)
static struct i8042_port i8042_ports[I8042_NUM_PORTS];
static unsigned char i8042_initial_ctr;
static unsigned char i8042_ctr;
static bool i8042_mux_present;
static bool i8042_kbd_irq_registered;
static bool i8042_aux_irq_registered;
static unsigned char i8042_suppress_kbd_ack;
static struct platform_device *i8042_platform_device;
static struct notifier_block i8042_kbd_bind_notifier_block;
static irqreturn_t i8042_interrupt(int irq, void *dev_id);
static bool (*i8042_platform_filter)(unsigned char data, unsigned char str,
struct serio *serio);
void i8042_lock_chip(void)
{
mutex_lock(&i8042_mutex);
}
EXPORT_SYMBOL(i8042_lock_chip);
void i8042_unlock_chip(void)
{
mutex_unlock(&i8042_mutex);
}
EXPORT_SYMBOL(i8042_unlock_chip);
int i8042_install_filter(bool (*filter)(unsigned char data, unsigned char str,
struct serio *serio))
{
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&i8042_lock, flags);
if (i8042_platform_filter) {
ret = -EBUSY;
goto out;
}
i8042_platform_filter = filter;
out:
spin_unlock_irqrestore(&i8042_lock, flags);
return ret;
}
EXPORT_SYMBOL(i8042_install_filter);
int i8042_remove_filter(bool (*filter)(unsigned char data, unsigned char str,
struct serio *port))
{
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&i8042_lock, flags);
if (i8042_platform_filter != filter) {
ret = -EINVAL;
goto out;
}
i8042_platform_filter = NULL;
out:
spin_unlock_irqrestore(&i8042_lock, flags);
return ret;
}
EXPORT_SYMBOL(i8042_remove_filter);
/*
* The i8042_wait_read() and i8042_wait_write functions wait for the i8042 to
* be ready for reading values from it / writing values to it.
* Called always with i8042_lock held.
*/
static int i8042_wait_read(void)
{
int i = 0;
while ((~i8042_read_status() & I8042_STR_OBF) && (i < I8042_CTL_TIMEOUT)) {
udelay(50);
i++;
}
return -(i == I8042_CTL_TIMEOUT);
}
static int i8042_wait_write(void)
{
int i = 0;
while ((i8042_read_status() & I8042_STR_IBF) && (i < I8042_CTL_TIMEOUT)) {
udelay(50);
i++;
}
return -(i == I8042_CTL_TIMEOUT);
}
/*
* i8042_flush() flushes all data that may be in the keyboard and mouse buffers
* of the i8042 down the toilet.
*/
static int i8042_flush(void)
{
unsigned long flags;
unsigned char data, str;
int count = 0;
int retval = 0;
spin_lock_irqsave(&i8042_lock, flags);
while ((str = i8042_read_status()) & I8042_STR_OBF) {
if (count++ < I8042_BUFFER_SIZE) {
udelay(50);
data = i8042_read_data();
dbg("%02x <- i8042 (flush, %s)\n",
data, str & I8042_STR_AUXDATA ? "aux" : "kbd");
} else {
retval = -EIO;
break;
}
}
spin_unlock_irqrestore(&i8042_lock, flags);
return retval;
}
/*
* i8042_command() executes a command on the i8042. It also sends the input
* parameter(s) of the commands to it, and receives the output value(s). The
* parameters are to be stored in the param array, and the output is placed
* into the same array. The number of the parameters and output values is
* encoded in bits 8-11 of the command number.
*/
static int __i8042_command(unsigned char *param, int command)
{
int i, error;
if (i8042_noloop && command == I8042_CMD_AUX_LOOP)
return -1;
error = i8042_wait_write();
if (error)
return error;
dbg("%02x -> i8042 (command)\n", command & 0xff);
i8042_write_command(command & 0xff);
for (i = 0; i < ((command >> 12) & 0xf); i++) {
error = i8042_wait_write();
if (error) {
dbg(" -- i8042 (wait write timeout)\n");
return error;
}
dbg("%02x -> i8042 (parameter)\n", param[i]);
i8042_write_data(param[i]);
}
for (i = 0; i < ((command >> 8) & 0xf); i++) {
error = i8042_wait_read();
if (error) {
dbg(" -- i8042 (wait read timeout)\n");
return error;
}
if (command == I8042_CMD_AUX_LOOP &&
!(i8042_read_status() & I8042_STR_AUXDATA)) {
dbg(" -- i8042 (auxerr)\n");
return -1;
}
param[i] = i8042_read_data();
dbg("%02x <- i8042 (return)\n", param[i]);
}
return 0;
}
int i8042_command(unsigned char *param, int command)
{
unsigned long flags;
int retval;
if (!i8042_present)
return -1;
spin_lock_irqsave(&i8042_lock, flags);
retval = __i8042_command(param, command);
spin_unlock_irqrestore(&i8042_lock, flags);
return retval;
}
EXPORT_SYMBOL(i8042_command);
/*
* i8042_kbd_write() sends a byte out through the keyboard interface.
*/
static int i8042_kbd_write(struct serio *port, unsigned char c)
{
unsigned long flags;
int retval = 0;
spin_lock_irqsave(&i8042_lock, flags);
if (!(retval = i8042_wait_write())) {
dbg("%02x -> i8042 (kbd-data)\n", c);
i8042_write_data(c);
}
spin_unlock_irqrestore(&i8042_lock, flags);
return retval;
}
/*
* i8042_aux_write() sends a byte out through the aux interface.
*/
static int i8042_aux_write(struct serio *serio, unsigned char c)
{
struct i8042_port *port = serio->port_data;
return i8042_command(&c, port->mux == -1 ?
I8042_CMD_AUX_SEND :
I8042_CMD_MUX_SEND + port->mux);
}
/*
* i8042_port_close attempts to clear AUX or KBD port state by disabling
* and then re-enabling it.
*/
static void i8042_port_close(struct serio *serio)
{
int irq_bit;
int disable_bit;
const char *port_name;
if (serio == i8042_ports[I8042_AUX_PORT_NO].serio) {
irq_bit = I8042_CTR_AUXINT;
disable_bit = I8042_CTR_AUXDIS;
port_name = "AUX";
} else {
irq_bit = I8042_CTR_KBDINT;
disable_bit = I8042_CTR_KBDDIS;
port_name = "KBD";
}
i8042_ctr &= ~irq_bit;
if (i8042_command(&i8042_ctr, I8042_CMD_CTL_WCTR))
pr_warn("Can't write CTR while closing %s port\n", port_name);
udelay(50);
i8042_ctr &= ~disable_bit;
i8042_ctr |= irq_bit;
if (i8042_command(&i8042_ctr, I8042_CMD_CTL_WCTR))
pr_err("Can't reactivate %s port\n", port_name);
/*
* See if there is any data appeared while we were messing with
* port state.
*/
i8042_interrupt(0, NULL);
}
/*
* i8042_start() is called by serio core when port is about to finish
* registering. It will mark port as existing so i8042_interrupt can
* start sending data through it.
*/
static int i8042_start(struct serio *serio)
{
struct i8042_port *port = serio->port_data;
device_set_wakeup_capable(&serio->dev, true);
/*
* On platforms using suspend-to-idle, allow the keyboard to
* wake up the system from sleep by enabling keyboard wakeups
* by default. This is consistent with keyboard wakeup
* behavior on many platforms using suspend-to-RAM (ACPI S3)
* by default.
*/
if (pm_suspend_default_s2idle() &&
serio == i8042_ports[I8042_KBD_PORT_NO].serio) {
device_set_wakeup_enable(&serio->dev, true);
}
spin_lock_irq(&i8042_lock);
port->exists = true;
spin_unlock_irq(&i8042_lock);
return 0;
}
/*
* i8042_stop() marks serio port as non-existing so i8042_interrupt
* will not try to send data to the port that is about to go away.
* The function is called by serio core as part of unregister procedure.
*/
static void i8042_stop(struct serio *serio)
{
struct i8042_port *port = serio->port_data;
spin_lock_irq(&i8042_lock);
port->exists = false;
port->serio = NULL;
spin_unlock_irq(&i8042_lock);
/*
* We need to make sure that interrupt handler finishes using
* our serio port before we return from this function.
* We synchronize with both AUX and KBD IRQs because there is
* a (very unlikely) chance that AUX IRQ is raised for KBD port
* and vice versa.
*/
synchronize_irq(I8042_AUX_IRQ);
synchronize_irq(I8042_KBD_IRQ);
}
/*
* i8042_filter() filters out unwanted bytes from the input data stream.
* It is called from i8042_interrupt and thus is running with interrupts
* off and i8042_lock held.
*/
static bool i8042_filter(unsigned char data, unsigned char str,
struct serio *serio)
{
if (unlikely(i8042_suppress_kbd_ack)) {
if ((~str & I8042_STR_AUXDATA) &&
(data == 0xfa || data == 0xfe)) {
i8042_suppress_kbd_ack--;
dbg("Extra keyboard ACK - filtered out\n");
return true;
}
}
if (i8042_platform_filter && i8042_platform_filter(data, str, serio)) {
dbg("Filtered out by platform filter\n");
return true;
}
return false;
}
/*
* i8042_interrupt() is the most important function in this driver -
* it handles the interrupts from the i8042, and sends incoming bytes
* to the upper layers.
*/
static irqreturn_t i8042_interrupt(int irq, void *dev_id)
{
struct i8042_port *port;
struct serio *serio;
unsigned long flags;
unsigned char str, data;
unsigned int dfl;
unsigned int port_no;
bool filtered;
int ret = 1;
spin_lock_irqsave(&i8042_lock, flags);
str = i8042_read_status();
if (unlikely(~str & I8042_STR_OBF)) {
spin_unlock_irqrestore(&i8042_lock, flags);
if (irq)
dbg("Interrupt %d, without any data\n", irq);
ret = 0;
goto out;
}
data = i8042_read_data();
if (i8042_mux_present && (str & I8042_STR_AUXDATA)) {
static unsigned long last_transmit;
static unsigned char last_str;
dfl = 0;
if (str & I8042_STR_MUXERR) {
dbg("MUX error, status is %02x, data is %02x\n",
str, data);
/*
* When MUXERR condition is signalled the data register can only contain
* 0xfd, 0xfe or 0xff if implementation follows the spec. Unfortunately
* it is not always the case. Some KBCs also report 0xfc when there is
* nothing connected to the port while others sometimes get confused which
* port the data came from and signal error leaving the data intact. They
* _do not_ revert to legacy mode (actually I've never seen KBC reverting
* to legacy mode yet, when we see one we'll add proper handling).
* Anyway, we process 0xfc, 0xfd, 0xfe and 0xff as timeouts, and for the
* rest assume that the data came from the same serio last byte
* was transmitted (if transmission happened not too long ago).
*/
switch (data) {
default:
if (time_before(jiffies, last_transmit + HZ/10)) {
str = last_str;
break;
}
fallthrough; /* report timeout */
case 0xfc:
case 0xfd:
case 0xfe: dfl = SERIO_TIMEOUT; data = 0xfe; break;
case 0xff: dfl = SERIO_PARITY; data = 0xfe; break;
}
}
port_no = I8042_MUX_PORT_NO + ((str >> 6) & 3);
last_str = str;
last_transmit = jiffies;
} else {
dfl = ((str & I8042_STR_PARITY) ? SERIO_PARITY : 0) |
((str & I8042_STR_TIMEOUT && !i8042_notimeout) ? SERIO_TIMEOUT : 0);
port_no = (str & I8042_STR_AUXDATA) ?
I8042_AUX_PORT_NO : I8042_KBD_PORT_NO;
}
port = &i8042_ports[port_no];
serio = port->exists ? port->serio : NULL;
filter_dbg(port->driver_bound, data, "<- i8042 (interrupt, %d, %d%s%s)\n",
port_no, irq,
dfl & SERIO_PARITY ? ", bad parity" : "",
dfl & SERIO_TIMEOUT ? ", timeout" : "");
filtered = i8042_filter(data, str, serio);
spin_unlock_irqrestore(&i8042_lock, flags);
if (likely(serio && !filtered))
serio_interrupt(serio, data, dfl);
out:
return IRQ_RETVAL(ret);
}
/*
* i8042_enable_kbd_port enables keyboard port on chip
*/
static int i8042_enable_kbd_port(void)
{
i8042_ctr &= ~I8042_CTR_KBDDIS;
i8042_ctr |= I8042_CTR_KBDINT;
if (i8042_command(&i8042_ctr, I8042_CMD_CTL_WCTR)) {
i8042_ctr &= ~I8042_CTR_KBDINT;
i8042_ctr |= I8042_CTR_KBDDIS;
pr_err("Failed to enable KBD port\n");
return -EIO;
}
return 0;
}
/*
* i8042_enable_aux_port enables AUX (mouse) port on chip
*/
static int i8042_enable_aux_port(void)
{
i8042_ctr &= ~I8042_CTR_AUXDIS;
i8042_ctr |= I8042_CTR_AUXINT;
if (i8042_command(&i8042_ctr, I8042_CMD_CTL_WCTR)) {
i8042_ctr &= ~I8042_CTR_AUXINT;
i8042_ctr |= I8042_CTR_AUXDIS;
pr_err("Failed to enable AUX port\n");
return -EIO;
}
return 0;
}
/*
* i8042_enable_mux_ports enables 4 individual AUX ports after
* the controller has been switched into Multiplexed mode
*/
static int i8042_enable_mux_ports(void)
{
unsigned char param;
int i;
for (i = 0; i < I8042_NUM_MUX_PORTS; i++) {
i8042_command(¶m, I8042_CMD_MUX_PFX + i);
i8042_command(¶m, I8042_CMD_AUX_ENABLE);
}
return i8042_enable_aux_port();
}
/*
* i8042_set_mux_mode checks whether the controller has an
* active multiplexor and puts the chip into Multiplexed (true)
* or Legacy (false) mode.
*/
static int i8042_set_mux_mode(bool multiplex, unsigned char *mux_version)
{
unsigned char param, val;
/*
* Get rid of bytes in the queue.
*/
i8042_flush();
/*
* Internal loopback test - send three bytes, they should come back from the
* mouse interface, the last should be version.
*/
param = val = 0xf0;
if (i8042_command(¶m, I8042_CMD_AUX_LOOP) || param != val)
return -1;
param = val = multiplex ? 0x56 : 0xf6;
if (i8042_command(¶m, I8042_CMD_AUX_LOOP) || param != val)
return -1;
param = val = multiplex ? 0xa4 : 0xa5;
if (i8042_command(¶m, I8042_CMD_AUX_LOOP) || param == val)
return -1;
/*
* Workaround for interference with USB Legacy emulation
* that causes a v10.12 MUX to be found.
*/
if (param == 0xac)
return -1;
if (mux_version)
*mux_version = param;
return 0;
}
/*
* i8042_check_mux() checks whether the controller supports the PS/2 Active
* Multiplexing specification by Synaptics, Phoenix, Insyde and
* LCS/Telegraphics.
*/
static int i8042_check_mux(void)
{
unsigned char mux_version;
if (i8042_set_mux_mode(true, &mux_version))
return -1;
pr_info("Detected active multiplexing controller, rev %d.%d\n",
(mux_version >> 4) & 0xf, mux_version & 0xf);
/*
* Disable all muxed ports by disabling AUX.
*/
i8042_ctr |= I8042_CTR_AUXDIS;
i8042_ctr &= ~I8042_CTR_AUXINT;
if (i8042_command(&i8042_ctr, I8042_CMD_CTL_WCTR)) {
pr_err("Failed to disable AUX port, can't use MUX\n");
return -EIO;
}
i8042_mux_present = true;
return 0;
}
/*
* The following is used to test AUX IRQ delivery.
*/
static struct completion i8042_aux_irq_delivered;
static bool i8042_irq_being_tested;
static irqreturn_t i8042_aux_test_irq(int irq, void *dev_id)
{
unsigned long flags;
unsigned char str, data;
int ret = 0;
spin_lock_irqsave(&i8042_lock, flags);
str = i8042_read_status();
if (str & I8042_STR_OBF) {
data = i8042_read_data();
dbg("%02x <- i8042 (aux_test_irq, %s)\n",
data, str & I8042_STR_AUXDATA ? "aux" : "kbd");
if (i8042_irq_being_tested &&
data == 0xa5 && (str & I8042_STR_AUXDATA))
complete(&i8042_aux_irq_delivered);
ret = 1;
}
spin_unlock_irqrestore(&i8042_lock, flags);
return IRQ_RETVAL(ret);
}
/*
* i8042_toggle_aux - enables or disables AUX port on i8042 via command and
* verifies success by readinng CTR. Used when testing for presence of AUX
* port.
*/
static int i8042_toggle_aux(bool on)
{
unsigned char param;
int i;
if (i8042_command(¶m,
on ? I8042_CMD_AUX_ENABLE : I8042_CMD_AUX_DISABLE))
return -1;
/* some chips need some time to set the I8042_CTR_AUXDIS bit */
for (i = 0; i < 100; i++) {
udelay(50);
if (i8042_command(¶m, I8042_CMD_CTL_RCTR))
return -1;
if (!(param & I8042_CTR_AUXDIS) == on)
return 0;
}
return -1;
}
/*
* i8042_check_aux() applies as much paranoia as it can at detecting
* the presence of an AUX interface.
*/
static int i8042_check_aux(void)
{
int retval = -1;
bool irq_registered = false;
bool aux_loop_broken = false;
unsigned long flags;
unsigned char param;
/*
* Get rid of bytes in the queue.
*/
i8042_flush();
/*
* Internal loopback test - filters out AT-type i8042's. Unfortunately
* SiS screwed up and their 5597 doesn't support the LOOP command even
* though it has an AUX port.
*/
param = 0x5a;
retval = i8042_command(¶m, I8042_CMD_AUX_LOOP);
if (retval || param != 0x5a) {
/*
* External connection test - filters out AT-soldered PS/2 i8042's
* 0x00 - no error, 0x01-0x03 - clock/data stuck, 0xff - general error
* 0xfa - no error on some notebooks which ignore the spec
* Because it's common for chipsets to return error on perfectly functioning
* AUX ports, we test for this only when the LOOP command failed.
*/
if (i8042_command(¶m, I8042_CMD_AUX_TEST) ||
(param && param != 0xfa && param != 0xff))
return -1;
/*
* If AUX_LOOP completed without error but returned unexpected data
* mark it as broken
*/
if (!retval)
aux_loop_broken = true;
}
/*
* Bit assignment test - filters out PS/2 i8042's in AT mode
*/
if (i8042_toggle_aux(false)) {
pr_warn("Failed to disable AUX port, but continuing anyway... Is this a SiS?\n");
pr_warn("If AUX port is really absent please use the 'i8042.noaux' option\n");
}
if (i8042_toggle_aux(true))
return -1;
/*
* Reset keyboard (needed on some laptops to successfully detect
* touchpad, e.g., some Gigabyte laptop models with Elantech
* touchpads).
*/
if (i8042_kbdreset) {
pr_warn("Attempting to reset device connected to KBD port\n");
i8042_kbd_write(NULL, (unsigned char) 0xff);
}
/*
* Test AUX IRQ delivery to make sure BIOS did not grab the IRQ and
* used it for a PCI card or somethig else.
*/
if (i8042_noloop || i8042_bypass_aux_irq_test || aux_loop_broken) {
/*
* Without LOOP command we can't test AUX IRQ delivery. Assume the port
* is working and hope we are right.
*/
retval = 0;
goto out;
}
if (request_irq(I8042_AUX_IRQ, i8042_aux_test_irq, IRQF_SHARED,
"i8042", i8042_platform_device))
goto out;
irq_registered = true;
if (i8042_enable_aux_port())
goto out;
spin_lock_irqsave(&i8042_lock, flags);
init_completion(&i8042_aux_irq_delivered);
i8042_irq_being_tested = true;
param = 0xa5;
retval = __i8042_command(¶m, I8042_CMD_AUX_LOOP & 0xf0ff);
spin_unlock_irqrestore(&i8042_lock, flags);
if (retval)
goto out;
if (wait_for_completion_timeout(&i8042_aux_irq_delivered,
msecs_to_jiffies(250)) == 0) {
/*
* AUX IRQ was never delivered so we need to flush the controller to
* get rid of the byte we put there; otherwise keyboard may not work.
*/
dbg(" -- i8042 (aux irq test timeout)\n");
i8042_flush();
retval = -1;
}
out:
/*
* Disable the interface.
*/
i8042_ctr |= I8042_CTR_AUXDIS;
i8042_ctr &= ~I8042_CTR_AUXINT;
if (i8042_command(&i8042_ctr, I8042_CMD_CTL_WCTR))
retval = -1;
if (irq_registered)
free_irq(I8042_AUX_IRQ, i8042_platform_device);
return retval;
}
static int i8042_controller_check(void)
{
if (i8042_flush()) {
pr_info("No controller found\n");
return -ENODEV;
}
return 0;
}
static int i8042_controller_selftest(void)
{
unsigned char param;
int i = 0;
/*
* We try this 5 times; on some really fragile systems this does not
* take the first time...
*/
do {
if (i8042_command(¶m, I8042_CMD_CTL_TEST)) {
pr_err("i8042 controller selftest timeout\n");
return -ENODEV;
}
if (param == I8042_RET_CTL_TEST)
return 0;
dbg("i8042 controller selftest: %#x != %#x\n",
param, I8042_RET_CTL_TEST);
msleep(50);
} while (i++ < 5);
#ifdef CONFIG_X86
/*
* On x86, we don't fail entire i8042 initialization if controller
* reset fails in hopes that keyboard port will still be functional
* and user will still get a working keyboard. This is especially
* important on netbooks. On other arches we trust hardware more.
*/
pr_info("giving up on controller selftest, continuing anyway...\n");
return 0;
#else
pr_err("i8042 controller selftest failed\n");
return -EIO;
#endif
}
/*
* i8042_controller_init initializes the i8042 controller, and,
* most importantly, sets it into non-xlated mode if that's
* desired.
*/
static int i8042_controller_init(void)
{
unsigned long flags;
int n = 0;
unsigned char ctr[2];
/*
* Save the CTR for restore on unload / reboot.
*/
do {
if (n >= 10) {
pr_err("Unable to get stable CTR read\n");
return -EIO;
}
if (n != 0)
udelay(50);
if (i8042_command(&ctr[n++ % 2], I8042_CMD_CTL_RCTR)) {
pr_err("Can't read CTR while initializing i8042\n");
return i8042_probe_defer ? -EPROBE_DEFER : -EIO;
}
} while (n < 2 || ctr[0] != ctr[1]);
i8042_initial_ctr = i8042_ctr = ctr[0];
/*
* Disable the keyboard interface and interrupt.
*/
i8042_ctr |= I8042_CTR_KBDDIS;
i8042_ctr &= ~I8042_CTR_KBDINT;
/*
* Handle keylock.
*/
spin_lock_irqsave(&i8042_lock, flags);
if (~i8042_read_status() & I8042_STR_KEYLOCK) {
if (i8042_unlock)
i8042_ctr |= I8042_CTR_IGNKEYLOCK;
else
pr_warn("Warning: Keylock active\n");
}
spin_unlock_irqrestore(&i8042_lock, flags);
/*
* If the chip is configured into nontranslated mode by the BIOS, don't
* bother enabling translating and be happy.
*/
if (~i8042_ctr & I8042_CTR_XLATE)
i8042_direct = true;
/*
* Set nontranslated mode for the kbd interface if requested by an option.
* After this the kbd interface becomes a simple serial in/out, like the aux
* interface is. We don't do this by default, since it can confuse notebook
* BIOSes.
*/
if (i8042_direct)
i8042_ctr &= ~I8042_CTR_XLATE;
/*
* Write CTR back.
*/
if (i8042_command(&i8042_ctr, I8042_CMD_CTL_WCTR)) {
pr_err("Can't write CTR while initializing i8042\n");
return -EIO;
}
/*
* Flush whatever accumulated while we were disabling keyboard port.
*/
i8042_flush();
return 0;
}
/*
* Reset the controller and reset CRT to the original value set by BIOS.
*/
static void i8042_controller_reset(bool s2r_wants_reset)
{
i8042_flush();
/*
* Disable both KBD and AUX interfaces so they don't get in the way
*/
i8042_ctr |= I8042_CTR_KBDDIS | I8042_CTR_AUXDIS;
i8042_ctr &= ~(I8042_CTR_KBDINT | I8042_CTR_AUXINT);
if (i8042_command(&i8042_ctr, I8042_CMD_CTL_WCTR))
pr_warn("Can't write CTR while resetting\n");
/*
* Disable MUX mode if present.
*/
if (i8042_mux_present)
i8042_set_mux_mode(false, NULL);
/*
* Reset the controller if requested.
*/
if (i8042_reset == I8042_RESET_ALWAYS ||
(i8042_reset == I8042_RESET_ON_S2RAM && s2r_wants_reset)) {
i8042_controller_selftest();
}
/*
* Restore the original control register setting.
*/
if (i8042_command(&i8042_initial_ctr, I8042_CMD_CTL_WCTR))
pr_warn("Can't restore CTR\n");
}
/*
* i8042_panic_blink() will turn the keyboard LEDs on or off and is called
* when kernel panics. Flashing LEDs is useful for users running X who may
* not see the console and will help distinguishing panics from "real"
* lockups.
*
* Note that DELAY has a limit of 10ms so we will not get stuck here
* waiting for KBC to free up even if KBD interrupt is off
*/
#define DELAY do { mdelay(1); if (++delay > 10) return delay; } while(0)
static long i8042_panic_blink(int state)
{
long delay = 0;
char led;
led = (state) ? 0x01 | 0x04 : 0;
while (i8042_read_status() & I8042_STR_IBF)
DELAY;
dbg("%02x -> i8042 (panic blink)\n", 0xed);
i8042_suppress_kbd_ack = 2;
i8042_write_data(0xed); /* set leds */
DELAY;
while (i8042_read_status() & I8042_STR_IBF)
DELAY;
DELAY;
dbg("%02x -> i8042 (panic blink)\n", led);
i8042_write_data(led);
DELAY;
return delay;
}
#undef DELAY
#ifdef CONFIG_X86
static void i8042_dritek_enable(void)
{
unsigned char param = 0x90;
int error;
error = i8042_command(¶m, 0x1059);
if (error)
pr_warn("Failed to enable DRITEK extension: %d\n", error);
}
#endif
#ifdef CONFIG_PM
/*
* Here we try to reset everything back to a state we had
* before suspending.
*/
static int i8042_controller_resume(bool s2r_wants_reset)
{
int error;
error = i8042_controller_check();
if (error)
return error;
if (i8042_reset == I8042_RESET_ALWAYS ||
(i8042_reset == I8042_RESET_ON_S2RAM && s2r_wants_reset)) {
error = i8042_controller_selftest();
if (error)
return error;
}
/*
* Restore original CTR value and disable all ports
*/
i8042_ctr = i8042_initial_ctr;
if (i8042_direct)
i8042_ctr &= ~I8042_CTR_XLATE;
i8042_ctr |= I8042_CTR_AUXDIS | I8042_CTR_KBDDIS;
i8042_ctr &= ~(I8042_CTR_AUXINT | I8042_CTR_KBDINT);
if (i8042_command(&i8042_ctr, I8042_CMD_CTL_WCTR)) {
pr_warn("Can't write CTR to resume, retrying...\n");
msleep(50);
if (i8042_command(&i8042_ctr, I8042_CMD_CTL_WCTR)) {
pr_err("CTR write retry failed\n");
return -EIO;
}
}
#ifdef CONFIG_X86
if (i8042_dritek)
i8042_dritek_enable();
#endif
if (i8042_mux_present) {
if (i8042_set_mux_mode(true, NULL) || i8042_enable_mux_ports())
pr_warn("failed to resume active multiplexor, mouse won't work\n");
} else if (i8042_ports[I8042_AUX_PORT_NO].serio)
i8042_enable_aux_port();
if (i8042_ports[I8042_KBD_PORT_NO].serio)
i8042_enable_kbd_port();
i8042_interrupt(0, NULL);
return 0;
}
/*
* Here we try to restore the original BIOS settings to avoid
* upsetting it.
*/
static int i8042_pm_suspend(struct device *dev)
{
int i;
if (pm_suspend_via_firmware())
i8042_controller_reset(true);
/* Set up serio interrupts for system wakeup. */
for (i = 0; i < I8042_NUM_PORTS; i++) {
struct serio *serio = i8042_ports[i].serio;
if (serio && device_may_wakeup(&serio->dev))
enable_irq_wake(i8042_ports[i].irq);
}
return 0;
}
static int i8042_pm_resume_noirq(struct device *dev)
{
if (!pm_resume_via_firmware())
i8042_interrupt(0, NULL);
return 0;
}
static int i8042_pm_resume(struct device *dev)
{
bool want_reset;
int i;
for (i = 0; i < I8042_NUM_PORTS; i++) {
struct serio *serio = i8042_ports[i].serio;
if (serio && device_may_wakeup(&serio->dev))
disable_irq_wake(i8042_ports[i].irq);
}
/*
* If platform firmware was not going to be involved in suspend, we did
* not restore the controller state to whatever it had been at boot
* time, so we do not need to do anything.
*/
if (!pm_suspend_via_firmware())
return 0;
/*
* We only need to reset the controller if we are resuming after handing
* off control to the platform firmware, otherwise we can simply restore
* the mode.
*/
want_reset = pm_resume_via_firmware();
return i8042_controller_resume(want_reset);
}
static int i8042_pm_thaw(struct device *dev)
{
i8042_interrupt(0, NULL);
return 0;
}
static int i8042_pm_reset(struct device *dev)
{
i8042_controller_reset(false);
return 0;
}
static int i8042_pm_restore(struct device *dev)
{
return i8042_controller_resume(false);
}
static const struct dev_pm_ops i8042_pm_ops = {
.suspend = i8042_pm_suspend,
.resume_noirq = i8042_pm_resume_noirq,
.resume = i8042_pm_resume,
.thaw = i8042_pm_thaw,
.poweroff = i8042_pm_reset,
.restore = i8042_pm_restore,
};
#endif /* CONFIG_PM */
/*
* We need to reset the 8042 back to original mode on system shutdown,
* because otherwise BIOSes will be confused.
*/
static void i8042_shutdown(struct platform_device *dev)
{
i8042_controller_reset(false);
}
static int i8042_create_kbd_port(void)
{
struct serio *serio;
struct i8042_port *port = &i8042_ports[I8042_KBD_PORT_NO];
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!serio)
return -ENOMEM;
serio->id.type = i8042_direct ? SERIO_8042 : SERIO_8042_XL;
serio->write = i8042_dumbkbd ? NULL : i8042_kbd_write;
serio->start = i8042_start;
serio->stop = i8042_stop;
serio->close = i8042_port_close;
serio->ps2_cmd_mutex = &i8042_mutex;
serio->port_data = port;
serio->dev.parent = &i8042_platform_device->dev;
strscpy(serio->name, "i8042 KBD port", sizeof(serio->name));
strscpy(serio->phys, I8042_KBD_PHYS_DESC, sizeof(serio->phys));
strscpy(serio->firmware_id, i8042_kbd_firmware_id,
sizeof(serio->firmware_id));
set_primary_fwnode(&serio->dev, i8042_kbd_fwnode);
port->serio = serio;
port->irq = I8042_KBD_IRQ;
return 0;
}
static int i8042_create_aux_port(int idx)
{
struct serio *serio;
int port_no = idx < 0 ? I8042_AUX_PORT_NO : I8042_MUX_PORT_NO + idx;
struct i8042_port *port = &i8042_ports[port_no];
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!serio)
return -ENOMEM;
serio->id.type = SERIO_8042;
serio->write = i8042_aux_write;
serio->start = i8042_start;
serio->stop = i8042_stop;
serio->ps2_cmd_mutex = &i8042_mutex;
serio->port_data = port;
serio->dev.parent = &i8042_platform_device->dev;
if (idx < 0) {
strscpy(serio->name, "i8042 AUX port", sizeof(serio->name));
strscpy(serio->phys, I8042_AUX_PHYS_DESC, sizeof(serio->phys));
strscpy(serio->firmware_id, i8042_aux_firmware_id,
sizeof(serio->firmware_id));
serio->close = i8042_port_close;
} else {
snprintf(serio->name, sizeof(serio->name), "i8042 AUX%d port", idx);
snprintf(serio->phys, sizeof(serio->phys), I8042_MUX_PHYS_DESC, idx + 1);
strscpy(serio->firmware_id, i8042_aux_firmware_id,
sizeof(serio->firmware_id));
}
port->serio = serio;
port->mux = idx;
port->irq = I8042_AUX_IRQ;
return 0;
}
static void i8042_free_kbd_port(void)
{
kfree(i8042_ports[I8042_KBD_PORT_NO].serio);
i8042_ports[I8042_KBD_PORT_NO].serio = NULL;
}
static void i8042_free_aux_ports(void)
{
int i;
for (i = I8042_AUX_PORT_NO; i < I8042_NUM_PORTS; i++) {
kfree(i8042_ports[i].serio);
i8042_ports[i].serio = NULL;
}
}
static void i8042_register_ports(void)
{
int i;
for (i = 0; i < I8042_NUM_PORTS; i++) {
struct serio *serio = i8042_ports[i].serio;
if (!serio)
continue;
printk(KERN_INFO "serio: %s at %#lx,%#lx irq %d\n",
serio->name,
(unsigned long) I8042_DATA_REG,
(unsigned long) I8042_COMMAND_REG,
i8042_ports[i].irq);
serio_register_port(serio);
}
}
static void i8042_unregister_ports(void)
{
int i;
for (i = 0; i < I8042_NUM_PORTS; i++) {
if (i8042_ports[i].serio) {
serio_unregister_port(i8042_ports[i].serio);
i8042_ports[i].serio = NULL;
}
}
}
static void i8042_free_irqs(void)
{
if (i8042_aux_irq_registered)
free_irq(I8042_AUX_IRQ, i8042_platform_device);
if (i8042_kbd_irq_registered)
free_irq(I8042_KBD_IRQ, i8042_platform_device);
i8042_aux_irq_registered = i8042_kbd_irq_registered = false;
}
static int i8042_setup_aux(void)
{
int (*aux_enable)(void);
int error;
int i;
if (i8042_check_aux())
return -ENODEV;
if (i8042_nomux || i8042_check_mux()) {
error = i8042_create_aux_port(-1);
if (error)
goto err_free_ports;
aux_enable = i8042_enable_aux_port;
} else {
for (i = 0; i < I8042_NUM_MUX_PORTS; i++) {
error = i8042_create_aux_port(i);
if (error)
goto err_free_ports;
}
aux_enable = i8042_enable_mux_ports;
}
error = request_irq(I8042_AUX_IRQ, i8042_interrupt, IRQF_SHARED,
"i8042", i8042_platform_device);
if (error)
goto err_free_ports;
error = aux_enable();
if (error)
goto err_free_irq;
i8042_aux_irq_registered = true;
return 0;
err_free_irq:
free_irq(I8042_AUX_IRQ, i8042_platform_device);
err_free_ports:
i8042_free_aux_ports();
return error;
}
static int i8042_setup_kbd(void)
{
int error;
error = i8042_create_kbd_port();
if (error)
return error;
error = request_irq(I8042_KBD_IRQ, i8042_interrupt, IRQF_SHARED,
"i8042", i8042_platform_device);
if (error)
goto err_free_port;
error = i8042_enable_kbd_port();
if (error)
goto err_free_irq;
i8042_kbd_irq_registered = true;
return 0;
err_free_irq:
free_irq(I8042_KBD_IRQ, i8042_platform_device);
err_free_port:
i8042_free_kbd_port();
return error;
}
static int i8042_kbd_bind_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct device *dev = data;
struct serio *serio = to_serio_port(dev);
struct i8042_port *port = serio->port_data;
if (serio != i8042_ports[I8042_KBD_PORT_NO].serio)
return 0;
switch (action) {
case BUS_NOTIFY_BOUND_DRIVER:
port->driver_bound = true;
break;
case BUS_NOTIFY_UNBIND_DRIVER:
port->driver_bound = false;
break;
}
return 0;
}
static int i8042_probe(struct platform_device *dev)
{
int error;
if (i8042_reset == I8042_RESET_ALWAYS) {
error = i8042_controller_selftest();
if (error)
return error;
}
error = i8042_controller_init();
if (error)
return error;
#ifdef CONFIG_X86
if (i8042_dritek)
i8042_dritek_enable();
#endif
if (!i8042_noaux) {
error = i8042_setup_aux();
if (error && error != -ENODEV && error != -EBUSY)
goto out_fail;
}
if (!i8042_nokbd) {
error = i8042_setup_kbd();
if (error)
goto out_fail;
}
/*
* Ok, everything is ready, let's register all serio ports
*/
i8042_register_ports();
return 0;
out_fail:
i8042_free_aux_ports(); /* in case KBD failed but AUX not */
i8042_free_irqs();
i8042_controller_reset(false);
return error;
}
static int i8042_remove(struct platform_device *dev)
{
i8042_unregister_ports();
i8042_free_irqs();
i8042_controller_reset(false);
return 0;
}
static struct platform_driver i8042_driver = {
.driver = {
.name = "i8042",
#ifdef CONFIG_PM
.pm = &i8042_pm_ops,
#endif
},
.probe = i8042_probe,
.remove = i8042_remove,
.shutdown = i8042_shutdown,
};
static struct notifier_block i8042_kbd_bind_notifier_block = {
.notifier_call = i8042_kbd_bind_notifier,
};
static int __init i8042_init(void)
{
int err;
dbg_init();
err = i8042_platform_init();
if (err)
return (err == -ENODEV) ? 0 : err;
err = i8042_controller_check();
if (err)
goto err_platform_exit;
/* Set this before creating the dev to allow i8042_command to work right away */
i8042_present = true;
err = platform_driver_register(&i8042_driver);
if (err)
goto err_platform_exit;
i8042_platform_device = platform_device_alloc("i8042", -1);
if (!i8042_platform_device) {
err = -ENOMEM;
goto err_unregister_driver;
}
err = platform_device_add(i8042_platform_device);
if (err)
goto err_free_device;
bus_register_notifier(&serio_bus, &i8042_kbd_bind_notifier_block);
panic_blink = i8042_panic_blink;
return 0;
err_free_device:
platform_device_put(i8042_platform_device);
err_unregister_driver:
platform_driver_unregister(&i8042_driver);
err_platform_exit:
i8042_platform_exit();
return err;
}
static void __exit i8042_exit(void)
{
if (!i8042_present)
return;
platform_device_unregister(i8042_platform_device);
platform_driver_unregister(&i8042_driver);
i8042_platform_exit();
bus_unregister_notifier(&serio_bus, &i8042_kbd_bind_notifier_block);
panic_blink = NULL;
}
module_init(i8042_init);
module_exit(i8042_exit);
|
linux-master
|
drivers/input/serio/i8042.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Altera University Program PS2 controller driver
*
* Copyright (C) 2008 Thomas Chou <[email protected]>
*
* Based on sa1111ps2.c, which is:
* Copyright (C) 2002 Russell King
*/
#include <linux/module.h>
#include <linux/input.h>
#include <linux/serio.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/of.h>
#define DRV_NAME "altera_ps2"
struct ps2if {
struct serio *io;
void __iomem *base;
};
/*
* Read all bytes waiting in the PS2 port. There should be
* at the most one, but we loop for safety.
*/
static irqreturn_t altera_ps2_rxint(int irq, void *dev_id)
{
struct ps2if *ps2if = dev_id;
unsigned int status;
irqreturn_t handled = IRQ_NONE;
while ((status = readl(ps2if->base)) & 0xffff0000) {
serio_interrupt(ps2if->io, status & 0xff, 0);
handled = IRQ_HANDLED;
}
return handled;
}
/*
* Write a byte to the PS2 port.
*/
static int altera_ps2_write(struct serio *io, unsigned char val)
{
struct ps2if *ps2if = io->port_data;
writel(val, ps2if->base);
return 0;
}
static int altera_ps2_open(struct serio *io)
{
struct ps2if *ps2if = io->port_data;
/* clear fifo */
while (readl(ps2if->base) & 0xffff0000)
/* empty */;
writel(1, ps2if->base + 4); /* enable rx irq */
return 0;
}
static void altera_ps2_close(struct serio *io)
{
struct ps2if *ps2if = io->port_data;
writel(0, ps2if->base + 4); /* disable rx irq */
}
/*
* Add one device to this driver.
*/
static int altera_ps2_probe(struct platform_device *pdev)
{
struct ps2if *ps2if;
struct serio *serio;
int error, irq;
ps2if = devm_kzalloc(&pdev->dev, sizeof(struct ps2if), GFP_KERNEL);
if (!ps2if)
return -ENOMEM;
ps2if->base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
if (IS_ERR(ps2if->base))
return PTR_ERR(ps2if->base);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -ENXIO;
error = devm_request_irq(&pdev->dev, irq, altera_ps2_rxint, 0,
pdev->name, ps2if);
if (error) {
dev_err(&pdev->dev, "could not request IRQ %d\n", irq);
return error;
}
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!serio)
return -ENOMEM;
serio->id.type = SERIO_8042;
serio->write = altera_ps2_write;
serio->open = altera_ps2_open;
serio->close = altera_ps2_close;
strscpy(serio->name, dev_name(&pdev->dev), sizeof(serio->name));
strscpy(serio->phys, dev_name(&pdev->dev), sizeof(serio->phys));
serio->port_data = ps2if;
serio->dev.parent = &pdev->dev;
ps2if->io = serio;
dev_info(&pdev->dev, "base %p, irq %d\n", ps2if->base, irq);
serio_register_port(ps2if->io);
platform_set_drvdata(pdev, ps2if);
return 0;
}
/*
* Remove one device from this driver.
*/
static int altera_ps2_remove(struct platform_device *pdev)
{
struct ps2if *ps2if = platform_get_drvdata(pdev);
serio_unregister_port(ps2if->io);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id altera_ps2_match[] = {
{ .compatible = "ALTR,ps2-1.0", },
{ .compatible = "altr,ps2-1.0", },
{},
};
MODULE_DEVICE_TABLE(of, altera_ps2_match);
#endif /* CONFIG_OF */
/*
* Our device driver structure
*/
static struct platform_driver altera_ps2_driver = {
.probe = altera_ps2_probe,
.remove = altera_ps2_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = of_match_ptr(altera_ps2_match),
},
};
module_platform_driver(altera_ps2_driver);
MODULE_DESCRIPTION("Altera University Program PS2 controller driver");
MODULE_AUTHOR("Thomas Chou <[email protected]>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRV_NAME);
|
linux-master
|
drivers/input/serio/altera_ps2.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* TQC PS/2 Multiplexer driver
*
* Copyright (C) 2010 Dmitry Eremin-Solenikov
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/serio.h>
MODULE_AUTHOR("Dmitry Eremin-Solenikov <[email protected]>");
MODULE_DESCRIPTION("TQC PS/2 Multiplexer driver");
MODULE_LICENSE("GPL");
#define PS2MULT_KB_SELECTOR 0xA0
#define PS2MULT_MS_SELECTOR 0xA1
#define PS2MULT_ESCAPE 0x7D
#define PS2MULT_BSYNC 0x7E
#define PS2MULT_SESSION_START 0x55
#define PS2MULT_SESSION_END 0x56
struct ps2mult_port {
struct serio *serio;
unsigned char sel;
bool registered;
};
#define PS2MULT_NUM_PORTS 2
#define PS2MULT_KBD_PORT 0
#define PS2MULT_MOUSE_PORT 1
struct ps2mult {
struct serio *mx_serio;
struct ps2mult_port ports[PS2MULT_NUM_PORTS];
spinlock_t lock;
struct ps2mult_port *in_port;
struct ps2mult_port *out_port;
bool escape;
};
/* First MUST come PS2MULT_NUM_PORTS selectors */
static const unsigned char ps2mult_controls[] = {
PS2MULT_KB_SELECTOR, PS2MULT_MS_SELECTOR,
PS2MULT_ESCAPE, PS2MULT_BSYNC,
PS2MULT_SESSION_START, PS2MULT_SESSION_END,
};
static const struct serio_device_id ps2mult_serio_ids[] = {
{
.type = SERIO_RS232,
.proto = SERIO_PS2MULT,
.id = SERIO_ANY,
.extra = SERIO_ANY,
},
{ 0 }
};
MODULE_DEVICE_TABLE(serio, ps2mult_serio_ids);
static void ps2mult_select_port(struct ps2mult *psm, struct ps2mult_port *port)
{
struct serio *mx_serio = psm->mx_serio;
serio_write(mx_serio, port->sel);
psm->out_port = port;
dev_dbg(&mx_serio->dev, "switched to sel %02x\n", port->sel);
}
static int ps2mult_serio_write(struct serio *serio, unsigned char data)
{
struct serio *mx_port = serio->parent;
struct ps2mult *psm = serio_get_drvdata(mx_port);
struct ps2mult_port *port = serio->port_data;
bool need_escape;
unsigned long flags;
spin_lock_irqsave(&psm->lock, flags);
if (psm->out_port != port)
ps2mult_select_port(psm, port);
need_escape = memchr(ps2mult_controls, data, sizeof(ps2mult_controls));
dev_dbg(&serio->dev,
"write: %s%02x\n", need_escape ? "ESC " : "", data);
if (need_escape)
serio_write(mx_port, PS2MULT_ESCAPE);
serio_write(mx_port, data);
spin_unlock_irqrestore(&psm->lock, flags);
return 0;
}
static int ps2mult_serio_start(struct serio *serio)
{
struct ps2mult *psm = serio_get_drvdata(serio->parent);
struct ps2mult_port *port = serio->port_data;
unsigned long flags;
spin_lock_irqsave(&psm->lock, flags);
port->registered = true;
spin_unlock_irqrestore(&psm->lock, flags);
return 0;
}
static void ps2mult_serio_stop(struct serio *serio)
{
struct ps2mult *psm = serio_get_drvdata(serio->parent);
struct ps2mult_port *port = serio->port_data;
unsigned long flags;
spin_lock_irqsave(&psm->lock, flags);
port->registered = false;
spin_unlock_irqrestore(&psm->lock, flags);
}
static int ps2mult_create_port(struct ps2mult *psm, int i)
{
struct serio *mx_serio = psm->mx_serio;
struct serio *serio;
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (!serio)
return -ENOMEM;
strscpy(serio->name, "TQC PS/2 Multiplexer", sizeof(serio->name));
snprintf(serio->phys, sizeof(serio->phys),
"%s/port%d", mx_serio->phys, i);
serio->id.type = SERIO_8042;
serio->write = ps2mult_serio_write;
serio->start = ps2mult_serio_start;
serio->stop = ps2mult_serio_stop;
serio->parent = psm->mx_serio;
serio->port_data = &psm->ports[i];
psm->ports[i].serio = serio;
return 0;
}
static void ps2mult_reset(struct ps2mult *psm)
{
unsigned long flags;
spin_lock_irqsave(&psm->lock, flags);
serio_write(psm->mx_serio, PS2MULT_SESSION_END);
serio_write(psm->mx_serio, PS2MULT_SESSION_START);
ps2mult_select_port(psm, &psm->ports[PS2MULT_KBD_PORT]);
spin_unlock_irqrestore(&psm->lock, flags);
}
static int ps2mult_connect(struct serio *serio, struct serio_driver *drv)
{
struct ps2mult *psm;
int i;
int error;
if (!serio->write)
return -EINVAL;
psm = kzalloc(sizeof(*psm), GFP_KERNEL);
if (!psm)
return -ENOMEM;
spin_lock_init(&psm->lock);
psm->mx_serio = serio;
for (i = 0; i < PS2MULT_NUM_PORTS; i++) {
psm->ports[i].sel = ps2mult_controls[i];
error = ps2mult_create_port(psm, i);
if (error)
goto err_out;
}
psm->in_port = psm->out_port = &psm->ports[PS2MULT_KBD_PORT];
serio_set_drvdata(serio, psm);
error = serio_open(serio, drv);
if (error)
goto err_out;
ps2mult_reset(psm);
for (i = 0; i < PS2MULT_NUM_PORTS; i++) {
struct serio *s = psm->ports[i].serio;
dev_info(&serio->dev, "%s port at %s\n", s->name, serio->phys);
serio_register_port(s);
}
return 0;
err_out:
while (--i >= 0)
kfree(psm->ports[i].serio);
kfree(psm);
return error;
}
static void ps2mult_disconnect(struct serio *serio)
{
struct ps2mult *psm = serio_get_drvdata(serio);
/* Note that serio core already take care of children ports */
serio_write(serio, PS2MULT_SESSION_END);
serio_close(serio);
kfree(psm);
serio_set_drvdata(serio, NULL);
}
static int ps2mult_reconnect(struct serio *serio)
{
struct ps2mult *psm = serio_get_drvdata(serio);
ps2mult_reset(psm);
return 0;
}
static irqreturn_t ps2mult_interrupt(struct serio *serio,
unsigned char data, unsigned int dfl)
{
struct ps2mult *psm = serio_get_drvdata(serio);
struct ps2mult_port *in_port;
unsigned long flags;
dev_dbg(&serio->dev, "Received %02x flags %02x\n", data, dfl);
spin_lock_irqsave(&psm->lock, flags);
if (psm->escape) {
psm->escape = false;
in_port = psm->in_port;
if (in_port->registered)
serio_interrupt(in_port->serio, data, dfl);
goto out;
}
switch (data) {
case PS2MULT_ESCAPE:
dev_dbg(&serio->dev, "ESCAPE\n");
psm->escape = true;
break;
case PS2MULT_BSYNC:
dev_dbg(&serio->dev, "BSYNC\n");
psm->in_port = psm->out_port;
break;
case PS2MULT_SESSION_START:
dev_dbg(&serio->dev, "SS\n");
break;
case PS2MULT_SESSION_END:
dev_dbg(&serio->dev, "SE\n");
break;
case PS2MULT_KB_SELECTOR:
dev_dbg(&serio->dev, "KB\n");
psm->in_port = &psm->ports[PS2MULT_KBD_PORT];
break;
case PS2MULT_MS_SELECTOR:
dev_dbg(&serio->dev, "MS\n");
psm->in_port = &psm->ports[PS2MULT_MOUSE_PORT];
break;
default:
in_port = psm->in_port;
if (in_port->registered)
serio_interrupt(in_port->serio, data, dfl);
break;
}
out:
spin_unlock_irqrestore(&psm->lock, flags);
return IRQ_HANDLED;
}
static struct serio_driver ps2mult_drv = {
.driver = {
.name = "ps2mult",
},
.description = "TQC PS/2 Multiplexer driver",
.id_table = ps2mult_serio_ids,
.interrupt = ps2mult_interrupt,
.connect = ps2mult_connect,
.disconnect = ps2mult_disconnect,
.reconnect = ps2mult_reconnect,
};
module_serio_driver(ps2mult_drv);
|
linux-master
|
drivers/input/serio/ps2mult.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Parallel port to Keyboard port adapter driver for Linux
*
* Copyright (c) 1999-2004 Vojtech Pavlik
*/
/*
* To connect an AT or XT keyboard to the parallel port, a fairly simple adapter
* can be made:
*
* Parallel port Keyboard port
*
* +5V --------------------- +5V (4)
*
* ______
* +5V -------|______|--.
* |
* ACK (10) ------------|
* |--- KBD CLOCK (5)
* STROBE (1) ---|<|----'
*
* ______
* +5V -------|______|--.
* |
* BUSY (11) -----------|
* |--- KBD DATA (1)
* AUTOFD (14) --|<|----'
*
* GND (18-25) ------------- GND (3)
*
* The diodes can be fairly any type, and the resistors should be somewhere
* around 5 kOhm, but the adapter will likely work without the resistors,
* too.
*
* The +5V source can be taken either from USB, from mouse or keyboard ports,
* or from a joystick port. Unfortunately, the parallel port of a PC doesn't
* have a +5V pin, and feeding the keyboard from signal pins is out of question
* with 300 mA power reqirement of a typical AT keyboard.
*/
#include <linux/module.h>
#include <linux/parport.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/serio.h>
MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
MODULE_DESCRIPTION("Parallel port to Keyboard port adapter driver");
MODULE_LICENSE("GPL");
static unsigned int parkbd_pp_no;
module_param_named(port, parkbd_pp_no, int, 0);
MODULE_PARM_DESC(port, "Parallel port the adapter is connected to (default is 0)");
static unsigned int parkbd_mode = SERIO_8042;
module_param_named(mode, parkbd_mode, uint, 0);
MODULE_PARM_DESC(mode, "Mode of operation: XT = 0/AT = 1 (default)");
#define PARKBD_CLOCK 0x01 /* Strobe & Ack */
#define PARKBD_DATA 0x02 /* AutoFd & Busy */
static int parkbd_buffer;
static int parkbd_counter;
static unsigned long parkbd_last;
static int parkbd_writing;
static unsigned long parkbd_start;
static struct pardevice *parkbd_dev;
static struct serio *parkbd_port;
static int parkbd_readlines(void)
{
return (parport_read_status(parkbd_dev->port) >> 6) ^ 2;
}
static void parkbd_writelines(int data)
{
parport_write_control(parkbd_dev->port, (~data & 3) | 0x10);
}
static int parkbd_write(struct serio *port, unsigned char c)
{
unsigned char p;
if (!parkbd_mode) return -1;
p = c ^ (c >> 4);
p = p ^ (p >> 2);
p = p ^ (p >> 1);
parkbd_counter = 0;
parkbd_writing = 1;
parkbd_buffer = c | (((int) (~p & 1)) << 8) | 0x600;
parkbd_writelines(2);
return 0;
}
static void parkbd_interrupt(void *dev_id)
{
if (parkbd_writing) {
if (parkbd_counter && ((parkbd_counter == 11) || time_after(jiffies, parkbd_last + HZ/100))) {
parkbd_counter = 0;
parkbd_buffer = 0;
parkbd_writing = 0;
parkbd_writelines(3);
return;
}
parkbd_writelines(((parkbd_buffer >> parkbd_counter++) & 1) | 2);
if (parkbd_counter == 11) {
parkbd_counter = 0;
parkbd_buffer = 0;
parkbd_writing = 0;
parkbd_writelines(3);
}
} else {
if ((parkbd_counter == parkbd_mode + 10) || time_after(jiffies, parkbd_last + HZ/100)) {
parkbd_counter = 0;
parkbd_buffer = 0;
}
parkbd_buffer |= (parkbd_readlines() >> 1) << parkbd_counter++;
if (parkbd_counter == parkbd_mode + 10)
serio_interrupt(parkbd_port, (parkbd_buffer >> (2 - parkbd_mode)) & 0xff, 0);
}
parkbd_last = jiffies;
}
static int parkbd_getport(struct parport *pp)
{
struct pardev_cb parkbd_parport_cb;
memset(&parkbd_parport_cb, 0, sizeof(parkbd_parport_cb));
parkbd_parport_cb.irq_func = parkbd_interrupt;
parkbd_parport_cb.flags = PARPORT_FLAG_EXCL;
parkbd_dev = parport_register_dev_model(pp, "parkbd",
&parkbd_parport_cb, 0);
if (!parkbd_dev)
return -ENODEV;
if (parport_claim(parkbd_dev)) {
parport_unregister_device(parkbd_dev);
return -EBUSY;
}
parkbd_start = jiffies;
return 0;
}
static struct serio *parkbd_allocate_serio(void)
{
struct serio *serio;
serio = kzalloc(sizeof(struct serio), GFP_KERNEL);
if (serio) {
serio->id.type = parkbd_mode;
serio->write = parkbd_write;
strscpy(serio->name, "PARKBD AT/XT keyboard adapter", sizeof(serio->name));
snprintf(serio->phys, sizeof(serio->phys), "%s/serio0", parkbd_dev->port->name);
}
return serio;
}
static void parkbd_attach(struct parport *pp)
{
if (pp->number != parkbd_pp_no) {
pr_debug("Not using parport%d.\n", pp->number);
return;
}
if (parkbd_getport(pp))
return;
parkbd_port = parkbd_allocate_serio();
if (!parkbd_port) {
parport_release(parkbd_dev);
parport_unregister_device(parkbd_dev);
return;
}
parkbd_writelines(3);
serio_register_port(parkbd_port);
printk(KERN_INFO "serio: PARKBD %s adapter on %s\n",
parkbd_mode ? "AT" : "XT", parkbd_dev->port->name);
return;
}
static void parkbd_detach(struct parport *port)
{
if (!parkbd_port || port->number != parkbd_pp_no)
return;
parport_release(parkbd_dev);
serio_unregister_port(parkbd_port);
parport_unregister_device(parkbd_dev);
parkbd_port = NULL;
}
static struct parport_driver parkbd_parport_driver = {
.name = "parkbd",
.match_port = parkbd_attach,
.detach = parkbd_detach,
.devmodel = true,
};
module_parport_driver(parkbd_parport_driver);
|
linux-master
|
drivers/input/serio/parkbd.c
|
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/usb/input.h>
#include <asm/unaligned.h>
/*
* Pressure-threshold modules param code from Alex Perry <[email protected]>
*/
MODULE_AUTHOR("Josh Myer <[email protected]>");
MODULE_DESCRIPTION("USB KB Gear JamStudio Tablet driver");
MODULE_LICENSE("GPL");
#define USB_VENDOR_ID_KBGEAR 0x084e
static int kb_pressure_click = 0x10;
module_param(kb_pressure_click, int, 0);
MODULE_PARM_DESC(kb_pressure_click, "pressure threshold for clicks");
struct kbtab {
unsigned char *data;
dma_addr_t data_dma;
struct input_dev *dev;
struct usb_interface *intf;
struct urb *irq;
char phys[32];
};
static void kbtab_irq(struct urb *urb)
{
struct kbtab *kbtab = urb->context;
unsigned char *data = kbtab->data;
struct input_dev *dev = kbtab->dev;
int pressure;
int retval;
switch (urb->status) {
case 0:
/* success */
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
/* this urb is terminated, clean up */
dev_dbg(&kbtab->intf->dev,
"%s - urb shutting down with status: %d\n",
__func__, urb->status);
return;
default:
dev_dbg(&kbtab->intf->dev,
"%s - nonzero urb status received: %d\n",
__func__, urb->status);
goto exit;
}
input_report_key(dev, BTN_TOOL_PEN, 1);
input_report_abs(dev, ABS_X, get_unaligned_le16(&data[1]));
input_report_abs(dev, ABS_Y, get_unaligned_le16(&data[3]));
/*input_report_key(dev, BTN_TOUCH , data[0] & 0x01);*/
input_report_key(dev, BTN_RIGHT, data[0] & 0x02);
pressure = data[5];
if (kb_pressure_click == -1)
input_report_abs(dev, ABS_PRESSURE, pressure);
else
input_report_key(dev, BTN_LEFT, pressure > kb_pressure_click ? 1 : 0);
input_sync(dev);
exit:
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval)
dev_err(&kbtab->intf->dev,
"%s - usb_submit_urb failed with result %d\n",
__func__, retval);
}
static const struct usb_device_id kbtab_ids[] = {
{ USB_DEVICE(USB_VENDOR_ID_KBGEAR, 0x1001), .driver_info = 0 },
{ }
};
MODULE_DEVICE_TABLE(usb, kbtab_ids);
static int kbtab_open(struct input_dev *dev)
{
struct kbtab *kbtab = input_get_drvdata(dev);
struct usb_device *udev = interface_to_usbdev(kbtab->intf);
kbtab->irq->dev = udev;
if (usb_submit_urb(kbtab->irq, GFP_KERNEL))
return -EIO;
return 0;
}
static void kbtab_close(struct input_dev *dev)
{
struct kbtab *kbtab = input_get_drvdata(dev);
usb_kill_urb(kbtab->irq);
}
static int kbtab_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct usb_device *dev = interface_to_usbdev(intf);
struct usb_endpoint_descriptor *endpoint;
struct kbtab *kbtab;
struct input_dev *input_dev;
int error = -ENOMEM;
if (intf->cur_altsetting->desc.bNumEndpoints < 1)
return -ENODEV;
endpoint = &intf->cur_altsetting->endpoint[0].desc;
if (!usb_endpoint_is_int_in(endpoint))
return -ENODEV;
kbtab = kzalloc(sizeof(struct kbtab), GFP_KERNEL);
input_dev = input_allocate_device();
if (!kbtab || !input_dev)
goto fail1;
kbtab->data = usb_alloc_coherent(dev, 8, GFP_KERNEL, &kbtab->data_dma);
if (!kbtab->data)
goto fail1;
kbtab->irq = usb_alloc_urb(0, GFP_KERNEL);
if (!kbtab->irq)
goto fail2;
kbtab->intf = intf;
kbtab->dev = input_dev;
usb_make_path(dev, kbtab->phys, sizeof(kbtab->phys));
strlcat(kbtab->phys, "/input0", sizeof(kbtab->phys));
input_dev->name = "KB Gear Tablet";
input_dev->phys = kbtab->phys;
usb_to_input_id(dev, &input_dev->id);
input_dev->dev.parent = &intf->dev;
input_set_drvdata(input_dev, kbtab);
input_dev->open = kbtab_open;
input_dev->close = kbtab_close;
input_dev->evbit[0] |= BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
input_dev->keybit[BIT_WORD(BTN_LEFT)] |=
BIT_MASK(BTN_LEFT) | BIT_MASK(BTN_RIGHT);
input_dev->keybit[BIT_WORD(BTN_DIGI)] |=
BIT_MASK(BTN_TOOL_PEN) | BIT_MASK(BTN_TOUCH);
input_set_abs_params(input_dev, ABS_X, 0, 0x2000, 4, 0);
input_set_abs_params(input_dev, ABS_Y, 0, 0x1750, 4, 0);
input_set_abs_params(input_dev, ABS_PRESSURE, 0, 0xff, 0, 0);
usb_fill_int_urb(kbtab->irq, dev,
usb_rcvintpipe(dev, endpoint->bEndpointAddress),
kbtab->data, 8,
kbtab_irq, kbtab, endpoint->bInterval);
kbtab->irq->transfer_dma = kbtab->data_dma;
kbtab->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
error = input_register_device(kbtab->dev);
if (error)
goto fail3;
usb_set_intfdata(intf, kbtab);
return 0;
fail3: usb_free_urb(kbtab->irq);
fail2: usb_free_coherent(dev, 8, kbtab->data, kbtab->data_dma);
fail1: input_free_device(input_dev);
kfree(kbtab);
return error;
}
static void kbtab_disconnect(struct usb_interface *intf)
{
struct kbtab *kbtab = usb_get_intfdata(intf);
struct usb_device *udev = interface_to_usbdev(intf);
usb_set_intfdata(intf, NULL);
input_unregister_device(kbtab->dev);
usb_free_urb(kbtab->irq);
usb_free_coherent(udev, 8, kbtab->data, kbtab->data_dma);
kfree(kbtab);
}
static struct usb_driver kbtab_driver = {
.name = "kbtab",
.probe = kbtab_probe,
.disconnect = kbtab_disconnect,
.id_table = kbtab_ids,
};
module_usb_driver(kbtab_driver);
|
linux-master
|
drivers/input/tablet/kbtab.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Pegasus Mobile Notetaker Pen input tablet driver
*
* Copyright (c) 2016 Martin Kepplinger <[email protected]>
*/
/*
* request packet (control endpoint):
* |-------------------------------------|
* | Report ID | Nr of bytes | command |
* | (1 byte) | (1 byte) | (n bytes) |
* |-------------------------------------|
* | 0x02 | n | |
* |-------------------------------------|
*
* data packet after set xy mode command, 0x80 0xb5 0x02 0x01
* and pen is in range:
*
* byte byte name value (bits)
* --------------------------------------------
* 0 status 0 1 0 0 0 0 X X
* 1 color 0 0 0 0 H 0 S T
* 2 X low
* 3 X high
* 4 Y low
* 5 Y high
*
* X X battery state:
* no state reported 0x00
* battery low 0x01
* battery good 0x02
*
* H Hovering
* S Switch 1 (pen button)
* T Tip
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/input.h>
#include <linux/usb/input.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/mutex.h>
/* USB HID defines */
#define USB_REQ_GET_REPORT 0x01
#define USB_REQ_SET_REPORT 0x09
#define USB_VENDOR_ID_PEGASUSTECH 0x0e20
#define USB_DEVICE_ID_PEGASUS_NOTETAKER_EN100 0x0101
/* device specific defines */
#define NOTETAKER_REPORT_ID 0x02
#define NOTETAKER_SET_CMD 0x80
#define NOTETAKER_SET_MODE 0xb5
#define NOTETAKER_LED_MOUSE 0x02
#define PEN_MODE_XY 0x01
#define SPECIAL_COMMAND 0x80
#define BUTTON_PRESSED 0xb5
#define COMMAND_VERSION 0xa9
/* in xy data packet */
#define BATTERY_NO_REPORT 0x40
#define BATTERY_LOW 0x41
#define BATTERY_GOOD 0x42
#define PEN_BUTTON_PRESSED BIT(1)
#define PEN_TIP BIT(0)
struct pegasus {
unsigned char *data;
u8 data_len;
dma_addr_t data_dma;
struct input_dev *dev;
struct usb_device *usbdev;
struct usb_interface *intf;
struct urb *irq;
/* serialize access to open/suspend */
struct mutex pm_mutex;
bool is_open;
char name[128];
char phys[64];
struct work_struct init;
};
static int pegasus_control_msg(struct pegasus *pegasus, u8 *data, int len)
{
const int sizeof_buf = len + 2;
int result;
int error;
u8 *cmd_buf;
cmd_buf = kmalloc(sizeof_buf, GFP_KERNEL);
if (!cmd_buf)
return -ENOMEM;
cmd_buf[0] = NOTETAKER_REPORT_ID;
cmd_buf[1] = len;
memcpy(cmd_buf + 2, data, len);
result = usb_control_msg(pegasus->usbdev,
usb_sndctrlpipe(pegasus->usbdev, 0),
USB_REQ_SET_REPORT,
USB_TYPE_VENDOR | USB_DIR_OUT,
0, 0, cmd_buf, sizeof_buf,
USB_CTRL_SET_TIMEOUT);
kfree(cmd_buf);
if (unlikely(result != sizeof_buf)) {
error = result < 0 ? result : -EIO;
dev_err(&pegasus->usbdev->dev, "control msg error: %d\n",
error);
return error;
}
return 0;
}
static int pegasus_set_mode(struct pegasus *pegasus, u8 mode, u8 led)
{
u8 cmd[] = { NOTETAKER_SET_CMD, NOTETAKER_SET_MODE, led, mode };
return pegasus_control_msg(pegasus, cmd, sizeof(cmd));
}
static void pegasus_parse_packet(struct pegasus *pegasus)
{
unsigned char *data = pegasus->data;
struct input_dev *dev = pegasus->dev;
u16 x, y;
switch (data[0]) {
case SPECIAL_COMMAND:
/* device button pressed */
if (data[1] == BUTTON_PRESSED)
schedule_work(&pegasus->init);
break;
/* xy data */
case BATTERY_LOW:
dev_warn_once(&dev->dev, "Pen battery low\n");
fallthrough;
case BATTERY_NO_REPORT:
case BATTERY_GOOD:
x = le16_to_cpup((__le16 *)&data[2]);
y = le16_to_cpup((__le16 *)&data[4]);
/* pen-up event */
if (x == 0 && y == 0)
break;
input_report_key(dev, BTN_TOUCH, data[1] & PEN_TIP);
input_report_key(dev, BTN_RIGHT, data[1] & PEN_BUTTON_PRESSED);
input_report_key(dev, BTN_TOOL_PEN, 1);
input_report_abs(dev, ABS_X, (s16)x);
input_report_abs(dev, ABS_Y, y);
input_sync(dev);
break;
default:
dev_warn_once(&pegasus->usbdev->dev,
"unknown answer from device\n");
}
}
static void pegasus_irq(struct urb *urb)
{
struct pegasus *pegasus = urb->context;
struct usb_device *dev = pegasus->usbdev;
int retval;
switch (urb->status) {
case 0:
pegasus_parse_packet(pegasus);
usb_mark_last_busy(pegasus->usbdev);
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
dev_err(&dev->dev, "%s - urb shutting down with status: %d",
__func__, urb->status);
return;
default:
dev_err(&dev->dev, "%s - nonzero urb status received: %d",
__func__, urb->status);
break;
}
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval)
dev_err(&dev->dev, "%s - usb_submit_urb failed with result %d",
__func__, retval);
}
static void pegasus_init(struct work_struct *work)
{
struct pegasus *pegasus = container_of(work, struct pegasus, init);
int error;
error = pegasus_set_mode(pegasus, PEN_MODE_XY, NOTETAKER_LED_MOUSE);
if (error)
dev_err(&pegasus->usbdev->dev, "pegasus_set_mode error: %d\n",
error);
}
static int pegasus_open(struct input_dev *dev)
{
struct pegasus *pegasus = input_get_drvdata(dev);
int error;
error = usb_autopm_get_interface(pegasus->intf);
if (error)
return error;
mutex_lock(&pegasus->pm_mutex);
pegasus->irq->dev = pegasus->usbdev;
if (usb_submit_urb(pegasus->irq, GFP_KERNEL)) {
error = -EIO;
goto err_autopm_put;
}
error = pegasus_set_mode(pegasus, PEN_MODE_XY, NOTETAKER_LED_MOUSE);
if (error)
goto err_kill_urb;
pegasus->is_open = true;
mutex_unlock(&pegasus->pm_mutex);
return 0;
err_kill_urb:
usb_kill_urb(pegasus->irq);
cancel_work_sync(&pegasus->init);
err_autopm_put:
mutex_unlock(&pegasus->pm_mutex);
usb_autopm_put_interface(pegasus->intf);
return error;
}
static void pegasus_close(struct input_dev *dev)
{
struct pegasus *pegasus = input_get_drvdata(dev);
mutex_lock(&pegasus->pm_mutex);
usb_kill_urb(pegasus->irq);
cancel_work_sync(&pegasus->init);
pegasus->is_open = false;
mutex_unlock(&pegasus->pm_mutex);
usb_autopm_put_interface(pegasus->intf);
}
static int pegasus_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *dev = interface_to_usbdev(intf);
struct usb_endpoint_descriptor *endpoint;
struct pegasus *pegasus;
struct input_dev *input_dev;
int error;
int pipe;
/* We control interface 0 */
if (intf->cur_altsetting->desc.bInterfaceNumber >= 1)
return -ENODEV;
/* Sanity check that the device has an endpoint */
if (intf->cur_altsetting->desc.bNumEndpoints < 1) {
dev_err(&intf->dev, "Invalid number of endpoints\n");
return -EINVAL;
}
endpoint = &intf->cur_altsetting->endpoint[0].desc;
pegasus = kzalloc(sizeof(*pegasus), GFP_KERNEL);
input_dev = input_allocate_device();
if (!pegasus || !input_dev) {
error = -ENOMEM;
goto err_free_mem;
}
mutex_init(&pegasus->pm_mutex);
pegasus->usbdev = dev;
pegasus->dev = input_dev;
pegasus->intf = intf;
pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
/* Sanity check that pipe's type matches endpoint's type */
if (usb_pipe_type_check(dev, pipe)) {
error = -EINVAL;
goto err_free_mem;
}
pegasus->data_len = usb_maxpacket(dev, pipe);
pegasus->data = usb_alloc_coherent(dev, pegasus->data_len, GFP_KERNEL,
&pegasus->data_dma);
if (!pegasus->data) {
error = -ENOMEM;
goto err_free_mem;
}
pegasus->irq = usb_alloc_urb(0, GFP_KERNEL);
if (!pegasus->irq) {
error = -ENOMEM;
goto err_free_dma;
}
usb_fill_int_urb(pegasus->irq, dev, pipe,
pegasus->data, pegasus->data_len,
pegasus_irq, pegasus, endpoint->bInterval);
pegasus->irq->transfer_dma = pegasus->data_dma;
pegasus->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
if (dev->manufacturer)
strscpy(pegasus->name, dev->manufacturer,
sizeof(pegasus->name));
if (dev->product) {
if (dev->manufacturer)
strlcat(pegasus->name, " ", sizeof(pegasus->name));
strlcat(pegasus->name, dev->product, sizeof(pegasus->name));
}
if (!strlen(pegasus->name))
snprintf(pegasus->name, sizeof(pegasus->name),
"USB Pegasus Device %04x:%04x",
le16_to_cpu(dev->descriptor.idVendor),
le16_to_cpu(dev->descriptor.idProduct));
usb_make_path(dev, pegasus->phys, sizeof(pegasus->phys));
strlcat(pegasus->phys, "/input0", sizeof(pegasus->phys));
INIT_WORK(&pegasus->init, pegasus_init);
usb_set_intfdata(intf, pegasus);
input_dev->name = pegasus->name;
input_dev->phys = pegasus->phys;
usb_to_input_id(dev, &input_dev->id);
input_dev->dev.parent = &intf->dev;
input_set_drvdata(input_dev, pegasus);
input_dev->open = pegasus_open;
input_dev->close = pegasus_close;
__set_bit(EV_ABS, input_dev->evbit);
__set_bit(EV_KEY, input_dev->evbit);
__set_bit(ABS_X, input_dev->absbit);
__set_bit(ABS_Y, input_dev->absbit);
__set_bit(BTN_TOUCH, input_dev->keybit);
__set_bit(BTN_RIGHT, input_dev->keybit);
__set_bit(BTN_TOOL_PEN, input_dev->keybit);
__set_bit(INPUT_PROP_DIRECT, input_dev->propbit);
__set_bit(INPUT_PROP_POINTER, input_dev->propbit);
input_set_abs_params(input_dev, ABS_X, -1500, 1500, 8, 0);
input_set_abs_params(input_dev, ABS_Y, 1600, 3000, 8, 0);
error = input_register_device(pegasus->dev);
if (error)
goto err_free_urb;
return 0;
err_free_urb:
usb_free_urb(pegasus->irq);
err_free_dma:
usb_free_coherent(dev, pegasus->data_len,
pegasus->data, pegasus->data_dma);
err_free_mem:
input_free_device(input_dev);
kfree(pegasus);
usb_set_intfdata(intf, NULL);
return error;
}
static void pegasus_disconnect(struct usb_interface *intf)
{
struct pegasus *pegasus = usb_get_intfdata(intf);
input_unregister_device(pegasus->dev);
usb_free_urb(pegasus->irq);
usb_free_coherent(interface_to_usbdev(intf),
pegasus->data_len, pegasus->data,
pegasus->data_dma);
kfree(pegasus);
usb_set_intfdata(intf, NULL);
}
static int pegasus_suspend(struct usb_interface *intf, pm_message_t message)
{
struct pegasus *pegasus = usb_get_intfdata(intf);
mutex_lock(&pegasus->pm_mutex);
usb_kill_urb(pegasus->irq);
cancel_work_sync(&pegasus->init);
mutex_unlock(&pegasus->pm_mutex);
return 0;
}
static int pegasus_resume(struct usb_interface *intf)
{
struct pegasus *pegasus = usb_get_intfdata(intf);
int retval = 0;
mutex_lock(&pegasus->pm_mutex);
if (pegasus->is_open && usb_submit_urb(pegasus->irq, GFP_NOIO) < 0)
retval = -EIO;
mutex_unlock(&pegasus->pm_mutex);
return retval;
}
static int pegasus_reset_resume(struct usb_interface *intf)
{
struct pegasus *pegasus = usb_get_intfdata(intf);
int retval = 0;
mutex_lock(&pegasus->pm_mutex);
if (pegasus->is_open) {
retval = pegasus_set_mode(pegasus, PEN_MODE_XY,
NOTETAKER_LED_MOUSE);
if (!retval && usb_submit_urb(pegasus->irq, GFP_NOIO) < 0)
retval = -EIO;
}
mutex_unlock(&pegasus->pm_mutex);
return retval;
}
static const struct usb_device_id pegasus_ids[] = {
{ USB_DEVICE(USB_VENDOR_ID_PEGASUSTECH,
USB_DEVICE_ID_PEGASUS_NOTETAKER_EN100) },
{ }
};
MODULE_DEVICE_TABLE(usb, pegasus_ids);
static struct usb_driver pegasus_driver = {
.name = "pegasus_notetaker",
.probe = pegasus_probe,
.disconnect = pegasus_disconnect,
.suspend = pegasus_suspend,
.resume = pegasus_resume,
.reset_resume = pegasus_reset_resume,
.id_table = pegasus_ids,
.supports_autosuspend = 1,
};
module_usb_driver(pegasus_driver);
MODULE_AUTHOR("Martin Kepplinger <[email protected]>");
MODULE_DESCRIPTION("Pegasus Mobile Notetaker Pen tablet driver");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/tablet/pegasus_notetaker.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Wacom protocol 4 serial tablet driver
*
* Copyright 2014 Hans de Goede <[email protected]>
* Copyright 2011-2012 Julian Squires <[email protected]>
*
* Many thanks to Bill Seremetis, without whom PenPartner support
* would not have been possible. Thanks to Patrick Mahoney.
*
* This driver was developed with reference to much code written by others,
* particularly:
* - elo, gunze drivers by Vojtech Pavlik <[email protected]>;
* - wacom_w8001 driver by Jaya Kumar <[email protected]>;
* - the USB wacom input driver, credited to many people
* (see drivers/input/tablet/wacom.h);
* - new and old versions of linuxwacom / xf86-input-wacom credited to
* Frederic Lepied, France. <[email protected]> and
* Ping Cheng, Wacom. <[email protected]>;
* - and xf86wacom.c (a presumably ancient version of the linuxwacom code),
* by Frederic Lepied and Raph Levien <[email protected]>.
*
* To do:
* - support pad buttons; (requires access to a model with pad buttons)
* - support (protocol 4-style) tilt (requires access to a > 1.4 rom model)
*/
/*
* Wacom serial protocol 4 documentation taken from linuxwacom-0.9.9 code,
* protocol 4 uses 7 or 9 byte of data in the following format:
*
* Byte 1
* bit 7 Sync bit always 1
* bit 6 Pointing device detected
* bit 5 Cursor = 0 / Stylus = 1
* bit 4 Reserved
* bit 3 1 if a button on the pointing device has been pressed
* bit 2 P0 (optional)
* bit 1 X15
* bit 0 X14
*
* Byte 2
* bit 7 Always 0
* bits 6-0 = X13 - X7
*
* Byte 3
* bit 7 Always 0
* bits 6-0 = X6 - X0
*
* Byte 4
* bit 7 Always 0
* bit 6 B3
* bit 5 B2
* bit 4 B1
* bit 3 B0
* bit 2 P1 (optional)
* bit 1 Y15
* bit 0 Y14
*
* Byte 5
* bit 7 Always 0
* bits 6-0 = Y13 - Y7
*
* Byte 6
* bit 7 Always 0
* bits 6-0 = Y6 - Y0
*
* Byte 7
* bit 7 Always 0
* bit 6 Sign of pressure data; or wheel-rel for cursor tool
* bit 5 P7; or REL1 for cursor tool
* bit 4 P6; or REL0 for cursor tool
* bit 3 P5
* bit 2 P4
* bit 1 P3
* bit 0 P2
*
* byte 8 and 9 are optional and present only
* in tilt mode.
*
* Byte 8
* bit 7 Always 0
* bit 6 Sign of tilt X
* bit 5 Xt6
* bit 4 Xt5
* bit 3 Xt4
* bit 2 Xt3
* bit 1 Xt2
* bit 0 Xt1
*
* Byte 9
* bit 7 Always 0
* bit 6 Sign of tilt Y
* bit 5 Yt6
* bit 4 Yt5
* bit 3 Yt4
* bit 2 Yt3
* bit 1 Yt2
* bit 0 Yt1
*/
#include <linux/completion.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/serio.h>
#include <linux/slab.h>
#include <linux/string.h>
MODULE_AUTHOR("Julian Squires <[email protected]>, Hans de Goede <[email protected]>");
MODULE_DESCRIPTION("Wacom protocol 4 serial tablet driver");
MODULE_LICENSE("GPL");
#define REQUEST_MODEL_AND_ROM_VERSION "~#"
#define REQUEST_MAX_COORDINATES "~C\r"
#define REQUEST_CONFIGURATION_STRING "~R\r"
#define REQUEST_RESET_TO_PROTOCOL_IV "\r#"
/*
* Note: sending "\r$\r" causes at least the Digitizer II to send
* packets in ASCII instead of binary. "\r#" seems to undo that.
*/
#define COMMAND_START_SENDING_PACKETS "ST\r"
#define COMMAND_STOP_SENDING_PACKETS "SP\r"
#define COMMAND_MULTI_MODE_INPUT "MU1\r"
#define COMMAND_ORIGIN_IN_UPPER_LEFT "OC1\r"
#define COMMAND_ENABLE_ALL_MACRO_BUTTONS "~M0\r"
#define COMMAND_DISABLE_GROUP_1_MACRO_BUTTONS "~M1\r"
#define COMMAND_TRANSMIT_AT_MAX_RATE "IT0\r"
#define COMMAND_DISABLE_INCREMENTAL_MODE "IN0\r"
#define COMMAND_ENABLE_CONTINUOUS_MODE "SR\r"
#define COMMAND_ENABLE_PRESSURE_MODE "PH1\r"
#define COMMAND_Z_FILTER "ZF1\r"
/* Note that this is a protocol 4 packet without tilt information. */
#define PACKET_LENGTH 7
#define DATA_SIZE 32
/* flags */
#define F_COVERS_SCREEN 0x01
#define F_HAS_STYLUS2 0x02
#define F_HAS_SCROLLWHEEL 0x04
/* device IDs */
#define STYLUS_DEVICE_ID 0x02
#define CURSOR_DEVICE_ID 0x06
#define ERASER_DEVICE_ID 0x0A
enum { STYLUS = 1, ERASER, CURSOR };
static const struct {
int device_id;
int input_id;
} tools[] = {
{ 0, 0 },
{ STYLUS_DEVICE_ID, BTN_TOOL_PEN },
{ ERASER_DEVICE_ID, BTN_TOOL_RUBBER },
{ CURSOR_DEVICE_ID, BTN_TOOL_MOUSE },
};
struct wacom {
struct input_dev *dev;
struct completion cmd_done;
int result;
u8 expect;
u8 eraser_mask;
unsigned int extra_z_bits;
unsigned int flags;
unsigned int res_x, res_y;
unsigned int max_x, max_y;
unsigned int tool;
unsigned int idx;
u8 data[DATA_SIZE];
char phys[32];
};
enum {
MODEL_CINTIQ = 0x504C, /* PL */
MODEL_CINTIQ2 = 0x4454, /* DT */
MODEL_DIGITIZER_II = 0x5544, /* UD */
MODEL_GRAPHIRE = 0x4554, /* ET */
MODEL_PENPARTNER = 0x4354, /* CT */
MODEL_ARTPAD_II = 0x4B54, /* KT */
};
static void wacom_handle_model_response(struct wacom *wacom)
{
int major_v, minor_v, r = 0;
char *p;
p = strrchr(wacom->data, 'V');
if (p)
r = sscanf(p + 1, "%u.%u", &major_v, &minor_v);
if (r != 2)
major_v = minor_v = 0;
switch (wacom->data[2] << 8 | wacom->data[3]) {
case MODEL_CINTIQ: /* UNTESTED */
case MODEL_CINTIQ2:
if ((wacom->data[2] << 8 | wacom->data[3]) == MODEL_CINTIQ) {
wacom->dev->name = "Wacom Cintiq";
wacom->dev->id.version = MODEL_CINTIQ;
} else {
wacom->dev->name = "Wacom Cintiq II";
wacom->dev->id.version = MODEL_CINTIQ2;
}
wacom->res_x = 508;
wacom->res_y = 508;
switch (wacom->data[5] << 8 | wacom->data[6]) {
case 0x3731: /* PL-710 */
wacom->res_x = 2540;
wacom->res_y = 2540;
fallthrough;
case 0x3535: /* PL-550 */
case 0x3830: /* PL-800 */
wacom->extra_z_bits = 2;
}
wacom->flags = F_COVERS_SCREEN;
break;
case MODEL_PENPARTNER:
wacom->dev->name = "Wacom Penpartner";
wacom->dev->id.version = MODEL_PENPARTNER;
wacom->res_x = 1000;
wacom->res_y = 1000;
break;
case MODEL_GRAPHIRE:
wacom->dev->name = "Wacom Graphire";
wacom->dev->id.version = MODEL_GRAPHIRE;
wacom->res_x = 1016;
wacom->res_y = 1016;
wacom->max_x = 5103;
wacom->max_y = 3711;
wacom->extra_z_bits = 2;
wacom->eraser_mask = 0x08;
wacom->flags = F_HAS_STYLUS2 | F_HAS_SCROLLWHEEL;
break;
case MODEL_ARTPAD_II:
case MODEL_DIGITIZER_II:
wacom->dev->name = "Wacom Digitizer II";
wacom->dev->id.version = MODEL_DIGITIZER_II;
if (major_v == 1 && minor_v <= 2)
wacom->extra_z_bits = 0; /* UNTESTED */
break;
default:
dev_err(&wacom->dev->dev, "Unsupported Wacom model %s\n",
wacom->data);
wacom->result = -ENODEV;
return;
}
dev_info(&wacom->dev->dev, "%s tablet, version %u.%u\n",
wacom->dev->name, major_v, minor_v);
}
static void wacom_handle_configuration_response(struct wacom *wacom)
{
int r, skip;
dev_dbg(&wacom->dev->dev, "Configuration string: %s\n", wacom->data);
r = sscanf(wacom->data, "~R%x,%u,%u,%u,%u", &skip, &skip, &skip,
&wacom->res_x, &wacom->res_y);
if (r != 5)
dev_warn(&wacom->dev->dev, "could not get resolution\n");
}
static void wacom_handle_coordinates_response(struct wacom *wacom)
{
int r;
dev_dbg(&wacom->dev->dev, "Coordinates string: %s\n", wacom->data);
r = sscanf(wacom->data, "~C%u,%u", &wacom->max_x, &wacom->max_y);
if (r != 2)
dev_warn(&wacom->dev->dev, "could not get max coordinates\n");
}
static void wacom_handle_response(struct wacom *wacom)
{
if (wacom->data[0] != '~' || wacom->data[1] != wacom->expect) {
dev_err(&wacom->dev->dev,
"Wacom got an unexpected response: %s\n", wacom->data);
wacom->result = -EIO;
} else {
wacom->result = 0;
switch (wacom->data[1]) {
case '#':
wacom_handle_model_response(wacom);
break;
case 'R':
wacom_handle_configuration_response(wacom);
break;
case 'C':
wacom_handle_coordinates_response(wacom);
break;
}
}
complete(&wacom->cmd_done);
}
static void wacom_handle_packet(struct wacom *wacom)
{
u8 in_proximity_p, stylus_p, button;
unsigned int tool;
int x, y, z;
in_proximity_p = wacom->data[0] & 0x40;
stylus_p = wacom->data[0] & 0x20;
button = (wacom->data[3] & 0x78) >> 3;
x = (wacom->data[0] & 3) << 14 | wacom->data[1]<<7 | wacom->data[2];
y = (wacom->data[3] & 3) << 14 | wacom->data[4]<<7 | wacom->data[5];
if (in_proximity_p && stylus_p) {
z = wacom->data[6] & 0x7f;
if (wacom->extra_z_bits >= 1)
z = z << 1 | (wacom->data[3] & 0x4) >> 2;
if (wacom->extra_z_bits > 1)
z = z << 1 | (wacom->data[0] & 0x4) >> 2;
z = z ^ (0x40 << wacom->extra_z_bits);
} else {
z = -1;
}
if (stylus_p)
tool = (button & wacom->eraser_mask) ? ERASER : STYLUS;
else
tool = CURSOR;
if (tool != wacom->tool && wacom->tool != 0) {
input_report_key(wacom->dev, tools[wacom->tool].input_id, 0);
input_sync(wacom->dev);
}
wacom->tool = tool;
input_report_key(wacom->dev, tools[tool].input_id, in_proximity_p);
input_report_abs(wacom->dev, ABS_MISC,
in_proximity_p ? tools[tool].device_id : 0);
input_report_abs(wacom->dev, ABS_X, x);
input_report_abs(wacom->dev, ABS_Y, y);
input_report_abs(wacom->dev, ABS_PRESSURE, z);
if (stylus_p) {
input_report_key(wacom->dev, BTN_TOUCH, button & 1);
input_report_key(wacom->dev, BTN_STYLUS, button & 2);
input_report_key(wacom->dev, BTN_STYLUS2, button & 4);
} else {
input_report_key(wacom->dev, BTN_LEFT, button & 1);
input_report_key(wacom->dev, BTN_RIGHT, button & 2);
input_report_key(wacom->dev, BTN_MIDDLE, button & 4);
/* handle relative wheel for non-stylus device */
z = (wacom->data[6] & 0x30) >> 4;
if (wacom->data[6] & 0x40)
z = -z;
input_report_rel(wacom->dev, REL_WHEEL, z);
}
input_sync(wacom->dev);
}
static void wacom_clear_data_buf(struct wacom *wacom)
{
memset(wacom->data, 0, DATA_SIZE);
wacom->idx = 0;
}
static irqreturn_t wacom_interrupt(struct serio *serio, unsigned char data,
unsigned int flags)
{
struct wacom *wacom = serio_get_drvdata(serio);
if (data & 0x80)
wacom->idx = 0;
/*
* We're either expecting a carriage return-terminated ASCII
* response string, or a seven-byte packet with the MSB set on
* the first byte.
*
* Note however that some tablets (the PenPartner, for
* example) don't send a carriage return at the end of a
* command. We handle these by waiting for timeout.
*/
if (data == '\r' && !(wacom->data[0] & 0x80)) {
wacom_handle_response(wacom);
wacom_clear_data_buf(wacom);
return IRQ_HANDLED;
}
/* Leave place for 0 termination */
if (wacom->idx > (DATA_SIZE - 2)) {
dev_dbg(&wacom->dev->dev,
"throwing away %d bytes of garbage\n", wacom->idx);
wacom_clear_data_buf(wacom);
}
wacom->data[wacom->idx++] = data;
if (wacom->idx == PACKET_LENGTH && (wacom->data[0] & 0x80)) {
wacom_handle_packet(wacom);
wacom_clear_data_buf(wacom);
}
return IRQ_HANDLED;
}
static void wacom_disconnect(struct serio *serio)
{
struct wacom *wacom = serio_get_drvdata(serio);
serio_close(serio);
serio_set_drvdata(serio, NULL);
input_unregister_device(wacom->dev);
kfree(wacom);
}
static int wacom_send(struct serio *serio, const u8 *command)
{
int err = 0;
for (; !err && *command; command++)
err = serio_write(serio, *command);
return err;
}
static int wacom_send_setup_string(struct wacom *wacom, struct serio *serio)
{
const u8 *cmd;
switch (wacom->dev->id.version) {
case MODEL_CINTIQ: /* UNTESTED */
cmd = COMMAND_ORIGIN_IN_UPPER_LEFT
COMMAND_TRANSMIT_AT_MAX_RATE
COMMAND_ENABLE_CONTINUOUS_MODE
COMMAND_START_SENDING_PACKETS;
break;
case MODEL_PENPARTNER:
cmd = COMMAND_ENABLE_PRESSURE_MODE
COMMAND_START_SENDING_PACKETS;
break;
default:
cmd = COMMAND_MULTI_MODE_INPUT
COMMAND_ORIGIN_IN_UPPER_LEFT
COMMAND_ENABLE_ALL_MACRO_BUTTONS
COMMAND_DISABLE_GROUP_1_MACRO_BUTTONS
COMMAND_TRANSMIT_AT_MAX_RATE
COMMAND_DISABLE_INCREMENTAL_MODE
COMMAND_ENABLE_CONTINUOUS_MODE
COMMAND_Z_FILTER
COMMAND_START_SENDING_PACKETS;
break;
}
return wacom_send(serio, cmd);
}
static int wacom_send_and_wait(struct wacom *wacom, struct serio *serio,
const u8 *cmd, const char *desc)
{
int err;
unsigned long u;
wacom->expect = cmd[1];
init_completion(&wacom->cmd_done);
err = wacom_send(serio, cmd);
if (err)
return err;
u = wait_for_completion_timeout(&wacom->cmd_done, HZ);
if (u == 0) {
/* Timeout, process what we've received. */
wacom_handle_response(wacom);
}
wacom->expect = 0;
return wacom->result;
}
static int wacom_setup(struct wacom *wacom, struct serio *serio)
{
int err;
/* Note that setting the link speed is the job of inputattach.
* We assume that reset negotiation has already happened,
* here. */
err = wacom_send_and_wait(wacom, serio, REQUEST_MODEL_AND_ROM_VERSION,
"model and version");
if (err)
return err;
if (!(wacom->res_x && wacom->res_y)) {
err = wacom_send_and_wait(wacom, serio,
REQUEST_CONFIGURATION_STRING,
"configuration string");
if (err)
return err;
}
if (!(wacom->max_x && wacom->max_y)) {
err = wacom_send_and_wait(wacom, serio,
REQUEST_MAX_COORDINATES,
"coordinates string");
if (err)
return err;
}
return wacom_send_setup_string(wacom, serio);
}
static int wacom_connect(struct serio *serio, struct serio_driver *drv)
{
struct wacom *wacom;
struct input_dev *input_dev;
int err = -ENOMEM;
wacom = kzalloc(sizeof(struct wacom), GFP_KERNEL);
input_dev = input_allocate_device();
if (!wacom || !input_dev)
goto free_device;
wacom->dev = input_dev;
wacom->extra_z_bits = 1;
wacom->eraser_mask = 0x04;
wacom->tool = wacom->idx = 0;
snprintf(wacom->phys, sizeof(wacom->phys), "%s/input0", serio->phys);
input_dev->phys = wacom->phys;
input_dev->id.bustype = BUS_RS232;
input_dev->id.vendor = SERIO_WACOM_IV;
input_dev->id.product = serio->id.extra;
input_dev->dev.parent = &serio->dev;
input_dev->evbit[0] =
BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) | BIT_MASK(EV_REL);
set_bit(ABS_MISC, input_dev->absbit);
set_bit(BTN_TOOL_PEN, input_dev->keybit);
set_bit(BTN_TOOL_RUBBER, input_dev->keybit);
set_bit(BTN_TOOL_MOUSE, input_dev->keybit);
set_bit(BTN_TOUCH, input_dev->keybit);
set_bit(BTN_STYLUS, input_dev->keybit);
set_bit(BTN_LEFT, input_dev->keybit);
set_bit(BTN_RIGHT, input_dev->keybit);
set_bit(BTN_MIDDLE, input_dev->keybit);
serio_set_drvdata(serio, wacom);
err = serio_open(serio, drv);
if (err)
goto free_device;
err = wacom_setup(wacom, serio);
if (err)
goto close_serio;
set_bit(INPUT_PROP_DIRECT, input_dev->propbit);
if (!(wacom->flags & F_COVERS_SCREEN))
__set_bit(INPUT_PROP_POINTER, input_dev->propbit);
if (wacom->flags & F_HAS_STYLUS2)
__set_bit(BTN_STYLUS2, input_dev->keybit);
if (wacom->flags & F_HAS_SCROLLWHEEL)
__set_bit(REL_WHEEL, input_dev->relbit);
input_abs_set_res(wacom->dev, ABS_X, wacom->res_x);
input_abs_set_res(wacom->dev, ABS_Y, wacom->res_y);
input_set_abs_params(wacom->dev, ABS_X, 0, wacom->max_x, 0, 0);
input_set_abs_params(wacom->dev, ABS_Y, 0, wacom->max_y, 0, 0);
input_set_abs_params(wacom->dev, ABS_PRESSURE, -1,
(1 << (7 + wacom->extra_z_bits)) - 1, 0, 0);
err = input_register_device(wacom->dev);
if (err)
goto close_serio;
return 0;
close_serio:
serio_close(serio);
free_device:
serio_set_drvdata(serio, NULL);
input_free_device(input_dev);
kfree(wacom);
return err;
}
static const struct serio_device_id wacom_serio_ids[] = {
{
.type = SERIO_RS232,
.proto = SERIO_WACOM_IV,
.id = SERIO_ANY,
.extra = SERIO_ANY,
},
{ 0 }
};
MODULE_DEVICE_TABLE(serio, wacom_serio_ids);
static struct serio_driver wacom_drv = {
.driver = {
.name = "wacom_serial4",
},
.description = "Wacom protocol 4 serial tablet driver",
.id_table = wacom_serio_ids,
.interrupt = wacom_interrupt,
.connect = wacom_connect,
.disconnect = wacom_disconnect,
};
module_serio_driver(wacom_drv);
|
linux-master
|
drivers/input/tablet/wacom_serial4.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Native support for the Aiptek HyperPen USB Tablets
* (4000U/5000U/6000U/8000U/12000U)
*
* Copyright (c) 2001 Chris Atenasio <[email protected]>
* Copyright (c) 2002-2004 Bryan W. Headley <[email protected]>
*
* based on wacom.c by
* Vojtech Pavlik <[email protected]>
* Andreas Bach Aaen <[email protected]>
* Clifford Wolf <[email protected]>
* Sam Mosel <[email protected]>
* James E. Blair <[email protected]>
* Daniel Egger <[email protected]>
*
* Many thanks to Oliver Kuechemann for his support.
*
* ChangeLog:
* v0.1 - Initial release
* v0.2 - Hack to get around fake event 28's. (Bryan W. Headley)
* v0.3 - Make URB dynamic (Bryan W. Headley, Jun-8-2002)
* Released to Linux 2.4.19 and 2.5.x
* v0.4 - Rewrote substantial portions of the code to deal with
* corrected control sequences, timing, dynamic configuration,
* support of 6000U - 12000U, procfs, and macro key support
* (Jan-1-2003 - Feb-5-2003, Bryan W. Headley)
* v1.0 - Added support for diagnostic messages, count of messages
* received from URB - Mar-8-2003, Bryan W. Headley
* v1.1 - added support for tablet resolution, changed DV and proximity
* some corrections - Jun-22-2003, martin schneebacher
* - Added support for the sysfs interface, deprecating the
* procfs interface for 2.5.x kernel. Also added support for
* Wheel command. Bryan W. Headley July-15-2003.
* v1.2 - Reworked jitter timer as a kernel thread.
* Bryan W. Headley November-28-2003/Jan-10-2004.
* v1.3 - Repaired issue of kernel thread going nuts on single-processor
* machines, introduced programmableDelay as a command line
* parameter. Feb 7 2004, Bryan W. Headley.
* v1.4 - Re-wire jitter so it does not require a thread. Courtesy of
* Rene van Paassen. Added reporting of physical pointer device
* (e.g., stylus, mouse in reports 2, 3, 4, 5. We don't know
* for reports 1, 6.)
* what physical device reports for reports 1, 6.) Also enabled
* MOUSE and LENS tool button modes. Renamed "rubber" to "eraser".
* Feb 20, 2004, Bryan W. Headley.
* v1.5 - Added previousJitterable, so we don't do jitter delay when the
* user is holding a button down for periods of time.
*
* NOTE:
* This kernel driver is augmented by the "Aiptek" XFree86 input
* driver for your X server, as well as the Gaiptek GUI Front-end
* "Tablet Manager".
* These three products are highly interactive with one another,
* so therefore it's easier to document them all as one subsystem.
* Please visit the project's "home page", located at,
* http://aiptektablet.sourceforge.net.
*/
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/usb/input.h>
#include <linux/uaccess.h>
#include <asm/unaligned.h>
/*
* Aiptek status packet:
*
* (returned as Report 1 - relative coordinates from mouse and stylus)
*
* bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
* byte0 0 0 0 0 0 0 0 1
* byte1 0 0 0 0 0 BS2 BS Tip
* byte2 X7 X6 X5 X4 X3 X2 X1 X0
* byte3 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
*
* (returned as Report 2 - absolute coordinates from the stylus)
*
* bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
* byte0 0 0 0 0 0 0 1 0
* byte1 X7 X6 X5 X4 X3 X2 X1 X0
* byte2 X15 X14 X13 X12 X11 X10 X9 X8
* byte3 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
* byte4 Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8
* byte5 * * * BS2 BS1 Tip IR DV
* byte6 P7 P6 P5 P4 P3 P2 P1 P0
* byte7 P15 P14 P13 P12 P11 P10 P9 P8
*
* (returned as Report 3 - absolute coordinates from the mouse)
*
* bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
* byte0 0 0 0 0 0 0 1 1
* byte1 X7 X6 X5 X4 X3 X2 X1 X0
* byte2 X15 X14 X13 X12 X11 X10 X9 X8
* byte3 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
* byte4 Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8
* byte5 * * * BS2 BS1 Tip IR DV
* byte6 P7 P6 P5 P4 P3 P2 P1 P0
* byte7 P15 P14 P13 P12 P11 P10 P9 P8
*
* (returned as Report 4 - macrokeys from the stylus)
*
* bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
* byte0 0 0 0 0 0 1 0 0
* byte1 0 0 0 BS2 BS Tip IR DV
* byte2 0 0 0 0 0 0 1 0
* byte3 0 0 0 K4 K3 K2 K1 K0
* byte4 P7 P6 P5 P4 P3 P2 P1 P0
* byte5 P15 P14 P13 P12 P11 P10 P9 P8
*
* (returned as Report 5 - macrokeys from the mouse)
*
* bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
* byte0 0 0 0 0 0 1 0 1
* byte1 0 0 0 BS2 BS Tip IR DV
* byte2 0 0 0 0 0 0 1 0
* byte3 0 0 0 K4 K3 K2 K1 K0
* byte4 P7 P6 P5 P4 P3 P2 P1 P0
* byte5 P15 P14 P13 P12 P11 P10 P9 P8
*
* IR: In Range = Proximity on
* DV = Data Valid
* BS = Barrel Switch (as in, macro keys)
* BS2 also referred to as Tablet Pick
*
* Command Summary:
*
* Use report_type CONTROL (3)
* Use report_id 2
*
* Command/Data Description Return Bytes Return Value
* 0x10/0x00 SwitchToMouse 0
* 0x10/0x01 SwitchToTablet 0
* 0x18/0x04 SetResolution 0
* 0x12/0xFF AutoGainOn 0
* 0x17/0x00 FilterOn 0
* 0x01/0x00 GetXExtension 2 MaxX
* 0x01/0x01 GetYExtension 2 MaxY
* 0x02/0x00 GetModelCode 2 ModelCode = LOBYTE
* 0x03/0x00 GetODMCode 2 ODMCode
* 0x08/0x00 GetPressureLevels 2 =512
* 0x04/0x00 GetFirmwareVersion 2 Firmware Version
* 0x11/0x02 EnableMacroKeys 0
*
* To initialize the tablet:
*
* (1) Send Resolution500LPI (Command)
* (2) Query for Model code (Option Report)
* (3) Query for ODM code (Option Report)
* (4) Query for firmware (Option Report)
* (5) Query for GetXExtension (Option Report)
* (6) Query for GetYExtension (Option Report)
* (7) Query for GetPressureLevels (Option Report)
* (8) SwitchToTablet for Absolute coordinates, or
* SwitchToMouse for Relative coordinates (Command)
* (9) EnableMacroKeys (Command)
* (10) FilterOn (Command)
* (11) AutoGainOn (Command)
*
* (Step 9 can be omitted, but you'll then have no function keys.)
*/
#define USB_VENDOR_ID_AIPTEK 0x08ca
#define USB_VENDOR_ID_KYE 0x0458
#define USB_REQ_GET_REPORT 0x01
#define USB_REQ_SET_REPORT 0x09
/* PointerMode codes
*/
#define AIPTEK_POINTER_ONLY_MOUSE_MODE 0
#define AIPTEK_POINTER_ONLY_STYLUS_MODE 1
#define AIPTEK_POINTER_EITHER_MODE 2
#define AIPTEK_POINTER_ALLOW_MOUSE_MODE(a) \
(a == AIPTEK_POINTER_ONLY_MOUSE_MODE || \
a == AIPTEK_POINTER_EITHER_MODE)
#define AIPTEK_POINTER_ALLOW_STYLUS_MODE(a) \
(a == AIPTEK_POINTER_ONLY_STYLUS_MODE || \
a == AIPTEK_POINTER_EITHER_MODE)
/* CoordinateMode code
*/
#define AIPTEK_COORDINATE_RELATIVE_MODE 0
#define AIPTEK_COORDINATE_ABSOLUTE_MODE 1
/* XTilt and YTilt values
*/
#define AIPTEK_TILT_MIN (-128)
#define AIPTEK_TILT_MAX 127
#define AIPTEK_TILT_DISABLE (-10101)
/* Wheel values
*/
#define AIPTEK_WHEEL_MIN 0
#define AIPTEK_WHEEL_MAX 1024
#define AIPTEK_WHEEL_DISABLE (-10101)
/* ToolCode values, which BTW are 0x140 .. 0x14f
* We have things set up such that if the tool button has changed,
* the tools get reset.
*/
/* toolMode codes
*/
#define AIPTEK_TOOL_BUTTON_PEN_MODE BTN_TOOL_PEN
#define AIPTEK_TOOL_BUTTON_PENCIL_MODE BTN_TOOL_PENCIL
#define AIPTEK_TOOL_BUTTON_BRUSH_MODE BTN_TOOL_BRUSH
#define AIPTEK_TOOL_BUTTON_AIRBRUSH_MODE BTN_TOOL_AIRBRUSH
#define AIPTEK_TOOL_BUTTON_ERASER_MODE BTN_TOOL_RUBBER
#define AIPTEK_TOOL_BUTTON_MOUSE_MODE BTN_TOOL_MOUSE
#define AIPTEK_TOOL_BUTTON_LENS_MODE BTN_TOOL_LENS
/* Diagnostic message codes
*/
#define AIPTEK_DIAGNOSTIC_NA 0
#define AIPTEK_DIAGNOSTIC_SENDING_RELATIVE_IN_ABSOLUTE 1
#define AIPTEK_DIAGNOSTIC_SENDING_ABSOLUTE_IN_RELATIVE 2
#define AIPTEK_DIAGNOSTIC_TOOL_DISALLOWED 3
/* Time to wait (in ms) to help mask hand jittering
* when pressing the stylus buttons.
*/
#define AIPTEK_JITTER_DELAY_DEFAULT 50
/* Time to wait (in ms) in-between sending the tablet
* a command and beginning the process of reading the return
* sequence from the tablet.
*/
#define AIPTEK_PROGRAMMABLE_DELAY_25 25
#define AIPTEK_PROGRAMMABLE_DELAY_50 50
#define AIPTEK_PROGRAMMABLE_DELAY_100 100
#define AIPTEK_PROGRAMMABLE_DELAY_200 200
#define AIPTEK_PROGRAMMABLE_DELAY_300 300
#define AIPTEK_PROGRAMMABLE_DELAY_400 400
#define AIPTEK_PROGRAMMABLE_DELAY_DEFAULT AIPTEK_PROGRAMMABLE_DELAY_400
/* Mouse button programming
*/
#define AIPTEK_MOUSE_LEFT_BUTTON 0x04
#define AIPTEK_MOUSE_RIGHT_BUTTON 0x08
#define AIPTEK_MOUSE_MIDDLE_BUTTON 0x10
/* Stylus button programming
*/
#define AIPTEK_STYLUS_LOWER_BUTTON 0x08
#define AIPTEK_STYLUS_UPPER_BUTTON 0x10
/* Length of incoming packet from the tablet
*/
#define AIPTEK_PACKET_LENGTH 8
/* We report in EV_MISC both the proximity and
* whether the report came from the stylus, tablet mouse
* or "unknown" -- Unknown when the tablet is in relative
* mode, because we only get report 1's.
*/
#define AIPTEK_REPORT_TOOL_UNKNOWN 0x10
#define AIPTEK_REPORT_TOOL_STYLUS 0x20
#define AIPTEK_REPORT_TOOL_MOUSE 0x40
static int programmableDelay = AIPTEK_PROGRAMMABLE_DELAY_DEFAULT;
static int jitterDelay = AIPTEK_JITTER_DELAY_DEFAULT;
struct aiptek_features {
int odmCode; /* Tablet manufacturer code */
int modelCode; /* Tablet model code (not unique) */
int firmwareCode; /* prom/eeprom version */
char usbPath[64 + 1]; /* device's physical usb path */
};
struct aiptek_settings {
int pointerMode; /* stylus-, mouse-only or either */
int coordinateMode; /* absolute/relative coords */
int toolMode; /* pen, pencil, brush, etc. tool */
int xTilt; /* synthetic xTilt amount */
int yTilt; /* synthetic yTilt amount */
int wheel; /* synthetic wheel amount */
int stylusButtonUpper; /* stylus upper btn delivers... */
int stylusButtonLower; /* stylus lower btn delivers... */
int mouseButtonLeft; /* mouse left btn delivers... */
int mouseButtonMiddle; /* mouse middle btn delivers... */
int mouseButtonRight; /* mouse right btn delivers... */
int programmableDelay; /* delay for tablet programming */
int jitterDelay; /* delay for hand jittering */
};
struct aiptek {
struct input_dev *inputdev; /* input device struct */
struct usb_interface *intf; /* usb interface struct */
struct urb *urb; /* urb for incoming reports */
dma_addr_t data_dma; /* our dma stuffage */
struct aiptek_features features; /* tablet's array of features */
struct aiptek_settings curSetting; /* tablet's current programmable */
struct aiptek_settings newSetting; /* ... and new param settings */
unsigned int ifnum; /* interface number for IO */
int diagnostic; /* tablet diagnostic codes */
unsigned long eventCount; /* event count */
int inDelay; /* jitter: in jitter delay? */
unsigned long endDelay; /* jitter: time when delay ends */
int previousJitterable; /* jitterable prev value */
int lastMacro; /* macro key to reset */
int previousToolMode; /* pen, pencil, brush, etc. tool */
unsigned char *data; /* incoming packet data */
};
static const int eventTypes[] = {
EV_KEY, EV_ABS, EV_REL, EV_MSC,
};
static const int absEvents[] = {
ABS_X, ABS_Y, ABS_PRESSURE, ABS_TILT_X, ABS_TILT_Y,
ABS_WHEEL, ABS_MISC,
};
static const int relEvents[] = {
REL_X, REL_Y, REL_WHEEL,
};
static const int buttonEvents[] = {
BTN_LEFT, BTN_RIGHT, BTN_MIDDLE,
BTN_TOOL_PEN, BTN_TOOL_RUBBER, BTN_TOOL_PENCIL, BTN_TOOL_AIRBRUSH,
BTN_TOOL_BRUSH, BTN_TOOL_MOUSE, BTN_TOOL_LENS, BTN_TOUCH,
BTN_STYLUS, BTN_STYLUS2,
};
/*
* Permit easy lookup of keyboard events to send, versus
* the bitmap which comes from the tablet. This hides the
* issue that the F_keys are not sequentially numbered.
*/
static const int macroKeyEvents[] = {
KEY_ESC, KEY_F1, KEY_F2, KEY_F3, KEY_F4, KEY_F5,
KEY_F6, KEY_F7, KEY_F8, KEY_F9, KEY_F10, KEY_F11,
KEY_F12, KEY_F13, KEY_F14, KEY_F15, KEY_F16, KEY_F17,
KEY_F18, KEY_F19, KEY_F20, KEY_F21, KEY_F22, KEY_F23,
KEY_F24, KEY_STOP, KEY_AGAIN, KEY_PROPS, KEY_UNDO,
KEY_FRONT, KEY_COPY, KEY_OPEN, KEY_PASTE, 0
};
/***********************************************************************
* Map values to strings and back. Every map should have the following
* as its last element: { NULL, AIPTEK_INVALID_VALUE }.
*/
#define AIPTEK_INVALID_VALUE -1
struct aiptek_map {
const char *string;
int value;
};
static int map_str_to_val(const struct aiptek_map *map, const char *str, size_t count)
{
const struct aiptek_map *p;
if (str[count - 1] == '\n')
count--;
for (p = map; p->string; p++)
if (!strncmp(str, p->string, count))
return p->value;
return AIPTEK_INVALID_VALUE;
}
static const char *map_val_to_str(const struct aiptek_map *map, int val)
{
const struct aiptek_map *p;
for (p = map; p->value != AIPTEK_INVALID_VALUE; p++)
if (val == p->value)
return p->string;
return "unknown";
}
/***********************************************************************
* aiptek_irq can receive one of six potential reports.
* The documentation for each is in the body of the function.
*
* The tablet reports on several attributes per invocation of
* aiptek_irq. Because the Linux Input Event system allows the
* transmission of ONE attribute per input_report_xxx() call,
* collation has to be done on the other end to reconstitute
* a complete tablet report. Further, the number of Input Event reports
* submitted varies, depending on what USB report type, and circumstance.
* To deal with this, EV_MSC is used to indicate an 'end-of-report'
* message. This has been an undocumented convention understood by the kernel
* tablet driver and clients such as gpm and XFree86's tablet drivers.
*
* Of the information received from the tablet, the one piece I
* cannot transmit is the proximity bit (without resorting to an EV_MSC
* convention above.) I therefore have taken over REL_MISC and ABS_MISC
* (for relative and absolute reports, respectively) for communicating
* Proximity. Why two events? I thought it interesting to know if the
* Proximity event occurred while the tablet was in absolute or relative
* mode.
* Update: REL_MISC proved not to be such a good idea. With REL_MISC you
* get an event transmitted each time. ABS_MISC works better, since it
* can be set and re-set. Thus, only using ABS_MISC from now on.
*
* Other tablets use the notion of a certain minimum stylus pressure
* to infer proximity. While that could have been done, that is yet
* another 'by convention' behavior, the documentation for which
* would be spread between two (or more) pieces of software.
*
* EV_MSC usage was terminated for this purpose in Linux 2.5.x, and
* replaced with the input_sync() method (which emits EV_SYN.)
*/
static void aiptek_irq(struct urb *urb)
{
struct aiptek *aiptek = urb->context;
unsigned char *data = aiptek->data;
struct input_dev *inputdev = aiptek->inputdev;
struct usb_interface *intf = aiptek->intf;
int jitterable = 0;
int retval, macro, x, y, z, left, right, middle, p, dv, tip, bs, pck;
switch (urb->status) {
case 0:
/* Success */
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
/* This urb is terminated, clean up */
dev_dbg(&intf->dev, "%s - urb shutting down with status: %d\n",
__func__, urb->status);
return;
default:
dev_dbg(&intf->dev, "%s - nonzero urb status received: %d\n",
__func__, urb->status);
goto exit;
}
/* See if we are in a delay loop -- throw out report if true.
*/
if (aiptek->inDelay == 1 && time_after(aiptek->endDelay, jiffies)) {
goto exit;
}
aiptek->inDelay = 0;
aiptek->eventCount++;
/* Report 1 delivers relative coordinates with either a stylus
* or the mouse. You do not know, however, which input
* tool generated the event.
*/
if (data[0] == 1) {
if (aiptek->curSetting.coordinateMode ==
AIPTEK_COORDINATE_ABSOLUTE_MODE) {
aiptek->diagnostic =
AIPTEK_DIAGNOSTIC_SENDING_RELATIVE_IN_ABSOLUTE;
} else {
x = (signed char) data[2];
y = (signed char) data[3];
/* jitterable keeps track of whether any button has been pressed.
* We're also using it to remap the physical mouse button mask
* to pseudo-settings. (We don't specifically care about it's
* value after moving/transposing mouse button bitmasks, except
* that a non-zero value indicates that one or more
* mouse button was pressed.)
*/
jitterable = data[1] & 0x07;
left = (data[1] & aiptek->curSetting.mouseButtonLeft >> 2) != 0 ? 1 : 0;
right = (data[1] & aiptek->curSetting.mouseButtonRight >> 2) != 0 ? 1 : 0;
middle = (data[1] & aiptek->curSetting.mouseButtonMiddle >> 2) != 0 ? 1 : 0;
input_report_key(inputdev, BTN_LEFT, left);
input_report_key(inputdev, BTN_MIDDLE, middle);
input_report_key(inputdev, BTN_RIGHT, right);
input_report_abs(inputdev, ABS_MISC,
1 | AIPTEK_REPORT_TOOL_UNKNOWN);
input_report_rel(inputdev, REL_X, x);
input_report_rel(inputdev, REL_Y, y);
/* Wheel support is in the form of a single-event
* firing.
*/
if (aiptek->curSetting.wheel != AIPTEK_WHEEL_DISABLE) {
input_report_rel(inputdev, REL_WHEEL,
aiptek->curSetting.wheel);
aiptek->curSetting.wheel = AIPTEK_WHEEL_DISABLE;
}
if (aiptek->lastMacro != -1) {
input_report_key(inputdev,
macroKeyEvents[aiptek->lastMacro], 0);
aiptek->lastMacro = -1;
}
input_sync(inputdev);
}
}
/* Report 2 is delivered only by the stylus, and delivers
* absolute coordinates.
*/
else if (data[0] == 2) {
if (aiptek->curSetting.coordinateMode == AIPTEK_COORDINATE_RELATIVE_MODE) {
aiptek->diagnostic = AIPTEK_DIAGNOSTIC_SENDING_ABSOLUTE_IN_RELATIVE;
} else if (!AIPTEK_POINTER_ALLOW_STYLUS_MODE
(aiptek->curSetting.pointerMode)) {
aiptek->diagnostic = AIPTEK_DIAGNOSTIC_TOOL_DISALLOWED;
} else {
x = get_unaligned_le16(data + 1);
y = get_unaligned_le16(data + 3);
z = get_unaligned_le16(data + 6);
dv = (data[5] & 0x01) != 0 ? 1 : 0;
p = (data[5] & 0x02) != 0 ? 1 : 0;
tip = (data[5] & 0x04) != 0 ? 1 : 0;
/* Use jitterable to re-arrange button masks
*/
jitterable = data[5] & 0x18;
bs = (data[5] & aiptek->curSetting.stylusButtonLower) != 0 ? 1 : 0;
pck = (data[5] & aiptek->curSetting.stylusButtonUpper) != 0 ? 1 : 0;
/* dv indicates 'data valid' (e.g., the tablet is in sync
* and has delivered a "correct" report) We will ignore
* all 'bad' reports...
*/
if (dv != 0) {
/* If the selected tool changed, reset the old
* tool key, and set the new one.
*/
if (aiptek->previousToolMode !=
aiptek->curSetting.toolMode) {
input_report_key(inputdev,
aiptek->previousToolMode, 0);
input_report_key(inputdev,
aiptek->curSetting.toolMode,
1);
aiptek->previousToolMode =
aiptek->curSetting.toolMode;
}
if (p != 0) {
input_report_abs(inputdev, ABS_X, x);
input_report_abs(inputdev, ABS_Y, y);
input_report_abs(inputdev, ABS_PRESSURE, z);
input_report_key(inputdev, BTN_TOUCH, tip);
input_report_key(inputdev, BTN_STYLUS, bs);
input_report_key(inputdev, BTN_STYLUS2, pck);
if (aiptek->curSetting.xTilt !=
AIPTEK_TILT_DISABLE) {
input_report_abs(inputdev,
ABS_TILT_X,
aiptek->curSetting.xTilt);
}
if (aiptek->curSetting.yTilt != AIPTEK_TILT_DISABLE) {
input_report_abs(inputdev,
ABS_TILT_Y,
aiptek->curSetting.yTilt);
}
/* Wheel support is in the form of a single-event
* firing.
*/
if (aiptek->curSetting.wheel !=
AIPTEK_WHEEL_DISABLE) {
input_report_abs(inputdev,
ABS_WHEEL,
aiptek->curSetting.wheel);
aiptek->curSetting.wheel = AIPTEK_WHEEL_DISABLE;
}
}
input_report_abs(inputdev, ABS_MISC, p | AIPTEK_REPORT_TOOL_STYLUS);
if (aiptek->lastMacro != -1) {
input_report_key(inputdev,
macroKeyEvents[aiptek->lastMacro], 0);
aiptek->lastMacro = -1;
}
input_sync(inputdev);
}
}
}
/* Report 3's come from the mouse in absolute mode.
*/
else if (data[0] == 3) {
if (aiptek->curSetting.coordinateMode == AIPTEK_COORDINATE_RELATIVE_MODE) {
aiptek->diagnostic = AIPTEK_DIAGNOSTIC_SENDING_ABSOLUTE_IN_RELATIVE;
} else if (!AIPTEK_POINTER_ALLOW_MOUSE_MODE
(aiptek->curSetting.pointerMode)) {
aiptek->diagnostic = AIPTEK_DIAGNOSTIC_TOOL_DISALLOWED;
} else {
x = get_unaligned_le16(data + 1);
y = get_unaligned_le16(data + 3);
jitterable = data[5] & 0x1c;
dv = (data[5] & 0x01) != 0 ? 1 : 0;
p = (data[5] & 0x02) != 0 ? 1 : 0;
left = (data[5] & aiptek->curSetting.mouseButtonLeft) != 0 ? 1 : 0;
right = (data[5] & aiptek->curSetting.mouseButtonRight) != 0 ? 1 : 0;
middle = (data[5] & aiptek->curSetting.mouseButtonMiddle) != 0 ? 1 : 0;
if (dv != 0) {
/* If the selected tool changed, reset the old
* tool key, and set the new one.
*/
if (aiptek->previousToolMode !=
aiptek->curSetting.toolMode) {
input_report_key(inputdev,
aiptek->previousToolMode, 0);
input_report_key(inputdev,
aiptek->curSetting.toolMode,
1);
aiptek->previousToolMode =
aiptek->curSetting.toolMode;
}
if (p != 0) {
input_report_abs(inputdev, ABS_X, x);
input_report_abs(inputdev, ABS_Y, y);
input_report_key(inputdev, BTN_LEFT, left);
input_report_key(inputdev, BTN_MIDDLE, middle);
input_report_key(inputdev, BTN_RIGHT, right);
/* Wheel support is in the form of a single-event
* firing.
*/
if (aiptek->curSetting.wheel != AIPTEK_WHEEL_DISABLE) {
input_report_abs(inputdev,
ABS_WHEEL,
aiptek->curSetting.wheel);
aiptek->curSetting.wheel = AIPTEK_WHEEL_DISABLE;
}
}
input_report_abs(inputdev, ABS_MISC, p | AIPTEK_REPORT_TOOL_MOUSE);
if (aiptek->lastMacro != -1) {
input_report_key(inputdev,
macroKeyEvents[aiptek->lastMacro], 0);
aiptek->lastMacro = -1;
}
input_sync(inputdev);
}
}
}
/* Report 4s come from the macro keys when pressed by stylus
*/
else if (data[0] == 4) {
jitterable = data[1] & 0x18;
dv = (data[1] & 0x01) != 0 ? 1 : 0;
p = (data[1] & 0x02) != 0 ? 1 : 0;
tip = (data[1] & 0x04) != 0 ? 1 : 0;
bs = (data[1] & aiptek->curSetting.stylusButtonLower) != 0 ? 1 : 0;
pck = (data[1] & aiptek->curSetting.stylusButtonUpper) != 0 ? 1 : 0;
macro = dv && p && tip && !(data[3] & 1) ? (data[3] >> 1) : -1;
z = get_unaligned_le16(data + 4);
if (dv) {
/* If the selected tool changed, reset the old
* tool key, and set the new one.
*/
if (aiptek->previousToolMode !=
aiptek->curSetting.toolMode) {
input_report_key(inputdev,
aiptek->previousToolMode, 0);
input_report_key(inputdev,
aiptek->curSetting.toolMode,
1);
aiptek->previousToolMode =
aiptek->curSetting.toolMode;
}
}
if (aiptek->lastMacro != -1 && aiptek->lastMacro != macro) {
input_report_key(inputdev, macroKeyEvents[aiptek->lastMacro], 0);
aiptek->lastMacro = -1;
}
if (macro != -1 && macro != aiptek->lastMacro) {
input_report_key(inputdev, macroKeyEvents[macro], 1);
aiptek->lastMacro = macro;
}
input_report_abs(inputdev, ABS_MISC,
p | AIPTEK_REPORT_TOOL_STYLUS);
input_sync(inputdev);
}
/* Report 5s come from the macro keys when pressed by mouse
*/
else if (data[0] == 5) {
jitterable = data[1] & 0x1c;
dv = (data[1] & 0x01) != 0 ? 1 : 0;
p = (data[1] & 0x02) != 0 ? 1 : 0;
left = (data[1]& aiptek->curSetting.mouseButtonLeft) != 0 ? 1 : 0;
right = (data[1] & aiptek->curSetting.mouseButtonRight) != 0 ? 1 : 0;
middle = (data[1] & aiptek->curSetting.mouseButtonMiddle) != 0 ? 1 : 0;
macro = dv && p && left && !(data[3] & 1) ? (data[3] >> 1) : 0;
if (dv) {
/* If the selected tool changed, reset the old
* tool key, and set the new one.
*/
if (aiptek->previousToolMode !=
aiptek->curSetting.toolMode) {
input_report_key(inputdev,
aiptek->previousToolMode, 0);
input_report_key(inputdev,
aiptek->curSetting.toolMode, 1);
aiptek->previousToolMode = aiptek->curSetting.toolMode;
}
}
if (aiptek->lastMacro != -1 && aiptek->lastMacro != macro) {
input_report_key(inputdev, macroKeyEvents[aiptek->lastMacro], 0);
aiptek->lastMacro = -1;
}
if (macro != -1 && macro != aiptek->lastMacro) {
input_report_key(inputdev, macroKeyEvents[macro], 1);
aiptek->lastMacro = macro;
}
input_report_abs(inputdev, ABS_MISC,
p | AIPTEK_REPORT_TOOL_MOUSE);
input_sync(inputdev);
}
/* We have no idea which tool can generate a report 6. Theoretically,
* neither need to, having been given reports 4 & 5 for such use.
* However, report 6 is the 'official-looking' report for macroKeys;
* reports 4 & 5 supposively are used to support unnamed, unknown
* hat switches (which just so happen to be the macroKeys.)
*/
else if (data[0] == 6) {
macro = get_unaligned_le16(data + 1);
if (macro > 0) {
input_report_key(inputdev, macroKeyEvents[macro - 1],
0);
}
if (macro < 25) {
input_report_key(inputdev, macroKeyEvents[macro + 1],
0);
}
/* If the selected tool changed, reset the old
tool key, and set the new one.
*/
if (aiptek->previousToolMode !=
aiptek->curSetting.toolMode) {
input_report_key(inputdev,
aiptek->previousToolMode, 0);
input_report_key(inputdev,
aiptek->curSetting.toolMode,
1);
aiptek->previousToolMode =
aiptek->curSetting.toolMode;
}
input_report_key(inputdev, macroKeyEvents[macro], 1);
input_report_abs(inputdev, ABS_MISC,
1 | AIPTEK_REPORT_TOOL_UNKNOWN);
input_sync(inputdev);
} else {
dev_dbg(&intf->dev, "Unknown report %d\n", data[0]);
}
/* Jitter may occur when the user presses a button on the stlyus
* or the mouse. What we do to prevent that is wait 'x' milliseconds
* following a 'jitterable' event, which should give the hand some time
* stabilize itself.
*
* We just introduced aiptek->previousJitterable to carry forth the
* notion that jitter occurs when the button state changes from on to off:
* a person drawing, holding a button down is not subject to jittering.
* With that in mind, changing from upper button depressed to lower button
* WILL transition through a jitter delay.
*/
if (aiptek->previousJitterable != jitterable &&
aiptek->curSetting.jitterDelay != 0 && aiptek->inDelay != 1) {
aiptek->endDelay = jiffies +
((aiptek->curSetting.jitterDelay * HZ) / 1000);
aiptek->inDelay = 1;
}
aiptek->previousJitterable = jitterable;
exit:
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval != 0) {
dev_err(&intf->dev,
"%s - usb_submit_urb failed with result %d\n",
__func__, retval);
}
}
/***********************************************************************
* These are the USB id's known so far. We do not identify them to
* specific Aiptek model numbers, because there has been overlaps,
* use, and reuse of id's in existing models. Certain models have
* been known to use more than one ID, indicative perhaps of
* manufacturing revisions. In any event, we consider these
* IDs to not be model-specific nor unique.
*/
static const struct usb_device_id aiptek_ids[] = {
{USB_DEVICE(USB_VENDOR_ID_AIPTEK, 0x01)},
{USB_DEVICE(USB_VENDOR_ID_AIPTEK, 0x10)},
{USB_DEVICE(USB_VENDOR_ID_AIPTEK, 0x20)},
{USB_DEVICE(USB_VENDOR_ID_AIPTEK, 0x21)},
{USB_DEVICE(USB_VENDOR_ID_AIPTEK, 0x22)},
{USB_DEVICE(USB_VENDOR_ID_AIPTEK, 0x23)},
{USB_DEVICE(USB_VENDOR_ID_AIPTEK, 0x24)},
{USB_DEVICE(USB_VENDOR_ID_KYE, 0x5003)},
{}
};
MODULE_DEVICE_TABLE(usb, aiptek_ids);
/***********************************************************************
* Open an instance of the tablet driver.
*/
static int aiptek_open(struct input_dev *inputdev)
{
struct aiptek *aiptek = input_get_drvdata(inputdev);
aiptek->urb->dev = interface_to_usbdev(aiptek->intf);
if (usb_submit_urb(aiptek->urb, GFP_KERNEL) != 0)
return -EIO;
return 0;
}
/***********************************************************************
* Close an instance of the tablet driver.
*/
static void aiptek_close(struct input_dev *inputdev)
{
struct aiptek *aiptek = input_get_drvdata(inputdev);
usb_kill_urb(aiptek->urb);
}
/***********************************************************************
* aiptek_set_report and aiptek_get_report() are borrowed from Linux 2.4.x,
* where they were known as usb_set_report and usb_get_report.
*/
static int
aiptek_set_report(struct aiptek *aiptek,
unsigned char report_type,
unsigned char report_id, void *buffer, int size)
{
struct usb_device *udev = interface_to_usbdev(aiptek->intf);
return usb_control_msg(udev,
usb_sndctrlpipe(udev, 0),
USB_REQ_SET_REPORT,
USB_TYPE_CLASS | USB_RECIP_INTERFACE |
USB_DIR_OUT, (report_type << 8) + report_id,
aiptek->ifnum, buffer, size, 5000);
}
static int
aiptek_get_report(struct aiptek *aiptek,
unsigned char report_type,
unsigned char report_id, void *buffer, int size)
{
struct usb_device *udev = interface_to_usbdev(aiptek->intf);
return usb_control_msg(udev,
usb_rcvctrlpipe(udev, 0),
USB_REQ_GET_REPORT,
USB_TYPE_CLASS | USB_RECIP_INTERFACE |
USB_DIR_IN, (report_type << 8) + report_id,
aiptek->ifnum, buffer, size, 5000);
}
/***********************************************************************
* Send a command to the tablet.
*/
static int
aiptek_command(struct aiptek *aiptek, unsigned char command, unsigned char data)
{
const int sizeof_buf = 3 * sizeof(u8);
int ret;
u8 *buf;
buf = kmalloc(sizeof_buf, GFP_KERNEL);
if (!buf)
return -ENOMEM;
buf[0] = 2;
buf[1] = command;
buf[2] = data;
if ((ret =
aiptek_set_report(aiptek, 3, 2, buf, sizeof_buf)) != sizeof_buf) {
dev_dbg(&aiptek->intf->dev,
"aiptek_program: failed, tried to send: 0x%02x 0x%02x\n",
command, data);
}
kfree(buf);
return ret < 0 ? ret : 0;
}
/***********************************************************************
* Retrieve information from the tablet. Querying info is defined as first
* sending the {command,data} sequence as a command, followed by a wait
* (aka, "programmaticDelay") and then a "read" request.
*/
static int
aiptek_query(struct aiptek *aiptek, unsigned char command, unsigned char data)
{
const int sizeof_buf = 3 * sizeof(u8);
int ret;
u8 *buf;
buf = kmalloc(sizeof_buf, GFP_KERNEL);
if (!buf)
return -ENOMEM;
buf[0] = 2;
buf[1] = command;
buf[2] = data;
if (aiptek_command(aiptek, command, data) != 0) {
kfree(buf);
return -EIO;
}
msleep(aiptek->curSetting.programmableDelay);
if (aiptek_get_report(aiptek, 3, 2, buf, sizeof_buf) != sizeof_buf) {
dev_dbg(&aiptek->intf->dev,
"aiptek_query failed: returned 0x%02x 0x%02x 0x%02x\n",
buf[0], buf[1], buf[2]);
ret = -EIO;
} else {
ret = get_unaligned_le16(buf + 1);
}
kfree(buf);
return ret;
}
/***********************************************************************
* Program the tablet into either absolute or relative mode.
* We also get information about the tablet's size.
*/
static int aiptek_program_tablet(struct aiptek *aiptek)
{
int ret;
/* Execute Resolution500LPI */
if ((ret = aiptek_command(aiptek, 0x18, 0x04)) < 0)
return ret;
/* Query getModelCode */
if ((ret = aiptek_query(aiptek, 0x02, 0x00)) < 0)
return ret;
aiptek->features.modelCode = ret & 0xff;
/* Query getODMCode */
if ((ret = aiptek_query(aiptek, 0x03, 0x00)) < 0)
return ret;
aiptek->features.odmCode = ret;
/* Query getFirmwareCode */
if ((ret = aiptek_query(aiptek, 0x04, 0x00)) < 0)
return ret;
aiptek->features.firmwareCode = ret;
/* Query getXextension */
if ((ret = aiptek_query(aiptek, 0x01, 0x00)) < 0)
return ret;
input_set_abs_params(aiptek->inputdev, ABS_X, 0, ret - 1, 0, 0);
/* Query getYextension */
if ((ret = aiptek_query(aiptek, 0x01, 0x01)) < 0)
return ret;
input_set_abs_params(aiptek->inputdev, ABS_Y, 0, ret - 1, 0, 0);
/* Query getPressureLevels */
if ((ret = aiptek_query(aiptek, 0x08, 0x00)) < 0)
return ret;
input_set_abs_params(aiptek->inputdev, ABS_PRESSURE, 0, ret - 1, 0, 0);
/* Depending on whether we are in absolute or relative mode, we will
* do a switchToTablet(absolute) or switchToMouse(relative) command.
*/
if (aiptek->curSetting.coordinateMode ==
AIPTEK_COORDINATE_ABSOLUTE_MODE) {
/* Execute switchToTablet */
if ((ret = aiptek_command(aiptek, 0x10, 0x01)) < 0) {
return ret;
}
} else {
/* Execute switchToMouse */
if ((ret = aiptek_command(aiptek, 0x10, 0x00)) < 0) {
return ret;
}
}
/* Enable the macro keys */
if ((ret = aiptek_command(aiptek, 0x11, 0x02)) < 0)
return ret;
#if 0
/* Execute FilterOn */
if ((ret = aiptek_command(aiptek, 0x17, 0x00)) < 0)
return ret;
#endif
/* Execute AutoGainOn */
if ((ret = aiptek_command(aiptek, 0x12, 0xff)) < 0)
return ret;
/* Reset the eventCount, so we track events from last (re)programming
*/
aiptek->diagnostic = AIPTEK_DIAGNOSTIC_NA;
aiptek->eventCount = 0;
return 0;
}
/***********************************************************************
* Sysfs functions. Sysfs prefers that individually-tunable parameters
* exist in their separate pseudo-files. Summary data that is immutable
* may exist in a singular file so long as you don't define a writeable
* interface.
*/
/***********************************************************************
* support the 'size' file -- display support
*/
static ssize_t show_tabletSize(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "%dx%d\n",
input_abs_get_max(aiptek->inputdev, ABS_X) + 1,
input_abs_get_max(aiptek->inputdev, ABS_Y) + 1);
}
/* These structs define the sysfs files, param #1 is the name of the
* file, param 2 is the file permissions, param 3 & 4 are to the
* output generator and input parser routines. Absence of a routine is
* permitted -- it only means can't either 'cat' the file, or send data
* to it.
*/
static DEVICE_ATTR(size, S_IRUGO, show_tabletSize, NULL);
/***********************************************************************
* support routines for the 'pointer_mode' file. Note that this file
* both displays current setting and allows reprogramming.
*/
static struct aiptek_map pointer_mode_map[] = {
{ "stylus", AIPTEK_POINTER_ONLY_STYLUS_MODE },
{ "mouse", AIPTEK_POINTER_ONLY_MOUSE_MODE },
{ "either", AIPTEK_POINTER_EITHER_MODE },
{ NULL, AIPTEK_INVALID_VALUE }
};
static ssize_t show_tabletPointerMode(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", map_val_to_str(pointer_mode_map,
aiptek->curSetting.pointerMode));
}
static ssize_t
store_tabletPointerMode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
int new_mode = map_str_to_val(pointer_mode_map, buf, count);
if (new_mode == AIPTEK_INVALID_VALUE)
return -EINVAL;
aiptek->newSetting.pointerMode = new_mode;
return count;
}
static DEVICE_ATTR(pointer_mode,
S_IRUGO | S_IWUSR,
show_tabletPointerMode, store_tabletPointerMode);
/***********************************************************************
* support routines for the 'coordinate_mode' file. Note that this file
* both displays current setting and allows reprogramming.
*/
static struct aiptek_map coordinate_mode_map[] = {
{ "absolute", AIPTEK_COORDINATE_ABSOLUTE_MODE },
{ "relative", AIPTEK_COORDINATE_RELATIVE_MODE },
{ NULL, AIPTEK_INVALID_VALUE }
};
static ssize_t show_tabletCoordinateMode(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", map_val_to_str(coordinate_mode_map,
aiptek->curSetting.coordinateMode));
}
static ssize_t
store_tabletCoordinateMode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
int new_mode = map_str_to_val(coordinate_mode_map, buf, count);
if (new_mode == AIPTEK_INVALID_VALUE)
return -EINVAL;
aiptek->newSetting.coordinateMode = new_mode;
return count;
}
static DEVICE_ATTR(coordinate_mode,
S_IRUGO | S_IWUSR,
show_tabletCoordinateMode, store_tabletCoordinateMode);
/***********************************************************************
* support routines for the 'tool_mode' file. Note that this file
* both displays current setting and allows reprogramming.
*/
static struct aiptek_map tool_mode_map[] = {
{ "mouse", AIPTEK_TOOL_BUTTON_MOUSE_MODE },
{ "eraser", AIPTEK_TOOL_BUTTON_ERASER_MODE },
{ "pencil", AIPTEK_TOOL_BUTTON_PENCIL_MODE },
{ "pen", AIPTEK_TOOL_BUTTON_PEN_MODE },
{ "brush", AIPTEK_TOOL_BUTTON_BRUSH_MODE },
{ "airbrush", AIPTEK_TOOL_BUTTON_AIRBRUSH_MODE },
{ "lens", AIPTEK_TOOL_BUTTON_LENS_MODE },
{ NULL, AIPTEK_INVALID_VALUE }
};
static ssize_t show_tabletToolMode(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", map_val_to_str(tool_mode_map,
aiptek->curSetting.toolMode));
}
static ssize_t
store_tabletToolMode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
int new_mode = map_str_to_val(tool_mode_map, buf, count);
if (new_mode == AIPTEK_INVALID_VALUE)
return -EINVAL;
aiptek->newSetting.toolMode = new_mode;
return count;
}
static DEVICE_ATTR(tool_mode,
S_IRUGO | S_IWUSR,
show_tabletToolMode, store_tabletToolMode);
/***********************************************************************
* support routines for the 'xtilt' file. Note that this file
* both displays current setting and allows reprogramming.
*/
static ssize_t show_tabletXtilt(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
if (aiptek->curSetting.xTilt == AIPTEK_TILT_DISABLE) {
return sysfs_emit(buf, "disable\n");
} else {
return sysfs_emit(buf, "%d\n", aiptek->curSetting.xTilt);
}
}
static ssize_t
store_tabletXtilt(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
int x;
if (kstrtoint(buf, 10, &x)) {
size_t len = buf[count - 1] == '\n' ? count - 1 : count;
if (strncmp(buf, "disable", len))
return -EINVAL;
aiptek->newSetting.xTilt = AIPTEK_TILT_DISABLE;
} else {
if (x < AIPTEK_TILT_MIN || x > AIPTEK_TILT_MAX)
return -EINVAL;
aiptek->newSetting.xTilt = x;
}
return count;
}
static DEVICE_ATTR(xtilt,
S_IRUGO | S_IWUSR, show_tabletXtilt, store_tabletXtilt);
/***********************************************************************
* support routines for the 'ytilt' file. Note that this file
* both displays current setting and allows reprogramming.
*/
static ssize_t show_tabletYtilt(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
if (aiptek->curSetting.yTilt == AIPTEK_TILT_DISABLE) {
return sysfs_emit(buf, "disable\n");
} else {
return sysfs_emit(buf, "%d\n", aiptek->curSetting.yTilt);
}
}
static ssize_t
store_tabletYtilt(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
int y;
if (kstrtoint(buf, 10, &y)) {
size_t len = buf[count - 1] == '\n' ? count - 1 : count;
if (strncmp(buf, "disable", len))
return -EINVAL;
aiptek->newSetting.yTilt = AIPTEK_TILT_DISABLE;
} else {
if (y < AIPTEK_TILT_MIN || y > AIPTEK_TILT_MAX)
return -EINVAL;
aiptek->newSetting.yTilt = y;
}
return count;
}
static DEVICE_ATTR(ytilt,
S_IRUGO | S_IWUSR, show_tabletYtilt, store_tabletYtilt);
/***********************************************************************
* support routines for the 'jitter' file. Note that this file
* both displays current setting and allows reprogramming.
*/
static ssize_t show_tabletJitterDelay(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", aiptek->curSetting.jitterDelay);
}
static ssize_t
store_tabletJitterDelay(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
int err, j;
err = kstrtoint(buf, 10, &j);
if (err)
return err;
aiptek->newSetting.jitterDelay = j;
return count;
}
static DEVICE_ATTR(jitter,
S_IRUGO | S_IWUSR,
show_tabletJitterDelay, store_tabletJitterDelay);
/***********************************************************************
* support routines for the 'delay' file. Note that this file
* both displays current setting and allows reprogramming.
*/
static ssize_t show_tabletProgrammableDelay(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", aiptek->curSetting.programmableDelay);
}
static ssize_t
store_tabletProgrammableDelay(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
int err, d;
err = kstrtoint(buf, 10, &d);
if (err)
return err;
aiptek->newSetting.programmableDelay = d;
return count;
}
static DEVICE_ATTR(delay,
S_IRUGO | S_IWUSR,
show_tabletProgrammableDelay, store_tabletProgrammableDelay);
/***********************************************************************
* support routines for the 'event_count' file. Note that this file
* only displays current setting.
*/
static ssize_t show_tabletEventsReceived(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "%ld\n", aiptek->eventCount);
}
static DEVICE_ATTR(event_count, S_IRUGO, show_tabletEventsReceived, NULL);
/***********************************************************************
* support routines for the 'diagnostic' file. Note that this file
* only displays current setting.
*/
static ssize_t show_tabletDiagnosticMessage(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
char *retMsg;
switch (aiptek->diagnostic) {
case AIPTEK_DIAGNOSTIC_NA:
retMsg = "no errors\n";
break;
case AIPTEK_DIAGNOSTIC_SENDING_RELATIVE_IN_ABSOLUTE:
retMsg = "Error: receiving relative reports\n";
break;
case AIPTEK_DIAGNOSTIC_SENDING_ABSOLUTE_IN_RELATIVE:
retMsg = "Error: receiving absolute reports\n";
break;
case AIPTEK_DIAGNOSTIC_TOOL_DISALLOWED:
if (aiptek->curSetting.pointerMode ==
AIPTEK_POINTER_ONLY_MOUSE_MODE) {
retMsg = "Error: receiving stylus reports\n";
} else {
retMsg = "Error: receiving mouse reports\n";
}
break;
default:
return 0;
}
return sysfs_emit(buf, retMsg);
}
static DEVICE_ATTR(diagnostic, S_IRUGO, show_tabletDiagnosticMessage, NULL);
/***********************************************************************
* support routines for the 'stylus_upper' file. Note that this file
* both displays current setting and allows for setting changing.
*/
static struct aiptek_map stylus_button_map[] = {
{ "upper", AIPTEK_STYLUS_UPPER_BUTTON },
{ "lower", AIPTEK_STYLUS_LOWER_BUTTON },
{ NULL, AIPTEK_INVALID_VALUE }
};
static ssize_t show_tabletStylusUpper(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", map_val_to_str(stylus_button_map,
aiptek->curSetting.stylusButtonUpper));
}
static ssize_t
store_tabletStylusUpper(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
int new_button = map_str_to_val(stylus_button_map, buf, count);
if (new_button == AIPTEK_INVALID_VALUE)
return -EINVAL;
aiptek->newSetting.stylusButtonUpper = new_button;
return count;
}
static DEVICE_ATTR(stylus_upper,
S_IRUGO | S_IWUSR,
show_tabletStylusUpper, store_tabletStylusUpper);
/***********************************************************************
* support routines for the 'stylus_lower' file. Note that this file
* both displays current setting and allows for setting changing.
*/
static ssize_t show_tabletStylusLower(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", map_val_to_str(stylus_button_map,
aiptek->curSetting.stylusButtonLower));
}
static ssize_t
store_tabletStylusLower(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
int new_button = map_str_to_val(stylus_button_map, buf, count);
if (new_button == AIPTEK_INVALID_VALUE)
return -EINVAL;
aiptek->newSetting.stylusButtonLower = new_button;
return count;
}
static DEVICE_ATTR(stylus_lower,
S_IRUGO | S_IWUSR,
show_tabletStylusLower, store_tabletStylusLower);
/***********************************************************************
* support routines for the 'mouse_left' file. Note that this file
* both displays current setting and allows for setting changing.
*/
static struct aiptek_map mouse_button_map[] = {
{ "left", AIPTEK_MOUSE_LEFT_BUTTON },
{ "middle", AIPTEK_MOUSE_MIDDLE_BUTTON },
{ "right", AIPTEK_MOUSE_RIGHT_BUTTON },
{ NULL, AIPTEK_INVALID_VALUE }
};
static ssize_t show_tabletMouseLeft(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", map_val_to_str(mouse_button_map,
aiptek->curSetting.mouseButtonLeft));
}
static ssize_t
store_tabletMouseLeft(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
int new_button = map_str_to_val(mouse_button_map, buf, count);
if (new_button == AIPTEK_INVALID_VALUE)
return -EINVAL;
aiptek->newSetting.mouseButtonLeft = new_button;
return count;
}
static DEVICE_ATTR(mouse_left,
S_IRUGO | S_IWUSR,
show_tabletMouseLeft, store_tabletMouseLeft);
/***********************************************************************
* support routines for the 'mouse_middle' file. Note that this file
* both displays current setting and allows for setting changing.
*/
static ssize_t show_tabletMouseMiddle(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", map_val_to_str(mouse_button_map,
aiptek->curSetting.mouseButtonMiddle));
}
static ssize_t
store_tabletMouseMiddle(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
int new_button = map_str_to_val(mouse_button_map, buf, count);
if (new_button == AIPTEK_INVALID_VALUE)
return -EINVAL;
aiptek->newSetting.mouseButtonMiddle = new_button;
return count;
}
static DEVICE_ATTR(mouse_middle,
S_IRUGO | S_IWUSR,
show_tabletMouseMiddle, store_tabletMouseMiddle);
/***********************************************************************
* support routines for the 'mouse_right' file. Note that this file
* both displays current setting and allows for setting changing.
*/
static ssize_t show_tabletMouseRight(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", map_val_to_str(mouse_button_map,
aiptek->curSetting.mouseButtonRight));
}
static ssize_t
store_tabletMouseRight(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
int new_button = map_str_to_val(mouse_button_map, buf, count);
if (new_button == AIPTEK_INVALID_VALUE)
return -EINVAL;
aiptek->newSetting.mouseButtonRight = new_button;
return count;
}
static DEVICE_ATTR(mouse_right,
S_IRUGO | S_IWUSR,
show_tabletMouseRight, store_tabletMouseRight);
/***********************************************************************
* support routines for the 'wheel' file. Note that this file
* both displays current setting and allows for setting changing.
*/
static ssize_t show_tabletWheel(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
if (aiptek->curSetting.wheel == AIPTEK_WHEEL_DISABLE) {
return sysfs_emit(buf, "disable\n");
} else {
return sysfs_emit(buf, "%d\n", aiptek->curSetting.wheel);
}
}
static ssize_t
store_tabletWheel(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
int err, w;
err = kstrtoint(buf, 10, &w);
if (err)
return err;
aiptek->newSetting.wheel = w;
return count;
}
static DEVICE_ATTR(wheel,
S_IRUGO | S_IWUSR, show_tabletWheel, store_tabletWheel);
/***********************************************************************
* support routines for the 'execute' file. Note that this file
* both displays current setting and allows for setting changing.
*/
static ssize_t show_tabletExecute(struct device *dev, struct device_attribute *attr, char *buf)
{
/* There is nothing useful to display, so a one-line manual
* is in order...
*/
return sysfs_emit(buf, "Write anything to this file to program your tablet.\n");
}
static ssize_t
store_tabletExecute(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
/* We do not care what you write to this file. Merely the action
* of writing to this file triggers a tablet reprogramming.
*/
memcpy(&aiptek->curSetting, &aiptek->newSetting,
sizeof(struct aiptek_settings));
if (aiptek_program_tablet(aiptek) < 0)
return -EIO;
return count;
}
static DEVICE_ATTR(execute,
S_IRUGO | S_IWUSR, show_tabletExecute, store_tabletExecute);
/***********************************************************************
* support routines for the 'odm_code' file. Note that this file
* only displays current setting.
*/
static ssize_t show_tabletODMCode(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "0x%04x\n", aiptek->features.odmCode);
}
static DEVICE_ATTR(odm_code, S_IRUGO, show_tabletODMCode, NULL);
/***********************************************************************
* support routines for the 'model_code' file. Note that this file
* only displays current setting.
*/
static ssize_t show_tabletModelCode(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "0x%04x\n", aiptek->features.modelCode);
}
static DEVICE_ATTR(model_code, S_IRUGO, show_tabletModelCode, NULL);
/***********************************************************************
* support routines for the 'firmware_code' file. Note that this file
* only displays current setting.
*/
static ssize_t show_firmwareCode(struct device *dev, struct device_attribute *attr, char *buf)
{
struct aiptek *aiptek = dev_get_drvdata(dev);
return sysfs_emit(buf, "%04x\n", aiptek->features.firmwareCode);
}
static DEVICE_ATTR(firmware_code, S_IRUGO, show_firmwareCode, NULL);
static struct attribute *aiptek_dev_attrs[] = {
&dev_attr_size.attr,
&dev_attr_pointer_mode.attr,
&dev_attr_coordinate_mode.attr,
&dev_attr_tool_mode.attr,
&dev_attr_xtilt.attr,
&dev_attr_ytilt.attr,
&dev_attr_jitter.attr,
&dev_attr_delay.attr,
&dev_attr_event_count.attr,
&dev_attr_diagnostic.attr,
&dev_attr_odm_code.attr,
&dev_attr_model_code.attr,
&dev_attr_firmware_code.attr,
&dev_attr_stylus_lower.attr,
&dev_attr_stylus_upper.attr,
&dev_attr_mouse_left.attr,
&dev_attr_mouse_middle.attr,
&dev_attr_mouse_right.attr,
&dev_attr_wheel.attr,
&dev_attr_execute.attr,
NULL
};
ATTRIBUTE_GROUPS(aiptek_dev);
/***********************************************************************
* This routine is called when a tablet has been identified. It basically
* sets up the tablet and the driver's internal structures.
*/
static int
aiptek_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct usb_device *usbdev = interface_to_usbdev(intf);
struct usb_endpoint_descriptor *endpoint;
struct aiptek *aiptek;
struct input_dev *inputdev;
int i;
int speeds[] = { 0,
AIPTEK_PROGRAMMABLE_DELAY_50,
AIPTEK_PROGRAMMABLE_DELAY_400,
AIPTEK_PROGRAMMABLE_DELAY_25,
AIPTEK_PROGRAMMABLE_DELAY_100,
AIPTEK_PROGRAMMABLE_DELAY_200,
AIPTEK_PROGRAMMABLE_DELAY_300
};
int err = -ENOMEM;
/* programmableDelay is where the command-line specified
* delay is kept. We make it the first element of speeds[],
* so therefore, your override speed is tried first, then the
* remainder. Note that the default value of 400ms will be tried
* if you do not specify any command line parameter.
*/
speeds[0] = programmableDelay;
aiptek = kzalloc(sizeof(struct aiptek), GFP_KERNEL);
inputdev = input_allocate_device();
if (!aiptek || !inputdev) {
dev_warn(&intf->dev,
"cannot allocate memory or input device\n");
goto fail1;
}
aiptek->data = usb_alloc_coherent(usbdev, AIPTEK_PACKET_LENGTH,
GFP_KERNEL, &aiptek->data_dma);
if (!aiptek->data) {
dev_warn(&intf->dev, "cannot allocate usb buffer\n");
goto fail1;
}
aiptek->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!aiptek->urb) {
dev_warn(&intf->dev, "cannot allocate urb\n");
goto fail2;
}
aiptek->inputdev = inputdev;
aiptek->intf = intf;
aiptek->ifnum = intf->cur_altsetting->desc.bInterfaceNumber;
aiptek->inDelay = 0;
aiptek->endDelay = 0;
aiptek->previousJitterable = 0;
aiptek->lastMacro = -1;
/* Set up the curSettings struct. Said struct contains the current
* programmable parameters. The newSetting struct contains changes
* the user makes to the settings via the sysfs interface. Those
* changes are not "committed" to curSettings until the user
* writes to the sysfs/.../execute file.
*/
aiptek->curSetting.pointerMode = AIPTEK_POINTER_EITHER_MODE;
aiptek->curSetting.coordinateMode = AIPTEK_COORDINATE_ABSOLUTE_MODE;
aiptek->curSetting.toolMode = AIPTEK_TOOL_BUTTON_PEN_MODE;
aiptek->curSetting.xTilt = AIPTEK_TILT_DISABLE;
aiptek->curSetting.yTilt = AIPTEK_TILT_DISABLE;
aiptek->curSetting.mouseButtonLeft = AIPTEK_MOUSE_LEFT_BUTTON;
aiptek->curSetting.mouseButtonMiddle = AIPTEK_MOUSE_MIDDLE_BUTTON;
aiptek->curSetting.mouseButtonRight = AIPTEK_MOUSE_RIGHT_BUTTON;
aiptek->curSetting.stylusButtonUpper = AIPTEK_STYLUS_UPPER_BUTTON;
aiptek->curSetting.stylusButtonLower = AIPTEK_STYLUS_LOWER_BUTTON;
aiptek->curSetting.jitterDelay = jitterDelay;
aiptek->curSetting.programmableDelay = programmableDelay;
/* Both structs should have equivalent settings
*/
aiptek->newSetting = aiptek->curSetting;
/* Determine the usb devices' physical path.
* Asketh not why we always pretend we're using "../input0",
* but I suspect this will have to be refactored one
* day if a single USB device can be a keyboard & a mouse
* & a tablet, and the inputX number actually will tell
* us something...
*/
usb_make_path(usbdev, aiptek->features.usbPath,
sizeof(aiptek->features.usbPath));
strlcat(aiptek->features.usbPath, "/input0",
sizeof(aiptek->features.usbPath));
/* Set up client data, pointers to open and close routines
* for the input device.
*/
inputdev->name = "Aiptek";
inputdev->phys = aiptek->features.usbPath;
usb_to_input_id(usbdev, &inputdev->id);
inputdev->dev.parent = &intf->dev;
input_set_drvdata(inputdev, aiptek);
inputdev->open = aiptek_open;
inputdev->close = aiptek_close;
/* Now program the capacities of the tablet, in terms of being
* an input device.
*/
for (i = 0; i < ARRAY_SIZE(eventTypes); ++i)
__set_bit(eventTypes[i], inputdev->evbit);
for (i = 0; i < ARRAY_SIZE(absEvents); ++i)
__set_bit(absEvents[i], inputdev->absbit);
for (i = 0; i < ARRAY_SIZE(relEvents); ++i)
__set_bit(relEvents[i], inputdev->relbit);
__set_bit(MSC_SERIAL, inputdev->mscbit);
/* Set up key and button codes */
for (i = 0; i < ARRAY_SIZE(buttonEvents); ++i)
__set_bit(buttonEvents[i], inputdev->keybit);
for (i = 0; i < ARRAY_SIZE(macroKeyEvents); ++i)
__set_bit(macroKeyEvents[i], inputdev->keybit);
/*
* Program the input device coordinate capacities. We do not yet
* know what maximum X, Y, and Z values are, so we're putting fake
* values in. Later, we'll ask the tablet to put in the correct
* values.
*/
input_set_abs_params(inputdev, ABS_X, 0, 2999, 0, 0);
input_set_abs_params(inputdev, ABS_Y, 0, 2249, 0, 0);
input_set_abs_params(inputdev, ABS_PRESSURE, 0, 511, 0, 0);
input_set_abs_params(inputdev, ABS_TILT_X, AIPTEK_TILT_MIN, AIPTEK_TILT_MAX, 0, 0);
input_set_abs_params(inputdev, ABS_TILT_Y, AIPTEK_TILT_MIN, AIPTEK_TILT_MAX, 0, 0);
input_set_abs_params(inputdev, ABS_WHEEL, AIPTEK_WHEEL_MIN, AIPTEK_WHEEL_MAX - 1, 0, 0);
err = usb_find_common_endpoints(intf->cur_altsetting,
NULL, NULL, &endpoint, NULL);
if (err) {
dev_err(&intf->dev,
"interface has no int in endpoints, but must have minimum 1\n");
goto fail3;
}
/* Go set up our URB, which is called when the tablet receives
* input.
*/
usb_fill_int_urb(aiptek->urb,
usbdev,
usb_rcvintpipe(usbdev,
endpoint->bEndpointAddress),
aiptek->data, 8, aiptek_irq, aiptek,
endpoint->bInterval);
aiptek->urb->transfer_dma = aiptek->data_dma;
aiptek->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
/* Program the tablet. This sets the tablet up in the mode
* specified in newSetting, and also queries the tablet's
* physical capacities.
*
* Sanity check: if a tablet doesn't like the slow programmatic
* delay, we often get sizes of 0x0. Let's use that as an indicator
* to try faster delays, up to 25 ms. If that logic fails, well, you'll
* have to explain to us how your tablet thinks it's 0x0, and yet that's
* not an error :-)
*/
for (i = 0; i < ARRAY_SIZE(speeds); ++i) {
aiptek->curSetting.programmableDelay = speeds[i];
(void)aiptek_program_tablet(aiptek);
if (input_abs_get_max(aiptek->inputdev, ABS_X) > 0) {
dev_info(&intf->dev,
"Aiptek using %d ms programming speed\n",
aiptek->curSetting.programmableDelay);
break;
}
}
/* Murphy says that some day someone will have a tablet that fails the
above test. That's you, Frederic Rodrigo */
if (i == ARRAY_SIZE(speeds)) {
dev_info(&intf->dev,
"Aiptek tried all speeds, no sane response\n");
err = -EINVAL;
goto fail3;
}
/* Associate this driver's struct with the usb interface.
*/
usb_set_intfdata(intf, aiptek);
/* Register the tablet as an Input Device
*/
err = input_register_device(aiptek->inputdev);
if (err) {
dev_warn(&intf->dev,
"input_register_device returned err: %d\n", err);
goto fail3;
}
return 0;
fail3: usb_free_urb(aiptek->urb);
fail2: usb_free_coherent(usbdev, AIPTEK_PACKET_LENGTH, aiptek->data,
aiptek->data_dma);
fail1: usb_set_intfdata(intf, NULL);
input_free_device(inputdev);
kfree(aiptek);
return err;
}
/***********************************************************************
* Deal with tablet disconnecting from the system.
*/
static void aiptek_disconnect(struct usb_interface *intf)
{
struct aiptek *aiptek = usb_get_intfdata(intf);
/* Disassociate driver's struct with usb interface
*/
usb_set_intfdata(intf, NULL);
if (aiptek != NULL) {
/* Free & unhook everything from the system.
*/
usb_kill_urb(aiptek->urb);
input_unregister_device(aiptek->inputdev);
usb_free_urb(aiptek->urb);
usb_free_coherent(interface_to_usbdev(intf),
AIPTEK_PACKET_LENGTH,
aiptek->data, aiptek->data_dma);
kfree(aiptek);
}
}
static struct usb_driver aiptek_driver = {
.name = "aiptek",
.probe = aiptek_probe,
.disconnect = aiptek_disconnect,
.id_table = aiptek_ids,
.dev_groups = aiptek_dev_groups,
};
module_usb_driver(aiptek_driver);
MODULE_AUTHOR("Bryan W. Headley/Chris Atenasio/Cedric Brun/Rene van Paassen");
MODULE_DESCRIPTION("Aiptek HyperPen USB Tablet Driver");
MODULE_LICENSE("GPL");
module_param(programmableDelay, int, 0);
MODULE_PARM_DESC(programmableDelay, "delay used during tablet programming");
module_param(jitterDelay, int, 0);
MODULE_PARM_DESC(jitterDelay, "stylus/mouse settlement delay");
|
linux-master
|
drivers/input/tablet/aiptek.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2001-2005 Edouard TISSERANT <[email protected]>
* Copyright (c) 2004-2005 Stephane VOLTZ <[email protected]>
*
* USB Acecad "Acecad Flair" tablet support
*
* Changelog:
* v3.2 - Added sysfs support
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/usb/input.h>
MODULE_AUTHOR("Edouard TISSERANT <[email protected]>");
MODULE_DESCRIPTION("USB Acecad Flair tablet driver");
MODULE_LICENSE("GPL");
#define USB_VENDOR_ID_ACECAD 0x0460
#define USB_DEVICE_ID_FLAIR 0x0004
#define USB_DEVICE_ID_302 0x0008
struct usb_acecad {
char name[128];
char phys[64];
struct usb_interface *intf;
struct input_dev *input;
struct urb *irq;
unsigned char *data;
dma_addr_t data_dma;
};
static void usb_acecad_irq(struct urb *urb)
{
struct usb_acecad *acecad = urb->context;
unsigned char *data = acecad->data;
struct input_dev *dev = acecad->input;
struct usb_interface *intf = acecad->intf;
struct usb_device *udev = interface_to_usbdev(intf);
int prox, status;
switch (urb->status) {
case 0:
/* success */
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
/* this urb is terminated, clean up */
dev_dbg(&intf->dev, "%s - urb shutting down with status: %d\n",
__func__, urb->status);
return;
default:
dev_dbg(&intf->dev, "%s - nonzero urb status received: %d\n",
__func__, urb->status);
goto resubmit;
}
prox = (data[0] & 0x04) >> 2;
input_report_key(dev, BTN_TOOL_PEN, prox);
if (prox) {
int x = data[1] | (data[2] << 8);
int y = data[3] | (data[4] << 8);
/* Pressure should compute the same way for flair and 302 */
int pressure = data[5] | (data[6] << 8);
int touch = data[0] & 0x01;
int stylus = (data[0] & 0x10) >> 4;
int stylus2 = (data[0] & 0x20) >> 5;
input_report_abs(dev, ABS_X, x);
input_report_abs(dev, ABS_Y, y);
input_report_abs(dev, ABS_PRESSURE, pressure);
input_report_key(dev, BTN_TOUCH, touch);
input_report_key(dev, BTN_STYLUS, stylus);
input_report_key(dev, BTN_STYLUS2, stylus2);
}
/* event termination */
input_sync(dev);
resubmit:
status = usb_submit_urb(urb, GFP_ATOMIC);
if (status)
dev_err(&intf->dev,
"can't resubmit intr, %s-%s/input0, status %d\n",
udev->bus->bus_name,
udev->devpath, status);
}
static int usb_acecad_open(struct input_dev *dev)
{
struct usb_acecad *acecad = input_get_drvdata(dev);
acecad->irq->dev = interface_to_usbdev(acecad->intf);
if (usb_submit_urb(acecad->irq, GFP_KERNEL))
return -EIO;
return 0;
}
static void usb_acecad_close(struct input_dev *dev)
{
struct usb_acecad *acecad = input_get_drvdata(dev);
usb_kill_urb(acecad->irq);
}
static int usb_acecad_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct usb_device *dev = interface_to_usbdev(intf);
struct usb_host_interface *interface = intf->cur_altsetting;
struct usb_endpoint_descriptor *endpoint;
struct usb_acecad *acecad;
struct input_dev *input_dev;
int pipe, maxp;
int err;
if (interface->desc.bNumEndpoints != 1)
return -ENODEV;
endpoint = &interface->endpoint[0].desc;
if (!usb_endpoint_is_int_in(endpoint))
return -ENODEV;
pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
maxp = usb_maxpacket(dev, pipe);
acecad = kzalloc(sizeof(struct usb_acecad), GFP_KERNEL);
input_dev = input_allocate_device();
if (!acecad || !input_dev) {
err = -ENOMEM;
goto fail1;
}
acecad->data = usb_alloc_coherent(dev, 8, GFP_KERNEL, &acecad->data_dma);
if (!acecad->data) {
err= -ENOMEM;
goto fail1;
}
acecad->irq = usb_alloc_urb(0, GFP_KERNEL);
if (!acecad->irq) {
err = -ENOMEM;
goto fail2;
}
acecad->intf = intf;
acecad->input = input_dev;
if (dev->manufacturer)
strscpy(acecad->name, dev->manufacturer, sizeof(acecad->name));
if (dev->product) {
if (dev->manufacturer)
strlcat(acecad->name, " ", sizeof(acecad->name));
strlcat(acecad->name, dev->product, sizeof(acecad->name));
}
usb_make_path(dev, acecad->phys, sizeof(acecad->phys));
strlcat(acecad->phys, "/input0", sizeof(acecad->phys));
input_dev->name = acecad->name;
input_dev->phys = acecad->phys;
usb_to_input_id(dev, &input_dev->id);
input_dev->dev.parent = &intf->dev;
input_set_drvdata(input_dev, acecad);
input_dev->open = usb_acecad_open;
input_dev->close = usb_acecad_close;
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
input_dev->keybit[BIT_WORD(BTN_DIGI)] = BIT_MASK(BTN_TOOL_PEN) |
BIT_MASK(BTN_TOUCH) | BIT_MASK(BTN_STYLUS) |
BIT_MASK(BTN_STYLUS2);
switch (id->driver_info) {
case 0:
input_set_abs_params(input_dev, ABS_X, 0, 5000, 4, 0);
input_set_abs_params(input_dev, ABS_Y, 0, 3750, 4, 0);
input_set_abs_params(input_dev, ABS_PRESSURE, 0, 512, 0, 0);
if (!strlen(acecad->name))
snprintf(acecad->name, sizeof(acecad->name),
"USB Acecad Flair Tablet %04x:%04x",
le16_to_cpu(dev->descriptor.idVendor),
le16_to_cpu(dev->descriptor.idProduct));
break;
case 1:
input_set_abs_params(input_dev, ABS_X, 0, 53000, 4, 0);
input_set_abs_params(input_dev, ABS_Y, 0, 2250, 4, 0);
input_set_abs_params(input_dev, ABS_PRESSURE, 0, 1024, 0, 0);
if (!strlen(acecad->name))
snprintf(acecad->name, sizeof(acecad->name),
"USB Acecad 302 Tablet %04x:%04x",
le16_to_cpu(dev->descriptor.idVendor),
le16_to_cpu(dev->descriptor.idProduct));
break;
}
usb_fill_int_urb(acecad->irq, dev, pipe,
acecad->data, maxp > 8 ? 8 : maxp,
usb_acecad_irq, acecad, endpoint->bInterval);
acecad->irq->transfer_dma = acecad->data_dma;
acecad->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
err = input_register_device(acecad->input);
if (err)
goto fail3;
usb_set_intfdata(intf, acecad);
return 0;
fail3: usb_free_urb(acecad->irq);
fail2: usb_free_coherent(dev, 8, acecad->data, acecad->data_dma);
fail1: input_free_device(input_dev);
kfree(acecad);
return err;
}
static void usb_acecad_disconnect(struct usb_interface *intf)
{
struct usb_acecad *acecad = usb_get_intfdata(intf);
struct usb_device *udev = interface_to_usbdev(intf);
usb_set_intfdata(intf, NULL);
input_unregister_device(acecad->input);
usb_free_urb(acecad->irq);
usb_free_coherent(udev, 8, acecad->data, acecad->data_dma);
kfree(acecad);
}
static const struct usb_device_id usb_acecad_id_table[] = {
{ USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_FLAIR), .driver_info = 0 },
{ USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_302), .driver_info = 1 },
{ }
};
MODULE_DEVICE_TABLE(usb, usb_acecad_id_table);
static struct usb_driver usb_acecad_driver = {
.name = "usb_acecad",
.probe = usb_acecad_probe,
.disconnect = usb_acecad_disconnect,
.id_table = usb_acecad_id_table,
};
module_usb_driver(usb_acecad_driver);
|
linux-master
|
drivers/input/tablet/acecad.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* USB Hanwang tablet support
*
* Copyright (c) 2010 Xing Wei <[email protected]>
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/usb/input.h>
MODULE_AUTHOR("Xing Wei <[email protected]>");
MODULE_DESCRIPTION("USB Hanwang tablet driver");
MODULE_LICENSE("GPL");
#define USB_VENDOR_ID_HANWANG 0x0b57
#define HANWANG_TABLET_INT_CLASS 0x0003
#define HANWANG_TABLET_INT_SUB_CLASS 0x0001
#define HANWANG_TABLET_INT_PROTOCOL 0x0002
#define ART_MASTER_PKGLEN_MAX 10
/* device IDs */
#define STYLUS_DEVICE_ID 0x02
#define TOUCH_DEVICE_ID 0x03
#define CURSOR_DEVICE_ID 0x06
#define ERASER_DEVICE_ID 0x0A
#define PAD_DEVICE_ID 0x0F
/* match vendor and interface info */
#define HANWANG_TABLET_DEVICE(vend, cl, sc, pr) \
.match_flags = USB_DEVICE_ID_MATCH_VENDOR \
| USB_DEVICE_ID_MATCH_INT_INFO, \
.idVendor = (vend), \
.bInterfaceClass = (cl), \
.bInterfaceSubClass = (sc), \
.bInterfaceProtocol = (pr)
enum hanwang_tablet_type {
HANWANG_ART_MASTER_III,
HANWANG_ART_MASTER_HD,
HANWANG_ART_MASTER_II,
};
struct hanwang {
unsigned char *data;
dma_addr_t data_dma;
struct input_dev *dev;
struct usb_device *usbdev;
struct urb *irq;
const struct hanwang_features *features;
unsigned int current_tool;
unsigned int current_id;
char name[64];
char phys[32];
};
struct hanwang_features {
unsigned short pid;
char *name;
enum hanwang_tablet_type type;
int pkg_len;
int max_x;
int max_y;
int max_tilt_x;
int max_tilt_y;
int max_pressure;
};
static const struct hanwang_features features_array[] = {
{ 0x8528, "Hanwang Art Master III 0906", HANWANG_ART_MASTER_III,
ART_MASTER_PKGLEN_MAX, 0x5757, 0x3692, 0x3f, 0x7f, 2048 },
{ 0x8529, "Hanwang Art Master III 0604", HANWANG_ART_MASTER_III,
ART_MASTER_PKGLEN_MAX, 0x3d84, 0x2672, 0x3f, 0x7f, 2048 },
{ 0x852a, "Hanwang Art Master III 1308", HANWANG_ART_MASTER_III,
ART_MASTER_PKGLEN_MAX, 0x7f00, 0x4f60, 0x3f, 0x7f, 2048 },
{ 0x8401, "Hanwang Art Master HD 5012", HANWANG_ART_MASTER_HD,
ART_MASTER_PKGLEN_MAX, 0x678e, 0x4150, 0x3f, 0x7f, 1024 },
{ 0x8503, "Hanwang Art Master II", HANWANG_ART_MASTER_II,
ART_MASTER_PKGLEN_MAX, 0x27de, 0x1cfe, 0x3f, 0x7f, 1024 },
};
static const int hw_eventtypes[] = {
EV_KEY, EV_ABS, EV_MSC,
};
static const int hw_absevents[] = {
ABS_X, ABS_Y, ABS_TILT_X, ABS_TILT_Y, ABS_WHEEL,
ABS_RX, ABS_RY, ABS_PRESSURE, ABS_MISC,
};
static const int hw_btnevents[] = {
BTN_STYLUS, BTN_STYLUS2, BTN_TOOL_PEN, BTN_TOOL_RUBBER,
BTN_TOOL_MOUSE, BTN_TOOL_FINGER,
BTN_0, BTN_1, BTN_2, BTN_3, BTN_4, BTN_5, BTN_6, BTN_7, BTN_8,
};
static const int hw_mscevents[] = {
MSC_SERIAL,
};
static void hanwang_parse_packet(struct hanwang *hanwang)
{
unsigned char *data = hanwang->data;
struct input_dev *input_dev = hanwang->dev;
struct usb_device *dev = hanwang->usbdev;
enum hanwang_tablet_type type = hanwang->features->type;
int i;
u16 p;
if (type == HANWANG_ART_MASTER_II) {
hanwang->current_tool = BTN_TOOL_PEN;
hanwang->current_id = STYLUS_DEVICE_ID;
}
switch (data[0]) {
case 0x02: /* data packet */
switch (data[1]) {
case 0x80: /* tool prox out */
if (type != HANWANG_ART_MASTER_II) {
hanwang->current_id = 0;
input_report_key(input_dev,
hanwang->current_tool, 0);
}
break;
case 0x00: /* artmaster ii pen leave */
if (type == HANWANG_ART_MASTER_II) {
hanwang->current_id = 0;
input_report_key(input_dev,
hanwang->current_tool, 0);
}
break;
case 0xc2: /* first time tool prox in */
switch (data[3] & 0xf0) {
case 0x20: /* art_master III */
case 0x30: /* art_master_HD */
hanwang->current_id = STYLUS_DEVICE_ID;
hanwang->current_tool = BTN_TOOL_PEN;
input_report_key(input_dev, BTN_TOOL_PEN, 1);
break;
case 0xa0: /* art_master III */
case 0xb0: /* art_master_HD */
hanwang->current_id = ERASER_DEVICE_ID;
hanwang->current_tool = BTN_TOOL_RUBBER;
input_report_key(input_dev, BTN_TOOL_RUBBER, 1);
break;
default:
hanwang->current_id = 0;
dev_dbg(&dev->dev,
"unknown tablet tool %02x\n", data[0]);
break;
}
break;
default: /* tool data packet */
switch (type) {
case HANWANG_ART_MASTER_III:
p = (data[6] << 3) |
((data[7] & 0xc0) >> 5) |
(data[1] & 0x01);
break;
case HANWANG_ART_MASTER_HD:
case HANWANG_ART_MASTER_II:
p = (data[7] >> 6) | (data[6] << 2);
break;
default:
p = 0;
break;
}
input_report_abs(input_dev, ABS_X,
be16_to_cpup((__be16 *)&data[2]));
input_report_abs(input_dev, ABS_Y,
be16_to_cpup((__be16 *)&data[4]));
input_report_abs(input_dev, ABS_PRESSURE, p);
input_report_abs(input_dev, ABS_TILT_X, data[7] & 0x3f);
input_report_abs(input_dev, ABS_TILT_Y, data[8] & 0x7f);
input_report_key(input_dev, BTN_STYLUS, data[1] & 0x02);
if (type != HANWANG_ART_MASTER_II)
input_report_key(input_dev, BTN_STYLUS2,
data[1] & 0x04);
else
input_report_key(input_dev, BTN_TOOL_PEN, 1);
break;
}
input_report_abs(input_dev, ABS_MISC, hanwang->current_id);
input_event(input_dev, EV_MSC, MSC_SERIAL,
hanwang->features->pid);
break;
case 0x0c:
/* roll wheel */
hanwang->current_id = PAD_DEVICE_ID;
switch (type) {
case HANWANG_ART_MASTER_III:
input_report_key(input_dev, BTN_TOOL_FINGER,
data[1] || data[2] || data[3]);
input_report_abs(input_dev, ABS_WHEEL, data[1]);
input_report_key(input_dev, BTN_0, data[2]);
for (i = 0; i < 8; i++)
input_report_key(input_dev,
BTN_1 + i, data[3] & (1 << i));
break;
case HANWANG_ART_MASTER_HD:
input_report_key(input_dev, BTN_TOOL_FINGER, data[1] ||
data[2] || data[3] || data[4] ||
data[5] || data[6]);
input_report_abs(input_dev, ABS_RX,
((data[1] & 0x1f) << 8) | data[2]);
input_report_abs(input_dev, ABS_RY,
((data[3] & 0x1f) << 8) | data[4]);
input_report_key(input_dev, BTN_0, data[5] & 0x01);
for (i = 0; i < 4; i++) {
input_report_key(input_dev,
BTN_1 + i, data[5] & (1 << i));
input_report_key(input_dev,
BTN_5 + i, data[6] & (1 << i));
}
break;
case HANWANG_ART_MASTER_II:
dev_dbg(&dev->dev, "error packet %02x\n", data[0]);
return;
}
input_report_abs(input_dev, ABS_MISC, hanwang->current_id);
input_event(input_dev, EV_MSC, MSC_SERIAL, 0xffffffff);
break;
default:
dev_dbg(&dev->dev, "error packet %02x\n", data[0]);
break;
}
input_sync(input_dev);
}
static void hanwang_irq(struct urb *urb)
{
struct hanwang *hanwang = urb->context;
struct usb_device *dev = hanwang->usbdev;
int retval;
switch (urb->status) {
case 0:
/* success */;
hanwang_parse_packet(hanwang);
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
/* this urb is terminated, clean up */
dev_err(&dev->dev, "%s - urb shutting down with status: %d",
__func__, urb->status);
return;
default:
dev_err(&dev->dev, "%s - nonzero urb status received: %d",
__func__, urb->status);
break;
}
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval)
dev_err(&dev->dev, "%s - usb_submit_urb failed with result %d",
__func__, retval);
}
static int hanwang_open(struct input_dev *dev)
{
struct hanwang *hanwang = input_get_drvdata(dev);
hanwang->irq->dev = hanwang->usbdev;
if (usb_submit_urb(hanwang->irq, GFP_KERNEL))
return -EIO;
return 0;
}
static void hanwang_close(struct input_dev *dev)
{
struct hanwang *hanwang = input_get_drvdata(dev);
usb_kill_urb(hanwang->irq);
}
static bool get_features(struct usb_device *dev, struct hanwang *hanwang)
{
int i;
for (i = 0; i < ARRAY_SIZE(features_array); i++) {
if (le16_to_cpu(dev->descriptor.idProduct) ==
features_array[i].pid) {
hanwang->features = &features_array[i];
return true;
}
}
return false;
}
static int hanwang_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct usb_device *dev = interface_to_usbdev(intf);
struct usb_endpoint_descriptor *endpoint;
struct hanwang *hanwang;
struct input_dev *input_dev;
int error;
int i;
if (intf->cur_altsetting->desc.bNumEndpoints < 1)
return -ENODEV;
hanwang = kzalloc(sizeof(struct hanwang), GFP_KERNEL);
input_dev = input_allocate_device();
if (!hanwang || !input_dev) {
error = -ENOMEM;
goto fail1;
}
if (!get_features(dev, hanwang)) {
error = -ENXIO;
goto fail1;
}
hanwang->data = usb_alloc_coherent(dev, hanwang->features->pkg_len,
GFP_KERNEL, &hanwang->data_dma);
if (!hanwang->data) {
error = -ENOMEM;
goto fail1;
}
hanwang->irq = usb_alloc_urb(0, GFP_KERNEL);
if (!hanwang->irq) {
error = -ENOMEM;
goto fail2;
}
hanwang->usbdev = dev;
hanwang->dev = input_dev;
usb_make_path(dev, hanwang->phys, sizeof(hanwang->phys));
strlcat(hanwang->phys, "/input0", sizeof(hanwang->phys));
strscpy(hanwang->name, hanwang->features->name, sizeof(hanwang->name));
input_dev->name = hanwang->name;
input_dev->phys = hanwang->phys;
usb_to_input_id(dev, &input_dev->id);
input_dev->dev.parent = &intf->dev;
input_set_drvdata(input_dev, hanwang);
input_dev->open = hanwang_open;
input_dev->close = hanwang_close;
for (i = 0; i < ARRAY_SIZE(hw_eventtypes); ++i)
__set_bit(hw_eventtypes[i], input_dev->evbit);
for (i = 0; i < ARRAY_SIZE(hw_absevents); ++i)
__set_bit(hw_absevents[i], input_dev->absbit);
for (i = 0; i < ARRAY_SIZE(hw_btnevents); ++i)
__set_bit(hw_btnevents[i], input_dev->keybit);
for (i = 0; i < ARRAY_SIZE(hw_mscevents); ++i)
__set_bit(hw_mscevents[i], input_dev->mscbit);
input_set_abs_params(input_dev, ABS_X,
0, hanwang->features->max_x, 4, 0);
input_set_abs_params(input_dev, ABS_Y,
0, hanwang->features->max_y, 4, 0);
input_set_abs_params(input_dev, ABS_TILT_X,
0, hanwang->features->max_tilt_x, 0, 0);
input_set_abs_params(input_dev, ABS_TILT_Y,
0, hanwang->features->max_tilt_y, 0, 0);
input_set_abs_params(input_dev, ABS_PRESSURE,
0, hanwang->features->max_pressure, 0, 0);
endpoint = &intf->cur_altsetting->endpoint[0].desc;
usb_fill_int_urb(hanwang->irq, dev,
usb_rcvintpipe(dev, endpoint->bEndpointAddress),
hanwang->data, hanwang->features->pkg_len,
hanwang_irq, hanwang, endpoint->bInterval);
hanwang->irq->transfer_dma = hanwang->data_dma;
hanwang->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
error = input_register_device(hanwang->dev);
if (error)
goto fail3;
usb_set_intfdata(intf, hanwang);
return 0;
fail3: usb_free_urb(hanwang->irq);
fail2: usb_free_coherent(dev, hanwang->features->pkg_len,
hanwang->data, hanwang->data_dma);
fail1: input_free_device(input_dev);
kfree(hanwang);
return error;
}
static void hanwang_disconnect(struct usb_interface *intf)
{
struct hanwang *hanwang = usb_get_intfdata(intf);
input_unregister_device(hanwang->dev);
usb_free_urb(hanwang->irq);
usb_free_coherent(interface_to_usbdev(intf),
hanwang->features->pkg_len, hanwang->data,
hanwang->data_dma);
kfree(hanwang);
usb_set_intfdata(intf, NULL);
}
static const struct usb_device_id hanwang_ids[] = {
{ HANWANG_TABLET_DEVICE(USB_VENDOR_ID_HANWANG, HANWANG_TABLET_INT_CLASS,
HANWANG_TABLET_INT_SUB_CLASS, HANWANG_TABLET_INT_PROTOCOL) },
{}
};
MODULE_DEVICE_TABLE(usb, hanwang_ids);
static struct usb_driver hanwang_driver = {
.name = "hanwang",
.probe = hanwang_probe,
.disconnect = hanwang_disconnect,
.id_table = hanwang_ids,
};
module_usb_driver(hanwang_driver);
|
linux-master
|
drivers/input/tablet/hanwang.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* MicroTouch (3M) serial touchscreen driver
*
* Copyright (c) 2004 Vojtech Pavlik
*/
/*
* 2005/02/19 Dan Streetman <[email protected]>
* Copied elo.c and edited for MicroTouch protocol
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/serio.h>
#define DRIVER_DESC "MicroTouch serial touchscreen driver"
MODULE_AUTHOR("Vojtech Pavlik <[email protected]>");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
/*
* Definitions & global arrays.
*/
#define MTOUCH_FORMAT_TABLET_STATUS_BIT 0x80
#define MTOUCH_FORMAT_TABLET_TOUCH_BIT 0x40
#define MTOUCH_FORMAT_TABLET_LENGTH 5
#define MTOUCH_RESPONSE_BEGIN_BYTE 0x01
#define MTOUCH_RESPONSE_END_BYTE 0x0d
/* todo: check specs for max length of all responses */
#define MTOUCH_MAX_LENGTH 16
#define MTOUCH_MIN_XC 0
#define MTOUCH_MAX_XC 0x3fff
#define MTOUCH_MIN_YC 0
#define MTOUCH_MAX_YC 0x3fff
#define MTOUCH_GET_XC(data) (((data[2])<<7) | data[1])
#define MTOUCH_GET_YC(data) (((data[4])<<7) | data[3])
#define MTOUCH_GET_TOUCHED(data) (MTOUCH_FORMAT_TABLET_TOUCH_BIT & data[0])
/*
* Per-touchscreen data.
*/
struct mtouch {
struct input_dev *dev;
struct serio *serio;
int idx;
unsigned char data[MTOUCH_MAX_LENGTH];
char phys[32];
};
static void mtouch_process_format_tablet(struct mtouch *mtouch)
{
struct input_dev *dev = mtouch->dev;
if (MTOUCH_FORMAT_TABLET_LENGTH == ++mtouch->idx) {
input_report_abs(dev, ABS_X, MTOUCH_GET_XC(mtouch->data));
input_report_abs(dev, ABS_Y, MTOUCH_MAX_YC - MTOUCH_GET_YC(mtouch->data));
input_report_key(dev, BTN_TOUCH, MTOUCH_GET_TOUCHED(mtouch->data));
input_sync(dev);
mtouch->idx = 0;
}
}
static void mtouch_process_response(struct mtouch *mtouch)
{
if (MTOUCH_RESPONSE_END_BYTE == mtouch->data[mtouch->idx++]) {
/* FIXME - process response */
mtouch->idx = 0;
} else if (MTOUCH_MAX_LENGTH == mtouch->idx) {
printk(KERN_ERR "mtouch.c: too many response bytes\n");
mtouch->idx = 0;
}
}
static irqreturn_t mtouch_interrupt(struct serio *serio,
unsigned char data, unsigned int flags)
{
struct mtouch *mtouch = serio_get_drvdata(serio);
mtouch->data[mtouch->idx] = data;
if (MTOUCH_FORMAT_TABLET_STATUS_BIT & mtouch->data[0])
mtouch_process_format_tablet(mtouch);
else if (MTOUCH_RESPONSE_BEGIN_BYTE == mtouch->data[0])
mtouch_process_response(mtouch);
else
printk(KERN_DEBUG "mtouch.c: unknown/unsynchronized data from device, byte %x\n",mtouch->data[0]);
return IRQ_HANDLED;
}
/*
* mtouch_disconnect() is the opposite of mtouch_connect()
*/
static void mtouch_disconnect(struct serio *serio)
{
struct mtouch *mtouch = serio_get_drvdata(serio);
input_get_device(mtouch->dev);
input_unregister_device(mtouch->dev);
serio_close(serio);
serio_set_drvdata(serio, NULL);
input_put_device(mtouch->dev);
kfree(mtouch);
}
/*
* mtouch_connect() is the routine that is called when someone adds a
* new serio device that supports MicroTouch (Format Tablet) protocol and registers it as
* an input device.
*/
static int mtouch_connect(struct serio *serio, struct serio_driver *drv)
{
struct mtouch *mtouch;
struct input_dev *input_dev;
int err;
mtouch = kzalloc(sizeof(struct mtouch), GFP_KERNEL);
input_dev = input_allocate_device();
if (!mtouch || !input_dev) {
err = -ENOMEM;
goto fail1;
}
mtouch->serio = serio;
mtouch->dev = input_dev;
snprintf(mtouch->phys, sizeof(mtouch->phys), "%s/input0", serio->phys);
input_dev->name = "MicroTouch Serial TouchScreen";
input_dev->phys = mtouch->phys;
input_dev->id.bustype = BUS_RS232;
input_dev->id.vendor = SERIO_MICROTOUCH;
input_dev->id.product = 0;
input_dev->id.version = 0x0100;
input_dev->dev.parent = &serio->dev;
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
input_set_abs_params(mtouch->dev, ABS_X, MTOUCH_MIN_XC, MTOUCH_MAX_XC, 0, 0);
input_set_abs_params(mtouch->dev, ABS_Y, MTOUCH_MIN_YC, MTOUCH_MAX_YC, 0, 0);
serio_set_drvdata(serio, mtouch);
err = serio_open(serio, drv);
if (err)
goto fail2;
err = input_register_device(mtouch->dev);
if (err)
goto fail3;
return 0;
fail3: serio_close(serio);
fail2: serio_set_drvdata(serio, NULL);
fail1: input_free_device(input_dev);
kfree(mtouch);
return err;
}
/*
* The serio driver structure.
*/
static const struct serio_device_id mtouch_serio_ids[] = {
{
.type = SERIO_RS232,
.proto = SERIO_MICROTOUCH,
.id = SERIO_ANY,
.extra = SERIO_ANY,
},
{ 0 }
};
MODULE_DEVICE_TABLE(serio, mtouch_serio_ids);
static struct serio_driver mtouch_drv = {
.driver = {
.name = "mtouch",
},
.description = DRIVER_DESC,
.id_table = mtouch_serio_ids,
.interrupt = mtouch_interrupt,
.connect = mtouch_connect,
.disconnect = mtouch_disconnect,
};
module_serio_driver(mtouch_drv);
|
linux-master
|
drivers/input/touchscreen/mtouch.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* EETI Egalax serial touchscreen driver
*
* Copyright (c) 2015 Zoltán Böszörményi <[email protected]>
*
* based on the
*
* Hampshire serial touchscreen driver (Copyright (c) 2010 Adam Bennett)
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/serio.h>
#define DRIVER_DESC "EETI Egalax serial touchscreen driver"
/*
* Definitions & global arrays.
*/
#define EGALAX_FORMAT_MAX_LENGTH 6
#define EGALAX_FORMAT_START_BIT BIT(7)
#define EGALAX_FORMAT_PRESSURE_BIT BIT(6)
#define EGALAX_FORMAT_TOUCH_BIT BIT(0)
#define EGALAX_FORMAT_RESOLUTION_MASK 0x06
#define EGALAX_MIN_XC 0
#define EGALAX_MAX_XC 0x4000
#define EGALAX_MIN_YC 0
#define EGALAX_MAX_YC 0x4000
/*
* Per-touchscreen data.
*/
struct egalax {
struct input_dev *input;
struct serio *serio;
int idx;
u8 data[EGALAX_FORMAT_MAX_LENGTH];
char phys[32];
};
static void egalax_process_data(struct egalax *egalax)
{
struct input_dev *dev = egalax->input;
u8 *data = egalax->data;
u16 x, y;
u8 shift;
u8 mask;
shift = 3 - ((data[0] & EGALAX_FORMAT_RESOLUTION_MASK) >> 1);
mask = 0xff >> (shift + 1);
x = (((u16)(data[1] & mask) << 7) | (data[2] & 0x7f)) << shift;
y = (((u16)(data[3] & mask) << 7) | (data[4] & 0x7f)) << shift;
input_report_key(dev, BTN_TOUCH, data[0] & EGALAX_FORMAT_TOUCH_BIT);
input_report_abs(dev, ABS_X, x);
input_report_abs(dev, ABS_Y, y);
input_sync(dev);
}
static irqreturn_t egalax_interrupt(struct serio *serio,
unsigned char data, unsigned int flags)
{
struct egalax *egalax = serio_get_drvdata(serio);
int pkt_len;
egalax->data[egalax->idx++] = data;
if (likely(egalax->data[0] & EGALAX_FORMAT_START_BIT)) {
pkt_len = egalax->data[0] & EGALAX_FORMAT_PRESSURE_BIT ? 6 : 5;
if (pkt_len == egalax->idx) {
egalax_process_data(egalax);
egalax->idx = 0;
}
} else {
dev_dbg(&serio->dev, "unknown/unsynchronized data: %x\n",
egalax->data[0]);
egalax->idx = 0;
}
return IRQ_HANDLED;
}
/*
* egalax_connect() is the routine that is called when someone adds a
* new serio device that supports egalax protocol and registers it as
* an input device. This is usually accomplished using inputattach.
*/
static int egalax_connect(struct serio *serio, struct serio_driver *drv)
{
struct egalax *egalax;
struct input_dev *input_dev;
int error;
egalax = kzalloc(sizeof(struct egalax), GFP_KERNEL);
input_dev = input_allocate_device();
if (!egalax || !input_dev) {
error = -ENOMEM;
goto err_free_mem;
}
egalax->serio = serio;
egalax->input = input_dev;
snprintf(egalax->phys, sizeof(egalax->phys),
"%s/input0", serio->phys);
input_dev->name = "EETI eGalaxTouch Serial TouchScreen";
input_dev->phys = egalax->phys;
input_dev->id.bustype = BUS_RS232;
input_dev->id.vendor = SERIO_EGALAX;
input_dev->id.product = 0;
input_dev->id.version = 0x0001;
input_dev->dev.parent = &serio->dev;
input_set_capability(input_dev, EV_KEY, BTN_TOUCH);
input_set_abs_params(input_dev, ABS_X,
EGALAX_MIN_XC, EGALAX_MAX_XC, 0, 0);
input_set_abs_params(input_dev, ABS_Y,
EGALAX_MIN_YC, EGALAX_MAX_YC, 0, 0);
serio_set_drvdata(serio, egalax);
error = serio_open(serio, drv);
if (error)
goto err_reset_drvdata;
error = input_register_device(input_dev);
if (error)
goto err_close_serio;
return 0;
err_close_serio:
serio_close(serio);
err_reset_drvdata:
serio_set_drvdata(serio, NULL);
err_free_mem:
input_free_device(input_dev);
kfree(egalax);
return error;
}
static void egalax_disconnect(struct serio *serio)
{
struct egalax *egalax = serio_get_drvdata(serio);
serio_close(serio);
serio_set_drvdata(serio, NULL);
input_unregister_device(egalax->input);
kfree(egalax);
}
/*
* The serio driver structure.
*/
static const struct serio_device_id egalax_serio_ids[] = {
{
.type = SERIO_RS232,
.proto = SERIO_EGALAX,
.id = SERIO_ANY,
.extra = SERIO_ANY,
},
{ 0 }
};
MODULE_DEVICE_TABLE(serio, egalax_serio_ids);
static struct serio_driver egalax_drv = {
.driver = {
.name = "egalax",
},
.description = DRIVER_DESC,
.id_table = egalax_serio_ids,
.interrupt = egalax_interrupt,
.connect = egalax_connect,
.disconnect = egalax_disconnect,
};
module_serio_driver(egalax_drv);
MODULE_AUTHOR("Zoltán Böszörményi <[email protected]>");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/touchscreen/egalax_ts_serial.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Toradex Colibri VF50 Touchscreen driver
*
* Copyright 2015 Toradex AG
*
* Originally authored by Stefan Agner for 3.0 kernel
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/iio/consumer.h>
#include <linux/iio/types.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/types.h>
#define DRIVER_NAME "colibri-vf50-ts"
#define VF_ADC_MAX ((1 << 12) - 1)
#define COLI_TOUCH_MIN_DELAY_US 1000
#define COLI_TOUCH_MAX_DELAY_US 2000
#define COLI_PULLUP_MIN_DELAY_US 10000
#define COLI_PULLUP_MAX_DELAY_US 11000
#define COLI_TOUCH_NO_OF_AVGS 5
#define COLI_TOUCH_REQ_ADC_CHAN 4
struct vf50_touch_device {
struct platform_device *pdev;
struct input_dev *ts_input;
struct iio_channel *channels;
struct gpio_desc *gpio_xp;
struct gpio_desc *gpio_xm;
struct gpio_desc *gpio_yp;
struct gpio_desc *gpio_ym;
int pen_irq;
int min_pressure;
bool stop_touchscreen;
};
/*
* Enables given plates and measures touch parameters using ADC
*/
static int adc_ts_measure(struct iio_channel *channel,
struct gpio_desc *plate_p, struct gpio_desc *plate_m)
{
int i, value = 0, val = 0;
int error;
gpiod_set_value(plate_p, 1);
gpiod_set_value(plate_m, 1);
usleep_range(COLI_TOUCH_MIN_DELAY_US, COLI_TOUCH_MAX_DELAY_US);
for (i = 0; i < COLI_TOUCH_NO_OF_AVGS; i++) {
error = iio_read_channel_raw(channel, &val);
if (error < 0) {
value = error;
goto error_iio_read;
}
value += val;
}
value /= COLI_TOUCH_NO_OF_AVGS;
error_iio_read:
gpiod_set_value(plate_p, 0);
gpiod_set_value(plate_m, 0);
return value;
}
/*
* Enable touch detection using falling edge detection on XM
*/
static void vf50_ts_enable_touch_detection(struct vf50_touch_device *vf50_ts)
{
/* Enable plate YM (needs to be strong GND, high active) */
gpiod_set_value(vf50_ts->gpio_ym, 1);
/*
* Let the platform mux to idle state in order to enable
* Pull-Up on GPIO
*/
pinctrl_pm_select_idle_state(&vf50_ts->pdev->dev);
/* Wait for the pull-up to be stable on high */
usleep_range(COLI_PULLUP_MIN_DELAY_US, COLI_PULLUP_MAX_DELAY_US);
}
/*
* ADC touch screen sampling bottom half irq handler
*/
static irqreturn_t vf50_ts_irq_bh(int irq, void *private)
{
struct vf50_touch_device *vf50_ts = private;
struct device *dev = &vf50_ts->pdev->dev;
int val_x, val_y, val_z1, val_z2, val_p = 0;
bool discard_val_on_start = true;
/* Disable the touch detection plates */
gpiod_set_value(vf50_ts->gpio_ym, 0);
/* Let the platform mux to default state in order to mux as ADC */
pinctrl_pm_select_default_state(dev);
while (!vf50_ts->stop_touchscreen) {
/* X-Direction */
val_x = adc_ts_measure(&vf50_ts->channels[0],
vf50_ts->gpio_xp, vf50_ts->gpio_xm);
if (val_x < 0)
break;
/* Y-Direction */
val_y = adc_ts_measure(&vf50_ts->channels[1],
vf50_ts->gpio_yp, vf50_ts->gpio_ym);
if (val_y < 0)
break;
/*
* Touch pressure
* Measure on XP/YM
*/
val_z1 = adc_ts_measure(&vf50_ts->channels[2],
vf50_ts->gpio_yp, vf50_ts->gpio_xm);
if (val_z1 < 0)
break;
val_z2 = adc_ts_measure(&vf50_ts->channels[3],
vf50_ts->gpio_yp, vf50_ts->gpio_xm);
if (val_z2 < 0)
break;
/* Validate signal (avoid calculation using noise) */
if (val_z1 > 64 && val_x > 64) {
/*
* Calculate resistance between the plates
* lower resistance means higher pressure
*/
int r_x = (1000 * val_x) / VF_ADC_MAX;
val_p = (r_x * val_z2) / val_z1 - r_x;
} else {
val_p = 2000;
}
val_p = 2000 - val_p;
dev_dbg(dev,
"Measured values: x: %d, y: %d, z1: %d, z2: %d, p: %d\n",
val_x, val_y, val_z1, val_z2, val_p);
/*
* If touch pressure is too low, stop measuring and reenable
* touch detection
*/
if (val_p < vf50_ts->min_pressure || val_p > 2000)
break;
/*
* The pressure may not be enough for the first x and the
* second y measurement, but, the pressure is ok when the
* driver is doing the third and fourth measurement. To
* take care of this, we drop the first measurement always.
*/
if (discard_val_on_start) {
discard_val_on_start = false;
} else {
/*
* Report touch position and sleep for
* the next measurement.
*/
input_report_abs(vf50_ts->ts_input,
ABS_X, VF_ADC_MAX - val_x);
input_report_abs(vf50_ts->ts_input,
ABS_Y, VF_ADC_MAX - val_y);
input_report_abs(vf50_ts->ts_input,
ABS_PRESSURE, val_p);
input_report_key(vf50_ts->ts_input, BTN_TOUCH, 1);
input_sync(vf50_ts->ts_input);
}
usleep_range(COLI_PULLUP_MIN_DELAY_US,
COLI_PULLUP_MAX_DELAY_US);
}
/* Report no more touch, re-enable touch detection */
input_report_abs(vf50_ts->ts_input, ABS_PRESSURE, 0);
input_report_key(vf50_ts->ts_input, BTN_TOUCH, 0);
input_sync(vf50_ts->ts_input);
vf50_ts_enable_touch_detection(vf50_ts);
return IRQ_HANDLED;
}
static int vf50_ts_open(struct input_dev *dev_input)
{
struct vf50_touch_device *touchdev = input_get_drvdata(dev_input);
struct device *dev = &touchdev->pdev->dev;
dev_dbg(dev, "Input device %s opened, starting touch detection\n",
dev_input->name);
touchdev->stop_touchscreen = false;
/* Mux detection before request IRQ, wait for pull-up to settle */
vf50_ts_enable_touch_detection(touchdev);
return 0;
}
static void vf50_ts_close(struct input_dev *dev_input)
{
struct vf50_touch_device *touchdev = input_get_drvdata(dev_input);
struct device *dev = &touchdev->pdev->dev;
touchdev->stop_touchscreen = true;
/* Make sure IRQ is not running past close */
mb();
synchronize_irq(touchdev->pen_irq);
gpiod_set_value(touchdev->gpio_ym, 0);
pinctrl_pm_select_default_state(dev);
dev_dbg(dev, "Input device %s closed, disable touch detection\n",
dev_input->name);
}
static int vf50_ts_get_gpiod(struct device *dev, struct gpio_desc **gpio_d,
const char *con_id, enum gpiod_flags flags)
{
int error;
*gpio_d = devm_gpiod_get(dev, con_id, flags);
if (IS_ERR(*gpio_d)) {
error = PTR_ERR(*gpio_d);
dev_err(dev, "Could not get gpio_%s %d\n", con_id, error);
return error;
}
return 0;
}
static void vf50_ts_channel_release(void *data)
{
struct iio_channel *channels = data;
iio_channel_release_all(channels);
}
static int vf50_ts_probe(struct platform_device *pdev)
{
struct input_dev *input;
struct iio_channel *channels;
struct device *dev = &pdev->dev;
struct vf50_touch_device *touchdev;
int num_adc_channels;
int error;
channels = iio_channel_get_all(dev);
if (IS_ERR(channels))
return PTR_ERR(channels);
error = devm_add_action(dev, vf50_ts_channel_release, channels);
if (error) {
iio_channel_release_all(channels);
dev_err(dev, "Failed to register iio channel release action");
return error;
}
num_adc_channels = 0;
while (channels[num_adc_channels].indio_dev)
num_adc_channels++;
if (num_adc_channels != COLI_TOUCH_REQ_ADC_CHAN) {
dev_err(dev, "Inadequate ADC channels specified\n");
return -EINVAL;
}
touchdev = devm_kzalloc(dev, sizeof(*touchdev), GFP_KERNEL);
if (!touchdev)
return -ENOMEM;
touchdev->pdev = pdev;
touchdev->channels = channels;
error = of_property_read_u32(dev->of_node, "vf50-ts-min-pressure",
&touchdev->min_pressure);
if (error)
return error;
input = devm_input_allocate_device(dev);
if (!input) {
dev_err(dev, "Failed to allocate TS input device\n");
return -ENOMEM;
}
input->name = DRIVER_NAME;
input->id.bustype = BUS_HOST;
input->dev.parent = dev;
input->open = vf50_ts_open;
input->close = vf50_ts_close;
input_set_capability(input, EV_KEY, BTN_TOUCH);
input_set_abs_params(input, ABS_X, 0, VF_ADC_MAX, 0, 0);
input_set_abs_params(input, ABS_Y, 0, VF_ADC_MAX, 0, 0);
input_set_abs_params(input, ABS_PRESSURE, 0, VF_ADC_MAX, 0, 0);
touchdev->ts_input = input;
input_set_drvdata(input, touchdev);
error = input_register_device(input);
if (error) {
dev_err(dev, "Failed to register input device\n");
return error;
}
error = vf50_ts_get_gpiod(dev, &touchdev->gpio_xp, "xp", GPIOD_OUT_LOW);
if (error)
return error;
error = vf50_ts_get_gpiod(dev, &touchdev->gpio_xm,
"xm", GPIOD_OUT_LOW);
if (error)
return error;
error = vf50_ts_get_gpiod(dev, &touchdev->gpio_yp, "yp", GPIOD_OUT_LOW);
if (error)
return error;
error = vf50_ts_get_gpiod(dev, &touchdev->gpio_ym, "ym", GPIOD_OUT_LOW);
if (error)
return error;
touchdev->pen_irq = platform_get_irq(pdev, 0);
if (touchdev->pen_irq < 0)
return touchdev->pen_irq;
error = devm_request_threaded_irq(dev, touchdev->pen_irq,
NULL, vf50_ts_irq_bh, IRQF_ONESHOT,
"vf50 touch", touchdev);
if (error) {
dev_err(dev, "Failed to request IRQ %d: %d\n",
touchdev->pen_irq, error);
return error;
}
return 0;
}
static const struct of_device_id vf50_touch_of_match[] = {
{ .compatible = "toradex,vf50-touchscreen", },
{ }
};
MODULE_DEVICE_TABLE(of, vf50_touch_of_match);
static struct platform_driver vf50_touch_driver = {
.driver = {
.name = "toradex,vf50_touchctrl",
.of_match_table = vf50_touch_of_match,
},
.probe = vf50_ts_probe,
};
module_platform_driver(vf50_touch_driver);
MODULE_AUTHOR("Sanchayan Maity");
MODULE_DESCRIPTION("Colibri VF50 Touchscreen driver");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/colibri-vf50-ts.c
|
// SPDX-License-Identifier: GPL-2.0
/*
* Raspberry Pi firmware based touchscreen driver
*
* Copyright (C) 2015, 2017 Raspberry Pi
* Copyright (C) 2018 Nicolas Saenz Julienne <[email protected]>
*/
#include <linux/io.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/input/touchscreen.h>
#include <soc/bcm2835/raspberrypi-firmware.h>
#define RPI_TS_DEFAULT_WIDTH 800
#define RPI_TS_DEFAULT_HEIGHT 480
#define RPI_TS_MAX_SUPPORTED_POINTS 10
#define RPI_TS_FTS_TOUCH_DOWN 0
#define RPI_TS_FTS_TOUCH_CONTACT 2
#define RPI_TS_POLL_INTERVAL 17 /* 60fps */
#define RPI_TS_NPOINTS_REG_INVALIDATE 99
struct rpi_ts {
struct platform_device *pdev;
struct input_dev *input;
struct touchscreen_properties prop;
void __iomem *fw_regs_va;
dma_addr_t fw_regs_phys;
int known_ids;
};
struct rpi_ts_regs {
u8 device_mode;
u8 gesture_id;
u8 num_points;
struct rpi_ts_touch {
u8 xh;
u8 xl;
u8 yh;
u8 yl;
u8 pressure; /* Not supported */
u8 area; /* Not supported */
} point[RPI_TS_MAX_SUPPORTED_POINTS];
};
static void rpi_ts_poll(struct input_dev *input)
{
struct rpi_ts *ts = input_get_drvdata(input);
struct rpi_ts_regs regs;
int modified_ids = 0;
long released_ids;
int event_type;
int touchid;
int x, y;
int i;
memcpy_fromio(®s, ts->fw_regs_va, sizeof(regs));
/*
* We poll the memory based register copy of the touchscreen chip using
* the number of points register to know whether the copy has been
* updated (we write 99 to the memory copy, the GPU will write between
* 0 - 10 points)
*/
iowrite8(RPI_TS_NPOINTS_REG_INVALIDATE,
ts->fw_regs_va + offsetof(struct rpi_ts_regs, num_points));
if (regs.num_points == RPI_TS_NPOINTS_REG_INVALIDATE ||
(regs.num_points == 0 && ts->known_ids == 0))
return;
for (i = 0; i < regs.num_points; i++) {
x = (((int)regs.point[i].xh & 0xf) << 8) + regs.point[i].xl;
y = (((int)regs.point[i].yh & 0xf) << 8) + regs.point[i].yl;
touchid = (regs.point[i].yh >> 4) & 0xf;
event_type = (regs.point[i].xh >> 6) & 0x03;
modified_ids |= BIT(touchid);
if (event_type == RPI_TS_FTS_TOUCH_DOWN ||
event_type == RPI_TS_FTS_TOUCH_CONTACT) {
input_mt_slot(input, touchid);
input_mt_report_slot_state(input, MT_TOOL_FINGER, 1);
touchscreen_report_pos(input, &ts->prop, x, y, true);
}
}
released_ids = ts->known_ids & ~modified_ids;
for_each_set_bit(i, &released_ids, RPI_TS_MAX_SUPPORTED_POINTS) {
input_mt_slot(input, i);
input_mt_report_slot_inactive(input);
modified_ids &= ~(BIT(i));
}
ts->known_ids = modified_ids;
input_mt_sync_frame(input);
input_sync(input);
}
static void rpi_ts_dma_cleanup(void *data)
{
struct rpi_ts *ts = data;
struct device *dev = &ts->pdev->dev;
dma_free_coherent(dev, PAGE_SIZE, ts->fw_regs_va, ts->fw_regs_phys);
}
static int rpi_ts_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct input_dev *input;
struct device_node *fw_node;
struct rpi_firmware *fw;
struct rpi_ts *ts;
u32 touchbuf;
int error;
fw_node = of_get_parent(np);
if (!fw_node) {
dev_err(dev, "Missing firmware node\n");
return -ENOENT;
}
fw = devm_rpi_firmware_get(&pdev->dev, fw_node);
of_node_put(fw_node);
if (!fw)
return -EPROBE_DEFER;
ts = devm_kzalloc(dev, sizeof(*ts), GFP_KERNEL);
if (!ts)
return -ENOMEM;
ts->pdev = pdev;
ts->fw_regs_va = dma_alloc_coherent(dev, PAGE_SIZE, &ts->fw_regs_phys,
GFP_KERNEL);
if (!ts->fw_regs_va) {
dev_err(dev, "failed to dma_alloc_coherent\n");
return -ENOMEM;
}
error = devm_add_action_or_reset(dev, rpi_ts_dma_cleanup, ts);
if (error) {
dev_err(dev, "failed to devm_add_action_or_reset, %d\n", error);
return error;
}
touchbuf = (u32)ts->fw_regs_phys;
error = rpi_firmware_property(fw, RPI_FIRMWARE_FRAMEBUFFER_SET_TOUCHBUF,
&touchbuf, sizeof(touchbuf));
if (error || touchbuf != 0) {
dev_warn(dev, "Failed to set touchbuf, %d\n", error);
return error;
}
input = devm_input_allocate_device(dev);
if (!input) {
dev_err(dev, "Failed to allocate input device\n");
return -ENOMEM;
}
ts->input = input;
input_set_drvdata(input, ts);
input->name = "raspberrypi-ts";
input->id.bustype = BUS_HOST;
input_set_abs_params(input, ABS_MT_POSITION_X, 0,
RPI_TS_DEFAULT_WIDTH, 0, 0);
input_set_abs_params(input, ABS_MT_POSITION_Y, 0,
RPI_TS_DEFAULT_HEIGHT, 0, 0);
touchscreen_parse_properties(input, true, &ts->prop);
error = input_mt_init_slots(input, RPI_TS_MAX_SUPPORTED_POINTS,
INPUT_MT_DIRECT);
if (error) {
dev_err(dev, "could not init mt slots, %d\n", error);
return error;
}
error = input_setup_polling(input, rpi_ts_poll);
if (error) {
dev_err(dev, "could not set up polling mode, %d\n", error);
return error;
}
input_set_poll_interval(input, RPI_TS_POLL_INTERVAL);
error = input_register_device(input);
if (error) {
dev_err(dev, "could not register input device, %d\n", error);
return error;
}
return 0;
}
static const struct of_device_id rpi_ts_match[] = {
{ .compatible = "raspberrypi,firmware-ts", },
{},
};
MODULE_DEVICE_TABLE(of, rpi_ts_match);
static struct platform_driver rpi_ts_driver = {
.driver = {
.name = "raspberrypi-ts",
.of_match_table = rpi_ts_match,
},
.probe = rpi_ts_probe,
};
module_platform_driver(rpi_ts_driver);
MODULE_AUTHOR("Gordon Hollingworth");
MODULE_AUTHOR("Nicolas Saenz Julienne <[email protected]>");
MODULE_DESCRIPTION("Raspberry Pi firmware based touchscreen driver");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/touchscreen/raspberrypi-ts.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* wm9712.c -- Codec driver for Wolfson WM9712 AC97 Codecs.
*
* Copyright 2003, 2004, 2005, 2006, 2007 Wolfson Microelectronics PLC.
* Author: Liam Girdwood <[email protected]>
* Parts Copyright : Ian Molton <[email protected]>
* Andrew Zabolotny <[email protected]>
* Russell King <[email protected]>
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/input.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/wm97xx.h>
#define TS_NAME "wm97xx"
#define WM9712_VERSION "1.00"
#define DEFAULT_PRESSURE 0xb0c0
/*
* Module parameters
*/
/*
* Set internal pull up for pen detect.
*
* Pull up is in the range 1.02k (least sensitive) to 64k (most sensitive)
* i.e. pull up resistance = 64k Ohms / rpu.
*
* Adjust this value if you are having problems with pen detect not
* detecting any down event.
*/
static int rpu = 8;
module_param(rpu, int, 0);
MODULE_PARM_DESC(rpu, "Set internal pull up resistor for pen detect.");
/*
* Set current used for pressure measurement.
*
* Set pil = 2 to use 400uA
* pil = 1 to use 200uA and
* pil = 0 to disable pressure measurement.
*
* This is used to increase the range of values returned by the adc
* when measureing touchpanel pressure.
*/
static int pil;
module_param(pil, int, 0);
MODULE_PARM_DESC(pil, "Set current used for pressure measurement.");
/*
* Set threshold for pressure measurement.
*
* Pen down pressure below threshold is ignored.
*/
static int pressure = DEFAULT_PRESSURE & 0xfff;
module_param(pressure, int, 0);
MODULE_PARM_DESC(pressure, "Set threshold for pressure measurement.");
/*
* Set adc sample delay.
*
* For accurate touchpanel measurements, some settling time may be
* required between the switch matrix applying a voltage across the
* touchpanel plate and the ADC sampling the signal.
*
* This delay can be set by setting delay = n, where n is the array
* position of the delay in the array delay_table below.
* Long delays > 1ms are supported for completeness, but are not
* recommended.
*/
static int delay = 3;
module_param(delay, int, 0);
MODULE_PARM_DESC(delay, "Set adc sample delay.");
/*
* Set five_wire = 1 to use a 5 wire touchscreen.
*
* NOTE: Five wire mode does not allow for readback of pressure.
*/
static int five_wire;
module_param(five_wire, int, 0);
MODULE_PARM_DESC(five_wire, "Set to '1' to use 5-wire touchscreen.");
/*
* Set adc mask function.
*
* Sources of glitch noise, such as signals driving an LCD display, may feed
* through to the touch screen plates and affect measurement accuracy. In
* order to minimise this, a signal may be applied to the MASK pin to delay or
* synchronise the sampling.
*
* 0 = No delay or sync
* 1 = High on pin stops conversions
* 2 = Edge triggered, edge on pin delays conversion by delay param (above)
* 3 = Edge triggered, edge on pin starts conversion after delay param
*/
static int mask;
module_param(mask, int, 0);
MODULE_PARM_DESC(mask, "Set adc mask function.");
/*
* Coordinate Polling Enable.
*
* Set to 1 to enable coordinate polling. e.g. x,y[,p] is sampled together
* for every poll.
*/
static int coord;
module_param(coord, int, 0);
MODULE_PARM_DESC(coord, "Polling coordinate mode");
/*
* ADC sample delay times in uS
*/
static const int delay_table[] = {
21, /* 1 AC97 Link frames */
42, /* 2 */
84, /* 4 */
167, /* 8 */
333, /* 16 */
667, /* 32 */
1000, /* 48 */
1333, /* 64 */
2000, /* 96 */
2667, /* 128 */
3333, /* 160 */
4000, /* 192 */
4667, /* 224 */
5333, /* 256 */
6000, /* 288 */
0 /* No delay, switch matrix always on */
};
/*
* Delay after issuing a POLL command.
*
* The delay is 3 AC97 link frames + the touchpanel settling delay
*/
static inline void poll_delay(int d)
{
udelay(3 * AC97_LINK_FRAME + delay_table[d]);
}
/*
* set up the physical settings of the WM9712
*/
static void wm9712_phy_init(struct wm97xx *wm)
{
u16 dig1 = 0;
u16 dig2 = WM97XX_RPR | WM9712_RPU(1);
/* WM9712 rpu */
if (rpu) {
dig2 &= 0xffc0;
dig2 |= WM9712_RPU(rpu);
dev_dbg(wm->dev, "setting pen detect pull-up to %d Ohms\n",
64000 / rpu);
}
/* WM9712 five wire */
if (five_wire) {
dig2 |= WM9712_45W;
dev_dbg(wm->dev, "setting 5-wire touchscreen mode.\n");
if (pil) {
dev_warn(wm->dev, "pressure measurement is not "
"supported in 5-wire mode\n");
pil = 0;
}
}
/* touchpanel pressure current*/
if (pil == 2) {
dig2 |= WM9712_PIL;
dev_dbg(wm->dev,
"setting pressure measurement current to 400uA.\n");
} else if (pil)
dev_dbg(wm->dev,
"setting pressure measurement current to 200uA.\n");
if (!pil)
pressure = 0;
/* polling mode sample settling delay */
if (delay < 0 || delay > 15) {
dev_dbg(wm->dev, "supplied delay out of range.\n");
delay = 4;
}
dig1 &= 0xff0f;
dig1 |= WM97XX_DELAY(delay);
dev_dbg(wm->dev, "setting adc sample delay to %d u Secs.\n",
delay_table[delay]);
/* mask */
dig2 |= ((mask & 0x3) << 6);
if (mask) {
u16 reg;
/* Set GPIO4 as Mask Pin*/
reg = wm97xx_reg_read(wm, AC97_MISC_AFE);
wm97xx_reg_write(wm, AC97_MISC_AFE, reg | WM97XX_GPIO_4);
reg = wm97xx_reg_read(wm, AC97_GPIO_CFG);
wm97xx_reg_write(wm, AC97_GPIO_CFG, reg | WM97XX_GPIO_4);
}
/* wait - coord mode */
if (coord)
dig2 |= WM9712_WAIT;
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER1, dig1);
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER2, dig2);
}
static void wm9712_dig_enable(struct wm97xx *wm, int enable)
{
u16 dig2 = wm->dig[2];
if (enable) {
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER2,
dig2 | WM97XX_PRP_DET_DIG);
wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD); /* dummy read */
} else
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER2,
dig2 & ~WM97XX_PRP_DET_DIG);
}
static void wm9712_aux_prepare(struct wm97xx *wm)
{
memcpy(wm->dig_save, wm->dig, sizeof(wm->dig));
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER1, 0);
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER2, WM97XX_PRP_DET_DIG);
}
static void wm9712_dig_restore(struct wm97xx *wm)
{
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER1, wm->dig_save[1]);
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER2, wm->dig_save[2]);
}
static inline int is_pden(struct wm97xx *wm)
{
return wm->dig[2] & WM9712_PDEN;
}
/*
* Read a sample from the WM9712 adc in polling mode.
*/
static int wm9712_poll_sample(struct wm97xx *wm, int adcsel, int *sample)
{
int timeout = 5 * delay;
bool wants_pen = adcsel & WM97XX_PEN_DOWN;
if (wants_pen && !wm->pen_probably_down) {
u16 data = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD);
if (!(data & WM97XX_PEN_DOWN))
return RC_PENUP;
wm->pen_probably_down = 1;
}
/* set up digitiser */
if (wm->mach_ops && wm->mach_ops->pre_sample)
wm->mach_ops->pre_sample(adcsel);
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER1, (adcsel & WM97XX_ADCSEL_MASK)
| WM97XX_POLL | WM97XX_DELAY(delay));
/* wait 3 AC97 time slots + delay for conversion */
poll_delay(delay);
/* wait for POLL to go low */
while ((wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER1) & WM97XX_POLL)
&& timeout) {
udelay(AC97_LINK_FRAME);
timeout--;
}
if (timeout <= 0) {
/* If PDEN is set, we can get a timeout when pen goes up */
if (is_pden(wm))
wm->pen_probably_down = 0;
else
dev_dbg(wm->dev, "adc sample timeout\n");
return RC_PENUP;
}
*sample = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD);
if (wm->mach_ops && wm->mach_ops->post_sample)
wm->mach_ops->post_sample(adcsel);
/* check we have correct sample */
if ((*sample ^ adcsel) & WM97XX_ADCSEL_MASK) {
dev_dbg(wm->dev, "adc wrong sample, wanted %x got %x\n",
adcsel & WM97XX_ADCSEL_MASK,
*sample & WM97XX_ADCSEL_MASK);
return RC_AGAIN;
}
if (wants_pen && !(*sample & WM97XX_PEN_DOWN)) {
/* Sometimes it reads a wrong value the first time. */
*sample = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD);
if (!(*sample & WM97XX_PEN_DOWN)) {
wm->pen_probably_down = 0;
return RC_PENUP;
}
}
return RC_VALID;
}
/*
* Read a coord from the WM9712 adc in polling mode.
*/
static int wm9712_poll_coord(struct wm97xx *wm, struct wm97xx_data *data)
{
int timeout = 5 * delay;
if (!wm->pen_probably_down) {
u16 data_rd = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD);
if (!(data_rd & WM97XX_PEN_DOWN))
return RC_PENUP;
wm->pen_probably_down = 1;
}
/* set up digitiser */
if (wm->mach_ops && wm->mach_ops->pre_sample)
wm->mach_ops->pre_sample(WM97XX_ADCSEL_X | WM97XX_ADCSEL_Y);
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER1,
WM97XX_COO | WM97XX_POLL | WM97XX_DELAY(delay));
/* wait 3 AC97 time slots + delay for conversion and read x */
poll_delay(delay);
data->x = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD);
/* wait for POLL to go low */
while ((wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER1) & WM97XX_POLL)
&& timeout) {
udelay(AC97_LINK_FRAME);
timeout--;
}
if (timeout <= 0) {
/* If PDEN is set, we can get a timeout when pen goes up */
if (is_pden(wm))
wm->pen_probably_down = 0;
else
dev_dbg(wm->dev, "adc sample timeout\n");
return RC_PENUP;
}
/* read back y data */
data->y = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD);
if (pil)
data->p = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD);
else
data->p = DEFAULT_PRESSURE;
if (wm->mach_ops && wm->mach_ops->post_sample)
wm->mach_ops->post_sample(WM97XX_ADCSEL_X | WM97XX_ADCSEL_Y);
/* check we have correct sample */
if (!(data->x & WM97XX_ADCSEL_X) || !(data->y & WM97XX_ADCSEL_Y))
goto err;
if (pil && !(data->p & WM97XX_ADCSEL_PRES))
goto err;
if (!(data->x & WM97XX_PEN_DOWN) || !(data->y & WM97XX_PEN_DOWN)) {
wm->pen_probably_down = 0;
return RC_PENUP;
}
return RC_VALID;
err:
return 0;
}
/*
* Sample the WM9712 touchscreen in polling mode
*/
static int wm9712_poll_touch(struct wm97xx *wm, struct wm97xx_data *data)
{
int rc;
if (coord) {
rc = wm9712_poll_coord(wm, data);
if (rc != RC_VALID)
return rc;
} else {
rc = wm9712_poll_sample(wm, WM97XX_ADCSEL_X | WM97XX_PEN_DOWN,
&data->x);
if (rc != RC_VALID)
return rc;
rc = wm9712_poll_sample(wm, WM97XX_ADCSEL_Y | WM97XX_PEN_DOWN,
&data->y);
if (rc != RC_VALID)
return rc;
if (pil && !five_wire) {
rc = wm9712_poll_sample(wm, WM97XX_ADCSEL_PRES | WM97XX_PEN_DOWN,
&data->p);
if (rc != RC_VALID)
return rc;
} else
data->p = DEFAULT_PRESSURE;
}
return RC_VALID;
}
/*
* Enable WM9712 continuous mode, i.e. touch data is streamed across
* an AC97 slot
*/
static int wm9712_acc_enable(struct wm97xx *wm, int enable)
{
u16 dig1, dig2;
int ret = 0;
dig1 = wm->dig[1];
dig2 = wm->dig[2];
if (enable) {
/* continuous mode */
if (wm->mach_ops->acc_startup) {
ret = wm->mach_ops->acc_startup(wm);
if (ret < 0)
return ret;
}
dig1 &= ~(WM97XX_CM_RATE_MASK | WM97XX_ADCSEL_MASK |
WM97XX_DELAY_MASK | WM97XX_SLT_MASK);
dig1 |= WM97XX_CTC | WM97XX_COO | WM97XX_SLEN |
WM97XX_DELAY(delay) |
WM97XX_SLT(wm->acc_slot) |
WM97XX_RATE(wm->acc_rate);
if (pil)
dig1 |= WM97XX_ADCSEL_PRES;
dig2 |= WM9712_PDEN;
} else {
dig1 &= ~(WM97XX_CTC | WM97XX_COO | WM97XX_SLEN);
dig2 &= ~WM9712_PDEN;
if (wm->mach_ops->acc_shutdown)
wm->mach_ops->acc_shutdown(wm);
}
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER1, dig1);
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER2, dig2);
return 0;
}
struct wm97xx_codec_drv wm9712_codec = {
.id = WM9712_ID2,
.name = "wm9712",
.poll_sample = wm9712_poll_sample,
.poll_touch = wm9712_poll_touch,
.acc_enable = wm9712_acc_enable,
.phy_init = wm9712_phy_init,
.dig_enable = wm9712_dig_enable,
.dig_restore = wm9712_dig_restore,
.aux_prepare = wm9712_aux_prepare,
};
EXPORT_SYMBOL_GPL(wm9712_codec);
/* Module information */
MODULE_AUTHOR("Liam Girdwood <[email protected]>");
MODULE_DESCRIPTION("WM9712 Touch Screen Driver");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/wm9712.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Source for:
* Cypress TrueTouch(TM) Standard Product (TTSP) SPI touchscreen driver.
* For use with Cypress Txx4xx parts.
* Supported parts include:
* TMA4XX
* TMA1036
*
* Copyright (C) 2009, 2010, 2011 Cypress Semiconductor, Inc.
* Copyright (C) 2012 Javier Martinez Canillas <[email protected]>
* Copyright (C) 2013 Cypress Semiconductor
*
* Contact Cypress Semiconductor at www.cypress.com <[email protected]>
*/
#include "cyttsp4_core.h"
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/spi/spi.h>
#define CY_SPI_WR_OP 0x00 /* r/~w */
#define CY_SPI_RD_OP 0x01
#define CY_SPI_BITS_PER_WORD 8
#define CY_SPI_A8_BIT 0x02
#define CY_SPI_WR_HEADER_BYTES 2
#define CY_SPI_RD_HEADER_BYTES 1
#define CY_SPI_CMD_BYTES 2
#define CY_SPI_SYNC_BYTE 0
#define CY_SPI_SYNC_ACK 0x62 /* from TRM *A protocol */
#define CY_SPI_DATA_SIZE (2 * 256)
#define CY_SPI_DATA_BUF_SIZE (CY_SPI_CMD_BYTES + CY_SPI_DATA_SIZE)
static int cyttsp_spi_xfer(struct device *dev, u8 *xfer_buf,
u8 op, u16 reg, u8 *buf, int length)
{
struct spi_device *spi = to_spi_device(dev);
struct spi_message msg;
struct spi_transfer xfer[2];
u8 *wr_buf = &xfer_buf[0];
u8 rd_buf[CY_SPI_CMD_BYTES];
int retval;
int i;
if (length > CY_SPI_DATA_SIZE) {
dev_err(dev, "%s: length %d is too big.\n",
__func__, length);
return -EINVAL;
}
memset(wr_buf, 0, CY_SPI_DATA_BUF_SIZE);
memset(rd_buf, 0, CY_SPI_CMD_BYTES);
wr_buf[0] = op + (((reg >> 8) & 0x1) ? CY_SPI_A8_BIT : 0);
if (op == CY_SPI_WR_OP) {
wr_buf[1] = reg & 0xFF;
if (length > 0)
memcpy(wr_buf + CY_SPI_CMD_BYTES, buf, length);
}
memset(xfer, 0, sizeof(xfer));
spi_message_init(&msg);
/*
We set both TX and RX buffers because Cypress TTSP
requires full duplex operation.
*/
xfer[0].tx_buf = wr_buf;
xfer[0].rx_buf = rd_buf;
switch (op) {
case CY_SPI_WR_OP:
xfer[0].len = length + CY_SPI_CMD_BYTES;
spi_message_add_tail(&xfer[0], &msg);
break;
case CY_SPI_RD_OP:
xfer[0].len = CY_SPI_RD_HEADER_BYTES;
spi_message_add_tail(&xfer[0], &msg);
xfer[1].rx_buf = buf;
xfer[1].len = length;
spi_message_add_tail(&xfer[1], &msg);
break;
default:
dev_err(dev, "%s: bad operation code=%d\n", __func__, op);
return -EINVAL;
}
retval = spi_sync(spi, &msg);
if (retval < 0) {
dev_dbg(dev, "%s: spi_sync() error %d, len=%d, op=%d\n",
__func__, retval, xfer[1].len, op);
/*
* do not return here since was a bad ACK sequence
* let the following ACK check handle any errors and
* allow silent retries
*/
}
if (rd_buf[CY_SPI_SYNC_BYTE] != CY_SPI_SYNC_ACK) {
dev_dbg(dev, "%s: operation %d failed\n", __func__, op);
for (i = 0; i < CY_SPI_CMD_BYTES; i++)
dev_dbg(dev, "%s: test rd_buf[%d]:0x%02x\n",
__func__, i, rd_buf[i]);
for (i = 0; i < length; i++)
dev_dbg(dev, "%s: test buf[%d]:0x%02x\n",
__func__, i, buf[i]);
return -EIO;
}
return 0;
}
static int cyttsp_spi_read_block_data(struct device *dev, u8 *xfer_buf,
u16 addr, u8 length, void *data)
{
int rc;
rc = cyttsp_spi_xfer(dev, xfer_buf, CY_SPI_WR_OP, addr, NULL, 0);
if (rc)
return rc;
else
return cyttsp_spi_xfer(dev, xfer_buf, CY_SPI_RD_OP, addr, data,
length);
}
static int cyttsp_spi_write_block_data(struct device *dev, u8 *xfer_buf,
u16 addr, u8 length, const void *data)
{
return cyttsp_spi_xfer(dev, xfer_buf, CY_SPI_WR_OP, addr, (void *)data,
length);
}
static const struct cyttsp4_bus_ops cyttsp_spi_bus_ops = {
.bustype = BUS_SPI,
.write = cyttsp_spi_write_block_data,
.read = cyttsp_spi_read_block_data,
};
static int cyttsp4_spi_probe(struct spi_device *spi)
{
struct cyttsp4 *ts;
int error;
/* Set up SPI*/
spi->bits_per_word = CY_SPI_BITS_PER_WORD;
spi->mode = SPI_MODE_0;
error = spi_setup(spi);
if (error < 0) {
dev_err(&spi->dev, "%s: SPI setup error %d\n",
__func__, error);
return error;
}
ts = cyttsp4_probe(&cyttsp_spi_bus_ops, &spi->dev, spi->irq,
CY_SPI_DATA_BUF_SIZE);
return PTR_ERR_OR_ZERO(ts);
}
static void cyttsp4_spi_remove(struct spi_device *spi)
{
struct cyttsp4 *ts = spi_get_drvdata(spi);
cyttsp4_remove(ts);
}
static struct spi_driver cyttsp4_spi_driver = {
.driver = {
.name = CYTTSP4_SPI_NAME,
.pm = pm_ptr(&cyttsp4_pm_ops),
},
.probe = cyttsp4_spi_probe,
.remove = cyttsp4_spi_remove,
};
module_spi_driver(cyttsp4_spi_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Cypress TrueTouch(R) Standard Product (TTSP) SPI driver");
MODULE_AUTHOR("Cypress");
MODULE_ALIAS("spi:cyttsp4");
|
linux-master
|
drivers/input/touchscreen/cyttsp4_spi.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Hampshire serial touchscreen driver
*
* Copyright (c) 2010 Adam Bennett
* Based on the dynapro driver (c) Tias Guns
*/
/*
* 2010/04/08 Adam Bennett <[email protected]>
* Copied dynapro.c and edited for Hampshire 4-byte protocol
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/serio.h>
#define DRIVER_DESC "Hampshire serial touchscreen driver"
MODULE_AUTHOR("Adam Bennett <[email protected]>");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
/*
* Definitions & global arrays.
*/
#define HAMPSHIRE_FORMAT_TOUCH_BIT 0x40
#define HAMPSHIRE_FORMAT_LENGTH 4
#define HAMPSHIRE_RESPONSE_BEGIN_BYTE 0x80
#define HAMPSHIRE_MIN_XC 0
#define HAMPSHIRE_MAX_XC 0x1000
#define HAMPSHIRE_MIN_YC 0
#define HAMPSHIRE_MAX_YC 0x1000
#define HAMPSHIRE_GET_XC(data) (((data[3] & 0x0c) >> 2) | (data[1] << 2) | ((data[0] & 0x38) << 6))
#define HAMPSHIRE_GET_YC(data) ((data[3] & 0x03) | (data[2] << 2) | ((data[0] & 0x07) << 9))
#define HAMPSHIRE_GET_TOUCHED(data) (HAMPSHIRE_FORMAT_TOUCH_BIT & data[0])
/*
* Per-touchscreen data.
*/
struct hampshire {
struct input_dev *dev;
struct serio *serio;
int idx;
unsigned char data[HAMPSHIRE_FORMAT_LENGTH];
char phys[32];
};
static void hampshire_process_data(struct hampshire *phampshire)
{
struct input_dev *dev = phampshire->dev;
if (HAMPSHIRE_FORMAT_LENGTH == ++phampshire->idx) {
input_report_abs(dev, ABS_X, HAMPSHIRE_GET_XC(phampshire->data));
input_report_abs(dev, ABS_Y, HAMPSHIRE_GET_YC(phampshire->data));
input_report_key(dev, BTN_TOUCH,
HAMPSHIRE_GET_TOUCHED(phampshire->data));
input_sync(dev);
phampshire->idx = 0;
}
}
static irqreturn_t hampshire_interrupt(struct serio *serio,
unsigned char data, unsigned int flags)
{
struct hampshire *phampshire = serio_get_drvdata(serio);
phampshire->data[phampshire->idx] = data;
if (HAMPSHIRE_RESPONSE_BEGIN_BYTE & phampshire->data[0])
hampshire_process_data(phampshire);
else
dev_dbg(&serio->dev, "unknown/unsynchronized data: %x\n",
phampshire->data[0]);
return IRQ_HANDLED;
}
static void hampshire_disconnect(struct serio *serio)
{
struct hampshire *phampshire = serio_get_drvdata(serio);
input_get_device(phampshire->dev);
input_unregister_device(phampshire->dev);
serio_close(serio);
serio_set_drvdata(serio, NULL);
input_put_device(phampshire->dev);
kfree(phampshire);
}
/*
* hampshire_connect() is the routine that is called when someone adds a
* new serio device that supports hampshire protocol and registers it as
* an input device. This is usually accomplished using inputattach.
*/
static int hampshire_connect(struct serio *serio, struct serio_driver *drv)
{
struct hampshire *phampshire;
struct input_dev *input_dev;
int err;
phampshire = kzalloc(sizeof(struct hampshire), GFP_KERNEL);
input_dev = input_allocate_device();
if (!phampshire || !input_dev) {
err = -ENOMEM;
goto fail1;
}
phampshire->serio = serio;
phampshire->dev = input_dev;
snprintf(phampshire->phys, sizeof(phampshire->phys),
"%s/input0", serio->phys);
input_dev->name = "Hampshire Serial TouchScreen";
input_dev->phys = phampshire->phys;
input_dev->id.bustype = BUS_RS232;
input_dev->id.vendor = SERIO_HAMPSHIRE;
input_dev->id.product = 0;
input_dev->id.version = 0x0001;
input_dev->dev.parent = &serio->dev;
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
input_set_abs_params(phampshire->dev, ABS_X,
HAMPSHIRE_MIN_XC, HAMPSHIRE_MAX_XC, 0, 0);
input_set_abs_params(phampshire->dev, ABS_Y,
HAMPSHIRE_MIN_YC, HAMPSHIRE_MAX_YC, 0, 0);
serio_set_drvdata(serio, phampshire);
err = serio_open(serio, drv);
if (err)
goto fail2;
err = input_register_device(phampshire->dev);
if (err)
goto fail3;
return 0;
fail3: serio_close(serio);
fail2: serio_set_drvdata(serio, NULL);
fail1: input_free_device(input_dev);
kfree(phampshire);
return err;
}
/*
* The serio driver structure.
*/
static const struct serio_device_id hampshire_serio_ids[] = {
{
.type = SERIO_RS232,
.proto = SERIO_HAMPSHIRE,
.id = SERIO_ANY,
.extra = SERIO_ANY,
},
{ 0 }
};
MODULE_DEVICE_TABLE(serio, hampshire_serio_ids);
static struct serio_driver hampshire_drv = {
.driver = {
.name = "hampshire",
},
.description = DRIVER_DESC,
.id_table = hampshire_serio_ids,
.interrupt = hampshire_interrupt,
.connect = hampshire_connect,
.disconnect = hampshire_disconnect,
};
module_serio_driver(hampshire_drv);
|
linux-master
|
drivers/input/touchscreen/hampshire.c
|
// SPDX-License-Identifier: GPL-2.0
// Melfas MMS114/MMS136/MMS152 touchscreen device driver
//
// Copyright (c) 2012 Samsung Electronics Co., Ltd.
// Author: Joonyoung Shim <[email protected]>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/i2c.h>
#include <linux/input/mt.h>
#include <linux/input/touchscreen.h>
#include <linux/interrupt.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
/* Write only registers */
#define MMS114_MODE_CONTROL 0x01
#define MMS114_OPERATION_MODE_MASK 0xE
#define MMS114_ACTIVE BIT(1)
#define MMS114_XY_RESOLUTION_H 0x02
#define MMS114_X_RESOLUTION 0x03
#define MMS114_Y_RESOLUTION 0x04
#define MMS114_CONTACT_THRESHOLD 0x05
#define MMS114_MOVING_THRESHOLD 0x06
/* Read only registers */
#define MMS114_PACKET_SIZE 0x0F
#define MMS114_INFORMATION 0x10
#define MMS114_TSP_REV 0xF0
#define MMS152_FW_REV 0xE1
#define MMS152_COMPAT_GROUP 0xF2
/* Minimum delay time is 50us between stop and start signal of i2c */
#define MMS114_I2C_DELAY 50
/* 200ms needs after power on */
#define MMS114_POWERON_DELAY 200
/* Touchscreen absolute values */
#define MMS114_MAX_AREA 0xff
#define MMS114_MAX_TOUCHKEYS 15
#define MMS114_MAX_TOUCH 10
#define MMS114_EVENT_SIZE 8
#define MMS136_EVENT_SIZE 6
/* Touch type */
#define MMS114_TYPE_NONE 0
#define MMS114_TYPE_TOUCHSCREEN 1
#define MMS114_TYPE_TOUCHKEY 2
enum mms_type {
TYPE_MMS114 = 114,
TYPE_MMS134S = 134,
TYPE_MMS136 = 136,
TYPE_MMS152 = 152,
TYPE_MMS345L = 345,
};
struct mms114_data {
struct i2c_client *client;
struct input_dev *input_dev;
struct regulator *core_reg;
struct regulator *io_reg;
struct touchscreen_properties props;
enum mms_type type;
unsigned int contact_threshold;
unsigned int moving_threshold;
u32 keycodes[MMS114_MAX_TOUCHKEYS];
int num_keycodes;
/* Use cache data for mode control register(write only) */
u8 cache_mode_control;
};
struct mms114_touch {
u8 id:4, reserved_bit4:1, type:2, pressed:1;
u8 x_hi:4, y_hi:4;
u8 x_lo;
u8 y_lo;
u8 width;
u8 strength;
u8 reserved[2];
} __packed;
static int __mms114_read_reg(struct mms114_data *data, unsigned int reg,
unsigned int len, u8 *val)
{
struct i2c_client *client = data->client;
struct i2c_msg xfer[2];
u8 buf = reg & 0xff;
int error;
if (reg <= MMS114_MODE_CONTROL && reg + len > MMS114_MODE_CONTROL)
BUG();
/* Write register */
xfer[0].addr = client->addr;
xfer[0].flags = client->flags & I2C_M_TEN;
xfer[0].len = 1;
xfer[0].buf = &buf;
/* Read data */
xfer[1].addr = client->addr;
xfer[1].flags = (client->flags & I2C_M_TEN) | I2C_M_RD;
xfer[1].len = len;
xfer[1].buf = val;
error = i2c_transfer(client->adapter, xfer, 2);
if (error != 2) {
dev_err(&client->dev,
"%s: i2c transfer failed (%d)\n", __func__, error);
return error < 0 ? error : -EIO;
}
udelay(MMS114_I2C_DELAY);
return 0;
}
static int mms114_read_reg(struct mms114_data *data, unsigned int reg)
{
u8 val;
int error;
if (reg == MMS114_MODE_CONTROL)
return data->cache_mode_control;
error = __mms114_read_reg(data, reg, 1, &val);
return error < 0 ? error : val;
}
static int mms114_write_reg(struct mms114_data *data, unsigned int reg,
unsigned int val)
{
struct i2c_client *client = data->client;
u8 buf[2];
int error;
buf[0] = reg & 0xff;
buf[1] = val & 0xff;
error = i2c_master_send(client, buf, 2);
if (error != 2) {
dev_err(&client->dev,
"%s: i2c send failed (%d)\n", __func__, error);
return error < 0 ? error : -EIO;
}
udelay(MMS114_I2C_DELAY);
if (reg == MMS114_MODE_CONTROL)
data->cache_mode_control = val;
return 0;
}
static void mms114_process_mt(struct mms114_data *data, struct mms114_touch *touch)
{
struct i2c_client *client = data->client;
struct input_dev *input_dev = data->input_dev;
unsigned int id;
unsigned int x;
unsigned int y;
if (touch->id > MMS114_MAX_TOUCH) {
dev_err(&client->dev, "Wrong touch id (%d)\n", touch->id);
return;
}
id = touch->id - 1;
x = touch->x_lo | touch->x_hi << 8;
y = touch->y_lo | touch->y_hi << 8;
dev_dbg(&client->dev,
"id: %d, type: %d, pressed: %d, x: %d, y: %d, width: %d, strength: %d\n",
id, touch->type, touch->pressed,
x, y, touch->width, touch->strength);
input_mt_slot(input_dev, id);
input_mt_report_slot_state(input_dev, MT_TOOL_FINGER, touch->pressed);
if (touch->pressed) {
touchscreen_report_pos(input_dev, &data->props, x, y, true);
input_report_abs(input_dev, ABS_MT_TOUCH_MAJOR, touch->width);
input_report_abs(input_dev, ABS_MT_PRESSURE, touch->strength);
}
}
static void mms114_process_touchkey(struct mms114_data *data,
struct mms114_touch *touch)
{
struct i2c_client *client = data->client;
struct input_dev *input_dev = data->input_dev;
unsigned int keycode_id;
if (touch->id == 0)
return;
if (touch->id > data->num_keycodes) {
dev_err(&client->dev, "Wrong touch id for touchkey (%d)\n",
touch->id);
return;
}
keycode_id = touch->id - 1;
dev_dbg(&client->dev, "keycode id: %d, pressed: %d\n", keycode_id,
touch->pressed);
input_report_key(input_dev, data->keycodes[keycode_id], touch->pressed);
}
static irqreturn_t mms114_interrupt(int irq, void *dev_id)
{
struct mms114_data *data = dev_id;
struct i2c_client *client = data->client;
struct input_dev *input_dev = data->input_dev;
struct mms114_touch touch[MMS114_MAX_TOUCH];
int packet_size;
int touch_size;
int index;
int error;
mutex_lock(&input_dev->mutex);
if (!input_device_enabled(input_dev)) {
mutex_unlock(&input_dev->mutex);
goto out;
}
mutex_unlock(&input_dev->mutex);
packet_size = mms114_read_reg(data, MMS114_PACKET_SIZE);
if (packet_size <= 0)
goto out;
/* MMS136 has slightly different event size */
if (data->type == TYPE_MMS134S || data->type == TYPE_MMS136)
touch_size = packet_size / MMS136_EVENT_SIZE;
else
touch_size = packet_size / MMS114_EVENT_SIZE;
error = __mms114_read_reg(data, MMS114_INFORMATION, packet_size,
(u8 *)touch);
if (error < 0)
goto out;
for (index = 0; index < touch_size; index++) {
switch (touch[index].type) {
case MMS114_TYPE_TOUCHSCREEN:
mms114_process_mt(data, touch + index);
break;
case MMS114_TYPE_TOUCHKEY:
mms114_process_touchkey(data, touch + index);
break;
default:
dev_err(&client->dev, "Wrong touch type (%d)\n",
touch[index].type);
break;
}
}
input_mt_report_pointer_emulation(data->input_dev, true);
input_sync(data->input_dev);
out:
return IRQ_HANDLED;
}
static int mms114_set_active(struct mms114_data *data, bool active)
{
int val;
val = mms114_read_reg(data, MMS114_MODE_CONTROL);
if (val < 0)
return val;
val &= ~MMS114_OPERATION_MODE_MASK;
/* If active is false, sleep mode */
if (active)
val |= MMS114_ACTIVE;
return mms114_write_reg(data, MMS114_MODE_CONTROL, val);
}
static int mms114_get_version(struct mms114_data *data)
{
struct device *dev = &data->client->dev;
u8 buf[6];
int group;
int error;
switch (data->type) {
case TYPE_MMS345L:
error = __mms114_read_reg(data, MMS152_FW_REV, 3, buf);
if (error)
return error;
dev_info(dev, "TSP FW Rev: bootloader 0x%x / core 0x%x / config 0x%x\n",
buf[0], buf[1], buf[2]);
break;
case TYPE_MMS152:
error = __mms114_read_reg(data, MMS152_FW_REV, 3, buf);
if (error)
return error;
group = i2c_smbus_read_byte_data(data->client,
MMS152_COMPAT_GROUP);
if (group < 0)
return group;
dev_info(dev, "TSP FW Rev: bootloader 0x%x / core 0x%x / config 0x%x, Compat group: %c\n",
buf[0], buf[1], buf[2], group);
break;
case TYPE_MMS114:
case TYPE_MMS134S:
case TYPE_MMS136:
error = __mms114_read_reg(data, MMS114_TSP_REV, 6, buf);
if (error)
return error;
dev_info(dev, "TSP Rev: 0x%x, HW Rev: 0x%x, Firmware Ver: 0x%x\n",
buf[0], buf[1], buf[3]);
break;
}
return 0;
}
static int mms114_setup_regs(struct mms114_data *data)
{
const struct touchscreen_properties *props = &data->props;
int val;
int error;
error = mms114_get_version(data);
if (error < 0)
return error;
/* MMS114, MMS134S and MMS136 have configuration and power on registers */
if (data->type != TYPE_MMS114 && data->type != TYPE_MMS134S &&
data->type != TYPE_MMS136)
return 0;
error = mms114_set_active(data, true);
if (error < 0)
return error;
val = (props->max_x >> 8) & 0xf;
val |= ((props->max_y >> 8) & 0xf) << 4;
error = mms114_write_reg(data, MMS114_XY_RESOLUTION_H, val);
if (error < 0)
return error;
val = props->max_x & 0xff;
error = mms114_write_reg(data, MMS114_X_RESOLUTION, val);
if (error < 0)
return error;
val = props->max_x & 0xff;
error = mms114_write_reg(data, MMS114_Y_RESOLUTION, val);
if (error < 0)
return error;
if (data->contact_threshold) {
error = mms114_write_reg(data, MMS114_CONTACT_THRESHOLD,
data->contact_threshold);
if (error < 0)
return error;
}
if (data->moving_threshold) {
error = mms114_write_reg(data, MMS114_MOVING_THRESHOLD,
data->moving_threshold);
if (error < 0)
return error;
}
return 0;
}
static int mms114_start(struct mms114_data *data)
{
struct i2c_client *client = data->client;
int error;
error = regulator_enable(data->core_reg);
if (error) {
dev_err(&client->dev, "Failed to enable avdd: %d\n", error);
return error;
}
error = regulator_enable(data->io_reg);
if (error) {
dev_err(&client->dev, "Failed to enable vdd: %d\n", error);
regulator_disable(data->core_reg);
return error;
}
msleep(MMS114_POWERON_DELAY);
error = mms114_setup_regs(data);
if (error < 0) {
regulator_disable(data->io_reg);
regulator_disable(data->core_reg);
return error;
}
enable_irq(client->irq);
return 0;
}
static void mms114_stop(struct mms114_data *data)
{
struct i2c_client *client = data->client;
int error;
disable_irq(client->irq);
error = regulator_disable(data->io_reg);
if (error)
dev_warn(&client->dev, "Failed to disable vdd: %d\n", error);
error = regulator_disable(data->core_reg);
if (error)
dev_warn(&client->dev, "Failed to disable avdd: %d\n", error);
}
static int mms114_input_open(struct input_dev *dev)
{
struct mms114_data *data = input_get_drvdata(dev);
return mms114_start(data);
}
static void mms114_input_close(struct input_dev *dev)
{
struct mms114_data *data = input_get_drvdata(dev);
mms114_stop(data);
}
static int mms114_parse_legacy_bindings(struct mms114_data *data)
{
struct device *dev = &data->client->dev;
struct touchscreen_properties *props = &data->props;
if (device_property_read_u32(dev, "x-size", &props->max_x)) {
dev_dbg(dev, "failed to get legacy x-size property\n");
return -EINVAL;
}
if (device_property_read_u32(dev, "y-size", &props->max_y)) {
dev_dbg(dev, "failed to get legacy y-size property\n");
return -EINVAL;
}
device_property_read_u32(dev, "contact-threshold",
&data->contact_threshold);
device_property_read_u32(dev, "moving-threshold",
&data->moving_threshold);
if (device_property_read_bool(dev, "x-invert"))
props->invert_x = true;
if (device_property_read_bool(dev, "y-invert"))
props->invert_y = true;
props->swap_x_y = false;
return 0;
}
static int mms114_probe(struct i2c_client *client)
{
struct mms114_data *data;
struct input_dev *input_dev;
const void *match_data;
int error;
int i;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "Not supported I2C adapter\n");
return -ENODEV;
}
data = devm_kzalloc(&client->dev, sizeof(struct mms114_data),
GFP_KERNEL);
input_dev = devm_input_allocate_device(&client->dev);
if (!data || !input_dev) {
dev_err(&client->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
data->client = client;
data->input_dev = input_dev;
match_data = device_get_match_data(&client->dev);
if (!match_data)
return -EINVAL;
data->type = (enum mms_type)match_data;
data->num_keycodes = device_property_count_u32(&client->dev,
"linux,keycodes");
if (data->num_keycodes == -EINVAL) {
data->num_keycodes = 0;
} else if (data->num_keycodes < 0) {
dev_err(&client->dev,
"Unable to parse linux,keycodes property: %d\n",
data->num_keycodes);
return data->num_keycodes;
} else if (data->num_keycodes > MMS114_MAX_TOUCHKEYS) {
dev_warn(&client->dev,
"Found %d linux,keycodes but max is %d, ignoring the rest\n",
data->num_keycodes, MMS114_MAX_TOUCHKEYS);
data->num_keycodes = MMS114_MAX_TOUCHKEYS;
}
if (data->num_keycodes > 0) {
error = device_property_read_u32_array(&client->dev,
"linux,keycodes",
data->keycodes,
data->num_keycodes);
if (error) {
dev_err(&client->dev,
"Unable to read linux,keycodes values: %d\n",
error);
return error;
}
input_dev->keycode = data->keycodes;
input_dev->keycodemax = data->num_keycodes;
input_dev->keycodesize = sizeof(data->keycodes[0]);
for (i = 0; i < data->num_keycodes; i++)
input_set_capability(input_dev,
EV_KEY, data->keycodes[i]);
}
input_set_capability(input_dev, EV_ABS, ABS_MT_POSITION_X);
input_set_capability(input_dev, EV_ABS, ABS_MT_POSITION_Y);
input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 255, 0, 0);
input_set_abs_params(input_dev, ABS_MT_TOUCH_MAJOR,
0, MMS114_MAX_AREA, 0, 0);
touchscreen_parse_properties(input_dev, true, &data->props);
if (!data->props.max_x || !data->props.max_y) {
dev_dbg(&client->dev,
"missing X/Y size properties, trying legacy bindings\n");
error = mms114_parse_legacy_bindings(data);
if (error)
return error;
input_set_abs_params(input_dev, ABS_MT_POSITION_X,
0, data->props.max_x, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_Y,
0, data->props.max_y, 0, 0);
}
if (data->type == TYPE_MMS114 || data->type == TYPE_MMS134S ||
data->type == TYPE_MMS136) {
/*
* The firmware handles movement and pressure fuzz, so
* don't duplicate that in software.
*/
data->moving_threshold = input_abs_get_fuzz(input_dev,
ABS_MT_POSITION_X);
data->contact_threshold = input_abs_get_fuzz(input_dev,
ABS_MT_PRESSURE);
input_abs_set_fuzz(input_dev, ABS_MT_POSITION_X, 0);
input_abs_set_fuzz(input_dev, ABS_MT_POSITION_Y, 0);
input_abs_set_fuzz(input_dev, ABS_MT_PRESSURE, 0);
}
input_dev->name = devm_kasprintf(&client->dev, GFP_KERNEL,
"MELFAS MMS%d Touchscreen",
data->type);
if (!input_dev->name)
return -ENOMEM;
input_dev->id.bustype = BUS_I2C;
input_dev->dev.parent = &client->dev;
input_dev->open = mms114_input_open;
input_dev->close = mms114_input_close;
error = input_mt_init_slots(input_dev, MMS114_MAX_TOUCH,
INPUT_MT_DIRECT);
if (error)
return error;
input_set_drvdata(input_dev, data);
i2c_set_clientdata(client, data);
data->core_reg = devm_regulator_get(&client->dev, "avdd");
if (IS_ERR(data->core_reg)) {
error = PTR_ERR(data->core_reg);
dev_err(&client->dev,
"Unable to get the Core regulator (%d)\n", error);
return error;
}
data->io_reg = devm_regulator_get(&client->dev, "vdd");
if (IS_ERR(data->io_reg)) {
error = PTR_ERR(data->io_reg);
dev_err(&client->dev,
"Unable to get the IO regulator (%d)\n", error);
return error;
}
error = devm_request_threaded_irq(&client->dev, client->irq,
NULL, mms114_interrupt,
IRQF_ONESHOT | IRQF_NO_AUTOEN,
dev_name(&client->dev), data);
if (error) {
dev_err(&client->dev, "Failed to register interrupt\n");
return error;
}
error = input_register_device(data->input_dev);
if (error) {
dev_err(&client->dev, "Failed to register input device\n");
return error;
}
return 0;
}
static int mms114_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct mms114_data *data = i2c_get_clientdata(client);
struct input_dev *input_dev = data->input_dev;
int id;
/* Release all touch */
for (id = 0; id < MMS114_MAX_TOUCH; id++) {
input_mt_slot(input_dev, id);
input_mt_report_slot_inactive(input_dev);
}
input_mt_report_pointer_emulation(input_dev, true);
input_sync(input_dev);
mutex_lock(&input_dev->mutex);
if (input_device_enabled(input_dev))
mms114_stop(data);
mutex_unlock(&input_dev->mutex);
return 0;
}
static int mms114_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct mms114_data *data = i2c_get_clientdata(client);
struct input_dev *input_dev = data->input_dev;
int error;
mutex_lock(&input_dev->mutex);
if (input_device_enabled(input_dev)) {
error = mms114_start(data);
if (error < 0) {
mutex_unlock(&input_dev->mutex);
return error;
}
}
mutex_unlock(&input_dev->mutex);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(mms114_pm_ops, mms114_suspend, mms114_resume);
static const struct i2c_device_id mms114_id[] = {
{ "mms114", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mms114_id);
#ifdef CONFIG_OF
static const struct of_device_id mms114_dt_match[] = {
{
.compatible = "melfas,mms114",
.data = (void *)TYPE_MMS114,
}, {
.compatible = "melfas,mms134s",
.data = (void *)TYPE_MMS134S,
}, {
.compatible = "melfas,mms136",
.data = (void *)TYPE_MMS136,
}, {
.compatible = "melfas,mms152",
.data = (void *)TYPE_MMS152,
}, {
.compatible = "melfas,mms345l",
.data = (void *)TYPE_MMS345L,
},
{ }
};
MODULE_DEVICE_TABLE(of, mms114_dt_match);
#endif
static struct i2c_driver mms114_driver = {
.driver = {
.name = "mms114",
.pm = pm_sleep_ptr(&mms114_pm_ops),
.of_match_table = of_match_ptr(mms114_dt_match),
},
.probe = mms114_probe,
.id_table = mms114_id,
};
module_i2c_driver(mms114_driver);
/* Module information */
MODULE_AUTHOR("Joonyoung Shim <[email protected]>");
MODULE_DESCRIPTION("MELFAS mms114 Touchscreen driver");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/touchscreen/mms114.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for MStar msg2638 touchscreens
*
* Copyright (c) 2021 Vincent Knecht <[email protected]>
*
* Checksum and IRQ handler based on mstar_drv_common.c and
* mstar_drv_mutual_fw_control.c
* Copyright (c) 2006-2012 MStar Semiconductor, Inc.
*
* Driver structure based on zinitix.c by Michael Srba <[email protected]>
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/input/touchscreen.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#define MODE_DATA_RAW 0x5A
#define MSG2138_MAX_FINGERS 2
#define MSG2638_MAX_FINGERS 5
#define MAX_BUTTONS 4
#define CHIP_ON_DELAY_MS 15
#define FIRMWARE_ON_DELAY_MS 50
#define RESET_DELAY_MIN_US 10000
#define RESET_DELAY_MAX_US 11000
struct msg_chip_data {
irq_handler_t irq_handler;
unsigned int max_fingers;
};
struct msg2138_packet {
u8 xy_hi; /* higher bits of x and y coordinates */
u8 x_low;
u8 y_low;
};
struct msg2138_touch_event {
u8 magic;
struct msg2138_packet pkt[MSG2138_MAX_FINGERS];
u8 checksum;
};
struct msg2638_packet {
u8 xy_hi; /* higher bits of x and y coordinates */
u8 x_low;
u8 y_low;
u8 pressure;
};
struct msg2638_touch_event {
u8 mode;
struct msg2638_packet pkt[MSG2638_MAX_FINGERS];
u8 proximity;
u8 checksum;
};
struct msg2638_ts_data {
struct i2c_client *client;
struct input_dev *input_dev;
struct touchscreen_properties prop;
struct regulator_bulk_data supplies[2];
struct gpio_desc *reset_gpiod;
int max_fingers;
u32 keycodes[MAX_BUTTONS];
int num_keycodes;
};
static u8 msg2638_checksum(u8 *data, u32 length)
{
s32 sum = 0;
u32 i;
for (i = 0; i < length; i++)
sum += data[i];
return (u8)((-sum) & 0xFF);
}
static void msg2138_report_keys(struct msg2638_ts_data *msg2638, u8 keys)
{
int i;
/* keys can be 0x00 or 0xff when all keys have been released */
if (keys == 0xff)
keys = 0;
for (i = 0; i < msg2638->num_keycodes; ++i)
input_report_key(msg2638->input_dev, msg2638->keycodes[i],
keys & BIT(i));
}
static irqreturn_t msg2138_ts_irq_handler(int irq, void *msg2638_handler)
{
struct msg2638_ts_data *msg2638 = msg2638_handler;
struct i2c_client *client = msg2638->client;
struct input_dev *input = msg2638->input_dev;
struct msg2138_touch_event touch_event;
u32 len = sizeof(touch_event);
struct i2c_msg msg[] = {
{
.addr = client->addr,
.flags = I2C_M_RD,
.len = sizeof(touch_event),
.buf = (u8 *)&touch_event,
},
};
struct msg2138_packet *p0, *p1;
u16 x, y, delta_x, delta_y;
int ret;
ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg));
if (ret != ARRAY_SIZE(msg)) {
dev_err(&client->dev,
"Failed I2C transfer in irq handler: %d\n",
ret < 0 ? ret : -EIO);
goto out;
}
if (msg2638_checksum((u8 *)&touch_event, len - 1) !=
touch_event.checksum) {
dev_err(&client->dev, "Failed checksum!\n");
goto out;
}
p0 = &touch_event.pkt[0];
p1 = &touch_event.pkt[1];
/* Ignore non-pressed finger data, but check for key code */
if (p0->xy_hi == 0xFF && p0->x_low == 0xFF && p0->y_low == 0xFF) {
if (p1->xy_hi == 0xFF && p1->y_low == 0xFF)
msg2138_report_keys(msg2638, p1->x_low);
goto report;
}
x = ((p0->xy_hi & 0xF0) << 4) | p0->x_low;
y = ((p0->xy_hi & 0x0F) << 8) | p0->y_low;
input_mt_slot(input, 0);
input_mt_report_slot_state(input, MT_TOOL_FINGER, true);
touchscreen_report_pos(input, &msg2638->prop, x, y, true);
/* Ignore non-pressed finger data */
if (p1->xy_hi == 0xFF && p1->x_low == 0xFF && p1->y_low == 0xFF)
goto report;
/* Second finger is reported as a delta position */
delta_x = ((p1->xy_hi & 0xF0) << 4) | p1->x_low;
delta_y = ((p1->xy_hi & 0x0F) << 8) | p1->y_low;
/* Ignore second finger if both deltas equal 0 */
if (delta_x == 0 && delta_y == 0)
goto report;
x += delta_x;
y += delta_y;
input_mt_slot(input, 1);
input_mt_report_slot_state(input, MT_TOOL_FINGER, true);
touchscreen_report_pos(input, &msg2638->prop, x, y, true);
report:
input_mt_sync_frame(msg2638->input_dev);
input_sync(msg2638->input_dev);
out:
return IRQ_HANDLED;
}
static irqreturn_t msg2638_ts_irq_handler(int irq, void *msg2638_handler)
{
struct msg2638_ts_data *msg2638 = msg2638_handler;
struct i2c_client *client = msg2638->client;
struct input_dev *input = msg2638->input_dev;
struct msg2638_touch_event touch_event;
u32 len = sizeof(touch_event);
struct i2c_msg msg[] = {
{
.addr = client->addr,
.flags = I2C_M_RD,
.len = sizeof(touch_event),
.buf = (u8 *)&touch_event,
},
};
struct msg2638_packet *p;
u16 x, y;
int ret;
int i;
ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg));
if (ret != ARRAY_SIZE(msg)) {
dev_err(&client->dev,
"Failed I2C transfer in irq handler: %d\n",
ret < 0 ? ret : -EIO);
goto out;
}
if (touch_event.mode != MODE_DATA_RAW)
goto out;
if (msg2638_checksum((u8 *)&touch_event, len - 1) !=
touch_event.checksum) {
dev_err(&client->dev, "Failed checksum!\n");
goto out;
}
for (i = 0; i < msg2638->max_fingers; i++) {
p = &touch_event.pkt[i];
/* Ignore non-pressed finger data */
if (p->xy_hi == 0xFF && p->x_low == 0xFF && p->y_low == 0xFF)
continue;
x = (((p->xy_hi & 0xF0) << 4) | p->x_low);
y = (((p->xy_hi & 0x0F) << 8) | p->y_low);
input_mt_slot(input, i);
input_mt_report_slot_state(input, MT_TOOL_FINGER, true);
touchscreen_report_pos(input, &msg2638->prop, x, y, true);
}
input_mt_sync_frame(msg2638->input_dev);
input_sync(msg2638->input_dev);
out:
return IRQ_HANDLED;
}
static void msg2638_reset(struct msg2638_ts_data *msg2638)
{
gpiod_set_value_cansleep(msg2638->reset_gpiod, 1);
usleep_range(RESET_DELAY_MIN_US, RESET_DELAY_MAX_US);
gpiod_set_value_cansleep(msg2638->reset_gpiod, 0);
msleep(FIRMWARE_ON_DELAY_MS);
}
static int msg2638_start(struct msg2638_ts_data *msg2638)
{
int error;
error = regulator_bulk_enable(ARRAY_SIZE(msg2638->supplies),
msg2638->supplies);
if (error) {
dev_err(&msg2638->client->dev,
"Failed to enable regulators: %d\n", error);
return error;
}
msleep(CHIP_ON_DELAY_MS);
msg2638_reset(msg2638);
enable_irq(msg2638->client->irq);
return 0;
}
static int msg2638_stop(struct msg2638_ts_data *msg2638)
{
int error;
disable_irq(msg2638->client->irq);
error = regulator_bulk_disable(ARRAY_SIZE(msg2638->supplies),
msg2638->supplies);
if (error) {
dev_err(&msg2638->client->dev,
"Failed to disable regulators: %d\n", error);
return error;
}
return 0;
}
static int msg2638_input_open(struct input_dev *dev)
{
struct msg2638_ts_data *msg2638 = input_get_drvdata(dev);
return msg2638_start(msg2638);
}
static void msg2638_input_close(struct input_dev *dev)
{
struct msg2638_ts_data *msg2638 = input_get_drvdata(dev);
msg2638_stop(msg2638);
}
static int msg2638_init_input_dev(struct msg2638_ts_data *msg2638)
{
struct device *dev = &msg2638->client->dev;
struct input_dev *input_dev;
int error;
int i;
input_dev = devm_input_allocate_device(dev);
if (!input_dev) {
dev_err(dev, "Failed to allocate input device.\n");
return -ENOMEM;
}
input_set_drvdata(input_dev, msg2638);
msg2638->input_dev = input_dev;
input_dev->name = "MStar TouchScreen";
input_dev->phys = "input/ts";
input_dev->id.bustype = BUS_I2C;
input_dev->open = msg2638_input_open;
input_dev->close = msg2638_input_close;
if (msg2638->num_keycodes) {
input_dev->keycode = msg2638->keycodes;
input_dev->keycodemax = msg2638->num_keycodes;
input_dev->keycodesize = sizeof(msg2638->keycodes[0]);
for (i = 0; i < msg2638->num_keycodes; i++)
input_set_capability(input_dev,
EV_KEY, msg2638->keycodes[i]);
}
input_set_capability(input_dev, EV_ABS, ABS_MT_POSITION_X);
input_set_capability(input_dev, EV_ABS, ABS_MT_POSITION_Y);
touchscreen_parse_properties(input_dev, true, &msg2638->prop);
if (!msg2638->prop.max_x || !msg2638->prop.max_y) {
dev_err(dev, "touchscreen-size-x and/or touchscreen-size-y not set in properties\n");
return -EINVAL;
}
error = input_mt_init_slots(input_dev, msg2638->max_fingers,
INPUT_MT_DIRECT | INPUT_MT_DROP_UNUSED);
if (error) {
dev_err(dev, "Failed to initialize MT slots: %d\n", error);
return error;
}
error = input_register_device(input_dev);
if (error) {
dev_err(dev, "Failed to register input device: %d\n", error);
return error;
}
return 0;
}
static int msg2638_ts_probe(struct i2c_client *client)
{
const struct msg_chip_data *chip_data;
struct device *dev = &client->dev;
struct msg2638_ts_data *msg2638;
int error;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(dev, "Failed to assert adapter's support for plain I2C.\n");
return -ENXIO;
}
msg2638 = devm_kzalloc(dev, sizeof(*msg2638), GFP_KERNEL);
if (!msg2638)
return -ENOMEM;
msg2638->client = client;
i2c_set_clientdata(client, msg2638);
chip_data = device_get_match_data(&client->dev);
if (!chip_data || !chip_data->max_fingers) {
dev_err(dev, "Invalid or missing chip data\n");
return -EINVAL;
}
msg2638->max_fingers = chip_data->max_fingers;
msg2638->supplies[0].supply = "vdd";
msg2638->supplies[1].supply = "vddio";
error = devm_regulator_bulk_get(dev, ARRAY_SIZE(msg2638->supplies),
msg2638->supplies);
if (error) {
dev_err(dev, "Failed to get regulators: %d\n", error);
return error;
}
msg2638->reset_gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(msg2638->reset_gpiod)) {
error = PTR_ERR(msg2638->reset_gpiod);
dev_err(dev, "Failed to request reset GPIO: %d\n", error);
return error;
}
msg2638->num_keycodes = device_property_count_u32(dev,
"linux,keycodes");
if (msg2638->num_keycodes == -EINVAL) {
msg2638->num_keycodes = 0;
} else if (msg2638->num_keycodes < 0) {
dev_err(dev, "Unable to parse linux,keycodes property: %d\n",
msg2638->num_keycodes);
return msg2638->num_keycodes;
} else if (msg2638->num_keycodes > ARRAY_SIZE(msg2638->keycodes)) {
dev_warn(dev, "Found %d linux,keycodes but max is %zd, ignoring the rest\n",
msg2638->num_keycodes, ARRAY_SIZE(msg2638->keycodes));
msg2638->num_keycodes = ARRAY_SIZE(msg2638->keycodes);
}
if (msg2638->num_keycodes > 0) {
error = device_property_read_u32_array(dev, "linux,keycodes",
msg2638->keycodes,
msg2638->num_keycodes);
if (error) {
dev_err(dev, "Unable to read linux,keycodes values: %d\n",
error);
return error;
}
}
error = devm_request_threaded_irq(dev, client->irq,
NULL, chip_data->irq_handler,
IRQF_ONESHOT | IRQF_NO_AUTOEN,
client->name, msg2638);
if (error) {
dev_err(dev, "Failed to request IRQ: %d\n", error);
return error;
}
error = msg2638_init_input_dev(msg2638);
if (error) {
dev_err(dev, "Failed to initialize input device: %d\n", error);
return error;
}
return 0;
}
static int msg2638_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct msg2638_ts_data *msg2638 = i2c_get_clientdata(client);
mutex_lock(&msg2638->input_dev->mutex);
if (input_device_enabled(msg2638->input_dev))
msg2638_stop(msg2638);
mutex_unlock(&msg2638->input_dev->mutex);
return 0;
}
static int msg2638_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct msg2638_ts_data *msg2638 = i2c_get_clientdata(client);
int ret = 0;
mutex_lock(&msg2638->input_dev->mutex);
if (input_device_enabled(msg2638->input_dev))
ret = msg2638_start(msg2638);
mutex_unlock(&msg2638->input_dev->mutex);
return ret;
}
static DEFINE_SIMPLE_DEV_PM_OPS(msg2638_pm_ops, msg2638_suspend, msg2638_resume);
static const struct msg_chip_data msg2138_data = {
.irq_handler = msg2138_ts_irq_handler,
.max_fingers = MSG2138_MAX_FINGERS,
};
static const struct msg_chip_data msg2638_data = {
.irq_handler = msg2638_ts_irq_handler,
.max_fingers = MSG2638_MAX_FINGERS,
};
static const struct of_device_id msg2638_of_match[] = {
{ .compatible = "mstar,msg2138", .data = &msg2138_data },
{ .compatible = "mstar,msg2638", .data = &msg2638_data },
{ }
};
MODULE_DEVICE_TABLE(of, msg2638_of_match);
static struct i2c_driver msg2638_ts_driver = {
.probe = msg2638_ts_probe,
.driver = {
.name = "MStar-TS",
.pm = pm_sleep_ptr(&msg2638_pm_ops),
.of_match_table = msg2638_of_match,
},
};
module_i2c_driver(msg2638_ts_driver);
MODULE_AUTHOR("Vincent Knecht <[email protected]>");
MODULE_DESCRIPTION("MStar MSG2638 touchscreen driver");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/touchscreen/msg2638.c
|
// SPDX-License-Identifier: GPL-2.0
/*
* ST1232 Touchscreen Controller Driver
*
* Copyright (C) 2010 Renesas Solutions Corp.
* Tony SIM <[email protected]>
*
* Using code from:
* - android.git.kernel.org: projects/kernel/common.git: synaptics_i2c_rmi.c
* Copyright (C) 2007 Google, Inc.
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/input/touchscreen.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pm_qos.h>
#include <linux/slab.h>
#include <linux/types.h>
#define ST1232_TS_NAME "st1232-ts"
#define ST1633_TS_NAME "st1633-ts"
#define REG_STATUS 0x01 /* Device Status | Error Code */
#define STATUS_NORMAL 0x00
#define STATUS_INIT 0x01
#define STATUS_ERROR 0x02
#define STATUS_AUTO_TUNING 0x03
#define STATUS_IDLE 0x04
#define STATUS_POWER_DOWN 0x05
#define ERROR_NONE 0x00
#define ERROR_INVALID_ADDRESS 0x10
#define ERROR_INVALID_VALUE 0x20
#define ERROR_INVALID_PLATFORM 0x30
#define REG_XY_RESOLUTION 0x04
#define REG_XY_COORDINATES 0x12
#define ST_TS_MAX_FINGERS 10
struct st_chip_info {
bool have_z;
u16 max_area;
u16 max_fingers;
};
struct st1232_ts_data {
struct i2c_client *client;
struct input_dev *input_dev;
struct touchscreen_properties prop;
struct dev_pm_qos_request low_latency_req;
struct gpio_desc *reset_gpio;
const struct st_chip_info *chip_info;
int read_buf_len;
u8 *read_buf;
};
static int st1232_ts_read_data(struct st1232_ts_data *ts, u8 reg,
unsigned int n)
{
struct i2c_client *client = ts->client;
struct i2c_msg msg[] = {
{
.addr = client->addr,
.len = sizeof(reg),
.buf = ®,
},
{
.addr = client->addr,
.flags = I2C_M_RD | I2C_M_DMA_SAFE,
.len = n,
.buf = ts->read_buf,
}
};
int ret;
ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg));
if (ret != ARRAY_SIZE(msg))
return ret < 0 ? ret : -EIO;
return 0;
}
static int st1232_ts_wait_ready(struct st1232_ts_data *ts)
{
unsigned int retries;
int error;
for (retries = 100; retries; retries--) {
error = st1232_ts_read_data(ts, REG_STATUS, 1);
if (!error) {
switch (ts->read_buf[0]) {
case STATUS_NORMAL | ERROR_NONE:
case STATUS_IDLE | ERROR_NONE:
return 0;
}
}
usleep_range(1000, 2000);
}
return -ENXIO;
}
static int st1232_ts_read_resolution(struct st1232_ts_data *ts, u16 *max_x,
u16 *max_y)
{
u8 *buf;
int error;
/* select resolution register */
error = st1232_ts_read_data(ts, REG_XY_RESOLUTION, 3);
if (error)
return error;
buf = ts->read_buf;
*max_x = (((buf[0] & 0x0070) << 4) | buf[1]) - 1;
*max_y = (((buf[0] & 0x0007) << 8) | buf[2]) - 1;
return 0;
}
static int st1232_ts_parse_and_report(struct st1232_ts_data *ts)
{
struct input_dev *input = ts->input_dev;
struct input_mt_pos pos[ST_TS_MAX_FINGERS];
u8 z[ST_TS_MAX_FINGERS];
int slots[ST_TS_MAX_FINGERS];
int n_contacts = 0;
int i;
for (i = 0; i < ts->chip_info->max_fingers; i++) {
u8 *buf = &ts->read_buf[i * 4];
if (buf[0] & BIT(7)) {
unsigned int x = ((buf[0] & 0x70) << 4) | buf[1];
unsigned int y = ((buf[0] & 0x07) << 8) | buf[2];
touchscreen_set_mt_pos(&pos[n_contacts],
&ts->prop, x, y);
/* st1232 includes a z-axis / touch strength */
if (ts->chip_info->have_z)
z[n_contacts] = ts->read_buf[i + 6];
n_contacts++;
}
}
input_mt_assign_slots(input, slots, pos, n_contacts, 0);
for (i = 0; i < n_contacts; i++) {
input_mt_slot(input, slots[i]);
input_mt_report_slot_state(input, MT_TOOL_FINGER, true);
input_report_abs(input, ABS_MT_POSITION_X, pos[i].x);
input_report_abs(input, ABS_MT_POSITION_Y, pos[i].y);
if (ts->chip_info->have_z)
input_report_abs(input, ABS_MT_TOUCH_MAJOR, z[i]);
}
input_mt_sync_frame(input);
input_sync(input);
return n_contacts;
}
static irqreturn_t st1232_ts_irq_handler(int irq, void *dev_id)
{
struct st1232_ts_data *ts = dev_id;
int count;
int error;
error = st1232_ts_read_data(ts, REG_XY_COORDINATES, ts->read_buf_len);
if (error)
goto out;
count = st1232_ts_parse_and_report(ts);
if (!count) {
if (ts->low_latency_req.dev) {
dev_pm_qos_remove_request(&ts->low_latency_req);
ts->low_latency_req.dev = NULL;
}
} else if (!ts->low_latency_req.dev) {
/* First contact, request 100 us latency. */
dev_pm_qos_add_ancestor_request(&ts->client->dev,
&ts->low_latency_req,
DEV_PM_QOS_RESUME_LATENCY, 100);
}
out:
return IRQ_HANDLED;
}
static void st1232_ts_power(struct st1232_ts_data *ts, bool poweron)
{
if (ts->reset_gpio)
gpiod_set_value_cansleep(ts->reset_gpio, !poweron);
}
static void st1232_ts_power_off(void *data)
{
st1232_ts_power(data, false);
}
static const struct st_chip_info st1232_chip_info = {
.have_z = true,
.max_area = 0xff,
.max_fingers = 2,
};
static const struct st_chip_info st1633_chip_info = {
.have_z = false,
.max_area = 0x00,
.max_fingers = 5,
};
static int st1232_ts_probe(struct i2c_client *client)
{
const struct i2c_device_id *id = i2c_client_get_device_id(client);
const struct st_chip_info *match;
struct st1232_ts_data *ts;
struct input_dev *input_dev;
u16 max_x, max_y;
int error;
match = device_get_match_data(&client->dev);
if (!match && id)
match = (const void *)id->driver_data;
if (!match) {
dev_err(&client->dev, "unknown device model\n");
return -ENODEV;
}
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "need I2C_FUNC_I2C\n");
return -EIO;
}
if (!client->irq) {
dev_err(&client->dev, "no IRQ?\n");
return -EINVAL;
}
ts = devm_kzalloc(&client->dev, sizeof(*ts), GFP_KERNEL);
if (!ts)
return -ENOMEM;
ts->chip_info = match;
/* allocate a buffer according to the number of registers to read */
ts->read_buf_len = ts->chip_info->max_fingers * 4;
ts->read_buf = devm_kzalloc(&client->dev, ts->read_buf_len, GFP_KERNEL);
if (!ts->read_buf)
return -ENOMEM;
input_dev = devm_input_allocate_device(&client->dev);
if (!input_dev)
return -ENOMEM;
ts->client = client;
ts->input_dev = input_dev;
ts->reset_gpio = devm_gpiod_get_optional(&client->dev, NULL,
GPIOD_OUT_HIGH);
if (IS_ERR(ts->reset_gpio)) {
error = PTR_ERR(ts->reset_gpio);
dev_err(&client->dev, "Unable to request GPIO pin: %d.\n",
error);
return error;
}
st1232_ts_power(ts, true);
error = devm_add_action_or_reset(&client->dev, st1232_ts_power_off, ts);
if (error) {
dev_err(&client->dev,
"Failed to install power off action: %d\n", error);
return error;
}
input_dev->name = "st1232-touchscreen";
input_dev->id.bustype = BUS_I2C;
/* Wait until device is ready */
error = st1232_ts_wait_ready(ts);
if (error)
return error;
/* Read resolution from the chip */
error = st1232_ts_read_resolution(ts, &max_x, &max_y);
if (error) {
dev_err(&client->dev,
"Failed to read resolution: %d\n", error);
return error;
}
if (ts->chip_info->have_z)
input_set_abs_params(input_dev, ABS_MT_TOUCH_MAJOR, 0,
ts->chip_info->max_area, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_X,
0, max_x, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_Y,
0, max_y, 0, 0);
touchscreen_parse_properties(input_dev, true, &ts->prop);
error = input_mt_init_slots(input_dev, ts->chip_info->max_fingers,
INPUT_MT_DIRECT | INPUT_MT_TRACK |
INPUT_MT_DROP_UNUSED);
if (error) {
dev_err(&client->dev, "failed to initialize MT slots\n");
return error;
}
error = devm_request_threaded_irq(&client->dev, client->irq,
NULL, st1232_ts_irq_handler,
IRQF_ONESHOT,
client->name, ts);
if (error) {
dev_err(&client->dev, "Failed to register interrupt\n");
return error;
}
error = input_register_device(ts->input_dev);
if (error) {
dev_err(&client->dev, "Unable to register %s input device\n",
input_dev->name);
return error;
}
i2c_set_clientdata(client, ts);
return 0;
}
static int st1232_ts_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct st1232_ts_data *ts = i2c_get_clientdata(client);
disable_irq(client->irq);
if (!device_may_wakeup(&client->dev))
st1232_ts_power(ts, false);
return 0;
}
static int st1232_ts_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct st1232_ts_data *ts = i2c_get_clientdata(client);
if (!device_may_wakeup(&client->dev))
st1232_ts_power(ts, true);
enable_irq(client->irq);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(st1232_ts_pm_ops,
st1232_ts_suspend, st1232_ts_resume);
static const struct i2c_device_id st1232_ts_id[] = {
{ ST1232_TS_NAME, (unsigned long)&st1232_chip_info },
{ ST1633_TS_NAME, (unsigned long)&st1633_chip_info },
{ }
};
MODULE_DEVICE_TABLE(i2c, st1232_ts_id);
static const struct of_device_id st1232_ts_dt_ids[] = {
{ .compatible = "sitronix,st1232", .data = &st1232_chip_info },
{ .compatible = "sitronix,st1633", .data = &st1633_chip_info },
{ }
};
MODULE_DEVICE_TABLE(of, st1232_ts_dt_ids);
static struct i2c_driver st1232_ts_driver = {
.probe = st1232_ts_probe,
.id_table = st1232_ts_id,
.driver = {
.name = ST1232_TS_NAME,
.of_match_table = st1232_ts_dt_ids,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = pm_sleep_ptr(&st1232_ts_pm_ops),
},
};
module_i2c_driver(st1232_ts_driver);
MODULE_AUTHOR("Tony SIM <[email protected]>");
MODULE_AUTHOR("Martin Kepplinger <[email protected]>");
MODULE_DESCRIPTION("SITRONIX ST1232 Touchscreen Controller Driver");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/touchscreen/st1232.c
|
// SPDX-License-Identifier: GPL-2.0
//
// Freescale i.MX6UL touchscreen controller driver
//
// Copyright (C) 2015 Freescale Semiconductor, Inc.
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/gpio/consumer.h>
#include <linux/input.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/log2.h>
/* ADC configuration registers field define */
#define ADC_AIEN (0x1 << 7)
#define ADC_CONV_DISABLE 0x1F
#define ADC_AVGE (0x1 << 5)
#define ADC_CAL (0x1 << 7)
#define ADC_CALF 0x2
#define ADC_12BIT_MODE (0x2 << 2)
#define ADC_CONV_MODE_MASK (0x3 << 2)
#define ADC_IPG_CLK 0x00
#define ADC_INPUT_CLK_MASK 0x3
#define ADC_CLK_DIV_8 (0x03 << 5)
#define ADC_CLK_DIV_MASK (0x3 << 5)
#define ADC_SHORT_SAMPLE_MODE (0x0 << 4)
#define ADC_SAMPLE_MODE_MASK (0x1 << 4)
#define ADC_HARDWARE_TRIGGER (0x1 << 13)
#define ADC_AVGS_SHIFT 14
#define ADC_AVGS_MASK (0x3 << 14)
#define SELECT_CHANNEL_4 0x04
#define SELECT_CHANNEL_1 0x01
#define DISABLE_CONVERSION_INT (0x0 << 7)
/* ADC registers */
#define REG_ADC_HC0 0x00
#define REG_ADC_HC1 0x04
#define REG_ADC_HC2 0x08
#define REG_ADC_HC3 0x0C
#define REG_ADC_HC4 0x10
#define REG_ADC_HS 0x14
#define REG_ADC_R0 0x18
#define REG_ADC_CFG 0x2C
#define REG_ADC_GC 0x30
#define REG_ADC_GS 0x34
#define ADC_TIMEOUT msecs_to_jiffies(100)
/* TSC registers */
#define REG_TSC_BASIC_SETING 0x00
#define REG_TSC_PRE_CHARGE_TIME 0x10
#define REG_TSC_FLOW_CONTROL 0x20
#define REG_TSC_MEASURE_VALUE 0x30
#define REG_TSC_INT_EN 0x40
#define REG_TSC_INT_SIG_EN 0x50
#define REG_TSC_INT_STATUS 0x60
#define REG_TSC_DEBUG_MODE 0x70
#define REG_TSC_DEBUG_MODE2 0x80
/* TSC configuration registers field define */
#define DETECT_4_WIRE_MODE (0x0 << 4)
#define AUTO_MEASURE 0x1
#define MEASURE_SIGNAL 0x1
#define DETECT_SIGNAL (0x1 << 4)
#define VALID_SIGNAL (0x1 << 8)
#define MEASURE_INT_EN 0x1
#define MEASURE_SIG_EN 0x1
#define VALID_SIG_EN (0x1 << 8)
#define DE_GLITCH_2 (0x2 << 29)
#define START_SENSE (0x1 << 12)
#define TSC_DISABLE (0x1 << 16)
#define DETECT_MODE 0x2
struct imx6ul_tsc {
struct device *dev;
struct input_dev *input;
void __iomem *tsc_regs;
void __iomem *adc_regs;
struct clk *tsc_clk;
struct clk *adc_clk;
struct gpio_desc *xnur_gpio;
u32 measure_delay_time;
u32 pre_charge_time;
bool average_enable;
u32 average_select;
struct completion completion;
};
/*
* TSC module need ADC to get the measure value. So
* before config TSC, we should initialize ADC module.
*/
static int imx6ul_adc_init(struct imx6ul_tsc *tsc)
{
u32 adc_hc = 0;
u32 adc_gc;
u32 adc_gs;
u32 adc_cfg;
unsigned long timeout;
reinit_completion(&tsc->completion);
adc_cfg = readl(tsc->adc_regs + REG_ADC_CFG);
adc_cfg &= ~(ADC_CONV_MODE_MASK | ADC_INPUT_CLK_MASK);
adc_cfg |= ADC_12BIT_MODE | ADC_IPG_CLK;
adc_cfg &= ~(ADC_CLK_DIV_MASK | ADC_SAMPLE_MODE_MASK);
adc_cfg |= ADC_CLK_DIV_8 | ADC_SHORT_SAMPLE_MODE;
if (tsc->average_enable) {
adc_cfg &= ~ADC_AVGS_MASK;
adc_cfg |= (tsc->average_select) << ADC_AVGS_SHIFT;
}
adc_cfg &= ~ADC_HARDWARE_TRIGGER;
writel(adc_cfg, tsc->adc_regs + REG_ADC_CFG);
/* enable calibration interrupt */
adc_hc |= ADC_AIEN;
adc_hc |= ADC_CONV_DISABLE;
writel(adc_hc, tsc->adc_regs + REG_ADC_HC0);
/* start ADC calibration */
adc_gc = readl(tsc->adc_regs + REG_ADC_GC);
adc_gc |= ADC_CAL;
if (tsc->average_enable)
adc_gc |= ADC_AVGE;
writel(adc_gc, tsc->adc_regs + REG_ADC_GC);
timeout = wait_for_completion_timeout
(&tsc->completion, ADC_TIMEOUT);
if (timeout == 0) {
dev_err(tsc->dev, "Timeout for adc calibration\n");
return -ETIMEDOUT;
}
adc_gs = readl(tsc->adc_regs + REG_ADC_GS);
if (adc_gs & ADC_CALF) {
dev_err(tsc->dev, "ADC calibration failed\n");
return -EINVAL;
}
/* TSC need the ADC work in hardware trigger */
adc_cfg = readl(tsc->adc_regs + REG_ADC_CFG);
adc_cfg |= ADC_HARDWARE_TRIGGER;
writel(adc_cfg, tsc->adc_regs + REG_ADC_CFG);
return 0;
}
/*
* This is a TSC workaround. Currently TSC misconnect two
* ADC channels, this function remap channel configure for
* hardware trigger.
*/
static void imx6ul_tsc_channel_config(struct imx6ul_tsc *tsc)
{
u32 adc_hc0, adc_hc1, adc_hc2, adc_hc3, adc_hc4;
adc_hc0 = DISABLE_CONVERSION_INT;
writel(adc_hc0, tsc->adc_regs + REG_ADC_HC0);
adc_hc1 = DISABLE_CONVERSION_INT | SELECT_CHANNEL_4;
writel(adc_hc1, tsc->adc_regs + REG_ADC_HC1);
adc_hc2 = DISABLE_CONVERSION_INT;
writel(adc_hc2, tsc->adc_regs + REG_ADC_HC2);
adc_hc3 = DISABLE_CONVERSION_INT | SELECT_CHANNEL_1;
writel(adc_hc3, tsc->adc_regs + REG_ADC_HC3);
adc_hc4 = DISABLE_CONVERSION_INT;
writel(adc_hc4, tsc->adc_regs + REG_ADC_HC4);
}
/*
* TSC setting, confige the pre-charge time and measure delay time.
* different touch screen may need different pre-charge time and
* measure delay time.
*/
static void imx6ul_tsc_set(struct imx6ul_tsc *tsc)
{
u32 basic_setting = 0;
u32 start;
basic_setting |= tsc->measure_delay_time << 8;
basic_setting |= DETECT_4_WIRE_MODE | AUTO_MEASURE;
writel(basic_setting, tsc->tsc_regs + REG_TSC_BASIC_SETING);
writel(DE_GLITCH_2, tsc->tsc_regs + REG_TSC_DEBUG_MODE2);
writel(tsc->pre_charge_time, tsc->tsc_regs + REG_TSC_PRE_CHARGE_TIME);
writel(MEASURE_INT_EN, tsc->tsc_regs + REG_TSC_INT_EN);
writel(MEASURE_SIG_EN | VALID_SIG_EN,
tsc->tsc_regs + REG_TSC_INT_SIG_EN);
/* start sense detection */
start = readl(tsc->tsc_regs + REG_TSC_FLOW_CONTROL);
start |= START_SENSE;
start &= ~TSC_DISABLE;
writel(start, tsc->tsc_regs + REG_TSC_FLOW_CONTROL);
}
static int imx6ul_tsc_init(struct imx6ul_tsc *tsc)
{
int err;
err = imx6ul_adc_init(tsc);
if (err)
return err;
imx6ul_tsc_channel_config(tsc);
imx6ul_tsc_set(tsc);
return 0;
}
static void imx6ul_tsc_disable(struct imx6ul_tsc *tsc)
{
u32 tsc_flow;
u32 adc_cfg;
/* TSC controller enters to idle status */
tsc_flow = readl(tsc->tsc_regs + REG_TSC_FLOW_CONTROL);
tsc_flow |= TSC_DISABLE;
writel(tsc_flow, tsc->tsc_regs + REG_TSC_FLOW_CONTROL);
/* ADC controller enters to stop mode */
adc_cfg = readl(tsc->adc_regs + REG_ADC_HC0);
adc_cfg |= ADC_CONV_DISABLE;
writel(adc_cfg, tsc->adc_regs + REG_ADC_HC0);
}
/* Delay some time (max 2ms), wait the pre-charge done. */
static bool tsc_wait_detect_mode(struct imx6ul_tsc *tsc)
{
unsigned long timeout = jiffies + msecs_to_jiffies(2);
u32 state_machine;
u32 debug_mode2;
do {
if (time_after(jiffies, timeout))
return false;
usleep_range(200, 400);
debug_mode2 = readl(tsc->tsc_regs + REG_TSC_DEBUG_MODE2);
state_machine = (debug_mode2 >> 20) & 0x7;
} while (state_machine != DETECT_MODE);
usleep_range(200, 400);
return true;
}
static irqreturn_t tsc_irq_fn(int irq, void *dev_id)
{
struct imx6ul_tsc *tsc = dev_id;
u32 status;
u32 value;
u32 x, y;
u32 start;
status = readl(tsc->tsc_regs + REG_TSC_INT_STATUS);
/* write 1 to clear the bit measure-signal */
writel(MEASURE_SIGNAL | DETECT_SIGNAL,
tsc->tsc_regs + REG_TSC_INT_STATUS);
/* It's a HW self-clean bit. Set this bit and start sense detection */
start = readl(tsc->tsc_regs + REG_TSC_FLOW_CONTROL);
start |= START_SENSE;
writel(start, tsc->tsc_regs + REG_TSC_FLOW_CONTROL);
if (status & MEASURE_SIGNAL) {
value = readl(tsc->tsc_regs + REG_TSC_MEASURE_VALUE);
x = (value >> 16) & 0x0fff;
y = value & 0x0fff;
/*
* In detect mode, we can get the xnur gpio value,
* otherwise assume contact is stiull active.
*/
if (!tsc_wait_detect_mode(tsc) ||
gpiod_get_value_cansleep(tsc->xnur_gpio)) {
input_report_key(tsc->input, BTN_TOUCH, 1);
input_report_abs(tsc->input, ABS_X, x);
input_report_abs(tsc->input, ABS_Y, y);
} else {
input_report_key(tsc->input, BTN_TOUCH, 0);
}
input_sync(tsc->input);
}
return IRQ_HANDLED;
}
static irqreturn_t adc_irq_fn(int irq, void *dev_id)
{
struct imx6ul_tsc *tsc = dev_id;
u32 coco;
coco = readl(tsc->adc_regs + REG_ADC_HS);
if (coco & 0x01) {
readl(tsc->adc_regs + REG_ADC_R0);
complete(&tsc->completion);
}
return IRQ_HANDLED;
}
static int imx6ul_tsc_start(struct imx6ul_tsc *tsc)
{
int err;
err = clk_prepare_enable(tsc->adc_clk);
if (err) {
dev_err(tsc->dev,
"Could not prepare or enable the adc clock: %d\n",
err);
return err;
}
err = clk_prepare_enable(tsc->tsc_clk);
if (err) {
dev_err(tsc->dev,
"Could not prepare or enable the tsc clock: %d\n",
err);
goto disable_adc_clk;
}
err = imx6ul_tsc_init(tsc);
if (err)
goto disable_tsc_clk;
return 0;
disable_tsc_clk:
clk_disable_unprepare(tsc->tsc_clk);
disable_adc_clk:
clk_disable_unprepare(tsc->adc_clk);
return err;
}
static void imx6ul_tsc_stop(struct imx6ul_tsc *tsc)
{
imx6ul_tsc_disable(tsc);
clk_disable_unprepare(tsc->tsc_clk);
clk_disable_unprepare(tsc->adc_clk);
}
static int imx6ul_tsc_open(struct input_dev *input_dev)
{
struct imx6ul_tsc *tsc = input_get_drvdata(input_dev);
return imx6ul_tsc_start(tsc);
}
static void imx6ul_tsc_close(struct input_dev *input_dev)
{
struct imx6ul_tsc *tsc = input_get_drvdata(input_dev);
imx6ul_tsc_stop(tsc);
}
static int imx6ul_tsc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct imx6ul_tsc *tsc;
struct input_dev *input_dev;
int err;
int tsc_irq;
int adc_irq;
u32 average_samples;
tsc = devm_kzalloc(&pdev->dev, sizeof(*tsc), GFP_KERNEL);
if (!tsc)
return -ENOMEM;
input_dev = devm_input_allocate_device(&pdev->dev);
if (!input_dev)
return -ENOMEM;
input_dev->name = "iMX6UL Touchscreen Controller";
input_dev->id.bustype = BUS_HOST;
input_dev->open = imx6ul_tsc_open;
input_dev->close = imx6ul_tsc_close;
input_set_capability(input_dev, EV_KEY, BTN_TOUCH);
input_set_abs_params(input_dev, ABS_X, 0, 0xFFF, 0, 0);
input_set_abs_params(input_dev, ABS_Y, 0, 0xFFF, 0, 0);
input_set_drvdata(input_dev, tsc);
tsc->dev = &pdev->dev;
tsc->input = input_dev;
init_completion(&tsc->completion);
tsc->xnur_gpio = devm_gpiod_get(&pdev->dev, "xnur", GPIOD_IN);
if (IS_ERR(tsc->xnur_gpio)) {
err = PTR_ERR(tsc->xnur_gpio);
dev_err(&pdev->dev,
"failed to request GPIO tsc_X- (xnur): %d\n", err);
return err;
}
tsc->tsc_regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(tsc->tsc_regs)) {
err = PTR_ERR(tsc->tsc_regs);
dev_err(&pdev->dev, "failed to remap tsc memory: %d\n", err);
return err;
}
tsc->adc_regs = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(tsc->adc_regs)) {
err = PTR_ERR(tsc->adc_regs);
dev_err(&pdev->dev, "failed to remap adc memory: %d\n", err);
return err;
}
tsc->tsc_clk = devm_clk_get(&pdev->dev, "tsc");
if (IS_ERR(tsc->tsc_clk)) {
err = PTR_ERR(tsc->tsc_clk);
dev_err(&pdev->dev, "failed getting tsc clock: %d\n", err);
return err;
}
tsc->adc_clk = devm_clk_get(&pdev->dev, "adc");
if (IS_ERR(tsc->adc_clk)) {
err = PTR_ERR(tsc->adc_clk);
dev_err(&pdev->dev, "failed getting adc clock: %d\n", err);
return err;
}
tsc_irq = platform_get_irq(pdev, 0);
if (tsc_irq < 0)
return tsc_irq;
adc_irq = platform_get_irq(pdev, 1);
if (adc_irq < 0)
return adc_irq;
err = devm_request_threaded_irq(tsc->dev, tsc_irq,
NULL, tsc_irq_fn, IRQF_ONESHOT,
dev_name(&pdev->dev), tsc);
if (err) {
dev_err(&pdev->dev,
"failed requesting tsc irq %d: %d\n",
tsc_irq, err);
return err;
}
err = devm_request_irq(tsc->dev, adc_irq, adc_irq_fn, 0,
dev_name(&pdev->dev), tsc);
if (err) {
dev_err(&pdev->dev,
"failed requesting adc irq %d: %d\n",
adc_irq, err);
return err;
}
err = of_property_read_u32(np, "measure-delay-time",
&tsc->measure_delay_time);
if (err)
tsc->measure_delay_time = 0xffff;
err = of_property_read_u32(np, "pre-charge-time",
&tsc->pre_charge_time);
if (err)
tsc->pre_charge_time = 0xfff;
err = of_property_read_u32(np, "touchscreen-average-samples",
&average_samples);
if (err)
average_samples = 1;
switch (average_samples) {
case 1:
tsc->average_enable = false;
tsc->average_select = 0; /* value unused; initialize anyway */
break;
case 4:
case 8:
case 16:
case 32:
tsc->average_enable = true;
tsc->average_select = ilog2(average_samples) - 2;
break;
default:
dev_err(&pdev->dev,
"touchscreen-average-samples (%u) must be 1, 4, 8, 16 or 32\n",
average_samples);
return -EINVAL;
}
err = input_register_device(tsc->input);
if (err) {
dev_err(&pdev->dev,
"failed to register input device: %d\n", err);
return err;
}
platform_set_drvdata(pdev, tsc);
return 0;
}
static int imx6ul_tsc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct imx6ul_tsc *tsc = platform_get_drvdata(pdev);
struct input_dev *input_dev = tsc->input;
mutex_lock(&input_dev->mutex);
if (input_device_enabled(input_dev))
imx6ul_tsc_stop(tsc);
mutex_unlock(&input_dev->mutex);
return 0;
}
static int imx6ul_tsc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct imx6ul_tsc *tsc = platform_get_drvdata(pdev);
struct input_dev *input_dev = tsc->input;
int retval = 0;
mutex_lock(&input_dev->mutex);
if (input_device_enabled(input_dev))
retval = imx6ul_tsc_start(tsc);
mutex_unlock(&input_dev->mutex);
return retval;
}
static DEFINE_SIMPLE_DEV_PM_OPS(imx6ul_tsc_pm_ops,
imx6ul_tsc_suspend, imx6ul_tsc_resume);
static const struct of_device_id imx6ul_tsc_match[] = {
{ .compatible = "fsl,imx6ul-tsc", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx6ul_tsc_match);
static struct platform_driver imx6ul_tsc_driver = {
.driver = {
.name = "imx6ul-tsc",
.of_match_table = imx6ul_tsc_match,
.pm = pm_sleep_ptr(&imx6ul_tsc_pm_ops),
},
.probe = imx6ul_tsc_probe,
};
module_platform_driver(imx6ul_tsc_driver);
MODULE_AUTHOR("Haibo Chen <[email protected]>");
MODULE_DESCRIPTION("Freescale i.MX6UL Touchscreen controller driver");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/touchscreen/imx6ul_tsc.c
|
// SPDX-License-Identifier: GPL-2.0
/*
* ADC generic resistive touchscreen (GRTS)
* This is a generic input driver that connects to an ADC
* given the channels in device tree, and reports events to the input
* subsystem.
*
* Copyright (C) 2017,2018 Microchip Technology,
* Author: Eugen Hristev <[email protected]>
*
*/
#include <linux/input.h>
#include <linux/input/touchscreen.h>
#include <linux/iio/consumer.h>
#include <linux/iio/iio.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#define DRIVER_NAME "resistive-adc-touch"
#define GRTS_DEFAULT_PRESSURE_MIN 50000
#define GRTS_DEFAULT_PRESSURE_MAX 65535
#define GRTS_MAX_POS_MASK GENMASK(11, 0)
#define GRTS_MAX_CHANNELS 4
enum grts_ch_type {
GRTS_CH_X,
GRTS_CH_Y,
GRTS_CH_PRESSURE,
GRTS_CH_Z1,
GRTS_CH_Z2,
GRTS_CH_MAX = GRTS_CH_Z2 + 1
};
/**
* struct grts_state - generic resistive touch screen information struct
* @x_plate_ohms: resistance of the X plate
* @pressure_min: number representing the minimum for the pressure
* @pressure: are we getting pressure info or not
* @iio_chans: list of channels acquired
* @iio_cb: iio_callback buffer for the data
* @input: the input device structure that we register
* @prop: touchscreen properties struct
* @ch_map: map of channels that are defined for the touchscreen
*/
struct grts_state {
u32 x_plate_ohms;
u32 pressure_min;
bool pressure;
struct iio_channel *iio_chans;
struct iio_cb_buffer *iio_cb;
struct input_dev *input;
struct touchscreen_properties prop;
u8 ch_map[GRTS_CH_MAX];
};
static int grts_cb(const void *data, void *private)
{
const u16 *touch_info = data;
struct grts_state *st = private;
unsigned int x, y, press = 0;
x = touch_info[st->ch_map[GRTS_CH_X]];
y = touch_info[st->ch_map[GRTS_CH_Y]];
if (st->ch_map[GRTS_CH_PRESSURE] < GRTS_MAX_CHANNELS) {
press = touch_info[st->ch_map[GRTS_CH_PRESSURE]];
} else if (st->ch_map[GRTS_CH_Z1] < GRTS_MAX_CHANNELS) {
unsigned int z1 = touch_info[st->ch_map[GRTS_CH_Z1]];
unsigned int z2 = touch_info[st->ch_map[GRTS_CH_Z2]];
unsigned int Rt;
if (likely(x && z1)) {
Rt = z2;
Rt -= z1;
Rt *= st->x_plate_ohms;
Rt = DIV_ROUND_CLOSEST(Rt, 16);
Rt *= x;
Rt /= z1;
Rt = DIV_ROUND_CLOSEST(Rt, 256);
/*
* On increased pressure the resistance (Rt) is
* decreasing so, convert values to make it looks as
* real pressure.
*/
if (Rt < GRTS_DEFAULT_PRESSURE_MAX)
press = GRTS_DEFAULT_PRESSURE_MAX - Rt;
}
}
if ((!x && !y) || (st->pressure && (press < st->pressure_min))) {
/* report end of touch */
input_report_key(st->input, BTN_TOUCH, 0);
input_sync(st->input);
return 0;
}
/* report proper touch to subsystem*/
touchscreen_report_pos(st->input, &st->prop, x, y, false);
if (st->pressure)
input_report_abs(st->input, ABS_PRESSURE, press);
input_report_key(st->input, BTN_TOUCH, 1);
input_sync(st->input);
return 0;
}
static int grts_open(struct input_dev *dev)
{
int error;
struct grts_state *st = input_get_drvdata(dev);
error = iio_channel_start_all_cb(st->iio_cb);
if (error) {
dev_err(dev->dev.parent, "failed to start callback buffer.\n");
return error;
}
return 0;
}
static void grts_close(struct input_dev *dev)
{
struct grts_state *st = input_get_drvdata(dev);
iio_channel_stop_all_cb(st->iio_cb);
}
static void grts_disable(void *data)
{
iio_channel_release_all_cb(data);
}
static int grts_map_channel(struct grts_state *st, struct device *dev,
enum grts_ch_type type, const char *name,
bool optional)
{
int idx;
idx = device_property_match_string(dev, "io-channel-names", name);
if (idx < 0) {
if (!optional)
return idx;
idx = GRTS_MAX_CHANNELS;
} else if (idx >= GRTS_MAX_CHANNELS) {
return -EOVERFLOW;
}
st->ch_map[type] = idx;
return 0;
}
static int grts_get_properties(struct grts_state *st, struct device *dev)
{
int error;
error = grts_map_channel(st, dev, GRTS_CH_X, "x", false);
if (error)
return error;
error = grts_map_channel(st, dev, GRTS_CH_Y, "y", false);
if (error)
return error;
/* pressure is optional */
error = grts_map_channel(st, dev, GRTS_CH_PRESSURE, "pressure", true);
if (error)
return error;
if (st->ch_map[GRTS_CH_PRESSURE] < GRTS_MAX_CHANNELS) {
st->pressure = true;
return 0;
}
/* if no pressure is defined, try optional z1 + z2 */
error = grts_map_channel(st, dev, GRTS_CH_Z1, "z1", true);
if (error)
return error;
if (st->ch_map[GRTS_CH_Z1] >= GRTS_MAX_CHANNELS)
return 0;
/* if z1 is provided z2 is not optional */
error = grts_map_channel(st, dev, GRTS_CH_Z2, "z2", true);
if (error)
return error;
error = device_property_read_u32(dev,
"touchscreen-x-plate-ohms",
&st->x_plate_ohms);
if (error) {
dev_err(dev, "can't get touchscreen-x-plate-ohms property\n");
return error;
}
st->pressure = true;
return 0;
}
static int grts_probe(struct platform_device *pdev)
{
struct grts_state *st;
struct input_dev *input;
struct device *dev = &pdev->dev;
int error;
st = devm_kzalloc(dev, sizeof(struct grts_state), GFP_KERNEL);
if (!st)
return -ENOMEM;
/* get the channels from IIO device */
st->iio_chans = devm_iio_channel_get_all(dev);
if (IS_ERR(st->iio_chans))
return dev_err_probe(dev, PTR_ERR(st->iio_chans), "can't get iio channels\n");
if (!device_property_present(dev, "io-channel-names"))
return -ENODEV;
error = grts_get_properties(st, dev);
if (error) {
dev_err(dev, "Failed to parse properties\n");
return error;
}
if (st->pressure) {
error = device_property_read_u32(dev,
"touchscreen-min-pressure",
&st->pressure_min);
if (error) {
dev_dbg(dev, "can't get touchscreen-min-pressure property.\n");
st->pressure_min = GRTS_DEFAULT_PRESSURE_MIN;
}
}
input = devm_input_allocate_device(dev);
if (!input) {
dev_err(dev, "failed to allocate input device.\n");
return -ENOMEM;
}
input->name = DRIVER_NAME;
input->id.bustype = BUS_HOST;
input->open = grts_open;
input->close = grts_close;
input_set_abs_params(input, ABS_X, 0, GRTS_MAX_POS_MASK - 1, 0, 0);
input_set_abs_params(input, ABS_Y, 0, GRTS_MAX_POS_MASK - 1, 0, 0);
if (st->pressure)
input_set_abs_params(input, ABS_PRESSURE, st->pressure_min,
GRTS_DEFAULT_PRESSURE_MAX, 0, 0);
input_set_capability(input, EV_KEY, BTN_TOUCH);
/* parse optional device tree properties */
touchscreen_parse_properties(input, false, &st->prop);
st->input = input;
input_set_drvdata(input, st);
error = input_register_device(input);
if (error) {
dev_err(dev, "failed to register input device.");
return error;
}
st->iio_cb = iio_channel_get_all_cb(dev, grts_cb, st);
if (IS_ERR(st->iio_cb)) {
dev_err(dev, "failed to allocate callback buffer.\n");
return PTR_ERR(st->iio_cb);
}
error = devm_add_action_or_reset(dev, grts_disable, st->iio_cb);
if (error) {
dev_err(dev, "failed to add disable action.\n");
return error;
}
return 0;
}
static const struct of_device_id grts_of_match[] = {
{
.compatible = "resistive-adc-touch",
}, {
/* sentinel */
},
};
MODULE_DEVICE_TABLE(of, grts_of_match);
static struct platform_driver grts_driver = {
.probe = grts_probe,
.driver = {
.name = DRIVER_NAME,
.of_match_table = grts_of_match,
},
};
module_platform_driver(grts_driver);
MODULE_AUTHOR("Eugen Hristev <[email protected]>");
MODULE_DESCRIPTION("Generic ADC Resistive Touch Driver");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/touchscreen/resistive-adc-touch.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Ntrig/Microsoft Touchscreens over SPI
*
* Copyright (c) 2016 Red Hat Inc.
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/acpi.h>
#include <asm/unaligned.h>
#define SURFACE3_PACKET_SIZE 264
#define SURFACE3_REPORT_TOUCH 0xd2
#define SURFACE3_REPORT_PEN 0x16
struct surface3_ts_data {
struct spi_device *spi;
struct gpio_desc *gpiod_rst[2];
struct input_dev *input_dev;
struct input_dev *pen_input_dev;
int pen_tool;
u8 rd_buf[SURFACE3_PACKET_SIZE] ____cacheline_aligned;
};
struct surface3_ts_data_finger {
u8 status;
__le16 tracking_id;
__le16 x;
__le16 cx;
__le16 y;
__le16 cy;
__le16 width;
__le16 height;
u32 padding;
} __packed;
struct surface3_ts_data_pen {
u8 status;
__le16 x;
__le16 y;
__le16 pressure;
u8 padding;
} __packed;
static int surface3_spi_read(struct surface3_ts_data *ts_data)
{
struct spi_device *spi = ts_data->spi;
memset(ts_data->rd_buf, 0, sizeof(ts_data->rd_buf));
return spi_read(spi, ts_data->rd_buf, sizeof(ts_data->rd_buf));
}
static void surface3_spi_report_touch(struct surface3_ts_data *ts_data,
struct surface3_ts_data_finger *finger)
{
int st = finger->status & 0x01;
int slot;
slot = input_mt_get_slot_by_key(ts_data->input_dev,
get_unaligned_le16(&finger->tracking_id));
if (slot < 0)
return;
input_mt_slot(ts_data->input_dev, slot);
input_mt_report_slot_state(ts_data->input_dev, MT_TOOL_FINGER, st);
if (st) {
input_report_abs(ts_data->input_dev,
ABS_MT_POSITION_X,
get_unaligned_le16(&finger->x));
input_report_abs(ts_data->input_dev,
ABS_MT_POSITION_Y,
get_unaligned_le16(&finger->y));
input_report_abs(ts_data->input_dev,
ABS_MT_WIDTH_MAJOR,
get_unaligned_le16(&finger->width));
input_report_abs(ts_data->input_dev,
ABS_MT_WIDTH_MINOR,
get_unaligned_le16(&finger->height));
}
}
static void surface3_spi_process_touch(struct surface3_ts_data *ts_data, u8 *data)
{
unsigned int i;
for (i = 0; i < 13; i++) {
struct surface3_ts_data_finger *finger;
finger = (struct surface3_ts_data_finger *)&data[17 +
i * sizeof(struct surface3_ts_data_finger)];
/*
* When bit 5 of status is 1, it marks the end of the report:
* - touch present: 0xe7
* - touch released: 0xe4
* - nothing valuable: 0xff
*/
if (finger->status & 0x10)
break;
surface3_spi_report_touch(ts_data, finger);
}
input_mt_sync_frame(ts_data->input_dev);
input_sync(ts_data->input_dev);
}
static void surface3_spi_report_pen(struct surface3_ts_data *ts_data,
struct surface3_ts_data_pen *pen)
{
struct input_dev *dev = ts_data->pen_input_dev;
int st = pen->status;
int prox = st & 0x01;
int rubber = st & 0x18;
int tool = (prox && rubber) ? BTN_TOOL_RUBBER : BTN_TOOL_PEN;
/* fake proximity out to switch tools */
if (ts_data->pen_tool != tool) {
input_report_key(dev, ts_data->pen_tool, 0);
input_sync(dev);
ts_data->pen_tool = tool;
}
input_report_key(dev, BTN_TOUCH, st & 0x12);
input_report_key(dev, ts_data->pen_tool, prox);
if (st) {
input_report_key(dev,
BTN_STYLUS,
st & 0x04);
input_report_abs(dev,
ABS_X,
get_unaligned_le16(&pen->x));
input_report_abs(dev,
ABS_Y,
get_unaligned_le16(&pen->y));
input_report_abs(dev,
ABS_PRESSURE,
get_unaligned_le16(&pen->pressure));
}
}
static void surface3_spi_process_pen(struct surface3_ts_data *ts_data, u8 *data)
{
struct surface3_ts_data_pen *pen;
pen = (struct surface3_ts_data_pen *)&data[15];
surface3_spi_report_pen(ts_data, pen);
input_sync(ts_data->pen_input_dev);
}
static void surface3_spi_process(struct surface3_ts_data *ts_data)
{
static const char header[] = {
0xff, 0xff, 0xff, 0xff, 0xa5, 0x5a, 0xe7, 0x7e, 0x01
};
u8 *data = ts_data->rd_buf;
if (memcmp(header, data, sizeof(header)))
dev_err(&ts_data->spi->dev,
"%s header error: %*ph, ignoring...\n",
__func__, (int)sizeof(header), data);
switch (data[9]) {
case SURFACE3_REPORT_TOUCH:
surface3_spi_process_touch(ts_data, data);
break;
case SURFACE3_REPORT_PEN:
surface3_spi_process_pen(ts_data, data);
break;
default:
dev_err(&ts_data->spi->dev,
"%s unknown packet type: %x, ignoring...\n",
__func__, data[9]);
break;
}
}
static irqreturn_t surface3_spi_irq_handler(int irq, void *dev_id)
{
struct surface3_ts_data *data = dev_id;
if (surface3_spi_read(data))
return IRQ_HANDLED;
dev_dbg(&data->spi->dev, "%s received -> %*ph\n",
__func__, SURFACE3_PACKET_SIZE, data->rd_buf);
surface3_spi_process(data);
return IRQ_HANDLED;
}
static void surface3_spi_power(struct surface3_ts_data *data, bool on)
{
gpiod_set_value(data->gpiod_rst[0], on);
gpiod_set_value(data->gpiod_rst[1], on);
/* let the device settle a little */
msleep(20);
}
/**
* surface3_spi_get_gpio_config - Get GPIO config from ACPI/DT
*
* @data: surface3_spi_ts_data pointer
*/
static int surface3_spi_get_gpio_config(struct surface3_ts_data *data)
{
struct device *dev;
struct gpio_desc *gpiod;
int i;
dev = &data->spi->dev;
/* Get the reset lines GPIO pin number */
for (i = 0; i < 2; i++) {
gpiod = devm_gpiod_get_index(dev, NULL, i, GPIOD_OUT_LOW);
if (IS_ERR(gpiod))
return dev_err_probe(dev, PTR_ERR(gpiod),
"Failed to get power GPIO %d\n", i);
data->gpiod_rst[i] = gpiod;
}
return 0;
}
static int surface3_spi_create_touch_input(struct surface3_ts_data *data)
{
struct input_dev *input;
int error;
input = devm_input_allocate_device(&data->spi->dev);
if (!input)
return -ENOMEM;
data->input_dev = input;
input_set_abs_params(input, ABS_MT_POSITION_X, 0, 9600, 0, 0);
input_abs_set_res(input, ABS_MT_POSITION_X, 40);
input_set_abs_params(input, ABS_MT_POSITION_Y, 0, 7200, 0, 0);
input_abs_set_res(input, ABS_MT_POSITION_Y, 48);
input_set_abs_params(input, ABS_MT_WIDTH_MAJOR, 0, 1024, 0, 0);
input_set_abs_params(input, ABS_MT_WIDTH_MINOR, 0, 1024, 0, 0);
input_mt_init_slots(input, 10, INPUT_MT_DIRECT);
input->name = "Surface3 SPI Capacitive TouchScreen";
input->phys = "input/ts";
input->id.bustype = BUS_SPI;
input->id.vendor = 0x045e; /* Microsoft */
input->id.product = 0x0001;
input->id.version = 0x0000;
error = input_register_device(input);
if (error) {
dev_err(&data->spi->dev,
"Failed to register input device: %d", error);
return error;
}
return 0;
}
static int surface3_spi_create_pen_input(struct surface3_ts_data *data)
{
struct input_dev *input;
int error;
input = devm_input_allocate_device(&data->spi->dev);
if (!input)
return -ENOMEM;
data->pen_input_dev = input;
data->pen_tool = BTN_TOOL_PEN;
__set_bit(INPUT_PROP_DIRECT, input->propbit);
__set_bit(INPUT_PROP_POINTER, input->propbit);
input_set_abs_params(input, ABS_X, 0, 9600, 0, 0);
input_abs_set_res(input, ABS_X, 40);
input_set_abs_params(input, ABS_Y, 0, 7200, 0, 0);
input_abs_set_res(input, ABS_Y, 48);
input_set_abs_params(input, ABS_PRESSURE, 0, 1024, 0, 0);
input_set_capability(input, EV_KEY, BTN_TOUCH);
input_set_capability(input, EV_KEY, BTN_STYLUS);
input_set_capability(input, EV_KEY, BTN_TOOL_PEN);
input_set_capability(input, EV_KEY, BTN_TOOL_RUBBER);
input->name = "Surface3 SPI Pen Input";
input->phys = "input/ts";
input->id.bustype = BUS_SPI;
input->id.vendor = 0x045e; /* Microsoft */
input->id.product = 0x0002;
input->id.version = 0x0000;
error = input_register_device(input);
if (error) {
dev_err(&data->spi->dev,
"Failed to register input device: %d", error);
return error;
}
return 0;
}
static int surface3_spi_probe(struct spi_device *spi)
{
struct surface3_ts_data *data;
int error;
/* Set up SPI*/
spi->bits_per_word = 8;
spi->mode = SPI_MODE_0;
error = spi_setup(spi);
if (error)
return error;
data = devm_kzalloc(&spi->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->spi = spi;
spi_set_drvdata(spi, data);
error = surface3_spi_get_gpio_config(data);
if (error)
return error;
surface3_spi_power(data, true);
surface3_spi_power(data, false);
surface3_spi_power(data, true);
error = surface3_spi_create_touch_input(data);
if (error)
return error;
error = surface3_spi_create_pen_input(data);
if (error)
return error;
error = devm_request_threaded_irq(&spi->dev, spi->irq,
NULL, surface3_spi_irq_handler,
IRQF_ONESHOT,
"Surface3-irq", data);
if (error)
return error;
return 0;
}
static int surface3_spi_suspend(struct device *dev)
{
struct spi_device *spi = to_spi_device(dev);
struct surface3_ts_data *data = spi_get_drvdata(spi);
disable_irq(data->spi->irq);
surface3_spi_power(data, false);
return 0;
}
static int surface3_spi_resume(struct device *dev)
{
struct spi_device *spi = to_spi_device(dev);
struct surface3_ts_data *data = spi_get_drvdata(spi);
surface3_spi_power(data, true);
enable_irq(data->spi->irq);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(surface3_spi_pm_ops,
surface3_spi_suspend,
surface3_spi_resume);
#ifdef CONFIG_ACPI
static const struct acpi_device_id surface3_spi_acpi_match[] = {
{ "MSHW0037", 0 },
{ }
};
MODULE_DEVICE_TABLE(acpi, surface3_spi_acpi_match);
#endif
static struct spi_driver surface3_spi_driver = {
.driver = {
.name = "Surface3-spi",
.acpi_match_table = ACPI_PTR(surface3_spi_acpi_match),
.pm = pm_sleep_ptr(&surface3_spi_pm_ops),
},
.probe = surface3_spi_probe,
};
module_spi_driver(surface3_spi_driver);
MODULE_AUTHOR("Benjamin Tissoires <[email protected]>");
MODULE_DESCRIPTION("Surface 3 SPI touchscreen driver");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/touchscreen/surface3_spi.c
|
/*
* Wacom W8001 penabled serial touchscreen driver
*
* Copyright (c) 2008 Jaya Kumar
* Copyright (c) 2010 Red Hat, Inc.
* Copyright (c) 2010 - 2011 Ping Cheng, Wacom. <[email protected]>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*
* Layout based on Elo serial touchscreen driver by Vojtech Pavlik
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/input/mt.h>
#include <linux/serio.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#define DRIVER_DESC "Wacom W8001 serial touchscreen driver"
MODULE_AUTHOR("Jaya Kumar <[email protected]>");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
#define W8001_MAX_PHYS 42
#define W8001_MAX_LENGTH 13
#define W8001_LEAD_MASK 0x80
#define W8001_LEAD_BYTE 0x80
#define W8001_TAB_MASK 0x40
#define W8001_TAB_BYTE 0x40
/* set in first byte of touch data packets */
#define W8001_TOUCH_MASK (0x10 | W8001_LEAD_MASK)
#define W8001_TOUCH_BYTE (0x10 | W8001_LEAD_BYTE)
#define W8001_QUERY_PACKET 0x20
#define W8001_CMD_STOP '0'
#define W8001_CMD_START '1'
#define W8001_CMD_QUERY '*'
#define W8001_CMD_TOUCHQUERY '%'
/* length of data packets in bytes, depends on device. */
#define W8001_PKTLEN_TOUCH93 5
#define W8001_PKTLEN_TOUCH9A 7
#define W8001_PKTLEN_TPCPEN 9
#define W8001_PKTLEN_TPCCTL 11 /* control packet */
#define W8001_PKTLEN_TOUCH2FG 13
/* resolution in points/mm */
#define W8001_PEN_RESOLUTION 100
#define W8001_TOUCH_RESOLUTION 10
struct w8001_coord {
u8 rdy;
u8 tsw;
u8 f1;
u8 f2;
u16 x;
u16 y;
u16 pen_pressure;
u8 tilt_x;
u8 tilt_y;
};
/* touch query reply packet */
struct w8001_touch_query {
u16 x;
u16 y;
u8 panel_res;
u8 capacity_res;
u8 sensor_id;
};
/*
* Per-touchscreen data.
*/
struct w8001 {
struct input_dev *pen_dev;
struct input_dev *touch_dev;
struct serio *serio;
struct completion cmd_done;
int id;
int idx;
unsigned char response_type;
unsigned char response[W8001_MAX_LENGTH];
unsigned char data[W8001_MAX_LENGTH];
char phys[W8001_MAX_PHYS];
int type;
unsigned int pktlen;
u16 max_touch_x;
u16 max_touch_y;
u16 max_pen_x;
u16 max_pen_y;
char pen_name[64];
char touch_name[64];
int open_count;
struct mutex mutex;
};
static void parse_pen_data(u8 *data, struct w8001_coord *coord)
{
memset(coord, 0, sizeof(*coord));
coord->rdy = data[0] & 0x20;
coord->tsw = data[0] & 0x01;
coord->f1 = data[0] & 0x02;
coord->f2 = data[0] & 0x04;
coord->x = (data[1] & 0x7F) << 9;
coord->x |= (data[2] & 0x7F) << 2;
coord->x |= (data[6] & 0x60) >> 5;
coord->y = (data[3] & 0x7F) << 9;
coord->y |= (data[4] & 0x7F) << 2;
coord->y |= (data[6] & 0x18) >> 3;
coord->pen_pressure = data[5] & 0x7F;
coord->pen_pressure |= (data[6] & 0x07) << 7 ;
coord->tilt_x = data[7] & 0x7F;
coord->tilt_y = data[8] & 0x7F;
}
static void parse_single_touch(u8 *data, struct w8001_coord *coord)
{
coord->x = (data[1] << 7) | data[2];
coord->y = (data[3] << 7) | data[4];
coord->tsw = data[0] & 0x01;
}
static void scale_touch_coordinates(struct w8001 *w8001,
unsigned int *x, unsigned int *y)
{
if (w8001->max_pen_x && w8001->max_touch_x)
*x = *x * w8001->max_pen_x / w8001->max_touch_x;
if (w8001->max_pen_y && w8001->max_touch_y)
*y = *y * w8001->max_pen_y / w8001->max_touch_y;
}
static void parse_multi_touch(struct w8001 *w8001)
{
struct input_dev *dev = w8001->touch_dev;
unsigned char *data = w8001->data;
unsigned int x, y;
int i;
int count = 0;
for (i = 0; i < 2; i++) {
bool touch = data[0] & (1 << i);
input_mt_slot(dev, i);
input_mt_report_slot_state(dev, MT_TOOL_FINGER, touch);
if (touch) {
x = (data[6 * i + 1] << 7) | data[6 * i + 2];
y = (data[6 * i + 3] << 7) | data[6 * i + 4];
/* data[5,6] and [11,12] is finger capacity */
/* scale to pen maximum */
scale_touch_coordinates(w8001, &x, &y);
input_report_abs(dev, ABS_MT_POSITION_X, x);
input_report_abs(dev, ABS_MT_POSITION_Y, y);
count++;
}
}
/* emulate single touch events when stylus is out of proximity.
* This is to make single touch backward support consistent
* across all Wacom single touch devices.
*/
if (w8001->type != BTN_TOOL_PEN &&
w8001->type != BTN_TOOL_RUBBER) {
w8001->type = count == 1 ? BTN_TOOL_FINGER : KEY_RESERVED;
input_mt_report_pointer_emulation(dev, true);
}
input_sync(dev);
}
static void parse_touchquery(u8 *data, struct w8001_touch_query *query)
{
memset(query, 0, sizeof(*query));
query->panel_res = data[1];
query->sensor_id = data[2] & 0x7;
query->capacity_res = data[7];
query->x = data[3] << 9;
query->x |= data[4] << 2;
query->x |= (data[2] >> 5) & 0x3;
query->y = data[5] << 9;
query->y |= data[6] << 2;
query->y |= (data[2] >> 3) & 0x3;
/* Early days' single-finger touch models need the following defaults */
if (!query->x && !query->y) {
query->x = 1024;
query->y = 1024;
if (query->panel_res)
query->x = query->y = (1 << query->panel_res);
query->panel_res = W8001_TOUCH_RESOLUTION;
}
}
static void report_pen_events(struct w8001 *w8001, struct w8001_coord *coord)
{
struct input_dev *dev = w8001->pen_dev;
/*
* We have 1 bit for proximity (rdy) and 3 bits for tip, side,
* side2/eraser. If rdy && f2 are set, this can be either pen + side2,
* or eraser. Assume:
* - if dev is already in proximity and f2 is toggled → pen + side2
* - if dev comes into proximity with f2 set → eraser
* If f2 disappears after assuming eraser, fake proximity out for
* eraser and in for pen.
*/
switch (w8001->type) {
case BTN_TOOL_RUBBER:
if (!coord->f2) {
input_report_abs(dev, ABS_PRESSURE, 0);
input_report_key(dev, BTN_TOUCH, 0);
input_report_key(dev, BTN_STYLUS, 0);
input_report_key(dev, BTN_STYLUS2, 0);
input_report_key(dev, BTN_TOOL_RUBBER, 0);
input_sync(dev);
w8001->type = BTN_TOOL_PEN;
}
break;
case BTN_TOOL_FINGER:
case KEY_RESERVED:
w8001->type = coord->f2 ? BTN_TOOL_RUBBER : BTN_TOOL_PEN;
break;
default:
input_report_key(dev, BTN_STYLUS2, coord->f2);
break;
}
input_report_abs(dev, ABS_X, coord->x);
input_report_abs(dev, ABS_Y, coord->y);
input_report_abs(dev, ABS_PRESSURE, coord->pen_pressure);
input_report_key(dev, BTN_TOUCH, coord->tsw);
input_report_key(dev, BTN_STYLUS, coord->f1);
input_report_key(dev, w8001->type, coord->rdy);
input_sync(dev);
if (!coord->rdy)
w8001->type = KEY_RESERVED;
}
static void report_single_touch(struct w8001 *w8001, struct w8001_coord *coord)
{
struct input_dev *dev = w8001->touch_dev;
unsigned int x = coord->x;
unsigned int y = coord->y;
/* scale to pen maximum */
scale_touch_coordinates(w8001, &x, &y);
input_report_abs(dev, ABS_X, x);
input_report_abs(dev, ABS_Y, y);
input_report_key(dev, BTN_TOUCH, coord->tsw);
input_sync(dev);
w8001->type = coord->tsw ? BTN_TOOL_FINGER : KEY_RESERVED;
}
static irqreturn_t w8001_interrupt(struct serio *serio,
unsigned char data, unsigned int flags)
{
struct w8001 *w8001 = serio_get_drvdata(serio);
struct w8001_coord coord;
unsigned char tmp;
w8001->data[w8001->idx] = data;
switch (w8001->idx++) {
case 0:
if ((data & W8001_LEAD_MASK) != W8001_LEAD_BYTE) {
pr_debug("w8001: unsynchronized data: 0x%02x\n", data);
w8001->idx = 0;
}
break;
case W8001_PKTLEN_TOUCH93 - 1:
case W8001_PKTLEN_TOUCH9A - 1:
tmp = w8001->data[0] & W8001_TOUCH_BYTE;
if (tmp != W8001_TOUCH_BYTE)
break;
if (w8001->pktlen == w8001->idx) {
w8001->idx = 0;
if (w8001->type != BTN_TOOL_PEN &&
w8001->type != BTN_TOOL_RUBBER) {
parse_single_touch(w8001->data, &coord);
report_single_touch(w8001, &coord);
}
}
break;
/* Pen coordinates packet */
case W8001_PKTLEN_TPCPEN - 1:
tmp = w8001->data[0] & W8001_TAB_MASK;
if (unlikely(tmp == W8001_TAB_BYTE))
break;
tmp = w8001->data[0] & W8001_TOUCH_BYTE;
if (tmp == W8001_TOUCH_BYTE)
break;
w8001->idx = 0;
parse_pen_data(w8001->data, &coord);
report_pen_events(w8001, &coord);
break;
/* control packet */
case W8001_PKTLEN_TPCCTL - 1:
tmp = w8001->data[0] & W8001_TOUCH_MASK;
if (tmp == W8001_TOUCH_BYTE)
break;
w8001->idx = 0;
memcpy(w8001->response, w8001->data, W8001_MAX_LENGTH);
w8001->response_type = W8001_QUERY_PACKET;
complete(&w8001->cmd_done);
break;
/* 2 finger touch packet */
case W8001_PKTLEN_TOUCH2FG - 1:
w8001->idx = 0;
parse_multi_touch(w8001);
break;
default:
/*
* ThinkPad X60 Tablet PC (pen only device) sometimes
* sends invalid data packets that are larger than
* W8001_PKTLEN_TPCPEN. Let's start over again.
*/
if (!w8001->touch_dev && w8001->idx > W8001_PKTLEN_TPCPEN - 1)
w8001->idx = 0;
}
return IRQ_HANDLED;
}
static int w8001_command(struct w8001 *w8001, unsigned char command,
bool wait_response)
{
int rc;
w8001->response_type = 0;
init_completion(&w8001->cmd_done);
rc = serio_write(w8001->serio, command);
if (rc == 0 && wait_response) {
wait_for_completion_timeout(&w8001->cmd_done, HZ);
if (w8001->response_type != W8001_QUERY_PACKET)
rc = -EIO;
}
return rc;
}
static int w8001_open(struct input_dev *dev)
{
struct w8001 *w8001 = input_get_drvdata(dev);
int err;
err = mutex_lock_interruptible(&w8001->mutex);
if (err)
return err;
if (w8001->open_count++ == 0) {
err = w8001_command(w8001, W8001_CMD_START, false);
if (err)
w8001->open_count--;
}
mutex_unlock(&w8001->mutex);
return err;
}
static void w8001_close(struct input_dev *dev)
{
struct w8001 *w8001 = input_get_drvdata(dev);
mutex_lock(&w8001->mutex);
if (--w8001->open_count == 0)
w8001_command(w8001, W8001_CMD_STOP, false);
mutex_unlock(&w8001->mutex);
}
static int w8001_detect(struct w8001 *w8001)
{
int error;
error = w8001_command(w8001, W8001_CMD_STOP, false);
if (error)
return error;
msleep(250); /* wait 250ms before querying the device */
return 0;
}
static int w8001_setup_pen(struct w8001 *w8001, char *basename,
size_t basename_sz)
{
struct input_dev *dev = w8001->pen_dev;
struct w8001_coord coord;
int error;
/* penabled? */
error = w8001_command(w8001, W8001_CMD_QUERY, true);
if (error)
return error;
__set_bit(EV_KEY, dev->evbit);
__set_bit(EV_ABS, dev->evbit);
__set_bit(BTN_TOUCH, dev->keybit);
__set_bit(BTN_TOOL_PEN, dev->keybit);
__set_bit(BTN_TOOL_RUBBER, dev->keybit);
__set_bit(BTN_STYLUS, dev->keybit);
__set_bit(BTN_STYLUS2, dev->keybit);
__set_bit(INPUT_PROP_DIRECT, dev->propbit);
parse_pen_data(w8001->response, &coord);
w8001->max_pen_x = coord.x;
w8001->max_pen_y = coord.y;
input_set_abs_params(dev, ABS_X, 0, coord.x, 0, 0);
input_set_abs_params(dev, ABS_Y, 0, coord.y, 0, 0);
input_abs_set_res(dev, ABS_X, W8001_PEN_RESOLUTION);
input_abs_set_res(dev, ABS_Y, W8001_PEN_RESOLUTION);
input_set_abs_params(dev, ABS_PRESSURE, 0, coord.pen_pressure, 0, 0);
if (coord.tilt_x && coord.tilt_y) {
input_set_abs_params(dev, ABS_TILT_X, 0, coord.tilt_x, 0, 0);
input_set_abs_params(dev, ABS_TILT_Y, 0, coord.tilt_y, 0, 0);
}
w8001->id = 0x90;
strlcat(basename, " Penabled", basename_sz);
return 0;
}
static int w8001_setup_touch(struct w8001 *w8001, char *basename,
size_t basename_sz)
{
struct input_dev *dev = w8001->touch_dev;
struct w8001_touch_query touch;
int error;
/* Touch enabled? */
error = w8001_command(w8001, W8001_CMD_TOUCHQUERY, true);
if (error)
return error;
/*
* Some non-touch devices may reply to the touch query. But their
* second byte is empty, which indicates touch is not supported.
*/
if (!w8001->response[1])
return -ENXIO;
__set_bit(EV_KEY, dev->evbit);
__set_bit(EV_ABS, dev->evbit);
__set_bit(BTN_TOUCH, dev->keybit);
__set_bit(INPUT_PROP_DIRECT, dev->propbit);
parse_touchquery(w8001->response, &touch);
w8001->max_touch_x = touch.x;
w8001->max_touch_y = touch.y;
if (w8001->max_pen_x && w8001->max_pen_y) {
/* if pen is supported scale to pen maximum */
touch.x = w8001->max_pen_x;
touch.y = w8001->max_pen_y;
touch.panel_res = W8001_PEN_RESOLUTION;
}
input_set_abs_params(dev, ABS_X, 0, touch.x, 0, 0);
input_set_abs_params(dev, ABS_Y, 0, touch.y, 0, 0);
input_abs_set_res(dev, ABS_X, touch.panel_res);
input_abs_set_res(dev, ABS_Y, touch.panel_res);
switch (touch.sensor_id) {
case 0:
case 2:
w8001->pktlen = W8001_PKTLEN_TOUCH93;
w8001->id = 0x93;
strlcat(basename, " 1FG", basename_sz);
break;
case 1:
case 3:
case 4:
w8001->pktlen = W8001_PKTLEN_TOUCH9A;
strlcat(basename, " 1FG", basename_sz);
w8001->id = 0x9a;
break;
case 5:
w8001->pktlen = W8001_PKTLEN_TOUCH2FG;
__set_bit(BTN_TOOL_DOUBLETAP, dev->keybit);
error = input_mt_init_slots(dev, 2, 0);
if (error) {
dev_err(&w8001->serio->dev,
"failed to initialize MT slots: %d\n", error);
return error;
}
input_set_abs_params(dev, ABS_MT_POSITION_X,
0, touch.x, 0, 0);
input_set_abs_params(dev, ABS_MT_POSITION_Y,
0, touch.y, 0, 0);
input_set_abs_params(dev, ABS_MT_TOOL_TYPE,
0, MT_TOOL_MAX, 0, 0);
input_abs_set_res(dev, ABS_MT_POSITION_X, touch.panel_res);
input_abs_set_res(dev, ABS_MT_POSITION_Y, touch.panel_res);
strlcat(basename, " 2FG", basename_sz);
if (w8001->max_pen_x && w8001->max_pen_y)
w8001->id = 0xE3;
else
w8001->id = 0xE2;
break;
}
strlcat(basename, " Touchscreen", basename_sz);
return 0;
}
static void w8001_set_devdata(struct input_dev *dev, struct w8001 *w8001,
struct serio *serio)
{
dev->phys = w8001->phys;
dev->id.bustype = BUS_RS232;
dev->id.product = w8001->id;
dev->id.vendor = 0x056a;
dev->id.version = 0x0100;
dev->open = w8001_open;
dev->close = w8001_close;
dev->dev.parent = &serio->dev;
input_set_drvdata(dev, w8001);
}
/*
* w8001_disconnect() is the opposite of w8001_connect()
*/
static void w8001_disconnect(struct serio *serio)
{
struct w8001 *w8001 = serio_get_drvdata(serio);
serio_close(serio);
if (w8001->pen_dev)
input_unregister_device(w8001->pen_dev);
if (w8001->touch_dev)
input_unregister_device(w8001->touch_dev);
kfree(w8001);
serio_set_drvdata(serio, NULL);
}
/*
* w8001_connect() is the routine that is called when someone adds a
* new serio device that supports the w8001 protocol and registers it as
* an input device.
*/
static int w8001_connect(struct serio *serio, struct serio_driver *drv)
{
struct w8001 *w8001;
struct input_dev *input_dev_pen;
struct input_dev *input_dev_touch;
char basename[64];
int err, err_pen, err_touch;
w8001 = kzalloc(sizeof(struct w8001), GFP_KERNEL);
input_dev_pen = input_allocate_device();
input_dev_touch = input_allocate_device();
if (!w8001 || !input_dev_pen || !input_dev_touch) {
err = -ENOMEM;
goto fail1;
}
w8001->serio = serio;
w8001->pen_dev = input_dev_pen;
w8001->touch_dev = input_dev_touch;
mutex_init(&w8001->mutex);
init_completion(&w8001->cmd_done);
snprintf(w8001->phys, sizeof(w8001->phys), "%s/input0", serio->phys);
serio_set_drvdata(serio, w8001);
err = serio_open(serio, drv);
if (err)
goto fail2;
err = w8001_detect(w8001);
if (err)
goto fail3;
/* For backwards-compatibility we compose the basename based on
* capabilities and then just append the tool type
*/
strscpy(basename, "Wacom Serial", sizeof(basename));
err_pen = w8001_setup_pen(w8001, basename, sizeof(basename));
err_touch = w8001_setup_touch(w8001, basename, sizeof(basename));
if (err_pen && err_touch) {
err = -ENXIO;
goto fail3;
}
if (!err_pen) {
strscpy(w8001->pen_name, basename, sizeof(w8001->pen_name));
strlcat(w8001->pen_name, " Pen", sizeof(w8001->pen_name));
input_dev_pen->name = w8001->pen_name;
w8001_set_devdata(input_dev_pen, w8001, serio);
err = input_register_device(w8001->pen_dev);
if (err)
goto fail3;
} else {
input_free_device(input_dev_pen);
input_dev_pen = NULL;
w8001->pen_dev = NULL;
}
if (!err_touch) {
strscpy(w8001->touch_name, basename, sizeof(w8001->touch_name));
strlcat(w8001->touch_name, " Finger",
sizeof(w8001->touch_name));
input_dev_touch->name = w8001->touch_name;
w8001_set_devdata(input_dev_touch, w8001, serio);
err = input_register_device(w8001->touch_dev);
if (err)
goto fail4;
} else {
input_free_device(input_dev_touch);
input_dev_touch = NULL;
w8001->touch_dev = NULL;
}
return 0;
fail4:
if (w8001->pen_dev)
input_unregister_device(w8001->pen_dev);
fail3:
serio_close(serio);
fail2:
serio_set_drvdata(serio, NULL);
fail1:
input_free_device(input_dev_pen);
input_free_device(input_dev_touch);
kfree(w8001);
return err;
}
static const struct serio_device_id w8001_serio_ids[] = {
{
.type = SERIO_RS232,
.proto = SERIO_W8001,
.id = SERIO_ANY,
.extra = SERIO_ANY,
},
{ 0 }
};
MODULE_DEVICE_TABLE(serio, w8001_serio_ids);
static struct serio_driver w8001_drv = {
.driver = {
.name = "w8001",
},
.description = DRIVER_DESC,
.id_table = w8001_serio_ids,
.interrupt = w8001_interrupt,
.connect = w8001_connect,
.disconnect = w8001_disconnect,
};
module_serio_driver(w8001_drv);
|
linux-master
|
drivers/input/touchscreen/wacom_w8001.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* TSC2004/TSC2005 touchscreen driver core
*
* Copyright (C) 2006-2010 Nokia Corporation
* Copyright (C) 2015 QWERTY Embedded Design
* Copyright (C) 2015 EMAC Inc.
*
* Author: Lauri Leukkunen <[email protected]>
* based on TSC2301 driver by Klaus K. Pedersen <[email protected]>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/input.h>
#include <linux/input/touchscreen.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/of.h>
#include <linux/regulator/consumer.h>
#include <linux/regmap.h>
#include <linux/gpio/consumer.h>
#include "tsc200x-core.h"
/*
* The touchscreen interface operates as follows:
*
* 1) Pen is pressed against the touchscreen.
* 2) TSC200X performs AD conversion.
* 3) After the conversion is done TSC200X drives DAV line down.
* 4) GPIO IRQ is received and tsc200x_irq_thread() is scheduled.
* 5) tsc200x_irq_thread() queues up a transfer to fetch the x, y, z1, z2
* values.
* 6) tsc200x_irq_thread() reports coordinates to input layer and sets up
* tsc200x_penup_timer() to be called after TSC200X_PENUP_TIME_MS (40ms).
* 7) When the penup timer expires, there have not been touch or DAV interrupts
* during the last 40ms which means the pen has been lifted.
*
* ESD recovery via a hardware reset is done if the TSC200X doesn't respond
* after a configurable period (in ms) of activity. If esd_timeout is 0, the
* watchdog is disabled.
*/
static const struct regmap_range tsc200x_writable_ranges[] = {
regmap_reg_range(TSC200X_REG_AUX_HIGH, TSC200X_REG_CFR2),
};
static const struct regmap_access_table tsc200x_writable_table = {
.yes_ranges = tsc200x_writable_ranges,
.n_yes_ranges = ARRAY_SIZE(tsc200x_writable_ranges),
};
const struct regmap_config tsc200x_regmap_config = {
.reg_bits = 8,
.val_bits = 16,
.reg_stride = 0x08,
.max_register = 0x78,
.read_flag_mask = TSC200X_REG_READ,
.write_flag_mask = TSC200X_REG_PND0,
.wr_table = &tsc200x_writable_table,
.use_single_read = true,
.use_single_write = true,
};
EXPORT_SYMBOL_GPL(tsc200x_regmap_config);
struct tsc200x_data {
u16 x;
u16 y;
u16 z1;
u16 z2;
} __packed;
#define TSC200X_DATA_REGS 4
struct tsc200x {
struct device *dev;
struct regmap *regmap;
__u16 bustype;
struct input_dev *idev;
char phys[32];
struct mutex mutex;
/* raw copy of previous x,y,z */
int in_x;
int in_y;
int in_z1;
int in_z2;
struct touchscreen_properties prop;
spinlock_t lock;
struct timer_list penup_timer;
unsigned int esd_timeout;
struct delayed_work esd_work;
unsigned long last_valid_interrupt;
unsigned int x_plate_ohm;
bool opened;
bool suspended;
bool pen_down;
struct regulator *vio;
struct gpio_desc *reset_gpio;
int (*tsc200x_cmd)(struct device *dev, u8 cmd);
int irq;
};
static void tsc200x_update_pen_state(struct tsc200x *ts,
int x, int y, int pressure)
{
if (pressure) {
touchscreen_report_pos(ts->idev, &ts->prop, x, y, false);
input_report_abs(ts->idev, ABS_PRESSURE, pressure);
if (!ts->pen_down) {
input_report_key(ts->idev, BTN_TOUCH, !!pressure);
ts->pen_down = true;
}
} else {
input_report_abs(ts->idev, ABS_PRESSURE, 0);
if (ts->pen_down) {
input_report_key(ts->idev, BTN_TOUCH, 0);
ts->pen_down = false;
}
}
input_sync(ts->idev);
dev_dbg(ts->dev, "point(%4d,%4d), pressure (%4d)\n", x, y,
pressure);
}
static irqreturn_t tsc200x_irq_thread(int irq, void *_ts)
{
struct tsc200x *ts = _ts;
unsigned long flags;
unsigned int pressure;
struct tsc200x_data tsdata;
int error;
/* read the coordinates */
error = regmap_bulk_read(ts->regmap, TSC200X_REG_X, &tsdata,
TSC200X_DATA_REGS);
if (unlikely(error))
goto out;
/* validate position */
if (unlikely(tsdata.x > MAX_12BIT || tsdata.y > MAX_12BIT))
goto out;
/* Skip reading if the pressure components are out of range */
if (unlikely(tsdata.z1 == 0 || tsdata.z2 > MAX_12BIT))
goto out;
if (unlikely(tsdata.z1 >= tsdata.z2))
goto out;
/*
* Skip point if this is a pen down with the exact same values as
* the value before pen-up - that implies SPI fed us stale data
*/
if (!ts->pen_down &&
ts->in_x == tsdata.x && ts->in_y == tsdata.y &&
ts->in_z1 == tsdata.z1 && ts->in_z2 == tsdata.z2) {
goto out;
}
/*
* At this point we are happy we have a valid and useful reading.
* Remember it for later comparisons. We may now begin downsampling.
*/
ts->in_x = tsdata.x;
ts->in_y = tsdata.y;
ts->in_z1 = tsdata.z1;
ts->in_z2 = tsdata.z2;
/* Compute touch pressure resistance using equation #1 */
pressure = tsdata.x * (tsdata.z2 - tsdata.z1) / tsdata.z1;
pressure = pressure * ts->x_plate_ohm / 4096;
if (unlikely(pressure > MAX_12BIT))
goto out;
spin_lock_irqsave(&ts->lock, flags);
tsc200x_update_pen_state(ts, tsdata.x, tsdata.y, pressure);
mod_timer(&ts->penup_timer,
jiffies + msecs_to_jiffies(TSC200X_PENUP_TIME_MS));
spin_unlock_irqrestore(&ts->lock, flags);
ts->last_valid_interrupt = jiffies;
out:
return IRQ_HANDLED;
}
static void tsc200x_penup_timer(struct timer_list *t)
{
struct tsc200x *ts = from_timer(ts, t, penup_timer);
unsigned long flags;
spin_lock_irqsave(&ts->lock, flags);
tsc200x_update_pen_state(ts, 0, 0, 0);
spin_unlock_irqrestore(&ts->lock, flags);
}
static void tsc200x_start_scan(struct tsc200x *ts)
{
regmap_write(ts->regmap, TSC200X_REG_CFR0, TSC200X_CFR0_INITVALUE);
regmap_write(ts->regmap, TSC200X_REG_CFR1, TSC200X_CFR1_INITVALUE);
regmap_write(ts->regmap, TSC200X_REG_CFR2, TSC200X_CFR2_INITVALUE);
ts->tsc200x_cmd(ts->dev, TSC200X_CMD_NORMAL);
}
static void tsc200x_stop_scan(struct tsc200x *ts)
{
ts->tsc200x_cmd(ts->dev, TSC200X_CMD_STOP);
}
static void tsc200x_reset(struct tsc200x *ts)
{
if (ts->reset_gpio) {
gpiod_set_value_cansleep(ts->reset_gpio, 1);
usleep_range(100, 500); /* only 10us required */
gpiod_set_value_cansleep(ts->reset_gpio, 0);
}
}
/* must be called with ts->mutex held */
static void __tsc200x_disable(struct tsc200x *ts)
{
tsc200x_stop_scan(ts);
disable_irq(ts->irq);
del_timer_sync(&ts->penup_timer);
cancel_delayed_work_sync(&ts->esd_work);
enable_irq(ts->irq);
}
/* must be called with ts->mutex held */
static void __tsc200x_enable(struct tsc200x *ts)
{
tsc200x_start_scan(ts);
if (ts->esd_timeout && ts->reset_gpio) {
ts->last_valid_interrupt = jiffies;
schedule_delayed_work(&ts->esd_work,
round_jiffies_relative(
msecs_to_jiffies(ts->esd_timeout)));
}
}
static ssize_t tsc200x_selftest_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct tsc200x *ts = dev_get_drvdata(dev);
unsigned int temp_high;
unsigned int temp_high_orig;
unsigned int temp_high_test;
bool success = true;
int error;
mutex_lock(&ts->mutex);
/*
* Test TSC200X communications via temp high register.
*/
__tsc200x_disable(ts);
error = regmap_read(ts->regmap, TSC200X_REG_TEMP_HIGH, &temp_high_orig);
if (error) {
dev_warn(dev, "selftest failed: read error %d\n", error);
success = false;
goto out;
}
temp_high_test = (temp_high_orig - 1) & MAX_12BIT;
error = regmap_write(ts->regmap, TSC200X_REG_TEMP_HIGH, temp_high_test);
if (error) {
dev_warn(dev, "selftest failed: write error %d\n", error);
success = false;
goto out;
}
error = regmap_read(ts->regmap, TSC200X_REG_TEMP_HIGH, &temp_high);
if (error) {
dev_warn(dev, "selftest failed: read error %d after write\n",
error);
success = false;
goto out;
}
if (temp_high != temp_high_test) {
dev_warn(dev, "selftest failed: %d != %d\n",
temp_high, temp_high_test);
success = false;
}
/* hardware reset */
tsc200x_reset(ts);
if (!success)
goto out;
/* test that the reset really happened */
error = regmap_read(ts->regmap, TSC200X_REG_TEMP_HIGH, &temp_high);
if (error) {
dev_warn(dev, "selftest failed: read error %d after reset\n",
error);
success = false;
goto out;
}
if (temp_high != temp_high_orig) {
dev_warn(dev, "selftest failed after reset: %d != %d\n",
temp_high, temp_high_orig);
success = false;
}
out:
__tsc200x_enable(ts);
mutex_unlock(&ts->mutex);
return sprintf(buf, "%d\n", success);
}
static DEVICE_ATTR(selftest, S_IRUGO, tsc200x_selftest_show, NULL);
static struct attribute *tsc200x_attrs[] = {
&dev_attr_selftest.attr,
NULL
};
static umode_t tsc200x_attr_is_visible(struct kobject *kobj,
struct attribute *attr, int n)
{
struct device *dev = kobj_to_dev(kobj);
struct tsc200x *ts = dev_get_drvdata(dev);
umode_t mode = attr->mode;
if (attr == &dev_attr_selftest.attr) {
if (!ts->reset_gpio)
mode = 0;
}
return mode;
}
static const struct attribute_group tsc200x_attr_group = {
.is_visible = tsc200x_attr_is_visible,
.attrs = tsc200x_attrs,
};
static void tsc200x_esd_work(struct work_struct *work)
{
struct tsc200x *ts = container_of(work, struct tsc200x, esd_work.work);
int error;
unsigned int r;
if (!mutex_trylock(&ts->mutex)) {
/*
* If the mutex is taken, it means that disable or enable is in
* progress. In that case just reschedule the work. If the work
* is not needed, it will be canceled by disable.
*/
goto reschedule;
}
if (time_is_after_jiffies(ts->last_valid_interrupt +
msecs_to_jiffies(ts->esd_timeout)))
goto out;
/* We should be able to read register without disabling interrupts. */
error = regmap_read(ts->regmap, TSC200X_REG_CFR0, &r);
if (!error &&
!((r ^ TSC200X_CFR0_INITVALUE) & TSC200X_CFR0_RW_MASK)) {
goto out;
}
/*
* If we could not read our known value from configuration register 0
* then we should reset the controller as if from power-up and start
* scanning again.
*/
dev_info(ts->dev, "TSC200X not responding - resetting\n");
disable_irq(ts->irq);
del_timer_sync(&ts->penup_timer);
tsc200x_update_pen_state(ts, 0, 0, 0);
tsc200x_reset(ts);
enable_irq(ts->irq);
tsc200x_start_scan(ts);
out:
mutex_unlock(&ts->mutex);
reschedule:
/* re-arm the watchdog */
schedule_delayed_work(&ts->esd_work,
round_jiffies_relative(
msecs_to_jiffies(ts->esd_timeout)));
}
static int tsc200x_open(struct input_dev *input)
{
struct tsc200x *ts = input_get_drvdata(input);
mutex_lock(&ts->mutex);
if (!ts->suspended)
__tsc200x_enable(ts);
ts->opened = true;
mutex_unlock(&ts->mutex);
return 0;
}
static void tsc200x_close(struct input_dev *input)
{
struct tsc200x *ts = input_get_drvdata(input);
mutex_lock(&ts->mutex);
if (!ts->suspended)
__tsc200x_disable(ts);
ts->opened = false;
mutex_unlock(&ts->mutex);
}
int tsc200x_probe(struct device *dev, int irq, const struct input_id *tsc_id,
struct regmap *regmap,
int (*tsc200x_cmd)(struct device *dev, u8 cmd))
{
struct tsc200x *ts;
struct input_dev *input_dev;
u32 x_plate_ohm;
u32 esd_timeout;
int error;
if (irq <= 0) {
dev_err(dev, "no irq\n");
return -ENODEV;
}
if (IS_ERR(regmap))
return PTR_ERR(regmap);
if (!tsc200x_cmd) {
dev_err(dev, "no cmd function\n");
return -ENODEV;
}
ts = devm_kzalloc(dev, sizeof(*ts), GFP_KERNEL);
if (!ts)
return -ENOMEM;
input_dev = devm_input_allocate_device(dev);
if (!input_dev)
return -ENOMEM;
ts->irq = irq;
ts->dev = dev;
ts->idev = input_dev;
ts->regmap = regmap;
ts->tsc200x_cmd = tsc200x_cmd;
error = device_property_read_u32(dev, "ti,x-plate-ohms", &x_plate_ohm);
ts->x_plate_ohm = error ? TSC200X_DEF_RESISTOR : x_plate_ohm;
error = device_property_read_u32(dev, "ti,esd-recovery-timeout-ms",
&esd_timeout);
ts->esd_timeout = error ? 0 : esd_timeout;
ts->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(ts->reset_gpio)) {
error = PTR_ERR(ts->reset_gpio);
dev_err(dev, "error acquiring reset gpio: %d\n", error);
return error;
}
ts->vio = devm_regulator_get(dev, "vio");
if (IS_ERR(ts->vio)) {
error = PTR_ERR(ts->vio);
dev_err(dev, "error acquiring vio regulator: %d", error);
return error;
}
mutex_init(&ts->mutex);
spin_lock_init(&ts->lock);
timer_setup(&ts->penup_timer, tsc200x_penup_timer, 0);
INIT_DELAYED_WORK(&ts->esd_work, tsc200x_esd_work);
snprintf(ts->phys, sizeof(ts->phys),
"%s/input-ts", dev_name(dev));
if (tsc_id->product == 2004) {
input_dev->name = "TSC200X touchscreen";
} else {
input_dev->name = devm_kasprintf(dev, GFP_KERNEL,
"TSC%04d touchscreen",
tsc_id->product);
if (!input_dev->name)
return -ENOMEM;
}
input_dev->phys = ts->phys;
input_dev->id = *tsc_id;
input_dev->open = tsc200x_open;
input_dev->close = tsc200x_close;
input_set_drvdata(input_dev, ts);
__set_bit(INPUT_PROP_DIRECT, input_dev->propbit);
input_set_capability(input_dev, EV_KEY, BTN_TOUCH);
input_set_abs_params(input_dev, ABS_X,
0, MAX_12BIT, TSC200X_DEF_X_FUZZ, 0);
input_set_abs_params(input_dev, ABS_Y,
0, MAX_12BIT, TSC200X_DEF_Y_FUZZ, 0);
input_set_abs_params(input_dev, ABS_PRESSURE,
0, MAX_12BIT, TSC200X_DEF_P_FUZZ, 0);
touchscreen_parse_properties(input_dev, false, &ts->prop);
/* Ensure the touchscreen is off */
tsc200x_stop_scan(ts);
error = devm_request_threaded_irq(dev, irq, NULL,
tsc200x_irq_thread,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
"tsc200x", ts);
if (error) {
dev_err(dev, "Failed to request irq, err: %d\n", error);
return error;
}
error = regulator_enable(ts->vio);
if (error)
return error;
dev_set_drvdata(dev, ts);
error = sysfs_create_group(&dev->kobj, &tsc200x_attr_group);
if (error) {
dev_err(dev,
"Failed to create sysfs attributes, err: %d\n", error);
goto disable_regulator;
}
error = input_register_device(ts->idev);
if (error) {
dev_err(dev,
"Failed to register input device, err: %d\n", error);
goto err_remove_sysfs;
}
irq_set_irq_wake(irq, 1);
return 0;
err_remove_sysfs:
sysfs_remove_group(&dev->kobj, &tsc200x_attr_group);
disable_regulator:
regulator_disable(ts->vio);
return error;
}
EXPORT_SYMBOL_GPL(tsc200x_probe);
void tsc200x_remove(struct device *dev)
{
struct tsc200x *ts = dev_get_drvdata(dev);
sysfs_remove_group(&dev->kobj, &tsc200x_attr_group);
regulator_disable(ts->vio);
}
EXPORT_SYMBOL_GPL(tsc200x_remove);
static int tsc200x_suspend(struct device *dev)
{
struct tsc200x *ts = dev_get_drvdata(dev);
mutex_lock(&ts->mutex);
if (!ts->suspended && ts->opened)
__tsc200x_disable(ts);
ts->suspended = true;
mutex_unlock(&ts->mutex);
return 0;
}
static int tsc200x_resume(struct device *dev)
{
struct tsc200x *ts = dev_get_drvdata(dev);
mutex_lock(&ts->mutex);
if (ts->suspended && ts->opened)
__tsc200x_enable(ts);
ts->suspended = false;
mutex_unlock(&ts->mutex);
return 0;
}
EXPORT_GPL_SIMPLE_DEV_PM_OPS(tsc200x_pm_ops, tsc200x_suspend, tsc200x_resume);
MODULE_AUTHOR("Lauri Leukkunen <[email protected]>");
MODULE_DESCRIPTION("TSC200x Touchscreen Driver Core");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/tsc200x-core.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for the Freescale Semiconductor MC13783 touchscreen.
*
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright (C) 2009 Sascha Hauer, Pengutronix
*
* Initial development of this code was funded by
* Phytec Messtechnik GmbH, http://www.phytec.de/
*/
#include <linux/platform_device.h>
#include <linux/mfd/mc13783.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/input.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/init.h>
#define MC13783_TS_NAME "mc13783-ts"
#define DEFAULT_SAMPLE_TOLERANCE 300
static unsigned int sample_tolerance = DEFAULT_SAMPLE_TOLERANCE;
module_param(sample_tolerance, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(sample_tolerance,
"If the minimal and maximal value read out for one axis (out "
"of three) differ by this value (default: "
__stringify(DEFAULT_SAMPLE_TOLERANCE) ") or more, the reading "
"is supposed to be wrong and is discarded. Set to 0 to "
"disable this check.");
struct mc13783_ts_priv {
struct input_dev *idev;
struct mc13xxx *mc13xxx;
struct delayed_work work;
unsigned int sample[4];
struct mc13xxx_ts_platform_data *touch;
};
static irqreturn_t mc13783_ts_handler(int irq, void *data)
{
struct mc13783_ts_priv *priv = data;
mc13xxx_irq_ack(priv->mc13xxx, irq);
/*
* Kick off reading coordinates. Note that if work happens already
* be queued for future execution (it rearms itself) it will not
* be rescheduled for immediate execution here. However the rearm
* delay is HZ / 50 which is acceptable.
*/
schedule_delayed_work(&priv->work, 0);
return IRQ_HANDLED;
}
#define sort3(a0, a1, a2) ({ \
if (a0 > a1) \
swap(a0, a1); \
if (a1 > a2) \
swap(a1, a2); \
if (a0 > a1) \
swap(a0, a1); \
})
static void mc13783_ts_report_sample(struct mc13783_ts_priv *priv)
{
struct input_dev *idev = priv->idev;
int x0, x1, x2, y0, y1, y2;
int cr0, cr1;
/*
* the values are 10-bit wide only, but the two least significant
* bits are for future 12 bit use and reading yields 0
*/
x0 = priv->sample[0] & 0xfff;
x1 = priv->sample[1] & 0xfff;
x2 = priv->sample[2] & 0xfff;
y0 = priv->sample[3] & 0xfff;
y1 = (priv->sample[0] >> 12) & 0xfff;
y2 = (priv->sample[1] >> 12) & 0xfff;
cr0 = (priv->sample[2] >> 12) & 0xfff;
cr1 = (priv->sample[3] >> 12) & 0xfff;
dev_dbg(&idev->dev,
"x: (% 4d,% 4d,% 4d) y: (% 4d, % 4d,% 4d) cr: (% 4d, % 4d)\n",
x0, x1, x2, y0, y1, y2, cr0, cr1);
sort3(x0, x1, x2);
sort3(y0, y1, y2);
cr0 = (cr0 + cr1) / 2;
if (!cr0 || !sample_tolerance ||
(x2 - x0 < sample_tolerance &&
y2 - y0 < sample_tolerance)) {
/* report the median coordinate and average pressure */
if (cr0) {
input_report_abs(idev, ABS_X, x1);
input_report_abs(idev, ABS_Y, y1);
dev_dbg(&idev->dev, "report (%d, %d, %d)\n",
x1, y1, 0x1000 - cr0);
schedule_delayed_work(&priv->work, HZ / 50);
} else {
dev_dbg(&idev->dev, "report release\n");
}
input_report_abs(idev, ABS_PRESSURE,
cr0 ? 0x1000 - cr0 : cr0);
input_report_key(idev, BTN_TOUCH, cr0);
input_sync(idev);
} else {
dev_dbg(&idev->dev, "discard event\n");
}
}
static void mc13783_ts_work(struct work_struct *work)
{
struct mc13783_ts_priv *priv =
container_of(work, struct mc13783_ts_priv, work.work);
unsigned int mode = MC13XXX_ADC_MODE_TS;
unsigned int channel = 12;
if (mc13xxx_adc_do_conversion(priv->mc13xxx,
mode, channel,
priv->touch->ato, priv->touch->atox,
priv->sample) == 0)
mc13783_ts_report_sample(priv);
}
static int mc13783_ts_open(struct input_dev *dev)
{
struct mc13783_ts_priv *priv = input_get_drvdata(dev);
int ret;
mc13xxx_lock(priv->mc13xxx);
mc13xxx_irq_ack(priv->mc13xxx, MC13XXX_IRQ_TS);
ret = mc13xxx_irq_request(priv->mc13xxx, MC13XXX_IRQ_TS,
mc13783_ts_handler, MC13783_TS_NAME, priv);
if (ret)
goto out;
ret = mc13xxx_reg_rmw(priv->mc13xxx, MC13XXX_ADC0,
MC13XXX_ADC0_TSMOD_MASK, MC13XXX_ADC0_TSMOD0);
if (ret)
mc13xxx_irq_free(priv->mc13xxx, MC13XXX_IRQ_TS, priv);
out:
mc13xxx_unlock(priv->mc13xxx);
return ret;
}
static void mc13783_ts_close(struct input_dev *dev)
{
struct mc13783_ts_priv *priv = input_get_drvdata(dev);
mc13xxx_lock(priv->mc13xxx);
mc13xxx_reg_rmw(priv->mc13xxx, MC13XXX_ADC0,
MC13XXX_ADC0_TSMOD_MASK, 0);
mc13xxx_irq_free(priv->mc13xxx, MC13XXX_IRQ_TS, priv);
mc13xxx_unlock(priv->mc13xxx);
cancel_delayed_work_sync(&priv->work);
}
static int __init mc13783_ts_probe(struct platform_device *pdev)
{
struct mc13783_ts_priv *priv;
struct input_dev *idev;
int ret = -ENOMEM;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
idev = input_allocate_device();
if (!priv || !idev)
goto err_free_mem;
INIT_DELAYED_WORK(&priv->work, mc13783_ts_work);
priv->mc13xxx = dev_get_drvdata(pdev->dev.parent);
priv->idev = idev;
priv->touch = dev_get_platdata(&pdev->dev);
if (!priv->touch) {
dev_err(&pdev->dev, "missing platform data\n");
ret = -ENODEV;
goto err_free_mem;
}
idev->name = MC13783_TS_NAME;
idev->dev.parent = &pdev->dev;
idev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
idev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
input_set_abs_params(idev, ABS_X, 0, 0xfff, 0, 0);
input_set_abs_params(idev, ABS_Y, 0, 0xfff, 0, 0);
input_set_abs_params(idev, ABS_PRESSURE, 0, 0xfff, 0, 0);
idev->open = mc13783_ts_open;
idev->close = mc13783_ts_close;
input_set_drvdata(idev, priv);
ret = input_register_device(priv->idev);
if (ret) {
dev_err(&pdev->dev,
"register input device failed with %d\n", ret);
goto err_free_mem;
}
platform_set_drvdata(pdev, priv);
return 0;
err_free_mem:
input_free_device(idev);
kfree(priv);
return ret;
}
static int mc13783_ts_remove(struct platform_device *pdev)
{
struct mc13783_ts_priv *priv = platform_get_drvdata(pdev);
input_unregister_device(priv->idev);
kfree(priv);
return 0;
}
static struct platform_driver mc13783_ts_driver = {
.remove = mc13783_ts_remove,
.driver = {
.name = MC13783_TS_NAME,
},
};
module_platform_driver_probe(mc13783_ts_driver, mc13783_ts_probe);
MODULE_DESCRIPTION("MC13783 input touchscreen driver");
MODULE_AUTHOR("Sascha Hauer <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" MC13783_TS_NAME);
|
linux-master
|
drivers/input/touchscreen/mc13783_ts.c
|
// SPDX-License-Identifier: GPL-2.0
//
// Copyright (C) 2014-2015 Pengutronix, Markus Pargmann <[email protected]>
// Based on driver from 2011:
// Juergen Beisert, Pengutronix <[email protected]>
//
// This is the driver for the imx25 TCQ (Touchscreen Conversion Queue)
// connected to the imx25 ADC.
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/mfd/imx25-tsadc.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
static const char mx25_tcq_name[] = "mx25-tcq";
enum mx25_tcq_mode {
MX25_TS_4WIRE,
};
struct mx25_tcq_priv {
struct regmap *regs;
struct regmap *core_regs;
struct input_dev *idev;
enum mx25_tcq_mode mode;
unsigned int pen_threshold;
unsigned int sample_count;
unsigned int expected_samples;
unsigned int pen_debounce;
unsigned int settling_time;
struct clk *clk;
int irq;
struct device *dev;
};
static struct regmap_config mx25_tcq_regconfig = {
.fast_io = true,
.max_register = 0x5c,
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
};
static const struct of_device_id mx25_tcq_ids[] = {
{ .compatible = "fsl,imx25-tcq", },
{ /* Sentinel */ }
};
MODULE_DEVICE_TABLE(of, mx25_tcq_ids);
#define TSC_4WIRE_PRE_INDEX 0
#define TSC_4WIRE_X_INDEX 1
#define TSC_4WIRE_Y_INDEX 2
#define TSC_4WIRE_POST_INDEX 3
#define TSC_4WIRE_LEAVE 4
#define MX25_TSC_DEF_THRESHOLD 80
#define TSC_MAX_SAMPLES 16
#define MX25_TSC_REPEAT_WAIT 14
enum mx25_adc_configurations {
MX25_CFG_PRECHARGE = 0,
MX25_CFG_TOUCH_DETECT,
MX25_CFG_X_MEASUREMENT,
MX25_CFG_Y_MEASUREMENT,
};
#define MX25_PRECHARGE_VALUE (\
MX25_ADCQ_CFG_YPLL_OFF | \
MX25_ADCQ_CFG_XNUR_OFF | \
MX25_ADCQ_CFG_XPUL_HIGH | \
MX25_ADCQ_CFG_REFP_INT | \
MX25_ADCQ_CFG_IN_XP | \
MX25_ADCQ_CFG_REFN_NGND2 | \
MX25_ADCQ_CFG_IGS)
#define MX25_TOUCH_DETECT_VALUE (\
MX25_ADCQ_CFG_YNLR | \
MX25_ADCQ_CFG_YPLL_OFF | \
MX25_ADCQ_CFG_XNUR_OFF | \
MX25_ADCQ_CFG_XPUL_OFF | \
MX25_ADCQ_CFG_REFP_INT | \
MX25_ADCQ_CFG_IN_XP | \
MX25_ADCQ_CFG_REFN_NGND2 | \
MX25_ADCQ_CFG_PENIACK)
static void imx25_setup_queue_cfgs(struct mx25_tcq_priv *priv,
unsigned int settling_cnt)
{
u32 precharge_cfg =
MX25_PRECHARGE_VALUE |
MX25_ADCQ_CFG_SETTLING_TIME(settling_cnt);
u32 touch_detect_cfg =
MX25_TOUCH_DETECT_VALUE |
MX25_ADCQ_CFG_NOS(1) |
MX25_ADCQ_CFG_SETTLING_TIME(settling_cnt);
regmap_write(priv->core_regs, MX25_TSC_TICR, precharge_cfg);
/* PRECHARGE */
regmap_write(priv->regs, MX25_ADCQ_CFG(MX25_CFG_PRECHARGE),
precharge_cfg);
/* TOUCH_DETECT */
regmap_write(priv->regs, MX25_ADCQ_CFG(MX25_CFG_TOUCH_DETECT),
touch_detect_cfg);
/* X Measurement */
regmap_write(priv->regs, MX25_ADCQ_CFG(MX25_CFG_X_MEASUREMENT),
MX25_ADCQ_CFG_YPLL_OFF |
MX25_ADCQ_CFG_XNUR_LOW |
MX25_ADCQ_CFG_XPUL_HIGH |
MX25_ADCQ_CFG_REFP_XP |
MX25_ADCQ_CFG_IN_YP |
MX25_ADCQ_CFG_REFN_XN |
MX25_ADCQ_CFG_NOS(priv->sample_count) |
MX25_ADCQ_CFG_SETTLING_TIME(settling_cnt));
/* Y Measurement */
regmap_write(priv->regs, MX25_ADCQ_CFG(MX25_CFG_Y_MEASUREMENT),
MX25_ADCQ_CFG_YNLR |
MX25_ADCQ_CFG_YPLL_HIGH |
MX25_ADCQ_CFG_XNUR_OFF |
MX25_ADCQ_CFG_XPUL_OFF |
MX25_ADCQ_CFG_REFP_YP |
MX25_ADCQ_CFG_IN_XP |
MX25_ADCQ_CFG_REFN_YN |
MX25_ADCQ_CFG_NOS(priv->sample_count) |
MX25_ADCQ_CFG_SETTLING_TIME(settling_cnt));
/* Enable the touch detection right now */
regmap_write(priv->core_regs, MX25_TSC_TICR, touch_detect_cfg |
MX25_ADCQ_CFG_IGS);
}
static int imx25_setup_queue_4wire(struct mx25_tcq_priv *priv,
unsigned settling_cnt, int *items)
{
imx25_setup_queue_cfgs(priv, settling_cnt);
/* Setup the conversion queue */
regmap_write(priv->regs, MX25_ADCQ_ITEM_7_0,
MX25_ADCQ_ITEM(0, MX25_CFG_PRECHARGE) |
MX25_ADCQ_ITEM(1, MX25_CFG_TOUCH_DETECT) |
MX25_ADCQ_ITEM(2, MX25_CFG_X_MEASUREMENT) |
MX25_ADCQ_ITEM(3, MX25_CFG_Y_MEASUREMENT) |
MX25_ADCQ_ITEM(4, MX25_CFG_PRECHARGE) |
MX25_ADCQ_ITEM(5, MX25_CFG_TOUCH_DETECT));
/*
* We measure X/Y with 'sample_count' number of samples and execute a
* touch detection twice, with 1 sample each
*/
priv->expected_samples = priv->sample_count * 2 + 2;
*items = 6;
return 0;
}
static void mx25_tcq_disable_touch_irq(struct mx25_tcq_priv *priv)
{
regmap_update_bits(priv->regs, MX25_ADCQ_CR, MX25_ADCQ_CR_PDMSK,
MX25_ADCQ_CR_PDMSK);
}
static void mx25_tcq_enable_touch_irq(struct mx25_tcq_priv *priv)
{
regmap_update_bits(priv->regs, MX25_ADCQ_CR, MX25_ADCQ_CR_PDMSK, 0);
}
static void mx25_tcq_disable_fifo_irq(struct mx25_tcq_priv *priv)
{
regmap_update_bits(priv->regs, MX25_ADCQ_MR, MX25_ADCQ_MR_FDRY_IRQ,
MX25_ADCQ_MR_FDRY_IRQ);
}
static void mx25_tcq_enable_fifo_irq(struct mx25_tcq_priv *priv)
{
regmap_update_bits(priv->regs, MX25_ADCQ_MR, MX25_ADCQ_MR_FDRY_IRQ, 0);
}
static void mx25_tcq_force_queue_start(struct mx25_tcq_priv *priv)
{
regmap_update_bits(priv->regs, MX25_ADCQ_CR,
MX25_ADCQ_CR_FQS,
MX25_ADCQ_CR_FQS);
}
static void mx25_tcq_force_queue_stop(struct mx25_tcq_priv *priv)
{
regmap_update_bits(priv->regs, MX25_ADCQ_CR,
MX25_ADCQ_CR_FQS, 0);
}
static void mx25_tcq_fifo_reset(struct mx25_tcq_priv *priv)
{
u32 tcqcr;
regmap_read(priv->regs, MX25_ADCQ_CR, &tcqcr);
regmap_update_bits(priv->regs, MX25_ADCQ_CR, MX25_ADCQ_CR_FRST,
MX25_ADCQ_CR_FRST);
regmap_update_bits(priv->regs, MX25_ADCQ_CR, MX25_ADCQ_CR_FRST, 0);
regmap_write(priv->regs, MX25_ADCQ_CR, tcqcr);
}
static void mx25_tcq_re_enable_touch_detection(struct mx25_tcq_priv *priv)
{
/* stop the queue from looping */
mx25_tcq_force_queue_stop(priv);
/* for a clean touch detection, preload the X plane */
regmap_write(priv->core_regs, MX25_TSC_TICR, MX25_PRECHARGE_VALUE);
/* waste some time now to pre-load the X plate to high voltage */
mx25_tcq_fifo_reset(priv);
/* re-enable the detection right now */
regmap_write(priv->core_regs, MX25_TSC_TICR,
MX25_TOUCH_DETECT_VALUE | MX25_ADCQ_CFG_IGS);
regmap_update_bits(priv->regs, MX25_ADCQ_SR, MX25_ADCQ_SR_PD,
MX25_ADCQ_SR_PD);
/* enable the pen down event to be a source for the interrupt */
regmap_update_bits(priv->regs, MX25_ADCQ_MR, MX25_ADCQ_MR_PD_IRQ, 0);
/* lets fire the next IRQ if someone touches the touchscreen */
mx25_tcq_enable_touch_irq(priv);
}
static void mx25_tcq_create_event_for_4wire(struct mx25_tcq_priv *priv,
u32 *sample_buf,
unsigned int samples)
{
unsigned int x_pos = 0;
unsigned int y_pos = 0;
unsigned int touch_pre = 0;
unsigned int touch_post = 0;
unsigned int i;
for (i = 0; i < samples; i++) {
unsigned int index = MX25_ADCQ_FIFO_ID(sample_buf[i]);
unsigned int val = MX25_ADCQ_FIFO_DATA(sample_buf[i]);
switch (index) {
case 1:
touch_pre = val;
break;
case 2:
x_pos = val;
break;
case 3:
y_pos = val;
break;
case 5:
touch_post = val;
break;
default:
dev_dbg(priv->dev, "Dropped samples because of invalid index %d\n",
index);
return;
}
}
if (samples != 0) {
/*
* only if both touch measures are below a threshold,
* the position is valid
*/
if (touch_pre < priv->pen_threshold &&
touch_post < priv->pen_threshold) {
/* valid samples, generate a report */
x_pos /= priv->sample_count;
y_pos /= priv->sample_count;
input_report_abs(priv->idev, ABS_X, x_pos);
input_report_abs(priv->idev, ABS_Y, y_pos);
input_report_key(priv->idev, BTN_TOUCH, 1);
input_sync(priv->idev);
/* get next sample */
mx25_tcq_enable_fifo_irq(priv);
} else if (touch_pre >= priv->pen_threshold &&
touch_post >= priv->pen_threshold) {
/*
* if both samples are invalid,
* generate a release report
*/
input_report_key(priv->idev, BTN_TOUCH, 0);
input_sync(priv->idev);
mx25_tcq_re_enable_touch_detection(priv);
} else {
/*
* if only one of both touch measurements are
* below the threshold, still some bouncing
* happens. Take additional samples in this
* case to be sure
*/
mx25_tcq_enable_fifo_irq(priv);
}
}
}
static irqreturn_t mx25_tcq_irq_thread(int irq, void *dev_id)
{
struct mx25_tcq_priv *priv = dev_id;
u32 sample_buf[TSC_MAX_SAMPLES];
unsigned int samples;
u32 stats;
unsigned int i;
/*
* Check how many samples are available. We always have to read exactly
* sample_count samples from the fifo, or a multiple of sample_count.
* Otherwise we mixup samples into different touch events.
*/
regmap_read(priv->regs, MX25_ADCQ_SR, &stats);
samples = MX25_ADCQ_SR_FDN(stats);
samples -= samples % priv->sample_count;
if (!samples)
return IRQ_HANDLED;
for (i = 0; i != samples; ++i)
regmap_read(priv->regs, MX25_ADCQ_FIFO, &sample_buf[i]);
mx25_tcq_create_event_for_4wire(priv, sample_buf, samples);
return IRQ_HANDLED;
}
static irqreturn_t mx25_tcq_irq(int irq, void *dev_id)
{
struct mx25_tcq_priv *priv = dev_id;
u32 stat;
int ret = IRQ_HANDLED;
regmap_read(priv->regs, MX25_ADCQ_SR, &stat);
if (stat & (MX25_ADCQ_SR_FRR | MX25_ADCQ_SR_FUR | MX25_ADCQ_SR_FOR))
mx25_tcq_re_enable_touch_detection(priv);
if (stat & MX25_ADCQ_SR_PD) {
mx25_tcq_disable_touch_irq(priv);
mx25_tcq_force_queue_start(priv);
mx25_tcq_enable_fifo_irq(priv);
}
if (stat & MX25_ADCQ_SR_FDRY) {
mx25_tcq_disable_fifo_irq(priv);
ret = IRQ_WAKE_THREAD;
}
regmap_update_bits(priv->regs, MX25_ADCQ_SR, MX25_ADCQ_SR_FRR |
MX25_ADCQ_SR_FUR | MX25_ADCQ_SR_FOR |
MX25_ADCQ_SR_PD,
MX25_ADCQ_SR_FRR | MX25_ADCQ_SR_FUR |
MX25_ADCQ_SR_FOR | MX25_ADCQ_SR_PD);
return ret;
}
/* configure the state machine for a 4-wire touchscreen */
static int mx25_tcq_init(struct mx25_tcq_priv *priv)
{
u32 tgcr;
unsigned int ipg_div;
unsigned int adc_period;
unsigned int debounce_cnt;
unsigned int settling_cnt;
int itemct;
int error;
regmap_read(priv->core_regs, MX25_TSC_TGCR, &tgcr);
ipg_div = max_t(unsigned int, 4, MX25_TGCR_GET_ADCCLK(tgcr));
adc_period = USEC_PER_SEC * ipg_div * 2 + 2;
adc_period /= clk_get_rate(priv->clk) / 1000 + 1;
debounce_cnt = DIV_ROUND_UP(priv->pen_debounce, adc_period * 8) - 1;
settling_cnt = DIV_ROUND_UP(priv->settling_time, adc_period * 8) - 1;
/* Reset */
regmap_write(priv->regs, MX25_ADCQ_CR,
MX25_ADCQ_CR_QRST | MX25_ADCQ_CR_FRST);
regmap_update_bits(priv->regs, MX25_ADCQ_CR,
MX25_ADCQ_CR_QRST | MX25_ADCQ_CR_FRST, 0);
/* up to 128 * 8 ADC clocks are possible */
if (debounce_cnt > 127)
debounce_cnt = 127;
/* up to 255 * 8 ADC clocks are possible */
if (settling_cnt > 255)
settling_cnt = 255;
error = imx25_setup_queue_4wire(priv, settling_cnt, &itemct);
if (error)
return error;
regmap_update_bits(priv->regs, MX25_ADCQ_CR,
MX25_ADCQ_CR_LITEMID_MASK | MX25_ADCQ_CR_WMRK_MASK,
MX25_ADCQ_CR_LITEMID(itemct - 1) |
MX25_ADCQ_CR_WMRK(priv->expected_samples - 1));
/* setup debounce count */
regmap_update_bits(priv->core_regs, MX25_TSC_TGCR,
MX25_TGCR_PDBTIME_MASK,
MX25_TGCR_PDBTIME(debounce_cnt));
/* enable debounce */
regmap_update_bits(priv->core_regs, MX25_TSC_TGCR, MX25_TGCR_PDBEN,
MX25_TGCR_PDBEN);
regmap_update_bits(priv->core_regs, MX25_TSC_TGCR, MX25_TGCR_PDEN,
MX25_TGCR_PDEN);
/* enable the engine on demand */
regmap_update_bits(priv->regs, MX25_ADCQ_CR, MX25_ADCQ_CR_QSM_MASK,
MX25_ADCQ_CR_QSM_FQS);
/* Enable repeat and repeat wait */
regmap_update_bits(priv->regs, MX25_ADCQ_CR,
MX25_ADCQ_CR_RPT | MX25_ADCQ_CR_RWAIT_MASK,
MX25_ADCQ_CR_RPT |
MX25_ADCQ_CR_RWAIT(MX25_TSC_REPEAT_WAIT));
return 0;
}
static int mx25_tcq_parse_dt(struct platform_device *pdev,
struct mx25_tcq_priv *priv)
{
struct device_node *np = pdev->dev.of_node;
u32 wires;
int error;
/* Setup defaults */
priv->pen_threshold = 500;
priv->sample_count = 3;
priv->pen_debounce = 1000000;
priv->settling_time = 250000;
error = of_property_read_u32(np, "fsl,wires", &wires);
if (error) {
dev_err(&pdev->dev, "Failed to find fsl,wires properties\n");
return error;
}
if (wires == 4) {
priv->mode = MX25_TS_4WIRE;
} else {
dev_err(&pdev->dev, "%u-wire mode not supported\n", wires);
return -EINVAL;
}
/* These are optional, we don't care about the return values */
of_property_read_u32(np, "fsl,pen-threshold", &priv->pen_threshold);
of_property_read_u32(np, "fsl,settling-time-ns", &priv->settling_time);
of_property_read_u32(np, "fsl,pen-debounce-ns", &priv->pen_debounce);
return 0;
}
static int mx25_tcq_open(struct input_dev *idev)
{
struct device *dev = &idev->dev;
struct mx25_tcq_priv *priv = dev_get_drvdata(dev);
int error;
error = clk_prepare_enable(priv->clk);
if (error) {
dev_err(dev, "Failed to enable ipg clock\n");
return error;
}
error = mx25_tcq_init(priv);
if (error) {
dev_err(dev, "Failed to init tcq\n");
clk_disable_unprepare(priv->clk);
return error;
}
mx25_tcq_re_enable_touch_detection(priv);
return 0;
}
static void mx25_tcq_close(struct input_dev *idev)
{
struct mx25_tcq_priv *priv = input_get_drvdata(idev);
mx25_tcq_force_queue_stop(priv);
mx25_tcq_disable_touch_irq(priv);
mx25_tcq_disable_fifo_irq(priv);
clk_disable_unprepare(priv->clk);
}
static int mx25_tcq_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct input_dev *idev;
struct mx25_tcq_priv *priv;
struct mx25_tsadc *tsadc = dev_get_drvdata(dev->parent);
void __iomem *mem;
int error;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
mem = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mem))
return PTR_ERR(mem);
error = mx25_tcq_parse_dt(pdev, priv);
if (error)
return error;
priv->regs = devm_regmap_init_mmio(dev, mem, &mx25_tcq_regconfig);
if (IS_ERR(priv->regs)) {
dev_err(dev, "Failed to initialize regmap\n");
return PTR_ERR(priv->regs);
}
priv->irq = platform_get_irq(pdev, 0);
if (priv->irq <= 0)
return priv->irq;
idev = devm_input_allocate_device(dev);
if (!idev) {
dev_err(dev, "Failed to allocate input device\n");
return -ENOMEM;
}
idev->name = mx25_tcq_name;
input_set_capability(idev, EV_KEY, BTN_TOUCH);
input_set_abs_params(idev, ABS_X, 0, 0xfff, 0, 0);
input_set_abs_params(idev, ABS_Y, 0, 0xfff, 0, 0);
idev->id.bustype = BUS_HOST;
idev->open = mx25_tcq_open;
idev->close = mx25_tcq_close;
priv->idev = idev;
input_set_drvdata(idev, priv);
priv->core_regs = tsadc->regs;
if (!priv->core_regs)
return -EINVAL;
priv->clk = tsadc->clk;
if (!priv->clk)
return -EINVAL;
platform_set_drvdata(pdev, priv);
error = devm_request_threaded_irq(dev, priv->irq, mx25_tcq_irq,
mx25_tcq_irq_thread, 0, pdev->name,
priv);
if (error) {
dev_err(dev, "Failed requesting IRQ\n");
return error;
}
error = input_register_device(idev);
if (error) {
dev_err(dev, "Failed to register input device\n");
return error;
}
return 0;
}
static struct platform_driver mx25_tcq_driver = {
.driver = {
.name = "mx25-tcq",
.of_match_table = mx25_tcq_ids,
},
.probe = mx25_tcq_probe,
};
module_platform_driver(mx25_tcq_driver);
MODULE_DESCRIPTION("TS input driver for Freescale mx25");
MODULE_AUTHOR("Markus Pargmann <[email protected]>");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/touchscreen/fsl-imx25-tcq.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Motorola PCAP2 touchscreen as found in the EZX phone platform.
*
* Copyright (C) 2006 Harald Welte <[email protected]>
* Copyright (C) 2009 Daniel Ribeiro <[email protected]>
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/pm.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/input.h>
#include <linux/mfd/ezx-pcap.h>
struct pcap_ts {
struct pcap_chip *pcap;
struct input_dev *input;
struct delayed_work work;
u16 x, y;
u16 pressure;
u8 read_state;
};
#define SAMPLE_DELAY 20 /* msecs */
#define X_AXIS_MIN 0
#define X_AXIS_MAX 1023
#define Y_AXIS_MAX X_AXIS_MAX
#define Y_AXIS_MIN X_AXIS_MIN
#define PRESSURE_MAX X_AXIS_MAX
#define PRESSURE_MIN X_AXIS_MIN
static void pcap_ts_read_xy(void *data, u16 res[2])
{
struct pcap_ts *pcap_ts = data;
switch (pcap_ts->read_state) {
case PCAP_ADC_TS_M_PRESSURE:
/* pressure reading is unreliable */
if (res[0] > PRESSURE_MIN && res[0] < PRESSURE_MAX)
pcap_ts->pressure = res[0];
pcap_ts->read_state = PCAP_ADC_TS_M_XY;
schedule_delayed_work(&pcap_ts->work, 0);
break;
case PCAP_ADC_TS_M_XY:
pcap_ts->y = res[0];
pcap_ts->x = res[1];
if (pcap_ts->x <= X_AXIS_MIN || pcap_ts->x >= X_AXIS_MAX ||
pcap_ts->y <= Y_AXIS_MIN || pcap_ts->y >= Y_AXIS_MAX) {
/* pen has been released */
input_report_abs(pcap_ts->input, ABS_PRESSURE, 0);
input_report_key(pcap_ts->input, BTN_TOUCH, 0);
pcap_ts->read_state = PCAP_ADC_TS_M_STANDBY;
schedule_delayed_work(&pcap_ts->work, 0);
} else {
/* pen is touching the screen */
input_report_abs(pcap_ts->input, ABS_X, pcap_ts->x);
input_report_abs(pcap_ts->input, ABS_Y, pcap_ts->y);
input_report_key(pcap_ts->input, BTN_TOUCH, 1);
input_report_abs(pcap_ts->input, ABS_PRESSURE,
pcap_ts->pressure);
/* switch back to pressure read mode */
pcap_ts->read_state = PCAP_ADC_TS_M_PRESSURE;
schedule_delayed_work(&pcap_ts->work,
msecs_to_jiffies(SAMPLE_DELAY));
}
input_sync(pcap_ts->input);
break;
default:
dev_warn(&pcap_ts->input->dev,
"pcap_ts: Warning, unhandled read_state %d\n",
pcap_ts->read_state);
break;
}
}
static void pcap_ts_work(struct work_struct *work)
{
struct delayed_work *dw = to_delayed_work(work);
struct pcap_ts *pcap_ts = container_of(dw, struct pcap_ts, work);
u8 ch[2];
pcap_set_ts_bits(pcap_ts->pcap,
pcap_ts->read_state << PCAP_ADC_TS_M_SHIFT);
if (pcap_ts->read_state == PCAP_ADC_TS_M_STANDBY)
return;
/* start adc conversion */
ch[0] = PCAP_ADC_CH_TS_X1;
ch[1] = PCAP_ADC_CH_TS_Y1;
pcap_adc_async(pcap_ts->pcap, PCAP_ADC_BANK_1, 0, ch,
pcap_ts_read_xy, pcap_ts);
}
static irqreturn_t pcap_ts_event_touch(int pirq, void *data)
{
struct pcap_ts *pcap_ts = data;
if (pcap_ts->read_state == PCAP_ADC_TS_M_STANDBY) {
pcap_ts->read_state = PCAP_ADC_TS_M_PRESSURE;
schedule_delayed_work(&pcap_ts->work, 0);
}
return IRQ_HANDLED;
}
static int pcap_ts_open(struct input_dev *dev)
{
struct pcap_ts *pcap_ts = input_get_drvdata(dev);
pcap_ts->read_state = PCAP_ADC_TS_M_STANDBY;
schedule_delayed_work(&pcap_ts->work, 0);
return 0;
}
static void pcap_ts_close(struct input_dev *dev)
{
struct pcap_ts *pcap_ts = input_get_drvdata(dev);
cancel_delayed_work_sync(&pcap_ts->work);
pcap_ts->read_state = PCAP_ADC_TS_M_NONTS;
pcap_set_ts_bits(pcap_ts->pcap,
pcap_ts->read_state << PCAP_ADC_TS_M_SHIFT);
}
static int pcap_ts_probe(struct platform_device *pdev)
{
struct input_dev *input_dev;
struct pcap_ts *pcap_ts;
int err = -ENOMEM;
pcap_ts = kzalloc(sizeof(*pcap_ts), GFP_KERNEL);
if (!pcap_ts)
return err;
pcap_ts->pcap = dev_get_drvdata(pdev->dev.parent);
platform_set_drvdata(pdev, pcap_ts);
input_dev = input_allocate_device();
if (!input_dev)
goto fail;
INIT_DELAYED_WORK(&pcap_ts->work, pcap_ts_work);
pcap_ts->read_state = PCAP_ADC_TS_M_NONTS;
pcap_set_ts_bits(pcap_ts->pcap,
pcap_ts->read_state << PCAP_ADC_TS_M_SHIFT);
pcap_ts->input = input_dev;
input_set_drvdata(input_dev, pcap_ts);
input_dev->name = "pcap-touchscreen";
input_dev->phys = "pcap_ts/input0";
input_dev->id.bustype = BUS_HOST;
input_dev->id.vendor = 0x0001;
input_dev->id.product = 0x0002;
input_dev->id.version = 0x0100;
input_dev->dev.parent = &pdev->dev;
input_dev->open = pcap_ts_open;
input_dev->close = pcap_ts_close;
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
input_set_abs_params(input_dev, ABS_X, X_AXIS_MIN, X_AXIS_MAX, 0, 0);
input_set_abs_params(input_dev, ABS_Y, Y_AXIS_MIN, Y_AXIS_MAX, 0, 0);
input_set_abs_params(input_dev, ABS_PRESSURE, PRESSURE_MIN,
PRESSURE_MAX, 0, 0);
err = input_register_device(pcap_ts->input);
if (err)
goto fail_allocate;
err = request_irq(pcap_to_irq(pcap_ts->pcap, PCAP_IRQ_TS),
pcap_ts_event_touch, 0, "Touch Screen", pcap_ts);
if (err)
goto fail_register;
return 0;
fail_register:
input_unregister_device(input_dev);
goto fail;
fail_allocate:
input_free_device(input_dev);
fail:
kfree(pcap_ts);
return err;
}
static int pcap_ts_remove(struct platform_device *pdev)
{
struct pcap_ts *pcap_ts = platform_get_drvdata(pdev);
free_irq(pcap_to_irq(pcap_ts->pcap, PCAP_IRQ_TS), pcap_ts);
cancel_delayed_work_sync(&pcap_ts->work);
input_unregister_device(pcap_ts->input);
kfree(pcap_ts);
return 0;
}
#ifdef CONFIG_PM
static int pcap_ts_suspend(struct device *dev)
{
struct pcap_ts *pcap_ts = dev_get_drvdata(dev);
pcap_set_ts_bits(pcap_ts->pcap, PCAP_ADC_TS_REF_LOWPWR);
return 0;
}
static int pcap_ts_resume(struct device *dev)
{
struct pcap_ts *pcap_ts = dev_get_drvdata(dev);
pcap_set_ts_bits(pcap_ts->pcap,
pcap_ts->read_state << PCAP_ADC_TS_M_SHIFT);
return 0;
}
static const struct dev_pm_ops pcap_ts_pm_ops = {
.suspend = pcap_ts_suspend,
.resume = pcap_ts_resume,
};
#define PCAP_TS_PM_OPS (&pcap_ts_pm_ops)
#else
#define PCAP_TS_PM_OPS NULL
#endif
static struct platform_driver pcap_ts_driver = {
.probe = pcap_ts_probe,
.remove = pcap_ts_remove,
.driver = {
.name = "pcap-ts",
.pm = PCAP_TS_PM_OPS,
},
};
module_platform_driver(pcap_ts_driver);
MODULE_DESCRIPTION("Motorola PCAP2 touchscreen driver");
MODULE_AUTHOR("Daniel Ribeiro / Harald Welte");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:pcap_ts");
|
linux-master
|
drivers/input/touchscreen/pcap_ts.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Source for:
* Cypress TrueTouch(TM) Standard Product (TTSP) SPI touchscreen driver.
* For use with Cypress Txx3xx parts.
* Supported parts include:
* CY8CTST341
* CY8CTMA340
*
* Copyright (C) 2009, 2010, 2011 Cypress Semiconductor, Inc.
* Copyright (C) 2012 Javier Martinez Canillas <[email protected]>
* Copyright (C) 2013 Cypress Semiconductor
*
* Contact Cypress Semiconductor at www.cypress.com <[email protected]>
*/
#include "cyttsp_core.h"
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/spi/spi.h>
#define CY_SPI_NAME "cyttsp-spi"
#define CY_SPI_WR_OP 0x00 /* r/~w */
#define CY_SPI_RD_OP 0x01
#define CY_SPI_CMD_BYTES 4
#define CY_SPI_SYNC_BYTE 2
#define CY_SPI_SYNC_ACK1 0x62 /* from protocol v.2 */
#define CY_SPI_SYNC_ACK2 0x9D /* from protocol v.2 */
#define CY_SPI_DATA_SIZE 128
#define CY_SPI_DATA_BUF_SIZE (CY_SPI_CMD_BYTES + CY_SPI_DATA_SIZE)
#define CY_SPI_BITS_PER_WORD 8
static int cyttsp_spi_xfer(struct device *dev, u8 *xfer_buf,
u8 op, u16 reg, u8 *buf, int length)
{
struct spi_device *spi = to_spi_device(dev);
struct spi_message msg;
struct spi_transfer xfer[2];
u8 *wr_buf = &xfer_buf[0];
u8 *rd_buf = &xfer_buf[CY_SPI_DATA_BUF_SIZE];
int retval;
int i;
if (length > CY_SPI_DATA_SIZE) {
dev_err(dev, "%s: length %d is too big.\n",
__func__, length);
return -EINVAL;
}
memset(wr_buf, 0, CY_SPI_DATA_BUF_SIZE);
memset(rd_buf, 0, CY_SPI_DATA_BUF_SIZE);
wr_buf[0] = 0x00; /* header byte 0 */
wr_buf[1] = 0xFF; /* header byte 1 */
wr_buf[2] = reg; /* reg index */
wr_buf[3] = op; /* r/~w */
if (op == CY_SPI_WR_OP)
memcpy(wr_buf + CY_SPI_CMD_BYTES, buf, length);
memset(xfer, 0, sizeof(xfer));
spi_message_init(&msg);
/*
We set both TX and RX buffers because Cypress TTSP
requires full duplex operation.
*/
xfer[0].tx_buf = wr_buf;
xfer[0].rx_buf = rd_buf;
switch (op) {
case CY_SPI_WR_OP:
xfer[0].len = length + CY_SPI_CMD_BYTES;
spi_message_add_tail(&xfer[0], &msg);
break;
case CY_SPI_RD_OP:
xfer[0].len = CY_SPI_CMD_BYTES;
spi_message_add_tail(&xfer[0], &msg);
xfer[1].rx_buf = buf;
xfer[1].len = length;
spi_message_add_tail(&xfer[1], &msg);
break;
default:
dev_err(dev, "%s: bad operation code=%d\n", __func__, op);
return -EINVAL;
}
retval = spi_sync(spi, &msg);
if (retval < 0) {
dev_dbg(dev, "%s: spi_sync() error %d, len=%d, op=%d\n",
__func__, retval, xfer[1].len, op);
/*
* do not return here since was a bad ACK sequence
* let the following ACK check handle any errors and
* allow silent retries
*/
}
if (rd_buf[CY_SPI_SYNC_BYTE] != CY_SPI_SYNC_ACK1 ||
rd_buf[CY_SPI_SYNC_BYTE + 1] != CY_SPI_SYNC_ACK2) {
dev_dbg(dev, "%s: operation %d failed\n", __func__, op);
for (i = 0; i < CY_SPI_CMD_BYTES; i++)
dev_dbg(dev, "%s: test rd_buf[%d]:0x%02x\n",
__func__, i, rd_buf[i]);
for (i = 0; i < length; i++)
dev_dbg(dev, "%s: test buf[%d]:0x%02x\n",
__func__, i, buf[i]);
return -EIO;
}
return 0;
}
static int cyttsp_spi_read_block_data(struct device *dev, u8 *xfer_buf,
u16 addr, u8 length, void *data)
{
return cyttsp_spi_xfer(dev, xfer_buf, CY_SPI_RD_OP, addr, data,
length);
}
static int cyttsp_spi_write_block_data(struct device *dev, u8 *xfer_buf,
u16 addr, u8 length, const void *data)
{
return cyttsp_spi_xfer(dev, xfer_buf, CY_SPI_WR_OP, addr, (void *)data,
length);
}
static const struct cyttsp_bus_ops cyttsp_spi_bus_ops = {
.bustype = BUS_SPI,
.write = cyttsp_spi_write_block_data,
.read = cyttsp_spi_read_block_data,
};
static int cyttsp_spi_probe(struct spi_device *spi)
{
struct cyttsp *ts;
int error;
/* Set up SPI*/
spi->bits_per_word = CY_SPI_BITS_PER_WORD;
spi->mode = SPI_MODE_0;
error = spi_setup(spi);
if (error < 0) {
dev_err(&spi->dev, "%s: SPI setup error %d\n",
__func__, error);
return error;
}
ts = cyttsp_probe(&cyttsp_spi_bus_ops, &spi->dev, spi->irq,
CY_SPI_DATA_BUF_SIZE * 2);
if (IS_ERR(ts))
return PTR_ERR(ts);
spi_set_drvdata(spi, ts);
return 0;
}
static const struct of_device_id cyttsp_of_spi_match[] = {
{ .compatible = "cypress,cy8ctma340", },
{ .compatible = "cypress,cy8ctst341", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, cyttsp_of_spi_match);
static struct spi_driver cyttsp_spi_driver = {
.driver = {
.name = CY_SPI_NAME,
.pm = pm_sleep_ptr(&cyttsp_pm_ops),
.of_match_table = cyttsp_of_spi_match,
},
.probe = cyttsp_spi_probe,
};
module_spi_driver(cyttsp_spi_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Cypress TrueTouch(R) Standard Product (TTSP) SPI driver");
MODULE_AUTHOR("Cypress");
MODULE_ALIAS("spi:cyttsp");
|
linux-master
|
drivers/input/touchscreen/cyttsp_spi.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Allwinner sunxi resistive touchscreen controller driver
*
* Copyright (C) 2013 - 2014 Hans de Goede <[email protected]>
*
* The hwmon parts are based on work by Corentin LABBE which is:
* Copyright (C) 2013 Corentin LABBE <[email protected]>
*/
/*
* The sun4i-ts controller is capable of detecting a second touch, but when a
* second touch is present then the accuracy becomes so bad the reported touch
* location is not useable.
*
* The original android driver contains some complicated heuristics using the
* aprox. distance between the 2 touches to see if the user is making a pinch
* open / close movement, and then reports emulated multi-touch events around
* the last touch coordinate (as the dual-touch coordinates are worthless).
*
* These kinds of heuristics are just asking for trouble (and don't belong
* in the kernel). So this driver offers straight forward, reliable single
* touch functionality only.
*
* s.a. A20 User Manual "1.15 TP" (Documentation/arch/arm/sunxi.rst)
* (looks like the description in the A20 User Manual v1.3 is better
* than the one in the A10 User Manual v.1.5)
*/
#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/thermal.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#define TP_CTRL0 0x00
#define TP_CTRL1 0x04
#define TP_CTRL2 0x08
#define TP_CTRL3 0x0c
#define TP_INT_FIFOC 0x10
#define TP_INT_FIFOS 0x14
#define TP_TPR 0x18
#define TP_CDAT 0x1c
#define TEMP_DATA 0x20
#define TP_DATA 0x24
/* TP_CTRL0 bits */
#define ADC_FIRST_DLY(x) ((x) << 24) /* 8 bits */
#define ADC_FIRST_DLY_MODE(x) ((x) << 23)
#define ADC_CLK_SEL(x) ((x) << 22)
#define ADC_CLK_DIV(x) ((x) << 20) /* 3 bits */
#define FS_DIV(x) ((x) << 16) /* 4 bits */
#define T_ACQ(x) ((x) << 0) /* 16 bits */
/* TP_CTRL1 bits */
#define STYLUS_UP_DEBOUN(x) ((x) << 12) /* 8 bits */
#define STYLUS_UP_DEBOUN_EN(x) ((x) << 9)
#define TOUCH_PAN_CALI_EN(x) ((x) << 6)
#define TP_DUAL_EN(x) ((x) << 5)
#define TP_MODE_EN(x) ((x) << 4)
#define TP_ADC_SELECT(x) ((x) << 3)
#define ADC_CHAN_SELECT(x) ((x) << 0) /* 3 bits */
/* on sun6i, bits 3~6 are left shifted by 1 to 4~7 */
#define SUN6I_TP_MODE_EN(x) ((x) << 5)
/* TP_CTRL2 bits */
#define TP_SENSITIVE_ADJUST(x) ((x) << 28) /* 4 bits */
#define TP_MODE_SELECT(x) ((x) << 26) /* 2 bits */
#define PRE_MEA_EN(x) ((x) << 24)
#define PRE_MEA_THRE_CNT(x) ((x) << 0) /* 24 bits */
/* TP_CTRL3 bits */
#define FILTER_EN(x) ((x) << 2)
#define FILTER_TYPE(x) ((x) << 0) /* 2 bits */
/* TP_INT_FIFOC irq and fifo mask / control bits */
#define TEMP_IRQ_EN(x) ((x) << 18)
#define OVERRUN_IRQ_EN(x) ((x) << 17)
#define DATA_IRQ_EN(x) ((x) << 16)
#define TP_DATA_XY_CHANGE(x) ((x) << 13)
#define FIFO_TRIG(x) ((x) << 8) /* 5 bits */
#define DATA_DRQ_EN(x) ((x) << 7)
#define FIFO_FLUSH(x) ((x) << 4)
#define TP_UP_IRQ_EN(x) ((x) << 1)
#define TP_DOWN_IRQ_EN(x) ((x) << 0)
/* TP_INT_FIFOS irq and fifo status bits */
#define TEMP_DATA_PENDING BIT(18)
#define FIFO_OVERRUN_PENDING BIT(17)
#define FIFO_DATA_PENDING BIT(16)
#define TP_IDLE_FLG BIT(2)
#define TP_UP_PENDING BIT(1)
#define TP_DOWN_PENDING BIT(0)
/* TP_TPR bits */
#define TEMP_ENABLE(x) ((x) << 16)
#define TEMP_PERIOD(x) ((x) << 0) /* t = x * 256 * 16 / clkin */
struct sun4i_ts_data {
struct device *dev;
struct input_dev *input;
void __iomem *base;
unsigned int irq;
bool ignore_fifo_data;
int temp_data;
int temp_offset;
int temp_step;
};
static void sun4i_ts_irq_handle_input(struct sun4i_ts_data *ts, u32 reg_val)
{
u32 x, y;
if (reg_val & FIFO_DATA_PENDING) {
x = readl(ts->base + TP_DATA);
y = readl(ts->base + TP_DATA);
/* The 1st location reported after an up event is unreliable */
if (!ts->ignore_fifo_data) {
input_report_abs(ts->input, ABS_X, x);
input_report_abs(ts->input, ABS_Y, y);
/*
* The hardware has a separate down status bit, but
* that gets set before we get the first location,
* resulting in reporting a click on the old location.
*/
input_report_key(ts->input, BTN_TOUCH, 1);
input_sync(ts->input);
} else {
ts->ignore_fifo_data = false;
}
}
if (reg_val & TP_UP_PENDING) {
ts->ignore_fifo_data = true;
input_report_key(ts->input, BTN_TOUCH, 0);
input_sync(ts->input);
}
}
static irqreturn_t sun4i_ts_irq(int irq, void *dev_id)
{
struct sun4i_ts_data *ts = dev_id;
u32 reg_val;
reg_val = readl(ts->base + TP_INT_FIFOS);
if (reg_val & TEMP_DATA_PENDING)
ts->temp_data = readl(ts->base + TEMP_DATA);
if (ts->input)
sun4i_ts_irq_handle_input(ts, reg_val);
writel(reg_val, ts->base + TP_INT_FIFOS);
return IRQ_HANDLED;
}
static int sun4i_ts_open(struct input_dev *dev)
{
struct sun4i_ts_data *ts = input_get_drvdata(dev);
/* Flush, set trig level to 1, enable temp, data and up irqs */
writel(TEMP_IRQ_EN(1) | DATA_IRQ_EN(1) | FIFO_TRIG(1) | FIFO_FLUSH(1) |
TP_UP_IRQ_EN(1), ts->base + TP_INT_FIFOC);
return 0;
}
static void sun4i_ts_close(struct input_dev *dev)
{
struct sun4i_ts_data *ts = input_get_drvdata(dev);
/* Deactivate all input IRQs */
writel(TEMP_IRQ_EN(1), ts->base + TP_INT_FIFOC);
}
static int sun4i_get_temp(const struct sun4i_ts_data *ts, int *temp)
{
/* No temp_data until the first irq */
if (ts->temp_data == -1)
return -EAGAIN;
*temp = ts->temp_data * ts->temp_step - ts->temp_offset;
return 0;
}
static int sun4i_get_tz_temp(struct thermal_zone_device *tz, int *temp)
{
return sun4i_get_temp(thermal_zone_device_priv(tz), temp);
}
static const struct thermal_zone_device_ops sun4i_ts_tz_ops = {
.get_temp = sun4i_get_tz_temp,
};
static ssize_t show_temp(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sun4i_ts_data *ts = dev_get_drvdata(dev);
int temp;
int error;
error = sun4i_get_temp(ts, &temp);
if (error)
return error;
return sprintf(buf, "%d\n", temp);
}
static ssize_t show_temp_label(struct device *dev,
struct device_attribute *devattr, char *buf)
{
return sprintf(buf, "SoC temperature\n");
}
static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL);
static DEVICE_ATTR(temp1_label, S_IRUGO, show_temp_label, NULL);
static struct attribute *sun4i_ts_attrs[] = {
&dev_attr_temp1_input.attr,
&dev_attr_temp1_label.attr,
NULL
};
ATTRIBUTE_GROUPS(sun4i_ts);
static int sun4i_ts_probe(struct platform_device *pdev)
{
struct sun4i_ts_data *ts;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct device *hwmon;
struct thermal_zone_device *thermal;
int error;
u32 reg;
bool ts_attached;
u32 tp_sensitive_adjust = 15;
u32 filter_type = 1;
ts = devm_kzalloc(dev, sizeof(struct sun4i_ts_data), GFP_KERNEL);
if (!ts)
return -ENOMEM;
ts->dev = dev;
ts->ignore_fifo_data = true;
ts->temp_data = -1;
if (of_device_is_compatible(np, "allwinner,sun6i-a31-ts")) {
/* Allwinner SDK has temperature (C) = (value / 6) - 271 */
ts->temp_offset = 271000;
ts->temp_step = 167;
} else if (of_device_is_compatible(np, "allwinner,sun4i-a10-ts")) {
/*
* The A10 temperature sensor has quite a wide spread, these
* parameters are based on the averaging of the calibration
* results of 4 completely different boards, with a spread of
* temp_step from 0.096 - 0.170 and temp_offset from 176 - 331.
*/
ts->temp_offset = 257000;
ts->temp_step = 133;
} else {
/*
* The user manuals do not contain the formula for calculating
* the temperature. The formula used here is from the AXP209,
* which is designed by X-Powers, an affiliate of Allwinner:
*
* temperature (C) = (value * 0.1) - 144.7
*
* Allwinner does not have any documentation whatsoever for
* this hardware. Moreover, it is claimed that the sensor
* is inaccurate and cannot work properly.
*/
ts->temp_offset = 144700;
ts->temp_step = 100;
}
ts_attached = of_property_read_bool(np, "allwinner,ts-attached");
if (ts_attached) {
ts->input = devm_input_allocate_device(dev);
if (!ts->input)
return -ENOMEM;
ts->input->name = pdev->name;
ts->input->phys = "sun4i_ts/input0";
ts->input->open = sun4i_ts_open;
ts->input->close = sun4i_ts_close;
ts->input->id.bustype = BUS_HOST;
ts->input->id.vendor = 0x0001;
ts->input->id.product = 0x0001;
ts->input->id.version = 0x0100;
ts->input->evbit[0] = BIT(EV_SYN) | BIT(EV_KEY) | BIT(EV_ABS);
__set_bit(BTN_TOUCH, ts->input->keybit);
input_set_abs_params(ts->input, ABS_X, 0, 4095, 0, 0);
input_set_abs_params(ts->input, ABS_Y, 0, 4095, 0, 0);
input_set_drvdata(ts->input, ts);
}
ts->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ts->base))
return PTR_ERR(ts->base);
ts->irq = platform_get_irq(pdev, 0);
error = devm_request_irq(dev, ts->irq, sun4i_ts_irq, 0, "sun4i-ts", ts);
if (error)
return error;
/*
* Select HOSC clk, clkin = clk / 6, adc samplefreq = clkin / 8192,
* t_acq = clkin / (16 * 64)
*/
writel(ADC_CLK_SEL(0) | ADC_CLK_DIV(2) | FS_DIV(7) | T_ACQ(63),
ts->base + TP_CTRL0);
/*
* tp_sensitive_adjust is an optional property
* tp_mode = 0 : only x and y coordinates, as we don't use dual touch
*/
of_property_read_u32(np, "allwinner,tp-sensitive-adjust",
&tp_sensitive_adjust);
writel(TP_SENSITIVE_ADJUST(tp_sensitive_adjust) | TP_MODE_SELECT(0),
ts->base + TP_CTRL2);
/*
* Enable median and averaging filter, optional property for
* filter type.
*/
of_property_read_u32(np, "allwinner,filter-type", &filter_type);
writel(FILTER_EN(1) | FILTER_TYPE(filter_type), ts->base + TP_CTRL3);
/* Enable temperature measurement, period 1953 (2 seconds) */
writel(TEMP_ENABLE(1) | TEMP_PERIOD(1953), ts->base + TP_TPR);
/*
* Set stylus up debounce to aprox 10 ms, enable debounce, and
* finally enable tp mode.
*/
reg = STYLUS_UP_DEBOUN(5) | STYLUS_UP_DEBOUN_EN(1);
if (of_device_is_compatible(np, "allwinner,sun6i-a31-ts"))
reg |= SUN6I_TP_MODE_EN(1);
else
reg |= TP_MODE_EN(1);
writel(reg, ts->base + TP_CTRL1);
/*
* The thermal core does not register hwmon devices for DT-based
* thermal zone sensors, such as this one.
*/
hwmon = devm_hwmon_device_register_with_groups(ts->dev, "sun4i_ts",
ts, sun4i_ts_groups);
if (IS_ERR(hwmon))
return PTR_ERR(hwmon);
thermal = devm_thermal_of_zone_register(ts->dev, 0, ts,
&sun4i_ts_tz_ops);
if (IS_ERR(thermal))
return PTR_ERR(thermal);
writel(TEMP_IRQ_EN(1), ts->base + TP_INT_FIFOC);
if (ts_attached) {
error = input_register_device(ts->input);
if (error) {
writel(0, ts->base + TP_INT_FIFOC);
return error;
}
}
platform_set_drvdata(pdev, ts);
return 0;
}
static int sun4i_ts_remove(struct platform_device *pdev)
{
struct sun4i_ts_data *ts = platform_get_drvdata(pdev);
/* Explicit unregister to avoid open/close changing the imask later */
if (ts->input)
input_unregister_device(ts->input);
/* Deactivate all IRQs */
writel(0, ts->base + TP_INT_FIFOC);
return 0;
}
static const struct of_device_id sun4i_ts_of_match[] = {
{ .compatible = "allwinner,sun4i-a10-ts", },
{ .compatible = "allwinner,sun5i-a13-ts", },
{ .compatible = "allwinner,sun6i-a31-ts", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sun4i_ts_of_match);
static struct platform_driver sun4i_ts_driver = {
.driver = {
.name = "sun4i-ts",
.of_match_table = sun4i_ts_of_match,
},
.probe = sun4i_ts_probe,
.remove = sun4i_ts_remove,
};
module_platform_driver(sun4i_ts_driver);
MODULE_DESCRIPTION("Allwinner sun4i resistive touchscreen controller driver");
MODULE_AUTHOR("Hans de Goede <[email protected]>");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/sun4i-ts.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Semtech SX8654 I2C touchscreen controller.
*
* Copyright (c) 2015 Armadeus Systems
* Sébastien Szymanski <[email protected]>
*
* Using code from:
* - sx865x.c
* Copyright (c) 2013 U-MoBo Srl
* Pierluigi Passaro <[email protected]>
* - sx8650.c
* Copyright (c) 2009 Wayne Roberts
* - tsc2007.c
* Copyright (c) 2008 Kwangwoo Lee
* - ads7846.c
* Copyright (c) 2005 David Brownell
* Copyright (c) 2006 Nokia Corporation
* - corgi_ts.c
* Copyright (C) 2004-2005 Richard Purdie
* - omap_ts.[hc], ads7846.h, ts_osk.c
* Copyright (C) 2002 MontaVista Software
* Copyright (C) 2004 Texas Instruments
* Copyright (C) 2005 Dirk Behme
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/input/touchscreen.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
/* register addresses */
#define I2C_REG_TOUCH0 0x00
#define I2C_REG_TOUCH1 0x01
#define I2C_REG_CHANMASK 0x04
#define I2C_REG_IRQMASK 0x22
#define I2C_REG_IRQSRC 0x23
#define I2C_REG_SOFTRESET 0x3f
#define I2C_REG_SX8650_STAT 0x05
#define SX8650_STAT_CONVIRQ BIT(7)
/* commands */
#define CMD_READ_REGISTER 0x40
#define CMD_PENTRG 0xe0
/* value for I2C_REG_SOFTRESET */
#define SOFTRESET_VALUE 0xde
/* bits for I2C_REG_IRQSRC */
#define IRQ_PENTOUCH_TOUCHCONVDONE BIT(3)
#define IRQ_PENRELEASE BIT(2)
/* bits for RegTouch1 */
#define CONDIRQ 0x20
#define RPDNT_100K 0x00
#define FILT_7SA 0x03
/* bits for I2C_REG_CHANMASK */
#define CONV_X BIT(7)
#define CONV_Y BIT(6)
/* coordinates rate: higher nibble of CTRL0 register */
#define RATE_MANUAL 0x00
#define RATE_5000CPS 0xf0
/* power delay: lower nibble of CTRL0 register */
#define POWDLY_1_1MS 0x0b
/* for sx8650, as we have no pen release IRQ there: timeout in ns following the
* last PENIRQ after which we assume the pen is lifted.
*/
#define SX8650_PENIRQ_TIMEOUT msecs_to_jiffies(10)
#define MAX_12BIT ((1 << 12) - 1)
#define MAX_I2C_READ_LEN 10 /* see datasheet section 5.1.5 */
/* channel definition */
#define CH_X 0x00
#define CH_Y 0x01
struct sx865x_data {
u8 cmd_manual;
u8 chan_mask;
bool has_irq_penrelease;
bool has_reg_irqmask;
irq_handler_t irqh;
};
struct sx8654 {
struct input_dev *input;
struct i2c_client *client;
struct gpio_desc *gpio_reset;
spinlock_t lock; /* for input reporting from irq/timer */
struct timer_list timer;
struct touchscreen_properties props;
const struct sx865x_data *data;
};
static inline void sx865x_penrelease(struct sx8654 *ts)
{
struct input_dev *input_dev = ts->input;
input_report_key(input_dev, BTN_TOUCH, 0);
input_sync(input_dev);
}
static void sx865x_penrelease_timer_handler(struct timer_list *t)
{
struct sx8654 *ts = from_timer(ts, t, timer);
unsigned long flags;
spin_lock_irqsave(&ts->lock, flags);
sx865x_penrelease(ts);
spin_unlock_irqrestore(&ts->lock, flags);
dev_dbg(&ts->client->dev, "penrelease by timer\n");
}
static irqreturn_t sx8650_irq(int irq, void *handle)
{
struct sx8654 *ts = handle;
struct device *dev = &ts->client->dev;
int len, i;
unsigned long flags;
u8 stat;
u16 x, y;
u16 ch;
u16 chdata;
__be16 data[MAX_I2C_READ_LEN / sizeof(__be16)];
u8 nchan = hweight32(ts->data->chan_mask);
u8 readlen = nchan * sizeof(*data);
stat = i2c_smbus_read_byte_data(ts->client, CMD_READ_REGISTER
| I2C_REG_SX8650_STAT);
if (!(stat & SX8650_STAT_CONVIRQ)) {
dev_dbg(dev, "%s ignore stat [0x%02x]", __func__, stat);
return IRQ_HANDLED;
}
len = i2c_master_recv(ts->client, (u8 *)data, readlen);
if (len != readlen) {
dev_dbg(dev, "ignore short recv (%d)\n", len);
return IRQ_HANDLED;
}
spin_lock_irqsave(&ts->lock, flags);
x = 0;
y = 0;
for (i = 0; i < nchan; i++) {
chdata = be16_to_cpu(data[i]);
if (unlikely(chdata == 0xFFFF)) {
dev_dbg(dev, "invalid qualified data @ %d\n", i);
continue;
} else if (unlikely(chdata & 0x8000)) {
dev_warn(dev, "hibit @ %d [0x%04x]\n", i, chdata);
continue;
}
ch = chdata >> 12;
if (ch == CH_X)
x = chdata & MAX_12BIT;
else if (ch == CH_Y)
y = chdata & MAX_12BIT;
else
dev_warn(dev, "unknown channel %d [0x%04x]\n", ch,
chdata);
}
touchscreen_report_pos(ts->input, &ts->props, x, y, false);
input_report_key(ts->input, BTN_TOUCH, 1);
input_sync(ts->input);
dev_dbg(dev, "point(%4d,%4d)\n", x, y);
mod_timer(&ts->timer, jiffies + SX8650_PENIRQ_TIMEOUT);
spin_unlock_irqrestore(&ts->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t sx8654_irq(int irq, void *handle)
{
struct sx8654 *sx8654 = handle;
int irqsrc;
u8 data[4];
unsigned int x, y;
int retval;
irqsrc = i2c_smbus_read_byte_data(sx8654->client,
CMD_READ_REGISTER | I2C_REG_IRQSRC);
dev_dbg(&sx8654->client->dev, "irqsrc = 0x%x", irqsrc);
if (irqsrc < 0)
goto out;
if (irqsrc & IRQ_PENRELEASE) {
dev_dbg(&sx8654->client->dev, "pen release interrupt");
input_report_key(sx8654->input, BTN_TOUCH, 0);
input_sync(sx8654->input);
}
if (irqsrc & IRQ_PENTOUCH_TOUCHCONVDONE) {
dev_dbg(&sx8654->client->dev, "pen touch interrupt");
retval = i2c_master_recv(sx8654->client, data, sizeof(data));
if (retval != sizeof(data))
goto out;
/* invalid data */
if (unlikely(data[0] & 0x80 || data[2] & 0x80))
goto out;
x = ((data[0] & 0xf) << 8) | (data[1]);
y = ((data[2] & 0xf) << 8) | (data[3]);
touchscreen_report_pos(sx8654->input, &sx8654->props, x, y,
false);
input_report_key(sx8654->input, BTN_TOUCH, 1);
input_sync(sx8654->input);
dev_dbg(&sx8654->client->dev, "point(%4d,%4d)\n", x, y);
}
out:
return IRQ_HANDLED;
}
static int sx8654_reset(struct sx8654 *ts)
{
int err;
if (ts->gpio_reset) {
gpiod_set_value_cansleep(ts->gpio_reset, 1);
udelay(2); /* Tpulse > 1µs */
gpiod_set_value_cansleep(ts->gpio_reset, 0);
} else {
dev_dbg(&ts->client->dev, "NRST unavailable, try softreset\n");
err = i2c_smbus_write_byte_data(ts->client, I2C_REG_SOFTRESET,
SOFTRESET_VALUE);
if (err)
return err;
}
return 0;
}
static int sx8654_open(struct input_dev *dev)
{
struct sx8654 *sx8654 = input_get_drvdata(dev);
struct i2c_client *client = sx8654->client;
int error;
/* enable pen trigger mode */
error = i2c_smbus_write_byte_data(client, I2C_REG_TOUCH0,
RATE_5000CPS | POWDLY_1_1MS);
if (error) {
dev_err(&client->dev, "writing to I2C_REG_TOUCH0 failed");
return error;
}
error = i2c_smbus_write_byte(client, CMD_PENTRG);
if (error) {
dev_err(&client->dev, "writing command CMD_PENTRG failed");
return error;
}
enable_irq(client->irq);
return 0;
}
static void sx8654_close(struct input_dev *dev)
{
struct sx8654 *sx8654 = input_get_drvdata(dev);
struct i2c_client *client = sx8654->client;
int error;
disable_irq(client->irq);
if (!sx8654->data->has_irq_penrelease)
del_timer_sync(&sx8654->timer);
/* enable manual mode mode */
error = i2c_smbus_write_byte(client, sx8654->data->cmd_manual);
if (error) {
dev_err(&client->dev, "writing command CMD_MANUAL failed");
return;
}
error = i2c_smbus_write_byte_data(client, I2C_REG_TOUCH0, RATE_MANUAL);
if (error) {
dev_err(&client->dev, "writing to I2C_REG_TOUCH0 failed");
return;
}
}
static int sx8654_probe(struct i2c_client *client)
{
const struct i2c_device_id *id = i2c_client_get_device_id(client);
struct sx8654 *sx8654;
struct input_dev *input;
int error;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_WORD_DATA))
return -ENXIO;
sx8654 = devm_kzalloc(&client->dev, sizeof(*sx8654), GFP_KERNEL);
if (!sx8654)
return -ENOMEM;
sx8654->gpio_reset = devm_gpiod_get_optional(&client->dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(sx8654->gpio_reset))
return dev_err_probe(&client->dev, PTR_ERR(sx8654->gpio_reset),
"unable to get reset-gpio\n");
dev_dbg(&client->dev, "got GPIO reset pin\n");
sx8654->data = device_get_match_data(&client->dev);
if (!sx8654->data)
sx8654->data = (const struct sx865x_data *)id->driver_data;
if (!sx8654->data) {
dev_err(&client->dev, "invalid or missing device data\n");
return -EINVAL;
}
if (!sx8654->data->has_irq_penrelease) {
dev_dbg(&client->dev, "use timer for penrelease\n");
timer_setup(&sx8654->timer, sx865x_penrelease_timer_handler, 0);
spin_lock_init(&sx8654->lock);
}
input = devm_input_allocate_device(&client->dev);
if (!input)
return -ENOMEM;
input->name = "SX8654 I2C Touchscreen";
input->id.bustype = BUS_I2C;
input->dev.parent = &client->dev;
input->open = sx8654_open;
input->close = sx8654_close;
__set_bit(INPUT_PROP_DIRECT, input->propbit);
input_set_capability(input, EV_KEY, BTN_TOUCH);
input_set_abs_params(input, ABS_X, 0, MAX_12BIT, 0, 0);
input_set_abs_params(input, ABS_Y, 0, MAX_12BIT, 0, 0);
touchscreen_parse_properties(input, false, &sx8654->props);
sx8654->client = client;
sx8654->input = input;
input_set_drvdata(sx8654->input, sx8654);
error = sx8654_reset(sx8654);
if (error) {
dev_err(&client->dev, "reset failed");
return error;
}
error = i2c_smbus_write_byte_data(client, I2C_REG_CHANMASK,
sx8654->data->chan_mask);
if (error) {
dev_err(&client->dev, "writing to I2C_REG_CHANMASK failed");
return error;
}
if (sx8654->data->has_reg_irqmask) {
error = i2c_smbus_write_byte_data(client, I2C_REG_IRQMASK,
IRQ_PENTOUCH_TOUCHCONVDONE |
IRQ_PENRELEASE);
if (error) {
dev_err(&client->dev, "writing I2C_REG_IRQMASK failed");
return error;
}
}
error = i2c_smbus_write_byte_data(client, I2C_REG_TOUCH1,
CONDIRQ | RPDNT_100K | FILT_7SA);
if (error) {
dev_err(&client->dev, "writing to I2C_REG_TOUCH1 failed");
return error;
}
error = devm_request_threaded_irq(&client->dev, client->irq,
NULL, sx8654->data->irqh,
IRQF_ONESHOT,
client->name, sx8654);
if (error) {
dev_err(&client->dev,
"Failed to enable IRQ %d, error: %d\n",
client->irq, error);
return error;
}
/* Disable the IRQ, we'll enable it in sx8654_open() */
disable_irq(client->irq);
error = input_register_device(sx8654->input);
if (error)
return error;
return 0;
}
static const struct sx865x_data sx8650_data = {
.cmd_manual = 0xb0,
.has_irq_penrelease = false,
.has_reg_irqmask = false,
.chan_mask = (CONV_X | CONV_Y),
.irqh = sx8650_irq,
};
static const struct sx865x_data sx8654_data = {
.cmd_manual = 0xc0,
.has_irq_penrelease = true,
.has_reg_irqmask = true,
.chan_mask = (CONV_X | CONV_Y),
.irqh = sx8654_irq,
};
#ifdef CONFIG_OF
static const struct of_device_id sx8654_of_match[] = {
{
.compatible = "semtech,sx8650",
.data = &sx8650_data,
}, {
.compatible = "semtech,sx8654",
.data = &sx8654_data,
}, {
.compatible = "semtech,sx8655",
.data = &sx8654_data,
}, {
.compatible = "semtech,sx8656",
.data = &sx8654_data,
},
{ }
};
MODULE_DEVICE_TABLE(of, sx8654_of_match);
#endif
static const struct i2c_device_id sx8654_id_table[] = {
{ .name = "semtech_sx8650", .driver_data = (long)&sx8650_data },
{ .name = "semtech_sx8654", .driver_data = (long)&sx8654_data },
{ .name = "semtech_sx8655", .driver_data = (long)&sx8654_data },
{ .name = "semtech_sx8656", .driver_data = (long)&sx8654_data },
{ }
};
MODULE_DEVICE_TABLE(i2c, sx8654_id_table);
static struct i2c_driver sx8654_driver = {
.driver = {
.name = "sx8654",
.of_match_table = of_match_ptr(sx8654_of_match),
},
.id_table = sx8654_id_table,
.probe = sx8654_probe,
};
module_i2c_driver(sx8654_driver);
MODULE_AUTHOR("Sébastien Szymanski <[email protected]>");
MODULE_DESCRIPTION("Semtech SX8654 I2C Touchscreen Driver");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/sx8654.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) ST-Ericsson SA 2010
* Author: Naveen Kumar G <[email protected]> for ST-Ericsson
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/input/touchscreen.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/types.h>
#define MAX_FINGERS 2
#define RESET_DELAY 30
#define PENUP_TIMEOUT (10)
#define DELTA_MIN 16
#define MASK_BITS 0x03
#define SHIFT_8 8
#define SHIFT_2 2
#define LENGTH_OF_BUFFER 11
#define I2C_RETRY_COUNT 5
#define BU21013_SENSORS_BTN_0_7_REG 0x70
#define BU21013_SENSORS_BTN_8_15_REG 0x71
#define BU21013_SENSORS_BTN_16_23_REG 0x72
#define BU21013_X1_POS_MSB_REG 0x73
#define BU21013_X1_POS_LSB_REG 0x74
#define BU21013_Y1_POS_MSB_REG 0x75
#define BU21013_Y1_POS_LSB_REG 0x76
#define BU21013_X2_POS_MSB_REG 0x77
#define BU21013_X2_POS_LSB_REG 0x78
#define BU21013_Y2_POS_MSB_REG 0x79
#define BU21013_Y2_POS_LSB_REG 0x7A
#define BU21013_INT_CLR_REG 0xE8
#define BU21013_INT_MODE_REG 0xE9
#define BU21013_GAIN_REG 0xEA
#define BU21013_OFFSET_MODE_REG 0xEB
#define BU21013_XY_EDGE_REG 0xEC
#define BU21013_RESET_REG 0xED
#define BU21013_CALIB_REG 0xEE
#define BU21013_DONE_REG 0xEF
#define BU21013_SENSOR_0_7_REG 0xF0
#define BU21013_SENSOR_8_15_REG 0xF1
#define BU21013_SENSOR_16_23_REG 0xF2
#define BU21013_POS_MODE1_REG 0xF3
#define BU21013_POS_MODE2_REG 0xF4
#define BU21013_CLK_MODE_REG 0xF5
#define BU21013_IDLE_REG 0xFA
#define BU21013_FILTER_REG 0xFB
#define BU21013_TH_ON_REG 0xFC
#define BU21013_TH_OFF_REG 0xFD
#define BU21013_RESET_ENABLE 0x01
#define BU21013_SENSORS_EN_0_7 0x3F
#define BU21013_SENSORS_EN_8_15 0xFC
#define BU21013_SENSORS_EN_16_23 0x1F
#define BU21013_POS_MODE1_0 0x02
#define BU21013_POS_MODE1_1 0x04
#define BU21013_POS_MODE1_2 0x08
#define BU21013_POS_MODE2_ZERO 0x01
#define BU21013_POS_MODE2_AVG1 0x02
#define BU21013_POS_MODE2_AVG2 0x04
#define BU21013_POS_MODE2_EN_XY 0x08
#define BU21013_POS_MODE2_EN_RAW 0x10
#define BU21013_POS_MODE2_MULTI 0x80
#define BU21013_CLK_MODE_DIV 0x01
#define BU21013_CLK_MODE_EXT 0x02
#define BU21013_CLK_MODE_CALIB 0x80
#define BU21013_IDLET_0 0x01
#define BU21013_IDLET_1 0x02
#define BU21013_IDLET_2 0x04
#define BU21013_IDLET_3 0x08
#define BU21013_IDLE_INTERMIT_EN 0x10
#define BU21013_DELTA_0_6 0x7F
#define BU21013_FILTER_EN 0x80
#define BU21013_INT_MODE_LEVEL 0x00
#define BU21013_INT_MODE_EDGE 0x01
#define BU21013_GAIN_0 0x01
#define BU21013_GAIN_1 0x02
#define BU21013_GAIN_2 0x04
#define BU21013_OFFSET_MODE_DEFAULT 0x00
#define BU21013_OFFSET_MODE_MOVE 0x01
#define BU21013_OFFSET_MODE_DISABLE 0x02
#define BU21013_TH_ON_0 0x01
#define BU21013_TH_ON_1 0x02
#define BU21013_TH_ON_2 0x04
#define BU21013_TH_ON_3 0x08
#define BU21013_TH_ON_4 0x10
#define BU21013_TH_ON_5 0x20
#define BU21013_TH_ON_6 0x40
#define BU21013_TH_ON_7 0x80
#define BU21013_TH_ON_MAX 0xFF
#define BU21013_TH_OFF_0 0x01
#define BU21013_TH_OFF_1 0x02
#define BU21013_TH_OFF_2 0x04
#define BU21013_TH_OFF_3 0x08
#define BU21013_TH_OFF_4 0x10
#define BU21013_TH_OFF_5 0x20
#define BU21013_TH_OFF_6 0x40
#define BU21013_TH_OFF_7 0x80
#define BU21013_TH_OFF_MAX 0xFF
#define BU21013_X_EDGE_0 0x01
#define BU21013_X_EDGE_1 0x02
#define BU21013_X_EDGE_2 0x04
#define BU21013_X_EDGE_3 0x08
#define BU21013_Y_EDGE_0 0x10
#define BU21013_Y_EDGE_1 0x20
#define BU21013_Y_EDGE_2 0x40
#define BU21013_Y_EDGE_3 0x80
#define BU21013_DONE 0x01
#define BU21013_NUMBER_OF_X_SENSORS (6)
#define BU21013_NUMBER_OF_Y_SENSORS (11)
#define DRIVER_TP "bu21013_tp"
/**
* struct bu21013_ts - touch panel data structure
* @client: pointer to the i2c client
* @in_dev: pointer to the input device structure
* @props: the device coordinate transformation properties
* @regulator: pointer to the Regulator used for touch screen
* @cs_gpiod: chip select GPIO line
* @int_gpiod: touch interrupt GPIO line
* @touch_x_max: maximum X coordinate reported by the device
* @touch_y_max: maximum Y coordinate reported by the device
* @x_flip: indicates that the driver should invert X coordinate before
* reporting
* @y_flip: indicates that the driver should invert Y coordinate before
* reporting
* @touch_stopped: touch stop flag
*
* Touch panel device data structure
*/
struct bu21013_ts {
struct i2c_client *client;
struct input_dev *in_dev;
struct touchscreen_properties props;
struct regulator *regulator;
struct gpio_desc *cs_gpiod;
struct gpio_desc *int_gpiod;
u32 touch_x_max;
u32 touch_y_max;
bool x_flip;
bool y_flip;
bool touch_stopped;
};
static int bu21013_read_block_data(struct bu21013_ts *ts, u8 *buf)
{
int ret, i;
for (i = 0; i < I2C_RETRY_COUNT; i++) {
ret = i2c_smbus_read_i2c_block_data(ts->client,
BU21013_SENSORS_BTN_0_7_REG,
LENGTH_OF_BUFFER, buf);
if (ret == LENGTH_OF_BUFFER)
return 0;
}
return -EINVAL;
}
static int bu21013_do_touch_report(struct bu21013_ts *ts)
{
struct input_dev *input = ts->in_dev;
struct input_mt_pos pos[MAX_FINGERS];
int slots[MAX_FINGERS];
u8 buf[LENGTH_OF_BUFFER];
bool has_x_sensors, has_y_sensors;
int finger_down_count = 0;
int i;
if (bu21013_read_block_data(ts, buf) < 0)
return -EINVAL;
has_x_sensors = hweight32(buf[0] & BU21013_SENSORS_EN_0_7);
has_y_sensors = hweight32(((buf[1] & BU21013_SENSORS_EN_8_15) |
((buf[2] & BU21013_SENSORS_EN_16_23) << SHIFT_8)) >> SHIFT_2);
if (!has_x_sensors || !has_y_sensors)
return 0;
for (i = 0; i < MAX_FINGERS; i++) {
const u8 *data = &buf[4 * i + 3];
unsigned int x, y;
x = data[0] << SHIFT_2 | (data[1] & MASK_BITS);
y = data[2] << SHIFT_2 | (data[3] & MASK_BITS);
if (x != 0 && y != 0)
touchscreen_set_mt_pos(&pos[finger_down_count++],
&ts->props, x, y);
}
if (finger_down_count == 2 &&
(abs(pos[0].x - pos[1].x) < DELTA_MIN ||
abs(pos[0].y - pos[1].y) < DELTA_MIN)) {
return 0;
}
input_mt_assign_slots(input, slots, pos, finger_down_count, DELTA_MIN);
for (i = 0; i < finger_down_count; i++) {
input_mt_slot(input, slots[i]);
input_mt_report_slot_state(input, MT_TOOL_FINGER, true);
input_report_abs(input, ABS_MT_POSITION_X, pos[i].x);
input_report_abs(input, ABS_MT_POSITION_Y, pos[i].y);
}
input_mt_sync_frame(input);
input_sync(input);
return 0;
}
static irqreturn_t bu21013_gpio_irq(int irq, void *device_data)
{
struct bu21013_ts *ts = device_data;
int keep_polling;
int error;
do {
error = bu21013_do_touch_report(ts);
if (error) {
dev_err(&ts->client->dev, "%s failed\n", __func__);
break;
}
if (unlikely(ts->touch_stopped))
break;
keep_polling = ts->int_gpiod ?
gpiod_get_value(ts->int_gpiod) : false;
if (keep_polling)
usleep_range(2000, 2500);
} while (keep_polling);
return IRQ_HANDLED;
}
static int bu21013_init_chip(struct bu21013_ts *ts)
{
struct i2c_client *client = ts->client;
int error;
error = i2c_smbus_write_byte_data(client, BU21013_RESET_REG,
BU21013_RESET_ENABLE);
if (error) {
dev_err(&client->dev, "BU21013_RESET reg write failed\n");
return error;
}
msleep(RESET_DELAY);
error = i2c_smbus_write_byte_data(client, BU21013_SENSOR_0_7_REG,
BU21013_SENSORS_EN_0_7);
if (error) {
dev_err(&client->dev, "BU21013_SENSOR_0_7 reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_SENSOR_8_15_REG,
BU21013_SENSORS_EN_8_15);
if (error) {
dev_err(&client->dev, "BU21013_SENSOR_8_15 reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_SENSOR_16_23_REG,
BU21013_SENSORS_EN_16_23);
if (error) {
dev_err(&client->dev, "BU21013_SENSOR_16_23 reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_POS_MODE1_REG,
BU21013_POS_MODE1_0 |
BU21013_POS_MODE1_1);
if (error) {
dev_err(&client->dev, "BU21013_POS_MODE1 reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_POS_MODE2_REG,
BU21013_POS_MODE2_ZERO |
BU21013_POS_MODE2_AVG1 |
BU21013_POS_MODE2_AVG2 |
BU21013_POS_MODE2_EN_RAW |
BU21013_POS_MODE2_MULTI);
if (error) {
dev_err(&client->dev, "BU21013_POS_MODE2 reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_CLK_MODE_REG,
BU21013_CLK_MODE_DIV |
BU21013_CLK_MODE_CALIB);
if (error) {
dev_err(&client->dev, "BU21013_CLK_MODE reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_IDLE_REG,
BU21013_IDLET_0 |
BU21013_IDLE_INTERMIT_EN);
if (error) {
dev_err(&client->dev, "BU21013_IDLE reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_INT_MODE_REG,
BU21013_INT_MODE_LEVEL);
if (error) {
dev_err(&client->dev, "BU21013_INT_MODE reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_FILTER_REG,
BU21013_DELTA_0_6 |
BU21013_FILTER_EN);
if (error) {
dev_err(&client->dev, "BU21013_FILTER reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_TH_ON_REG,
BU21013_TH_ON_5);
if (error) {
dev_err(&client->dev, "BU21013_TH_ON reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_TH_OFF_REG,
BU21013_TH_OFF_4 | BU21013_TH_OFF_3);
if (error) {
dev_err(&client->dev, "BU21013_TH_OFF reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_GAIN_REG,
BU21013_GAIN_0 | BU21013_GAIN_1);
if (error) {
dev_err(&client->dev, "BU21013_GAIN reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_OFFSET_MODE_REG,
BU21013_OFFSET_MODE_DEFAULT);
if (error) {
dev_err(&client->dev, "BU21013_OFFSET_MODE reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_XY_EDGE_REG,
BU21013_X_EDGE_0 |
BU21013_X_EDGE_2 |
BU21013_Y_EDGE_1 |
BU21013_Y_EDGE_3);
if (error) {
dev_err(&client->dev, "BU21013_XY_EDGE reg write failed\n");
return error;
}
error = i2c_smbus_write_byte_data(client, BU21013_DONE_REG,
BU21013_DONE);
if (error) {
dev_err(&client->dev, "BU21013_REG_DONE reg write failed\n");
return error;
}
return 0;
}
static void bu21013_power_off(void *_ts)
{
struct bu21013_ts *ts = _ts;
regulator_disable(ts->regulator);
}
static void bu21013_disable_chip(void *_ts)
{
struct bu21013_ts *ts = _ts;
gpiod_set_value(ts->cs_gpiod, 0);
}
static int bu21013_probe(struct i2c_client *client)
{
struct bu21013_ts *ts;
struct input_dev *in_dev;
struct input_absinfo *info;
u32 max_x = 0, max_y = 0;
struct device *dev = &client->dev;
int error;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_err(dev, "i2c smbus byte data not supported\n");
return -EIO;
}
if (!client->irq) {
dev_err(dev, "No IRQ set up\n");
return -EINVAL;
}
ts = devm_kzalloc(dev, sizeof(*ts), GFP_KERNEL);
if (!ts)
return -ENOMEM;
ts->client = client;
ts->x_flip = device_property_read_bool(dev, "rohm,flip-x");
ts->y_flip = device_property_read_bool(dev, "rohm,flip-y");
in_dev = devm_input_allocate_device(dev);
if (!in_dev) {
dev_err(dev, "device memory alloc failed\n");
return -ENOMEM;
}
ts->in_dev = in_dev;
input_set_drvdata(in_dev, ts);
/* register the device to input subsystem */
in_dev->name = DRIVER_TP;
in_dev->id.bustype = BUS_I2C;
device_property_read_u32(dev, "rohm,touch-max-x", &max_x);
device_property_read_u32(dev, "rohm,touch-max-y", &max_y);
input_set_abs_params(in_dev, ABS_MT_POSITION_X, 0, max_x, 0, 0);
input_set_abs_params(in_dev, ABS_MT_POSITION_Y, 0, max_y, 0, 0);
touchscreen_parse_properties(in_dev, true, &ts->props);
/* Adjust for the legacy "flip" properties, if present */
if (!ts->props.invert_x &&
device_property_read_bool(dev, "rohm,flip-x")) {
info = &in_dev->absinfo[ABS_MT_POSITION_X];
info->maximum -= info->minimum;
info->minimum = 0;
}
if (!ts->props.invert_y &&
device_property_read_bool(dev, "rohm,flip-y")) {
info = &in_dev->absinfo[ABS_MT_POSITION_Y];
info->maximum -= info->minimum;
info->minimum = 0;
}
error = input_mt_init_slots(in_dev, MAX_FINGERS,
INPUT_MT_DIRECT | INPUT_MT_TRACK |
INPUT_MT_DROP_UNUSED);
if (error) {
dev_err(dev, "failed to initialize MT slots");
return error;
}
ts->regulator = devm_regulator_get(dev, "avdd");
if (IS_ERR(ts->regulator)) {
dev_err(dev, "regulator_get failed\n");
return PTR_ERR(ts->regulator);
}
error = regulator_enable(ts->regulator);
if (error) {
dev_err(dev, "regulator enable failed\n");
return error;
}
error = devm_add_action_or_reset(dev, bu21013_power_off, ts);
if (error) {
dev_err(dev, "failed to install power off handler\n");
return error;
}
/* Named "CS" on the chip, DT binding is "reset" */
ts->cs_gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(ts->cs_gpiod))
return dev_err_probe(dev, PTR_ERR(ts->cs_gpiod), "failed to get CS GPIO\n");
gpiod_set_consumer_name(ts->cs_gpiod, "BU21013 CS");
error = devm_add_action_or_reset(dev, bu21013_disable_chip, ts);
if (error) {
dev_err(dev, "failed to install chip disable handler\n");
return error;
}
/* Named "INT" on the chip, DT binding is "touch" */
ts->int_gpiod = devm_gpiod_get_optional(dev, "touch", GPIOD_IN);
error = PTR_ERR_OR_ZERO(ts->int_gpiod);
if (error)
return dev_err_probe(dev, error, "failed to get INT GPIO\n");
if (ts->int_gpiod)
gpiod_set_consumer_name(ts->int_gpiod, "BU21013 INT");
/* configure the touch panel controller */
error = bu21013_init_chip(ts);
if (error) {
dev_err(dev, "error in bu21013 config\n");
return error;
}
error = devm_request_threaded_irq(dev, client->irq, NULL, bu21013_gpio_irq,
IRQF_ONESHOT, DRIVER_TP, ts);
if (error) {
dev_err(dev, "request irq %d failed\n", client->irq);
return error;
}
error = input_register_device(in_dev);
if (error) {
dev_err(dev, "failed to register input device\n");
return error;
}
i2c_set_clientdata(client, ts);
return 0;
}
static void bu21013_remove(struct i2c_client *client)
{
struct bu21013_ts *ts = i2c_get_clientdata(client);
/* Make sure IRQ will exit quickly even if there is contact */
ts->touch_stopped = true;
/* The resources will be freed by devm */
}
static int bu21013_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct bu21013_ts *ts = i2c_get_clientdata(client);
ts->touch_stopped = true;
mb();
disable_irq(client->irq);
if (!device_may_wakeup(&client->dev))
regulator_disable(ts->regulator);
return 0;
}
static int bu21013_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct bu21013_ts *ts = i2c_get_clientdata(client);
int error;
if (!device_may_wakeup(&client->dev)) {
error = regulator_enable(ts->regulator);
if (error) {
dev_err(&client->dev,
"failed to re-enable regulator when resuming\n");
return error;
}
error = bu21013_init_chip(ts);
if (error) {
dev_err(&client->dev,
"failed to reinitialize chip when resuming\n");
return error;
}
}
ts->touch_stopped = false;
mb();
enable_irq(client->irq);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(bu21013_dev_pm_ops, bu21013_suspend, bu21013_resume);
static const struct i2c_device_id bu21013_id[] = {
{ DRIVER_TP, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, bu21013_id);
static struct i2c_driver bu21013_driver = {
.driver = {
.name = DRIVER_TP,
.pm = pm_sleep_ptr(&bu21013_dev_pm_ops),
},
.probe = bu21013_probe,
.remove = bu21013_remove,
.id_table = bu21013_id,
};
module_i2c_driver(bu21013_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Naveen Kumar G <[email protected]>");
MODULE_DESCRIPTION("bu21013 touch screen controller driver");
|
linux-master
|
drivers/input/touchscreen/bu21013_ts.c
|
// SPDX-License-Identifier: GPL-2.0
/*
* Rohm BU21029 touchscreen controller driver
*
* Copyright (C) 2015-2018 Bosch Sicherheitssysteme GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/input/touchscreen.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/regulator/consumer.h>
#include <linux/timer.h>
/*
* HW_ID1 Register (PAGE=0, ADDR=0x0E, Reset value=0x02, Read only)
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | HW_IDH |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* HW_ID2 Register (PAGE=0, ADDR=0x0F, Reset value=0x29, Read only)
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | HW_IDL |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* HW_IDH: high 8bits of IC's ID
* HW_IDL: low 8bits of IC's ID
*/
#define BU21029_HWID_REG (0x0E << 3)
#define SUPPORTED_HWID 0x0229
/*
* CFR0 Register (PAGE=0, ADDR=0x00, Reset value=0x20)
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | 0 | 0 | CALIB | INTRM | 0 | 0 | 0 | 0 |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* CALIB: 0 = not to use calibration result (*)
* 1 = use calibration result
* INTRM: 0 = INT output depend on "pen down" (*)
* 1 = INT output always "0"
*/
#define BU21029_CFR0_REG (0x00 << 3)
#define CFR0_VALUE 0x00
/*
* CFR1 Register (PAGE=0, ADDR=0x01, Reset value=0xA6)
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | MAV | AVE[2:0] | 0 | SMPL[2:0] |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* MAV: 0 = median average filter off
* 1 = median average filter on (*)
* AVE: AVE+1 = number of average samples for MAV,
* if AVE>SMPL, then AVE=SMPL (=3)
* SMPL: SMPL+1 = number of conversion samples for MAV (=7)
*/
#define BU21029_CFR1_REG (0x01 << 3)
#define CFR1_VALUE 0xA6
/*
* CFR2 Register (PAGE=0, ADDR=0x02, Reset value=0x04)
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | INTVL_TIME[3:0] | TIME_ST_ADC[3:0] |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* INTVL_TIME: waiting time between completion of conversion
* and start of next conversion, only usable in
* autoscan mode (=20.480ms)
* TIME_ST_ADC: waiting time between application of voltage
* to panel and start of A/D conversion (=100us)
*/
#define BU21029_CFR2_REG (0x02 << 3)
#define CFR2_VALUE 0xC9
/*
* CFR3 Register (PAGE=0, ADDR=0x0B, Reset value=0x72)
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | RM8 | STRETCH| PU90K | DUAL | PIDAC_OFS[3:0] |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* RM8: 0 = coordinate resolution is 12bit (*)
* 1 = coordinate resolution is 8bit
* STRETCH: 0 = SCL_STRETCH function off
* 1 = SCL_STRETCH function on (*)
* PU90K: 0 = internal pull-up resistance for touch detection is ~50kohms (*)
* 1 = internal pull-up resistance for touch detection is ~90kohms
* DUAL: 0 = dual touch detection off (*)
* 1 = dual touch detection on
* PIDAC_OFS: dual touch detection circuit adjustment, it is not necessary
* to change this from initial value
*/
#define BU21029_CFR3_REG (0x0B << 3)
#define CFR3_VALUE 0x42
/*
* LDO Register (PAGE=0, ADDR=0x0C, Reset value=0x00)
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | 0 | PVDD[2:0] | 0 | AVDD[2:0] |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* PVDD: output voltage of panel output regulator (=2.000V)
* AVDD: output voltage of analog circuit regulator (=2.000V)
*/
#define BU21029_LDO_REG (0x0C << 3)
#define LDO_VALUE 0x77
/*
* Serial Interface Command Byte 1 (CID=1)
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* | 1 | CF | CMSK | PDM | STP |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* CF: conversion function, see table 3 in datasheet p6 (=0000, automatic scan)
* CMSK: 0 = executes convert function (*)
* 1 = reads the convert result
* PDM: 0 = power down after convert function stops (*)
* 1 = keep power on after convert function stops
* STP: 1 = abort current conversion and power down, set to "0" automatically
*/
#define BU21029_AUTOSCAN 0x80
/*
* The timeout value needs to be larger than INTVL_TIME + tConv4 (sample and
* conversion time), where tConv4 is calculated by formula:
* tPON + tDLY1 + (tTIME_ST_ADC + (tADC * tSMPL) * 2 + tDLY2) * 3
* see figure 8 in datasheet p15 for details of each field.
*/
#define PEN_UP_TIMEOUT_MS 50
#define STOP_DELAY_MIN_US 50
#define STOP_DELAY_MAX_US 1000
#define START_DELAY_MS 2
#define BUF_LEN 8
#define SCALE_12BIT (1 << 12)
#define MAX_12BIT ((1 << 12) - 1)
#define DRIVER_NAME "bu21029"
struct bu21029_ts_data {
struct i2c_client *client;
struct input_dev *in_dev;
struct timer_list timer;
struct regulator *vdd;
struct gpio_desc *reset_gpios;
u32 x_plate_ohms;
struct touchscreen_properties prop;
};
static void bu21029_touch_report(struct bu21029_ts_data *bu21029, const u8 *buf)
{
u16 x, y, z1, z2;
u32 rz;
s32 max_pressure = input_abs_get_max(bu21029->in_dev, ABS_PRESSURE);
/*
* compose upper 8 and lower 4 bits into a 12bit value:
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* | ByteH | ByteL |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* |b07|b06|b05|b04|b03|b02|b01|b00|b07|b06|b05|b04|b03|b02|b01|b00|
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* |v11|v10|v09|v08|v07|v06|v05|v04|v03|v02|v01|v00| 0 | 0 | 0 | 0 |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
*/
x = (buf[0] << 4) | (buf[1] >> 4);
y = (buf[2] << 4) | (buf[3] >> 4);
z1 = (buf[4] << 4) | (buf[5] >> 4);
z2 = (buf[6] << 4) | (buf[7] >> 4);
if (z1 && z2) {
/*
* calculate Rz (pressure resistance value) by equation:
* Rz = Rx * (x/Q) * ((z2/z1) - 1), where
* Rx is x-plate resistance,
* Q is the touch screen resolution (8bit = 256, 12bit = 4096)
* x, z1, z2 are the measured positions.
*/
rz = z2 - z1;
rz *= x;
rz *= bu21029->x_plate_ohms;
rz /= z1;
rz = DIV_ROUND_CLOSEST(rz, SCALE_12BIT);
if (rz <= max_pressure) {
touchscreen_report_pos(bu21029->in_dev, &bu21029->prop,
x, y, false);
input_report_abs(bu21029->in_dev, ABS_PRESSURE,
max_pressure - rz);
input_report_key(bu21029->in_dev, BTN_TOUCH, 1);
input_sync(bu21029->in_dev);
}
}
}
static void bu21029_touch_release(struct timer_list *t)
{
struct bu21029_ts_data *bu21029 = from_timer(bu21029, t, timer);
input_report_abs(bu21029->in_dev, ABS_PRESSURE, 0);
input_report_key(bu21029->in_dev, BTN_TOUCH, 0);
input_sync(bu21029->in_dev);
}
static irqreturn_t bu21029_touch_soft_irq(int irq, void *data)
{
struct bu21029_ts_data *bu21029 = data;
u8 buf[BUF_LEN];
int error;
/*
* Read touch data and deassert interrupt (will assert again after
* INTVL_TIME + tConv4 for continuous touch)
*/
error = i2c_smbus_read_i2c_block_data(bu21029->client, BU21029_AUTOSCAN,
sizeof(buf), buf);
if (error < 0)
goto out;
bu21029_touch_report(bu21029, buf);
/* reset timer for pen up detection */
mod_timer(&bu21029->timer,
jiffies + msecs_to_jiffies(PEN_UP_TIMEOUT_MS));
out:
return IRQ_HANDLED;
}
static void bu21029_put_chip_in_reset(struct bu21029_ts_data *bu21029)
{
if (bu21029->reset_gpios) {
gpiod_set_value_cansleep(bu21029->reset_gpios, 1);
usleep_range(STOP_DELAY_MIN_US, STOP_DELAY_MAX_US);
}
}
static int bu21029_start_chip(struct input_dev *dev)
{
struct bu21029_ts_data *bu21029 = input_get_drvdata(dev);
struct i2c_client *i2c = bu21029->client;
struct {
u8 reg;
u8 value;
} init_table[] = {
{BU21029_CFR0_REG, CFR0_VALUE},
{BU21029_CFR1_REG, CFR1_VALUE},
{BU21029_CFR2_REG, CFR2_VALUE},
{BU21029_CFR3_REG, CFR3_VALUE},
{BU21029_LDO_REG, LDO_VALUE}
};
int error, i;
__be16 hwid;
error = regulator_enable(bu21029->vdd);
if (error) {
dev_err(&i2c->dev, "failed to power up chip: %d", error);
return error;
}
/* take chip out of reset */
if (bu21029->reset_gpios) {
gpiod_set_value_cansleep(bu21029->reset_gpios, 0);
msleep(START_DELAY_MS);
}
error = i2c_smbus_read_i2c_block_data(i2c, BU21029_HWID_REG,
sizeof(hwid), (u8 *)&hwid);
if (error < 0) {
dev_err(&i2c->dev, "failed to read HW ID\n");
goto err_out;
}
if (be16_to_cpu(hwid) != SUPPORTED_HWID) {
dev_err(&i2c->dev,
"unsupported HW ID 0x%x\n", be16_to_cpu(hwid));
error = -ENODEV;
goto err_out;
}
for (i = 0; i < ARRAY_SIZE(init_table); ++i) {
error = i2c_smbus_write_byte_data(i2c,
init_table[i].reg,
init_table[i].value);
if (error < 0) {
dev_err(&i2c->dev,
"failed to write %#02x to register %#02x: %d\n",
init_table[i].value, init_table[i].reg,
error);
goto err_out;
}
}
error = i2c_smbus_write_byte(i2c, BU21029_AUTOSCAN);
if (error < 0) {
dev_err(&i2c->dev, "failed to start autoscan\n");
goto err_out;
}
enable_irq(bu21029->client->irq);
return 0;
err_out:
bu21029_put_chip_in_reset(bu21029);
regulator_disable(bu21029->vdd);
return error;
}
static void bu21029_stop_chip(struct input_dev *dev)
{
struct bu21029_ts_data *bu21029 = input_get_drvdata(dev);
disable_irq(bu21029->client->irq);
del_timer_sync(&bu21029->timer);
bu21029_put_chip_in_reset(bu21029);
regulator_disable(bu21029->vdd);
}
static int bu21029_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct bu21029_ts_data *bu21029;
struct input_dev *in_dev;
int error;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_WRITE_BYTE |
I2C_FUNC_SMBUS_WRITE_BYTE_DATA |
I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
dev_err(dev, "i2c functionality support is not sufficient\n");
return -EIO;
}
bu21029 = devm_kzalloc(dev, sizeof(*bu21029), GFP_KERNEL);
if (!bu21029)
return -ENOMEM;
error = device_property_read_u32(dev, "rohm,x-plate-ohms", &bu21029->x_plate_ohms);
if (error) {
dev_err(dev, "invalid 'x-plate-ohms' supplied: %d\n", error);
return error;
}
bu21029->vdd = devm_regulator_get(dev, "vdd");
if (IS_ERR(bu21029->vdd))
return dev_err_probe(dev, PTR_ERR(bu21029->vdd),
"failed to acquire 'vdd' supply\n");
bu21029->reset_gpios = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(bu21029->reset_gpios))
return dev_err_probe(dev, PTR_ERR(bu21029->reset_gpios),
"failed to acquire 'reset' gpio\n");
in_dev = devm_input_allocate_device(dev);
if (!in_dev) {
dev_err(dev, "unable to allocate input device\n");
return -ENOMEM;
}
bu21029->client = client;
bu21029->in_dev = in_dev;
timer_setup(&bu21029->timer, bu21029_touch_release, 0);
in_dev->name = DRIVER_NAME;
in_dev->id.bustype = BUS_I2C;
in_dev->open = bu21029_start_chip;
in_dev->close = bu21029_stop_chip;
input_set_capability(in_dev, EV_KEY, BTN_TOUCH);
input_set_abs_params(in_dev, ABS_X, 0, MAX_12BIT, 0, 0);
input_set_abs_params(in_dev, ABS_Y, 0, MAX_12BIT, 0, 0);
input_set_abs_params(in_dev, ABS_PRESSURE, 0, MAX_12BIT, 0, 0);
touchscreen_parse_properties(in_dev, false, &bu21029->prop);
input_set_drvdata(in_dev, bu21029);
error = devm_request_threaded_irq(dev, client->irq, NULL,
bu21029_touch_soft_irq,
IRQF_ONESHOT | IRQF_NO_AUTOEN,
DRIVER_NAME, bu21029);
if (error) {
dev_err(dev, "unable to request touch irq: %d\n", error);
return error;
}
error = input_register_device(in_dev);
if (error) {
dev_err(dev, "unable to register input device: %d\n", error);
return error;
}
i2c_set_clientdata(client, bu21029);
return 0;
}
static int bu21029_suspend(struct device *dev)
{
struct i2c_client *i2c = to_i2c_client(dev);
struct bu21029_ts_data *bu21029 = i2c_get_clientdata(i2c);
if (!device_may_wakeup(dev)) {
mutex_lock(&bu21029->in_dev->mutex);
if (input_device_enabled(bu21029->in_dev))
bu21029_stop_chip(bu21029->in_dev);
mutex_unlock(&bu21029->in_dev->mutex);
}
return 0;
}
static int bu21029_resume(struct device *dev)
{
struct i2c_client *i2c = to_i2c_client(dev);
struct bu21029_ts_data *bu21029 = i2c_get_clientdata(i2c);
if (!device_may_wakeup(dev)) {
mutex_lock(&bu21029->in_dev->mutex);
if (input_device_enabled(bu21029->in_dev))
bu21029_start_chip(bu21029->in_dev);
mutex_unlock(&bu21029->in_dev->mutex);
}
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(bu21029_pm_ops, bu21029_suspend, bu21029_resume);
static const struct i2c_device_id bu21029_ids[] = {
{ DRIVER_NAME, 0 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, bu21029_ids);
#ifdef CONFIG_OF
static const struct of_device_id bu21029_of_ids[] = {
{ .compatible = "rohm,bu21029" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bu21029_of_ids);
#endif
static struct i2c_driver bu21029_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = of_match_ptr(bu21029_of_ids),
.pm = pm_sleep_ptr(&bu21029_pm_ops),
},
.id_table = bu21029_ids,
.probe = bu21029_probe,
};
module_i2c_driver(bu21029_driver);
MODULE_AUTHOR("Zhu Yi <[email protected]>");
MODULE_DESCRIPTION("Rohm BU21029 touchscreen controller driver");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/touchscreen/bu21029_ts.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Touchscreen driver for Dialog Semiconductor DA9034
*
* Copyright (C) 2006-2008 Marvell International Ltd.
* Fengwei Yin <[email protected]>
* Bin Yang <[email protected]>
* Eric Miao <[email protected]>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/input.h>
#include <linux/workqueue.h>
#include <linux/mfd/da903x.h>
#include <linux/slab.h>
#define DA9034_MANUAL_CTRL 0x50
#define DA9034_LDO_ADC_EN (1 << 4)
#define DA9034_AUTO_CTRL1 0x51
#define DA9034_AUTO_CTRL2 0x52
#define DA9034_AUTO_TSI_EN (1 << 3)
#define DA9034_PEN_DETECT (1 << 4)
#define DA9034_TSI_CTRL1 0x53
#define DA9034_TSI_CTRL2 0x54
#define DA9034_TSI_X_MSB 0x6c
#define DA9034_TSI_Y_MSB 0x6d
#define DA9034_TSI_XY_LSB 0x6e
enum {
STATE_IDLE, /* wait for pendown */
STATE_BUSY, /* TSI busy sampling */
STATE_STOP, /* sample available */
STATE_WAIT, /* Wait to start next sample */
};
enum {
EVENT_PEN_DOWN,
EVENT_PEN_UP,
EVENT_TSI_READY,
EVENT_TIMEDOUT,
};
struct da9034_touch {
struct device *da9034_dev;
struct input_dev *input_dev;
struct delayed_work tsi_work;
struct notifier_block notifier;
int state;
int interval_ms;
int x_inverted;
int y_inverted;
int last_x;
int last_y;
};
static inline int is_pen_down(struct da9034_touch *touch)
{
return da903x_query_status(touch->da9034_dev, DA9034_STATUS_PEN_DOWN);
}
static inline int detect_pen_down(struct da9034_touch *touch, int on)
{
if (on)
return da903x_set_bits(touch->da9034_dev,
DA9034_AUTO_CTRL2, DA9034_PEN_DETECT);
else
return da903x_clr_bits(touch->da9034_dev,
DA9034_AUTO_CTRL2, DA9034_PEN_DETECT);
}
static int read_tsi(struct da9034_touch *touch)
{
uint8_t _x, _y, _v;
int ret;
ret = da903x_read(touch->da9034_dev, DA9034_TSI_X_MSB, &_x);
if (ret)
return ret;
ret = da903x_read(touch->da9034_dev, DA9034_TSI_Y_MSB, &_y);
if (ret)
return ret;
ret = da903x_read(touch->da9034_dev, DA9034_TSI_XY_LSB, &_v);
if (ret)
return ret;
touch->last_x = ((_x << 2) & 0x3fc) | (_v & 0x3);
touch->last_y = ((_y << 2) & 0x3fc) | ((_v & 0xc) >> 2);
return 0;
}
static inline int start_tsi(struct da9034_touch *touch)
{
return da903x_set_bits(touch->da9034_dev,
DA9034_AUTO_CTRL2, DA9034_AUTO_TSI_EN);
}
static inline int stop_tsi(struct da9034_touch *touch)
{
return da903x_clr_bits(touch->da9034_dev,
DA9034_AUTO_CTRL2, DA9034_AUTO_TSI_EN);
}
static inline void report_pen_down(struct da9034_touch *touch)
{
int x = touch->last_x;
int y = touch->last_y;
x &= 0xfff;
if (touch->x_inverted)
x = 1024 - x;
y &= 0xfff;
if (touch->y_inverted)
y = 1024 - y;
input_report_abs(touch->input_dev, ABS_X, x);
input_report_abs(touch->input_dev, ABS_Y, y);
input_report_key(touch->input_dev, BTN_TOUCH, 1);
input_sync(touch->input_dev);
}
static inline void report_pen_up(struct da9034_touch *touch)
{
input_report_key(touch->input_dev, BTN_TOUCH, 0);
input_sync(touch->input_dev);
}
static void da9034_event_handler(struct da9034_touch *touch, int event)
{
int err;
switch (touch->state) {
case STATE_IDLE:
if (event != EVENT_PEN_DOWN)
break;
/* Enable auto measurement of the TSI, this will
* automatically disable pen down detection
*/
err = start_tsi(touch);
if (err)
goto err_reset;
touch->state = STATE_BUSY;
break;
case STATE_BUSY:
if (event != EVENT_TSI_READY)
break;
err = read_tsi(touch);
if (err)
goto err_reset;
/* Disable auto measurement of the TSI, so that
* pen down status will be available
*/
err = stop_tsi(touch);
if (err)
goto err_reset;
touch->state = STATE_STOP;
/* FIXME: PEN_{UP/DOWN} events are expected to be
* available by stopping TSI, but this is found not
* always true, delay and simulate such an event
* here is more reliable
*/
mdelay(1);
da9034_event_handler(touch,
is_pen_down(touch) ? EVENT_PEN_DOWN :
EVENT_PEN_UP);
break;
case STATE_STOP:
if (event == EVENT_PEN_DOWN) {
report_pen_down(touch);
schedule_delayed_work(&touch->tsi_work,
msecs_to_jiffies(touch->interval_ms));
touch->state = STATE_WAIT;
}
if (event == EVENT_PEN_UP) {
report_pen_up(touch);
touch->state = STATE_IDLE;
}
break;
case STATE_WAIT:
if (event != EVENT_TIMEDOUT)
break;
if (is_pen_down(touch)) {
start_tsi(touch);
touch->state = STATE_BUSY;
} else {
report_pen_up(touch);
touch->state = STATE_IDLE;
}
break;
}
return;
err_reset:
touch->state = STATE_IDLE;
stop_tsi(touch);
detect_pen_down(touch, 1);
}
static void da9034_tsi_work(struct work_struct *work)
{
struct da9034_touch *touch =
container_of(work, struct da9034_touch, tsi_work.work);
da9034_event_handler(touch, EVENT_TIMEDOUT);
}
static int da9034_touch_notifier(struct notifier_block *nb,
unsigned long event, void *data)
{
struct da9034_touch *touch =
container_of(nb, struct da9034_touch, notifier);
if (event & DA9034_EVENT_TSI_READY)
da9034_event_handler(touch, EVENT_TSI_READY);
if ((event & DA9034_EVENT_PEN_DOWN) && touch->state == STATE_IDLE)
da9034_event_handler(touch, EVENT_PEN_DOWN);
return 0;
}
static int da9034_touch_open(struct input_dev *dev)
{
struct da9034_touch *touch = input_get_drvdata(dev);
int ret;
ret = da903x_register_notifier(touch->da9034_dev, &touch->notifier,
DA9034_EVENT_PEN_DOWN | DA9034_EVENT_TSI_READY);
if (ret)
return -EBUSY;
/* Enable ADC LDO */
ret = da903x_set_bits(touch->da9034_dev,
DA9034_MANUAL_CTRL, DA9034_LDO_ADC_EN);
if (ret)
return ret;
/* TSI_DELAY: 3 slots, TSI_SKIP: 3 slots */
ret = da903x_write(touch->da9034_dev, DA9034_TSI_CTRL1, 0x1b);
if (ret)
return ret;
ret = da903x_write(touch->da9034_dev, DA9034_TSI_CTRL2, 0x00);
if (ret)
return ret;
touch->state = STATE_IDLE;
detect_pen_down(touch, 1);
return 0;
}
static void da9034_touch_close(struct input_dev *dev)
{
struct da9034_touch *touch = input_get_drvdata(dev);
da903x_unregister_notifier(touch->da9034_dev, &touch->notifier,
DA9034_EVENT_PEN_DOWN | DA9034_EVENT_TSI_READY);
cancel_delayed_work_sync(&touch->tsi_work);
touch->state = STATE_IDLE;
stop_tsi(touch);
detect_pen_down(touch, 0);
/* Disable ADC LDO */
da903x_clr_bits(touch->da9034_dev,
DA9034_MANUAL_CTRL, DA9034_LDO_ADC_EN);
}
static int da9034_touch_probe(struct platform_device *pdev)
{
struct da9034_touch_pdata *pdata = dev_get_platdata(&pdev->dev);
struct da9034_touch *touch;
struct input_dev *input_dev;
int error;
touch = devm_kzalloc(&pdev->dev, sizeof(struct da9034_touch),
GFP_KERNEL);
if (!touch) {
dev_err(&pdev->dev, "failed to allocate driver data\n");
return -ENOMEM;
}
touch->da9034_dev = pdev->dev.parent;
if (pdata) {
touch->interval_ms = pdata->interval_ms;
touch->x_inverted = pdata->x_inverted;
touch->y_inverted = pdata->y_inverted;
} else {
/* fallback into default */
touch->interval_ms = 10;
}
INIT_DELAYED_WORK(&touch->tsi_work, da9034_tsi_work);
touch->notifier.notifier_call = da9034_touch_notifier;
input_dev = devm_input_allocate_device(&pdev->dev);
if (!input_dev) {
dev_err(&pdev->dev, "failed to allocate input device\n");
return -ENOMEM;
}
input_dev->name = pdev->name;
input_dev->open = da9034_touch_open;
input_dev->close = da9034_touch_close;
input_dev->dev.parent = &pdev->dev;
__set_bit(EV_ABS, input_dev->evbit);
__set_bit(ABS_X, input_dev->absbit);
__set_bit(ABS_Y, input_dev->absbit);
input_set_abs_params(input_dev, ABS_X, 0, 1023, 0, 0);
input_set_abs_params(input_dev, ABS_Y, 0, 1023, 0, 0);
__set_bit(EV_KEY, input_dev->evbit);
__set_bit(BTN_TOUCH, input_dev->keybit);
touch->input_dev = input_dev;
input_set_drvdata(input_dev, touch);
error = input_register_device(input_dev);
if (error)
return error;
return 0;
}
static struct platform_driver da9034_touch_driver = {
.driver = {
.name = "da9034-touch",
},
.probe = da9034_touch_probe,
};
module_platform_driver(da9034_touch_driver);
MODULE_DESCRIPTION("Touchscreen driver for Dialog Semiconductor DA9034");
MODULE_AUTHOR("Eric Miao <[email protected]>, Bin Yang <[email protected]>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:da9034-touch");
|
linux-master
|
drivers/input/touchscreen/da9034-ts.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* cyttsp_i2c.c
* Cypress TrueTouch(TM) Standard Product (TTSP) I2C touchscreen driver.
* For use with Cypress Txx4xx parts.
* Supported parts include:
* TMA4XX
* TMA1036
*
* Copyright (C) 2009, 2010, 2011 Cypress Semiconductor, Inc.
* Copyright (C) 2012 Javier Martinez Canillas <[email protected]>
* Copyright (C) 2013 Cypress Semiconductor
*
* Contact Cypress Semiconductor at www.cypress.com <[email protected]>
*/
#include "cyttsp4_core.h"
#include <linux/i2c.h>
#include <linux/input.h>
#define CYTTSP4_I2C_DATA_SIZE (3 * 256)
static const struct cyttsp4_bus_ops cyttsp4_i2c_bus_ops = {
.bustype = BUS_I2C,
.write = cyttsp_i2c_write_block_data,
.read = cyttsp_i2c_read_block_data,
};
static int cyttsp4_i2c_probe(struct i2c_client *client)
{
struct cyttsp4 *ts;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "I2C functionality not Supported\n");
return -EIO;
}
ts = cyttsp4_probe(&cyttsp4_i2c_bus_ops, &client->dev, client->irq,
CYTTSP4_I2C_DATA_SIZE);
return PTR_ERR_OR_ZERO(ts);
}
static void cyttsp4_i2c_remove(struct i2c_client *client)
{
struct cyttsp4 *ts = i2c_get_clientdata(client);
cyttsp4_remove(ts);
}
static const struct i2c_device_id cyttsp4_i2c_id[] = {
{ CYTTSP4_I2C_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, cyttsp4_i2c_id);
static struct i2c_driver cyttsp4_i2c_driver = {
.driver = {
.name = CYTTSP4_I2C_NAME,
.pm = pm_ptr(&cyttsp4_pm_ops),
},
.probe = cyttsp4_i2c_probe,
.remove = cyttsp4_i2c_remove,
.id_table = cyttsp4_i2c_id,
};
module_i2c_driver(cyttsp4_i2c_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Cypress TrueTouch(R) Standard Product (TTSP) I2C driver");
MODULE_AUTHOR("Cypress");
|
linux-master
|
drivers/input/touchscreen/cyttsp4_i2c.c
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021
* Author(s): Giulio Benetti <[email protected]>
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/input/touchscreen.h>
#include <linux/irq.h>
#include <linux/regulator/consumer.h>
#include <linux/regmap.h>
#include <asm/unaligned.h>
#define HY46XX_CHKSUM_CODE 0x1
#define HY46XX_FINGER_NUM 0x2
#define HY46XX_CHKSUM_LEN 0x7
#define HY46XX_THRESHOLD 0x80
#define HY46XX_GLOVE_EN 0x84
#define HY46XX_REPORT_SPEED 0x88
#define HY46XX_PWR_NOISE_EN 0x89
#define HY46XX_FILTER_DATA 0x8A
#define HY46XX_GAIN 0x92
#define HY46XX_EDGE_OFFSET 0x93
#define HY46XX_RX_NR_USED 0x94
#define HY46XX_TX_NR_USED 0x95
#define HY46XX_PWR_MODE 0xA5
#define HY46XX_FW_VERSION 0xA6
#define HY46XX_LIB_VERSION 0xA7
#define HY46XX_TP_INFO 0xA8
#define HY46XX_TP_CHIP_ID 0xA9
#define HY46XX_BOOT_VER 0xB0
#define HY46XX_TPLEN 0x6
#define HY46XX_REPORT_PKT_LEN 0x44
#define HY46XX_MAX_SUPPORTED_POINTS 11
#define TOUCH_EVENT_DOWN 0x00
#define TOUCH_EVENT_UP 0x01
#define TOUCH_EVENT_CONTACT 0x02
#define TOUCH_EVENT_RESERVED 0x03
struct hycon_hy46xx_data {
struct i2c_client *client;
struct input_dev *input;
struct touchscreen_properties prop;
struct regulator *vcc;
struct gpio_desc *reset_gpio;
struct mutex mutex;
struct regmap *regmap;
int threshold;
bool glove_enable;
int report_speed;
bool noise_filter_enable;
int filter_data;
int gain;
int edge_offset;
int rx_number_used;
int tx_number_used;
int power_mode;
int fw_version;
int lib_version;
int tp_information;
int tp_chip_id;
int bootloader_version;
};
static const struct regmap_config hycon_hy46xx_i2c_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
};
static bool hycon_hy46xx_check_checksum(struct hycon_hy46xx_data *tsdata, u8 *buf)
{
u8 chksum = 0;
int i;
for (i = 2; i < buf[HY46XX_CHKSUM_LEN]; i++)
chksum += buf[i];
if (chksum == buf[HY46XX_CHKSUM_CODE])
return true;
dev_err_ratelimited(&tsdata->client->dev,
"checksum error: 0x%02x expected, got 0x%02x\n",
chksum, buf[HY46XX_CHKSUM_CODE]);
return false;
}
static irqreturn_t hycon_hy46xx_isr(int irq, void *dev_id)
{
struct hycon_hy46xx_data *tsdata = dev_id;
struct device *dev = &tsdata->client->dev;
u8 rdbuf[HY46XX_REPORT_PKT_LEN];
int i, x, y, id;
int error;
memset(rdbuf, 0, sizeof(rdbuf));
error = regmap_bulk_read(tsdata->regmap, 0, rdbuf, sizeof(rdbuf));
if (error) {
dev_err_ratelimited(dev, "Unable to fetch data, error: %d\n",
error);
goto out;
}
if (!hycon_hy46xx_check_checksum(tsdata, rdbuf))
goto out;
for (i = 0; i < HY46XX_MAX_SUPPORTED_POINTS; i++) {
u8 *buf = &rdbuf[3 + (HY46XX_TPLEN * i)];
int type = buf[0] >> 6;
if (type == TOUCH_EVENT_RESERVED)
continue;
x = get_unaligned_be16(buf) & 0x0fff;
y = get_unaligned_be16(buf + 2) & 0x0fff;
id = buf[2] >> 4;
input_mt_slot(tsdata->input, id);
if (input_mt_report_slot_state(tsdata->input, MT_TOOL_FINGER,
type != TOUCH_EVENT_UP))
touchscreen_report_pos(tsdata->input, &tsdata->prop,
x, y, true);
}
input_mt_report_pointer_emulation(tsdata->input, false);
input_sync(tsdata->input);
out:
return IRQ_HANDLED;
}
struct hycon_hy46xx_attribute {
struct device_attribute dattr;
size_t field_offset;
u8 address;
u8 limit_low;
u8 limit_high;
};
#define HYCON_ATTR_U8(_field, _mode, _address, _limit_low, _limit_high) \
struct hycon_hy46xx_attribute hycon_hy46xx_attr_##_field = { \
.dattr = __ATTR(_field, _mode, \
hycon_hy46xx_setting_show, \
hycon_hy46xx_setting_store), \
.field_offset = offsetof(struct hycon_hy46xx_data, _field), \
.address = _address, \
.limit_low = _limit_low, \
.limit_high = _limit_high, \
}
#define HYCON_ATTR_BOOL(_field, _mode, _address) \
struct hycon_hy46xx_attribute hycon_hy46xx_attr_##_field = { \
.dattr = __ATTR(_field, _mode, \
hycon_hy46xx_setting_show, \
hycon_hy46xx_setting_store), \
.field_offset = offsetof(struct hycon_hy46xx_data, _field), \
.address = _address, \
.limit_low = false, \
.limit_high = true, \
}
static ssize_t hycon_hy46xx_setting_show(struct device *dev,
struct device_attribute *dattr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct hycon_hy46xx_data *tsdata = i2c_get_clientdata(client);
struct hycon_hy46xx_attribute *attr =
container_of(dattr, struct hycon_hy46xx_attribute, dattr);
u8 *field = (u8 *)tsdata + attr->field_offset;
size_t count = 0;
int error = 0;
int val;
mutex_lock(&tsdata->mutex);
error = regmap_read(tsdata->regmap, attr->address, &val);
if (error < 0) {
dev_err(&tsdata->client->dev,
"Failed to fetch attribute %s, error %d\n",
dattr->attr.name, error);
goto out;
}
if (val != *field) {
dev_warn(&tsdata->client->dev,
"%s: read (%d) and stored value (%d) differ\n",
dattr->attr.name, val, *field);
*field = val;
}
count = scnprintf(buf, PAGE_SIZE, "%d\n", val);
out:
mutex_unlock(&tsdata->mutex);
return error ?: count;
}
static ssize_t hycon_hy46xx_setting_store(struct device *dev,
struct device_attribute *dattr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct hycon_hy46xx_data *tsdata = i2c_get_clientdata(client);
struct hycon_hy46xx_attribute *attr =
container_of(dattr, struct hycon_hy46xx_attribute, dattr);
u8 *field = (u8 *)tsdata + attr->field_offset;
unsigned int val;
int error;
mutex_lock(&tsdata->mutex);
error = kstrtouint(buf, 0, &val);
if (error)
goto out;
if (val < attr->limit_low || val > attr->limit_high) {
error = -ERANGE;
goto out;
}
error = regmap_write(tsdata->regmap, attr->address, val);
if (error < 0) {
dev_err(&tsdata->client->dev,
"Failed to update attribute %s, error: %d\n",
dattr->attr.name, error);
goto out;
}
*field = val;
out:
mutex_unlock(&tsdata->mutex);
return error ?: count;
}
static HYCON_ATTR_U8(threshold, 0644, HY46XX_THRESHOLD, 0, 255);
static HYCON_ATTR_BOOL(glove_enable, 0644, HY46XX_GLOVE_EN);
static HYCON_ATTR_U8(report_speed, 0644, HY46XX_REPORT_SPEED, 0, 255);
static HYCON_ATTR_BOOL(noise_filter_enable, 0644, HY46XX_PWR_NOISE_EN);
static HYCON_ATTR_U8(filter_data, 0644, HY46XX_FILTER_DATA, 0, 5);
static HYCON_ATTR_U8(gain, 0644, HY46XX_GAIN, 0, 5);
static HYCON_ATTR_U8(edge_offset, 0644, HY46XX_EDGE_OFFSET, 0, 5);
static HYCON_ATTR_U8(fw_version, 0444, HY46XX_FW_VERSION, 0, 255);
static HYCON_ATTR_U8(lib_version, 0444, HY46XX_LIB_VERSION, 0, 255);
static HYCON_ATTR_U8(tp_information, 0444, HY46XX_TP_INFO, 0, 255);
static HYCON_ATTR_U8(tp_chip_id, 0444, HY46XX_TP_CHIP_ID, 0, 255);
static HYCON_ATTR_U8(bootloader_version, 0444, HY46XX_BOOT_VER, 0, 255);
static struct attribute *hycon_hy46xx_attrs[] = {
&hycon_hy46xx_attr_threshold.dattr.attr,
&hycon_hy46xx_attr_glove_enable.dattr.attr,
&hycon_hy46xx_attr_report_speed.dattr.attr,
&hycon_hy46xx_attr_noise_filter_enable.dattr.attr,
&hycon_hy46xx_attr_filter_data.dattr.attr,
&hycon_hy46xx_attr_gain.dattr.attr,
&hycon_hy46xx_attr_edge_offset.dattr.attr,
&hycon_hy46xx_attr_fw_version.dattr.attr,
&hycon_hy46xx_attr_lib_version.dattr.attr,
&hycon_hy46xx_attr_tp_information.dattr.attr,
&hycon_hy46xx_attr_tp_chip_id.dattr.attr,
&hycon_hy46xx_attr_bootloader_version.dattr.attr,
NULL
};
static const struct attribute_group hycon_hy46xx_attr_group = {
.attrs = hycon_hy46xx_attrs,
};
static void hycon_hy46xx_get_defaults(struct device *dev, struct hycon_hy46xx_data *tsdata)
{
bool val_bool;
int error;
u32 val;
error = device_property_read_u32(dev, "hycon,threshold", &val);
if (!error) {
error = regmap_write(tsdata->regmap, HY46XX_THRESHOLD, val);
if (error < 0)
goto out;
tsdata->threshold = val;
}
val_bool = device_property_read_bool(dev, "hycon,glove-enable");
error = regmap_write(tsdata->regmap, HY46XX_GLOVE_EN, val_bool);
if (error < 0)
goto out;
tsdata->glove_enable = val_bool;
error = device_property_read_u32(dev, "hycon,report-speed-hz", &val);
if (!error) {
error = regmap_write(tsdata->regmap, HY46XX_REPORT_SPEED, val);
if (error < 0)
goto out;
tsdata->report_speed = val;
}
val_bool = device_property_read_bool(dev, "hycon,noise-filter-enable");
error = regmap_write(tsdata->regmap, HY46XX_PWR_NOISE_EN, val_bool);
if (error < 0)
goto out;
tsdata->noise_filter_enable = val_bool;
error = device_property_read_u32(dev, "hycon,filter-data", &val);
if (!error) {
error = regmap_write(tsdata->regmap, HY46XX_FILTER_DATA, val);
if (error < 0)
goto out;
tsdata->filter_data = val;
}
error = device_property_read_u32(dev, "hycon,gain", &val);
if (!error) {
error = regmap_write(tsdata->regmap, HY46XX_GAIN, val);
if (error < 0)
goto out;
tsdata->gain = val;
}
error = device_property_read_u32(dev, "hycon,edge-offset", &val);
if (!error) {
error = regmap_write(tsdata->regmap, HY46XX_EDGE_OFFSET, val);
if (error < 0)
goto out;
tsdata->edge_offset = val;
}
return;
out:
dev_err(&tsdata->client->dev, "Failed to set default settings");
}
static void hycon_hy46xx_get_parameters(struct hycon_hy46xx_data *tsdata)
{
int error;
u32 val;
error = regmap_read(tsdata->regmap, HY46XX_THRESHOLD, &val);
if (error < 0)
goto out;
tsdata->threshold = val;
error = regmap_read(tsdata->regmap, HY46XX_GLOVE_EN, &val);
if (error < 0)
goto out;
tsdata->glove_enable = val;
error = regmap_read(tsdata->regmap, HY46XX_REPORT_SPEED, &val);
if (error < 0)
goto out;
tsdata->report_speed = val;
error = regmap_read(tsdata->regmap, HY46XX_PWR_NOISE_EN, &val);
if (error < 0)
goto out;
tsdata->noise_filter_enable = val;
error = regmap_read(tsdata->regmap, HY46XX_FILTER_DATA, &val);
if (error < 0)
goto out;
tsdata->filter_data = val;
error = regmap_read(tsdata->regmap, HY46XX_GAIN, &val);
if (error < 0)
goto out;
tsdata->gain = val;
error = regmap_read(tsdata->regmap, HY46XX_EDGE_OFFSET, &val);
if (error < 0)
goto out;
tsdata->edge_offset = val;
error = regmap_read(tsdata->regmap, HY46XX_RX_NR_USED, &val);
if (error < 0)
goto out;
tsdata->rx_number_used = val;
error = regmap_read(tsdata->regmap, HY46XX_TX_NR_USED, &val);
if (error < 0)
goto out;
tsdata->tx_number_used = val;
error = regmap_read(tsdata->regmap, HY46XX_PWR_MODE, &val);
if (error < 0)
goto out;
tsdata->power_mode = val;
error = regmap_read(tsdata->regmap, HY46XX_FW_VERSION, &val);
if (error < 0)
goto out;
tsdata->fw_version = val;
error = regmap_read(tsdata->regmap, HY46XX_LIB_VERSION, &val);
if (error < 0)
goto out;
tsdata->lib_version = val;
error = regmap_read(tsdata->regmap, HY46XX_TP_INFO, &val);
if (error < 0)
goto out;
tsdata->tp_information = val;
error = regmap_read(tsdata->regmap, HY46XX_TP_CHIP_ID, &val);
if (error < 0)
goto out;
tsdata->tp_chip_id = val;
error = regmap_read(tsdata->regmap, HY46XX_BOOT_VER, &val);
if (error < 0)
goto out;
tsdata->bootloader_version = val;
return;
out:
dev_err(&tsdata->client->dev, "Failed to read default settings");
}
static void hycon_hy46xx_disable_regulator(void *arg)
{
struct hycon_hy46xx_data *data = arg;
regulator_disable(data->vcc);
}
static int hycon_hy46xx_probe(struct i2c_client *client)
{
struct hycon_hy46xx_data *tsdata;
struct input_dev *input;
int error;
dev_dbg(&client->dev, "probing for HYCON HY46XX I2C\n");
tsdata = devm_kzalloc(&client->dev, sizeof(*tsdata), GFP_KERNEL);
if (!tsdata)
return -ENOMEM;
tsdata->vcc = devm_regulator_get(&client->dev, "vcc");
if (IS_ERR(tsdata->vcc)) {
error = PTR_ERR(tsdata->vcc);
if (error != -EPROBE_DEFER)
dev_err(&client->dev,
"failed to request regulator: %d\n", error);
return error;
}
error = regulator_enable(tsdata->vcc);
if (error < 0) {
dev_err(&client->dev, "failed to enable vcc: %d\n", error);
return error;
}
error = devm_add_action_or_reset(&client->dev,
hycon_hy46xx_disable_regulator,
tsdata);
if (error)
return error;
tsdata->reset_gpio = devm_gpiod_get_optional(&client->dev,
"reset", GPIOD_OUT_LOW);
if (IS_ERR(tsdata->reset_gpio)) {
error = PTR_ERR(tsdata->reset_gpio);
dev_err(&client->dev,
"Failed to request GPIO reset pin, error %d\n", error);
return error;
}
if (tsdata->reset_gpio) {
usleep_range(5000, 6000);
gpiod_set_value_cansleep(tsdata->reset_gpio, 1);
usleep_range(5000, 6000);
gpiod_set_value_cansleep(tsdata->reset_gpio, 0);
msleep(1000);
}
input = devm_input_allocate_device(&client->dev);
if (!input) {
dev_err(&client->dev, "failed to allocate input device.\n");
return -ENOMEM;
}
mutex_init(&tsdata->mutex);
tsdata->client = client;
tsdata->input = input;
tsdata->regmap = devm_regmap_init_i2c(client,
&hycon_hy46xx_i2c_regmap_config);
if (IS_ERR(tsdata->regmap)) {
dev_err(&client->dev, "regmap allocation failed\n");
return PTR_ERR(tsdata->regmap);
}
hycon_hy46xx_get_defaults(&client->dev, tsdata);
hycon_hy46xx_get_parameters(tsdata);
input->name = "Hycon Capacitive Touch";
input->id.bustype = BUS_I2C;
input->dev.parent = &client->dev;
input_set_abs_params(input, ABS_MT_POSITION_X, 0, -1, 0, 0);
input_set_abs_params(input, ABS_MT_POSITION_Y, 0, -1, 0, 0);
touchscreen_parse_properties(input, true, &tsdata->prop);
error = input_mt_init_slots(input, HY46XX_MAX_SUPPORTED_POINTS,
INPUT_MT_DIRECT);
if (error) {
dev_err(&client->dev, "Unable to init MT slots.\n");
return error;
}
i2c_set_clientdata(client, tsdata);
error = devm_request_threaded_irq(&client->dev, client->irq,
NULL, hycon_hy46xx_isr, IRQF_ONESHOT,
client->name, tsdata);
if (error) {
dev_err(&client->dev, "Unable to request touchscreen IRQ.\n");
return error;
}
error = devm_device_add_group(&client->dev, &hycon_hy46xx_attr_group);
if (error)
return error;
error = input_register_device(input);
if (error)
return error;
dev_dbg(&client->dev,
"HYCON HY46XX initialized: IRQ %d, Reset pin %d.\n",
client->irq,
tsdata->reset_gpio ? desc_to_gpio(tsdata->reset_gpio) : -1);
return 0;
}
static const struct i2c_device_id hycon_hy46xx_id[] = {
{ .name = "hy4613" },
{ .name = "hy4614" },
{ .name = "hy4621" },
{ .name = "hy4623" },
{ .name = "hy4633" },
{ .name = "hy4635" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, hycon_hy46xx_id);
static const struct of_device_id hycon_hy46xx_of_match[] = {
{ .compatible = "hycon,hy4613" },
{ .compatible = "hycon,hy4614" },
{ .compatible = "hycon,hy4621" },
{ .compatible = "hycon,hy4623" },
{ .compatible = "hycon,hy4633" },
{ .compatible = "hycon,hy4635" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, hycon_hy46xx_of_match);
static struct i2c_driver hycon_hy46xx_driver = {
.driver = {
.name = "hycon_hy46xx",
.of_match_table = hycon_hy46xx_of_match,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
.id_table = hycon_hy46xx_id,
.probe = hycon_hy46xx_probe,
};
module_i2c_driver(hycon_hy46xx_driver);
MODULE_AUTHOR("Giulio Benetti <[email protected]>");
MODULE_DESCRIPTION("HYCON HY46XX I2C Touchscreen Driver");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/touchscreen/hycon-hy46xx.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* ICS MK712 touchscreen controller driver
*
* Copyright (c) 1999-2002 Transmeta Corporation
* Copyright (c) 2005 Rick Koch <[email protected]>
* Copyright (c) 2005 Vojtech Pavlik <[email protected]>
*/
/*
* This driver supports the ICS MicroClock MK712 TouchScreen controller,
* found in Gateway AOL Connected Touchpad computers.
*
* Documentation for ICS MK712 can be found at:
* https://www.idt.com/general-parts/mk712-touch-screen-controller
*/
/*
* 1999-12-18: original version, Daniel Quinlan
* 1999-12-19: added anti-jitter code, report pen-up events, fixed mk712_poll
* to use queue_empty, Nathan Laredo
* 1999-12-20: improved random point rejection, Nathan Laredo
* 2000-01-05: checked in new anti-jitter code, changed mouse protocol, fixed
* queue code, added module options, other fixes, Daniel Quinlan
* 2002-03-15: Clean up for kernel merge <[email protected]>
* Fixed multi open race, fixed memory checks, fixed resource
* allocation, fixed close/powerdown bug, switched to new init
* 2005-01-18: Ported to 2.6 from 2.4.28, Rick Koch
* 2005-02-05: Rewritten for the input layer, Vojtech Pavlik
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <asm/io.h>
MODULE_AUTHOR("Daniel Quinlan <[email protected]>, Vojtech Pavlik <[email protected]>");
MODULE_DESCRIPTION("ICS MicroClock MK712 TouchScreen driver");
MODULE_LICENSE("GPL");
static unsigned int mk712_io = 0x260; /* Also 0x200, 0x208, 0x300 */
module_param_hw_named(io, mk712_io, uint, ioport, 0);
MODULE_PARM_DESC(io, "I/O base address of MK712 touchscreen controller");
static unsigned int mk712_irq = 10; /* Also 12, 14, 15 */
module_param_hw_named(irq, mk712_irq, uint, irq, 0);
MODULE_PARM_DESC(irq, "IRQ of MK712 touchscreen controller");
/* eight 8-bit registers */
#define MK712_STATUS 0
#define MK712_X 2
#define MK712_Y 4
#define MK712_CONTROL 6
#define MK712_RATE 7
/* status */
#define MK712_STATUS_TOUCH 0x10
#define MK712_CONVERSION_COMPLETE 0x80
/* control */
#define MK712_ENABLE_INT 0x01
#define MK712_INT_ON_CONVERSION_COMPLETE 0x02
#define MK712_INT_ON_CHANGE_IN_TOUCH_STATUS 0x04
#define MK712_ENABLE_PERIODIC_CONVERSIONS 0x10
#define MK712_READ_ONE_POINT 0x20
#define MK712_POWERUP 0x40
static struct input_dev *mk712_dev;
static DEFINE_SPINLOCK(mk712_lock);
static irqreturn_t mk712_interrupt(int irq, void *dev_id)
{
unsigned char status;
static int debounce = 1;
static unsigned short last_x;
static unsigned short last_y;
spin_lock(&mk712_lock);
status = inb(mk712_io + MK712_STATUS);
if (~status & MK712_CONVERSION_COMPLETE) {
debounce = 1;
goto end;
}
if (~status & MK712_STATUS_TOUCH) {
debounce = 1;
input_report_key(mk712_dev, BTN_TOUCH, 0);
goto end;
}
if (debounce) {
debounce = 0;
goto end;
}
input_report_key(mk712_dev, BTN_TOUCH, 1);
input_report_abs(mk712_dev, ABS_X, last_x);
input_report_abs(mk712_dev, ABS_Y, last_y);
end:
last_x = inw(mk712_io + MK712_X) & 0x0fff;
last_y = inw(mk712_io + MK712_Y) & 0x0fff;
input_sync(mk712_dev);
spin_unlock(&mk712_lock);
return IRQ_HANDLED;
}
static int mk712_open(struct input_dev *dev)
{
unsigned long flags;
spin_lock_irqsave(&mk712_lock, flags);
outb(0, mk712_io + MK712_CONTROL); /* Reset */
outb(MK712_ENABLE_INT | MK712_INT_ON_CONVERSION_COMPLETE |
MK712_INT_ON_CHANGE_IN_TOUCH_STATUS |
MK712_ENABLE_PERIODIC_CONVERSIONS |
MK712_POWERUP, mk712_io + MK712_CONTROL);
outb(10, mk712_io + MK712_RATE); /* 187 points per second */
spin_unlock_irqrestore(&mk712_lock, flags);
return 0;
}
static void mk712_close(struct input_dev *dev)
{
unsigned long flags;
spin_lock_irqsave(&mk712_lock, flags);
outb(0, mk712_io + MK712_CONTROL);
spin_unlock_irqrestore(&mk712_lock, flags);
}
static int __init mk712_init(void)
{
int err;
if (!request_region(mk712_io, 8, "mk712")) {
printk(KERN_WARNING "mk712: unable to get IO region\n");
return -ENODEV;
}
outb(0, mk712_io + MK712_CONTROL);
if ((inw(mk712_io + MK712_X) & 0xf000) || /* Sanity check */
(inw(mk712_io + MK712_Y) & 0xf000) ||
(inw(mk712_io + MK712_STATUS) & 0xf333)) {
printk(KERN_WARNING "mk712: device not present\n");
err = -ENODEV;
goto fail1;
}
mk712_dev = input_allocate_device();
if (!mk712_dev) {
printk(KERN_ERR "mk712: not enough memory\n");
err = -ENOMEM;
goto fail1;
}
mk712_dev->name = "ICS MicroClock MK712 TouchScreen";
mk712_dev->phys = "isa0260/input0";
mk712_dev->id.bustype = BUS_ISA;
mk712_dev->id.vendor = 0x0005;
mk712_dev->id.product = 0x0001;
mk712_dev->id.version = 0x0100;
mk712_dev->open = mk712_open;
mk712_dev->close = mk712_close;
mk712_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
mk712_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
input_set_abs_params(mk712_dev, ABS_X, 0, 0xfff, 88, 0);
input_set_abs_params(mk712_dev, ABS_Y, 0, 0xfff, 88, 0);
if (request_irq(mk712_irq, mk712_interrupt, 0, "mk712", mk712_dev)) {
printk(KERN_WARNING "mk712: unable to get IRQ\n");
err = -EBUSY;
goto fail1;
}
err = input_register_device(mk712_dev);
if (err)
goto fail2;
return 0;
fail2: free_irq(mk712_irq, mk712_dev);
fail1: input_free_device(mk712_dev);
release_region(mk712_io, 8);
return err;
}
static void __exit mk712_exit(void)
{
input_unregister_device(mk712_dev);
free_irq(mk712_irq, mk712_dev);
release_region(mk712_io, 8);
}
module_init(mk712_init);
module_exit(mk712_exit);
|
linux-master
|
drivers/input/touchscreen/mk712.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* ADS7846 based touchscreen and sensor driver
*
* Copyright (c) 2005 David Brownell
* Copyright (c) 2006 Nokia Corporation
* Various changes: Imre Deak <[email protected]>
*
* Using code from:
* - corgi_ts.c
* Copyright (C) 2004-2005 Richard Purdie
* - omap_ts.[hc], ads7846.h, ts_osk.c
* Copyright (C) 2002 MontaVista Software
* Copyright (C) 2004 Texas Instruments
* Copyright (C) 2005 Dirk Behme
*/
#include <linux/types.h>
#include <linux/hwmon.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/input/touchscreen.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/pm.h>
#include <linux/property.h>
#include <linux/gpio/consumer.h>
#include <linux/spi/spi.h>
#include <linux/spi/ads7846.h>
#include <linux/regulator/consumer.h>
#include <linux/module.h>
#include <asm/unaligned.h>
/*
* This code has been heavily tested on a Nokia 770, and lightly
* tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
* TSC2046 is just newer ads7846 silicon.
* Support for ads7843 tested on Atmel at91sam926x-EK.
* Support for ads7845 has only been stubbed in.
* Support for Analog Devices AD7873 and AD7843 tested.
*
* IRQ handling needs a workaround because of a shortcoming in handling
* edge triggered IRQs on some platforms like the OMAP1/2. These
* platforms don't handle the ARM lazy IRQ disabling properly, thus we
* have to maintain our own SW IRQ disabled status. This should be
* removed as soon as the affected platform's IRQ handling is fixed.
*
* App note sbaa036 talks in more detail about accurate sampling...
* that ought to help in situations like LCDs inducing noise (which
* can also be helped by using synch signals) and more generally.
* This driver tries to utilize the measures described in the app
* note. The strength of filtering can be set in the board-* specific
* files.
*/
#define TS_POLL_DELAY 1 /* ms delay before the first sample */
#define TS_POLL_PERIOD 5 /* ms delay between samples */
/* this driver doesn't aim at the peak continuous sample rate */
#define SAMPLE_BITS (8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
struct ads7846_buf {
u8 cmd;
__be16 data;
} __packed;
struct ads7846_buf_layout {
unsigned int offset;
unsigned int count;
unsigned int skip;
};
/*
* We allocate this separately to avoid cache line sharing issues when
* driver is used with DMA-based SPI controllers (like atmel_spi) on
* systems where main memory is not DMA-coherent (most non-x86 boards).
*/
struct ads7846_packet {
unsigned int count;
unsigned int count_skip;
unsigned int cmds;
unsigned int last_cmd_idx;
struct ads7846_buf_layout l[5];
struct ads7846_buf *rx;
struct ads7846_buf *tx;
struct ads7846_buf pwrdown_cmd;
bool ignore;
u16 x, y, z1, z2;
};
struct ads7846 {
struct input_dev *input;
char phys[32];
char name[32];
struct spi_device *spi;
struct regulator *reg;
u16 model;
u16 vref_mv;
u16 vref_delay_usecs;
u16 x_plate_ohms;
u16 pressure_max;
bool swap_xy;
bool use_internal;
struct ads7846_packet *packet;
struct spi_transfer xfer[18];
struct spi_message msg[5];
int msg_count;
wait_queue_head_t wait;
bool pendown;
int read_cnt;
int read_rep;
int last_read;
u16 debounce_max;
u16 debounce_tol;
u16 debounce_rep;
u16 penirq_recheck_delay_usecs;
struct touchscreen_properties core_prop;
struct mutex lock;
bool stopped; /* P: lock */
bool disabled; /* P: lock */
bool suspended; /* P: lock */
int (*filter)(void *data, int data_idx, int *val);
void *filter_data;
int (*get_pendown_state)(void);
struct gpio_desc *gpio_pendown;
void (*wait_for_sync)(void);
};
enum ads7846_filter {
ADS7846_FILTER_OK,
ADS7846_FILTER_REPEAT,
ADS7846_FILTER_IGNORE,
};
/* leave chip selected when we're done, for quicker re-select? */
#if 0
#define CS_CHANGE(xfer) ((xfer).cs_change = 1)
#else
#define CS_CHANGE(xfer) ((xfer).cs_change = 0)
#endif
/*--------------------------------------------------------------------------*/
/* The ADS7846 has touchscreen and other sensors.
* Earlier ads784x chips are somewhat compatible.
*/
#define ADS_START (1 << 7)
#define ADS_A2A1A0_d_y (1 << 4) /* differential */
#define ADS_A2A1A0_d_z1 (3 << 4) /* differential */
#define ADS_A2A1A0_d_z2 (4 << 4) /* differential */
#define ADS_A2A1A0_d_x (5 << 4) /* differential */
#define ADS_A2A1A0_temp0 (0 << 4) /* non-differential */
#define ADS_A2A1A0_vbatt (2 << 4) /* non-differential */
#define ADS_A2A1A0_vaux (6 << 4) /* non-differential */
#define ADS_A2A1A0_temp1 (7 << 4) /* non-differential */
#define ADS_8_BIT (1 << 3)
#define ADS_12_BIT (0 << 3)
#define ADS_SER (1 << 2) /* non-differential */
#define ADS_DFR (0 << 2) /* differential */
#define ADS_PD10_PDOWN (0 << 0) /* low power mode + penirq */
#define ADS_PD10_ADC_ON (1 << 0) /* ADC on */
#define ADS_PD10_REF_ON (2 << 0) /* vREF on + penirq */
#define ADS_PD10_ALL_ON (3 << 0) /* ADC + vREF on */
#define MAX_12BIT ((1<<12)-1)
/* leave ADC powered up (disables penirq) between differential samples */
#define READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
| ADS_12_BIT | ADS_DFR | \
(adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
#define READ_Y(vref) (READ_12BIT_DFR(y, 1, vref))
#define READ_Z1(vref) (READ_12BIT_DFR(z1, 1, vref))
#define READ_Z2(vref) (READ_12BIT_DFR(z2, 1, vref))
#define READ_X(vref) (READ_12BIT_DFR(x, 1, vref))
#define PWRDOWN (READ_12BIT_DFR(y, 0, 0)) /* LAST */
/* single-ended samples need to first power up reference voltage;
* we leave both ADC and VREF powered
*/
#define READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
| ADS_12_BIT | ADS_SER)
#define REF_ON (READ_12BIT_DFR(x, 1, 1))
#define REF_OFF (READ_12BIT_DFR(y, 0, 0))
/* Order commands in the most optimal way to reduce Vref switching and
* settling time:
* Measure: X; Vref: X+, X-; IN: Y+
* Measure: Y; Vref: Y+, Y-; IN: X+
* Measure: Z1; Vref: Y+, X-; IN: X+
* Measure: Z2; Vref: Y+, X-; IN: Y-
*/
enum ads7846_cmds {
ADS7846_X,
ADS7846_Y,
ADS7846_Z1,
ADS7846_Z2,
ADS7846_PWDOWN,
};
static int get_pendown_state(struct ads7846 *ts)
{
if (ts->get_pendown_state)
return ts->get_pendown_state();
return gpiod_get_value(ts->gpio_pendown);
}
static void ads7846_report_pen_up(struct ads7846 *ts)
{
struct input_dev *input = ts->input;
input_report_key(input, BTN_TOUCH, 0);
input_report_abs(input, ABS_PRESSURE, 0);
input_sync(input);
ts->pendown = false;
dev_vdbg(&ts->spi->dev, "UP\n");
}
/* Must be called with ts->lock held */
static void ads7846_stop(struct ads7846 *ts)
{
if (!ts->disabled && !ts->suspended) {
/* Signal IRQ thread to stop polling and disable the handler. */
ts->stopped = true;
mb();
wake_up(&ts->wait);
disable_irq(ts->spi->irq);
}
}
/* Must be called with ts->lock held */
static void ads7846_restart(struct ads7846 *ts)
{
if (!ts->disabled && !ts->suspended) {
/* Check if pen was released since last stop */
if (ts->pendown && !get_pendown_state(ts))
ads7846_report_pen_up(ts);
/* Tell IRQ thread that it may poll the device. */
ts->stopped = false;
mb();
enable_irq(ts->spi->irq);
}
}
/* Must be called with ts->lock held */
static void __ads7846_disable(struct ads7846 *ts)
{
ads7846_stop(ts);
regulator_disable(ts->reg);
/*
* We know the chip's in low power mode since we always
* leave it that way after every request
*/
}
/* Must be called with ts->lock held */
static void __ads7846_enable(struct ads7846 *ts)
{
int error;
error = regulator_enable(ts->reg);
if (error != 0)
dev_err(&ts->spi->dev, "Failed to enable supply: %d\n", error);
ads7846_restart(ts);
}
static void ads7846_disable(struct ads7846 *ts)
{
mutex_lock(&ts->lock);
if (!ts->disabled) {
if (!ts->suspended)
__ads7846_disable(ts);
ts->disabled = true;
}
mutex_unlock(&ts->lock);
}
static void ads7846_enable(struct ads7846 *ts)
{
mutex_lock(&ts->lock);
if (ts->disabled) {
ts->disabled = false;
if (!ts->suspended)
__ads7846_enable(ts);
}
mutex_unlock(&ts->lock);
}
/*--------------------------------------------------------------------------*/
/*
* Non-touchscreen sensors only use single-ended conversions.
* The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
* ads7846 lets that pin be unconnected, to use internal vREF.
*/
struct ser_req {
u8 ref_on;
u8 command;
u8 ref_off;
u16 scratch;
struct spi_message msg;
struct spi_transfer xfer[6];
/*
* DMA (thus cache coherency maintenance) requires the
* transfer buffers to live in their own cache lines.
*/
__be16 sample ____cacheline_aligned;
};
struct ads7845_ser_req {
u8 command[3];
struct spi_message msg;
struct spi_transfer xfer[2];
/*
* DMA (thus cache coherency maintenance) requires the
* transfer buffers to live in their own cache lines.
*/
u8 sample[3] ____cacheline_aligned;
};
static int ads7846_read12_ser(struct device *dev, unsigned command)
{
struct spi_device *spi = to_spi_device(dev);
struct ads7846 *ts = dev_get_drvdata(dev);
struct ser_req *req;
int status;
req = kzalloc(sizeof *req, GFP_KERNEL);
if (!req)
return -ENOMEM;
spi_message_init(&req->msg);
/* maybe turn on internal vREF, and let it settle */
if (ts->use_internal) {
req->ref_on = REF_ON;
req->xfer[0].tx_buf = &req->ref_on;
req->xfer[0].len = 1;
spi_message_add_tail(&req->xfer[0], &req->msg);
req->xfer[1].rx_buf = &req->scratch;
req->xfer[1].len = 2;
/* for 1uF, settle for 800 usec; no cap, 100 usec. */
req->xfer[1].delay.value = ts->vref_delay_usecs;
req->xfer[1].delay.unit = SPI_DELAY_UNIT_USECS;
spi_message_add_tail(&req->xfer[1], &req->msg);
/* Enable reference voltage */
command |= ADS_PD10_REF_ON;
}
/* Enable ADC in every case */
command |= ADS_PD10_ADC_ON;
/* take sample */
req->command = (u8) command;
req->xfer[2].tx_buf = &req->command;
req->xfer[2].len = 1;
spi_message_add_tail(&req->xfer[2], &req->msg);
req->xfer[3].rx_buf = &req->sample;
req->xfer[3].len = 2;
spi_message_add_tail(&req->xfer[3], &req->msg);
/* REVISIT: take a few more samples, and compare ... */
/* converter in low power mode & enable PENIRQ */
req->ref_off = PWRDOWN;
req->xfer[4].tx_buf = &req->ref_off;
req->xfer[4].len = 1;
spi_message_add_tail(&req->xfer[4], &req->msg);
req->xfer[5].rx_buf = &req->scratch;
req->xfer[5].len = 2;
CS_CHANGE(req->xfer[5]);
spi_message_add_tail(&req->xfer[5], &req->msg);
mutex_lock(&ts->lock);
ads7846_stop(ts);
status = spi_sync(spi, &req->msg);
ads7846_restart(ts);
mutex_unlock(&ts->lock);
if (status == 0) {
/* on-wire is a must-ignore bit, a BE12 value, then padding */
status = be16_to_cpu(req->sample);
status = status >> 3;
status &= 0x0fff;
}
kfree(req);
return status;
}
static int ads7845_read12_ser(struct device *dev, unsigned command)
{
struct spi_device *spi = to_spi_device(dev);
struct ads7846 *ts = dev_get_drvdata(dev);
struct ads7845_ser_req *req;
int status;
req = kzalloc(sizeof *req, GFP_KERNEL);
if (!req)
return -ENOMEM;
spi_message_init(&req->msg);
req->command[0] = (u8) command;
req->xfer[0].tx_buf = req->command;
req->xfer[0].rx_buf = req->sample;
req->xfer[0].len = 3;
spi_message_add_tail(&req->xfer[0], &req->msg);
mutex_lock(&ts->lock);
ads7846_stop(ts);
status = spi_sync(spi, &req->msg);
ads7846_restart(ts);
mutex_unlock(&ts->lock);
if (status == 0) {
/* BE12 value, then padding */
status = get_unaligned_be16(&req->sample[1]);
status = status >> 3;
status &= 0x0fff;
}
kfree(req);
return status;
}
#if IS_ENABLED(CONFIG_HWMON)
#define SHOW(name, var, adjust) static ssize_t \
name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct ads7846 *ts = dev_get_drvdata(dev); \
ssize_t v = ads7846_read12_ser(&ts->spi->dev, \
READ_12BIT_SER(var)); \
if (v < 0) \
return v; \
return sprintf(buf, "%u\n", adjust(ts, v)); \
} \
static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
/* Sysfs conventions report temperatures in millidegrees Celsius.
* ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
* accuracy scheme without calibration data. For now we won't try either;
* userspace sees raw sensor values, and must scale/calibrate appropriately.
*/
static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
{
return v;
}
SHOW(temp0, temp0, null_adjust) /* temp1_input */
SHOW(temp1, temp1, null_adjust) /* temp2_input */
/* sysfs conventions report voltages in millivolts. We can convert voltages
* if we know vREF. userspace may need to scale vAUX to match the board's
* external resistors; we assume that vBATT only uses the internal ones.
*/
static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
{
unsigned retval = v;
/* external resistors may scale vAUX into 0..vREF */
retval *= ts->vref_mv;
retval = retval >> 12;
return retval;
}
static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
{
unsigned retval = vaux_adjust(ts, v);
/* ads7846 has a resistor ladder to scale this signal down */
if (ts->model == 7846)
retval *= 4;
return retval;
}
SHOW(in0_input, vaux, vaux_adjust)
SHOW(in1_input, vbatt, vbatt_adjust)
static umode_t ads7846_is_visible(struct kobject *kobj, struct attribute *attr,
int index)
{
struct device *dev = kobj_to_dev(kobj);
struct ads7846 *ts = dev_get_drvdata(dev);
if (ts->model == 7843 && index < 2) /* in0, in1 */
return 0;
if (ts->model == 7845 && index != 2) /* in0 */
return 0;
return attr->mode;
}
static struct attribute *ads7846_attributes[] = {
&dev_attr_temp0.attr, /* 0 */
&dev_attr_temp1.attr, /* 1 */
&dev_attr_in0_input.attr, /* 2 */
&dev_attr_in1_input.attr, /* 3 */
NULL,
};
static const struct attribute_group ads7846_attr_group = {
.attrs = ads7846_attributes,
.is_visible = ads7846_is_visible,
};
__ATTRIBUTE_GROUPS(ads7846_attr);
static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
{
struct device *hwmon;
/* hwmon sensors need a reference voltage */
switch (ts->model) {
case 7846:
if (!ts->vref_mv) {
dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
ts->vref_mv = 2500;
ts->use_internal = true;
}
break;
case 7845:
case 7843:
if (!ts->vref_mv) {
dev_warn(&spi->dev,
"external vREF for ADS%d not specified\n",
ts->model);
return 0;
}
break;
}
hwmon = devm_hwmon_device_register_with_groups(&spi->dev,
spi->modalias, ts,
ads7846_attr_groups);
return PTR_ERR_OR_ZERO(hwmon);
}
#else
static inline int ads784x_hwmon_register(struct spi_device *spi,
struct ads7846 *ts)
{
return 0;
}
#endif
static ssize_t ads7846_pen_down_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ads7846 *ts = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", ts->pendown);
}
static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
static ssize_t ads7846_disable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ads7846 *ts = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", ts->disabled);
}
static ssize_t ads7846_disable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ads7846 *ts = dev_get_drvdata(dev);
unsigned int i;
int err;
err = kstrtouint(buf, 10, &i);
if (err)
return err;
if (i)
ads7846_disable(ts);
else
ads7846_enable(ts);
return count;
}
static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
static struct attribute *ads784x_attributes[] = {
&dev_attr_pen_down.attr,
&dev_attr_disable.attr,
NULL,
};
static const struct attribute_group ads784x_attr_group = {
.attrs = ads784x_attributes,
};
/*--------------------------------------------------------------------------*/
static void null_wait_for_sync(void)
{
}
static int ads7846_debounce_filter(void *ads, int data_idx, int *val)
{
struct ads7846 *ts = ads;
if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
/* Start over collecting consistent readings. */
ts->read_rep = 0;
/*
* Repeat it, if this was the first read or the read
* wasn't consistent enough.
*/
if (ts->read_cnt < ts->debounce_max) {
ts->last_read = *val;
ts->read_cnt++;
return ADS7846_FILTER_REPEAT;
} else {
/*
* Maximum number of debouncing reached and still
* not enough number of consistent readings. Abort
* the whole sample, repeat it in the next sampling
* period.
*/
ts->read_cnt = 0;
return ADS7846_FILTER_IGNORE;
}
} else {
if (++ts->read_rep > ts->debounce_rep) {
/*
* Got a good reading for this coordinate,
* go for the next one.
*/
ts->read_cnt = 0;
ts->read_rep = 0;
return ADS7846_FILTER_OK;
} else {
/* Read more values that are consistent. */
ts->read_cnt++;
return ADS7846_FILTER_REPEAT;
}
}
}
static int ads7846_no_filter(void *ads, int data_idx, int *val)
{
return ADS7846_FILTER_OK;
}
static int ads7846_get_value(struct ads7846_buf *buf)
{
int value;
value = be16_to_cpup(&buf->data);
/* enforce ADC output is 12 bits width */
return (value >> 3) & 0xfff;
}
static void ads7846_set_cmd_val(struct ads7846 *ts, enum ads7846_cmds cmd_idx,
u16 val)
{
struct ads7846_packet *packet = ts->packet;
switch (cmd_idx) {
case ADS7846_Y:
packet->y = val;
break;
case ADS7846_X:
packet->x = val;
break;
case ADS7846_Z1:
packet->z1 = val;
break;
case ADS7846_Z2:
packet->z2 = val;
break;
default:
WARN_ON_ONCE(1);
}
}
static u8 ads7846_get_cmd(enum ads7846_cmds cmd_idx, int vref)
{
switch (cmd_idx) {
case ADS7846_Y:
return READ_Y(vref);
case ADS7846_X:
return READ_X(vref);
/* 7846 specific commands */
case ADS7846_Z1:
return READ_Z1(vref);
case ADS7846_Z2:
return READ_Z2(vref);
case ADS7846_PWDOWN:
return PWRDOWN;
default:
WARN_ON_ONCE(1);
}
return 0;
}
static bool ads7846_cmd_need_settle(enum ads7846_cmds cmd_idx)
{
switch (cmd_idx) {
case ADS7846_X:
case ADS7846_Y:
case ADS7846_Z1:
case ADS7846_Z2:
return true;
case ADS7846_PWDOWN:
return false;
default:
WARN_ON_ONCE(1);
}
return false;
}
static int ads7846_filter(struct ads7846 *ts)
{
struct ads7846_packet *packet = ts->packet;
int action;
int val;
unsigned int cmd_idx, b;
packet->ignore = false;
for (cmd_idx = packet->last_cmd_idx; cmd_idx < packet->cmds - 1; cmd_idx++) {
struct ads7846_buf_layout *l = &packet->l[cmd_idx];
packet->last_cmd_idx = cmd_idx;
for (b = l->skip; b < l->count; b++) {
val = ads7846_get_value(&packet->rx[l->offset + b]);
action = ts->filter(ts->filter_data, cmd_idx, &val);
if (action == ADS7846_FILTER_REPEAT) {
if (b == l->count - 1)
return -EAGAIN;
} else if (action == ADS7846_FILTER_OK) {
ads7846_set_cmd_val(ts, cmd_idx, val);
break;
} else {
packet->ignore = true;
return 0;
}
}
}
return 0;
}
static void ads7846_read_state(struct ads7846 *ts)
{
struct ads7846_packet *packet = ts->packet;
struct spi_message *m;
int msg_idx = 0;
int error;
packet->last_cmd_idx = 0;
while (true) {
ts->wait_for_sync();
m = &ts->msg[msg_idx];
error = spi_sync(ts->spi, m);
if (error) {
dev_err(&ts->spi->dev, "spi_sync --> %d\n", error);
packet->ignore = true;
return;
}
error = ads7846_filter(ts);
if (error)
continue;
return;
}
}
static void ads7846_report_state(struct ads7846 *ts)
{
struct ads7846_packet *packet = ts->packet;
unsigned int Rt;
u16 x, y, z1, z2;
x = packet->x;
y = packet->y;
if (ts->model == 7845) {
z1 = 0;
z2 = 0;
} else {
z1 = packet->z1;
z2 = packet->z2;
}
/* range filtering */
if (x == MAX_12BIT)
x = 0;
if (ts->model == 7843 || ts->model == 7845) {
Rt = ts->pressure_max / 2;
} else if (likely(x && z1)) {
/* compute touch pressure resistance using equation #2 */
Rt = z2;
Rt -= z1;
Rt *= ts->x_plate_ohms;
Rt = DIV_ROUND_CLOSEST(Rt, 16);
Rt *= x;
Rt /= z1;
Rt = DIV_ROUND_CLOSEST(Rt, 256);
} else {
Rt = 0;
}
/*
* Sample found inconsistent by debouncing or pressure is beyond
* the maximum. Don't report it to user space, repeat at least
* once more the measurement
*/
if (packet->ignore || Rt > ts->pressure_max) {
dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
packet->ignore, Rt);
return;
}
/*
* Maybe check the pendown state before reporting. This discards
* false readings when the pen is lifted.
*/
if (ts->penirq_recheck_delay_usecs) {
udelay(ts->penirq_recheck_delay_usecs);
if (!get_pendown_state(ts))
Rt = 0;
}
/*
* NOTE: We can't rely on the pressure to determine the pen down
* state, even this controller has a pressure sensor. The pressure
* value can fluctuate for quite a while after lifting the pen and
* in some cases may not even settle at the expected value.
*
* The only safe way to check for the pen up condition is in the
* timer by reading the pen signal state (it's a GPIO _and_ IRQ).
*/
if (Rt) {
struct input_dev *input = ts->input;
if (!ts->pendown) {
input_report_key(input, BTN_TOUCH, 1);
ts->pendown = true;
dev_vdbg(&ts->spi->dev, "DOWN\n");
}
touchscreen_report_pos(input, &ts->core_prop, x, y, false);
input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
input_sync(input);
dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
}
}
static irqreturn_t ads7846_hard_irq(int irq, void *handle)
{
struct ads7846 *ts = handle;
return get_pendown_state(ts) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
}
static irqreturn_t ads7846_irq(int irq, void *handle)
{
struct ads7846 *ts = handle;
/* Start with a small delay before checking pendown state */
msleep(TS_POLL_DELAY);
while (!ts->stopped && get_pendown_state(ts)) {
/* pen is down, continue with the measurement */
ads7846_read_state(ts);
if (!ts->stopped)
ads7846_report_state(ts);
wait_event_timeout(ts->wait, ts->stopped,
msecs_to_jiffies(TS_POLL_PERIOD));
}
if (ts->pendown && !ts->stopped)
ads7846_report_pen_up(ts);
return IRQ_HANDLED;
}
static int ads7846_suspend(struct device *dev)
{
struct ads7846 *ts = dev_get_drvdata(dev);
mutex_lock(&ts->lock);
if (!ts->suspended) {
if (!ts->disabled)
__ads7846_disable(ts);
if (device_may_wakeup(&ts->spi->dev))
enable_irq_wake(ts->spi->irq);
ts->suspended = true;
}
mutex_unlock(&ts->lock);
return 0;
}
static int ads7846_resume(struct device *dev)
{
struct ads7846 *ts = dev_get_drvdata(dev);
mutex_lock(&ts->lock);
if (ts->suspended) {
ts->suspended = false;
if (device_may_wakeup(&ts->spi->dev))
disable_irq_wake(ts->spi->irq);
if (!ts->disabled)
__ads7846_enable(ts);
}
mutex_unlock(&ts->lock);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(ads7846_pm, ads7846_suspend, ads7846_resume);
static int ads7846_setup_pendown(struct spi_device *spi,
struct ads7846 *ts,
const struct ads7846_platform_data *pdata)
{
/*
* REVISIT when the irq can be triggered active-low, or if for some
* reason the touchscreen isn't hooked up, we don't need to access
* the pendown state.
*/
if (pdata->get_pendown_state) {
ts->get_pendown_state = pdata->get_pendown_state;
} else {
ts->gpio_pendown = gpiod_get(&spi->dev, "pendown", GPIOD_IN);
if (IS_ERR(ts->gpio_pendown)) {
dev_err(&spi->dev, "failed to request pendown GPIO\n");
return PTR_ERR(ts->gpio_pendown);
}
if (pdata->gpio_pendown_debounce)
gpiod_set_debounce(ts->gpio_pendown,
pdata->gpio_pendown_debounce);
}
return 0;
}
/*
* Set up the transfers to read touchscreen state; this assumes we
* use formula #2 for pressure, not #3.
*/
static int ads7846_setup_spi_msg(struct ads7846 *ts,
const struct ads7846_platform_data *pdata)
{
struct spi_message *m = &ts->msg[0];
struct spi_transfer *x = ts->xfer;
struct ads7846_packet *packet = ts->packet;
int vref = pdata->keep_vref_on;
unsigned int count, offset = 0;
unsigned int cmd_idx, b;
unsigned long time;
size_t size = 0;
/* time per bit */
time = NSEC_PER_SEC / ts->spi->max_speed_hz;
count = pdata->settle_delay_usecs * NSEC_PER_USEC / time;
packet->count_skip = DIV_ROUND_UP(count, 24);
if (ts->debounce_max && ts->debounce_rep)
/* ads7846_debounce_filter() is making ts->debounce_rep + 2
* reads. So we need to get all samples for normal case. */
packet->count = ts->debounce_rep + 2;
else
packet->count = 1;
if (ts->model == 7846)
packet->cmds = 5; /* x, y, z1, z2, pwdown */
else
packet->cmds = 3; /* x, y, pwdown */
for (cmd_idx = 0; cmd_idx < packet->cmds; cmd_idx++) {
struct ads7846_buf_layout *l = &packet->l[cmd_idx];
unsigned int max_count;
if (cmd_idx == packet->cmds - 1)
cmd_idx = ADS7846_PWDOWN;
if (ads7846_cmd_need_settle(cmd_idx))
max_count = packet->count + packet->count_skip;
else
max_count = packet->count;
l->offset = offset;
offset += max_count;
l->count = max_count;
l->skip = packet->count_skip;
size += sizeof(*packet->tx) * max_count;
}
packet->tx = devm_kzalloc(&ts->spi->dev, size, GFP_KERNEL);
if (!packet->tx)
return -ENOMEM;
packet->rx = devm_kzalloc(&ts->spi->dev, size, GFP_KERNEL);
if (!packet->rx)
return -ENOMEM;
if (ts->model == 7873) {
/*
* The AD7873 is almost identical to the ADS7846
* keep VREF off during differential/ratiometric
* conversion modes.
*/
ts->model = 7846;
vref = 0;
}
ts->msg_count = 1;
spi_message_init(m);
m->context = ts;
for (cmd_idx = 0; cmd_idx < packet->cmds; cmd_idx++) {
struct ads7846_buf_layout *l = &packet->l[cmd_idx];
u8 cmd;
if (cmd_idx == packet->cmds - 1)
cmd_idx = ADS7846_PWDOWN;
cmd = ads7846_get_cmd(cmd_idx, vref);
for (b = 0; b < l->count; b++)
packet->tx[l->offset + b].cmd = cmd;
}
x->tx_buf = packet->tx;
x->rx_buf = packet->rx;
x->len = size;
spi_message_add_tail(x, m);
return 0;
}
static const struct of_device_id ads7846_dt_ids[] = {
{ .compatible = "ti,tsc2046", .data = (void *) 7846 },
{ .compatible = "ti,ads7843", .data = (void *) 7843 },
{ .compatible = "ti,ads7845", .data = (void *) 7845 },
{ .compatible = "ti,ads7846", .data = (void *) 7846 },
{ .compatible = "ti,ads7873", .data = (void *) 7873 },
{ }
};
MODULE_DEVICE_TABLE(of, ads7846_dt_ids);
static const struct ads7846_platform_data *ads7846_get_props(struct device *dev)
{
struct ads7846_platform_data *pdata;
u32 value;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM);
pdata->model = (uintptr_t)device_get_match_data(dev);
device_property_read_u16(dev, "ti,vref-delay-usecs",
&pdata->vref_delay_usecs);
device_property_read_u16(dev, "ti,vref-mv", &pdata->vref_mv);
pdata->keep_vref_on = device_property_read_bool(dev, "ti,keep-vref-on");
pdata->swap_xy = device_property_read_bool(dev, "ti,swap-xy");
device_property_read_u16(dev, "ti,settle-delay-usec",
&pdata->settle_delay_usecs);
device_property_read_u16(dev, "ti,penirq-recheck-delay-usecs",
&pdata->penirq_recheck_delay_usecs);
device_property_read_u16(dev, "ti,x-plate-ohms", &pdata->x_plate_ohms);
device_property_read_u16(dev, "ti,y-plate-ohms", &pdata->y_plate_ohms);
device_property_read_u16(dev, "ti,x-min", &pdata->x_min);
device_property_read_u16(dev, "ti,y-min", &pdata->y_min);
device_property_read_u16(dev, "ti,x-max", &pdata->x_max);
device_property_read_u16(dev, "ti,y-max", &pdata->y_max);
/*
* touchscreen-max-pressure gets parsed during
* touchscreen_parse_properties()
*/
device_property_read_u16(dev, "ti,pressure-min", &pdata->pressure_min);
if (!device_property_read_u32(dev, "touchscreen-min-pressure", &value))
pdata->pressure_min = (u16) value;
device_property_read_u16(dev, "ti,pressure-max", &pdata->pressure_max);
device_property_read_u16(dev, "ti,debounce-max", &pdata->debounce_max);
if (!device_property_read_u32(dev, "touchscreen-average-samples", &value))
pdata->debounce_max = (u16) value;
device_property_read_u16(dev, "ti,debounce-tol", &pdata->debounce_tol);
device_property_read_u16(dev, "ti,debounce-rep", &pdata->debounce_rep);
device_property_read_u32(dev, "ti,pendown-gpio-debounce",
&pdata->gpio_pendown_debounce);
pdata->wakeup = device_property_read_bool(dev, "wakeup-source") ||
device_property_read_bool(dev, "linux,wakeup");
return pdata;
}
static void ads7846_regulator_disable(void *regulator)
{
regulator_disable(regulator);
}
static int ads7846_probe(struct spi_device *spi)
{
const struct ads7846_platform_data *pdata;
struct ads7846 *ts;
struct device *dev = &spi->dev;
struct ads7846_packet *packet;
struct input_dev *input_dev;
unsigned long irq_flags;
int err;
if (!spi->irq) {
dev_dbg(dev, "no IRQ?\n");
return -EINVAL;
}
/* don't exceed max specified sample rate */
if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
dev_err(dev, "f(sample) %d KHz?\n",
(spi->max_speed_hz/SAMPLE_BITS)/1000);
return -EINVAL;
}
/*
* We'd set TX word size 8 bits and RX word size to 13 bits ... except
* that even if the hardware can do that, the SPI controller driver
* may not. So we stick to very-portable 8 bit words, both RX and TX.
*/
spi->bits_per_word = 8;
spi->mode &= ~SPI_MODE_X_MASK;
spi->mode |= SPI_MODE_0;
err = spi_setup(spi);
if (err < 0)
return err;
ts = devm_kzalloc(dev, sizeof(struct ads7846), GFP_KERNEL);
if (!ts)
return -ENOMEM;
packet = devm_kzalloc(dev, sizeof(struct ads7846_packet), GFP_KERNEL);
if (!packet)
return -ENOMEM;
input_dev = devm_input_allocate_device(dev);
if (!input_dev)
return -ENOMEM;
spi_set_drvdata(spi, ts);
ts->packet = packet;
ts->spi = spi;
ts->input = input_dev;
mutex_init(&ts->lock);
init_waitqueue_head(&ts->wait);
pdata = dev_get_platdata(dev);
if (!pdata) {
pdata = ads7846_get_props(dev);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
}
ts->model = pdata->model ? : 7846;
ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
ts->vref_mv = pdata->vref_mv;
if (pdata->debounce_max) {
ts->debounce_max = pdata->debounce_max;
if (ts->debounce_max < 2)
ts->debounce_max = 2;
ts->debounce_tol = pdata->debounce_tol;
ts->debounce_rep = pdata->debounce_rep;
ts->filter = ads7846_debounce_filter;
ts->filter_data = ts;
} else {
ts->filter = ads7846_no_filter;
}
err = ads7846_setup_pendown(spi, ts, pdata);
if (err)
return err;
if (pdata->penirq_recheck_delay_usecs)
ts->penirq_recheck_delay_usecs =
pdata->penirq_recheck_delay_usecs;
ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(dev));
snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
input_dev->name = ts->name;
input_dev->phys = ts->phys;
input_dev->id.bustype = BUS_SPI;
input_dev->id.product = pdata->model;
input_set_capability(input_dev, EV_KEY, BTN_TOUCH);
input_set_abs_params(input_dev, ABS_X,
pdata->x_min ? : 0,
pdata->x_max ? : MAX_12BIT,
0, 0);
input_set_abs_params(input_dev, ABS_Y,
pdata->y_min ? : 0,
pdata->y_max ? : MAX_12BIT,
0, 0);
if (ts->model != 7845)
input_set_abs_params(input_dev, ABS_PRESSURE,
pdata->pressure_min, pdata->pressure_max, 0, 0);
/*
* Parse common framework properties. Must be done here to ensure the
* correct behaviour in case of using the legacy vendor bindings. The
* general binding value overrides the vendor specific one.
*/
touchscreen_parse_properties(ts->input, false, &ts->core_prop);
ts->pressure_max = input_abs_get_max(input_dev, ABS_PRESSURE) ? : ~0;
/*
* Check if legacy ti,swap-xy binding is used instead of
* touchscreen-swapped-x-y
*/
if (!ts->core_prop.swap_x_y && pdata->swap_xy) {
swap(input_dev->absinfo[ABS_X], input_dev->absinfo[ABS_Y]);
ts->core_prop.swap_x_y = true;
}
ads7846_setup_spi_msg(ts, pdata);
ts->reg = devm_regulator_get(dev, "vcc");
if (IS_ERR(ts->reg)) {
err = PTR_ERR(ts->reg);
dev_err(dev, "unable to get regulator: %d\n", err);
return err;
}
err = regulator_enable(ts->reg);
if (err) {
dev_err(dev, "unable to enable regulator: %d\n", err);
return err;
}
err = devm_add_action_or_reset(dev, ads7846_regulator_disable, ts->reg);
if (err)
return err;
irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
irq_flags |= IRQF_ONESHOT;
err = devm_request_threaded_irq(dev, spi->irq,
ads7846_hard_irq, ads7846_irq,
irq_flags, dev->driver->name, ts);
if (err && err != -EPROBE_DEFER && !pdata->irq_flags) {
dev_info(dev,
"trying pin change workaround on irq %d\n", spi->irq);
irq_flags |= IRQF_TRIGGER_RISING;
err = devm_request_threaded_irq(dev, spi->irq,
ads7846_hard_irq, ads7846_irq,
irq_flags, dev->driver->name,
ts);
}
if (err) {
dev_dbg(dev, "irq %d busy?\n", spi->irq);
return err;
}
err = ads784x_hwmon_register(spi, ts);
if (err)
return err;
dev_info(dev, "touchscreen, irq %d\n", spi->irq);
/*
* Take a first sample, leaving nPENIRQ active and vREF off; avoid
* the touchscreen, in case it's not connected.
*/
if (ts->model == 7845)
ads7845_read12_ser(dev, PWRDOWN);
else
(void) ads7846_read12_ser(dev, READ_12BIT_SER(vaux));
err = devm_device_add_group(dev, &ads784x_attr_group);
if (err)
return err;
err = input_register_device(input_dev);
if (err)
return err;
device_init_wakeup(dev, pdata->wakeup);
/*
* If device does not carry platform data we must have allocated it
* when parsing DT data.
*/
if (!dev_get_platdata(dev))
devm_kfree(dev, (void *)pdata);
return 0;
}
static void ads7846_remove(struct spi_device *spi)
{
struct ads7846 *ts = spi_get_drvdata(spi);
ads7846_stop(ts);
}
static struct spi_driver ads7846_driver = {
.driver = {
.name = "ads7846",
.pm = pm_sleep_ptr(&ads7846_pm),
.of_match_table = ads7846_dt_ids,
},
.probe = ads7846_probe,
.remove = ads7846_remove,
};
module_spi_driver(ads7846_driver);
MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("spi:ads7846");
|
linux-master
|
drivers/input/touchscreen/ads7846.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for Novatek NT11205 i2c touchscreen controller as found
* on the Acer Iconia One 7 B1-750 tablet.
*
* Copyright (c) 2023 Hans de Goede <[email protected]>
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/input/touchscreen.h>
#include <linux/module.h>
#include <asm/unaligned.h>
#define NVT_TS_TOUCH_START 0x00
#define NVT_TS_TOUCH_SIZE 6
#define NVT_TS_PARAMETERS_START 0x78
/* These are offsets from NVT_TS_PARAMETERS_START */
#define NVT_TS_PARAMS_WIDTH 0x04
#define NVT_TS_PARAMS_HEIGHT 0x06
#define NVT_TS_PARAMS_MAX_TOUCH 0x09
#define NVT_TS_PARAMS_MAX_BUTTONS 0x0a
#define NVT_TS_PARAMS_IRQ_TYPE 0x0b
#define NVT_TS_PARAMS_WAKE_TYPE 0x0c
#define NVT_TS_PARAMS_CHIP_ID 0x0e
#define NVT_TS_PARAMS_SIZE 0x0f
#define NVT_TS_SUPPORTED_WAKE_TYPE 0x05
#define NVT_TS_SUPPORTED_CHIP_ID 0x05
#define NVT_TS_MAX_TOUCHES 10
#define NVT_TS_MAX_SIZE 4096
#define NVT_TS_TOUCH_INVALID 0xff
#define NVT_TS_TOUCH_SLOT_SHIFT 3
#define NVT_TS_TOUCH_TYPE_MASK GENMASK(2, 0)
#define NVT_TS_TOUCH_NEW 1
#define NVT_TS_TOUCH_UPDATE 2
#define NVT_TS_TOUCH_RELEASE 3
static const int nvt_ts_irq_type[4] = {
IRQF_TRIGGER_RISING,
IRQF_TRIGGER_FALLING,
IRQF_TRIGGER_LOW,
IRQF_TRIGGER_HIGH
};
struct nvt_ts_data {
struct i2c_client *client;
struct input_dev *input;
struct gpio_desc *reset_gpio;
struct touchscreen_properties prop;
int max_touches;
u8 buf[NVT_TS_TOUCH_SIZE * NVT_TS_MAX_TOUCHES];
};
static int nvt_ts_read_data(struct i2c_client *client, u8 reg, u8 *data, int count)
{
struct i2c_msg msg[2] = {
{
.addr = client->addr,
.len = 1,
.buf = ®,
},
{
.addr = client->addr,
.flags = I2C_M_RD,
.len = count,
.buf = data,
}
};
int ret;
ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg));
if (ret != ARRAY_SIZE(msg)) {
dev_err(&client->dev, "Error reading from 0x%02x: %d\n", reg, ret);
return (ret < 0) ? ret : -EIO;
}
return 0;
}
static irqreturn_t nvt_ts_irq(int irq, void *dev_id)
{
struct nvt_ts_data *data = dev_id;
struct device *dev = &data->client->dev;
int i, error, slot, x, y;
bool active;
u8 *touch;
error = nvt_ts_read_data(data->client, NVT_TS_TOUCH_START, data->buf,
data->max_touches * NVT_TS_TOUCH_SIZE);
if (error)
return IRQ_HANDLED;
for (i = 0; i < data->max_touches; i++) {
touch = &data->buf[i * NVT_TS_TOUCH_SIZE];
if (touch[0] == NVT_TS_TOUCH_INVALID)
continue;
slot = touch[0] >> NVT_TS_TOUCH_SLOT_SHIFT;
if (slot < 1 || slot > data->max_touches) {
dev_warn(dev, "slot %d out of range, ignoring\n", slot);
continue;
}
switch (touch[0] & NVT_TS_TOUCH_TYPE_MASK) {
case NVT_TS_TOUCH_NEW:
case NVT_TS_TOUCH_UPDATE:
active = true;
break;
case NVT_TS_TOUCH_RELEASE:
active = false;
break;
default:
dev_warn(dev, "slot %d unknown state %d\n", slot, touch[0] & 7);
continue;
}
slot--;
x = (touch[1] << 4) | (touch[3] >> 4);
y = (touch[2] << 4) | (touch[3] & 0x0f);
input_mt_slot(data->input, slot);
input_mt_report_slot_state(data->input, MT_TOOL_FINGER, active);
touchscreen_report_pos(data->input, &data->prop, x, y, true);
}
input_mt_sync_frame(data->input);
input_sync(data->input);
return IRQ_HANDLED;
}
static int nvt_ts_start(struct input_dev *dev)
{
struct nvt_ts_data *data = input_get_drvdata(dev);
enable_irq(data->client->irq);
gpiod_set_value_cansleep(data->reset_gpio, 0);
return 0;
}
static void nvt_ts_stop(struct input_dev *dev)
{
struct nvt_ts_data *data = input_get_drvdata(dev);
disable_irq(data->client->irq);
gpiod_set_value_cansleep(data->reset_gpio, 1);
}
static int nvt_ts_suspend(struct device *dev)
{
struct nvt_ts_data *data = i2c_get_clientdata(to_i2c_client(dev));
mutex_lock(&data->input->mutex);
if (input_device_enabled(data->input))
nvt_ts_stop(data->input);
mutex_unlock(&data->input->mutex);
return 0;
}
static int nvt_ts_resume(struct device *dev)
{
struct nvt_ts_data *data = i2c_get_clientdata(to_i2c_client(dev));
mutex_lock(&data->input->mutex);
if (input_device_enabled(data->input))
nvt_ts_start(data->input);
mutex_unlock(&data->input->mutex);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(nvt_ts_pm_ops, nvt_ts_suspend, nvt_ts_resume);
static int nvt_ts_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
int error, width, height, irq_type;
struct nvt_ts_data *data;
struct input_dev *input;
if (!client->irq) {
dev_err(dev, "Error no irq specified\n");
return -EINVAL;
}
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = client;
i2c_set_clientdata(client, data);
data->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
error = PTR_ERR_OR_ZERO(data->reset_gpio);
if (error) {
dev_err(dev, "failed to request reset GPIO: %d\n", error);
return error;
}
/* Wait for controller to come out of reset before params read */
msleep(100);
error = nvt_ts_read_data(data->client, NVT_TS_PARAMETERS_START,
data->buf, NVT_TS_PARAMS_SIZE);
gpiod_set_value_cansleep(data->reset_gpio, 1); /* Put back in reset */
if (error)
return error;
width = get_unaligned_be16(&data->buf[NVT_TS_PARAMS_WIDTH]);
height = get_unaligned_be16(&data->buf[NVT_TS_PARAMS_HEIGHT]);
data->max_touches = data->buf[NVT_TS_PARAMS_MAX_TOUCH];
irq_type = data->buf[NVT_TS_PARAMS_IRQ_TYPE];
if (width > NVT_TS_MAX_SIZE || height >= NVT_TS_MAX_SIZE ||
data->max_touches > NVT_TS_MAX_TOUCHES ||
irq_type >= ARRAY_SIZE(nvt_ts_irq_type) ||
data->buf[NVT_TS_PARAMS_WAKE_TYPE] != NVT_TS_SUPPORTED_WAKE_TYPE ||
data->buf[NVT_TS_PARAMS_CHIP_ID] != NVT_TS_SUPPORTED_CHIP_ID) {
dev_err(dev, "Unsupported touchscreen parameters: %*ph\n",
NVT_TS_PARAMS_SIZE, data->buf);
return -EIO;
}
dev_dbg(dev, "Detected %dx%d touchscreen with %d max touches\n",
width, height, data->max_touches);
if (data->buf[NVT_TS_PARAMS_MAX_BUTTONS])
dev_warn(dev, "Touchscreen buttons are not supported\n");
input = devm_input_allocate_device(dev);
if (!input)
return -ENOMEM;
input->name = client->name;
input->id.bustype = BUS_I2C;
input->open = nvt_ts_start;
input->close = nvt_ts_stop;
input_set_abs_params(input, ABS_MT_POSITION_X, 0, width - 1, 0, 0);
input_set_abs_params(input, ABS_MT_POSITION_Y, 0, height - 1, 0, 0);
touchscreen_parse_properties(input, true, &data->prop);
error = input_mt_init_slots(input, data->max_touches,
INPUT_MT_DIRECT | INPUT_MT_DROP_UNUSED);
if (error)
return error;
data->input = input;
input_set_drvdata(input, data);
error = devm_request_threaded_irq(dev, client->irq, NULL, nvt_ts_irq,
IRQF_ONESHOT | IRQF_NO_AUTOEN |
nvt_ts_irq_type[irq_type],
client->name, data);
if (error) {
dev_err(dev, "failed to request irq: %d\n", error);
return error;
}
error = input_register_device(input);
if (error) {
dev_err(dev, "failed to register input device: %d\n", error);
return error;
}
return 0;
}
static const struct i2c_device_id nvt_ts_i2c_id[] = {
{ "NVT-ts" },
{ }
};
MODULE_DEVICE_TABLE(i2c, nvt_ts_i2c_id);
static struct i2c_driver nvt_ts_driver = {
.driver = {
.name = "novatek-nvt-ts",
.pm = pm_sleep_ptr(&nvt_ts_pm_ops),
},
.probe = nvt_ts_probe,
.id_table = nvt_ts_i2c_id,
};
module_i2c_driver(nvt_ts_driver);
MODULE_DESCRIPTION("Novatek NT11205 touchscreen driver");
MODULE_AUTHOR("Hans de Goede <[email protected]>");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/novatek-nvt-ts.c
|
/*
* TI Touch Screen driver
*
* Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/input.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/sort.h>
#include <linux/pm_wakeirq.h>
#include <linux/mfd/ti_am335x_tscadc.h>
#define ADCFSM_STEPID 0x10
#define SEQ_SETTLE 275
#define MAX_12BIT ((1 << 12) - 1)
#define TSC_IRQENB_MASK (IRQENB_FIFO0THRES | IRQENB_EOS | IRQENB_HW_PEN)
static const int config_pins[] = {
STEPCONFIG_XPP,
STEPCONFIG_XNN,
STEPCONFIG_YPP,
STEPCONFIG_YNN,
};
struct titsc {
struct input_dev *input;
struct ti_tscadc_dev *mfd_tscadc;
struct device *dev;
unsigned int irq;
unsigned int wires;
unsigned int x_plate_resistance;
bool pen_down;
int coordinate_readouts;
u32 config_inp[4];
u32 bit_xp, bit_xn, bit_yp, bit_yn;
u32 inp_xp, inp_xn, inp_yp, inp_yn;
u32 step_mask;
u32 charge_delay;
};
static unsigned int titsc_readl(struct titsc *ts, unsigned int reg)
{
return readl(ts->mfd_tscadc->tscadc_base + reg);
}
static void titsc_writel(struct titsc *tsc, unsigned int reg,
unsigned int val)
{
writel(val, tsc->mfd_tscadc->tscadc_base + reg);
}
static int titsc_config_wires(struct titsc *ts_dev)
{
u32 analog_line[4];
u32 wire_order[4];
int i, bit_cfg;
for (i = 0; i < 4; i++) {
/*
* Get the order in which TSC wires are attached
* w.r.t. each of the analog input lines on the EVM.
*/
analog_line[i] = (ts_dev->config_inp[i] & 0xF0) >> 4;
wire_order[i] = ts_dev->config_inp[i] & 0x0F;
if (WARN_ON(analog_line[i] > 7))
return -EINVAL;
if (WARN_ON(wire_order[i] > ARRAY_SIZE(config_pins)))
return -EINVAL;
}
for (i = 0; i < 4; i++) {
int an_line;
int wi_order;
an_line = analog_line[i];
wi_order = wire_order[i];
bit_cfg = config_pins[wi_order];
if (bit_cfg == 0)
return -EINVAL;
switch (wi_order) {
case 0:
ts_dev->bit_xp = bit_cfg;
ts_dev->inp_xp = an_line;
break;
case 1:
ts_dev->bit_xn = bit_cfg;
ts_dev->inp_xn = an_line;
break;
case 2:
ts_dev->bit_yp = bit_cfg;
ts_dev->inp_yp = an_line;
break;
case 3:
ts_dev->bit_yn = bit_cfg;
ts_dev->inp_yn = an_line;
break;
}
}
return 0;
}
static void titsc_step_config(struct titsc *ts_dev)
{
unsigned int config;
int i, n;
int end_step, first_step, tsc_steps;
u32 stepenable;
config = STEPCONFIG_MODE_HWSYNC |
STEPCONFIG_AVG_16 | ts_dev->bit_xp |
STEPCONFIG_INM_ADCREFM;
switch (ts_dev->wires) {
case 4:
config |= STEPCONFIG_INP(ts_dev->inp_yp) | ts_dev->bit_xn;
break;
case 5:
config |= ts_dev->bit_yn |
STEPCONFIG_INP_AN4 | ts_dev->bit_xn |
ts_dev->bit_yp;
break;
case 8:
config |= STEPCONFIG_INP(ts_dev->inp_yp) | ts_dev->bit_xn;
break;
}
tsc_steps = ts_dev->coordinate_readouts * 2 + 2;
first_step = TOTAL_STEPS - tsc_steps;
/* Steps 16 to 16-coordinate_readouts is for X */
end_step = first_step + tsc_steps;
n = 0;
for (i = end_step - ts_dev->coordinate_readouts; i < end_step; i++) {
titsc_writel(ts_dev, REG_STEPCONFIG(i), config);
titsc_writel(ts_dev, REG_STEPDELAY(i),
n++ == 0 ? STEPCONFIG_OPENDLY : 0);
}
config = 0;
config = STEPCONFIG_MODE_HWSYNC |
STEPCONFIG_AVG_16 | ts_dev->bit_yn |
STEPCONFIG_INM_ADCREFM;
switch (ts_dev->wires) {
case 4:
config |= ts_dev->bit_yp | STEPCONFIG_INP(ts_dev->inp_xp);
break;
case 5:
config |= ts_dev->bit_xp | STEPCONFIG_INP_AN4 |
STEPCONFIG_XNP | STEPCONFIG_YPN;
break;
case 8:
config |= ts_dev->bit_yp | STEPCONFIG_INP(ts_dev->inp_xp);
break;
}
/* 1 ... coordinate_readouts is for Y */
end_step = first_step + ts_dev->coordinate_readouts;
n = 0;
for (i = first_step; i < end_step; i++) {
titsc_writel(ts_dev, REG_STEPCONFIG(i), config);
titsc_writel(ts_dev, REG_STEPDELAY(i),
n++ == 0 ? STEPCONFIG_OPENDLY : 0);
}
/* Make CHARGECONFIG same as IDLECONFIG */
config = titsc_readl(ts_dev, REG_IDLECONFIG);
titsc_writel(ts_dev, REG_CHARGECONFIG, config);
titsc_writel(ts_dev, REG_CHARGEDELAY, ts_dev->charge_delay);
/* coordinate_readouts + 1 ... coordinate_readouts + 2 is for Z */
config = STEPCONFIG_MODE_HWSYNC |
STEPCONFIG_AVG_16 | ts_dev->bit_yp |
ts_dev->bit_xn | STEPCONFIG_INM_ADCREFM |
STEPCONFIG_INP(ts_dev->inp_xp);
titsc_writel(ts_dev, REG_STEPCONFIG(end_step), config);
titsc_writel(ts_dev, REG_STEPDELAY(end_step),
STEPCONFIG_OPENDLY);
end_step++;
config = STEPCONFIG_MODE_HWSYNC |
STEPCONFIG_AVG_16 | ts_dev->bit_yp |
ts_dev->bit_xn | STEPCONFIG_INM_ADCREFM |
STEPCONFIG_INP(ts_dev->inp_yn);
titsc_writel(ts_dev, REG_STEPCONFIG(end_step), config);
titsc_writel(ts_dev, REG_STEPDELAY(end_step),
STEPCONFIG_OPENDLY);
/* The steps end ... end - readouts * 2 + 2 and bit 0 for TS_Charge */
stepenable = 1;
for (i = 0; i < tsc_steps; i++)
stepenable |= 1 << (first_step + i + 1);
ts_dev->step_mask = stepenable;
am335x_tsc_se_set_cache(ts_dev->mfd_tscadc, ts_dev->step_mask);
}
static int titsc_cmp_coord(const void *a, const void *b)
{
return *(int *)a - *(int *)b;
}
static void titsc_read_coordinates(struct titsc *ts_dev,
u32 *x, u32 *y, u32 *z1, u32 *z2)
{
unsigned int yvals[7], xvals[7];
unsigned int i, xsum = 0, ysum = 0;
unsigned int creads = ts_dev->coordinate_readouts;
for (i = 0; i < creads; i++) {
yvals[i] = titsc_readl(ts_dev, REG_FIFO0);
yvals[i] &= 0xfff;
}
*z1 = titsc_readl(ts_dev, REG_FIFO0);
*z1 &= 0xfff;
*z2 = titsc_readl(ts_dev, REG_FIFO0);
*z2 &= 0xfff;
for (i = 0; i < creads; i++) {
xvals[i] = titsc_readl(ts_dev, REG_FIFO0);
xvals[i] &= 0xfff;
}
/*
* If co-ordinates readouts is less than 4 then
* report the average. In case of 4 or more
* readouts, sort the co-ordinate samples, drop
* min and max values and report the average of
* remaining values.
*/
if (creads <= 3) {
for (i = 0; i < creads; i++) {
ysum += yvals[i];
xsum += xvals[i];
}
ysum /= creads;
xsum /= creads;
} else {
sort(yvals, creads, sizeof(unsigned int),
titsc_cmp_coord, NULL);
sort(xvals, creads, sizeof(unsigned int),
titsc_cmp_coord, NULL);
for (i = 1; i < creads - 1; i++) {
ysum += yvals[i];
xsum += xvals[i];
}
ysum /= creads - 2;
xsum /= creads - 2;
}
*y = ysum;
*x = xsum;
}
static irqreturn_t titsc_irq(int irq, void *dev)
{
struct titsc *ts_dev = dev;
struct input_dev *input_dev = ts_dev->input;
unsigned int fsm, status, irqclr = 0;
unsigned int x = 0, y = 0;
unsigned int z1, z2, z;
status = titsc_readl(ts_dev, REG_RAWIRQSTATUS);
if (status & IRQENB_HW_PEN) {
ts_dev->pen_down = true;
irqclr |= IRQENB_HW_PEN;
pm_stay_awake(ts_dev->dev);
}
if (status & IRQENB_PENUP) {
fsm = titsc_readl(ts_dev, REG_ADCFSM);
if (fsm == ADCFSM_STEPID) {
ts_dev->pen_down = false;
input_report_key(input_dev, BTN_TOUCH, 0);
input_report_abs(input_dev, ABS_PRESSURE, 0);
input_sync(input_dev);
pm_relax(ts_dev->dev);
} else {
ts_dev->pen_down = true;
}
irqclr |= IRQENB_PENUP;
}
if (status & IRQENB_EOS)
irqclr |= IRQENB_EOS;
/*
* ADC and touchscreen share the IRQ line.
* FIFO1 interrupts are used by ADC. Handle FIFO0 IRQs here only
*/
if (status & IRQENB_FIFO0THRES) {
titsc_read_coordinates(ts_dev, &x, &y, &z1, &z2);
if (ts_dev->pen_down && z1 != 0 && z2 != 0) {
/*
* Calculate pressure using formula
* Resistance(touch) = x plate resistance *
* x position/4096 * ((z2 / z1) - 1)
*/
z = z1 - z2;
z *= x;
z *= ts_dev->x_plate_resistance;
z /= z2;
z = (z + 2047) >> 12;
if (z <= MAX_12BIT) {
input_report_abs(input_dev, ABS_X, x);
input_report_abs(input_dev, ABS_Y, y);
input_report_abs(input_dev, ABS_PRESSURE, z);
input_report_key(input_dev, BTN_TOUCH, 1);
input_sync(input_dev);
}
}
irqclr |= IRQENB_FIFO0THRES;
}
if (irqclr) {
titsc_writel(ts_dev, REG_IRQSTATUS, irqclr);
if (status & IRQENB_EOS)
am335x_tsc_se_set_cache(ts_dev->mfd_tscadc,
ts_dev->step_mask);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int titsc_parse_dt(struct platform_device *pdev,
struct titsc *ts_dev)
{
struct device_node *node = pdev->dev.of_node;
int err;
if (!node)
return -EINVAL;
err = of_property_read_u32(node, "ti,wires", &ts_dev->wires);
if (err < 0)
return err;
switch (ts_dev->wires) {
case 4:
case 5:
case 8:
break;
default:
return -EINVAL;
}
err = of_property_read_u32(node, "ti,x-plate-resistance",
&ts_dev->x_plate_resistance);
if (err < 0)
return err;
/*
* Try with the new binding first. If it fails, try again with
* bogus, miss-spelled version.
*/
err = of_property_read_u32(node, "ti,coordinate-readouts",
&ts_dev->coordinate_readouts);
if (err < 0) {
dev_warn(&pdev->dev, "please use 'ti,coordinate-readouts' instead\n");
err = of_property_read_u32(node, "ti,coordiante-readouts",
&ts_dev->coordinate_readouts);
}
if (err < 0)
return err;
if (ts_dev->coordinate_readouts <= 0) {
dev_warn(&pdev->dev,
"invalid co-ordinate readouts, resetting it to 5\n");
ts_dev->coordinate_readouts = 5;
}
err = of_property_read_u32(node, "ti,charge-delay",
&ts_dev->charge_delay);
/*
* If ti,charge-delay value is not specified, then use
* CHARGEDLY_OPENDLY as the default value.
*/
if (err < 0) {
ts_dev->charge_delay = CHARGEDLY_OPENDLY;
dev_warn(&pdev->dev, "ti,charge-delay not specified\n");
}
return of_property_read_u32_array(node, "ti,wire-config",
ts_dev->config_inp, ARRAY_SIZE(ts_dev->config_inp));
}
/*
* The functions for inserting/removing driver as a module.
*/
static int titsc_probe(struct platform_device *pdev)
{
struct titsc *ts_dev;
struct input_dev *input_dev;
struct ti_tscadc_dev *tscadc_dev = ti_tscadc_dev_get(pdev);
int err;
/* Allocate memory for device */
ts_dev = kzalloc(sizeof(*ts_dev), GFP_KERNEL);
input_dev = input_allocate_device();
if (!ts_dev || !input_dev) {
dev_err(&pdev->dev, "failed to allocate memory.\n");
err = -ENOMEM;
goto err_free_mem;
}
tscadc_dev->tsc = ts_dev;
ts_dev->mfd_tscadc = tscadc_dev;
ts_dev->input = input_dev;
ts_dev->irq = tscadc_dev->irq;
ts_dev->dev = &pdev->dev;
err = titsc_parse_dt(pdev, ts_dev);
if (err) {
dev_err(&pdev->dev, "Could not find valid DT data.\n");
goto err_free_mem;
}
err = request_irq(ts_dev->irq, titsc_irq,
IRQF_SHARED, pdev->dev.driver->name, ts_dev);
if (err) {
dev_err(&pdev->dev, "failed to allocate irq.\n");
goto err_free_mem;
}
device_init_wakeup(&pdev->dev, true);
err = dev_pm_set_wake_irq(&pdev->dev, ts_dev->irq);
if (err)
dev_err(&pdev->dev, "irq wake enable failed.\n");
titsc_writel(ts_dev, REG_IRQSTATUS, TSC_IRQENB_MASK);
titsc_writel(ts_dev, REG_IRQENABLE, IRQENB_FIFO0THRES);
titsc_writel(ts_dev, REG_IRQENABLE, IRQENB_EOS);
err = titsc_config_wires(ts_dev);
if (err) {
dev_err(&pdev->dev, "wrong i/p wire configuration\n");
goto err_free_irq;
}
titsc_step_config(ts_dev);
titsc_writel(ts_dev, REG_FIFO0THR,
ts_dev->coordinate_readouts * 2 + 2 - 1);
input_dev->name = "ti-tsc";
input_dev->dev.parent = &pdev->dev;
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
input_set_abs_params(input_dev, ABS_X, 0, MAX_12BIT, 0, 0);
input_set_abs_params(input_dev, ABS_Y, 0, MAX_12BIT, 0, 0);
input_set_abs_params(input_dev, ABS_PRESSURE, 0, MAX_12BIT, 0, 0);
/* register to the input system */
err = input_register_device(input_dev);
if (err)
goto err_free_irq;
platform_set_drvdata(pdev, ts_dev);
return 0;
err_free_irq:
dev_pm_clear_wake_irq(&pdev->dev);
device_init_wakeup(&pdev->dev, false);
free_irq(ts_dev->irq, ts_dev);
err_free_mem:
input_free_device(input_dev);
kfree(ts_dev);
return err;
}
static int titsc_remove(struct platform_device *pdev)
{
struct titsc *ts_dev = platform_get_drvdata(pdev);
u32 steps;
dev_pm_clear_wake_irq(&pdev->dev);
device_init_wakeup(&pdev->dev, false);
free_irq(ts_dev->irq, ts_dev);
/* total steps followed by the enable mask */
steps = 2 * ts_dev->coordinate_readouts + 2;
steps = (1 << steps) - 1;
am335x_tsc_se_clr(ts_dev->mfd_tscadc, steps);
input_unregister_device(ts_dev->input);
kfree(ts_dev);
return 0;
}
static int titsc_suspend(struct device *dev)
{
struct titsc *ts_dev = dev_get_drvdata(dev);
unsigned int idle;
if (device_may_wakeup(dev)) {
titsc_writel(ts_dev, REG_IRQSTATUS, TSC_IRQENB_MASK);
idle = titsc_readl(ts_dev, REG_IRQENABLE);
titsc_writel(ts_dev, REG_IRQENABLE,
(idle | IRQENB_HW_PEN));
titsc_writel(ts_dev, REG_IRQWAKEUP, IRQWKUP_ENB);
}
return 0;
}
static int titsc_resume(struct device *dev)
{
struct titsc *ts_dev = dev_get_drvdata(dev);
if (device_may_wakeup(dev)) {
titsc_writel(ts_dev, REG_IRQWAKEUP,
0x00);
titsc_writel(ts_dev, REG_IRQCLR, IRQENB_HW_PEN);
pm_relax(dev);
}
titsc_step_config(ts_dev);
titsc_writel(ts_dev, REG_FIFO0THR,
ts_dev->coordinate_readouts * 2 + 2 - 1);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(titsc_pm_ops, titsc_suspend, titsc_resume);
static const struct of_device_id ti_tsc_dt_ids[] = {
{ .compatible = "ti,am3359-tsc", },
{ }
};
MODULE_DEVICE_TABLE(of, ti_tsc_dt_ids);
static struct platform_driver ti_tsc_driver = {
.probe = titsc_probe,
.remove = titsc_remove,
.driver = {
.name = "TI-am335x-tsc",
.pm = pm_sleep_ptr(&titsc_pm_ops),
.of_match_table = ti_tsc_dt_ids,
},
};
module_platform_driver(ti_tsc_driver);
MODULE_DESCRIPTION("TI touchscreen controller driver");
MODULE_AUTHOR("Rachna Patil <[email protected]>");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/ti_am335x_tsc.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* cyttsp4_core.c
* Cypress TrueTouch(TM) Standard Product V4 Core driver module.
* For use with Cypress Txx4xx parts.
* Supported parts include:
* TMA4XX
* TMA1036
*
* Copyright (C) 2012 Cypress Semiconductor
*
* Contact Cypress Semiconductor at www.cypress.com <[email protected]>
*/
#include "cyttsp4_core.h"
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/input/mt.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/sched.h>
#include <linux/slab.h>
/* Timeout in ms. */
#define CY_CORE_REQUEST_EXCLUSIVE_TIMEOUT 500
#define CY_CORE_SLEEP_REQUEST_EXCLUSIVE_TIMEOUT 5000
#define CY_CORE_MODE_CHANGE_TIMEOUT 1000
#define CY_CORE_RESET_AND_WAIT_TIMEOUT 500
#define CY_CORE_WAKEUP_TIMEOUT 500
#define CY_CORE_STARTUP_RETRY_COUNT 3
static const char * const cyttsp4_tch_abs_string[] = {
[CY_TCH_X] = "X",
[CY_TCH_Y] = "Y",
[CY_TCH_P] = "P",
[CY_TCH_T] = "T",
[CY_TCH_E] = "E",
[CY_TCH_O] = "O",
[CY_TCH_W] = "W",
[CY_TCH_MAJ] = "MAJ",
[CY_TCH_MIN] = "MIN",
[CY_TCH_OR] = "OR",
[CY_TCH_NUM_ABS] = "INVALID"
};
static const u8 ldr_exit[] = {
0xFF, 0x01, 0x3B, 0x00, 0x00, 0x4F, 0x6D, 0x17
};
static const u8 ldr_err_app[] = {
0x01, 0x02, 0x00, 0x00, 0x55, 0xDD, 0x17
};
static inline size_t merge_bytes(u8 high, u8 low)
{
return (high << 8) + low;
}
#ifdef VERBOSE_DEBUG
static void cyttsp4_pr_buf(struct device *dev, u8 *pr_buf, u8 *dptr, int size,
const char *data_name)
{
int i, k;
const char fmt[] = "%02X ";
int max;
if (!size)
return;
max = (CY_MAX_PRBUF_SIZE - 1) - sizeof(CY_PR_TRUNCATED);
pr_buf[0] = 0;
for (i = k = 0; i < size && k < max; i++, k += 3)
scnprintf(pr_buf + k, CY_MAX_PRBUF_SIZE, fmt, dptr[i]);
dev_vdbg(dev, "%s: %s[0..%d]=%s%s\n", __func__, data_name, size - 1,
pr_buf, size <= max ? "" : CY_PR_TRUNCATED);
}
#else
#define cyttsp4_pr_buf(dev, pr_buf, dptr, size, data_name) do { } while (0)
#endif
static int cyttsp4_load_status_regs(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
struct device *dev = cd->dev;
int rc;
rc = cyttsp4_adap_read(cd, CY_REG_BASE, si->si_ofs.mode_size,
si->xy_mode);
if (rc < 0)
dev_err(dev, "%s: fail read mode regs r=%d\n",
__func__, rc);
else
cyttsp4_pr_buf(dev, cd->pr_buf, si->xy_mode,
si->si_ofs.mode_size, "xy_mode");
return rc;
}
static int cyttsp4_handshake(struct cyttsp4 *cd, u8 mode)
{
u8 cmd = mode ^ CY_HST_TOGGLE;
int rc;
/*
* Mode change issued, handshaking now will cause endless mode change
* requests, for sync mode modechange will do same with handshake
* */
if (mode & CY_HST_MODE_CHANGE)
return 0;
rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(cmd), &cmd);
if (rc < 0)
dev_err(cd->dev, "%s: bus write fail on handshake (ret=%d)\n",
__func__, rc);
return rc;
}
static int cyttsp4_hw_soft_reset(struct cyttsp4 *cd)
{
u8 cmd = CY_HST_RESET;
int rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(cmd), &cmd);
if (rc < 0) {
dev_err(cd->dev, "%s: FAILED to execute SOFT reset\n",
__func__);
return rc;
}
return 0;
}
static int cyttsp4_hw_hard_reset(struct cyttsp4 *cd)
{
if (cd->cpdata->xres) {
cd->cpdata->xres(cd->cpdata, cd->dev);
dev_dbg(cd->dev, "%s: execute HARD reset\n", __func__);
return 0;
}
dev_err(cd->dev, "%s: FAILED to execute HARD reset\n", __func__);
return -ENOSYS;
}
static int cyttsp4_hw_reset(struct cyttsp4 *cd)
{
int rc = cyttsp4_hw_hard_reset(cd);
if (rc == -ENOSYS)
rc = cyttsp4_hw_soft_reset(cd);
return rc;
}
/*
* Gets number of bits for a touch filed as parameter,
* sets maximum value for field which is used as bit mask
* and returns number of bytes required for that field
*/
static int cyttsp4_bits_2_bytes(unsigned int nbits, size_t *max)
{
*max = 1UL << nbits;
return (nbits + 7) / 8;
}
static int cyttsp4_si_data_offsets(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
int rc = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(si->si_data),
&si->si_data);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read sysinfo data offsets r=%d\n",
__func__, rc);
return rc;
}
/* Print sysinfo data offsets */
cyttsp4_pr_buf(cd->dev, cd->pr_buf, (u8 *)&si->si_data,
sizeof(si->si_data), "sysinfo_data_offsets");
/* convert sysinfo data offset bytes into integers */
si->si_ofs.map_sz = merge_bytes(si->si_data.map_szh,
si->si_data.map_szl);
si->si_ofs.map_sz = merge_bytes(si->si_data.map_szh,
si->si_data.map_szl);
si->si_ofs.cydata_ofs = merge_bytes(si->si_data.cydata_ofsh,
si->si_data.cydata_ofsl);
si->si_ofs.test_ofs = merge_bytes(si->si_data.test_ofsh,
si->si_data.test_ofsl);
si->si_ofs.pcfg_ofs = merge_bytes(si->si_data.pcfg_ofsh,
si->si_data.pcfg_ofsl);
si->si_ofs.opcfg_ofs = merge_bytes(si->si_data.opcfg_ofsh,
si->si_data.opcfg_ofsl);
si->si_ofs.ddata_ofs = merge_bytes(si->si_data.ddata_ofsh,
si->si_data.ddata_ofsl);
si->si_ofs.mdata_ofs = merge_bytes(si->si_data.mdata_ofsh,
si->si_data.mdata_ofsl);
return rc;
}
static int cyttsp4_si_get_cydata(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
int read_offset;
int mfgid_sz, calc_mfgid_sz;
void *p;
int rc;
if (si->si_ofs.test_ofs <= si->si_ofs.cydata_ofs) {
dev_err(cd->dev,
"%s: invalid offset test_ofs: %zu, cydata_ofs: %zu\n",
__func__, si->si_ofs.test_ofs, si->si_ofs.cydata_ofs);
return -EINVAL;
}
si->si_ofs.cydata_size = si->si_ofs.test_ofs - si->si_ofs.cydata_ofs;
dev_dbg(cd->dev, "%s: cydata size: %zd\n", __func__,
si->si_ofs.cydata_size);
p = krealloc(si->si_ptrs.cydata, si->si_ofs.cydata_size, GFP_KERNEL);
if (p == NULL) {
dev_err(cd->dev, "%s: failed to allocate cydata memory\n",
__func__);
return -ENOMEM;
}
si->si_ptrs.cydata = p;
read_offset = si->si_ofs.cydata_ofs;
/* Read the CYDA registers up to MFGID field */
rc = cyttsp4_adap_read(cd, read_offset,
offsetof(struct cyttsp4_cydata, mfgid_sz)
+ sizeof(si->si_ptrs.cydata->mfgid_sz),
si->si_ptrs.cydata);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read cydata r=%d\n",
__func__, rc);
return rc;
}
/* Check MFGID size */
mfgid_sz = si->si_ptrs.cydata->mfgid_sz;
calc_mfgid_sz = si->si_ofs.cydata_size - sizeof(struct cyttsp4_cydata);
if (mfgid_sz != calc_mfgid_sz) {
dev_err(cd->dev, "%s: mismatch in MFGID size, reported:%d calculated:%d\n",
__func__, mfgid_sz, calc_mfgid_sz);
return -EINVAL;
}
read_offset += offsetof(struct cyttsp4_cydata, mfgid_sz)
+ sizeof(si->si_ptrs.cydata->mfgid_sz);
/* Read the CYDA registers for MFGID field */
rc = cyttsp4_adap_read(cd, read_offset, si->si_ptrs.cydata->mfgid_sz,
si->si_ptrs.cydata->mfg_id);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read cydata r=%d\n",
__func__, rc);
return rc;
}
read_offset += si->si_ptrs.cydata->mfgid_sz;
/* Read the rest of the CYDA registers */
rc = cyttsp4_adap_read(cd, read_offset,
sizeof(struct cyttsp4_cydata)
- offsetof(struct cyttsp4_cydata, cyito_idh),
&si->si_ptrs.cydata->cyito_idh);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read cydata r=%d\n",
__func__, rc);
return rc;
}
cyttsp4_pr_buf(cd->dev, cd->pr_buf, (u8 *)si->si_ptrs.cydata,
si->si_ofs.cydata_size, "sysinfo_cydata");
return rc;
}
static int cyttsp4_si_get_test_data(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
void *p;
int rc;
if (si->si_ofs.pcfg_ofs <= si->si_ofs.test_ofs) {
dev_err(cd->dev,
"%s: invalid offset pcfg_ofs: %zu, test_ofs: %zu\n",
__func__, si->si_ofs.pcfg_ofs, si->si_ofs.test_ofs);
return -EINVAL;
}
si->si_ofs.test_size = si->si_ofs.pcfg_ofs - si->si_ofs.test_ofs;
p = krealloc(si->si_ptrs.test, si->si_ofs.test_size, GFP_KERNEL);
if (p == NULL) {
dev_err(cd->dev, "%s: failed to allocate test memory\n",
__func__);
return -ENOMEM;
}
si->si_ptrs.test = p;
rc = cyttsp4_adap_read(cd, si->si_ofs.test_ofs, si->si_ofs.test_size,
si->si_ptrs.test);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read test data r=%d\n",
__func__, rc);
return rc;
}
cyttsp4_pr_buf(cd->dev, cd->pr_buf,
(u8 *)si->si_ptrs.test, si->si_ofs.test_size,
"sysinfo_test_data");
if (si->si_ptrs.test->post_codel &
CY_POST_CODEL_WDG_RST)
dev_info(cd->dev, "%s: %s codel=%02X\n",
__func__, "Reset was a WATCHDOG RESET",
si->si_ptrs.test->post_codel);
if (!(si->si_ptrs.test->post_codel &
CY_POST_CODEL_CFG_DATA_CRC_FAIL))
dev_info(cd->dev, "%s: %s codel=%02X\n", __func__,
"Config Data CRC FAIL",
si->si_ptrs.test->post_codel);
if (!(si->si_ptrs.test->post_codel &
CY_POST_CODEL_PANEL_TEST_FAIL))
dev_info(cd->dev, "%s: %s codel=%02X\n",
__func__, "PANEL TEST FAIL",
si->si_ptrs.test->post_codel);
dev_info(cd->dev, "%s: SCANNING is %s codel=%02X\n",
__func__, si->si_ptrs.test->post_codel & 0x08 ?
"ENABLED" : "DISABLED",
si->si_ptrs.test->post_codel);
return rc;
}
static int cyttsp4_si_get_pcfg_data(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
void *p;
int rc;
if (si->si_ofs.opcfg_ofs <= si->si_ofs.pcfg_ofs) {
dev_err(cd->dev,
"%s: invalid offset opcfg_ofs: %zu, pcfg_ofs: %zu\n",
__func__, si->si_ofs.opcfg_ofs, si->si_ofs.pcfg_ofs);
return -EINVAL;
}
si->si_ofs.pcfg_size = si->si_ofs.opcfg_ofs - si->si_ofs.pcfg_ofs;
p = krealloc(si->si_ptrs.pcfg, si->si_ofs.pcfg_size, GFP_KERNEL);
if (p == NULL) {
dev_err(cd->dev, "%s: failed to allocate pcfg memory\n",
__func__);
return -ENOMEM;
}
si->si_ptrs.pcfg = p;
rc = cyttsp4_adap_read(cd, si->si_ofs.pcfg_ofs, si->si_ofs.pcfg_size,
si->si_ptrs.pcfg);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read pcfg data r=%d\n",
__func__, rc);
return rc;
}
si->si_ofs.max_x = merge_bytes((si->si_ptrs.pcfg->res_xh
& CY_PCFG_RESOLUTION_X_MASK), si->si_ptrs.pcfg->res_xl);
si->si_ofs.x_origin = !!(si->si_ptrs.pcfg->res_xh
& CY_PCFG_ORIGIN_X_MASK);
si->si_ofs.max_y = merge_bytes((si->si_ptrs.pcfg->res_yh
& CY_PCFG_RESOLUTION_Y_MASK), si->si_ptrs.pcfg->res_yl);
si->si_ofs.y_origin = !!(si->si_ptrs.pcfg->res_yh
& CY_PCFG_ORIGIN_Y_MASK);
si->si_ofs.max_p = merge_bytes(si->si_ptrs.pcfg->max_zh,
si->si_ptrs.pcfg->max_zl);
cyttsp4_pr_buf(cd->dev, cd->pr_buf,
(u8 *)si->si_ptrs.pcfg,
si->si_ofs.pcfg_size, "sysinfo_pcfg_data");
return rc;
}
static int cyttsp4_si_get_opcfg_data(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
struct cyttsp4_tch_abs_params *tch;
struct cyttsp4_tch_rec_params *tch_old, *tch_new;
enum cyttsp4_tch_abs abs;
int i;
void *p;
int rc;
if (si->si_ofs.ddata_ofs <= si->si_ofs.opcfg_ofs) {
dev_err(cd->dev,
"%s: invalid offset ddata_ofs: %zu, opcfg_ofs: %zu\n",
__func__, si->si_ofs.ddata_ofs, si->si_ofs.opcfg_ofs);
return -EINVAL;
}
si->si_ofs.opcfg_size = si->si_ofs.ddata_ofs - si->si_ofs.opcfg_ofs;
p = krealloc(si->si_ptrs.opcfg, si->si_ofs.opcfg_size, GFP_KERNEL);
if (p == NULL) {
dev_err(cd->dev, "%s: failed to allocate opcfg memory\n",
__func__);
return -ENOMEM;
}
si->si_ptrs.opcfg = p;
rc = cyttsp4_adap_read(cd, si->si_ofs.opcfg_ofs, si->si_ofs.opcfg_size,
si->si_ptrs.opcfg);
if (rc < 0) {
dev_err(cd->dev, "%s: fail read opcfg data r=%d\n",
__func__, rc);
return rc;
}
si->si_ofs.cmd_ofs = si->si_ptrs.opcfg->cmd_ofs;
si->si_ofs.rep_ofs = si->si_ptrs.opcfg->rep_ofs;
si->si_ofs.rep_sz = (si->si_ptrs.opcfg->rep_szh * 256) +
si->si_ptrs.opcfg->rep_szl;
si->si_ofs.num_btns = si->si_ptrs.opcfg->num_btns;
si->si_ofs.num_btn_regs = (si->si_ofs.num_btns +
CY_NUM_BTN_PER_REG - 1) / CY_NUM_BTN_PER_REG;
si->si_ofs.tt_stat_ofs = si->si_ptrs.opcfg->tt_stat_ofs;
si->si_ofs.obj_cfg0 = si->si_ptrs.opcfg->obj_cfg0;
si->si_ofs.max_tchs = si->si_ptrs.opcfg->max_tchs &
CY_BYTE_OFS_MASK;
si->si_ofs.tch_rec_size = si->si_ptrs.opcfg->tch_rec_size &
CY_BYTE_OFS_MASK;
/* Get the old touch fields */
for (abs = CY_TCH_X; abs < CY_NUM_TCH_FIELDS; abs++) {
tch = &si->si_ofs.tch_abs[abs];
tch_old = &si->si_ptrs.opcfg->tch_rec_old[abs];
tch->ofs = tch_old->loc & CY_BYTE_OFS_MASK;
tch->size = cyttsp4_bits_2_bytes(tch_old->size,
&tch->max);
tch->bofs = (tch_old->loc & CY_BOFS_MASK) >> CY_BOFS_SHIFT;
}
/* button fields */
si->si_ofs.btn_rec_size = si->si_ptrs.opcfg->btn_rec_size;
si->si_ofs.btn_diff_ofs = si->si_ptrs.opcfg->btn_diff_ofs;
si->si_ofs.btn_diff_size = si->si_ptrs.opcfg->btn_diff_size;
if (si->si_ofs.tch_rec_size > CY_TMA1036_TCH_REC_SIZE) {
/* Get the extended touch fields */
for (i = 0; i < CY_NUM_EXT_TCH_FIELDS; abs++, i++) {
tch = &si->si_ofs.tch_abs[abs];
tch_new = &si->si_ptrs.opcfg->tch_rec_new[i];
tch->ofs = tch_new->loc & CY_BYTE_OFS_MASK;
tch->size = cyttsp4_bits_2_bytes(tch_new->size,
&tch->max);
tch->bofs = (tch_new->loc & CY_BOFS_MASK) >> CY_BOFS_SHIFT;
}
}
for (abs = 0; abs < CY_TCH_NUM_ABS; abs++) {
dev_dbg(cd->dev, "%s: tch_rec_%s\n", __func__,
cyttsp4_tch_abs_string[abs]);
dev_dbg(cd->dev, "%s: ofs =%2zd\n", __func__,
si->si_ofs.tch_abs[abs].ofs);
dev_dbg(cd->dev, "%s: siz =%2zd\n", __func__,
si->si_ofs.tch_abs[abs].size);
dev_dbg(cd->dev, "%s: max =%2zd\n", __func__,
si->si_ofs.tch_abs[abs].max);
dev_dbg(cd->dev, "%s: bofs=%2zd\n", __func__,
si->si_ofs.tch_abs[abs].bofs);
}
si->si_ofs.mode_size = si->si_ofs.tt_stat_ofs + 1;
si->si_ofs.data_size = si->si_ofs.max_tchs *
si->si_ptrs.opcfg->tch_rec_size;
cyttsp4_pr_buf(cd->dev, cd->pr_buf, (u8 *)si->si_ptrs.opcfg,
si->si_ofs.opcfg_size, "sysinfo_opcfg_data");
return 0;
}
static int cyttsp4_si_get_ddata(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
void *p;
int rc;
si->si_ofs.ddata_size = si->si_ofs.mdata_ofs - si->si_ofs.ddata_ofs;
p = krealloc(si->si_ptrs.ddata, si->si_ofs.ddata_size, GFP_KERNEL);
if (p == NULL) {
dev_err(cd->dev, "%s: fail alloc ddata memory\n", __func__);
return -ENOMEM;
}
si->si_ptrs.ddata = p;
rc = cyttsp4_adap_read(cd, si->si_ofs.ddata_ofs, si->si_ofs.ddata_size,
si->si_ptrs.ddata);
if (rc < 0)
dev_err(cd->dev, "%s: fail read ddata data r=%d\n",
__func__, rc);
else
cyttsp4_pr_buf(cd->dev, cd->pr_buf,
(u8 *)si->si_ptrs.ddata,
si->si_ofs.ddata_size, "sysinfo_ddata");
return rc;
}
static int cyttsp4_si_get_mdata(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
void *p;
int rc;
si->si_ofs.mdata_size = si->si_ofs.map_sz - si->si_ofs.mdata_ofs;
p = krealloc(si->si_ptrs.mdata, si->si_ofs.mdata_size, GFP_KERNEL);
if (p == NULL) {
dev_err(cd->dev, "%s: fail alloc mdata memory\n", __func__);
return -ENOMEM;
}
si->si_ptrs.mdata = p;
rc = cyttsp4_adap_read(cd, si->si_ofs.mdata_ofs, si->si_ofs.mdata_size,
si->si_ptrs.mdata);
if (rc < 0)
dev_err(cd->dev, "%s: fail read mdata data r=%d\n",
__func__, rc);
else
cyttsp4_pr_buf(cd->dev, cd->pr_buf,
(u8 *)si->si_ptrs.mdata,
si->si_ofs.mdata_size, "sysinfo_mdata");
return rc;
}
static int cyttsp4_si_get_btn_data(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
int btn;
int num_defined_keys;
u16 *key_table;
void *p;
int rc = 0;
if (si->si_ofs.num_btns) {
si->si_ofs.btn_keys_size = si->si_ofs.num_btns *
sizeof(struct cyttsp4_btn);
p = krealloc(si->btn, si->si_ofs.btn_keys_size,
GFP_KERNEL|__GFP_ZERO);
if (p == NULL) {
dev_err(cd->dev, "%s: %s\n", __func__,
"fail alloc btn_keys memory");
return -ENOMEM;
}
si->btn = p;
if (cd->cpdata->sett[CY_IC_GRPNUM_BTN_KEYS] == NULL)
num_defined_keys = 0;
else if (cd->cpdata->sett[CY_IC_GRPNUM_BTN_KEYS]->data == NULL)
num_defined_keys = 0;
else
num_defined_keys = cd->cpdata->sett
[CY_IC_GRPNUM_BTN_KEYS]->size;
for (btn = 0; btn < si->si_ofs.num_btns &&
btn < num_defined_keys; btn++) {
key_table = (u16 *)cd->cpdata->sett
[CY_IC_GRPNUM_BTN_KEYS]->data;
si->btn[btn].key_code = key_table[btn];
si->btn[btn].state = CY_BTN_RELEASED;
si->btn[btn].enabled = true;
}
for (; btn < si->si_ofs.num_btns; btn++) {
si->btn[btn].key_code = KEY_RESERVED;
si->btn[btn].state = CY_BTN_RELEASED;
si->btn[btn].enabled = true;
}
return rc;
}
si->si_ofs.btn_keys_size = 0;
kfree(si->btn);
si->btn = NULL;
return rc;
}
static int cyttsp4_si_get_op_data_ptrs(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
void *p;
p = krealloc(si->xy_mode, si->si_ofs.mode_size, GFP_KERNEL|__GFP_ZERO);
if (p == NULL)
return -ENOMEM;
si->xy_mode = p;
p = krealloc(si->xy_data, si->si_ofs.data_size, GFP_KERNEL|__GFP_ZERO);
if (p == NULL)
return -ENOMEM;
si->xy_data = p;
p = krealloc(si->btn_rec_data,
si->si_ofs.btn_rec_size * si->si_ofs.num_btns,
GFP_KERNEL|__GFP_ZERO);
if (p == NULL)
return -ENOMEM;
si->btn_rec_data = p;
return 0;
}
static void cyttsp4_si_put_log_data(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
dev_dbg(cd->dev, "%s: cydata_ofs =%4zd siz=%4zd\n", __func__,
si->si_ofs.cydata_ofs, si->si_ofs.cydata_size);
dev_dbg(cd->dev, "%s: test_ofs =%4zd siz=%4zd\n", __func__,
si->si_ofs.test_ofs, si->si_ofs.test_size);
dev_dbg(cd->dev, "%s: pcfg_ofs =%4zd siz=%4zd\n", __func__,
si->si_ofs.pcfg_ofs, si->si_ofs.pcfg_size);
dev_dbg(cd->dev, "%s: opcfg_ofs =%4zd siz=%4zd\n", __func__,
si->si_ofs.opcfg_ofs, si->si_ofs.opcfg_size);
dev_dbg(cd->dev, "%s: ddata_ofs =%4zd siz=%4zd\n", __func__,
si->si_ofs.ddata_ofs, si->si_ofs.ddata_size);
dev_dbg(cd->dev, "%s: mdata_ofs =%4zd siz=%4zd\n", __func__,
si->si_ofs.mdata_ofs, si->si_ofs.mdata_size);
dev_dbg(cd->dev, "%s: cmd_ofs =%4zd\n", __func__,
si->si_ofs.cmd_ofs);
dev_dbg(cd->dev, "%s: rep_ofs =%4zd\n", __func__,
si->si_ofs.rep_ofs);
dev_dbg(cd->dev, "%s: rep_sz =%4zd\n", __func__,
si->si_ofs.rep_sz);
dev_dbg(cd->dev, "%s: num_btns =%4zd\n", __func__,
si->si_ofs.num_btns);
dev_dbg(cd->dev, "%s: num_btn_regs =%4zd\n", __func__,
si->si_ofs.num_btn_regs);
dev_dbg(cd->dev, "%s: tt_stat_ofs =%4zd\n", __func__,
si->si_ofs.tt_stat_ofs);
dev_dbg(cd->dev, "%s: tch_rec_size =%4zd\n", __func__,
si->si_ofs.tch_rec_size);
dev_dbg(cd->dev, "%s: max_tchs =%4zd\n", __func__,
si->si_ofs.max_tchs);
dev_dbg(cd->dev, "%s: mode_size =%4zd\n", __func__,
si->si_ofs.mode_size);
dev_dbg(cd->dev, "%s: data_size =%4zd\n", __func__,
si->si_ofs.data_size);
dev_dbg(cd->dev, "%s: map_sz =%4zd\n", __func__,
si->si_ofs.map_sz);
dev_dbg(cd->dev, "%s: btn_rec_size =%2zd\n", __func__,
si->si_ofs.btn_rec_size);
dev_dbg(cd->dev, "%s: btn_diff_ofs =%2zd\n", __func__,
si->si_ofs.btn_diff_ofs);
dev_dbg(cd->dev, "%s: btn_diff_size =%2zd\n", __func__,
si->si_ofs.btn_diff_size);
dev_dbg(cd->dev, "%s: max_x = 0x%04zX (%zd)\n", __func__,
si->si_ofs.max_x, si->si_ofs.max_x);
dev_dbg(cd->dev, "%s: x_origin = %zd (%s)\n", __func__,
si->si_ofs.x_origin,
si->si_ofs.x_origin == CY_NORMAL_ORIGIN ?
"left corner" : "right corner");
dev_dbg(cd->dev, "%s: max_y = 0x%04zX (%zd)\n", __func__,
si->si_ofs.max_y, si->si_ofs.max_y);
dev_dbg(cd->dev, "%s: y_origin = %zd (%s)\n", __func__,
si->si_ofs.y_origin,
si->si_ofs.y_origin == CY_NORMAL_ORIGIN ?
"upper corner" : "lower corner");
dev_dbg(cd->dev, "%s: max_p = 0x%04zX (%zd)\n", __func__,
si->si_ofs.max_p, si->si_ofs.max_p);
dev_dbg(cd->dev, "%s: xy_mode=%p xy_data=%p\n", __func__,
si->xy_mode, si->xy_data);
}
static int cyttsp4_get_sysinfo_regs(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
int rc;
rc = cyttsp4_si_data_offsets(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_cydata(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_test_data(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_pcfg_data(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_opcfg_data(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_ddata(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_mdata(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_btn_data(cd);
if (rc < 0)
return rc;
rc = cyttsp4_si_get_op_data_ptrs(cd);
if (rc < 0) {
dev_err(cd->dev, "%s: failed to get_op_data\n",
__func__);
return rc;
}
cyttsp4_si_put_log_data(cd);
/* provide flow control handshake */
rc = cyttsp4_handshake(cd, si->si_data.hst_mode);
if (rc < 0)
dev_err(cd->dev, "%s: handshake fail on sysinfo reg\n",
__func__);
si->ready = true;
return rc;
}
static void cyttsp4_queue_startup_(struct cyttsp4 *cd)
{
if (cd->startup_state == STARTUP_NONE) {
cd->startup_state = STARTUP_QUEUED;
schedule_work(&cd->startup_work);
dev_dbg(cd->dev, "%s: cyttsp4_startup queued\n", __func__);
} else {
dev_dbg(cd->dev, "%s: startup_state = %d\n", __func__,
cd->startup_state);
}
}
static void cyttsp4_report_slot_liftoff(struct cyttsp4_mt_data *md,
int max_slots)
{
int t;
if (md->num_prv_tch == 0)
return;
for (t = 0; t < max_slots; t++) {
input_mt_slot(md->input, t);
input_mt_report_slot_inactive(md->input);
}
}
static void cyttsp4_lift_all(struct cyttsp4_mt_data *md)
{
if (!md->si)
return;
if (md->num_prv_tch != 0) {
cyttsp4_report_slot_liftoff(md,
md->si->si_ofs.tch_abs[CY_TCH_T].max);
input_sync(md->input);
md->num_prv_tch = 0;
}
}
static void cyttsp4_get_touch_axis(struct cyttsp4_mt_data *md,
int *axis, int size, int max, u8 *xy_data, int bofs)
{
int nbyte;
int next;
for (nbyte = 0, *axis = 0, next = 0; nbyte < size; nbyte++) {
dev_vdbg(&md->input->dev,
"%s: *axis=%02X(%d) size=%d max=%08X xy_data=%p"
" xy_data[%d]=%02X(%d) bofs=%d\n",
__func__, *axis, *axis, size, max, xy_data, next,
xy_data[next], xy_data[next], bofs);
*axis = (*axis * 256) + (xy_data[next] >> bofs);
next++;
}
*axis &= max - 1;
dev_vdbg(&md->input->dev,
"%s: *axis=%02X(%d) size=%d max=%08X xy_data=%p"
" xy_data[%d]=%02X(%d)\n",
__func__, *axis, *axis, size, max, xy_data, next,
xy_data[next], xy_data[next]);
}
static void cyttsp4_get_touch(struct cyttsp4_mt_data *md,
struct cyttsp4_touch *touch, u8 *xy_data)
{
struct device *dev = &md->input->dev;
struct cyttsp4_sysinfo *si = md->si;
enum cyttsp4_tch_abs abs;
bool flipped;
for (abs = CY_TCH_X; abs < CY_TCH_NUM_ABS; abs++) {
cyttsp4_get_touch_axis(md, &touch->abs[abs],
si->si_ofs.tch_abs[abs].size,
si->si_ofs.tch_abs[abs].max,
xy_data + si->si_ofs.tch_abs[abs].ofs,
si->si_ofs.tch_abs[abs].bofs);
dev_vdbg(dev, "%s: get %s=%04X(%d)\n", __func__,
cyttsp4_tch_abs_string[abs],
touch->abs[abs], touch->abs[abs]);
}
if (md->pdata->flags & CY_FLAG_FLIP) {
swap(touch->abs[CY_TCH_X], touch->abs[CY_TCH_Y]);
flipped = true;
} else
flipped = false;
if (md->pdata->flags & CY_FLAG_INV_X) {
if (flipped)
touch->abs[CY_TCH_X] = md->si->si_ofs.max_y -
touch->abs[CY_TCH_X];
else
touch->abs[CY_TCH_X] = md->si->si_ofs.max_x -
touch->abs[CY_TCH_X];
}
if (md->pdata->flags & CY_FLAG_INV_Y) {
if (flipped)
touch->abs[CY_TCH_Y] = md->si->si_ofs.max_x -
touch->abs[CY_TCH_Y];
else
touch->abs[CY_TCH_Y] = md->si->si_ofs.max_y -
touch->abs[CY_TCH_Y];
}
dev_vdbg(dev, "%s: flip=%s inv-x=%s inv-y=%s x=%04X(%d) y=%04X(%d)\n",
__func__, flipped ? "true" : "false",
md->pdata->flags & CY_FLAG_INV_X ? "true" : "false",
md->pdata->flags & CY_FLAG_INV_Y ? "true" : "false",
touch->abs[CY_TCH_X], touch->abs[CY_TCH_X],
touch->abs[CY_TCH_Y], touch->abs[CY_TCH_Y]);
}
static void cyttsp4_final_sync(struct input_dev *input, int max_slots, int *ids)
{
int t;
for (t = 0; t < max_slots; t++) {
if (ids[t])
continue;
input_mt_slot(input, t);
input_mt_report_slot_inactive(input);
}
input_sync(input);
}
static void cyttsp4_get_mt_touches(struct cyttsp4_mt_data *md, int num_cur_tch)
{
struct device *dev = &md->input->dev;
struct cyttsp4_sysinfo *si = md->si;
struct cyttsp4_touch tch;
int sig;
int i, j, t = 0;
int ids[max(CY_TMA1036_MAX_TCH, CY_TMA4XX_MAX_TCH)];
memset(ids, 0, si->si_ofs.tch_abs[CY_TCH_T].max * sizeof(int));
for (i = 0; i < num_cur_tch; i++) {
cyttsp4_get_touch(md, &tch, si->xy_data +
(i * si->si_ofs.tch_rec_size));
if ((tch.abs[CY_TCH_T] < md->pdata->frmwrk->abs
[(CY_ABS_ID_OST * CY_NUM_ABS_SET) + CY_MIN_OST]) ||
(tch.abs[CY_TCH_T] > md->pdata->frmwrk->abs
[(CY_ABS_ID_OST * CY_NUM_ABS_SET) + CY_MAX_OST])) {
dev_err(dev, "%s: tch=%d -> bad trk_id=%d max_id=%d\n",
__func__, i, tch.abs[CY_TCH_T],
md->pdata->frmwrk->abs[(CY_ABS_ID_OST *
CY_NUM_ABS_SET) + CY_MAX_OST]);
continue;
}
/* use 0 based track id's */
sig = md->pdata->frmwrk->abs
[(CY_ABS_ID_OST * CY_NUM_ABS_SET) + 0];
if (sig != CY_IGNORE_VALUE) {
t = tch.abs[CY_TCH_T] - md->pdata->frmwrk->abs
[(CY_ABS_ID_OST * CY_NUM_ABS_SET) + CY_MIN_OST];
if (tch.abs[CY_TCH_E] == CY_EV_LIFTOFF) {
dev_dbg(dev, "%s: t=%d e=%d lift-off\n",
__func__, t, tch.abs[CY_TCH_E]);
goto cyttsp4_get_mt_touches_pr_tch;
}
input_mt_slot(md->input, t);
input_mt_report_slot_state(md->input, MT_TOOL_FINGER,
true);
ids[t] = true;
}
/* all devices: position and pressure fields */
for (j = 0; j <= CY_ABS_W_OST; j++) {
sig = md->pdata->frmwrk->abs[((CY_ABS_X_OST + j) *
CY_NUM_ABS_SET) + 0];
if (sig != CY_IGNORE_VALUE)
input_report_abs(md->input, sig,
tch.abs[CY_TCH_X + j]);
}
if (si->si_ofs.tch_rec_size > CY_TMA1036_TCH_REC_SIZE) {
/*
* TMA400 size and orientation fields:
* if pressure is non-zero and major touch
* signal is zero, then set major and minor touch
* signals to minimum non-zero value
*/
if (tch.abs[CY_TCH_P] > 0 && tch.abs[CY_TCH_MAJ] == 0)
tch.abs[CY_TCH_MAJ] = tch.abs[CY_TCH_MIN] = 1;
/* Get the extended touch fields */
for (j = 0; j < CY_NUM_EXT_TCH_FIELDS; j++) {
sig = md->pdata->frmwrk->abs
[((CY_ABS_MAJ_OST + j) *
CY_NUM_ABS_SET) + 0];
if (sig != CY_IGNORE_VALUE)
input_report_abs(md->input, sig,
tch.abs[CY_TCH_MAJ + j]);
}
}
cyttsp4_get_mt_touches_pr_tch:
if (si->si_ofs.tch_rec_size > CY_TMA1036_TCH_REC_SIZE)
dev_dbg(dev,
"%s: t=%d x=%d y=%d z=%d M=%d m=%d o=%d e=%d\n",
__func__, t,
tch.abs[CY_TCH_X],
tch.abs[CY_TCH_Y],
tch.abs[CY_TCH_P],
tch.abs[CY_TCH_MAJ],
tch.abs[CY_TCH_MIN],
tch.abs[CY_TCH_OR],
tch.abs[CY_TCH_E]);
else
dev_dbg(dev,
"%s: t=%d x=%d y=%d z=%d e=%d\n", __func__,
t,
tch.abs[CY_TCH_X],
tch.abs[CY_TCH_Y],
tch.abs[CY_TCH_P],
tch.abs[CY_TCH_E]);
}
cyttsp4_final_sync(md->input, si->si_ofs.tch_abs[CY_TCH_T].max, ids);
md->num_prv_tch = num_cur_tch;
return;
}
/* read xy_data for all current touches */
static int cyttsp4_xy_worker(struct cyttsp4 *cd)
{
struct cyttsp4_mt_data *md = &cd->md;
struct device *dev = &md->input->dev;
struct cyttsp4_sysinfo *si = md->si;
u8 num_cur_tch;
u8 hst_mode;
u8 rep_len;
u8 rep_stat;
u8 tt_stat;
int rc = 0;
/*
* Get event data from cyttsp4 device.
* The event data includes all data
* for all active touches.
* Event data also includes button data
*/
/*
* Use 2 reads:
* 1st read to get mode + button bytes + touch count (core)
* 2nd read (optional) to get touch 1 - touch n data
*/
hst_mode = si->xy_mode[CY_REG_BASE];
rep_len = si->xy_mode[si->si_ofs.rep_ofs];
rep_stat = si->xy_mode[si->si_ofs.rep_ofs + 1];
tt_stat = si->xy_mode[si->si_ofs.tt_stat_ofs];
dev_vdbg(dev, "%s: %s%02X %s%d %s%02X %s%02X\n", __func__,
"hst_mode=", hst_mode, "rep_len=", rep_len,
"rep_stat=", rep_stat, "tt_stat=", tt_stat);
num_cur_tch = GET_NUM_TOUCHES(tt_stat);
dev_vdbg(dev, "%s: num_cur_tch=%d\n", __func__, num_cur_tch);
if (rep_len == 0 && num_cur_tch > 0) {
dev_err(dev, "%s: report length error rep_len=%d num_tch=%d\n",
__func__, rep_len, num_cur_tch);
goto cyttsp4_xy_worker_exit;
}
/* read touches */
if (num_cur_tch > 0) {
rc = cyttsp4_adap_read(cd, si->si_ofs.tt_stat_ofs + 1,
num_cur_tch * si->si_ofs.tch_rec_size,
si->xy_data);
if (rc < 0) {
dev_err(dev, "%s: read fail on touch regs r=%d\n",
__func__, rc);
goto cyttsp4_xy_worker_exit;
}
}
/* print xy data */
cyttsp4_pr_buf(dev, cd->pr_buf, si->xy_data, num_cur_tch *
si->si_ofs.tch_rec_size, "xy_data");
/* check any error conditions */
if (IS_BAD_PKT(rep_stat)) {
dev_dbg(dev, "%s: Invalid buffer detected\n", __func__);
rc = 0;
goto cyttsp4_xy_worker_exit;
}
if (IS_LARGE_AREA(tt_stat))
dev_dbg(dev, "%s: Large area detected\n", __func__);
if (num_cur_tch > si->si_ofs.max_tchs) {
dev_err(dev, "%s: too many tch; set to max tch (n=%d c=%zd)\n",
__func__, num_cur_tch, si->si_ofs.max_tchs);
num_cur_tch = si->si_ofs.max_tchs;
}
/* extract xy_data for all currently reported touches */
dev_vdbg(dev, "%s: extract data num_cur_tch=%d\n", __func__,
num_cur_tch);
if (num_cur_tch)
cyttsp4_get_mt_touches(md, num_cur_tch);
else
cyttsp4_lift_all(md);
rc = 0;
cyttsp4_xy_worker_exit:
return rc;
}
static int cyttsp4_mt_attention(struct cyttsp4 *cd)
{
struct device *dev = cd->dev;
struct cyttsp4_mt_data *md = &cd->md;
int rc = 0;
if (!md->si)
return 0;
mutex_lock(&md->report_lock);
if (!md->is_suspended) {
/* core handles handshake */
rc = cyttsp4_xy_worker(cd);
} else {
dev_vdbg(dev, "%s: Ignoring report while suspended\n",
__func__);
}
mutex_unlock(&md->report_lock);
if (rc < 0)
dev_err(dev, "%s: xy_worker error r=%d\n", __func__, rc);
return rc;
}
static irqreturn_t cyttsp4_irq(int irq, void *handle)
{
struct cyttsp4 *cd = handle;
struct device *dev = cd->dev;
enum cyttsp4_mode cur_mode;
u8 cmd_ofs = cd->sysinfo.si_ofs.cmd_ofs;
u8 mode[3];
int rc;
/*
* Check whether this IRQ should be ignored (external)
* This should be the very first thing to check since
* ignore_irq may be set for a very short period of time
*/
if (atomic_read(&cd->ignore_irq)) {
dev_vdbg(dev, "%s: Ignoring IRQ\n", __func__);
return IRQ_HANDLED;
}
dev_dbg(dev, "%s int:0x%x\n", __func__, cd->int_status);
mutex_lock(&cd->system_lock);
/* Just to debug */
if (cd->sleep_state == SS_SLEEP_ON || cd->sleep_state == SS_SLEEPING)
dev_vdbg(dev, "%s: Received IRQ while in sleep\n", __func__);
rc = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(mode), mode);
if (rc) {
dev_err(cd->dev, "%s: Fail read adapter r=%d\n", __func__, rc);
goto cyttsp4_irq_exit;
}
dev_vdbg(dev, "%s mode[0-2]:0x%X 0x%X 0x%X\n", __func__,
mode[0], mode[1], mode[2]);
if (IS_BOOTLOADER(mode[0], mode[1])) {
cur_mode = CY_MODE_BOOTLOADER;
dev_vdbg(dev, "%s: bl running\n", __func__);
if (cd->mode == CY_MODE_BOOTLOADER) {
/* Signal bootloader heartbeat heard */
wake_up(&cd->wait_q);
goto cyttsp4_irq_exit;
}
/* switch to bootloader */
dev_dbg(dev, "%s: restart switch to bl m=%d -> m=%d\n",
__func__, cd->mode, cur_mode);
/* catch operation->bl glitch */
if (cd->mode != CY_MODE_UNKNOWN) {
/* Incase startup_state do not let startup_() */
cd->mode = CY_MODE_UNKNOWN;
cyttsp4_queue_startup_(cd);
goto cyttsp4_irq_exit;
}
/*
* do not wake thread on this switch since
* it is possible to get an early heartbeat
* prior to performing the reset
*/
cd->mode = cur_mode;
goto cyttsp4_irq_exit;
}
switch (mode[0] & CY_HST_MODE) {
case CY_HST_OPERATE:
cur_mode = CY_MODE_OPERATIONAL;
dev_vdbg(dev, "%s: operational\n", __func__);
break;
case CY_HST_CAT:
cur_mode = CY_MODE_CAT;
dev_vdbg(dev, "%s: CaT\n", __func__);
break;
case CY_HST_SYSINFO:
cur_mode = CY_MODE_SYSINFO;
dev_vdbg(dev, "%s: sysinfo\n", __func__);
break;
default:
cur_mode = CY_MODE_UNKNOWN;
dev_err(dev, "%s: unknown HST mode 0x%02X\n", __func__,
mode[0]);
break;
}
/* Check whether this IRQ should be ignored (internal) */
if (cd->int_status & CY_INT_IGNORE) {
dev_vdbg(dev, "%s: Ignoring IRQ\n", __func__);
goto cyttsp4_irq_exit;
}
/* Check for wake up interrupt */
if (cd->int_status & CY_INT_AWAKE) {
cd->int_status &= ~CY_INT_AWAKE;
wake_up(&cd->wait_q);
dev_vdbg(dev, "%s: Received wake up interrupt\n", __func__);
goto cyttsp4_irq_handshake;
}
/* Expecting mode change interrupt */
if ((cd->int_status & CY_INT_MODE_CHANGE)
&& (mode[0] & CY_HST_MODE_CHANGE) == 0) {
cd->int_status &= ~CY_INT_MODE_CHANGE;
dev_dbg(dev, "%s: finish mode switch m=%d -> m=%d\n",
__func__, cd->mode, cur_mode);
cd->mode = cur_mode;
wake_up(&cd->wait_q);
goto cyttsp4_irq_handshake;
}
/* compare current core mode to current device mode */
dev_vdbg(dev, "%s: cd->mode=%d cur_mode=%d\n",
__func__, cd->mode, cur_mode);
if ((mode[0] & CY_HST_MODE_CHANGE) == 0 && cd->mode != cur_mode) {
/* Unexpected mode change occurred */
dev_err(dev, "%s %d->%d 0x%x\n", __func__, cd->mode,
cur_mode, cd->int_status);
dev_dbg(dev, "%s: Unexpected mode change, startup\n",
__func__);
cyttsp4_queue_startup_(cd);
goto cyttsp4_irq_exit;
}
/* Expecting command complete interrupt */
dev_vdbg(dev, "%s: command byte:0x%x\n", __func__, mode[cmd_ofs]);
if ((cd->int_status & CY_INT_EXEC_CMD)
&& mode[cmd_ofs] & CY_CMD_COMPLETE) {
cd->int_status &= ~CY_INT_EXEC_CMD;
dev_vdbg(dev, "%s: Received command complete interrupt\n",
__func__);
wake_up(&cd->wait_q);
/*
* It is possible to receive a single interrupt for
* command complete and touch/button status report.
* Continue processing for a possible status report.
*/
}
/* This should be status report, read status regs */
if (cd->mode == CY_MODE_OPERATIONAL) {
dev_vdbg(dev, "%s: Read status registers\n", __func__);
rc = cyttsp4_load_status_regs(cd);
if (rc < 0)
dev_err(dev, "%s: fail read mode regs r=%d\n",
__func__, rc);
}
cyttsp4_mt_attention(cd);
cyttsp4_irq_handshake:
/* handshake the event */
dev_vdbg(dev, "%s: Handshake mode=0x%02X r=%d\n",
__func__, mode[0], rc);
rc = cyttsp4_handshake(cd, mode[0]);
if (rc < 0)
dev_err(dev, "%s: Fail handshake mode=0x%02X r=%d\n",
__func__, mode[0], rc);
/*
* a non-zero udelay period is required for using
* IRQF_TRIGGER_LOW in order to delay until the
* device completes isr deassert
*/
udelay(cd->cpdata->level_irq_udelay);
cyttsp4_irq_exit:
mutex_unlock(&cd->system_lock);
return IRQ_HANDLED;
}
static void cyttsp4_start_wd_timer(struct cyttsp4 *cd)
{
if (!CY_WATCHDOG_TIMEOUT)
return;
mod_timer(&cd->watchdog_timer, jiffies +
msecs_to_jiffies(CY_WATCHDOG_TIMEOUT));
}
static void cyttsp4_stop_wd_timer(struct cyttsp4 *cd)
{
if (!CY_WATCHDOG_TIMEOUT)
return;
/*
* Ensure we wait until the watchdog timer
* running on a different CPU finishes
*/
timer_shutdown_sync(&cd->watchdog_timer);
cancel_work_sync(&cd->watchdog_work);
}
static void cyttsp4_watchdog_timer(struct timer_list *t)
{
struct cyttsp4 *cd = from_timer(cd, t, watchdog_timer);
dev_vdbg(cd->dev, "%s: Watchdog timer triggered\n", __func__);
schedule_work(&cd->watchdog_work);
return;
}
static int cyttsp4_request_exclusive(struct cyttsp4 *cd, void *ownptr,
int timeout_ms)
{
int t = msecs_to_jiffies(timeout_ms);
bool with_timeout = (timeout_ms != 0);
mutex_lock(&cd->system_lock);
if (!cd->exclusive_dev && cd->exclusive_waits == 0) {
cd->exclusive_dev = ownptr;
goto exit;
}
cd->exclusive_waits++;
wait:
mutex_unlock(&cd->system_lock);
if (with_timeout) {
t = wait_event_timeout(cd->wait_q, !cd->exclusive_dev, t);
if (IS_TMO(t)) {
dev_err(cd->dev, "%s: tmo waiting exclusive access\n",
__func__);
mutex_lock(&cd->system_lock);
cd->exclusive_waits--;
mutex_unlock(&cd->system_lock);
return -ETIME;
}
} else {
wait_event(cd->wait_q, !cd->exclusive_dev);
}
mutex_lock(&cd->system_lock);
if (cd->exclusive_dev)
goto wait;
cd->exclusive_dev = ownptr;
cd->exclusive_waits--;
exit:
mutex_unlock(&cd->system_lock);
return 0;
}
/*
* returns error if was not owned
*/
static int cyttsp4_release_exclusive(struct cyttsp4 *cd, void *ownptr)
{
mutex_lock(&cd->system_lock);
if (cd->exclusive_dev != ownptr) {
mutex_unlock(&cd->system_lock);
return -EINVAL;
}
dev_vdbg(cd->dev, "%s: exclusive_dev %p freed\n",
__func__, cd->exclusive_dev);
cd->exclusive_dev = NULL;
wake_up(&cd->wait_q);
mutex_unlock(&cd->system_lock);
return 0;
}
static int cyttsp4_wait_bl_heartbeat(struct cyttsp4 *cd)
{
long t;
int rc = 0;
/* wait heartbeat */
dev_vdbg(cd->dev, "%s: wait heartbeat...\n", __func__);
t = wait_event_timeout(cd->wait_q, cd->mode == CY_MODE_BOOTLOADER,
msecs_to_jiffies(CY_CORE_RESET_AND_WAIT_TIMEOUT));
if (IS_TMO(t)) {
dev_err(cd->dev, "%s: tmo waiting bl heartbeat cd->mode=%d\n",
__func__, cd->mode);
rc = -ETIME;
}
return rc;
}
static int cyttsp4_wait_sysinfo_mode(struct cyttsp4 *cd)
{
long t;
dev_vdbg(cd->dev, "%s: wait sysinfo...\n", __func__);
t = wait_event_timeout(cd->wait_q, cd->mode == CY_MODE_SYSINFO,
msecs_to_jiffies(CY_CORE_MODE_CHANGE_TIMEOUT));
if (IS_TMO(t)) {
dev_err(cd->dev, "%s: tmo waiting exit bl cd->mode=%d\n",
__func__, cd->mode);
mutex_lock(&cd->system_lock);
cd->int_status &= ~CY_INT_MODE_CHANGE;
mutex_unlock(&cd->system_lock);
return -ETIME;
}
return 0;
}
static int cyttsp4_reset_and_wait(struct cyttsp4 *cd)
{
int rc;
/* reset hardware */
mutex_lock(&cd->system_lock);
dev_dbg(cd->dev, "%s: reset hw...\n", __func__);
rc = cyttsp4_hw_reset(cd);
cd->mode = CY_MODE_UNKNOWN;
mutex_unlock(&cd->system_lock);
if (rc < 0) {
dev_err(cd->dev, "%s:Fail hw reset r=%d\n", __func__, rc);
return rc;
}
return cyttsp4_wait_bl_heartbeat(cd);
}
/*
* returns err if refused or timeout; block until mode change complete
* bit is set (mode change interrupt)
*/
static int cyttsp4_set_mode(struct cyttsp4 *cd, int new_mode)
{
u8 new_dev_mode;
u8 mode;
long t;
int rc;
switch (new_mode) {
case CY_MODE_OPERATIONAL:
new_dev_mode = CY_HST_OPERATE;
break;
case CY_MODE_SYSINFO:
new_dev_mode = CY_HST_SYSINFO;
break;
case CY_MODE_CAT:
new_dev_mode = CY_HST_CAT;
break;
default:
dev_err(cd->dev, "%s: invalid mode: %02X(%d)\n",
__func__, new_mode, new_mode);
return -EINVAL;
}
/* change mode */
dev_dbg(cd->dev, "%s: %s=%p new_dev_mode=%02X new_mode=%d\n",
__func__, "have exclusive", cd->exclusive_dev,
new_dev_mode, new_mode);
mutex_lock(&cd->system_lock);
rc = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(mode), &mode);
if (rc < 0) {
mutex_unlock(&cd->system_lock);
dev_err(cd->dev, "%s: Fail read mode r=%d\n",
__func__, rc);
goto exit;
}
/* Clear device mode bits and set to new mode */
mode &= ~CY_HST_MODE;
mode |= new_dev_mode | CY_HST_MODE_CHANGE;
cd->int_status |= CY_INT_MODE_CHANGE;
rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(mode), &mode);
mutex_unlock(&cd->system_lock);
if (rc < 0) {
dev_err(cd->dev, "%s: Fail write mode change r=%d\n",
__func__, rc);
goto exit;
}
/* wait for mode change done interrupt */
t = wait_event_timeout(cd->wait_q,
(cd->int_status & CY_INT_MODE_CHANGE) == 0,
msecs_to_jiffies(CY_CORE_MODE_CHANGE_TIMEOUT));
dev_dbg(cd->dev, "%s: back from wait t=%ld cd->mode=%d\n",
__func__, t, cd->mode);
if (IS_TMO(t)) {
dev_err(cd->dev, "%s: %s\n", __func__,
"tmo waiting mode change");
mutex_lock(&cd->system_lock);
cd->int_status &= ~CY_INT_MODE_CHANGE;
mutex_unlock(&cd->system_lock);
rc = -EINVAL;
}
exit:
return rc;
}
static void cyttsp4_watchdog_work(struct work_struct *work)
{
struct cyttsp4 *cd =
container_of(work, struct cyttsp4, watchdog_work);
u8 *mode;
int retval;
mutex_lock(&cd->system_lock);
retval = cyttsp4_load_status_regs(cd);
if (retval < 0) {
dev_err(cd->dev,
"%s: failed to access device in watchdog timer r=%d\n",
__func__, retval);
cyttsp4_queue_startup_(cd);
goto cyttsp4_timer_watchdog_exit_error;
}
mode = &cd->sysinfo.xy_mode[CY_REG_BASE];
if (IS_BOOTLOADER(mode[0], mode[1])) {
dev_err(cd->dev,
"%s: device found in bootloader mode when operational mode\n",
__func__);
cyttsp4_queue_startup_(cd);
goto cyttsp4_timer_watchdog_exit_error;
}
cyttsp4_start_wd_timer(cd);
cyttsp4_timer_watchdog_exit_error:
mutex_unlock(&cd->system_lock);
return;
}
static int cyttsp4_core_sleep_(struct cyttsp4 *cd)
{
enum cyttsp4_sleep_state ss = SS_SLEEP_ON;
enum cyttsp4_int_state int_status = CY_INT_IGNORE;
int rc = 0;
u8 mode[2];
/* Already in sleep mode? */
mutex_lock(&cd->system_lock);
if (cd->sleep_state == SS_SLEEP_ON) {
mutex_unlock(&cd->system_lock);
return 0;
}
cd->sleep_state = SS_SLEEPING;
mutex_unlock(&cd->system_lock);
cyttsp4_stop_wd_timer(cd);
/* Wait until currently running IRQ handler exits and disable IRQ */
disable_irq(cd->irq);
dev_vdbg(cd->dev, "%s: write DEEP SLEEP...\n", __func__);
mutex_lock(&cd->system_lock);
rc = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(mode), &mode);
if (rc) {
mutex_unlock(&cd->system_lock);
dev_err(cd->dev, "%s: Fail read adapter r=%d\n", __func__, rc);
goto error;
}
if (IS_BOOTLOADER(mode[0], mode[1])) {
mutex_unlock(&cd->system_lock);
dev_err(cd->dev, "%s: Device in BOOTLOADER mode.\n", __func__);
rc = -EINVAL;
goto error;
}
mode[0] |= CY_HST_SLEEP;
rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(mode[0]), &mode[0]);
mutex_unlock(&cd->system_lock);
if (rc) {
dev_err(cd->dev, "%s: Fail write adapter r=%d\n", __func__, rc);
goto error;
}
dev_vdbg(cd->dev, "%s: write DEEP SLEEP succeeded\n", __func__);
if (cd->cpdata->power) {
dev_dbg(cd->dev, "%s: Power down HW\n", __func__);
rc = cd->cpdata->power(cd->cpdata, 0, cd->dev, &cd->ignore_irq);
} else {
dev_dbg(cd->dev, "%s: No power function\n", __func__);
rc = 0;
}
if (rc < 0) {
dev_err(cd->dev, "%s: HW Power down fails r=%d\n",
__func__, rc);
goto error;
}
/* Give time to FW to sleep */
msleep(50);
goto exit;
error:
ss = SS_SLEEP_OFF;
int_status = CY_INT_NONE;
cyttsp4_start_wd_timer(cd);
exit:
mutex_lock(&cd->system_lock);
cd->sleep_state = ss;
cd->int_status |= int_status;
mutex_unlock(&cd->system_lock);
enable_irq(cd->irq);
return rc;
}
static int cyttsp4_startup_(struct cyttsp4 *cd)
{
int retry = CY_CORE_STARTUP_RETRY_COUNT;
int rc;
cyttsp4_stop_wd_timer(cd);
reset:
if (retry != CY_CORE_STARTUP_RETRY_COUNT)
dev_dbg(cd->dev, "%s: Retry %d\n", __func__,
CY_CORE_STARTUP_RETRY_COUNT - retry);
/* reset hardware and wait for heartbeat */
rc = cyttsp4_reset_and_wait(cd);
if (rc < 0) {
dev_err(cd->dev, "%s: Error on h/w reset r=%d\n", __func__, rc);
if (retry--)
goto reset;
goto exit;
}
/* exit bl into sysinfo mode */
dev_vdbg(cd->dev, "%s: write exit ldr...\n", __func__);
mutex_lock(&cd->system_lock);
cd->int_status &= ~CY_INT_IGNORE;
cd->int_status |= CY_INT_MODE_CHANGE;
rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(ldr_exit),
(u8 *)ldr_exit);
mutex_unlock(&cd->system_lock);
if (rc < 0) {
dev_err(cd->dev, "%s: Fail write r=%d\n", __func__, rc);
if (retry--)
goto reset;
goto exit;
}
rc = cyttsp4_wait_sysinfo_mode(cd);
if (rc < 0) {
u8 buf[sizeof(ldr_err_app)];
int rc1;
/* Check for invalid/corrupted touch application */
rc1 = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(ldr_err_app),
buf);
if (rc1) {
dev_err(cd->dev, "%s: Fail read r=%d\n", __func__, rc1);
} else if (!memcmp(buf, ldr_err_app, sizeof(ldr_err_app))) {
dev_err(cd->dev, "%s: Error launching touch application\n",
__func__);
mutex_lock(&cd->system_lock);
cd->invalid_touch_app = true;
mutex_unlock(&cd->system_lock);
goto exit_no_wd;
}
if (retry--)
goto reset;
goto exit;
}
mutex_lock(&cd->system_lock);
cd->invalid_touch_app = false;
mutex_unlock(&cd->system_lock);
/* read sysinfo data */
dev_vdbg(cd->dev, "%s: get sysinfo regs..\n", __func__);
rc = cyttsp4_get_sysinfo_regs(cd);
if (rc < 0) {
dev_err(cd->dev, "%s: failed to get sysinfo regs rc=%d\n",
__func__, rc);
if (retry--)
goto reset;
goto exit;
}
rc = cyttsp4_set_mode(cd, CY_MODE_OPERATIONAL);
if (rc < 0) {
dev_err(cd->dev, "%s: failed to set mode to operational rc=%d\n",
__func__, rc);
if (retry--)
goto reset;
goto exit;
}
cyttsp4_lift_all(&cd->md);
/* restore to sleep if was suspended */
mutex_lock(&cd->system_lock);
if (cd->sleep_state == SS_SLEEP_ON) {
cd->sleep_state = SS_SLEEP_OFF;
mutex_unlock(&cd->system_lock);
cyttsp4_core_sleep_(cd);
goto exit_no_wd;
}
mutex_unlock(&cd->system_lock);
exit:
cyttsp4_start_wd_timer(cd);
exit_no_wd:
return rc;
}
static int cyttsp4_startup(struct cyttsp4 *cd)
{
int rc;
mutex_lock(&cd->system_lock);
cd->startup_state = STARTUP_RUNNING;
mutex_unlock(&cd->system_lock);
rc = cyttsp4_request_exclusive(cd, cd->dev,
CY_CORE_REQUEST_EXCLUSIVE_TIMEOUT);
if (rc < 0) {
dev_err(cd->dev, "%s: fail get exclusive ex=%p own=%p\n",
__func__, cd->exclusive_dev, cd->dev);
goto exit;
}
rc = cyttsp4_startup_(cd);
if (cyttsp4_release_exclusive(cd, cd->dev) < 0)
/* Don't return fail code, mode is already changed. */
dev_err(cd->dev, "%s: fail to release exclusive\n", __func__);
else
dev_vdbg(cd->dev, "%s: pass release exclusive\n", __func__);
exit:
mutex_lock(&cd->system_lock);
cd->startup_state = STARTUP_NONE;
mutex_unlock(&cd->system_lock);
/* Wake the waiters for end of startup */
wake_up(&cd->wait_q);
return rc;
}
static void cyttsp4_startup_work_function(struct work_struct *work)
{
struct cyttsp4 *cd = container_of(work, struct cyttsp4, startup_work);
int rc;
rc = cyttsp4_startup(cd);
if (rc < 0)
dev_err(cd->dev, "%s: Fail queued startup r=%d\n",
__func__, rc);
}
static void cyttsp4_free_si_ptrs(struct cyttsp4 *cd)
{
struct cyttsp4_sysinfo *si = &cd->sysinfo;
if (!si)
return;
kfree(si->si_ptrs.cydata);
kfree(si->si_ptrs.test);
kfree(si->si_ptrs.pcfg);
kfree(si->si_ptrs.opcfg);
kfree(si->si_ptrs.ddata);
kfree(si->si_ptrs.mdata);
kfree(si->btn);
kfree(si->xy_mode);
kfree(si->xy_data);
kfree(si->btn_rec_data);
}
static int cyttsp4_core_sleep(struct cyttsp4 *cd)
{
int rc;
rc = cyttsp4_request_exclusive(cd, cd->dev,
CY_CORE_SLEEP_REQUEST_EXCLUSIVE_TIMEOUT);
if (rc < 0) {
dev_err(cd->dev, "%s: fail get exclusive ex=%p own=%p\n",
__func__, cd->exclusive_dev, cd->dev);
return 0;
}
rc = cyttsp4_core_sleep_(cd);
if (cyttsp4_release_exclusive(cd, cd->dev) < 0)
dev_err(cd->dev, "%s: fail to release exclusive\n", __func__);
else
dev_vdbg(cd->dev, "%s: pass release exclusive\n", __func__);
return rc;
}
static int cyttsp4_core_wake_(struct cyttsp4 *cd)
{
struct device *dev = cd->dev;
int rc;
u8 mode;
int t;
/* Already woken? */
mutex_lock(&cd->system_lock);
if (cd->sleep_state == SS_SLEEP_OFF) {
mutex_unlock(&cd->system_lock);
return 0;
}
cd->int_status &= ~CY_INT_IGNORE;
cd->int_status |= CY_INT_AWAKE;
cd->sleep_state = SS_WAKING;
if (cd->cpdata->power) {
dev_dbg(dev, "%s: Power up HW\n", __func__);
rc = cd->cpdata->power(cd->cpdata, 1, dev, &cd->ignore_irq);
} else {
dev_dbg(dev, "%s: No power function\n", __func__);
rc = -ENOSYS;
}
if (rc < 0) {
dev_err(dev, "%s: HW Power up fails r=%d\n",
__func__, rc);
/* Initiate a read transaction to wake up */
cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(mode), &mode);
} else
dev_vdbg(cd->dev, "%s: HW power up succeeds\n",
__func__);
mutex_unlock(&cd->system_lock);
t = wait_event_timeout(cd->wait_q,
(cd->int_status & CY_INT_AWAKE) == 0,
msecs_to_jiffies(CY_CORE_WAKEUP_TIMEOUT));
if (IS_TMO(t)) {
dev_err(dev, "%s: TMO waiting for wakeup\n", __func__);
mutex_lock(&cd->system_lock);
cd->int_status &= ~CY_INT_AWAKE;
/* Try starting up */
cyttsp4_queue_startup_(cd);
mutex_unlock(&cd->system_lock);
}
mutex_lock(&cd->system_lock);
cd->sleep_state = SS_SLEEP_OFF;
mutex_unlock(&cd->system_lock);
cyttsp4_start_wd_timer(cd);
return 0;
}
static int cyttsp4_core_wake(struct cyttsp4 *cd)
{
int rc;
rc = cyttsp4_request_exclusive(cd, cd->dev,
CY_CORE_REQUEST_EXCLUSIVE_TIMEOUT);
if (rc < 0) {
dev_err(cd->dev, "%s: fail get exclusive ex=%p own=%p\n",
__func__, cd->exclusive_dev, cd->dev);
return 0;
}
rc = cyttsp4_core_wake_(cd);
if (cyttsp4_release_exclusive(cd, cd->dev) < 0)
dev_err(cd->dev, "%s: fail to release exclusive\n", __func__);
else
dev_vdbg(cd->dev, "%s: pass release exclusive\n", __func__);
return rc;
}
static int cyttsp4_core_suspend(struct device *dev)
{
struct cyttsp4 *cd = dev_get_drvdata(dev);
struct cyttsp4_mt_data *md = &cd->md;
int rc;
md->is_suspended = true;
rc = cyttsp4_core_sleep(cd);
if (rc < 0) {
dev_err(dev, "%s: Error on sleep\n", __func__);
return -EAGAIN;
}
return 0;
}
static int cyttsp4_core_resume(struct device *dev)
{
struct cyttsp4 *cd = dev_get_drvdata(dev);
struct cyttsp4_mt_data *md = &cd->md;
int rc;
md->is_suspended = false;
rc = cyttsp4_core_wake(cd);
if (rc < 0) {
dev_err(dev, "%s: Error on wake\n", __func__);
return -EAGAIN;
}
return 0;
}
EXPORT_GPL_RUNTIME_DEV_PM_OPS(cyttsp4_pm_ops,
cyttsp4_core_suspend, cyttsp4_core_resume, NULL);
static int cyttsp4_mt_open(struct input_dev *input)
{
pm_runtime_get(input->dev.parent);
return 0;
}
static void cyttsp4_mt_close(struct input_dev *input)
{
struct cyttsp4_mt_data *md = input_get_drvdata(input);
mutex_lock(&md->report_lock);
if (!md->is_suspended)
pm_runtime_put(input->dev.parent);
mutex_unlock(&md->report_lock);
}
static int cyttsp4_setup_input_device(struct cyttsp4 *cd)
{
struct device *dev = cd->dev;
struct cyttsp4_mt_data *md = &cd->md;
int signal = CY_IGNORE_VALUE;
int max_x, max_y, max_p, min, max;
int max_x_tmp, max_y_tmp;
int i;
int rc;
dev_vdbg(dev, "%s: Initialize event signals\n", __func__);
__set_bit(EV_ABS, md->input->evbit);
__set_bit(EV_REL, md->input->evbit);
__set_bit(EV_KEY, md->input->evbit);
max_x_tmp = md->si->si_ofs.max_x;
max_y_tmp = md->si->si_ofs.max_y;
/* get maximum values from the sysinfo data */
if (md->pdata->flags & CY_FLAG_FLIP) {
max_x = max_y_tmp - 1;
max_y = max_x_tmp - 1;
} else {
max_x = max_x_tmp - 1;
max_y = max_y_tmp - 1;
}
max_p = md->si->si_ofs.max_p;
/* set event signal capabilities */
for (i = 0; i < (md->pdata->frmwrk->size / CY_NUM_ABS_SET); i++) {
signal = md->pdata->frmwrk->abs
[(i * CY_NUM_ABS_SET) + CY_SIGNAL_OST];
if (signal != CY_IGNORE_VALUE) {
__set_bit(signal, md->input->absbit);
min = md->pdata->frmwrk->abs
[(i * CY_NUM_ABS_SET) + CY_MIN_OST];
max = md->pdata->frmwrk->abs
[(i * CY_NUM_ABS_SET) + CY_MAX_OST];
if (i == CY_ABS_ID_OST) {
/* shift track ids down to start at 0 */
max = max - min;
min = min - min;
} else if (i == CY_ABS_X_OST)
max = max_x;
else if (i == CY_ABS_Y_OST)
max = max_y;
else if (i == CY_ABS_P_OST)
max = max_p;
input_set_abs_params(md->input, signal, min, max,
md->pdata->frmwrk->abs
[(i * CY_NUM_ABS_SET) + CY_FUZZ_OST],
md->pdata->frmwrk->abs
[(i * CY_NUM_ABS_SET) + CY_FLAT_OST]);
dev_dbg(dev, "%s: register signal=%02X min=%d max=%d\n",
__func__, signal, min, max);
if ((i == CY_ABS_ID_OST) &&
(md->si->si_ofs.tch_rec_size <
CY_TMA4XX_TCH_REC_SIZE))
break;
}
}
input_mt_init_slots(md->input, md->si->si_ofs.tch_abs[CY_TCH_T].max,
INPUT_MT_DIRECT);
rc = input_register_device(md->input);
if (rc < 0)
dev_err(dev, "%s: Error, failed register input device r=%d\n",
__func__, rc);
return rc;
}
static int cyttsp4_mt_probe(struct cyttsp4 *cd)
{
struct device *dev = cd->dev;
struct cyttsp4_mt_data *md = &cd->md;
struct cyttsp4_mt_platform_data *pdata = cd->pdata->mt_pdata;
int rc = 0;
mutex_init(&md->report_lock);
md->pdata = pdata;
/* Create the input device and register it. */
dev_vdbg(dev, "%s: Create the input device and register it\n",
__func__);
md->input = input_allocate_device();
if (md->input == NULL) {
dev_err(dev, "%s: Error, failed to allocate input device\n",
__func__);
rc = -ENOSYS;
goto error_alloc_failed;
}
md->input->name = pdata->inp_dev_name;
scnprintf(md->phys, sizeof(md->phys)-1, "%s", dev_name(dev));
md->input->phys = md->phys;
md->input->id.bustype = cd->bus_ops->bustype;
md->input->dev.parent = dev;
md->input->open = cyttsp4_mt_open;
md->input->close = cyttsp4_mt_close;
input_set_drvdata(md->input, md);
/* get sysinfo */
md->si = &cd->sysinfo;
rc = cyttsp4_setup_input_device(cd);
if (rc)
goto error_init_input;
return 0;
error_init_input:
input_free_device(md->input);
error_alloc_failed:
dev_err(dev, "%s failed.\n", __func__);
return rc;
}
struct cyttsp4 *cyttsp4_probe(const struct cyttsp4_bus_ops *ops,
struct device *dev, u16 irq, size_t xfer_buf_size)
{
struct cyttsp4 *cd;
struct cyttsp4_platform_data *pdata = dev_get_platdata(dev);
unsigned long irq_flags;
int rc = 0;
if (!pdata || !pdata->core_pdata || !pdata->mt_pdata) {
dev_err(dev, "%s: Missing platform data\n", __func__);
rc = -ENODEV;
goto error_no_pdata;
}
cd = kzalloc(sizeof(*cd), GFP_KERNEL);
if (!cd) {
dev_err(dev, "%s: Error, kzalloc\n", __func__);
rc = -ENOMEM;
goto error_alloc_data;
}
cd->xfer_buf = kzalloc(xfer_buf_size, GFP_KERNEL);
if (!cd->xfer_buf) {
dev_err(dev, "%s: Error, kzalloc\n", __func__);
rc = -ENOMEM;
goto error_free_cd;
}
/* Initialize device info */
cd->dev = dev;
cd->pdata = pdata;
cd->cpdata = pdata->core_pdata;
cd->bus_ops = ops;
/* Initialize mutexes and spinlocks */
mutex_init(&cd->system_lock);
mutex_init(&cd->adap_lock);
/* Initialize wait queue */
init_waitqueue_head(&cd->wait_q);
/* Initialize works */
INIT_WORK(&cd->startup_work, cyttsp4_startup_work_function);
INIT_WORK(&cd->watchdog_work, cyttsp4_watchdog_work);
/* Initialize IRQ */
cd->irq = gpio_to_irq(cd->cpdata->irq_gpio);
if (cd->irq < 0) {
rc = -EINVAL;
goto error_free_xfer;
}
dev_set_drvdata(dev, cd);
/* Call platform init function */
if (cd->cpdata->init) {
dev_dbg(cd->dev, "%s: Init HW\n", __func__);
rc = cd->cpdata->init(cd->cpdata, 1, cd->dev);
} else {
dev_dbg(cd->dev, "%s: No HW INIT function\n", __func__);
rc = 0;
}
if (rc < 0)
dev_err(cd->dev, "%s: HW Init fail r=%d\n", __func__, rc);
dev_dbg(dev, "%s: initialize threaded irq=%d\n", __func__, cd->irq);
if (cd->cpdata->level_irq_udelay > 0)
/* use level triggered interrupts */
irq_flags = IRQF_TRIGGER_LOW | IRQF_ONESHOT;
else
/* use edge triggered interrupts */
irq_flags = IRQF_TRIGGER_FALLING | IRQF_ONESHOT;
rc = request_threaded_irq(cd->irq, NULL, cyttsp4_irq, irq_flags,
dev_name(dev), cd);
if (rc < 0) {
dev_err(dev, "%s: Error, could not request irq\n", __func__);
goto error_request_irq;
}
/* Setup watchdog timer */
timer_setup(&cd->watchdog_timer, cyttsp4_watchdog_timer, 0);
/*
* call startup directly to ensure that the device
* is tested before leaving the probe
*/
rc = cyttsp4_startup(cd);
/* Do not fail probe if startup fails but the device is detected */
if (rc < 0 && cd->mode == CY_MODE_UNKNOWN) {
dev_err(cd->dev, "%s: Fail initial startup r=%d\n",
__func__, rc);
goto error_startup;
}
rc = cyttsp4_mt_probe(cd);
if (rc < 0) {
dev_err(dev, "%s: Error, fail mt probe\n", __func__);
goto error_startup;
}
pm_runtime_enable(dev);
return cd;
error_startup:
cancel_work_sync(&cd->startup_work);
cyttsp4_stop_wd_timer(cd);
pm_runtime_disable(dev);
cyttsp4_free_si_ptrs(cd);
free_irq(cd->irq, cd);
error_request_irq:
if (cd->cpdata->init)
cd->cpdata->init(cd->cpdata, 0, dev);
error_free_xfer:
kfree(cd->xfer_buf);
error_free_cd:
kfree(cd);
error_alloc_data:
error_no_pdata:
dev_err(dev, "%s failed.\n", __func__);
return ERR_PTR(rc);
}
EXPORT_SYMBOL_GPL(cyttsp4_probe);
static void cyttsp4_mt_release(struct cyttsp4_mt_data *md)
{
input_unregister_device(md->input);
input_set_drvdata(md->input, NULL);
}
int cyttsp4_remove(struct cyttsp4 *cd)
{
struct device *dev = cd->dev;
cyttsp4_mt_release(&cd->md);
/*
* Suspend the device before freeing the startup_work and stopping
* the watchdog since sleep function restarts watchdog on failure
*/
pm_runtime_suspend(dev);
pm_runtime_disable(dev);
cancel_work_sync(&cd->startup_work);
cyttsp4_stop_wd_timer(cd);
free_irq(cd->irq, cd);
if (cd->cpdata->init)
cd->cpdata->init(cd->cpdata, 0, dev);
cyttsp4_free_si_ptrs(cd);
kfree(cd);
return 0;
}
EXPORT_SYMBOL_GPL(cyttsp4_remove);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Cypress TrueTouch(R) Standard touchscreen core driver");
MODULE_AUTHOR("Cypress");
|
linux-master
|
drivers/input/touchscreen/cyttsp4_core.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* wm97xx-core.c -- Touch screen driver core for Wolfson WM9705, WM9712
* and WM9713 AC97 Codecs.
*
* Copyright 2003, 2004, 2005, 2006, 2007, 2008 Wolfson Microelectronics PLC.
* Author: Liam Girdwood <[email protected]>
* Parts Copyright : Ian Molton <[email protected]>
* Andrew Zabolotny <[email protected]>
* Russell King <[email protected]>
*
* Notes:
*
* Features:
* - supports WM9705, WM9712, WM9713
* - polling mode
* - continuous mode (arch-dependent)
* - adjustable rpu/dpp settings
* - adjustable pressure current
* - adjustable sample settle delay
* - 4 and 5 wire touchscreens (5 wire is WM9712 only)
* - pen down detection
* - battery monitor
* - sample AUX adcs
* - power management
* - codec GPIO
* - codec event notification
* Todo
* - Support for async sampling control for noisy LCDs.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/proc_fs.h>
#include <linux/pm.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/mfd/wm97xx.h>
#include <linux/workqueue.h>
#include <linux/wm97xx.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/slab.h>
#define TS_NAME "wm97xx"
#define WM_CORE_VERSION "1.00"
#define DEFAULT_PRESSURE 0xb0c0
/*
* Touchscreen absolute values
*
* These parameters are used to help the input layer discard out of
* range readings and reduce jitter etc.
*
* o min, max:- indicate the min and max values your touch screen returns
* o fuzz:- use a higher number to reduce jitter
*
* The default values correspond to Mainstone II in QVGA mode
*
* Please read
* Documentation/input/input-programming.rst for more details.
*/
static int abs_x[3] = {150, 4000, 5};
module_param_array(abs_x, int, NULL, 0);
MODULE_PARM_DESC(abs_x, "Touchscreen absolute X min, max, fuzz");
static int abs_y[3] = {200, 4000, 40};
module_param_array(abs_y, int, NULL, 0);
MODULE_PARM_DESC(abs_y, "Touchscreen absolute Y min, max, fuzz");
static int abs_p[3] = {0, 150, 4};
module_param_array(abs_p, int, NULL, 0);
MODULE_PARM_DESC(abs_p, "Touchscreen absolute Pressure min, max, fuzz");
/*
* wm97xx IO access, all IO locking done by AC97 layer
*/
int wm97xx_reg_read(struct wm97xx *wm, u16 reg)
{
if (wm->ac97)
return wm->ac97->bus->ops->read(wm->ac97, reg);
else
return -1;
}
EXPORT_SYMBOL_GPL(wm97xx_reg_read);
void wm97xx_reg_write(struct wm97xx *wm, u16 reg, u16 val)
{
/* cache digitiser registers */
if (reg >= AC97_WM9713_DIG1 && reg <= AC97_WM9713_DIG3)
wm->dig[(reg - AC97_WM9713_DIG1) >> 1] = val;
/* cache gpio regs */
if (reg >= AC97_GPIO_CFG && reg <= AC97_MISC_AFE)
wm->gpio[(reg - AC97_GPIO_CFG) >> 1] = val;
/* wm9713 irq reg */
if (reg == 0x5a)
wm->misc = val;
if (wm->ac97)
wm->ac97->bus->ops->write(wm->ac97, reg, val);
}
EXPORT_SYMBOL_GPL(wm97xx_reg_write);
/**
* wm97xx_read_aux_adc - Read the aux adc.
* @wm: wm97xx device.
* @adcsel: codec ADC to be read
*
* Reads the selected AUX ADC.
*/
int wm97xx_read_aux_adc(struct wm97xx *wm, u16 adcsel)
{
int power_adc = 0, auxval;
u16 power = 0;
int rc = 0;
int timeout = 0;
/* get codec */
mutex_lock(&wm->codec_mutex);
/* When the touchscreen is not in use, we may have to power up
* the AUX ADC before we can use sample the AUX inputs->
*/
if (wm->id == WM9713_ID2 &&
(power = wm97xx_reg_read(wm, AC97_EXTENDED_MID)) & 0x8000) {
power_adc = 1;
wm97xx_reg_write(wm, AC97_EXTENDED_MID, power & 0x7fff);
}
/* Prepare the codec for AUX reading */
wm->codec->aux_prepare(wm);
/* Turn polling mode on to read AUX ADC */
wm->pen_probably_down = 1;
while (rc != RC_VALID && timeout++ < 5)
rc = wm->codec->poll_sample(wm, adcsel, &auxval);
if (power_adc)
wm97xx_reg_write(wm, AC97_EXTENDED_MID, power | 0x8000);
wm->codec->dig_restore(wm);
wm->pen_probably_down = 0;
if (timeout >= 5) {
dev_err(wm->dev,
"timeout reading auxadc %d, disabling digitiser\n",
adcsel);
wm->codec->dig_enable(wm, false);
}
mutex_unlock(&wm->codec_mutex);
return (rc == RC_VALID ? auxval & 0xfff : -EBUSY);
}
EXPORT_SYMBOL_GPL(wm97xx_read_aux_adc);
/**
* wm97xx_get_gpio - Get the status of a codec GPIO.
* @wm: wm97xx device.
* @gpio: gpio
*
* Get the status of a codec GPIO pin
*/
enum wm97xx_gpio_status wm97xx_get_gpio(struct wm97xx *wm, u32 gpio)
{
u16 status;
enum wm97xx_gpio_status ret;
mutex_lock(&wm->codec_mutex);
status = wm97xx_reg_read(wm, AC97_GPIO_STATUS);
if (status & gpio)
ret = WM97XX_GPIO_HIGH;
else
ret = WM97XX_GPIO_LOW;
mutex_unlock(&wm->codec_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(wm97xx_get_gpio);
/**
* wm97xx_set_gpio - Set the status of a codec GPIO.
* @wm: wm97xx device.
* @gpio: gpio
* @status: status
*
* Set the status of a codec GPIO pin
*/
void wm97xx_set_gpio(struct wm97xx *wm, u32 gpio,
enum wm97xx_gpio_status status)
{
u16 reg;
mutex_lock(&wm->codec_mutex);
reg = wm97xx_reg_read(wm, AC97_GPIO_STATUS);
if (status == WM97XX_GPIO_HIGH)
reg |= gpio;
else
reg &= ~gpio;
if (wm->id == WM9712_ID2 && wm->variant != WM97xx_WM1613)
wm97xx_reg_write(wm, AC97_GPIO_STATUS, reg << 1);
else
wm97xx_reg_write(wm, AC97_GPIO_STATUS, reg);
mutex_unlock(&wm->codec_mutex);
}
EXPORT_SYMBOL_GPL(wm97xx_set_gpio);
/*
* Codec GPIO pin configuration, this sets pin direction, polarity,
* stickyness and wake up.
*/
void wm97xx_config_gpio(struct wm97xx *wm, u32 gpio, enum wm97xx_gpio_dir dir,
enum wm97xx_gpio_pol pol, enum wm97xx_gpio_sticky sticky,
enum wm97xx_gpio_wake wake)
{
u16 reg;
mutex_lock(&wm->codec_mutex);
reg = wm97xx_reg_read(wm, AC97_GPIO_POLARITY);
if (pol == WM97XX_GPIO_POL_HIGH)
reg |= gpio;
else
reg &= ~gpio;
wm97xx_reg_write(wm, AC97_GPIO_POLARITY, reg);
reg = wm97xx_reg_read(wm, AC97_GPIO_STICKY);
if (sticky == WM97XX_GPIO_STICKY)
reg |= gpio;
else
reg &= ~gpio;
wm97xx_reg_write(wm, AC97_GPIO_STICKY, reg);
reg = wm97xx_reg_read(wm, AC97_GPIO_WAKEUP);
if (wake == WM97XX_GPIO_WAKE)
reg |= gpio;
else
reg &= ~gpio;
wm97xx_reg_write(wm, AC97_GPIO_WAKEUP, reg);
reg = wm97xx_reg_read(wm, AC97_GPIO_CFG);
if (dir == WM97XX_GPIO_IN)
reg |= gpio;
else
reg &= ~gpio;
wm97xx_reg_write(wm, AC97_GPIO_CFG, reg);
mutex_unlock(&wm->codec_mutex);
}
EXPORT_SYMBOL_GPL(wm97xx_config_gpio);
/*
* Configure the WM97XX_PRP value to use while system is suspended.
* If a value other than 0 is set then WM97xx pen detection will be
* left enabled in the configured mode while the system is in suspend,
* the device has users and suspend has not been disabled via the
* wakeup sysfs entries.
*
* @wm: WM97xx device to configure
* @mode: WM97XX_PRP value to configure while suspended
*/
void wm97xx_set_suspend_mode(struct wm97xx *wm, u16 mode)
{
wm->suspend_mode = mode;
device_init_wakeup(&wm->input_dev->dev, mode != 0);
}
EXPORT_SYMBOL_GPL(wm97xx_set_suspend_mode);
/*
* Codec PENDOWN irq handler
*
*/
static irqreturn_t wm97xx_pen_interrupt(int irq, void *dev_id)
{
struct wm97xx *wm = dev_id;
int pen_was_down = wm->pen_is_down;
/* do we need to enable the touch panel reader */
if (wm->id == WM9705_ID2) {
if (wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD) &
WM97XX_PEN_DOWN)
wm->pen_is_down = 1;
else
wm->pen_is_down = 0;
} else {
u16 status, pol;
mutex_lock(&wm->codec_mutex);
status = wm97xx_reg_read(wm, AC97_GPIO_STATUS);
pol = wm97xx_reg_read(wm, AC97_GPIO_POLARITY);
if (WM97XX_GPIO_13 & pol & status) {
wm->pen_is_down = 1;
wm97xx_reg_write(wm, AC97_GPIO_POLARITY, pol &
~WM97XX_GPIO_13);
} else {
wm->pen_is_down = 0;
wm97xx_reg_write(wm, AC97_GPIO_POLARITY, pol |
WM97XX_GPIO_13);
}
if (wm->id == WM9712_ID2 && wm->variant != WM97xx_WM1613)
wm97xx_reg_write(wm, AC97_GPIO_STATUS, (status &
~WM97XX_GPIO_13) << 1);
else
wm97xx_reg_write(wm, AC97_GPIO_STATUS, status &
~WM97XX_GPIO_13);
mutex_unlock(&wm->codec_mutex);
}
/* If the system is not using continuous mode or it provides a
* pen down operation then we need to schedule polls while the
* pen is down. Otherwise the machine driver is responsible
* for scheduling reads.
*/
if (!wm->mach_ops->acc_enabled || wm->mach_ops->acc_pen_down) {
if (wm->pen_is_down && !pen_was_down) {
/* Data is not available immediately on pen down */
queue_delayed_work(wm->ts_workq, &wm->ts_reader, 1);
}
/* Let ts_reader report the pen up for debounce. */
if (!wm->pen_is_down && pen_was_down)
wm->pen_is_down = 1;
}
if (!wm->pen_is_down && wm->mach_ops->acc_enabled)
wm->mach_ops->acc_pen_up(wm);
return IRQ_HANDLED;
}
/*
* initialise pen IRQ handler and workqueue
*/
static int wm97xx_init_pen_irq(struct wm97xx *wm)
{
u16 reg;
if (request_threaded_irq(wm->pen_irq, NULL, wm97xx_pen_interrupt,
IRQF_SHARED | IRQF_ONESHOT,
"wm97xx-pen", wm)) {
dev_err(wm->dev,
"Failed to register pen down interrupt, polling");
wm->pen_irq = 0;
return -EINVAL;
}
/* Configure GPIO as interrupt source on WM971x */
if (wm->id != WM9705_ID2) {
BUG_ON(!wm->mach_ops->irq_gpio);
reg = wm97xx_reg_read(wm, AC97_MISC_AFE);
wm97xx_reg_write(wm, AC97_MISC_AFE,
reg & ~(wm->mach_ops->irq_gpio));
reg = wm97xx_reg_read(wm, 0x5a);
wm97xx_reg_write(wm, 0x5a, reg & ~0x0001);
}
return 0;
}
static int wm97xx_read_samples(struct wm97xx *wm)
{
struct wm97xx_data data;
int rc;
mutex_lock(&wm->codec_mutex);
if (wm->mach_ops && wm->mach_ops->acc_enabled)
rc = wm->mach_ops->acc_pen_down(wm);
else
rc = wm->codec->poll_touch(wm, &data);
if (rc & RC_PENUP) {
if (wm->pen_is_down) {
wm->pen_is_down = 0;
dev_dbg(wm->dev, "pen up\n");
input_report_abs(wm->input_dev, ABS_PRESSURE, 0);
input_report_key(wm->input_dev, BTN_TOUCH, 0);
input_sync(wm->input_dev);
} else if (!(rc & RC_AGAIN)) {
/* We need high frequency updates only while
* pen is down, the user never will be able to
* touch screen faster than a few times per
* second... On the other hand, when the user
* is actively working with the touchscreen we
* don't want to lose the quick response. So we
* will slowly increase sleep time after the
* pen is up and quicky restore it to ~one task
* switch when pen is down again.
*/
if (wm->ts_reader_interval < HZ / 10)
wm->ts_reader_interval++;
}
} else if (rc & RC_VALID) {
dev_dbg(wm->dev,
"pen down: x=%x:%d, y=%x:%d, pressure=%x:%d\n",
data.x >> 12, data.x & 0xfff, data.y >> 12,
data.y & 0xfff, data.p >> 12, data.p & 0xfff);
if (abs_x[0] > (data.x & 0xfff) ||
abs_x[1] < (data.x & 0xfff) ||
abs_y[0] > (data.y & 0xfff) ||
abs_y[1] < (data.y & 0xfff)) {
dev_dbg(wm->dev, "Measurement out of range, dropping it\n");
rc = RC_AGAIN;
goto out;
}
input_report_abs(wm->input_dev, ABS_X, data.x & 0xfff);
input_report_abs(wm->input_dev, ABS_Y, data.y & 0xfff);
input_report_abs(wm->input_dev, ABS_PRESSURE, data.p & 0xfff);
input_report_key(wm->input_dev, BTN_TOUCH, 1);
input_sync(wm->input_dev);
wm->pen_is_down = 1;
wm->ts_reader_interval = wm->ts_reader_min_interval;
} else if (rc & RC_PENDOWN) {
dev_dbg(wm->dev, "pen down\n");
wm->pen_is_down = 1;
wm->ts_reader_interval = wm->ts_reader_min_interval;
}
out:
mutex_unlock(&wm->codec_mutex);
return rc;
}
/*
* The touchscreen sample reader.
*/
static void wm97xx_ts_reader(struct work_struct *work)
{
int rc;
struct wm97xx *wm = container_of(work, struct wm97xx, ts_reader.work);
BUG_ON(!wm->codec);
do {
rc = wm97xx_read_samples(wm);
} while (rc & RC_AGAIN);
if (wm->pen_is_down || !wm->pen_irq)
queue_delayed_work(wm->ts_workq, &wm->ts_reader,
wm->ts_reader_interval);
}
/**
* wm97xx_ts_input_open - Open the touch screen input device.
* @idev: Input device to be opened.
*
* Called by the input sub system to open a wm97xx touchscreen device.
* Starts the touchscreen thread and touch digitiser.
*/
static int wm97xx_ts_input_open(struct input_dev *idev)
{
struct wm97xx *wm = input_get_drvdata(idev);
wm->ts_workq = alloc_ordered_workqueue("kwm97xx", 0);
if (wm->ts_workq == NULL) {
dev_err(wm->dev,
"Failed to create workqueue\n");
return -EINVAL;
}
/* start digitiser */
if (wm->mach_ops && wm->mach_ops->acc_enabled)
wm->codec->acc_enable(wm, 1);
wm->codec->dig_enable(wm, 1);
INIT_DELAYED_WORK(&wm->ts_reader, wm97xx_ts_reader);
wm->ts_reader_min_interval = HZ >= 100 ? HZ / 100 : 1;
if (wm->ts_reader_min_interval < 1)
wm->ts_reader_min_interval = 1;
wm->ts_reader_interval = wm->ts_reader_min_interval;
wm->pen_is_down = 0;
if (wm->pen_irq)
wm97xx_init_pen_irq(wm);
else
dev_err(wm->dev, "No IRQ specified\n");
/* If we either don't have an interrupt for pen down events or
* failed to acquire it then we need to poll.
*/
if (wm->pen_irq == 0)
queue_delayed_work(wm->ts_workq, &wm->ts_reader,
wm->ts_reader_interval);
return 0;
}
/**
* wm97xx_ts_input_close - Close the touch screen input device.
* @idev: Input device to be closed.
*
* Called by the input sub system to close a wm97xx touchscreen
* device. Kills the touchscreen thread and stops the touch
* digitiser.
*/
static void wm97xx_ts_input_close(struct input_dev *idev)
{
struct wm97xx *wm = input_get_drvdata(idev);
u16 reg;
if (wm->pen_irq) {
/* Return the interrupt to GPIO usage (disabling it) */
if (wm->id != WM9705_ID2) {
BUG_ON(!wm->mach_ops->irq_gpio);
reg = wm97xx_reg_read(wm, AC97_MISC_AFE);
wm97xx_reg_write(wm, AC97_MISC_AFE,
reg | wm->mach_ops->irq_gpio);
}
free_irq(wm->pen_irq, wm);
}
wm->pen_is_down = 0;
/* ts_reader rearms itself so we need to explicitly stop it
* before we destroy the workqueue.
*/
cancel_delayed_work_sync(&wm->ts_reader);
destroy_workqueue(wm->ts_workq);
/* stop digitiser */
wm->codec->dig_enable(wm, 0);
if (wm->mach_ops && wm->mach_ops->acc_enabled)
wm->codec->acc_enable(wm, 0);
}
static int wm97xx_register_touch(struct wm97xx *wm)
{
struct wm97xx_pdata *pdata = dev_get_platdata(wm->dev);
int ret;
wm->input_dev = devm_input_allocate_device(wm->dev);
if (wm->input_dev == NULL)
return -ENOMEM;
/* set up touch configuration */
wm->input_dev->name = "wm97xx touchscreen";
wm->input_dev->phys = "wm97xx";
wm->input_dev->open = wm97xx_ts_input_open;
wm->input_dev->close = wm97xx_ts_input_close;
__set_bit(EV_ABS, wm->input_dev->evbit);
__set_bit(EV_KEY, wm->input_dev->evbit);
__set_bit(BTN_TOUCH, wm->input_dev->keybit);
input_set_abs_params(wm->input_dev, ABS_X, abs_x[0], abs_x[1],
abs_x[2], 0);
input_set_abs_params(wm->input_dev, ABS_Y, abs_y[0], abs_y[1],
abs_y[2], 0);
input_set_abs_params(wm->input_dev, ABS_PRESSURE, abs_p[0], abs_p[1],
abs_p[2], 0);
input_set_drvdata(wm->input_dev, wm);
wm->input_dev->dev.parent = wm->dev;
ret = input_register_device(wm->input_dev);
if (ret)
return ret;
/*
* register our extended touch device (for machine specific
* extensions)
*/
wm->touch_dev = platform_device_alloc("wm97xx-touch", -1);
if (!wm->touch_dev)
return -ENOMEM;
platform_set_drvdata(wm->touch_dev, wm);
wm->touch_dev->dev.parent = wm->dev;
wm->touch_dev->dev.platform_data = pdata;
ret = platform_device_add(wm->touch_dev);
if (ret < 0)
goto touch_reg_err;
return 0;
touch_reg_err:
platform_device_put(wm->touch_dev);
return ret;
}
static void wm97xx_unregister_touch(struct wm97xx *wm)
{
platform_device_unregister(wm->touch_dev);
}
static int _wm97xx_probe(struct wm97xx *wm)
{
int id = 0;
mutex_init(&wm->codec_mutex);
dev_set_drvdata(wm->dev, wm);
/* check that we have a supported codec */
id = wm97xx_reg_read(wm, AC97_VENDOR_ID1);
if (id != WM97XX_ID1) {
dev_err(wm->dev,
"Device with vendor %04x is not a wm97xx\n", id);
return -ENODEV;
}
wm->id = wm97xx_reg_read(wm, AC97_VENDOR_ID2);
wm->variant = WM97xx_GENERIC;
dev_info(wm->dev, "detected a wm97%02x codec\n", wm->id & 0xff);
switch (wm->id & 0xff) {
#ifdef CONFIG_TOUCHSCREEN_WM9705
case 0x05:
wm->codec = &wm9705_codec;
break;
#endif
#ifdef CONFIG_TOUCHSCREEN_WM9712
case 0x12:
wm->codec = &wm9712_codec;
break;
#endif
#ifdef CONFIG_TOUCHSCREEN_WM9713
case 0x13:
wm->codec = &wm9713_codec;
break;
#endif
default:
dev_err(wm->dev, "Support for wm97%02x not compiled in.\n",
wm->id & 0xff);
return -ENODEV;
}
/* set up physical characteristics */
wm->codec->phy_init(wm);
/* load gpio cache */
wm->gpio[0] = wm97xx_reg_read(wm, AC97_GPIO_CFG);
wm->gpio[1] = wm97xx_reg_read(wm, AC97_GPIO_POLARITY);
wm->gpio[2] = wm97xx_reg_read(wm, AC97_GPIO_STICKY);
wm->gpio[3] = wm97xx_reg_read(wm, AC97_GPIO_WAKEUP);
wm->gpio[4] = wm97xx_reg_read(wm, AC97_GPIO_STATUS);
wm->gpio[5] = wm97xx_reg_read(wm, AC97_MISC_AFE);
return wm97xx_register_touch(wm);
}
static void wm97xx_remove_battery(struct wm97xx *wm)
{
platform_device_unregister(wm->battery_dev);
}
static int wm97xx_add_battery(struct wm97xx *wm,
struct wm97xx_batt_pdata *pdata)
{
int ret;
wm->battery_dev = platform_device_alloc("wm97xx-battery", -1);
if (!wm->battery_dev)
return -ENOMEM;
platform_set_drvdata(wm->battery_dev, wm);
wm->battery_dev->dev.parent = wm->dev;
wm->battery_dev->dev.platform_data = pdata;
ret = platform_device_add(wm->battery_dev);
if (ret)
platform_device_put(wm->battery_dev);
return ret;
}
static int wm97xx_probe(struct device *dev)
{
struct wm97xx *wm;
int ret;
struct wm97xx_pdata *pdata = dev_get_platdata(dev);
wm = devm_kzalloc(dev, sizeof(struct wm97xx), GFP_KERNEL);
if (!wm)
return -ENOMEM;
wm->dev = dev;
wm->ac97 = to_ac97_t(dev);
ret = _wm97xx_probe(wm);
if (ret)
return ret;
ret = wm97xx_add_battery(wm, pdata ? pdata->batt_pdata : NULL);
if (ret < 0)
goto batt_err;
return ret;
batt_err:
wm97xx_unregister_touch(wm);
return ret;
}
static int wm97xx_remove(struct device *dev)
{
struct wm97xx *wm = dev_get_drvdata(dev);
wm97xx_remove_battery(wm);
wm97xx_unregister_touch(wm);
return 0;
}
static int wm97xx_mfd_probe(struct platform_device *pdev)
{
struct wm97xx *wm;
struct wm97xx_platform_data *mfd_pdata = dev_get_platdata(&pdev->dev);
int ret;
wm = devm_kzalloc(&pdev->dev, sizeof(struct wm97xx), GFP_KERNEL);
if (!wm)
return -ENOMEM;
wm->dev = &pdev->dev;
wm->ac97 = mfd_pdata->ac97;
ret = _wm97xx_probe(wm);
if (ret)
return ret;
ret = wm97xx_add_battery(wm, mfd_pdata->batt_pdata);
if (ret < 0)
goto batt_err;
return ret;
batt_err:
wm97xx_unregister_touch(wm);
return ret;
}
static int wm97xx_mfd_remove(struct platform_device *pdev)
{
wm97xx_remove(&pdev->dev);
return 0;
}
static int wm97xx_suspend(struct device *dev)
{
struct wm97xx *wm = dev_get_drvdata(dev);
u16 reg;
int suspend_mode;
if (device_may_wakeup(&wm->input_dev->dev))
suspend_mode = wm->suspend_mode;
else
suspend_mode = 0;
mutex_lock(&wm->input_dev->mutex);
if (input_device_enabled(wm->input_dev))
cancel_delayed_work_sync(&wm->ts_reader);
/* Power down the digitiser (bypassing the cache for resume) */
reg = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER2);
reg &= ~WM97XX_PRP_DET_DIG;
if (input_device_enabled(wm->input_dev))
reg |= suspend_mode;
wm->ac97->bus->ops->write(wm->ac97, AC97_WM97XX_DIGITISER2, reg);
/* WM9713 has an additional power bit - turn it off if there
* are no users or if suspend mode is zero. */
if (wm->id == WM9713_ID2 &&
(!input_device_enabled(wm->input_dev) || !suspend_mode)) {
reg = wm97xx_reg_read(wm, AC97_EXTENDED_MID) | 0x8000;
wm97xx_reg_write(wm, AC97_EXTENDED_MID, reg);
}
mutex_unlock(&wm->input_dev->mutex);
return 0;
}
static int wm97xx_resume(struct device *dev)
{
struct wm97xx *wm = dev_get_drvdata(dev);
mutex_lock(&wm->input_dev->mutex);
/* restore digitiser and gpios */
if (wm->id == WM9713_ID2) {
wm97xx_reg_write(wm, AC97_WM9713_DIG1, wm->dig[0]);
wm97xx_reg_write(wm, 0x5a, wm->misc);
if (input_device_enabled(wm->input_dev)) {
u16 reg;
reg = wm97xx_reg_read(wm, AC97_EXTENDED_MID) & 0x7fff;
wm97xx_reg_write(wm, AC97_EXTENDED_MID, reg);
}
}
wm97xx_reg_write(wm, AC97_WM9713_DIG2, wm->dig[1]);
wm97xx_reg_write(wm, AC97_WM9713_DIG3, wm->dig[2]);
wm97xx_reg_write(wm, AC97_GPIO_CFG, wm->gpio[0]);
wm97xx_reg_write(wm, AC97_GPIO_POLARITY, wm->gpio[1]);
wm97xx_reg_write(wm, AC97_GPIO_STICKY, wm->gpio[2]);
wm97xx_reg_write(wm, AC97_GPIO_WAKEUP, wm->gpio[3]);
wm97xx_reg_write(wm, AC97_GPIO_STATUS, wm->gpio[4]);
wm97xx_reg_write(wm, AC97_MISC_AFE, wm->gpio[5]);
if (input_device_enabled(wm->input_dev) && !wm->pen_irq) {
wm->ts_reader_interval = wm->ts_reader_min_interval;
queue_delayed_work(wm->ts_workq, &wm->ts_reader,
wm->ts_reader_interval);
}
mutex_unlock(&wm->input_dev->mutex);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(wm97xx_pm_ops, wm97xx_suspend, wm97xx_resume);
/*
* Machine specific operations
*/
int wm97xx_register_mach_ops(struct wm97xx *wm,
struct wm97xx_mach_ops *mach_ops)
{
mutex_lock(&wm->codec_mutex);
if (wm->mach_ops) {
mutex_unlock(&wm->codec_mutex);
return -EINVAL;
}
wm->mach_ops = mach_ops;
mutex_unlock(&wm->codec_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(wm97xx_register_mach_ops);
void wm97xx_unregister_mach_ops(struct wm97xx *wm)
{
mutex_lock(&wm->codec_mutex);
wm->mach_ops = NULL;
mutex_unlock(&wm->codec_mutex);
}
EXPORT_SYMBOL_GPL(wm97xx_unregister_mach_ops);
static struct device_driver wm97xx_driver = {
.name = "wm97xx-ts",
#ifdef CONFIG_AC97_BUS
.bus = &ac97_bus_type,
#endif
.owner = THIS_MODULE,
.probe = wm97xx_probe,
.remove = wm97xx_remove,
.pm = pm_sleep_ptr(&wm97xx_pm_ops),
};
static struct platform_driver wm97xx_mfd_driver = {
.driver = {
.name = "wm97xx-ts",
.pm = pm_sleep_ptr(&wm97xx_pm_ops),
},
.probe = wm97xx_mfd_probe,
.remove = wm97xx_mfd_remove,
};
static int __init wm97xx_init(void)
{
int ret;
ret = platform_driver_register(&wm97xx_mfd_driver);
if (ret)
return ret;
if (IS_BUILTIN(CONFIG_AC97_BUS))
ret = driver_register(&wm97xx_driver);
return ret;
}
static void __exit wm97xx_exit(void)
{
if (IS_BUILTIN(CONFIG_AC97_BUS))
driver_unregister(&wm97xx_driver);
platform_driver_unregister(&wm97xx_mfd_driver);
}
module_init(wm97xx_init);
module_exit(wm97xx_exit);
/* Module information */
MODULE_AUTHOR("Liam Girdwood <[email protected]>");
MODULE_DESCRIPTION("WM97xx Core - Touch Screen / AUX ADC / GPIO Driver");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/wm97xx-core.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* TSC2005 touchscreen driver
*
* Copyright (C) 2006-2010 Nokia Corporation
* Copyright (C) 2015 QWERTY Embedded Design
* Copyright (C) 2015 EMAC Inc.
*
* Based on original tsc2005.c by Lauri Leukkunen <[email protected]>
*/
#include <linux/input.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/spi/spi.h>
#include <linux/regmap.h>
#include "tsc200x-core.h"
static const struct input_id tsc2005_input_id = {
.bustype = BUS_SPI,
.product = 2005,
};
static int tsc2005_cmd(struct device *dev, u8 cmd)
{
u8 tx = TSC200X_CMD | TSC200X_CMD_12BIT | cmd;
struct spi_transfer xfer = {
.tx_buf = &tx,
.len = 1,
.bits_per_word = 8,
};
struct spi_message msg;
struct spi_device *spi = to_spi_device(dev);
int error;
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
error = spi_sync(spi, &msg);
if (error) {
dev_err(dev, "%s: failed, command: %x, spi error: %d\n",
__func__, cmd, error);
return error;
}
return 0;
}
static int tsc2005_probe(struct spi_device *spi)
{
int error;
spi->mode = SPI_MODE_0;
spi->bits_per_word = 8;
if (!spi->max_speed_hz)
spi->max_speed_hz = TSC2005_SPI_MAX_SPEED_HZ;
error = spi_setup(spi);
if (error)
return error;
return tsc200x_probe(&spi->dev, spi->irq, &tsc2005_input_id,
devm_regmap_init_spi(spi, &tsc200x_regmap_config),
tsc2005_cmd);
}
static void tsc2005_remove(struct spi_device *spi)
{
tsc200x_remove(&spi->dev);
}
#ifdef CONFIG_OF
static const struct of_device_id tsc2005_of_match[] = {
{ .compatible = "ti,tsc2005" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, tsc2005_of_match);
#endif
static struct spi_driver tsc2005_driver = {
.driver = {
.name = "tsc2005",
.of_match_table = of_match_ptr(tsc2005_of_match),
.pm = pm_sleep_ptr(&tsc200x_pm_ops),
},
.probe = tsc2005_probe,
.remove = tsc2005_remove,
};
module_spi_driver(tsc2005_driver);
MODULE_AUTHOR("Michael Welling <[email protected]>");
MODULE_DESCRIPTION("TSC2005 Touchscreen Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("spi:tsc2005");
|
linux-master
|
drivers/input/touchscreen/tsc2005.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Touchscreen driver for WM831x PMICs
*
* Copyright 2011 Wolfson Microelectronics plc.
* Author: Mark Brown <[email protected]>
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/pm.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mfd/wm831x/core.h>
#include <linux/mfd/wm831x/irq.h>
#include <linux/mfd/wm831x/pdata.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/types.h>
/*
* R16424 (0x4028) - Touch Control 1
*/
#define WM831X_TCH_ENA 0x8000 /* TCH_ENA */
#define WM831X_TCH_CVT_ENA 0x4000 /* TCH_CVT_ENA */
#define WM831X_TCH_SLPENA 0x1000 /* TCH_SLPENA */
#define WM831X_TCH_Z_ENA 0x0400 /* TCH_Z_ENA */
#define WM831X_TCH_Y_ENA 0x0200 /* TCH_Y_ENA */
#define WM831X_TCH_X_ENA 0x0100 /* TCH_X_ENA */
#define WM831X_TCH_DELAY_MASK 0x00E0 /* TCH_DELAY - [7:5] */
#define WM831X_TCH_DELAY_SHIFT 5 /* TCH_DELAY - [7:5] */
#define WM831X_TCH_DELAY_WIDTH 3 /* TCH_DELAY - [7:5] */
#define WM831X_TCH_RATE_MASK 0x001F /* TCH_RATE - [4:0] */
#define WM831X_TCH_RATE_SHIFT 0 /* TCH_RATE - [4:0] */
#define WM831X_TCH_RATE_WIDTH 5 /* TCH_RATE - [4:0] */
/*
* R16425 (0x4029) - Touch Control 2
*/
#define WM831X_TCH_PD_WK 0x2000 /* TCH_PD_WK */
#define WM831X_TCH_5WIRE 0x1000 /* TCH_5WIRE */
#define WM831X_TCH_PDONLY 0x0800 /* TCH_PDONLY */
#define WM831X_TCH_ISEL 0x0100 /* TCH_ISEL */
#define WM831X_TCH_RPU_MASK 0x000F /* TCH_RPU - [3:0] */
#define WM831X_TCH_RPU_SHIFT 0 /* TCH_RPU - [3:0] */
#define WM831X_TCH_RPU_WIDTH 4 /* TCH_RPU - [3:0] */
/*
* R16426-8 (0x402A-C) - Touch Data X/Y/X
*/
#define WM831X_TCH_PD 0x8000 /* TCH_PD1 */
#define WM831X_TCH_DATA_MASK 0x0FFF /* TCH_DATA - [11:0] */
#define WM831X_TCH_DATA_SHIFT 0 /* TCH_DATA - [11:0] */
#define WM831X_TCH_DATA_WIDTH 12 /* TCH_DATA - [11:0] */
struct wm831x_ts {
struct input_dev *input_dev;
struct wm831x *wm831x;
unsigned int data_irq;
unsigned int pd_irq;
bool pressure;
bool pen_down;
struct work_struct pd_data_work;
};
static void wm831x_pd_data_work(struct work_struct *work)
{
struct wm831x_ts *wm831x_ts =
container_of(work, struct wm831x_ts, pd_data_work);
if (wm831x_ts->pen_down) {
enable_irq(wm831x_ts->data_irq);
dev_dbg(wm831x_ts->wm831x->dev, "IRQ PD->DATA done\n");
} else {
enable_irq(wm831x_ts->pd_irq);
dev_dbg(wm831x_ts->wm831x->dev, "IRQ DATA->PD done\n");
}
}
static irqreturn_t wm831x_ts_data_irq(int irq, void *irq_data)
{
struct wm831x_ts *wm831x_ts = irq_data;
struct wm831x *wm831x = wm831x_ts->wm831x;
static int data_types[] = { ABS_X, ABS_Y, ABS_PRESSURE };
u16 data[3];
int count;
int i, ret;
if (wm831x_ts->pressure)
count = 3;
else
count = 2;
wm831x_set_bits(wm831x, WM831X_INTERRUPT_STATUS_1,
WM831X_TCHDATA_EINT, WM831X_TCHDATA_EINT);
ret = wm831x_bulk_read(wm831x, WM831X_TOUCH_DATA_X, count,
data);
if (ret != 0) {
dev_err(wm831x->dev, "Failed to read touch data: %d\n",
ret);
return IRQ_NONE;
}
/*
* We get a pen down reading on every reading, report pen up if any
* individual reading does so.
*/
wm831x_ts->pen_down = true;
for (i = 0; i < count; i++) {
if (!(data[i] & WM831X_TCH_PD)) {
wm831x_ts->pen_down = false;
continue;
}
input_report_abs(wm831x_ts->input_dev, data_types[i],
data[i] & WM831X_TCH_DATA_MASK);
}
if (!wm831x_ts->pen_down) {
/* Switch from data to pen down */
dev_dbg(wm831x->dev, "IRQ DATA->PD\n");
disable_irq_nosync(wm831x_ts->data_irq);
/* Don't need data any more */
wm831x_set_bits(wm831x, WM831X_TOUCH_CONTROL_1,
WM831X_TCH_X_ENA | WM831X_TCH_Y_ENA |
WM831X_TCH_Z_ENA, 0);
/* Flush any final samples that arrived while reading */
wm831x_set_bits(wm831x, WM831X_INTERRUPT_STATUS_1,
WM831X_TCHDATA_EINT, WM831X_TCHDATA_EINT);
wm831x_bulk_read(wm831x, WM831X_TOUCH_DATA_X, count, data);
if (wm831x_ts->pressure)
input_report_abs(wm831x_ts->input_dev,
ABS_PRESSURE, 0);
input_report_key(wm831x_ts->input_dev, BTN_TOUCH, 0);
schedule_work(&wm831x_ts->pd_data_work);
} else {
input_report_key(wm831x_ts->input_dev, BTN_TOUCH, 1);
}
input_sync(wm831x_ts->input_dev);
return IRQ_HANDLED;
}
static irqreturn_t wm831x_ts_pen_down_irq(int irq, void *irq_data)
{
struct wm831x_ts *wm831x_ts = irq_data;
struct wm831x *wm831x = wm831x_ts->wm831x;
int ena = 0;
if (wm831x_ts->pen_down)
return IRQ_HANDLED;
disable_irq_nosync(wm831x_ts->pd_irq);
/* Start collecting data */
if (wm831x_ts->pressure)
ena |= WM831X_TCH_Z_ENA;
wm831x_set_bits(wm831x, WM831X_TOUCH_CONTROL_1,
WM831X_TCH_X_ENA | WM831X_TCH_Y_ENA | WM831X_TCH_Z_ENA,
WM831X_TCH_X_ENA | WM831X_TCH_Y_ENA | ena);
wm831x_set_bits(wm831x, WM831X_INTERRUPT_STATUS_1,
WM831X_TCHPD_EINT, WM831X_TCHPD_EINT);
wm831x_ts->pen_down = true;
/* Switch from pen down to data */
dev_dbg(wm831x->dev, "IRQ PD->DATA\n");
schedule_work(&wm831x_ts->pd_data_work);
return IRQ_HANDLED;
}
static int wm831x_ts_input_open(struct input_dev *idev)
{
struct wm831x_ts *wm831x_ts = input_get_drvdata(idev);
struct wm831x *wm831x = wm831x_ts->wm831x;
wm831x_set_bits(wm831x, WM831X_TOUCH_CONTROL_1,
WM831X_TCH_ENA | WM831X_TCH_CVT_ENA |
WM831X_TCH_X_ENA | WM831X_TCH_Y_ENA |
WM831X_TCH_Z_ENA, WM831X_TCH_ENA);
wm831x_set_bits(wm831x, WM831X_TOUCH_CONTROL_1,
WM831X_TCH_CVT_ENA, WM831X_TCH_CVT_ENA);
return 0;
}
static void wm831x_ts_input_close(struct input_dev *idev)
{
struct wm831x_ts *wm831x_ts = input_get_drvdata(idev);
struct wm831x *wm831x = wm831x_ts->wm831x;
/* Shut the controller down, disabling all other functionality too */
wm831x_set_bits(wm831x, WM831X_TOUCH_CONTROL_1,
WM831X_TCH_ENA | WM831X_TCH_X_ENA |
WM831X_TCH_Y_ENA | WM831X_TCH_Z_ENA, 0);
/* Make sure any pending IRQs are done, the above will prevent
* new ones firing.
*/
synchronize_irq(wm831x_ts->data_irq);
synchronize_irq(wm831x_ts->pd_irq);
/* Make sure the IRQ completion work is quiesced */
flush_work(&wm831x_ts->pd_data_work);
/* If we ended up with the pen down then make sure we revert back
* to pen detection state for the next time we start up.
*/
if (wm831x_ts->pen_down) {
disable_irq(wm831x_ts->data_irq);
enable_irq(wm831x_ts->pd_irq);
wm831x_ts->pen_down = false;
}
}
static int wm831x_ts_probe(struct platform_device *pdev)
{
struct wm831x_ts *wm831x_ts;
struct wm831x *wm831x = dev_get_drvdata(pdev->dev.parent);
struct wm831x_pdata *core_pdata = dev_get_platdata(pdev->dev.parent);
struct wm831x_touch_pdata *pdata = NULL;
struct input_dev *input_dev;
int error, irqf;
if (core_pdata)
pdata = core_pdata->touch;
wm831x_ts = devm_kzalloc(&pdev->dev, sizeof(struct wm831x_ts),
GFP_KERNEL);
input_dev = devm_input_allocate_device(&pdev->dev);
if (!wm831x_ts || !input_dev) {
error = -ENOMEM;
goto err_alloc;
}
wm831x_ts->wm831x = wm831x;
wm831x_ts->input_dev = input_dev;
INIT_WORK(&wm831x_ts->pd_data_work, wm831x_pd_data_work);
/*
* If we have a direct IRQ use it, otherwise use the interrupt
* from the WM831x IRQ controller.
*/
wm831x_ts->data_irq = wm831x_irq(wm831x,
platform_get_irq_byname(pdev,
"TCHDATA"));
if (pdata && pdata->data_irq)
wm831x_ts->data_irq = pdata->data_irq;
wm831x_ts->pd_irq = wm831x_irq(wm831x,
platform_get_irq_byname(pdev, "TCHPD"));
if (pdata && pdata->pd_irq)
wm831x_ts->pd_irq = pdata->pd_irq;
if (pdata)
wm831x_ts->pressure = pdata->pressure;
else
wm831x_ts->pressure = true;
/* Five wire touchscreens can't report pressure */
if (pdata && pdata->fivewire) {
wm831x_set_bits(wm831x, WM831X_TOUCH_CONTROL_2,
WM831X_TCH_5WIRE, WM831X_TCH_5WIRE);
/* Pressure measurements are not possible for five wire mode */
WARN_ON(pdata->pressure && pdata->fivewire);
wm831x_ts->pressure = false;
} else {
wm831x_set_bits(wm831x, WM831X_TOUCH_CONTROL_2,
WM831X_TCH_5WIRE, 0);
}
if (pdata) {
switch (pdata->isel) {
default:
dev_err(&pdev->dev, "Unsupported ISEL setting: %d\n",
pdata->isel);
fallthrough;
case 200:
case 0:
wm831x_set_bits(wm831x, WM831X_TOUCH_CONTROL_2,
WM831X_TCH_ISEL, 0);
break;
case 400:
wm831x_set_bits(wm831x, WM831X_TOUCH_CONTROL_2,
WM831X_TCH_ISEL, WM831X_TCH_ISEL);
break;
}
}
wm831x_set_bits(wm831x, WM831X_TOUCH_CONTROL_2,
WM831X_TCH_PDONLY, 0);
/* Default to 96 samples/sec */
wm831x_set_bits(wm831x, WM831X_TOUCH_CONTROL_1,
WM831X_TCH_RATE_MASK, 6);
if (pdata && pdata->data_irqf)
irqf = pdata->data_irqf;
else
irqf = IRQF_TRIGGER_HIGH;
error = request_threaded_irq(wm831x_ts->data_irq,
NULL, wm831x_ts_data_irq,
irqf | IRQF_ONESHOT | IRQF_NO_AUTOEN,
"Touchscreen data", wm831x_ts);
if (error) {
dev_err(&pdev->dev, "Failed to request data IRQ %d: %d\n",
wm831x_ts->data_irq, error);
goto err_alloc;
}
if (pdata && pdata->pd_irqf)
irqf = pdata->pd_irqf;
else
irqf = IRQF_TRIGGER_HIGH;
error = request_threaded_irq(wm831x_ts->pd_irq,
NULL, wm831x_ts_pen_down_irq,
irqf | IRQF_ONESHOT,
"Touchscreen pen down", wm831x_ts);
if (error) {
dev_err(&pdev->dev, "Failed to request pen down IRQ %d: %d\n",
wm831x_ts->pd_irq, error);
goto err_data_irq;
}
/* set up touch configuration */
input_dev->name = "WM831x touchscreen";
input_dev->phys = "wm831x";
input_dev->open = wm831x_ts_input_open;
input_dev->close = wm831x_ts_input_close;
__set_bit(EV_ABS, input_dev->evbit);
__set_bit(EV_KEY, input_dev->evbit);
__set_bit(BTN_TOUCH, input_dev->keybit);
input_set_abs_params(input_dev, ABS_X, 0, 4095, 5, 0);
input_set_abs_params(input_dev, ABS_Y, 0, 4095, 5, 0);
if (wm831x_ts->pressure)
input_set_abs_params(input_dev, ABS_PRESSURE, 0, 4095, 5, 0);
input_set_drvdata(input_dev, wm831x_ts);
input_dev->dev.parent = &pdev->dev;
error = input_register_device(input_dev);
if (error)
goto err_pd_irq;
platform_set_drvdata(pdev, wm831x_ts);
return 0;
err_pd_irq:
free_irq(wm831x_ts->pd_irq, wm831x_ts);
err_data_irq:
free_irq(wm831x_ts->data_irq, wm831x_ts);
err_alloc:
return error;
}
static int wm831x_ts_remove(struct platform_device *pdev)
{
struct wm831x_ts *wm831x_ts = platform_get_drvdata(pdev);
free_irq(wm831x_ts->pd_irq, wm831x_ts);
free_irq(wm831x_ts->data_irq, wm831x_ts);
return 0;
}
static struct platform_driver wm831x_ts_driver = {
.driver = {
.name = "wm831x-touch",
},
.probe = wm831x_ts_probe,
.remove = wm831x_ts_remove,
};
module_platform_driver(wm831x_ts_driver);
/* Module information */
MODULE_AUTHOR("Mark Brown <[email protected]>");
MODULE_DESCRIPTION("WM831x PMIC touchscreen driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:wm831x-touch");
|
linux-master
|
drivers/input/touchscreen/wm831x-ts.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Dynapro serial touchscreen driver
*
* Copyright (c) 2009 Tias Guns
* Based on the inexio driver (c) Vojtech Pavlik and Dan Streetman and
* Richard Lemon
*/
/*
* 2009/09/19 Tias Guns <[email protected]>
* Copied inexio.c and edited for Dynapro protocol (from retired Xorg module)
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/serio.h>
#define DRIVER_DESC "Dynapro serial touchscreen driver"
MODULE_AUTHOR("Tias Guns <[email protected]>");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
/*
* Definitions & global arrays.
*/
#define DYNAPRO_FORMAT_TOUCH_BIT 0x40
#define DYNAPRO_FORMAT_LENGTH 3
#define DYNAPRO_RESPONSE_BEGIN_BYTE 0x80
#define DYNAPRO_MIN_XC 0
#define DYNAPRO_MAX_XC 0x3ff
#define DYNAPRO_MIN_YC 0
#define DYNAPRO_MAX_YC 0x3ff
#define DYNAPRO_GET_XC(data) (data[1] | ((data[0] & 0x38) << 4))
#define DYNAPRO_GET_YC(data) (data[2] | ((data[0] & 0x07) << 7))
#define DYNAPRO_GET_TOUCHED(data) (DYNAPRO_FORMAT_TOUCH_BIT & data[0])
/*
* Per-touchscreen data.
*/
struct dynapro {
struct input_dev *dev;
struct serio *serio;
int idx;
unsigned char data[DYNAPRO_FORMAT_LENGTH];
char phys[32];
};
static void dynapro_process_data(struct dynapro *pdynapro)
{
struct input_dev *dev = pdynapro->dev;
if (DYNAPRO_FORMAT_LENGTH == ++pdynapro->idx) {
input_report_abs(dev, ABS_X, DYNAPRO_GET_XC(pdynapro->data));
input_report_abs(dev, ABS_Y, DYNAPRO_GET_YC(pdynapro->data));
input_report_key(dev, BTN_TOUCH,
DYNAPRO_GET_TOUCHED(pdynapro->data));
input_sync(dev);
pdynapro->idx = 0;
}
}
static irqreturn_t dynapro_interrupt(struct serio *serio,
unsigned char data, unsigned int flags)
{
struct dynapro *pdynapro = serio_get_drvdata(serio);
pdynapro->data[pdynapro->idx] = data;
if (DYNAPRO_RESPONSE_BEGIN_BYTE & pdynapro->data[0])
dynapro_process_data(pdynapro);
else
dev_dbg(&serio->dev, "unknown/unsynchronized data: %x\n",
pdynapro->data[0]);
return IRQ_HANDLED;
}
static void dynapro_disconnect(struct serio *serio)
{
struct dynapro *pdynapro = serio_get_drvdata(serio);
input_get_device(pdynapro->dev);
input_unregister_device(pdynapro->dev);
serio_close(serio);
serio_set_drvdata(serio, NULL);
input_put_device(pdynapro->dev);
kfree(pdynapro);
}
/*
* dynapro_connect() is the routine that is called when someone adds a
* new serio device that supports dynapro protocol and registers it as
* an input device. This is usually accomplished using inputattach.
*/
static int dynapro_connect(struct serio *serio, struct serio_driver *drv)
{
struct dynapro *pdynapro;
struct input_dev *input_dev;
int err;
pdynapro = kzalloc(sizeof(struct dynapro), GFP_KERNEL);
input_dev = input_allocate_device();
if (!pdynapro || !input_dev) {
err = -ENOMEM;
goto fail1;
}
pdynapro->serio = serio;
pdynapro->dev = input_dev;
snprintf(pdynapro->phys, sizeof(pdynapro->phys),
"%s/input0", serio->phys);
input_dev->name = "Dynapro Serial TouchScreen";
input_dev->phys = pdynapro->phys;
input_dev->id.bustype = BUS_RS232;
input_dev->id.vendor = SERIO_DYNAPRO;
input_dev->id.product = 0;
input_dev->id.version = 0x0001;
input_dev->dev.parent = &serio->dev;
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
input_set_abs_params(pdynapro->dev, ABS_X,
DYNAPRO_MIN_XC, DYNAPRO_MAX_XC, 0, 0);
input_set_abs_params(pdynapro->dev, ABS_Y,
DYNAPRO_MIN_YC, DYNAPRO_MAX_YC, 0, 0);
serio_set_drvdata(serio, pdynapro);
err = serio_open(serio, drv);
if (err)
goto fail2;
err = input_register_device(pdynapro->dev);
if (err)
goto fail3;
return 0;
fail3: serio_close(serio);
fail2: serio_set_drvdata(serio, NULL);
fail1: input_free_device(input_dev);
kfree(pdynapro);
return err;
}
/*
* The serio driver structure.
*/
static const struct serio_device_id dynapro_serio_ids[] = {
{
.type = SERIO_RS232,
.proto = SERIO_DYNAPRO,
.id = SERIO_ANY,
.extra = SERIO_ANY,
},
{ 0 }
};
MODULE_DEVICE_TABLE(serio, dynapro_serio_ids);
static struct serio_driver dynapro_drv = {
.driver = {
.name = "dynapro",
},
.description = DRIVER_DESC,
.id_table = dynapro_serio_ids,
.interrupt = dynapro_interrupt,
.connect = dynapro_connect,
.disconnect = dynapro_disconnect,
};
module_serio_driver(dynapro_drv);
|
linux-master
|
drivers/input/touchscreen/dynapro.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Sahara TouchIT-213 serial touchscreen driver
*
* Copyright (c) 2007-2008 Claudio Nieder <[email protected]>
*
* Based on Touchright driver (drivers/input/touchscreen/touchright.c)
* Copyright (c) 2006 Rick Koch <[email protected]>
* Copyright (c) 2004 Vojtech Pavlik
* and Dan Streetman <[email protected]>
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/serio.h>
#define DRIVER_DESC "Sahara TouchIT-213 serial touchscreen driver"
MODULE_AUTHOR("Claudio Nieder <[email protected]>");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
/*
* Definitions & global arrays.
*/
/*
* Data is received through COM1 at 9600bit/s,8bit,no parity in packets
* of 5 byte each.
*
* +--------+ +--------+ +--------+ +--------+ +--------+
* |1000000p| |0xxxxxxx| |0xxxxxxx| |0yyyyyyy| |0yyyyyyy|
* +--------+ +--------+ +--------+ +--------+ +--------+
* MSB LSB MSB LSB
*
* The value of p is 1 as long as the screen is touched and 0 when
* reporting the location where touching stopped, e.g. where the pen was
* lifted from the screen.
*
* When holding the screen in landscape mode as the BIOS text output is
* presented, x is the horizontal axis with values growing from left to
* right and y is the vertical axis with values growing from top to
* bottom.
*
* When holding the screen in portrait mode with the Sahara logo in its
* correct position, x ist the vertical axis with values growing from
* top to bottom and y is the horizontal axis with values growing from
* right to left.
*/
#define T213_FORMAT_TOUCH_BIT 0x01
#define T213_FORMAT_STATUS_BYTE 0x80
#define T213_FORMAT_STATUS_MASK ~T213_FORMAT_TOUCH_BIT
/*
* On my Sahara Touch-IT 213 I have observed x values from 0 to 0x7f0
* and y values from 0x1d to 0x7e9, so the actual measurement is
* probably done with an 11 bit precision.
*/
#define T213_MIN_XC 0
#define T213_MAX_XC 0x07ff
#define T213_MIN_YC 0
#define T213_MAX_YC 0x07ff
/*
* Per-touchscreen data.
*/
struct touchit213 {
struct input_dev *dev;
struct serio *serio;
int idx;
unsigned char csum;
unsigned char data[5];
char phys[32];
};
static irqreturn_t touchit213_interrupt(struct serio *serio,
unsigned char data, unsigned int flags)
{
struct touchit213 *touchit213 = serio_get_drvdata(serio);
struct input_dev *dev = touchit213->dev;
touchit213->data[touchit213->idx] = data;
switch (touchit213->idx++) {
case 0:
if ((touchit213->data[0] & T213_FORMAT_STATUS_MASK) !=
T213_FORMAT_STATUS_BYTE) {
pr_debug("unsynchronized data: 0x%02x\n", data);
touchit213->idx = 0;
}
break;
case 4:
touchit213->idx = 0;
input_report_abs(dev, ABS_X,
(touchit213->data[1] << 7) | touchit213->data[2]);
input_report_abs(dev, ABS_Y,
(touchit213->data[3] << 7) | touchit213->data[4]);
input_report_key(dev, BTN_TOUCH,
touchit213->data[0] & T213_FORMAT_TOUCH_BIT);
input_sync(dev);
break;
}
return IRQ_HANDLED;
}
/*
* touchit213_disconnect() is the opposite of touchit213_connect()
*/
static void touchit213_disconnect(struct serio *serio)
{
struct touchit213 *touchit213 = serio_get_drvdata(serio);
input_get_device(touchit213->dev);
input_unregister_device(touchit213->dev);
serio_close(serio);
serio_set_drvdata(serio, NULL);
input_put_device(touchit213->dev);
kfree(touchit213);
}
/*
* touchit213_connect() is the routine that is called when someone adds a
* new serio device that supports the Touchright protocol and registers it as
* an input device.
*/
static int touchit213_connect(struct serio *serio, struct serio_driver *drv)
{
struct touchit213 *touchit213;
struct input_dev *input_dev;
int err;
touchit213 = kzalloc(sizeof(struct touchit213), GFP_KERNEL);
input_dev = input_allocate_device();
if (!touchit213 || !input_dev) {
err = -ENOMEM;
goto fail1;
}
touchit213->serio = serio;
touchit213->dev = input_dev;
snprintf(touchit213->phys, sizeof(touchit213->phys),
"%s/input0", serio->phys);
input_dev->name = "Sahara Touch-iT213 Serial TouchScreen";
input_dev->phys = touchit213->phys;
input_dev->id.bustype = BUS_RS232;
input_dev->id.vendor = SERIO_TOUCHIT213;
input_dev->id.product = 0;
input_dev->id.version = 0x0100;
input_dev->dev.parent = &serio->dev;
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
input_set_abs_params(touchit213->dev, ABS_X,
T213_MIN_XC, T213_MAX_XC, 0, 0);
input_set_abs_params(touchit213->dev, ABS_Y,
T213_MIN_YC, T213_MAX_YC, 0, 0);
serio_set_drvdata(serio, touchit213);
err = serio_open(serio, drv);
if (err)
goto fail2;
err = input_register_device(touchit213->dev);
if (err)
goto fail3;
return 0;
fail3: serio_close(serio);
fail2: serio_set_drvdata(serio, NULL);
fail1: input_free_device(input_dev);
kfree(touchit213);
return err;
}
/*
* The serio driver structure.
*/
static const struct serio_device_id touchit213_serio_ids[] = {
{
.type = SERIO_RS232,
.proto = SERIO_TOUCHIT213,
.id = SERIO_ANY,
.extra = SERIO_ANY,
},
{ 0 }
};
MODULE_DEVICE_TABLE(serio, touchit213_serio_ids);
static struct serio_driver touchit213_drv = {
.driver = {
.name = "touchit213",
},
.description = DRIVER_DESC,
.id_table = touchit213_serio_ids,
.interrupt = touchit213_interrupt,
.connect = touchit213_connect,
.disconnect = touchit213_disconnect,
};
module_serio_driver(touchit213_drv);
|
linux-master
|
drivers/input/touchscreen/touchit213.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Azoteq IQS7210A/7211A/E Trackpad/Touchscreen Controller
*
* Copyright (C) 2023 Jeff LaBundy <[email protected]>
*/
#include <linux/bits.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/input/touchscreen.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/property.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#define IQS7211_PROD_NUM 0x00
#define IQS7211_EVENT_MASK_ALL GENMASK(14, 8)
#define IQS7211_EVENT_MASK_ALP BIT(13)
#define IQS7211_EVENT_MASK_BTN BIT(12)
#define IQS7211_EVENT_MASK_ATI BIT(11)
#define IQS7211_EVENT_MASK_MOVE BIT(10)
#define IQS7211_EVENT_MASK_GSTR BIT(9)
#define IQS7211_EVENT_MODE BIT(8)
#define IQS7211_COMMS_ERROR 0xEEEE
#define IQS7211_COMMS_RETRY_MS 50
#define IQS7211_COMMS_SLEEP_US 100
#define IQS7211_COMMS_TIMEOUT_US (100 * USEC_PER_MSEC)
#define IQS7211_RESET_TIMEOUT_MS 150
#define IQS7211_START_TIMEOUT_US (1 * USEC_PER_SEC)
#define IQS7211_NUM_RETRIES 5
#define IQS7211_NUM_CRX 8
#define IQS7211_MAX_CTX 13
#define IQS7211_MAX_CONTACTS 2
#define IQS7211_MAX_CYCLES 21
/*
* The following delay is used during instances that must wait for the open-
* drain RDY pin to settle. Its value is calculated as 5*R*C, where R and C
* represent typical datasheet values of 4.7k and 100 nF, respectively.
*/
#define iqs7211_irq_wait() usleep_range(2500, 2600)
enum iqs7211_dev_id {
IQS7210A,
IQS7211A,
IQS7211E,
};
enum iqs7211_comms_mode {
IQS7211_COMMS_MODE_WAIT,
IQS7211_COMMS_MODE_FREE,
IQS7211_COMMS_MODE_FORCE,
};
struct iqs7211_reg_field_desc {
struct list_head list;
u8 addr;
u16 mask;
u16 val;
};
enum iqs7211_reg_key_id {
IQS7211_REG_KEY_NONE,
IQS7211_REG_KEY_PROX,
IQS7211_REG_KEY_TOUCH,
IQS7211_REG_KEY_TAP,
IQS7211_REG_KEY_HOLD,
IQS7211_REG_KEY_PALM,
IQS7211_REG_KEY_AXIAL_X,
IQS7211_REG_KEY_AXIAL_Y,
IQS7211_REG_KEY_RESERVED
};
enum iqs7211_reg_grp_id {
IQS7211_REG_GRP_TP,
IQS7211_REG_GRP_BTN,
IQS7211_REG_GRP_ALP,
IQS7211_REG_GRP_SYS,
IQS7211_NUM_REG_GRPS
};
static const char * const iqs7211_reg_grp_names[IQS7211_NUM_REG_GRPS] = {
[IQS7211_REG_GRP_TP] = "trackpad",
[IQS7211_REG_GRP_BTN] = "button",
[IQS7211_REG_GRP_ALP] = "alp",
};
static const u16 iqs7211_reg_grp_masks[IQS7211_NUM_REG_GRPS] = {
[IQS7211_REG_GRP_TP] = IQS7211_EVENT_MASK_GSTR,
[IQS7211_REG_GRP_BTN] = IQS7211_EVENT_MASK_BTN,
[IQS7211_REG_GRP_ALP] = IQS7211_EVENT_MASK_ALP,
};
struct iqs7211_event_desc {
const char *name;
u16 mask;
u16 enable;
enum iqs7211_reg_grp_id reg_grp;
enum iqs7211_reg_key_id reg_key;
};
static const struct iqs7211_event_desc iqs7210a_kp_events[] = {
{
.mask = BIT(10),
.enable = BIT(13) | BIT(12),
.reg_grp = IQS7211_REG_GRP_ALP,
},
{
.name = "event-prox",
.mask = BIT(2),
.enable = BIT(5) | BIT(4),
.reg_grp = IQS7211_REG_GRP_BTN,
.reg_key = IQS7211_REG_KEY_PROX,
},
{
.name = "event-touch",
.mask = BIT(3),
.enable = BIT(5) | BIT(4),
.reg_grp = IQS7211_REG_GRP_BTN,
.reg_key = IQS7211_REG_KEY_TOUCH,
},
{
.name = "event-tap",
.mask = BIT(0),
.enable = BIT(0),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_TAP,
},
{
.name = "event-hold",
.mask = BIT(1),
.enable = BIT(1),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_HOLD,
},
{
.name = "event-swipe-x-neg",
.mask = BIT(2),
.enable = BIT(2),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_AXIAL_X,
},
{
.name = "event-swipe-x-pos",
.mask = BIT(3),
.enable = BIT(3),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_AXIAL_X,
},
{
.name = "event-swipe-y-pos",
.mask = BIT(4),
.enable = BIT(4),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_AXIAL_Y,
},
{
.name = "event-swipe-y-neg",
.mask = BIT(5),
.enable = BIT(5),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_AXIAL_Y,
},
};
static const struct iqs7211_event_desc iqs7211a_kp_events[] = {
{
.mask = BIT(14),
.reg_grp = IQS7211_REG_GRP_ALP,
},
{
.name = "event-tap",
.mask = BIT(0),
.enable = BIT(0),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_TAP,
},
{
.name = "event-hold",
.mask = BIT(1),
.enable = BIT(1),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_HOLD,
},
{
.name = "event-swipe-x-neg",
.mask = BIT(2),
.enable = BIT(2),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_AXIAL_X,
},
{
.name = "event-swipe-x-pos",
.mask = BIT(3),
.enable = BIT(3),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_AXIAL_X,
},
{
.name = "event-swipe-y-pos",
.mask = BIT(4),
.enable = BIT(4),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_AXIAL_Y,
},
{
.name = "event-swipe-y-neg",
.mask = BIT(5),
.enable = BIT(5),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_AXIAL_Y,
},
};
static const struct iqs7211_event_desc iqs7211e_kp_events[] = {
{
.mask = BIT(14),
.reg_grp = IQS7211_REG_GRP_ALP,
},
{
.name = "event-tap",
.mask = BIT(0),
.enable = BIT(0),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_TAP,
},
{
.name = "event-tap-double",
.mask = BIT(1),
.enable = BIT(1),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_TAP,
},
{
.name = "event-tap-triple",
.mask = BIT(2),
.enable = BIT(2),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_TAP,
},
{
.name = "event-hold",
.mask = BIT(3),
.enable = BIT(3),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_HOLD,
},
{
.name = "event-palm",
.mask = BIT(4),
.enable = BIT(4),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_PALM,
},
{
.name = "event-swipe-x-pos",
.mask = BIT(8),
.enable = BIT(8),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_AXIAL_X,
},
{
.name = "event-swipe-x-neg",
.mask = BIT(9),
.enable = BIT(9),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_AXIAL_X,
},
{
.name = "event-swipe-y-pos",
.mask = BIT(10),
.enable = BIT(10),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_AXIAL_Y,
},
{
.name = "event-swipe-y-neg",
.mask = BIT(11),
.enable = BIT(11),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_AXIAL_Y,
},
{
.name = "event-swipe-x-pos-hold",
.mask = BIT(12),
.enable = BIT(12),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_HOLD,
},
{
.name = "event-swipe-x-neg-hold",
.mask = BIT(13),
.enable = BIT(13),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_HOLD,
},
{
.name = "event-swipe-y-pos-hold",
.mask = BIT(14),
.enable = BIT(14),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_HOLD,
},
{
.name = "event-swipe-y-neg-hold",
.mask = BIT(15),
.enable = BIT(15),
.reg_grp = IQS7211_REG_GRP_TP,
.reg_key = IQS7211_REG_KEY_HOLD,
},
};
struct iqs7211_dev_desc {
const char *tp_name;
const char *kp_name;
u16 prod_num;
u16 show_reset;
u16 ati_error[IQS7211_NUM_REG_GRPS];
u16 ati_start[IQS7211_NUM_REG_GRPS];
u16 suspend;
u16 ack_reset;
u16 comms_end;
u16 comms_req;
int charge_shift;
int info_offs;
int gesture_offs;
int contact_offs;
u8 sys_stat;
u8 sys_ctrl;
u8 alp_config;
u8 tp_config;
u8 exp_file;
u8 kp_enable[IQS7211_NUM_REG_GRPS];
u8 gesture_angle;
u8 rx_tx_map;
u8 cycle_alloc[2];
u8 cycle_limit[2];
const struct iqs7211_event_desc *kp_events;
int num_kp_events;
int min_crx_alp;
int num_ctx;
};
static const struct iqs7211_dev_desc iqs7211_devs[] = {
[IQS7210A] = {
.tp_name = "iqs7210a_trackpad",
.kp_name = "iqs7210a_keys",
.prod_num = 944,
.show_reset = BIT(15),
.ati_error = {
[IQS7211_REG_GRP_TP] = BIT(12),
[IQS7211_REG_GRP_BTN] = BIT(0),
[IQS7211_REG_GRP_ALP] = BIT(8),
},
.ati_start = {
[IQS7211_REG_GRP_TP] = BIT(13),
[IQS7211_REG_GRP_BTN] = BIT(1),
[IQS7211_REG_GRP_ALP] = BIT(9),
},
.suspend = BIT(11),
.ack_reset = BIT(7),
.comms_end = BIT(2),
.comms_req = BIT(1),
.charge_shift = 4,
.info_offs = 0,
.gesture_offs = 1,
.contact_offs = 4,
.sys_stat = 0x0A,
.sys_ctrl = 0x35,
.alp_config = 0x39,
.tp_config = 0x4E,
.exp_file = 0x57,
.kp_enable = {
[IQS7211_REG_GRP_TP] = 0x58,
[IQS7211_REG_GRP_BTN] = 0x37,
[IQS7211_REG_GRP_ALP] = 0x37,
},
.gesture_angle = 0x5F,
.rx_tx_map = 0x60,
.cycle_alloc = { 0x66, 0x75, },
.cycle_limit = { 10, 6, },
.kp_events = iqs7210a_kp_events,
.num_kp_events = ARRAY_SIZE(iqs7210a_kp_events),
.min_crx_alp = 4,
.num_ctx = IQS7211_MAX_CTX - 1,
},
[IQS7211A] = {
.tp_name = "iqs7211a_trackpad",
.kp_name = "iqs7211a_keys",
.prod_num = 763,
.show_reset = BIT(7),
.ati_error = {
[IQS7211_REG_GRP_TP] = BIT(3),
[IQS7211_REG_GRP_ALP] = BIT(5),
},
.ati_start = {
[IQS7211_REG_GRP_TP] = BIT(5),
[IQS7211_REG_GRP_ALP] = BIT(6),
},
.ack_reset = BIT(7),
.comms_req = BIT(4),
.charge_shift = 0,
.info_offs = 0,
.gesture_offs = 1,
.contact_offs = 4,
.sys_stat = 0x10,
.sys_ctrl = 0x50,
.tp_config = 0x60,
.alp_config = 0x72,
.exp_file = 0x74,
.kp_enable = {
[IQS7211_REG_GRP_TP] = 0x80,
},
.gesture_angle = 0x87,
.rx_tx_map = 0x90,
.cycle_alloc = { 0xA0, 0xB0, },
.cycle_limit = { 10, 8, },
.kp_events = iqs7211a_kp_events,
.num_kp_events = ARRAY_SIZE(iqs7211a_kp_events),
.num_ctx = IQS7211_MAX_CTX - 1,
},
[IQS7211E] = {
.tp_name = "iqs7211e_trackpad",
.kp_name = "iqs7211e_keys",
.prod_num = 1112,
.show_reset = BIT(7),
.ati_error = {
[IQS7211_REG_GRP_TP] = BIT(3),
[IQS7211_REG_GRP_ALP] = BIT(5),
},
.ati_start = {
[IQS7211_REG_GRP_TP] = BIT(5),
[IQS7211_REG_GRP_ALP] = BIT(6),
},
.suspend = BIT(11),
.ack_reset = BIT(7),
.comms_end = BIT(6),
.comms_req = BIT(4),
.charge_shift = 0,
.info_offs = 1,
.gesture_offs = 0,
.contact_offs = 2,
.sys_stat = 0x0E,
.sys_ctrl = 0x33,
.tp_config = 0x41,
.alp_config = 0x36,
.exp_file = 0x4A,
.kp_enable = {
[IQS7211_REG_GRP_TP] = 0x4B,
},
.gesture_angle = 0x55,
.rx_tx_map = 0x56,
.cycle_alloc = { 0x5D, 0x6C, },
.cycle_limit = { 10, 11, },
.kp_events = iqs7211e_kp_events,
.num_kp_events = ARRAY_SIZE(iqs7211e_kp_events),
.num_ctx = IQS7211_MAX_CTX,
},
};
struct iqs7211_prop_desc {
const char *name;
enum iqs7211_reg_key_id reg_key;
u8 reg_addr[IQS7211_NUM_REG_GRPS][ARRAY_SIZE(iqs7211_devs)];
int reg_shift;
int reg_width;
int val_pitch;
int val_min;
int val_max;
const char *label;
};
static const struct iqs7211_prop_desc iqs7211_props[] = {
{
.name = "azoteq,ati-frac-div-fine",
.reg_addr = {
[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x1E,
[IQS7211A] = 0x30,
[IQS7211E] = 0x21,
},
[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x22,
},
[IQS7211_REG_GRP_ALP] = {
[IQS7210A] = 0x23,
[IQS7211A] = 0x36,
[IQS7211E] = 0x25,
},
},
.reg_shift = 9,
.reg_width = 5,
.label = "ATI fine fractional divider",
},
{
.name = "azoteq,ati-frac-mult-coarse",
.reg_addr = {
[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x1E,
[IQS7211A] = 0x30,
[IQS7211E] = 0x21,
},
[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x22,
},
[IQS7211_REG_GRP_ALP] = {
[IQS7210A] = 0x23,
[IQS7211A] = 0x36,
[IQS7211E] = 0x25,
},
},
.reg_shift = 5,
.reg_width = 4,
.label = "ATI coarse fractional multiplier",
},
{
.name = "azoteq,ati-frac-div-coarse",
.reg_addr = {
[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x1E,
[IQS7211A] = 0x30,
[IQS7211E] = 0x21,
},
[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x22,
},
[IQS7211_REG_GRP_ALP] = {
[IQS7210A] = 0x23,
[IQS7211A] = 0x36,
[IQS7211E] = 0x25,
},
},
.reg_shift = 0,
.reg_width = 5,
.label = "ATI coarse fractional divider",
},
{
.name = "azoteq,ati-comp-div",
.reg_addr = {
[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x1F,
[IQS7211E] = 0x22,
},
[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x24,
},
[IQS7211_REG_GRP_ALP] = {
[IQS7211E] = 0x26,
},
},
.reg_shift = 0,
.reg_width = 8,
.val_max = 31,
.label = "ATI compensation divider",
},
{
.name = "azoteq,ati-comp-div",
.reg_addr = {
[IQS7211_REG_GRP_ALP] = {
[IQS7210A] = 0x24,
},
},
.reg_shift = 8,
.reg_width = 8,
.val_max = 31,
.label = "ATI compensation divider",
},
{
.name = "azoteq,ati-comp-div",
.reg_addr = {
[IQS7211_REG_GRP_TP] = {
[IQS7211A] = 0x31,
},
[IQS7211_REG_GRP_ALP] = {
[IQS7211A] = 0x37,
},
},
.val_max = 31,
.label = "ATI compensation divider",
},
{
.name = "azoteq,ati-target",
.reg_addr = {
[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x20,
[IQS7211A] = 0x32,
[IQS7211E] = 0x23,
},
[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x27,
},
[IQS7211_REG_GRP_ALP] = {
[IQS7210A] = 0x28,
[IQS7211A] = 0x38,
[IQS7211E] = 0x27,
},
},
.label = "ATI target",
},
{
.name = "azoteq,ati-base",
.reg_addr[IQS7211_REG_GRP_ALP] = {
[IQS7210A] = 0x26,
},
.reg_shift = 8,
.reg_width = 8,
.val_pitch = 8,
.label = "ATI base",
},
{
.name = "azoteq,ati-base",
.reg_addr[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x26,
},
.reg_shift = 0,
.reg_width = 8,
.val_pitch = 8,
.label = "ATI base",
},
{
.name = "azoteq,rate-active-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x29,
[IQS7211A] = 0x40,
[IQS7211E] = 0x28,
},
.label = "active mode report rate",
},
{
.name = "azoteq,rate-touch-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x2A,
[IQS7211A] = 0x41,
[IQS7211E] = 0x29,
},
.label = "idle-touch mode report rate",
},
{
.name = "azoteq,rate-idle-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x2B,
[IQS7211A] = 0x42,
[IQS7211E] = 0x2A,
},
.label = "idle mode report rate",
},
{
.name = "azoteq,rate-lp1-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x2C,
[IQS7211A] = 0x43,
[IQS7211E] = 0x2B,
},
.label = "low-power mode 1 report rate",
},
{
.name = "azoteq,rate-lp2-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x2D,
[IQS7211A] = 0x44,
[IQS7211E] = 0x2C,
},
.label = "low-power mode 2 report rate",
},
{
.name = "azoteq,timeout-active-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x2E,
[IQS7211A] = 0x45,
[IQS7211E] = 0x2D,
},
.val_pitch = 1000,
.label = "active mode timeout",
},
{
.name = "azoteq,timeout-touch-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x2F,
[IQS7211A] = 0x46,
[IQS7211E] = 0x2E,
},
.val_pitch = 1000,
.label = "idle-touch mode timeout",
},
{
.name = "azoteq,timeout-idle-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x30,
[IQS7211A] = 0x47,
[IQS7211E] = 0x2F,
},
.val_pitch = 1000,
.label = "idle mode timeout",
},
{
.name = "azoteq,timeout-lp1-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x31,
[IQS7211A] = 0x48,
[IQS7211E] = 0x30,
},
.val_pitch = 1000,
.label = "low-power mode 1 timeout",
},
{
.name = "azoteq,timeout-lp2-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x32,
[IQS7211E] = 0x31,
},
.reg_shift = 8,
.reg_width = 8,
.val_pitch = 1000,
.val_max = 60000,
.label = "trackpad reference value update rate",
},
{
.name = "azoteq,timeout-lp2-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7211A] = 0x49,
},
.val_pitch = 1000,
.val_max = 60000,
.label = "trackpad reference value update rate",
},
{
.name = "azoteq,timeout-ati-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x32,
[IQS7211E] = 0x31,
},
.reg_width = 8,
.val_pitch = 1000,
.val_max = 60000,
.label = "ATI error timeout",
},
{
.name = "azoteq,timeout-ati-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7211A] = 0x35,
},
.val_pitch = 1000,
.val_max = 60000,
.label = "ATI error timeout",
},
{
.name = "azoteq,timeout-comms-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x33,
[IQS7211A] = 0x4A,
[IQS7211E] = 0x32,
},
.label = "communication timeout",
},
{
.name = "azoteq,timeout-press-ms",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x34,
},
.reg_width = 8,
.val_pitch = 1000,
.val_max = 60000,
.label = "press timeout",
},
{
.name = "azoteq,ati-mode",
.reg_addr[IQS7211_REG_GRP_ALP] = {
[IQS7210A] = 0x37,
},
.reg_shift = 15,
.reg_width = 1,
.label = "ATI mode",
},
{
.name = "azoteq,ati-mode",
.reg_addr[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x37,
},
.reg_shift = 7,
.reg_width = 1,
.label = "ATI mode",
},
{
.name = "azoteq,sense-mode",
.reg_addr[IQS7211_REG_GRP_ALP] = {
[IQS7210A] = 0x37,
[IQS7211A] = 0x72,
[IQS7211E] = 0x36,
},
.reg_shift = 8,
.reg_width = 1,
.label = "sensing mode",
},
{
.name = "azoteq,sense-mode",
.reg_addr[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x37,
},
.reg_shift = 0,
.reg_width = 2,
.val_max = 2,
.label = "sensing mode",
},
{
.name = "azoteq,fosc-freq",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x38,
[IQS7211A] = 0x52,
[IQS7211E] = 0x35,
},
.reg_shift = 4,
.reg_width = 1,
.label = "core clock frequency selection",
},
{
.name = "azoteq,fosc-trim",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x38,
[IQS7211A] = 0x52,
[IQS7211E] = 0x35,
},
.reg_shift = 0,
.reg_width = 4,
.label = "core clock frequency trim",
},
{
.name = "azoteq,touch-exit",
.reg_addr = {
[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x3B,
[IQS7211A] = 0x53,
[IQS7211E] = 0x38,
},
[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x3E,
},
},
.reg_shift = 8,
.reg_width = 8,
.label = "touch exit factor",
},
{
.name = "azoteq,touch-enter",
.reg_addr = {
[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x3B,
[IQS7211A] = 0x53,
[IQS7211E] = 0x38,
},
[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x3E,
},
},
.reg_shift = 0,
.reg_width = 8,
.label = "touch entrance factor",
},
{
.name = "azoteq,thresh",
.reg_addr = {
[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x3C,
},
[IQS7211_REG_GRP_ALP] = {
[IQS7210A] = 0x3D,
[IQS7211A] = 0x54,
[IQS7211E] = 0x39,
},
},
.label = "threshold",
},
{
.name = "azoteq,debounce-exit",
.reg_addr = {
[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x3F,
},
[IQS7211_REG_GRP_ALP] = {
[IQS7210A] = 0x40,
[IQS7211A] = 0x56,
[IQS7211E] = 0x3A,
},
},
.reg_shift = 8,
.reg_width = 8,
.label = "debounce exit factor",
},
{
.name = "azoteq,debounce-enter",
.reg_addr = {
[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x3F,
},
[IQS7211_REG_GRP_ALP] = {
[IQS7210A] = 0x40,
[IQS7211A] = 0x56,
[IQS7211E] = 0x3A,
},
},
.reg_shift = 0,
.reg_width = 8,
.label = "debounce entrance factor",
},
{
.name = "azoteq,conv-frac",
.reg_addr = {
[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x48,
[IQS7211A] = 0x58,
[IQS7211E] = 0x3D,
},
[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x49,
},
[IQS7211_REG_GRP_ALP] = {
[IQS7210A] = 0x4A,
[IQS7211A] = 0x59,
[IQS7211E] = 0x3E,
},
},
.reg_shift = 8,
.reg_width = 8,
.label = "conversion frequency fractional divider",
},
{
.name = "azoteq,conv-period",
.reg_addr = {
[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x48,
[IQS7211A] = 0x58,
[IQS7211E] = 0x3D,
},
[IQS7211_REG_GRP_BTN] = {
[IQS7210A] = 0x49,
},
[IQS7211_REG_GRP_ALP] = {
[IQS7210A] = 0x4A,
[IQS7211A] = 0x59,
[IQS7211E] = 0x3E,
},
},
.reg_shift = 0,
.reg_width = 8,
.label = "conversion period",
},
{
.name = "azoteq,thresh",
.reg_addr[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x55,
[IQS7211A] = 0x67,
[IQS7211E] = 0x48,
},
.reg_shift = 0,
.reg_width = 8,
.label = "threshold",
},
{
.name = "azoteq,contact-split",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x55,
[IQS7211A] = 0x67,
[IQS7211E] = 0x48,
},
.reg_shift = 8,
.reg_width = 8,
.label = "contact split factor",
},
{
.name = "azoteq,trim-x",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x56,
[IQS7211E] = 0x49,
},
.reg_shift = 0,
.reg_width = 8,
.label = "horizontal trim width",
},
{
.name = "azoteq,trim-x",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7211A] = 0x68,
},
.label = "horizontal trim width",
},
{
.name = "azoteq,trim-y",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7210A] = 0x56,
[IQS7211E] = 0x49,
},
.reg_shift = 8,
.reg_width = 8,
.label = "vertical trim height",
},
{
.name = "azoteq,trim-y",
.reg_addr[IQS7211_REG_GRP_SYS] = {
[IQS7211A] = 0x69,
},
.label = "vertical trim height",
},
{
.name = "azoteq,gesture-max-ms",
.reg_key = IQS7211_REG_KEY_TAP,
.reg_addr[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x59,
[IQS7211A] = 0x81,
[IQS7211E] = 0x4C,
},
.label = "maximum gesture time",
},
{
.name = "azoteq,gesture-mid-ms",
.reg_key = IQS7211_REG_KEY_TAP,
.reg_addr[IQS7211_REG_GRP_TP] = {
[IQS7211E] = 0x4D,
},
.label = "repeated gesture time",
},
{
.name = "azoteq,gesture-dist",
.reg_key = IQS7211_REG_KEY_TAP,
.reg_addr[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x5A,
[IQS7211A] = 0x82,
[IQS7211E] = 0x4E,
},
.label = "gesture distance",
},
{
.name = "azoteq,gesture-dist",
.reg_key = IQS7211_REG_KEY_HOLD,
.reg_addr[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x5A,
[IQS7211A] = 0x82,
[IQS7211E] = 0x4E,
},
.label = "gesture distance",
},
{
.name = "azoteq,gesture-min-ms",
.reg_key = IQS7211_REG_KEY_HOLD,
.reg_addr[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x5B,
[IQS7211A] = 0x83,
[IQS7211E] = 0x4F,
},
.label = "minimum gesture time",
},
{
.name = "azoteq,gesture-max-ms",
.reg_key = IQS7211_REG_KEY_AXIAL_X,
.reg_addr[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x5C,
[IQS7211A] = 0x84,
[IQS7211E] = 0x50,
},
.label = "maximum gesture time",
},
{
.name = "azoteq,gesture-max-ms",
.reg_key = IQS7211_REG_KEY_AXIAL_Y,
.reg_addr[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x5C,
[IQS7211A] = 0x84,
[IQS7211E] = 0x50,
},
.label = "maximum gesture time",
},
{
.name = "azoteq,gesture-dist",
.reg_key = IQS7211_REG_KEY_AXIAL_X,
.reg_addr[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x5D,
[IQS7211A] = 0x85,
[IQS7211E] = 0x51,
},
.label = "gesture distance",
},
{
.name = "azoteq,gesture-dist",
.reg_key = IQS7211_REG_KEY_AXIAL_Y,
.reg_addr[IQS7211_REG_GRP_TP] = {
[IQS7210A] = 0x5E,
[IQS7211A] = 0x86,
[IQS7211E] = 0x52,
},
.label = "gesture distance",
},
{
.name = "azoteq,gesture-dist-rep",
.reg_key = IQS7211_REG_KEY_AXIAL_X,
.reg_addr[IQS7211_REG_GRP_TP] = {
[IQS7211E] = 0x53,
},
.label = "repeated gesture distance",
},
{
.name = "azoteq,gesture-dist-rep",
.reg_key = IQS7211_REG_KEY_AXIAL_Y,
.reg_addr[IQS7211_REG_GRP_TP] = {
[IQS7211E] = 0x54,
},
.label = "repeated gesture distance",
},
{
.name = "azoteq,thresh",
.reg_key = IQS7211_REG_KEY_PALM,
.reg_addr[IQS7211_REG_GRP_TP] = {
[IQS7211E] = 0x55,
},
.reg_shift = 8,
.reg_width = 8,
.val_max = 42,
.label = "threshold",
},
};
static const u8 iqs7211_gesture_angle[] = {
0x00, 0x01, 0x02, 0x03,
0x04, 0x06, 0x07, 0x08,
0x09, 0x0A, 0x0B, 0x0C,
0x0E, 0x0F, 0x10, 0x11,
0x12, 0x14, 0x15, 0x16,
0x17, 0x19, 0x1A, 0x1B,
0x1C, 0x1E, 0x1F, 0x21,
0x22, 0x23, 0x25, 0x26,
0x28, 0x2A, 0x2B, 0x2D,
0x2E, 0x30, 0x32, 0x34,
0x36, 0x38, 0x3A, 0x3C,
0x3E, 0x40, 0x42, 0x45,
0x47, 0x4A, 0x4C, 0x4F,
0x52, 0x55, 0x58, 0x5B,
0x5F, 0x63, 0x66, 0x6B,
0x6F, 0x73, 0x78, 0x7E,
0x83, 0x89, 0x90, 0x97,
0x9E, 0xA7, 0xB0, 0xBA,
0xC5, 0xD1, 0xDF, 0xEF,
};
struct iqs7211_ver_info {
__le16 prod_num;
__le16 major;
__le16 minor;
__le32 patch;
} __packed;
struct iqs7211_touch_data {
__le16 abs_x;
__le16 abs_y;
__le16 pressure;
__le16 area;
} __packed;
struct iqs7211_tp_config {
u8 tp_settings;
u8 total_rx;
u8 total_tx;
u8 num_contacts;
__le16 max_x;
__le16 max_y;
} __packed;
struct iqs7211_private {
const struct iqs7211_dev_desc *dev_desc;
struct gpio_desc *reset_gpio;
struct gpio_desc *irq_gpio;
struct i2c_client *client;
struct input_dev *tp_idev;
struct input_dev *kp_idev;
struct iqs7211_ver_info ver_info;
struct iqs7211_tp_config tp_config;
struct touchscreen_properties prop;
struct list_head reg_field_head;
enum iqs7211_comms_mode comms_init;
enum iqs7211_comms_mode comms_mode;
unsigned int num_contacts;
unsigned int kp_code[ARRAY_SIZE(iqs7211e_kp_events)];
u8 rx_tx_map[IQS7211_MAX_CTX + 1];
u8 cycle_alloc[2][33];
u8 exp_file[2];
u16 event_mask;
u16 ati_start;
u16 gesture_cache;
};
static int iqs7211_irq_poll(struct iqs7211_private *iqs7211, u64 timeout_us)
{
int error, val;
error = readx_poll_timeout(gpiod_get_value_cansleep, iqs7211->irq_gpio,
val, val, IQS7211_COMMS_SLEEP_US, timeout_us);
return val < 0 ? val : error;
}
static int iqs7211_hard_reset(struct iqs7211_private *iqs7211)
{
if (!iqs7211->reset_gpio)
return 0;
gpiod_set_value_cansleep(iqs7211->reset_gpio, 1);
/*
* The following delay ensures the shared RDY/MCLR pin is sampled in
* between periodic assertions by the device and assumes the default
* communication timeout has not been overwritten in OTP memory.
*/
if (iqs7211->reset_gpio == iqs7211->irq_gpio)
msleep(IQS7211_RESET_TIMEOUT_MS);
else
usleep_range(1000, 1100);
gpiod_set_value_cansleep(iqs7211->reset_gpio, 0);
if (iqs7211->reset_gpio == iqs7211->irq_gpio)
iqs7211_irq_wait();
return iqs7211_irq_poll(iqs7211, IQS7211_START_TIMEOUT_US);
}
static int iqs7211_force_comms(struct iqs7211_private *iqs7211)
{
u8 msg_buf[] = { 0xFF, };
int ret;
switch (iqs7211->comms_mode) {
case IQS7211_COMMS_MODE_WAIT:
return iqs7211_irq_poll(iqs7211, IQS7211_START_TIMEOUT_US);
case IQS7211_COMMS_MODE_FREE:
return 0;
case IQS7211_COMMS_MODE_FORCE:
break;
default:
return -EINVAL;
}
/*
* The device cannot communicate until it asserts its interrupt (RDY)
* pin. Attempts to do so while RDY is deasserted return an ACK; how-
* ever all write data is ignored, and all read data returns 0xEE.
*
* Unsolicited communication must be preceded by a special force com-
* munication command, after which the device eventually asserts its
* RDY pin and agrees to communicate.
*
* Regardless of whether communication is forced or the result of an
* interrupt, the device automatically deasserts its RDY pin once it
* detects an I2C stop condition, or a timeout expires.
*/
ret = gpiod_get_value_cansleep(iqs7211->irq_gpio);
if (ret < 0)
return ret;
else if (ret > 0)
return 0;
ret = i2c_master_send(iqs7211->client, msg_buf, sizeof(msg_buf));
if (ret < (int)sizeof(msg_buf)) {
if (ret >= 0)
ret = -EIO;
msleep(IQS7211_COMMS_RETRY_MS);
return ret;
}
iqs7211_irq_wait();
return iqs7211_irq_poll(iqs7211, IQS7211_COMMS_TIMEOUT_US);
}
static int iqs7211_read_burst(struct iqs7211_private *iqs7211,
u8 reg, void *val, u16 val_len)
{
int ret, i;
struct i2c_client *client = iqs7211->client;
struct i2c_msg msg[] = {
{
.addr = client->addr,
.flags = 0,
.len = sizeof(reg),
.buf = ®,
},
{
.addr = client->addr,
.flags = I2C_M_RD,
.len = val_len,
.buf = (u8 *)val,
},
};
/*
* The following loop protects against an edge case in which the RDY
* pin is automatically deasserted just as the read is initiated. In
* that case, the read must be retried using forced communication.
*/
for (i = 0; i < IQS7211_NUM_RETRIES; i++) {
ret = iqs7211_force_comms(iqs7211);
if (ret < 0)
continue;
ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg));
if (ret < (int)ARRAY_SIZE(msg)) {
if (ret >= 0)
ret = -EIO;
msleep(IQS7211_COMMS_RETRY_MS);
continue;
}
if (get_unaligned_le16(msg[1].buf) == IQS7211_COMMS_ERROR) {
ret = -ENODATA;
continue;
}
ret = 0;
break;
}
iqs7211_irq_wait();
if (ret < 0)
dev_err(&client->dev,
"Failed to read from address 0x%02X: %d\n", reg, ret);
return ret;
}
static int iqs7211_read_word(struct iqs7211_private *iqs7211, u8 reg, u16 *val)
{
__le16 val_buf;
int error;
error = iqs7211_read_burst(iqs7211, reg, &val_buf, sizeof(val_buf));
if (error)
return error;
*val = le16_to_cpu(val_buf);
return 0;
}
static int iqs7211_write_burst(struct iqs7211_private *iqs7211,
u8 reg, const void *val, u16 val_len)
{
int msg_len = sizeof(reg) + val_len;
int ret, i;
struct i2c_client *client = iqs7211->client;
u8 *msg_buf;
msg_buf = kzalloc(msg_len, GFP_KERNEL);
if (!msg_buf)
return -ENOMEM;
*msg_buf = reg;
memcpy(msg_buf + sizeof(reg), val, val_len);
/*
* The following loop protects against an edge case in which the RDY
* pin is automatically asserted just before the force communication
* command is sent.
*
* In that case, the subsequent I2C stop condition tricks the device
* into preemptively deasserting the RDY pin and the command must be
* sent again.
*/
for (i = 0; i < IQS7211_NUM_RETRIES; i++) {
ret = iqs7211_force_comms(iqs7211);
if (ret < 0)
continue;
ret = i2c_master_send(client, msg_buf, msg_len);
if (ret < msg_len) {
if (ret >= 0)
ret = -EIO;
msleep(IQS7211_COMMS_RETRY_MS);
continue;
}
ret = 0;
break;
}
kfree(msg_buf);
iqs7211_irq_wait();
if (ret < 0)
dev_err(&client->dev,
"Failed to write to address 0x%02X: %d\n", reg, ret);
return ret;
}
static int iqs7211_write_word(struct iqs7211_private *iqs7211, u8 reg, u16 val)
{
__le16 val_buf = cpu_to_le16(val);
return iqs7211_write_burst(iqs7211, reg, &val_buf, sizeof(val_buf));
}
static int iqs7211_start_comms(struct iqs7211_private *iqs7211)
{
const struct iqs7211_dev_desc *dev_desc = iqs7211->dev_desc;
struct i2c_client *client = iqs7211->client;
bool forced_comms;
unsigned int val;
u16 comms_setup;
int error;
/*
* Until forced communication can be enabled, the host must wait for a
* communication window each time it intends to elicit a response from
* the device.
*
* Forced communication is not necessary, however, if the host adapter
* can support clock stretching. In that case, the device freely clock
* stretches until all pending conversions are complete.
*/
forced_comms = device_property_present(&client->dev,
"azoteq,forced-comms");
error = device_property_read_u32(&client->dev,
"azoteq,forced-comms-default", &val);
if (error == -EINVAL) {
iqs7211->comms_init = IQS7211_COMMS_MODE_WAIT;
} else if (error) {
dev_err(&client->dev,
"Failed to read default communication mode: %d\n",
error);
return error;
} else if (val) {
iqs7211->comms_init = forced_comms ? IQS7211_COMMS_MODE_FORCE
: IQS7211_COMMS_MODE_WAIT;
} else {
iqs7211->comms_init = forced_comms ? IQS7211_COMMS_MODE_WAIT
: IQS7211_COMMS_MODE_FREE;
}
iqs7211->comms_mode = iqs7211->comms_init;
error = iqs7211_hard_reset(iqs7211);
if (error) {
dev_err(&client->dev, "Failed to reset device: %d\n", error);
return error;
}
error = iqs7211_read_burst(iqs7211, IQS7211_PROD_NUM,
&iqs7211->ver_info,
sizeof(iqs7211->ver_info));
if (error)
return error;
if (le16_to_cpu(iqs7211->ver_info.prod_num) != dev_desc->prod_num) {
dev_err(&client->dev, "Invalid product number: %u\n",
le16_to_cpu(iqs7211->ver_info.prod_num));
return -EINVAL;
}
error = iqs7211_read_word(iqs7211, dev_desc->sys_ctrl + 1,
&comms_setup);
if (error)
return error;
if (forced_comms)
comms_setup |= dev_desc->comms_req;
else
comms_setup &= ~dev_desc->comms_req;
error = iqs7211_write_word(iqs7211, dev_desc->sys_ctrl + 1,
comms_setup | dev_desc->comms_end);
if (error)
return error;
if (forced_comms)
iqs7211->comms_mode = IQS7211_COMMS_MODE_FORCE;
else
iqs7211->comms_mode = IQS7211_COMMS_MODE_FREE;
error = iqs7211_read_burst(iqs7211, dev_desc->exp_file,
iqs7211->exp_file,
sizeof(iqs7211->exp_file));
if (error)
return error;
error = iqs7211_read_burst(iqs7211, dev_desc->tp_config,
&iqs7211->tp_config,
sizeof(iqs7211->tp_config));
if (error)
return error;
error = iqs7211_write_word(iqs7211, dev_desc->sys_ctrl + 1,
comms_setup);
if (error)
return error;
iqs7211->event_mask = comms_setup & ~IQS7211_EVENT_MASK_ALL;
iqs7211->event_mask |= (IQS7211_EVENT_MASK_ATI | IQS7211_EVENT_MODE);
return 0;
}
static int iqs7211_init_device(struct iqs7211_private *iqs7211)
{
const struct iqs7211_dev_desc *dev_desc = iqs7211->dev_desc;
struct iqs7211_reg_field_desc *reg_field;
__le16 sys_ctrl[] = {
cpu_to_le16(dev_desc->ack_reset),
cpu_to_le16(iqs7211->event_mask),
};
int error, i;
/*
* Acknowledge reset before writing any registers in case the device
* suffers a spurious reset during initialization. The communication
* mode is configured at this time as well.
*/
error = iqs7211_write_burst(iqs7211, dev_desc->sys_ctrl, sys_ctrl,
sizeof(sys_ctrl));
if (error)
return error;
if (iqs7211->event_mask & dev_desc->comms_req)
iqs7211->comms_mode = IQS7211_COMMS_MODE_FORCE;
else
iqs7211->comms_mode = IQS7211_COMMS_MODE_FREE;
/*
* Take advantage of the stop-bit disable function, if available, to
* save the trouble of having to reopen a communication window after
* each read or write.
*/
error = iqs7211_write_word(iqs7211, dev_desc->sys_ctrl + 1,
iqs7211->event_mask | dev_desc->comms_end);
if (error)
return error;
list_for_each_entry(reg_field, &iqs7211->reg_field_head, list) {
u16 new_val = reg_field->val;
if (reg_field->mask < U16_MAX) {
u16 old_val;
error = iqs7211_read_word(iqs7211, reg_field->addr,
&old_val);
if (error)
return error;
new_val = old_val & ~reg_field->mask;
new_val |= reg_field->val;
if (new_val == old_val)
continue;
}
error = iqs7211_write_word(iqs7211, reg_field->addr, new_val);
if (error)
return error;
}
error = iqs7211_write_burst(iqs7211, dev_desc->tp_config,
&iqs7211->tp_config,
sizeof(iqs7211->tp_config));
if (error)
return error;
if (**iqs7211->cycle_alloc) {
error = iqs7211_write_burst(iqs7211, dev_desc->rx_tx_map,
&iqs7211->rx_tx_map,
dev_desc->num_ctx);
if (error)
return error;
for (i = 0; i < sizeof(dev_desc->cycle_limit); i++) {
error = iqs7211_write_burst(iqs7211,
dev_desc->cycle_alloc[i],
iqs7211->cycle_alloc[i],
dev_desc->cycle_limit[i] * 3);
if (error)
return error;
}
}
*sys_ctrl = cpu_to_le16(iqs7211->ati_start);
return iqs7211_write_burst(iqs7211, dev_desc->sys_ctrl, sys_ctrl,
sizeof(sys_ctrl));
}
static int iqs7211_add_field(struct iqs7211_private *iqs7211,
struct iqs7211_reg_field_desc new_field)
{
struct i2c_client *client = iqs7211->client;
struct iqs7211_reg_field_desc *reg_field;
if (!new_field.addr)
return 0;
list_for_each_entry(reg_field, &iqs7211->reg_field_head, list) {
if (reg_field->addr != new_field.addr)
continue;
reg_field->mask |= new_field.mask;
reg_field->val |= new_field.val;
return 0;
}
reg_field = devm_kzalloc(&client->dev, sizeof(*reg_field), GFP_KERNEL);
if (!reg_field)
return -ENOMEM;
reg_field->addr = new_field.addr;
reg_field->mask = new_field.mask;
reg_field->val = new_field.val;
list_add(®_field->list, &iqs7211->reg_field_head);
return 0;
}
static int iqs7211_parse_props(struct iqs7211_private *iqs7211,
struct fwnode_handle *reg_grp_node,
enum iqs7211_reg_grp_id reg_grp,
enum iqs7211_reg_key_id reg_key)
{
struct i2c_client *client = iqs7211->client;
int i;
for (i = 0; i < ARRAY_SIZE(iqs7211_props); i++) {
const char *name = iqs7211_props[i].name;
u8 reg_addr = iqs7211_props[i].reg_addr[reg_grp]
[iqs7211->dev_desc -
iqs7211_devs];
int reg_shift = iqs7211_props[i].reg_shift;
int reg_width = iqs7211_props[i].reg_width ? : 16;
int val_pitch = iqs7211_props[i].val_pitch ? : 1;
int val_min = iqs7211_props[i].val_min;
int val_max = iqs7211_props[i].val_max;
const char *label = iqs7211_props[i].label ? : name;
struct iqs7211_reg_field_desc reg_field;
unsigned int val;
int error;
if (iqs7211_props[i].reg_key != reg_key)
continue;
if (!reg_addr)
continue;
error = fwnode_property_read_u32(reg_grp_node, name, &val);
if (error == -EINVAL) {
continue;
} else if (error) {
dev_err(&client->dev, "Failed to read %s %s: %d\n",
fwnode_get_name(reg_grp_node), label, error);
return error;
}
if (!val_max)
val_max = GENMASK(reg_width - 1, 0) * val_pitch;
if (val < val_min || val > val_max) {
dev_err(&client->dev, "Invalid %s: %u\n", label, val);
return -EINVAL;
}
reg_field.addr = reg_addr;
reg_field.mask = GENMASK(reg_shift + reg_width - 1, reg_shift);
reg_field.val = val / val_pitch << reg_shift;
error = iqs7211_add_field(iqs7211, reg_field);
if (error)
return error;
}
return 0;
}
static int iqs7211_parse_event(struct iqs7211_private *iqs7211,
struct fwnode_handle *event_node,
enum iqs7211_reg_grp_id reg_grp,
enum iqs7211_reg_key_id reg_key,
unsigned int *event_code)
{
const struct iqs7211_dev_desc *dev_desc = iqs7211->dev_desc;
struct i2c_client *client = iqs7211->client;
struct iqs7211_reg_field_desc reg_field;
unsigned int val;
int error;
error = iqs7211_parse_props(iqs7211, event_node, reg_grp, reg_key);
if (error)
return error;
if (reg_key == IQS7211_REG_KEY_AXIAL_X ||
reg_key == IQS7211_REG_KEY_AXIAL_Y) {
error = fwnode_property_read_u32(event_node,
"azoteq,gesture-angle", &val);
if (!error) {
if (val >= ARRAY_SIZE(iqs7211_gesture_angle)) {
dev_err(&client->dev,
"Invalid %s gesture angle: %u\n",
fwnode_get_name(event_node), val);
return -EINVAL;
}
reg_field.addr = dev_desc->gesture_angle;
reg_field.mask = U8_MAX;
reg_field.val = iqs7211_gesture_angle[val];
error = iqs7211_add_field(iqs7211, reg_field);
if (error)
return error;
} else if (error != -EINVAL) {
dev_err(&client->dev,
"Failed to read %s gesture angle: %d\n",
fwnode_get_name(event_node), error);
return error;
}
}
error = fwnode_property_read_u32(event_node, "linux,code", event_code);
if (error == -EINVAL)
error = 0;
else if (error)
dev_err(&client->dev, "Failed to read %s code: %d\n",
fwnode_get_name(event_node), error);
return error;
}
static int iqs7211_parse_cycles(struct iqs7211_private *iqs7211,
struct fwnode_handle *tp_node)
{
const struct iqs7211_dev_desc *dev_desc = iqs7211->dev_desc;
struct i2c_client *client = iqs7211->client;
int num_cycles = dev_desc->cycle_limit[0] + dev_desc->cycle_limit[1];
int error, count, i, j, k, cycle_start;
unsigned int cycle_alloc[IQS7211_MAX_CYCLES][2];
u8 total_rx = iqs7211->tp_config.total_rx;
u8 total_tx = iqs7211->tp_config.total_tx;
for (i = 0; i < IQS7211_MAX_CYCLES * 2; i++)
*(cycle_alloc[0] + i) = U8_MAX;
count = fwnode_property_count_u32(tp_node, "azoteq,channel-select");
if (count == -EINVAL) {
/*
* Assign each sensing cycle's slots (0 and 1) to a channel,
* defined as the intersection between two CRx and CTx pins.
* A channel assignment of 255 means the slot is unused.
*/
for (i = 0, cycle_start = 0; i < total_tx; i++) {
int cycle_stop = 0;
for (j = 0; j < total_rx; j++) {
/*
* Channels formed by CRx0-3 and CRx4-7 are
* bound to slots 0 and 1, respectively.
*/
int slot = iqs7211->rx_tx_map[j] < 4 ? 0 : 1;
int chan = i * total_rx + j;
for (k = cycle_start; k < num_cycles; k++) {
if (cycle_alloc[k][slot] < U8_MAX)
continue;
cycle_alloc[k][slot] = chan;
break;
}
if (k < num_cycles) {
cycle_stop = max(k, cycle_stop);
continue;
}
dev_err(&client->dev,
"Insufficient number of cycles\n");
return -EINVAL;
}
/*
* Sensing cycles cannot straddle more than one CTx
* pin. As such, the next row's starting cycle must
* be greater than the previous row's highest cycle.
*/
cycle_start = cycle_stop + 1;
}
} else if (count < 0) {
dev_err(&client->dev, "Failed to count channels: %d\n", count);
return count;
} else if (count > num_cycles * 2) {
dev_err(&client->dev, "Insufficient number of cycles\n");
return -EINVAL;
} else if (count > 0) {
error = fwnode_property_read_u32_array(tp_node,
"azoteq,channel-select",
cycle_alloc[0], count);
if (error) {
dev_err(&client->dev, "Failed to read channels: %d\n",
error);
return error;
}
for (i = 0; i < count; i++) {
int chan = *(cycle_alloc[0] + i);
if (chan == U8_MAX)
continue;
if (chan >= total_rx * total_tx) {
dev_err(&client->dev, "Invalid channel: %d\n",
chan);
return -EINVAL;
}
for (j = 0; j < count; j++) {
if (j == i || *(cycle_alloc[0] + j) != chan)
continue;
dev_err(&client->dev, "Duplicate channel: %d\n",
chan);
return -EINVAL;
}
}
}
/*
* Once the raw channel assignments have been derived, they must be
* packed according to the device's register map.
*/
for (i = 0, cycle_start = 0; i < sizeof(dev_desc->cycle_limit); i++) {
int offs = 0;
for (j = cycle_start;
j < cycle_start + dev_desc->cycle_limit[i]; j++) {
iqs7211->cycle_alloc[i][offs++] = 0x05;
iqs7211->cycle_alloc[i][offs++] = cycle_alloc[j][0];
iqs7211->cycle_alloc[i][offs++] = cycle_alloc[j][1];
}
cycle_start += dev_desc->cycle_limit[i];
}
return 0;
}
static int iqs7211_parse_tp(struct iqs7211_private *iqs7211,
struct fwnode_handle *tp_node)
{
const struct iqs7211_dev_desc *dev_desc = iqs7211->dev_desc;
struct i2c_client *client = iqs7211->client;
unsigned int pins[IQS7211_MAX_CTX];
int error, count, i, j;
count = fwnode_property_count_u32(tp_node, "azoteq,rx-enable");
if (count == -EINVAL) {
return 0;
} else if (count < 0) {
dev_err(&client->dev, "Failed to count CRx pins: %d\n", count);
return count;
} else if (count > IQS7211_NUM_CRX) {
dev_err(&client->dev, "Invalid number of CRx pins\n");
return -EINVAL;
}
error = fwnode_property_read_u32_array(tp_node, "azoteq,rx-enable",
pins, count);
if (error) {
dev_err(&client->dev, "Failed to read CRx pins: %d\n", error);
return error;
}
for (i = 0; i < count; i++) {
if (pins[i] >= IQS7211_NUM_CRX) {
dev_err(&client->dev, "Invalid CRx pin: %u\n", pins[i]);
return -EINVAL;
}
iqs7211->rx_tx_map[i] = pins[i];
}
iqs7211->tp_config.total_rx = count;
count = fwnode_property_count_u32(tp_node, "azoteq,tx-enable");
if (count < 0) {
dev_err(&client->dev, "Failed to count CTx pins: %d\n", count);
return count;
} else if (count > dev_desc->num_ctx) {
dev_err(&client->dev, "Invalid number of CTx pins\n");
return -EINVAL;
}
error = fwnode_property_read_u32_array(tp_node, "azoteq,tx-enable",
pins, count);
if (error) {
dev_err(&client->dev, "Failed to read CTx pins: %d\n", error);
return error;
}
for (i = 0; i < count; i++) {
if (pins[i] >= dev_desc->num_ctx) {
dev_err(&client->dev, "Invalid CTx pin: %u\n", pins[i]);
return -EINVAL;
}
for (j = 0; j < iqs7211->tp_config.total_rx; j++) {
if (iqs7211->rx_tx_map[j] != pins[i])
continue;
dev_err(&client->dev, "Conflicting CTx pin: %u\n",
pins[i]);
return -EINVAL;
}
iqs7211->rx_tx_map[iqs7211->tp_config.total_rx + i] = pins[i];
}
iqs7211->tp_config.total_tx = count;
return iqs7211_parse_cycles(iqs7211, tp_node);
}
static int iqs7211_parse_alp(struct iqs7211_private *iqs7211,
struct fwnode_handle *alp_node)
{
const struct iqs7211_dev_desc *dev_desc = iqs7211->dev_desc;
struct i2c_client *client = iqs7211->client;
struct iqs7211_reg_field_desc reg_field;
int error, count, i;
count = fwnode_property_count_u32(alp_node, "azoteq,rx-enable");
if (count < 0 && count != -EINVAL) {
dev_err(&client->dev, "Failed to count CRx pins: %d\n", count);
return count;
} else if (count > IQS7211_NUM_CRX) {
dev_err(&client->dev, "Invalid number of CRx pins\n");
return -EINVAL;
} else if (count >= 0) {
unsigned int pins[IQS7211_NUM_CRX];
error = fwnode_property_read_u32_array(alp_node,
"azoteq,rx-enable",
pins, count);
if (error) {
dev_err(&client->dev, "Failed to read CRx pins: %d\n",
error);
return error;
}
reg_field.addr = dev_desc->alp_config;
reg_field.mask = GENMASK(IQS7211_NUM_CRX - 1, 0);
reg_field.val = 0;
for (i = 0; i < count; i++) {
if (pins[i] < dev_desc->min_crx_alp ||
pins[i] >= IQS7211_NUM_CRX) {
dev_err(&client->dev, "Invalid CRx pin: %u\n",
pins[i]);
return -EINVAL;
}
reg_field.val |= BIT(pins[i]);
}
error = iqs7211_add_field(iqs7211, reg_field);
if (error)
return error;
}
count = fwnode_property_count_u32(alp_node, "azoteq,tx-enable");
if (count < 0 && count != -EINVAL) {
dev_err(&client->dev, "Failed to count CTx pins: %d\n", count);
return count;
} else if (count > dev_desc->num_ctx) {
dev_err(&client->dev, "Invalid number of CTx pins\n");
return -EINVAL;
} else if (count >= 0) {
unsigned int pins[IQS7211_MAX_CTX];
error = fwnode_property_read_u32_array(alp_node,
"azoteq,tx-enable",
pins, count);
if (error) {
dev_err(&client->dev, "Failed to read CTx pins: %d\n",
error);
return error;
}
reg_field.addr = dev_desc->alp_config + 1;
reg_field.mask = GENMASK(dev_desc->num_ctx - 1, 0);
reg_field.val = 0;
for (i = 0; i < count; i++) {
if (pins[i] >= dev_desc->num_ctx) {
dev_err(&client->dev, "Invalid CTx pin: %u\n",
pins[i]);
return -EINVAL;
}
reg_field.val |= BIT(pins[i]);
}
error = iqs7211_add_field(iqs7211, reg_field);
if (error)
return error;
}
return 0;
}
static int (*iqs7211_parse_extra[IQS7211_NUM_REG_GRPS])
(struct iqs7211_private *iqs7211,
struct fwnode_handle *reg_grp_node) = {
[IQS7211_REG_GRP_TP] = iqs7211_parse_tp,
[IQS7211_REG_GRP_ALP] = iqs7211_parse_alp,
};
static int iqs7211_parse_reg_grp(struct iqs7211_private *iqs7211,
struct fwnode_handle *reg_grp_node,
enum iqs7211_reg_grp_id reg_grp)
{
const struct iqs7211_dev_desc *dev_desc = iqs7211->dev_desc;
struct iqs7211_reg_field_desc reg_field;
int error, i;
error = iqs7211_parse_props(iqs7211, reg_grp_node, reg_grp,
IQS7211_REG_KEY_NONE);
if (error)
return error;
if (iqs7211_parse_extra[reg_grp]) {
error = iqs7211_parse_extra[reg_grp](iqs7211, reg_grp_node);
if (error)
return error;
}
iqs7211->ati_start |= dev_desc->ati_start[reg_grp];
reg_field.addr = dev_desc->kp_enable[reg_grp];
reg_field.mask = 0;
reg_field.val = 0;
for (i = 0; i < dev_desc->num_kp_events; i++) {
const char *event_name = dev_desc->kp_events[i].name;
struct fwnode_handle *event_node;
if (dev_desc->kp_events[i].reg_grp != reg_grp)
continue;
reg_field.mask |= dev_desc->kp_events[i].enable;
if (event_name)
event_node = fwnode_get_named_child_node(reg_grp_node,
event_name);
else
event_node = fwnode_handle_get(reg_grp_node);
if (!event_node)
continue;
error = iqs7211_parse_event(iqs7211, event_node,
dev_desc->kp_events[i].reg_grp,
dev_desc->kp_events[i].reg_key,
&iqs7211->kp_code[i]);
fwnode_handle_put(event_node);
if (error)
return error;
reg_field.val |= dev_desc->kp_events[i].enable;
iqs7211->event_mask |= iqs7211_reg_grp_masks[reg_grp];
}
return iqs7211_add_field(iqs7211, reg_field);
}
static int iqs7211_register_kp(struct iqs7211_private *iqs7211)
{
const struct iqs7211_dev_desc *dev_desc = iqs7211->dev_desc;
struct input_dev *kp_idev = iqs7211->kp_idev;
struct i2c_client *client = iqs7211->client;
int error, i;
for (i = 0; i < dev_desc->num_kp_events; i++)
if (iqs7211->kp_code[i])
break;
if (i == dev_desc->num_kp_events)
return 0;
kp_idev = devm_input_allocate_device(&client->dev);
if (!kp_idev)
return -ENOMEM;
iqs7211->kp_idev = kp_idev;
kp_idev->name = dev_desc->kp_name;
kp_idev->id.bustype = BUS_I2C;
for (i = 0; i < dev_desc->num_kp_events; i++)
if (iqs7211->kp_code[i])
input_set_capability(iqs7211->kp_idev, EV_KEY,
iqs7211->kp_code[i]);
error = input_register_device(kp_idev);
if (error)
dev_err(&client->dev, "Failed to register %s: %d\n",
kp_idev->name, error);
return error;
}
static int iqs7211_register_tp(struct iqs7211_private *iqs7211)
{
const struct iqs7211_dev_desc *dev_desc = iqs7211->dev_desc;
struct touchscreen_properties *prop = &iqs7211->prop;
struct input_dev *tp_idev = iqs7211->tp_idev;
struct i2c_client *client = iqs7211->client;
int error;
error = device_property_read_u32(&client->dev, "azoteq,num-contacts",
&iqs7211->num_contacts);
if (error == -EINVAL) {
return 0;
} else if (error) {
dev_err(&client->dev, "Failed to read number of contacts: %d\n",
error);
return error;
} else if (iqs7211->num_contacts > IQS7211_MAX_CONTACTS) {
dev_err(&client->dev, "Invalid number of contacts: %u\n",
iqs7211->num_contacts);
return -EINVAL;
}
iqs7211->tp_config.num_contacts = iqs7211->num_contacts ? : 1;
if (!iqs7211->num_contacts)
return 0;
iqs7211->event_mask |= IQS7211_EVENT_MASK_MOVE;
tp_idev = devm_input_allocate_device(&client->dev);
if (!tp_idev)
return -ENOMEM;
iqs7211->tp_idev = tp_idev;
tp_idev->name = dev_desc->tp_name;
tp_idev->id.bustype = BUS_I2C;
input_set_abs_params(tp_idev, ABS_MT_POSITION_X,
0, le16_to_cpu(iqs7211->tp_config.max_x), 0, 0);
input_set_abs_params(tp_idev, ABS_MT_POSITION_Y,
0, le16_to_cpu(iqs7211->tp_config.max_y), 0, 0);
input_set_abs_params(tp_idev, ABS_MT_PRESSURE, 0, U16_MAX, 0, 0);
touchscreen_parse_properties(tp_idev, true, prop);
/*
* The device reserves 0xFFFF for coordinates that correspond to slots
* which are not in a state of touch.
*/
if (prop->max_x >= U16_MAX || prop->max_y >= U16_MAX) {
dev_err(&client->dev, "Invalid trackpad size: %u*%u\n",
prop->max_x, prop->max_y);
return -EINVAL;
}
iqs7211->tp_config.max_x = cpu_to_le16(prop->max_x);
iqs7211->tp_config.max_y = cpu_to_le16(prop->max_y);
error = input_mt_init_slots(tp_idev, iqs7211->num_contacts,
INPUT_MT_DIRECT);
if (error) {
dev_err(&client->dev, "Failed to initialize slots: %d\n",
error);
return error;
}
error = input_register_device(tp_idev);
if (error)
dev_err(&client->dev, "Failed to register %s: %d\n",
tp_idev->name, error);
return error;
}
static int iqs7211_report(struct iqs7211_private *iqs7211)
{
const struct iqs7211_dev_desc *dev_desc = iqs7211->dev_desc;
struct i2c_client *client = iqs7211->client;
struct iqs7211_touch_data *touch_data;
u16 info_flags, charge_mode, gesture_flags;
__le16 status[12];
int error, i;
error = iqs7211_read_burst(iqs7211, dev_desc->sys_stat, status,
dev_desc->contact_offs * sizeof(__le16) +
iqs7211->num_contacts * sizeof(*touch_data));
if (error)
return error;
info_flags = le16_to_cpu(status[dev_desc->info_offs]);
if (info_flags & dev_desc->show_reset) {
dev_err(&client->dev, "Unexpected device reset\n");
/*
* The device may or may not expect forced communication after
* it exits hardware reset, so the corresponding state machine
* must be reset as well.
*/
iqs7211->comms_mode = iqs7211->comms_init;
return iqs7211_init_device(iqs7211);
}
for (i = 0; i < ARRAY_SIZE(dev_desc->ati_error); i++) {
if (!(info_flags & dev_desc->ati_error[i]))
continue;
dev_err(&client->dev, "Unexpected %s ATI error\n",
iqs7211_reg_grp_names[i]);
return 0;
}
for (i = 0; i < iqs7211->num_contacts; i++) {
u16 pressure;
touch_data = (struct iqs7211_touch_data *)
&status[dev_desc->contact_offs] + i;
pressure = le16_to_cpu(touch_data->pressure);
input_mt_slot(iqs7211->tp_idev, i);
if (input_mt_report_slot_state(iqs7211->tp_idev, MT_TOOL_FINGER,
pressure != 0)) {
touchscreen_report_pos(iqs7211->tp_idev, &iqs7211->prop,
le16_to_cpu(touch_data->abs_x),
le16_to_cpu(touch_data->abs_y),
true);
input_report_abs(iqs7211->tp_idev, ABS_MT_PRESSURE,
pressure);
}
}
if (iqs7211->num_contacts) {
input_mt_sync_frame(iqs7211->tp_idev);
input_sync(iqs7211->tp_idev);
}
if (!iqs7211->kp_idev)
return 0;
charge_mode = info_flags & GENMASK(dev_desc->charge_shift + 2,
dev_desc->charge_shift);
charge_mode >>= dev_desc->charge_shift;
/*
* A charging mode higher than 2 (idle mode) indicates the device last
* operated in low-power mode and intends to express an ALP event.
*/
if (info_flags & dev_desc->kp_events->mask && charge_mode > 2) {
input_report_key(iqs7211->kp_idev, *iqs7211->kp_code, 1);
input_sync(iqs7211->kp_idev);
input_report_key(iqs7211->kp_idev, *iqs7211->kp_code, 0);
}
for (i = 0; i < dev_desc->num_kp_events; i++) {
if (dev_desc->kp_events[i].reg_grp != IQS7211_REG_GRP_BTN)
continue;
input_report_key(iqs7211->kp_idev, iqs7211->kp_code[i],
info_flags & dev_desc->kp_events[i].mask);
}
gesture_flags = le16_to_cpu(status[dev_desc->gesture_offs]);
for (i = 0; i < dev_desc->num_kp_events; i++) {
enum iqs7211_reg_key_id reg_key = dev_desc->kp_events[i].reg_key;
u16 mask = dev_desc->kp_events[i].mask;
if (dev_desc->kp_events[i].reg_grp != IQS7211_REG_GRP_TP)
continue;
if ((gesture_flags ^ iqs7211->gesture_cache) & mask)
input_report_key(iqs7211->kp_idev, iqs7211->kp_code[i],
gesture_flags & mask);
iqs7211->gesture_cache &= ~mask;
/*
* Hold and palm gestures persist while the contact remains in
* place; all others are momentary and hence are followed by a
* complementary release event.
*/
if (reg_key == IQS7211_REG_KEY_HOLD ||
reg_key == IQS7211_REG_KEY_PALM) {
iqs7211->gesture_cache |= gesture_flags & mask;
gesture_flags &= ~mask;
}
}
if (gesture_flags) {
input_sync(iqs7211->kp_idev);
for (i = 0; i < dev_desc->num_kp_events; i++)
if (dev_desc->kp_events[i].reg_grp == IQS7211_REG_GRP_TP &&
gesture_flags & dev_desc->kp_events[i].mask)
input_report_key(iqs7211->kp_idev,
iqs7211->kp_code[i], 0);
}
input_sync(iqs7211->kp_idev);
return 0;
}
static irqreturn_t iqs7211_irq(int irq, void *context)
{
struct iqs7211_private *iqs7211 = context;
return iqs7211_report(iqs7211) ? IRQ_NONE : IRQ_HANDLED;
}
static int iqs7211_suspend(struct device *dev)
{
struct iqs7211_private *iqs7211 = dev_get_drvdata(dev);
const struct iqs7211_dev_desc *dev_desc = iqs7211->dev_desc;
int error;
if (!dev_desc->suspend || device_may_wakeup(dev))
return 0;
/*
* I2C communication prompts the device to assert its RDY pin if it is
* not already asserted. As such, the interrupt must be disabled so as
* to prevent reentrant interrupts.
*/
disable_irq(gpiod_to_irq(iqs7211->irq_gpio));
error = iqs7211_write_word(iqs7211, dev_desc->sys_ctrl,
dev_desc->suspend);
enable_irq(gpiod_to_irq(iqs7211->irq_gpio));
return error;
}
static int iqs7211_resume(struct device *dev)
{
struct iqs7211_private *iqs7211 = dev_get_drvdata(dev);
const struct iqs7211_dev_desc *dev_desc = iqs7211->dev_desc;
__le16 sys_ctrl[] = {
0,
cpu_to_le16(iqs7211->event_mask),
};
int error;
if (!dev_desc->suspend || device_may_wakeup(dev))
return 0;
disable_irq(gpiod_to_irq(iqs7211->irq_gpio));
/*
* Forced communication, if in use, must be explicitly enabled as part
* of the wake-up command.
*/
error = iqs7211_write_burst(iqs7211, dev_desc->sys_ctrl, sys_ctrl,
sizeof(sys_ctrl));
enable_irq(gpiod_to_irq(iqs7211->irq_gpio));
return error;
}
static DEFINE_SIMPLE_DEV_PM_OPS(iqs7211_pm, iqs7211_suspend, iqs7211_resume);
static ssize_t fw_info_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct iqs7211_private *iqs7211 = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%u.%u.%u.%u:%u.%u\n",
le16_to_cpu(iqs7211->ver_info.prod_num),
le32_to_cpu(iqs7211->ver_info.patch),
le16_to_cpu(iqs7211->ver_info.major),
le16_to_cpu(iqs7211->ver_info.minor),
iqs7211->exp_file[1], iqs7211->exp_file[0]);
}
static DEVICE_ATTR_RO(fw_info);
static struct attribute *iqs7211_attrs[] = {
&dev_attr_fw_info.attr,
NULL
};
ATTRIBUTE_GROUPS(iqs7211);
static const struct of_device_id iqs7211_of_match[] = {
{
.compatible = "azoteq,iqs7210a",
.data = &iqs7211_devs[IQS7210A],
},
{
.compatible = "azoteq,iqs7211a",
.data = &iqs7211_devs[IQS7211A],
},
{
.compatible = "azoteq,iqs7211e",
.data = &iqs7211_devs[IQS7211E],
},
{ }
};
MODULE_DEVICE_TABLE(of, iqs7211_of_match);
static int iqs7211_probe(struct i2c_client *client)
{
struct iqs7211_private *iqs7211;
enum iqs7211_reg_grp_id reg_grp;
unsigned long irq_flags;
bool shared_irq;
int error, irq;
iqs7211 = devm_kzalloc(&client->dev, sizeof(*iqs7211), GFP_KERNEL);
if (!iqs7211)
return -ENOMEM;
i2c_set_clientdata(client, iqs7211);
iqs7211->client = client;
INIT_LIST_HEAD(&iqs7211->reg_field_head);
iqs7211->dev_desc = device_get_match_data(&client->dev);
if (!iqs7211->dev_desc)
return -ENODEV;
shared_irq = iqs7211->dev_desc->num_ctx == IQS7211_MAX_CTX;
/*
* The RDY pin behaves as an interrupt, but must also be polled ahead
* of unsolicited I2C communication. As such, it is first opened as a
* GPIO and then passed to gpiod_to_irq() to register the interrupt.
*
* If an extra CTx pin is present, the RDY and MCLR pins are combined
* into a single bidirectional pin. In that case, the platform's GPIO
* must be configured as an open-drain output.
*/
iqs7211->irq_gpio = devm_gpiod_get(&client->dev, "irq",
shared_irq ? GPIOD_OUT_LOW
: GPIOD_IN);
if (IS_ERR(iqs7211->irq_gpio)) {
error = PTR_ERR(iqs7211->irq_gpio);
dev_err(&client->dev, "Failed to request IRQ GPIO: %d\n",
error);
return error;
}
if (shared_irq) {
iqs7211->reset_gpio = iqs7211->irq_gpio;
} else {
iqs7211->reset_gpio = devm_gpiod_get_optional(&client->dev,
"reset",
GPIOD_OUT_HIGH);
if (IS_ERR(iqs7211->reset_gpio)) {
error = PTR_ERR(iqs7211->reset_gpio);
dev_err(&client->dev,
"Failed to request reset GPIO: %d\n", error);
return error;
}
}
error = iqs7211_start_comms(iqs7211);
if (error)
return error;
for (reg_grp = 0; reg_grp < IQS7211_NUM_REG_GRPS; reg_grp++) {
const char *reg_grp_name = iqs7211_reg_grp_names[reg_grp];
struct fwnode_handle *reg_grp_node;
if (reg_grp_name)
reg_grp_node = device_get_named_child_node(&client->dev,
reg_grp_name);
else
reg_grp_node = fwnode_handle_get(dev_fwnode(&client->dev));
if (!reg_grp_node)
continue;
error = iqs7211_parse_reg_grp(iqs7211, reg_grp_node, reg_grp);
fwnode_handle_put(reg_grp_node);
if (error)
return error;
}
error = iqs7211_register_kp(iqs7211);
if (error)
return error;
error = iqs7211_register_tp(iqs7211);
if (error)
return error;
error = iqs7211_init_device(iqs7211);
if (error)
return error;
irq = gpiod_to_irq(iqs7211->irq_gpio);
if (irq < 0)
return irq;
irq_flags = gpiod_is_active_low(iqs7211->irq_gpio) ? IRQF_TRIGGER_LOW
: IRQF_TRIGGER_HIGH;
irq_flags |= IRQF_ONESHOT;
error = devm_request_threaded_irq(&client->dev, irq, NULL, iqs7211_irq,
irq_flags, client->name, iqs7211);
if (error)
dev_err(&client->dev, "Failed to request IRQ: %d\n", error);
return error;
}
static struct i2c_driver iqs7211_i2c_driver = {
.probe = iqs7211_probe,
.driver = {
.name = "iqs7211",
.of_match_table = iqs7211_of_match,
.dev_groups = iqs7211_groups,
.pm = pm_sleep_ptr(&iqs7211_pm),
},
};
module_i2c_driver(iqs7211_i2c_driver);
MODULE_AUTHOR("Jeff LaBundy <[email protected]>");
MODULE_DESCRIPTION("Azoteq IQS7210A/7211A/E Trackpad/Touchscreen Controller");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/iqs7211.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Touchright serial touchscreen driver
*
* Copyright (c) 2006 Rick Koch <[email protected]>
*
* Based on MicroTouch driver (drivers/input/touchscreen/mtouch.c)
* Copyright (c) 2004 Vojtech Pavlik
* and Dan Streetman <[email protected]>
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/serio.h>
#define DRIVER_DESC "Touchright serial touchscreen driver"
MODULE_AUTHOR("Rick Koch <[email protected]>");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
/*
* Definitions & global arrays.
*/
#define TR_FORMAT_TOUCH_BIT 0x01
#define TR_FORMAT_STATUS_BYTE 0x40
#define TR_FORMAT_STATUS_MASK ~TR_FORMAT_TOUCH_BIT
#define TR_LENGTH 5
#define TR_MIN_XC 0
#define TR_MAX_XC 0x1ff
#define TR_MIN_YC 0
#define TR_MAX_YC 0x1ff
/*
* Per-touchscreen data.
*/
struct tr {
struct input_dev *dev;
struct serio *serio;
int idx;
unsigned char data[TR_LENGTH];
char phys[32];
};
static irqreturn_t tr_interrupt(struct serio *serio,
unsigned char data, unsigned int flags)
{
struct tr *tr = serio_get_drvdata(serio);
struct input_dev *dev = tr->dev;
tr->data[tr->idx] = data;
if ((tr->data[0] & TR_FORMAT_STATUS_MASK) == TR_FORMAT_STATUS_BYTE) {
if (++tr->idx == TR_LENGTH) {
input_report_abs(dev, ABS_X,
(tr->data[1] << 5) | (tr->data[2] >> 1));
input_report_abs(dev, ABS_Y,
(tr->data[3] << 5) | (tr->data[4] >> 1));
input_report_key(dev, BTN_TOUCH,
tr->data[0] & TR_FORMAT_TOUCH_BIT);
input_sync(dev);
tr->idx = 0;
}
}
return IRQ_HANDLED;
}
/*
* tr_disconnect() is the opposite of tr_connect()
*/
static void tr_disconnect(struct serio *serio)
{
struct tr *tr = serio_get_drvdata(serio);
input_get_device(tr->dev);
input_unregister_device(tr->dev);
serio_close(serio);
serio_set_drvdata(serio, NULL);
input_put_device(tr->dev);
kfree(tr);
}
/*
* tr_connect() is the routine that is called when someone adds a
* new serio device that supports the Touchright protocol and registers it as
* an input device.
*/
static int tr_connect(struct serio *serio, struct serio_driver *drv)
{
struct tr *tr;
struct input_dev *input_dev;
int err;
tr = kzalloc(sizeof(struct tr), GFP_KERNEL);
input_dev = input_allocate_device();
if (!tr || !input_dev) {
err = -ENOMEM;
goto fail1;
}
tr->serio = serio;
tr->dev = input_dev;
snprintf(tr->phys, sizeof(tr->phys), "%s/input0", serio->phys);
input_dev->name = "Touchright Serial TouchScreen";
input_dev->phys = tr->phys;
input_dev->id.bustype = BUS_RS232;
input_dev->id.vendor = SERIO_TOUCHRIGHT;
input_dev->id.product = 0;
input_dev->id.version = 0x0100;
input_dev->dev.parent = &serio->dev;
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
input_set_abs_params(tr->dev, ABS_X, TR_MIN_XC, TR_MAX_XC, 0, 0);
input_set_abs_params(tr->dev, ABS_Y, TR_MIN_YC, TR_MAX_YC, 0, 0);
serio_set_drvdata(serio, tr);
err = serio_open(serio, drv);
if (err)
goto fail2;
err = input_register_device(tr->dev);
if (err)
goto fail3;
return 0;
fail3: serio_close(serio);
fail2: serio_set_drvdata(serio, NULL);
fail1: input_free_device(input_dev);
kfree(tr);
return err;
}
/*
* The serio driver structure.
*/
static const struct serio_device_id tr_serio_ids[] = {
{
.type = SERIO_RS232,
.proto = SERIO_TOUCHRIGHT,
.id = SERIO_ANY,
.extra = SERIO_ANY,
},
{ 0 }
};
MODULE_DEVICE_TABLE(serio, tr_serio_ids);
static struct serio_driver tr_drv = {
.driver = {
.name = "touchright",
},
.description = DRIVER_DESC,
.id_table = tr_serio_ids,
.interrupt = tr_interrupt,
.connect = tr_connect,
.disconnect = tr_disconnect,
};
module_serio_driver(tr_drv);
|
linux-master
|
drivers/input/touchscreen/touchright.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012-2013 MundoReader S.L.
* Author: Heiko Stuebner <[email protected]>
*
* based in parts on Nook zforce driver
*
* Copyright (C) 2010 Barnes & Noble, Inc.
* Author: Pieter Truter<[email protected]>
*/
#include <linux/module.h>
#include <linux/hrtimer.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/device.h>
#include <linux/sysfs.h>
#include <linux/input/mt.h>
#include <linux/platform_data/zforce_ts.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#define WAIT_TIMEOUT msecs_to_jiffies(1000)
#define FRAME_START 0xee
#define FRAME_MAXSIZE 257
/* Offsets of the different parts of the payload the controller sends */
#define PAYLOAD_HEADER 0
#define PAYLOAD_LENGTH 1
#define PAYLOAD_BODY 2
/* Response offsets */
#define RESPONSE_ID 0
#define RESPONSE_DATA 1
/* Commands */
#define COMMAND_DEACTIVATE 0x00
#define COMMAND_INITIALIZE 0x01
#define COMMAND_RESOLUTION 0x02
#define COMMAND_SETCONFIG 0x03
#define COMMAND_DATAREQUEST 0x04
#define COMMAND_SCANFREQ 0x08
#define COMMAND_STATUS 0X1e
/*
* Responses the controller sends as a result of
* command requests
*/
#define RESPONSE_DEACTIVATE 0x00
#define RESPONSE_INITIALIZE 0x01
#define RESPONSE_RESOLUTION 0x02
#define RESPONSE_SETCONFIG 0x03
#define RESPONSE_SCANFREQ 0x08
#define RESPONSE_STATUS 0X1e
/*
* Notifications are sent by the touch controller without
* being requested by the driver and include for example
* touch indications
*/
#define NOTIFICATION_TOUCH 0x04
#define NOTIFICATION_BOOTCOMPLETE 0x07
#define NOTIFICATION_OVERRUN 0x25
#define NOTIFICATION_PROXIMITY 0x26
#define NOTIFICATION_INVALID_COMMAND 0xfe
#define ZFORCE_REPORT_POINTS 2
#define ZFORCE_MAX_AREA 0xff
#define STATE_DOWN 0
#define STATE_MOVE 1
#define STATE_UP 2
#define SETCONFIG_DUALTOUCH (1 << 0)
struct zforce_point {
int coord_x;
int coord_y;
int state;
int id;
int area_major;
int area_minor;
int orientation;
int pressure;
int prblty;
};
/*
* @client the i2c_client
* @input the input device
* @suspending in the process of going to suspend (don't emit wakeup
* events for commands executed to suspend the device)
* @suspended device suspended
* @access_mutex serialize i2c-access, to keep multipart reads together
* @command_done completion to wait for the command result
* @command_mutex serialize commands sent to the ic
* @command_waiting the id of the command that is currently waiting
* for a result
* @command_result returned result of the command
*/
struct zforce_ts {
struct i2c_client *client;
struct input_dev *input;
const struct zforce_ts_platdata *pdata;
char phys[32];
struct regulator *reg_vdd;
struct gpio_desc *gpio_int;
struct gpio_desc *gpio_rst;
bool suspending;
bool suspended;
bool boot_complete;
/* Firmware version information */
u16 version_major;
u16 version_minor;
u16 version_build;
u16 version_rev;
struct mutex access_mutex;
struct completion command_done;
struct mutex command_mutex;
int command_waiting;
int command_result;
};
static int zforce_command(struct zforce_ts *ts, u8 cmd)
{
struct i2c_client *client = ts->client;
char buf[3];
int ret;
dev_dbg(&client->dev, "%s: 0x%x\n", __func__, cmd);
buf[0] = FRAME_START;
buf[1] = 1; /* data size, command only */
buf[2] = cmd;
mutex_lock(&ts->access_mutex);
ret = i2c_master_send(client, &buf[0], ARRAY_SIZE(buf));
mutex_unlock(&ts->access_mutex);
if (ret < 0) {
dev_err(&client->dev, "i2c send data request error: %d\n", ret);
return ret;
}
return 0;
}
static void zforce_reset_assert(struct zforce_ts *ts)
{
gpiod_set_value_cansleep(ts->gpio_rst, 1);
}
static void zforce_reset_deassert(struct zforce_ts *ts)
{
gpiod_set_value_cansleep(ts->gpio_rst, 0);
}
static int zforce_send_wait(struct zforce_ts *ts, const char *buf, int len)
{
struct i2c_client *client = ts->client;
int ret;
ret = mutex_trylock(&ts->command_mutex);
if (!ret) {
dev_err(&client->dev, "already waiting for a command\n");
return -EBUSY;
}
dev_dbg(&client->dev, "sending %d bytes for command 0x%x\n",
buf[1], buf[2]);
ts->command_waiting = buf[2];
mutex_lock(&ts->access_mutex);
ret = i2c_master_send(client, buf, len);
mutex_unlock(&ts->access_mutex);
if (ret < 0) {
dev_err(&client->dev, "i2c send data request error: %d\n", ret);
goto unlock;
}
dev_dbg(&client->dev, "waiting for result for command 0x%x\n", buf[2]);
if (wait_for_completion_timeout(&ts->command_done, WAIT_TIMEOUT) == 0) {
ret = -ETIME;
goto unlock;
}
ret = ts->command_result;
unlock:
mutex_unlock(&ts->command_mutex);
return ret;
}
static int zforce_command_wait(struct zforce_ts *ts, u8 cmd)
{
struct i2c_client *client = ts->client;
char buf[3];
int ret;
dev_dbg(&client->dev, "%s: 0x%x\n", __func__, cmd);
buf[0] = FRAME_START;
buf[1] = 1; /* data size, command only */
buf[2] = cmd;
ret = zforce_send_wait(ts, &buf[0], ARRAY_SIZE(buf));
if (ret < 0) {
dev_err(&client->dev, "i2c send data request error: %d\n", ret);
return ret;
}
return 0;
}
static int zforce_resolution(struct zforce_ts *ts, u16 x, u16 y)
{
struct i2c_client *client = ts->client;
char buf[7] = { FRAME_START, 5, COMMAND_RESOLUTION,
(x & 0xff), ((x >> 8) & 0xff),
(y & 0xff), ((y >> 8) & 0xff) };
dev_dbg(&client->dev, "set resolution to (%d,%d)\n", x, y);
return zforce_send_wait(ts, &buf[0], ARRAY_SIZE(buf));
}
static int zforce_scan_frequency(struct zforce_ts *ts, u16 idle, u16 finger,
u16 stylus)
{
struct i2c_client *client = ts->client;
char buf[9] = { FRAME_START, 7, COMMAND_SCANFREQ,
(idle & 0xff), ((idle >> 8) & 0xff),
(finger & 0xff), ((finger >> 8) & 0xff),
(stylus & 0xff), ((stylus >> 8) & 0xff) };
dev_dbg(&client->dev,
"set scan frequency to (idle: %d, finger: %d, stylus: %d)\n",
idle, finger, stylus);
return zforce_send_wait(ts, &buf[0], ARRAY_SIZE(buf));
}
static int zforce_setconfig(struct zforce_ts *ts, char b1)
{
struct i2c_client *client = ts->client;
char buf[7] = { FRAME_START, 5, COMMAND_SETCONFIG,
b1, 0, 0, 0 };
dev_dbg(&client->dev, "set config to (%d)\n", b1);
return zforce_send_wait(ts, &buf[0], ARRAY_SIZE(buf));
}
static int zforce_start(struct zforce_ts *ts)
{
struct i2c_client *client = ts->client;
const struct zforce_ts_platdata *pdata = ts->pdata;
int ret;
dev_dbg(&client->dev, "starting device\n");
ret = zforce_command_wait(ts, COMMAND_INITIALIZE);
if (ret) {
dev_err(&client->dev, "Unable to initialize, %d\n", ret);
return ret;
}
ret = zforce_resolution(ts, pdata->x_max, pdata->y_max);
if (ret) {
dev_err(&client->dev, "Unable to set resolution, %d\n", ret);
goto error;
}
ret = zforce_scan_frequency(ts, 10, 50, 50);
if (ret) {
dev_err(&client->dev, "Unable to set scan frequency, %d\n",
ret);
goto error;
}
ret = zforce_setconfig(ts, SETCONFIG_DUALTOUCH);
if (ret) {
dev_err(&client->dev, "Unable to set config\n");
goto error;
}
/* start sending touch events */
ret = zforce_command(ts, COMMAND_DATAREQUEST);
if (ret) {
dev_err(&client->dev, "Unable to request data\n");
goto error;
}
/*
* Per NN, initial cal. take max. of 200msec.
* Allow time to complete this calibration
*/
msleep(200);
return 0;
error:
zforce_command_wait(ts, COMMAND_DEACTIVATE);
return ret;
}
static int zforce_stop(struct zforce_ts *ts)
{
struct i2c_client *client = ts->client;
int ret;
dev_dbg(&client->dev, "stopping device\n");
/* Deactivates touch sensing and puts the device into sleep. */
ret = zforce_command_wait(ts, COMMAND_DEACTIVATE);
if (ret != 0) {
dev_err(&client->dev, "could not deactivate device, %d\n",
ret);
return ret;
}
return 0;
}
static int zforce_touch_event(struct zforce_ts *ts, u8 *payload)
{
struct i2c_client *client = ts->client;
const struct zforce_ts_platdata *pdata = ts->pdata;
struct zforce_point point;
int count, i, num = 0;
count = payload[0];
if (count > ZFORCE_REPORT_POINTS) {
dev_warn(&client->dev,
"too many coordinates %d, expected max %d\n",
count, ZFORCE_REPORT_POINTS);
count = ZFORCE_REPORT_POINTS;
}
for (i = 0; i < count; i++) {
point.coord_x =
payload[9 * i + 2] << 8 | payload[9 * i + 1];
point.coord_y =
payload[9 * i + 4] << 8 | payload[9 * i + 3];
if (point.coord_x > pdata->x_max ||
point.coord_y > pdata->y_max) {
dev_warn(&client->dev, "coordinates (%d,%d) invalid\n",
point.coord_x, point.coord_y);
point.coord_x = point.coord_y = 0;
}
point.state = payload[9 * i + 5] & 0x0f;
point.id = (payload[9 * i + 5] & 0xf0) >> 4;
/* determine touch major, minor and orientation */
point.area_major = max(payload[9 * i + 6],
payload[9 * i + 7]);
point.area_minor = min(payload[9 * i + 6],
payload[9 * i + 7]);
point.orientation = payload[9 * i + 6] > payload[9 * i + 7];
point.pressure = payload[9 * i + 8];
point.prblty = payload[9 * i + 9];
dev_dbg(&client->dev,
"point %d/%d: state %d, id %d, pressure %d, prblty %d, x %d, y %d, amajor %d, aminor %d, ori %d\n",
i, count, point.state, point.id,
point.pressure, point.prblty,
point.coord_x, point.coord_y,
point.area_major, point.area_minor,
point.orientation);
/* the zforce id starts with "1", so needs to be decreased */
input_mt_slot(ts->input, point.id - 1);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER,
point.state != STATE_UP);
if (point.state != STATE_UP) {
input_report_abs(ts->input, ABS_MT_POSITION_X,
point.coord_x);
input_report_abs(ts->input, ABS_MT_POSITION_Y,
point.coord_y);
input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR,
point.area_major);
input_report_abs(ts->input, ABS_MT_TOUCH_MINOR,
point.area_minor);
input_report_abs(ts->input, ABS_MT_ORIENTATION,
point.orientation);
num++;
}
}
input_mt_sync_frame(ts->input);
input_mt_report_finger_count(ts->input, num);
input_sync(ts->input);
return 0;
}
static int zforce_read_packet(struct zforce_ts *ts, u8 *buf)
{
struct i2c_client *client = ts->client;
int ret;
mutex_lock(&ts->access_mutex);
/* read 2 byte message header */
ret = i2c_master_recv(client, buf, 2);
if (ret < 0) {
dev_err(&client->dev, "error reading header: %d\n", ret);
goto unlock;
}
if (buf[PAYLOAD_HEADER] != FRAME_START) {
dev_err(&client->dev, "invalid frame start: %d\n", buf[0]);
ret = -EIO;
goto unlock;
}
if (buf[PAYLOAD_LENGTH] == 0) {
dev_err(&client->dev, "invalid payload length: %d\n",
buf[PAYLOAD_LENGTH]);
ret = -EIO;
goto unlock;
}
/* read the message */
ret = i2c_master_recv(client, &buf[PAYLOAD_BODY], buf[PAYLOAD_LENGTH]);
if (ret < 0) {
dev_err(&client->dev, "error reading payload: %d\n", ret);
goto unlock;
}
dev_dbg(&client->dev, "read %d bytes for response command 0x%x\n",
buf[PAYLOAD_LENGTH], buf[PAYLOAD_BODY]);
unlock:
mutex_unlock(&ts->access_mutex);
return ret;
}
static void zforce_complete(struct zforce_ts *ts, int cmd, int result)
{
struct i2c_client *client = ts->client;
if (ts->command_waiting == cmd) {
dev_dbg(&client->dev, "completing command 0x%x\n", cmd);
ts->command_result = result;
complete(&ts->command_done);
} else {
dev_dbg(&client->dev, "command %d not for us\n", cmd);
}
}
static irqreturn_t zforce_irq(int irq, void *dev_id)
{
struct zforce_ts *ts = dev_id;
struct i2c_client *client = ts->client;
if (ts->suspended && device_may_wakeup(&client->dev))
pm_wakeup_event(&client->dev, 500);
return IRQ_WAKE_THREAD;
}
static irqreturn_t zforce_irq_thread(int irq, void *dev_id)
{
struct zforce_ts *ts = dev_id;
struct i2c_client *client = ts->client;
int ret;
u8 payload_buffer[FRAME_MAXSIZE];
u8 *payload;
/*
* When still suspended, return.
* Due to the level-interrupt we will get re-triggered later.
*/
if (ts->suspended) {
msleep(20);
return IRQ_HANDLED;
}
dev_dbg(&client->dev, "handling interrupt\n");
/* Don't emit wakeup events from commands run by zforce_suspend */
if (!ts->suspending && device_may_wakeup(&client->dev))
pm_stay_awake(&client->dev);
/*
* Run at least once and exit the loop if
* - the optional interrupt GPIO isn't specified
* (there is only one packet read per ISR invocation, then)
* or
* - the GPIO isn't active any more
* (packet read until the level GPIO indicates that there is
* no IRQ any more)
*/
do {
ret = zforce_read_packet(ts, payload_buffer);
if (ret < 0) {
dev_err(&client->dev,
"could not read packet, ret: %d\n", ret);
break;
}
payload = &payload_buffer[PAYLOAD_BODY];
switch (payload[RESPONSE_ID]) {
case NOTIFICATION_TOUCH:
/*
* Always report touch-events received while
* suspending, when being a wakeup source
*/
if (ts->suspending && device_may_wakeup(&client->dev))
pm_wakeup_event(&client->dev, 500);
zforce_touch_event(ts, &payload[RESPONSE_DATA]);
break;
case NOTIFICATION_BOOTCOMPLETE:
ts->boot_complete = payload[RESPONSE_DATA];
zforce_complete(ts, payload[RESPONSE_ID], 0);
break;
case RESPONSE_INITIALIZE:
case RESPONSE_DEACTIVATE:
case RESPONSE_SETCONFIG:
case RESPONSE_RESOLUTION:
case RESPONSE_SCANFREQ:
zforce_complete(ts, payload[RESPONSE_ID],
payload[RESPONSE_DATA]);
break;
case RESPONSE_STATUS:
/*
* Version Payload Results
* [2:major] [2:minor] [2:build] [2:rev]
*/
ts->version_major = (payload[RESPONSE_DATA + 1] << 8) |
payload[RESPONSE_DATA];
ts->version_minor = (payload[RESPONSE_DATA + 3] << 8) |
payload[RESPONSE_DATA + 2];
ts->version_build = (payload[RESPONSE_DATA + 5] << 8) |
payload[RESPONSE_DATA + 4];
ts->version_rev = (payload[RESPONSE_DATA + 7] << 8) |
payload[RESPONSE_DATA + 6];
dev_dbg(&ts->client->dev,
"Firmware Version %04x:%04x %04x:%04x\n",
ts->version_major, ts->version_minor,
ts->version_build, ts->version_rev);
zforce_complete(ts, payload[RESPONSE_ID], 0);
break;
case NOTIFICATION_INVALID_COMMAND:
dev_err(&ts->client->dev, "invalid command: 0x%x\n",
payload[RESPONSE_DATA]);
break;
default:
dev_err(&ts->client->dev,
"unrecognized response id: 0x%x\n",
payload[RESPONSE_ID]);
break;
}
} while (gpiod_get_value_cansleep(ts->gpio_int));
if (!ts->suspending && device_may_wakeup(&client->dev))
pm_relax(&client->dev);
dev_dbg(&client->dev, "finished interrupt\n");
return IRQ_HANDLED;
}
static int zforce_input_open(struct input_dev *dev)
{
struct zforce_ts *ts = input_get_drvdata(dev);
return zforce_start(ts);
}
static void zforce_input_close(struct input_dev *dev)
{
struct zforce_ts *ts = input_get_drvdata(dev);
struct i2c_client *client = ts->client;
int ret;
ret = zforce_stop(ts);
if (ret)
dev_warn(&client->dev, "stopping zforce failed\n");
return;
}
static int zforce_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct zforce_ts *ts = i2c_get_clientdata(client);
struct input_dev *input = ts->input;
int ret = 0;
mutex_lock(&input->mutex);
ts->suspending = true;
/*
* When configured as a wakeup source device should always wake
* the system, therefore start device if necessary.
*/
if (device_may_wakeup(&client->dev)) {
dev_dbg(&client->dev, "suspend while being a wakeup source\n");
/* Need to start device, if not open, to be a wakeup source. */
if (!input_device_enabled(input)) {
ret = zforce_start(ts);
if (ret)
goto unlock;
}
enable_irq_wake(client->irq);
} else if (input_device_enabled(input)) {
dev_dbg(&client->dev,
"suspend without being a wakeup source\n");
ret = zforce_stop(ts);
if (ret)
goto unlock;
disable_irq(client->irq);
}
ts->suspended = true;
unlock:
ts->suspending = false;
mutex_unlock(&input->mutex);
return ret;
}
static int zforce_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct zforce_ts *ts = i2c_get_clientdata(client);
struct input_dev *input = ts->input;
int ret = 0;
mutex_lock(&input->mutex);
ts->suspended = false;
if (device_may_wakeup(&client->dev)) {
dev_dbg(&client->dev, "resume from being a wakeup source\n");
disable_irq_wake(client->irq);
/* need to stop device if it was not open on suspend */
if (!input_device_enabled(input)) {
ret = zforce_stop(ts);
if (ret)
goto unlock;
}
} else if (input_device_enabled(input)) {
dev_dbg(&client->dev, "resume without being a wakeup source\n");
enable_irq(client->irq);
ret = zforce_start(ts);
if (ret < 0)
goto unlock;
}
unlock:
mutex_unlock(&input->mutex);
return ret;
}
static DEFINE_SIMPLE_DEV_PM_OPS(zforce_pm_ops, zforce_suspend, zforce_resume);
static void zforce_reset(void *data)
{
struct zforce_ts *ts = data;
zforce_reset_assert(ts);
udelay(10);
if (!IS_ERR(ts->reg_vdd))
regulator_disable(ts->reg_vdd);
}
static struct zforce_ts_platdata *zforce_parse_dt(struct device *dev)
{
struct zforce_ts_platdata *pdata;
struct device_node *np = dev->of_node;
if (!np)
return ERR_PTR(-ENOENT);
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(dev, "failed to allocate platform data\n");
return ERR_PTR(-ENOMEM);
}
if (of_property_read_u32(np, "x-size", &pdata->x_max)) {
dev_err(dev, "failed to get x-size property\n");
return ERR_PTR(-EINVAL);
}
if (of_property_read_u32(np, "y-size", &pdata->y_max)) {
dev_err(dev, "failed to get y-size property\n");
return ERR_PTR(-EINVAL);
}
return pdata;
}
static int zforce_probe(struct i2c_client *client)
{
const struct zforce_ts_platdata *pdata = dev_get_platdata(&client->dev);
struct zforce_ts *ts;
struct input_dev *input_dev;
int ret;
if (!pdata) {
pdata = zforce_parse_dt(&client->dev);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
}
ts = devm_kzalloc(&client->dev, sizeof(struct zforce_ts), GFP_KERNEL);
if (!ts)
return -ENOMEM;
ts->gpio_rst = devm_gpiod_get_optional(&client->dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(ts->gpio_rst)) {
ret = PTR_ERR(ts->gpio_rst);
dev_err(&client->dev,
"failed to request reset GPIO: %d\n", ret);
return ret;
}
if (ts->gpio_rst) {
ts->gpio_int = devm_gpiod_get_optional(&client->dev, "irq",
GPIOD_IN);
if (IS_ERR(ts->gpio_int)) {
ret = PTR_ERR(ts->gpio_int);
dev_err(&client->dev,
"failed to request interrupt GPIO: %d\n", ret);
return ret;
}
} else {
/*
* Deprecated GPIO handling for compatibility
* with legacy binding.
*/
/* INT GPIO */
ts->gpio_int = devm_gpiod_get_index(&client->dev, NULL, 0,
GPIOD_IN);
if (IS_ERR(ts->gpio_int)) {
ret = PTR_ERR(ts->gpio_int);
dev_err(&client->dev,
"failed to request interrupt GPIO: %d\n", ret);
return ret;
}
/* RST GPIO */
ts->gpio_rst = devm_gpiod_get_index(&client->dev, NULL, 1,
GPIOD_OUT_HIGH);
if (IS_ERR(ts->gpio_rst)) {
ret = PTR_ERR(ts->gpio_rst);
dev_err(&client->dev,
"failed to request reset GPIO: %d\n", ret);
return ret;
}
}
ts->reg_vdd = devm_regulator_get_optional(&client->dev, "vdd");
if (IS_ERR(ts->reg_vdd)) {
ret = PTR_ERR(ts->reg_vdd);
if (ret == -EPROBE_DEFER)
return ret;
} else {
ret = regulator_enable(ts->reg_vdd);
if (ret)
return ret;
/*
* according to datasheet add 100us grace time after regular
* regulator enable delay.
*/
udelay(100);
}
ret = devm_add_action(&client->dev, zforce_reset, ts);
if (ret) {
dev_err(&client->dev, "failed to register reset action, %d\n",
ret);
/* hereafter the regulator will be disabled by the action */
if (!IS_ERR(ts->reg_vdd))
regulator_disable(ts->reg_vdd);
return ret;
}
snprintf(ts->phys, sizeof(ts->phys),
"%s/input0", dev_name(&client->dev));
input_dev = devm_input_allocate_device(&client->dev);
if (!input_dev) {
dev_err(&client->dev, "could not allocate input device\n");
return -ENOMEM;
}
mutex_init(&ts->access_mutex);
mutex_init(&ts->command_mutex);
ts->pdata = pdata;
ts->client = client;
ts->input = input_dev;
input_dev->name = "Neonode zForce touchscreen";
input_dev->phys = ts->phys;
input_dev->id.bustype = BUS_I2C;
input_dev->open = zforce_input_open;
input_dev->close = zforce_input_close;
__set_bit(EV_KEY, input_dev->evbit);
__set_bit(EV_SYN, input_dev->evbit);
__set_bit(EV_ABS, input_dev->evbit);
/* For multi touch */
input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0,
pdata->x_max, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0,
pdata->y_max, 0, 0);
input_set_abs_params(input_dev, ABS_MT_TOUCH_MAJOR, 0,
ZFORCE_MAX_AREA, 0, 0);
input_set_abs_params(input_dev, ABS_MT_TOUCH_MINOR, 0,
ZFORCE_MAX_AREA, 0, 0);
input_set_abs_params(input_dev, ABS_MT_ORIENTATION, 0, 1, 0, 0);
input_mt_init_slots(input_dev, ZFORCE_REPORT_POINTS, INPUT_MT_DIRECT);
input_set_drvdata(ts->input, ts);
init_completion(&ts->command_done);
/*
* The zforce pulls the interrupt low when it has data ready.
* After it is triggered the isr thread runs until all the available
* packets have been read and the interrupt is high again.
* Therefore we can trigger the interrupt anytime it is low and do
* not need to limit it to the interrupt edge.
*/
ret = devm_request_threaded_irq(&client->dev, client->irq,
zforce_irq, zforce_irq_thread,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
input_dev->name, ts);
if (ret) {
dev_err(&client->dev, "irq %d request failed\n", client->irq);
return ret;
}
i2c_set_clientdata(client, ts);
/* let the controller boot */
zforce_reset_deassert(ts);
ts->command_waiting = NOTIFICATION_BOOTCOMPLETE;
if (wait_for_completion_timeout(&ts->command_done, WAIT_TIMEOUT) == 0)
dev_warn(&client->dev, "bootcomplete timed out\n");
/* need to start device to get version information */
ret = zforce_command_wait(ts, COMMAND_INITIALIZE);
if (ret) {
dev_err(&client->dev, "unable to initialize, %d\n", ret);
return ret;
}
/* this gets the firmware version among other information */
ret = zforce_command_wait(ts, COMMAND_STATUS);
if (ret < 0) {
dev_err(&client->dev, "couldn't get status, %d\n", ret);
zforce_stop(ts);
return ret;
}
/* stop device and put it into sleep until it is opened */
ret = zforce_stop(ts);
if (ret < 0)
return ret;
device_set_wakeup_capable(&client->dev, true);
ret = input_register_device(input_dev);
if (ret) {
dev_err(&client->dev, "could not register input device, %d\n",
ret);
return ret;
}
return 0;
}
static struct i2c_device_id zforce_idtable[] = {
{ "zforce-ts", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, zforce_idtable);
#ifdef CONFIG_OF
static const struct of_device_id zforce_dt_idtable[] = {
{ .compatible = "neonode,zforce" },
{},
};
MODULE_DEVICE_TABLE(of, zforce_dt_idtable);
#endif
static struct i2c_driver zforce_driver = {
.driver = {
.name = "zforce-ts",
.pm = pm_sleep_ptr(&zforce_pm_ops),
.of_match_table = of_match_ptr(zforce_dt_idtable),
},
.probe = zforce_probe,
.id_table = zforce_idtable,
};
module_i2c_driver(zforce_driver);
MODULE_AUTHOR("Heiko Stuebner <[email protected]>");
MODULE_DESCRIPTION("zForce TouchScreen Driver");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/zforce_ts.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Atmel maXTouch Touchscreen driver
*
* Copyright (C) 2010 Samsung Electronics Co.Ltd
* Copyright (C) 2011-2014 Atmel Corporation
* Copyright (C) 2012 Google, Inc.
* Copyright (C) 2016 Zodiac Inflight Innovations
*
* Author: Joonyoung Shim <[email protected]>
*/
#include <linux/acpi.h>
#include <linux/dmi.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/input/mt.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/of.h>
#include <linux/property.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio/consumer.h>
#include <asm/unaligned.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ioctl.h>
#include <media/videobuf2-v4l2.h>
#include <media/videobuf2-vmalloc.h>
#include <dt-bindings/input/atmel-maxtouch.h>
/* Firmware files */
#define MXT_FW_NAME "maxtouch.fw"
#define MXT_CFG_NAME "maxtouch.cfg"
#define MXT_CFG_MAGIC "OBP_RAW V1"
/* Registers */
#define MXT_OBJECT_START 0x07
#define MXT_OBJECT_SIZE 6
#define MXT_INFO_CHECKSUM_SIZE 3
#define MXT_MAX_BLOCK_WRITE 256
/* Object types */
#define MXT_DEBUG_DIAGNOSTIC_T37 37
#define MXT_GEN_MESSAGE_T5 5
#define MXT_GEN_COMMAND_T6 6
#define MXT_GEN_POWER_T7 7
#define MXT_GEN_ACQUIRE_T8 8
#define MXT_GEN_DATASOURCE_T53 53
#define MXT_TOUCH_MULTI_T9 9
#define MXT_TOUCH_KEYARRAY_T15 15
#define MXT_TOUCH_PROXIMITY_T23 23
#define MXT_TOUCH_PROXKEY_T52 52
#define MXT_TOUCH_PTC_KEYS_T97 97
#define MXT_PROCI_GRIPFACE_T20 20
#define MXT_PROCG_NOISE_T22 22
#define MXT_PROCI_ONETOUCH_T24 24
#define MXT_PROCI_TWOTOUCH_T27 27
#define MXT_PROCI_GRIP_T40 40
#define MXT_PROCI_PALM_T41 41
#define MXT_PROCI_TOUCHSUPPRESSION_T42 42
#define MXT_PROCI_STYLUS_T47 47
#define MXT_PROCG_NOISESUPPRESSION_T48 48
#define MXT_SPT_COMMSCONFIG_T18 18
#define MXT_SPT_GPIOPWM_T19 19
#define MXT_SPT_SELFTEST_T25 25
#define MXT_SPT_CTECONFIG_T28 28
#define MXT_SPT_USERDATA_T38 38
#define MXT_SPT_DIGITIZER_T43 43
#define MXT_SPT_MESSAGECOUNT_T44 44
#define MXT_SPT_CTECONFIG_T46 46
#define MXT_SPT_DYNAMICCONFIGURATIONCONTAINER_T71 71
#define MXT_TOUCH_MULTITOUCHSCREEN_T100 100
/* MXT_GEN_MESSAGE_T5 object */
#define MXT_RPTID_NOMSG 0xff
/* MXT_GEN_COMMAND_T6 field */
#define MXT_COMMAND_RESET 0
#define MXT_COMMAND_BACKUPNV 1
#define MXT_COMMAND_CALIBRATE 2
#define MXT_COMMAND_REPORTALL 3
#define MXT_COMMAND_DIAGNOSTIC 5
/* Define for T6 status byte */
#define MXT_T6_STATUS_RESET BIT(7)
#define MXT_T6_STATUS_OFL BIT(6)
#define MXT_T6_STATUS_SIGERR BIT(5)
#define MXT_T6_STATUS_CAL BIT(4)
#define MXT_T6_STATUS_CFGERR BIT(3)
#define MXT_T6_STATUS_COMSERR BIT(2)
/* MXT_GEN_POWER_T7 field */
struct t7_config {
u8 idle;
u8 active;
} __packed;
#define MXT_POWER_CFG_RUN 0
#define MXT_POWER_CFG_DEEPSLEEP 1
/* MXT_TOUCH_MULTI_T9 field */
#define MXT_T9_CTRL 0
#define MXT_T9_XSIZE 3
#define MXT_T9_YSIZE 4
#define MXT_T9_ORIENT 9
#define MXT_T9_RANGE 18
/* MXT_TOUCH_MULTI_T9 status */
#define MXT_T9_UNGRIP BIT(0)
#define MXT_T9_SUPPRESS BIT(1)
#define MXT_T9_AMP BIT(2)
#define MXT_T9_VECTOR BIT(3)
#define MXT_T9_MOVE BIT(4)
#define MXT_T9_RELEASE BIT(5)
#define MXT_T9_PRESS BIT(6)
#define MXT_T9_DETECT BIT(7)
struct t9_range {
__le16 x;
__le16 y;
} __packed;
/* MXT_TOUCH_MULTI_T9 orient */
#define MXT_T9_ORIENT_SWITCH BIT(0)
#define MXT_T9_ORIENT_INVERTX BIT(1)
#define MXT_T9_ORIENT_INVERTY BIT(2)
/* MXT_SPT_COMMSCONFIG_T18 */
#define MXT_COMMS_CTRL 0
#define MXT_COMMS_CMD 1
#define MXT_COMMS_RETRIGEN BIT(6)
/* MXT_DEBUG_DIAGNOSTIC_T37 */
#define MXT_DIAGNOSTIC_PAGEUP 0x01
#define MXT_DIAGNOSTIC_DELTAS 0x10
#define MXT_DIAGNOSTIC_REFS 0x11
#define MXT_DIAGNOSTIC_SIZE 128
#define MXT_FAMILY_1386 160
#define MXT1386_COLUMNS 3
#define MXT1386_PAGES_PER_COLUMN 8
struct t37_debug {
#ifdef CONFIG_TOUCHSCREEN_ATMEL_MXT_T37
u8 mode;
u8 page;
u8 data[MXT_DIAGNOSTIC_SIZE];
#endif
};
/* Define for MXT_GEN_COMMAND_T6 */
#define MXT_BOOT_VALUE 0xa5
#define MXT_RESET_VALUE 0x01
#define MXT_BACKUP_VALUE 0x55
/* T100 Multiple Touch Touchscreen */
#define MXT_T100_CTRL 0
#define MXT_T100_CFG1 1
#define MXT_T100_TCHAUX 3
#define MXT_T100_XSIZE 9
#define MXT_T100_XRANGE 13
#define MXT_T100_YSIZE 20
#define MXT_T100_YRANGE 24
#define MXT_T100_CFG_SWITCHXY BIT(5)
#define MXT_T100_CFG_INVERTY BIT(6)
#define MXT_T100_CFG_INVERTX BIT(7)
#define MXT_T100_TCHAUX_VECT BIT(0)
#define MXT_T100_TCHAUX_AMPL BIT(1)
#define MXT_T100_TCHAUX_AREA BIT(2)
#define MXT_T100_DETECT BIT(7)
#define MXT_T100_TYPE_MASK 0x70
enum t100_type {
MXT_T100_TYPE_FINGER = 1,
MXT_T100_TYPE_PASSIVE_STYLUS = 2,
MXT_T100_TYPE_HOVERING_FINGER = 4,
MXT_T100_TYPE_GLOVE = 5,
MXT_T100_TYPE_LARGE_TOUCH = 6,
};
#define MXT_DISTANCE_ACTIVE_TOUCH 0
#define MXT_DISTANCE_HOVERING 1
#define MXT_TOUCH_MAJOR_DEFAULT 1
#define MXT_PRESSURE_DEFAULT 1
/* Delay times */
#define MXT_BACKUP_TIME 50 /* msec */
#define MXT_RESET_GPIO_TIME 20 /* msec */
#define MXT_RESET_INVALID_CHG 100 /* msec */
#define MXT_RESET_TIME 200 /* msec */
#define MXT_RESET_TIMEOUT 3000 /* msec */
#define MXT_CRC_TIMEOUT 1000 /* msec */
#define MXT_FW_RESET_TIME 3000 /* msec */
#define MXT_FW_CHG_TIMEOUT 300 /* msec */
#define MXT_WAKEUP_TIME 25 /* msec */
/* Command to unlock bootloader */
#define MXT_UNLOCK_CMD_MSB 0xaa
#define MXT_UNLOCK_CMD_LSB 0xdc
/* Bootloader mode status */
#define MXT_WAITING_BOOTLOAD_CMD 0xc0 /* valid 7 6 bit only */
#define MXT_WAITING_FRAME_DATA 0x80 /* valid 7 6 bit only */
#define MXT_FRAME_CRC_CHECK 0x02
#define MXT_FRAME_CRC_FAIL 0x03
#define MXT_FRAME_CRC_PASS 0x04
#define MXT_APP_CRC_FAIL 0x40 /* valid 7 8 bit only */
#define MXT_BOOT_STATUS_MASK 0x3f
#define MXT_BOOT_EXTENDED_ID BIT(5)
#define MXT_BOOT_ID_MASK 0x1f
/* Touchscreen absolute values */
#define MXT_MAX_AREA 0xff
#define MXT_PIXELS_PER_MM 20
struct mxt_info {
u8 family_id;
u8 variant_id;
u8 version;
u8 build;
u8 matrix_xsize;
u8 matrix_ysize;
u8 object_num;
};
struct mxt_object {
u8 type;
u16 start_address;
u8 size_minus_one;
u8 instances_minus_one;
u8 num_report_ids;
} __packed;
struct mxt_dbg {
u16 t37_address;
u16 diag_cmd_address;
struct t37_debug *t37_buf;
unsigned int t37_pages;
unsigned int t37_nodes;
struct v4l2_device v4l2;
struct v4l2_pix_format format;
struct video_device vdev;
struct vb2_queue queue;
struct mutex lock;
int input;
};
enum v4l_dbg_inputs {
MXT_V4L_INPUT_DELTAS,
MXT_V4L_INPUT_REFS,
MXT_V4L_INPUT_MAX,
};
enum mxt_suspend_mode {
MXT_SUSPEND_DEEP_SLEEP = 0,
MXT_SUSPEND_T9_CTRL = 1,
};
/* Config update context */
struct mxt_cfg {
u8 *raw;
size_t raw_size;
off_t raw_pos;
u8 *mem;
size_t mem_size;
int start_ofs;
struct mxt_info info;
};
/* Each client has this additional data */
struct mxt_data {
struct i2c_client *client;
struct input_dev *input_dev;
char phys[64]; /* device physical location */
struct mxt_object *object_table;
struct mxt_info *info;
void *raw_info_block;
unsigned int irq;
unsigned int max_x;
unsigned int max_y;
bool invertx;
bool inverty;
bool xy_switch;
u8 xsize;
u8 ysize;
bool in_bootloader;
u16 mem_size;
u8 t100_aux_ampl;
u8 t100_aux_area;
u8 t100_aux_vect;
u8 max_reportid;
u32 config_crc;
u32 info_crc;
u8 bootloader_addr;
u8 *msg_buf;
u8 t6_status;
bool update_input;
u8 last_message_count;
u8 num_touchids;
u8 multitouch;
struct t7_config t7_cfg;
struct mxt_dbg dbg;
struct regulator_bulk_data regulators[2];
struct gpio_desc *reset_gpio;
struct gpio_desc *wake_gpio;
bool use_retrigen_workaround;
/* Cached parameters from object table */
u16 T5_address;
u8 T5_msg_size;
u8 T6_reportid;
u16 T6_address;
u16 T7_address;
u16 T71_address;
u8 T9_reportid_min;
u8 T9_reportid_max;
u8 T15_reportid_min;
u8 T15_reportid_max;
u16 T18_address;
u8 T19_reportid;
u16 T44_address;
u8 T97_reportid_min;
u8 T97_reportid_max;
u8 T100_reportid_min;
u8 T100_reportid_max;
/* for fw update in bootloader */
struct completion bl_completion;
/* for reset handling */
struct completion reset_completion;
/* for config update handling */
struct completion crc_completion;
u32 *t19_keymap;
unsigned int t19_num_keys;
u32 *t15_keymap;
unsigned int t15_num_keys;
enum mxt_suspend_mode suspend_mode;
u32 wakeup_method;
};
struct mxt_vb2_buffer {
struct vb2_buffer vb;
struct list_head list;
};
static size_t mxt_obj_size(const struct mxt_object *obj)
{
return obj->size_minus_one + 1;
}
static size_t mxt_obj_instances(const struct mxt_object *obj)
{
return obj->instances_minus_one + 1;
}
static bool mxt_object_readable(unsigned int type)
{
switch (type) {
case MXT_GEN_COMMAND_T6:
case MXT_GEN_POWER_T7:
case MXT_GEN_ACQUIRE_T8:
case MXT_GEN_DATASOURCE_T53:
case MXT_TOUCH_MULTI_T9:
case MXT_TOUCH_KEYARRAY_T15:
case MXT_TOUCH_PROXIMITY_T23:
case MXT_TOUCH_PROXKEY_T52:
case MXT_TOUCH_PTC_KEYS_T97:
case MXT_TOUCH_MULTITOUCHSCREEN_T100:
case MXT_PROCI_GRIPFACE_T20:
case MXT_PROCG_NOISE_T22:
case MXT_PROCI_ONETOUCH_T24:
case MXT_PROCI_TWOTOUCH_T27:
case MXT_PROCI_GRIP_T40:
case MXT_PROCI_PALM_T41:
case MXT_PROCI_TOUCHSUPPRESSION_T42:
case MXT_PROCI_STYLUS_T47:
case MXT_PROCG_NOISESUPPRESSION_T48:
case MXT_SPT_COMMSCONFIG_T18:
case MXT_SPT_GPIOPWM_T19:
case MXT_SPT_SELFTEST_T25:
case MXT_SPT_CTECONFIG_T28:
case MXT_SPT_USERDATA_T38:
case MXT_SPT_DIGITIZER_T43:
case MXT_SPT_CTECONFIG_T46:
case MXT_SPT_DYNAMICCONFIGURATIONCONTAINER_T71:
return true;
default:
return false;
}
}
static void mxt_dump_message(struct mxt_data *data, u8 *message)
{
dev_dbg(&data->client->dev, "message: %*ph\n",
data->T5_msg_size, message);
}
static int mxt_wait_for_completion(struct mxt_data *data,
struct completion *comp,
unsigned int timeout_ms)
{
struct device *dev = &data->client->dev;
unsigned long timeout = msecs_to_jiffies(timeout_ms);
long ret;
ret = wait_for_completion_interruptible_timeout(comp, timeout);
if (ret < 0) {
return ret;
} else if (ret == 0) {
dev_err(dev, "Wait for completion timed out.\n");
return -ETIMEDOUT;
}
return 0;
}
static int mxt_bootloader_read(struct mxt_data *data,
u8 *val, unsigned int count)
{
int ret;
struct i2c_msg msg;
msg.addr = data->bootloader_addr;
msg.flags = data->client->flags & I2C_M_TEN;
msg.flags |= I2C_M_RD;
msg.len = count;
msg.buf = val;
ret = i2c_transfer(data->client->adapter, &msg, 1);
if (ret == 1) {
ret = 0;
} else {
ret = ret < 0 ? ret : -EIO;
dev_err(&data->client->dev, "%s: i2c recv failed (%d)\n",
__func__, ret);
}
return ret;
}
static int mxt_bootloader_write(struct mxt_data *data,
const u8 * const val, unsigned int count)
{
int ret;
struct i2c_msg msg;
msg.addr = data->bootloader_addr;
msg.flags = data->client->flags & I2C_M_TEN;
msg.len = count;
msg.buf = (u8 *)val;
ret = i2c_transfer(data->client->adapter, &msg, 1);
if (ret == 1) {
ret = 0;
} else {
ret = ret < 0 ? ret : -EIO;
dev_err(&data->client->dev, "%s: i2c send failed (%d)\n",
__func__, ret);
}
return ret;
}
static int mxt_lookup_bootloader_address(struct mxt_data *data, bool retry)
{
u8 appmode = data->client->addr;
u8 bootloader;
u8 family_id = data->info ? data->info->family_id : 0;
switch (appmode) {
case 0x4a:
case 0x4b:
/* Chips after 1664S use different scheme */
if (retry || family_id >= 0xa2) {
bootloader = appmode - 0x24;
break;
}
fallthrough; /* for normal case */
case 0x4c:
case 0x4d:
case 0x5a:
case 0x5b:
bootloader = appmode - 0x26;
break;
default:
dev_err(&data->client->dev,
"Appmode i2c address 0x%02x not found\n",
appmode);
return -EINVAL;
}
data->bootloader_addr = bootloader;
return 0;
}
static int mxt_probe_bootloader(struct mxt_data *data, bool alt_address)
{
struct device *dev = &data->client->dev;
int error;
u8 val;
bool crc_failure;
error = mxt_lookup_bootloader_address(data, alt_address);
if (error)
return error;
error = mxt_bootloader_read(data, &val, 1);
if (error)
return error;
/* Check app crc fail mode */
crc_failure = (val & ~MXT_BOOT_STATUS_MASK) == MXT_APP_CRC_FAIL;
dev_err(dev, "Detected bootloader, status:%02X%s\n",
val, crc_failure ? ", APP_CRC_FAIL" : "");
return 0;
}
static u8 mxt_get_bootloader_version(struct mxt_data *data, u8 val)
{
struct device *dev = &data->client->dev;
u8 buf[3];
if (val & MXT_BOOT_EXTENDED_ID) {
if (mxt_bootloader_read(data, &buf[0], 3) != 0) {
dev_err(dev, "%s: i2c failure\n", __func__);
return val;
}
dev_dbg(dev, "Bootloader ID:%d Version:%d\n", buf[1], buf[2]);
return buf[0];
} else {
dev_dbg(dev, "Bootloader ID:%d\n", val & MXT_BOOT_ID_MASK);
return val;
}
}
static int mxt_check_bootloader(struct mxt_data *data, unsigned int state,
bool wait)
{
struct device *dev = &data->client->dev;
u8 val;
int ret;
recheck:
if (wait) {
/*
* In application update mode, the interrupt
* line signals state transitions. We must wait for the
* CHG assertion before reading the status byte.
* Once the status byte has been read, the line is deasserted.
*/
ret = mxt_wait_for_completion(data, &data->bl_completion,
MXT_FW_CHG_TIMEOUT);
if (ret) {
/*
* TODO: handle -ERESTARTSYS better by terminating
* fw update process before returning to userspace
* by writing length 0x000 to device (iff we are in
* WAITING_FRAME_DATA state).
*/
dev_err(dev, "Update wait error %d\n", ret);
return ret;
}
}
ret = mxt_bootloader_read(data, &val, 1);
if (ret)
return ret;
if (state == MXT_WAITING_BOOTLOAD_CMD)
val = mxt_get_bootloader_version(data, val);
switch (state) {
case MXT_WAITING_BOOTLOAD_CMD:
case MXT_WAITING_FRAME_DATA:
case MXT_APP_CRC_FAIL:
val &= ~MXT_BOOT_STATUS_MASK;
break;
case MXT_FRAME_CRC_PASS:
if (val == MXT_FRAME_CRC_CHECK) {
goto recheck;
} else if (val == MXT_FRAME_CRC_FAIL) {
dev_err(dev, "Bootloader CRC fail\n");
return -EINVAL;
}
break;
default:
return -EINVAL;
}
if (val != state) {
dev_err(dev, "Invalid bootloader state %02X != %02X\n",
val, state);
return -EINVAL;
}
return 0;
}
static int mxt_send_bootloader_cmd(struct mxt_data *data, bool unlock)
{
u8 buf[2];
if (unlock) {
buf[0] = MXT_UNLOCK_CMD_LSB;
buf[1] = MXT_UNLOCK_CMD_MSB;
} else {
buf[0] = 0x01;
buf[1] = 0x01;
}
return mxt_bootloader_write(data, buf, sizeof(buf));
}
static bool mxt_wakeup_toggle(struct i2c_client *client,
bool wake_up, bool in_i2c)
{
struct mxt_data *data = i2c_get_clientdata(client);
switch (data->wakeup_method) {
case ATMEL_MXT_WAKEUP_I2C_SCL:
if (!in_i2c)
return false;
break;
case ATMEL_MXT_WAKEUP_GPIO:
if (in_i2c)
return false;
gpiod_set_value(data->wake_gpio, wake_up);
break;
default:
return false;
}
if (wake_up) {
dev_dbg(&client->dev, "waking up controller\n");
msleep(MXT_WAKEUP_TIME);
}
return true;
}
static int __mxt_read_reg(struct i2c_client *client,
u16 reg, u16 len, void *val)
{
struct i2c_msg xfer[2];
bool retried = false;
u8 buf[2];
int ret;
buf[0] = reg & 0xff;
buf[1] = (reg >> 8) & 0xff;
/* Write register */
xfer[0].addr = client->addr;
xfer[0].flags = 0;
xfer[0].len = 2;
xfer[0].buf = buf;
/* Read data */
xfer[1].addr = client->addr;
xfer[1].flags = I2C_M_RD;
xfer[1].len = len;
xfer[1].buf = val;
retry:
ret = i2c_transfer(client->adapter, xfer, 2);
if (ret == 2) {
ret = 0;
} else if (!retried && mxt_wakeup_toggle(client, true, true)) {
retried = true;
goto retry;
} else {
if (ret >= 0)
ret = -EIO;
dev_err(&client->dev, "%s: i2c transfer failed (%d)\n",
__func__, ret);
}
return ret;
}
static int __mxt_write_reg(struct i2c_client *client, u16 reg, u16 len,
const void *val)
{
bool retried = false;
u8 *buf;
size_t count;
int ret;
count = len + 2;
buf = kmalloc(count, GFP_KERNEL);
if (!buf)
return -ENOMEM;
buf[0] = reg & 0xff;
buf[1] = (reg >> 8) & 0xff;
memcpy(&buf[2], val, len);
retry:
ret = i2c_master_send(client, buf, count);
if (ret == count) {
ret = 0;
} else if (!retried && mxt_wakeup_toggle(client, true, true)) {
retried = true;
goto retry;
} else {
if (ret >= 0)
ret = -EIO;
dev_err(&client->dev, "%s: i2c send failed (%d)\n",
__func__, ret);
}
kfree(buf);
return ret;
}
static int mxt_write_reg(struct i2c_client *client, u16 reg, u8 val)
{
return __mxt_write_reg(client, reg, 1, &val);
}
static struct mxt_object *
mxt_get_object(struct mxt_data *data, u8 type)
{
struct mxt_object *object;
int i;
for (i = 0; i < data->info->object_num; i++) {
object = data->object_table + i;
if (object->type == type)
return object;
}
dev_warn(&data->client->dev, "Invalid object type T%u\n", type);
return NULL;
}
static void mxt_proc_t6_messages(struct mxt_data *data, u8 *msg)
{
struct device *dev = &data->client->dev;
u8 status = msg[1];
u32 crc = msg[2] | (msg[3] << 8) | (msg[4] << 16);
if (crc != data->config_crc) {
data->config_crc = crc;
dev_dbg(dev, "T6 Config Checksum: 0x%06X\n", crc);
}
complete(&data->crc_completion);
/* Detect reset */
if (status & MXT_T6_STATUS_RESET)
complete(&data->reset_completion);
/* Output debug if status has changed */
if (status != data->t6_status)
dev_dbg(dev, "T6 Status 0x%02X%s%s%s%s%s%s%s\n",
status,
status == 0 ? " OK" : "",
status & MXT_T6_STATUS_RESET ? " RESET" : "",
status & MXT_T6_STATUS_OFL ? " OFL" : "",
status & MXT_T6_STATUS_SIGERR ? " SIGERR" : "",
status & MXT_T6_STATUS_CAL ? " CAL" : "",
status & MXT_T6_STATUS_CFGERR ? " CFGERR" : "",
status & MXT_T6_STATUS_COMSERR ? " COMSERR" : "");
/* Save current status */
data->t6_status = status;
}
static int mxt_write_object(struct mxt_data *data,
u8 type, u8 offset, u8 val)
{
struct mxt_object *object;
u16 reg;
object = mxt_get_object(data, type);
if (!object || offset >= mxt_obj_size(object))
return -EINVAL;
reg = object->start_address;
return mxt_write_reg(data->client, reg + offset, val);
}
static void mxt_input_button(struct mxt_data *data, u8 *message)
{
struct input_dev *input = data->input_dev;
int i;
for (i = 0; i < data->t19_num_keys; i++) {
if (data->t19_keymap[i] == KEY_RESERVED)
continue;
/* Active-low switch */
input_report_key(input, data->t19_keymap[i],
!(message[1] & BIT(i)));
}
}
static void mxt_input_sync(struct mxt_data *data)
{
input_mt_report_pointer_emulation(data->input_dev,
data->t19_num_keys);
input_sync(data->input_dev);
}
static void mxt_proc_t9_message(struct mxt_data *data, u8 *message)
{
struct device *dev = &data->client->dev;
struct input_dev *input_dev = data->input_dev;
int id;
u8 status;
int x;
int y;
int area;
int amplitude;
id = message[0] - data->T9_reportid_min;
status = message[1];
x = (message[2] << 4) | ((message[4] >> 4) & 0xf);
y = (message[3] << 4) | ((message[4] & 0xf));
/* Handle 10/12 bit switching */
if (data->max_x < 1024)
x >>= 2;
if (data->max_y < 1024)
y >>= 2;
area = message[5];
amplitude = message[6];
dev_dbg(dev,
"[%u] %c%c%c%c%c%c%c%c x: %5u y: %5u area: %3u amp: %3u\n",
id,
(status & MXT_T9_DETECT) ? 'D' : '.',
(status & MXT_T9_PRESS) ? 'P' : '.',
(status & MXT_T9_RELEASE) ? 'R' : '.',
(status & MXT_T9_MOVE) ? 'M' : '.',
(status & MXT_T9_VECTOR) ? 'V' : '.',
(status & MXT_T9_AMP) ? 'A' : '.',
(status & MXT_T9_SUPPRESS) ? 'S' : '.',
(status & MXT_T9_UNGRIP) ? 'U' : '.',
x, y, area, amplitude);
input_mt_slot(input_dev, id);
if (status & MXT_T9_DETECT) {
/*
* Multiple bits may be set if the host is slow to read
* the status messages, indicating all the events that
* have happened.
*/
if (status & MXT_T9_RELEASE) {
input_mt_report_slot_inactive(input_dev);
mxt_input_sync(data);
}
/* if active, pressure must be non-zero */
if (!amplitude)
amplitude = MXT_PRESSURE_DEFAULT;
/* Touch active */
input_mt_report_slot_state(input_dev, MT_TOOL_FINGER, 1);
input_report_abs(input_dev, ABS_MT_POSITION_X, x);
input_report_abs(input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(input_dev, ABS_MT_PRESSURE, amplitude);
input_report_abs(input_dev, ABS_MT_TOUCH_MAJOR, area);
} else {
/* Touch no longer active, close out slot */
input_mt_report_slot_inactive(input_dev);
}
data->update_input = true;
}
static void mxt_proc_t15_messages(struct mxt_data *data, u8 *message)
{
struct input_dev *input_dev = data->input_dev;
unsigned long keystates = get_unaligned_le32(&message[2]);
int key;
for (key = 0; key < data->t15_num_keys; key++)
input_report_key(input_dev, data->t15_keymap[key],
keystates & BIT(key));
data->update_input = true;
}
static void mxt_proc_t97_messages(struct mxt_data *data, u8 *message)
{
mxt_proc_t15_messages(data, message);
}
static void mxt_proc_t100_message(struct mxt_data *data, u8 *message)
{
struct device *dev = &data->client->dev;
struct input_dev *input_dev = data->input_dev;
int id;
u8 status;
u8 type = 0;
u16 x;
u16 y;
int distance = 0;
int tool = 0;
u8 major = 0;
u8 pressure = 0;
u8 orientation = 0;
id = message[0] - data->T100_reportid_min - 2;
/* ignore SCRSTATUS events */
if (id < 0)
return;
status = message[1];
x = get_unaligned_le16(&message[2]);
y = get_unaligned_le16(&message[4]);
if (status & MXT_T100_DETECT) {
type = (status & MXT_T100_TYPE_MASK) >> 4;
switch (type) {
case MXT_T100_TYPE_HOVERING_FINGER:
tool = MT_TOOL_FINGER;
distance = MXT_DISTANCE_HOVERING;
if (data->t100_aux_vect)
orientation = message[data->t100_aux_vect];
break;
case MXT_T100_TYPE_FINGER:
case MXT_T100_TYPE_GLOVE:
tool = MT_TOOL_FINGER;
distance = MXT_DISTANCE_ACTIVE_TOUCH;
if (data->t100_aux_area)
major = message[data->t100_aux_area];
if (data->t100_aux_ampl)
pressure = message[data->t100_aux_ampl];
if (data->t100_aux_vect)
orientation = message[data->t100_aux_vect];
break;
case MXT_T100_TYPE_PASSIVE_STYLUS:
tool = MT_TOOL_PEN;
/*
* Passive stylus is reported with size zero so
* hardcode.
*/
major = MXT_TOUCH_MAJOR_DEFAULT;
if (data->t100_aux_ampl)
pressure = message[data->t100_aux_ampl];
break;
case MXT_T100_TYPE_LARGE_TOUCH:
/* Ignore suppressed touch */
break;
default:
dev_dbg(dev, "Unexpected T100 type\n");
return;
}
}
/*
* Values reported should be non-zero if tool is touching the
* device
*/
if (!pressure && type != MXT_T100_TYPE_HOVERING_FINGER)
pressure = MXT_PRESSURE_DEFAULT;
input_mt_slot(input_dev, id);
if (status & MXT_T100_DETECT) {
dev_dbg(dev, "[%u] type:%u x:%u y:%u a:%02X p:%02X v:%02X\n",
id, type, x, y, major, pressure, orientation);
input_mt_report_slot_state(input_dev, tool, 1);
input_report_abs(input_dev, ABS_MT_POSITION_X, x);
input_report_abs(input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(input_dev, ABS_MT_TOUCH_MAJOR, major);
input_report_abs(input_dev, ABS_MT_PRESSURE, pressure);
input_report_abs(input_dev, ABS_MT_DISTANCE, distance);
input_report_abs(input_dev, ABS_MT_ORIENTATION, orientation);
} else {
dev_dbg(dev, "[%u] release\n", id);
/* close out slot */
input_mt_report_slot_inactive(input_dev);
}
data->update_input = true;
}
static int mxt_proc_message(struct mxt_data *data, u8 *message)
{
u8 report_id = message[0];
if (report_id == MXT_RPTID_NOMSG)
return 0;
if (report_id == data->T6_reportid) {
mxt_proc_t6_messages(data, message);
} else if (!data->input_dev) {
/*
* Do not report events if input device
* is not yet registered.
*/
mxt_dump_message(data, message);
} else if (report_id >= data->T9_reportid_min &&
report_id <= data->T9_reportid_max) {
mxt_proc_t9_message(data, message);
} else if (report_id >= data->T15_reportid_min &&
report_id <= data->T15_reportid_max) {
mxt_proc_t15_messages(data, message);
} else if (report_id >= data->T97_reportid_min &&
report_id <= data->T97_reportid_max) {
mxt_proc_t97_messages(data, message);
} else if (report_id >= data->T100_reportid_min &&
report_id <= data->T100_reportid_max) {
mxt_proc_t100_message(data, message);
} else if (report_id == data->T19_reportid) {
mxt_input_button(data, message);
data->update_input = true;
} else {
mxt_dump_message(data, message);
}
return 1;
}
static int mxt_read_and_process_messages(struct mxt_data *data, u8 count)
{
struct device *dev = &data->client->dev;
int ret;
int i;
u8 num_valid = 0;
/* Safety check for msg_buf */
if (count > data->max_reportid)
return -EINVAL;
/* Process remaining messages if necessary */
ret = __mxt_read_reg(data->client, data->T5_address,
data->T5_msg_size * count, data->msg_buf);
if (ret) {
dev_err(dev, "Failed to read %u messages (%d)\n", count, ret);
return ret;
}
for (i = 0; i < count; i++) {
ret = mxt_proc_message(data,
data->msg_buf + data->T5_msg_size * i);
if (ret == 1)
num_valid++;
}
/* return number of messages read */
return num_valid;
}
static irqreturn_t mxt_process_messages_t44(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
int ret;
u8 count, num_left;
/* Read T44 and T5 together */
ret = __mxt_read_reg(data->client, data->T44_address,
data->T5_msg_size + 1, data->msg_buf);
if (ret) {
dev_err(dev, "Failed to read T44 and T5 (%d)\n", ret);
return IRQ_NONE;
}
count = data->msg_buf[0];
/*
* This condition may be caused by the CHG line being configured in
* Mode 0. It results in unnecessary I2C operations but it is benign.
*/
if (count == 0)
return IRQ_NONE;
if (count > data->max_reportid) {
dev_warn(dev, "T44 count %d exceeded max report id\n", count);
count = data->max_reportid;
}
/* Process first message */
ret = mxt_proc_message(data, data->msg_buf + 1);
if (ret < 0) {
dev_warn(dev, "Unexpected invalid message\n");
return IRQ_NONE;
}
num_left = count - 1;
/* Process remaining messages if necessary */
if (num_left) {
ret = mxt_read_and_process_messages(data, num_left);
if (ret < 0)
goto end;
else if (ret != num_left)
dev_warn(dev, "Unexpected invalid message\n");
}
end:
if (data->update_input) {
mxt_input_sync(data);
data->update_input = false;
}
return IRQ_HANDLED;
}
static int mxt_process_messages_until_invalid(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
int count, read;
u8 tries = 2;
count = data->max_reportid;
/* Read messages until we force an invalid */
do {
read = mxt_read_and_process_messages(data, count);
if (read < count)
return 0;
} while (--tries);
if (data->update_input) {
mxt_input_sync(data);
data->update_input = false;
}
dev_err(dev, "CHG pin isn't cleared\n");
return -EBUSY;
}
static irqreturn_t mxt_process_messages(struct mxt_data *data)
{
int total_handled, num_handled;
u8 count = data->last_message_count;
if (count < 1 || count > data->max_reportid)
count = 1;
/* include final invalid message */
total_handled = mxt_read_and_process_messages(data, count + 1);
if (total_handled < 0)
return IRQ_NONE;
/* if there were invalid messages, then we are done */
else if (total_handled <= count)
goto update_count;
/* keep reading two msgs until one is invalid or reportid limit */
do {
num_handled = mxt_read_and_process_messages(data, 2);
if (num_handled < 0)
return IRQ_NONE;
total_handled += num_handled;
if (num_handled < 2)
break;
} while (total_handled < data->num_touchids);
update_count:
data->last_message_count = total_handled;
if (data->update_input) {
mxt_input_sync(data);
data->update_input = false;
}
return IRQ_HANDLED;
}
static irqreturn_t mxt_interrupt(int irq, void *dev_id)
{
struct mxt_data *data = dev_id;
if (data->in_bootloader) {
/* bootloader state transition completion */
complete(&data->bl_completion);
return IRQ_HANDLED;
}
if (!data->object_table)
return IRQ_HANDLED;
if (data->T44_address) {
return mxt_process_messages_t44(data);
} else {
return mxt_process_messages(data);
}
}
static int mxt_t6_command(struct mxt_data *data, u16 cmd_offset,
u8 value, bool wait)
{
u16 reg;
u8 command_register;
int timeout_counter = 0;
int ret;
reg = data->T6_address + cmd_offset;
ret = mxt_write_reg(data->client, reg, value);
if (ret)
return ret;
if (!wait)
return 0;
do {
msleep(20);
ret = __mxt_read_reg(data->client, reg, 1, &command_register);
if (ret)
return ret;
} while (command_register != 0 && timeout_counter++ <= 100);
if (timeout_counter > 100) {
dev_err(&data->client->dev, "Command failed!\n");
return -EIO;
}
return 0;
}
static int mxt_acquire_irq(struct mxt_data *data)
{
int error;
enable_irq(data->irq);
if (data->use_retrigen_workaround) {
error = mxt_process_messages_until_invalid(data);
if (error)
return error;
}
return 0;
}
static int mxt_soft_reset(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
int ret = 0;
dev_info(dev, "Resetting device\n");
disable_irq(data->irq);
reinit_completion(&data->reset_completion);
ret = mxt_t6_command(data, MXT_COMMAND_RESET, MXT_RESET_VALUE, false);
if (ret)
return ret;
/* Ignore CHG line for 100ms after reset */
msleep(MXT_RESET_INVALID_CHG);
mxt_acquire_irq(data);
ret = mxt_wait_for_completion(data, &data->reset_completion,
MXT_RESET_TIMEOUT);
if (ret)
return ret;
return 0;
}
static void mxt_update_crc(struct mxt_data *data, u8 cmd, u8 value)
{
/*
* On failure, CRC is set to 0 and config will always be
* downloaded.
*/
data->config_crc = 0;
reinit_completion(&data->crc_completion);
mxt_t6_command(data, cmd, value, true);
/*
* Wait for crc message. On failure, CRC is set to 0 and config will
* always be downloaded.
*/
mxt_wait_for_completion(data, &data->crc_completion, MXT_CRC_TIMEOUT);
}
static void mxt_calc_crc24(u32 *crc, u8 firstbyte, u8 secondbyte)
{
static const unsigned int crcpoly = 0x80001B;
u32 result;
u32 data_word;
data_word = (secondbyte << 8) | firstbyte;
result = ((*crc << 1) ^ data_word);
if (result & 0x1000000)
result ^= crcpoly;
*crc = result;
}
static u32 mxt_calculate_crc(u8 *base, off_t start_off, off_t end_off)
{
u32 crc = 0;
u8 *ptr = base + start_off;
u8 *last_val = base + end_off - 1;
if (end_off < start_off)
return -EINVAL;
while (ptr < last_val) {
mxt_calc_crc24(&crc, *ptr, *(ptr + 1));
ptr += 2;
}
/* if len is odd, fill the last byte with 0 */
if (ptr == last_val)
mxt_calc_crc24(&crc, *ptr, 0);
/* Mask to 24-bit */
crc &= 0x00FFFFFF;
return crc;
}
static int mxt_check_retrigen(struct mxt_data *data)
{
struct i2c_client *client = data->client;
int error;
int val;
struct irq_data *irqd;
data->use_retrigen_workaround = false;
irqd = irq_get_irq_data(data->irq);
if (!irqd)
return -EINVAL;
if (irqd_is_level_type(irqd))
return 0;
if (data->T18_address) {
error = __mxt_read_reg(client,
data->T18_address + MXT_COMMS_CTRL,
1, &val);
if (error)
return error;
if (val & MXT_COMMS_RETRIGEN)
return 0;
}
dev_warn(&client->dev, "Enabling RETRIGEN workaround\n");
data->use_retrigen_workaround = true;
return 0;
}
static int mxt_prepare_cfg_mem(struct mxt_data *data, struct mxt_cfg *cfg)
{
struct device *dev = &data->client->dev;
struct mxt_object *object;
unsigned int type, instance, size, byte_offset;
int offset;
int ret;
int i;
u16 reg;
u8 val;
while (cfg->raw_pos < cfg->raw_size) {
/* Read type, instance, length */
ret = sscanf(cfg->raw + cfg->raw_pos, "%x %x %x%n",
&type, &instance, &size, &offset);
if (ret == 0) {
/* EOF */
break;
} else if (ret != 3) {
dev_err(dev, "Bad format: failed to parse object\n");
return -EINVAL;
}
cfg->raw_pos += offset;
object = mxt_get_object(data, type);
if (!object) {
/* Skip object */
for (i = 0; i < size; i++) {
ret = sscanf(cfg->raw + cfg->raw_pos, "%hhx%n",
&val, &offset);
if (ret != 1) {
dev_err(dev, "Bad format in T%d at %d\n",
type, i);
return -EINVAL;
}
cfg->raw_pos += offset;
}
continue;
}
if (size > mxt_obj_size(object)) {
/*
* Either we are in fallback mode due to wrong
* config or config from a later fw version,
* or the file is corrupt or hand-edited.
*/
dev_warn(dev, "Discarding %zu byte(s) in T%u\n",
size - mxt_obj_size(object), type);
} else if (mxt_obj_size(object) > size) {
/*
* If firmware is upgraded, new bytes may be added to
* end of objects. It is generally forward compatible
* to zero these bytes - previous behaviour will be
* retained. However this does invalidate the CRC and
* will force fallback mode until the configuration is
* updated. We warn here but do nothing else - the
* malloc has zeroed the entire configuration.
*/
dev_warn(dev, "Zeroing %zu byte(s) in T%d\n",
mxt_obj_size(object) - size, type);
}
if (instance >= mxt_obj_instances(object)) {
dev_err(dev, "Object instances exceeded!\n");
return -EINVAL;
}
reg = object->start_address + mxt_obj_size(object) * instance;
for (i = 0; i < size; i++) {
ret = sscanf(cfg->raw + cfg->raw_pos, "%hhx%n",
&val,
&offset);
if (ret != 1) {
dev_err(dev, "Bad format in T%d at %d\n",
type, i);
return -EINVAL;
}
cfg->raw_pos += offset;
if (i > mxt_obj_size(object))
continue;
byte_offset = reg + i - cfg->start_ofs;
if (byte_offset >= 0 && byte_offset < cfg->mem_size) {
*(cfg->mem + byte_offset) = val;
} else {
dev_err(dev, "Bad object: reg:%d, T%d, ofs=%d\n",
reg, object->type, byte_offset);
return -EINVAL;
}
}
}
return 0;
}
static int mxt_upload_cfg_mem(struct mxt_data *data, struct mxt_cfg *cfg)
{
unsigned int byte_offset = 0;
int error;
/* Write configuration as blocks */
while (byte_offset < cfg->mem_size) {
unsigned int size = cfg->mem_size - byte_offset;
if (size > MXT_MAX_BLOCK_WRITE)
size = MXT_MAX_BLOCK_WRITE;
error = __mxt_write_reg(data->client,
cfg->start_ofs + byte_offset,
size, cfg->mem + byte_offset);
if (error) {
dev_err(&data->client->dev,
"Config write error, ret=%d\n", error);
return error;
}
byte_offset += size;
}
return 0;
}
static int mxt_init_t7_power_cfg(struct mxt_data *data);
/*
* mxt_update_cfg - download configuration to chip
*
* Atmel Raw Config File Format
*
* The first four lines of the raw config file contain:
* 1) Version
* 2) Chip ID Information (first 7 bytes of device memory)
* 3) Chip Information Block 24-bit CRC Checksum
* 4) Chip Configuration 24-bit CRC Checksum
*
* The rest of the file consists of one line per object instance:
* <TYPE> <INSTANCE> <SIZE> <CONTENTS>
*
* <TYPE> - 2-byte object type as hex
* <INSTANCE> - 2-byte object instance number as hex
* <SIZE> - 2-byte object size as hex
* <CONTENTS> - array of <SIZE> 1-byte hex values
*/
static int mxt_update_cfg(struct mxt_data *data, const struct firmware *fw)
{
struct device *dev = &data->client->dev;
struct mxt_cfg cfg;
int ret;
int offset;
int i;
u32 info_crc, config_crc, calculated_crc;
u16 crc_start = 0;
/* Make zero terminated copy of the OBP_RAW file */
cfg.raw = kmemdup_nul(fw->data, fw->size, GFP_KERNEL);
if (!cfg.raw)
return -ENOMEM;
cfg.raw_size = fw->size;
mxt_update_crc(data, MXT_COMMAND_REPORTALL, 1);
if (strncmp(cfg.raw, MXT_CFG_MAGIC, strlen(MXT_CFG_MAGIC))) {
dev_err(dev, "Unrecognised config file\n");
ret = -EINVAL;
goto release_raw;
}
cfg.raw_pos = strlen(MXT_CFG_MAGIC);
/* Load information block and check */
for (i = 0; i < sizeof(struct mxt_info); i++) {
ret = sscanf(cfg.raw + cfg.raw_pos, "%hhx%n",
(unsigned char *)&cfg.info + i,
&offset);
if (ret != 1) {
dev_err(dev, "Bad format\n");
ret = -EINVAL;
goto release_raw;
}
cfg.raw_pos += offset;
}
if (cfg.info.family_id != data->info->family_id) {
dev_err(dev, "Family ID mismatch!\n");
ret = -EINVAL;
goto release_raw;
}
if (cfg.info.variant_id != data->info->variant_id) {
dev_err(dev, "Variant ID mismatch!\n");
ret = -EINVAL;
goto release_raw;
}
/* Read CRCs */
ret = sscanf(cfg.raw + cfg.raw_pos, "%x%n", &info_crc, &offset);
if (ret != 1) {
dev_err(dev, "Bad format: failed to parse Info CRC\n");
ret = -EINVAL;
goto release_raw;
}
cfg.raw_pos += offset;
ret = sscanf(cfg.raw + cfg.raw_pos, "%x%n", &config_crc, &offset);
if (ret != 1) {
dev_err(dev, "Bad format: failed to parse Config CRC\n");
ret = -EINVAL;
goto release_raw;
}
cfg.raw_pos += offset;
/*
* The Info Block CRC is calculated over mxt_info and the object
* table. If it does not match then we are trying to load the
* configuration from a different chip or firmware version, so
* the configuration CRC is invalid anyway.
*/
if (info_crc == data->info_crc) {
if (config_crc == 0 || data->config_crc == 0) {
dev_info(dev, "CRC zero, attempting to apply config\n");
} else if (config_crc == data->config_crc) {
dev_dbg(dev, "Config CRC 0x%06X: OK\n",
data->config_crc);
ret = 0;
goto release_raw;
} else {
dev_info(dev, "Config CRC 0x%06X: does not match file 0x%06X\n",
data->config_crc, config_crc);
}
} else {
dev_warn(dev,
"Warning: Info CRC error - device=0x%06X file=0x%06X\n",
data->info_crc, info_crc);
}
/* Malloc memory to store configuration */
cfg.start_ofs = MXT_OBJECT_START +
data->info->object_num * sizeof(struct mxt_object) +
MXT_INFO_CHECKSUM_SIZE;
cfg.mem_size = data->mem_size - cfg.start_ofs;
cfg.mem = kzalloc(cfg.mem_size, GFP_KERNEL);
if (!cfg.mem) {
ret = -ENOMEM;
goto release_raw;
}
ret = mxt_prepare_cfg_mem(data, &cfg);
if (ret)
goto release_mem;
/* Calculate crc of the received configs (not the raw config file) */
if (data->T71_address)
crc_start = data->T71_address;
else if (data->T7_address)
crc_start = data->T7_address;
else
dev_warn(dev, "Could not find CRC start\n");
if (crc_start > cfg.start_ofs) {
calculated_crc = mxt_calculate_crc(cfg.mem,
crc_start - cfg.start_ofs,
cfg.mem_size);
if (config_crc > 0 && config_crc != calculated_crc)
dev_warn(dev, "Config CRC in file inconsistent, calculated=%06X, file=%06X\n",
calculated_crc, config_crc);
}
ret = mxt_upload_cfg_mem(data, &cfg);
if (ret)
goto release_mem;
mxt_update_crc(data, MXT_COMMAND_BACKUPNV, MXT_BACKUP_VALUE);
ret = mxt_check_retrigen(data);
if (ret)
goto release_mem;
ret = mxt_soft_reset(data);
if (ret)
goto release_mem;
dev_info(dev, "Config successfully updated\n");
/* T7 config may have changed */
mxt_init_t7_power_cfg(data);
release_mem:
kfree(cfg.mem);
release_raw:
kfree(cfg.raw);
return ret;
}
static void mxt_free_input_device(struct mxt_data *data)
{
if (data->input_dev) {
input_unregister_device(data->input_dev);
data->input_dev = NULL;
}
}
static void mxt_free_object_table(struct mxt_data *data)
{
#ifdef CONFIG_TOUCHSCREEN_ATMEL_MXT_T37
video_unregister_device(&data->dbg.vdev);
v4l2_device_unregister(&data->dbg.v4l2);
#endif
data->object_table = NULL;
data->info = NULL;
kfree(data->raw_info_block);
data->raw_info_block = NULL;
kfree(data->msg_buf);
data->msg_buf = NULL;
data->T5_address = 0;
data->T5_msg_size = 0;
data->T6_reportid = 0;
data->T7_address = 0;
data->T71_address = 0;
data->T9_reportid_min = 0;
data->T9_reportid_max = 0;
data->T15_reportid_min = 0;
data->T15_reportid_max = 0;
data->T18_address = 0;
data->T19_reportid = 0;
data->T44_address = 0;
data->T97_reportid_min = 0;
data->T97_reportid_max = 0;
data->T100_reportid_min = 0;
data->T100_reportid_max = 0;
data->max_reportid = 0;
}
static int mxt_parse_object_table(struct mxt_data *data,
struct mxt_object *object_table)
{
struct i2c_client *client = data->client;
int i;
u8 reportid;
u16 end_address;
/* Valid Report IDs start counting from 1 */
reportid = 1;
data->mem_size = 0;
for (i = 0; i < data->info->object_num; i++) {
struct mxt_object *object = object_table + i;
u8 min_id, max_id;
le16_to_cpus(&object->start_address);
if (object->num_report_ids) {
min_id = reportid;
reportid += object->num_report_ids *
mxt_obj_instances(object);
max_id = reportid - 1;
} else {
min_id = 0;
max_id = 0;
}
dev_dbg(&data->client->dev,
"T%u Start:%u Size:%zu Instances:%zu Report IDs:%u-%u\n",
object->type, object->start_address,
mxt_obj_size(object), mxt_obj_instances(object),
min_id, max_id);
switch (object->type) {
case MXT_GEN_MESSAGE_T5:
if (data->info->family_id == 0x80 &&
data->info->version < 0x20) {
/*
* On mXT224 firmware versions prior to V2.0
* read and discard unused CRC byte otherwise
* DMA reads are misaligned.
*/
data->T5_msg_size = mxt_obj_size(object);
} else {
/* CRC not enabled, so skip last byte */
data->T5_msg_size = mxt_obj_size(object) - 1;
}
data->T5_address = object->start_address;
break;
case MXT_GEN_COMMAND_T6:
data->T6_reportid = min_id;
data->T6_address = object->start_address;
break;
case MXT_GEN_POWER_T7:
data->T7_address = object->start_address;
break;
case MXT_SPT_DYNAMICCONFIGURATIONCONTAINER_T71:
data->T71_address = object->start_address;
break;
case MXT_TOUCH_MULTI_T9:
data->multitouch = MXT_TOUCH_MULTI_T9;
/* Only handle messages from first T9 instance */
data->T9_reportid_min = min_id;
data->T9_reportid_max = min_id +
object->num_report_ids - 1;
data->num_touchids = object->num_report_ids;
break;
case MXT_TOUCH_KEYARRAY_T15:
data->T15_reportid_min = min_id;
data->T15_reportid_max = max_id;
break;
case MXT_SPT_COMMSCONFIG_T18:
data->T18_address = object->start_address;
break;
case MXT_SPT_MESSAGECOUNT_T44:
data->T44_address = object->start_address;
break;
case MXT_SPT_GPIOPWM_T19:
data->T19_reportid = min_id;
break;
case MXT_TOUCH_PTC_KEYS_T97:
data->T97_reportid_min = min_id;
data->T97_reportid_max = max_id;
break;
case MXT_TOUCH_MULTITOUCHSCREEN_T100:
data->multitouch = MXT_TOUCH_MULTITOUCHSCREEN_T100;
data->T100_reportid_min = min_id;
data->T100_reportid_max = max_id;
/* first two report IDs reserved */
data->num_touchids = object->num_report_ids - 2;
break;
}
end_address = object->start_address
+ mxt_obj_size(object) * mxt_obj_instances(object) - 1;
if (end_address >= data->mem_size)
data->mem_size = end_address + 1;
}
/* Store maximum reportid */
data->max_reportid = reportid;
/* If T44 exists, T5 position has to be directly after */
if (data->T44_address && (data->T5_address != data->T44_address + 1)) {
dev_err(&client->dev, "Invalid T44 position\n");
return -EINVAL;
}
data->msg_buf = kcalloc(data->max_reportid,
data->T5_msg_size, GFP_KERNEL);
if (!data->msg_buf)
return -ENOMEM;
return 0;
}
static int mxt_read_info_block(struct mxt_data *data)
{
struct i2c_client *client = data->client;
int error;
size_t size;
void *id_buf, *buf;
uint8_t num_objects;
u32 calculated_crc;
u8 *crc_ptr;
/* If info block already allocated, free it */
if (data->raw_info_block)
mxt_free_object_table(data);
/* Read 7-byte ID information block starting at address 0 */
size = sizeof(struct mxt_info);
id_buf = kzalloc(size, GFP_KERNEL);
if (!id_buf)
return -ENOMEM;
error = __mxt_read_reg(client, 0, size, id_buf);
if (error)
goto err_free_mem;
/* Resize buffer to give space for rest of info block */
num_objects = ((struct mxt_info *)id_buf)->object_num;
size += (num_objects * sizeof(struct mxt_object))
+ MXT_INFO_CHECKSUM_SIZE;
buf = krealloc(id_buf, size, GFP_KERNEL);
if (!buf) {
error = -ENOMEM;
goto err_free_mem;
}
id_buf = buf;
/* Read rest of info block */
error = __mxt_read_reg(client, MXT_OBJECT_START,
size - MXT_OBJECT_START,
id_buf + MXT_OBJECT_START);
if (error)
goto err_free_mem;
/* Extract & calculate checksum */
crc_ptr = id_buf + size - MXT_INFO_CHECKSUM_SIZE;
data->info_crc = crc_ptr[0] | (crc_ptr[1] << 8) | (crc_ptr[2] << 16);
calculated_crc = mxt_calculate_crc(id_buf, 0,
size - MXT_INFO_CHECKSUM_SIZE);
/*
* CRC mismatch can be caused by data corruption due to I2C comms
* issue or else device is not using Object Based Protocol (eg i2c-hid)
*/
if ((data->info_crc == 0) || (data->info_crc != calculated_crc)) {
dev_err(&client->dev,
"Info Block CRC error calculated=0x%06X read=0x%06X\n",
calculated_crc, data->info_crc);
error = -EIO;
goto err_free_mem;
}
data->raw_info_block = id_buf;
data->info = (struct mxt_info *)id_buf;
dev_info(&client->dev,
"Family: %u Variant: %u Firmware V%u.%u.%02X Objects: %u\n",
data->info->family_id, data->info->variant_id,
data->info->version >> 4, data->info->version & 0xf,
data->info->build, data->info->object_num);
/* Parse object table information */
error = mxt_parse_object_table(data, id_buf + MXT_OBJECT_START);
if (error) {
dev_err(&client->dev, "Error %d parsing object table\n", error);
mxt_free_object_table(data);
return error;
}
data->object_table = (struct mxt_object *)(id_buf + MXT_OBJECT_START);
return 0;
err_free_mem:
kfree(id_buf);
return error;
}
static int mxt_read_t9_resolution(struct mxt_data *data)
{
struct i2c_client *client = data->client;
int error;
struct t9_range range;
unsigned char orient;
struct mxt_object *object;
object = mxt_get_object(data, MXT_TOUCH_MULTI_T9);
if (!object)
return -EINVAL;
error = __mxt_read_reg(client,
object->start_address + MXT_T9_XSIZE,
sizeof(data->xsize), &data->xsize);
if (error)
return error;
error = __mxt_read_reg(client,
object->start_address + MXT_T9_YSIZE,
sizeof(data->ysize), &data->ysize);
if (error)
return error;
error = __mxt_read_reg(client,
object->start_address + MXT_T9_RANGE,
sizeof(range), &range);
if (error)
return error;
data->max_x = get_unaligned_le16(&range.x);
data->max_y = get_unaligned_le16(&range.y);
error = __mxt_read_reg(client,
object->start_address + MXT_T9_ORIENT,
1, &orient);
if (error)
return error;
data->xy_switch = orient & MXT_T9_ORIENT_SWITCH;
data->invertx = orient & MXT_T9_ORIENT_INVERTX;
data->inverty = orient & MXT_T9_ORIENT_INVERTY;
return 0;
}
static int mxt_read_t100_config(struct mxt_data *data)
{
struct i2c_client *client = data->client;
int error;
struct mxt_object *object;
u16 range_x, range_y;
u8 cfg, tchaux;
u8 aux;
object = mxt_get_object(data, MXT_TOUCH_MULTITOUCHSCREEN_T100);
if (!object)
return -EINVAL;
/* read touchscreen dimensions */
error = __mxt_read_reg(client,
object->start_address + MXT_T100_XRANGE,
sizeof(range_x), &range_x);
if (error)
return error;
data->max_x = get_unaligned_le16(&range_x);
error = __mxt_read_reg(client,
object->start_address + MXT_T100_YRANGE,
sizeof(range_y), &range_y);
if (error)
return error;
data->max_y = get_unaligned_le16(&range_y);
error = __mxt_read_reg(client,
object->start_address + MXT_T100_XSIZE,
sizeof(data->xsize), &data->xsize);
if (error)
return error;
error = __mxt_read_reg(client,
object->start_address + MXT_T100_YSIZE,
sizeof(data->ysize), &data->ysize);
if (error)
return error;
/* read orientation config */
error = __mxt_read_reg(client,
object->start_address + MXT_T100_CFG1,
1, &cfg);
if (error)
return error;
data->xy_switch = cfg & MXT_T100_CFG_SWITCHXY;
data->invertx = cfg & MXT_T100_CFG_INVERTX;
data->inverty = cfg & MXT_T100_CFG_INVERTY;
/* allocate aux bytes */
error = __mxt_read_reg(client,
object->start_address + MXT_T100_TCHAUX,
1, &tchaux);
if (error)
return error;
aux = 6;
if (tchaux & MXT_T100_TCHAUX_VECT)
data->t100_aux_vect = aux++;
if (tchaux & MXT_T100_TCHAUX_AMPL)
data->t100_aux_ampl = aux++;
if (tchaux & MXT_T100_TCHAUX_AREA)
data->t100_aux_area = aux++;
dev_dbg(&client->dev,
"T100 aux mappings vect:%u ampl:%u area:%u\n",
data->t100_aux_vect, data->t100_aux_ampl, data->t100_aux_area);
return 0;
}
static int mxt_input_open(struct input_dev *dev);
static void mxt_input_close(struct input_dev *dev);
static void mxt_set_up_as_touchpad(struct input_dev *input_dev,
struct mxt_data *data)
{
int i;
input_dev->name = "Atmel maXTouch Touchpad";
__set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
input_abs_set_res(input_dev, ABS_X, MXT_PIXELS_PER_MM);
input_abs_set_res(input_dev, ABS_Y, MXT_PIXELS_PER_MM);
input_abs_set_res(input_dev, ABS_MT_POSITION_X,
MXT_PIXELS_PER_MM);
input_abs_set_res(input_dev, ABS_MT_POSITION_Y,
MXT_PIXELS_PER_MM);
for (i = 0; i < data->t19_num_keys; i++)
if (data->t19_keymap[i] != KEY_RESERVED)
input_set_capability(input_dev, EV_KEY,
data->t19_keymap[i]);
}
static int mxt_initialize_input_device(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
struct input_dev *input_dev;
int error;
unsigned int num_mt_slots;
unsigned int mt_flags = 0;
int i;
switch (data->multitouch) {
case MXT_TOUCH_MULTI_T9:
num_mt_slots = data->T9_reportid_max - data->T9_reportid_min + 1;
error = mxt_read_t9_resolution(data);
if (error)
dev_warn(dev, "Failed to initialize T9 resolution\n");
break;
case MXT_TOUCH_MULTITOUCHSCREEN_T100:
num_mt_slots = data->num_touchids;
error = mxt_read_t100_config(data);
if (error)
dev_warn(dev, "Failed to read T100 config\n");
break;
default:
dev_err(dev, "Invalid multitouch object\n");
return -EINVAL;
}
/* Handle default values and orientation switch */
if (data->max_x == 0)
data->max_x = 1023;
if (data->max_y == 0)
data->max_y = 1023;
if (data->xy_switch)
swap(data->max_x, data->max_y);
dev_info(dev, "Touchscreen size X%uY%u\n", data->max_x, data->max_y);
/* Register input device */
input_dev = input_allocate_device();
if (!input_dev)
return -ENOMEM;
input_dev->name = "Atmel maXTouch Touchscreen";
input_dev->phys = data->phys;
input_dev->id.bustype = BUS_I2C;
input_dev->dev.parent = dev;
input_dev->open = mxt_input_open;
input_dev->close = mxt_input_close;
input_dev->keycode = data->t15_keymap;
input_dev->keycodemax = data->t15_num_keys;
input_dev->keycodesize = sizeof(data->t15_keymap[0]);
input_set_capability(input_dev, EV_KEY, BTN_TOUCH);
/* For single touch */
input_set_abs_params(input_dev, ABS_X, 0, data->max_x, 0, 0);
input_set_abs_params(input_dev, ABS_Y, 0, data->max_y, 0, 0);
if (data->multitouch == MXT_TOUCH_MULTI_T9 ||
(data->multitouch == MXT_TOUCH_MULTITOUCHSCREEN_T100 &&
data->t100_aux_ampl)) {
input_set_abs_params(input_dev, ABS_PRESSURE, 0, 255, 0, 0);
}
/* If device has buttons we assume it is a touchpad */
if (data->t19_num_keys) {
mxt_set_up_as_touchpad(input_dev, data);
mt_flags |= INPUT_MT_POINTER;
} else {
mt_flags |= INPUT_MT_DIRECT;
}
/* For multi touch */
error = input_mt_init_slots(input_dev, num_mt_slots, mt_flags);
if (error) {
dev_err(dev, "Error %d initialising slots\n", error);
goto err_free_mem;
}
if (data->multitouch == MXT_TOUCH_MULTITOUCHSCREEN_T100) {
input_set_abs_params(input_dev, ABS_MT_TOOL_TYPE,
0, MT_TOOL_MAX, 0, 0);
input_set_abs_params(input_dev, ABS_MT_DISTANCE,
MXT_DISTANCE_ACTIVE_TOUCH,
MXT_DISTANCE_HOVERING,
0, 0);
}
input_set_abs_params(input_dev, ABS_MT_POSITION_X,
0, data->max_x, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_Y,
0, data->max_y, 0, 0);
if (data->multitouch == MXT_TOUCH_MULTI_T9 ||
(data->multitouch == MXT_TOUCH_MULTITOUCHSCREEN_T100 &&
data->t100_aux_area)) {
input_set_abs_params(input_dev, ABS_MT_TOUCH_MAJOR,
0, MXT_MAX_AREA, 0, 0);
}
if (data->multitouch == MXT_TOUCH_MULTI_T9 ||
(data->multitouch == MXT_TOUCH_MULTITOUCHSCREEN_T100 &&
data->t100_aux_ampl)) {
input_set_abs_params(input_dev, ABS_MT_PRESSURE,
0, 255, 0, 0);
}
if (data->multitouch == MXT_TOUCH_MULTITOUCHSCREEN_T100 &&
data->t100_aux_vect) {
input_set_abs_params(input_dev, ABS_MT_ORIENTATION,
0, 255, 0, 0);
}
if (data->multitouch == MXT_TOUCH_MULTITOUCHSCREEN_T100 &&
data->t100_aux_vect) {
input_set_abs_params(input_dev, ABS_MT_ORIENTATION,
0, 255, 0, 0);
}
/* For T15 and T97 Key Array */
if (data->T15_reportid_min || data->T97_reportid_min) {
for (i = 0; i < data->t15_num_keys; i++)
input_set_capability(input_dev,
EV_KEY, data->t15_keymap[i]);
}
input_set_drvdata(input_dev, data);
error = input_register_device(input_dev);
if (error) {
dev_err(dev, "Error %d registering input device\n", error);
goto err_free_mem;
}
data->input_dev = input_dev;
return 0;
err_free_mem:
input_free_device(input_dev);
return error;
}
static int mxt_configure_objects(struct mxt_data *data,
const struct firmware *cfg);
static void mxt_config_cb(const struct firmware *cfg, void *ctx)
{
mxt_configure_objects(ctx, cfg);
release_firmware(cfg);
}
static int mxt_initialize(struct mxt_data *data)
{
struct i2c_client *client = data->client;
int recovery_attempts = 0;
int error;
while (1) {
error = mxt_read_info_block(data);
if (!error)
break;
/* Check bootloader state */
error = mxt_probe_bootloader(data, false);
if (error) {
dev_info(&client->dev, "Trying alternate bootloader address\n");
error = mxt_probe_bootloader(data, true);
if (error) {
/* Chip is not in appmode or bootloader mode */
return error;
}
}
/* OK, we are in bootloader, see if we can recover */
if (++recovery_attempts > 1) {
dev_err(&client->dev, "Could not recover from bootloader mode\n");
/*
* We can reflash from this state, so do not
* abort initialization.
*/
data->in_bootloader = true;
return 0;
}
/* Attempt to exit bootloader into app mode */
mxt_send_bootloader_cmd(data, false);
msleep(MXT_FW_RESET_TIME);
}
error = mxt_check_retrigen(data);
if (error)
return error;
error = mxt_acquire_irq(data);
if (error)
return error;
error = request_firmware_nowait(THIS_MODULE, true, MXT_CFG_NAME,
&client->dev, GFP_KERNEL, data,
mxt_config_cb);
if (error) {
dev_err(&client->dev, "Failed to invoke firmware loader: %d\n",
error);
return error;
}
return 0;
}
static int mxt_set_t7_power_cfg(struct mxt_data *data, u8 sleep)
{
struct device *dev = &data->client->dev;
int error;
struct t7_config *new_config;
struct t7_config deepsleep = { .active = 0, .idle = 0 };
if (sleep == MXT_POWER_CFG_DEEPSLEEP)
new_config = &deepsleep;
else
new_config = &data->t7_cfg;
error = __mxt_write_reg(data->client, data->T7_address,
sizeof(data->t7_cfg), new_config);
if (error)
return error;
dev_dbg(dev, "Set T7 ACTV:%d IDLE:%d\n",
new_config->active, new_config->idle);
return 0;
}
static int mxt_init_t7_power_cfg(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
int error;
bool retry = false;
recheck:
error = __mxt_read_reg(data->client, data->T7_address,
sizeof(data->t7_cfg), &data->t7_cfg);
if (error)
return error;
if (data->t7_cfg.active == 0 || data->t7_cfg.idle == 0) {
if (!retry) {
dev_dbg(dev, "T7 cfg zero, resetting\n");
mxt_soft_reset(data);
retry = true;
goto recheck;
} else {
dev_dbg(dev, "T7 cfg zero after reset, overriding\n");
data->t7_cfg.active = 20;
data->t7_cfg.idle = 100;
return mxt_set_t7_power_cfg(data, MXT_POWER_CFG_RUN);
}
}
dev_dbg(dev, "Initialized power cfg: ACTV %d, IDLE %d\n",
data->t7_cfg.active, data->t7_cfg.idle);
return 0;
}
#ifdef CONFIG_TOUCHSCREEN_ATMEL_MXT_T37
static const struct v4l2_file_operations mxt_video_fops = {
.owner = THIS_MODULE,
.open = v4l2_fh_open,
.release = vb2_fop_release,
.unlocked_ioctl = video_ioctl2,
.read = vb2_fop_read,
.mmap = vb2_fop_mmap,
.poll = vb2_fop_poll,
};
static u16 mxt_get_debug_value(struct mxt_data *data, unsigned int x,
unsigned int y)
{
struct mxt_info *info = data->info;
struct mxt_dbg *dbg = &data->dbg;
unsigned int ofs, page;
unsigned int col = 0;
unsigned int col_width;
if (info->family_id == MXT_FAMILY_1386) {
col_width = info->matrix_ysize / MXT1386_COLUMNS;
col = y / col_width;
y = y % col_width;
} else {
col_width = info->matrix_ysize;
}
ofs = (y + (x * col_width)) * sizeof(u16);
page = ofs / MXT_DIAGNOSTIC_SIZE;
ofs %= MXT_DIAGNOSTIC_SIZE;
if (info->family_id == MXT_FAMILY_1386)
page += col * MXT1386_PAGES_PER_COLUMN;
return get_unaligned_le16(&dbg->t37_buf[page].data[ofs]);
}
static int mxt_convert_debug_pages(struct mxt_data *data, u16 *outbuf)
{
struct mxt_dbg *dbg = &data->dbg;
unsigned int x = 0;
unsigned int y = 0;
unsigned int i, rx, ry;
for (i = 0; i < dbg->t37_nodes; i++) {
/* Handle orientation */
rx = data->xy_switch ? y : x;
ry = data->xy_switch ? x : y;
rx = data->invertx ? (data->xsize - 1 - rx) : rx;
ry = data->inverty ? (data->ysize - 1 - ry) : ry;
outbuf[i] = mxt_get_debug_value(data, rx, ry);
/* Next value */
if (++x >= (data->xy_switch ? data->ysize : data->xsize)) {
x = 0;
y++;
}
}
return 0;
}
static int mxt_read_diagnostic_debug(struct mxt_data *data, u8 mode,
u16 *outbuf)
{
struct mxt_dbg *dbg = &data->dbg;
int retries = 0;
int page;
int ret;
u8 cmd = mode;
struct t37_debug *p;
u8 cmd_poll;
for (page = 0; page < dbg->t37_pages; page++) {
p = dbg->t37_buf + page;
ret = mxt_write_reg(data->client, dbg->diag_cmd_address,
cmd);
if (ret)
return ret;
retries = 0;
msleep(20);
wait_cmd:
/* Read back command byte */
ret = __mxt_read_reg(data->client, dbg->diag_cmd_address,
sizeof(cmd_poll), &cmd_poll);
if (ret)
return ret;
/* Field is cleared once the command has been processed */
if (cmd_poll) {
if (retries++ > 100)
return -EINVAL;
msleep(20);
goto wait_cmd;
}
/* Read T37 page */
ret = __mxt_read_reg(data->client, dbg->t37_address,
sizeof(struct t37_debug), p);
if (ret)
return ret;
if (p->mode != mode || p->page != page) {
dev_err(&data->client->dev, "T37 page mismatch\n");
return -EINVAL;
}
dev_dbg(&data->client->dev, "%s page:%d retries:%d\n",
__func__, page, retries);
/* For remaining pages, write PAGEUP rather than mode */
cmd = MXT_DIAGNOSTIC_PAGEUP;
}
return mxt_convert_debug_pages(data, outbuf);
}
static int mxt_queue_setup(struct vb2_queue *q,
unsigned int *nbuffers, unsigned int *nplanes,
unsigned int sizes[], struct device *alloc_devs[])
{
struct mxt_data *data = q->drv_priv;
size_t size = data->dbg.t37_nodes * sizeof(u16);
if (*nplanes)
return sizes[0] < size ? -EINVAL : 0;
*nplanes = 1;
sizes[0] = size;
return 0;
}
static void mxt_buffer_queue(struct vb2_buffer *vb)
{
struct mxt_data *data = vb2_get_drv_priv(vb->vb2_queue);
u16 *ptr;
int ret;
u8 mode;
ptr = vb2_plane_vaddr(vb, 0);
if (!ptr) {
dev_err(&data->client->dev, "Error acquiring frame ptr\n");
goto fault;
}
switch (data->dbg.input) {
case MXT_V4L_INPUT_DELTAS:
default:
mode = MXT_DIAGNOSTIC_DELTAS;
break;
case MXT_V4L_INPUT_REFS:
mode = MXT_DIAGNOSTIC_REFS;
break;
}
ret = mxt_read_diagnostic_debug(data, mode, ptr);
if (ret)
goto fault;
vb2_set_plane_payload(vb, 0, data->dbg.t37_nodes * sizeof(u16));
vb2_buffer_done(vb, VB2_BUF_STATE_DONE);
return;
fault:
vb2_buffer_done(vb, VB2_BUF_STATE_ERROR);
}
/* V4L2 structures */
static const struct vb2_ops mxt_queue_ops = {
.queue_setup = mxt_queue_setup,
.buf_queue = mxt_buffer_queue,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
static const struct vb2_queue mxt_queue = {
.type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF | VB2_READ,
.buf_struct_size = sizeof(struct mxt_vb2_buffer),
.ops = &mxt_queue_ops,
.mem_ops = &vb2_vmalloc_memops,
.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC,
.min_buffers_needed = 1,
};
static int mxt_vidioc_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
struct mxt_data *data = video_drvdata(file);
strscpy(cap->driver, "atmel_mxt_ts", sizeof(cap->driver));
strscpy(cap->card, "atmel_mxt_ts touch", sizeof(cap->card));
snprintf(cap->bus_info, sizeof(cap->bus_info),
"I2C:%s", dev_name(&data->client->dev));
return 0;
}
static int mxt_vidioc_enum_input(struct file *file, void *priv,
struct v4l2_input *i)
{
if (i->index >= MXT_V4L_INPUT_MAX)
return -EINVAL;
i->type = V4L2_INPUT_TYPE_TOUCH;
switch (i->index) {
case MXT_V4L_INPUT_REFS:
strscpy(i->name, "Mutual Capacitance References",
sizeof(i->name));
break;
case MXT_V4L_INPUT_DELTAS:
strscpy(i->name, "Mutual Capacitance Deltas", sizeof(i->name));
break;
}
return 0;
}
static int mxt_set_input(struct mxt_data *data, unsigned int i)
{
struct v4l2_pix_format *f = &data->dbg.format;
if (i >= MXT_V4L_INPUT_MAX)
return -EINVAL;
if (i == MXT_V4L_INPUT_DELTAS)
f->pixelformat = V4L2_TCH_FMT_DELTA_TD16;
else
f->pixelformat = V4L2_TCH_FMT_TU16;
f->width = data->xy_switch ? data->ysize : data->xsize;
f->height = data->xy_switch ? data->xsize : data->ysize;
f->field = V4L2_FIELD_NONE;
f->colorspace = V4L2_COLORSPACE_RAW;
f->bytesperline = f->width * sizeof(u16);
f->sizeimage = f->width * f->height * sizeof(u16);
data->dbg.input = i;
return 0;
}
static int mxt_vidioc_s_input(struct file *file, void *priv, unsigned int i)
{
return mxt_set_input(video_drvdata(file), i);
}
static int mxt_vidioc_g_input(struct file *file, void *priv, unsigned int *i)
{
struct mxt_data *data = video_drvdata(file);
*i = data->dbg.input;
return 0;
}
static int mxt_vidioc_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
struct mxt_data *data = video_drvdata(file);
f->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
f->fmt.pix = data->dbg.format;
return 0;
}
static int mxt_vidioc_enum_fmt(struct file *file, void *priv,
struct v4l2_fmtdesc *fmt)
{
if (fmt->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
switch (fmt->index) {
case 0:
fmt->pixelformat = V4L2_TCH_FMT_TU16;
break;
case 1:
fmt->pixelformat = V4L2_TCH_FMT_DELTA_TD16;
break;
default:
return -EINVAL;
}
return 0;
}
static int mxt_vidioc_g_parm(struct file *file, void *fh,
struct v4l2_streamparm *a)
{
if (a->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
a->parm.capture.readbuffers = 1;
a->parm.capture.timeperframe.numerator = 1;
a->parm.capture.timeperframe.denominator = 10;
return 0;
}
static const struct v4l2_ioctl_ops mxt_video_ioctl_ops = {
.vidioc_querycap = mxt_vidioc_querycap,
.vidioc_enum_fmt_vid_cap = mxt_vidioc_enum_fmt,
.vidioc_s_fmt_vid_cap = mxt_vidioc_fmt,
.vidioc_g_fmt_vid_cap = mxt_vidioc_fmt,
.vidioc_try_fmt_vid_cap = mxt_vidioc_fmt,
.vidioc_g_parm = mxt_vidioc_g_parm,
.vidioc_enum_input = mxt_vidioc_enum_input,
.vidioc_g_input = mxt_vidioc_g_input,
.vidioc_s_input = mxt_vidioc_s_input,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
};
static const struct video_device mxt_video_device = {
.name = "Atmel maxTouch",
.fops = &mxt_video_fops,
.ioctl_ops = &mxt_video_ioctl_ops,
.release = video_device_release_empty,
.device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_TOUCH |
V4L2_CAP_READWRITE | V4L2_CAP_STREAMING,
};
static void mxt_debug_init(struct mxt_data *data)
{
struct mxt_info *info = data->info;
struct mxt_dbg *dbg = &data->dbg;
struct mxt_object *object;
int error;
object = mxt_get_object(data, MXT_GEN_COMMAND_T6);
if (!object)
goto error;
dbg->diag_cmd_address = object->start_address + MXT_COMMAND_DIAGNOSTIC;
object = mxt_get_object(data, MXT_DEBUG_DIAGNOSTIC_T37);
if (!object)
goto error;
if (mxt_obj_size(object) != sizeof(struct t37_debug)) {
dev_warn(&data->client->dev, "Bad T37 size");
goto error;
}
dbg->t37_address = object->start_address;
/* Calculate size of data and allocate buffer */
dbg->t37_nodes = data->xsize * data->ysize;
if (info->family_id == MXT_FAMILY_1386)
dbg->t37_pages = MXT1386_COLUMNS * MXT1386_PAGES_PER_COLUMN;
else
dbg->t37_pages = DIV_ROUND_UP(data->xsize *
info->matrix_ysize *
sizeof(u16),
sizeof(dbg->t37_buf->data));
dbg->t37_buf = devm_kmalloc_array(&data->client->dev, dbg->t37_pages,
sizeof(struct t37_debug), GFP_KERNEL);
if (!dbg->t37_buf)
goto error;
/* init channel to zero */
mxt_set_input(data, 0);
/* register video device */
snprintf(dbg->v4l2.name, sizeof(dbg->v4l2.name), "%s", "atmel_mxt_ts");
error = v4l2_device_register(&data->client->dev, &dbg->v4l2);
if (error)
goto error;
/* initialize the queue */
mutex_init(&dbg->lock);
dbg->queue = mxt_queue;
dbg->queue.drv_priv = data;
dbg->queue.lock = &dbg->lock;
dbg->queue.dev = &data->client->dev;
error = vb2_queue_init(&dbg->queue);
if (error)
goto error_unreg_v4l2;
dbg->vdev = mxt_video_device;
dbg->vdev.v4l2_dev = &dbg->v4l2;
dbg->vdev.lock = &dbg->lock;
dbg->vdev.vfl_dir = VFL_DIR_RX;
dbg->vdev.queue = &dbg->queue;
video_set_drvdata(&dbg->vdev, data);
error = video_register_device(&dbg->vdev, VFL_TYPE_TOUCH, -1);
if (error)
goto error_unreg_v4l2;
return;
error_unreg_v4l2:
v4l2_device_unregister(&dbg->v4l2);
error:
dev_warn(&data->client->dev, "Error initializing T37\n");
}
#else
static void mxt_debug_init(struct mxt_data *data)
{
}
#endif
static int mxt_configure_objects(struct mxt_data *data,
const struct firmware *cfg)
{
struct device *dev = &data->client->dev;
int error;
error = mxt_init_t7_power_cfg(data);
if (error) {
dev_err(dev, "Failed to initialize power cfg\n");
return error;
}
if (cfg) {
error = mxt_update_cfg(data, cfg);
if (error)
dev_warn(dev, "Error %d updating config\n", error);
}
if (data->multitouch) {
error = mxt_initialize_input_device(data);
if (error)
return error;
} else {
dev_warn(dev, "No touch object detected\n");
}
mxt_debug_init(data);
return 0;
}
/* Firmware Version is returned as Major.Minor.Build */
static ssize_t mxt_fw_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
struct mxt_info *info = data->info;
return scnprintf(buf, PAGE_SIZE, "%u.%u.%02X\n",
info->version >> 4, info->version & 0xf, info->build);
}
/* Hardware Version is returned as FamilyID.VariantID */
static ssize_t mxt_hw_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
struct mxt_info *info = data->info;
return scnprintf(buf, PAGE_SIZE, "%u.%u\n",
info->family_id, info->variant_id);
}
static ssize_t mxt_show_instance(char *buf, int count,
struct mxt_object *object, int instance,
const u8 *val)
{
int i;
if (mxt_obj_instances(object) > 1)
count += scnprintf(buf + count, PAGE_SIZE - count,
"Instance %u\n", instance);
for (i = 0; i < mxt_obj_size(object); i++)
count += scnprintf(buf + count, PAGE_SIZE - count,
"\t[%2u]: %02x (%d)\n", i, val[i], val[i]);
count += scnprintf(buf + count, PAGE_SIZE - count, "\n");
return count;
}
static ssize_t mxt_object_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
struct mxt_object *object;
int count = 0;
int i, j;
int error;
u8 *obuf;
/* Pre-allocate buffer large enough to hold max sized object. */
obuf = kmalloc(256, GFP_KERNEL);
if (!obuf)
return -ENOMEM;
error = 0;
for (i = 0; i < data->info->object_num; i++) {
object = data->object_table + i;
if (!mxt_object_readable(object->type))
continue;
count += scnprintf(buf + count, PAGE_SIZE - count,
"T%u:\n", object->type);
for (j = 0; j < mxt_obj_instances(object); j++) {
u16 size = mxt_obj_size(object);
u16 addr = object->start_address + j * size;
error = __mxt_read_reg(data->client, addr, size, obuf);
if (error)
goto done;
count = mxt_show_instance(buf, count, object, j, obuf);
}
}
done:
kfree(obuf);
return error ?: count;
}
static int mxt_check_firmware_format(struct device *dev,
const struct firmware *fw)
{
unsigned int pos = 0;
char c;
while (pos < fw->size) {
c = *(fw->data + pos);
if (c < '0' || (c > '9' && c < 'A') || c > 'F')
return 0;
pos++;
}
/*
* To convert file try:
* xxd -r -p mXTXXX__APP_VX-X-XX.enc > maxtouch.fw
*/
dev_err(dev, "Aborting: firmware file must be in binary format\n");
return -EINVAL;
}
static int mxt_load_fw(struct device *dev, const char *fn)
{
struct mxt_data *data = dev_get_drvdata(dev);
const struct firmware *fw = NULL;
unsigned int frame_size;
unsigned int pos = 0;
unsigned int retry = 0;
unsigned int frame = 0;
int ret;
ret = request_firmware(&fw, fn, dev);
if (ret) {
dev_err(dev, "Unable to open firmware %s\n", fn);
return ret;
}
/* Check for incorrect enc file */
ret = mxt_check_firmware_format(dev, fw);
if (ret)
goto release_firmware;
if (!data->in_bootloader) {
/* Change to the bootloader mode */
data->in_bootloader = true;
ret = mxt_t6_command(data, MXT_COMMAND_RESET,
MXT_BOOT_VALUE, false);
if (ret)
goto release_firmware;
msleep(MXT_RESET_TIME);
/* Do not need to scan since we know family ID */
ret = mxt_lookup_bootloader_address(data, 0);
if (ret)
goto release_firmware;
mxt_free_input_device(data);
mxt_free_object_table(data);
} else {
enable_irq(data->irq);
}
reinit_completion(&data->bl_completion);
ret = mxt_check_bootloader(data, MXT_WAITING_BOOTLOAD_CMD, false);
if (ret) {
/* Bootloader may still be unlocked from previous attempt */
ret = mxt_check_bootloader(data, MXT_WAITING_FRAME_DATA, false);
if (ret)
goto disable_irq;
} else {
dev_info(dev, "Unlocking bootloader\n");
/* Unlock bootloader */
ret = mxt_send_bootloader_cmd(data, true);
if (ret)
goto disable_irq;
}
while (pos < fw->size) {
ret = mxt_check_bootloader(data, MXT_WAITING_FRAME_DATA, true);
if (ret)
goto disable_irq;
frame_size = ((*(fw->data + pos) << 8) | *(fw->data + pos + 1));
/* Take account of CRC bytes */
frame_size += 2;
/* Write one frame to device */
ret = mxt_bootloader_write(data, fw->data + pos, frame_size);
if (ret)
goto disable_irq;
ret = mxt_check_bootloader(data, MXT_FRAME_CRC_PASS, true);
if (ret) {
retry++;
/* Back off by 20ms per retry */
msleep(retry * 20);
if (retry > 20) {
dev_err(dev, "Retry count exceeded\n");
goto disable_irq;
}
} else {
retry = 0;
pos += frame_size;
frame++;
}
if (frame % 50 == 0)
dev_dbg(dev, "Sent %d frames, %d/%zd bytes\n",
frame, pos, fw->size);
}
/* Wait for flash. */
ret = mxt_wait_for_completion(data, &data->bl_completion,
MXT_FW_RESET_TIME);
if (ret)
goto disable_irq;
dev_dbg(dev, "Sent %d frames, %d bytes\n", frame, pos);
/*
* Wait for device to reset. Some bootloader versions do not assert
* the CHG line after bootloading has finished, so ignore potential
* errors.
*/
mxt_wait_for_completion(data, &data->bl_completion, MXT_FW_RESET_TIME);
data->in_bootloader = false;
disable_irq:
disable_irq(data->irq);
release_firmware:
release_firmware(fw);
return ret;
}
static ssize_t mxt_update_fw_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct mxt_data *data = dev_get_drvdata(dev);
int error;
error = mxt_load_fw(dev, MXT_FW_NAME);
if (error) {
dev_err(dev, "The firmware update failed(%d)\n", error);
count = error;
} else {
dev_info(dev, "The firmware update succeeded\n");
error = mxt_initialize(data);
if (error)
return error;
}
return count;
}
static DEVICE_ATTR(fw_version, S_IRUGO, mxt_fw_version_show, NULL);
static DEVICE_ATTR(hw_version, S_IRUGO, mxt_hw_version_show, NULL);
static DEVICE_ATTR(object, S_IRUGO, mxt_object_show, NULL);
static DEVICE_ATTR(update_fw, S_IWUSR, NULL, mxt_update_fw_store);
static struct attribute *mxt_attrs[] = {
&dev_attr_fw_version.attr,
&dev_attr_hw_version.attr,
&dev_attr_object.attr,
&dev_attr_update_fw.attr,
NULL
};
static const struct attribute_group mxt_attr_group = {
.attrs = mxt_attrs,
};
static void mxt_start(struct mxt_data *data)
{
mxt_wakeup_toggle(data->client, true, false);
switch (data->suspend_mode) {
case MXT_SUSPEND_T9_CTRL:
mxt_soft_reset(data);
/* Touch enable */
/* 0x83 = SCANEN | RPTEN | ENABLE */
mxt_write_object(data,
MXT_TOUCH_MULTI_T9, MXT_T9_CTRL, 0x83);
break;
case MXT_SUSPEND_DEEP_SLEEP:
default:
mxt_set_t7_power_cfg(data, MXT_POWER_CFG_RUN);
/* Recalibrate since chip has been in deep sleep */
mxt_t6_command(data, MXT_COMMAND_CALIBRATE, 1, false);
break;
}
}
static void mxt_stop(struct mxt_data *data)
{
switch (data->suspend_mode) {
case MXT_SUSPEND_T9_CTRL:
/* Touch disable */
mxt_write_object(data,
MXT_TOUCH_MULTI_T9, MXT_T9_CTRL, 0);
break;
case MXT_SUSPEND_DEEP_SLEEP:
default:
mxt_set_t7_power_cfg(data, MXT_POWER_CFG_DEEPSLEEP);
break;
}
mxt_wakeup_toggle(data->client, false, false);
}
static int mxt_input_open(struct input_dev *dev)
{
struct mxt_data *data = input_get_drvdata(dev);
mxt_start(data);
return 0;
}
static void mxt_input_close(struct input_dev *dev)
{
struct mxt_data *data = input_get_drvdata(dev);
mxt_stop(data);
}
static int mxt_parse_device_properties(struct mxt_data *data)
{
static const char keymap_property[] = "linux,gpio-keymap";
static const char buttons_property[] = "linux,keycodes";
struct device *dev = &data->client->dev;
u32 *keymap;
u32 *buttonmap;
int n_keys;
int error;
if (device_property_present(dev, keymap_property)) {
n_keys = device_property_count_u32(dev, keymap_property);
if (n_keys <= 0) {
error = n_keys < 0 ? n_keys : -EINVAL;
dev_err(dev, "invalid/malformed '%s' property: %d\n",
keymap_property, error);
return error;
}
keymap = devm_kmalloc_array(dev, n_keys, sizeof(*keymap),
GFP_KERNEL);
if (!keymap)
return -ENOMEM;
error = device_property_read_u32_array(dev, keymap_property,
keymap, n_keys);
if (error) {
dev_err(dev, "failed to parse '%s' property: %d\n",
keymap_property, error);
return error;
}
data->t19_keymap = keymap;
data->t19_num_keys = n_keys;
}
if (device_property_present(dev, buttons_property)) {
n_keys = device_property_count_u32(dev, buttons_property);
if (n_keys <= 0) {
error = n_keys < 0 ? n_keys : -EINVAL;
dev_err(dev, "invalid/malformed '%s' property: %d\n",
buttons_property, error);
return error;
}
buttonmap = devm_kmalloc_array(dev, n_keys, sizeof(*buttonmap),
GFP_KERNEL);
if (!buttonmap)
return -ENOMEM;
error = device_property_read_u32_array(dev, buttons_property,
buttonmap, n_keys);
if (error) {
dev_err(dev, "failed to parse '%s' property: %d\n",
buttons_property, error);
return error;
}
data->t15_keymap = buttonmap;
data->t15_num_keys = n_keys;
}
return 0;
}
static const struct dmi_system_id chromebook_T9_suspend_dmi[] = {
{
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"),
DMI_MATCH(DMI_PRODUCT_NAME, "Link"),
},
},
{
.matches = {
DMI_MATCH(DMI_PRODUCT_NAME, "Peppy"),
},
},
{ }
};
static int mxt_probe(struct i2c_client *client)
{
struct mxt_data *data;
int error;
/*
* Ignore devices that do not have device properties attached to
* them, as we need help determining whether we are dealing with
* touch screen or touchpad.
*
* So far on x86 the only users of Atmel touch controllers are
* Chromebooks, and chromeos_laptop driver will ensure that
* necessary properties are provided (if firmware does not do that).
*/
if (!device_property_present(&client->dev, "compatible"))
return -ENXIO;
/*
* Ignore ACPI devices representing bootloader mode.
*
* This is a bit of a hack: Google Chromebook BIOS creates ACPI
* devices for both application and bootloader modes, but we are
* interested in application mode only (if device is in bootloader
* mode we'll end up switching into application anyway). So far
* application mode addresses were all above 0x40, so we'll use it
* as a threshold.
*/
if (ACPI_COMPANION(&client->dev) && client->addr < 0x40)
return -ENXIO;
data = devm_kzalloc(&client->dev, sizeof(struct mxt_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
snprintf(data->phys, sizeof(data->phys), "i2c-%u-%04x/input0",
client->adapter->nr, client->addr);
data->client = client;
data->irq = client->irq;
i2c_set_clientdata(client, data);
init_completion(&data->bl_completion);
init_completion(&data->reset_completion);
init_completion(&data->crc_completion);
data->suspend_mode = dmi_check_system(chromebook_T9_suspend_dmi) ?
MXT_SUSPEND_T9_CTRL : MXT_SUSPEND_DEEP_SLEEP;
error = mxt_parse_device_properties(data);
if (error)
return error;
/*
* VDDA is the analog voltage supply 2.57..3.47 V
* VDD is the digital voltage supply 1.71..3.47 V
*/
data->regulators[0].supply = "vdda";
data->regulators[1].supply = "vdd";
error = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(data->regulators),
data->regulators);
if (error) {
if (error != -EPROBE_DEFER)
dev_err(&client->dev, "Failed to get regulators %d\n",
error);
return error;
}
/* Request the RESET line as asserted so we go into reset */
data->reset_gpio = devm_gpiod_get_optional(&client->dev,
"reset", GPIOD_OUT_HIGH);
if (IS_ERR(data->reset_gpio)) {
error = PTR_ERR(data->reset_gpio);
dev_err(&client->dev, "Failed to get reset gpio: %d\n", error);
return error;
}
/* Request the WAKE line as asserted so we go out of sleep */
data->wake_gpio = devm_gpiod_get_optional(&client->dev,
"wake", GPIOD_OUT_HIGH);
if (IS_ERR(data->wake_gpio)) {
error = PTR_ERR(data->wake_gpio);
dev_err(&client->dev, "Failed to get wake gpio: %d\n", error);
return error;
}
error = devm_request_threaded_irq(&client->dev, client->irq,
NULL, mxt_interrupt,
IRQF_ONESHOT | IRQF_NO_AUTOEN,
client->name, data);
if (error) {
dev_err(&client->dev, "Failed to register interrupt\n");
return error;
}
error = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
data->regulators);
if (error) {
dev_err(&client->dev, "failed to enable regulators: %d\n",
error);
return error;
}
/*
* The device takes 40ms to come up after power-on according
* to the mXT224 datasheet, page 13.
*/
msleep(MXT_BACKUP_TIME);
if (data->reset_gpio) {
/* Wait a while and then de-assert the RESET GPIO line */
msleep(MXT_RESET_GPIO_TIME);
gpiod_set_value(data->reset_gpio, 0);
msleep(MXT_RESET_INVALID_CHG);
}
/*
* Controllers like mXT1386 have a dedicated WAKE line that could be
* connected to a GPIO or to I2C SCL pin, or permanently asserted low.
*
* This WAKE line is used for waking controller from a deep-sleep and
* it needs to be asserted low for 25 milliseconds before I2C transfers
* could be accepted by controller if it was in a deep-sleep mode.
* Controller will go into sleep automatically after 2 seconds of
* inactivity if WAKE line is deasserted and deep sleep is activated.
*
* If WAKE line is connected to I2C SCL pin, then the first I2C transfer
* will get an instant NAK and transfer needs to be retried after 25ms.
*
* If WAKE line is connected to a GPIO line, the line must be asserted
* 25ms before the host attempts to communicate with the controller.
*/
device_property_read_u32(&client->dev, "atmel,wakeup-method",
&data->wakeup_method);
error = mxt_initialize(data);
if (error)
goto err_disable_regulators;
error = sysfs_create_group(&client->dev.kobj, &mxt_attr_group);
if (error) {
dev_err(&client->dev, "Failure %d creating sysfs group\n",
error);
goto err_free_object;
}
return 0;
err_free_object:
mxt_free_input_device(data);
mxt_free_object_table(data);
err_disable_regulators:
regulator_bulk_disable(ARRAY_SIZE(data->regulators),
data->regulators);
return error;
}
static void mxt_remove(struct i2c_client *client)
{
struct mxt_data *data = i2c_get_clientdata(client);
disable_irq(data->irq);
sysfs_remove_group(&client->dev.kobj, &mxt_attr_group);
mxt_free_input_device(data);
mxt_free_object_table(data);
regulator_bulk_disable(ARRAY_SIZE(data->regulators),
data->regulators);
}
static int mxt_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct mxt_data *data = i2c_get_clientdata(client);
struct input_dev *input_dev = data->input_dev;
if (!input_dev)
return 0;
mutex_lock(&input_dev->mutex);
if (input_device_enabled(input_dev))
mxt_stop(data);
mutex_unlock(&input_dev->mutex);
disable_irq(data->irq);
return 0;
}
static int mxt_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct mxt_data *data = i2c_get_clientdata(client);
struct input_dev *input_dev = data->input_dev;
if (!input_dev)
return 0;
enable_irq(data->irq);
mutex_lock(&input_dev->mutex);
if (input_device_enabled(input_dev))
mxt_start(data);
mutex_unlock(&input_dev->mutex);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(mxt_pm_ops, mxt_suspend, mxt_resume);
static const struct of_device_id mxt_of_match[] = {
{ .compatible = "atmel,maxtouch", },
/* Compatibles listed below are deprecated */
{ .compatible = "atmel,qt602240_ts", },
{ .compatible = "atmel,atmel_mxt_ts", },
{ .compatible = "atmel,atmel_mxt_tp", },
{ .compatible = "atmel,mXT224", },
{},
};
MODULE_DEVICE_TABLE(of, mxt_of_match);
#ifdef CONFIG_ACPI
static const struct acpi_device_id mxt_acpi_id[] = {
{ "ATML0000", 0 }, /* Touchpad */
{ "ATML0001", 0 }, /* Touchscreen */
{ }
};
MODULE_DEVICE_TABLE(acpi, mxt_acpi_id);
#endif
static const struct i2c_device_id mxt_id[] = {
{ "qt602240_ts", 0 },
{ "atmel_mxt_ts", 0 },
{ "atmel_mxt_tp", 0 },
{ "maxtouch", 0 },
{ "mXT224", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mxt_id);
static struct i2c_driver mxt_driver = {
.driver = {
.name = "atmel_mxt_ts",
.of_match_table = mxt_of_match,
.acpi_match_table = ACPI_PTR(mxt_acpi_id),
.pm = pm_sleep_ptr(&mxt_pm_ops),
},
.probe = mxt_probe,
.remove = mxt_remove,
.id_table = mxt_id,
};
module_i2c_driver(mxt_driver);
/* Module information */
MODULE_AUTHOR("Joonyoung Shim <[email protected]>");
MODULE_DESCRIPTION("Atmel maXTouch Touchscreen driver");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/atmel_mxt_ts.c
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Touch Screen driver for Renesas MIGO-R Platform
*
* Copyright (c) 2008 Magnus Damm
* Copyright (c) 2007 Ujjwal Pande <[email protected]>,
* Kenati Technologies Pvt Ltd.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <asm/io.h>
#include <linux/i2c.h>
#include <linux/timer.h>
#define EVENT_PENDOWN 1
#define EVENT_REPEAT 2
#define EVENT_PENUP 3
struct migor_ts_priv {
struct i2c_client *client;
struct input_dev *input;
int irq;
};
static const u_int8_t migor_ts_ena_seq[17] = { 0x33, 0x22, 0x11,
0x01, 0x06, 0x07, };
static const u_int8_t migor_ts_dis_seq[17] = { };
static irqreturn_t migor_ts_isr(int irq, void *dev_id)
{
struct migor_ts_priv *priv = dev_id;
unsigned short xpos, ypos;
unsigned char event;
u_int8_t buf[16];
/*
* The touch screen controller chip is hooked up to the CPU
* using I2C and a single interrupt line. The interrupt line
* is pulled low whenever someone taps the screen. To deassert
* the interrupt line we need to acknowledge the interrupt by
* communicating with the controller over the slow i2c bus.
*
* Since I2C bus controller may sleep we are using threaded
* IRQ here.
*/
memset(buf, 0, sizeof(buf));
/* Set Index 0 */
buf[0] = 0;
if (i2c_master_send(priv->client, buf, 1) != 1) {
dev_err(&priv->client->dev, "Unable to write i2c index\n");
goto out;
}
/* Now do Page Read */
if (i2c_master_recv(priv->client, buf, sizeof(buf)) != sizeof(buf)) {
dev_err(&priv->client->dev, "Unable to read i2c page\n");
goto out;
}
ypos = ((buf[9] & 0x03) << 8 | buf[8]);
xpos = ((buf[11] & 0x03) << 8 | buf[10]);
event = buf[12];
switch (event) {
case EVENT_PENDOWN:
case EVENT_REPEAT:
input_report_key(priv->input, BTN_TOUCH, 1);
input_report_abs(priv->input, ABS_X, ypos); /*X-Y swap*/
input_report_abs(priv->input, ABS_Y, xpos);
input_sync(priv->input);
break;
case EVENT_PENUP:
input_report_key(priv->input, BTN_TOUCH, 0);
input_sync(priv->input);
break;
}
out:
return IRQ_HANDLED;
}
static int migor_ts_open(struct input_dev *dev)
{
struct migor_ts_priv *priv = input_get_drvdata(dev);
struct i2c_client *client = priv->client;
int count;
/* enable controller */
count = i2c_master_send(client, migor_ts_ena_seq,
sizeof(migor_ts_ena_seq));
if (count != sizeof(migor_ts_ena_seq)) {
dev_err(&client->dev, "Unable to enable touchscreen.\n");
return -ENXIO;
}
return 0;
}
static void migor_ts_close(struct input_dev *dev)
{
struct migor_ts_priv *priv = input_get_drvdata(dev);
struct i2c_client *client = priv->client;
disable_irq(priv->irq);
/* disable controller */
i2c_master_send(client, migor_ts_dis_seq, sizeof(migor_ts_dis_seq));
enable_irq(priv->irq);
}
static int migor_ts_probe(struct i2c_client *client)
{
struct migor_ts_priv *priv;
struct input_dev *input;
int error;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
input = input_allocate_device();
if (!priv || !input) {
dev_err(&client->dev, "failed to allocate memory\n");
error = -ENOMEM;
goto err_free_mem;
}
priv->client = client;
priv->input = input;
priv->irq = client->irq;
input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
__set_bit(BTN_TOUCH, input->keybit);
input_set_abs_params(input, ABS_X, 95, 955, 0, 0);
input_set_abs_params(input, ABS_Y, 85, 935, 0, 0);
input->name = client->name;
input->id.bustype = BUS_I2C;
input->dev.parent = &client->dev;
input->open = migor_ts_open;
input->close = migor_ts_close;
input_set_drvdata(input, priv);
error = request_threaded_irq(priv->irq, NULL, migor_ts_isr,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
client->name, priv);
if (error) {
dev_err(&client->dev, "Unable to request touchscreen IRQ.\n");
goto err_free_mem;
}
error = input_register_device(input);
if (error)
goto err_free_irq;
i2c_set_clientdata(client, priv);
device_init_wakeup(&client->dev, 1);
return 0;
err_free_irq:
free_irq(priv->irq, priv);
err_free_mem:
input_free_device(input);
kfree(priv);
return error;
}
static void migor_ts_remove(struct i2c_client *client)
{
struct migor_ts_priv *priv = i2c_get_clientdata(client);
free_irq(priv->irq, priv);
input_unregister_device(priv->input);
kfree(priv);
dev_set_drvdata(&client->dev, NULL);
}
static int migor_ts_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct migor_ts_priv *priv = i2c_get_clientdata(client);
if (device_may_wakeup(&client->dev))
enable_irq_wake(priv->irq);
return 0;
}
static int migor_ts_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct migor_ts_priv *priv = i2c_get_clientdata(client);
if (device_may_wakeup(&client->dev))
disable_irq_wake(priv->irq);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(migor_ts_pm, migor_ts_suspend, migor_ts_resume);
static const struct i2c_device_id migor_ts_id[] = {
{ "migor_ts", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, migor_ts_id);
static struct i2c_driver migor_ts_driver = {
.driver = {
.name = "migor_ts",
.pm = pm_sleep_ptr(&migor_ts_pm),
},
.probe = migor_ts_probe,
.remove = migor_ts_remove,
.id_table = migor_ts_id,
};
module_i2c_driver(migor_ts_driver);
MODULE_DESCRIPTION("MigoR Touchscreen driver");
MODULE_AUTHOR("Magnus Damm <[email protected]>");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/migor_ts.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* cyttsp_i2c_common.c
* Cypress TrueTouch(TM) Standard Product (TTSP) I2C touchscreen driver.
* For use with Cypress Txx3xx and Txx4xx parts.
* Supported parts include:
* CY8CTST341
* CY8CTMA340
* TMA4XX
* TMA1036
*
* Copyright (C) 2009, 2010, 2011 Cypress Semiconductor, Inc.
* Copyright (C) 2012 Javier Martinez Canillas <[email protected]>
*
* Contact Cypress Semiconductor at www.cypress.com <[email protected]>
*/
#include <linux/device.h>
#include <linux/export.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/types.h>
#include "cyttsp4_core.h"
int cyttsp_i2c_read_block_data(struct device *dev, u8 *xfer_buf,
u16 addr, u8 length, void *values)
{
struct i2c_client *client = to_i2c_client(dev);
u8 client_addr = client->addr | ((addr >> 8) & 0x1);
u8 addr_lo = addr & 0xFF;
struct i2c_msg msgs[] = {
{
.addr = client_addr,
.flags = 0,
.len = 1,
.buf = &addr_lo,
},
{
.addr = client_addr,
.flags = I2C_M_RD,
.len = length,
.buf = values,
},
};
int retval;
retval = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (retval < 0)
return retval;
return retval != ARRAY_SIZE(msgs) ? -EIO : 0;
}
EXPORT_SYMBOL_GPL(cyttsp_i2c_read_block_data);
int cyttsp_i2c_write_block_data(struct device *dev, u8 *xfer_buf,
u16 addr, u8 length, const void *values)
{
struct i2c_client *client = to_i2c_client(dev);
u8 client_addr = client->addr | ((addr >> 8) & 0x1);
u8 addr_lo = addr & 0xFF;
struct i2c_msg msgs[] = {
{
.addr = client_addr,
.flags = 0,
.len = length + 1,
.buf = xfer_buf,
},
};
int retval;
xfer_buf[0] = addr_lo;
memcpy(&xfer_buf[1], values, length);
retval = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (retval < 0)
return retval;
return retval != ARRAY_SIZE(msgs) ? -EIO : 0;
}
EXPORT_SYMBOL_GPL(cyttsp_i2c_write_block_data);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cypress");
|
linux-master
|
drivers/input/touchscreen/cyttsp_i2c_common.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Penmount serial touchscreen driver
*
* Copyright (c) 2006 Rick Koch <[email protected]>
* Copyright (c) 2011 John Sung <[email protected]>
*
* Based on ELO driver (drivers/input/touchscreen/elo.c)
* Copyright (c) 2004 Vojtech Pavlik
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/serio.h>
#define DRIVER_DESC "PenMount serial touchscreen driver"
MODULE_AUTHOR("Rick Koch <[email protected]>");
MODULE_AUTHOR("John Sung <[email protected]>");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
/*
* Definitions & global arrays.
*/
#define PM_MAX_LENGTH 6
#define PM_MAX_MTSLOT 16
#define PM_3000_MTSLOT 2
#define PM_6250_MTSLOT 12
/*
* Multi-touch slot
*/
struct mt_slot {
unsigned short x, y;
bool active; /* is the touch valid? */
};
/*
* Per-touchscreen data.
*/
struct pm {
struct input_dev *dev;
struct serio *serio;
int idx;
unsigned char data[PM_MAX_LENGTH];
char phys[32];
unsigned char packetsize;
unsigned char maxcontacts;
struct mt_slot slots[PM_MAX_MTSLOT];
void (*parse_packet)(struct pm *);
};
/*
* pm_mtevent() sends mt events and also emulates pointer movement
*/
static void pm_mtevent(struct pm *pm, struct input_dev *input)
{
int i;
for (i = 0; i < pm->maxcontacts; ++i) {
input_mt_slot(input, i);
input_mt_report_slot_state(input, MT_TOOL_FINGER,
pm->slots[i].active);
if (pm->slots[i].active) {
input_event(input, EV_ABS, ABS_MT_POSITION_X, pm->slots[i].x);
input_event(input, EV_ABS, ABS_MT_POSITION_Y, pm->slots[i].y);
}
}
input_mt_report_pointer_emulation(input, true);
input_sync(input);
}
/*
* pm_checkpacket() checks if data packet is valid
*/
static bool pm_checkpacket(unsigned char *packet)
{
int total = 0;
int i;
for (i = 0; i < 5; i++)
total += packet[i];
return packet[5] == (unsigned char)~(total & 0xff);
}
static void pm_parse_9000(struct pm *pm)
{
struct input_dev *dev = pm->dev;
if ((pm->data[0] & 0x80) && pm->packetsize == ++pm->idx) {
input_report_abs(dev, ABS_X, pm->data[1] * 128 + pm->data[2]);
input_report_abs(dev, ABS_Y, pm->data[3] * 128 + pm->data[4]);
input_report_key(dev, BTN_TOUCH, !!(pm->data[0] & 0x40));
input_sync(dev);
pm->idx = 0;
}
}
static void pm_parse_6000(struct pm *pm)
{
struct input_dev *dev = pm->dev;
if ((pm->data[0] & 0xbf) == 0x30 && pm->packetsize == ++pm->idx) {
if (pm_checkpacket(pm->data)) {
input_report_abs(dev, ABS_X,
pm->data[2] * 256 + pm->data[1]);
input_report_abs(dev, ABS_Y,
pm->data[4] * 256 + pm->data[3]);
input_report_key(dev, BTN_TOUCH, pm->data[0] & 0x40);
input_sync(dev);
}
pm->idx = 0;
}
}
static void pm_parse_3000(struct pm *pm)
{
struct input_dev *dev = pm->dev;
if ((pm->data[0] & 0xce) == 0x40 && pm->packetsize == ++pm->idx) {
if (pm_checkpacket(pm->data)) {
int slotnum = pm->data[0] & 0x0f;
pm->slots[slotnum].active = pm->data[0] & 0x30;
pm->slots[slotnum].x = pm->data[2] * 256 + pm->data[1];
pm->slots[slotnum].y = pm->data[4] * 256 + pm->data[3];
pm_mtevent(pm, dev);
}
pm->idx = 0;
}
}
static void pm_parse_6250(struct pm *pm)
{
struct input_dev *dev = pm->dev;
if ((pm->data[0] & 0xb0) == 0x30 && pm->packetsize == ++pm->idx) {
if (pm_checkpacket(pm->data)) {
int slotnum = pm->data[0] & 0x0f;
pm->slots[slotnum].active = pm->data[0] & 0x40;
pm->slots[slotnum].x = pm->data[2] * 256 + pm->data[1];
pm->slots[slotnum].y = pm->data[4] * 256 + pm->data[3];
pm_mtevent(pm, dev);
}
pm->idx = 0;
}
}
static irqreturn_t pm_interrupt(struct serio *serio,
unsigned char data, unsigned int flags)
{
struct pm *pm = serio_get_drvdata(serio);
pm->data[pm->idx] = data;
pm->parse_packet(pm);
return IRQ_HANDLED;
}
/*
* pm_disconnect() is the opposite of pm_connect()
*/
static void pm_disconnect(struct serio *serio)
{
struct pm *pm = serio_get_drvdata(serio);
serio_close(serio);
input_unregister_device(pm->dev);
kfree(pm);
serio_set_drvdata(serio, NULL);
}
/*
* pm_connect() is the routine that is called when someone adds a
* new serio device that supports PenMount protocol and registers it as
* an input device.
*/
static int pm_connect(struct serio *serio, struct serio_driver *drv)
{
struct pm *pm;
struct input_dev *input_dev;
int max_x, max_y;
int err;
pm = kzalloc(sizeof(struct pm), GFP_KERNEL);
input_dev = input_allocate_device();
if (!pm || !input_dev) {
err = -ENOMEM;
goto fail1;
}
pm->serio = serio;
pm->dev = input_dev;
snprintf(pm->phys, sizeof(pm->phys), "%s/input0", serio->phys);
pm->maxcontacts = 1;
input_dev->name = "PenMount Serial TouchScreen";
input_dev->phys = pm->phys;
input_dev->id.bustype = BUS_RS232;
input_dev->id.vendor = SERIO_PENMOUNT;
input_dev->id.product = 0;
input_dev->id.version = 0x0100;
input_dev->dev.parent = &serio->dev;
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
switch (serio->id.id) {
default:
case 0:
pm->packetsize = 5;
pm->parse_packet = pm_parse_9000;
input_dev->id.product = 0x9000;
max_x = max_y = 0x3ff;
break;
case 1:
pm->packetsize = 6;
pm->parse_packet = pm_parse_6000;
input_dev->id.product = 0x6000;
max_x = max_y = 0x3ff;
break;
case 2:
pm->packetsize = 6;
pm->parse_packet = pm_parse_3000;
input_dev->id.product = 0x3000;
max_x = max_y = 0x7ff;
pm->maxcontacts = PM_3000_MTSLOT;
break;
case 3:
pm->packetsize = 6;
pm->parse_packet = pm_parse_6250;
input_dev->id.product = 0x6250;
max_x = max_y = 0x3ff;
pm->maxcontacts = PM_6250_MTSLOT;
break;
}
input_set_abs_params(pm->dev, ABS_X, 0, max_x, 0, 0);
input_set_abs_params(pm->dev, ABS_Y, 0, max_y, 0, 0);
if (pm->maxcontacts > 1) {
input_mt_init_slots(pm->dev, pm->maxcontacts, 0);
input_set_abs_params(pm->dev,
ABS_MT_POSITION_X, 0, max_x, 0, 0);
input_set_abs_params(pm->dev,
ABS_MT_POSITION_Y, 0, max_y, 0, 0);
}
serio_set_drvdata(serio, pm);
err = serio_open(serio, drv);
if (err)
goto fail2;
err = input_register_device(pm->dev);
if (err)
goto fail3;
return 0;
fail3: serio_close(serio);
fail2: serio_set_drvdata(serio, NULL);
fail1: input_free_device(input_dev);
kfree(pm);
return err;
}
/*
* The serio driver structure.
*/
static const struct serio_device_id pm_serio_ids[] = {
{
.type = SERIO_RS232,
.proto = SERIO_PENMOUNT,
.id = SERIO_ANY,
.extra = SERIO_ANY,
},
{ 0 }
};
MODULE_DEVICE_TABLE(serio, pm_serio_ids);
static struct serio_driver pm_drv = {
.driver = {
.name = "serio-penmount",
},
.description = DRIVER_DESC,
.id_table = pm_serio_ids,
.interrupt = pm_interrupt,
.connect = pm_connect,
.disconnect = pm_disconnect,
};
module_serio_driver(pm_drv);
|
linux-master
|
drivers/input/touchscreen/penmount.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Cypress CY8CTMA140 (TMA140) touchscreen
* (C) 2020 Linus Walleij <[email protected]>
* (C) 2007 Cypress
* (C) 2007 Google, Inc.
*
* Inspired by the tma140_skomer.c driver in the Samsung GT-S7710 code
* drop. The GT-S7710 is codenamed "Skomer", the code also indicates
* that the same touchscreen was used in a product called "Lucas".
*
* The code drop for GT-S7710 also contains a firmware downloader and
* 15 (!) versions of the firmware drop from Cypress. But here we assume
* the firmware got downloaded to the touchscreen flash successfully and
* just use it to read the fingers. The shipped vendor driver does the
* same.
*/
#include <asm/unaligned.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/input.h>
#include <linux/input/touchscreen.h>
#include <linux/input/mt.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/i2c.h>
#include <linux/regulator/consumer.h>
#include <linux/delay.h>
#define CY8CTMA140_NAME "cy8ctma140"
#define CY8CTMA140_MAX_FINGERS 4
#define CY8CTMA140_GET_FINGERS 0x00
#define CY8CTMA140_GET_FW_INFO 0x19
/* This message also fits some bytes for touchkeys, if used */
#define CY8CTMA140_PACKET_SIZE 31
#define CY8CTMA140_INVALID_BUFFER_BIT 5
struct cy8ctma140 {
struct input_dev *input;
struct touchscreen_properties props;
struct device *dev;
struct i2c_client *client;
struct regulator_bulk_data regulators[2];
u8 prev_fingers;
u8 prev_f1id;
u8 prev_f2id;
};
static void cy8ctma140_report(struct cy8ctma140 *ts, u8 *data, int n_fingers)
{
static const u8 contact_offsets[] = { 0x03, 0x09, 0x10, 0x16 };
u8 *buf;
u16 x, y;
u8 w;
u8 id;
int slot;
int i;
for (i = 0; i < n_fingers; i++) {
buf = &data[contact_offsets[i]];
/*
* Odd contacts have contact ID in the lower nibble of
* the preceding byte, whereas even contacts have it in
* the upper nibble of the following byte.
*/
id = i % 2 ? buf[-1] & 0x0f : buf[5] >> 4;
slot = input_mt_get_slot_by_key(ts->input, id);
if (slot < 0)
continue;
x = get_unaligned_be16(buf);
y = get_unaligned_be16(buf + 2);
w = buf[4];
dev_dbg(ts->dev, "finger %d: ID %02x (%d, %d) w: %d\n",
slot, id, x, y, w);
input_mt_slot(ts->input, slot);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, true);
touchscreen_report_pos(ts->input, &ts->props, x, y, true);
input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, w);
}
input_mt_sync_frame(ts->input);
input_sync(ts->input);
}
static irqreturn_t cy8ctma140_irq_thread(int irq, void *d)
{
struct cy8ctma140 *ts = d;
u8 cmdbuf[] = { CY8CTMA140_GET_FINGERS };
u8 buf[CY8CTMA140_PACKET_SIZE];
struct i2c_msg msg[] = {
{
.addr = ts->client->addr,
.flags = 0,
.len = sizeof(cmdbuf),
.buf = cmdbuf,
}, {
.addr = ts->client->addr,
.flags = I2C_M_RD,
.len = sizeof(buf),
.buf = buf,
},
};
u8 n_fingers;
int ret;
ret = i2c_transfer(ts->client->adapter, msg, ARRAY_SIZE(msg));
if (ret != ARRAY_SIZE(msg)) {
if (ret < 0)
dev_err(ts->dev, "error reading message: %d\n", ret);
else
dev_err(ts->dev, "wrong number of messages\n");
goto out;
}
if (buf[1] & BIT(CY8CTMA140_INVALID_BUFFER_BIT)) {
dev_dbg(ts->dev, "invalid event\n");
goto out;
}
n_fingers = buf[2] & 0x0f;
if (n_fingers > CY8CTMA140_MAX_FINGERS) {
dev_err(ts->dev, "unexpected number of fingers: %d\n",
n_fingers);
goto out;
}
cy8ctma140_report(ts, buf, n_fingers);
out:
return IRQ_HANDLED;
}
static int cy8ctma140_init(struct cy8ctma140 *ts)
{
u8 addr[1];
u8 buf[5];
int ret;
addr[0] = CY8CTMA140_GET_FW_INFO;
ret = i2c_master_send(ts->client, addr, 1);
if (ret < 0) {
dev_err(ts->dev, "error sending FW info message\n");
return ret;
}
ret = i2c_master_recv(ts->client, buf, 5);
if (ret < 0) {
dev_err(ts->dev, "error receiving FW info message\n");
return ret;
}
if (ret != 5) {
dev_err(ts->dev, "got only %d bytes\n", ret);
return -EIO;
}
dev_dbg(ts->dev, "vendor %c%c, HW ID %.2d, FW ver %.4d\n",
buf[0], buf[1], buf[3], buf[4]);
return 0;
}
static int cy8ctma140_power_up(struct cy8ctma140 *ts)
{
int error;
error = regulator_bulk_enable(ARRAY_SIZE(ts->regulators),
ts->regulators);
if (error) {
dev_err(ts->dev, "failed to enable regulators\n");
return error;
}
msleep(250);
return 0;
}
static void cy8ctma140_power_down(struct cy8ctma140 *ts)
{
regulator_bulk_disable(ARRAY_SIZE(ts->regulators),
ts->regulators);
}
/* Called from the registered devm action */
static void cy8ctma140_power_off_action(void *d)
{
struct cy8ctma140 *ts = d;
cy8ctma140_power_down(ts);
}
static int cy8ctma140_probe(struct i2c_client *client)
{
struct cy8ctma140 *ts;
struct input_dev *input;
struct device *dev = &client->dev;
int error;
ts = devm_kzalloc(dev, sizeof(*ts), GFP_KERNEL);
if (!ts)
return -ENOMEM;
input = devm_input_allocate_device(dev);
if (!input)
return -ENOMEM;
ts->dev = dev;
ts->client = client;
ts->input = input;
input_set_capability(input, EV_ABS, ABS_MT_POSITION_X);
input_set_capability(input, EV_ABS, ABS_MT_POSITION_Y);
/* One byte for width 0..255 so this is the limit */
input_set_abs_params(input, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0);
/*
* This sets up event max/min capabilities and fuzz.
* Some DT properties are compulsory so we do not need
* to provide defaults for X/Y max or pressure max.
*
* We just initialize a very simple MT touchscreen here,
* some devices use the capability of this touchscreen to
* provide touchkeys, and in that case this needs to be
* extended to handle touchkey input.
*
* The firmware takes care of finger tracking and dropping
* invalid ranges.
*/
touchscreen_parse_properties(input, true, &ts->props);
input_abs_set_fuzz(input, ABS_MT_POSITION_X, 0);
input_abs_set_fuzz(input, ABS_MT_POSITION_Y, 0);
error = input_mt_init_slots(input, CY8CTMA140_MAX_FINGERS,
INPUT_MT_DIRECT | INPUT_MT_DROP_UNUSED);
if (error)
return error;
input->name = CY8CTMA140_NAME;
input->id.bustype = BUS_I2C;
input_set_drvdata(input, ts);
/*
* VCPIN is the analog voltage supply
* VDD is the digital voltage supply
* since the voltage range of VDD overlaps that of VCPIN,
* many designs to just supply both with a single voltage
* source of ~3.3 V.
*/
ts->regulators[0].supply = "vcpin";
ts->regulators[1].supply = "vdd";
error = devm_regulator_bulk_get(dev, ARRAY_SIZE(ts->regulators),
ts->regulators);
if (error)
return dev_err_probe(dev, error, "Failed to get regulators\n");
error = cy8ctma140_power_up(ts);
if (error)
return error;
error = devm_add_action_or_reset(dev, cy8ctma140_power_off_action, ts);
if (error) {
dev_err(dev, "failed to install power off handler\n");
return error;
}
error = devm_request_threaded_irq(dev, client->irq,
NULL, cy8ctma140_irq_thread,
IRQF_ONESHOT, CY8CTMA140_NAME, ts);
if (error) {
dev_err(dev, "irq %d busy? error %d\n", client->irq, error);
return error;
}
error = cy8ctma140_init(ts);
if (error)
return error;
error = input_register_device(input);
if (error)
return error;
i2c_set_clientdata(client, ts);
return 0;
}
static int cy8ctma140_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct cy8ctma140 *ts = i2c_get_clientdata(client);
if (!device_may_wakeup(&client->dev))
cy8ctma140_power_down(ts);
return 0;
}
static int cy8ctma140_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct cy8ctma140 *ts = i2c_get_clientdata(client);
int error;
if (!device_may_wakeup(&client->dev)) {
error = cy8ctma140_power_up(ts);
if (error)
return error;
}
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(cy8ctma140_pm,
cy8ctma140_suspend, cy8ctma140_resume);
static const struct i2c_device_id cy8ctma140_idtable[] = {
{ CY8CTMA140_NAME, 0 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, cy8ctma140_idtable);
static const struct of_device_id cy8ctma140_of_match[] = {
{ .compatible = "cypress,cy8ctma140", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, cy8ctma140_of_match);
static struct i2c_driver cy8ctma140_driver = {
.driver = {
.name = CY8CTMA140_NAME,
.pm = pm_sleep_ptr(&cy8ctma140_pm),
.of_match_table = cy8ctma140_of_match,
},
.id_table = cy8ctma140_idtable,
.probe = cy8ctma140_probe,
};
module_i2c_driver(cy8ctma140_driver);
MODULE_AUTHOR("Linus Walleij <[email protected]>");
MODULE_DESCRIPTION("CY8CTMA140 TouchScreen Driver");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/touchscreen/cy8ctma140.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012-2017 Hideep, Inc.
*/
#include <linux/module.h>
#include <linux/of.h>
#include <linux/firmware.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/acpi.h>
#include <linux/interrupt.h>
#include <linux/regmap.h>
#include <linux/sysfs.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/input/touchscreen.h>
#include <linux/regulator/consumer.h>
#include <asm/unaligned.h>
#define HIDEEP_TS_NAME "HiDeep Touchscreen"
#define HIDEEP_I2C_NAME "hideep_ts"
#define HIDEEP_MT_MAX 10
#define HIDEEP_KEY_MAX 3
/* count(2) + touch data(100) + key data(6) */
#define HIDEEP_MAX_EVENT 108UL
#define HIDEEP_TOUCH_EVENT_INDEX 2
#define HIDEEP_KEY_EVENT_INDEX 102
/* Touch & key event */
#define HIDEEP_EVENT_ADDR 0x240
/* command list */
#define HIDEEP_WORK_MODE 0x081e
#define HIDEEP_RESET_CMD 0x9800
/* event bit */
#define HIDEEP_MT_RELEASED BIT(4)
#define HIDEEP_KEY_PRESSED BIT(7)
#define HIDEEP_KEY_FIRST_PRESSED BIT(8)
#define HIDEEP_KEY_PRESSED_MASK (HIDEEP_KEY_PRESSED | \
HIDEEP_KEY_FIRST_PRESSED)
#define HIDEEP_KEY_IDX_MASK 0x0f
/* For NVM */
#define HIDEEP_YRAM_BASE 0x40000000
#define HIDEEP_PERIPHERAL_BASE 0x50000000
#define HIDEEP_ESI_BASE (HIDEEP_PERIPHERAL_BASE + 0x00000000)
#define HIDEEP_FLASH_BASE (HIDEEP_PERIPHERAL_BASE + 0x01000000)
#define HIDEEP_SYSCON_BASE (HIDEEP_PERIPHERAL_BASE + 0x02000000)
#define HIDEEP_SYSCON_MOD_CON (HIDEEP_SYSCON_BASE + 0x0000)
#define HIDEEP_SYSCON_SPC_CON (HIDEEP_SYSCON_BASE + 0x0004)
#define HIDEEP_SYSCON_CLK_CON (HIDEEP_SYSCON_BASE + 0x0008)
#define HIDEEP_SYSCON_CLK_ENA (HIDEEP_SYSCON_BASE + 0x000C)
#define HIDEEP_SYSCON_RST_CON (HIDEEP_SYSCON_BASE + 0x0010)
#define HIDEEP_SYSCON_WDT_CON (HIDEEP_SYSCON_BASE + 0x0014)
#define HIDEEP_SYSCON_WDT_CNT (HIDEEP_SYSCON_BASE + 0x0018)
#define HIDEEP_SYSCON_PWR_CON (HIDEEP_SYSCON_BASE + 0x0020)
#define HIDEEP_SYSCON_PGM_ID (HIDEEP_SYSCON_BASE + 0x00F4)
#define HIDEEP_FLASH_CON (HIDEEP_FLASH_BASE + 0x0000)
#define HIDEEP_FLASH_STA (HIDEEP_FLASH_BASE + 0x0004)
#define HIDEEP_FLASH_CFG (HIDEEP_FLASH_BASE + 0x0008)
#define HIDEEP_FLASH_TIM (HIDEEP_FLASH_BASE + 0x000C)
#define HIDEEP_FLASH_CACHE_CFG (HIDEEP_FLASH_BASE + 0x0010)
#define HIDEEP_FLASH_PIO_SIG (HIDEEP_FLASH_BASE + 0x400000)
#define HIDEEP_ESI_TX_INVALID (HIDEEP_ESI_BASE + 0x0008)
#define HIDEEP_PERASE 0x00040000
#define HIDEEP_WRONLY 0x00100000
#define HIDEEP_NVM_MASK_OFS 0x0000000C
#define HIDEEP_NVM_DEFAULT_PAGE 0
#define HIDEEP_NVM_SFR_WPAGE 1
#define HIDEEP_NVM_SFR_RPAGE 2
#define HIDEEP_PIO_SIG 0x00400000
#define HIDEEP_PROT_MODE 0x03400000
#define HIDEEP_NVM_PAGE_SIZE 128
#define HIDEEP_DWZ_INFO 0x000002C0
struct hideep_event {
__le16 x;
__le16 y;
__le16 z;
u8 w;
u8 flag;
u8 type;
u8 index;
};
struct dwz_info {
__be32 code_start;
u8 code_crc[12];
__be32 c_code_start;
__be16 gen_ver;
__be16 c_code_len;
__be32 vr_start;
__be16 rsv0;
__be16 vr_len;
__be32 ft_start;
__be16 vr_version;
__be16 ft_len;
__be16 core_ver;
__be16 boot_ver;
__be16 release_ver;
__be16 custom_ver;
u8 factory_id;
u8 panel_type;
u8 model_name[6];
__be16 extra_option;
__be16 product_code;
__be16 vendor_id;
__be16 product_id;
};
struct pgm_packet {
struct {
u8 unused[3];
u8 len;
__be32 addr;
} header;
__be32 payload[HIDEEP_NVM_PAGE_SIZE / sizeof(__be32)];
};
#define HIDEEP_XFER_BUF_SIZE sizeof(struct pgm_packet)
struct hideep_ts {
struct i2c_client *client;
struct input_dev *input_dev;
struct regmap *reg;
struct touchscreen_properties prop;
struct gpio_desc *reset_gpio;
struct regulator *vcc_vdd;
struct regulator *vcc_vid;
struct mutex dev_mutex;
u32 tch_count;
u32 lpm_count;
/*
* Data buffer to read packet from the device (contacts and key
* states). We align it on double-word boundary to keep word-sized
* fields in contact data and double-word-sized fields in program
* packet aligned.
*/
u8 xfer_buf[HIDEEP_XFER_BUF_SIZE] __aligned(4);
int key_num;
u32 key_codes[HIDEEP_KEY_MAX];
struct dwz_info dwz_info;
unsigned int fw_size;
u32 nvm_mask;
};
static int hideep_pgm_w_mem(struct hideep_ts *ts, u32 addr,
const __be32 *data, size_t count)
{
struct pgm_packet *packet = (void *)ts->xfer_buf;
size_t len = count * sizeof(*data);
struct i2c_msg msg = {
.addr = ts->client->addr,
.len = len + sizeof(packet->header.len) +
sizeof(packet->header.addr),
.buf = &packet->header.len,
};
int ret;
if (len > HIDEEP_NVM_PAGE_SIZE)
return -EINVAL;
packet->header.len = 0x80 | (count - 1);
packet->header.addr = cpu_to_be32(addr);
memcpy(packet->payload, data, len);
ret = i2c_transfer(ts->client->adapter, &msg, 1);
if (ret != 1)
return ret < 0 ? ret : -EIO;
return 0;
}
static int hideep_pgm_r_mem(struct hideep_ts *ts, u32 addr,
__be32 *data, size_t count)
{
struct pgm_packet *packet = (void *)ts->xfer_buf;
size_t len = count * sizeof(*data);
struct i2c_msg msg[] = {
{
.addr = ts->client->addr,
.len = sizeof(packet->header.len) +
sizeof(packet->header.addr),
.buf = &packet->header.len,
},
{
.addr = ts->client->addr,
.flags = I2C_M_RD,
.len = len,
.buf = (u8 *)data,
},
};
int ret;
if (len > HIDEEP_NVM_PAGE_SIZE)
return -EINVAL;
packet->header.len = count - 1;
packet->header.addr = cpu_to_be32(addr);
ret = i2c_transfer(ts->client->adapter, msg, ARRAY_SIZE(msg));
if (ret != ARRAY_SIZE(msg))
return ret < 0 ? ret : -EIO;
return 0;
}
static int hideep_pgm_r_reg(struct hideep_ts *ts, u32 addr, u32 *val)
{
__be32 data;
int error;
error = hideep_pgm_r_mem(ts, addr, &data, 1);
if (error) {
dev_err(&ts->client->dev,
"read of register %#08x failed: %d\n",
addr, error);
return error;
}
*val = be32_to_cpu(data);
return 0;
}
static int hideep_pgm_w_reg(struct hideep_ts *ts, u32 addr, u32 val)
{
__be32 data = cpu_to_be32(val);
int error;
error = hideep_pgm_w_mem(ts, addr, &data, 1);
if (error) {
dev_err(&ts->client->dev,
"write to register %#08x (%#08x) failed: %d\n",
addr, val, error);
return error;
}
return 0;
}
#define SW_RESET_IN_PGM(clk) \
{ \
__be32 data = cpu_to_be32(0x01); \
hideep_pgm_w_reg(ts, HIDEEP_SYSCON_WDT_CNT, (clk)); \
hideep_pgm_w_reg(ts, HIDEEP_SYSCON_WDT_CON, 0x03); \
/* \
* The first write may already cause a reset, use a raw \
* write for the second write to avoid error logging. \
*/ \
hideep_pgm_w_mem(ts, HIDEEP_SYSCON_WDT_CON, &data, 1); \
}
#define SET_FLASH_PIO(ce) \
hideep_pgm_w_reg(ts, HIDEEP_FLASH_CON, \
0x01 | ((ce) << 1))
#define SET_PIO_SIG(x, y) \
hideep_pgm_w_reg(ts, HIDEEP_FLASH_PIO_SIG + (x), (y))
#define SET_FLASH_HWCONTROL() \
hideep_pgm_w_reg(ts, HIDEEP_FLASH_CON, 0x00)
#define NVM_W_SFR(x, y) \
{ \
SET_FLASH_PIO(1); \
SET_PIO_SIG(x, y); \
SET_FLASH_PIO(0); \
}
static void hideep_pgm_set(struct hideep_ts *ts)
{
hideep_pgm_w_reg(ts, HIDEEP_SYSCON_WDT_CON, 0x00);
hideep_pgm_w_reg(ts, HIDEEP_SYSCON_SPC_CON, 0x00);
hideep_pgm_w_reg(ts, HIDEEP_SYSCON_CLK_ENA, 0xFF);
hideep_pgm_w_reg(ts, HIDEEP_SYSCON_CLK_CON, 0x01);
hideep_pgm_w_reg(ts, HIDEEP_SYSCON_PWR_CON, 0x01);
hideep_pgm_w_reg(ts, HIDEEP_FLASH_TIM, 0x03);
hideep_pgm_w_reg(ts, HIDEEP_FLASH_CACHE_CFG, 0x00);
}
static int hideep_pgm_get_pattern(struct hideep_ts *ts, u32 *pattern)
{
u16 p1 = 0xAF39;
u16 p2 = 0xDF9D;
int error;
error = regmap_bulk_write(ts->reg, p1, &p2, 1);
if (error) {
dev_err(&ts->client->dev,
"%s: regmap_bulk_write() failed with %d\n",
__func__, error);
return error;
}
usleep_range(1000, 1100);
/* flush invalid Tx load register */
error = hideep_pgm_w_reg(ts, HIDEEP_ESI_TX_INVALID, 0x01);
if (error)
return error;
error = hideep_pgm_r_reg(ts, HIDEEP_SYSCON_PGM_ID, pattern);
if (error)
return error;
return 0;
}
static int hideep_enter_pgm(struct hideep_ts *ts)
{
int retry_count = 10;
u32 pattern;
int error;
while (retry_count--) {
error = hideep_pgm_get_pattern(ts, &pattern);
if (error) {
dev_err(&ts->client->dev,
"hideep_pgm_get_pattern failed: %d\n", error);
} else if (pattern != 0x39AF9DDF) {
dev_err(&ts->client->dev, "%s: bad pattern: %#08x\n",
__func__, pattern);
} else {
dev_dbg(&ts->client->dev, "found magic code");
hideep_pgm_set(ts);
usleep_range(1000, 1100);
return 0;
}
}
dev_err(&ts->client->dev, "failed to enter pgm mode\n");
SW_RESET_IN_PGM(1000);
return -EIO;
}
static int hideep_nvm_unlock(struct hideep_ts *ts)
{
u32 unmask_code;
int error;
hideep_pgm_w_reg(ts, HIDEEP_FLASH_CFG, HIDEEP_NVM_SFR_RPAGE);
error = hideep_pgm_r_reg(ts, 0x0000000C, &unmask_code);
hideep_pgm_w_reg(ts, HIDEEP_FLASH_CFG, HIDEEP_NVM_DEFAULT_PAGE);
if (error)
return error;
/* make it unprotected code */
unmask_code &= ~HIDEEP_PROT_MODE;
/* compare unmask code */
if (unmask_code != ts->nvm_mask)
dev_warn(&ts->client->dev,
"read mask code different %#08x vs %#08x",
unmask_code, ts->nvm_mask);
hideep_pgm_w_reg(ts, HIDEEP_FLASH_CFG, HIDEEP_NVM_SFR_WPAGE);
SET_FLASH_PIO(0);
NVM_W_SFR(HIDEEP_NVM_MASK_OFS, ts->nvm_mask);
SET_FLASH_HWCONTROL();
hideep_pgm_w_reg(ts, HIDEEP_FLASH_CFG, HIDEEP_NVM_DEFAULT_PAGE);
return 0;
}
static int hideep_check_status(struct hideep_ts *ts)
{
int time_out = 100;
int status;
int error;
while (time_out--) {
error = hideep_pgm_r_reg(ts, HIDEEP_FLASH_STA, &status);
if (!error && status)
return 0;
usleep_range(1000, 1100);
}
return -ETIMEDOUT;
}
static int hideep_program_page(struct hideep_ts *ts, u32 addr,
const __be32 *ucode, size_t xfer_count)
{
u32 val;
int error;
error = hideep_check_status(ts);
if (error)
return -EBUSY;
addr &= ~(HIDEEP_NVM_PAGE_SIZE - 1);
SET_FLASH_PIO(0);
SET_FLASH_PIO(1);
/* erase page */
SET_PIO_SIG(HIDEEP_PERASE | addr, 0xFFFFFFFF);
SET_FLASH_PIO(0);
error = hideep_check_status(ts);
if (error)
return -EBUSY;
/* write page */
SET_FLASH_PIO(1);
val = be32_to_cpu(ucode[0]);
SET_PIO_SIG(HIDEEP_WRONLY | addr, val);
hideep_pgm_w_mem(ts, HIDEEP_FLASH_PIO_SIG | HIDEEP_WRONLY,
ucode, xfer_count);
val = be32_to_cpu(ucode[xfer_count - 1]);
SET_PIO_SIG(124, val);
SET_FLASH_PIO(0);
usleep_range(1000, 1100);
error = hideep_check_status(ts);
if (error)
return -EBUSY;
SET_FLASH_HWCONTROL();
return 0;
}
static int hideep_program_nvm(struct hideep_ts *ts,
const __be32 *ucode, size_t ucode_len)
{
struct pgm_packet *packet_r = (void *)ts->xfer_buf;
__be32 *current_ucode = packet_r->payload;
size_t xfer_len;
size_t xfer_count;
u32 addr = 0;
int error;
error = hideep_nvm_unlock(ts);
if (error)
return error;
while (ucode_len > 0) {
xfer_len = min_t(size_t, ucode_len, HIDEEP_NVM_PAGE_SIZE);
xfer_count = xfer_len / sizeof(*ucode);
error = hideep_pgm_r_mem(ts, 0x00000000 + addr,
current_ucode, xfer_count);
if (error) {
dev_err(&ts->client->dev,
"%s: failed to read page at offset %#08x: %d\n",
__func__, addr, error);
return error;
}
/* See if the page needs updating */
if (memcmp(ucode, current_ucode, xfer_len)) {
error = hideep_program_page(ts, addr,
ucode, xfer_count);
if (error) {
dev_err(&ts->client->dev,
"%s: iwrite failure @%#08x: %d\n",
__func__, addr, error);
return error;
}
usleep_range(1000, 1100);
}
ucode += xfer_count;
addr += xfer_len;
ucode_len -= xfer_len;
}
return 0;
}
static int hideep_verify_nvm(struct hideep_ts *ts,
const __be32 *ucode, size_t ucode_len)
{
struct pgm_packet *packet_r = (void *)ts->xfer_buf;
__be32 *current_ucode = packet_r->payload;
size_t xfer_len;
size_t xfer_count;
u32 addr = 0;
int i;
int error;
while (ucode_len > 0) {
xfer_len = min_t(size_t, ucode_len, HIDEEP_NVM_PAGE_SIZE);
xfer_count = xfer_len / sizeof(*ucode);
error = hideep_pgm_r_mem(ts, 0x00000000 + addr,
current_ucode, xfer_count);
if (error) {
dev_err(&ts->client->dev,
"%s: failed to read page at offset %#08x: %d\n",
__func__, addr, error);
return error;
}
if (memcmp(ucode, current_ucode, xfer_len)) {
const u8 *ucode_bytes = (const u8 *)ucode;
const u8 *current_bytes = (const u8 *)current_ucode;
for (i = 0; i < xfer_len; i++)
if (ucode_bytes[i] != current_bytes[i])
dev_err(&ts->client->dev,
"%s: mismatch @%#08x: (%#02x vs %#02x)\n",
__func__, addr + i,
ucode_bytes[i],
current_bytes[i]);
return -EIO;
}
ucode += xfer_count;
addr += xfer_len;
ucode_len -= xfer_len;
}
return 0;
}
static int hideep_load_dwz(struct hideep_ts *ts)
{
u16 product_code;
int error;
error = hideep_enter_pgm(ts);
if (error)
return error;
msleep(50);
error = hideep_pgm_r_mem(ts, HIDEEP_DWZ_INFO,
(void *)&ts->dwz_info,
sizeof(ts->dwz_info) / sizeof(__be32));
SW_RESET_IN_PGM(10);
msleep(50);
if (error) {
dev_err(&ts->client->dev,
"failed to fetch DWZ data: %d\n", error);
return error;
}
product_code = be16_to_cpu(ts->dwz_info.product_code);
switch (product_code & 0xF0) {
case 0x40:
dev_dbg(&ts->client->dev, "used crimson IC");
ts->fw_size = 1024 * 48;
ts->nvm_mask = 0x00310000;
break;
case 0x60:
dev_dbg(&ts->client->dev, "used lime IC");
ts->fw_size = 1024 * 64;
ts->nvm_mask = 0x0030027B;
break;
default:
dev_err(&ts->client->dev, "product code is wrong: %#04x",
product_code);
return -EINVAL;
}
dev_dbg(&ts->client->dev, "firmware release version: %#04x",
be16_to_cpu(ts->dwz_info.release_ver));
return 0;
}
static int hideep_flash_firmware(struct hideep_ts *ts,
const __be32 *ucode, size_t ucode_len)
{
int retry_cnt = 3;
int error;
while (retry_cnt--) {
error = hideep_program_nvm(ts, ucode, ucode_len);
if (!error) {
error = hideep_verify_nvm(ts, ucode, ucode_len);
if (!error)
return 0;
}
}
return error;
}
static int hideep_update_firmware(struct hideep_ts *ts,
const __be32 *ucode, size_t ucode_len)
{
int error, error2;
dev_dbg(&ts->client->dev, "starting firmware update");
/* enter program mode */
error = hideep_enter_pgm(ts);
if (error)
return error;
error = hideep_flash_firmware(ts, ucode, ucode_len);
if (error)
dev_err(&ts->client->dev,
"firmware update failed: %d\n", error);
else
dev_dbg(&ts->client->dev, "firmware updated successfully\n");
SW_RESET_IN_PGM(1000);
error2 = hideep_load_dwz(ts);
if (error2)
dev_err(&ts->client->dev,
"failed to load dwz after firmware update: %d\n",
error2);
return error ?: error2;
}
static int hideep_power_on(struct hideep_ts *ts)
{
int error = 0;
error = regulator_enable(ts->vcc_vdd);
if (error)
dev_err(&ts->client->dev,
"failed to enable 'vdd' regulator: %d", error);
usleep_range(999, 1000);
error = regulator_enable(ts->vcc_vid);
if (error)
dev_err(&ts->client->dev,
"failed to enable 'vcc_vid' regulator: %d",
error);
msleep(30);
if (ts->reset_gpio) {
gpiod_set_value_cansleep(ts->reset_gpio, 0);
} else {
error = regmap_write(ts->reg, HIDEEP_RESET_CMD, 0x01);
if (error)
dev_err(&ts->client->dev,
"failed to send 'reset' command: %d\n", error);
}
msleep(50);
return error;
}
static void hideep_power_off(void *data)
{
struct hideep_ts *ts = data;
if (ts->reset_gpio)
gpiod_set_value(ts->reset_gpio, 1);
regulator_disable(ts->vcc_vid);
regulator_disable(ts->vcc_vdd);
}
#define __GET_MT_TOOL_TYPE(type) ((type) == 0x01 ? MT_TOOL_FINGER : MT_TOOL_PEN)
static void hideep_report_slot(struct input_dev *input,
const struct hideep_event *event)
{
input_mt_slot(input, event->index & 0x0f);
input_mt_report_slot_state(input,
__GET_MT_TOOL_TYPE(event->type),
!(event->flag & HIDEEP_MT_RELEASED));
if (!(event->flag & HIDEEP_MT_RELEASED)) {
input_report_abs(input, ABS_MT_POSITION_X,
le16_to_cpup(&event->x));
input_report_abs(input, ABS_MT_POSITION_Y,
le16_to_cpup(&event->y));
input_report_abs(input, ABS_MT_PRESSURE,
le16_to_cpup(&event->z));
input_report_abs(input, ABS_MT_TOUCH_MAJOR, event->w);
}
}
static void hideep_parse_and_report(struct hideep_ts *ts)
{
const struct hideep_event *events =
(void *)&ts->xfer_buf[HIDEEP_TOUCH_EVENT_INDEX];
const u8 *keys = &ts->xfer_buf[HIDEEP_KEY_EVENT_INDEX];
int touch_count = ts->xfer_buf[0];
int key_count = ts->xfer_buf[1] & 0x0f;
int lpm_count = ts->xfer_buf[1] & 0xf0;
int i;
/* get touch event count */
dev_dbg(&ts->client->dev, "mt = %d, key = %d, lpm = %02x",
touch_count, key_count, lpm_count);
touch_count = min(touch_count, HIDEEP_MT_MAX);
for (i = 0; i < touch_count; i++)
hideep_report_slot(ts->input_dev, events + i);
key_count = min(key_count, HIDEEP_KEY_MAX);
for (i = 0; i < key_count; i++) {
u8 key_data = keys[i * 2];
input_report_key(ts->input_dev,
ts->key_codes[key_data & HIDEEP_KEY_IDX_MASK],
key_data & HIDEEP_KEY_PRESSED_MASK);
}
input_mt_sync_frame(ts->input_dev);
input_sync(ts->input_dev);
}
static irqreturn_t hideep_irq(int irq, void *handle)
{
struct hideep_ts *ts = handle;
int error;
BUILD_BUG_ON(HIDEEP_MAX_EVENT > HIDEEP_XFER_BUF_SIZE);
error = regmap_bulk_read(ts->reg, HIDEEP_EVENT_ADDR,
ts->xfer_buf, HIDEEP_MAX_EVENT / 2);
if (error) {
dev_err(&ts->client->dev, "failed to read events: %d\n", error);
goto out;
}
hideep_parse_and_report(ts);
out:
return IRQ_HANDLED;
}
static int hideep_get_axis_info(struct hideep_ts *ts)
{
__le16 val[2];
int error;
error = regmap_bulk_read(ts->reg, 0x28, val, ARRAY_SIZE(val));
if (error)
return error;
ts->prop.max_x = le16_to_cpup(val);
ts->prop.max_y = le16_to_cpup(val + 1);
dev_dbg(&ts->client->dev, "X: %d, Y: %d",
ts->prop.max_x, ts->prop.max_y);
return 0;
}
static int hideep_init_input(struct hideep_ts *ts)
{
struct device *dev = &ts->client->dev;
int i;
int error;
ts->input_dev = devm_input_allocate_device(dev);
if (!ts->input_dev) {
dev_err(dev, "failed to allocate input device\n");
return -ENOMEM;
}
ts->input_dev->name = HIDEEP_TS_NAME;
ts->input_dev->id.bustype = BUS_I2C;
input_set_drvdata(ts->input_dev, ts);
input_set_capability(ts->input_dev, EV_ABS, ABS_MT_POSITION_X);
input_set_capability(ts->input_dev, EV_ABS, ABS_MT_POSITION_Y);
input_set_abs_params(ts->input_dev, ABS_MT_PRESSURE, 0, 65535, 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_TOOL_TYPE,
0, MT_TOOL_MAX, 0, 0);
touchscreen_parse_properties(ts->input_dev, true, &ts->prop);
if (ts->prop.max_x == 0 || ts->prop.max_y == 0) {
error = hideep_get_axis_info(ts);
if (error)
return error;
}
error = input_mt_init_slots(ts->input_dev, HIDEEP_MT_MAX,
INPUT_MT_DIRECT);
if (error)
return error;
ts->key_num = device_property_count_u32(dev, "linux,keycodes");
if (ts->key_num > HIDEEP_KEY_MAX) {
dev_err(dev, "too many keys defined: %d\n",
ts->key_num);
return -EINVAL;
}
if (ts->key_num <= 0) {
dev_dbg(dev,
"missing or malformed 'linux,keycodes' property\n");
} else {
error = device_property_read_u32_array(dev, "linux,keycodes",
ts->key_codes,
ts->key_num);
if (error) {
dev_dbg(dev, "failed to read keymap: %d", error);
return error;
}
if (ts->key_num) {
ts->input_dev->keycode = ts->key_codes;
ts->input_dev->keycodesize = sizeof(ts->key_codes[0]);
ts->input_dev->keycodemax = ts->key_num;
for (i = 0; i < ts->key_num; i++)
input_set_capability(ts->input_dev, EV_KEY,
ts->key_codes[i]);
}
}
error = input_register_device(ts->input_dev);
if (error) {
dev_err(dev, "failed to register input device: %d", error);
return error;
}
return 0;
}
static ssize_t hideep_update_fw(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct hideep_ts *ts = i2c_get_clientdata(client);
const struct firmware *fw_entry;
char *fw_name;
int mode;
int error;
error = kstrtoint(buf, 0, &mode);
if (error)
return error;
fw_name = kasprintf(GFP_KERNEL, "hideep_ts_%04x.bin",
be16_to_cpu(ts->dwz_info.product_id));
if (!fw_name)
return -ENOMEM;
error = request_firmware(&fw_entry, fw_name, dev);
if (error) {
dev_err(dev, "failed to request firmware %s: %d",
fw_name, error);
goto out_free_fw_name;
}
if (fw_entry->size % sizeof(__be32)) {
dev_err(dev, "invalid firmware size %zu\n", fw_entry->size);
error = -EINVAL;
goto out_release_fw;
}
if (fw_entry->size > ts->fw_size) {
dev_err(dev, "fw size (%zu) is too big (memory size %d)\n",
fw_entry->size, ts->fw_size);
error = -EFBIG;
goto out_release_fw;
}
mutex_lock(&ts->dev_mutex);
disable_irq(client->irq);
error = hideep_update_firmware(ts, (const __be32 *)fw_entry->data,
fw_entry->size);
enable_irq(client->irq);
mutex_unlock(&ts->dev_mutex);
out_release_fw:
release_firmware(fw_entry);
out_free_fw_name:
kfree(fw_name);
return error ?: count;
}
static ssize_t hideep_fw_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct hideep_ts *ts = i2c_get_clientdata(client);
ssize_t len;
mutex_lock(&ts->dev_mutex);
len = scnprintf(buf, PAGE_SIZE, "%04x\n",
be16_to_cpu(ts->dwz_info.release_ver));
mutex_unlock(&ts->dev_mutex);
return len;
}
static ssize_t hideep_product_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct hideep_ts *ts = i2c_get_clientdata(client);
ssize_t len;
mutex_lock(&ts->dev_mutex);
len = scnprintf(buf, PAGE_SIZE, "%04x\n",
be16_to_cpu(ts->dwz_info.product_id));
mutex_unlock(&ts->dev_mutex);
return len;
}
static DEVICE_ATTR(version, 0664, hideep_fw_version_show, NULL);
static DEVICE_ATTR(product_id, 0664, hideep_product_id_show, NULL);
static DEVICE_ATTR(update_fw, 0664, NULL, hideep_update_fw);
static struct attribute *hideep_ts_sysfs_entries[] = {
&dev_attr_version.attr,
&dev_attr_product_id.attr,
&dev_attr_update_fw.attr,
NULL,
};
static const struct attribute_group hideep_ts_attr_group = {
.attrs = hideep_ts_sysfs_entries,
};
static void hideep_set_work_mode(struct hideep_ts *ts)
{
/*
* Reset touch report format to the native HiDeep 20 protocol if requested.
* This is necessary to make touchscreens which come up in I2C-HID mode
* work with this driver.
*
* Note this is a kernel internal device-property set by x86 platform code,
* this MUST not be used in devicetree files without first adding it to
* the DT bindings.
*/
if (device_property_read_bool(&ts->client->dev, "hideep,force-native-protocol"))
regmap_write(ts->reg, HIDEEP_WORK_MODE, 0x00);
}
static int hideep_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct hideep_ts *ts = i2c_get_clientdata(client);
disable_irq(client->irq);
hideep_power_off(ts);
return 0;
}
static int hideep_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct hideep_ts *ts = i2c_get_clientdata(client);
int error;
error = hideep_power_on(ts);
if (error) {
dev_err(&client->dev, "power on failed");
return error;
}
hideep_set_work_mode(ts);
enable_irq(client->irq);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(hideep_pm_ops, hideep_suspend, hideep_resume);
static const struct regmap_config hideep_regmap_config = {
.reg_bits = 16,
.reg_format_endian = REGMAP_ENDIAN_LITTLE,
.val_bits = 16,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
.max_register = 0xffff,
};
static int hideep_probe(struct i2c_client *client)
{
struct hideep_ts *ts;
int error;
/* check i2c bus */
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "check i2c device error");
return -ENODEV;
}
if (client->irq <= 0) {
dev_err(&client->dev, "missing irq: %d\n", client->irq);
return -EINVAL;
}
ts = devm_kzalloc(&client->dev, sizeof(*ts), GFP_KERNEL);
if (!ts)
return -ENOMEM;
ts->client = client;
i2c_set_clientdata(client, ts);
mutex_init(&ts->dev_mutex);
ts->reg = devm_regmap_init_i2c(client, &hideep_regmap_config);
if (IS_ERR(ts->reg)) {
error = PTR_ERR(ts->reg);
dev_err(&client->dev,
"failed to initialize regmap: %d\n", error);
return error;
}
ts->vcc_vdd = devm_regulator_get(&client->dev, "vdd");
if (IS_ERR(ts->vcc_vdd))
return PTR_ERR(ts->vcc_vdd);
ts->vcc_vid = devm_regulator_get(&client->dev, "vid");
if (IS_ERR(ts->vcc_vid))
return PTR_ERR(ts->vcc_vid);
ts->reset_gpio = devm_gpiod_get_optional(&client->dev,
"reset", GPIOD_OUT_HIGH);
if (IS_ERR(ts->reset_gpio))
return PTR_ERR(ts->reset_gpio);
error = hideep_power_on(ts);
if (error) {
dev_err(&client->dev, "power on failed: %d\n", error);
return error;
}
error = devm_add_action_or_reset(&client->dev, hideep_power_off, ts);
if (error)
return error;
error = hideep_load_dwz(ts);
if (error) {
dev_err(&client->dev, "failed to load dwz: %d", error);
return error;
}
hideep_set_work_mode(ts);
error = hideep_init_input(ts);
if (error)
return error;
error = devm_request_threaded_irq(&client->dev, client->irq,
NULL, hideep_irq, IRQF_ONESHOT,
client->name, ts);
if (error) {
dev_err(&client->dev, "failed to request irq %d: %d\n",
client->irq, error);
return error;
}
error = devm_device_add_group(&client->dev, &hideep_ts_attr_group);
if (error) {
dev_err(&client->dev,
"failed to add sysfs attributes: %d\n", error);
return error;
}
return 0;
}
static const struct i2c_device_id hideep_i2c_id[] = {
{ HIDEEP_I2C_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, hideep_i2c_id);
#ifdef CONFIG_ACPI
static const struct acpi_device_id hideep_acpi_id[] = {
{ "HIDP0001", 0 },
{ }
};
MODULE_DEVICE_TABLE(acpi, hideep_acpi_id);
#endif
#ifdef CONFIG_OF
static const struct of_device_id hideep_match_table[] = {
{ .compatible = "hideep,hideep-ts" },
{ }
};
MODULE_DEVICE_TABLE(of, hideep_match_table);
#endif
static struct i2c_driver hideep_driver = {
.driver = {
.name = HIDEEP_I2C_NAME,
.of_match_table = of_match_ptr(hideep_match_table),
.acpi_match_table = ACPI_PTR(hideep_acpi_id),
.pm = pm_sleep_ptr(&hideep_pm_ops),
},
.id_table = hideep_i2c_id,
.probe = hideep_probe,
};
module_i2c_driver(hideep_driver);
MODULE_DESCRIPTION("Driver for HiDeep Touchscreen Controller");
MODULE_AUTHOR("[email protected]");
MODULE_LICENSE("GPL v2");
|
linux-master
|
drivers/input/touchscreen/hideep.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Hynitron cstxxx Touchscreen
*
* Copyright (c) 2022 Chris Morgan <[email protected]>
*
* This code is based on hynitron_core.c authored by Hynitron.
* Note that no datasheet was available, so much of these registers
* are undocumented. This is essentially a cleaned-up version of the
* vendor driver with support removed for hardware I cannot test and
* device-specific functions replated with generic functions wherever
* possible.
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/input/touchscreen.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/property.h>
#include <asm/unaligned.h>
/* Per chip data */
struct hynitron_ts_chip_data {
unsigned int max_touch_num;
u32 ic_chkcode;
int (*firmware_info)(struct i2c_client *client);
int (*bootloader_enter)(struct i2c_client *client);
int (*init_input)(struct i2c_client *client);
void (*report_touch)(struct i2c_client *client);
};
/* Data generic to all (supported and non-supported) controllers. */
struct hynitron_ts_data {
const struct hynitron_ts_chip_data *chip;
struct i2c_client *client;
struct input_dev *input_dev;
struct touchscreen_properties prop;
struct gpio_desc *reset_gpio;
};
/*
* Since I have no datasheet, these values are guessed and/or assumed
* based on observation and testing.
*/
#define CST3XX_FIRMWARE_INFO_START_CMD 0x01d1
#define CST3XX_FIRMWARE_INFO_END_CMD 0x09d1
#define CST3XX_FIRMWARE_CHK_CODE_REG 0xfcd1
#define CST3XX_FIRMWARE_VERSION_REG 0x08d2
#define CST3XX_FIRMWARE_VER_INVALID_VAL 0xa5a5a5a5
#define CST3XX_BOOTLDR_PROG_CMD 0xaa01a0
#define CST3XX_BOOTLDR_PROG_CHK_REG 0x02a0
#define CST3XX_BOOTLDR_CHK_VAL 0xac
#define CST3XX_TOUCH_DATA_PART_REG 0x00d0
#define CST3XX_TOUCH_DATA_FULL_REG 0x07d0
#define CST3XX_TOUCH_DATA_CHK_VAL 0xab
#define CST3XX_TOUCH_DATA_TOUCH_VAL 0x03
#define CST3XX_TOUCH_DATA_STOP_CMD 0xab00d0
#define CST3XX_TOUCH_COUNT_MASK GENMASK(6, 0)
/*
* Hard coded reset delay value of 20ms not IC dependent in
* vendor driver.
*/
static void hyn_reset_proc(struct i2c_client *client, int delay)
{
struct hynitron_ts_data *ts_data = i2c_get_clientdata(client);
gpiod_set_value_cansleep(ts_data->reset_gpio, 1);
msleep(20);
gpiod_set_value_cansleep(ts_data->reset_gpio, 0);
if (delay)
fsleep(delay * 1000);
}
static irqreturn_t hyn_interrupt_handler(int irq, void *dev_id)
{
struct i2c_client *client = dev_id;
struct hynitron_ts_data *ts_data = i2c_get_clientdata(client);
ts_data->chip->report_touch(client);
return IRQ_HANDLED;
}
/*
* The vendor driver would retry twice before failing to read or write
* to the i2c device.
*/
static int cst3xx_i2c_write(struct i2c_client *client,
unsigned char *buf, int len)
{
int ret;
int retries = 0;
while (retries < 2) {
ret = i2c_master_send(client, buf, len);
if (ret == len)
return 0;
if (ret <= 0)
retries++;
else
break;
}
return ret < 0 ? ret : -EIO;
}
static int cst3xx_i2c_read_register(struct i2c_client *client, u16 reg,
u8 *val, u16 len)
{
__le16 buf = cpu_to_le16(reg);
struct i2c_msg msgs[] = {
{
.addr = client->addr,
.flags = 0,
.len = 2,
.buf = (u8 *)&buf,
},
{
.addr = client->addr,
.flags = I2C_M_RD,
.len = len,
.buf = val,
}
};
int err;
int ret;
ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (ret == ARRAY_SIZE(msgs))
return 0;
err = ret < 0 ? ret : -EIO;
dev_err(&client->dev, "Error reading %d bytes from 0x%04x: %d (%d)\n",
len, reg, err, ret);
return err;
}
static int cst3xx_firmware_info(struct i2c_client *client)
{
struct hynitron_ts_data *ts_data = i2c_get_clientdata(client);
int err;
u32 tmp;
unsigned char buf[4];
/*
* Tests suggest this command needed to read firmware regs.
*/
put_unaligned_le16(CST3XX_FIRMWARE_INFO_START_CMD, buf);
err = cst3xx_i2c_write(client, buf, 2);
if (err)
return err;
usleep_range(10000, 11000);
/*
* Read register for check-code to determine if device detected
* correctly.
*/
err = cst3xx_i2c_read_register(client, CST3XX_FIRMWARE_CHK_CODE_REG,
buf, 4);
if (err)
return err;
tmp = get_unaligned_le32(buf);
if ((tmp & 0xffff0000) != ts_data->chip->ic_chkcode) {
dev_err(&client->dev, "%s ic mismatch, chkcode is %u\n",
__func__, tmp);
return -ENODEV;
}
usleep_range(10000, 11000);
/* Read firmware version and test if firmware missing. */
err = cst3xx_i2c_read_register(client, CST3XX_FIRMWARE_VERSION_REG,
buf, 4);
if (err)
return err;
tmp = get_unaligned_le32(buf);
if (tmp == CST3XX_FIRMWARE_VER_INVALID_VAL) {
dev_err(&client->dev, "Device firmware missing\n");
return -ENODEV;
}
/*
* Tests suggest cmd required to exit reading firmware regs.
*/
put_unaligned_le16(CST3XX_FIRMWARE_INFO_END_CMD, buf);
err = cst3xx_i2c_write(client, buf, 2);
if (err)
return err;
usleep_range(5000, 6000);
return 0;
}
static int cst3xx_bootloader_enter(struct i2c_client *client)
{
int err;
u8 retry;
u32 tmp = 0;
unsigned char buf[3];
for (retry = 0; retry < 5; retry++) {
hyn_reset_proc(client, (7 + retry));
/* set cmd to enter program mode */
put_unaligned_le24(CST3XX_BOOTLDR_PROG_CMD, buf);
err = cst3xx_i2c_write(client, buf, 3);
if (err)
continue;
usleep_range(2000, 2500);
/* check whether in program mode */
err = cst3xx_i2c_read_register(client,
CST3XX_BOOTLDR_PROG_CHK_REG,
buf, 1);
if (err)
continue;
tmp = get_unaligned(buf);
if (tmp == CST3XX_BOOTLDR_CHK_VAL)
break;
}
if (tmp != CST3XX_BOOTLDR_CHK_VAL) {
dev_err(&client->dev, "%s unable to enter bootloader mode\n",
__func__);
return -ENODEV;
}
hyn_reset_proc(client, 40);
return 0;
}
static void cst3xx_report_contact(struct hynitron_ts_data *ts_data,
u8 id, unsigned int x, unsigned int y, u8 w)
{
input_mt_slot(ts_data->input_dev, id);
input_mt_report_slot_state(ts_data->input_dev, MT_TOOL_FINGER, 1);
touchscreen_report_pos(ts_data->input_dev, &ts_data->prop, x, y, true);
input_report_abs(ts_data->input_dev, ABS_MT_TOUCH_MAJOR, w);
}
static int cst3xx_finish_touch_read(struct i2c_client *client)
{
unsigned char buf[3];
int err;
put_unaligned_le24(CST3XX_TOUCH_DATA_STOP_CMD, buf);
err = cst3xx_i2c_write(client, buf, 3);
if (err) {
dev_err(&client->dev,
"send read touch info ending failed: %d\n", err);
return err;
}
return 0;
}
/*
* Handle events from IRQ. Note that for cst3xx it appears that IRQ
* fires continuously while touched, otherwise once every 1500ms
* when not touched (assume touchscreen waking up periodically).
* Note buffer is sized for 5 fingers, if more needed buffer must
* be increased. The buffer contains 5 bytes for each touch point,
* a touch count byte, a check byte, and then a second check byte after
* all other touch points.
*
* For example 1 touch would look like this:
* touch1[5]:touch_count[1]:chk_byte[1]
*
* 3 touches would look like this:
* touch1[5]:touch_count[1]:chk_byte[1]:touch2[5]:touch3[5]:chk_byte[1]
*/
static void cst3xx_touch_report(struct i2c_client *client)
{
struct hynitron_ts_data *ts_data = i2c_get_clientdata(client);
u8 buf[28];
u8 finger_id, sw, w;
unsigned int x, y;
unsigned int touch_cnt, end_byte;
unsigned int idx = 0;
unsigned int i;
int err;
/* Read and validate the first bits of input data. */
err = cst3xx_i2c_read_register(client, CST3XX_TOUCH_DATA_PART_REG,
buf, 28);
if (err ||
buf[6] != CST3XX_TOUCH_DATA_CHK_VAL ||
buf[0] == CST3XX_TOUCH_DATA_CHK_VAL) {
dev_err(&client->dev, "cst3xx touch read failure\n");
return;
}
/* Report to the device we're done reading the touch data. */
err = cst3xx_finish_touch_read(client);
if (err)
return;
touch_cnt = buf[5] & CST3XX_TOUCH_COUNT_MASK;
/*
* Check the check bit of the last touch slot. The check bit is
* always present after touch point 1 for valid data, and then
* appears as the last byte after all other touch data.
*/
if (touch_cnt > 1) {
end_byte = touch_cnt * 5 + 2;
if (buf[end_byte] != CST3XX_TOUCH_DATA_CHK_VAL) {
dev_err(&client->dev, "cst3xx touch read failure\n");
return;
}
}
/* Parse through the buffer to capture touch data. */
for (i = 0; i < touch_cnt; i++) {
x = ((buf[idx + 1] << 4) | ((buf[idx + 3] >> 4) & 0x0f));
y = ((buf[idx + 2] << 4) | (buf[idx + 3] & 0x0f));
w = (buf[idx + 4] >> 3);
sw = (buf[idx] & 0x0f) >> 1;
finger_id = (buf[idx] >> 4) & 0x0f;
/* Sanity check we don't have more fingers than we expect */
if (ts_data->chip->max_touch_num < finger_id) {
dev_err(&client->dev, "cst3xx touch read failure\n");
break;
}
/* sw value of 0 means no touch, 0x03 means touch */
if (sw == CST3XX_TOUCH_DATA_TOUCH_VAL)
cst3xx_report_contact(ts_data, finger_id, x, y, w);
idx += 5;
/* Skip the 2 bytes between point 1 and point 2 */
if (i == 0)
idx += 2;
}
input_mt_sync_frame(ts_data->input_dev);
input_sync(ts_data->input_dev);
}
static int cst3xx_input_dev_int(struct i2c_client *client)
{
struct hynitron_ts_data *ts_data = i2c_get_clientdata(client);
int err;
ts_data->input_dev = devm_input_allocate_device(&client->dev);
if (!ts_data->input_dev) {
dev_err(&client->dev, "Failed to allocate input device\n");
return -ENOMEM;
}
ts_data->input_dev->name = "Hynitron cst3xx Touchscreen";
ts_data->input_dev->phys = "input/ts";
ts_data->input_dev->id.bustype = BUS_I2C;
input_set_drvdata(ts_data->input_dev, ts_data);
input_set_capability(ts_data->input_dev, EV_ABS, ABS_MT_POSITION_X);
input_set_capability(ts_data->input_dev, EV_ABS, ABS_MT_POSITION_Y);
input_set_abs_params(ts_data->input_dev, ABS_MT_TOUCH_MAJOR,
0, 255, 0, 0);
touchscreen_parse_properties(ts_data->input_dev, true, &ts_data->prop);
if (!ts_data->prop.max_x || !ts_data->prop.max_y) {
dev_err(&client->dev,
"Invalid x/y (%d, %d), using defaults\n",
ts_data->prop.max_x, ts_data->prop.max_y);
ts_data->prop.max_x = 1152;
ts_data->prop.max_y = 1920;
input_abs_set_max(ts_data->input_dev,
ABS_MT_POSITION_X, ts_data->prop.max_x);
input_abs_set_max(ts_data->input_dev,
ABS_MT_POSITION_Y, ts_data->prop.max_y);
}
err = input_mt_init_slots(ts_data->input_dev,
ts_data->chip->max_touch_num,
INPUT_MT_DIRECT | INPUT_MT_DROP_UNUSED);
if (err) {
dev_err(&client->dev,
"Failed to initialize input slots: %d\n", err);
return err;
}
err = input_register_device(ts_data->input_dev);
if (err) {
dev_err(&client->dev,
"Input device registration failed: %d\n", err);
return err;
}
return 0;
}
static int hyn_probe(struct i2c_client *client)
{
struct hynitron_ts_data *ts_data;
int err;
ts_data = devm_kzalloc(&client->dev, sizeof(*ts_data), GFP_KERNEL);
if (!ts_data)
return -ENOMEM;
ts_data->client = client;
i2c_set_clientdata(client, ts_data);
ts_data->chip = device_get_match_data(&client->dev);
if (!ts_data->chip)
return -EINVAL;
ts_data->reset_gpio = devm_gpiod_get(&client->dev,
"reset", GPIOD_OUT_LOW);
err = PTR_ERR_OR_ZERO(ts_data->reset_gpio);
if (err) {
dev_err(&client->dev, "request reset gpio failed: %d\n", err);
return err;
}
hyn_reset_proc(client, 60);
err = ts_data->chip->bootloader_enter(client);
if (err < 0)
return err;
err = ts_data->chip->init_input(client);
if (err < 0)
return err;
err = ts_data->chip->firmware_info(client);
if (err < 0)
return err;
err = devm_request_threaded_irq(&client->dev, client->irq,
NULL, hyn_interrupt_handler,
IRQF_ONESHOT,
"Hynitron Touch Int", client);
if (err) {
dev_err(&client->dev, "failed to request IRQ: %d\n", err);
return err;
}
return 0;
}
static const struct hynitron_ts_chip_data cst3xx_data = {
.max_touch_num = 5,
.ic_chkcode = 0xcaca0000,
.firmware_info = &cst3xx_firmware_info,
.bootloader_enter = &cst3xx_bootloader_enter,
.init_input = &cst3xx_input_dev_int,
.report_touch = &cst3xx_touch_report,
};
static const struct i2c_device_id hyn_tpd_id[] = {
{ .name = "hynitron_ts", 0 },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(i2c, hyn_tpd_id);
static const struct of_device_id hyn_dt_match[] = {
{ .compatible = "hynitron,cst340", .data = &cst3xx_data },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, hyn_dt_match);
static struct i2c_driver hynitron_i2c_driver = {
.driver = {
.name = "Hynitron-TS",
.of_match_table = hyn_dt_match,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
.id_table = hyn_tpd_id,
.probe = hyn_probe,
};
module_i2c_driver(hynitron_i2c_driver);
MODULE_AUTHOR("Chris Morgan");
MODULE_DESCRIPTION("Hynitron Touchscreen Driver");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/hynitron_cstxxx.c
|
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for EETI eGalax Multiple Touch Controller
*
* Copyright (C) 2011 Freescale Semiconductor, Inc.
*
* based on max11801_ts.c
*/
/* EETI eGalax serial touch screen controller is a I2C based multiple
* touch screen controller, it supports 5 point multiple touch. */
/* TODO:
- auto idle mode support
*/
#include <linux/err.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/irq.h>
#include <linux/gpio/consumer.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/input/mt.h>
/*
* Mouse Mode: some panel may configure the controller to mouse mode,
* which can only report one point at a given time.
* This driver will ignore events in this mode.
*/
#define REPORT_MODE_MOUSE 0x1
/*
* Vendor Mode: this mode is used to transfer some vendor specific
* messages.
* This driver will ignore events in this mode.
*/
#define REPORT_MODE_VENDOR 0x3
/* Multiple Touch Mode */
#define REPORT_MODE_MTTOUCH 0x4
#define MAX_SUPPORT_POINTS 5
#define EVENT_VALID_OFFSET 7
#define EVENT_VALID_MASK (0x1 << EVENT_VALID_OFFSET)
#define EVENT_ID_OFFSET 2
#define EVENT_ID_MASK (0xf << EVENT_ID_OFFSET)
#define EVENT_IN_RANGE (0x1 << 1)
#define EVENT_DOWN_UP (0X1 << 0)
#define MAX_I2C_DATA_LEN 10
#define EGALAX_MAX_X 32760
#define EGALAX_MAX_Y 32760
#define EGALAX_MAX_TRIES 100
struct egalax_ts {
struct i2c_client *client;
struct input_dev *input_dev;
};
static irqreturn_t egalax_ts_interrupt(int irq, void *dev_id)
{
struct egalax_ts *ts = dev_id;
struct input_dev *input_dev = ts->input_dev;
struct i2c_client *client = ts->client;
u8 buf[MAX_I2C_DATA_LEN];
int id, ret, x, y, z;
int tries = 0;
bool down, valid;
u8 state;
do {
ret = i2c_master_recv(client, buf, MAX_I2C_DATA_LEN);
} while (ret == -EAGAIN && tries++ < EGALAX_MAX_TRIES);
if (ret < 0)
return IRQ_HANDLED;
if (buf[0] != REPORT_MODE_MTTOUCH) {
/* ignore mouse events and vendor events */
return IRQ_HANDLED;
}
state = buf[1];
x = (buf[3] << 8) | buf[2];
y = (buf[5] << 8) | buf[4];
z = (buf[7] << 8) | buf[6];
valid = state & EVENT_VALID_MASK;
id = (state & EVENT_ID_MASK) >> EVENT_ID_OFFSET;
down = state & EVENT_DOWN_UP;
if (!valid || id > MAX_SUPPORT_POINTS) {
dev_dbg(&client->dev, "point invalid\n");
return IRQ_HANDLED;
}
input_mt_slot(input_dev, id);
input_mt_report_slot_state(input_dev, MT_TOOL_FINGER, down);
dev_dbg(&client->dev, "%s id:%d x:%d y:%d z:%d",
down ? "down" : "up", id, x, y, z);
if (down) {
input_report_abs(input_dev, ABS_MT_POSITION_X, x);
input_report_abs(input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(input_dev, ABS_MT_PRESSURE, z);
}
input_mt_report_pointer_emulation(input_dev, true);
input_sync(input_dev);
return IRQ_HANDLED;
}
/* wake up controller by an falling edge of interrupt gpio. */
static int egalax_wake_up_device(struct i2c_client *client)
{
struct gpio_desc *gpio;
int ret;
/* wake up controller via an falling edge on IRQ gpio. */
gpio = gpiod_get(&client->dev, "wakeup", GPIOD_OUT_HIGH);
ret = PTR_ERR_OR_ZERO(gpio);
if (ret) {
if (ret != -EPROBE_DEFER)
dev_err(&client->dev,
"failed to request wakeup gpio, cannot wake up controller: %d\n",
ret);
return ret;
}
/* release the line */
gpiod_set_value_cansleep(gpio, 0);
/* controller should be woken up, return irq. */
gpiod_direction_input(gpio);
gpiod_put(gpio);
return 0;
}
static int egalax_firmware_version(struct i2c_client *client)
{
static const u8 cmd[MAX_I2C_DATA_LEN] = { 0x03, 0x03, 0xa, 0x01, 0x41 };
int ret;
ret = i2c_master_send(client, cmd, MAX_I2C_DATA_LEN);
if (ret < 0)
return ret;
return 0;
}
static int egalax_ts_probe(struct i2c_client *client)
{
struct egalax_ts *ts;
struct input_dev *input_dev;
int error;
ts = devm_kzalloc(&client->dev, sizeof(struct egalax_ts), GFP_KERNEL);
if (!ts) {
dev_err(&client->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
input_dev = devm_input_allocate_device(&client->dev);
if (!input_dev) {
dev_err(&client->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
ts->client = client;
ts->input_dev = input_dev;
/* controller may be in sleep, wake it up. */
error = egalax_wake_up_device(client);
if (error)
return error;
error = egalax_firmware_version(client);
if (error < 0) {
dev_err(&client->dev, "Failed to read firmware version\n");
return error;
}
input_dev->name = "EETI eGalax Touch Screen";
input_dev->id.bustype = BUS_I2C;
__set_bit(EV_ABS, input_dev->evbit);
__set_bit(EV_KEY, input_dev->evbit);
__set_bit(BTN_TOUCH, input_dev->keybit);
input_set_abs_params(input_dev, ABS_X, 0, EGALAX_MAX_X, 0, 0);
input_set_abs_params(input_dev, ABS_Y, 0, EGALAX_MAX_Y, 0, 0);
input_set_abs_params(input_dev,
ABS_MT_POSITION_X, 0, EGALAX_MAX_X, 0, 0);
input_set_abs_params(input_dev,
ABS_MT_POSITION_Y, 0, EGALAX_MAX_Y, 0, 0);
input_mt_init_slots(input_dev, MAX_SUPPORT_POINTS, 0);
error = devm_request_threaded_irq(&client->dev, client->irq,
NULL, egalax_ts_interrupt,
IRQF_ONESHOT, "egalax_ts", ts);
if (error < 0) {
dev_err(&client->dev, "Failed to register interrupt\n");
return error;
}
error = input_register_device(ts->input_dev);
if (error)
return error;
return 0;
}
static const struct i2c_device_id egalax_ts_id[] = {
{ "egalax_ts", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, egalax_ts_id);
static int egalax_ts_suspend(struct device *dev)
{
static const u8 suspend_cmd[MAX_I2C_DATA_LEN] = {
0x3, 0x6, 0xa, 0x3, 0x36, 0x3f, 0x2, 0, 0, 0
};
struct i2c_client *client = to_i2c_client(dev);
int ret;
if (device_may_wakeup(dev))
return enable_irq_wake(client->irq);
ret = i2c_master_send(client, suspend_cmd, MAX_I2C_DATA_LEN);
return ret > 0 ? 0 : ret;
}
static int egalax_ts_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
if (device_may_wakeup(dev))
return disable_irq_wake(client->irq);
return egalax_wake_up_device(client);
}
static DEFINE_SIMPLE_DEV_PM_OPS(egalax_ts_pm_ops,
egalax_ts_suspend, egalax_ts_resume);
static const struct of_device_id egalax_ts_dt_ids[] = {
{ .compatible = "eeti,egalax_ts" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, egalax_ts_dt_ids);
static struct i2c_driver egalax_ts_driver = {
.driver = {
.name = "egalax_ts",
.pm = pm_sleep_ptr(&egalax_ts_pm_ops),
.of_match_table = egalax_ts_dt_ids,
},
.id_table = egalax_ts_id,
.probe = egalax_ts_probe,
};
module_i2c_driver(egalax_ts_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("Touchscreen driver for EETI eGalax touch controller");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/egalax_ts.c
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Core Source for:
* Cypress TrueTouch(TM) Standard Product (TTSP) touchscreen drivers.
* For use with Cypress Txx3xx parts.
* Supported parts include:
* CY8CTST341
* CY8CTMA340
*
* Copyright (C) 2009, 2010, 2011 Cypress Semiconductor, Inc.
* Copyright (C) 2012 Javier Martinez Canillas <[email protected]>
*
* Contact Cypress Semiconductor at www.cypress.com <[email protected]>
*/
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/input/touchscreen.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/property.h>
#include <linux/gpio/consumer.h>
#include <linux/regulator/consumer.h>
#include "cyttsp_core.h"
/* Bootloader number of command keys */
#define CY_NUM_BL_KEYS 8
/* helpers */
#define GET_NUM_TOUCHES(x) ((x) & 0x0F)
#define IS_LARGE_AREA(x) (((x) & 0x10) >> 4)
#define IS_BAD_PKT(x) ((x) & 0x20)
#define IS_VALID_APP(x) ((x) & 0x01)
#define IS_OPERATIONAL_ERR(x) ((x) & 0x3F)
#define GET_HSTMODE(reg) (((reg) & 0x70) >> 4)
#define GET_BOOTLOADERMODE(reg) (((reg) & 0x10) >> 4)
#define CY_REG_BASE 0x00
#define CY_REG_ACT_DIST 0x1E
#define CY_REG_ACT_INTRVL 0x1D
#define CY_REG_TCH_TMOUT (CY_REG_ACT_INTRVL + 1)
#define CY_REG_LP_INTRVL (CY_REG_TCH_TMOUT + 1)
#define CY_MAXZ 255
#define CY_DELAY_DFLT 20 /* ms */
#define CY_DELAY_MAX 500
/* Active distance in pixels for a gesture to be reported */
#define CY_ACT_DIST_DFLT 0xF8 /* pixels */
#define CY_ACT_DIST_MASK 0x0F
/* Active Power state scanning/processing refresh interval */
#define CY_ACT_INTRVL_DFLT 0x00 /* ms */
/* Low Power state scanning/processing refresh interval */
#define CY_LP_INTRVL_DFLT 0x0A /* ms */
/* touch timeout for the Active power */
#define CY_TCH_TMOUT_DFLT 0xFF /* ms */
#define CY_HNDSHK_BIT 0x80
/* device mode bits */
#define CY_OPERATE_MODE 0x00
#define CY_SYSINFO_MODE 0x10
/* power mode select bits */
#define CY_SOFT_RESET_MODE 0x01 /* return to Bootloader mode */
#define CY_DEEP_SLEEP_MODE 0x02
#define CY_LOW_POWER_MODE 0x04
/* Slots management */
#define CY_MAX_FINGER 4
#define CY_MAX_ID 16
static const u8 bl_command[] = {
0x00, /* file offset */
0xFF, /* command */
0xA5, /* exit bootloader command */
0, 1, 2, 3, 4, 5, 6, 7 /* default keys */
};
static int ttsp_read_block_data(struct cyttsp *ts, u8 command,
u8 length, void *buf)
{
int error;
int tries;
for (tries = 0; tries < CY_NUM_RETRY; tries++) {
error = ts->bus_ops->read(ts->dev, ts->xfer_buf, command,
length, buf);
if (!error)
return 0;
msleep(CY_DELAY_DFLT);
}
return -EIO;
}
static int ttsp_write_block_data(struct cyttsp *ts, u8 command,
u8 length, void *buf)
{
int error;
int tries;
for (tries = 0; tries < CY_NUM_RETRY; tries++) {
error = ts->bus_ops->write(ts->dev, ts->xfer_buf, command,
length, buf);
if (!error)
return 0;
msleep(CY_DELAY_DFLT);
}
return -EIO;
}
static int ttsp_send_command(struct cyttsp *ts, u8 cmd)
{
return ttsp_write_block_data(ts, CY_REG_BASE, sizeof(cmd), &cmd);
}
static int cyttsp_handshake(struct cyttsp *ts)
{
if (ts->use_hndshk)
return ttsp_send_command(ts,
ts->xy_data.hst_mode ^ CY_HNDSHK_BIT);
return 0;
}
static int cyttsp_load_bl_regs(struct cyttsp *ts)
{
memset(&ts->bl_data, 0, sizeof(ts->bl_data));
ts->bl_data.bl_status = 0x10;
return ttsp_read_block_data(ts, CY_REG_BASE,
sizeof(ts->bl_data), &ts->bl_data);
}
static int cyttsp_exit_bl_mode(struct cyttsp *ts)
{
int error;
u8 bl_cmd[sizeof(bl_command)];
memcpy(bl_cmd, bl_command, sizeof(bl_command));
if (ts->bl_keys)
memcpy(&bl_cmd[sizeof(bl_command) - CY_NUM_BL_KEYS],
ts->bl_keys, CY_NUM_BL_KEYS);
error = ttsp_write_block_data(ts, CY_REG_BASE,
sizeof(bl_cmd), bl_cmd);
if (error)
return error;
/* wait for TTSP Device to complete the operation */
msleep(CY_DELAY_DFLT);
error = cyttsp_load_bl_regs(ts);
if (error)
return error;
if (GET_BOOTLOADERMODE(ts->bl_data.bl_status))
return -EIO;
return 0;
}
static int cyttsp_set_operational_mode(struct cyttsp *ts)
{
int error;
error = ttsp_send_command(ts, CY_OPERATE_MODE);
if (error)
return error;
/* wait for TTSP Device to complete switch to Operational mode */
error = ttsp_read_block_data(ts, CY_REG_BASE,
sizeof(ts->xy_data), &ts->xy_data);
if (error)
return error;
error = cyttsp_handshake(ts);
if (error)
return error;
return ts->xy_data.act_dist == CY_ACT_DIST_DFLT ? -EIO : 0;
}
static int cyttsp_set_sysinfo_mode(struct cyttsp *ts)
{
int error;
memset(&ts->sysinfo_data, 0, sizeof(ts->sysinfo_data));
/* switch to sysinfo mode */
error = ttsp_send_command(ts, CY_SYSINFO_MODE);
if (error)
return error;
/* read sysinfo registers */
msleep(CY_DELAY_DFLT);
error = ttsp_read_block_data(ts, CY_REG_BASE, sizeof(ts->sysinfo_data),
&ts->sysinfo_data);
if (error)
return error;
error = cyttsp_handshake(ts);
if (error)
return error;
if (!ts->sysinfo_data.tts_verh && !ts->sysinfo_data.tts_verl)
return -EIO;
return 0;
}
static int cyttsp_set_sysinfo_regs(struct cyttsp *ts)
{
int retval = 0;
if (ts->act_intrvl != CY_ACT_INTRVL_DFLT ||
ts->tch_tmout != CY_TCH_TMOUT_DFLT ||
ts->lp_intrvl != CY_LP_INTRVL_DFLT) {
u8 intrvl_ray[] = {
ts->act_intrvl,
ts->tch_tmout,
ts->lp_intrvl
};
/* set intrvl registers */
retval = ttsp_write_block_data(ts, CY_REG_ACT_INTRVL,
sizeof(intrvl_ray), intrvl_ray);
msleep(CY_DELAY_DFLT);
}
return retval;
}
static void cyttsp_hard_reset(struct cyttsp *ts)
{
if (ts->reset_gpio) {
/*
* According to the CY8CTMA340 datasheet page 21, the external
* reset pulse width should be >= 1 ms. The datasheet does not
* specify how long we have to wait after reset but a vendor
* tree specifies 5 ms here.
*/
gpiod_set_value_cansleep(ts->reset_gpio, 1);
usleep_range(1000, 2000);
gpiod_set_value_cansleep(ts->reset_gpio, 0);
usleep_range(5000, 6000);
}
}
static int cyttsp_soft_reset(struct cyttsp *ts)
{
int retval;
/* wait for interrupt to set ready completion */
reinit_completion(&ts->bl_ready);
ts->state = CY_BL_STATE;
enable_irq(ts->irq);
retval = ttsp_send_command(ts, CY_SOFT_RESET_MODE);
if (retval) {
dev_err(ts->dev, "failed to send soft reset\n");
goto out;
}
if (!wait_for_completion_timeout(&ts->bl_ready,
msecs_to_jiffies(CY_DELAY_DFLT * CY_DELAY_MAX))) {
dev_err(ts->dev, "timeout waiting for soft reset\n");
retval = -EIO;
}
out:
ts->state = CY_IDLE_STATE;
disable_irq(ts->irq);
return retval;
}
static int cyttsp_act_dist_setup(struct cyttsp *ts)
{
u8 act_dist_setup = ts->act_dist;
/* Init gesture; active distance setup */
return ttsp_write_block_data(ts, CY_REG_ACT_DIST,
sizeof(act_dist_setup), &act_dist_setup);
}
static void cyttsp_extract_track_ids(struct cyttsp_xydata *xy_data, int *ids)
{
ids[0] = xy_data->touch12_id >> 4;
ids[1] = xy_data->touch12_id & 0xF;
ids[2] = xy_data->touch34_id >> 4;
ids[3] = xy_data->touch34_id & 0xF;
}
static const struct cyttsp_tch *cyttsp_get_tch(struct cyttsp_xydata *xy_data,
int idx)
{
switch (idx) {
case 0:
return &xy_data->tch1;
case 1:
return &xy_data->tch2;
case 2:
return &xy_data->tch3;
case 3:
return &xy_data->tch4;
default:
return NULL;
}
}
static void cyttsp_report_tchdata(struct cyttsp *ts)
{
struct cyttsp_xydata *xy_data = &ts->xy_data;
struct input_dev *input = ts->input;
int num_tch = GET_NUM_TOUCHES(xy_data->tt_stat);
const struct cyttsp_tch *tch;
int ids[CY_MAX_ID];
int i;
DECLARE_BITMAP(used, CY_MAX_ID);
if (IS_LARGE_AREA(xy_data->tt_stat) == 1) {
/* terminate all active tracks */
num_tch = 0;
dev_dbg(ts->dev, "%s: Large area detected\n", __func__);
} else if (num_tch > CY_MAX_FINGER) {
/* terminate all active tracks */
num_tch = 0;
dev_dbg(ts->dev, "%s: Num touch error detected\n", __func__);
} else if (IS_BAD_PKT(xy_data->tt_mode)) {
/* terminate all active tracks */
num_tch = 0;
dev_dbg(ts->dev, "%s: Invalid buffer detected\n", __func__);
}
cyttsp_extract_track_ids(xy_data, ids);
bitmap_zero(used, CY_MAX_ID);
for (i = 0; i < num_tch; i++) {
tch = cyttsp_get_tch(xy_data, i);
input_mt_slot(input, ids[i]);
input_mt_report_slot_state(input, MT_TOOL_FINGER, true);
input_report_abs(input, ABS_MT_POSITION_X, be16_to_cpu(tch->x));
input_report_abs(input, ABS_MT_POSITION_Y, be16_to_cpu(tch->y));
input_report_abs(input, ABS_MT_TOUCH_MAJOR, tch->z);
__set_bit(ids[i], used);
}
for (i = 0; i < CY_MAX_ID; i++) {
if (test_bit(i, used))
continue;
input_mt_slot(input, i);
input_mt_report_slot_inactive(input);
}
input_sync(input);
}
static irqreturn_t cyttsp_irq(int irq, void *handle)
{
struct cyttsp *ts = handle;
int error;
if (unlikely(ts->state == CY_BL_STATE)) {
complete(&ts->bl_ready);
goto out;
}
/* Get touch data from CYTTSP device */
error = ttsp_read_block_data(ts, CY_REG_BASE,
sizeof(struct cyttsp_xydata), &ts->xy_data);
if (error)
goto out;
/* provide flow control handshake */
error = cyttsp_handshake(ts);
if (error)
goto out;
if (unlikely(ts->state == CY_IDLE_STATE))
goto out;
if (GET_BOOTLOADERMODE(ts->xy_data.tt_mode)) {
/*
* TTSP device has reset back to bootloader mode.
* Restore to operational mode.
*/
error = cyttsp_exit_bl_mode(ts);
if (error) {
dev_err(ts->dev,
"Could not return to operational mode, err: %d\n",
error);
ts->state = CY_IDLE_STATE;
}
} else {
cyttsp_report_tchdata(ts);
}
out:
return IRQ_HANDLED;
}
static int cyttsp_power_on(struct cyttsp *ts)
{
int error;
error = cyttsp_soft_reset(ts);
if (error)
return error;
error = cyttsp_load_bl_regs(ts);
if (error)
return error;
if (GET_BOOTLOADERMODE(ts->bl_data.bl_status) &&
IS_VALID_APP(ts->bl_data.bl_status)) {
error = cyttsp_exit_bl_mode(ts);
if (error) {
dev_err(ts->dev, "failed to exit bootloader mode\n");
return error;
}
}
if (GET_HSTMODE(ts->bl_data.bl_file) != CY_OPERATE_MODE ||
IS_OPERATIONAL_ERR(ts->bl_data.bl_status)) {
return -ENODEV;
}
error = cyttsp_set_sysinfo_mode(ts);
if (error)
return error;
error = cyttsp_set_sysinfo_regs(ts);
if (error)
return error;
error = cyttsp_set_operational_mode(ts);
if (error)
return error;
/* init active distance */
error = cyttsp_act_dist_setup(ts);
if (error)
return error;
ts->state = CY_ACTIVE_STATE;
return 0;
}
static int cyttsp_enable(struct cyttsp *ts)
{
int error;
/*
* The device firmware can wake on an I2C or SPI memory slave
* address match. So just reading a register is sufficient to
* wake up the device. The first read attempt will fail but it
* will wake it up making the second read attempt successful.
*/
error = ttsp_read_block_data(ts, CY_REG_BASE,
sizeof(ts->xy_data), &ts->xy_data);
if (error)
return error;
if (GET_HSTMODE(ts->xy_data.hst_mode))
return -EIO;
enable_irq(ts->irq);
return 0;
}
static int cyttsp_disable(struct cyttsp *ts)
{
int error;
error = ttsp_send_command(ts, CY_LOW_POWER_MODE);
if (error)
return error;
disable_irq(ts->irq);
return 0;
}
static int cyttsp_suspend(struct device *dev)
{
struct cyttsp *ts = dev_get_drvdata(dev);
int retval = 0;
mutex_lock(&ts->input->mutex);
if (input_device_enabled(ts->input)) {
retval = cyttsp_disable(ts);
if (retval == 0)
ts->suspended = true;
}
mutex_unlock(&ts->input->mutex);
return retval;
}
static int cyttsp_resume(struct device *dev)
{
struct cyttsp *ts = dev_get_drvdata(dev);
mutex_lock(&ts->input->mutex);
if (input_device_enabled(ts->input))
cyttsp_enable(ts);
ts->suspended = false;
mutex_unlock(&ts->input->mutex);
return 0;
}
EXPORT_GPL_SIMPLE_DEV_PM_OPS(cyttsp_pm_ops, cyttsp_suspend, cyttsp_resume);
static int cyttsp_open(struct input_dev *dev)
{
struct cyttsp *ts = input_get_drvdata(dev);
int retval = 0;
if (!ts->suspended)
retval = cyttsp_enable(ts);
return retval;
}
static void cyttsp_close(struct input_dev *dev)
{
struct cyttsp *ts = input_get_drvdata(dev);
if (!ts->suspended)
cyttsp_disable(ts);
}
static int cyttsp_parse_properties(struct cyttsp *ts)
{
struct device *dev = ts->dev;
u32 dt_value;
int ret;
ts->bl_keys = devm_kzalloc(dev, CY_NUM_BL_KEYS, GFP_KERNEL);
if (!ts->bl_keys)
return -ENOMEM;
/* Set some default values */
ts->use_hndshk = false;
ts->act_dist = CY_ACT_DIST_DFLT;
ts->act_intrvl = CY_ACT_INTRVL_DFLT;
ts->tch_tmout = CY_TCH_TMOUT_DFLT;
ts->lp_intrvl = CY_LP_INTRVL_DFLT;
ret = device_property_read_u8_array(dev, "bootloader-key",
ts->bl_keys, CY_NUM_BL_KEYS);
if (ret) {
dev_err(dev,
"bootloader-key property could not be retrieved\n");
return ret;
}
ts->use_hndshk = device_property_present(dev, "use-handshake");
if (!device_property_read_u32(dev, "active-distance", &dt_value)) {
if (dt_value > 15) {
dev_err(dev, "active-distance (%u) must be [0-15]\n",
dt_value);
return -EINVAL;
}
ts->act_dist &= ~CY_ACT_DIST_MASK;
ts->act_dist |= dt_value;
}
if (!device_property_read_u32(dev, "active-interval-ms", &dt_value)) {
if (dt_value > 255) {
dev_err(dev, "active-interval-ms (%u) must be [0-255]\n",
dt_value);
return -EINVAL;
}
ts->act_intrvl = dt_value;
}
if (!device_property_read_u32(dev, "lowpower-interval-ms", &dt_value)) {
if (dt_value > 2550) {
dev_err(dev, "lowpower-interval-ms (%u) must be [0-2550]\n",
dt_value);
return -EINVAL;
}
/* Register value is expressed in 0.01s / bit */
ts->lp_intrvl = dt_value / 10;
}
if (!device_property_read_u32(dev, "touch-timeout-ms", &dt_value)) {
if (dt_value > 2550) {
dev_err(dev, "touch-timeout-ms (%u) must be [0-2550]\n",
dt_value);
return -EINVAL;
}
/* Register value is expressed in 0.01s / bit */
ts->tch_tmout = dt_value / 10;
}
return 0;
}
static void cyttsp_disable_regulators(void *_ts)
{
struct cyttsp *ts = _ts;
regulator_bulk_disable(ARRAY_SIZE(ts->regulators),
ts->regulators);
}
struct cyttsp *cyttsp_probe(const struct cyttsp_bus_ops *bus_ops,
struct device *dev, int irq, size_t xfer_buf_size)
{
struct cyttsp *ts;
struct input_dev *input_dev;
int error;
ts = devm_kzalloc(dev, sizeof(*ts) + xfer_buf_size, GFP_KERNEL);
if (!ts)
return ERR_PTR(-ENOMEM);
input_dev = devm_input_allocate_device(dev);
if (!input_dev)
return ERR_PTR(-ENOMEM);
ts->dev = dev;
ts->input = input_dev;
ts->bus_ops = bus_ops;
ts->irq = irq;
/*
* VCPIN is the analog voltage supply
* VDD is the digital voltage supply
*/
ts->regulators[0].supply = "vcpin";
ts->regulators[1].supply = "vdd";
error = devm_regulator_bulk_get(dev, ARRAY_SIZE(ts->regulators),
ts->regulators);
if (error) {
dev_err(dev, "Failed to get regulators: %d\n", error);
return ERR_PTR(error);
}
error = regulator_bulk_enable(ARRAY_SIZE(ts->regulators),
ts->regulators);
if (error) {
dev_err(dev, "Cannot enable regulators: %d\n", error);
return ERR_PTR(error);
}
error = devm_add_action_or_reset(dev, cyttsp_disable_regulators, ts);
if (error) {
dev_err(dev, "failed to install chip disable handler\n");
return ERR_PTR(error);
}
ts->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(ts->reset_gpio)) {
error = PTR_ERR(ts->reset_gpio);
dev_err(dev, "Failed to request reset gpio, error %d\n", error);
return ERR_PTR(error);
}
error = cyttsp_parse_properties(ts);
if (error)
return ERR_PTR(error);
init_completion(&ts->bl_ready);
input_dev->name = "Cypress TTSP TouchScreen";
input_dev->id.bustype = bus_ops->bustype;
input_dev->dev.parent = ts->dev;
input_dev->open = cyttsp_open;
input_dev->close = cyttsp_close;
input_set_drvdata(input_dev, ts);
input_set_capability(input_dev, EV_ABS, ABS_MT_POSITION_X);
input_set_capability(input_dev, EV_ABS, ABS_MT_POSITION_Y);
/* One byte for width 0..255 so this is the limit */
input_set_abs_params(input_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0);
touchscreen_parse_properties(input_dev, true, NULL);
error = input_mt_init_slots(input_dev, CY_MAX_ID, INPUT_MT_DIRECT);
if (error) {
dev_err(dev, "Unable to init MT slots.\n");
return ERR_PTR(error);
}
error = devm_request_threaded_irq(dev, ts->irq, NULL, cyttsp_irq,
IRQF_ONESHOT | IRQF_NO_AUTOEN,
"cyttsp", ts);
if (error) {
dev_err(ts->dev, "failed to request IRQ %d, err: %d\n",
ts->irq, error);
return ERR_PTR(error);
}
cyttsp_hard_reset(ts);
error = cyttsp_power_on(ts);
if (error)
return ERR_PTR(error);
error = input_register_device(input_dev);
if (error) {
dev_err(ts->dev, "failed to register input device: %d\n",
error);
return ERR_PTR(error);
}
return ts;
}
EXPORT_SYMBOL_GPL(cyttsp_probe);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Cypress TrueTouch(R) Standard touchscreen driver core");
MODULE_AUTHOR("Cypress");
|
linux-master
|
drivers/input/touchscreen/cyttsp_core.c
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* wm9705.c -- Codec driver for Wolfson WM9705 AC97 Codec.
*
* Copyright 2003, 2004, 2005, 2006, 2007 Wolfson Microelectronics PLC.
* Author: Liam Girdwood <[email protected]>
* Parts Copyright : Ian Molton <[email protected]>
* Andrew Zabolotny <[email protected]>
* Russell King <[email protected]>
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/input.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/wm97xx.h>
#define TS_NAME "wm97xx"
#define WM9705_VERSION "1.00"
#define DEFAULT_PRESSURE 0xb0c0
/*
* Module parameters
*/
/*
* Set current used for pressure measurement.
*
* Set pil = 2 to use 400uA
* pil = 1 to use 200uA and
* pil = 0 to disable pressure measurement.
*
* This is used to increase the range of values returned by the adc
* when measureing touchpanel pressure.
*/
static int pil;
module_param(pil, int, 0);
MODULE_PARM_DESC(pil, "Set current used for pressure measurement.");
/*
* Set threshold for pressure measurement.
*
* Pen down pressure below threshold is ignored.
*/
static int pressure = DEFAULT_PRESSURE & 0xfff;
module_param(pressure, int, 0);
MODULE_PARM_DESC(pressure, "Set threshold for pressure measurement.");
/*
* Set adc sample delay.
*
* For accurate touchpanel measurements, some settling time may be
* required between the switch matrix applying a voltage across the
* touchpanel plate and the ADC sampling the signal.
*
* This delay can be set by setting delay = n, where n is the array
* position of the delay in the array delay_table below.
* Long delays > 1ms are supported for completeness, but are not
* recommended.
*/
static int delay = 4;
module_param(delay, int, 0);
MODULE_PARM_DESC(delay, "Set adc sample delay.");
/*
* Pen detect comparator threshold.
*
* 0 to Vmid in 15 steps, 0 = use zero power comparator with Vmid threshold
* i.e. 1 = Vmid/15 threshold
* 15 = Vmid/1 threshold
*
* Adjust this value if you are having problems with pen detect not
* detecting any down events.
*/
static int pdd = 8;
module_param(pdd, int, 0);
MODULE_PARM_DESC(pdd, "Set pen detect comparator threshold");
/*
* Set adc mask function.
*
* Sources of glitch noise, such as signals driving an LCD display, may feed
* through to the touch screen plates and affect measurement accuracy. In
* order to minimise this, a signal may be applied to the MASK pin to delay or
* synchronise the sampling.
*
* 0 = No delay or sync
* 1 = High on pin stops conversions
* 2 = Edge triggered, edge on pin delays conversion by delay param (above)
* 3 = Edge triggered, edge on pin starts conversion after delay param
*/
static int mask;
module_param(mask, int, 0);
MODULE_PARM_DESC(mask, "Set adc mask function.");
/*
* ADC sample delay times in uS
*/
static const int delay_table[] = {
21, /* 1 AC97 Link frames */
42, /* 2 */
84, /* 4 */
167, /* 8 */
333, /* 16 */
667, /* 32 */
1000, /* 48 */
1333, /* 64 */
2000, /* 96 */
2667, /* 128 */
3333, /* 160 */
4000, /* 192 */
4667, /* 224 */
5333, /* 256 */
6000, /* 288 */
0 /* No delay, switch matrix always on */
};
/*
* Delay after issuing a POLL command.
*
* The delay is 3 AC97 link frames + the touchpanel settling delay
*/
static inline void poll_delay(int d)
{
udelay(3 * AC97_LINK_FRAME + delay_table[d]);
}
/*
* set up the physical settings of the WM9705
*/
static void wm9705_phy_init(struct wm97xx *wm)
{
u16 dig1 = 0, dig2 = WM97XX_RPR;
/*
* mute VIDEO and AUX as they share X and Y touchscreen
* inputs on the WM9705
*/
wm97xx_reg_write(wm, AC97_AUX, 0x8000);
wm97xx_reg_write(wm, AC97_VIDEO, 0x8000);
/* touchpanel pressure current*/
if (pil == 2) {
dig2 |= WM9705_PIL;
dev_dbg(wm->dev,
"setting pressure measurement current to 400uA.");
} else if (pil)
dev_dbg(wm->dev,
"setting pressure measurement current to 200uA.");
if (!pil)
pressure = 0;
/* polling mode sample settling delay */
if (delay != 4) {
if (delay < 0 || delay > 15) {
dev_dbg(wm->dev, "supplied delay out of range.");
delay = 4;
}
}
dig1 &= 0xff0f;
dig1 |= WM97XX_DELAY(delay);
dev_dbg(wm->dev, "setting adc sample delay to %d u Secs.",
delay_table[delay]);
/* WM9705 pdd */
dig2 |= (pdd & 0x000f);
dev_dbg(wm->dev, "setting pdd to Vmid/%d", 1 - (pdd & 0x000f));
/* mask */
dig2 |= ((mask & 0x3) << 4);
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER1, dig1);
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER2, dig2);
}
static void wm9705_dig_enable(struct wm97xx *wm, int enable)
{
if (enable) {
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER2,
wm->dig[2] | WM97XX_PRP_DET_DIG);
wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD); /* dummy read */
} else
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER2,
wm->dig[2] & ~WM97XX_PRP_DET_DIG);
}
static void wm9705_aux_prepare(struct wm97xx *wm)
{
memcpy(wm->dig_save, wm->dig, sizeof(wm->dig));
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER1, 0);
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER2, WM97XX_PRP_DET_DIG);
}
static void wm9705_dig_restore(struct wm97xx *wm)
{
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER1, wm->dig_save[1]);
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER2, wm->dig_save[2]);
}
static inline int is_pden(struct wm97xx *wm)
{
return wm->dig[2] & WM9705_PDEN;
}
/*
* Read a sample from the WM9705 adc in polling mode.
*/
static int wm9705_poll_sample(struct wm97xx *wm, int adcsel, int *sample)
{
int timeout = 5 * delay;
bool wants_pen = adcsel & WM97XX_PEN_DOWN;
if (wants_pen && !wm->pen_probably_down) {
u16 data = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD);
if (!(data & WM97XX_PEN_DOWN))
return RC_PENUP;
wm->pen_probably_down = 1;
}
/* set up digitiser */
if (wm->mach_ops && wm->mach_ops->pre_sample)
wm->mach_ops->pre_sample(adcsel);
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER1, (adcsel & WM97XX_ADCSEL_MASK)
| WM97XX_POLL | WM97XX_DELAY(delay));
/* wait 3 AC97 time slots + delay for conversion */
poll_delay(delay);
/* wait for POLL to go low */
while ((wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER1) & WM97XX_POLL)
&& timeout) {
udelay(AC97_LINK_FRAME);
timeout--;
}
if (timeout == 0) {
/* If PDEN is set, we can get a timeout when pen goes up */
if (is_pden(wm))
wm->pen_probably_down = 0;
else
dev_dbg(wm->dev, "adc sample timeout");
return RC_PENUP;
}
*sample = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD);
if (wm->mach_ops && wm->mach_ops->post_sample)
wm->mach_ops->post_sample(adcsel);
/* check we have correct sample */
if ((*sample ^ adcsel) & WM97XX_ADCSEL_MASK) {
dev_dbg(wm->dev, "adc wrong sample, wanted %x got %x",
adcsel & WM97XX_ADCSEL_MASK,
*sample & WM97XX_ADCSEL_MASK);
return RC_PENUP;
}
if (wants_pen && !(*sample & WM97XX_PEN_DOWN)) {
wm->pen_probably_down = 0;
return RC_PENUP;
}
return RC_VALID;
}
/*
* Sample the WM9705 touchscreen in polling mode
*/
static int wm9705_poll_touch(struct wm97xx *wm, struct wm97xx_data *data)
{
int rc;
rc = wm9705_poll_sample(wm, WM97XX_ADCSEL_X | WM97XX_PEN_DOWN, &data->x);
if (rc != RC_VALID)
return rc;
rc = wm9705_poll_sample(wm, WM97XX_ADCSEL_Y | WM97XX_PEN_DOWN, &data->y);
if (rc != RC_VALID)
return rc;
if (pil) {
rc = wm9705_poll_sample(wm, WM97XX_ADCSEL_PRES | WM97XX_PEN_DOWN, &data->p);
if (rc != RC_VALID)
return rc;
} else
data->p = DEFAULT_PRESSURE;
return RC_VALID;
}
/*
* Enable WM9705 continuous mode, i.e. touch data is streamed across
* an AC97 slot
*/
static int wm9705_acc_enable(struct wm97xx *wm, int enable)
{
u16 dig1, dig2;
int ret = 0;
dig1 = wm->dig[1];
dig2 = wm->dig[2];
if (enable) {
/* continuous mode */
if (wm->mach_ops->acc_startup &&
(ret = wm->mach_ops->acc_startup(wm)) < 0)
return ret;
dig1 &= ~(WM97XX_CM_RATE_MASK | WM97XX_ADCSEL_MASK |
WM97XX_DELAY_MASK | WM97XX_SLT_MASK);
dig1 |= WM97XX_CTC | WM97XX_COO | WM97XX_SLEN |
WM97XX_DELAY(delay) |
WM97XX_SLT(wm->acc_slot) |
WM97XX_RATE(wm->acc_rate);
if (pil)
dig1 |= WM97XX_ADCSEL_PRES;
dig2 |= WM9705_PDEN;
} else {
dig1 &= ~(WM97XX_CTC | WM97XX_COO | WM97XX_SLEN);
dig2 &= ~WM9705_PDEN;
if (wm->mach_ops->acc_shutdown)
wm->mach_ops->acc_shutdown(wm);
}
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER1, dig1);
wm97xx_reg_write(wm, AC97_WM97XX_DIGITISER2, dig2);
return ret;
}
struct wm97xx_codec_drv wm9705_codec = {
.id = WM9705_ID2,
.name = "wm9705",
.poll_sample = wm9705_poll_sample,
.poll_touch = wm9705_poll_touch,
.acc_enable = wm9705_acc_enable,
.phy_init = wm9705_phy_init,
.dig_enable = wm9705_dig_enable,
.dig_restore = wm9705_dig_restore,
.aux_prepare = wm9705_aux_prepare,
};
EXPORT_SYMBOL_GPL(wm9705_codec);
/* Module information */
MODULE_AUTHOR("Liam Girdwood <[email protected]>");
MODULE_DESCRIPTION("WM9705 Touch Screen Driver");
MODULE_LICENSE("GPL");
|
linux-master
|
drivers/input/touchscreen/wm9705.c
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.