python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
import json import ipyvuetify as v from .appLoader import AppLoader from .common import load_template # update the CSS a bit # get_ipython().run_cell_magic( # "HTML", # "", # "<style>\n.jp-Cell {\n margin:unset;\n padding: unset;\n}\n.jp-Cell:not(.jp-mod-noOutputs) .jp-Cell-outputWrapper{\n margin:unset;\n}\n.jp-Notebook {\n margin:unset;\n padding: unset;\n}\n.p-Widget {\n width: 100%;\n}\n</style>", # ) # load the app configuration with open("app.json") as f: j = json.load(f) theapp = AppLoader(j) # with theapp.app_output: display(theapp)
modulus-toolchain-master
mpc/nvapp/app.py
import ipyvuetify as v import traitlets as tr from .common import load_template, reload_module import ipywidgets as ipw import time class AppLoader(v.VuetifyTemplate): template = tr.Unicode(load_template("vue-templates/app-loader.vue")).tag(sync=True) apps = tr.List(["widget1", "widget2"]).tag(sync=True) selected_app = tr.Unicode("").tag(sync=True) info = tr.Unicode("").tag(sync=True) app_dialog = tr.Bool(False).tag(sync=True) wsz = tr.Dict({}).tag(sync=True) output_dialog = tr.Bool(False).tag(sync=True) loading_app = tr.Bool(False).tag(sync=True) loading_app_result = tr.Unicode("").tag(sync=True) def __init__(self, appcfg, *ag, **kargs): super().__init__(*ag, **kargs) self.appcfg = appcfg self.app_box = ipw.VBox([]) self.app_output = ipw.Output() self.components = {"mycontent": self.app_box, "app-output": self.app_output} self.apps = self.appcfg["apps"] self.selected_app = self.apps[0] def vue_clear_output(self, data): self.app_output.clear_output() def vue_reload(self, data): try: self.app_output.clear_output() self.loading_app_result = "" self.loading_app = True with self.app_output: try: t0 = time.time() print(f"Loading {self.selected_app}") self.info = "" mod = reload_module(self.selected_app) self.app = mod.new(output=self.app_output) self.app_box.children = (self.app,) self.loading_app_result = "success" t1 = time.time() print(f"Loaded {self.selected_app} in {t1-t0:.1f} s") except Exception as e: self.loading_app_result = "error" self.info = f"Error: check out the output" raise e finally: self.loading_app = False except Exception as e: self.info = f"{e} " finally: self.loading_app = False def vue_pressed_r(self, data): self.selected_app = "Pressed R" + str(data) if data == "h": self.m.center = [-70, 10]
modulus-toolchain-master
mpc/nvapp/appLoader.py
from .app import new
modulus-toolchain-master
mpc/demoYAMLv1/__init__.py
import os, time import ipywidgets as ipw import ipyvuetify as v import time import traitlets as tr import os def load_template(filename): with open(os.path.join(os.path.dirname(__file__), filename)) as f: return f.read() var2name = {"lr": "Learning Rate"} var2hint = { "eps": "Numerical threshold below which numbers are considered 0", "betas": "Need two fo those; inside [0,1]", } def load_config(): import yaml conf_path = os.path.join(os.environ["MPC_PROJECT_PATH"], "conf", "config.yaml") with open(conf_path) as f: return yaml.safe_load(f) def save_config(conf): import yaml conf_path = os.path.join(os.environ["MPC_PROJECT_PATH"], "conf", "config.yaml") with open(conf_path, "w") as f: return yaml.safe_dump(conf, f) def load_yaml(filename): """Loads a YAML file using a path relative to where this module resides""" import yaml with open(os.path.join(os.path.dirname(__file__), filename)) as f: return yaml.safe_load(f) def config2dict(ctype): choice = list(config_types[ctype].keys())[0] conf = config_types[ctype][choice] d = {k: v["default"] for k, v in conf.items() if "default" in v} return d def config2dictV2(ctype): d = {} for k, v in ctype.items(): if v["type"] == "option": assert v["default"] in v["choices"], f"wrong default in {k}" d[k] = config2dictV2(v["choices"][v["default"]]) d[k]["__selected__"] = v["default"] elif v["type"] == "group": d[k] = config2dictV2(v["default"]) else: d[k] = v["default"] return d def config2UI(schema, cdict, app, indent=""): fname_opt = "vue-templates/config-from-yaml-option.vue" fname_grp = "vue-templates/config-from-yaml-group.vue" fname_bas = "vue-templates/config-from-yaml-base.vue" l = [] for k, v in schema.items(): print("[config2UI]", indent, k, f'[{v["type"]}]') if v["type"] == "option": w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) w.vbox.children = config2UI( schema[k]["choices"][cdict[k]["__selected__"]], cdict[k], app, indent=indent + " ", ) elif v["type"] == "group": w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) w.vbox.children = config2UI( schema[k]["default"], cdict[k], app, indent=indent + " " ) else: # base w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) return l def config2UIfast(schema, cdict, app, indent=""): fname_opt = "vue-templates/config-from-yaml-fast.vue" l = [] for k, v in schema.items(): print("[config2UIfast]", indent, k, f'[{v["type"]}]') if v["type"] == "option": w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) w.vbox.children = config2UIfast( schema[k]["choices"][cdict[k]["__selected__"]], cdict[k], app, indent=indent + " ", ) elif v["type"] == "group": w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) w.vbox.children = config2UIfast( schema[k]["default"], cdict[k], app, indent=indent + " " ) # else: # base # w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) # l.append(w) return l # config_types = load_yaml("config_types.yaml") class ConfigFromYAMLClass(v.VuetifyTemplate): template = tr.Unicode( load_template("vue-templates/config-from-yaml-option.vue") ).tag(sync=True) cdict = tr.Dict({}).tag(sync=True) schema = tr.Dict({}).tag(sync=True) key = tr.Unicode("option").tag(sync=True) visible = tr.Bool(False).tag(sync=True) def __init__(self, key, cdict, schema, *ag, app=None, template_path="", **kargs): super().__init__(*ag, **kargs) self.app = app self.template = load_template(template_path) self.cdict = cdict self.schema = schema self.key = key self.vbox = ipw.VBox([]) self.components = {"yaml-items": self.vbox} def vue_update_cdict(self, data): with self.app.output: print("update", self.key) self.app.update_cdict() def vue_update_choice(self, selection): with self.app.output: print("selection", selection) print("before") print(self.cdict) print("-" * 20) self.schema[self.key]["default"] = selection nschema = self.schema[self.key]["choices"][selection] self.cdict = config2dictV2(self.schema) print(self.cdict) self.vbox.children = config2UIfast(nschema, self.cdict[self.key], self.app) class ConfigParent(v.VuetifyTemplate): template = tr.Unicode(load_template("vue-templates/config-parent.vue")).tag( sync=True ) cdict = tr.Dict({}).tag(sync=True) schema = tr.Dict({}).tag(sync=True) stageid = tr.Unicode("option").tag(sync=True) visible = tr.Bool(False).tag(sync=True) show_cdict = tr.Bool(False).tag(sync=True) def __init__(self, *ag, app=None, template_path="", **kargs): super().__init__(*ag, **kargs) self.app = app schema = load_yaml("config_types_v2.yaml") # customize schema to reflect project arch = schema["arch"].copy() del schema["arch"] eqn_list = [f"eq{i}" for i in range(5)] nn_list = ["net1", "net2"] for nn_var in nn_list: schema[nn_var] = arch.copy() schema[nn_var]["label"] = f"[{nn_var}] NN Architecture" # equation constraints eqc = {"type": "group", "default": {}} for eqn in eqn_list: eqc["default"][eqn] = {"type": "bool", "default": True} schema["Equation Constraints"] = eqc eqc = {"type": "group", "default": {}} for nn_var in nn_list: eqc["default"][f"{nn_var} Trainable"] = {"type": "bool", "default": True} schema["Neural Networks"] = eqc self.schema = schema ###### self.cdict = config2dictV2(schema) self.components = {"stage-config": ipw.VBox(), "stage-config-fast": ipw.VBox()} t0 = time.time() self.components["stage-config"].children = config2UI( schema, self.cdict, self.app ) t1 = time.time() self.components["stage-config-fast"].children = config2UIfast( schema, self.cdict, self.app ) t2 = time.time() print(f"stage-config {t1-t0:.3f} s") print(f"stage-config-fast {t2-t1:.3f} s") def select_stage(self, stageid): import json self.stageid = stageid stage = self.app.config["modulus_project"]["training"]["stages"][stageid] if "data" not in stage: stage_data = config2dictV2(self.schema.copy()) else: stage_data = stage["data"] self.cdict = json.loads(json.dumps(stage_data)) self.components["stage-config-fast"].children = config2UIfast( schema, self.cdict, self.app ) # self.components["stage-config"].children = config2UIfast( # self.schema, self.cdict, self.app # ) def vue_update_cdict(self, data): with self.app.output: def update_cdict(w): "Recursively update the chain of dicts" if w.schema[w.key]["type"] in ["option", "group"]: for ww in w.vbox.children: if ww.schema[ww.key]["type"] in ["int", "float"]: fn = eval(ww.schema[ww.key]["type"]) ww.cdict[ww.key] = fn(ww.cdict[ww.key]) w.cdict[w.key][ww.key] = ww.cdict[ww.key] update_cdict(ww) d = self.cdict.copy() for w in self.components["stage-config"].children: update_cdict(w) d[w.key] = w.cdict[w.key] self.cdict = {} self.cdict = d class App(v.VuetifyTemplate): template = tr.Unicode(load_template("vue-templates/app.vue")).tag(sync=True) # projname = tr.Unicode(os.environ["MPC_PROJECT_PATH"]).tag(sync=True) # config = tr.Dict(load_config()).tag(sync=True) # v2n = tr.Dict(var2name).tag(sync=True) # v2hint = tr.Dict(var2hint).tag(sync=True) # loading_problem = tr.Bool(False).tag(sync=True) problemstr = tr.Unicode("").tag(sync=True) problem_dialog = tr.Bool(False).tag(sync=True) def __init__(self, *ag, output=None, **kargs): super().__init__(*ag, **kargs) self.output = output # for error and other messages self.components = { "config": ConfigParent(app=self), } def refresh_config(self): self.config = load_config() def vue_load_problem(self, data): self.loading_problem = True t0 = time.time() res = os.popen("cd $MPC_PROJECT_PATH; mtc show problem").read() t1 = time.time() self.problemstr = ( f"[{os.environ['MPC_PROJECT_PATH']}] Fetched in {t1-t0:.3f} s\n" + res ) self.loading_problem = False def new(output=None): """Creates a new app""" return App(output=output)
modulus-toolchain-master
mpc/demoYAMLv1/app.py
from .app import new
modulus-toolchain-master
mpc/mpc/__init__.py
import os, time import ipywidgets as ipw import ipyvuetify as v import time import traitlets as tr import os import sys sys.path.append(os.environ["MPC_PATH"] + "../mtc") print(sys.path) from mtc.config_utils import customize_schema, config2dictV2 def load_template(filename): with open(os.path.join(os.path.dirname(__file__), filename)) as f: return f.read() var2name = {"lr": "Learning Rate"} var2hint = { "eps": "Numerical threshold below which numbers are considered 0", "betas": "Need two fo those; inside [0,1]", } def load_config(): import yaml conf_path = os.path.join(os.environ["MPC_PROJECT_PATH"], "conf", "config.yaml") with open(conf_path) as f: return yaml.safe_load(f) def save_config(conf): import yaml conf_path = os.path.join(os.environ["MPC_PROJECT_PATH"], "conf", "config.yaml") with open(conf_path, "w") as f: return yaml.safe_dump(conf, f) def load_yaml(filename): """Loads a YAML file using a path relative to where this module resides""" import yaml with open(os.path.join(os.path.dirname(__file__), filename)) as f: return yaml.safe_load(f) def config2dict(ctype): choice = list(config_types[ctype].keys())[0] conf = config_types[ctype][choice] d = {k: v["default"] for k, v in conf.items() if "default" in v} return d # def config2dictV2(ctype): # d = {} # for k, v in ctype.items(): # if v["type"] == "option": # assert v["default"] in v["choices"], f"wrong default in {k}" # d[k] = config2dictV2(v["choices"][v["default"]]) # d[k]["__selected__"] = v["default"] # elif v["type"] == "group": # d[k] = config2dictV2(v["default"]) # else: # d[k] = v["default"] # return d def config2UI(schema, cdict, app, indent=""): fname_opt = "vue-templates/config-from-yaml-fast.vue" l = [] for k, v in schema.items(): print("[config2UIfast]", indent, k, f'[{v["type"]}]') if v["type"] == "option": w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) w.vbox.children = config2UI( schema[k]["choices"][cdict[k]["__selected__"]], cdict[k], app, indent=indent + " ", ) elif v["type"] == "group": w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) w.vbox.children = config2UI( schema[k]["default"], cdict[k], app, indent=indent + " " ) return l def config2UIold(schema, cdict, app, indent=""): fname_opt = "vue-templates/config-from-yaml-option.vue" fname_grp = "vue-templates/config-from-yaml-group.vue" fname_bas = "vue-templates/config-from-yaml-base.vue" l = [] for k, v in schema.items(): print("[config2UI]", indent, k, f'[{v["type"]}]') if v["type"] == "option": w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) w.vbox.children = config2UI( schema[k]["choices"][cdict[k]["__selected__"]], cdict[k], app, indent=indent + " ", ) elif v["type"] == "group": w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) w.vbox.children = config2UI( schema[k]["default"], cdict[k], app, indent=indent + " " ) else: # base w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) return l config_types = load_yaml("config_types.yaml") class ConfigFromYAMLClass(v.VuetifyTemplate): template = tr.Unicode( load_template("vue-templates/config-from-yaml-option.vue") ).tag(sync=True) cdict = tr.Dict({}).tag(sync=True) schema = tr.Dict({}).tag(sync=True) key = tr.Unicode("option").tag(sync=True) visible = tr.Bool(False).tag(sync=True) def __init__(self, key, cdict, schema, *ag, app=None, template_path="", **kargs): super().__init__(*ag, **kargs) self.app = app self.template = load_template(template_path) self.cdict = cdict self.schema = schema self.key = key self.vbox = ipw.VBox([]) self.components = {"yaml-items": self.vbox} def vue_update_cdict(self, data): with self.app.output: print("update", self.key) self.app.update_cdict() def vue_update_choice(self, selection): with self.app.output: print("selection", selection) print("before") print(self.cdict) print("-" * 20) self.schema[self.key]["default"] = selection nschema = self.schema[self.key]["choices"][selection] self.cdict = config2dictV2(self.schema) print(self.cdict) self.vbox.children = config2UI(nschema, self.cdict[self.key], self.app) class ConfigStage(v.VuetifyTemplate): template = tr.Unicode(load_template("vue-templates/config-stage.vue")).tag( sync=True ) cdict = tr.Dict({}).tag(sync=True) schema = tr.Dict({}).tag(sync=True) stageid = tr.Unicode("option").tag(sync=True) visible = tr.Bool(False).tag(sync=True) show_cdict = tr.Bool(False).tag(sync=True) def __init__(self, stageid, *ag, app=None, template_path="", **kargs): super().__init__(*ag, **kargs) self.app = app self.stageid = stageid # schema = load_yaml("config_types_v2.yaml") # # customize schema to reflect project # arch = schema["arch"].copy() # del schema["arch"] # for nn_var in self.app.config["modulus_project"]["neural_networks"]: # schema[nn_var] = arch.copy() # schema[nn_var]["label"] = f"[{nn_var}] NN Architecture" # # equation constraints # constraints = schema["constraints"].copy() # del schema["constraints"] # cstr = {} # eqc = {"type": "group", "default": {}} # import json # for eqn in self.app.config["modulus_project"]["equation_constraints"].keys(): # # eqc["default"][eqn] = {"type": "bool", "default": True} # # eqc["default"][eqn] = { # # "type": "group", # # "label": eqn, # # "default": {"include": {"type": "bool", "default": True}}, # # } # eqc["default"][eqn] = json.loads(json.dumps(constraints)) # eqc["default"][eqn]["label"] = f"{eqn}" # schema["Equation Constraints"] = eqc # eqc = {"type": "group", "default": {}} # for nn_var in self.app.config["modulus_project"]["neural_networks"]: # eqc["default"][f"{nn_var} Trainable"] = {"type": "bool", "default": True} # schema["Neural Networks"] = eqc # self.schema = schema schema = customize_schema(path=os.environ["MPC_PROJECT_PATH"]) self.schema = schema ###### self.cdict = config2dictV2(schema) from pprint import pprint pprint(self.cdict) self.components = { "stage-config": ipw.VBox() # "stage-config": ipw.VBox(config2UI(schema, self.cdict, self.app)) } print("done", self.__class__) def select_stage(self, stageid): import json self.stageid = stageid stage = self.app.config["modulus_project"]["training"]["stages"][stageid] if "data" not in stage: stage_data = config2dictV2(self.schema.copy()) else: stage_data = stage["data"] self.cdict = json.loads(json.dumps(stage_data)) t0 = time.time() print("inside select_stage", self.__class__) self.components["stage-config"].children = config2UI( self.schema, self.cdict, self.app ) print( "[finished] inside select_stage", self.__class__, f"{time.time()-t0:.3f} s" ) def vue_update_cdict(self, data): with self.app.output: # def update_cdict(w): # "Recursively update the chain of dicts" # if w.schema[w.key]["type"] in ["option", "group"]: # for ww in w.vbox.children: # if ww.schema[ww.key]["type"] in ["int", "float"]: # fn = eval(ww.schema[ww.key]["type"]) # ww.cdict[ww.key] = fn(ww.cdict[ww.key]) # w.cdict[w.key][ww.key] = ww.cdict[ww.key] # update_cdict(ww) # def update_cdict(w): # "Recursively update the chain of dicts" # if w.schema[w.key]["type"] in ["option", "group"]: # if w.schema[w.key]["type"] == "group": # for skey, sschema in w.schema[w.key]["default"].items(): # if sschema["type"] in ["int", "float"]: # fn = eval(sschema["type"]) # w.cdict[w.key][skey] = fn(w.cdict[w.key][skey]) # for ww in w.vbox.children: # # print(ww) # # if ww.schema[ww.key]["type"] in ["int", "float"]: # # fn = eval(ww.schema[ww.key]["type"]) # # ww.cdict[ww.key] = fn(ww.cdict[ww.key]) # # w.cdict[w.key][ww.key] = ww.cdict[ww.key] # update_cdict(ww) def update_cdict(w): "Recursively update the chain of dicts" if w.schema[w.key]["type"] in ["option", "group"]: if w.schema[w.key]["type"] == "group": for skey, sschema in w.schema[w.key]["default"].items(): if sschema["type"] in ["int", "float", "bool"]: fn = eval(sschema["type"]) w.cdict[w.key][skey] = fn(w.cdict[w.key][skey]) if w.schema[w.key]["type"] == "option": for skey, sschema in w.schema[w.key]["choices"][ w.cdict[w.key]["__selected__"] ].items(): if sschema["type"] in ["int", "float"]: fn = eval(sschema["type"]) w.cdict[w.key][skey] = fn(w.cdict[w.key][skey]) sschema = w.schema[w.key] # print("base case", w.key, sschema["type"]) if sschema["type"] in ["int", "float"]: fn = eval(sschema["type"]) w.cdict[w.key][skey] = fn(w.cdict[w.key][skey]) # print(w.key, len(w.vbox.children)) for ww in w.vbox.children: update_cdict(ww) w.cdict[w.key][ww.key] = ww.cdict[ww.key] d = self.cdict.copy() for w in self.components["stage-config"].children: update_cdict(w) d[w.key] = w.cdict[w.key] self.cdict = {} self.cdict = d class TrainingSelectedStage(v.VuetifyTemplate): template = tr.Unicode( load_template("vue-templates/training-selected-stage.vue") ).tag(sync=True) stage = tr.Dict({"lr": 0.1}).tag(sync=True) opt_schema = tr.Dict(config_types["optimizer"]["adam"]).tag(sync=True) sched_schema = tr.Dict(config_types["scheduler"]["default"]).tag(sync=True) stage_id = tr.Unicode("stage1").tag(sync=True) def __init__(self, *ag, parent=None, app=None, **kargs): super().__init__(*ag, **kargs) self.app = app self.parent = parent self.components = {"config-stage": ConfigStage(self.stage_id, app=app)} self._first_selection = True self.select_stage(self.stage_id) def sync_conf(self): cs = self.components["config-stage"] cs.vue_update_cdict(0) self.stage["data"] = cs.cdict self.app.config["modulus_project"]["training"]["stages"][ self.stage_id ] = self.stage.copy() self.parent.not_saved = True def select_stage(self, stageid): with self.app.output: # first, update the values from the UI if not self._first_selection: self.sync_conf() else: self._first_selection = False self.stage_id = stageid trconf = self.app.config["modulus_project"]["training"] self.stage = trconf["stages"][self.stage_id] for field in ["optimizer", "scheduler"]: if field not in self.stage: self.stage[field] = config2dict(field) cs = self.components["config-stage"] cs.select_stage(stageid) self.stage = {} self.stage = trconf["stages"][self.stage_id] def vue_update(self, data): with self.app.output: self.sync_conf() self.parent.update() def vue_add_child_stage(self, data): self.parent.vue_extend_stage(self.stage_id) class TrainingStages(v.VuetifyTemplate): template = tr.Unicode(load_template("vue-templates/training-stages.vue")).tag( sync=True ) svgstr = tr.Unicode("").tag(sync=True) stage_dag = tr.List([]).tag(sync=True) stages = tr.List([]).tag(sync=True) not_saved = tr.Bool(False).tag(sync=True) editing_metadata = tr.Bool(False).tag(sync=True) show_stage_dag = tr.Bool(True).tag(sync=True) show_stage_ui = tr.Bool(True).tag(sync=True) metadata = tr.Dict({}).tag(sync=True) # nn_data = tr.Dict({}).tag(sync=True) # nn_schema = tr.Dict({}).tag(sync=True) # nn_types = tr.List([]).tag(sync=True) def __init__(self, *ag, app=None, **kargs): super().__init__(*ag, **kargs) self.app = app meta_schema = load_yaml("config_metadata.yaml") if "modulus_project" not in self.app.config: self.app.config["modulus_project"] = {} cfg = self.app.config["modulus_project"] if "metadata" in cfg: meta_cdict = {"metadata": cfg["metadata"]} else: meta_cdict = config2dictV2(meta_schema) self.metadata = meta_cdict["metadata"] self.components = { "project-metadata": ipw.VBox(config2UI(meta_schema, meta_cdict, self.app)), "selected-stage": TrainingSelectedStage(parent=self, app=self.app), } self.meta_cdict = meta_cdict self.update() def vue_save_metadata(self, data): with self.app.output: def update_cdict(w): "Recursively update the chain of dicts" if w.schema[w.key]["type"] in ["option", "group"]: for ww in w.vbox.children: w.cdict[w.key][ww.key] = ww.cdict[ww.key] update_cdict(ww) d = self.meta_cdict.copy() for w in self.components["project-metadata"].children: update_cdict(w) d[w.key] = w.cdict[w.key] self.metadata = d["metadata"] self.app.config["modulus_project"]["metadata"] = d["metadata"] self.editing_metadata = False self.not_saved = True def vue_save_config_to_file(self, data): self.components["selected-stage"].sync_conf() self.update() save_config(self.app.config) self.not_saved = False def vue_add_new_stage(self, data): with self.app.output: sn = f"stage{len(self.stages)+1}" trconf = self.app.config["modulus_project"]["training"] trconf["stages"][sn] = {"description": ""} self.vue_select_stage(sn) def vue_select_stage(self, stageid): self.components["selected-stage"].select_stage(stageid) self.update() def vue_extend_stage(self, data): with self.app.output: sn = f"stage{len(self.stages)+1}" trconf = self.app.config["modulus_project"]["training"] # add new stage trconf["stages"][sn] = {"description": ""} # update DAG trconf["stage-dag"] += [[data, sn]] self.vue_select_stage(sn) def update(self): import graphviz as gv with self.app.output: trconf = self.app.config["modulus_project"]["training"] self.stages = list(trconf["stages"].keys()) self.stage_dag = trconf["stage-dag"] dot = gv.Digraph(comment="the round table") dot.attr(rankdir="LR") dot.attr("node", shape="box", style="rounded,filled") dot.edges(trconf["stage-dag"]) for sname, stage in trconf["stages"].items(): fc = "" if self.components["selected-stage"].stage_id == sname: fc = "yellow" dot.node(sname, sname + "\n" + stage["description"], fillcolor=fc) self.svgstr = dot._repr_image_svg_xml() class TrainingPlots(v.VuetifyTemplate): template = tr.Unicode(load_template("vue-templates/training-plots.vue")).tag( sync=True ) stages = tr.Dict({}).tag(sync=True) not_saved = tr.Bool(False).tag(sync=True) editing_metadata = tr.Bool(False).tag(sync=True) metadata = tr.Dict({}).tag(sync=True) def __init__(self, *ag, app=None, **kargs): super().__init__(*ag, **kargs) self.app = app stages = {} for stage in self.app.config["modulus_project"]["training"]["stages"].keys(): stages[stage] = {"plot": False, "trained": False} stages[stage + "_sampled"] = {"plot": False, "trained": False} self.stages = stages self.outputwidget = ipw.Output() with self.outputwidget: import matplotlib.pyplot as plt plt.close("all") f = plt.figure(figsize=(5, 3)) self.figure = f self.ax = plt.gca() # self.components = {"plt-figure": self.outputwidget} self.components = {"plt-figure": self.figure.canvas} self.update_plot() def vue_switch_stage(self, stage): self.stages[stage]["plot"] = not self.stages[stage]["plot"] self.update_plot() def update_plot(self): import os import numpy as np import matplotlib.pyplot as plt with self.app.output: self.ax.cla() for stage in self.stages: print(stage) stage_path = os.path.join( os.environ["MPC_PROJECT_PATH"], "training", stage.split("_")[0] ) logfile = "train_sampled.log" if "_sampled" in stage else "train.log" log_file = os.path.join(stage_path, "outputs", logfile) file_exists = os.path.exists(log_file) print(file_exists) self.stages[stage]["trained"] = file_exists if not self.stages[stage]["plot"]: continue try: # os.path.exists(log_file): data = [] with open(log_file) as f: file = f.read() loss_lines = [l for l in file.split("\n") if "loss:" in l] def line2float(s): ns = s[s.find("[step:") :] step = float(ns[ns.find(":") + 1 : ns.find("]")]) ns = s[s.find("loss") :] loss = float(ns[ns.find(":") + 1 : ns.find(",")]) return (step, loss) data = np.array([line2float(l) for l in loss_lines]) self.ax.semilogy(data[:, 0], data[:, 1], label=stage) self.ax.set_xlabel("Step") self.ax.set_ylabel("Avg Loss") except Exception as e: print(e) self.ax.legend() plt.tight_layout() d = self.stages.copy() self.stages = {} self.stages = d class App(v.VuetifyTemplate): template = tr.Unicode(load_template("vue-templates/app.vue")).tag(sync=True) projname = tr.Unicode(os.environ["MPC_PROJECT_PATH"]).tag(sync=True) config = tr.Dict(load_config()).tag(sync=True) v2n = tr.Dict(var2name).tag(sync=True) v2hint = tr.Dict(var2hint).tag(sync=True) loading_problem = tr.Bool(False).tag(sync=True) problemstr = tr.Unicode("").tag(sync=True) problem_show_cmd = tr.Unicode("mtc show problem").tag(sync=True) summary_type = tr.Unicode("Problem").tag(sync=True) problem_dialog = tr.Bool(False).tag(sync=True) def __init__(self, *ag, output=None, **kargs): super().__init__(*ag, **kargs) self.output = output # for error and other messages self.components = { "training": TrainingStages(app=self), "training-plots": TrainingPlots(app=self), } # def update_cdict(self): # # def update_cdict_working(cdict, w): # # if w.schema[w.key]["type"] in ["option", "group"]: # # for ww in w.vbox.children: # # cdict[ww.key] = update_cdict(cdict[ww.key], ww) # # else: # # return w.cdict[w.key] # # return cdict # cdict # def update_cdict(w): # "Recursively update the chain of dicts" # if w.schema[w.key]["type"] in ["option", "group"]: # for ww in w.vbox.children: # w.cdict[w.key][ww.key] = ww.cdict[ww.key] # update_cdict(ww) # d = self.cdict.copy() # for w in self.components["test"].children: # update_cdict(w) # d[w.key] = w.cdict[w.key] # self.cdict = {} # self.cdict = d def refresh_config(self): self.config = load_config() def vue_load_show_training(self, data): self.summary_type = "Training" self.problem_show_cmd = "mtc show training" self.loading_problem = True t0 = time.time() res = os.popen("cd $MPC_PROJECT_PATH; mtc show training").read() t1 = time.time() self.problemstr = ( f"[{os.environ['MPC_PROJECT_PATH']}] Fetched in {t1-t0:.3f} s\n" + res ) self.loading_problem = False def vue_load_problem(self, data): self.summary_type = "Problem" self.problem_show_cmd = "mtc show problem" self.loading_problem = True t0 = time.time() res = os.popen("cd $MPC_PROJECT_PATH; mtc show problem").read() t1 = time.time() self.problemstr = ( f"[{os.environ['MPC_PROJECT_PATH']}] Fetched in {t1-t0:.3f} s\n" + res ) self.loading_problem = False def vue_load_problem_1storder(self, data): self.summary_type = "Problem" self.problem_show_cmd = "mtc show problem --only-first-order-ufunc" self.loading_problem = True t0 = time.time() res = os.popen( "cd $MPC_PROJECT_PATH; mtc show problem --only-first-order-ufunc" ).read() t1 = time.time() self.problemstr = ( f"[{os.environ['MPC_PROJECT_PATH']}] Fetched in {t1-t0:.3f} s\n" + res ) self.loading_problem = False def new(output=None): """Creates a new app""" return App(output=output)
modulus-toolchain-master
mpc/mpc/app.py
from .app import new
modulus-toolchain-master
mpc/demoYAMLv2/__init__.py
import os, time import ipywidgets as ipw import ipyvuetify as v import time import traitlets as tr import os def load_template(filename): with open(os.path.join(os.path.dirname(__file__), filename)) as f: return f.read() var2name = {"lr": "Learning Rate"} var2hint = { "eps": "Numerical threshold below which numbers are considered 0", "betas": "Need two fo those; inside [0,1]", } def load_config(): import yaml conf_path = os.path.join(os.environ["MPC_PROJECT_PATH"], "conf", "config.yaml") with open(conf_path) as f: return yaml.safe_load(f) def save_config(conf): import yaml conf_path = os.path.join(os.environ["MPC_PROJECT_PATH"], "conf", "config.yaml") with open(conf_path, "w") as f: return yaml.safe_dump(conf, f) def load_yaml(filename): """Loads a YAML file using a path relative to where this module resides""" import yaml with open(os.path.join(os.path.dirname(__file__), filename)) as f: return yaml.safe_load(f) def config2dict(ctype): choice = list(config_types[ctype].keys())[0] conf = config_types[ctype][choice] d = {k: v["default"] for k, v in conf.items() if "default" in v} return d def config2dictV2(ctype): d = {} for k, v in ctype.items(): if v["type"] == "option": assert v["default"] in v["choices"], f"wrong default in {k}" d[k] = config2dictV2(v["choices"][v["default"]]) d[k]["__selected__"] = v["default"] elif v["type"] == "group": d[k] = config2dictV2(v["default"]) else: d[k] = v["default"] return d def config2UI(schema, cdict, app, indent=""): fname_opt = "vue-templates/config-from-yaml-option.vue" fname_grp = "vue-templates/config-from-yaml-group.vue" fname_bas = "vue-templates/config-from-yaml-base.vue" l = [] for k, v in schema.items(): print("[config2UI]", indent, k, f'[{v["type"]}]') if v["type"] == "option": w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) w.vbox.children = config2UI( schema[k]["choices"][cdict[k]["__selected__"]], cdict[k], app, indent=indent + " ", ) elif v["type"] == "group": w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) w.vbox.children = config2UI( schema[k]["default"], cdict[k], app, indent=indent + " " ) else: # base w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) return l def config2UIfast(schema, cdict, app, indent=""): fname_opt = "vue-templates/config-from-yaml-fast.vue" l = [] for k, v in schema.items(): print("[config2UIfast]", indent, k, f'[{v["type"]}]') if v["type"] == "option": w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) w.vbox.children = config2UIfast( schema[k]["choices"][cdict[k]["__selected__"]], cdict[k], app, indent=indent + " ", ) elif v["type"] == "group": w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) l.append(w) w.vbox.children = config2UIfast( schema[k]["default"], cdict[k], app, indent=indent + " " ) # else: # base # w = ConfigFromYAMLClass(k, cdict, schema, app=app, template_path=fname_opt) # l.append(w) return l # config_types = load_yaml("config_types.yaml") class ConfigFromYAMLClass(v.VuetifyTemplate): template = tr.Unicode( load_template("vue-templates/config-from-yaml-option.vue") ).tag(sync=True) cdict = tr.Dict({}).tag(sync=True) schema = tr.Dict({}).tag(sync=True) key = tr.Unicode("option").tag(sync=True) visible = tr.Bool(False).tag(sync=True) def __init__(self, key, cdict, schema, *ag, app=None, template_path="", **kargs): super().__init__(*ag, **kargs) self.app = app self.template = load_template(template_path) self.cdict = cdict self.schema = schema self.key = key self.vbox = ipw.VBox([]) self.components = {"yaml-items": self.vbox} def vue_update_cdict(self, data): with self.app.output: print("update", self.key) self.app.update_cdict() def vue_update_choice(self, selection): with self.app.output: print("selection", selection) print("before") print(self.cdict) print("-" * 20) self.schema[self.key]["default"] = selection nschema = self.schema[self.key]["choices"][selection] self.cdict = config2dictV2(self.schema) print(self.cdict) self.vbox.children = config2UIfast(nschema, self.cdict[self.key], self.app) class ConfigParent(v.VuetifyTemplate): template = tr.Unicode(load_template("vue-templates/config-parent.vue")).tag( sync=True ) cdict = tr.Dict({}).tag(sync=True) schema = tr.Dict({}).tag(sync=True) stageid = tr.Unicode("option").tag(sync=True) visible = tr.Bool(False).tag(sync=True) show_cdict = tr.Bool(False).tag(sync=True) def __init__(self, *ag, app=None, template_path="", **kargs): super().__init__(*ag, **kargs) self.app = app schema = load_yaml("config_types_v2.yaml") self.schema = schema ###### self.cdict = config2dictV2(schema) self.components = {"stage-config": ipw.VBox(), "stage-config-fast": ipw.VBox()} t0 = time.time() # self.components["stage-config"].children = config2UI( # schema, self.cdict, self.app # ) t1 = time.time() self.components["stage-config"].children = config2UIfast( schema, self.cdict, self.app ) t2 = time.time() print(f"stage-config {t1-t0:.3f} s") print(f"stage-config-fast {t2-t1:.3f} s") def select_stage(self, stageid): import json self.stageid = stageid stage = self.app.config["modulus_project"]["training"]["stages"][stageid] if "data" not in stage: stage_data = config2dictV2(self.schema.copy()) else: stage_data = stage["data"] self.cdict = json.loads(json.dumps(stage_data)) self.components["stage-config-fast"].children = config2UIfast( schema, self.cdict, self.app ) # self.components["stage-config"].children = config2UIfast( # self.schema, self.cdict, self.app # ) def vue_update_cdict(self, data): with self.app.output: def update_cdict(w): "Recursively update the chain of dicts" if w.schema[w.key]["type"] in ["option", "group"]: if w.schema[w.key]["type"] == "group": for skey, sschema in w.schema[w.key]["default"].items(): if sschema["type"] in ["int", "float"]: fn = eval(sschema["type"]) w.cdict[w.key][skey] = fn(w.cdict[w.key][skey]) if w.schema[w.key]["type"] == "option": for skey, sschema in w.schema[w.key]["choices"][ w.cdict[w.key]["__selected__"] ].items(): if sschema["type"] in ["int", "float"]: fn = eval(sschema["type"]) w.cdict[w.key][skey] = fn(w.cdict[w.key][skey]) sschema = w.schema[w.key] # print("base case", w.key, sschema["type"]) if sschema["type"] in ["int", "float"]: fn = eval(sschema["type"]) w.cdict[w.key][skey] = fn(w.cdict[w.key][skey]) # print(w.key, len(w.vbox.children)) for ww in w.vbox.children: update_cdict(ww) w.cdict[w.key][ww.key] = ww.cdict[ww.key] d = self.cdict.copy() for w in self.components["stage-config"].children: update_cdict(w) d[w.key] = w.cdict[w.key] self.cdict = {} self.cdict = d class App(v.VuetifyTemplate): template = tr.Unicode(load_template("vue-templates/app.vue")).tag(sync=True) # projname = tr.Unicode(os.environ["MPC_PROJECT_PATH"]).tag(sync=True) # config = tr.Dict(load_config()).tag(sync=True) # v2n = tr.Dict(var2name).tag(sync=True) # v2hint = tr.Dict(var2hint).tag(sync=True) # loading_problem = tr.Bool(False).tag(sync=True) problemstr = tr.Unicode("").tag(sync=True) problem_dialog = tr.Bool(False).tag(sync=True) def __init__(self, *ag, output=None, **kargs): super().__init__(*ag, **kargs) self.output = output # for error and other messages self.components = { "config": ConfigParent(app=self), } def refresh_config(self): self.config = load_config() def vue_load_problem(self, data): self.loading_problem = True t0 = time.time() res = os.popen("cd $MPC_PROJECT_PATH; mtc show problem").read() t1 = time.time() self.problemstr = ( f"[{os.environ['MPC_PROJECT_PATH']}] Fetched in {t1-t0:.3f} s\n" + res ) self.loading_problem = False def new(output=None): """Creates a new app""" return App(output=output)
modulus-toolchain-master
mpc/demoYAMLv2/app.py
from cfg import * import numpy as np from sympy import exp, sin, cos, DiracDelta ########################################################## ####################### Neural networks ################## ########################################################## # Create NN to predict pressure (x,y,t) -> p [x, y, t], [pressure] = p.add_neural_network(name="pressure", inputs=["x", "y", "t"], outputs=["pressure"]) ########################################################## ######################### Constraints #################### ########################################################## # 3. Data constraints (snapshots taken from t in [0.25, 2.0] hdf_fname="/mount/workspace_test/temp/mtc-repo/examples/we-fwd-2d-cv-snapshots/data_fd_wave-2d-snapshots-n10-ti-0.2-tf-0.6.hdf5" p.add_data_constraint(name="observed_data", model=pressure, data_fname=hdf_fname)
modulus-toolchain-master
examples/PINNs/04-WaveEquationPINNs/we-2d-fwd/solutions/we-fwd-2d-cv-snapshots-problem.py
from cfg import * import numpy as np from sympy import exp, sin # Create NN to predict pressure (x,t) -> p [x, t], [u] = p.add_neural_network(name="pressure", inputs=["x", "t"], outputs=["u"]) # Create NN to predict velocity (x,t) -> vel [x], [vel] = p.add_neural_network(name="velocity", inputs=["x"], outputs=["vel"]) # Geometry L = float(np.pi) geo = p.Line1D("geom", 0, L) # Domains interior = p.add_interior_subdomain("interior", geom=geo, params={t:(0,2*L)}) initial_t0 = p.add_interior_subdomain("initial_t0", geom=geo, params={t:(0,0)}) boundary = p.add_boundary_subdomain("boundary", geom=geo, params={t:(0,2*L)}) # PDE constraints wave_eq = Eq(u.diff(t, 2) - vel**2 * u.diff(x, 2), 0) p.add_constraint("wave_equation", enforce(equation=wave_eq, on_domain=interior)) # Initial conditions initial_p = Eq(u, sin(x)) initial_dp_dt = Eq(u.diff(t), sin(x)) p.add_constraint("initial_p", enforce(equation=initial_p, on_domain=initial_t0)) p.add_constraint("initial_dp_dt", enforce(equation=initial_dp_dt, on_domain=initial_t0)) # Boundary conditions boundary_cond = Eq(u, 0) p.add_constraint("boundary", enforce(equation=boundary_cond, on_domain=boundary)) # Prior knowledge on velocity vel_space_invariant = Eq(vel.diff(x, 1), 0) # p.add_constraint("vel_space_invariant", enforce(equation=vel_space_invariant, on_domain=interior)) # Data constraints # hdf_fname="/mount/workspace_test/temp/mtc-repo/examples/we-inv-1d-vel/data_fd_resampled-1000.hdf5" hdf_fname="/mount/workspace_test/temp/mtc-repo/examples/we-inv-1d-vel/data_fd_resampled-subx10-subt100.hdf5" p.add_data_constraint(name="observed_data", model=u, data_fname=hdf_fname)
modulus-toolchain-master
examples/PINNs/04-WaveEquationPINNs/we-1d-inv/solutions/we-inv-1d-vel-noderiv-problem.py
from cfg import * import numpy as np from sympy import exp, sin ################ Neural Network defintion ################ # Create NN to predict pressure (x,t) -> p [x, t], [u] = p.add_neural_network(name="pressure", inputs=["x", "t"], outputs=["u"]) # Create NN to predict velocity (x) -> vel [x], [vel] = p.add_neural_network(name="velocity", inputs=["x"], outputs=["vel"]) ######################### Geometry ####################### # Geometry + domains L = float(np.pi) geo = p.Line1D("geom", 0, L) interior = p.add_interior_subdomain("interior", geom=geo, params={t:(0,2*L)}) initial_t0 = p.add_interior_subdomain("initial_t0", geom=geo, params={t:(0,0)}) boundary = p.add_boundary_subdomain("boundary", geom=geo, params={t:(0,2*L)}) # Old method # Bounds for interior 1 # x1=0.5 # x2=1.5 # # Bounds for interior 2 # x3=1.7 # x4=3 # # Define interior 1 and 2 # interior1 = p.add_interior_subdomain("interior1", geom=geo, criteria=And(x > x1, x < x2), params={t:(0,2*L)}) # interior2 = p.add_interior_subdomain("interior2", geom=geo, criteria=And(x > x3, x < x4), params={t:(0,2*L)}) ## # Interface position # x_int = 1.565 # eps = 0.02 interior_layers = p.add_interior_subdomain("layers", geom=geo, criteria=Or( (x < 1.5), (x > 1.7) ), params={t:(0,2*L)}) #################### PDEs + constraints ################## # PDE constraints wave_eq = Eq(u.diff(t, 2) - vel**2 * u.diff(x, 2), 0) p.add_constraint("wave_equation", enforce(equation=wave_eq, on_domain=interior)) # Initial conditions initial_p = Eq(u, sin(x)) initial_dp_dt = Eq(u.diff(t), sin(x)) p.add_constraint("initial_p", enforce(equation=initial_p, on_domain=initial_t0)) p.add_constraint("initial_dp_dt", enforce(equation=initial_dp_dt, on_domain=initial_t0)) # Boundary conditions boundary_cond = Eq(u, 0) p.add_constraint("boundary", enforce(equation=boundary_cond, on_domain=boundary)) vel_space_invariant = Eq(vel.diff(x, 1), 0) # p.add_constraint("vel_space_invariant1", enforce(equation=vel_space_invariant, on_domain=interior1)) # p.add_constraint("vel_space_invariant2", enforce(equation=vel_space_invariant, on_domain=interior2)) p.add_constraint("vel_space_invariant", enforce(equation=vel_space_invariant, on_domain=interior_layers)) # 5. Data constraints hdf_fname="/mount/workspace_test/temp/mtc-repo/examples/we-inv-1d-vel-2layers-deriv_constraint/data_fd_resampled-subx10-subt100.hdf5" p.add_data_constraint(name="observed_data", model=u, data_fname=hdf_fname)
modulus-toolchain-master
examples/PINNs/04-WaveEquationPINNs/we-1d-inv/solutions/we-inv-1d-vel-2layers-deriv-problem.py
from cfg import * import numpy as np from sympy import exp, sin ################ Neural Network defintion ################ # Create NN to predict pressure (x,t) -> p [x, t], [u] = p.add_neural_network(name="pressure", inputs=["x", "t"], outputs=["u"]) # Create NN to predict velocity (x) -> vel [x], [vel] = p.add_neural_network(name="velocity", inputs=["x"], outputs=["vel"]) ######################### Geometry ####################### # Geometry + domains L = float(np.pi) geo = p.Line1D("geom", 0, L) interior = p.add_interior_subdomain("interior", geom=geo, params={t:(0,2*L)}) initial_t0 = p.add_interior_subdomain("initial_t0", geom=geo, params={t:(0,0)}) boundary = p.add_boundary_subdomain("boundary", geom=geo, params={t:(0,2*L)}) # Interfaces x_int1 = 1.045 x_int2 = 2.095 eps = 0.2 b1 = 0.8 b2 = 1.2 b3 = 1.9 b4 = 2.3 band1 = p.Line1D("band1", b1, b2) band2 = p.Line1D("band2", b3, b4) diff_temp = p.GeometryDifference("diff_temp", geo, band1) diff = p.GeometryDifference("diff", diff_temp, band2) interior_layers = p.add_interior_subdomain("layers", geom=diff, params={t:(0, 2*L)}) # interior_layers = p.add_interior_subdomain("layers", geom=geo, criteria=Or( (x < b1), (x x_int1+eps), (x < x_int2-eps), (x > x_int2+eps) ), params={t:(0,2*L)}) # # Bounds for interior 1 # x1=0.0 # x2=1.03 # # Bounds for interior 2 # x3=1.1 # x4=2.0 # # Bounds for interior 3 # x5=2.2 # x6=3.1 # # Define interior 1 and 2 # interior1 = p.add_interior_subdomain("interior1", geom=geo, criteria=And(x > x1, x < x2), params={t:(0,2*L)}) # interior2 = p.add_interior_subdomain("interior2", geom=geo, criteria=And(x > x3, x < x4), params={t:(0,2*L)}) # interior3 = p.add_interior_subdomain("interior3", geom=geo, criteria=And(x > x5, x < x6), params={t:(0,2*L)}) #################### PDEs + constraints ################## # 1. PDE constraints wave_eq = Eq(u.diff(t, 2) - vel**2 * u.diff(x, 2), 0) p.add_constraint("wave_equation", enforce(equation=wave_eq, on_domain=interior)) # 2. Initial conditions initial_p = Eq(u, sin(x)) initial_dp_dt = Eq(u.diff(t), sin(x)) p.add_constraint("initial_p", enforce(equation=initial_p, on_domain=initial_t0)) p.add_constraint("initial_dp_dt", enforce(equation=initial_dp_dt, on_domain=initial_t0)) # 3. Boundary conditions boundary_cond = Eq(u, 0) p.add_constraint("boundary", enforce(equation=boundary_cond, on_domain=boundary)) # 4. Velocity constraints vel_space_invariant = Eq(vel.diff(x, 1), 0) # p.add_constraint("vel_space_invariant1", enforce(equation=vel_space_invariant, on_domain=interior1)) # p.add_constraint("vel_space_invariant2", enforce(equation=vel_space_invariant, on_domain=interior2)) # p.add_constraint("vel_space_invariant3", enforce(equation=vel_space_invariant, on_domain=interior3)) p.add_constraint("vel_space_invariant", enforce(equation=vel_space_invariant, on_domain=interior_layers)) # 5. Data constraints hdf_fname="/mount/workspace_test/temp/mtc-repo/examples/we-inv-1d-vel-3layers/data_fd_resampled-subx10-subt100.hdf5" p.add_data_constraint(name="observed_data", model=u, data_fname=hdf_fname)
modulus-toolchain-master
examples/PINNs/04-WaveEquationPINNs/we-1d-inv/solutions/we-inv-1d-vel-3layers-deriv-problem.py
from cfg import * import numpy as np from sympy import exp, sin ################ Neural Network defintion ################ # Create NN to predict pressure (x,t) -> p [x, t], [u] = p.add_neural_network(name="pressure", inputs=["x", "t"], outputs=["u"]) # Create NN to predict velocity (x) -> vel [x], [vel] = p.add_neural_network(name="velocity", inputs=["x"], outputs=["vel"]) ######################### Geometry ####################### # Geometry + domains L = float(np.pi) geo = p.Line1D("geom", 0, L) interior = p.add_interior_subdomain("interior", geom=geo, params={t:(0,2*L)}) initial_t0 = p.add_interior_subdomain("initial_t0", geom=geo, params={t:(0,0)}) boundary = p.add_boundary_subdomain("boundary", geom=geo, params={t:(0,2*L)}) # # Bounds for interior 0 # x1=0.0 # x2=0.7 # # Bounds for interior 1 # x3=0.8 # x4=1.5 # # Bounds for interior 2 # x5=1.6 # x6=2.3 # # Bounds for interior 3 # x7=2.4 # x8=3.1 # # Define interior 1 and 2 # interior1 = p.add_interior_subdomain("interior1", geom=geo, criteria=And(x > x1, x < x2), params={t:(0,2*L)}) # interior2 = p.add_interior_subdomain("interior2", geom=geo, criteria=And(x > x3, x < x4), params={t:(0,2*L)}) # interior3 = p.add_interior_subdomain("interior3", geom=geo, criteria=And(x > x5, x < x6), params={t:(0,2*L)}) # interior4 = p.add_interior_subdomain("interior4", geom=geo, criteria=And(x > x7, x < x8), params={t:(0,2*L)}) # Interfaces x_int1 = 1.045 x_int2 = 2.095 b1 = 0.65 b2 = 0.9 b3 = 1.4 b4 = 1.7 b5 = 2.2 b6 = 2.7 band1 = p.Line1D("band1", b1, b2) band2 = p.Line1D("band2", b3, b4) band3 = p.Line1D("band3", b5, b6) diff_temp1 = p.GeometryDifference("diff_temp1", geo, band1) diff_temp2 = p.GeometryDifference("diff_temp2", diff_temp1, band2) diff = p.GeometryDifference("diff", diff_temp2, band3) interior_layers = p.add_interior_subdomain("layers", geom=diff, params={t:(0, 2*L)}) #################### PDEs + constraints ################## # PDE constraints wave_eq = Eq(u.diff(t, 2) - vel**2 * u.diff(x, 2), 0) p.add_constraint("wave_equation", enforce(equation=wave_eq, on_domain=interior)) # Initial conditions initial_p = Eq(u, sin(x)) initial_dp_dt = Eq(u.diff(t), sin(x)) p.add_constraint("initial_p", enforce(equation=initial_p, on_domain=initial_t0)) p.add_constraint("initial_dp_dt", enforce(equation=initial_dp_dt, on_domain=initial_t0)) # Boundary conditions boundary_cond = Eq(u, 0) p.add_constraint("boundary", enforce(equation=boundary_cond, on_domain=boundary)) # Velocity constraints vel_space_invariant = Eq(vel.diff(x, 1), 0) p.add_constraint("vel_space_invariant", enforce(equation=vel_space_invariant, on_domain=interior_layers)) # 5. Data constraints hdf_fname="/mount/workspace_test/temp/mtc-repo/examples/we-inv-1d-vel-4layers/data_fd_resampled-subx10-subt100.hdf5" # hdf_fname="/mount/workspace_test/temp/mtc-repo/examples/we-inv-1d-vel-4layers/data_fd_resampled-5.hdf5" p.add_data_constraint(name="observed_data", model=u, data_fname=hdf_fname)
modulus-toolchain-master
examples/PINNs/04-WaveEquationPINNs/we-1d-inv/solutions/we-inv-1d-vel-4layers-deriv-problem.py
from cfg import * import numpy as np from sympy import exp, sin # Create NN to predict pressure (x,t) -> p [x, t], [u] = p.add_neural_network(name="pressure", inputs=["x", "t"], outputs=["u"]) # Create NN to predict velocity (x,t) -> vel [x], [vel] = p.add_neural_network(name="velocity", inputs=["x"], outputs=["vel"]) # Geometry L = float(np.pi) geo = p.Line1D("geom", 0, L) # Domains interior = p.add_interior_subdomain("interior", geom=geo, params={t:(0,2*L)}) initial_t0 = p.add_interior_subdomain("initial_t0", geom=geo, params={t:(0,0)}) boundary = p.add_boundary_subdomain("boundary", geom=geo, params={t:(0,2*L)}) # PDE constraints wave_eq = Eq(u.diff(t, 2) - vel**2 * u.diff(x, 2), 0) p.add_constraint("wave_equation", enforce(equation=wave_eq, on_domain=interior)) # Initial conditions initial_p = Eq(u, sin(x)) initial_dp_dt = Eq(u.diff(t), sin(x)) p.add_constraint("initial_p", enforce(equation=initial_p, on_domain=initial_t0)) p.add_constraint("initial_dp_dt", enforce(equation=initial_dp_dt, on_domain=initial_t0)) # Boundary conditions boundary_cond = Eq(u, 0) p.add_constraint("boundary", enforce(equation=boundary_cond, on_domain=boundary)) # Prior knowledge on velocity vel_space_invariant = Eq(vel.diff(x, 1), 0) p.add_constraint("vel_space_invariant", enforce(equation=vel_space_invariant, on_domain=interior)) # Data constraints # hdf_fname="/mount/workspace_test/temp/mtc-repo/examples/we-inv-1d-vel/data_fd_resampled-1000.hdf5" hdf_fname="/mount/workspace_test/temp/mtc-repo/examples/we-inv-1d-vel-deriv_constraint/data_fd_resampled-subx10-subt100.hdf5" p.add_data_constraint(name="observed_data", model=u, data_fname=hdf_fname)
modulus-toolchain-master
examples/PINNs/04-WaveEquationPINNs/we-1d-inv/solutions/we-inv-1d-vel-deriv-problem.py
from cfg import * import numpy as np from sympy import exp, sin # Create NN to predict pressure (x,t) -> p [x, t], [u] = p.add_neural_network(name="pressure", inputs=["x", "t"], outputs=["u"]) # Create NN to predict velocity (x,t) -> vel [x], [vel] = p.add_neural_network(name="velocity", inputs=["x"], outputs=["vel"]) # Geometry L = float(np.pi) geo = p.Line1D("geom", 0, L) # Domains interior = p.add_interior_subdomain("interior", geom=geo, params={t:(0,2*L)}) initial_t0 = p.add_interior_subdomain("initial_t0", geom=geo, params={t:(0,0)}) boundary = p.add_boundary_subdomain("boundary", geom=geo, params={t:(0,2*L)}) # PDE constraints wave_eq = Eq(u.diff(t, 2) - vel**2 * u.diff(x, 2), 0) p.add_constraint("wave_equation", enforce(equation=wave_eq, on_domain=interior)) # Initial conditions initial_p = Eq(u, sin(x)) initial_dp_dt = Eq(u.diff(t), sin(x)) p.add_constraint("initial_p", enforce(equation=initial_p, on_domain=initial_t0)) p.add_constraint("initial_dp_dt", enforce(equation=initial_dp_dt, on_domain=initial_t0)) # Boundary conditions boundary_cond = Eq(u, 0) p.add_constraint("boundary", enforce(equation=boundary_cond, on_domain=boundary)) # Prior knowledge on velocity vel_space_invariant = Eq(vel.diff(x, 1), 0) p.add_constraint("vel_space_invariant", enforce(equation=vel_space_invariant, on_domain=interior)) # Data constraints # hdf_fname="/mount/workspace_test/temp/mtc-repo/examples/we-inv-1d-vel/data_fd_resampled-1000.hdf5" hdf_fname="/mount/workspace_test/temp/mtc-repo/examples/we-inv-1d-vel-derv_constraint/data_fd_resampled-subx10-subt100.hdf5" p.add_data_constraint(name="observed_data", model=u, data_fname=hdf_fname)
modulus-toolchain-master
examples/PINNs/04-WaveEquationPINNs/we-1d-inv/solutions/we-inv-1d-vel-problem.py
from cfg import * import numpy as np from sympy import exp, sin # Vel is also an input [x, t, vel], [u] = p.add_neural_network(name="wave1d", inputs=["x", "t", "vel"], outputs=["u"]) # Geometry + domains L = float(np.pi) geo = p.Line1D("geom", 0, L) interior = p.add_interior_subdomain("interior", geom=geo, params={t:(0,2*L), vel:(1,1.5)}) initial_t0 = p.add_interior_subdomain("initial_t0", geom=geo, params={t:(0,0), vel:(1,1.5)}) boundary = p.add_boundary_subdomain("boundary", geom=geo, params={t:(0,2*L), vel:(1,1.5)}) # PDE constraints wave_eq = Eq(u.diff(t, 2) - vel**2 * u.diff(x, 2), 0) p.add_constraint("wave_equation", enforce(equation=wave_eq, on_domain=interior)) # Initial conditions initial_p = Eq(u, sin(x)) initial_dp_dt = Eq(u.diff(t), sin(x)) p.add_constraint("initial_p", enforce(equation=initial_p, on_domain=initial_t0)) p.add_constraint("initial_dp_dt", enforce(equation=initial_dp_dt, on_domain=initial_t0)) # Boundary conditions boundary_cond = Eq(u, 0) p.add_constraint("boundary", enforce(equation=boundary_cond, on_domain=boundary))
modulus-toolchain-master
examples/PINNs/04-WaveEquationPINNs/we-1d-fwd/solutions/we-fwd-1d-vel-problem.py
from cfg import * import numpy as np from sympy import exp, sin # Create NN that maps (position,time) -> pressure [x, t], [u] = p.add_neural_network(name="wave1d", inputs=["x", "t"], outputs=["u"]) # Geometry L = float(np.pi) geo = p.Line1D("geom", 0, L) # Domains # Do not forget to add the time parametrization interior = p.add_interior_subdomain("interior", geom=geo, params={t:(0,2*L)}) initial_t0 = p.add_interior_subdomain("initial_t0", geom=geo, params={t:(0,0)}) boundary = p.add_boundary_subdomain("boundary", geom=geo, params={t:(0,2*L)}) # Generate constant velocity model c = 1.0 # Add PDE constraint wave_eq = Eq(u.diff(t, 2) - c**2 * u.diff(x, 2), 0) p.add_constraint("wave_equation", enforce(equation=wave_eq, on_domain=interior)) # Add initial conditions initial_p = Eq(u, sin(x)) # Pressure field initial_dp_dt = Eq(u.diff(t), sin(x)) # Time derivative of pressure field p.add_constraint("initial_p", enforce(equation=initial_p, on_domain=initial_t0)) p.add_constraint("initial_dp_dt", enforce(equation=initial_dp_dt, on_domain=initial_t0)) # Add boundary conditions boundary_cond = Eq(u, 0) p.add_constraint("boundary", enforce(equation=boundary_cond, on_domain=boundary))
modulus-toolchain-master
examples/PINNs/04-WaveEquationPINNs/we-1d-fwd/solutions/we-fwd-1d-cv-problem.py
from cfg import * import numpy as np from sympy import exp, sin # Neural net (position,time) -> pressure [x, t], [u] = p.add_neural_network(name="wave1d", inputs=["x", "t"], outputs=["u"]) # Geometry L = float(np.pi) geo = p.Line1D("geom", 0, L) # Domains + time parametrization interior = p.add_interior_subdomain("interior", geom=geo, params={t:(0,2*L)}) initial_t0 = p.add_interior_subdomain("initial_t0", geom=geo, params={t:(0,0)}) boundary = p.add_boundary_subdomain("boundary", geom=geo, params={t:(0,2*L)}) # Generate velocity k = 10 c = 1.0 + 1.0 / (1.0 + exp(-2*k*(x-1.5))) # PDE constraints wave_eq = Eq(u.diff(t, 2) - c**2 * u.diff(x, 2), 0) p.add_constraint("wave_equation", enforce(equation=wave_eq, on_domain=interior)) # Initial conditions initial_p = Eq(u, sin(x)) initial_dp_dt = Eq(u.diff(t), sin(x)) p.add_constraint("initial_p", enforce(equation=initial_p, on_domain=initial_t0)) p.add_constraint("initial_dp_dt", enforce(equation=initial_dp_dt, on_domain=initial_t0)) # Boundary conditions boundary_cond = Eq(u, 0) p.add_constraint("boundary", enforce(equation=boundary_cond, on_domain=boundary))
modulus-toolchain-master
examples/PINNs/04-WaveEquationPINNs/we-1d-fwd/solutions/we-fwd-1d-ncv-problem.py
from cfg import * import numpy as np from sympy import exp, sin # Vel is also an input [x, t, k], [u] = p.add_neural_network(name="wave1d", inputs=["x", "t", "k"], outputs=["u"]) # Geometry + domains L = float(np.pi) geo = p.Line1D("geom", 0, L) interior = p.add_interior_subdomain("interior", geom=geo, params={t:(0,2*L), k:(1,10)}) initial_t0 = p.add_interior_subdomain("initial_t0", geom=geo, params={t:(0,0), k:(1,10)}) boundary = p.add_boundary_subdomain("boundary", geom=geo, params={t:(0,2*L), k:(1,10)}) # Generate velocity vel = 1.0 + 1.0 / (1.0 + exp(-2*k*(x-1.5))) # PDE constraints wave_eq = Eq(u.diff(t, 2) - vel**2 * u.diff(x, 2), 0) p.add_constraint("wave_equation", enforce(equation=wave_eq, on_domain=interior)) # Initial conditions initial_p = Eq(u, sin(x)) initial_dp_dt = Eq(u.diff(t), sin(x)) p.add_constraint("initial_p", enforce(equation=initial_p, on_domain=initial_t0)) p.add_constraint("initial_dp_dt", enforce(equation=initial_dp_dt, on_domain=initial_t0)) # Boundary conditions boundary_cond = Eq(u, 0) p.add_constraint("boundary", enforce(equation=boundary_cond, on_domain=boundary))
modulus-toolchain-master
examples/PINNs/04-WaveEquationPINNs/we-1d-fwd/solutions/we-fwd-1d-vel-k-problem.py
from cfg import * [x, y, rot], [u, pp, v] = p.add_neural_network( name="NN", inputs=["x", "y", "rot"], outputs=["u", "p", "v"] ) # geometry import numpy as np params = {rot: (0, -np.pi / 6)} # params = {rot: float(0.0)} channel_length = 15.0 / 2 channel_height = 10.0 / 2 a = 0.3 channel_rect = p.Rectangle( "channel_rect", (-channel_length * a, -channel_height / 2), (channel_length * (1 - a), channel_height / 2), ) channel = p.Channel2D( "channel", (-channel_length * a, -channel_height / 2), (channel_length * (1 - a), channel_height / 2), ) import os module_path = os.getcwd() module_name = "CustomAirfoilGeom" domain_geom = p.CustomGeometry( "geom", module_path, module_name, "AirfoilInChannel", (-channel_length * a, -channel_height / 2), (channel_length * (1 - a), channel_height / 2), ) # domain_geom = p.GeometryDifference("dg", channel, tri) interior = p.add_interior_subdomain( "interior", geom=domain_geom, compute_sdf_derivatives=True, params=params ) top_bot = p.add_boundary_subdomain( "top_bot", geom=channel, criteria=Eq(Abs(y), channel_height / 2), params=params ) inlet = p.add_boundary_subdomain( "inlet", geom=channel_rect, criteria=Eq(x, -channel_length * a), params=params ) outlet = p.add_boundary_subdomain( "outlet", geom=channel_rect, criteria=Eq(x, channel_length * (1 - a)), params=params ) airfoil_bdry = p.add_boundary_subdomain("airfoil_bdry", geom=domain_geom, params=params) lower_rec = p.Rectangle( "lower_rec", (-channel_length * a, -channel_height / 2), (-1, channel_height / 2), params=params, ) lower_rec = p.add_boundary_subdomain( "lower_rec", geom=lower_rec, criteria=Eq(x, -channel_length * a) | Eq(x, -1) ) lower_rec2 = p.Rectangle( "lower_rec2", (-channel_length * a, -channel_height / 2), (2, channel_height / 2), params=params, ) lower_rec2 = p.add_boundary_subdomain( "lower_rec2", geom=lower_rec2, criteria=Eq(x, -channel_length * a) | Eq(x, 2), params=params, ) inlet_outlet = p.Rectangle( "inlet_outlet", (-channel_length * a, -channel_height / 2), (channel_length * (1 - a), channel_height / 2), params=params, ) inlet_outlet = p.add_boundary_subdomain( "inlet_outlet", geom=inlet_outlet, criteria=Eq(x, -channel_length * a) | Eq(x, channel_length * (1 - a)), params=params, ) import sympy as sp normal_x = sp.Symbol("normal_x") normal_y = sp.Symbol("normal_y") p.add_constraint( f"no_flux_1", enforce( equation=Eq(Integral((normal_x * u + normal_y * v), x, y), 0), on_domain=lower_rec, ), ) p.add_constraint( f"no_flux_2", enforce( equation=Eq(Integral((normal_x * u + normal_y * v), x, y), 0), on_domain=lower_rec2, ), ) p.add_constraint( f"noflux_inlet_outlet", enforce( equation=Eq(Integral((normal_x * u + normal_y * v), x, y), 0), on_domain=inlet_outlet, ), ) sdf = sympy.Function("sdf")(x, y, rot) from sympy import sqrt, Min, Abs # Zero Equation nu = ( sqrt((u.diff(y) + v.diff(x)) ** 2 + 2 * u.diff(x) ** 2 + 2 * v.diff(y) ** 2) * Min(0.045, 0.419 * sdf) ** 2 + 6.25e-6 ) nu = p.add_submodel("nu", nu) # N-S Momentum equations m_x = ( -1.0 * nu * u.diff(x).diff(x) - 1.0 * nu * u.diff(y).diff(y) + 1.0 * u * u.diff(x) + 1.0 * v * u.diff(y) - 1.0 * nu.diff(x) * u.diff(x) - 1.0 * nu.diff(y) * u.diff(y) + pp.diff(x) ) momentum_x = Eq(m_x, 0) m_y = ( -1.0 * nu * v.diff(x).diff(x) - 1.0 * nu * v.diff(y).diff(y) + 1.0 * u * v.diff(x) + 1.0 * v * v.diff(y) - 1.0 * nu.diff(x) * v.diff(x) - 1.0 * nu.diff(y) * v.diff(y) + pp.diff(y) ) momentum_y = Eq(m_y, 0) continuity_eq = Eq(u.diff(x) + v.diff(y), 0) p.add_constraint( "interior_continuity", enforce(equation=continuity_eq, on_domain=interior) ) p.add_constraint( "interior_momentum_x", enforce(equation=momentum_x, on_domain=interior) ) p.add_constraint( "interior_momentum_y", enforce(equation=momentum_y, on_domain=interior) ) p.add_constraint("airfoil_bdry_u", enforce(equation=Eq(u, 0), on_domain=airfoil_bdry)) p.add_constraint("airfoil_bdry_v", enforce(equation=Eq(v, 0), on_domain=airfoil_bdry)) p.add_constraint("top_bot_u", enforce(equation=Eq(u, 1), on_domain=top_bot)) p.add_constraint("top_bot_v", enforce(equation=Eq(v, 0), on_domain=top_bot)) p.add_constraint("inlet_u", enforce(equation=Eq(u, 1), on_domain=inlet)) p.add_constraint("inlet_v", enforce(equation=Eq(v, 0), on_domain=inlet)) p.add_constraint("outlet_p", enforce(equation=Eq(pp, 0), on_domain=outlet))
modulus-toolchain-master
examples/PINNs/03-Airfoil/airfoil-custom-geom-problem.py
import numpy as np from modulus.geometry.primitives_2d import Channel2D, Rectangle import matplotlib.pyplot as plt import warp as wp import numpy as np import os wp.init() # Naca implementation modified from https://stackoverflow.com/questions/31815041/plotting-a-naca-4-series-airfoil # https://en.wikipedia.org/wiki/NACA_airfoil#Equation_for_a_cambered_4-digit_NACA_airfoil # @wp.func # def camber_line(x, m, p, c): # cl = [] # for xi in x: # cond_1 = Heaviside(xi, 0) * Heaviside((c * p) - xi, 0) # cond_2 = Heaviside(-xi, 0) + Heaviside(xi - (c * p), 0) # v_1 = m * (xi / p ** 2) * (2.0 * p - (xi / c)) # v_2 = m * ((c - xi) / (1 - p) ** 2) * (1.0 + (xi / c) - 2.0 * p) # cl.append(cond_1 * v_1 + cond_2 * v_2) # return cl @wp.func def Heaviside(a: float, h: float): if a == 0: return h elif a < 0: return float(0) elif a > 0: return float(1) @wp.func def camber_line(xi: float, m: float, p: float, c: float): z = float(0.0) cond_1 = Heaviside(xi, z) * Heaviside((c * p) - xi, z) cond_2 = Heaviside(-xi, z) + Heaviside(xi - (c * p), z) v_1 = m * (xi / p**2.0) * (2.0 * p - (xi / c)) v_2 = m * ((c - xi) / (1.0 - p) ** 2.0) * (1.0 + (xi / c) - 2.0 * p) r = cond_1 * v_1 + cond_2 * v_2 return r @wp.func def thickness(xi: float, t: float, c: float): term1 = 0.2969 * (sqrt(xi / c)) term2 = -0.1260 * (xi / c) term3 = -0.3516 * (xi / c) ** 2.0 term4 = 0.2843 * (xi / c) ** 3.0 term5 = -0.1015 * (xi / c) ** 4.0 r = 5.0 * t * c * (term1 + term2 + term3 + term4 + term5) return r # signed sphere @wp.func def sdf_sphere(p: wp.vec3, r: float): return wp.length(p) - r # signed box @wp.func def sdf_box(upper: wp.vec3, p: wp.vec3): qx = wp.abs(p[0]) - upper[0] qy = wp.abs(p[1]) - upper[1] qz = wp.abs(p[2]) - upper[2] e = wp.vec3(wp.max(qx, 0.0), wp.max(qy, 0.0), wp.max(qz, 0.0)) return wp.length(e) + wp.min(wp.max(qx, wp.max(qy, qz)), 0.0) @wp.func def sdf_plane(p: wp.vec3, plane: wp.vec4): return plane[0] * p[0] + plane[1] * p[1] + plane[2] * p[2] + plane[3] # union @wp.func def op_union(d1: float, d2: float): return wp.min(d1, d2) # subtraction @wp.func def op_subtract(d1: float, d2: float): return wp.max(-d1, d2) # intersection @wp.func def op_intersect(d1: float, d2: float): return wp.max(d1, d2) # simple scene @wp.func def sdf(p: wp.vec3): # intersection of two spheres sphere_1 = wp.vec3(0.0, 0.0, 0.0) sphere_2 = wp.vec3(0.0, 0.75, 0.0) d = op_subtract(sdf_sphere(p - sphere_2, 0.75), sdf_box(wp.vec3(1.0, 0.5, 0.5), p)) # sdf_sphere(p + sphere_1, 1.0)) # ground plane d = op_union(d, sdf_plane(p, wp.vec4(0.0, 1.0, 0.0, 1.0))) return d @wp.func def normal(p: wp.vec3): eps = 1.0e-5 # compute gradient of the SDF using finite differences dx = sdf(p + wp.vec3(eps, 0.0, 0.0)) - sdf(p - wp.vec3(eps, 0.0, 0.0)) dy = sdf(p + wp.vec3(0.0, eps, 0.0)) - sdf(p - wp.vec3(0.0, eps, 0.0)) dz = sdf(p + wp.vec3(0.0, 0.0, eps)) - sdf(p - wp.vec3(0.0, 0.0, eps)) return wp.normalize(wp.vec3(dx, dy, dz)) @wp.func def shadow(ro: wp.vec3, rd: wp.vec3): t = float(0.0) s = float(1.0) for i in range(64): d = sdf(ro + t * rd) t = t + wp.clamp(d, 0.0001, 2.0) h = wp.clamp(4.0 * d / t, 0.0, 1.0) s = wp.min(s, h * h * (3.0 - 2.0 * h)) if t > 8.0: return 1.0 return s @wp.func def channel_sdf(x: float, y: float, ytop: float, ybot: float): if wp.abs(ytop - y) < wp.abs(ybot - y): return y - ytop else: return ybot - y @wp.func def naca_sdf(N: int, m: float, p: float, t: float, c: float, tx: float, ty: float): dx = float(1.0) / float(N) d = float(1e9) for pxid in range(N): xi = float(pxid) * dx xi_1 = float(pxid) * dx + dx cli = camber_line(xi, m, p, c) cli_1 = camber_line(xi_1, m, p, c) px = xi py = cli yt = thickness(xi, t, c) pd = wp.sqrt((px - tx) * (px - tx) + (py - ty) * (py - ty)) d = wp.min(pd - yt, d) return d @wp.func def naca_bdry(N: int, m: float, p: float, t: float, c: float, tx: float, ty: float): dx = float(1.0) / float(N) d = float(1e9) d0 = float(1e9) xr = float(1e9) yr = float(1e9) bd = float(1e9) for pxid in range(N): xi = float(pxid) * dx xi_1 = float(pxid) * dx + dx cli = camber_line(xi, m, p, c) cli_1 = camber_line(xi_1, m, p, c) px = xi py = cli yt = thickness(xi, t, c) pd = wp.sqrt((px - tx) * (px - tx) + (py - ty) * (py - ty)) d = wp.min(pd - yt, d) if d < d0: xr = px yr = py d0 = d bd = yt if pd < 0.1: bd = 0.0 nx = (tx - xr) / (d0 + bd) ny = (ty - yr) / (d0 + bd) xx = bd * nx + xr yy = bd * ny + yr l = 1.0 if bd == 0: nx = 0.0 ny = 0.0 else: eps = 1e-5 # d = naca_sdf(N, m,p,t,c, xx, yy) # dx = naca_sdf(N, m,p,t,c, xx+eps, yy) # dy = naca_sdf(N, m,p,t,c, xx, yy+eps) # nx = dx-d # ny = dy-d # l = wp.sqrt(nx*nx+ny*ny) return wp.vec4(xx, yy, nx / l, ny / l) @wp.kernel def draw( N: int, m: float, p: float, t: float, c: float, width: int, height: int, pixels: wp.array(dtype=float), ): tid = wp.tid() x = float(tid % width) / float(width) * 2.0 x = x - 0.5 y = float(tid // width) / float(height) * 2.0 y = y - 1.0 d = naca_sdf(N, m, p, t, c, x, y) cd = channel_sdf(x, y, 0.5, -0.5) pixels[tid] = op_subtract(d, cd) @wp.kernel def sample_interior( rand_seed: int, N: int, m0: float, m1: float, p: float, t0: float, t1: float, c: float, x0: float, y0: float, x1: float, y1: float, rot0: float, rot1: float, xa: wp.array(dtype=float), ya: wp.array(dtype=float), sdf: wp.array(dtype=float), sdf_x: wp.array(dtype=float), sdf_y: wp.array(dtype=float), par_rot: wp.array(dtype=float), par_t: wp.array(dtype=float), par_m: wp.array(dtype=float), ): tid = wp.tid() rstate = wp.rand_init(rand_seed, tid) x = wp.randf(rstate, x0, x1) y = wp.randf(rstate, y0, y1) # apply rotation rot = -wp.randf(rstate, rot0, rot1) par_rot[tid] = rot xx = wp.cos(rot) * x - wp.sin(rot) * y yy = wp.sin(rot) * x + wp.cos(rot) * y xa[tid] = x ya[tid] = y m = wp.randf(rstate, m0, m1) par_m[tid] = m t = wp.randf(rstate, t0, t1) par_t[tid] = t d = naca_sdf(N, m, p, t, c, xx, yy) cd = channel_sdf(x, y, y1, y0) d = op_subtract(d, cd) sdf[tid] = d eps = 1e-5 xx = wp.cos(rot) * (x + eps) - wp.sin(rot) * y yy = wp.sin(rot) * (x + eps) + wp.cos(rot) * y cd = channel_sdf(x + eps, y, y1, y0) dx = naca_sdf(N, m, p, t, c, xx, yy) dx = op_subtract(dx, cd) xx = wp.cos(rot) * x - wp.sin(rot) * (y + eps) yy = wp.sin(rot) * x + wp.cos(rot) * (y + eps) cd = channel_sdf(x, y + eps, y1, y0) dy = naca_sdf(N, m, p, t, c, xx, yy) dy = op_subtract(dy, cd) nx = dx - d ny = dy - d l = wp.sqrt(nx * nx + ny * ny) sdf_x[tid] = -nx / l sdf_y[tid] = -ny / l @wp.kernel def sample_boundary( rand_seed: int, N: int, m0: float, m1: float, p: float, t0: float, t1: float, c: float, x0: float, y0: float, x1: float, y1: float, rot0: float, rot1: float, xa: wp.array(dtype=float), ya: wp.array(dtype=float), nx: wp.array(dtype=float), ny: wp.array(dtype=float), par_rot: wp.array(dtype=float), par_t: wp.array(dtype=float), par_m: wp.array(dtype=float), ): tid = wp.tid() rstate = wp.rand_init(rand_seed, tid) x = wp.randf(rstate, x0, x1) y = wp.randf(rstate, y0, y1) m = wp.randf(rstate, m0, m1) par_m[tid] = m t = wp.randf(rstate, t0, t1) par_t[tid] = t ret = naca_bdry(N, m, p, t, c, x, y) x = ret[0] y = ret[1] # apply rotation to points rot = wp.randf(rstate, rot0, rot1) par_rot[tid] = rot xx = wp.cos(rot) * x - wp.sin(rot) * y yy = wp.sin(rot) * x + wp.cos(rot) * y # rotate the normals as well xa[tid] = xx ya[tid] = yy x = ret[2] y = ret[3] nxx = wp.cos(rot) * x - wp.sin(rot) * y nyy = wp.sin(rot) * x + wp.cos(rot) * y nx[tid] = nxx ny[tid] = nyy # sdf[tid] = op_subtract(d,cd) class Example: def __init__(self, nr=1000000): self.nr = nr self.xa = wp.zeros(nr, dtype=float) self.ya = wp.zeros(nr, dtype=float) self.nxa = wp.zeros(nr, dtype=float) self.nya = wp.zeros(nr, dtype=float) self.sdf = wp.zeros(nr, dtype=float) self.sdfx = wp.zeros(nr, dtype=float) self.sdfy = wp.zeros(nr, dtype=float) self.par_rot = wp.zeros(nr, dtype=float) self.par_t = wp.zeros(nr, dtype=float) self.par_m = wp.zeros(nr, dtype=float) def render(self, m, p, t, c, N, is_live=False): with wp.ScopedTimer(f"airfoil SDF [{self.width*self.height:,} pts]"): wp.launch( kernel=draw, dim=self.width * self.height, inputs=[N, m, p, t, c, self.width, self.height, self.pixels], ) wp.synchronize_device() parr = self.pixels.numpy().reshape((self.height, self.width)) return parr def sample_interior(self, x0, y0, x1, y1, m0, m1, p, t0, t1, c, N, rot0, rot1): import time with wp.ScopedTimer(f"Sample Interior [{self.nr:,} pts]"): rand_seed = int(time.time()) wp.launch( kernel=sample_interior, dim=self.nr, inputs=[ rand_seed, N, m0, m1, p, t0, t1, c, x0, y0, x1, y1, rot0, rot1, self.xa, self.ya, self.sdf, self.sdfx, self.sdfy, self.par_rot, self.par_t, self.par_m, ], ) wp.synchronize_device() sdf = -self.sdf.numpy() sel = sdf > 0 rot = self.par_rot.numpy()[sel] t = self.par_t.numpy()[sel] m = self.par_m.numpy()[sel] return ( self.xa.numpy()[sel], self.ya.numpy()[sel], sdf[sel], self.sdfx.numpy()[sel], self.sdfy.numpy()[sel], rot, t, m, ) def sample_boundary(self, x0, y0, x1, y1, m0, m1, p, t0, t1, c, N, rot0, rot1): import time with wp.ScopedTimer(f"Sample Boundary [{self.nr:,} pts]"): rand_seed = int(time.time()) wp.launch( kernel=sample_boundary, dim=self.nr, inputs=[ rand_seed, N, m0, m1, p, t0, t1, c, x0, y0, x1, y1, rot0, rot1, self.xa, self.ya, self.nxa, self.nya, self.par_rot, self.par_t, self.par_m, ], ) wp.synchronize_device() nx = self.nxa.numpy() ny = self.nya.numpy() sel = (nx != 0) & (ny != 0) rot = self.par_rot.numpy()[sel] t = self.par_t.numpy()[sel] m = self.par_m.numpy()[sel] return self.xa.numpy()[sel], self.ya.numpy()[sel], nx[sel], ny[sel], rot, t, m from modulus.geometry.parameterization import Parameterization, Parameter class AirfoilInChannel: def __init__(self, ll, ur, params={}, include_channel_boundary=False): self.x0, self.y0 = ll self.x1, self.y1 = ur self.ch = Channel2D(ll, ur) self.include_channel_boundary = include_channel_boundary self.params = Parameterization( { Parameter("rot"): float(0.0), Parameter("m"): float(0.02), Parameter("t"): float(0.12), } ) def _get_param_min_max(self, param, parameterization=None): if parameterization is None: parameterization = {} else: parameterization = parameterization.param_ranges ps = param rot = parameterization.get(ps, self.params.param_ranges[ps]) if isinstance(rot, float): rot0, rot1 = rot, rot else: rot0, rot1 = min(rot), max(rot) return rot0, rot1 def sample_boundary( self, nr_points: int, criteria=None, parameterization=None, quasirandom: bool = False, ): sb = self.ch.sample_boundary( nr_points, criteria=criteria, parameterization=parameterization ) ps = Parameter("rot") rot0, rot1 = self._get_param_min_max(ps, parameterization) ps = Parameter("m") m0, m1 = self._get_param_min_max(ps, parameterization) ps = Parameter("t") t0, t1 = self._get_param_min_max(ps, parameterization) xa = np.zeros((nr_points, 1)) ya = np.zeros((nr_points, 1)) nx = np.zeros((nr_points, 1)) ny = np.zeros((nr_points, 1)) par_rot = np.zeros((nr_points, 1)) par_t = np.zeros((nr_points, 1)) par_m = np.zeros((nr_points, 1)) gotn = 0 while gotn < nr_points: e = Example(nr=nr_points) m = 0.02 * 1 p = 0.4 t = 0.12 c = 1.0 N = 501 # m0, m1 = m*9, m*9 # t0, t1 = t*1.9, t*1.9 # rot1, rot0= -0.31, -0.31 x, y, nxt, nyt, rott, tt, mm = e.sample_boundary( self.x0, self.y0, self.x1, self.y1, m0, m1, p, t0, t1, c, int(N), rot0, rot1, ) e = min(len(x), nr_points - gotn) if e > 0: xa[gotn : gotn + e] = x[:e].reshape(-1, 1) ya[gotn : gotn + e] = y[:e].reshape(-1, 1) nx[gotn : gotn + e] = nxt[:e].reshape(-1, 1) ny[gotn : gotn + e] = nyt[:e].reshape(-1, 1) par_rot[gotn : gotn + e] = rott[:e].reshape(-1, 1) par_t[gotn : gotn + e] = tt[:e].reshape(-1, 1) par_m[gotn : gotn + e] = mm[:e].reshape(-1, 1) gotn += e if self.include_channel_boundary: idx = np.random.choice(np.arange(2 * nr_points), nr_points) xa = np.vstack([xa, sb["x"]])[idx] ya = np.vstack([ya, sb["y"]])[idx] nx = np.vstack([-nx, sb["normal_x"]])[idx] ny = np.vstack([-ny, sb["normal_y"]])[idx] return { "x": xa, "y": ya, "normal_x": -nx, "normal_y": -ny, "rot": par_rot, "t": par_t, "m": par_m, "area": sb["area"], } else: return { "x": xa, "y": ya, "normal_x": -nx, "normal_y": -ny, "rot": par_rot, "t": par_t, "m": par_m, "area": sb["area"], } def sample_interior( self, nr_points: int, bounds=None, criteria=None, parameterization=None, compute_sdf_derivatives: bool = False, quasirandom: bool = False, ): si = self.ch.sample_interior( nr_points, criteria=criteria, parameterization=parameterization ) ps = Parameter("rot") rot0, rot1 = self._get_param_min_max(ps, parameterization) ps = Parameter("m") m0, m1 = self._get_param_min_max(ps, parameterization) ps = Parameter("t") t0, t1 = self._get_param_min_max(ps, parameterization) xa = np.zeros((nr_points, 1)) ya = np.zeros((nr_points, 1)) sdf = np.zeros((nr_points, 1)) sdf__x = np.zeros((nr_points, 1)) sdf__y = np.zeros((nr_points, 1)) par_rot = np.zeros((nr_points, 1)) par_t = np.zeros((nr_points, 1)) par_m = np.zeros((nr_points, 1)) gotn = 0 while gotn < nr_points: e = Example(nr=nr_points) m = 0.02 * 1 p = 0.4 t = 0.12 c = 1.0 N = 501 # m0, m1 = m*3, m*3 # t0, t1 = t*1.9, t*1.9 # rot1, rot0= -0.31, -0.931 x, y, sdft, sdfx, sdfy, rott, tt, mm = e.sample_interior( self.x0, self.y0, self.x1, self.y1, m0, m1, p, t0, t1, c, int(N), rot0, rot1, ) e = min(len(x), nr_points - gotn) xa[gotn : gotn + e] = x[:e].reshape(-1, 1) ya[gotn : gotn + e] = y[:e].reshape(-1, 1) sdf[gotn : gotn + e] = sdft[:e].reshape(-1, 1) sdf__x[gotn : gotn + e] = sdfx[:e].reshape(-1, 1) sdf__y[gotn : gotn + e] = sdfy[:e].reshape(-1, 1) par_rot[gotn : gotn + e] = rott[:e].reshape(-1, 1) par_t[gotn : gotn + e] = tt[:e].reshape(-1, 1) par_m[gotn : gotn + e] = mm[:e].reshape(-1, 1) gotn += e return { "x": xa, "y": ya, "sdf": sdf, "rot": par_rot, "t": par_t, "m": par_m, "sdf__x": sdf__x, "sdf__y": sdf__y, "area": si["area"], } @property def dims(self): return ["x", "y"]
modulus-toolchain-master
examples/PINNs/03-Airfoil/CustomAirfoilGeom.py
from cfg import * [x, y, rot], [u, pp, v] = p.add_neural_network( name="NN", inputs=["x", "y", "rot"], outputs=["u", "p", "v"] ) # geometry import numpy as np lines = [[0, 0], [1, 0], [1, 1]] from sympy import Number, Symbol, Heaviside, atan, sin, cos, sqrt # Naca implementation modified from https://stackoverflow.com/questions/31815041/plotting-a-naca-4-series-airfoil # https://en.wikipedia.org/wiki/NACA_airfoil#Equation_for_a_cambered_4-digit_NACA_airfoil def camber_line(x, m, p, c): cl = [] for xi in x: cond_1 = Heaviside(xi, 0) * Heaviside((c * p) - xi, 0) cond_2 = Heaviside(-xi, 0) + Heaviside(xi - (c * p), 0) v_1 = m * (xi / p**2) * (2.0 * p - (xi / c)) v_2 = m * ((c - xi) / (1 - p) ** 2) * (1.0 + (xi / c) - 2.0 * p) cl.append(cond_1 * v_1 + cond_2 * v_2) return cl def dyc_over_dx(x, m, p, c): dd = [] for xi in x: cond_1 = Heaviside(xi) * Heaviside((c * p) - xi) cond_2 = Heaviside(-xi) + Heaviside(xi - (c * p)) v_1 = ((2.0 * m) / p**2) * (p - xi / c) v_2 = (2.0 * m) / (1 - p**2) * (p - xi / c) dd.append(atan(cond_1 * v_1 + cond_2 * v_2)) return dd def thickness(x, t, c): th = [] for xi in x: term1 = 0.2969 * (sqrt(xi / c)) term2 = -0.1260 * (xi / c) term3 = -0.3516 * (xi / c) ** 2 term4 = 0.2843 * (xi / c) ** 3 term5 = -0.1015 * (xi / c) ** 4 th.append(5 * t * c * (term1 + term2 + term3 + term4 + term5)) return th def naca4(x, m, p, t, c=1): th = dyc_over_dx(x, m, p, c) yt = thickness(x, t, c) yc = camber_line(x, m, p, c) line = [] for (xi, thi, yti, yci) in zip(x, th, yt, yc): line.append((xi - yti * sin(thi), yci + yti * cos(thi))) x.reverse() th.reverse() yt.reverse() yc.reverse() for (xi, thi, yti, yci) in zip(x, th, yt, yc): line.append((xi + yti * sin(thi), yci - yti * cos(thi))) return line m = 0.02 ppp = 0.4 t = 0.12 c = 1.0 # make naca geometry xx = [x for x in np.linspace(0, 0.2, 20 // 4)] + [x for x in np.linspace(0.2, 1.0, 10)][ 1: ] # higher res in front line = naca4(xx, m, ppp, t, c)[:-1] # # lines = [x for x in np.linspace(0, 0.2, 20)] + [x for x in np.linspace(0.2, 1.0, 10)][1:] params = {rot: (0, -np.pi / 6)} tri = p.Polygon("poly", line, rotate=(rot, "z"), params=params) # tri = p.Rectangle("poly", (0,0), (1,1), rotate=(rot, "z"),params=params) channel_length = 15.0 / 2 channel_height = 10.0 / 2 a = 0.3 # inlet = Line((-channel_length*a, -channel_height/2), (-channel_length*a, channel_height/2), normal=1) # outlet = Line((channel_length*(1-a), -channel_height/2), (channel_length*(1-a), channel_height/2), normal=1) channel_rect = p.Rectangle( "channel_rect", (-channel_length * a, -channel_height / 2), (channel_length * (1 - a), channel_height / 2), ) channel = p.Channel2D( "channel", (-channel_length * a, -channel_height / 2), (channel_length * (1 - a), channel_height / 2), ) domain_geom = p.GeometryDifference("dg", channel, tri) interior = p.add_interior_subdomain( "interior", geom=domain_geom, compute_sdf_derivatives=True, params=params ) top_bot = p.add_boundary_subdomain( "top_bot", geom=domain_geom, criteria=Eq(Abs(y), channel_height / 2), params=params ) inlet = p.add_boundary_subdomain( "inlet", geom=channel_rect, criteria=Eq(x, -channel_length * a), params=params ) outlet = p.add_boundary_subdomain( "outlet", geom=channel_rect, criteria=Eq(x, channel_length * (1 - a)), params=params ) airfoil_bdry = p.add_boundary_subdomain("airfoil_bdry", geom=tri) lower_rec = p.Rectangle( "lower_rec", (-channel_length * a, -channel_height / 2), (-1, channel_height / 2), params=params, ) lower_rec = p.add_boundary_subdomain( "lower_rec", geom=lower_rec, criteria=Eq(x, -channel_length * a) | Eq(x, -1) ) lower_rec2 = p.Rectangle( "lower_rec2", (-channel_length * a, -channel_height / 2), (2, channel_height / 2), params=params, ) lower_rec2 = p.add_boundary_subdomain( "lower_rec2", geom=lower_rec2, criteria=Eq(x, -channel_length * a) | Eq(x, 2) ) inlet_outlet = p.Rectangle( "inlet_outlet", (-channel_length * a, -channel_height / 2), (channel_length * (1 - a), channel_height / 2), params=params, ) inlet_outlet = p.add_boundary_subdomain( "inlet_outlet", geom=inlet_outlet, criteria=Eq(x, -channel_length * a) | Eq(x, channel_length * (1 - a)), ) import sympy as sp normal_x = sp.Symbol("normal_x") normal_y = sp.Symbol("normal_y") # p.add_constraint(f"no_flux_1", # enforce(equation=Eq(Integral((normal_x*u+normal_y*v), x, y), 0), # on_domain=lower_rec)) # p.add_constraint(f"no_flux_2", # enforce(equation=Eq(Integral((normal_x*u+normal_y*v), x, y), 0), # on_domain=lower_rec2)) # p.add_constraint(f"noflux_inlet_outlet", # enforce(equation=Eq(Integral((normal_x*u+normal_y*v), x, y), 0), # on_domain=inlet_outlet)) sdf = sympy.Function("sdf")(x, y, rot) from sympy import sqrt, Min, Abs # Zero Equation nu = ( sqrt((u.diff(y) + v.diff(x)) ** 2 + 2 * u.diff(x) ** 2 + 2 * v.diff(y) ** 2) * Min(0.045, 0.419 * sdf) ** 2 + 6.25e-6 ) nu = p.add_submodel("nu", nu) # N-S Momentum equations m_x = ( -1.0 * nu * u.diff(x).diff(x) - 1.0 * nu * u.diff(y).diff(y) + 1.0 * u * u.diff(x) + 1.0 * v * u.diff(y) - 1.0 * nu.diff(x) * u.diff(x) - 1.0 * nu.diff(y) * u.diff(y) + pp.diff(x) ) momentum_x = Eq(m_x, 0) m_y = ( -1.0 * nu * v.diff(x).diff(x) - 1.0 * nu * v.diff(y).diff(y) + 1.0 * u * v.diff(x) + 1.0 * v * v.diff(y) - 1.0 * nu.diff(x) * v.diff(x) - 1.0 * nu.diff(y) * v.diff(y) + pp.diff(y) ) momentum_y = Eq(m_y, 0) continuity_eq = Eq(u.diff(x) + v.diff(y), 0) p.add_constraint( "interior_continuity", enforce(equation=continuity_eq, on_domain=interior) ) p.add_constraint( "interior_momentum_x", enforce(equation=momentum_x, on_domain=interior) ) p.add_constraint( "interior_momentum_y", enforce(equation=momentum_y, on_domain=interior) ) p.add_constraint("airfoil_bdry_u", enforce(equation=Eq(u, 0), on_domain=airfoil_bdry)) p.add_constraint("airfoil_bdry_v", enforce(equation=Eq(v, 0), on_domain=airfoil_bdry)) p.add_constraint("top_bot_u", enforce(equation=Eq(u, 1), on_domain=top_bot)) p.add_constraint("top_bot_v", enforce(equation=Eq(v, 0), on_domain=top_bot)) p.add_constraint("inlet_u", enforce(equation=Eq(u, 1), on_domain=inlet)) p.add_constraint("inlet_v", enforce(equation=Eq(v, 0), on_domain=inlet)) p.add_constraint("outlet_p", enforce(equation=Eq(pp, 0), on_domain=outlet))
modulus-toolchain-master
examples/PINNs/03-Airfoil/airfoil_rot_only_problem.py
from cfg import * [x, y], [T] = p.add_neural_network(name="NN_Tsolid", inputs=["x", "y"], outputs=[ "Tsolid"]) geo_solid = p.Rectangle("rect", (0,0), (1,1)) interior_solid = p.add_interior_subdomain("interior_solid", geom=geo_solid) bdry_solid = p.add_boundary_subdomain("bdry_solid", geom=geo_solid, criteria=y>0) bdry_heat_src = p.add_boundary_subdomain("bdry_heat_src", geom=geo_solid, criteria=Eq(y,0) & (Abs(x-0.5)<0.1) ) p.add_constraint("diffusion_solid", enforce(equation=Eq(x,0), on_domain=interior_solid)) p.add_constraint("diffusion_solid_bc", enforce(equation=Eq(x,0), on_domain=bdry_solid)) p.add_constraint("heat_source", enforce(equation=Eq(x,0), on_domain=bdry_heat_src))
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/s3p1a.py
from cfg import * import sympy as sp # HEAT [x, y], [T] = p.add_neural_network(name="NN_Tsolid", inputs=["x", "y"], outputs=[ "Tsolid"]) geo_solid = p.Rectangle("rect", (0,0), (1,1)) interior_solid = p.add_interior_subdomain("interior_solid", geom=geo_solid) bdry_solid = p.add_boundary_subdomain("bdry_solid", geom=geo_solid, criteria=y>0) bdry_heat_src = p.add_boundary_subdomain("bdry_heat_src", geom=geo_solid, criteria=Eq(y,0) & (Abs(x-0.5)<0.1) ) Dsolid = 0.0625 p.add_constraint("diffusion_solid", enforce(equation=Eq(Dsolid*(T.diff(x,x)+T.diff(y,y)),0), on_domain=interior_solid)) p.add_constraint("diffusion_solid_bc", enforce(equation=Eq(T,0), on_domain=bdry_solid)) ny = sp.Symbol("normal_y") p.add_constraint("heat_source", enforce(equation=Eq(ny*T.diff(y),1), on_domain=bdry_heat_src)) # Air flow a_end=5 rect = p.Rectangle("rect_air", (-1,0), (a_end,2)) geo_air = p.GeometryDifference('gd0', rect, geo_solid) interior_air=p.add_interior_subdomain("interior_air", geom=geo_air, compute_sdf_derivatives=True) inlet = p.add_boundary_subdomain("inlet", geom=geo_air, criteria=Eq(x,-1)) outlet = p.add_boundary_subdomain("outlet", geom=geo_air, criteria=Eq(x,a_end)) noslip = p.add_boundary_subdomain("noslip", geom=geo_air, criteria= (x>-1) & (x<a_end)) p.add_constraint("continuity", enforce(equation=Eq(ny*T.diff(y),1), on_domain=interior_air)) p.add_constraint("inlet", enforce(equation=Eq(ny*T.diff(y),1), on_domain=inlet)) p.add_constraint("outlet", enforce(equation=Eq(ny*T.diff(y),1), on_domain=outlet)) p.add_constraint("noslip", enforce(equation=Eq(ny*T.diff(y),1), on_domain=noslip))
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/s3p2a.py
from cfg import * import sympy as sp # HEAT [x, y], [T] = p.add_neural_network(name="NN_Tsolid", inputs=["x", "y"], outputs=[ "Tsolid"]) geo_solid = p.Rectangle("rect", (0,0), (1,1)) interior_solid = p.add_interior_subdomain("interior_solid", geom=geo_solid) bdry_solid = p.add_boundary_subdomain("bdry_solid", geom=geo_solid, criteria=y>0) bdry_heat_src = p.add_boundary_subdomain("bdry_heat_src", geom=geo_solid, criteria=Eq(y,0) & (Abs(x-0.5)<0.1) ) Dsolid = 0.0625 p.add_constraint("diffusion_solid", enforce(equation=Eq(Dsolid*(T.diff(x,x)+T.diff(y,y)),0), on_domain=interior_solid)) #p.add_constraint("diffusion_solid_bc", enforce(equation=Eq(T,0), on_domain=bdry_solid)) ny = sp.Symbol("normal_y") p.add_constraint("heat_source", enforce(equation=Eq(ny*T.diff(y),1), on_domain=bdry_heat_src)) # Air flow [x, y], [u, v, pp] = p.add_neural_network(name="NNflow", inputs=["x", "y"], outputs=["u", "v", "p"]) a_end=5 rect = p.Rectangle("rect_air", (-1,0), (a_end,2)) geo_air = p.GeometryDifference('gd0', rect, geo_solid) interior_air=p.add_interior_subdomain("interior_air", geom=geo_air, compute_sdf_derivatives=True) inlet = p.add_boundary_subdomain("inlet", geom=geo_air, criteria=Eq(x,-1)) outlet = p.add_boundary_subdomain("outlet", geom=geo_air, criteria=Eq(x,a_end)) noslip = p.add_boundary_subdomain("noslip", geom=geo_air, criteria= (x>-1) & (x<a_end)) p.add_constraint("inlet_u", enforce(equation=Eq(u,1), on_domain=inlet)) p.add_constraint("inlet_v", enforce(equation=Eq(v,0), on_domain=inlet)) p.add_constraint("outlet_p", enforce(equation=Eq(pp,0), on_domain=outlet)) p.add_constraint("noslip_u", enforce(equation=Eq(u,0), on_domain=noslip)) p.add_constraint("noslip_v", enforce(equation=Eq(v,0), on_domain=noslip)) nu = 0.02 p.add_constraint("continuity", enforce(equation=Eq(u.diff(x)+v.diff(y),0), on_domain=interior_air)) p.add_constraint("momentum_x", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(x), nu*(u.diff(x,x) + u.diff(y,y))), on_domain=interior_air)) p.add_constraint("momentum_y", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(y), nu*(v.diff(x,x) + v.diff(y,y))), on_domain=interior_air)) # Adding inlet/outlet Mass balance inlet_outlet = p.add_boundary_subdomain("inlet_outlet", geom=geo_air, criteria=Eq(x,-1) | Eq(x,a_end)) nx = sp.Symbol("normal_x") ny = sp.Symbol("normal_y") p.add_constraint("mass_balance_io", enforce(equation=Eq(Integral(nx*u+ny*v, x,y),0), on_domain=inlet_outlet)) ########## # Advection Diffusion ########## [x, y], [Ta] = p.add_neural_network(name="NN_Tair", inputs=["x", "y"], outputs=["Tair"]) # Solid/Air heat transfer p.add_constraint("TsolidTair_compat", enforce(equation=Eq(T,Ta), on_domain=bdry_solid)) fluxcompat_eq = Eq(5*(nx*T.diff(x)+ny*T.diff(y)), nx*Ta.diff(x)+ny*Ta.diff(y)) p.add_constraint("TsolidTair_flux_compat", enforce(equation=fluxcompat_eq, on_domain=bdry_solid)) # Insulating channel wall chwalls = p.add_boundary_subdomain("chwalls", geom=geo_air, criteria= (y<=0) | (y>=2)) p.add_constraint("chwalls_grad_c", enforce(equation=Eq(ny*Ta.diff(y),0), on_domain=chwalls)) # Advection Diffusion D = 0.02 # diffusion coefficient adv_diff_eq = Eq(u*Ta.diff(x)+v*Ta.diff(y), D*(Ta.diff(x,x)+Ta.diff(y,y))) p.add_constraint("adv_diff", enforce(equation=adv_diff_eq, on_domain=interior_air))
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/s3p2d.py
from cfg import * [x], [ua, ub] = p.add_neural_network(name="NN", inputs=["x"], outputs=["ua", "ub"]) geom = p.Line1D("geomA", -1,0) interior = p.add_interior_subdomain("interiorA", geom=geom) middle = p.add_boundary_subdomain("middle", geom=geom, criteria=Eq(x,0)) bdry = p.add_boundary_subdomain("bdryA", geom=geom, criteria=Eq(x,-1)) diff_eq = Eq(ua.diff(x,2) + 1, 0) p.add_constraint("diffusionA", enforce(equation=diff_eq, on_domain=interior)) p.add_constraint("middleA", enforce(equation=Eq(ua,0), on_domain=middle)) p.add_constraint("bdryA", enforce(equation=Eq(ua.diff(x),0), on_domain=bdry)) geom = p.Line1D("geomB", 0,1) interior = p.add_interior_subdomain("interiorB", geom=geom) bdry = p.add_boundary_subdomain("bdryB", geom=geom, criteria=Eq(x,1)) diff_eq = Eq(ub.diff(x,2) - 1, 0) p.add_constraint("diffusionB", enforce(equation=diff_eq, on_domain=interior)) p.add_constraint("middleB", enforce(equation=Eq(ub,0), on_domain=middle)) p.add_constraint("bdryB", enforce(equation=Eq(ub.diff(x),0), on_domain=bdry)) p.set_model( "f", [ {"func": ua, "on": x<=0}, {"func": ub, "on": x>0}, ], )
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/p2c.py
from cfg import * [x, y], [u] = p.add_neural_network(name="NN", inputs=["x", "y"], outputs=["u"]) w,h = 2,1 r1 = p.Rectangle("r1", (0,0), (w,h)) ch1 = p.Channel2D("ch1", (0,0), (w,h)) inlet = p.add_boundary_subdomain("inlet", geom=r1, criteria=Eq(x,0)) outlet = p.add_boundary_subdomain("outlet", geom=r1, criteria=Eq(x,w)) r_interior = p.add_interior_subdomain("r_interior", geom=r1) ch_interior = p.add_interior_subdomain("ch_interior", geom=ch1) noslip = p.add_boundary_subdomain("no_slip", geom=ch1) # p.add_constraint("c1", enforce(equation=Eq(x,0), on_domain=r_interior)) p.add_constraint("b1", enforce(equation=Eq(x,0), on_domain=inlet)) p.add_constraint("b2", enforce(equation=Eq(x,0), on_domain=outlet)) p.add_constraint("b3", enforce(equation=Eq(x,0), on_domain=noslip)) p.add_constraint("c2", enforce(equation=Eq(x,0), on_domain=ch_interior))
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/s2p1a.py
from cfg import * [x, y], [u, v, pp] = p.add_neural_network(name="NN", inputs=["x", "y"], outputs=["u", "v", "p"]) w,h = 2,1 r1 = p.Rectangle("r1", (0,0), (w,h)) ch1 = p.Channel2D("ch1", (0,0), (w,h)) subr = p.Rectangle("subr1", (w/2-.1,0), (w/2+.1,h*.8)) ch1 = p.GeometryDifference("gd", ch1, subr) inlet = p.add_boundary_subdomain("inlet", geom=r1, criteria=Eq(x,0)) outlet = p.add_boundary_subdomain("outlet", geom=r1, criteria=Eq(x,w)) r_interior = p.add_interior_subdomain("r_interior", geom=r1) ch_interior = p.add_interior_subdomain("ch_interior", geom=ch1) noslip = p.add_boundary_subdomain("no_slip", geom=ch1) # p.add_constraint("c1", enforce(equation=Eq(x,0), on_domain=r_interior)) p.add_constraint("inlet_u", enforce(equation=Eq(u,1), on_domain=inlet)) p.add_constraint("inlet_v", enforce(equation=Eq(v,0), on_domain=inlet)) p.add_constraint("outlet_p", enforce(equation=Eq(pp,0), on_domain=outlet)) p.add_constraint("noslip_u", enforce(equation=Eq(u,0), on_domain=noslip)) p.add_constraint("noslip_v", enforce(equation=Eq(v,0), on_domain=noslip)) nu = 0.02 p.add_constraint("continuity", enforce(equation=Eq(u.diff(x)+v.diff(y),0), on_domain=ch_interior)) p.add_constraint("momentum_x", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(x), nu*(u.diff(x,x) + u.diff(y,y))), on_domain=ch_interior)) p.add_constraint("momentum_y", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(y), nu*(v.diff(x,x) + v.diff(y,y))), on_domain=ch_interior)) # Adding mass balance import sympy as sp nx = sp.Symbol("normal_x") ny = sp.Symbol("normal_y") int_rect = p.Rectangle("int_rect", (0,0), (w/2,h)) int_rect = p.GeometryDifference("gd1", ch1, int_rect) inlet_outlet = p.add_boundary_subdomain("inlet_outlet", geom=r1, criteria=Eq(x,0) | Eq(x,w)) int_constrict = p.add_boundary_subdomain("int_constrict", geom=int_rect, criteria=Eq(x,0) | Eq(x,w/2)) p.add_constraint("mass_balance_io", enforce(equation=Eq(Integral(nx*u+ny*v, x,y),0), on_domain=inlet_outlet)) p.add_constraint("mass_balance_middle", enforce(equation=Eq(Integral(nx*u+ny*v, x,y),0), on_domain=int_constrict))
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/s2p2e.py
from cfg import * [x], [ua, ub] = p.add_neural_network(name="NN", inputs=["x"], outputs=["ua", "ub"]) geom = p.Line1D("geomA", -1,0) interior = p.add_interior_subdomain("interiorA", geom=geom) middle = p.add_boundary_subdomain("middle", geom=geom, criteria=Eq(x,0)) bdry = p.add_boundary_subdomain("bdryA", geom=geom, criteria=Eq(x,-1)) diff_eq = Eq(ua.diff(x,2) + 1, 0) p.add_constraint("diffusionA", enforce(equation=diff_eq, on_domain=interior)) p.add_constraint("middleA", enforce(equation=Eq(ua,0), on_domain=middle)) p.add_constraint("bdryA", enforce(equation=Eq(ua.diff(x),0), on_domain=bdry)) geom = p.Line1D("geomB", 0,1) interior = p.add_interior_subdomain("interiorB", geom=geom) bdry = p.add_boundary_subdomain("bdryB", geom=geom, criteria=Eq(x,1)) diff_eq = Eq(ub.diff(x,2) - 1, 0) p.add_constraint("diffusionB", enforce(equation=diff_eq, on_domain=interior)) p.add_constraint("middleB", enforce(equation=Eq(ub,0), on_domain=middle)) p.add_constraint("bdryB", enforce(equation=Eq(ub.diff(x),0), on_domain=bdry)) p.set_model( "f", [ {"func": ua, "on": x<=0}, {"func": ub, "on": x>0}, ], )
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/p1c.py
from cfg import * [x], [ua, ub] = p.add_neural_network(name="NN", inputs=["x"], outputs=["ua", "ub"]) DA = 1 DB = 1/100 geom = p.Line1D("geomA", -1,0) interior = p.add_interior_subdomain("interiorA", geom=geom) middle = p.add_boundary_subdomain("middle", geom=geom, criteria=Eq(x,0)) bdry = p.add_boundary_subdomain("bdryA", geom=geom, criteria=Eq(x,-1)) diff_eq = Eq(DA*ua.diff(x,2) + 1, 0) p.add_constraint("diffusionA", enforce(equation=diff_eq, on_domain=interior)) p.add_constraint("bdryA", enforce(equation=Eq(ua,0), on_domain=bdry)) geom = p.Line1D("geomB", 0,1) interior = p.add_interior_subdomain("interiorB", geom=geom) bdry = p.add_boundary_subdomain("bdryB", geom=geom, criteria=Eq(x,1)) diff_eq = Eq(DB*ub.diff(x,2) - 1/2, 0) p.add_constraint("diffusionB", enforce(equation=diff_eq, on_domain=interior)) p.add_constraint("bdryB", enforce(equation=Eq(ub,0), on_domain=bdry)) p.add_constraint("uAuB", enforce(equation=Eq(ub,ua), on_domain=middle)) p.add_constraint("GraduAuB", enforce(equation=Eq(DB*ub.diff(x), DA*ua.diff(x)), on_domain=middle)) p.set_model( "f", [ {"func": ua, "on": x<=0}, {"func": ub, "on": x>0}, ], )
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/p2b.py
from cfg import * [x, y], [u, v, pp] = p.add_neural_network(name="NN", inputs=["x", "y"], outputs=["u", "v", "p"]) w,h = 2,1 r1 = p.Rectangle("r1", (0,0), (w,h)) ch1 = p.Channel2D("ch1", (0,0), (w,h)) inlet = p.add_boundary_subdomain("inlet", geom=r1, criteria=Eq(x,0)) outlet = p.add_boundary_subdomain("outlet", geom=r1, criteria=Eq(x,w)) r_interior = p.add_interior_subdomain("r_interior", geom=r1) ch_interior = p.add_interior_subdomain("ch_interior", geom=ch1) noslip = p.add_boundary_subdomain("no_slip", geom=ch1) # p.add_constraint("c1", enforce(equation=Eq(x,0), on_domain=r_interior)) p.add_constraint("inlet_u", enforce(equation=Eq(u,1), on_domain=inlet)) p.add_constraint("inlet_v", enforce(equation=Eq(v,0), on_domain=inlet)) p.add_constraint("outlet_p", enforce(equation=Eq(pp,0), on_domain=outlet)) p.add_constraint("noslip_u", enforce(equation=Eq(u,0), on_domain=noslip)) p.add_constraint("noslip_v", enforce(equation=Eq(v,0), on_domain=noslip)) nu = 0.02 p.add_constraint("continuity", enforce(equation=Eq(u.diff(x)+v.diff(y),0), on_domain=ch_interior)) p.add_constraint("momentum_x", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(x), nu*(u.diff(x,x) + u.diff(y,y))), on_domain=ch_interior)) p.add_constraint("momentum_y", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(y), nu*(v.diff(x,x) + v.diff(y,y))), on_domain=ch_interior)) # Adding mass balance import sympy as sp nx = sp.Symbol("normal_x") ny = sp.Symbol("normal_y") inlet_outlet = p.add_boundary_subdomain("inlet_outlet", geom=r1, criteria=Eq(x,0) | Eq(x,w)) p.add_constraint("mass_balance", enforce(equation=Eq(Integral(nx*u+ny*v, x,y),0), on_domain=inlet_outlet))
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/s2p1c.py
from cfg import * [x], [ua, ub] = p.add_neural_network(name="NN", inputs=["x"], outputs=["ua", "ub"]) geom = p.Line1D("geomA", -1,0) interior = p.add_interior_subdomain("interiorA", geom=geom) bdry = p.add_boundary_subdomain("bdryA", geom=geom) diff_eq = Eq(ua.diff(x,2) + 1, 0) p.add_constraint("diffusionA", enforce(equation=diff_eq, on_domain=interior)) p.add_constraint("bdryA", enforce(equation=Eq(ua,0), on_domain=bdry)) geom = p.Line1D("geomB", 0,1) interior = p.add_interior_subdomain("interiorB", geom=geom) bdry = p.add_boundary_subdomain("bdryB", geom=geom) diff_eq = Eq(ub.diff(x,2) - 1, 0) p.add_constraint("diffusionB", enforce(equation=diff_eq, on_domain=interior)) p.add_constraint("bdryB", enforce(equation=Eq(ub,0), on_domain=bdry)) p.set_model( "f", [ {"func": ua, "on": x<=0}, {"func": ub, "on": x>0}, ], )
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/p1a.py
from cfg import * [x, v1,v2], [va, vb] = p.add_neural_network(name="NN", inputs=["x", 'v1', 'v2'], outputs=["va", "vb"]) ua = p.add_submodel("ua", va*(x+1)+v1) ub = p.add_submodel("ub", vb*(x-1)+v2) params={v1:(-1,1), v2:(-1,1)} DA = 1 DB = 1/100 geom = p.Line1D("geomA", -1,0) interior = p.add_interior_subdomain("interiorA", geom=geom, params=params) middle = p.add_boundary_subdomain("middle", geom=geom, criteria=Eq(x,0), params=params) bdry = p.add_boundary_subdomain("bdryA", geom=geom, criteria=Eq(x,-1), params=params) diff_eq = Eq(DA*ua.diff(x,2) + 1, 0) p.add_constraint("diffusionA", enforce(equation=diff_eq, on_domain=interior)) geom = p.Line1D("geomB", 0,1) interior = p.add_interior_subdomain("interiorB", geom=geom, params=params) bdry = p.add_boundary_subdomain("bdryB", geom=geom, criteria=Eq(x,1), params=params) diff_eq = Eq(DB*ub.diff(x,2) - 1/2, 0) p.add_constraint("diffusionB", enforce(equation=diff_eq, on_domain=interior)) p.add_constraint("uAuB", enforce(equation=Eq(ub,ua), on_domain=middle)) p.add_constraint("GraduAuB", enforce(equation=Eq(DB*ub.diff(x), DA*ua.diff(x)), on_domain=middle)) p.set_model( "f", [ {"func": ua, "on": x<=0}, {"func": ub, "on": x>0}, ], )
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/p3a.py
from cfg import * [x, y, oh], [u, v, pp] = p.add_neural_network(name="NN", inputs=["x", "y", "oh"], outputs=["u", "v", "p"]) w,h = 2,1 r1 = p.Rectangle("r1", (0,0), (w,h)) ch1 = p.Channel2D("ch1", (0,0), (w,h)) params = {oh: (0,0.95)} # subr = p.Rectangle("subr1", (w/2-.1,0), (w/2+.1,h*.8)) subr = p.Rectangle("subr1", (w/2-.1,0), (w/2+.1,oh), params=params) ch1 = p.GeometryDifference("gd", ch1, subr) inlet = p.add_boundary_subdomain("inlet", geom=r1, criteria=Eq(x,0), params=params) outlet = p.add_boundary_subdomain("outlet", geom=r1, criteria=Eq(x,w), params=params) r_interior = p.add_interior_subdomain("r_interior", geom=r1, params=params) ch_interior = p.add_interior_subdomain("ch_interior", geom=ch1, params=params) noslip = p.add_boundary_subdomain("no_slip", geom=ch1, params=params) # p.add_constraint("c1", enforce(equation=Eq(x,0), on_domain=r_interior)) p.add_constraint("inlet_u", enforce(equation=Eq(u,1), on_domain=inlet)) p.add_constraint("inlet_v", enforce(equation=Eq(v,0), on_domain=inlet)) p.add_constraint("outlet_p", enforce(equation=Eq(pp,0), on_domain=outlet)) p.add_constraint("noslip_u", enforce(equation=Eq(u,0), on_domain=noslip)) p.add_constraint("noslip_v", enforce(equation=Eq(v,0), on_domain=noslip)) nu = 0.02 p.add_constraint("continuity", enforce(equation=Eq(u.diff(x)+v.diff(y),0), on_domain=ch_interior)) p.add_constraint("momentum_x", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(x), nu*(u.diff(x,x) + u.diff(y,y))), on_domain=ch_interior)) p.add_constraint("momentum_y", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(y), nu*(v.diff(x,x) + v.diff(y,y))), on_domain=ch_interior)) # Adding mass balance import sympy as sp nx = sp.Symbol("normal_x") ny = sp.Symbol("normal_y") int_rect = p.Rectangle("int_rect", (0,0), (w/2,h)) # int_rect = p.GeometryDifference("gd1", ch1, int_rect) int_rect = p.GeometryDifference("gd1", ch1, int_rect) inlet_outlet = p.add_boundary_subdomain("inlet_outlet", geom=r1, criteria=Eq(x,0) | Eq(x,w), params=params) int_constrict = p.add_boundary_subdomain("int_constrict", geom=int_rect, criteria=Eq(x,0) | Eq(x,w/2), params=params) p.add_constraint("mass_balance_io", enforce(equation=Eq(Integral(nx*u+ny*v, x,y),0), on_domain=inlet_outlet)) p.add_constraint("mass_balance_middle", enforce(equation=Eq(Integral(nx*u+ny*v, x,y),0), on_domain=int_constrict))
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/s2p3.py
from cfg import * [x, y], [u, v, pp] = p.add_neural_network(name="NN", inputs=["x", "y"], outputs=["u", "v", "p"]) w,h = 2,1 r1 = p.Rectangle("r1", (0,0), (w,h)) ch1 = p.Channel2D("ch1", (0,0), (w,h)) subr = p.Rectangle("subr1", (w/2-.1,0), (w/2+.1,h*.8)) ch1 = p.GeometryDifference("gd", ch1, subr) inlet = p.add_boundary_subdomain("inlet", geom=r1, criteria=Eq(x,0)) outlet = p.add_boundary_subdomain("outlet", geom=r1, criteria=Eq(x,w)) r_interior = p.add_interior_subdomain("r_interior", geom=r1) ch_interior = p.add_interior_subdomain("ch_interior", geom=ch1) noslip = p.add_boundary_subdomain("no_slip", geom=ch1) # p.add_constraint("c1", enforce(equation=Eq(x,0), on_domain=r_interior)) p.add_constraint("inlet_u", enforce(equation=Eq(u,1), on_domain=inlet)) p.add_constraint("inlet_v", enforce(equation=Eq(v,0), on_domain=inlet)) p.add_constraint("outlet_p", enforce(equation=Eq(pp,0), on_domain=outlet)) p.add_constraint("noslip_u", enforce(equation=Eq(u,0), on_domain=noslip)) p.add_constraint("noslip_v", enforce(equation=Eq(v,0), on_domain=noslip)) nu = 0.02 p.add_constraint("continuity", enforce(equation=Eq(u.diff(x)+v.diff(y),0), on_domain=ch_interior)) p.add_constraint("momentum_x", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(x), nu*(u.diff(x,x) + u.diff(y,y))), on_domain=ch_interior)) p.add_constraint("momentum_y", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(y), nu*(v.diff(x,x) + v.diff(y,y))), on_domain=ch_interior)) # Adding mass balance import sympy as sp nx = sp.Symbol("normal_x") ny = sp.Symbol("normal_y") inlet_outlet = p.add_boundary_subdomain("inlet_outlet", geom=r1, criteria=Eq(x,0) | Eq(x,w)) p.add_constraint("mass_balance", enforce(equation=Eq(Integral(nx*u+ny*v, x,y),0), on_domain=inlet_outlet))
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/s2p2c.py
from cfg import * import sympy as sp # HEAT [x, y], [T] = p.add_neural_network(name="NN_Tsolid", inputs=["x", "y"], outputs=[ "Tsolid"]) geo_solid = p.Rectangle("rect", (0,0), (1,1)) interior_solid = p.add_interior_subdomain("interior_solid", geom=geo_solid) bdry_solid = p.add_boundary_subdomain("bdry_solid", geom=geo_solid, criteria=y>0) bdry_heat_src = p.add_boundary_subdomain("bdry_heat_src", geom=geo_solid, criteria=Eq(y,0) & (Abs(x-0.5)<0.1) ) Dsolid = 0.0625 p.add_constraint("diffusion_solid", enforce(equation=Eq(Dsolid*(T.diff(x,x)+T.diff(y,y)),0), on_domain=interior_solid)) #p.add_constraint("diffusion_solid_bc", enforce(equation=Eq(T,0), on_domain=bdry_solid)) ny = sp.Symbol("normal_y") p.add_constraint("heat_source", enforce(equation=Eq(ny*T.diff(y),1), on_domain=bdry_heat_src)) # Air flow [x, y], [u, v, pp] = p.add_neural_network(name="NNflow", inputs=["x", "y"], outputs=["u", "v", "p"]) a_end=5 rect = p.Rectangle("rect_air", (-1,0), (a_end,2)) geo_air = p.GeometryDifference('gd0', rect, geo_solid) interior_air=p.add_interior_subdomain("interior_air", geom=geo_air, compute_sdf_derivatives=True) inlet = p.add_boundary_subdomain("inlet", geom=geo_air, criteria=Eq(x,-1)) outlet = p.add_boundary_subdomain("outlet", geom=geo_air, criteria=Eq(x,a_end)) noslip = p.add_boundary_subdomain("noslip", geom=geo_air, criteria= (x>-1) & (x<a_end)) p.add_constraint("inlet_u", enforce(equation=Eq(u,1), on_domain=inlet)) p.add_constraint("inlet_v", enforce(equation=Eq(v,0), on_domain=inlet)) p.add_constraint("outlet_p", enforce(equation=Eq(pp,0), on_domain=outlet)) p.add_constraint("noslip_u", enforce(equation=Eq(u,0), on_domain=noslip)) p.add_constraint("noslip_v", enforce(equation=Eq(v,0), on_domain=noslip)) nu = 0.02 p.add_constraint("continuity", enforce(equation=Eq(u.diff(x)+v.diff(y),0), on_domain=interior_air)) p.add_constraint("momentum_x", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(x), nu*(u.diff(x,x) + u.diff(y,y))), on_domain=interior_air)) p.add_constraint("momentum_y", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(y), nu*(v.diff(x,x) + v.diff(y,y))), on_domain=interior_air)) # Adding inlet/outlet Mass balance inlet_outlet = p.add_boundary_subdomain("inlet_outlet", geom=geo_air, criteria=Eq(x,-1) | Eq(x,a_end)) nx = sp.Symbol("normal_x") ny = sp.Symbol("normal_y") p.add_constraint("mass_balance_io", enforce(equation=Eq(Integral(nx*u+ny*v, x,y),0), on_domain=inlet_outlet)) ########## # Advection Diffusion ########## [x, y], [Ta] = p.add_neural_network(name="NN_Tair", inputs=["x", "y"], outputs=["Tair"]) # Solid/Air heat transfer p.add_constraint("TsolidTair_compat", enforce(equation=Eq(T,Ta), on_domain=bdry_solid)) fluxcompat_eq = Eq(5*(nx*T.diff(x)+ny*T.diff(y)), nx*Ta.diff(x)+ny*Ta.diff(y)) p.add_constraint("TsolidTair_flux_compat", enforce(equation=fluxcompat_eq, on_domain=bdry_solid)) # Insulating channel wall chwalls = p.add_boundary_subdomain("chwalls", geom=geo_air, criteria= (y<=0) | (y>=2)) p.add_constraint("chwalls_grad_c", enforce(equation=Eq(ny*Ta.diff(y),0), on_domain=chwalls)) # Advection Diffusion D = 0.02 # diffusion coefficient adv_diff_eq = Eq(u*Ta.diff(x)+v*Ta.diff(y), D*(Ta.diff(x,x)+Ta.diff(y,y))) p.add_constraint("adv_diff", enforce(equation=adv_diff_eq, on_domain=interior_air))
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/s3p3.py
from cfg import * [x, y], [u, v, pp] = p.add_neural_network(name="NN", inputs=["x", "y"], outputs=["u", "v", "p"]) w,h = 2,1 r1 = p.Rectangle("r1", (0,0), (w,h)) ch1 = p.Channel2D("ch1", (0,0), (w,h)) inlet = p.add_boundary_subdomain("inlet", geom=r1, criteria=Eq(x,0)) outlet = p.add_boundary_subdomain("outlet", geom=r1, criteria=Eq(x,w)) r_interior = p.add_interior_subdomain("r_interior", geom=r1) ch_interior = p.add_interior_subdomain("ch_interior", geom=ch1) noslip = p.add_boundary_subdomain("no_slip", geom=ch1) # p.add_constraint("c1", enforce(equation=Eq(x,0), on_domain=r_interior)) p.add_constraint("inlet_u", enforce(equation=Eq(u,1), on_domain=inlet)) p.add_constraint("inlet_v", enforce(equation=Eq(v,0), on_domain=inlet)) p.add_constraint("outlet_p", enforce(equation=Eq(pp,0), on_domain=outlet)) p.add_constraint("noslip_u", enforce(equation=Eq(u,0), on_domain=noslip)) p.add_constraint("noslip_v", enforce(equation=Eq(v,0), on_domain=noslip)) nu = 0.02 p.add_constraint("continuity", enforce(equation=Eq(u.diff(x)+v.diff(y),0), on_domain=ch_interior)) p.add_constraint("momentum_x", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(x), nu*(u.diff(x,x) + u.diff(y,y))), on_domain=ch_interior)) p.add_constraint("momentum_y", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(y), nu*(v.diff(x,x) + v.diff(y,y))), on_domain=ch_interior))
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/s2p1b.py
from cfg import * import sympy as sp # HEAT [x, y], [T] = p.add_neural_network(name="NN_Tsolid", inputs=["x", "y"], outputs=[ "Tsolid"]) geo_solid = p.Rectangle("rect", (0,0), (1,1)) interior_solid = p.add_interior_subdomain("interior_solid", geom=geo_solid) bdry_solid = p.add_boundary_subdomain("bdry_solid", geom=geo_solid, criteria=y>0) bdry_heat_src = p.add_boundary_subdomain("bdry_heat_src", geom=geo_solid, criteria=Eq(y,0) & (Abs(x-0.5)<0.1) ) Dsolid = 0.0625 p.add_constraint("diffusion_solid", enforce(equation=Eq(Dsolid*(T.diff(x,x)+T.diff(y,y)),0), on_domain=interior_solid)) p.add_constraint("diffusion_solid_bc", enforce(equation=Eq(T,0), on_domain=bdry_solid)) ny = sp.Symbol("normal_y") p.add_constraint("heat_source", enforce(equation=Eq(ny*T.diff(y),1), on_domain=bdry_heat_src)) # Air flow [x, y], [u, v, pp] = p.add_neural_network(name="NNflow", inputs=["x", "y"], outputs=["u", "v", "p"]) a_end=5 rect = p.Rectangle("rect_air", (-1,0), (a_end,2)) geo_air = p.GeometryDifference('gd0', rect, geo_solid) interior_air=p.add_interior_subdomain("interior_air", geom=geo_air, compute_sdf_derivatives=True) inlet = p.add_boundary_subdomain("inlet", geom=geo_air, criteria=Eq(x,-1)) outlet = p.add_boundary_subdomain("outlet", geom=geo_air, criteria=Eq(x,a_end)) noslip = p.add_boundary_subdomain("noslip", geom=geo_air, criteria= (x>-1) & (x<a_end)) p.add_constraint("inlet_u", enforce(equation=Eq(u,1), on_domain=inlet)) p.add_constraint("inlet_v", enforce(equation=Eq(v,0), on_domain=inlet)) p.add_constraint("outlet_p", enforce(equation=Eq(pp,0), on_domain=outlet)) p.add_constraint("noslip_u", enforce(equation=Eq(u,0), on_domain=noslip)) p.add_constraint("noslip_v", enforce(equation=Eq(v,0), on_domain=noslip)) nu = 0.02 p.add_constraint("continuity", enforce(equation=Eq(u.diff(x)+v.diff(y),0), on_domain=interior_air)) p.add_constraint("momentum_x", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(x), nu*(u.diff(x,x) + u.diff(y,y))), on_domain=interior_air)) p.add_constraint("momentum_y", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(y), nu*(v.diff(x,x) + v.diff(y,y))), on_domain=interior_air)) # Adding inlet/outlet Mass balance inlet_outlet = p.add_boundary_subdomain("inlet_outlet", geom=geo_air, criteria=Eq(x,-1) | Eq(x,a_end)) nx = sp.Symbol("normal_x") ny = sp.Symbol("normal_y") p.add_constraint("mass_balance_io", enforce(equation=Eq(Integral(nx*u+ny*v, x,y),0), on_domain=inlet_outlet))
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/s3p2c.py
from cfg import * import sympy as sp [x, y], [T] = p.add_neural_network(name="NN_Tsolid", inputs=["x", "y"], outputs=[ "Tsolid"]) geo_solid = p.Rectangle("rect", (0,0), (1,1)) interior_solid = p.add_interior_subdomain("interior_solid", geom=geo_solid) bdry_solid = p.add_boundary_subdomain("bdry_solid", geom=geo_solid, criteria=y>0) bdry_heat_src = p.add_boundary_subdomain("bdry_heat_src", geom=geo_solid, criteria=Eq(y,0) & (Abs(x-0.5)<0.1) ) Dsolid = 0.0625 p.add_constraint("diffusion_solid", enforce(equation=Eq(Dsolid*(T.diff(x,x)+T.diff(y,y)),0), on_domain=interior_solid)) p.add_constraint("diffusion_solid_bc", enforce(equation=Eq(T,0), on_domain=bdry_solid)) ny = sp.Symbol("normal_y") p.add_constraint("heat_source", enforce(equation=Eq(ny*T.diff(y),1), on_domain=bdry_heat_src))
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/s3p1b.py
from cfg import * import sympy as sp # HEAT [x, y], [T] = p.add_neural_network(name="NN_Tsolid", inputs=["x", "y"], outputs=[ "Tsolid"]) geo_solid = p.Rectangle("rect", (0,0), (1,1)) interior_solid = p.add_interior_subdomain("interior_solid", geom=geo_solid) bdry_solid = p.add_boundary_subdomain("bdry_solid", geom=geo_solid, criteria=y>0) bdry_heat_src = p.add_boundary_subdomain("bdry_heat_src", geom=geo_solid, criteria=Eq(y,0) & (Abs(x-0.5)<0.1) ) Dsolid = 0.0625 p.add_constraint("diffusion_solid", enforce(equation=Eq(Dsolid*(T.diff(x,x)+T.diff(y,y)),0), on_domain=interior_solid)) p.add_constraint("diffusion_solid_bc", enforce(equation=Eq(T,0), on_domain=bdry_solid)) ny = sp.Symbol("normal_y") p.add_constraint("heat_source", enforce(equation=Eq(ny*T.diff(y),1), on_domain=bdry_heat_src)) # Air flow [x, y], [u, v, pp] = p.add_neural_network(name="NNflow", inputs=["x", "y"], outputs=["u", "v", "p"]) a_end=5 rect = p.Rectangle("rect_air", (-1,0), (a_end,2)) geo_air = p.GeometryDifference('gd0', rect, geo_solid) interior_air=p.add_interior_subdomain("interior_air", geom=geo_air, compute_sdf_derivatives=True) inlet = p.add_boundary_subdomain("inlet", geom=geo_air, criteria=Eq(x,-1)) outlet = p.add_boundary_subdomain("outlet", geom=geo_air, criteria=Eq(x,a_end)) noslip = p.add_boundary_subdomain("noslip", geom=geo_air, criteria= (x>-1) & (x<a_end)) p.add_constraint("inlet_u", enforce(equation=Eq(u,1), on_domain=inlet)) p.add_constraint("inlet_v", enforce(equation=Eq(v,0), on_domain=inlet)) p.add_constraint("outlet_p", enforce(equation=Eq(pp,0), on_domain=outlet)) p.add_constraint("noslip_u", enforce(equation=Eq(u,0), on_domain=noslip)) p.add_constraint("noslip_v", enforce(equation=Eq(v,0), on_domain=noslip)) nu = 0.02 p.add_constraint("continuity", enforce(equation=Eq(u.diff(x)+v.diff(y),0), on_domain=interior_air)) p.add_constraint("momentum_x", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(x), nu*(u.diff(x,x) + u.diff(y,y))), on_domain=interior_air)) p.add_constraint("momentum_y", enforce(equation=Eq(u*u.diff(x)+v.diff(y)+pp.diff(y), nu*(v.diff(x,x) + v.diff(y,y))), on_domain=interior_air))
modulus-toolchain-master
examples/PINNs/01-PracticeProblems/solutions/s3p2b.py
from cfg import * [x, y], sOuts = p.add_neural_network(name="NN", inputs=["x", "y"], outputs=["u", "v"]) u, v = sOuts e_xx = p.add_submodel("epsilon_xx", u.diff(x)) e_yy = p.add_submodel("epsilon_yy", v.diff(y)) e_xy = p.add_submodel("epsilon_xy", 0.50 * u.diff(y) + 0.50 * v.diff(x)) # https://www.mathworks.com/matlabcentral/fileexchange/70183-elastic-constitutive-law-plane-stress E = 1 # 2e9 nu = 0.3 C = E / (1 + nu**2) sigma_xx = p.add_submodel("sigma_xx", C * (e_xx + nu * e_yy)) sigma_yy = p.add_submodel("sigma_yy", C * (nu * e_xx + e_yy)) sigma_xy = p.add_submodel("sigma_xy", C * (1 - nu) * e_xy) from sympy import Symbol n_x, n_y, n_z = Symbol("normal_x"), Symbol("normal_y"), Symbol("normal_z") traction_x = n_x * sigma_xx + n_y * sigma_xy traction_y = n_x * sigma_xy + n_y * sigma_yy # Geometry r_sz = 200 g_inner = p.Circle("inner_c", (0, 0), 10) g_outer = p.Rectangle("outer_c", (-r_sz, -r_sz), (r_sz, r_sz)) geom = p.GeometryDifference("geom", g_outer, g_inner) pressure = p.add_submodel( "traction_dot_normal", n_x * (traction_x) + n_y * (traction_y) ) inner_solid = p.add_interior_subdomain("inner_solid", geom=geom) equilibrium_x = Eq(sigma_xx.diff(x) + sigma_xy.diff(y), 0) equilibrium_y = Eq(sigma_xy.diff(x) + sigma_yy.diff(y), 0) p.add_constraint( "equilibrium_x", enforce(equation=equilibrium_x, on_domain=inner_solid) ) p.add_constraint( "equilibrium_y", enforce(equation=equilibrium_y, on_domain=inner_solid) ) inner_mesh_bdry = p.add_boundary_subdomain("inner_mesh", geom=g_inner) # p.add_constraint("inner_traction", enforce(equation=Eq(pressure, 0), # on_domain=inner_mesh_bdry)) p.add_constraint( "inner_traction_x", enforce(equation=Eq(traction_x, 0), on_domain=inner_mesh_bdry) ) p.add_constraint( "inner_traction_y", enforce(equation=Eq(traction_y, 0), on_domain=inner_mesh_bdry) ) top_bdry = p.add_boundary_subdomain("top_bdry", geom=g_outer, criteria=Eq(y, r_sz)) p.add_constraint( "top_traction_y", enforce(equation=Eq(traction_y, 1), on_domain=top_bdry) ) p.add_constraint( "top_traction_x", enforce(equation=Eq(traction_x, 0), on_domain=top_bdry) ) bottom_bdry = p.add_boundary_subdomain( "bottom_bdry", geom=g_outer, criteria=Eq(y, -r_sz) ) p.add_constraint( "bottom_traction_y", enforce(equation=Eq(traction_y, -1), on_domain=bottom_bdry) ) p.add_constraint( "bottom_traction_x", enforce(equation=Eq(traction_x, 0), on_domain=bottom_bdry) ) left_right_bdry = p.add_boundary_subdomain( "left_right_bdry", geom=g_outer, criteria=Or(Eq(x, r_sz), Eq(x, -r_sz)) ) p.add_constraint( "left_right_traction_x", enforce(equation=Eq(traction_x, 0), on_domain=left_right_bdry), ) p.add_constraint( "left_right_traction_y", enforce(equation=Eq(traction_y, 0), on_domain=left_right_bdry), )
modulus-toolchain-master
examples/PINNs/02-StructuralAnalysis/struct_2d_problem.py
from cfg import * [x, y, z, R], sOuts = p.add_neural_network( name="NN", inputs=["x", "y", "z", "R"], outputs=["u", "v", "w"] ) u, v, w = sOuts params = {R: (10, 20)} e_xx = p.add_submodel("epsilon_xx", u.diff(x)) e_yy = p.add_submodel("epsilon_yy", v.diff(y)) e_zz = p.add_submodel("epsilon_zz", w.diff(z)) e_xy = p.add_submodel("epsilon_xy", 0.50 * u.diff(y) + 0.50 * v.diff(x)) e_yz = p.add_submodel("epsilon_yz", 0.50 * v.diff(z) + 0.50 * w.diff(y)) e_zx = p.add_submodel("epsilon_zx", 0.50 * w.diff(x) + 0.50 * u.diff(z)) E = 1 # 2e9 nu = 0.3 C = E / (1 + nu**2) mu = E / ((1 + nu) * 2) C11 = (E * (1 - nu)) / ((1 + nu) * (1 - 2 * nu)) C12 = (E * nu) / ((1 + nu) * (1 - 2 * nu)) sigma_xx = p.add_submodel("sigma_xx", C11 * e_xx + C12 * e_yy + C12 * e_zz) sigma_yy = p.add_submodel("sigma_yy", C12 * e_xx + C11 * e_yy + C12 * e_zz) sigma_zz = p.add_submodel("sigma_zz", C12 * e_xx + C12 * e_yy + C11 * e_zz) sigma_yz = p.add_submodel("sigma_yz", mu * 2 * e_yz) sigma_zx = p.add_submodel("sigma_zx", mu * 2 * e_zx) sigma_xy = p.add_submodel("sigma_xy", mu * 2 * e_xy) # refer to : https://en.wikiversity.org/wiki/Elasticity/Constitutive_relations from sympy import Symbol n_x, n_y, n_z = Symbol("normal_x"), Symbol("normal_y"), Symbol("normal_z") traction_x = n_x * sigma_xx + n_y * sigma_xy + n_z * sigma_zx traction_y = n_x * sigma_xy + n_y * sigma_yy + n_z * sigma_yz traction_z = n_x * sigma_zx + n_y * sigma_yz + n_z * sigma_zz # Geometry r_sz = 200 * 1.0 g_inner = p.Sphere("inner_c", (0, 0, 0), R, params=params) g_outer = p.Box("outer_c", (-r_sz, -r_sz, -r_sz), (r_sz, r_sz, r_sz)) geom = p.GeometryDifference("geom", g_outer, g_inner) pressure = p.add_submodel( "traction_dot_normal", n_x * (traction_x) + n_y * (traction_y) + n_z * (traction_z) ) # ----- Dirichlet rect = p.Rectangle("rect", (-r_sz, -r_sz), (r_sz, r_sz)) bdry = p.add_boundary_subdomain( "bdry", geom=rect, params={z: float(r_sz), **params}, criteria=Eq(y, r_sz) ) p.add_constraint("bdry_w0", enforce(equation=Eq(w, 0), on_domain=bdry)) # ------ inner_solid = p.add_interior_subdomain("inner_solid", geom=geom, params=params) equilibrium_x = Eq(sigma_xx.diff(x) + sigma_xy.diff(y) + sigma_zx.diff(z), 0) equilibrium_y = Eq(sigma_xy.diff(x) + sigma_yy.diff(y) + sigma_yz.diff(z), 0) equilibrium_z = Eq(sigma_zx.diff(x) + sigma_yz.diff(y) + sigma_zz.diff(z), 0) p.add_constraint( "equilibrium_x", enforce(equation=equilibrium_x, on_domain=inner_solid) ) p.add_constraint( "equilibrium_y", enforce(equation=equilibrium_y, on_domain=inner_solid) ) p.add_constraint( "equilibrium_z", enforce(equation=equilibrium_z, on_domain=inner_solid) ) inner_mesh_bdry = p.add_boundary_subdomain("inner_mesh", geom=g_inner, params=params) # p.add_constraint("inner_traction", enforce(equation=Eq(pressure, 0), # on_domain=inner_mesh_bdry)) p.add_constraint( "inner_traction_x", enforce(equation=Eq(traction_x, 0), on_domain=inner_mesh_bdry) ) p.add_constraint( "inner_traction_y", enforce(equation=Eq(traction_y, 0), on_domain=inner_mesh_bdry) ) p.add_constraint( "inner_traction_z", enforce(equation=Eq(traction_z, 0), on_domain=inner_mesh_bdry) ) top_bdry = p.add_boundary_subdomain( "top_bdry", geom=g_outer, criteria=Eq(y, r_sz), params=params ) p.add_constraint( "top_traction_y", enforce(equation=Eq(traction_y, 1), on_domain=top_bdry) ) p.add_constraint( "top_traction_x", enforce(equation=Eq(traction_x, 0), on_domain=top_bdry) ) p.add_constraint( "top_traction_z", enforce(equation=Eq(traction_z, 0), on_domain=top_bdry) ) bottom_bdry = p.add_boundary_subdomain( "bottom_bdry", geom=g_outer, criteria=Eq(y, -r_sz), params=params ) p.add_constraint( "bottom_traction_y", enforce(equation=Eq(traction_y, -1), on_domain=bottom_bdry) ) p.add_constraint( "bottom_traction_x", enforce(equation=Eq(traction_x, 0), on_domain=bottom_bdry) ) p.add_constraint( "bottom_traction_z", enforce(equation=Eq(traction_z, 0), on_domain=bottom_bdry) ) left_right_bdry = p.add_boundary_subdomain( "left_right_bdry", geom=g_outer, criteria=Or(Eq(x, r_sz), Eq(x, -r_sz), Eq(z, r_sz), Eq(z, -r_sz)), params=params, ) p.add_constraint( "left_right_traction_x", enforce(equation=Eq(traction_x, 0), on_domain=left_right_bdry), ) p.add_constraint( "left_right_traction_y", enforce(equation=Eq(traction_y, 0), on_domain=left_right_bdry), ) p.add_constraint( "left_right_traction_z", enforce(equation=Eq(traction_z, 0), on_domain=left_right_bdry), )
modulus-toolchain-master
examples/PINNs/02-StructuralAnalysis/struct_3d_problem.py
modulus-toolchain-master
mtc/__init__.py
from sympy import Symbol, Function, Or, And, Eq, Abs, Integral, expand import sympy import os, sys def load_template(filename): with open(os.path.join(os.path.dirname(__file__), filename)) as f: return f.read() def load_yaml(filename): """Loads a YAML file using a path relative to where this module resides""" import yaml with open(os.path.join(os.path.dirname(__file__), filename)) as f: return yaml.safe_load(f) class PDParam: def __init__(self, geom, param_ranges=None): self._geom = geom self._params = param_ranges def sample_interior(self, *args, **kwargs): d = self._geom.sample_interior(*args, **kwargs) shp = d["x"].shape nr = shp[0] for param, rng in self._params.items(): data = np.random.rand(nr).reshape(shp) delta = rng[1] - rng[0] d[param] = data * delta + rng[0] return d def sample_boundary(self, *args, **kwargs): d = self._geom.sample_boundary(*args, **kwargs) for k, v in d.items(): d[k] = np.vstack([v, v, v]) shp = d["x"].shape nr = shp[0] for param, rng in self._params.items(): data = np.random.rand(nr).reshape(shp) delta = rng[1] - rng[0] d[param] = data * delta + rng[0] return d class InteriorSubdomain: def __init__(self, geom, criteria): self._geom = geom self._criteria = criteria def sample(self, *args, **kwargs): self._geom.sample_interior(*args, **kwargs) class BoundarySubdomain: def __init__(self, geom, criteria): self._geom = geom self._criteria = criteria def sample(self, *args, **kwargs): self._geom.sample_boundary(*args, **kwargs) def get_variables(self): d = { "normal_x": 1, "normal_y": 1, "normal_z": 1, } # self._geom.sample_boundary(1) return {v: Symbol(v) for v in d.keys()} def enforce(equation=None, on_domain=None): return {"equation": equation, "on_domain": on_domain} class PINNProblem: def __init__(self, name="PINN problem", cfg=None): self._problem_name = name self._vars = {} # str -> sympy.Symbol self._nns = {} self._nn_outs = set() self.domain = None # Domain() self._nodes = [] self._model = [] self._submodels = {} self._constraints = {} self._data_constraints = {} self._geom = {} self._interior_subdomains = {} self._boundary_subdomains = {} self._no_modulus_main = False def load_conf(self): import yaml with open(os.path.join("conf", "config.yaml")) as f: conf = yaml.safe_load(f) return conf def save_conf(self, conf): import yaml with open(os.path.join("conf", "config.yaml"), "w") as f: yaml.safe_dump(conf, f) def to_hdf(self, hdf_fname, data): import h5py with h5py.File(hdf_fname, "w") as f: for k, v in data.items(): f.create_dataset(k, data=v) def init_config(self, only1storder=False, max_steps=1000): if only1storder: self.compile_to_firstorder() conf = self.load_conf() def mkdeqc(dc): d = {k: str(v) for k, v in dc.items()} if dc["on_domain"] in self._interior_subdomains: d["domain_type"] = "interior" else: d["domain_type"] = "boundary" d["batch_size"] = 1000 return d def make_training_stages(): d = { "stage-dag": [], "stages": { "stage1": { "description": "Default stage", "data": {}, }, }, } return d # if "modulus_project" not in conf: nn_type = "fully_connected" # nn_type = "fourier_net" nn = load_yaml(os.path.join("..", "mpc", "mpc", "config_types.yaml"))["arch"][ nn_type ] conf["modulus_project"] = { "project_name": self._problem_name, "submodels": {k: str(v) for k, v in self._submodels.items()}, "equation_constraints": { k: mkdeqc(v) for k, v in self._constraints.items() }, "neural_networks": { nn_name: { "nn_type": nn_type, "_target_": nn["_target_"], **{k: v["default"] for k, v in nn.items() if k != "_target_"}, } for nn_name in self._nns }, } conf["modulus_project"]["training"] = make_training_stages() self.save_conf(conf) from mtc.config_utils import customize_schema, config2dictV2 conf["modulus_project"]["training"]["stages"]["stage1"]["data"] = config2dictV2( customize_schema() ) s1data = conf["modulus_project"]["training"]["stages"]["stage1"]["data"] s1data["training"]["max_steps"] = max_steps self.save_conf(conf) def get_variables(self, name): assert ( name in self._boundary_subdomains ), "variable must be a boundary subdomain" d = { "normal_x": 1, "normal_y": 1, "normal_z": 1, } # self._geom.sample_boundary(1) return {v: Symbol(v) for v in d.keys()} def GeometryCustomWarp(self, name, code_str, func, param_list, params=None): self._custom_warp_code = code_str assert name not in self._geom self._geom[name] = { "type": "GeometryCustomWarp", "args": param_list, "func": func, "params": params, } return name def Rectangle(self, name, a, b, params=None, rotate=None): assert name not in self._geom self._geom[name] = { "type": "Rectangle", "args": (a, b), "params": params, "rotate": rotate, } return name def Box(self, name, a, b, params=None, rotate=None): assert name not in self._geom self._geom[name] = { "type": "Box", "args": (a, b), "params": params, "rotate": rotate, } return name def Line2D(self, name, a, b, params=None, rotate=None): assert name not in self._geom self._geom[name] = { "type": "Line", "args": (a, b), "params": params, "rotate": rotate, } return name def Channel2D(self, name, a, b, params=None, rotate=None): assert name not in self._geom self._geom[name] = { "type": "Channel2D", "args": (a, b), "params": params, "rotate": rotate, } return name def Polygon(self, name, line, params=None, rotate=None): assert name not in self._geom self._geom[name] = { "type": "Polygon", "args": (line,), "params": params, "rotate": rotate, } return name def Circle(self, name, a, b, params=None, rotate=None): assert name not in self._geom self._geom[name] = { "type": "Circle", "args": (a, b), "params": params, "rotate": rotate, } return name def Sphere(self, name, a, b, params=None, rotate=None): assert name not in self._geom self._geom[name] = { "type": "Sphere", "args": (a, b), "params": params, "rotate": rotate, } return name def Cylinder(self, name, center, radius, height, params=None, rotate=None): assert name not in self._geom self._geom[name] = { "type": "Cylinder", "args": (center, radius, height), "params": params, "rotate": rotate, } return name def Line1D(self, name, a, b, params=None): assert name not in self._geom self._geom[name] = {"type": "Line1D", "args": (a, b), "params": params} return name def Point1D(self, name, a, params=None): assert name not in self._geom self._geom[name] = {"type": "Point1D", "args": (a,), "params": params} return name def GeometryFromSTL(self, name, fname, airtight=False): assert name not in self._geom self._geom[name] = {"type": "STL", "args": (fname, airtight)} return name def GeometryDifference(self, name, g, og): assert g in self._geom assert og in self._geom self._geom[name] = {"type": "GeometryDifference", "g": g, "og": og} return name def GeometryUnion(self, name, g, og): assert g in self._geom assert og in self._geom self._geom[name] = {"type": "GeometryUnion", "g": g, "og": og} return name def GeometryIntersection(self, name, g, og): assert g in self._geom assert og in self._geom self._geom[name] = {"type": "GeometryIntersection", "g": g, "og": og} return name def CustomGeometry( self, name, module_path, module_name, class_name, *args, **kwargs ): self._geom[name] = { "type": "CustomGeometry", "module_path": module_path, "module_name": module_name, "class_name": class_name, "args": args, "kwargs": kwargs, } return name def compile_to_firstorder(self): print("compile_to_firstorder") # collect the unknown functions for which second and higher # order derivatives are used # collect all unknown functions across all NN definitions u_vars = [u for d in self._nns.values() for u in d["invars"]] u_fns = [u for d in self._nns.values() for u in d["outvars"]] # print(u_fns) ufn2order = {u: {v: 0 for v in u_vars} for u in u_fns} expanded_constraints = {} for cname, eq_constraint in self._constraints.items(): eq = eq_constraint["equation"] eq = eq.lhs - eq.rhs # expand submodels in equation for sname, expr in self._submodels.items(): sm_fn = Function(sname)(*self._vars.values()) eq = sympy.simplify(eq.replace(sm_fn, expr)) expanded_constraints[cname] = { "equation": Eq(eq, 0), "on_domain": eq_constraint["on_domain"], } for u in u_fns: if len(eq.find(u)) > 0: for o in range(1, 5): for v in ufn2order[u]: if eq.find(u.diff(v, o)): ufn2order[u][v] = max(o, ufn2order[u][v]) # print("\n", expanded_constraints) # print() # print(self._submodels) # print() # for u, uo in ufn2order.items(): # print(u, ":", uo) # collect all required auxiliary unknown functions aux_ufns = [] current_fn2aux_fn = {} aux_compat = {} # compatibility constraints; e.g., d_dx1_u = u.diff(x) for u, v2o in ufn2order.items(): for v, o in v2o.items(): if o > 1: fnname = str(type(u)) new_ufns = [f"d_d{v}{i+1}_{fnname}" for i in range(o - 1)] aux_ufns += new_ufns current_fn2aux_fn[u.diff(v)] = Function(new_ufns[0])( *self._vars.values() ) for io in range(o - 1): e = u.diff(v, io + 1 + 1) sname = new_ufns[io] current_fn2aux_fn[e] = Function(sname)( *self._vars.values() ).diff(v) ufn = u new_u = Function(new_ufns[0])(*self._vars.values()) aux_compat[new_u] = Eq(ufn.diff(v), new_u) for sname in new_ufns: new_u = Function(sname)(*self._vars.values()) aux_compat[new_u.diff(v)] = Eq(ufn.diff(v), new_u) ufn = new_u # print("\nNeed new aux u funs", aux_ufns) # print(current_fn2aux_fn) # print(aux_compat) # add new ufuncs for aufunc in aux_ufns: self.add_neural_network( name=f"{aufunc}NN", inputs=[v for v in self._vars], outputs=[aufunc] ) # now rewrite the equations using the new auxiliary unknown functions rewritten_constraints = {} new_constraints = set() ci = 0 handled = [] for cname, eq_c in expanded_constraints.items(): eq = eq_c["equation"] for cur_fn, new_fn in current_fn2aux_fn.items(): if eq.find(cur_fn): eq = eq.replace(cur_fn, new_fn) new_constraints.add(aux_compat[new_fn]) rewritten_constraints[cname] = { "equation": eq, "on_domain": eq_c["on_domain"], } eqc_str = str(aux_compat[new_fn]) + str(eq_c["on_domain"]) if eqc_str not in handled: handled += [eqc_str] ci += 1 rewritten_constraints[cname + f"{ci}"] = { "equation": aux_compat[new_fn], "on_domain": eq_c["on_domain"], } from pprint import pprint # print("rewritten_constraints") # pprint(rewritten_constraints) for k, v in rewritten_constraints.items(): self._constraints[k] = v def compile_symbols(self): sl = ["", "# " + "-" * 40, "# Symbols for variables", ""] for v in self._vars: sl += [f"{v} = Symbol('{v}')"] return "\n".join(sl) def compile_neural_networks(self): def load_yaml(filename): """Loads a YAML file using a path relative to where this module resides""" import yaml with open(os.path.join(os.path.dirname(__file__), filename)) as f: return yaml.safe_load(f) # conf = load_yaml("../mpc/mpc/config_types_v2.yaml") conf = load_yaml("config_types_v2.yaml") sl = ["", "# " + "-" * 40, "# Neural Networks", ""] pvars = ",".join(self._vars.keys()) for nnname, nn in self._nns.items(): for ov in nn["outputs"]: sl += [f"{ov} = Function('{ov}')({pvars})"] sl += [""] for nnname, nn in self._nns.items(): ins = ",".join(f"Key('{v}')" for v in nn["inputs"]) outs = ",".join(f"Key('{v}')" for v in nn["outputs"]) # nn_conf = self._conf["modulus_project"]["neural_networks"][nnname] nn_conf = self._conf["modulus_project"]["training"]["stages"][ self._stage_id ]["data"][nnname] nn_target = nn_conf["_target_"].split(".") NNArch = nn_target[-1] sl += ["from " + ".".join(nn_target[:-1]) + " import " + NNArch] def get_hint(k): try: return conf["arch"]["choices"][nn_conf["__selected__"]][k]["hint"] except: return "" other_nn_args = "\n ".join( [ f"{k}={v}, # {get_hint(k)}" for k, v in nn_conf.items() if k not in ["_target_", "nn_type"] and not k.startswith("__") ] ) s = f"""net = {NNArch}( input_keys= [{ins}], output_keys=[{outs}], {other_nn_args} )""" sl += [s] nntrainable = self._conf["modulus_project"]["training"]["stages"][ self._stage_id ]["data"]["Neural Networks"][f"{nnname} Trainable"] sl += [ f"nodes += [net.make_node(name='{nnname}', jit=cfg.jit, optimize={nntrainable})]" ] sl += [""] return "\n".join(sl) def compile_submodels(self): sl = ["", "# " + "-" * 40, "# SubModels", ""] for smname, expr in self._submodels.items(): sl += [f"{smname} = sympy.sympify('{expr}')"] sl += [f"nodes += [Node.from_sympy({smname}, '{smname}')]", ""] return "\n".join(sl) def compile_geometries(self): sl = ["", "# " + "-" * 40, "# Geometries", ""] for gname, g in self._geom.items(): if g["type"] == "CustomGeometry": # HACK -- Move module code to training/stageX import os path = os.path.join("training", self._stage_id) orig_module = os.path.join(g["module_path"], g["module_name"] + ".py") os.system(f"cp {orig_module} {path}") # End HACK sl += [f"from {g['module_name']} import {g['class_name']}"] print(g["args"]) args = "(" + ",".join(list(g["args"])) + ")" sl += [f"{gname} = {g['class_name']}{args}"] continue if g["type"] == "GeometryDifference": sl += [f"{gname}={g['g']}-{g['og']}"] elif g["type"] == "GeometryUnion": sl += [f"{gname}={g['g']}+{g['og']}"] elif g["type"] == "GeometryIntersection": sl += [f"{gname}={g['g']} & {g['og']}"] elif g["type"] == "STL": fname, airtight = g["args"] sl += [ "from modulus.sym.geometry.tessellation import Tessellation", f"{gname}=Tessellation.from_stl('{fname}', airtight={airtight}) ", ] else: # CSG like Line1D, Circle, Box, etc. rotate_str = "" if "rotate" in g and g["rotate"] is not None: rotate_str = f".rotate{g['rotate']}" if "params" in g and g["params"] is not None: sl += [ "from modulus.sym.geometry.parameterization import Parameterization, Parameter" ] # pstr = "Parameterization({" # for k, v in g["params"].items(): # pstr += f'Parameter("{k}"): {v}, ' # pstr += "})" # # pstr = f"Parameterization({g['params']})" # rotate_str = rotate_str[:-1] + f", parameterization={pstr})" if "params" in g and g["params"] is not None: sl += [ "from modulus.sym.geometry.parameterization import Parameterization" ] pstr = f"Parameterization({g['params']})" args = ( "(" + ",".join([str(e) for e in g["args"]]) + f", parameterization={pstr})" ) sl += [f"{gname}={g['type']}{args}{rotate_str}"] else: sl += [f"{gname}={g['type']}{g['args']}{rotate_str}"] # if g["type"] != "GeometryDifference": # sl += [f"{gname}={g['type']}{g['args']}"] # else: # sl += [f"{gname}={g['g']}-{g['og']}"] return "\n".join(sl) def compile_interior_subdomains(self): sl = ["", "# " + "-" * 40, "# Interior SubDomains", ""] return "\n".join(sl) def compile_boundary_subdomains(self): sl = ["", "# " + "-" * 40, "# Boundary SubDomains", ""] return "\n".join(sl) def compile_equations(self): sl = ["", "# " + "-" * 40, "# Equations", ""] for cname, c in self._constraints.items(): if isinstance(c["equation"].lhs, Integral): eqs = str(c["equation"].lhs.args[0]) sl += [f"eq=sympy.sympify('{eqs}')"] sl += [f"{cname} = eq"] sl += [f"nodes += [Node.from_sympy({cname}, '{cname}')]"] else: eqs = str(c["equation"]) sl += [f"eq=sympy.sympify('{eqs}')"] sl += [f"{cname} = eq.rhs - eq.lhs"] sl += [f"nodes += [Node.from_sympy({cname}, '{cname}')]"] # self._nodes += [Node.from_sympy(eq.lhs - eq.rhs, str(c_name))] sl += [""] sl += [""] return "\n".join(sl) def compile_equation_constraints(self): sl = ["", "# " + "-" * 40, "# Equation Constraints", ""] from pprint import pprint eq_cstr = self._conf["modulus_project"]["training"]["stages"][self._stage_id][ "data" ]["Equation Constraints"] def validate_lambda_weighting_interior(cname, c, ls): import sys unavailable = ["normal_x", "normal_y", "normal_z"] for v in unavailable: if v in ls: print( f"[error][constraint: {cname}] variable `{v}` not available in Interior sub-domain, only in Boundary subdomains." ) sys.exit(1) def validate_lambda_weighting_bdry(cname, c, ls): import sys if "sdf" in ls: print( f"[error][constraint: {cname}] variable `sdf` not available in Boundary sub-domain" ) sys.exit(1) for cname, c in self._constraints.items(): if not eq_cstr[cname]["include"]: continue domain = c["on_domain"] if c["on_domain"] in self._interior_subdomains: sd = self._interior_subdomains[domain] geom = sd["geom"] ps = "None" if sd["params"] is not None: ps = ( "{" + ",".join([f"'{k}':{v}" for k, v in sd["params"].items()]) + "}" ) geom = f"PDParam(geom={geom}, param_ranges={ps})" criteria = sd["criteria"] if criteria is not None: criteria = f"sympy.sympify('{str(criteria)}')" outvar = "{" + f"'{cname}': 0" + "}" validate_lambda_weighting_interior( cname, c, eq_cstr[cname]["lambda_weighting"] ) s = f""" pic = PointwiseInteriorConstraint( nodes=nodes, geometry={geom}, criteria={criteria}, batch_size={eq_cstr[cname]["batch_size"]}, #cfg.modulus_project.equation_constraints.{cname}.batch_size, outvar={outvar}, compute_sdf_derivatives={sd["compute_sdf_derivatives"]}, lambda_weighting={{'{cname}': sympy.sympify('{eq_cstr[cname]["lambda_weighting"]}')}} ) domain.add_constraint(pic, '{cname}') """ sl += [s] if c["on_domain"] in self._boundary_subdomains: sd = self._boundary_subdomains[domain] geom = sd["geom"] ps = "None" if sd["params"] is not None: ps = ( "{" + ",".join([f"'{k}':{v}" for k, v in sd["params"].items()]) + "}" ) geom = f"PDParam(geom={geom}, param_ranges={ps})" criteria = sd["criteria"] if criteria is not None: criteria = f"sympy.sympify('{str(criteria)}')" outvar = "{" + f"'{cname}': 0" + "}" # check for errors in lambda_weightint expression validate_lambda_weighting_bdry( cname, c, eq_cstr[cname]["lambda_weighting"] ) if isinstance(c["equation"].lhs, Integral): eq = c["equation"] print("Integral constraint") print(c) lambda_exp = eq_cstr[cname]["lambda_weighting"] lambda_w = "{" + f"'{cname}': sympy.sympify('{lambda_exp}'), " + "}" outvar = "{" + f"'{cname}': {eq.rhs}" + "}" s = f""" ibc = IntegralBoundaryConstraint( nodes=nodes, geometry={geom}, criteria={criteria}, batch_size=1, integral_batch_size={eq_cstr[cname]["batch_size"]}, outvar={outvar}, lambda_weighting={lambda_w} ) domain.add_constraint(ibc, '{cname}') """ sl += [s] continue s = f""" pbc = PointwiseBoundaryConstraint( nodes=nodes, geometry={geom}, criteria={criteria}, batch_size={eq_cstr[cname]["batch_size"]}, #cfg.modulus_project.equation_constraints.{cname}.batch_size, outvar={outvar}, lambda_weighting={{'{cname}': sympy.sympify('{eq_cstr[cname]["lambda_weighting"]}')}} ) domain.add_constraint(pbc, '{cname}') """ sl += [s] return "\n".join(sl) def compile_equation_constraints_opt(self): sl = ["", "# " + "-" * 40, "# Equation Constraints", ""] from pprint import pprint print("compile_equation_constraints_opt") eq_cstr = self._conf["modulus_project"]["training"]["stages"][self._stage_id][ "data" ]["Equation Constraints"] def validate_lambda_weighting_interior(cname, c, ls): import sys unavailable = ["normal_x", "normal_y", "normal_z"] for v in unavailable: if v in ls: print( f"[error][constraint: {cname}] variable `{v}` not available in Interior sub-domain, only in Boundary subdomains." ) sys.exit(1) def validate_lambda_weighting_bdry(cname, c, ls): import sys if "sdf" in ls: print( f"[error][constraint: {cname}] variable `sdf` not available in Boundary sub-domain" ) sys.exit(1) ## group constraints c_dict = {} for cname, c in self._constraints.items(): if not eq_cstr[cname]["include"]: continue domain = c["on_domain"] batch_size = eq_cstr[cname]["batch_size"] k = (domain, batch_size) if k not in c_dict: c_dict[k] = [] c_dict[k] += [(cname, c)] pprint({k: len(c_dict[k]) for k in c_dict.keys()}) ## for (domain, batch_size), constraints in c_dict.items(): # for cname, c in self._constraints.items(): # if not eq_cstr[cname]["include"]: # continue parameterization = "" if domain in self._interior_subdomains: sd = self._interior_subdomains[domain] geom = sd["geom"] if sd["params"] is not None: ps = ( "{" + ",".join([f"'{k}':{v}" for k, v in sd["params"].items()]) + "}" ) # geom = f"PDParam(geom={geom}, param_ranges={ps})" ps = ( "{" + ",".join( [f"Parameter('{k}'):{v}" for k, v in sd["params"].items()] ) + "}" ) parameterization = f", parameterization=Parameterization({ps})" criteria = sd["criteria"] if criteria is not None: criteria = f"sympy.sympify('{str(criteria)}')" outvar = "{" + f"'{cname}': 0" + "}" outvar = "{" lambda_w = "{" for cname, c in constraints: lambda_exp = eq_cstr[cname]["lambda_weighting"] validate_lambda_weighting_interior(cname, c, lambda_exp) outvar += f"'{cname}': 0, " lambda_w += f"'{cname}': sympy.sympify('{lambda_exp}'), " outvar += "}" lambda_w += "}" s = f""" pic = PointwiseInteriorConstraint( nodes=nodes, geometry={geom}, criteria={criteria}, batch_size={eq_cstr[cname]["batch_size"]}, #cfg.modulus_project.equation_constraints.{cname}.batch_size, outvar={outvar}, compute_sdf_derivatives={sd["compute_sdf_derivatives"]}, lambda_weighting={lambda_w}{parameterization} ) domain.add_constraint(pic, '{cname}') """ sl += [s] if domain in self._boundary_subdomains: sd = self._boundary_subdomains[domain] geom = sd["geom"] if sd["params"] is not None: ps = ( "{" + ",".join([f"'{k}':{v}" for k, v in sd["params"].items()]) + "}" ) # geom = f"PDParam(geom={geom}, param_ranges={ps})" ps = ( "{" + ",".join( [f"Parameter('{k}'):{v}" for k, v in sd["params"].items()] ) + "}" ) parameterization = f", parameterization=Parameterization({ps})" criteria = sd["criteria"] if criteria is not None: criteria = f"sympy.sympify('{str(criteria)}')" cname, c = constraints[0] if isinstance(c["equation"].lhs, Integral): eq = c["equation"] print("Integral constraint") print(c) lambda_exp = eq_cstr[cname]["lambda_weighting"] lambda_w = "{" + f"'{cname}': sympy.sympify('{lambda_exp}'), " + "}" outvar = "{" + f"'{cname}': {eq.rhs}" + "}" s = f""" ibc = IntegralBoundaryConstraint( nodes=nodes, geometry={geom}, criteria={criteria}, batch_size=1, integral_batch_size={eq_cstr[cname]["batch_size"]}, outvar={outvar}, lambda_weighting={lambda_w}{parameterization} ) domain.add_constraint(ibc, '{cname}') """ sl += [s] continue outvar = "{" + f"'{cname}': 0" + "}" outvar = "{" lambda_w = "{" for cname, c in constraints: lambda_exp = eq_cstr[cname]["lambda_weighting"] validate_lambda_weighting_interior(cname, c, lambda_exp) outvar += f"'{cname}': 0, " lambda_w += f"'{cname}': sympy.sympify('{lambda_exp}'), " outvar += "}" lambda_w += "}" s = f""" pbc = PointwiseBoundaryConstraint( nodes=nodes, geometry={geom}, criteria={criteria}, batch_size={eq_cstr[cname]["batch_size"]}, #cfg.modulus_project.equation_constraints.{cname}.batch_size, outvar={outvar}, lambda_weighting={lambda_w}{parameterization} ) domain.add_constraint(pbc, '{cname}') """ sl += [s] return "\n".join(sl) def compile_equation_constraints_sampled(self): sl = ["", "# " + "-" * 40, "# Equation Constraints Sampled", ""] sl += ["import h5py # to load HDF5 samples"] from pprint import pprint eq_cstr = self._conf["modulus_project"]["training"]["stages"][self._stage_id][ "data" ]["Equation Constraints"] for cname, c in self._constraints.items(): if not eq_cstr[cname]["include"]: continue domain = c["on_domain"] if c["on_domain"] in self._interior_subdomains: sd = self._interior_subdomains[domain] geom = sd["geom"] if sd["params"] is not None: ps = ( "{" + ",".join([f"'{k}':{v}" for k, v in sd["params"].items()]) + "}" ) geom = f"PDParam(geom={geom}, param_ranges={ps})" criteria = sd["criteria"] if criteria is not None: criteria = f"sympy.sympify('{str(criteria)}')" # vlist = list(self._vars) + ["sdf"] # invar = "{" + ", ".join([f"'{v}': dv['{v}'][:]" for v in vlist]) + "}" outvar = "{" + f"'{cname}': np.zeros_like(dv['x'])" + "}" fname = f"../samples/{domain}.hdf5" # fname = f"../samples/{cname}.hdf5" s = f""" dv = dict() with h5py.File('{fname}', 'r') as f: for k in f.keys(): dv[k] = f[k][:] if k == 'area': dv[k] *= 1000 # HACK pic = PointwiseConstraint.from_numpy( nodes=nodes, invar=dv, batch_size={eq_cstr[cname]["batch_size"]}, #cfg.modulus_project.equation_constraints.{cname}.batch_size, outvar={outvar}, ) domain.add_constraint(pic, '{cname}') """ sl += [s] if c["on_domain"] in self._boundary_subdomains: sd = self._boundary_subdomains[domain] geom = sd["geom"] if sd["params"] is not None: ps = ( "{" + ",".join([f"'{k}':{v}" for k, v in sd["params"].items()]) + "}" ) geom = f"PDParam(geom={geom}, param_ranges={ps})" criteria = sd["criteria"] if criteria is not None: criteria = f"sympy.sympify('{str(criteria)}')" # invar = "{" + ", ".join([f"'{v}': dv['{v}'][:]" for v in vlist]) + "}" outvar = "{" + f"'{cname}': np.zeros_like(dv['x'])" + "}" fname = f"../samples/{domain}.hdf5" # fname = f"../samples/{cname}.hdf5" s = f""" dv = dict() with h5py.File('{fname}', 'r') as f: for k in f.keys(): dv[k] = f[k][:] if k == 'area': dv[k] *= 1000 # HACK pic = PointwiseConstraint.from_numpy( nodes=nodes, invar=dv, batch_size={eq_cstr[cname]["batch_size"]}, #cfg.modulus_project.equation_constraints.{cname}.batch_size, outvar={outvar}, ) domain.add_constraint(pic, '{cname}') """ # s = f""" # pbc = PointwiseBoundaryConstraint( # nodes=nodes, # geometry={geom}, # criteria={criteria}, # batch_size={eq_cstr[cname]["batch_size"]}, #cfg.modulus_project.equation_constraints.{cname}.batch_size, # outvar={outvar}, # ) # domain.add_constraint(pbc, '{cname}') # """ sl += [s] return "\n".join(sl) def compile_equation_constraints_sampler(self): sl = ["", "# " + "-" * 40, "# Equation Constraints Sampler", ""] sl += ["import time, os", "ecs_t0 = time.time()"] sl += ["if not os.path.exists('samples'):", " os.system('mkdir samples')"] from pprint import pprint eq_cstr = self._conf["modulus_project"]["training"]["stages"][self._stage_id][ "data" ]["Equation Constraints"] for cname, c in self._constraints.items(): if not eq_cstr[cname]["include"]: continue domain = c["on_domain"] if c["on_domain"] in self._interior_subdomains: sd = self._interior_subdomains[domain] criteria = sd["criteria"] if criteria is not None: criteria = f"sympy.sympify('{str(criteria)}')" geom = sd["geom"] parameterization = "" if sd["params"] is not None: ps = ( "{" + ",".join([f"'{k}':{v}" for k, v in sd["params"].items()]) + "}" ) # geom = f"PDParam(geom={geom}, param_ranges={ps})" ps = ( "{" + ",".join( [f"Parameter('{k}'):{v}" for k, v in sd["params"].items()] ) + "}" ) parameterization = f", parameterization=Parameterization({ps})" outvar = "{" + f"'{cname}': 0" + "}" nr = eq_cstr[cname]["batch_size"] * 1000 # fname = f"samples/{cname}.hdf5" fname = f"samples/{domain}.hdf5" s = f""" import h5py from modulus.sym.geometry.parameterization import Parameterization, Parameter subdomain = {geom} samples = subdomain.sample_interior({nr}, criteria={criteria}, compute_sdf_derivatives={sd["compute_sdf_derivatives"]}{parameterization}) with h5py.File("{fname}", "w") as f: for k,v in samples.items(): f.create_dataset(k, data = v) print(f'wrote {fname}') """ sl += [s] if c["on_domain"] in self._boundary_subdomains: sd = self._boundary_subdomains[domain] geom = sd["geom"] parameterization = "" if sd["params"] is not None: ps = ( "{" + ",".join([f"'{k}':{v}" for k, v in sd["params"].items()]) + "}" ) # geom = f"PDParam(geom={geom}, param_ranges={ps})" ps = ( "{" + ",".join( [f"Parameter('{k}'):{v}" for k, v in sd["params"].items()] ) + "}" ) parameterization = f", parameterization=Parameterization({ps})" criteria = sd["criteria"] if criteria is not None: criteria = f"sympy.sympify('{str(criteria)}')" outvar = "{" + f"'{cname}': 0" + "}" nr = eq_cstr[cname]["batch_size"] * 1000 fname = f"samples/{domain}.hdf5" # fname = f"samples/{cname}.hdf5" s = f""" import h5py from modulus.sym.geometry.parameterization import Parameterization, Parameter subdomain = {geom} t0=time.time() samples = subdomain.sample_boundary({nr}, criteria={criteria}{parameterization}) t1=time.time() print(f"sampled {cname} in", t1-t0, "s") with h5py.File("{fname}", "w") as f: for k,v in samples.items(): f.create_dataset(k, data = v) print(f'wrote {fname}') """ sl += [s] sl += [ "ecs_t1 = time.time()", "print('sampled in ', f'{ecs_t1-ecs_t0:.3f}s')", ] return "\n".join(sl) def compile_data_constraints(self): sl = ["", "# " + "-" * 40, "# Data Constraints", ""] for cname, v in self._data_constraints.items(): data_cstr = self._conf["modulus_project"]["training"]["stages"][ self._stage_id ]["data"]["dconstraint"] invars = ",".join([f"'{v}': f['{v}']" for v in self._vars]) invars = "{" + invars + "}" s = f""" import h5py with h5py.File("{v['data_fname']}", 'r') as f: pbc = PointwiseConstraint.from_numpy( nodes=nodes, invar={invars}, batch_size=int(np.min([f['x'].shape[0], {data_cstr['batch_size']}])), outvar={{'{v['outvar']}':f["{v['outvar']}"]}}, ) domain.add_constraint(pbc, '{v["data_fname"]}') """ sl += [s] return "\n".join(sl) def compile_target_training(self, constraint_opt): from jinja2.nativetypes import NativeEnvironment env = NativeEnvironment() sl = ["", "# " + "-" * 40, "# General Variables", ""] sl += ["nodes = []", "domain=Domain()"] sl += [self.compile_symbols()] sl += [self.compile_neural_networks()] sl += [self.compile_submodels()] sl += [self.compile_geometries()] sl += [self.compile_interior_subdomains()] sl += [self.compile_boundary_subdomains()] sl += [self.compile_equations()] if constraint_opt: sl += [self.compile_equation_constraints_opt()] else: sl += [self.compile_equation_constraints()] sl += [self.compile_data_constraints()] sl += ["", "# " + "-" * 40, "# Start Training Loop", ""] sl += ["slv = Solver(cfg, domain)"] sl += ["slv.solve()"] preamble = "# Generated by `mtc compile inference`\n\n" t = env.from_string( load_template(os.path.join("templates", "train-imports.py")) ) preamble += t.render(no_modulus_main=self._no_modulus_main, conf_path=".") body = "\n".join(sl) body = "\n".join([" " * 4 + line for line in body.split("\n")]) comp_str = preamble + "\n" + body + "\nrun()" return comp_str def compile_target_training_sampled(self): from jinja2.nativetypes import NativeEnvironment env = NativeEnvironment() sl = ["", "# " + "-" * 40, "# General Variables", ""] sl += ["nodes = []", "domain=Domain()"] sl += [self.compile_symbols()] sl += [self.compile_neural_networks()] sl += [self.compile_submodels()] # sl += [self.compile_geometries()] # sl += [self.compile_interior_subdomains()] # sl += [self.compile_boundary_subdomains()] sl += [self.compile_equations()] sl += [self.compile_equation_constraints_sampled()] sl += [self.compile_data_constraints()] sl += ["", "# " + "-" * 40, "# Start Training Loop", ""] sl += ["slv = Solver(cfg, domain)"] sl += ["slv.solve()"] preamble = "# Generated by `mtc compile inference`\n\n" t = env.from_string( load_template(os.path.join("templates", "train-imports.py")) ) preamble += t.render(no_modulus_main=self._no_modulus_main, conf_path=".") body = "\n".join(sl) body = "\n".join([" " * 4 + line for line in body.split("\n")]) comp_str = preamble + "\n" + body + "\nrun()" return comp_str def compile_inference_section(self, stageid): from jinja2 import Environment, PackageLoader, select_autoescape template = load_template(os.path.join("templates", "inference_section.py")) from jinja2.nativetypes import NativeEnvironment env = NativeEnvironment() t = env.from_string(template) outvars = [e for e in self._nn_outs] # if len(self._submodels) > 0: # outvars += list(self._submodels.keys()) possible_outvars = outvars + list(self._constraints.keys()) coll_models = [] try: if len(self._model["name"]): coll_models = [self._model["name"]] outvars += coll_models except: pass return t.render( stageid=stageid, _vars=self._vars, _submodels=outvars, self_model=self._model, possible_outvars=possible_outvars, coll_models=coll_models, ) def make_infer_info(self, stage): template = """ info = { "stage": "{{stage}}", "__file__":__file__, "inputs": [{% for item in _vars %}'{{ item }}',{% endfor %}], "default-outputs": [{% for item in outputs %}'{{ item }}',{% endfor %}], "possible-outputs": [{% for item in possible_outvars %}'{{ item}}', {% endfor %} ] } """ from jinja2.nativetypes import NativeEnvironment env = NativeEnvironment() t = env.from_string(template) outvars = [e for e in self._nn_outs] if len(self._submodels) > 0: outvars += list(self._submodels.keys()) possible_outvars = outvars + list(self._constraints.keys()) try: if len(self._model["name"]): outvars.append(self._model["name"]) except: pass print(outvars) return t.render( stage=stage, _vars=self._vars, outputs=outvars, possible_outvars=possible_outvars, ) def compile_target_inference(self, stageid): from jinja2.nativetypes import NativeEnvironment env = NativeEnvironment() sl = ["", "# " + "-" * 40, "# General Variables", ""] sl += ["nodes = []", "domain=Domain()"] sl += [self.compile_symbols()] sl += [self.compile_neural_networks()] sl += [self.compile_submodels()] sl += [self.compile_geometries()] sl += [self.compile_interior_subdomains()] sl += [self.compile_boundary_subdomains()] sl += [self.compile_equations()] sl += ["", "# " + "-" * 40, "# Inference", "#" + "-" * 40, ""] sl += [self.compile_inference_section(stageid)] # no need to include constraints in inference sl += [self.compile_equation_constraints_opt()] sl += [self.compile_data_constraints()] sl += ["", "# " + "-" * 40, "# Start Training Loop", ""] sl += ["slv = Solver(cfg, domain)"] sl += ["slv._eval()"] preamble = "# Generated by `mtc compile inference`\n\n" t = env.from_string( load_template(os.path.join("templates", "train-imports.py")) ) conf_path = os.path.join("training", stageid) preamble += t.render(no_modulus_main=self._no_modulus_main, conf_path=conf_path) body = "\n".join(sl) body = "\n".join([" " * 4 + line for line in body.split("\n")]) comp_str = preamble + "\n" + body + "\nrun()\n" comp_str += self.make_infer_info(stageid) return comp_str def compile_target_sampler(self, stageid): from jinja2.nativetypes import NativeEnvironment env = NativeEnvironment() sl = ["", "# " + "-" * 40, "# General Variables", ""] sl += ["nodes = []", "domain=Domain()"] sl += [self.compile_symbols()] # sl += [self.compile_neural_networks()] sl += [self.compile_submodels()] sl += [self.compile_geometries()] sl += [self.compile_interior_subdomains()] sl += [self.compile_boundary_subdomains()] # sl += [self.compile_equations()] # sl += ["", "# " + "-" * 40, "# Inference", "#" + "-" * 40, ""] # sl += [self.compile_inference_section(stageid)] # no need to include constraints in inference # sl += [self.compile_equation_constraints()] # sl += [self.compile_data_constraints()] sl += [self.compile_equation_constraints_sampler()] # sl += ["", "# " + "-" * 40, "# Start Training Loop", ""] # sl += ["slv = Solver(cfg, domain)"] # sl += ["slv._eval()"] preamble = "# Generated by `mtc compile --target sampler`\n\n" t = env.from_string( load_template(os.path.join("templates", "train-imports.py")) ) conf_path = os.path.join("training", stageid) preamble += t.render(no_modulus_main=self._no_modulus_main, conf_path=conf_path) body = "\n".join(sl) body = "\n".join([" " * 4 + line for line in body.split("\n")]) comp_str = preamble + "\n" + body + "\nrun()\n" # comp_str += self.make_infer_info(stageid) return comp_str def compile( self, compile_type="training", stageid="stage1", only1storder=False, constraint_opt=False, ): if only1storder: self.compile_to_firstorder() from jinja2.nativetypes import NativeEnvironment env = NativeEnvironment() compile_types = ["training", "inference", "sampler", "geometry"] assert ( compile_type in compile_types ), f"Got {compile_type}... Allowed compiling tragets: {compile_types}" self._conf = self.load_conf() self._stage_id = stageid if not os.path.exists("training"): os.makedirs("training") stagedir = os.path.join("training", stageid) if not os.path.exists(stagedir): os.makedirs(stagedir) if compile_type == "training": target_file = os.path.join(stagedir, "train.py") print(f"[mtc] compiling {target_file}") trainpy = self.compile_target_training(constraint_opt) with open(target_file, "w") as f: f.write(trainpy) print(f"[mtc] wrote {target_file}") if compile_type == "inference": self._no_modulus_main = True target_file = os.path.join(stagedir, "infer.py") print(f"[mtc] compiling {target_file}") inferpy = self.compile_target_inference(stageid) with open(target_file, "w") as f: f.write(inferpy) print(f"[mtc] wrote {target_file}") if compile_type == "geometry": from .compile.target_geometry import compile self._no_modulus_main = True target_file = os.path.join(stagedir, "geometry.py") print(f"[mtc] compiling {target_file}") inferpy = compile(self) # self.compile_target_sampler(stageid) with open(target_file, "w") as f: f.write(inferpy) print(f"[mtc] wrote {target_file}") if compile_type == "sampler": self._no_modulus_main = True target_file = os.path.join(stagedir, "sample.py") print(f"[mtc] compiling {target_file}") inferpy = self.compile_target_sampler(stageid) with open(target_file, "w") as f: f.write(inferpy) print(f"[mtc] wrote {target_file}") self._no_modulus_main = False target_file = os.path.join(stagedir, "train_sampled.py") print(f"[mtc] compiling {target_file}") trainpy = self.compile_target_training_sampled() with open(target_file, "w") as f: f.write(trainpy) print(f"[mtc] wrote {target_file}") def get_infer_fn(self): # load NNs slv = Solver(_cfg, self.domain) slv._eval() # create Inference object invals = {str(v): np.array([0]).reshape(-1, 1) for v in self._vars.keys()} inferencer = PointwiseInferencer( invar=invals, output_names=[submodel for submodel in self._submodels], nodes=self._nodes, batch_size=256 * 4 * 4 * 4, ) self.domain.add_inferencer(inferencer) # create inference function def infer_fn(*args, **kargs): from modulus.sym.domain.constraint import Constraint invals = {str(v): kargs[v].reshape(-1, 1) for v in self._vars.keys()} invar0 = invals invar = Constraint._set_device( invar0, requires_grad=False, device=inferencer.device ) pred_outvar = inferencer.forward(invar) result = {} for submodel in self._submodels: ret = pred_outvar[submodel].cpu().detach().numpy() ret_val = np.array([v for v in ret[:, 0]]) result[submodel] = ret_val # now build the main model model = self._model main_result = ret_val.copy().reshape(-1, 1) invars, invals = [], [] for varn, varval in invar0.items(): invars.append(Symbol(varn)) invals.append(varval) for smodel in model["conditions"]: func = smodel["func"] cond = smodel["on"] submodel_result = result[str(func)].reshape(-1, 1) from sympy import lambdify sel = lambdify(invars, cond)(*invals) main_result[sel] = submodel_result[sel] result[model["name"]] = main_result return result return infer_fn def train(self): self.pprint() slv = Solver(_cfg, self.domain) # start solver slv.solve() def set_model(self, name, func_on_list): self._model = {"name": name, "conditions": func_on_list} def add_submodel(self, name, expr): self._submodels[name] = expr ## CREATE compile_submodels() # self._nodes += [Node.from_sympy(expr, str(name))] return Function(name)(*self._vars.values()) def add_neural_network(self, name="", nn_type="", inputs=[], outputs=[]): assert len(name) > 0, "must provide a network name" assert name not in self._nns, f"{name} NN already exists" assert len(inputs) > 0, "must include a non-empty list of input vars" assert len(outputs) > 0, "must include a non-empty list of output vars" # assert nn_type in allowed_NN_types, f"{nn_type} not in list {allowed_NN_types}" # if len(self._vars) > 0: # assert set(self._vars.keys()) == set( # inputs # ), "New NN definition does not match the input variables already defined" for v in inputs: self._vars[v] = Symbol(v) # self._vars = {v: Symbol(v) for v in inputs} ocheck = self._nn_outs.intersection(set(outputs)) assert len(ocheck) == 0, f"Redefining output variables {ocheck}" self._nn_outs = self._nn_outs.union(set(outputs)) ## CREATE a compile_neural_networks() # net = instantiate_arch( # input_keys=[Key(v) for v in inputs], # output_keys=[Key(v) for v in outputs], # cfg=allowed_NN_types[nn_type], # ) # self._nodes += [net.make_node(name=name, jit=_cfg.jit)] net = None invars = [self._vars[v] for v in inputs] outvars = [Function(v)(*invars) for v in outputs] self._nns[name] = { "net": net, "inputs": inputs, "outputs": outputs, "nn_type": nn_type, "invars": invars, "outvars": outvars, } return invars, outvars def add_interior_subdomain( self, name, geom=None, params=None, criteria=None, compute_sdf_derivatives=False ): # geom is required, the other two are optional assert geom is not None, "geom argument is required" assert ( name not in self._interior_subdomains and name not in self._boundary_subdomains ), "subdomains must have unique names" self._interior_subdomains[name] = { "geom": geom, "params": params, "criteria": criteria, "compute_sdf_derivatives": compute_sdf_derivatives, } return name def add_boundary_subdomain(self, name, geom=None, params=None, criteria=None): # geom is required, the other two are optional assert geom is not None, "geom argument is required" assert ( name not in self._interior_subdomains and name not in self._boundary_subdomains ), "subdomains must have unique names" self._boundary_subdomains[name] = { "geom": geom, "params": params, "criteria": criteria, } return name def add_data_constraint(self, name=None, model=None, data_fname=None): import h5py with h5py.File(data_fname) as f: vset = set(self._vars.keys()) r = vset.difference(set(f.keys())) assert len(r) == 0, f"some variables are not represented in dataset: {r}" m = str(model) m = m[: m.find("(")] r = set([m]).difference(set(f.keys())) assert len(r) == 0, f"model not represented in dataset {r}" assert ( str(type(model)) in self._submodels or str(m) in self._nn_outs ), f"undefined model {model}" # now add the constraint self._data_constraints[name] = { "model": model, "data_fname": data_fname, "outvar": m, } def add_constraint(self, cname, eq_constraint): "cname -- name of constraint" assert ( cname not in self._constraints ), f"\n\n[{self.__class__.__name__}.add_constraint] '{cname}' constraint already defined\n\n" self._constraints[cname] = eq_constraint def set_constraints(self, cdict): self._constraints = cdict variables_in_constraints = [] # create the nodes first for c_name, c_v in cdict.items(): eq = c_v["equation"] eq0 = str(eq.lhs - eq.rhs) for v in self._nn_outs: if v in eq0: variables_in_constraints.append(v) # self._nodes += [Node.from_sympy(eq.lhs - eq.rhs, str(c_name))] nodes = self._nodes def pprint_constraints(self): # print("=" * 80) print("Constraints") print("-" * 80) varstr = ", ".join(self._vars) varstr = f"({varstr})" if len(varstr) > 3: print("| ", f"(.) = {varstr}\n|") for c_name, c_v in self._constraints.items(): eq = c_v["equation"] eq0 = str(eq.lhs - eq.rhs) pre = f"| {c_name}: " eq = f"{eq.lhs} = {eq.rhs}" if len(varstr) > 3: eq = eq.replace(varstr, "(.)") domain_type = ( "int." if c_v["on_domain"] in self._interior_subdomains else "bdry" ) domain_str = f"[on {domain_type} subdomain]" print(pre, eq) print("| " + domain_str, c_v["on_domain"]) print("|") print("| Data", "-" * 40) for dc_name in self._data_constraints: pre = f" {dc_name}: " cd = self._data_constraints[dc_name] print("|", pre, f"[model]", cd["model"]) print("|", " " * len(pre), f" [file]", cd["data_fname"]) import h5py with h5py.File(cd["data_fname"]) as f: k = list(f.keys())[0] n = f[k].shape[0] print( "|", " " * len(pre), f" [info] {n:,} pts | keys: {list(f.keys())}" ) print("-" * 80, "\n") def pprint_models(self): # print("=" * 80) print("Models") print("-" * 80) for mname, model in self._submodels.items(): print("| ", mname, ":", model) model = self._model print("|---") if len(model) > 0: vars_str = ",".join(self._vars.keys()) print(f"| {model['name']}({vars_str}) = ") for cond in model["conditions"]: print(f"|", " " * 10, f"{cond['func']} if {cond['on']}") print("-" * 80, "\n") def pprint_nns(self): # print("=" * 80) print("Neural Networks") print("-" * 80) fmt = lambda l: [Symbol(v) for v in l] for nnn, nn in self._nns.items(): # spref = f"{nnn} = {nn['nn_type']}(" spref = f"{nnn} = NeuralNetwork(" s = spref + f"inputs={fmt(nn['inputs'])}," s += "\n" + " " * len(spref) + f"outputs={fmt(nn['outputs'])})" nns = s nns = "\n".join(["| " + line for line in nns.split("\n")]) print(nns) print("-" * 80, "\n") def pprint(self): print("------------") print("PINN Problem") print("------------") print() self.pprint_nns() self.pprint_models() self.pprint_constraints()
modulus-toolchain-master
mtc/problem.py
import click import os, sys # def load_template(filename): # with open(os.path.join(os.path.dirname(__file__), filename)) as f: # return f.read() MTC_ROOT = os.path.dirname(__file__) @click.group() def cli(): pass @cli.command() @click.argument("project-name") def create(project_name): """Create new Modulus project""" import os, shutil basedir = os.path.split(__file__)[0] newdir = os.path.join(os.path.curdir, project_name) if not os.path.exists(newdir): os.makedirs(newdir) os.makedirs(os.path.join(newdir, "conf")) src = os.path.join(basedir, "templates", "conf", "config.yaml") dst = os.path.join(newdir, "conf", "config.yaml") shutil.copyfile(src, dst) src = os.path.join(basedir, "templates", "conf", "config_PINO.yaml") dst = os.path.join(newdir, "conf", "config_PINO.yaml") shutil.copyfile(src, dst) src = os.path.join(basedir, "templates", "conf", "__init__.py") dst = os.path.join(newdir, "conf", "__init__.py") shutil.copyfile(src, dst) src = os.path.join(basedir, "templates", "configurator.ipynb") dst = os.path.join(newdir, "configurator.ipynb") shutil.copyfile(src, dst) os.system(f"cp -r {basedir}/templates/docs {newdir}") probtpl = os.path.join(basedir, "templates", "problem.py") with open(probtpl) as f: probstr = f.read().replace("%%projname%%", project_name) with open(os.path.join(newdir, "problem.py"), "w") as f: f.write(probstr) with open(os.path.join(basedir, "templates", "cfg.py")) as f: probstr = f.read().replace("%%projname%%", project_name) with open(os.path.join(newdir, "cfg.py"), "w") as f: f.write(probstr) else: print(f"error: {project_name} already exists") def run_system_cmd(s): import sys, os from click import ClickException r = os.system(s) if r != 0: raise ClickException(f"system call [{s}] failed with exit code {r}") @cli.command() @click.argument("fname") def hdf5_info(fname): "Prints HDF5 top-level keys and array size" import h5py with h5py.File(fname) as f: keys = list(f.keys()) print("HDF5 file", fname) print("keys", keys) print("shape", f[keys[0]].shape) @cli.command() @click.argument("info_type") @click.option( "--only-first-order-ufunc/--not-only-first-order-ufunc", default=False, help="ensure that only first order derivatives are taken for all unknown functions (will introduce auxiliary ufuncs if necessary)", ) def show(info_type, only_first_order_ufunc): """Show information info_type= problem | training""" import os subcmds = ["problem", "training"] assert info_type in subcmds, f"allowed commands {subcmds}" if info_type in ["problem"]: if only_first_order_ufunc: run_system_cmd( 'python -c "from problem import p; p.compile_to_firstorder(); p.pprint()"' ) else: run_system_cmd('python -c "from problem import p; p.pprint()"') elif info_type == "training": import yaml def printinfo(pre, s): n = len("Optimize NNs") desc = s.split("\n") desc = desc[0] + "\n" + "\n".join([" " * (3 + n) + l for l in desc[1:]]) if desc[-1] == "\n": desc = desc[:-1] print(f"[{pre.rjust(n)}]", desc) with open(os.path.join("conf", "config.yaml")) as f: conf = yaml.safe_load(f) tr = conf["modulus_project"]["training"] print("Stage DAG:", ", ".join([f"{a}->{b}" for a, b in tr["stage-dag"]])) print() for stageid, stage in tr["stages"].items(): sdata = stage["data"] print(stageid, "-" * 40) # desc = stage["description"].split("\n") # print(pre, desc) printinfo("description", stage["description"]) optinfo = f', lr = {sdata["optimizer"]["lr"]}' optinfo += ", steps < " + str(sdata["training"]["max_steps"]) sel_opt = sdata["optimizer"]["__selected__"] if sel_opt == "lbfgs": optinfo = f', lr = {sdata["optimizer"]["lr"]}, max_iter = {sdata["optimizer"]["max_iter"]}' printinfo("optimizer", sel_opt + optinfo) nnopt = [] for nn_name, optimizing in sdata["Neural Networks"].items(): nnopt += [f"{nn_name}={optimizing}"] nntype = [] for nn in conf["modulus_project"]["neural_networks"].keys(): nntype += [ f"[{'training' if sdata['Neural Networks'][nn+' Trainable'] else 'not training'}] {nn}: {sdata[nn]['__selected__']}" ] printinfo("NNs", "\n".join(nntype)) import sympy cs = [ f"{c} | bs={v['batch_size']:,} | weight = {sympy.sympify(v['lambda_weighting'])}" for c, v in sdata["Equation Constraints"].items() if v["include"] ] printinfo("constraints", "\n".join(cs)) print("=" * 40) else: print("error: allowed subcommands are", subcmds) @cli.command() @click.option( "--target", default="training", help="one of: training (default), inference, sampler", ) @click.option( "--stage", default="stage1", help="default=stage1 (ignored if target=sampler)" ) @click.option( "--only-first-order-ufunc/--not-only-first-order-ufunc", default=False, help="ensure that only first order derivatives are taken for all unknown functions (will introduce auxiliary ufuncs if necessary)", ) @click.option( "--constraint-opt/--no-constraint-opt", default=False, help="Optimize constraints by grouping like constraints", ) def compile(target, stage, only_first_order_ufunc, constraint_opt): """Compile problem into a sampler.py, train.py, or infer.py""" print(f"[compile] {target} {stage}") s = f"'{target}'" sid = f"'{stage}'" run_system_cmd( f'python -c "from problem import p; p.compile(compile_type={s},stageid={sid}, only1storder={only_first_order_ufunc}, constraint_opt={constraint_opt})"' ) @cli.command() @click.option("--stage", default="stage1") @click.option( "--compile/--no-compile", default=True, help="problem.py is compiled into train.py by default, use this to avoid compilation", ) def sample(stage, compile): """Sample and save the point cloud for each domain in an HDF5 file in the training/stageX/samples/ dir. Splits problem into sample.py and train_sampled.py. Use `mtc train --sampled` to train.""" print(f"[train] {stage}") if compile: os.system(f"mtc compile --target sampler --stage {stage}") # create stage conf subdir if needed stagedir = os.path.join("training", stage) # if not os.path.exists(os.path.join({stagedir}, "conf")): if True: os.system(f"cp -r conf {stagedir}") os.system(f"touch {stagedir}/__init__.py") os.system(f"touch training/__init__.py") print(f"[mtc] running {stagedir}/sample.py ") os.system(f"cd {stagedir}; python sample.py") @cli.command() @click.option("--stage", default="stage1") @click.option( "--compile/--no-compile", default=True, help="problem.py is compiled into train.py by default, use this to avoid compilation", ) @click.option( "--sampled/--no-sampled", default=False, help="run the pre-sampled (load from disk) domains (train_sampled.py) or sample on the fly (train.py)", ) @click.option( "--only-first-order-ufunc/--not-only-first-order-ufunc", default=False, help="ensure that only first order derivatives are taken for all unknown functions (will introduce auxiliary ufuncs if necessary)", ) @click.option( "--constraint-opt/--no-constraint-opt", default=True, help="Optimize constraints by grouping like constraints", ) @click.option( "--ngpus", default=1, help="Multi-gpu training (default=1)", ) def train(stage, compile, sampled, only_first_order_ufunc, constraint_opt, ngpus): """Train models""" print(f"[train] {stage}") copt = "--constraint-opt" if constraint_opt else "--no-constraint-opt" if compile: if sampled: run_system_cmd(f"mtc compile --target sampler --stage {stage}") else: if only_first_order_ufunc: run_system_cmd( f"mtc compile --target training {copt} --stage {stage} --only-first-order-ufunc" ) run_system_cmd( f"mtc compile --target inference --stage {stage} --only-first-order-ufunc" ) else: run_system_cmd(f"mtc compile --target training {copt} --stage {stage}") run_system_cmd(f"mtc compile --target inference --stage {stage}") # create stage conf subdir if needed stagedir = os.path.join("training", stage) # if not os.path.exists(os.path.join({stagedir}, "conf")): if True: run_system_cmd(f"cp -r conf {stagedir}") run_system_cmd(f"touch {stagedir}/__init__.py") run_system_cmd(f"touch training/__init__.py") # update the target conf import yaml with open(os.path.join("conf", "config.yaml")) as f: conf = yaml.safe_load(f) stage_conf = {k: v for k, v in conf.items()} for k, v in conf["modulus_project"]["training"]["stages"][stage]["data"].items(): if "__selected__" in v: del v["__selected__"] stage_conf[k] = v src = "" for s, e in conf["modulus_project"]["training"]["stage-dag"]: if e == stage: src = os.path.join("training", s, "outputs") run_system_cmd(f"mkdir training/{stage}/outputs") print("copying NN models from", s) run_system_cmd( f"cp {src}/*pth training/{stage}/outputs; rm training/{stage}/outputs/optim*" ) with open(os.path.join("training", stage, "conf", "config.yaml"), "w") as f: yaml.safe_dump(stage_conf, f) python_start_str = "python" if ngpus > 1: python_start_str = f"mpirun --allow-run-as-root -np {ngpus} python" if sampled: print(f"[mtc] starting pre-sampled training session in: {stagedir}") if not os.path.exists(os.path.join(stagedir, "samples")): print("Need to sample first, run:\n mtc sample --stage", stage) else: run_system_cmd(f"cd {stagedir}; {python_start_str} train_sampled.py") else: run_cmd = f"cd {stagedir}; {python_start_str} train.py" print(f"[mtc] starting training session in: {stagedir} | {run_cmd}") run_system_cmd(run_cmd) @cli.command() @click.option( "--only-first-order-ufunc/--not-only-first-order-ufunc", default=False, help="ensure that only first order derivatives are taken for all unknown functions (will introduce auxiliary ufuncs if necessary)", ) @click.option("--max-steps", default=1000, help="Max training steps (default=1000)") def init_conf(only_first_order_ufunc, max_steps): """DESTRUCTIVE! Initialize configuration file for problem. Run every time a new constraint, sub-model, or neural network is introduced.""" os.system( f'python -c "from problem import p; p.init_config(only1storder={only_first_order_ufunc}, max_steps={max_steps})"' ) # @cli.command() # @click.option("--port", default=7777, help="default=7777") # def configurator(port): # """Start the Modulus Project Configurator server""" # os.system(f"sh $MPC_PATH/start-app.sh `pwd` {port}") # @cli.command() # @click.option( # "--stage", # default="stage1", # help="Use a stage ID (like 'stage1') to target a specific stage", # ) # @click.option("--port", default=7777, help="default=7777") # @click.option( # "--compile/--no-compile", # default=True, # help="problem.py is compiled into infer.py by default, use this to avoid compilation", # ) # def inference_server(stage, port, compile): # "start an inference server" # if compile: # os.system(f"mtc compile --target inference --stage {stage}") # # start server # os.system(f"cd training/{stage}; python -m mpc.rest_server.start {stage}") @cli.command() @click.option( "--static-doc-dir", default=os.path.join(MTC_ROOT, "docs", "static"), help=f"Location to start serving docs (default={MTC_ROOT})", ) @click.option("--port", default=7777, help="default=7777") def docs(static_doc_dir, port): "Modulus Simplified API Docs Server" print("[mtc] serving docs from", static_doc_dir) os.system(f"cd {static_doc_dir}; python -m http.server {port}") @cli.command() @click.option( "--stage", default="all", help="Use a stage ID (like 'stage1') to target a specific stage. Default=all and removes all training.", ) def clean(stage): "DESTRUCTIVE! Remove training data for all stages (default) or for a specific stage using the optional --stage stageX" if stage == "all": os.system("rm -rf training") else: path = f"training/{stage}" if os.path.exists(path): os.system(f"rm -rf {path}") else: print(f"Stage [{stage}] does not exist or has not been used in training.") @cli.command(help="Prints the version string") def version(): import os fname = os.path.join(os.environ["MTC_PATH"], "MTC_VERSION") with open(fname, "r") as f: print(f.read()) # @cli.command() # def problem_to_first_order(): # "Transforms problem to ensure that only first order derivatives of the unknown functions are used" # os.system(f'python -c "from problem import p; p.compile_to_firstorder()"') if __name__ == "__main__": cli()
modulus-toolchain-master
mtc/mtc.py
import os def load_yaml(filename): """Loads a YAML file using a path relative to where this module resides""" import yaml with open(os.path.join(os.path.dirname(__file__), filename)) as f: return yaml.safe_load(f) def load_config(path="./"): import yaml conf_path = os.path.join(path, "conf", "config.yaml") with open(conf_path) as f: return yaml.safe_load(f) def customize_schema(path="./"): fname = os.path.join(os.path.dirname(__file__), "config_types_v2.yaml") schema = load_yaml(fname) config = load_config(path=path) # customize schema to reflect project arch = schema["arch"].copy() del schema["arch"] for nn_var in config["modulus_project"]["neural_networks"]: schema[nn_var] = arch.copy() schema[nn_var]["label"] = f"[{nn_var}] NN Architecture" # equation constraints constraints = schema["constraints"].copy() del schema["constraints"] cstr = {} eqc = {"type": "group", "default": {}} import json for eqn in config["modulus_project"]["equation_constraints"].keys(): eqc["default"][eqn] = json.loads(json.dumps(constraints)) eqc["default"][eqn]["label"] = f"{eqn}" schema["Equation Constraints"] = eqc eqc = {"type": "group", "default": {}} for nn_var in config["modulus_project"]["neural_networks"]: eqc["default"][f"{nn_var} Trainable"] = {"type": "bool", "default": True} schema["Neural Networks"] = eqc return schema def config2dictV2(ctype): d = {} for k, v in ctype.items(): if v["type"] == "option": assert v["default"] in v["choices"], f"wrong default in {k}" d[k] = config2dictV2(v["choices"][v["default"]]) d[k]["__selected__"] = v["default"] elif v["type"] == "group": d[k] = config2dictV2(v["default"]) else: d[k] = v["default"] return d
modulus-toolchain-master
mtc/config_utils.py
from sympy import Symbol, Function, Or, And, Eq, Abs, Integral, expand import sympy import sympy as sp from jinja2 import Template import os, sys import h5py def load_template(filename): import jinja2 as j path = os.path.join(os.path.dirname(__file__), "templates", "fno-problem") env = j.Environment(loader=j.FileSystemLoader(path)) return env.get_template(filename) def load_yaml(filename): """Loads a YAML file using a path relative to where this module resides""" import yaml with open(os.path.join(os.path.dirname(__file__), filename)) as f: return yaml.safe_load(f) class FNOProblem: def __init__(self, name="FNO problem", cfg=None): self._problem_name = name self._nns = {} self._nn_outs = set() self._vars = {} self._interior_subdomains = {} self._constraints = {} self._distributions = {} self._grid = {} def to_hdf(self, hdf_fname, data): import h5py with h5py.File(hdf_fname, "w") as f: for k, v in data.items(): f.create_dataset(k, data=v) def load_conf(self): import yaml with open(os.path.join("conf", "config.yaml")) as f: conf = yaml.safe_load(f) return conf def save_conf(self, conf): import yaml with open(os.path.join("conf", "config.yaml"), "w") as f: yaml.safe_dump(conf, f) def add_neural_network(self, name="", nn_type="", inputs=[], outputs=[]): assert "vars" in self._grid, "Must set grid before defining NNs" assert len(name) > 0, "must provide a network name" assert name not in self._nns, f"{name} NN already exists" assert len(inputs) > 0, "must include a non-empty list of input vars" assert len(outputs) > 0, "must include a non-empty list of output vars" for v in inputs: self._vars[v] = Symbol(v) # self._vars = {v: Symbol(v) for v in inputs} ocheck = self._nn_outs.intersection(set(outputs)) assert len(ocheck) == 0, f"Redefining output variables {ocheck}" self._nn_outs = self._nn_outs.union(set(outputs)) gridvars = self._grid["vars"].keys() invars = [Function(v)(*gridvars) for v in inputs] outvars = [Function(v)(*gridvars) for v in outputs] net = None self._nns[name] = { "net": net, "inputs": inputs, "outputs": outputs, "nn_type": nn_type, "invars": invars, "outvars": outvars, } gridvarfuncs = [Function(str(v).upper())(*gridvars) for v in gridvars] return invars, gridvarfuncs, outvars def set_grid_domain(self, N: int, extent): assert self._grid == {}, "Grid may be defined only once!" assert len(extent) == 2, "Exactly 2 dimensions are required for the grid" N = int(N) self._grid["N"] = N self._grid["vars"] = { sp.Symbol(vn): { "var_id": vid, "extent": (float(ve[0]), float(ve[1])), "delta": (float(ve[1]) - float(ve[0])) / float(N - 1), } for vid, (vn, ve) in enumerate(extent.items()) } vars = list(self._grid["vars"].keys()) return vars + [self._grid["vars"][v]["delta"] for v in vars] def add_distribution(self, name, hdf5_file=""): assert "vars" in self._grid, "Must set grid before defining NNs" assert ( name not in self._distributions ), f"[{name}] already defined (change name?)" assert hdf5_file != "", "Must provide full-path HDF5 file with data" # check file for valid data with h5py.File(hdf5_file, "r") as f: keys = list(f.keys()) N = self._grid["N"] for k in f.keys(): sh = f[k].shape assert ( sh[-2] == N and sh[-1] == N ), f"{hdf5_file}\nWrong dimensions of data -- last two must be ({N}, {N}), found {sh[-2:]} instead.\n" self._distributions[name] = {"file": hdf5_file, "nsamples": sh[0], "keys": keys} return name def add_data_constraint(self, name, over=None): assert ( name not in self._constraints ), f"Constraint named [{name}] already exists, choose a different name" assert ( over is not None ), "Must provide distribution that includes input/output data" self._constraints[name] = {"type": "data", "distribution": over} def add_interior_constraint( self, name, equation, on=None, over=None, criteria=None ): assert ( name not in self._constraints ), f"Constraint named [{name}] already exists, choose a different name" assert ( over is not None ), "Must provide distribution that includes input/output data" if criteria is not None: srepr_criteria = sp.srepr(criteria) else: srepr_criteria = "" self._constraints[name] = { "type": "interior", "equation": equation, "eq_srepr": sp.srepr(equation.lhs - equation.rhs), "distribution": over, "srepr_criteria": srepr_criteria, "criteria": criteria, "onFunc": str(on.func), } def add_dirichlet_gen_constraint(self, name, on=None, equation=None, at=None): assert on is not None and equation is not None and at is not None assert ( name not in self._constraints ), f"Constraint named [{name}] already exists, choose a different name" # varinfo = self._grid["vars"][at.lhs] # if float(at.rhs) == float(varinfo["extent"][0]): # var_offset = 0 # elif float(at.rhs) == float(varinfo["extent"][1]): # var_offset = -1 # else: # assert ( # False # ), f"The 'at' value must be either end of the extent {varinfo['extent']}" self._constraints[name] = { "type": "boundary-dirichlet-gen", "equation": equation, "expr_srepr": sp.srepr(equation.rhs), "at": sp.srepr(at), "condition": at, "onFunc": str(on.func), } def add_dirichlet_constraint(self, name, on=None, equation=None, at=None): assert on is not None and equation is not None and at is not None assert ( name not in self._constraints ), f"Constraint named [{name}] already exists, choose a different name" varinfo = self._grid["vars"][at.lhs] if float(at.rhs) == float(varinfo["extent"][0]): var_offset = 0 elif float(at.rhs) == float(varinfo["extent"][1]): var_offset = -1 else: assert ( False ), f"The 'at' value must be either end of the extent {varinfo['extent']}" self._constraints[name] = { "type": "boundary-dirichlet", "equation": equation, "expr_srepr": sp.srepr(equation.rhs), "at": at, "onFunc": str(on.func), "var_id": varinfo["var_id"], "var_offset": var_offset, } def add_neumann_constraint(self, name, on=None, equation=None, at=None): assert on is not None and equation is not None and at is not None assert ( name not in self._constraints ), f"Constraint named [{name}] already exists, choose a different name" varinfo = self._grid["vars"][at.lhs] if float(at.rhs) == float(varinfo["extent"][0]): var_offset = 1 elif float(at.rhs) == float(varinfo["extent"][1]): var_offset = self._grid["N"] - 2 else: assert ( False ), f"The 'at' value must be either end of the extent {varinfo['extent']}" self._constraints[name] = { "type": "boundary-neumann", "equation": equation, "expr_srepr": sp.srepr(equation.rhs), "at": at, "onFunc": on.func, "var_id": varinfo["var_id"], "var_offset": var_offset, } def add_boundary_constraint(self, name, equation, over=None, criteria=None): assert ( name not in self._constraints ), f"Constraint named [{name}] already exists, choose a different name" assert ( over is not None ), "Must provide distribution that includes input/output data" if criteria is not None: srepr_criteria = sp.srepr(criteria) else: srepr_criteria = "" self._constraints[name] = { "type": "boundary", "equation": equation, "eq_srepr": sp.srepr(equation.lhs - equation.rhs), "distribution": over, "srepr_criteria": srepr_criteria, "criteria": criteria, } def init_config(self, only1storder=False, max_steps=1000): if only1storder: self.compile_to_firstorder() conf = self.load_conf() def mkdeqc(dc): d = {k: str(v) for k, v in dc.items()} # if dc["on_domain"] in self._interior_subdomains: # d["domain_type"] = "interior" # else: # d["domain_type"] = "boundary" d["batch_size"] = 1000 return d def make_training_stages(): d = { "stage-dag": [], "stages": { "stage1": { "description": "Default stage", "data": {}, }, }, } return d # if "modulus_project" not in conf: nn_type = "fully_connected" # nn_type = "fourier_net" nn = load_yaml(os.path.join("..", "mpc", "mpc", "config_types.yaml"))["arch"][ nn_type ] conf["modulus_project"] = { "project_name": self._problem_name, # "submodels": {k: str(v) for k, v in self._submodels.items()}, "equation_constraints": { k: mkdeqc(v) for k, v in self._constraints.items() }, "neural_networks": { nn_name: { "nn_type": nn_type, "_target_": nn["_target_"], **{k: v["default"] for k, v in nn.items() if k != "_target_"}, } for nn_name in self._nns }, } conf["modulus_project"]["training"] = make_training_stages() self.save_conf(conf) from mtc.config_utils import customize_schema, config2dictV2 conf["modulus_project"]["training"]["stages"]["stage1"]["data"] = config2dictV2( customize_schema() ) s1data = conf["modulus_project"]["training"]["stages"]["stage1"]["data"] s1data["training"]["max_steps"] = max_steps self.save_conf(conf) def compile_target_inference(self, stageid): T = load_template("infer.py") data = { "problem_name": self._problem_name, "nns": self._nns, "distributions": self._distributions, "constraints": self._constraints, "grid": self._grid, "nn_ins": self._vars, "nn_outs": self._nn_outs, "stageid": stageid, } return T.render(data) def compile_target_training(self): T = load_template("train.py") data = { "problem_name": self._problem_name, "nns": self._nns, "distributions": self._distributions, "constraints": self._constraints, "grid": self._grid, "nn_ins": self._vars, "nn_outs": self._nn_outs, } return T.render(data) def compile( self, compile_type="training", stageid="stage1", only1storder=False, constraint_opt=False, ): from jinja2.nativetypes import NativeEnvironment env = NativeEnvironment() compile_types = ["training", "inference"] assert ( compile_type in compile_types ), f"Got {compile_type}... Allowed compiling tragets: {compile_types}" self._conf = self.load_conf() self._stage_id = stageid if not os.path.exists("training"): os.makedirs("training") stagedir = os.path.join("training", stageid) if not os.path.exists(stagedir): os.makedirs(stagedir) if compile_type == "training": target_file = os.path.join(stagedir, "train.py") trainpy = self.compile_target_training() with open(target_file, "w") as f: f.write(trainpy) print(f"[mtc] wrote {target_file}") elif compile_type == "inference": target_file = os.path.join(stagedir, "infer.py") print(f"[mtc] compiling {target_file}") inferpy = self.compile_target_inference(stageid) with open(target_file, "w") as f: f.write(inferpy) print(f"[mtc] wrote {target_file}") def pprint_nns(self): # print("=" * 80) print("Neural Networks") print("-" * 80) fmt = lambda l: [Symbol(v) for v in l] for nnn, nn in self._nns.items(): # spref = f"{nnn} = {nn['nn_type']}(" spref = f"{nnn} = FNO(" s = spref + f"input_funcs={fmt(nn['inputs'])}," s += "\n" + " " * len(spref) + f"output_funcs={fmt(nn['outputs'])})" nns = s nns = "\n".join(["| " + line for line in nns.split("\n")]) print(nns) print("-" * 80, "\n") def pprint_discrete_domain(self): print("Discrete Domain (Grid)") print("-" * 80) gvars = self._grid["vars"] vars = ",".join([str(v) for v in gvars.keys()]) dtype = "x".join([f"{gvars[v]['extent']}" for v in gvars.keys()]) gdelta = ", ".join([f"d{v}={gvars[v]['delta']}" for v in gvars.keys()]) gsize = ", ".join([f"N_{v}={self._grid['N']}" for v in gvars.keys()]) print("| " + f"({vars})" + " in " + dtype) print("| " + gdelta + " | " + gsize) print("-" * 80, "\n") def pprint_distributions(self): print("Distributions") print("-" * 80) for dname, d in self._distributions.items(): print( f"| {dname}: #samples = {d['nsamples']} | entries = {', '.join(d['keys'])}" ) print("-" * 80, "\n") def pprint_constraints(self): print("Constraints") print("-" * 80) for cn, c in self._constraints.items(): more = "" if c["type"] != "data": eq = c["equation"] more = f"\n| {eq.lhs} = {eq.rhs}" print(f"| {cn} [{c['type']}] over '{c['distribution']}'" + more + "\n|") print("-" * 80, "\n") def pprint(self): print("----------------") print("FNO/PINO Problem") print("----------------") print() self.pprint_discrete_domain() self.pprint_nns() self.pprint_distributions() self.pprint_constraints() def latex_constraints(self): s = "" for cn, c in self._constraints.items(): s += f"\\text{{{cn} }} : \quad & " if c["type"] == "boundary-dirichlet-gen": eq = c["equation"] s += sp.latex(eq.lhs) + " = " + sp.latex(eq.rhs) s += ", \\quad " + sp.latex(c["condition"]) + " " elif c["type"] == "boundary-dirichlet": eq = c["equation"] s += sp.latex(eq.lhs) + " = " + sp.latex(eq.rhs) s += ", \\quad " + sp.latex(c["at"]) + " " elif c["type"] == "boundary-neumann": eq = c["equation"] s += sp.latex(eq.lhs) + " = " + sp.latex(eq.rhs) s += ", \\quad " + sp.latex(c["at"]) + " " elif c["type"] != "data": eq = c["equation"] s += sp.latex(eq.lhs) + " = " + sp.latex(eq.rhs) if "criteria" in c and c["criteria"] is not None: s += " ; \quad " + sp.latex(c["criteria"]) typestr = c["type"].replace("boundary-", "") s += f"& \\text{{ {typestr} }} \\\\ \\\\\n" r = "\\begin{split}\\begin{aligned}\n" + s + "\n\\end{aligned}\\end{split}" return r def _repr_latex_(self): s = "" s += f"\\text{{ Project: }} & \\text{{ {self._problem_name} }} \\\\\n" svars = ", ".join([str(v) for v in self._grid["vars"]]) ss = "\\times".join( f"{v['extent']}^{{ {self._grid['N']} }}" for vs, v in self._grid["vars"].items() ) deltas = ", ".join( f"d{vs}={v['delta']}" for vs, v in self._grid["vars"].items() ) s += f"\\text{{Grid:}}& \\quad ({svars}) \in {ss} \\quad {deltas} \\\\\n" for nnn, nn in self._nns.items(): domain = ", ".join([sp.latex(e) for e in nn["invars"]]) image = ", ".join([sp.latex(e) for e in nn["outvars"]]) ss = f"\\text{{ {nnn} [FNO]:}}& \\quad ({domain}) \mapsto {image} \\\\ \n" s += ss s += "\\\\ \n" s = "\\begin{split}\\begin{aligned}\n" + s + "\n\\end{aligned}\\end{split}" s += self.latex_constraints() return s
modulus-toolchain-master
mtc/fno_problem.py
modulus-toolchain-master
mtc/docs/__init__.py
import os from jinja2 import Template def load_template(filename): with open(os.path.join(os.path.dirname(__file__), filename)) as f: return f.read() def compile(problem): assert ( "x" in problem._vars and "y" in problem._vars ), "Problem geometry must be 2D or 3D" t_file = "warp_geometry_2d.py" if "z" in problem._vars: print("3D geometry detected") t_file = "warp_geometry.py" T = Template(load_template(os.path.join("templates", t_file))) data = {} if "_custom_warp_code" in dir(problem): data["custom_warp_code"] = problem._custom_warp_code data["geometries"] = [{"name": name, "g": g} for name, g in problem._geom.items()] params = {} for name, g in problem._geom.items(): p = g.get("params", {}) if p is not None: for k, v in p.items(): try: if len(v) > 0: v = v[0] except: v = float(v) params[k] = v print(params) data["params"] = params paramstr = ", ".join([f"{k}={v}" for k, v in params.items()]) if len(paramstr) > 0: paramstr = ", " + paramstr data["paramstr"] = paramstr paramcallstr = ", ".join([f"{k}" for k, v in params.items()]) if len(paramcallstr) > 0: paramcallstr = ", " + paramcallstr data["paramcallstr"] = paramcallstr return T.render(data)
modulus-toolchain-master
mtc/compile/target_geometry.py
modulus-toolchain-master
mtc/compile/__init__.py
import warp as wp wp.init() ## SDF Helpers # subtraction @wp.func def op_subtract(d1: float, d2: float): return -wp.min(-d1, d2) # intersection @wp.func def op_intersect(d1: float, d2: float): return wp.max(d1, d2) # union @wp.func def op_union(d1: float, d2: float): return wp.min(d1, d2) # signed sphere @wp.func def sdf_sphere(p: wp.vec3, r: float): return wp.length(p) - r # signed box @wp.func def sdf_box(upper: wp.vec3, p: wp.vec3): qx = wp.abs(p[0])-upper[0] qy = wp.abs(p[1])-upper[1] qz = wp.abs(p[2])-upper[2] e = wp.vec3(wp.max(qx, 0.0), wp.max(qy, 0.0), wp.max(qz, 0.0)) return wp.length(e) + wp.min(wp.max(qx, wp.max(qy, qz)), 0.0) @wp.func def v3abs(v: wp.vec3): return wp.vec3(wp.abs(v[0]), wp.abs(v[1]),wp.abs(v[2])) @wp.func def v3max(v: wp.vec3): return wp.max(wp.max(v[0], v[1]),v[2]) @wp.func def v3min(v: wp.vec3): return wp.min(wp.min(v[0], v[1]),v[2]) ########## # ########## -- Geometry SDF wp.func's {% for geom in geometries %} @wp.func def _sdf_{{geom.name}}(p: wp.vec3, {% for k,v in params.items() %}{{k}}: float, {% endfor %}): # type: {{geom.g.type}} {% if geom.g.type=="GeometryDifference" %} return op_subtract(_sdf_{{geom.g.g}}(p{{paramcallstr}}), _sdf_{{geom.g.og}}(p{{paramcallstr}})) {% elif geom.g.type=="GeometryUnion" %} return op_union(_sdf_{{geom.g.g}}(p{{paramcallstr}}), _sdf_{{geom.g.og}}(p{{paramcallstr}})) {% elif geom.g.type=="GeometryIntersection" %} return op_intersect(_sdf_{{geom.g.g}}(p{{paramcallstr}}), _sdf_{{geom.g.og}}(p{{paramcallstr}})) {% elif geom.g.type=="Cylinder" %} center = wp.vec3({% for v in geom.g.args[0] %}float({{v}}),{% endfor %}) radius = {{geom.g.args[1]}} height = {{geom.g.args[2]}} {% if geom.g.rotate %} angle = {{geom.g.rotate[0]}} c = wp.cos(angle) s = wp.sin(angle) x = p[0]-center[0] y = p[1]-center[1] z = p[2]-center[2] {% if geom.g.rotate[1]=='x' %} p = wp.vec3(p[0], c*y +s*z+center[1], -s*y +c*z+center[2]) {% elif geom.g.rotate[1]=='y' %} p = wp.vec3(c*x +s*z+center[0], p[1], -s*x +c*z+center[2]) {% else %} p = wp.vec3(c*x +s*y+center[0], -s*x +c*y+center[1], p[2]) {% endif %} {% endif %} r_dist = wp.sqrt((p[0] - center[0])*(p[0] - center[0]) + (p[1] - center[1])*(p[1] - center[1])) z_dist = wp.abs(p[2] - center[2]) outside = wp.sqrt(wp.min(0.0, radius-r_dist)**2.0 + wp.min(0.0, 0.5*height-z_dist)**2.0) inside = -wp.min(wp.abs(wp.min(0.0, r_dist-radius)), wp.abs(wp.min(0.0, z_dist-0.5*height))) sdf = (outside+inside) return sdf {% elif geom.g.type=="ModBox" %} p1 = wp.vec3({% for v in geom.g.args[0]%}float({{v}}),{% endfor %}) p2 = wp.vec3({% for v in geom.g.args[1]%}float({{v}}),{% endfor %}) side = p2-p1 center = (p1+p2)/2.0 {% if geom.g.rotate %} angle = {{geom.g.rotate[0]}} c = wp.cos(angle) s = wp.sin(angle) x = p[0]-center[0] y = p[1]-center[1] z = p[2]-center[2] {% if geom.g.rotate[1]=='x' %} p = wp.vec3(p[0], c*y +s*z+center[1], -s*y +c*z+center[2]) {% elif geom.g.rotate[1]=='y' %} p = wp.vec3(c*x +s*z+center[0], p[1], -s*x +c*z+center[2]) {% else %} p = wp.vec3(c*x +s*y+center[0], -s*x +c*y+center[1], p[2]) {% endif %} {% endif %} c_dist = v3abs(p - center) - 0.5 * side ov = wp.vec3(wp.max(c_dist[0], 0.), wp.max(c_dist[1], 0.), wp.max(c_dist[2], 0.)) # outside = wp.min(c_dist[0], 0.)**2. + wp.min(c_dist[1], 0.)**2. + wp.min(c_dist[2], 0.)**2. outside = wp.length(ov) #wp.sqrt(outside) inside = wp.min(v3max(c_dist), 0.0) sdf = (outside + inside) # sdf = inside #outside return sdf # upper = (p2-p1)*0.5 # return sdf_box(upper, p-upper-p1) {% elif geom.g.type=="Box" %} p1 = wp.vec3({% for v in geom.g.args[0]%}float({{v}}),{% endfor %}) p2 = wp.vec3({% for v in geom.g.args[1]%}float({{v}}),{% endfor %}) side = p2-p1 center = (p1+p2)*0.5 {% if geom.g.rotate %} angle = {{geom.g.rotate[0]}} c = wp.cos(angle) s = wp.sin(angle) x = p[0]-center[0] y = p[1]-center[1] z = p[2]-center[2] {% if geom.g.rotate[1]=='x' %} p = wp.vec3(p[0], c*y +s*z+center[1], -s*y +c*z+center[2]) {% elif geom.g.rotate[1]=='y' %} p = wp.vec3(c*x +s*z+center[0], p[1], -s*x +c*z+center[2]) {% else %} p = wp.vec3(c*x +s*y+center[0], -s*x +c*y+center[1], p[2]) {% endif %} {% endif %} sdf = sdf_box((p2-p1)/2.0, p-center) return sdf # upper = (p2-p1)*0.5 # return sdf_box(upper, p-upper-p1) {% elif geom.g.type=="Sphere" %} c = wp.vec3({% for v in geom.g.args[0]%}float({{v}}),{% endfor %}) r = float({{geom.g.args[1]}}) return sdf_sphere(p-c, r) {% else %} return 0.0 {% endif %} {% endfor %} {% for geom in geometries %} @wp.kernel def _kernel_{{geom.name}}(field: wp.array3d(dtype=float), dim: float, scale: float, {% for k,v in params.items() %}{{k}}: float, {% endfor %}): i, j, k = wp.tid() p = wp.vec3(float(i), float(j), float(k)) p = (p/dim - wp.vec3(1.0,1.0,1.0)*0.5)*scale sdf = _sdf_{{geom.name}}(p{{paramcallstr}}) field[i,j,k] = sdf {% endfor %} {% for geom in geometries %} @wp.kernel def _kernel_adjust_points_{{geom.name}}(points: wp.array(dtype=wp.vec3), dim: float, scale: float, {% for k,v in params.items() %}{{k}}: float, {% endfor %}): i = wp.tid() p = points[i] p = (p/dim - wp.vec3(1.0,1.0,1.0)*0.5)*scale eps = 1.e-5 # compute gradient of the SDF using finite differences dx = _sdf_{{geom.name}}(p + wp.vec3(eps, 0.0, 0.0){{paramcallstr}}) - _sdf_{{geom.name}}(p - wp.vec3(eps, 0.0, 0.0){{paramcallstr}}) dy = _sdf_{{geom.name}}(p + wp.vec3(0.0, eps, 0.0){{paramcallstr}}) - _sdf_{{geom.name}}(p - wp.vec3(0.0, eps, 0.0){{paramcallstr}}) dz = _sdf_{{geom.name}}(p + wp.vec3(0.0, 0.0, eps){{paramcallstr}}) - _sdf_{{geom.name}}(p - wp.vec3(0.0, 0.0, eps){{paramcallstr}}) normal = wp.normalize(wp.vec3(dx, dy, dz)) sdf = _sdf_{{geom.name}}(p{{paramcallstr}}) points[i] = p - normal*sdf {% endfor %} {% for geom in geometries %} @wp.kernel def _kernel_sdf_{{geom.name}}(points: wp.array(dtype=wp.vec3), sdf: wp.array(dtype=float), # return values {% for k,v in params.items() %}{{k}}: float, {% endfor %}): i = wp.tid() p = points[i] sdf[i] = _sdf_{{geom.name}}(p{{paramcallstr}}) {% endfor %} class Geometry: def __init__(self, dim=128): self.dim = dim self.max_verts = 10**6 self.max_tris = 10**6 self.time = 0.0 self.field = wp.zeros(shape=(self.dim, self.dim, self.dim), dtype=float) self.sdf_return = wp.zeros(shape=(dim*10,), dtype=float) self.iso = wp.MarchingCubes(nx=self.dim, ny=self.dim, nz=self.dim, max_verts=self.max_verts, max_tris=self.max_tris) self._geoms = [{% for geom in geometries %}"{{geom.name}}",{% endfor %}] def list_geometries(self): return self._geoms.copy() def update(self): pass def render_sdf(self, geom_name, scale=3.0{{paramstr}}): assert geom_name in self._geoms kernel = globals()["_kernel_"+geom_name] self.scale = scale with wp.ScopedTimer(f"Updated SDF volume with {geom_name}"): wp.launch(kernel, dim=self.field.shape, inputs=[self.field, self.dim, scale, {% for k,v in params.items() %}{{k}}, {% endfor %}]) self._last_kernel = geom_name def adjust_points(self{{paramstr}}): kernel = globals()["_kernel_adjust_points_"+self._last_kernel] with wp.ScopedTimer(f"Adjusted mesh points from {self._last_kernel}"): wp.launch(kernel, dim=self.iso.verts.shape, inputs=[self.iso.verts, self.dim, self.scale, {% for k,v in params.items() %}{{k}}, {% endfor %}]) verts = self.iso.verts.numpy()#(self.iso.verts.numpy()/float(self.dim) - 0.5)*self.scale indices=self.iso.indices.numpy() print(f"geometry: {self._last_kernel} | {verts.shape[0]:,} verts | {indices.shape[0]:,} tris") return {"verts": verts, "indices":indices} def sdf(self, geom_name, xyz{{paramstr}}): assert geom_name in self._geoms dim = xyz.shape[0] if self.sdf_return.shape[0] < xyz.shape[0]: self.sdf_return = wp.zeros(shape=(xyz.shape[0],), dtype=float) kernel = globals()["_kernel_sdf_"+geom_name] with wp.ScopedTimer(f"SDF compute for {geom_name}"): wp.launch(kernel, dim=dim, inputs=[wp.array(xyz, dtype=wp.vec3), self.sdf_return, {% for k,v in params.items() %}{{k}}, {% endfor %}]) return self.sdf_return.numpy()[:dim] def get_mesh_data(self): with wp.ScopedTimer(f"get_mesh_data [geometry: {self._last_kernel}]"): self.iso.surface(field=self.field, threshold=0) verts = (self.iso.verts.numpy()/float(self.dim) - 0.5)*self.scale indices=self.iso.indices.numpy() print(f"geometry: {self._last_kernel} | {verts.shape[0]:,} verts | {indices.shape[0]:,} tris") return {"verts": verts, "indices":indices}
modulus-toolchain-master
mtc/compile/templates/warp_geometry.py
import warp as wp wp.init() ## Custom Code (from problem.py) {{custom_warp_code}} ## SDF Helpers # subtraction @wp.func def op_subtract(d1: float, d2: float): return -wp.min(-d1, d2) # intersection @wp.func def op_intersect(d1: float, d2: float): return wp.max(d1, d2) # union @wp.func def op_union(d1: float, d2: float): return wp.min(d1, d2) # signed sphere @wp.func def sdf_circle(p: wp.vec2, r: float): return wp.length(p) - r # signed box @wp.func def sdf_rectangle(upper: wp.vec2, p: wp.vec2): qx = wp.abs(p[0])-upper[0] qy = wp.abs(p[1])-upper[1] e = wp.vec2(wp.max(qx, 0.0), wp.max(qy, 0.0)) return wp.length(e) + wp.min( wp.max(qy, qx), 0.0) @wp.func def v3abs(v: wp.vec2): return wp.vec2(wp.abs(v[0]), wp.abs(v[1])) ########## # ########## -- Geometry SDF wp.func's {% for geom in geometries %} @wp.func def _sdf_{{geom.name}}(p: wp.vec2, {% for k,v in params.items() %}{{k}}: float, {% endfor %}): # type: {{geom.g.type}} {% if geom.g.type=="GeometryDifference" %} return op_subtract(_sdf_{{geom.g.g}}(p{{paramcallstr}}), _sdf_{{geom.g.og}}(p{{paramcallstr}})) {% elif geom.g.type=="GeometryUnion" %} return op_union(_sdf_{{geom.g.g}}(p{{paramcallstr}}), _sdf_{{geom.g.og}}(p{{paramcallstr}})) {% elif geom.g.type=="GeometryIntersection" %} return op_intersect(_sdf_{{geom.g.g}}(p{{paramcallstr}}), _sdf_{{geom.g.og}}(p{{paramcallstr}})) {% elif geom.g.type=="Rectangle" %} p1 = wp.vec2({% for v in geom.g.args[0]%}float({{v}}),{% endfor %}) p2 = wp.vec2({% for v in geom.g.args[1]%}float({{v}}),{% endfor %}) side = p2-p1 center = (p1+p2)*0.5 {% if geom.g.rotate %} angle = {{geom.g.rotate[0]}} c = wp.cos(angle) s = wp.sin(angle) x = p[0]-center[0] y = p[1]-center[1] z = p[2]-center[2] p = wp.vec2(c*x +s*y+center[0], -s*x +c*y+center[1], p[2]) {% endif %} sdf = sdf_rectangle((p2-p1)/2.0, p-center) return sdf {% elif geom.g.type=="Circle" %} c = wp.vec2({% for v in geom.g.args[0]%}float({{v}}),{% endfor %}) r = float({{geom.g.args[1]}}) return sdf_circle(p-c, r) {% elif geom.g.type=="Channel2D" %} point_1 = wp.vec2({% for v in geom.g.args[0]%}float({{v}}),{% endfor %}) point_2 = wp.vec2({% for v in geom.g.args[1]%}float({{v}}),{% endfor %}) dist_x = point_2[0] - point_1[0] dist_y = point_2[1] - point_1[1] center_y = point_1[1] + (dist_y) / 2.0 y_diff = wp.abs(p[1] - center_y) - (point_2[1] - center_y) outside_distance = wp.sqrt(wp.max(y_diff, 0.0) ** 2.0) inside_distance = wp.min(y_diff, 0.0) sdf = (outside_distance + inside_distance) return sdf {% elif geom.g.type=="Polygon" %} {% if geom.g.rotate %} angle = {{geom.g.rotate[0]}} c = wp.cos(angle) s = wp.sin(angle) center = wp.vec2(0.0,0.0) x = p[0]#-center[0] y = p[1]#-center[1] p = wp.vec2(c*x +s*y+center[0], -s*x +c*y+center[1]) {% endif %} {% for pp in geom.g.args[0] %} p{{loop.index0}} = wp.vec2({% for v in pp %}float({{v}}),{% endfor %}){% endfor %} # Distance to line segment involves distance to line from a point # t = (normalized) tangent between p0 and p1 # n = normal (perp to t) # # Solve [ t_x -n_x ] [s] = p_x - p0_x # [ t_y -n_y ] [t] = p_y - p0_y # inverting the matrix sdf = wp.length(p0-p) {% for pp in geom.g.args[0] %} sdf = wp.min(wp.length(p{{loop.index0}}-p), sdf){% endfor %} sign = 1.0{% for pp in geom.g.args[0] %} {% if loop.last %}po = p0{% else %} po = p{{loop.index}}{% endif %} sdf = wp.min(wp.length(p{{loop.index0}}-p), sdf) tangent = po-p{{loop.index0}} t = wp.normalize(tangent) n = wp.vec2(t[1], -t[0]) det = 1.0 #/ (-t[0]*n[1]+t[1]*n[0]) vx = p[0] - p{{loop.index0}}[0] vy = p[1] - p{{loop.index0}}[1] s = det * ((-n[1])*vx+n[0]*vy) d = det * ((-t[1])*vx+t[0]*vy) if s>=0. and s <= wp.length(tangent): sdf = wp.min(sdf, wp.abs(d)) if sdf == wp.abs(d): sign = wp.sign(d) {% endfor %} return sign*sdf {% elif geom.g.type=="GeometryCustomWarp" %} sdf = {{geom.g.func}}(p, {% for v in geom.g.args %}float({{v}}),{% endfor %}) return sdf {% else %} return 0.0 {% endif %} {% endfor %} {% for geom in geometries %} @wp.kernel def _kernel_sdf_{{geom.name}}(points: wp.array(dtype=wp.vec2), sdf: wp.array(dtype=float), # return values {% for k,v in params.items() %}{{k}}: float, {% endfor %}): i = wp.tid() p = points[i] sdf[i] = _sdf_{{geom.name}}(p{{paramcallstr}}) {% endfor %} {% for geom in geometries %} @wp.kernel def _kernel_sample_interior_{{geom.name}}(rand_seed: int, points: wp.array(dtype=wp.vec2), bbox: wp.vec4, {% for k,v in params.items() %}{{k}}: float, {% endfor %}): tid = wp.tid() rstate = wp.rand_init(rand_seed, tid) p = wp.vec2(wp.randf(rstate, bbox[0], bbox[1]), wp.randf(rstate, bbox[2], bbox[3])) sdf = _sdf_{{geom.name}}(p{{paramcallstr}}) count = int(0) while count < 1_000_000 and sdf>0.0: p = wp.vec2(wp.randf(rstate, bbox[0], bbox[1]), wp.randf(rstate, bbox[2], bbox[3])) sdf = _sdf_{{geom.name}}(p{{paramcallstr}}) count += 1 points[tid] = p {% endfor %} {% for geom in geometries %} @wp.kernel def _kernel_sample_boundary_{{geom.name}}(rand_seed: int, points: wp.array(dtype=wp.vec2), bbox: wp.vec4, tol: float, {% for k,v in params.items() %}{{k}}: float, {% endfor %}): tid = wp.tid() rstate = wp.rand_init(rand_seed, tid) p = wp.vec2(wp.randf(rstate, bbox[0], bbox[1]), wp.randf(rstate, bbox[2], bbox[3])) sdf = _sdf_{{geom.name}}(p{{paramcallstr}}) count = int(0) while count < 1_000_000 and (sdf<-tol or sdf>0): p = wp.vec2(wp.randf(rstate, bbox[0], bbox[1]), wp.randf(rstate, bbox[2], bbox[3])) sdf = _sdf_{{geom.name}}(p{{paramcallstr}}) count += 1 # compute gradient of the SDF using finite differences eps = 1.e-4 dx = _sdf_{{geom.name}}(p + wp.vec2(eps, 0.0){{paramcallstr}}) - _sdf_{{geom.name}}(p - wp.vec2(eps, 0.0){{paramcallstr}}) dy = _sdf_{{geom.name}}(p + wp.vec2(0.0, eps){{paramcallstr}}) - _sdf_{{geom.name}}(p - wp.vec2(0.0, eps){{paramcallstr}}) normal = wp.normalize(wp.vec2(dx, dy)) sdf = _sdf_{{geom.name}}(p{{paramcallstr}}) points[tid] = p- normal*sdf {% endfor %} class Geometry: def __init__(self, dim=128): self.dim = dim self.max_verts = 10**6 self.max_tris = 10**6 self.sdf_return = wp.zeros(shape=(dim*10,), dtype=float) self.sample_points = wp.zeros(shape=(10,), dtype=wp.vec2) self._geoms = [{% for geom in geometries %}"{{geom.name}}",{% endfor %}] def list_geometries(self): return self._geoms.copy() def sdf(self, geom_name, xy{{paramstr}}): assert geom_name in self._geoms dim = xy.shape[0] if self.sdf_return.shape[0] < xy.shape[0]: self.sdf_return = wp.zeros(shape=(xy.shape[0],), dtype=float) kernel = globals()["_kernel_sdf_"+geom_name] with wp.ScopedTimer(f"SDF compute for {geom_name}"): wp.launch(kernel, dim=dim, inputs=[wp.array(xy, dtype=wp.vec2), self.sdf_return, {% for k,v in params.items() %}{{k}}, {% endfor %}]) wp.synchronize() return self.sdf_return.numpy()[:dim] def sample_interior(self, geom_name, n, bbox=[-2.0, 2.0, -2.0, 2.0]{{paramstr}}): if self.sample_points.shape[0] < n: self.sample_points = wp.zeros(shape=(n,), dtype=wp.vec2) kernel = globals()["_kernel_sample_interior_"+geom_name] with wp.ScopedTimer(f"Sampling interior of {geom_name}"): import numpy as np rand_seed = np.random.randint(1_000_000_000) bbox = wp.vec4(*bbox) wp.launch(kernel, dim=n, inputs=[rand_seed, self.sample_points, bbox, {% for k,v in params.items() %}{{k}}, {% endfor %}]) wp.synchronize() return self.sample_points.numpy()[:n] def sample_boundary(self, geom_name, n, bbox=[-2.0, 2.0, -2.0, 2.0], tol=1e-2{{paramstr}}): if self.sample_points.shape[0] < n: self.sample_points = wp.zeros(shape=(n,), dtype=wp.vec2) kernel = globals()["_kernel_sample_boundary_"+geom_name] with wp.ScopedTimer(f"Sampling boundary of {geom_name}"): import numpy as np rand_seed = np.random.randint(1_000_000_000) bbox = wp.vec4(*bbox) wp.launch(kernel, dim=n, inputs=[rand_seed, self.sample_points, bbox, tol, {% for k,v in params.items() %}{{k}}, {% endfor %}]) wp.synchronize() return self.sample_points.numpy()[:n]
modulus-toolchain-master
mtc/compile/templates/warp_geometry_2d.py
def make_infer_fn(outputs=[{% for item in _submodels %}'{{ item }}',{% endfor %}]): coll_models=[{% for item in coll_models %}'{{ item }}',{% endfor %}] invals = {str(v): np.array([0]).reshape(-1, 1) for v in [{% for item in _vars %}'{{ item }}',{% endfor %}]} # requires_grad = False requires_grad = True for v in invals: for o in outputs: if f"__{v}" in o: requires_grad=True output_names = set(outputs).difference(set(coll_models)) inferencer = PointwiseInferencer( invar=invals, output_names=output_names, #[submodel for submodel in self._submodels], nodes=nodes, batch_size=256 * 4 * 4 * 4, requires_grad=requires_grad ) domain.add_inferencer(inferencer) # create inference function def infer_fn(*args, **kargs): "[{{ stageid }}] infer: ({% for item in _vars %}{{ item }},{% endfor %}) -> ({% for item in _submodels %}{{ item }}, {% endfor %}{{self_model['name']}})" from modulus.sym.domain.constraint import Constraint invals = {str(v): kargs[v].reshape(-1, 1) for v in [{% for item in _vars %}'{{ item }}',{% endfor %}]} invar0 = invals invar = Constraint._set_device( invar0, requires_grad=requires_grad, device=inferencer.device ) pred_outvar = inferencer.forward(invar) result = {} for submodel in output_names: #[{% for item in _submodels %}'{{ item }}',{% endfor %}]: ret = pred_outvar[submodel].cpu().detach().numpy() ret_val = np.array([v for v in ret[:, 0]]) result[submodel] = ret_val # now build the main model model = {"name": '{{ self_model["name"] }}', "conditions": [ {% for item in self_model['conditions'] %} { "func":sympy.sympify('{{item['func']}}'),"on":sympy.sympify('{{item['on']}}')}, {% endfor %} ]} main_result = ret_val.copy().reshape(-1, 1) invars, invals = [], [] for varn, varval in invar0.items(): invars.append(Symbol(varn)) invals.append(varval) if model['name'] in outputs: for smodel in model["conditions"]: func = smodel["func"] cond = smodel["on"] submodel_result = result[str(func)].reshape(-1, 1) from sympy import lambdify sel = lambdify(invars, cond)(*invals) main_result[sel] = submodel_result[sel] result[model["name"]] = main_result return result return infer_fn infer_fn=make_infer_fn() def infer_dispatch(*args, **kargs): if "outputs" not in kargs: return infer_fn(*args, **kargs) std = ({% for item in _submodels %}'{{ item }}', {% endfor %}"{{self_model['name']}}") o2fn = {std: infer_fn} not_found=True for k, fn in o2fn.items(): if len(set(kargs['outputs']).difference(set(k))) == 0: return fn(*args, **kargs) fn = make_infer_fn(kargs['outputs']) o2fn[tuple(kargs['outputs'])] = fn return fn(*args, **kargs) global infer infer = infer_dispatch
modulus-toolchain-master
mtc/templates/inference_section.py
from mtc.problem import PINNProblem from mtc.fno_problem import FNOProblem from mtc.problem import * PINN = PINNProblem("[PINN] %%projname%%") FNO = FNOProblem("[PINO] %%projname%%") PINO = FNO p = PINN
modulus-toolchain-master
mtc/templates/cfg.py
from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_1d import Line1D, Point1D from modulus.sym.geometry.primitives_2d import Rectangle, Circle, Polygon, Line, Channel2D from modulus.sym.geometry.primitives_3d import Box, Sphere, Cylinder from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, PointwiseConstraint, IntegralBoundaryConstraint ) from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.geometry.parameterization import Parameterization, Parameter from modulus.sym.key import Key from modulus.sym.node import Node import modulus from modulus.sym.hydra import to_absolute_path, to_yaml, instantiate_arch from modulus.sym.hydra.config import ModulusConfig import numpy as np import os # from modulus.sym.geometry.tessellation import Tessellation ############### from sympy import Symbol, Eq, Or, And, Function import sympy import torch class PDParam: def __init__(self, geom, param_ranges=None): self._geom = geom self._params = param_ranges def sample_interior(self, *args, **kwargs): d = self._geom.sample_interior(*args, **kwargs) shp = d["x"].shape nr = shp[0] for param, rng in self._params.items(): data = np.random.rand(nr).reshape(shp) delta = rng[1] - rng[0] d[param] = data * delta + rng[0] return d def sample_boundary(self, *args, **kwargs): d = self._geom.sample_boundary(*args, **kwargs) for k, v in d.items(): d[k] = np.vstack([v, v, v]) shp = d["x"].shape nr = shp[0] for param, rng in self._params.items(): data = np.random.rand(nr).reshape(shp) delta = rng[1] - rng[0] d[param] = data * delta + rng[0] return d {% if no_modulus_main %} from modulus.sym.hydra.utils import compose cfg = compose(config_path="conf", config_name="config") cfg.network_dir = "{{conf_path}}/outputs" def run(cfg=cfg) -> None: {% else %} @modulus.sym.main(config_path="conf", config_name="config") def run(cfg) -> None: {% endif %}
modulus-toolchain-master
mtc/templates/train-imports.py
from cfg import * # Select Problem Type p = PINN # p = FNO # uncomment to select a PINO/FNO problem type # ------------------- # Suggested structure (PINN) # # 1. Define problem variables and unknown functions; e.g., # [x, y], [u] = p.add_neural_network(name="NN", inputs=["x", "y"], outputs=["u"]) # # 2. Define geometries; e.g., # geo = p.Line1D("geom", 0,1) # # 3. Define sub-domains (geometries plus non-geometric variables goe here); e.g. # # interior = p.add_interior_subdomain("interior", # geom=geo, # params={t:(0,2*L)}) # boundary = p.add_boundary_subdomain("boundary", # geom=geo, # params={t:(0,2*L)}) # # 4. (Optionally) Sub-models; e.g, # g_air = p.add_submodel("g_air", u_air * zf + airT) # # # 5. Define constraints; e.g., # # wave_eq = Eq(u.diff(t, 2), (c**2 * u.diff(x)).diff(x)) # p.add_constraint("wave_equation", enforce(equation=wave_eq, on_domain=interior)) # p.add_data_constraint(name="calculated", model=u, data_fname=hdf_fname) # # # 6. (optionally) Define piecewise-models (collecting submodels) # # p.set_model( # "T", # [ # {"func": g_metal, "on": And(y > mny, y < mxy)}, # {"func": g_air, "on": ~And(y > mny, y < mxy)}, # ], # ) # Suggested structure (FNO) # # 1. Define the discrete spatial domain (the extent, the grid, and grid spacing) # x, y, dx, dy = p.set_grid_domain(N=100, extent={"x": (0.0, 1.0), "y": (0.0, 1.0)}) # # Note that the spatial variables are defined in this way (x and y are sympy.Symbol) and the # grid spacing is now computed based on the number of grid points N and returned for each variable. # # 2. Define problem input and output functions; e.g., # [K, ],[X,Y], [U] = p.add_neural_network(name="NN", inputs=["K"], outputs=["U"]) # # 3. If a data driven FNO, add input/output distribution # ddata = p.add_distribution(name="Ddata", {"K": Kvals, "U": Uvals}) # # 4. If PINO, an input distribution may be sufficient (i.e. with no output values) # dinput = p.add_distribution(name="Dinputs", {"K": Kvals}) # # 5. If data-driven, add a data constraint # p.add_data_constraint("data", over=ddata) # input is a distribution that has input/output entries # # 6. If PINO, add an interior and boundary equation constraint (interior/boundary grid points) # p.add_interior_constraint("heat eq", equation=Eq(U.diff(x,x)+U.diff(y, y), 1), over=dinput) # p.add_boundary_constraint("bdry", equation=Eq(U=0), over=dinput)
modulus-toolchain-master
mtc/templates/problem.py
from typing import Dict import modulus from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.utils.io.plotter import GridValidatorPlotter import torch import h5py import numpy as np #from utilities import download_FNO_dataset, load_FNO_dataset {% include "constraints.py" %} @modulus.sym.main(config_path="conf", config_name="config_PINO") def run(cfg: ModulusConfig) -> None: "{{problem_name}}" {% filter indent(width=4) %} domain = Domain() nodes = [] {% for nn_name, nn in nns.items() %} from modulus.sym.models.fully_connected import FullyConnectedArch decoder_net = FullyConnectedArch( input_keys=[Key("z")], # input to decoder output_keys=[{% for v in nn.outputs %}Key("{{v}}"),{% endfor %}], # output keys of decoder nr_layers=1, # number of layers layer_size=32 # layer size ) from modulus.sym.models.fno import FNOArch model{{nn_name}} = FNOArch( input_keys=[{% for v in nn.inputs %}Key("{{v}}"),{% endfor %}], decoder_net=decoder_net, dimension=2 ) nodes += [model{{nn_name}}.make_node(name="{{nn_name}}_FNO")] {% endfor %} #################################################### # Define constraints #################################################### ins_outs = [{% for v in nn_ins %}"{{v}}",{% endfor %}]+[{% for v in nn_outs %}"{{v}}"{% endfor %}] _constraints = {} dirichlet_conds = [] dirichlet_gen_conds = [] neumann_conds = [] {% for cn, c in constraints.items() %} {% if c.type == "boundary-dirichlet" %} var_id={{c.var_id}} offset = {{c.var_offset}} expr_srepr= "{{c.expr_srepr}}" dirichlet_conds += [(var_id, offset, expr_srepr)] {% elif c.type == "boundary-dirichlet-gen" %} at_srepr = "{{c.at}}" expr_srepr= "{{c.expr_srepr}}" dirichlet_gen_conds += [(expr_srepr, at_srepr)] {% elif c.type == "boundary-neumann" %} var_id={{c.var_id}} offset = {{c.var_offset}} expr_srepr= "{{c.expr_srepr}}" neumann_conds += [(var_id, offset, expr_srepr)] {% endif %} {% endfor %} {% for cn, c in constraints.items() %} # Constraint: {{cn}} [{{c.type}}] {% if c.type == "interior" %} srepr = "{{c.eq_srepr}}" ctype = "interior" gridvarfuncs={ {% for gv in grid.vars %}"{{gv|upper}}":{{grid.vars[gv]}},{% endfor %} } _constraints["{{cn}}"] = FNOEquationConstraint(ins_outs, gridvarfuncs, srepr, "{{cn}}", "{{c.onFunc}}", dirichlet_gen_conds, dirichlet_conds, neumann_conds, ctype=ctype, criteria="{{c.srepr_criteria}}") # distribution = {{c.distribution}} inputs = [{% for v in nn_ins %}"{{v}}",{% endfor %}] _node = Node( inputs=ins_outs, outputs=["{{cn}}"], evaluate=_constraints["{{cn}}"], name="[{{cn}}] Node", ) # add constraints to domain with h5py.File("{{distributions[c.distribution].file}}", "r") as f: invars = {} for k in f.keys(): invars[k] = f[k][:] sh = invars[k].shape invars[k]= invars[k].reshape(sh[0], 1, sh[1], sh[2]) print(k, invars[k].shape, invars.keys()) train_dataset = DictGridDataset(invars, {"{{cn}}": np.zeros_like(invars[k])}) supervised = SupervisedGridConstraint( nodes=nodes + [_node], dataset=train_dataset, batch_size=16, ) domain.add_constraint(supervised, "supervised{{cn}}") #nodes += [_node] {% endif %} {% endfor %} # make solver slv = Solver(cfg, domain) # start solver slv.solve() {% endfilter %} if __name__ == "__main__": run()
modulus-toolchain-master
mtc/templates/fno-problem/train.py
from typing import Dict # import modulus from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.graph import Graph from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.utils.io.plotter import GridValidatorPlotter import torch import h5py import numpy as np global struct from modulus.sym.hydra.utils import compose cfg = compose(config_path="conf", config_name="config_PINO") cfg.network_dir = "outputs/darcy_PINO" def run(cfg=cfg) -> None:{% filter indent(width=4) %} {% for nn_name, nn in nns.items() %} nodes=[] from modulus.sym.models.fully_connected import FullyConnectedArch decoder_net = FullyConnectedArch( input_keys=[Key("z")], # input to decoder output_keys=[{% for v in nn.outputs %}Key("{{v}}"),{% endfor %}], # output keys of decoder nr_layers=1, # number of layers layer_size=32 # layer size ) from modulus.sym.models.fno import FNOArch model{{nn_name}} = FNOArch( input_keys=[{% for v in nn.inputs %}Key("{{v}}"),{% endfor %}], decoder_net=decoder_net, dimension=2 ) nodes += [model{{nn_name}}.make_node(name="{{nn_name}}_FNO")] for node in nodes: node.evaluate.load("training/{{stageid}}/outputs") gmodel = Graph(nodes, [{% for v in nn.inputs %}Key("{{v}}"),{% endfor %}], [{% for v in nn.outputs %}Key("{{v}}"),{% endfor %}]) global struct struct = {"graph": gmodel} {% endfor %}{% endfilter %} run() info = {"__file__":__file__, "grid": {"N": {{grid.N}}, "vars": { {% for vn,v in grid.vars.items() %}"{{vn}}":{{v}}, {% endfor %} } }, "input_grids": [{% for v in nn_ins %}Key("{{v}}"),{% endfor %}], "output_grids": [{% for v in nn_outs %}Key("{{v}}"),{% endfor %}]} def infer({% for v in nn_ins %}{{v}},{% endfor %}): {% for v in nn_ins %}sh={{v}}.shape;{% endfor %} g =struct['graph'] def arr2_tensor(a): sh = a.shape return torch.Tensor(a.reshape(sh[0], 1, sh[1], sh[2])) result = g.forward({ {% for v in nn_ins %}"{{v}}":arr2_tensor({{v}}),{% endfor %} }) return {k: r.cpu().detach().numpy().reshape(sh) for k,r in result.items()}
modulus-toolchain-master
mtc/templates/fno-problem/infer.py
class FNOEquationConstraint(torch.nn.Module): "Custom Equation Constraint" def __init__(self, vars, gridvarfuncs, eq_srepr, outvar, onFunc, dirichlet_gen_conds, dirichlet_conds, neumann_conds, ctype="interior", criteria=None): "ctype in ['interior', 'boundary']" ctypes=['interior', 'boundary'] assert ctype in ctypes, f"Invalid ctype={ctype} -- Constraint type must be one of {ctypes}" super().__init__() self.vars = vars self.gridvarfuncs = gridvarfuncs self.eq_srepr = eq_srepr self.outvar = outvar self.ctype=ctype self.onFunc = onFunc # the format of the Dirichlet and Neumann conditions is a list of: # (var_id, offset, expr_srepr) # var_id: the variable number (e.g. 0 for x, ...) # offset: in grid point id units (usually 0, 1 or -1, -2) # expr_srepr: the string to evaluate to get the value self.dirichlet_conds=dirichlet_conds self.dirichlet_gen_conds=dirichlet_gen_conds self.neumann_conds=neumann_conds self.criteria=criteria def forward(self, input_var: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: _vars = { "_dh4id": { {% for vn,v in grid.vars.items() %} {{v.var_id}} :{{v.delta}}, {% endfor %} }, #{"x": 1.0, "y": 1.0}, "_dh": { {% for vn,v in grid.vars.items() %}"{{vn}}":{{v.delta}}, {% endfor %} }, #{"x": 1.0, "y": 1.0}, "_symbol2order": { {% for vn,v in grid.vars.items() %}"{{vn}}":{{v.var_id}}, {% endfor %} }, } for v in self.vars: _vars[v] = input_var[v].clone() inT = input_var[v] # mgargs = [ np.arange(gv['extent'][0], gv['extent'][1], gv['delta']) for gvn, gv in self.gridvarfuncs.items()] mgargs = [ np.linspace(gv['extent'][0], gv['extent'][1], inT.shape[-1]) for gvn, gv in self.gridvarfuncs.items()] # Set up the grid variable functions to allow for, e.g., sin(X) r = np.meshgrid(*mgargs) for gvn, _V in zip(self.gridvarfuncs, r): _V = torch.Tensor( _V.reshape([1,1]+list(_V.shape)) ).to(inT.device) _V = torch.repeat_interleave(_V, inT.shape[0], dim=0) _vars[gvn] = _V import torch.nn.functional as F # requirements # 1. need to pas a _vars object # 2. _vars["_symbol2order"] is a dict mapping grid variables (like x,y,t) to dimension # 3. _vars should include the tensors for each function; e.g. _vars["u"] = tensor # 4. _vars["_dh"] is a dict mapping grid vars to grid size for numerical differentiation class TorchEvalExp: def ln(x): return torch.ln(x) def log(x): return torch.log(x) def Pow(x, p): return torch.pow(x, p) def Abs(x): return torch.abs(x) def exp(x): return torch.exp(x) def sin(x): return torch.sin(x) def cos(x): return torch.cos(x) def LessThan(a,b): return a<=b def StrictLessThan(a,b): return a<b def StrictGreaterThan(a,b): return a>b def GreaterThan(a,b): return a>=b def Not(a): return ~a def Or(*args): r = args[0] for a in args[1:]: r = r|a return r def And(*args): r = args[0] for a in args[1:]: r = r&a return r def Equality(a,b): return a==b def Unequality(a,b): return a!=b def Integer(v): return float(v) def Float(v, precision=53): return float(v) def Tuple(*args): return args def Add(*args): r = args[0] for a in args[1:]: r = r + a return r def Mul(*args): r = args[0] for a in args[1:]: r = r * a return r def Symbol(s): return str(s) class Function: def __init__(self, name): self.name = name self.args = [] def __call__(self, *args): for a in args: assert isinstance(a, str) self.args = [a for a in args] return _vars[self.name] def Derivative(t, p): vnum = _vars["_symbol2order"][p[0]] deriv_order = p[1] dh = _vars["_dh"][p[0]] if deriv_order == 1: stencil = torch.Tensor([-0.5, 0.0, 0.5]).to(t.device) elif deriv_order == 2: stencil = torch.Tensor([1.0, -2.0, 1.0]).to(t.device) dh = dh * dh else: print("ERROR: only derivatives up to order 2 are supported") dim = (vnum+1)%2 # len(_vars["_symbol2order"]) stencilD = torch.reshape(stencil, [1, 1] + dim * [1] + [-1] + (1 - dim) * [1]) # var = F.pad(t, 4 * [(stencil.shape[0] - 1) // 2], "replicate") # "constant", 0) var=t output = F.conv2d(var, stencilD, padding="same") / dh return output def Integral(t, p): dim = int(_vars["_symbol2order"][p[0]]) dh = _vars["_dh"][p[0]] # nT=torch.zeros_like(T) if dim == 0: sT = dh*torch.sum(t,2+dim, keepdim=True)#.shape # nT[0,0,:,:]=sT[0,0,0,:] return sT.repeat(1,1,t.shape[2],1) elif dim == 1: sT = dh*torch.sum(t,2+dim, keepdim=True)#.shape return sT.repeat(1,1,1,t.shape[3]) return nT fns = [e for e in dir(TorchEvalExp) if not e.startswith("__")] ctxt = {fn: getattr(TorchEvalExp, fn) for fn in fns} # Select the target tensor to prepare with boundary info T = _vars[self.onFunc] # First, evaluate all Dirichlet General conditions for expr_srepr, at_srepr in self.dirichlet_gen_conds: Tc = eval(expr_srepr,{}, ctxt) if isinstance(Tc, float): Tc = 0*T + Tc atCond = eval(at_srepr,{}, ctxt) T[atCond] = Tc[atCond] # First, evaluate all Dirichlet conditions for var_id, offset, expr_srepr in self.dirichlet_conds: Tc = eval(expr_srepr,{}, ctxt) if isinstance(Tc, float): Tc = 0*T + Tc if var_id == 0: T[:,:,:, offset] = Tc[:,:,:, offset] else: T[:,:,offset,:] = Tc[:,:,offset,:] # Then, evaluate all Neumann conditions for var_id, offset, expr_srepr in self.neumann_conds: dh = _vars["_dh4id"][var_id] Tc = -eval(expr_srepr,{}, ctxt) if isinstance(Tc, float): Tc = 0*T + Tc off = -1 if offset > 1: off = 1 dh = -dh if var_id == 0: T[:,:,1:-1, offset] = T[:,:,1:-1, offset+off] + off*Tc[:,:,1:-1, offset]*dh else: T[:,:, offset,1:-1] = T[:,:,offset+off,1:-1] + off*Tc[:,:,offset,1:-1]*dh result = eval(self.eq_srepr,{}, ctxt) ## must ignore boundary in loss function when using 3-point stencils result[:,:,0,:]=0 result[:,:,-1,:]=0 result[:,:,:,0]=0 result[:,:,:,-1]=0 return {self.outvar: result} ## ----------------
modulus-toolchain-master
mtc/templates/fno-problem/constraints.py
modulus-toolchain-master
mtc/templates/conf/__init__.py
from __future__ import print_function from setuptools import setup, find_packages, Command from setuptools.command.sdist import sdist from setuptools.command.build_py import build_py from setuptools.command.egg_info import egg_info from subprocess import check_call import os import sys import platform here = os.path.dirname(os.path.abspath(__file__)) node_root = os.path.join(here, 'js') is_repo = os.path.exists(os.path.join(here, '.git')) npm_path = os.pathsep.join([ os.path.join(node_root, 'node_modules', '.bin'), os.environ.get('PATH', os.defpath), ]) from distutils import log log.set_verbosity(log.DEBUG) log.info('setup.py entered') log.info('$PATH=%s' % os.environ['PATH']) LONG_DESCRIPTION = 'A widget for interactive server-side ParaView rendering' def js_prerelease(command, strict=False): """decorator for building minified js/css prior to another command""" class DecoratedCommand(command): def run(self): jsdeps = self.distribution.get_command_obj('jsdeps') if not is_repo and all(os.path.exists(t) for t in jsdeps.targets): # sdist, nothing to do command.run(self) return try: self.distribution.run_command('jsdeps') except Exception as e: missing = [t for t in jsdeps.targets if not os.path.exists(t)] if strict or missing: log.warn('rebuilding js and css failed') if missing: log.error('missing files: %s' % missing) raise e else: log.warn('rebuilding js and css failed (not a problem)') log.warn(str(e)) command.run(self) update_package_data(self.distribution) return DecoratedCommand def update_package_data(distribution): """update package_data to catch changes during setup""" build_py = distribution.get_command_obj('build_py') # distribution.package_data = find_package_data() # re-init build_py options which load package_data build_py.finalize_options() class NPM(Command): description = 'install package.json dependencies using npm' user_options = [] node_modules = os.path.join(node_root, 'node_modules') targets = [ os.path.join(here, 'ipyparaview', 'static', 'extension.js'), os.path.join(here, 'ipyparaview', 'static', 'index.js') ] def initialize_options(self): pass def finalize_options(self): pass def get_npm_name(self): npmName = 'npm'; if platform.system() == 'Windows': npmName = 'npm.cmd'; return npmName; def has_npm(self): npmName = self.get_npm_name(); try: check_call([npmName, '--version']) return True except: return False def should_run_npm_install(self): package_json = os.path.join(node_root, 'package.json') node_modules_exists = os.path.exists(self.node_modules) return self.has_npm() def run(self): has_npm = self.has_npm() if not has_npm: log.error("`npm` unavailable. If you're running this command using sudo, make sure `npm` is available to sudo") env = os.environ.copy() env['PATH'] = npm_path if self.should_run_npm_install(): log.info("Installing build dependencies with npm. This may take a while...") npmName = self.get_npm_name(); # NOTE: this is a dirty hack to get around permissions issues with npm in docker # It's not portable, or reliable. It may kill your dog without warning. import getpass if getpass.getuser() == 'root': check_call([npmName, 'install', '--unsafe-perm'], cwd=node_root, stdout=sys.stdout, stderr=sys.stderr) else: check_call([npmName, 'install'], cwd=node_root, stdout=sys.stdout, stderr=sys.stderr) os.utime(self.node_modules, None) for t in self.targets: if not os.path.exists(t): msg = 'Missing file: %s' % t if not has_npm: msg += '\nnpm is required to build a development version of a widget extension' raise ValueError(msg) # update package data in case this created new files update_package_data(self.distribution) version_ns = {} with open(os.path.join(here, 'ipyparaview', '_version.py')) as f: exec(f.read(), {}, version_ns) setup_args = { 'name': 'ipyparaview', 'version': version_ns['__version__'], 'description': 'A widget for interactive server-side ParaView rendering', 'long_description': LONG_DESCRIPTION, 'include_package_data': True, 'data_files': [ ('share/jupyter/nbextensions/ipyparaview', [ 'ipyparaview/static/extension.js', 'ipyparaview/static/index.js', 'ipyparaview/static/index.js.map', ],), ('etc/jupyter/nbconfig/notebook.d' ,['ipyparaview.json']) ], 'install_requires': [ 'ipywidgets>=7.0.0', 'pillow>=7.0.0' ], 'packages': find_packages(), 'zip_safe': False, 'cmdclass': { 'build_py': js_prerelease(build_py), 'egg_info': js_prerelease(egg_info), 'sdist': js_prerelease(sdist, strict=True), 'jsdeps': NPM, }, 'author': 'Nick Leaf', 'author_email': '[email protected]', 'url': 'https://github.com/NVIDIA/ipyparaview', 'keywords': [ 'ipython', 'jupyter', 'widgets', ], 'classifiers': [ 'Development Status :: 4 - Beta', 'Framework :: IPython', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Topic :: Multimedia :: Graphics', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], } setup(**setup_args)
ipyparaview-master
setup.py
# Module version version_info = (0, 1, 2, 'beta', 0) # Module version stage suffix map _specifier_ = {'alpha': 'a', 'beta': 'b', 'candidate': 'rc', 'final': ''} # Module version accessible using ipyparaview.__version__ __version__ = '%s.%s.%s%s'%(version_info[0], version_info[1], version_info[2], '' if version_info[3]=='final' else _specifier_[version_info[3]]+str(version_info[4]))
ipyparaview-master
ipyparaview/_version.py
import math import numpy as np __all__ = ['rotateCameraTurntable', 'panCameraTurntable', 'zoomCameraTurntable'] def _normalize(v): return v/np.linalg.norm(v) def _cartToSphr(p): #cartesian position into spherical r = np.linalg.norm(p) return np.array([r, math.atan2(p[0], p[2]), math.asin(p[1]/r)]) def _sphrToCart(p): #spherical coordinate position into cartesian return np.array([p[0]*math.sin(p[1])*math.cos(p[2]), p[0]*math.sin(p[2]), p[0]*math.cos(p[1])*math.cos(p[2])]) def rotateCameraTurntable(d, p, f, u, scale, phiLimit): f = np.array(f) p = np.array(p) - f #compute orthonormal basis corresponding to current view and up vectors b1 = _normalize(np.array(u)) b0 = _normalize(np.cross(b1, p)) b2 = np.cross(b0, b1) #compute matrices to convert to and from the up-vector basis fromU = np.column_stack([b0,b1,b2]) toU = np.linalg.inv(fromU) #rotate around the focus in spherical: # - convert focus-relative camera pos to up vector basis, then spherical # - apply mouse deltas as movements in spherical # - convert back to cartesian, then to standard basis, then to absolute position cp = _cartToSphr( np.matmul(toU,p) ) cp[1] -= scale*d['x'] cp[2] = max(-phiLimit, min(phiLimit, cp[2]-scale*d['y'])) p = np.matmul( fromU, _sphrToCart(cp) ) #self.render() return (p+f, f, u) def panCameraTurntable(d, p, f, u, angle): #translates pan delta into a translation vector at the focal point f = np.array(f) p = np.array(p)-f u = np.array(u) h = _normalize(np.cross(p, u)) v = _normalize(np.cross(p, h)) f += (d['x']*h + d['y']*v)*np.linalg.norm(p)*2*math.tan(math.pi*angle/360) #self.render() return (p+f, f, u) def zoomCameraTurntable(d, p, f, u, rlimit): #zooms by scaling the distance between camera and focus f = np.array(f) p = np.array(p)-f r = np.linalg.norm(p) p *= max(rlimit, r*d)/r return (p+f, f, u)
ipyparaview-master
ipyparaview/camera_models.py
############################################################################### # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### from ._version import version_info, __version__ from .widgets import * from .camera_models import * def _jupyter_nbextension_paths(): """Called by Jupyter Notebook Server to detect if it is a valid nbextension and to install the widget Returns ======= section: The section of the Jupyter Notebook Server to change. Must be 'notebook' for widget extensions src: Source directory name to copy files from. Webpack outputs generated files into this directory and Jupyter Notebook copies from this directory during widget installation dest: Destination directory name to install widget files to. Jupyter Notebook copies from `src` directory into <jupyter path>/nbextensions/<dest> directory during widget installation require: Path to importable AMD Javascript module inside the <jupyter path>/nbextensions/<dest> directory """ return [{ 'section': 'notebook', 'src': 'static', 'dest': 'ipyparaview', 'require': 'ipyparaview/extension' }] class PVRenderActor: """A class for rendering data using ParaView as a Dask Actor""" framenum = 0 frametime = 0 #time to render the latest frame rank,size = 0, 1 def __init__(self, x): #NOTE: 'x' is required in order to instantiate an actor across all nodes by passing #a sequence of variables import paraview paraview.options.batch = True paraview.options.symmetric = True import paraview.simple as pvs self.pvs = pvs from mpi4py import MPI self.rank,self.size = MPI.COMM_WORLD.Get_rank(), MPI.COMM_WORLD.Get_size() import vtk from vtk import vtkWindowToImageFilter # Create render view and image transfer filter objects self.renv = pvs.CreateRenderView() self.w2i = vtkWindowToImageFilter() self.w2i.ReadFrontBufferOff() self.w2i.ShouldRerenderOff() self.w2i.SetInput(self.renv.SMProxy.GetRenderWindow()) # Make sure all ranks have initialized MPI.COMM_WORLD.Barrier() if self.rank == 0: print("All ranks ready for rendering") def rotateCam(self, mouseDelta, rotateScale, phiLim): """Rotates the camera using the given mouse delta""" (self.renv.CameraPosition, self.renv.CameraFocalPoint, self.renv.CameraViewUp) = rotateCameraTurntable( mouseDelta, self.renv.CameraPosition, self.renv.CameraFocalPoint, self.renv.CameraViewUp, rotateScale, phiLim) def panCam(self, mouseDelta): """Pans the camera using the given mouse delta""" (self.renv.CameraPosition, self.renv.CameraFocalPoint, self.renv.CameraViewUp) = panCameraTurntable( mouseDelta, self.renv.CameraPosition, self.renv.CameraFocalPoint, self.renv.CameraViewUp, self.renv.CameraViewAngle) def zoomCam(self, mouseDelta, rlim): """Zooms the camera using the given mouse delta""" (self.renv.CameraPosition, self.renv.CameraFocalPoint, self.renv.CameraViewUp) = zoomCameraTurntable( mouseDelta, self.renv.CameraPosition, self.renv.CameraFocalPoint, self.renv.CameraViewUp, rlim) def render(self): """Render a frame and return it as a numpy array""" import time ts = time.time() self.pvs.Render(view=self.renv) if self.rank == 0: self.frametime = time.time()-ts self.framenum += 1 def fetchFrame(self): # Mathias's magic frame fetching snippet self.w2i.Modified() self.w2i.Update() imagedata = self.w2i.GetOutput() w,h,_ = imagedata.GetDimensions() import numpy as np from vtk.util.numpy_support import vtk_to_numpy imagedata_np = vtk_to_numpy(imagedata.GetPointData().GetScalars()).reshape((h,w,3)) return np.flipud(np.pad(imagedata_np, ((0,0),(0,0),(0,1)), mode='constant', constant_values=255)) def run(self, fun, args): """Run the given function on the Actor's worker node""" return fun(self, *args)
ipyparaview-master
ipyparaview/__init__.py
############################################################################### # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### #Functions for handling camera interaction from .camera_models import * import ipywidgets as widgets from traitlets import Unicode, Int, Float, Bytes, Tuple, validate import time import numpy as np import threading # for jpeg / png transfer ("compress frames"): import base64 from io import BytesIO from PIL import Image @widgets.register class PVDisplay(widgets.DOMWidget): """A ParaView interactive render widget""" _view_name = Unicode('PVDisplayView').tag(sync=True) _model_name = Unicode('PVDisplayModel').tag(sync=True) _view_module = Unicode('ipyparaview').tag(sync=True) _model_module = Unicode('ipyparaview').tag(sync=True) _view_module_version = Unicode('^0.1.2').tag(sync=True) _model_module_version = Unicode('^0.1.2').tag(sync=True) # traitlets -- variables synchronized with front end frame = Bytes().tag(sync=True) compressedFrame = Bytes().tag(sync=True) resolution = Tuple((800,500)).tag(sync=True) #canvas resolution; w,h fpsLimit = Float(60.0).tag(sync=True) #maximum render rate maxEventRate = Float(20.0).tag(sync=True) #maximum number of mouse events/s # class variables instances = dict() rotateScale = 5.0 zoomScale = 0.05 @classmethod def GetOrCreate(cls, ren, runAsync=True, **kwargs): """ Check if a PVDisplay instance already exists for the renderer. If yes, return that instance; otherwise, create a new one. """ instance = cls.instances.get(ren, None) if instance is None: instance = PVDisplay(ren, runAsync, **kwargs) cls.instances.update({ ren : instance }) return instance def __init__(self, ren, runAsync=True, compressFrames=False, **kwargs): # see if we can import Dask.distributed, then try guessing the render # mode based on the type of ren. Fallback to regular Jupyter rendering # otherwise try: import dask.distributed as distributed if(type(ren) == list and type(ren[0]) == distributed.actor.Actor): self.mode = 'Dask' else: self.mode = 'Jupyter' except ImportError: self.mode = 'Jupyter' if self.mode == 'Jupyter' and ren in PVDisplay.instances: raise RuntimeError(f"A PVDisplay instance already exists for this renderer. Use PVDisplay.GetOrCreate() to avoid this error.") super(PVDisplay, self).__init__(**kwargs) #must call super class init # regular vars self.compressFrames = compressFrames self.pvs, self.renv, self.w2i = None,None,None #used for Jupyter kernel rendering self.master, self.renderers = None,[] #used for Dask rendering self.tp = time.time() #time of latest render self.fps = 10.0 self.fpsOut = [] #FPS output ipywidgets; passed in from Jupyter self.intyld = [0.05, 0.01] #interaction yield--period and duration self.tiy = time.time() #time of last interaction yield if self.mode == 'Dask': self.renderers = ren self.master = [r for r in self.renderers if r.rank == 0][0] self.resolution = tuple(self.master.run( lambda self : list(self.renv.ViewSize), []).result()) cf = self.master.run( lambda self : list(self.renv.CameraFocalPoint), []).result() cp = self.master.run( lambda self : list(self.renv.CameraPosition), []).result() self.camf = (cf[0], cf[1], cf[2]) self.camp = (cp[0], cp[1], cp[2]) else: import paraview.simple as pvs self.pvs = pvs self.renv = ren self.resolution = tuple(self.renv.ViewSize) cf = self.renv.CameraFocalPoint cp = self.renv.CameraPosition self.camf = (cf[0], cf[1], cf[2]) self.camp = (cp[0], cp[1], cp[2]) import vtk from vtk import vtkWindowToImageFilter self.w2i = vtkWindowToImageFilter() self.w2i.ReadFrontBufferOff() self.w2i.ShouldRerenderOff() self.w2i.SetInput(self.renv.SMProxy.GetRenderWindow()) self.frameNum = 0 self.FRBufSz = 10 self.FRBuf = np.zeros(self.FRBufSz, dtype=np.float32); self.runAsync = runAsync if runAsync: self.renderThread = threading.Thread(target=self.__renderLoop) self.renderThread.start() #FIXME: starting the render loop thread outside of __init__ seems to create # a copy of the paraview.simple object, rather than using the one that's # part of the PVDisplay state; this causes PV to crash #def setAsync(self, on): # if on and not self.runAsync: # self.runAsync = on # self.renderThread = threading.Thread(target=self.__renderLoop) # self.renderThread.start() # elif not on and self.runAsync: # self.runAsync = False def addFPSDisplay(self, *w): """Add a widget to write FPS to""" for o in w: self.fpsOut.append(o) def updateCam(self): self.render() def render(self): if self.runAsync: return else: tc = time.time() if(1.0/(tc-self.tp) < self.fpsLimit): self.__renderFrame() def fetchFrame(self): if self.mode == 'Dask': return self.master.fetchFrame().result() else: # Mathias's magic frame fetching snippet self.w2i.Modified() self.w2i.Update() imagedata = self.w2i.GetOutput() w,h,_ = imagedata.GetDimensions() from vtk.util.numpy_support import vtk_to_numpy imagedata_np = vtk_to_numpy( imagedata.GetPointData().GetScalars()).reshape((h,w,3)) return np.flipud(np.pad(imagedata_np, ((0,0),(0,0),(0,1)), mode='constant', constant_values=255)) def _handle_custom_msg(self, content, buffers): self.content = content if content['event'] == 'updateCam': self.updateCam() if content['event'] == 'rotate': self.__rotateCam(content['data']) if content['event'] == 'pan': self.__panCam(content['data']) if content['event'] == 'zoom': self.__zoomCam(content['data']) def __rotateCam(self, mouseDelta): #rotates the camera around the focus in spherical phiLim = 1.5175 if self.mode == 'Dask': from dask.distributed import wait wait([r.rotateCam(mouseDelta,self.rotateScale,phiLim) for r in self.renderers]) else: (self.renv.CameraPosition, self.renv.CameraFocalPoint, self.renv.CameraViewUp) = rotateCameraTurntable( mouseDelta, self.renv.CameraPosition, self.renv.CameraFocalPoint, self.renv.CameraViewUp, self.rotateScale, phiLim) self.render() def __panCam(self, mouseDelta): #moves the camera with a 1:1 relation to current focal point if self.mode == 'Dask': from dask.distributed import wait wait([r.panCam(mouseDelta) for r in self.renderers]) else: (self.renv.CameraPosition, self.renv.CameraFocalPoint, self.renv.CameraViewUp) = panCameraTurntable( mouseDelta, self.renv.CameraPosition, self.renv.CameraFocalPoint, self.renv.CameraViewUp, self.renv.CameraViewAngle) self.render() def __zoomCam(self, mouseDelta): #zooms by scaling the distance between camera and focus rlim = 0.00001 #minimum allowable radius d = (1.0+self.zoomScale)**mouseDelta if self.mode == 'Dask': from dask.distributed import wait wait([r.zoomCam(d,rlim) for r in self.renderers]) else: (self.renv.CameraPosition, self.renv.CameraFocalPoint, self.renv.CameraViewUp) = zoomCameraTurntable( d, self.renv.CameraPosition, self.renv.CameraFocalPoint, self.renv.CameraViewUp, rlim) self.render() def __compressFrame(self, frame): img = Image.fromarray(frame[:,:,:3]) bytesIO = BytesIO() img.save(bytesIO, format='jpeg', quality=50) img_str = base64.b64encode(bytesIO.getvalue()) return img_str def __renderFrame(self): tc = time.time() self.FRBuf[self.frameNum % self.FRBufSz] = 1.0/(tc - self.tp) self.tp = tc #set the camera position, render, and get the output frame if self.mode == 'Dask': from dask.distributed import wait wait([r.render() for r in self.renderers]) else: self.pvs.Render(view=self.renv) uncompressedFrameNp = self.fetchFrame() if self.compressFrames: self.compressedFrame = self.__compressFrame(uncompressedFrameNp) else: self.frame = uncompressedFrameNp.tostring() self.frameNum += 1 self.fps = np.average(self.FRBuf) if self.fpsOut is not None: for fo in self.fpsOut: fo.value = self.fps def __renderLoop(self): while self.runAsync: #check if it's time for an interaction yield; if so, do it if time.time() - self.tiy > self.intyld[0]: time.sleep(self.intyld[1]) self.tiy = time.time() #sleep to keep FPS to fpsLimit time.sleep(max(0, 1.0/self.fpsLimit - (time.time() - self.tp))) self.__renderFrame() @widgets.register class VStream(widgets.DOMWidget): """A WebSocket-based video stream widget with interaction.""" _view_name = Unicode('VStreamView').tag(sync=True) _model_name = Unicode('VStreamModel').tag(sync=True) _view_module = Unicode('ipyparaview').tag(sync=True) _model_module = Unicode('ipyparaview').tag(sync=True) _view_module_version = Unicode('^0.1.2').tag(sync=True) _model_module_version = Unicode('^0.1.2').tag(sync=True) url = Unicode('ws://localhost:9002').tag(sync=True) state = Unicode('').tag(sync=True) def connect(self): self.state = 'connect'
ipyparaview-master
ipyparaview/widgets.py
#!/usr/bin/env python # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from setuptools import find_packages, setup with open("README.md") as readme_file: readme = readme_file.read() setup( author="MLPerf", author_email="mlperf@local", # TODO python_requires=">=3.8", description="MLPerf utilities for NVIDIA related submissions", license="Apache Software License 2.0", long_description=readme, long_description_content_type="text/markdown", name="mlperf-common", packages=find_packages(where="."), scripts=['client/bindpcie','client/slurm2pytorch','client/mgpurun'], url="https://github.com/NVIDIA/mlperf-common", version="0.3", )
mlperf-common-main
setup.py
# Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from mlperf_logging import mllog from mlperf_logging.mllog import constants class MLLoggerWrapper: def __init__(self, comm_handler, mllogger=None, default_stack_offset=3, **default_log_kwargs): """ Args: comm_handler (CommunicationHandler): framework specific handler for barrier and determining process rank mllogger: MLPerf official logger instance default_stack_offset: number of stack calls added by this wrapper and the wrapped logger when using `start`, `end` and `event` methods. Other helper methods automatically increment stack_offset by 1. **default_log_kwargs: kwargs appended to each logging call """ self.comm_handler = comm_handler if mllogger is None: mllogger = mllog.get_mllogger() mllogger.default_stack_offset = default_stack_offset self.default_stack_offset = default_stack_offset self.mllogger = mllogger self.default_log_kwargs = default_log_kwargs # reducing imports convenience self.constants = constants def start(self, *args, **kwargs): """ Primitive for logging a time interval start. """ self._log(self.mllogger.start, *args, **kwargs) def end(self, *args, **kwargs): """ Primitive for logging a time interval end. """ self._log(self.mllogger.end, *args, **kwargs) def event(self, *args, **kwargs): """ Primitive for logging a point in time event. """ self._log(self.mllogger.event, *args, **kwargs) def _log(self, log_fn, *args, unique=True, unique_log_rank=0, sync=False, sync_group=None, internal_call=False, **kwargs): """ Main logging function. Args: log_fn: actual logging function *args: passed to `log_fn` unique: if True, only `unique_log_rank` process will log unique_log_rank: which process should log a unique log sync: calls a barrier *before* logging sync_group: group passed to barrier function internal_call: set to True for logs made by this wrapper. Increments default stack_offset to correctly trace log call location. **kwargs: passed to `log_fn` along with `self.default_log_kwargs` """ kwargs = {**self.default_log_kwargs, **kwargs} if kwargs.get('stack_offset') is None and internal_call: kwargs['stack_offset'] = self.default_stack_offset + 1 if sync: self.comm_handler.barrier(sync_group) if not unique or self.comm_handler.global_rank() == unique_log_rank: log_fn(*args, **kwargs) def log_init_stop_run_start(self): """ Logs INIT_STOP and RUN_START with correct synchronization across workers. """ self.end(key=constants.INIT_STOP, unique=True, sync=True, internal_call=True) self.start(key=constants.RUN_START, unique=True, sync=True, internal_call=True) self.comm_handler.barrier() def log_run_stop(self, status, sync=True, unique=True, unique_log_rank=0, **kwargs): """ Logs RUN_STOP with correct synchronization across workers. """ self.end(key=constants.RUN_STOP, unique=unique, unique_log_rank=unique_log_rank, sync=sync, metadata=dict(status=status, **kwargs), internal_call=True) def log_weights_initialization(self, tensor_name): """ Helper for weights initialization. """ self.event(key=constants.WEIGHTS_INITIALIZATION, metadata=dict(tensor=tensor_name), internal_call=True) def mlperf_submission_log(self, benchmark, num_nodes=None, org=None, platform=None): """ Helper for logging submission entry. """ if num_nodes is None: num_nodes = os.environ.get('SLURM_JOB_NUM_NODES', 1) if org is None: org = os.environ.get('MLPERF_SUBMISSION_ORG', 'SUBMISSION_ORG_PLACEHOLDER') if platform is None: platform = os.environ.get('MLPERF_SUBMISSION_PLATFORM', 'SUBMISSION_PLATFORM_PLACEHOLDER') self.event( key=constants.SUBMISSION_BENCHMARK, value=benchmark, internal_call=True) self.event( key=constants.SUBMISSION_ORG, value=org, internal_call=True) self.event( key=constants.SUBMISSION_DIVISION, value=constants.CLOSED, internal_call=True) self.event( key=constants.SUBMISSION_STATUS, value=constants.ONPREM, internal_call=True) self.event( key=constants.SUBMISSION_PLATFORM, value=f'{num_nodes}x{platform}', internal_call=True)
mlperf-common-main
mlperf_common/logging.py
mlperf-common-main
mlperf_common/__init__.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from time import time from collections import defaultdict from sys import exit class Metricstats: def __init__(self): self.total = 0 self.count = 0 self.min = 1000000 self.max = 0 def addtag(self, dur): self.total += dur self.count += 1 if dur < self.min: self.min = dur if dur > self.max: self.max = dur def getstats(self): return self.total, self.count, self.min, self.max def getcount(self): return self.count class ScaleoutBridgeBase(object): FWD_TIME = 'fwd_time' BWD_TIME = 'bwd_time' FBWD_TIME = 'fbwd_time' OPT_TIME = 'opt_time' LOAD_TIME = 'load_time' EVAL_TIME = 'eval_time' ITER_TIME = 'iter_time' EPOCH_TIME = 'epoch_time' def start_prof(self, tag): pass def stop_prof(self, tag): return 1 def stop_start_prof(self, tag1, tag2): pass def start_epoch_prof(self): pass def stop_epoch_prof(self): pass def start_eval_prof(self): pass def stop_eval_prof(self): pass class ScaleoutBridgeIterwise(ScaleoutBridgeBase): def __init__(self, qmax, time_tags, nvtx_flag, deviceid, prof_handler, comm_handler, mllogger): super().__init__() print("Scaleout performance bridge is running ...") self.qmax = qmax self.time_tags = time_tags self.nvtx_flag = nvtx_flag self.deviceid = deviceid self.bridgestats = defaultdict(Metricstats) self.start_epoch = 0 self.start_eval = 0 self.start_time = 0 self.start_iter = 0 self.comm_handler = comm_handler self.prof_handler = prof_handler self.mllogger = mllogger def print_tag(self, tag, dur): self.mllogger.event(key=tag, value={'r':self.deviceid, 't':dur}, unique=False) def add_tag(self, tag, dur): self.bridgestats[tag].addtag(dur) if tag == self.ITER_TIME: if self.bridgestats[tag].getcount() > self.qmax: self.printstats() return 0 return 1 def start_prof(self, tag): if self.time_tags: self.comm_handler.device_sync() if tag == self.ITER_TIME: self.start_iter = time() else: self.start_time = time() if self.nvtx_flag: self.prof_handler.push_nvtx(tag) def stop_prof(self, tag): if self.time_tags: self.comm_handler.device_sync() if tag == self.ITER_TIME: if not self.add_tag(tag, time()-self.start_iter): self.printstats() self.prof_handler.profiler_stop() self.time_tags = 0 exit() self.start_iter = 0 else: self.add_tag(tag, time()-self.start_time) self.start_time = 0 if self.nvtx_flag: self.prof_handler.pop_nvtx() return self.time_tags def stop_start_prof(self, tag1, tag2): if self.time_tags: self.comm_handler.device_sync() new_start_time = time() if not self.add_tag(tag1, new_start_time-self.start_time): self.printstats() self.time_tags = 0 self.start_time = new_start_time if self.nvtx_flag: self.prof_handler.pop_nvtx() self.prof_handler.push_nvtx(tag2) def start_epoch_prof(self): self.prof_handler.profiler_start() self.comm_handler.device_sync() self.start_epoch = time() def stop_epoch_prof(self): self.printstats() self.comm_handler.device_sync() self.print_tag(self.EPOCH_TIME, time()-self.start_epoch) self.prof_handler.profiler_stop() exit() def start_eval_prof(self): self.comm_handler.device_sync() self.start_eval = time() def stop_eval_prof(self): self.printstats() self.comm_handler.device_sync() self.print_tag(self.EVAL_TIME, time()-self.start_eval) def printstats(self): if not self.time_tags: return for tag in self.bridgestats: self.printstat(tag) self.bridgestats.clear() def printstat(self, tag): total, count, minimum, maximum = self.bridgestats[tag].getstats() self.mllogger.event(key=tag+'_total', value={'r':self.deviceid, 't':total}, unique=False) self.mllogger.event(key=tag+'_count', value={'r':self.deviceid, 't':count}, unique=False) self.mllogger.event(key=tag+'_min', value={'r':self.deviceid, 't':minimum}, unique=False) self.mllogger.event(key=tag+'_max', value={'r':self.deviceid, 't':maximum}, unique=False) class ScaleoutBridgeEpochwise(ScaleoutBridgeBase): def __init__(self, deviceid, comm_handler, mllogger): super().__init__() print("Scaleout performance bridge-epoch only is running ...") self.start_time = 0 self.deviceid = deviceid self.comm_handler = comm_handler self.mllogger = mllogger def start_epoch_prof(self): self.comm_handler.device_sync() self.start_time = time() def stop_epoch_prof(self): self.comm_handler.device_sync() self.mllogger.event(key='epoch_time', value={'r':self.deviceid, 't':time()-self.start_time}, unique=False) def init_bridge(prof_handler, comm_handler, mllogger): deviceid = comm_handler.global_rank() time_tags = int(os.getenv('TIME_TAGS', 0)) nvtx_flag = int(os.getenv('NVTX_FLAG', 0)) epoch_only = int(os.getenv('EPOCH_PROF', 0)) sbridge = ScaleoutBridgeBase() if time_tags or nvtx_flag: sbridge = ScaleoutBridgeIterwise(1000, time_tags, nvtx_flag, deviceid, prof_handler, comm_handler, mllogger) elif epoch_only: sbridge = ScaleoutBridgeEpochwise(deviceid, comm_handler, mllogger) return sbridge
mlperf-common-main
mlperf_common/scaleoutbridge.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mxnet as mx from mxnet import cuda_utils as cu from mlperf_common.frameworks.base import ProfilerHandler from mlperf_common.frameworks.base_mpi import BaseMPICommunicationHandler class MPICommunicationHandler(BaseMPICommunicationHandler): def device_sync(self): mx.nd.waitall() class MXNetProfilerHandler(ProfilerHandler): def profiler_start(self): cu.cuda_profiler_start() def profiler_stop(self): cu.cuda_profiler_stop() def push_nvtx(self, tag): cu.nvtx_range_push(tag) def pop_nvtx(self): cu.nvtx_range_pop()
mlperf-common-main
mlperf_common/frameworks/mxnet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from mlperf_common.frameworks.base import CommunicationHandler class BaseMPICommunicationHandler(CommunicationHandler): def __init__(self, comm=None, **kwargs): super().__init__(**kwargs) self.comm = comm def _get_comm(self): if self.comm is None: from mpi4py import MPI self.comm = MPI.COMM_WORLD return self.comm def barrier(self, sync_group=None): c = self._get_comm() if sync_group is None else sync_group # NOTE: MPI_Barrier is *not* working reliably at scale. Using MPI_Allreduce instead. # c.Barrier() val = np.ones(1, dtype=np.int32) result = np.zeros(1, dtype=np.int32) c.Allreduce(val, result) def global_rank(self): c = self._get_comm() return c.Get_rank()
mlperf-common-main
mlperf_common/frameworks/base_mpi.py
mlperf-common-main
mlperf_common/frameworks/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from mlperf_common.frameworks.base_mpi import BaseMPICommunicationHandler class HCTRCommunicationHandler(BaseMPICommunicationHandler): pass
mlperf-common-main
mlperf_common/frameworks/hugectr.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class CommunicationHandler: def global_rank(self): raise NotImplementedError def barrier(self, sync_group=None): raise NotImplementedError def device_sync(self): raise NotImplementedError class ProfilerHandler: def profiler_start(self): raise NotImplementedError def profiler_stop(self): raise NotImplementedError def push_nvtx(self, tag): raise NotImplementedError def pop_nvtx(self): raise NotImplementedError
mlperf-common-main
mlperf_common/frameworks/base.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from mlperf_common.frameworks.base import CommunicationHandler, ProfilerHandler class PyTCommunicationHandler(CommunicationHandler): def global_rank(self): if self.is_distributed(): return torch.distributed.get_rank() return 0 def barrier(self, sync_group=None): if self.is_distributed(): torch.distributed.barrier(sync_group) def is_distributed(self): return torch.distributed.is_available() and torch.distributed.is_initialized() def device_sync(self): torch.cuda.synchronize() class PyTProfilerHandler(ProfilerHandler): def profiler_start(self): torch.cuda.cudart().cudaProfilerStart() def profiler_stop(self): torch.cuda.cudart().cudaProfilerStop() def push_nvtx(self, tag): torch.cuda.nvtx.range_push(tag) def pop_nvtx(self): torch.cuda.nvtx.range_pop()
mlperf-common-main
mlperf_common/frameworks/pyt.py
# # \file generator.py # # \brief Generates the CUTLASS Library's instances # import enum import os.path import shutil import functools import operator import collections from library import * ################################################################################################### # # Data structure modeling a GEMM operation # ################################################################################################### # class GemmOperation: # def __init__(self, gemm_kind, arch, tile_description, A, B, C, element_epilogue, \ epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity8, D = None, kernel_schedule = KernelScheduleType.ScheduleAuto, epilogue_schedule = EpilogueScheduleType.ScheduleAuto, tile_scheduler = TileSchedulerType.Default): self.prefix = "3x" if gemm_kind == GemmKind.Universal3x else "" self.operation_kind = OperationKind.Gemm self.arch = arch self.tile_description = tile_description self.gemm_kind = gemm_kind self.A = A self.B = B self.C = C self.D = D if self.D == None: self.D = self.C if gemm_kind != GemmKind.Universal3x: assert(kernel_schedule == KernelScheduleType.ScheduleAuto) assert(epilogue_schedule == EpilogueScheduleType.ScheduleAuto) self.kernel_schedule = kernel_schedule self.epilogue_schedule = epilogue_schedule self.element_epilogue = element_epilogue self.epilogue_functor = epilogue_functor self.swizzling_functor = swizzling_functor self.tile_scheduler = tile_scheduler # def is_complex(self): complex_operators = [ MathOperation.multiply_add_complex, MathOperation.multiply_add_complex_gaussian, MathOperation.multiply_add_complex_fast_f32 ] return self.tile_description.math_instruction.math_operation in complex_operators # def is_planar_complex(self): return self.gemm_kind in (GemmKind.PlanarComplex, GemmKind.PlanarComplexArray) # def accumulator_type(self): accum = self.tile_description.math_instruction.element_accumulator if self.is_complex(): return get_complex_from_real(accum) return accum # def short_math_name(self): if self.tile_description.math_instruction.math_operation == MathOperation.multiply_add_complex_gaussian: return "g%s" % ShortDataTypeNames[self.accumulator_type()] return ShortDataTypeNames[self.accumulator_type()] # def core_name(self): ''' The basic operation kind is prefixed with a letter indicating the accumulation type. ''' inst_shape = '' inst_operation = '' intermediate_type = '' math_operations_map = { MathOperation.xor_popc: 'xor', MathOperation.and_popc: 'and' } if self.tile_description.math_instruction.opcode_class == OpcodeClass.TensorOp or \ self.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp: math_op = self.tile_description.math_instruction.math_operation math_op_string = math_operations_map[math_op] if math_op in math_operations_map.keys() else '' if self.gemm_kind == GemmKind.Universal3x: inst_shape = "{0}x{1}x{2}".format(*tuple(self.tile_description.math_instruction.instruction_shape)) else: inst_shape = "{0}{1}{2}".format(*tuple(self.tile_description.math_instruction.instruction_shape)) inst_shape += math_op_string if self.tile_description.math_instruction.element_a != self.A.element and \ self.tile_description.math_instruction.element_a != self.tile_description.math_instruction.element_accumulator: intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] return "%s%s%s%s" % (self.short_math_name(), inst_shape, intermediate_type, GemmKindNames[self.gemm_kind]) # Generates a string representing the MMA instruction. def extended_name(self): ''' Append data types if they differ from compute type. ''' if self.is_complex(): extended_name = "${core_name}" else: if self.C.element != self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${element_c}_${core_name}_${element_a}" elif self.C.element == self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = SubstituteTemplate(extended_name, { 'element_a': DataTypeNames[self.A.element], 'element_c': DataTypeNames[self.C.element], 'core_name': self.core_name() }) return extended_name def extended_name_3x(self): '''Generates a string representing the MMA atom. Assumes accumulator type is C type.''' extended_name = "{core_name}_{element_a}_{element_b}_{element_acc}_{element_c}_{element_d}".format( element_a = DataTypeNames[self.A.element], element_b = DataTypeNames[self.B.element], element_acc = DataTypeNames[self.tile_description.math_instruction.element_accumulator], element_c = DataTypeNames[self.C.element], element_d = DataTypeNames[self.D.element], core_name = self.core_name()) return extended_name # Generates a short string representing the AB layout tags (e.g. nt or tn) def layout_name(self): if self.is_complex() or self.is_planar_complex(): return "%s%s" % ( ShortComplexLayoutNames[(self.A.layout, self.A.complex_transform)], ShortComplexLayoutNames[(self.B.layout, self.B.complex_transform)] ) return "%s%s" % (ShortLayoutTypeNames[self.A.layout], ShortLayoutTypeNames[self.B.layout]) # Generates a short string representing the ABC layout tags (e.g. ntn or tnn) def layout_name_3x(self): if self.is_complex() or self.is_planar_complex(): return "{}{}{}".format( ShortComplexLayoutNames[(self.A.layout, self.A.complex_transform)], ShortComplexLayoutNames[(self.B.layout, self.B.complex_transform)], ShortComplexLayoutNames[(self.C.layout, self.C.complex_transform)]) else: return "{}{}{}".format( ShortLayoutTypeNames[self.A.layout], ShortLayoutTypeNames[self.B.layout], ShortLayoutTypeNames[self.C.layout]) # Generates a short string representing underlying kernel schedule type def kernel_schedule_name_3x(self): return KernelScheduleSuffixes[self.kernel_schedule] # Generates a short string representing underlying epilogue schedule type def epilogue_schedule_name_3x(self): return EpilogueScheduleSuffixes[self.epilogue_schedule] # Generates the full kernel function name def procedural_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] if self.arch >= 90: kernel_name_template = "cutlass{p}_sm{ar}_{op}_{ex}_{tbm}x{tbn}x{tbk}_{cm}x{cn}x{ck}_{l}_{s}_align{al}{t}{k}{e}" return kernel_name_template.format( p = self.prefix, ar = self.arch, op = opcode_class_name, ex = self.extended_name_3x(), tbm = self.tile_description.tile_shape[0], tbn = self.tile_description.tile_shape[1], tbk = self.tile_description.tile_shape[2], cm = self.tile_description.cluster_shape[0], cn = self.tile_description.cluster_shape[1], ck = self.tile_description.cluster_shape[2], l = self.tile_description.stages, s = self.layout_name_3x(), al = str(max(self.A.alignment, self.B.alignment)), t = TileSchedulerSuffixes[self.tile_scheduler], k = self.kernel_schedule_name_3x(), e = self.epilogue_schedule_name_3x()) else: threadblock = self.tile_description.procedural_name() return "cutlass{p}_{op}_{ex}_{tb}_{l}_align{a}".format( p = self.prefix, op = opcode_class_name, ex = self.extended_name(), tb = threadblock, l = self.layout_name(), a = str(self.A.alignment)) # def configuration_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' return self.procedural_name() def __hash__(self): return hash(self.configuration_name()) def __eq__(self, other): return self.configuration_name() == other.configuration_name() ################################################################################################### # # Data structure modeling a grouped GEMM operation # ################################################################################################### # class GroupedGemmOperation(GemmOperation): # def __init__(self, gemm_kind, arch, tile_description, A, B, C, element_epilogue, \ epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity8, \ scheduler_mode = GroupScheduleMode.Device): super().__init__(gemm_kind, arch, tile_description, A, B, C, element_epilogue, \ epilogue_functor, swizzling_functor) self.scheduler_mode = scheduler_mode # def procedural_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' base = super().procedural_name() return SubstituteTemplate( base + "_schedule${schedule}", { 'schedule': ShortGroupScheduleModeNames[self.scheduler_mode] }) ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### # class EmitGemmInstance: ''' Responsible for emitting a CUTLASS template definition''' def __init__(self, operation_suffix = ''): self.operation_suffix = operation_suffix self.includes = [] self.gemm_template = """ // Gemm operator ${operation_name} using Operation_${operation_name} = cutlass::gemm::device::Gemm< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, ${stages}, ${align_a}, ${align_b}, false, ${math_operation} ${residual} >; """ self.gemm_complex_template = """ // Gemm operator ${operation_name} using Operation_${operation_name} = cutlass::gemm::device::GemmComplex< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, ${stages}, ${transform_a}, ${transform_b}, ${math_operation} ${residual} >; """ # def instance_template(self): return """ ${compile_guard_start} manifest.append(new ${gemm_kind}<Operation_${operation_name}>("${operation_name}")); ${compile_guard_end} """ # def emit(self, operation): warp_shape = [operation.tile_description.threadblock_shape[idx] // operation.tile_description.warp_count[idx] for idx in range(3)] epilogue_vector_length = int(min(operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element]) residual = '' values = { 'operation_name': operation.procedural_name(), 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[operation.A.layout], 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[operation.B.layout], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_vector_length': str(epilogue_vector_length), 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'align_a': str(operation.A.alignment), 'align_b': str(operation.B.alignment), 'transform_a': ComplexTransformTag[operation.A.complex_transform], 'transform_b': ComplexTransformTag[operation.B.complex_transform], 'math_operation': MathOperationTag[operation.tile_description.math_instruction.math_operation], 'residual': residual } template = self.gemm_complex_template if operation.is_complex() else self.gemm_template return SubstituteTemplate(template, values) ################################################################################################### class EmitSparseGemmInstance: ''' Responsible for emitting a CUTLASS template definition''' def __init__(self, operation_suffix = ''): self.operation_suffix = operation_suffix self.includes = [] self.gemm_template = """ // Gemm operator ${operation_name} using Operation_${operation_name} = cutlass::gemm::device::SparseGemm< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, ${stages}, ${align_a}, ${align_b}, false, ${math_operation} ${residual} >; """ # def instance_template(self): return """ ${compile_guard_start} manifest.append(new ${gemm_kind}<Operation_${operation_name}>("${operation_name}")); ${compile_guard_end} """ # def emit(self, operation): warp_shape = [operation.tile_description.threadblock_shape[idx] // operation.tile_description.warp_count[idx] for idx in range(3)] epilogue_vector_length = int(min(operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element]) residual = '' values = { 'operation_name': operation.procedural_name(), 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[operation.A.layout], 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[operation.B.layout], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_vector_length': str(epilogue_vector_length), 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'align_a': str(operation.A.alignment), 'align_b': str(operation.B.alignment), 'transform_a': ComplexTransformTag[operation.A.complex_transform], 'transform_b': ComplexTransformTag[operation.B.complex_transform], 'math_operation': MathOperationTag[operation.tile_description.math_instruction.math_operation], 'residual': residual } template = self.gemm_template return SubstituteTemplate(template, values) ################################################################################################### # class EmitGemmUniversalInstance: ''' Responsible for emitting a CUTLASS template definition''' def __init__(self, operation_suffix = ''): self.operation_suffix = operation_suffix self.includes = [ "cutlass/cutlass.h", "cutlass/numeric_types.h", "cutlass/arch/arch.h", "cutlass/arch/mma.h", "cutlass/layout/matrix.h", "cutlass/gemm/device/gemm.h", "cutlass/gemm/device/gemm_universal_adapter.h", "cutlass/gemm/kernel/default_gemm_universal.h", ] self.builtin_epilogue_functor_template = """ ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} > """ self.gemm_template = """ // Gemm operator ${operation_name} using ${operation_name}_base = typename cutlass::gemm::kernel::DefaultGemmUniversal< ${element_b}, ${layout_b}, ${transform_b}, ${align_b}, // transposed B operand ${element_a}, ${layout_a}, ${transform_a}, ${align_a}, // transposed A operand ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}, ${swizzling_functor}, ${stages}, ${math_operation} >::GemmKernel; // Define named type struct ${operation_name}${operation_suffix} : public ${operation_name}_base { }; """ self.gemm_template_interleaved = """ // Gemm operator ${operation_name} using ${operation_name}_base = typename cutlass::gemm::kernel::DefaultGemmUniversal< ${element_a}, ${layout_a}, ${transform_a}, ${align_a}, ${element_b}, ${layout_b}, ${transform_b}, ${align_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}, ${swizzling_functor}, ${stages}, ${math_operation} >::GemmKernel; // Define named type struct ${operation_name}${operation_suffix} : public ${operation_name}_base { }; """ # def instance_template(self): return """ ${compile_guard_start} manifest.append(new ${gemm_kind}< cutlass::gemm::device::GemmUniversalAdapter<${operation_name}> >("${operation_name}")); ${compile_guard_end} """ # def emit(self, operation): threadblock_shape = operation.tile_description.threadblock_shape warp_count = operation.tile_description.warp_count warp_shape = [threadblock_shape[idx] // warp_count[idx] for idx in range(3)] transpose_layouts = { LayoutType.ColumnMajor: LayoutType.RowMajor, LayoutType.RowMajor: LayoutType.ColumnMajor } if operation.A.layout in transpose_layouts.keys() and \ operation.B.layout in transpose_layouts.keys() and \ operation.C.layout in transpose_layouts.keys(): instance_layout_A = transpose_layouts[operation.A.layout] instance_layout_B = transpose_layouts[operation.B.layout] instance_layout_C = transpose_layouts[operation.C.layout] gemm_template = self.gemm_template else: instance_layout_A, instance_layout_B, instance_layout_C = \ (operation.A.layout, operation.B.layout, operation.C.layout) gemm_template = self.gemm_template_interleaved # # Support built-in epilogue functors or user-defined functions if isinstance(operation.epilogue_functor, enum.Enum): epilogue_vector_length = \ min(operation.C.alignment * DataTypeSize[operation.C.element], 128) // DataTypeSize[operation.C.element] values = { 'epilogue_vector_length': str(epilogue_vector_length), 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], } epilogue_functor = SubstituteTemplate(self.builtin_epilogue_functor_template, values) else: epilogue_functor = self.epilogue_functor.emit_declaration() # values = { 'operation_name': operation.procedural_name(), 'operation_suffix': self.operation_suffix, 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[instance_layout_A], 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[instance_layout_B], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[instance_layout_C], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_functor': epilogue_functor, 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'align_a': str(operation.A.alignment), 'align_b': str(operation.B.alignment), 'transform_a': ComplexTransformTag[operation.A.complex_transform], 'transform_b': ComplexTransformTag[operation.B.complex_transform], 'math_operation': MathOperationTag[operation.tile_description.math_instruction.math_operation] } return SubstituteTemplate(gemm_template, values) ################################################################################################### # class EmitGemmUniversal3xInstance: ''' Responsible for emitting a CUTLASS 3.x template definition''' def __init__(self, operation_suffix = ''): self.operation_suffix = operation_suffix self.includes = [ "cutlass/cutlass.h", "cutlass/gemm/gemm.h", "cutlass/numeric_types.h", "cutlass/gemm/kernel/gemm_universal.hpp", "cutlass/gemm/collective/collective_builder.hpp", "cutlass/epilogue/collective/collective_builder.hpp", ] self.builtin_epilogue_functor_template = """ ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} > """ self.gemm_template = """ using ${operation_name}_epilogue = typename cutlass::epilogue::collective::CollectiveBuilder< ${arch}, ${opcode_class}, cute::Shape<cute::_${tile_shape_m}, cute::_${tile_shape_n}, cute::_${tile_shape_k}>, cute::Shape<cute::_${cluster_m},cute::_${cluster_n},cute::_${cluster_k}>, cutlass::epilogue::collective::EpilogueTileAuto, ${element_accumulator}, ${element_epilogue}, ${element_c}, ${layout_c}, ${align_c}, ${element_d}, ${layout_d}, ${align_d}, ${epilogue_schedule} >::CollectiveOp; using ${operation_name}_mainloop = typename cutlass::gemm::collective::CollectiveBuilder< ${arch}, ${opcode_class}, ${element_a}, ${layout_a}, ${align_a}, ${element_b}, ${layout_b}, ${align_b}, ${element_accumulator}, cute::Shape<cute::_${tile_shape_m}, cute::_${tile_shape_n}, cute::_${tile_shape_k}>, cute::Shape<cute::_${cluster_m},cute::_${cluster_n},cute::_${cluster_k}>, ${stages}, ${kernel_schedule} >::CollectiveOp; // Gemm operator ${operation_name} using ${operation_name}_base = cutlass::gemm::kernel::GemmUniversal< cute::Shape<int,int,int,int>, ${operation_name}_mainloop, ${operation_name}_epilogue, ${tile_scheduler}>; // Define named type struct ${operation_name} : public ${operation_name}_base { }; """ # def instance_template(self): return """ ${compile_guard_start} using GemmKernel = cutlass::gemm::device::GemmUniversalAdapter<${operation_name}>; manifest.append( new ${gemm_kind}<GemmKernel>("${operation_name}")); ${compile_guard_end} """ # def emit(self, operation): tile_shape = operation.tile_description.tile_shape warp_count = operation.tile_description.warp_count # stage count set to zero indicates builder automatic stage selection if operation.tile_description.stages > 0: stage_count_string = f"cutlass::gemm::collective::StageCount<{str(operation.tile_description.stages)}>" else: stage_count_string = f"cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename {str(operation.procedural_name())}_epilogue::SharedStorage)>" warp_shape = [tile_shape[idx] // warp_count[idx] for idx in range(3)] instance_layout_A, instance_layout_B, instance_layout_C , instance_layout_D = \ (operation.A.layout, operation.B.layout, operation.C.layout, operation.D.layout) # 3.0 profiler integration only supports trivial epilogues for now epilogue_vector_length = 1 # Support built-in epilogue functors or user-defined functions if isinstance(operation.epilogue_functor, enum.Enum): values = { 'epilogue_vector_length': str(epilogue_vector_length), 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], } epilogue_functor = SubstituteTemplate(self.builtin_epilogue_functor_template, values) else: epilogue_functor = self.epilogue_functor.emit_declaration() # values = { 'operation_name': operation.procedural_name(), 'operation_suffix': self.operation_suffix, 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[instance_layout_A], 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[instance_layout_B], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[instance_layout_C], 'element_d': DataTypeTag[operation.D.element], 'layout_d': LayoutTag[instance_layout_D], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'tile_shape_m': str(operation.tile_description.tile_shape[0]), 'tile_shape_n': str(operation.tile_description.tile_shape[1]), 'tile_shape_k': str(operation.tile_description.tile_shape[2]), 'cluster_m': str(operation.tile_description.cluster_shape[0]), 'cluster_n': str(operation.tile_description.cluster_shape[1]), 'cluster_k': str(operation.tile_description.cluster_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'kernel_schedule' : str(KernelScheduleTag[operation.kernel_schedule]), 'epilogue_schedule' : str(EpilogueScheduleTag[operation.epilogue_schedule]), 'epilogue_functor': epilogue_functor, 'stages': stage_count_string, 'align_a': str(operation.A.alignment), 'align_b': str(operation.B.alignment), 'align_c': str(operation.C.alignment), 'align_d': str(operation.C.alignment), 'transform_a': ComplexTransformTag[operation.A.complex_transform], 'transform_b': ComplexTransformTag[operation.B.complex_transform], 'math_operation': MathOperationTag[operation.tile_description.math_instruction.math_operation], 'epilogue_vector_length': str(epilogue_vector_length), 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'tile_scheduler': str(TileSchedulerTag[operation.tile_scheduler]) } return SubstituteTemplate(self.gemm_template, values) ################################################################################################### # class EmitGemmPlanarComplexInstance: ''' Responsible for emitting a CUTLASS template definition''' def __init__(self, operation_suffix = ''): self.operation_suffix = operation_suffix self.includes = [] self.template = """ // Gemm operator ${operation_name} using Operation_${operation_name} = typename cutlass::gemm::kernel::DefaultGemmPlanarComplexUniversal< ${element_a}, ${layout_a}, ${transform_a}, ${alignment_a}, ${element_b}, ${layout_b}, ${transform_b}, ${alignment_b}, ${element_c}, cutlass::layout::RowMajor, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, cutlass::epilogue::thread::LinearCombinationPlanarComplex< ${element_c}, ${alignment_c}, ${element_accumulator}, ${element_epilogue} >, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, ${stages}, ${math_operator} >::GemmKernel; struct ${operation_name} : public Operation_${operation_name} { }; """ # def instance_template(self): return """ ${compile_guard_start} manifest.append(new ${gemm_kind}< cutlass::gemm::device::GemmUniversalAdapter<${operation_name}> >("${operation_name}")); ${compile_guard_end} """ # def emit(self, operation): warp_shape = [operation.tile_description.threadblock_shape[idx] // operation.tile_description.warp_count[idx] for idx in range(3)] # exchange and transpose A and B types, layouts, and complex transforms since the C layout is row-major transposed_layout_A = TransposedLayout[operation.A.layout] transposed_layout_B = TransposedLayout[operation.B.layout] values = { 'operation_name': operation.procedural_name(), 'element_a': DataTypeTag[operation.B.element], 'layout_a': LayoutTag[transposed_layout_B], 'transform_a': ComplexTransformTag[operation.B.complex_transform], 'alignment_a': str(operation.B.alignment), 'element_b': DataTypeTag[operation.A.element], 'layout_b': LayoutTag[transposed_layout_A], 'transform_b': ComplexTransformTag[operation.A.complex_transform], 'alignment_b': str(operation.A.alignment), 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'element_accumulator': DataTypeTag[operation.tile_description.math_instruction.element_accumulator], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'alignment_c': str(operation.C.alignment), 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'stages': str(operation.tile_description.stages), 'math_operator': 'cutlass::arch::OpMultiplyAdd' } return SubstituteTemplate(self.template, values) ################################################################################################### # class EmitGemmPlanarComplexArrayInstance: ''' Responsible for emitting a CUTLASS template definition''' def __init__(self, operation_suffix = ''): self.operation_suffix = operation_suffix self.includes = [] self.template = """ // Gemm operator ${operation_name} using Operation_${operation_name} = typename cutlass::gemm::kernel::DefaultGemmPlanarComplexUniversal< ${element_a}, ${layout_a}, ${transform_a}, ${alignment_a}, ${element_b}, ${layout_b}, ${transform_b}, ${alignment_b}, ${element_c}, cutlass::layout::RowMajor, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, cutlass::epilogue::thread::LinearCombinationPlanarComplex< ${element_c}, ${alignment_c}, ${element_accumulator}, ${element_epilogue} >, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, ${stages}, ${math_operator} >::GemmArrayKernel; struct ${operation_name} : public Operation_${operation_name} { }; """ # def instance_template(self): return """ ${compile_guard_start} manifest.append(new ${gemm_kind}< cutlass::gemm::device::GemmUniversalAdapter<${operation_name}> >("${operation_name}")); ${compile_guard_end} """ # def emit(self, operation): warp_shape = [operation.tile_description.threadblock_shape[idx] // operation.tile_description.warp_count[idx] for idx in range(3)] # exchange and transpose A and B types, layouts, and complex transforms since the C layout is row-major transposed_layout_A = TransposedLayout[operation.A.layout] transposed_layout_B = TransposedLayout[operation.B.layout] values = { 'operation_name': operation.procedural_name(), 'element_a': DataTypeTag[operation.B.element], 'layout_a': LayoutTag[transposed_layout_B], 'transform_a': ComplexTransformTag[operation.B.complex_transform], 'alignment_a': str(operation.B.alignment), 'element_b': DataTypeTag[operation.A.element], 'layout_b': LayoutTag[transposed_layout_A], 'transform_b': ComplexTransformTag[operation.A.complex_transform], 'alignment_b': str(operation.A.alignment), 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'element_accumulator': DataTypeTag[operation.tile_description.math_instruction.element_accumulator], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'alignment_c': str(operation.C.alignment), 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'stages': str(operation.tile_description.stages), 'math_operator': 'cutlass::arch::OpMultiplyAdd' } return SubstituteTemplate(self.template, values) ################################################################################################### # class EmitGemmGroupedInstance: ''' Responsible for emitting a CUTLASS template definition''' def __init__(self, operation_suffix = ''): self.operation_suffix = operation_suffix self.includes = [ "cutlass/cutlass.h", "cutlass/numeric_types.h", "cutlass/arch/arch.h", "cutlass/arch/mma.h", "cutlass/layout/matrix.h", "cutlass/gemm/device/gemm.h", "cutlass/gemm/kernel/gemm_grouped.h", "cutlass/gemm/kernel/default_gemm_grouped.h", "cutlass/gemm/device/gemm_grouped.h" ] self.builtin_epilogue_functor_template = """ ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} > """ self.gemm_template = """ // Gemm operator ${operation_name} using ${operation_name}_base = typename cutlass::gemm::kernel::DefaultGemmGrouped< ${element_a}, ${layout_a}, ${transform_a}, ${align_a}, ${element_b}, ${layout_b}, ${transform_b}, ${align_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}, ${swizzling_functor}, ${stages}, ${scheduler_mode}, ${math_operation} >::GemmKernel; // Define named type struct ${operation_name}${operation_suffix} : public ${operation_name}_base { }; """ # def instance_template(self): return """ ${compile_guard_start} manifest.append(new ${gemm_kind}< cutlass::gemm::device::GemmGrouped<${operation_name}> >("${operation_name}")); ${compile_guard_end} """ # def emit(self, operation): threadblock_shape = operation.tile_description.threadblock_shape warp_count = operation.tile_description.warp_count warp_shape = [threadblock_shape[idx] // warp_count[idx] for idx in range(3)] transpose_layouts = { LayoutType.ColumnMajor: LayoutType.RowMajor, LayoutType.RowMajor: LayoutType.ColumnMajor } instance_layout_A, instance_layout_B, instance_layout_C = \ (operation.A.layout, operation.B.layout, operation.C.layout) # # Support built-in epilogue functors or user-defined functions if isinstance(operation.epilogue_functor, enum.Enum): epilogue_vector_length = \ min(operation.C.alignment * DataTypeSize[operation.C.element], 128) // DataTypeSize[operation.C.element] values = { 'epilogue_vector_length': str(epilogue_vector_length), 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], } epilogue_functor = SubstituteTemplate(self.builtin_epilogue_functor_template, values) else: epilogue_functor = self.epilogue_functor.emit_declaration() # values = { 'operation_name': operation.procedural_name(), 'operation_suffix': self.operation_suffix, 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[instance_layout_A], 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[instance_layout_B], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[instance_layout_C], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_functor': epilogue_functor, 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'align_a': str(operation.A.alignment), 'align_b': str(operation.B.alignment), 'transform_a': ComplexTransformTag[operation.A.complex_transform], 'transform_b': ComplexTransformTag[operation.B.complex_transform], 'scheduler_mode': GroupScheduleModeTag[operation.scheduler_mode], 'math_operation': MathOperationTag[operation.tile_description.math_instruction.math_operation] } return SubstituteTemplate(self.gemm_template, values) ################################################################################################### # # Emitters functions for all targets # ################################################################################################### class EmitGemmConfigurationLibrary: def __init__(self, operation_path, configuration_name): self.configuration_name = configuration_name self.configuration_path = os.path.join(operation_path, "%s.cu" % configuration_name).replace('\\', '/') self.instance_emitter = { GemmKind.Gemm: EmitGemmInstance, GemmKind.Sparse: EmitSparseGemmInstance, GemmKind.Universal: EmitGemmUniversalInstance, GemmKind.Universal3x: EmitGemmUniversal3xInstance, GemmKind.PlanarComplex: EmitGemmPlanarComplexInstance, GemmKind.PlanarComplexArray: EmitGemmPlanarComplexArrayInstance, GemmKind.Grouped: EmitGemmGroupedInstance } self.gemm_kind_wrappers = { GemmKind.Gemm: 'GemmOperation', GemmKind.Sparse: 'GemmSparseOperation', GemmKind.Universal: 'GemmUniversalOperation', GemmKind.Universal3x: 'GemmUniversal3xOperation', GemmKind.PlanarComplex: 'GemmPlanarComplexOperation', GemmKind.PlanarComplexArray: 'GemmPlanarComplexArrayOperation', GemmKind.Grouped: 'GemmGroupedOperation' } self.wmma_guard_start = "#if defined(CUTLASS_ARCH_WMMA_SM${sm_number}_ENABLED)" self.separator = """ /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.header_template = """ /* Generated by gemm_operation.py - Do not edit. */ """ self.initialize_function_template = """ /////////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace library { /////////////////////////////////////////////////////////////////////////////////////////////////// void initialize_${configuration_name}(Manifest &manifest) { """ self.epilogue_template = """ } /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////// """ def __enter__(self): self.configuration_file = open(self.configuration_path, "w") self.configuration_file.write(self.header_template) self.configuration_file.write(self.separator) self.includes = collections.OrderedDict([ ("cutlass/cutlass.h", None), ("cutlass/library/library.h", None), ("cutlass/library/manifest.h", None), ("library_internal.h", None), ("gemm_operation.h", None), ("gemm_operation_3x.hpp", None), ("cutlass/arch/wmma.h", None), ("cutlass/numeric_types.h", None) ]) self.instance_definitions = [] self.instance_wrappers = [] self.operations = [] return self def emit(self, operation): emitter = self.instance_emitter[operation.gemm_kind]() for incl in emitter.includes: self.includes[incl] = None self.operations.append(operation) self.instance_definitions.append(emitter.emit(operation)) self.instance_wrappers.append(SubstituteTemplate(emitter.instance_template(), { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name(), 'gemm_kind': self.gemm_kind_wrappers[operation.gemm_kind], 'compile_guard_start': SubstituteTemplate(self.wmma_guard_start, {'sm_number': str(operation.arch)}) \ if operation.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp else "", 'compile_guard_end': "#endif" \ if operation.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp else "" })) def __exit__(self, exception_type, exception_value, traceback): # Write includes for incl, _ in self.includes.items(): include_statement = "#include \"%s\"\n" % incl self.configuration_file.write(include_statement) self.configuration_file.write(self.separator) # Write instance definitions in top-level namespace for instance_definition in self.instance_definitions: self.configuration_file.write(instance_definition) # Add wrapper objects within initialize() function self.configuration_file.write(SubstituteTemplate(self.initialize_function_template, { 'configuration_name': self.configuration_name })) for instance_wrapper in self.instance_wrappers: self.configuration_file.write(instance_wrapper) self.configuration_file.write(self.epilogue_template) self.configuration_file.close() ################################################################################################### ###################################################################################################
cutlass-main
tools/library/scripts/gemm_operation.py
# # \file generator.py # # \brief Generates the CUTLASS Library's instances # import re ################################################################################################### import enum # The following block implements enum.auto() for Python 3.5 variants that don't include it such # as the default 3.5.2 on Ubuntu 16.04. # # https://codereview.stackexchange.com/questions/177309/reimplementing-pythons-enum-auto-for-compatibility try: from enum import auto as enum_auto except ImportError: __cutlass_library_auto_enum = 0 def enum_auto() -> int: global __cutlass_library_auto_enum i = __cutlass_library_auto_enum __cutlass_library_auto_enum += 1 return i ################################################################################################### # class GeneratorTarget(enum.Enum): Library = enum_auto() # GeneratorTargetNames = { GeneratorTarget.Library: 'library' } # ################################################################################################### # class DataType(enum.Enum): void = enum_auto() # primarily used to disable C tensor for epilogues b1 = enum_auto() u4 = enum_auto() u8 = enum_auto() u16 = enum_auto() u32 = enum_auto() u64 = enum_auto() s4 = enum_auto() s8 = enum_auto() s16 = enum_auto() s32 = enum_auto() s64 = enum_auto() e4m3 = enum_auto() e5m2 = enum_auto() f16 = enum_auto() bf16 = enum_auto() f32 = enum_auto() tf32 = enum_auto() f64 = enum_auto() cf16 = enum_auto() cbf16 = enum_auto() cf32 = enum_auto() ctf32 = enum_auto() cf64 = enum_auto() cs4 = enum_auto() cs8 = enum_auto() cs16 = enum_auto() cs32 = enum_auto() cs64 = enum_auto() cu4 = enum_auto() cu8 = enum_auto() cu16 = enum_auto() cu32 = enum_auto() cu64 = enum_auto() invalid = enum_auto() # ShortDataTypeNames = { DataType.s32: 'i', DataType.e4m3: 'e4m3', DataType.e5m2: 'e5m2', DataType.f16: 'h', DataType.f32: 's', DataType.f64: 'd', DataType.cf32: 'c', DataType.cf64: 'z', } # DataTypeNames = { DataType.void: "void", DataType.b1: "b1", DataType.u4: "u4", DataType.u8: "u8", DataType.u16: "u16", DataType.u32: "u32", DataType.u64: "u64", DataType.s4: "s4", DataType.s8: "s8", DataType.s16: "s16", DataType.s32: "s32", DataType.s64: "s64", DataType.e4m3: 'e4m3', DataType.e5m2: 'e5m2', DataType.f16: "f16", DataType.bf16: "bf16", DataType.f32: "f32", DataType.tf32: "tf32", DataType.f64: "f64", DataType.cf16: "cf16", DataType.cbf16: "cbf16", DataType.cf32: "cf32", DataType.ctf32: "ctf32", DataType.cf64: "cf64", DataType.cu4: "cu4", DataType.cu8: "cu8", DataType.cu16: "cu16", DataType.cu32: "cu32", DataType.cu64: "cu64", DataType.cs4: "cs4", DataType.cs8: "cs8", DataType.cs16: "cs16", DataType.cs32: "cs32", DataType.cs64: "cs64", } DataTypeTag = { DataType.void: "void", DataType.b1: "cutlass::uint1b_t", DataType.u4: "cutlass::uint4b_t", DataType.u8: "uint8_t", DataType.u16: "uint16_t", DataType.u32: "uint32_t", DataType.u64: "uint64_t", DataType.s4: "cutlass::int4b_t", DataType.s8: "int8_t", DataType.s16: "int16_t", DataType.s32: "int32_t", DataType.s64: "int64_t", DataType.e4m3: 'cutlass::float_e4m3_t', DataType.e5m2: 'cutlass::float_e5m2_t', DataType.f16: "cutlass::half_t", DataType.bf16: "cutlass::bfloat16_t", DataType.f32: "float", DataType.tf32: "cutlass::tfloat32_t", DataType.f64: "double", DataType.cf16: "cutlass::complex<cutlass::half_t>", DataType.cbf16: "cutlass::complex<cutlass::bfloat16_t>", DataType.cf32: "cutlass::complex<float>", DataType.ctf32: "cutlass::complex<cutlass::tfloat32_t>", DataType.cf64: "cutlass::complex<double>", DataType.cu4: "cutlass::complex<cutlass::uint4b_t>", DataType.cu8: "cutlass::complex<cutlass::uint8_t>", DataType.cu16: "cutlass::complex<cutlass::uint16_t>", DataType.cu32: "cutlass::complex<cutlass::uint32_t>", DataType.cu64: "cutlass::complex<cutlass::uint64_t>", DataType.cs4: "cutlass::complex<cutlass::int4b_t>", DataType.cs8: "cutlass::complex<cutlass::int8_t>", DataType.cs16: "cutlass::complex<cutlass::int16_t>", DataType.cs32: "cutlass::complex<cutlass::int32_t>", DataType.cs64: "cutlass::complex<cutlass::int64_t>", } DataTypeSize = { DataType.void: 0, DataType.b1: 1, DataType.u4: 4, DataType.u8: 8, DataType.u16: 16, DataType.u32: 32, DataType.u64: 64, DataType.s4: 4, DataType.s8: 8, DataType.s16: 16, DataType.s32: 32, DataType.s64: 64, DataType.e4m3: 8, DataType.e5m2: 8, DataType.f16: 16, DataType.bf16: 16, DataType.f32: 32, DataType.tf32: 32, DataType.f64: 64, DataType.cf16: 32, DataType.cbf16: 32, DataType.cf32: 64, DataType.ctf32: 32, DataType.cf64: 128, DataType.cu4: 8, DataType.cu8: 16, DataType.cu16: 32, DataType.cu32: 64, DataType.cu64: 128, DataType.cs4: 8, DataType.cs8: 16, DataType.cs16: 32, DataType.cs32: 64, DataType.cs64: 128, } ################################################################################################### # class BlasMode(enum.Enum): symmetric = enum_auto() hermitian = enum_auto() # BlasModeTag = { BlasMode.symmetric: 'cutlass::BlasMode::kSymmetric', BlasMode.hermitian: 'cutlass::BlasMode::kHermitian', } # class ComplexTransform(enum.Enum): none = enum_auto() conj = enum_auto() # ComplexTransformTag = { ComplexTransform.none: 'cutlass::ComplexTransform::kNone', ComplexTransform.conj: 'cutlass::ComplexTransform::kConjugate', } # RealComplexBijection = [ (DataType.f16, DataType.cf16), (DataType.f32, DataType.cf32), (DataType.f64, DataType.cf64), ] # def is_complex(data_type): for r, c in RealComplexBijection: if data_type == c: return True return False # def get_complex_from_real(real_type): for r, c in RealComplexBijection: if real_type == r: return c return DataType.invalid # def get_real_from_complex(complex_type): for r, c in RealComplexBijection: if complex_type == c: return r return DataType.invalid # class ComplexMultiplyOp(enum.Enum): multiply_add = enum_auto() gaussian = enum_auto() ################################################################################################### # class MathOperation(enum.Enum): multiply_add = enum_auto() multiply_add_saturate = enum_auto() xor_popc = enum_auto() and_popc = enum_auto() multiply_add_fast_bf16 = enum_auto() multiply_add_fast_f16 = enum_auto() multiply_add_fast_f32 = enum_auto() multiply_add_complex_fast_f32 = enum_auto() multiply_add_complex = enum_auto() multiply_add_complex_gaussian = enum_auto() # MathOperationTag = { MathOperation.multiply_add: 'cutlass::arch::OpMultiplyAdd', MathOperation.multiply_add_saturate: 'cutlass::arch::OpMultiplyAddSaturate', MathOperation.xor_popc: 'cutlass::arch::OpXorPopc', MathOperation.and_popc: 'cutlass::arch::OpAndPopc', MathOperation.multiply_add_fast_bf16: 'cutlass::arch::OpMultiplyAddFastBF16', MathOperation.multiply_add_fast_f16: 'cutlass::arch::OpMultiplyAddFastF16', MathOperation.multiply_add_fast_f32: 'cutlass::arch::OpMultiplyAddFastF32', MathOperation.multiply_add_complex_fast_f32: 'cutlass::arch::OpMultiplyAddComplexFastF32', MathOperation.multiply_add_complex: 'cutlass::arch::OpMultiplyAddComplex', MathOperation.multiply_add_complex_gaussian: 'cutlass::arch::OpMultiplyAddGaussianComplex', } ################################################################################################### # class LayoutType(enum.Enum): ColumnMajor = enum_auto() RowMajor = enum_auto() ColumnMajorInterleaved2 = enum_auto() RowMajorInterleaved2 = enum_auto() ColumnMajorInterleaved32 = enum_auto() RowMajorInterleaved32 = enum_auto() ColumnMajorInterleaved64 = enum_auto() RowMajorInterleaved64 = enum_auto() TensorNHWC = enum_auto() TensorNDHWC = enum_auto() TensorNCHW = enum_auto() TensorNGHWC = enum_auto() TensorNC32HW32 = enum_auto() TensorNC64HW64 = enum_auto() TensorC32RSK32 = enum_auto() TensorC64RSK64 = enum_auto() # LayoutTag = { LayoutType.ColumnMajor: 'cutlass::layout::ColumnMajor', LayoutType.RowMajor: 'cutlass::layout::RowMajor', LayoutType.ColumnMajorInterleaved2: 'cutlass::layout::ColumnMajorInterleaved<2>', LayoutType.RowMajorInterleaved2: 'cutlass::layout::RowMajorInterleaved<2>', LayoutType.ColumnMajorInterleaved32: 'cutlass::layout::ColumnMajorInterleaved<32>', LayoutType.RowMajorInterleaved32: 'cutlass::layout::RowMajorInterleaved<32>', LayoutType.ColumnMajorInterleaved64: 'cutlass::layout::ColumnMajorInterleaved<64>', LayoutType.RowMajorInterleaved64: 'cutlass::layout::RowMajorInterleaved<64>', LayoutType.TensorNHWC: 'cutlass::layout::TensorNHWC', LayoutType.TensorNDHWC: 'cutlass::layout::TensorNDHWC', LayoutType.TensorNCHW: 'cutlass::layout::TensorNCHW', LayoutType.TensorNGHWC: 'cutlass::layout::TensorNGHWC', LayoutType.TensorNC32HW32: 'cutlass::layout::TensorNCxHWx<32>', LayoutType.TensorC32RSK32: 'cutlass::layout::TensorCxRSKx<32>', LayoutType.TensorNC64HW64: 'cutlass::layout::TensorNCxHWx<64>', LayoutType.TensorC64RSK64: 'cutlass::layout::TensorCxRSKx<64>', } # TransposedLayout = { LayoutType.ColumnMajor: LayoutType.RowMajor, LayoutType.RowMajor: LayoutType.ColumnMajor, LayoutType.ColumnMajorInterleaved2: LayoutType.RowMajorInterleaved2, LayoutType.RowMajorInterleaved2: LayoutType.ColumnMajorInterleaved2, LayoutType.ColumnMajorInterleaved32: LayoutType.RowMajorInterleaved32, LayoutType.RowMajorInterleaved32: LayoutType.ColumnMajorInterleaved32, LayoutType.ColumnMajorInterleaved64: LayoutType.RowMajorInterleaved64, LayoutType.RowMajorInterleaved64: LayoutType.ColumnMajorInterleaved64, LayoutType.TensorNHWC: LayoutType.TensorNHWC } # ShortLayoutTypeNames = { LayoutType.ColumnMajor: 'n', LayoutType.ColumnMajorInterleaved2: 'n2', LayoutType.ColumnMajorInterleaved32: 'n32', LayoutType.ColumnMajorInterleaved64: 'n64', LayoutType.RowMajor: 't', LayoutType.RowMajorInterleaved2: 't2', LayoutType.RowMajorInterleaved32: 't32', LayoutType.RowMajorInterleaved64: 't64', LayoutType.TensorNHWC: 'nhwc', LayoutType.TensorNDHWC: 'ndhwc', LayoutType.TensorNCHW: 'nchw', LayoutType.TensorNGHWC: 'nghwc', LayoutType.TensorNC32HW32: 'nc32hw32', LayoutType.TensorNC64HW64: 'nc64hw64', LayoutType.TensorC32RSK32: 'c32rsk32', LayoutType.TensorC64RSK64: 'c64rsk64' } # ShortComplexLayoutNames = { (LayoutType.ColumnMajor, ComplexTransform.none): 'n', (LayoutType.ColumnMajor, ComplexTransform.conj): 'c', (LayoutType.RowMajor, ComplexTransform.none): 't', (LayoutType.RowMajor, ComplexTransform.conj): 'h' } ################################################################################################### class KernelScheduleType(enum.Enum): ScheduleAuto = enum_auto() Multistage = enum_auto() Tma = enum_auto() TmaWarpSpecialized = enum_auto() TmaWarpSpecializedPingpong = enum_auto() TmaWarpSpecializedCooperative = enum_auto() TmaWarpSpecializedFP8FastAccum = enum_auto() TmaWarpSpecializedCooperativeFP8FastAccum = enum_auto() TmaWarpSpecializedPingpongFP8FastAccum = enum_auto() # KernelScheduleTag = { KernelScheduleType.ScheduleAuto: 'cutlass::gemm::collective::KernelScheduleAuto', KernelScheduleType.Multistage: 'cutlass::gemm::KernelMultistage', KernelScheduleType.Tma: 'cutlass::gemm::KernelTma', KernelScheduleType.TmaWarpSpecialized: 'cutlass::gemm::KernelTmaWarpSpecialized', KernelScheduleType.TmaWarpSpecializedPingpong: 'cutlass::gemm::KernelTmaWarpSpecializedPingpong', KernelScheduleType.TmaWarpSpecializedCooperative: 'cutlass::gemm::KernelTmaWarpSpecializedCooperative', KernelScheduleType.TmaWarpSpecializedFP8FastAccum: 'cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum', KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum: 'cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8FastAccum', KernelScheduleType.TmaWarpSpecializedPingpongFP8FastAccum: 'cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum', } # KernelScheduleSuffixes = { KernelScheduleType.ScheduleAuto: '', KernelScheduleType.Multistage: '_cpasync', KernelScheduleType.Tma: '_unspecialized', KernelScheduleType.TmaWarpSpecialized: '_warpspecialized', KernelScheduleType.TmaWarpSpecializedPingpong: '_warpspecialized_pingpong', KernelScheduleType.TmaWarpSpecializedCooperative: '_warpspecialized_cooperative', KernelScheduleType.TmaWarpSpecializedFP8FastAccum: '_warpspecialized_fp8_fastaccum', KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum: '_warpspecialized_cooperative_fp8_fastaccum', KernelScheduleType.TmaWarpSpecializedPingpongFP8FastAccum: '_warpspecialized_pingpong_fp8_fastaccum', } class EpilogueScheduleType(enum.Enum): ScheduleAuto = enum_auto() EpilogueTransposed = enum_auto() NoSmemWarpSpecialized = enum_auto() TmaWarpSpecialized = enum_auto() TmaWarpSpecializedCooperative = enum_auto() # EpilogueScheduleTag = { EpilogueScheduleType.ScheduleAuto: 'cutlass::epilogue::collective::EpilogueScheduleAuto', EpilogueScheduleType.EpilogueTransposed: 'cutlass::gemm::EpilogueTransposed', EpilogueScheduleType.NoSmemWarpSpecialized: 'cutlass::epilogue::NoSmemWarpSpecialized', EpilogueScheduleType.TmaWarpSpecialized: 'cutlass::epilogue::TmaWarpSpecialized', EpilogueScheduleType.TmaWarpSpecializedCooperative: 'cutlass::epilogue::TmaWarpSpecializedCooperative', } # EpilogueScheduleSuffixes = { EpilogueScheduleType.ScheduleAuto: '', EpilogueScheduleType.EpilogueTransposed: '', EpilogueScheduleType.NoSmemWarpSpecialized: '_epi_nosmem', EpilogueScheduleType.TmaWarpSpecialized: '_epi_tma', EpilogueScheduleType.TmaWarpSpecializedCooperative: '_epi_tma', } class TileSchedulerType(enum.Enum): Default = enum_auto() Persistent = enum_auto() StreamK = enum_auto() # TileSchedulerTag = { TileSchedulerType.Default: 'void', TileSchedulerType.Persistent: 'cutlass::gemm::PersistentScheduler', TileSchedulerType.StreamK: 'cutlass::gemm::StreamKScheduler', } # TileSchedulerSuffixes = { TileSchedulerType.Default: '', TileSchedulerType.Persistent: '', TileSchedulerType.StreamK: '_stream_k', } ################################################################################################### # class SideMode(enum.Enum): Left = enum_auto() Right = enum_auto() # SideModeTag = { SideMode.Left: 'cutlass::SideMode::kLeft', SideMode.Right: 'cutlass::SideMode::kRight' } # ShortSideModeNames = { SideMode.Left: 'ls', SideMode.Right: 'rs' } ################################################################################################### # class FillMode(enum.Enum): Lower = enum_auto() Upper = enum_auto() # FillModeTag = { FillMode.Lower: 'cutlass::FillMode::kLower', FillMode.Upper: 'cutlass::FillMode::kUpper' } # ShortFillModeNames = { FillMode.Lower: 'l', FillMode.Upper: 'u' } ################################################################################################### # class DiagType(enum.Enum): NonUnit = enum_auto() Unit = enum_auto() # DiagTypeTag = { DiagType.NonUnit: 'cutlass::DiagType::kNonUnit', DiagType.Unit: 'cutlass::DiagType::kUnit' } # ShortDiagTypeNames = { DiagType.NonUnit: 'nu', DiagType.Unit: 'un' } ################################################################################################### # class OpcodeClass(enum.Enum): Simt = enum_auto() TensorOp = enum_auto() WmmaTensorOp = enum_auto() SparseTensorOp = enum_auto() OpcodeClassNames = { OpcodeClass.Simt: 'simt', OpcodeClass.TensorOp: 'tensorop', OpcodeClass.WmmaTensorOp: 'wmma_tensorop', } OpcodeClassTag = { OpcodeClass.Simt: 'cutlass::arch::OpClassSimt', OpcodeClass.TensorOp: 'cutlass::arch::OpClassTensorOp', OpcodeClass.WmmaTensorOp: 'cutlass::arch::OpClassWmmaTensorOp', } ################################################################################################### # class OperationKind(enum.Enum): Gemm = enum_auto() RankK = enum_auto() Rank2K = enum_auto() Trmm = enum_auto() Symm = enum_auto() Conv2d = enum_auto() Conv3d = enum_auto() # OperationKindNames = { OperationKind.Gemm: 'gemm' , OperationKind.RankK: 'rank_k' , OperationKind.Rank2K: 'rank_2k' , OperationKind.Trmm: 'trmm' , OperationKind.Symm: 'symm' , OperationKind.Conv2d: 'conv2d' , OperationKind.Conv3d: 'conv3d' } # class Target(enum.Enum): library = enum_auto() # ArchitectureNames = { 50: 'maxwell', 60: 'pascal', 61: 'pascal', 70: 'volta', 75: 'turing', 80: 'ampere', 89: 'ada', 90: 'hopper' } # SharedMemPerCC = { 70: 96, # 96KB of SMEM 72: 96, # 96KB of SMEM 75: 64, # 64KB of SMEM 80: 163, # 163KB of SMEM - 1KB reserved for the driver 86: 99, # 99KB of SMEM - 1KB reserved for the driver 87: 163, # 163KB of SMEM - 1KB reserved for the driver 89: 99, # 99KB of SMEM - 1KB reserved for the driver 90: 227, # 227KB of SMEM - 1KB reserved for the driver } ################################################################################################### # def SubstituteTemplate(template, values): text = template changed = True while changed: changed = False for key, value in values.items(): regex = "\\$\\{%s\\}" % key newtext = re.sub(regex, value, text) if newtext != text: changed = True text = newtext return text ################################################################################################### # class GemmKind(enum.Enum): Gemm = enum_auto() Sparse = enum_auto() Universal = enum_auto() Universal3x = enum_auto() PlanarComplex = enum_auto() PlanarComplexArray = enum_auto() Grouped = enum_auto() # GemmKindNames = { GemmKind.Gemm: "gemm", GemmKind.Sparse: "spgemm", GemmKind.Universal: "gemm", GemmKind.Universal3x: "gemm", GemmKind.PlanarComplex: "gemm_planar_complex", GemmKind.PlanarComplexArray: "gemm_planar_complex_array", GemmKind.Grouped: "gemm_grouped" } # class RankKKind(enum.Enum): Universal = enum_auto() # RankKKindNames = { RankKKind.Universal: "rank_k" } # class TrmmKind(enum.Enum): Universal = enum_auto() # TrmmKindNames = { TrmmKind.Universal: "trmm" } # class SymmKind(enum.Enum): Universal = enum_auto() # SymmKindNames = { SymmKind.Universal: "symm" } # class EpilogueFunctor(enum.Enum): LinearCombination = enum_auto() LinearCombinationClamp = enum_auto() # EpilogueFunctorTag = { EpilogueFunctor.LinearCombination: 'cutlass::epilogue::thread::LinearCombination', EpilogueFunctor.LinearCombinationClamp: 'cutlass::epilogue::thread::LinearCombinationClamp', } # class SwizzlingFunctor(enum.Enum): Identity1 = enum_auto() Identity2 = enum_auto() Identity4 = enum_auto() Identity8 = enum_auto() Horizontal = enum_auto() StridedDgradIdentity1 = enum_auto() StridedDgradIdentity4 = enum_auto() StridedDgradHorizontal = enum_auto() StreamK = enum_auto() # SwizzlingFunctorTag = { SwizzlingFunctor.Identity1: 'cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>', SwizzlingFunctor.Identity2: 'cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<2>', SwizzlingFunctor.Identity4: 'cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<4>', SwizzlingFunctor.Identity8: 'cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<8>', SwizzlingFunctor.Horizontal: 'cutlass::gemm::threadblock::GemmHorizontalThreadblockSwizzle', SwizzlingFunctor.StridedDgradIdentity1: 'cutlass::conv::threadblock::StridedDgradIdentityThreadblockSwizzle<1>', SwizzlingFunctor.StridedDgradIdentity4: 'cutlass::conv::threadblock::StridedDgradIdentityThreadblockSwizzle<4>', SwizzlingFunctor.StridedDgradHorizontal: 'cutlass::conv::threadblock::StridedDgradHorizontalThreadblockSwizzle', SwizzlingFunctor.StreamK: 'cutlass::gemm::threadblock::ThreadblockSwizzleStreamK', } # class GroupScheduleMode(enum.Enum): Device = enum_auto(), Host = enum_auto() # GroupScheduleModeTag = { GroupScheduleMode.Device: 'cutlass::gemm::kernel::GroupScheduleMode::kDeviceOnly', GroupScheduleMode.Host: 'cutlass::gemm::kernel::GroupScheduleMode::kHostPrecompute' } # ShortGroupScheduleModeNames = { GroupScheduleMode.Device: 'Device', GroupScheduleMode.Host: 'Host' } ################################################################################################### # class ConvKind(enum.Enum): Fprop = enum_auto() Dgrad = enum_auto() Wgrad = enum_auto() # ConvKindTag = { ConvKind.Fprop: 'cutlass::conv::Operator::kFprop', ConvKind.Dgrad: 'cutlass::conv::Operator::kDgrad', ConvKind.Wgrad: 'cutlass::conv::Operator::kWgrad' } ConvKindNames = { ConvKind.Fprop: 'fprop', ConvKind.Dgrad: 'dgrad', ConvKind.Wgrad: 'wgrad', } # class IteratorAlgorithm(enum.Enum): Analytic = enum_auto() Optimized = enum_auto() FixedChannels = enum_auto() FewChannels = enum_auto() FixedStrideDilation = enum_auto() # IteratorAlgorithmTag = { IteratorAlgorithm.Analytic: 'cutlass::conv::IteratorAlgorithm::kAnalytic', IteratorAlgorithm.Optimized: 'cutlass::conv::IteratorAlgorithm::kOptimized', IteratorAlgorithm.FixedChannels: 'cutlass::conv::IteratorAlgorithm::kFixedChannels', IteratorAlgorithm.FewChannels: 'cutlass::conv::IteratorAlgorithm::kFewChannels', IteratorAlgorithm.FixedStrideDilation: 'cutlass::conv::IteratorAlgorithm::kFixedStrideDilation' } IteratorAlgorithmNames = { IteratorAlgorithm.Analytic: 'analytic', IteratorAlgorithm.Optimized: 'optimized', IteratorAlgorithm.FixedChannels: 'fixed_channels', IteratorAlgorithm.FewChannels: 'few_channels', IteratorAlgorithm.FixedStrideDilation: 'fixed_stride_dilation' } # class StrideSupport(enum.Enum): Strided = enum_auto() Unity = enum_auto() Fixed = enum_auto() # StrideSupportTag = { StrideSupport.Strided: 'cutlass::conv::StrideSupport::kStrided', StrideSupport.Unity: 'cutlass::conv::StrideSupport::kUnity', StrideSupport.Fixed: 'cutlass::conv::StrideSupport::kFixed' } StrideSupportNames = { StrideSupport.Strided: '', StrideSupport.Unity: 'unity_stride', StrideSupport.Fixed: 'fixed_stride' } # class GroupMode(enum.Enum): NoneGroup = enum_auto() # dense conv (G=1) SingleGroup = enum_auto() # grouped convolution (single group per CTA) MultipleGroup = enum_auto() # grouped convolution ( multiple groups per CTA) Depthwise = enum_auto() # Depthwise convolution ( C=K=G ) # GroupModeTag = { GroupMode.NoneGroup: 'cutlass::conv::GroupMode::kNone', GroupMode.SingleGroup: 'cutlass::conv::GroupMode::kSingleGroup', GroupMode.MultipleGroup: 'cutlass::conv::GroupMode::kMultipleGroup', GroupMode.Depthwise: 'cutlass::conv::GroupMode::kDepthwise', } GroupModeNames = { GroupMode.NoneGroup: '', GroupMode.SingleGroup: 'single_group', GroupMode.MultipleGroup: 'multiple_group', GroupMode.Depthwise: 'depthwise', } ################################################################################################### # class MathInstruction: def __init__(self, instruction_shape, element_a, element_b, element_accumulator, opcode_class, math_operation = MathOperation.multiply_add): self.instruction_shape = instruction_shape self.element_a = element_a self.element_b = element_b self.element_accumulator = element_accumulator self.opcode_class = opcode_class self.math_operation = math_operation # class TileDescription: def __init__(self, threadblock_shape, stages, warp_count, math_instruction, min_compute, max_compute, cluster_shape = [1,1,1]): self.threadblock_shape = threadblock_shape self.tile_shape = threadblock_shape self.stages = stages self.warp_count = warp_count self.math_instruction = math_instruction self.minimum_compute_capability = min_compute self.maximum_compute_capability = max_compute self.cluster_shape = cluster_shape def procedural_name(self): if self.minimum_compute_capability >= 90: return "{tbm}x{tbn}x{tbk}_{cm}x{cn}x{ck}_{s}".format( tbm = self.threadblock_shape[0], tbn = self.threadblock_shape[1], tbk = self.threadblock_shape[2], cm = self.cluster_shape[0], cn = self.cluster_shape[1], ck = self.cluster_shape[2], s = self.stages) else: return "%dx%d_%dx%d" % (self.threadblock_shape[0], self.threadblock_shape[1], self.threadblock_shape[2], self.stages) # class Direct2dConvFixedStrideDilationTileDescription: def __init__(self, threadblock_output_shape, filter_shape, stages, stride, dilation, warp_count, math_instruction, min_compute, max_compute): self.threadblock_shape = [threadblock_output_shape[0]*threadblock_output_shape[1]*threadblock_output_shape[2], threadblock_output_shape[3], filter_shape[0]*filter_shape[1]] self.threadblock_output_shape = threadblock_output_shape self.filter_shape = filter_shape self.stages = stages self.warp_count = warp_count self.stride = stride self.dilation = dilation self.math_instruction = math_instruction self.minimum_compute_capability = min_compute self.maximum_compute_capability = max_compute def procedural_name(self): str_name = "%dx%dx%d_%dx%dx%dx%d_%d_filter%dx%d" % (self.threadblock_shape[0], self.threadblock_shape[1], self.threadblock_shape[2], self.threadblock_output_shape[0], self.threadblock_output_shape[1], self.threadblock_output_shape[2], self.threadblock_output_shape[3], self.stages, self.filter_shape[0], self.filter_shape[1]) # Fixed Strided and dilation if self.stride != [-1, -1] and self.dilation != [-1, -1]: str_name += "_stride%dx%d_dilation%dx%d" % (self.stride[0], self.stride[1], self.dilation[0], self.dilation[1]) return str_name # class Direct2dConvFixedStrideDilationTileDescription: def __init__(self, threadblock_output_shape, filter_shape, stages, stride, dilation, warp_count, math_instruction, min_compute, max_compute): self.threadblock_shape = [threadblock_output_shape[0]*threadblock_output_shape[1]*threadblock_output_shape[2], threadblock_output_shape[3], filter_shape[0]*filter_shape[1]] self.threadblock_output_shape = threadblock_output_shape self.filter_shape = filter_shape self.stages = stages self.warp_count = warp_count self.stride = stride self.dilation = dilation self.math_instruction = math_instruction self.minimum_compute_capability = min_compute self.maximum_compute_capability = max_compute def procedural_name(self): str_name = "%dx%dx%d_%dx%dx%dx%d_%d_filter%dx%d" % (self.threadblock_shape[0], self.threadblock_shape[1], self.threadblock_shape[2], self.threadblock_output_shape[0], self.threadblock_output_shape[1], self.threadblock_output_shape[2], self.threadblock_output_shape[3], self.stages, self.filter_shape[0], self.filter_shape[1]) # Fixed Strided and dilation if self.stride != [-1, -1] and self.dilation != [-1, -1]: str_name += "_stride%dx%d_dilation%dx%d" % (self.stride[0], self.stride[1], self.dilation[0], self.dilation[1]) return str_name # class TensorDescription: def __init__(self, element, layout, alignment = 1, complex_transform = ComplexTransform.none): self.element = element self.layout = layout self.alignment = alignment self.complex_transform = complex_transform # class SymmetricTensorDescription: def __init__(self, element, layout, fill_mode, alignment = 1, complex_transform = ComplexTransform.none, side_mode = SideMode.Left): self.element = element self.layout = layout self.fill_mode = fill_mode self.alignment = alignment self.complex_transform = complex_transform self.side_mode = side_mode # class TriangularTensorDescription: def __init__(self, element, layout, side_mode, fill_mode, diag_type, alignment = 1, complex_transform = ComplexTransform.none): self.element = element self.layout = layout self.side_mode = side_mode self.fill_mode = fill_mode self.diag_type = diag_type self.alignment = alignment self.complex_transform = complex_transform ################################################################################################### # def CalculateSmemUsage(operation): cta_shape = operation.tile_description.threadblock_shape stages = operation.tile_description.stages if operation.operation_kind == OperationKind.Gemm and operation.gemm_kind == GemmKind.Sparse: # Elements represented by 8 bits of metadata (based on 4:8, 2:4 or 1:2 sparsity) if DataTypeSize[operation.A.element] == 32: elements_per_8b_md = 2 elif DataTypeSize[operation.A.element] == 4: elements_per_8b_md = 8 else: elements_per_8b_md = 4 smem_per_stage = DataTypeSize[operation.A.element] * cta_shape[0] * (cta_shape[2] // 2) // 8 + \ DataTypeSize[operation.B.element] * cta_shape[1] * cta_shape[2] // 8 + \ cta_shape[0] * (cta_shape[2] // 2) // elements_per_8b_md else: # Few BLAS3 operations only have A tensor smem_per_stage = DataTypeSize[operation.A.element] * cta_shape[0] * cta_shape[2] // 8 + \ DataTypeSize[operation.A.element] * cta_shape[1] * cta_shape[2] // 8 smem_usage = smem_per_stage * stages return (smem_usage >> 10) ###################################################################################################
cutlass-main
tools/library/scripts/library.py
# # \file generator.py # # \brief Generates the CUTLASS Library's instances # import enum import os.path import shutil from library import * from gemm_operation import * from rank_k_operation import * from rank_2k_operation import * from trmm_operation import * from symm_operation import * from conv2d_operation import * from conv3d_operation import * import logging ################################################################################################### _LOGGER = logging.getLogger(__name__) class EmitOperationKindLibrary: def __init__(self, generated_path, kind, args): self.generated_path = generated_path self.kind = kind self.args = args self.emitters = { OperationKind.Gemm: EmitGemmConfigurationLibrary , OperationKind.Conv2d: EmitConv2dConfigurationLibrary , OperationKind.Conv3d: EmitConv3dConfigurationLibrary , OperationKind.RankK: EmitRankKConfigurationLibrary , OperationKind.Rank2K: EmitRank2KConfigurationLibrary , OperationKind.Trmm: EmitTrmmConfigurationLibrary , OperationKind.Symm: EmitSymmConfigurationLibrary } self.configurations = []; self.header_template =""" /* Generated by manifest.py - Do not edit. */ #include "cutlass/cutlass.h" #include "cutlass/library/library.h" #include "cutlass/library/manifest.h" namespace cutlass { namespace library { /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.entry_template = """ // // Entry point to construct operations // void initialize_all_${operation_name}_operations(Manifest &manifest) { """ self.configuration_prototype_template = "void initialize_${configuration_name}(Manifest &manifest);\n" self.configuration_template =" initialize_${configuration_name}(manifest);\n" self.epilogue_template =""" } /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass """ # def __enter__(self): self.operation_path = os.path.join(self.generated_path, OperationKindNames[self.kind]) os.mkdir(self.operation_path) self.top_level_path = os.path.join(self.operation_path, "all_%s_operations.cu" % OperationKindNames[self.kind]) self.top_level_file = open(self.top_level_path, "w") self.top_level_file.write(self.header_template) self.source_files = [self.top_level_path,] return self # def emit(self, configuration_name, operations): with self.emitters[self.kind](self.operation_path, configuration_name) as configuration_emitter: for operation in operations: configuration_emitter.emit(operation) self.source_files.append(configuration_emitter.configuration_path) self.configurations.append(configuration_name) self.top_level_file.write(SubstituteTemplate(self.configuration_prototype_template, {'configuration_name': configuration_name} )) # def __exit__(self, exception_type, exception_value, traceback): self.top_level_file.write(SubstituteTemplate(self.entry_template, {'operation_name': OperationKindNames[self.kind]})) for configuration_name in self.configurations: self.top_level_file.write(SubstituteTemplate(self.configuration_template, {'configuration_name': configuration_name})) self.top_level_file.write(self.epilogue_template) self.top_level_file.close() class EmitInterfaceLibrary: def __init__(self, generated_path, operation_count, args): self.generated_path = generated_path self.args = args self.prototypes = [] self.fn_calls = [] self.operation_count = str(operation_count) self.top_level_hdr_template = ''' /* Generated by manifest.py - Do not edit. */ ''' self.top_level_prologue = ''' #include "cutlass/library/library.h" #include "cutlass/library/manifest.h" namespace cutlass { \tnamespace library { ${prototypes} \t\tvoid initialize_all(Manifest &manifest) { \t\t\tmanifest.reserve(${operation_count});\n\n ${fn_calls} \t\t\t} \t} // namespace library } // namespace cutlass ''' # def __enter__(self): self.top_level_path = os.path.join(self.generated_path, 'initialize_all.cpp') self.top_level_file = open(self.top_level_path, "w") self.top_level_file.write(self.top_level_hdr_template) self.source_files = [self.top_level_path,] return self # def emit(self, operation_name): self.prototypes.append(SubstituteTemplate( "\t\tvoid initialize_all_${operation_kind}_operations(Manifest &manifest);", {'operation_kind': operation_name})) self.fn_calls.append(SubstituteTemplate( "\t\t\tinitialize_all_${operation_kind}_operations(manifest);", {'operation_kind': operation_name})) # def __exit__(self, exception_type, exception_value, traceback): self.top_level_file.write(SubstituteTemplate(self.top_level_prologue, {'prototypes':"\n".join(self.prototypes), 'fn_calls':"\n".join(self.fn_calls), 'operation_count': self.operation_count})) self.top_level_file.close() ################################################################################################### ################################################################################################### class Options: def __init__(self): pass ################################################################################################### # class Manifest: # def __init__(self, args = None): self.operations = {} self.args = args self.operation_count = 0 self.operations_by_name = {} self.kernel_filter = '' self.kernel_filter_list = [] self.kernel_names = [] self.operations_enabled = [] self.selected_kernels = [] self.ignore_kernel_names = [] self.compute_capabilities = [50,] self.curr_build_dir = '.' self.filter_by_cc = True if self.args: self.kernel_filter = self.args.kernels self.curr_build_dir = args.curr_build_dir architectures = args.architectures.split(';') if len(args.architectures) else ['50',] architectures = [x if x != '90a' else '90' for x in architectures] self.compute_capabilities = [int(x) for x in architectures] if args.filter_by_cc in ['false', 'False', '0']: self.filter_by_cc = False if args.operations == 'all': self.operations_enabled = [] else: operations_list = [ OperationKind.Gemm , OperationKind.Conv2d , OperationKind.Conv3d , OperationKind.RankK , OperationKind.Trmm , OperationKind.Symm ] self.operations_enabled = [x for x in operations_list if OperationKindNames[x] in args.operations.split(',')] if args.kernels == 'all': self.kernel_names = [] else: self.kernel_names = [x for x in args.kernels.split(',') if x != ''] self.ignore_kernel_names = [x for x in args.ignore_kernels.split(',') if x != ''] if args.kernel_filter_file is None: self.kernel_filter_list = [] else: self.kernel_filter_list = self.get_kernel_filters(args.kernel_filter_file) _LOGGER.info("Using {filter_count} kernel filters from {filter_file}".format( filter_count = len(self.kernel_filter_list), filter_file = args.kernel_filter_file)) self.operation_count = 0 self.operations_by_name = {} self.disable_full_archs_compilation = args.disable_full_archs_compilation def get_kernel_filters (self, kernelListFile): if os.path.isfile(kernelListFile): with open(kernelListFile, 'r') as fileReader: lines = [line.rstrip() for line in fileReader if not line.startswith("#")] lines = [re.compile(line) for line in lines if line] return lines else: return [] # def filter_out_kernels(self, kernel_name, kernel_filter_list): for kernel_filter_re in kernel_filter_list: if kernel_filter_re.search(kernel_name) is not None: return True return False # def _filter_string_matches(self, filter_string, haystack): ''' Returns true if all substrings appear in the haystack in order''' substrings = filter_string.split('*') for sub in substrings: idx = haystack.find(sub) if idx < 0: return False haystack = haystack[idx + len(sub):] return True # def filter(self, operation): ''' Filtering operations based on various criteria''' # filter based on compute capability enabled = not (self.filter_by_cc) for cc in self.compute_capabilities: if cc >= operation.tile_description.minimum_compute_capability and \ cc <= operation.tile_description.maximum_compute_capability and \ (cc not in SharedMemPerCC or SharedMemPerCC[cc] >= CalculateSmemUsage(operation)): enabled = True break if not enabled: return False if len(self.operations_enabled) and not operation.operation_kind in self.operations_enabled: return False # eliminate duplicates if operation.procedural_name() in self.operations_by_name.keys(): return False # Filter based on list of valid substrings if len(self.kernel_names): name = operation.procedural_name() enabled = False # compare against the include list for name_substr in self.kernel_names: if self._filter_string_matches(name_substr, name): _LOGGER.debug("Kernel {kernel} included due to filter string '{filt}'.".format( kernel = operation.procedural_name(), filt = name_substr)) enabled = True break # compare against the exclude list for name_substr in self.ignore_kernel_names: if self._filter_string_matches(name_substr, name): _LOGGER.debug("Kernel {kernel} ignored due to filter string '{filt}'.".format( kernel = operation.procedural_name(), filt = name_substr)) enabled = False break if len(self.kernel_filter_list) > 0: if self.filter_out_kernels(operation.procedural_name(), self.kernel_filter_list): _LOGGER.debug("Kernel {kernel} matched via kernel filter file.".format(kernel = operation.procedural_name())) enabled = True else: _LOGGER.debug("Kernel {kernel} culled due to no match in kernel filter file.".format(kernel = operation.procedural_name())) enabled = False # TODO: filter based on compute data type return enabled # # def append(self, operation): ''' Inserts the operation. operation_kind -> configuration_name -> [] ''' if self.filter(operation): self.selected_kernels.append(operation.procedural_name()) self.operations_by_name[operation.procedural_name()] = operation # add the configuration configuration_name = operation.configuration_name() if operation.operation_kind not in self.operations.keys(): self.operations[operation.operation_kind] = {} if configuration_name not in self.operations[operation.operation_kind].keys(): self.operations[operation.operation_kind][configuration_name] = [] self.operations[operation.operation_kind][configuration_name].append(operation) self.operation_count += 1 else: _LOGGER.debug("Culled {} from manifest".format(operation.procedural_name())) # # def emit(self, target = GeneratorTarget.Library): operation_emitters = { GeneratorTarget.Library: EmitOperationKindLibrary } interface_emitters = { GeneratorTarget.Library: EmitInterfaceLibrary } generated_path = os.path.join(self.curr_build_dir, 'generated') # create generated/ if os.path.exists(generated_path): shutil.rmtree(generated_path) os.mkdir(generated_path) source_files = [] with interface_emitters[target](generated_path, self.operation_count, self.args) as iface_emitter: for operation_kind, configurations in self.operations.items(): iface_emitter.emit(OperationKindNames[operation_kind]) source_files += iface_emitter.source_files # for each operation kind, emit initializer for all configurations for operation_kind, configurations in self.operations.items(): with operation_emitters[target](generated_path, operation_kind, self.args) as operation_kind_emitter: for configuration_name, operations in configurations.items(): _LOGGER.info("Emitting {config} with {num_ops} operations.".format( config = configuration_name, num_ops = len(operations))) operation_kind_emitter.emit(configuration_name, operations) source_files += operation_kind_emitter.source_files # write the manifest.cmake file containing paths from all targets manifest_path = os.path.join(generated_path, "manifest.cmake") with open(manifest_path, "w") as manifest_file: target_name = 'cutlass_library_objs' target_text = SubstituteTemplate("""cutlass_target_sources( ${target_name} BATCH_SOURCES ON PRIVATE """, { 'target_name': target_name}) manifest_file.write(target_text + '\n\n') for source_file in source_files: manifest_file.write(" %s\n" % str(source_file.replace('\\', '/'))) manifest_file.write(")\n") if self.disable_full_archs_compilation: def for_hopper(name): pass def for_ampere(name): return "16816" in name or \ "16832" in name or \ "16864" in name or \ ("1688" in name and "tf32" in name) def for_turing(name): return ("1688" in name and "tf32" not in name) or \ "8816" in name def for_volta(name): return "884" in name def is_cpp(name): return name.endswith(".cpp") def get_src_archs_str_given_requested_cuda_archs(archs, source_file): intersected_archs = archs & set(self.compute_capabilities) if intersected_archs == set(): raise RuntimeError( """ Empty archs set for file {} after taking the intersection of {} (global requested archs) and {} (per file requested archs) """.format(source_file, set(self.compute_capabilities), archs)) else: return " ".join(map(str, intersected_archs)) for source_file in source_files: if is_cpp(source_file): continue # skip because source is cpp elif for_ampere(source_file): archs_str = get_src_archs_str_given_requested_cuda_archs({80, 87, 90}, source_file) elif for_turing(source_file): archs_str = get_src_archs_str_given_requested_cuda_archs({75}, source_file) elif for_volta(source_file): archs_str = get_src_archs_str_given_requested_cuda_archs({70, 72}, source_file) else: raise RuntimeError("Per file archs are not set {}, as there is no rule specified for this file pattern".format(source_file)) manifest_file.write("cutlass_apply_cuda_gencode_flags({} SM_ARCHS {})\n".format(str(source_file.replace('\\', '/')), archs_str)) # ###################################################################################################
cutlass-main
tools/library/scripts/manifest.py
# # \file generator.py # # \brief Generates the CUTLASS Library's instances # # import enum import os.path import shutil import functools import operator from library import * ################################################################################################### # # Data structure modeling a Rank K update operation # ################################################################################################### # class RankKOperation: # def __init__(self, rank_k_kind, arch, tile_description, A, C, element_epilogue, \ epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity8, \ blas_mode = BlasMode.symmetric): self.blas_mode = blas_mode self.operation_kind = OperationKind.RankK self.arch = arch self.tile_description = tile_description self.rank_k_kind = rank_k_kind self.A = A self.C = C self.element_epilogue = element_epilogue self.epilogue_functor = epilogue_functor self.swizzling_functor = swizzling_functor # def is_complex(self): complex_operators = [ MathOperation.multiply_add_complex, MathOperation.multiply_add_complex_gaussian, MathOperation.multiply_add_complex_fast_f32 ] return self.tile_description.math_instruction.math_operation in complex_operators return False # def is_planar_complex(self): return False # def accumulator_type(self): accum = self.tile_description.math_instruction.element_accumulator if self.is_complex(): return get_complex_from_real(accum) return accum # def short_math_name(self): if self.tile_description.math_instruction.math_operation == MathOperation.multiply_add_complex_gaussian: return "g%s" % ShortDataTypeNames[self.accumulator_type()] return ShortDataTypeNames[self.accumulator_type()] # def core_name(self): ''' The basic operation kind is prefixed with a letter indicating the accumulation type. ''' inst_shape = '' inst_operation = '' intermediate_type = '' math_operations_map = { MathOperation.xor_popc: 'xor', MathOperation.and_popc: 'and' } if self.tile_description.math_instruction.opcode_class == OpcodeClass.TensorOp or \ self.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp: math_op = self.tile_description.math_instruction.math_operation math_op_string = math_operations_map[math_op] if math_op in math_operations_map.keys() else '' inst_shape = "%d%d%d" % tuple(self.tile_description.math_instruction.instruction_shape) inst_shape += math_op_string if self.tile_description.math_instruction.element_a != self.A.element and \ self.tile_description.math_instruction.element_a != self.tile_description.math_instruction.element_accumulator: intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] operation_name = 'syrk' if self.blas_mode == BlasMode.symmetric else 'herk' return "%s%s%s%s" % (self.short_math_name(), inst_shape, intermediate_type, operation_name) # def extended_name(self): ''' Append data types if they differ from compute type. ''' if self.is_complex(): extended_name = "${core_name}" else: if self.C.element != self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${element_c}_${core_name}_${element_a}" elif self.C.element == self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = SubstituteTemplate(extended_name, { 'element_a': DataTypeNames[self.A.element], 'element_c': DataTypeNames[self.C.element], 'core_name': self.core_name() }) return extended_name # def layout_name(self): if self.is_complex() or self.is_planar_complex(): return "%s" % ( ShortComplexLayoutNames[(self.A.layout, self.A.complex_transform)] ) return "%s" % (ShortLayoutTypeNames[self.A.layout]) # def fill_mode_name(self): return "%s" % (ShortFillModeNames[self.C.fill_mode]) # def procedural_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' threadblock = self.tile_description.procedural_name() opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] alignment = max([self.A.alignment, self.C.alignment]) return SubstituteTemplate( "cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}_${fill_mode}_align${alignment}", { 'opcode_class': opcode_class_name, 'extended_name': self.extended_name(), 'threadblock': threadblock, 'layout': self.layout_name(), 'fill_mode': self.fill_mode_name(), 'alignment': "%d" % self.A.alignment, } ) # def configuration_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' return self.procedural_name() ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### # class EmitRankKUniversalInstance: ''' Responsible for emitting a CUTLASS template definition''' def __init__(self): self.rank_k_template = """ // Rank K operator ${operation_name} using Operation_${operation_name} = typename cutlass::gemm::device::RankK< ${element_a}, ${layout_a}, ${element_c}, ${layout_c}, ${fill_mode}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, ${stages}, ${align_a}, ${split_k_serial}, ${math_operation} >; """ self.rank_k_complex_template = """ // Rank K operator ${operation_name} using Operation_${operation_name} = typename cutlass::gemm::device::RankK< ${element_a}, ${layout_a}, ${element_c}, ${layout_c}, ${fill_mode}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, ${stages}, ${align_a}, ${split_k_serial}, ${math_operation}, ${transform_a}, ${blas_mode} >; """ def emit(self, operation): threadblock_shape = operation.tile_description.threadblock_shape warp_count = operation.tile_description.warp_count warp_shape = [threadblock_shape[idx] // warp_count[idx] for idx in range(3)] epilogue_vector_length = int(min(operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element]) values = { 'operation_name': operation.procedural_name(), 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[operation.A.layout], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'fill_mode': FillModeTag[operation.C.fill_mode], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_vector_length': str(epilogue_vector_length), 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'align_a': str(operation.A.alignment), 'split_k_serial': 'false', 'math_operation': MathOperationTag[operation.tile_description.math_instruction.math_operation], 'transform_a': ComplexTransformTag[operation.A.complex_transform], 'blas_mode': BlasModeTag[operation.blas_mode] } rank_k_template = self.rank_k_complex_template if operation.is_complex() else self.rank_k_template return SubstituteTemplate(rank_k_template, values) ################################################################################################### ################################################################################################### # # Emitters functions for all targets # ################################################################################################### class EmitRankKConfigurationLibrary: def __init__(self, operation_path, configuration_name): self.configuration_name = configuration_name self.configuration_path = os.path.join(operation_path, "%s.cu" % configuration_name).replace('\\', '/') self.instance_emitter = { RankKKind.Universal: EmitRankKUniversalInstance, } self.rank_k_kind_wrappers = { RankKKind.Universal: 'RankKOperation', } self.instance_template = { RankKKind.Universal: """ ${compile_guard_start} manifest.append(new ${rank_k_kind}< Operation_${operation_name} >("${operation_name}")); ${compile_guard_end} """ } self.header_template = """ /* Generated by rank_k_operation.py - Do not edit. */ /////////////////////////////////////////////////////////////////////////////////////////////////// #include "cutlass/cutlass.h" #include "cutlass/library/library.h" #include "cutlass/library/manifest.h" #include "library_internal.h" #include "rank_k_operation.h" /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.initialize_function_template = """ /////////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace library { /////////////////////////////////////////////////////////////////////////////////////////////////// void initialize_${configuration_name}(Manifest &manifest) { """ self.epilogue_template = """ } /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////// """ def __enter__(self): self.configuration_file = open(self.configuration_path, "w") self.configuration_file.write(self.header_template) self.instance_definitions = [] self.instance_wrappers = [] self.operations = [] return self def emit(self, operation): emitter = self.instance_emitter[operation.rank_k_kind]() self.operations.append(operation) self.instance_definitions.append(emitter.emit(operation)) self.instance_wrappers.append(SubstituteTemplate(self.instance_template[operation.rank_k_kind], { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name(), 'rank_k_kind': self.rank_k_kind_wrappers[operation.rank_k_kind], 'compile_guard_start': SubstituteTemplate(self.wmma_guard_start, {'sm_number': str(operation.arch)}) \ if operation.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp else "", 'compile_guard_end': "#endif" \ if operation.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp else "" })) def __exit__(self, exception_type, exception_value, traceback): # Write instance definitions in top-level namespace for instance_definition in self.instance_definitions: self.configuration_file.write(instance_definition) # Add wrapper objects within initialize() function self.configuration_file.write(SubstituteTemplate(self.initialize_function_template, { 'configuration_name': self.configuration_name })) for instance_wrapper in self.instance_wrappers: self.configuration_file.write(instance_wrapper) self.configuration_file.write(self.epilogue_template) self.configuration_file.close() ###################################################################################################
cutlass-main
tools/library/scripts/rank_k_operation.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # System imports import struct import io import ctypes # CUDA Python import from cuda import cuda from cuda import nvrtc # CUTLASS imports from library import * from gemm_operation import EmitGemmUniversalInstance ################################################################################################# # # CUTLASS Py Runtime Components # ################################################################################################# # def MaxAlignment(fmt): align = 1 for x in fmt: align = max(align, struct.calcsize(x)) return align # def AlignedOffset(offset, align): remainder = (offset % align) if remainder: offset += (align - remainder) return offset # def PackInteger(host_workspace, offset, value): fmt = "i" padding = AlignedOffset(offset, 4) struct.pack_into(fmt, host_workspace, offset, value) return padding + struct.calcsize(fmt) # def PackDevicePointer(host_workspace, offset, value): fmt = "P" offset = AlignedOffset(offset, 8) struct.pack_into(fmt, host_workspace, offset, value) return offset + struct.calcsize(fmt) # def ceil_div(a, b): return -(a // -b) ################################################################################################# # class PitchLinearCoord: def __init__(self, contiguous, strided): self.contiguous = contiguous self.strided = strided # class GemmCoord: def __init__(self, m = 1, n = 1, k = 1): self.m = m self.n = n self.k = k self.fmt = "iii" # def ceil_div(self, rhs): return GemmCoord(ceil_div(self.m, rhs.m), ceil_div(self.n, rhs.n), ceil_div(self.k, rhs.k)) # def size(self): return struct.calcsize(self.fmt) # def alignment(self): return MaxAlignment(self.fmt) # def pack_into(self, host_workspace, offset): offset = AlignedOffset(offset, 4) struct.pack_into( self.fmt, host_workspace, offset, self.m, self.n, self.k) return offset + self.size() # class TensorRef: def __init__(self, pointer = None, layout = 0): self.pointer = pointer self.layout = layout def __str__(self): return "(%x, %d)" % (self.pointer._ptr, self.layout) ################################################################################################# # class PredicatedTileAccessIteratorDesc: ''' ''' def __init__( self, element_size_bits, advance_rank, threadblock_shape, threadmap_iterations, threadmap_delta): self.element_size_bits = element_size_bits self.advance_rank = advance_rank self.threadblock_shape = threadblock_shape self.threadmap_iterations = threadmap_iterations self.threadmap_delta = threadmap_delta # class PredicatedTileAccessIteratorParams: ''' ''' # def __init__(self, desc, label): self.desc = desc self.label = label self.fmt = "qqqq" # def size(self): return struct.calcsize(self.fmt) # def alignment(self): return MaxAlignment(self.fmt) # def initialize(self, host_workspace, offset, stride): offset = AlignedOffset(offset, self.alignment()) inc_strided = stride * \ self.desc.threadmap_delta.strided * \ self.desc.element_size_bits // 8 if self.desc.advance_rank: inc_advance = self.desc.threadblock_shape.strided * \ stride * \ self.desc.element_size_bits // 8 else: inc_advance = self.desc.threadblock_shape.contiguous * \ self.desc.element_size_bits // 8 inc_next = inc_advance - (self.desc.threadmap_iterations.strided - 1) * \ self.desc.threadmap_delta.strided * \ stride * \ self.desc.element_size_bits // 8 struct.pack_into( self.fmt, host_workspace, offset, stride, inc_strided, inc_next, inc_advance) return offset + self.size() # ################################################################################################# # class EpilogueTileDesc: ''' ''' def __init__(self, column, row, group, cluster, tile): self.column = column self.row = row self.group = group self.cluster = cluster self.tile = tile # class EpilogueThreadMap: ''' ''' def __init__(self, threads, elements_per_access, element_size_bits, shape, iterations, delta, count): self.threads = threads self.elements_per_access = elements_per_access self.element_size_bits = element_size_bits self.shape = shape self.iterations = iterations self.delta = delta self.count = count pass # class EpilogueTileIteratorParams: ''' ''' # def __init__(self, desc, label): self.desc = desc self.label = label self.fmt = "qqqqqqqq" # def size(self): return struct.calcsize(self.fmt) # def alignment(self): return MaxAlignment(self.fmt) # def initialize(self, host_workspace, offset, stride): stride = stride * self.desc.element_size_bits // 8 offset = AlignedOffset(offset, self.alignment()) increment_row = stride * self.desc.delta.row increment_group = stride * self.desc.delta.group \ - stride * self.desc.delta.row * (self.desc.iterations.row - 1) increment_cluster = stride * self.desc.delta.cluster \ - stride * self.desc.delta.group * (self.desc.iterations.group - 1) \ - stride * self.desc.delta.row * (self.desc.iterations.row - 1) advance_row = stride * self.desc.shape.row advance_group = stride * \ (self.desc.shape.group - 1) * \ self.desc.shape.row * \ self.desc.count.row advance_cluster = stride * \ self.desc.count.group * \ self.desc.shape.group * \ self.desc.count.row * \ self.desc.shape.row advance_tile = stride * \ self.desc.shape.group * \ self.desc.shape.row * \ self.desc.shape.cluster * \ self.desc.shape.tile struct.pack_into( self.fmt, \ host_workspace, \ offset, \ stride, \ increment_row, increment_group, increment_cluster, \ advance_row, advance_group, advance_cluster, advance_tile) return offset + self.size() # ################################################################################################# # # Launch configuration # ################################################################################################# class LaunchConfiguration: def __init__(self, grid = [1,1,1], block = [1,1,1], smem = 0): self.grid = grid self.block = block self.shared_memory_capacity = smem ################################################################################################# # # Functors # ################################################################################################# # class Functor: def __init__(self): self.decl = '' self.definition = '' self.fmt = '' self.identifier = '' # def emit_declaration(self): return self.decl # def emit_definition(self): return self.definition # def size(self): ''' Size of the packed Params structure ''' return struct.calcsize(self.fmt) # def alignment(self): return MaxAlignment(self.fmt) # def initialize(self, host_workspace, offset, arguments): return offset + self.size() ################################################################################################# # class LinearCombinationFunctorArguments: def __init__(self, alpha = 1.0, beta = 0.0): self.alpha = alpha self.beta = beta self.alpha_ptr = 0 self.beta_ptr = 0 # class LinearCombinationFunctor(Functor): def __init__(self): super().__init__() self.decl = """ cutlass::epilogue::thread::LinearCombination< float, 1, float, float >""" self.identifier = 'linear_combination' self.fmt = "ffPP" # def size(self): ''' Size of the packed Params structure ''' return struct.calcsize(self.fmt) # def alignment(self): return MaxAlignment(self.fmt) # def initialize(self, host_workspace, offset, arguments): offset = AlignedOffset(offset, self.alignment()) struct.pack_into( self.fmt, host_workspace, offset, arguments.alpha, arguments.beta, arguments.alpha_ptr, arguments.beta_ptr) return offset + self.size() ################################################################################################# # # Base class for an executable operation # ################################################################################################# # class ExecutableOperation: ''' ''' def __init__(self, operation): self.operation = operation self.module = None self.kernel = None # def name(self): return self.operation.procedural_name() # def emit(self): return '' # def can_implement(self, configuration, arguments): return False # def get_host_workspace_size(self, arguments): return 0 # def get_device_workspace_size(self, arguments): return 0 # def plan(self, arguments): return LaunchConfiguration() # def initialize(self, host_workspace, device_workspace, launch_config, arguments, stream = cuda.CUstream(0)): raise NotImplementedError() # def run(self, host_workspace, device_workspace, launch_config, stream = cuda.CUstream(0)): cArg = (ctypes.c_char * len(host_workspace)).from_buffer(host_workspace) packed = (ctypes.c_void_p * 1)() packed[0] = ctypes.addressof(cArg) err, = cuda.cuLaunchKernel( self.kernel, launch_config.grid[0], launch_config.grid[1], launch_config.grid[2], launch_config.block[0], launch_config.block[1], launch_config.block[2], launch_config.shared_memory_capacity, stream, packed, 0) return err ################################################################################################# # class GemmArguments: ''' ''' def __init__(self): self.problem_size = GemmCoord(0, 0, 0) self.A = TensorRef() self.B = TensorRef() self.C = TensorRef() self.D = TensorRef() self.output_op = LinearCombinationFunctorArguments() # class ThreadblockSwizzle: def __init__(self, threadblock_shape, log_threadblock_cohort = 0): self.threadblock_shape = threadblock_shape self.log_threadblock_cohort = log_threadblock_cohort def grid_tiled_shape(self, problem_size): return GemmCoord( ceil_div(problem_size.m, self.threadblock_shape.m), ceil_div(problem_size.n, self.threadblock_shape.n), 1) # class Gemm(ExecutableOperation): ''' GEMM manages the CUTLASS runtime components ''' # def __init__(self, operation): super().__init__(operation) self.emitter = EmitGemmUniversalInstance('_type') self.threadblock_swizzle = ThreadblockSwizzle(GemmCoord(128, 128, 8)) self.threads = 256 self.shared_memory_capacity = (32 << 10) self.params_A = PredicatedTileAccessIteratorParams( PredicatedTileAccessIteratorDesc( 32, 1, PitchLinearCoord(128, 8), PitchLinearCoord(1, 4), PitchLinearCoord(1, 2)), 'A') self.params_B = PredicatedTileAccessIteratorParams( PredicatedTileAccessIteratorDesc( 32, 1, PitchLinearCoord(128, 8), PitchLinearCoord(1, 4), PitchLinearCoord(1, 2)), 'B') self.params_C = EpilogueTileIteratorParams( EpilogueThreadMap( 256, 1, 32, EpilogueTileDesc(128, 1, 4, 4, 1), EpilogueTileDesc(4, 1, 2, 1, 1), EpilogueTileDesc(32, 1, 8, 1, 1), EpilogueTileDesc(1, 4, 2, 1, 8)), 'C') self.params_D = EpilogueTileIteratorParams( EpilogueThreadMap( 256, 1, 32, EpilogueTileDesc(128, 1, 4, 4, 1), EpilogueTileDesc(4, 1, 2, 1, 1), EpilogueTileDesc(32, 1, 8, 1, 1), EpilogueTileDesc(1, 4, 2, 1, 8)), 'D') self.output_op = LinearCombinationFunctor() # def emit(self): return self.emitter.emit(self.operation) # def can_implement(self, configuration, arguments): pass # def get_host_workspace_size(self, arguments): return 336 # def get_device_workspace_size(self, arguments): return 0 # def plan(self, arguments): grid = self.threadblock_swizzle.grid_tiled_shape(arguments.problem_size) return LaunchConfiguration([grid.m, grid.n, grid.k], [self.threads, 1, 1], self.shared_memory_capacity) # def initialize(self, host_workspace, device_workspace, launch_config, arguments, stream = cuda.CUstream(0)): offset = 0 # Compute intermediate results swizzle_log_tile = 0 gemm_mode = 0 batch_count = 1 gemm_k_size = arguments.problem_size.k # Pack into the host workspace buffer offset = arguments.problem_size.pack_into(host_workspace, offset) grid_tiled_shape = self.threadblock_swizzle.grid_tiled_shape(arguments.problem_size) offset = grid_tiled_shape.pack_into(host_workspace, offset) offset = PackInteger(host_workspace, offset, swizzle_log_tile) offset = self.params_A.initialize(host_workspace, offset, arguments.A.layout) offset = self.params_B.initialize(host_workspace, offset, arguments.B.layout) offset = self.params_C.initialize(host_workspace, offset, arguments.C.layout) offset = self.params_D.initialize(host_workspace, offset, arguments.D.layout) offset = self.output_op.initialize(host_workspace, offset, arguments.output_op) offset = PackInteger(host_workspace, offset, gemm_mode) offset = PackInteger(host_workspace, offset, batch_count) offset = PackInteger(host_workspace, offset, gemm_k_size) offset = PackDevicePointer(host_workspace, offset, int(arguments.A.pointer)) offset = PackDevicePointer(host_workspace, offset, int(arguments.B.pointer)) offset = PackDevicePointer(host_workspace, offset, int(arguments.C.pointer)) offset = PackDevicePointer(host_workspace, offset, int(arguments.D.pointer)) return offset ################################################################################################# # # Module represents a compilation unit # ################################################################################################# # class CompilationOptions: ''' Compilation options. ''' # def __init__(self, architectures = [80], include_paths = []): self.includes = [] self.include_paths = include_paths self.flags = ['-std=c++11', '-default-device'] self.architectures = architectures # def get(self): options = [] for flag in self.flags: options.append(bytes(str.encode(flag))) for incl in self.include_paths: options.append(bytes(str.encode('--include-path=%s' % incl))) arch_list = "-arch=" for idx, arch in enumerate(self.architectures): if idx: arch_list += "," arch_list += "sm_%d" % arch options.append(bytes(str.encode(arch_list))) return options IncludeTemplate = r'''#include "${include}" ''' KernelTemplate = r''' extern "C" __global__ void ${operation_name}(${operation_name}${operation_suffix}::Params params) { // Dynamic shared memory base pointer extern __shared__ int SharedStorageBase[]; // Declare pointer to dynamic shared memory. ${operation_name}${operation_suffix}::SharedStorage *shared_storage = reinterpret_cast<${operation_name}${operation_suffix}::SharedStorage *>(SharedStorageBase); ${operation_name}${operation_suffix} op; op(params, *shared_storage); } ''' # class Module: def __init__(self, name, operations, compilation_options): self.name = name self.operations = operations self.module = None self.log = None self.cubin_image = None self.source_buffer = '' # # Emit source # self.emit_() # # Compile # self.compile_(compilation_options) # # Load module # self.load_() # Done return # Emit a source buffer def emit_(self): # 1. Includes includes = [] for operation in self.operations: for incl in operation.emitter.includes: if incl not in includes: includes.append(incl) for incl in includes: self.source_buffer += SubstituteTemplate(IncludeTemplate, { 'include': incl} ) # 2. Operations for operation in self.operations: self.source_buffer += operation.emit() values = { 'operation_name': operation.name(), 'operation_suffix': operation.emitter.operation_suffix } self.source_buffer += SubstituteTemplate(KernelTemplate, values) # Done return # Compile with NVRTC def compile_(self, compilation_options): err, program = nvrtc.nvrtcCreateProgram( str.encode(self.source_buffer), bytes(str.encode(self.name)), 0, [], []) if err != nvrtc.nvrtcResult.NVRTC_SUCCESS: raise RuntimeError('NVRTC Error: {}'.format(err)) # Compile program options = compilation_options.get() err, = nvrtc.nvrtcCompileProgram(program, len(options), options) if err != nvrtc.nvrtcResult.NVRTC_SUCCESS: error_string = 'NVRTC Error: {}\n'.format(err) # Get log from compilation err, logSize = nvrtc.nvrtcGetProgramLogSize(program) if err != nvrtc.nvrtcResult.NVRTC_SUCCESS: raise RuntimeError('NVRTC Error: {}'.format(err)) self.log = b' ' * logSize err, = nvrtc.nvrtcGetProgramLog(program, self.log) if err != nvrtc.nvrtcResult.NVRTC_SUCCESS: raise RuntimeError('NVRTC Error: {}'.format(err)) raise RuntimeError(error_string + self.log.decode() + self.source_buffer) # Get data from compilation err, dataSize = nvrtc.nvrtcGetCUBINSize(program) if err != nvrtc.nvrtcResult.NVRTC_SUCCESS: raise RuntimeError('NVRTC Error: {}'.format(err)) self.cubin_image = b' ' * dataSize err, = nvrtc.nvrtcGetCUBIN(program, self.cubin_image) if err != nvrtc.nvrtcResult.NVRTC_SUCCESS: raise RuntimeError('NVRTC Error: {}'.format(err)) return # def load_(self): # Load data as module data err, self.module = cuda.cuModuleLoadData(self.cubin_image) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError('Cuda Error: {}'.format(err)) # Get functions for operation in self.operations: err, operation.kernel = cuda.cuModuleGetFunction( self.module, bytes(str.encode(operation.name()))) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError('Cuda Error: {}'.format(err)) operation.module = self return ################################################################################################# # # Manifest represents an 'owner' for modules and operations # ################################################################################################# # class Manifest: # def __init__(self): self.operations = {} self.modules = [] pass # def append_module(self, module): ''' Appends a module and takes ownership of operations used to construct it. ''' self.modules.append(module) for operation in module.operations: self.operations[operation.name()] = operation #################################################################################################
cutlass-main
tools/library/scripts/rt.py
cutlass-main
tools/library/scripts/__init__.py
# # \file generator.py # # \brief Generates the CUTLASS Library's instances # # import enum import os.path import shutil from library import * ################################################################################################### # class Conv2dOperation: # def __init__(self, conv_kind, iterator_algorithm, arch, tile_description, A, B, C, element_epilogue, \ stride_support, epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity1, \ group_mode = GroupMode.NoneGroup): self.operation_kind = OperationKind.Conv2d self.arch = arch self.tile_description = tile_description self.conv_kind = conv_kind self.A = A self.B = B self.C = C self.element_epilogue = element_epilogue self.epilogue_functor = epilogue_functor self.iterator_algorithm = iterator_algorithm self.stride_support = stride_support self.swizzling_functor = swizzling_functor self.group_mode = group_mode # def is_complex(self): complex_operators = [ MathOperation.multiply_add_complex, MathOperation.multiply_add_complex_gaussian ] return self.tile_description.math_instruction.math_operation in complex_operators # def accumulator_type(self): accum = self.tile_description.math_instruction.element_accumulator if self.is_complex(): return get_complex_from_real(accum) return accum # def core_name(self): ''' The basic operation kind is prefixed with a letter indicating the accumulation type. ''' intermediate_type = '' if self.tile_description.math_instruction.opcode_class == OpcodeClass.TensorOp: inst_shape = "%d%d%d" % tuple(self.tile_description.math_instruction.instruction_shape) if self.tile_description.math_instruction.element_a != self.A.element and \ self.tile_description.math_instruction.element_a != self.accumulator_type(): intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] else: inst_shape = '' return "%s%s%s%s_%s" % (ShortDataTypeNames[self.accumulator_type()], \ inst_shape, intermediate_type, ConvKindNames[self.conv_kind], IteratorAlgorithmNames[self.iterator_algorithm]) # def extended_name(self): ''' Append data types if they differ from compute type. ''' if self.C.element != self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${element_c}_${core_name}_${element_a}" elif self.C.element == self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = SubstituteTemplate(extended_name, { 'element_a': DataTypeNames[self.A.element], 'element_c': DataTypeNames[self.C.element], 'core_name': self.core_name() }) return extended_name # def layout_name(self): return "%s" % (ShortLayoutTypeNames[self.A.layout]) # def configuration_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] threadblock = self.tile_description.procedural_name() # grouped conv if self.group_mode != GroupMode.NoneGroup: group_conv_name = f"{GroupModeNames[self.group_mode]}_" else: group_conv_name = "" if self.stride_support == StrideSupport.Unity: configuration_name = "cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}_unity_stride_${group_conv_name}align${alignment}" else: configuration_name = "cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}_${group_conv_name}align${alignment}" return SubstituteTemplate( configuration_name, { 'opcode_class': opcode_class_name, 'extended_name': self.extended_name(), 'threadblock': threadblock, 'layout': self.layout_name(), 'alignment': "%d" % self.A.alignment, 'group_conv_name': group_conv_name } ) # def procedural_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' return self.configuration_name() ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### class EmitConv2dInstance: def __init__(self): self.template = """ // Conv2d${conv_kind_name} ${iterator_algorithm_name} kernel instance "${operation_name}" using ${operation_name}_base = typename cutlass::conv::kernel::DefaultConv2d${conv_kind_name}< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k} >, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, // cutlass::gemm::threadblock::GemmSplitKIdentityThreadblockSwizzle<>, ${stages}, ${math_operator}, ${iterator_algorithm}, ${stride_support}, ${align_a}, ${align_b} >::Kernel; """ self.template_group_conv = """ // Conv2d${conv_kind_name} ${iterator_algorithm_name} kernel instance "${operation_name}" using ${operation_name}_base = typename cutlass::conv::kernel::DefaultConv2dGroup${conv_kind_name}< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k} >, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, // cutlass::gemm::threadblock::GemmSplitKIdentityThreadblockSwizzle<>, ${stages}, ${math_operator}, ${group_mode}, ${iterator_algorithm}, ${stride_support}, ${align_a}, ${align_b} >::Kernel; """ self.template_depthwise_direct_conv = """ // Conv2d${conv_kind_name} ${iterator_algorithm_name} kernel instance "${operation_name}" using ${operation_name}_base = typename cutlass::conv::kernel::DefaultDepthwiseDirect2dConv${conv_kind_name}< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::conv::TensorNHWCShape<${threadblock_output_shape_n}, ${threadblock_output_shape_p}, ${threadblock_output_shape_q}, ${groups_per_cta}>, cutlass::MatrixShape<${filter_shape_r}, ${filter_shape_s}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue}, cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling >, cutlass::conv::threadblock::DepthwiseDirect2dConvIdentityThreadblockSwizzle< 1, ${threadblock_output_shape_n}, ${threadblock_output_shape_p}, ${threadblock_output_shape_q}>, ${stages}, ${math_operator}, ${iterator_algorithm}, ${stride_support}, cutlass::MatrixShape<${stride_r}, ${stride_s}>, cutlass::MatrixShape<${dilation_r}, ${dilation_s}> >::Kernel; """ def emit(self, operation): warp_shape = [int(operation.tile_description.threadblock_shape[idx] / operation.tile_description.warp_count[idx]) for idx in range(3)] epilogue_vector_length = int(min(operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element]) values = { 'operation_name': operation.procedural_name(), 'conv_kind': ConvKindTag[operation.conv_kind], 'conv_kind_name': ConvKindNames[operation.conv_kind].capitalize(), 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[operation.A.layout], 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[operation.B.layout], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_vector_length': str(epilogue_vector_length), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'iterator_algorithm': IteratorAlgorithmTag[operation.iterator_algorithm], 'iterator_algorithm_name': IteratorAlgorithmNames[operation.iterator_algorithm].capitalize(), 'stride_support': StrideSupportTag[operation.stride_support], 'math_operator': 'cutlass::arch::OpMultiplyAddComplex' if operation.is_complex() else \ MathOperationTag[operation.tile_description.math_instruction.math_operation], 'align_a': str(operation.A.alignment), 'align_b': str(operation.B.alignment), } if operation.group_mode == GroupMode.NoneGroup: return SubstituteTemplate(self.template, values) elif operation.group_mode == GroupMode.Depthwise: values['group_mode'] = GroupModeTag[operation.group_mode] # Setup other template params values['threadblock_output_shape_n'] = str(operation.tile_description.threadblock_output_shape[0]) values['threadblock_output_shape_p'] = str(operation.tile_description.threadblock_output_shape[1]) values['threadblock_output_shape_q'] = str(operation.tile_description.threadblock_output_shape[2]) values['groups_per_cta'] = str(operation.tile_description.threadblock_output_shape[3]) values['filter_shape_r'] = str(operation.tile_description.filter_shape[0]) values['filter_shape_s'] = str(operation.tile_description.filter_shape[1]) values['stride_r'] = str(operation.tile_description.stride[0]) values['stride_s'] = str(operation.tile_description.stride[1]) values['dilation_r'] = str(operation.tile_description.dilation[0]) values['dilation_s'] = str(operation.tile_description.dilation[1]) return SubstituteTemplate(self.template_depthwise_direct_conv, values) else: values['group_mode'] = GroupModeTag[operation.group_mode] return SubstituteTemplate(self.template_group_conv, values) ################################################################################################### # # Generator functions for all layouts # ################################################################################################### # def GenerateConv2dTensorOp(manifest, tile_descriptions, min_cc, align = 128): for tile in tile_descriptions: for conv_kind in [ConvKind.Fprop, ConvKind.Dgrad, ConvKind.Wgrad]: if conv_kind == ConvKind.Fprop or (tile.math_instruction.element_accumulator in [DataType.f16, DataType.f32]): # output_types = [tile.math_instruction.element_a, tile.math_instruction.element_accumulator] \ if DataTypeSize[tile.math_instruction.element_accumulator] == 32 \ else [tile.math_instruction.element_accumulator,] for output_type in output_types: A = TensorDescription(tile.math_instruction.element_a, LayoutType.TensorNHWC, int(align / DataTypeSize[tile.math_instruction.element_a])) B = TensorDescription(tile.math_instruction.element_b, LayoutType.TensorNHWC, int(align / DataTypeSize[tile.math_instruction.element_b])) C = TensorDescription(output_type, LayoutType.TensorNHWC, max(1, int(align / DataTypeSize[output_type]))) manifest.append(Conv2dOperation(conv_kind, min_cc, tile, A, B, C, tile.math_instruction.element_accumulator)) ################################################################################################### # # Emitters functions for all targets # ################################################################################################### class EmitConv2dConfigurationLibrary: def __init__(self, operation_path, configuration_name): self.configuration_name = configuration_name self.configuration_path = os.path.join(operation_path, "%s.cu" % configuration_name) self.instance_emitter = EmitConv2dInstance() self.instance_template = """ ${operation_instance} // Derived class struct ${operation_name} : public ${operation_name}_base { }; /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.header_template = """ /* Generated by conv2d_operation.py - Do not edit. */ /////////////////////////////////////////////////////////////////////////////////////////////////// #include "cutlass/cutlass.h" #include "cutlass/library/library.h" #include "cutlass/library/manifest.h" #include "library_internal.h" #include "conv2d_operation.h" /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.configuration_header = """ namespace cutlass { namespace library { // Initialize all instances void initialize_${configuration_name}(Manifest &manifest) { """ self.configuration_instance = """ using Operation_${operation_name} = cutlass::conv::device::ImplicitGemmConvolution< ${operation_name}>; manifest.append(new cutlass::library::Conv2dOperation< Operation_${operation_name}>( "${operation_name}")); """ self.configuration_direct_conv_instance = """ using Operation_${operation_name} = cutlass::conv::device::DirectConvolution< ${operation_name}>; manifest.append(new cutlass::library::DirectConv2dOperation< Operation_${operation_name}>( "${operation_name}")); """ self.configuration_epilogue = """ } """ self.epilogue_template = """ /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////// """ # def __enter__(self): self.configuration_file = open(self.configuration_path, "w") self.configuration_file.write(SubstituteTemplate(self.header_template, { 'configuration_name': self.configuration_name })) self.operations = [] return self # def emit(self, operation): self.operations.append(operation) self.configuration_file.write(SubstituteTemplate(self.instance_template, { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name(), 'operation_instance': self.instance_emitter.emit(operation) })) # def __exit__(self, exception_type, exception_value, traceback): self.configuration_file.write(SubstituteTemplate(self.configuration_header, { 'configuration_name': self.configuration_name })) for operation in self.operations: if operation.group_mode == GroupMode.Depthwise: self.configuration_file.write(SubstituteTemplate(self.configuration_direct_conv_instance, { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name() })) else: self.configuration_file.write(SubstituteTemplate(self.configuration_instance, { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name() })) self.configuration_file.write(self.configuration_epilogue) self.configuration_file.write(self.epilogue_template) self.configuration_file.close() ################################################################################################### ###################################################################################################
cutlass-main
tools/library/scripts/conv2d_operation.py
# # \file generator.py # # \brief Generates the CUTLASS Library's instances # import enum import os.path import shutil import argparse import logging from library import * from manifest import * from itertools import product ################################################################################################### # def CudaToolkitVersionSatisfies(semantic_ver_string, major, minor, patch = 0): # by default, use the latest CUDA Toolkit version cuda_version = [11, 0, 132] # Update cuda_version based on parsed string if semantic_ver_string != '': for i, x in enumerate([int(x) for x in semantic_ver_string.split('.')]): if i < len(cuda_version): cuda_version[i] = x else: cuda_version.append(x) return cuda_version >= [major, minor, patch] ################################################################################################### ################################################################################################### # def EpilogueAlignment(max_alignment, tile, epilogue_steps = 8): ''' Helper to compute the maximum alignment of the epilogue ''' def product(X, identity = 1): result = identity for item in X: result *= item return result elements_per_thread = product(tile.threadblock_shape[:-1]) // product(tile.warp_count) // 32 // epilogue_steps return min(max_alignment, elements_per_thread) def DefaultSwizzlingFunctor(): return SwizzlingFunctor.Identity8; # To use StreamK decomposition for basic GEMMs, set `swizzling_functor = SwizzlingFunctor.StreamK` # def CreateGemmOperator(manifest, layouts, tile_descriptions, data_type, \ alignment_constraints, complex_transforms = None, epilogue_functor = EpilogueFunctor.LinearCombination, \ swizzling_functor = DefaultSwizzlingFunctor()): if complex_transforms is None: complex_transforms = [(ComplexTransform.none, ComplexTransform.none),] element_a, element_b, element_c, element_epilogue = data_type operations = [] # by default, only generate the largest tile and largest alignment if manifest.kernel_filter == '': tile_descriptions = [tile_descriptions[0],] alignment_constraints = [alignment_constraints[0],] for layout in layouts: for tile_description in tile_descriptions: for alignment in alignment_constraints: for complex_transform in complex_transforms: alignment_c = min(8, alignment) A = TensorDescription(element_a, layout[0], alignment, complex_transform[0]) B = TensorDescription(element_b, layout[1], alignment, complex_transform[1]) C = TensorDescription(element_c, layout[2], alignment_c) new_operation = GemmOperation(GemmKind.Universal, tile_description.minimum_compute_capability, \ tile_description, A, B, C, element_epilogue, epilogue_functor, swizzling_functor) manifest.append(new_operation) operations.append(new_operation) return operations # Generates 3.0 API based GemmUniversal API kernels. Alignment constraints are folded in with layouts def CreateGemmUniversal3xOperator( manifest, layouts, tile_descriptions, data_types, schedules = [[KernelScheduleType.ScheduleAuto, EpilogueScheduleType.ScheduleAuto]], complex_transforms=None, epilogue_functor=EpilogueFunctor.LinearCombination, swizzling_functor=SwizzlingFunctor.Identity1, tile_schedulers=[TileSchedulerType.Persistent]): if type(data_types) is dict: data_types = [data_types] for s in schedules: assert(len(s) == 2) if complex_transforms is None: complex_transforms = [(ComplexTransform.none, ComplexTransform.none), ] operations = [] # by default, only generate the largest tile and largest alignment if manifest.kernel_filter == '': tile_descriptions = [tile_descriptions[0]] combinations = product(layouts, tile_descriptions, data_types, complex_transforms, schedules, tile_schedulers) for layout, tile_description, data_type, complex_transform, schedules, tile_scheduler in combinations: kernel_schedule, epilogue_schedule = schedules A = TensorDescription( data_type["a_type"], layout[0][0], layout[0][1], complex_transform[0]) B = TensorDescription( data_type["b_type"], layout[1][0], layout[1][1], complex_transform[1]) C = TensorDescription(data_type["c_type"], layout[2][0], layout[2][1]) D = TensorDescription(data_type["d_type"], layout[2][0], layout[2][1]) element_compute = data_type.get("epi_type", data_type["acc_type"]) operation = GemmOperation( GemmKind.Universal3x, tile_description.minimum_compute_capability, tile_description, A, B, C, element_compute, epilogue_functor, swizzling_functor, D, kernel_schedule, epilogue_schedule, tile_scheduler) manifest.append(operation) operations.append(operation) return operations # def CreateSparseGemmOperator(manifest, layouts, tile_descriptions, data_type, \ alignment_constraints, complex_transforms = None, epilogue_functor = EpilogueFunctor.LinearCombination, \ swizzling_functor = SwizzlingFunctor.Identity8): if complex_transforms is None: complex_transforms = [(ComplexTransform.none, ComplexTransform.none),] element_a, element_b, element_c, element_epilogue = data_type gemm_kinds = [GemmKind.Sparse] operations = [] # by default, only generate the largest tile and largest alignment if manifest.kernel_filter == '': tile_descriptions = [tile_descriptions[0],] alignment_constraints = [alignment_constraints[0],] for layout in layouts: for tile_description in tile_descriptions: for alignment in alignment_constraints: for complex_transform in complex_transforms: alignment_c = min(8, alignment) A = TensorDescription(element_a, layout[0], alignment, complex_transform[0]) B = TensorDescription(element_b, layout[1], alignment, complex_transform[1]) C = TensorDescription(element_c, layout[2], alignment_c) new_operation = GemmOperation(GemmKind.Sparse, tile_description.minimum_compute_capability, \ tile_description, A, B, C, element_epilogue, epilogue_functor, swizzling_functor) manifest.append(new_operation) operations.append(new_operation) return operations # def CreateGemmPlanarComplexOperator(manifest, layouts, tile_descriptions, data_type, \ alignment_constraints, complex_transforms): if complex_transforms is None: complex_transforms = [(ComplexTransform.none, ComplexTransform.none),] element_a, element_b, element_c, element_epilogue = data_type gemm_kinds = [GemmKind.PlanarComplex, GemmKind.PlanarComplexArray] # by default, only generate the largest tile and largest alignment if manifest.kernel_filter == '': tile_descriptions = [tile_descriptions[0],] alignment_constraints = [alignment_constraints[0],] for gemm_kind in gemm_kinds: for layout in layouts: for tile_description in tile_descriptions: for alignment in alignment_constraints: for complex_transform in complex_transforms: alignment_c = min(8, alignment) A = TensorDescription(element_a, layout[0], alignment, complex_transform[0]) B = TensorDescription(element_b, layout[1], alignment, complex_transform[1]) C = TensorDescription(element_c, layout[2], alignment_c) manifest.append(GemmOperation(gemm_kind, \ tile_description.minimum_compute_capability, \ tile_description, A, B, C, element_epilogue)) return # def CreateGemmGroupedOperator(manifest, layouts, tile_descriptions, data_type, \ alignment_constraints, complex_transforms = None, epilogue_functor = EpilogueFunctor.LinearCombination, \ swizzling_functor = SwizzlingFunctor.Identity8): if complex_transforms is None: complex_transforms = [(ComplexTransform.none, ComplexTransform.none),] element_a, element_b, element_c, element_epilogue = data_type operations = [] # by default, only generate the largest tile and largest alignment if manifest.kernel_filter == '': tile_descriptions = [tile_descriptions[0],] alignment_constraints = [alignment_constraints[0],] for layout in layouts: for tile_description in tile_descriptions: for alignment in alignment_constraints: for complex_transform in complex_transforms: alignment_c = min(8, alignment) A = TensorDescription(element_a, layout[0], alignment, complex_transform[0]) B = TensorDescription(element_b, layout[1], alignment, complex_transform[1]) C = TensorDescription(element_c, layout[2], alignment_c) new_operation = GroupedGemmOperation(GemmKind.Grouped, tile_description.minimum_compute_capability, \ tile_description, A, B, C, element_epilogue, epilogue_functor, swizzling_functor) manifest.append(new_operation) operations.append(new_operation) return operations # def CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, data_type, \ alignment_constraints, blas_mode, epilogue_functor = EpilogueFunctor.LinearCombination, \ swizzling_functor = SwizzlingFunctor.Identity8): element_a, element_c, element_epilogue = data_type operations = [] # by default, only generate the largest tile and largest alignment if manifest.kernel_filter == '': tile_descriptions = [tile_descriptions[0],] alignment_constraints = [alignment_constraints[0],] for layout in layouts: for fill_mode in fill_modes: for tile_description in tile_descriptions: for alignment in alignment_constraints: # SERK supported layouts (RowMajor, ColumnMajor) with no conjugation complex_transform = ComplexTransform.none # HERK supported layouts (RowMajor + conj, ColumnMajor) if blas_mode == BlasMode.hermitian and layout[0] == LayoutType.RowMajor: complex_transform = ComplexTransform.conj alignment_c = 1 # Alignment only applies to A in SYRK A = TensorDescription(element_a, layout[0], alignment, complex_transform) C = SymmetricTensorDescription(element_c, layout[1], fill_mode, alignment_c) # Rank-K update new_operation = RankKOperation(RankKKind.Universal, tile_description.minimum_compute_capability, \ tile_description, A, C, element_epilogue, epilogue_functor, swizzling_functor, blas_mode) manifest.append(new_operation) operations.append(new_operation) # Rank-2K update new_operation = Rank2KOperation(RankKKind.Universal, tile_description.minimum_compute_capability, \ tile_description, A, C, element_epilogue, epilogue_functor, swizzling_functor, blas_mode) manifest.append(new_operation) operations.append(new_operation) return operations # def CreateTrmmOperator(manifest, layouts, side_modes, fill_modes, diag_types, tile_descriptions, data_type, \ alignment_constraints, complex_transforms = None, epilogue_functor = EpilogueFunctor.LinearCombination, \ swizzling_functor = SwizzlingFunctor.Identity8): if complex_transforms is None: complex_transforms = [(ComplexTransform.none),] element_a, element_b, element_c, element_epilogue = data_type operations = [] # by default, only generate the largest tile and largest alignment if manifest.kernel_filter == '': tile_descriptions = [tile_descriptions[0],] alignment_constraints = [alignment_constraints[0],] for layout in layouts: for side_mode in side_modes: for fill_mode in fill_modes: for diag_type in diag_types: for tile_description in tile_descriptions: for alignment in alignment_constraints: for complex_transform in complex_transforms: alignment_c = min(8, alignment) A = TriangularTensorDescription(element_a, layout[0], side_mode, fill_mode, diag_type, alignment, complex_transform) B = TensorDescription(element_b, layout[1], alignment) C = TensorDescription(element_c, layout[2], alignment_c) new_operation = TrmmOperation(TrmmKind.Universal, tile_description.minimum_compute_capability, \ tile_description, A, B, C, element_epilogue, epilogue_functor, swizzling_functor) manifest.append(new_operation) operations.append(new_operation) return operations # def CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, data_type, \ alignment_constraints, blas_mode, epilogue_functor = EpilogueFunctor.LinearCombination, \ swizzling_functor = SwizzlingFunctor.Identity8): element_a, element_b, element_c, element_epilogue = data_type operations = [] # by default, only generate the largest tile and largest alignment if manifest.kernel_filter == '': tile_descriptions = [tile_descriptions[0],] alignment_constraints = [alignment_constraints[0],] for layout in layouts: for side_mode in side_modes: for fill_mode in fill_modes: for tile_description in tile_descriptions: for alignment in alignment_constraints: # SYMM supported layouts (RowMajor, ColumnMajor) with no conjugation complex_transform = ComplexTransform.none alignment_a = 1 # No vectorized access for the triangular matrix alignment_c = min(8, alignment) A = SymmetricTensorDescription(element_a, layout[0], fill_mode, alignment_a, complex_transform, side_mode) # tensor A and B have same data type and layout B = TensorDescription(element_b, layout[0], alignment) C = TensorDescription(element_c, layout[1], alignment_c) # SYMM/HEMM update new_operation = SymmOperation(SymmKind.Universal, tile_description.minimum_compute_capability, \ tile_description, A, B, C, element_epilogue, epilogue_functor, swizzling_functor, blas_mode) manifest.append(new_operation) operations.append(new_operation) # SYMM/HEMM update new_operation = SymmOperation(SymmKind.Universal, tile_description.minimum_compute_capability, \ tile_description, A, B, C, element_epilogue, epilogue_functor, swizzling_functor, blas_mode) manifest.append(new_operation) operations.append(new_operation) return operations ########################################################################################################### # ConvolutionOperator support variations # ____________________________________________________________________ # ConvolutionalOperator | Analytic | Optimized # ____________________________________________________________________ # | Fprop | (strided) | (strided) # | Dgrad | (strided, unity*) | (strided, unity) # | Wgrad | (strided) | (strided) # ____________________________________________________________________ # # Note : Operator marked (*) are supported but not generated to keep the instantiated kernel count low ########################################################################################################### # Convolution for 2D operations def CreateConv2dOperator(manifest, layout, tile_descriptions, data_type, alignment_constraints, \ conv_kinds = [ConvKind.Fprop, ConvKind.Dgrad, ConvKind.Wgrad], \ epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity4): element_a, element_b, element_c, element_epilogue = data_type # one exceptional case # iterator algorithm (analytic and optimized) iterator_algorithms = [IteratorAlgorithm.Analytic, IteratorAlgorithm.Optimized] # by default, only generate the largest tile size, largest alignment, and optimized iterator if manifest.kernel_filter == '': tile_descriptions = [tile_descriptions[0],] alignment_constraints = [alignment_constraints[0],] iterator_algorithms = [IteratorAlgorithm.Optimized] operations = [] for tile in tile_descriptions: for alignment in alignment_constraints: alignment_c = min(8, alignment) A = TensorDescription(element_a, layout[0], alignment) B = TensorDescription(element_b, layout[1], alignment) C = TensorDescription(element_c, layout[2], alignment_c) swizzling_functor_ = swizzling_functor # # Conv2d Fprop # if ConvKind.Fprop in conv_kinds: # Strided support for Analytic and Optimized Fprop for iterator_algorithm in iterator_algorithms: new_operations = [ # None grouped kernel Conv2dOperation(ConvKind.Fprop, iterator_algorithm, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Strided, epilogue_functor, swizzling_functor_), ] # Instance group conv kernel if tile.math_instruction.opcode_class == OpcodeClass.TensorOp and A.layout == LayoutType.TensorNHWC and \ tile.minimum_compute_capability >= 80: # SingleGroup kernel new_operations.append(Conv2dOperation(ConvKind.Fprop, iterator_algorithm, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Strided, epilogue_functor, swizzling_functor_, group_mode=GroupMode.SingleGroup)) # Analytic iterator supports MultipleGroup mode if iterator_algorithm == IteratorAlgorithm.Analytic: new_operations.append(Conv2dOperation(ConvKind.Fprop, iterator_algorithm, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Strided, epilogue_functor, swizzling_functor_, group_mode=GroupMode.MultipleGroup)) for new_operation in new_operations: manifest.append(new_operation) operations.append(new_operation) # # Conv2d Dgrad # if ConvKind.Dgrad in conv_kinds: # Unity stride for Analytic and Optimized Dgrad for iterator_algorithm in iterator_algorithms: new_operation = Conv2dOperation(ConvKind.Dgrad, iterator_algorithm, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Unity, epilogue_functor, swizzling_functor_) manifest.append(new_operation) operations.append(new_operation) # Strided support for Analytic Dgrad # strided dgrad uses a special threadblock swizzle # note that SwizzlingFunctor.StridedDgradHorizontal might be # better for problem sizes with large activation channel count swizzling_functor_strided_dgrad_ = SwizzlingFunctor.StridedDgradIdentity1 if IteratorAlgorithm.Analytic in iterator_algorithms: new_operation = Conv2dOperation(ConvKind.Dgrad, IteratorAlgorithm.Analytic, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Strided, epilogue_functor, swizzling_functor_strided_dgrad_) manifest.append(new_operation) operations.append(new_operation) # Strided support for Optimized Dgrad if IteratorAlgorithm.Optimized in iterator_algorithms: new_operation = Conv2dOperation(ConvKind.Dgrad, IteratorAlgorithm.Optimized, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Strided, epilogue_functor, swizzling_functor_strided_dgrad_) manifest.append(new_operation) operations.append(new_operation) # # Conv2d Wgrad # if ConvKind.Wgrad in conv_kinds: # Strided support for Analytic and Optimized Wgrad for iterator_algorithm in iterator_algorithms: new_operation = Conv2dOperation(ConvKind.Wgrad, iterator_algorithm, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Strided, epilogue_functor, swizzling_functor_) manifest.append(new_operation) operations.append(new_operation) return operations # Convolution for 2D operations specialized for few channels def CreateConv2dFixedChannelsOperator(manifest, layout, tile_descriptions, data_type, channel_counts, \ conv_kinds = [ConvKind.Fprop, ConvKind.Dgrad, ConvKind.Wgrad], \ epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity4): element_a, element_b, element_c, element_epilogue = data_type # one exceptional case # iterator algorithm (analytic and optimized) iterator_algorithms = [IteratorAlgorithm.FixedChannels,] # by default, only generate the largest tile size, largest alignment, and optimized iterator if manifest.kernel_filter == '': tile_descriptions = [tile_descriptions[0],] channel_counts = [channel_counts[0],] operations = [] for tile in tile_descriptions: for channel_count in channel_counts: alignment_c = EpilogueAlignment(channel_count, tile) A = TensorDescription(element_a, layout[0], channel_count) B = TensorDescription(element_b, layout[1], channel_count) C = TensorDescription(element_c, layout[2], alignment_c) swizzling_functor_ = swizzling_functor # # Conv2d Fprop # if ConvKind.Fprop in conv_kinds: # Strided support for Analytic and Optimized Fprop for iterator_algorithm in iterator_algorithms: new_operation = Conv2dOperation(ConvKind.Fprop, iterator_algorithm, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Strided, epilogue_functor, swizzling_functor_) manifest.append(new_operation) operations.append(new_operation) return operations # Convolution for 2D operations specialized for few channels def CreateConv2dFewChannelsOperator(manifest, layout, tile_descriptions, data_type, channel_counts, \ conv_kinds = [ConvKind.Fprop, ConvKind.Dgrad, ConvKind.Wgrad], \ epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity4): element_a, element_b, element_c, element_epilogue = data_type # one exceptional case # iterator algorithm (analytic and optimized) iterator_algorithms = [IteratorAlgorithm.FewChannels,] # by default, only generate the largest tile size, largest alignment, and optimized iterator if manifest.kernel_filter == '': tile_descriptions = [tile_descriptions[0],] channel_counts = [channel_counts[0],] operations = [] for tile in tile_descriptions: for channel_count in channel_counts: alignment_c = EpilogueAlignment(channel_count, tile) A = TensorDescription(element_a, layout[0], channel_count) B = TensorDescription(element_b, layout[1], channel_count) C = TensorDescription(element_c, layout[2], alignment_c) swizzling_functor_ = swizzling_functor # # Conv2d Fprop # if ConvKind.Fprop in conv_kinds: # Strided support for Analytic and Optimized Fprop for iterator_algorithm in iterator_algorithms: new_operation = Conv2dOperation(ConvKind.Fprop, iterator_algorithm, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Strided, epilogue_functor, swizzling_functor_) manifest.append(new_operation) operations.append(new_operation) return operations # Convolution for 3D operations def CreateConv3dOperator(manifest, layout, tile_descriptions, data_type, alignment, \ conv_kinds = [ConvKind.Fprop, ConvKind.Dgrad, ConvKind.Wgrad], epilogue_functor = EpilogueFunctor.LinearCombination): element_a, element_b, element_c, element_epilogue = data_type # one exceptional case alignment_c = min(8, alignment) # iterator algorithm (analytic and optimized) iterator_algorithms = [IteratorAlgorithm.Analytic, IteratorAlgorithm.Optimized] # by default, only generate the largest tile size and optimized iterators if manifest.kernel_filter == '': tile_descriptions = [tile_descriptions[0],] iterator_algorithms = [IteratorAlgorithm.Optimized] operations = [] # All tile sizes for Conv3dFprop and Conv3dWgrad for tile in tile_descriptions: A = TensorDescription(element_a, layout, alignment) B = TensorDescription(element_b, layout, alignment) C = TensorDescription(element_c, layout, alignment_c) # # Conv3d Fprop # if ConvKind.Fprop in conv_kinds: # Strided support for Analytic and Optimized Fprop for iterator_algorithm in iterator_algorithms: new_operation = Conv3dOperation(ConvKind.Fprop, iterator_algorithm, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Strided) manifest.append(new_operation) operations.append(new_operation) # # Conv3d Wgrad # if ConvKind.Wgrad in conv_kinds: # Strided support for Analytic and Optimized Wgrad for iterator_algorithm in iterator_algorithms: new_operation = Conv3dOperation(ConvKind.Wgrad, iterator_algorithm, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Strided, epilogue_functor) manifest.append(new_operation) operations.append(new_operation) # All tile sizes for Conv3dDgrad for tile in tile_descriptions: A = TensorDescription(element_a, layout, alignment) B = TensorDescription(element_b, layout, alignment) C = TensorDescription(element_c, layout, alignment_c) # # Conv3d Dgrad # if ConvKind.Dgrad in conv_kinds: # Unity stride for Optimized Dgrad new_operation = Conv3dOperation(ConvKind.Dgrad, IteratorAlgorithm.Optimized, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Unity, epilogue_functor) manifest.append(new_operation) operations.append(new_operation) # Strided support for Analytic Dgrad # Conv3dDgrad has a naive strided support which does not cut down redundant MMAs new_operation = Conv3dOperation(ConvKind.Dgrad, IteratorAlgorithm.Analytic, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Strided, epilogue_functor) manifest.append(new_operation) operations.append(new_operation) return operations # Convolution for Depthwise 2d conv def CreateDepthwiseConv2dOperator(manifest, layout, tile_descriptions, data_type, alignment_constraints, \ conv_kinds = [ConvKind.Fprop, ConvKind.Dgrad, ConvKind.Wgrad], \ epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity4): element_a, element_b, element_c, element_epilogue = data_type # iterator algorithm (FixedStrideDilation, Optimized) iterator_algorithms = [IteratorAlgorithm.FixedStrideDilation, IteratorAlgorithm.Optimized] # by default, only generate the largest tile size, largest alignment, and optimized iterator if manifest.kernel_filter == '': tile_descriptions = [tile_descriptions[0],] alignment_constraints = [alignment_constraints[0],] operations = [] for tile in tile_descriptions: for alignment in alignment_constraints: alignment_c = min(8, alignment) A = TensorDescription(element_a, layout[0], alignment) B = TensorDescription(element_b, layout[1], alignment) C = TensorDescription(element_c, layout[2], alignment_c) swizzling_functor_ = swizzling_functor if ConvKind.Fprop in conv_kinds: # Strided support for Optimized and FixedStridedDilation Depthwise Conv for iterator_algorithm in iterator_algorithms: stride_support = StrideSupport.Strided if iterator_algorithm == IteratorAlgorithm.FixedStrideDilation: if tile.stride == [-1, -1] or tile.dilation == [-1,-1]: continue stride_support = StrideSupport.Fixed if iterator_algorithm == IteratorAlgorithm.Optimized: if tile.stride != [-1, -1] or tile.dilation != [-1,-1]: continue new_operation = Conv2dOperation(ConvKind.Fprop, iterator_algorithm, tile.minimum_compute_capability, tile, A, B, C, element_epilogue, stride_support, epilogue_functor, swizzling_functor_, group_mode=GroupMode.Depthwise) manifest.append(new_operation) operations.append(new_operation) return operations ################################################################################################### ################################################################################################### # def GenerateSM50_Simt(manifest, cuda_version): layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [1, 1, 1], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.Simt, \ MathOperation.multiply_add), MathInstruction( \ [1, 1, 1], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.Simt, \ MathOperation.multiply_add), ] min_cc = 50 max_cc = 1024 alignment_constraints = [1,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([128, 128, 8], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 8], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 8], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 8], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 8], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 128, 8], 2, [1, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) if math_inst.element_a == DataType.f32: conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints) # # def GenerateSM50_Simt_complex(manifest, cuda_version): layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [1, 1, 1], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.Simt, \ MathOperation.multiply_add_complex), ] min_cc = 50 max_cc = 1024 alignment_constraints = [1,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([128, 64, 8], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 8], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 8], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 8], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 128, 8], 2, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 8], 2, [4, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ DataType.cf32, DataType.cf32, DataType.cf32, DataType.cf32, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints) # # def GenerateSM50(manifest, cuda_version): GenerateSM50_Simt(manifest, cuda_version) GenerateSM50_Simt_complex(manifest, cuda_version) ################################################################################################### ################################################################################################### # def GenerateSM60_Simt(manifest, cuda_version): layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [1, 1, 1], \ DataType.f16, DataType.f16, DataType.f16, \ OpcodeClass.Simt, \ MathOperation.multiply_add), ] min_cc = 60 max_cc = 1024 alignment_constraints = [1,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 8], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 8], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 8], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 8], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 8], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 8], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 8], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 128, 8], 2, [1, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) # def GenerateSM60_Simt_DepthwiseConv2d(manifest, cuda_version): math_instructions = [ MathInstruction( \ [1, 1, 1], \ DataType.f16, DataType.f16, DataType.f16, \ OpcodeClass.Simt, \ MathOperation.multiply_add), ] min_cc = 60 max_cc = 1024 alignment_constraints = [8,] filter_3x3 = [3, 3] filter_5x5 = [5, 5] # [stride_h, stride_w] # [-1, -1] means all stride size. strides = [[-1,-1], [1, 1], [2, 2]] # [dilation_h, dilation_w] # [-1, -1] means all dilation size. dilations = [[-1,-1], [1, 1], [2, 2]] #groups per thread block g16 = 16 g32 = 32 g64 = 64 #output shape per thread block npq_1x4x4 = [1, 4, 4] npq_1x8x8 = [1, 8, 8] npq_1x10x10 = [1, 10, 10] tile_descriptions = [] for math_inst in math_instructions: for stride, dilation in product(strides, dilations): tile_descriptions.extend([ # filter3x3 ThreadBlock_output, filter, stage, warp Direct2dConvFixedStrideDilationTileDescription(npq_1x8x8+[g32], filter_3x3, 3, stride, dilation,[4, 1, 1],math_inst, min_cc, max_cc), Direct2dConvFixedStrideDilationTileDescription(npq_1x8x8+[g64], filter_3x3, 3, stride, dilation,[4, 1, 1],math_inst, min_cc, max_cc), Direct2dConvFixedStrideDilationTileDescription(npq_1x8x8+[g16], filter_3x3, 3, stride, dilation,[4, 1, 1],math_inst, min_cc, max_cc), Direct2dConvFixedStrideDilationTileDescription(npq_1x10x10+[g64], filter_3x3, 2, stride, dilation,[4, 1, 1],math_inst, min_cc, max_cc), Direct2dConvFixedStrideDilationTileDescription(npq_1x4x4+[g32], filter_3x3, 4, stride, dilation, [4, 1, 1], math_inst, min_cc, max_cc), Direct2dConvFixedStrideDilationTileDescription(npq_1x4x4+[g64], filter_3x3, 4, stride, dilation,[4, 1, 1], math_inst, min_cc, max_cc), Direct2dConvFixedStrideDilationTileDescription(npq_1x4x4+[g16], filter_3x3, 4, stride, dilation, [4, 1, 1], math_inst, min_cc, max_cc), # filter5x5 ThreadBlock_output, filter, stage, warp Direct2dConvFixedStrideDilationTileDescription(npq_1x8x8+[g32], filter_5x5, 3, stride, dilation,[4, 1, 1],math_inst, min_cc, max_cc), Direct2dConvFixedStrideDilationTileDescription(npq_1x8x8+[g64], filter_5x5, 3, stride, dilation,[4, 1, 1],math_inst, min_cc, max_cc), Direct2dConvFixedStrideDilationTileDescription(npq_1x8x8+[g16], filter_5x5, 3, stride, dilation,[4, 1, 1],math_inst, min_cc, max_cc), Direct2dConvFixedStrideDilationTileDescription(npq_1x10x10+[g64], filter_5x5, 2, stride, dilation,[4, 1, 1],math_inst, min_cc, max_cc), Direct2dConvFixedStrideDilationTileDescription(npq_1x4x4+[g32], filter_5x5, 4, stride, dilation,[4, 1, 1],math_inst, min_cc, max_cc), Direct2dConvFixedStrideDilationTileDescription(npq_1x4x4+[g64], filter_5x5, 4, stride, dilation,[4, 1, 1],math_inst, min_cc, max_cc), Direct2dConvFixedStrideDilationTileDescription(npq_1x4x4+[g16], filter_5x5, 4, stride, dilation,[4, 1, 1],math_inst, min_cc, max_cc) ]) data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateDepthwiseConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints) # # def GenerateSM60(manifest, cuda_version): GenerateSM60_Simt(manifest, cuda_version) GenerateSM60_Simt_DepthwiseConv2d(manifest, cuda_version) ################################################################################################### ################################################################################################### # def GenerateSM61_Simt(manifest, cuda_version): layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [1, 1, 4], \ DataType.s8, DataType.s8, DataType.s32, \ OpcodeClass.Simt, \ MathOperation.multiply_add), ] min_cc = 61 max_cc = 1024 alignment_constraints = [1,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([128, 128, 32], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 32], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 128, 32], 2, [1, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, None, EpilogueFunctor.LinearCombinationClamp) # # def GenerateSM61(manifest, cuda_version): GenerateSM61_Simt(manifest, cuda_version) ################################################################################################### ################################################################################################### # def GenerateSM70_TensorOp_884(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 10, 1): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [8, 8, 4], \ DataType.f16, DataType.f16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [8, 8, 4], \ DataType.f16, DataType.f16, DataType.f16, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), ] min_cc = 70 max_cc = 75 alignment_constraints = [8, 4, 2, 1] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 32], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 32], 2, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 32], 2, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints) # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints) # def GenerateSM70_PlanarComplexTensorOp_884(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 10, 1): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] complex_transforms = [ (ComplexTransform.none, ComplexTransform.none), (ComplexTransform.conj, ComplexTransform.none), (ComplexTransform.none, ComplexTransform.conj), (ComplexTransform.conj, ComplexTransform.conj) ] math_instructions = [ MathInstruction( \ [8, 8, 4], \ DataType.f16, DataType.f16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [8, 8, 4], \ DataType.f16, DataType.f16, DataType.f16, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), ] min_cc = 70 max_cc = 75 alignment_constraints = [8, 2, 1] for math_inst in math_instructions: tile_descriptions = [ TileDescription([ 64, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] CreateGemmPlanarComplexOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, math_inst.element_accumulator, ] CreateGemmPlanarComplexOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, complex_transforms) # def GenerateSM70_WmmaTensorOp_161616(manifest, cuda_version): layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [16, 16, 16], \ DataType.f16, DataType.f16, DataType.f32, \ OpcodeClass.WmmaTensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 16, 16], \ DataType.f16, DataType.f16, DataType.f16, \ OpcodeClass.WmmaTensorOp, \ MathOperation.multiply_add), ] min_cc = 70 max_cc = 1024 alignment_constraints = [8,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([128, 128, 32], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints) # ################################################################################################## # def GenerateSM70(manifest, cuda_version): GenerateSM70_TensorOp_884(manifest, cuda_version) GenerateSM70_PlanarComplexTensorOp_884(manifest, cuda_version) # To limit build size, WMMA GEMMs are disabled for now. # #GenerateSM70_WmmaTensorOp_161616(manifest, cuda_version) ################################################################################################### ################################################################################################### # def GenerateSM75_TensorOp_1688_FewChannels(manifest, cuda_version, math_inst): min_cc = 75 max_cc = 1024 tile_descriptions = [ TileDescription([128, 64, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 32], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 64], 2, [2, 2, 2], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dFixedChannelsOperator(manifest, conv_layout, tile_descriptions, data_type, [4, 8]) CreateConv2dFewChannelsOperator(manifest, conv_layout, tile_descriptions, data_type, [1, 2, 4]) # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, math_inst.element_accumulator, ] CreateConv2dFixedChannelsOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, [4, 8]) CreateConv2dFewChannelsOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, [1, 2, 4]) # def GenerateSM75_TensorOp_1688(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 10, 2): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [16, 8, 8], \ DataType.f16, DataType.f16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 8, 8], \ DataType.f16, DataType.f16, DataType.f16, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), ] min_cc = 75 max_cc = 1024 alignment_constraints = [8, 4, 2, 1] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 32], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 32], 2, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 32], 2, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 64], 2, [1, 2, 2], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints) # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints) # Separate generator for 'few channels' specializations GenerateSM75_TensorOp_1688_FewChannels(manifest, cuda_version, math_inst) # # def GenerateSM75_PlanarComplexTensorOp_1688(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 10, 2): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] complex_transforms = [ (ComplexTransform.none, ComplexTransform.none), (ComplexTransform.conj, ComplexTransform.none), (ComplexTransform.none, ComplexTransform.conj), (ComplexTransform.conj, ComplexTransform.conj) ] math_instructions = [ MathInstruction( \ [16, 8, 8], \ DataType.f16, DataType.f16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 8, 8], \ DataType.f16, DataType.f16, DataType.f16, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), ] min_cc = 75 max_cc = 1024 alignment_constraints = [8, 2, 1] for math_inst in math_instructions: tile_descriptions = [ TileDescription([ 64, 128, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] CreateGemmPlanarComplexOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, math_inst.element_accumulator, ] CreateGemmPlanarComplexOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, complex_transforms) # def GenerateSM75_TensorOp_8816_TN(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 10, 2): return layouts = [ (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [8, 8, 16], \ DataType.s8, DataType.s8, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), MathInstruction( \ [8, 8, 16], \ DataType.u8, DataType.u8, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), ] min_cc = 75 max_cc = 1024 alignment_constraints = [16,] alignment_constraints_small_channels = [16, 8, 4] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 64], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 64], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 64], 2, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 64], 2, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 32, 64], 2, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 256, 64], 2, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 64], 2, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 32, 64], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 32], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 32], 2, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 32], 2, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 32], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 32, 32], 2, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, DataType.s32, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, None, EpilogueFunctor.LinearCombination) conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints, [ConvKind.Fprop], EpilogueFunctor.LinearCombination) # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, DataType.f32, ] operations = [] operations += CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, None, EpilogueFunctor.LinearCombinationClamp) operations += CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints, [ConvKind.Fprop], EpilogueFunctor.LinearCombinationClamp) operations += CreateConv2dFixedChannelsOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints_small_channels, [ConvKind.Fprop], EpilogueFunctor.LinearCombinationClamp) operations += CreateConv2dFewChannelsOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints_small_channels, [ConvKind.Fprop], EpilogueFunctor.LinearCombinationClamp) for op in operations: if op.tile_description.threadblock_shape[1] >= 128: op.C.alignment = 16 else: op.C.alignment = 8 # # def GenerateSM75_TensorOp_8816_Interleaved(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 10, 2): return layouts = [ (LayoutType.ColumnMajorInterleaved32, LayoutType.RowMajorInterleaved32, LayoutType.ColumnMajorInterleaved32), ] math_instructions = [ MathInstruction( \ [8, 8, 16], \ DataType.s8, DataType.s8, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), MathInstruction( \ [8, 8, 16], \ DataType.u8, DataType.u8, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), ] min_cc = 75 max_cc = 1024 alignment_constraints = [16,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 64], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 64], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 64], 2, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 64], 2, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, DataType.f32, ] operations = CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, None, EpilogueFunctor.LinearCombinationClamp) conv_layout = (LayoutType.TensorNC32HW32, LayoutType.TensorC32RSK32, LayoutType.TensorNC32HW32) operations += CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints, [ConvKind.Fprop], EpilogueFunctor.LinearCombinationClamp) for op in operations: op.C.alignment = 8 # # def GenerateSM75_TensorOp_8832_TN(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 10, 2): return layouts = [ (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [8, 8, 32], \ DataType.s4, DataType.s4, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), MathInstruction( \ [8, 8, 32], \ DataType.u4, DataType.u4, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), ] min_cc = 75 max_cc = 1024 alignment_constraints = [32,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 128], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 128], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 128], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 128], 2, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 128], 2, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 128], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 128], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 128], 2, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, DataType.s32, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, None, EpilogueFunctor.LinearCombination) conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints, [ConvKind.Fprop], EpilogueFunctor.LinearCombination) # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, DataType.f32, ] operations = [] operations += CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, None, EpilogueFunctor.LinearCombinationClamp) operations += CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints, [ConvKind.Fprop], EpilogueFunctor.LinearCombinationClamp) for op in operations: if op.tile_description.threadblock_shape[1] >= 128: op.C.alignment = 16 elif op.tile_description.threadblock_shape[1] == 64: op.C.alignment = 8 else: op.C.alignment = 8 # # def GenerateSM75_TensorOp_8832_Interleaved(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 10, 2): return layouts = [ (LayoutType.ColumnMajorInterleaved64, LayoutType.RowMajorInterleaved64, LayoutType.ColumnMajorInterleaved64), ] math_instructions = [ MathInstruction( \ [8, 8, 32], \ DataType.s4, DataType.s4, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), MathInstruction( \ [8, 8, 32], \ DataType.u4, DataType.u4, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), ] min_cc = 75 max_cc = 1024 alignment_constraints = [32,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 128], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 128], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 128], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 128], 2, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 128], 2, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 128], 2, [2, 2, 1], math_inst, min_cc, max_cc), ] # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, DataType.f32, ] operations = CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, None, EpilogueFunctor.LinearCombinationClamp) conv_layout = (LayoutType.TensorNC64HW64, LayoutType.TensorC64RSK64, LayoutType.TensorNC64HW64) operations += CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints, [ConvKind.Fprop], EpilogueFunctor.LinearCombinationClamp) for op in operations: op.C.alignment = 16 # # def GenerateSM75_TensorOp_88128(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [8, 8, 128], \ DataType.b1, DataType.b1, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.xor_popc), ] min_cc = 75 max_cc = { MathOperation.xor_popc: 89, MathOperation.and_popc: 90 } alignment_constraints = [128,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 512], 2, [4, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([128, 256, 512], 2, [2, 4, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([128, 128, 512], 2, [2, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([ 64, 256, 512], 2, [1, 4, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([256, 64, 512], 2, [4, 1, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([ 64, 128, 512], 2, [2, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([128, 64, 512], 2, [2, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([ 64, 64, 512], 2, [2, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), ] data_type = [DataType.b1, DataType.b1, DataType.s32, DataType.s32] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) # # def GenerateSM75_WmmaTensorOp_161616(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 10, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [16, 16, 16], \ DataType.s8, DataType.s8, DataType.s32, \ OpcodeClass.WmmaTensorOp, \ MathOperation.multiply_add), ] min_cc = 75 max_cc = 1024 alignment_constraints = [16,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([128, 128, 32], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, DataType.f32, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, DataType.f32, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints) # # def GenerateSM75_Simt_complex(manifest, cuda_version): math_instructions = [ MathInstruction( \ [1, 1, 1], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.Simt, \ MathOperation.multiply_add_complex), ] min_cc = 75 max_cc = 1024 alignment_constraints = [1,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([128, 128, 8], 5, [4, 2, 1], math_inst, min_cc, max_cc) ] data_type = [ DataType.cf32, DataType.cf32, DataType.cf32, DataType.cf32 ] complex_transforms = [ (ComplexTransform.none, ComplexTransform.none), (ComplexTransform.conj, ComplexTransform.none), (ComplexTransform.none, ComplexTransform.conj), (ComplexTransform.conj, ComplexTransform.conj) ] conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints) # def GenerateSM75(manifest, cuda_version): GenerateSM75_TensorOp_1688(manifest, cuda_version) GenerateSM75_PlanarComplexTensorOp_1688(manifest, cuda_version) GenerateSM75_TensorOp_8816_TN(manifest, cuda_version) GenerateSM75_TensorOp_8816_Interleaved(manifest, cuda_version) GenerateSM75_TensorOp_8832_TN(manifest, cuda_version) GenerateSM75_TensorOp_8832_Interleaved(manifest, cuda_version) GenerateSM75_TensorOp_88128(manifest, cuda_version) #GenerateSM75_WmmaTensorOp_161616(manifest, cuda_version) GenerateSM75_Simt_complex(manifest, cuda_version) ################################################################################################### ################################################################################################### # def GenerateSM80_TensorOp_16816(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [16, 8, 16], \ DataType.f16, DataType.f16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 8, 16], \ DataType.f16, DataType.f16, DataType.f16, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 8, 16], \ DataType.bf16, DataType.bf16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), ] min_cc = 80 max_cc = 1024 alignment_constraints = [8, 4, 2] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 32], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 32], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 32], 3, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 32], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 32], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 32], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 10, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 64], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 64], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 64], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 64], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 64], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 64], 3, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 64], 3, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 64], 5, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) CreateGemmGroupedOperator(manifest, layouts, tile_descriptions, data_type, alignment_constraints) conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints) CreateConv2dFixedChannelsOperator(manifest, conv_layout, tile_descriptions, data_type, [4, 8]) CreateConv3dOperator(manifest, LayoutType.TensorNDHWC, tile_descriptions, data_type, 8) # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints) CreateConv2dFixedChannelsOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, [4, 8]) CreateConv3dOperator(manifest, LayoutType.TensorNDHWC, tile_descriptions, data_type_mixed, 8) # # def GenerateSM80_SparseTensorOp_16832(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 1): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.RowMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.RowMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.RowMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.RowMajor), ] math_instructions = [ MathInstruction( \ [16, 8, 32], \ DataType.f16, DataType.f16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 8, 32], \ DataType.f16, DataType.f16, DataType.f16, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 8, 32], \ DataType.bf16, DataType.bf16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), ] min_cc = 80 max_cc = 1024 alignment_constraints = [8] for math_inst in math_instructions: tile_descriptions = [ TileDescription([ 64, 128, 64], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 64], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 64], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 64], 3, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 64], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 64], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 128], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 128], 3, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 128], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 128], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 128], 3, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] CreateSparseGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, math_inst.element_accumulator, ] CreateSparseGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints) # # def GenerateSM80_PlanarComplexTensorOp_16816(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] complex_transforms = [ (ComplexTransform.none, ComplexTransform.none), (ComplexTransform.conj, ComplexTransform.none), (ComplexTransform.none, ComplexTransform.conj), (ComplexTransform.conj, ComplexTransform.conj) ] math_instructions = [ MathInstruction( \ [16, 8, 16], \ DataType.f16, DataType.f16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 8, 16], \ DataType.bf16, DataType.bf16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 8, 16], \ DataType.f16, DataType.f16, DataType.f16, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), ] min_cc = 80 max_cc = 1024 alignment_constraints = [8, ] for math_inst in math_instructions: tile_descriptions = [ TileDescription([ 64, 128, 32], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 4, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] CreateGemmPlanarComplexOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, math_inst.element_accumulator, ] CreateGemmPlanarComplexOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, complex_transforms) # def GenerateSM80_TensorOp_16832_TN(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [16, 8, 32], \ DataType.s8, DataType.s8, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), MathInstruction( \ [16, 8, 32], \ DataType.u8, DataType.u8, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), ] min_cc = 80 max_cc = 1024 smem_usage = 164 alignment_constraints = [16,] alignment_constraints_small_channels = [16, 8, 4] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 64], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 64], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 64], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 64], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 32, 64], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 256, 64], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 64], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 64], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 64], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 64], 6, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 128, 64], 6, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 64], 10, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 128], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 128], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 128], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 128], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 32, 128], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 256, 128], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 128], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 128], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 128], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 128], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 128, 128], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 128], 5, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, DataType.s32] data_type_mixed = [math_inst.element_a, math_inst.element_b, math_inst.element_a, DataType.f32] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, None, EpilogueFunctor.LinearCombination) conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints, [ConvKind.Fprop], EpilogueFunctor.LinearCombination) operations = [] operations += CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, None, EpilogueFunctor.LinearCombinationClamp) operations += CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints, [ConvKind.Fprop], EpilogueFunctor.LinearCombinationClamp) operations += CreateConv2dFixedChannelsOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints_small_channels, [ConvKind.Fprop], EpilogueFunctor.LinearCombinationClamp) operations += CreateConv2dFewChannelsOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints_small_channels, [ConvKind.Fprop], EpilogueFunctor.LinearCombinationClamp) for op in operations: if op.tile_description.threadblock_shape[1] >= 128: if op.tile_description.threadblock_shape[0] == 32: op.C.alignment = 8 else: op.C.alignment = 16 else: op.C.alignment = 8 # # def GenerateSM80_SparseTensorOp_16864_TN(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 1): return layouts = [ (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.RowMajor), ] math_inst = \ MathInstruction( \ [16, 8, 64], \ DataType.s8, DataType.s8, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate) min_cc = 80 max_cc = 1024 alignment_constraints = [16,] tile_descriptions = [ TileDescription([128, 64, 128], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 128], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 128], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 128], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 128], 3, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 128], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 128], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 128], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 256], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 256], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 256], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 256], 3, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.s8, DataType.s8, DataType.s32, DataType.s32] data_type_mixed = [DataType.s8, DataType.s8, DataType.s8, DataType.f32] CreateSparseGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, None, EpilogueFunctor.LinearCombination) operations = [] operations += CreateSparseGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, None, EpilogueFunctor.LinearCombinationClamp) for op in operations: if op.tile_description.threadblock_shape[1] >= 128: op.C.alignment = 16 else: op.C.alignment = 8 # # def GenerateSM80_TensorOp_16832_Interleaved(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajorInterleaved32, LayoutType.RowMajorInterleaved32, LayoutType.ColumnMajorInterleaved32), ] math_instructions = [ MathInstruction( \ [16, 8, 32], \ DataType.s8, DataType.s8, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), MathInstruction( \ [16, 8, 32], \ DataType.u8, DataType.u8, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), ] min_cc = 80 max_cc = 1024 alignment_constraints = [16,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 64], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 64], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 64], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 64], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 64], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 64], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 64], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 64], 10, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type_mixed = [math_inst.element_a, math_inst.element_b, math_inst.element_a, DataType.f32] operations = CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, None, EpilogueFunctor.LinearCombinationClamp) conv_layout = (LayoutType.TensorNC32HW32, LayoutType.TensorC32RSK32, LayoutType.TensorNC32HW32) operations += CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints, [ConvKind.Fprop], EpilogueFunctor.LinearCombinationClamp) for op in operations: op.C.alignment = 8 # # def GenerateSM80_TensorOp_16864_TN(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [16, 8, 64], \ DataType.s4, DataType.s4, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), MathInstruction( \ [16, 8, 64], \ DataType.u4, DataType.u4, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), ] min_cc = 80 max_cc = 1024 alignment_constraints = [32,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 128], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 128], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 128], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 128], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 128], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 128], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 128], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 128], 10, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 256], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 256], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 256], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 256], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 256], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 256], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 256], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 256], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 256], 5, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, DataType.s32] data_type_mixed = [math_inst.element_a, math_inst.element_b, math_inst.element_a, DataType.f32] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, None, EpilogueFunctor.LinearCombination) operations = [] operations += CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, None, EpilogueFunctor.LinearCombinationClamp) conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints, [ConvKind.Fprop], EpilogueFunctor.LinearCombination) operations += CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints, [ConvKind.Fprop], EpilogueFunctor.LinearCombinationClamp) for op in operations: if op.tile_description.threadblock_shape[1] >= 128: op.C.alignment = 16 elif op.tile_description.threadblock_shape[1] == 64: op.C.alignment = 8 else: op.C.alignment = 8 # # def GenerateSM80_SparseTensorOp_168128_TN(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 1): return layouts = [ (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.RowMajor), ] math_inst = \ MathInstruction( \ [16, 8, 128], \ DataType.s4, DataType.s4, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate) min_cc = 80 max_cc = 1024 alignment_constraints = [32,] tile_descriptions = [ TileDescription([ 64, 64, 256], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 256], 3, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 256], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 256], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 256], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 256], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 256], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 256], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 512], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 512], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 512], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 512], 3, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.s4, DataType.s4, DataType.s32, DataType.s32] data_type_mixed = [DataType.s4, DataType.s4, DataType.s4, DataType.f32] CreateSparseGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, None, EpilogueFunctor.LinearCombination) operations = [] operations += CreateSparseGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, None, EpilogueFunctor.LinearCombinationClamp) for op in operations: if op.tile_description.threadblock_shape[1] > 128: op.C.alignment = 16 else: op.C.alignment = 8 # # def GenerateSM80_TensorOp_16864_Interleaved(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajorInterleaved64, LayoutType.RowMajorInterleaved64, LayoutType.ColumnMajorInterleaved64), ] math_instructions = [ MathInstruction( \ [16, 8, 64], \ DataType.s4, DataType.s4, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), MathInstruction( \ [16, 8, 64], \ DataType.u4, DataType.u4, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), ] min_cc = 80 max_cc = 1024 alignment_constraints = [32,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 128], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 128], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 128], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 128], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 128], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 128], 6, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type_mixed = [math_inst.element_a, math_inst.element_b, math_inst.element_a, DataType.f32] operations = [] operations += CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints, None, EpilogueFunctor.LinearCombinationClamp) conv_layout = (LayoutType.TensorNC64HW64, LayoutType.TensorC64RSK64, LayoutType.TensorNC64HW64) operations += CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints, [ConvKind.Fprop], EpilogueFunctor.LinearCombinationClamp) for op in operations: op.C.alignment = 16 # # def GenerateSM80_TensorOp_168256(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [16, 8, 256], \ DataType.b1, DataType.b1, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.xor_popc), MathInstruction( \ [16, 8, 256], \ DataType.b1, DataType.b1, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.and_popc), ] min_cc = 80 max_cc = { MathOperation.xor_popc: 89, MathOperation.and_popc: 90 } alignment_constraints = [128,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 512], 3, [4, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([128, 256, 512], 3, [2, 4, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([256, 64, 512], 4, [4, 1, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([ 64, 256, 512], 4, [1, 4, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([128, 128, 512], 5, [2, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([128, 64, 512], 6, [2, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([ 64, 128, 512], 6, [2, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([ 64, 64, 512], 10, [2, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([256, 128, 1024], 3, [4, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([128, 256, 1024], 3, [2, 4, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([256, 64, 1024], 4, [4, 1, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([ 64, 256, 1024], 4, [1, 4, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([128, 128, 1024], 4, [2, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([128, 64, 1024], 3, [2, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([ 64, 128, 1024], 3, [2, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), TileDescription([ 64, 64, 1024], 5, [2, 2, 1], math_inst, min_cc, max_cc[math_inst.math_operation]), ] data_type = [DataType.b1, DataType.b1, DataType.s32, DataType.s32] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) # # def GenerateSM80_TensorOp_1688(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [16, 8, 8], \ DataType.tf32, DataType.tf32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add) ] min_cc = 80 max_cc = 1024 alignment_constraints = [4, 2, 1] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 16], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 16], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 16], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 16], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 16], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 16], 10, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 32], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 32], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 32], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 32], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 5, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] data_type_mixed = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type_mixed, alignment_constraints) conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type_mixed, alignment_constraints) # # def GenerateSM80_TensorOp_1688_fast_math(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [16, 8, 8], \ DataType.tf32, DataType.tf32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 8, 8], \ DataType.f16, DataType.f16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_fast_f16), MathInstruction( \ [16, 8, 8], \ DataType.bf16, DataType.bf16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_fast_bf16), ] min_cc = 80 max_cc = 1024 alignment_constraints = [4, 2, 1] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 16], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 16], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 16], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 16], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 16], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 16], 10, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 32], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 32], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 32], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 32], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 5, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f32, DataType.f32, DataType.f32, DataType.f32] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints) # # def GenerateSM80_TensorOp_1688_fast_fp32_math(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [16, 8, 8], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_fast_f32), ] min_cc = 80 max_cc = 1024 alignment_constraints = [4, 2, 1] for math_inst in math_instructions: tile_descriptions = [ TileDescription([128, 128, 16], 4, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 16], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 32], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 32], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f32, DataType.f32, DataType.f32, DataType.f32] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints) # def GenerateSM80_TensorOp_1688_fast_fp32_math_complex(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_inst = MathInstruction( \ [16, 8, 8], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex_fast_f32) min_cc = 80 max_cc = 1024 tile_descriptions = [ TileDescription([128, 64, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ DataType.cf32, DataType.cf32, DataType.cf32, DataType.cf32 ] alignment_constraints = [1,] complex_transforms = [ (ComplexTransform.none, ComplexTransform.none), (ComplexTransform.conj, ComplexTransform.none), (ComplexTransform.none, ComplexTransform.conj), (ComplexTransform.conj, ComplexTransform.conj) ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # def GenerateSM80_SparseTensorOp_16816_fast_math(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 1): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.RowMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.RowMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.RowMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.RowMajor), ] math_instructions = [ MathInstruction( \ [16, 8, 16], \ DataType.tf32, DataType.tf32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), ] min_cc = 80 max_cc = 1024 alignment_constraints = [4] for math_inst in math_instructions: tile_descriptions = [ TileDescription([128, 64, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 32], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 32], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 32], 3, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 32], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 32], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 32], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 64], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 64], 3, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 64], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f32, DataType.f32, DataType.f32, DataType.f32] CreateSparseGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) # # def GenerateSM80_TensorOp_1688_complex(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_inst = MathInstruction( \ [16, 8, 8], \ DataType.tf32, DataType.tf32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex) min_cc = 80 max_cc = 1024 tile_descriptions = [ TileDescription([128, 128, 16], 4, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 4, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 4, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 16], 4, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 16], 4, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ DataType.cf32, DataType.cf32, DataType.cf32, DataType.cf32 ] alignment_constraints = [1,] complex_transforms = [ (ComplexTransform.none, ComplexTransform.none), (ComplexTransform.conj, ComplexTransform.none), (ComplexTransform.none, ComplexTransform.conj), (ComplexTransform.conj, ComplexTransform.conj) ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # # def GenerateSM80_TensorOp_1688_rank_k(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor), ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_instructions = [ MathInstruction( \ [16, 8, 8], \ DataType.tf32, DataType.tf32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 8, 8], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_fast_f32), ] min_cc = 80 max_cc = 1024 alignment_constraints = [1, 2, 4] # Alignment only applies to A in SYRK for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 16], 3, [2, 4, 1], math_inst, min_cc, max_cc), #TileDescription([256, 64, 16], 4, [4, 1, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 256, 16], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 16], 5, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([128, 64, 16], 6, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 128, 16], 6, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 64, 16], 10, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 32], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 32], 3, [2, 4, 1], math_inst, min_cc, max_cc), #TileDescription([256, 64, 32], 4, [4, 1, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 256, 32], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([128, 64, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 128, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 64, 32], 5, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f32, DataType.f32, DataType.f32] CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # # def GenerateSM80_TensorOp_1688_rank_k_complex(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor), ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_instructions = [ MathInstruction( \ [16, 8, 8], \ DataType.tf32, DataType.tf32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex), MathInstruction( \ [16, 8, 8], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex_fast_f32), ] min_cc = 80 max_cc = 1024 for math_inst in math_instructions: tile_descriptions = [ TileDescription([128, 64, 16], 4, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 4, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([64, 32, 16], 4, [2, 1, 1], math_inst, min_cc, max_cc), #TileDescription([32, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ DataType.cf32, DataType.cf32, DataType.cf32 ] alignment_constraints = [1,] # SYRK CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # HERK CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.hermitian) # # def GenerateSM80_TensorOp_1688_trmm(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] diag_types = [ DiagType.NonUnit, DiagType.Unit, ] math_instructions = [ MathInstruction( \ [16, 8, 8], \ DataType.tf32, DataType.tf32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 8, 8], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_fast_f32), ] min_cc = 80 max_cc = 1024 alignment_constraints = [1, 2, 4] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 16], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 16], 4, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 256, 16], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 16], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 6, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 128, 16], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 16], 10, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 32], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 32], 3, [2, 4, 1], math_inst, min_cc, max_cc), #TileDescription([256, 64, 32], 4, [4, 1, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 256, 32], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([128, 64, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 128, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 64, 32], 5, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f32, DataType.f32, DataType.f32, DataType.f32] CreateTrmmOperator(manifest, layouts, side_modes, fill_modes, diag_types, tile_descriptions, \ data_type, alignment_constraints) # # def GenerateSM80_TensorOp_1688_trmm_complex(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] diag_types = [ DiagType.NonUnit, DiagType.Unit, ] math_instructions = [ MathInstruction( \ [16, 8, 8], \ DataType.tf32, DataType.tf32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex), MathInstruction( \ [16, 8, 8], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex_fast_f32), ] min_cc = 80 max_cc = 1024 for math_inst in math_instructions: tile_descriptions = [ TileDescription([128, 64, 16], 4, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 4, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 16], 4, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ DataType.cf32, DataType.cf32, DataType.cf32, DataType.cf32 ] alignment_constraints = [1,] complex_transforms = [ ComplexTransform.none, ComplexTransform.conj, ] CreateTrmmOperator(manifest, layouts, side_modes, fill_modes, diag_types, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # # def GenerateSM80_TensorOp_1688_symm(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return # A and B have same layouts layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_instructions = [ MathInstruction( \ [16, 8, 8], \ DataType.tf32, DataType.tf32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 8, 8], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_fast_f32), ] min_cc = 80 max_cc = 1024 alignment_constraints = [ 1, 2, 4 ] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 16], 3, [2, 4, 1], math_inst, min_cc, max_cc), #TileDescription([256, 64, 16], 4, [4, 1, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 256, 16], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 16], 5, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([128, 64, 16], 6, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 128, 16], 6, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 64, 16], 10, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 32], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 32], 3, [2, 4, 1], math_inst, min_cc, max_cc), #TileDescription([256, 64, 32], 4, [4, 1, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 256, 32], 4, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([128, 64, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 128, 32], 3, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([ 64, 64, 32], 5, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f32, DataType.f32, DataType.f32, DataType.f32] CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # # def GenerateSM80_TensorOp_1688_symm_complex(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_instructions = [ MathInstruction( \ [16, 8, 8], \ DataType.tf32, DataType.tf32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex), MathInstruction( \ [16, 8, 8], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex_fast_f32), ] min_cc = 80 max_cc = 1024 for math_inst in math_instructions: tile_descriptions = [ TileDescription([128, 64, 16], 4, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 4, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([64, 32, 16], 4, [2, 1, 1], math_inst, min_cc, max_cc), #TileDescription([32, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ DataType.cf32, DataType.cf32, DataType.cf32, DataType.cf32 ] alignment_constraints = [1,] # SYMM CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # HEMM CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.hermitian) # # def GenerateSM80_TensorOp_884(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_inst = \ MathInstruction( \ [8, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add) min_cc = 80 max_cc = 1024 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 256, 16], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 32, 16], 3, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([32, 256, 16], 3, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 16], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 32, 16], 5, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 16, 16], 5, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f64, DataType.f64, DataType.f64, DataType.f64] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) # # def GenerateSM80_TensorOp_884_complex(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_inst = \ MathInstruction( \ [8, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex) min_cc = 80 max_cc = 1024 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 64, 8 ], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 8 ], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 8 ], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 8 ], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 8 ], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 8 ], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 32, 8 ], 4, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 16, 8 ], 4, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 32, 16], 4, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 16, 16], 3, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64, DataType.cf64] complex_transforms = [ (ComplexTransform.none, ComplexTransform.none), (ComplexTransform.conj, ComplexTransform.none), (ComplexTransform.none, ComplexTransform.conj), (ComplexTransform.conj, ComplexTransform.conj) ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # def GenerateSM80_TensorOp_884_complex_gaussian(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_inst = \ MathInstruction( \ [8, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex_gaussian) min_cc = 80 max_cc = 1024 alignment_constraints = [1,] tile_descriptions = [ TileDescription([64, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 32, 8], 4, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 16, 8], 4, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64, DataType.cf64] complex_transforms = [ (ComplexTransform.none, ComplexTransform.none), (ComplexTransform.conj, ComplexTransform.none), (ComplexTransform.none, ComplexTransform.conj), (ComplexTransform.conj, ComplexTransform.conj) ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # # def GenerateSM80_TensorOp_884_rank_k(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor), ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_inst = \ MathInstruction( \ [8, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add) min_cc = 80 max_cc = 1024 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 16], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 32, 16], 5, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 16, 16], 5, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f64, DataType.f64, DataType.f64] CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # # def GenerateSM80_TensorOp_884_rank_k_complex(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor), ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_inst = \ MathInstruction( \ [8, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex) min_cc = 80 max_cc = 1024 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 8], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 8], 3, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([16, 32, 8], 4, [1, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 16, 8], 4, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64] # SYRK computation CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # HERK computation CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.hermitian) # # def GenerateSM80_TensorOp_884_rank_k_complex_gaussian(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor), ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_inst = \ MathInstruction( \ [8, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex_gaussian) min_cc = 80 max_cc = 1024 alignment_constraints = [1,] tile_descriptions = [ TileDescription([64, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([16, 32, 8], 4, [1, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 16, 8], 4, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64] complex_transforms = [ComplexTransform.none,] # SYRK computation CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # HERK computation CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.hermitian) # # def GenerateSM80_TensorOp_884_trmm(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] diag_types = [ DiagType.NonUnit, DiagType.Unit, ] math_inst = \ MathInstruction( \ [8, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add) min_cc = 80 max_cc = 1024 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f64, DataType.f64, DataType.f64, DataType.f64] CreateTrmmOperator(manifest, layouts, side_modes, fill_modes, diag_types, tile_descriptions, \ data_type, alignment_constraints) # # def GenerateSM80_TensorOp_884_trmm_complex(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] diag_types = [ DiagType.NonUnit, DiagType.Unit, ] math_inst = \ MathInstruction( \ [8, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex) min_cc = 80 max_cc = 1024 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 8], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 8], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64, DataType.cf64] complex_transforms = [ ComplexTransform.none, ComplexTransform.conj, ] CreateTrmmOperator(manifest, layouts, side_modes, fill_modes, diag_types, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # # def GenerateSM80_TensorOp_884_trmm_complex_gaussian(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] diag_types = [ DiagType.NonUnit, DiagType.Unit, ] math_inst = \ MathInstruction( \ [8, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex_gaussian) min_cc = 80 max_cc = 1024 alignment_constraints = [1,] tile_descriptions = [ TileDescription([64, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64, DataType.cf64] complex_transforms = [ ComplexTransform.none, ComplexTransform.conj, ] CreateTrmmOperator(manifest, layouts, side_modes, fill_modes, diag_types, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # # def GenerateSM80_TensorOp_884_symm(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_inst = \ MathInstruction( \ [8, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add) min_cc = 80 max_cc = 1024 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 16], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 32, 16], 5, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 16, 16], 5, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f64, DataType.f64, DataType.f64, DataType.f64] CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # # def GenerateSM80_TensorOp_884_symm_complex(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_inst = \ MathInstruction( \ [8, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex) min_cc = 80 max_cc = 1024 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 8], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 8], 3, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([16, 32, 8], 4, [1, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 16, 8], 4, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64, DataType.cf64] # SYMM computation CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # HEMM computation CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.hermitian) # # def GenerateSM80_TensorOp_884_symm_complex_gaussian(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 0): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_inst = \ MathInstruction( \ [8, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex_gaussian) min_cc = 80 max_cc = 1024 alignment_constraints = [1,] tile_descriptions = [ TileDescription([64, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([16, 32, 8], 4, [1, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 16, 8], 4, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64, DataType.cf64] complex_transforms = [ComplexTransform.none,] # SYMM computation CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # HEMM computation CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.hermitian) # ################################################################################################### # def GenerateSM80_Simt_f32(manifest, cuda_version): layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [1, 1, 1], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.Simt, \ MathOperation.multiply_add), ] min_cc = 80 max_cc = 1024 alignment_constraints = [1,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([256, 128, 8], 5, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 8], 5, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 8], 5, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 8], 4, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 8], 4, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 8], 4, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 8], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 8], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 8], 5, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 8], 5, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 128, 8], 5, [1, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints) # # def GenerateSM80_Simt_f64(manifest, cuda_version): layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_instructions = [ MathInstruction( \ [1, 1, 1], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.Simt, \ MathOperation.multiply_add), ] min_cc = 80 max_cc = 1024 alignment_constraints = [1,] for math_inst in math_instructions: tile_descriptions = [ TileDescription([128, 128, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 8], 5, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 8], 5, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 128, 8], 5, [1, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints) # ################################################################################################## # def GenerateSM80_Simt_complex(manifest, cuda_version): math_instructions = [ MathInstruction( \ [1, 1, 1], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.Simt, \ MathOperation.multiply_add_complex), ] min_cc = 80 max_cc = 1024 alignment_constraints = [1,] data_type = [ DataType.cf32, DataType.cf32, DataType.cf32, DataType.cf32 ] layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] complex_transforms = [ (ComplexTransform.none, ComplexTransform.none), (ComplexTransform.conj, ComplexTransform.none), (ComplexTransform.none, ComplexTransform.conj), (ComplexTransform.conj, ComplexTransform.conj) ] for math_inst in math_instructions: tile_descriptions = [ TileDescription([128, 128, 8], 5, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 8], 4, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 16], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 6, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 16], 5, [2, 2, 1], math_inst, min_cc, max_cc), ] CreateGemmOperator(manifest, layouts, tile_descriptions, data_type, alignment_constraints, complex_transforms) conv_layout = (LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNHWC) CreateConv2dOperator(manifest, conv_layout, tile_descriptions, data_type, alignment_constraints) # ################################################################################################### # def GenerateSM80(manifest, cuda_version): GenerateSM80_TensorOp_16816(manifest, cuda_version) GenerateSM80_SparseTensorOp_16832(manifest, cuda_version) GenerateSM80_PlanarComplexTensorOp_16816(manifest, cuda_version) GenerateSM80_TensorOp_1688(manifest, cuda_version) GenerateSM80_TensorOp_1688_fast_math(manifest, cuda_version) GenerateSM80_SparseTensorOp_16816_fast_math(manifest, cuda_version) GenerateSM80_TensorOp_1688_complex(manifest, cuda_version) # 3xTF32 GenerateSM80_TensorOp_1688_fast_fp32_math(manifest, cuda_version) GenerateSM80_TensorOp_1688_fast_fp32_math_complex(manifest, cuda_version) GenerateSM80_TensorOp_1688_rank_k(manifest, cuda_version) GenerateSM80_TensorOp_1688_rank_k_complex(manifest, cuda_version) GenerateSM80_TensorOp_1688_trmm(manifest, cuda_version) GenerateSM80_TensorOp_1688_trmm_complex(manifest, cuda_version) GenerateSM80_TensorOp_1688_symm(manifest, cuda_version) GenerateSM80_TensorOp_1688_symm_complex(manifest, cuda_version) GenerateSM80_TensorOp_884(manifest, cuda_version) GenerateSM80_TensorOp_884_complex(manifest, cuda_version) GenerateSM80_TensorOp_884_complex_gaussian(manifest, cuda_version) GenerateSM80_TensorOp_884_rank_k(manifest, cuda_version) GenerateSM80_TensorOp_884_rank_k_complex(manifest, cuda_version) GenerateSM80_TensorOp_884_rank_k_complex_gaussian(manifest, cuda_version) GenerateSM80_TensorOp_884_trmm(manifest, cuda_version) GenerateSM80_TensorOp_884_trmm_complex(manifest, cuda_version) GenerateSM80_TensorOp_884_trmm_complex_gaussian(manifest, cuda_version) GenerateSM80_TensorOp_884_symm(manifest, cuda_version) GenerateSM80_TensorOp_884_symm_complex(manifest, cuda_version) GenerateSM80_TensorOp_884_symm_complex_gaussian(manifest, cuda_version) GenerateSM80_TensorOp_16832_TN(manifest, cuda_version) GenerateSM80_SparseTensorOp_16864_TN(manifest, cuda_version) GenerateSM80_TensorOp_16832_Interleaved(manifest, cuda_version) GenerateSM80_TensorOp_16864_TN(manifest, cuda_version) GenerateSM80_SparseTensorOp_168128_TN(manifest, cuda_version) GenerateSM80_TensorOp_16864_Interleaved(manifest, cuda_version) GenerateSM80_TensorOp_168256(manifest, cuda_version) GenerateSM80_Simt_f32(manifest, cuda_version) GenerateSM80_Simt_f64(manifest, cuda_version) GenerateSM80_Simt_complex(manifest, cuda_version) ################################################################################################### # def GenerateSM90_TensorOp_16b_WGMMA_gemm(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 12, 0): return # layouts for ABC and their alignments. layouts = [ [[LayoutType.ColumnMajor, 8], [LayoutType.ColumnMajor, 8], [LayoutType.ColumnMajor, 1]], [[LayoutType.ColumnMajor, 8], [LayoutType.RowMajor, 8], [LayoutType.ColumnMajor, 1]], [[LayoutType.RowMajor, 8], [LayoutType.ColumnMajor, 8], [LayoutType.ColumnMajor, 1]], [[LayoutType.RowMajor, 8], [LayoutType.RowMajor, 8], [LayoutType.ColumnMajor, 1]], ] math_instructions = [ MathInstruction( [64, 128, 16], DataType.f16, DataType.f16, DataType.f16, OpcodeClass.TensorOp, MathOperation.multiply_add), MathInstruction( [64, 128, 16], DataType.f16, DataType.f16, DataType.f32, OpcodeClass.TensorOp, MathOperation.multiply_add), MathInstruction( [64, 128, 16], DataType.bf16, DataType.bf16, DataType.f32, OpcodeClass.TensorOp, MathOperation.multiply_add), ] min_cc = 90 max_cc = 90 for math_inst in math_instructions: tile_descriptions_small = [ # Not compatible with TmaWarpSpecializedCooperative TileDescription([math_inst.instruction_shape[0], math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [2,1,1]), TileDescription([math_inst.instruction_shape[0], math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [1,2,1]), ] tile_descriptions_medium = [ TileDescription([math_inst.instruction_shape[0]*2, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [2,1,1]), TileDescription([math_inst.instruction_shape[0]*2, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [1,2,1]), ] tile_descriptions_large = [ TileDescription([math_inst.instruction_shape[0]*4, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [2,1,1]), TileDescription([math_inst.instruction_shape[0]*4, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [1,2,1]), TileDescription([math_inst.instruction_shape[0]*2, math_inst.instruction_shape[1]*2, math_inst.instruction_shape[2]*4], 0, [4, 2, 1], math_inst, min_cc, max_cc, [2,1,1]), TileDescription([math_inst.instruction_shape[0]*2, math_inst.instruction_shape[1]*2, math_inst.instruction_shape[2]*4], 0, [4, 2, 1], math_inst, min_cc, max_cc, [1,2,1]), ] tile_descriptions = tile_descriptions_medium + tile_descriptions_large data_type = { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : math_inst.element_accumulator, "d_type" : math_inst.element_accumulator, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator } # Set alignment c based on Destination format. for layout in layouts: if data_type["c_type"] in [DataType.s32, DataType.f32]: layout[2][1] = 4 elif data_type["c_type"] in [DataType.f16, DataType.bf16]: layout[2][1] = 8 if CudaToolkitVersionSatisfies(cuda_version, 12, 1): schedules = [ [KernelScheduleType.ScheduleAuto, EpilogueScheduleType.ScheduleAuto], [KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.NoSmemWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedPingpong, EpilogueScheduleType.NoSmemWarpSpecialized], [KernelScheduleType.TmaWarpSpecialized, EpilogueScheduleType.NoSmemWarpSpecialized] ] stream_k_schedules = [[KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.NoSmemWarpSpecialized]] else: schedules = [ [KernelScheduleType.ScheduleAuto, EpilogueScheduleType.ScheduleAuto], [KernelScheduleType.TmaWarpSpecialized, EpilogueScheduleType.NoSmemWarpSpecialized] # TmaWarpSpecializedCooperative and TmaWarpSpecializedPingpong require CUDA version >= 12.1 for optimal performance. ] stream_k_schedules = [] CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type, schedules) if CudaToolkitVersionSatisfies(cuda_version, 12, 1): # Add stream-K variants CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type, stream_k_schedules, tile_schedulers=[TileSchedulerType.StreamK]) # persistent kernels with TMA epilogues if CudaToolkitVersionSatisfies(cuda_version, 12, 1): # not enough smem for 256x128 f32 out with C allocation if data_type["d_type"] == DataType.f32: CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions_medium, data_type, [[KernelScheduleType.TmaWarpSpecializedPingpong, EpilogueScheduleType.TmaWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative]]) CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions_medium, data_type, [[KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative]], tile_schedulers=[TileSchedulerType.StreamK]) else: CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type, [[KernelScheduleType.TmaWarpSpecializedPingpong, EpilogueScheduleType.TmaWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative]]) CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type, [[KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative]], tile_schedulers=[TileSchedulerType.StreamK]) # Emit instance without C allocation + load data_type["c_type"] = DataType.void CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type, [[KernelScheduleType.TmaWarpSpecializedPingpong, EpilogueScheduleType.TmaWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative]]) CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type, [[KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative]], tile_schedulers=[TileSchedulerType.StreamK]) # for mixed precision kernels, also generate kernels that write output matrix in the A/B format # Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation) if math_inst.element_a != math_inst.element_accumulator: data_type_mixed = { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : math_inst.element_a, "d_type" : math_inst.element_a, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator } # Set alignment c based on Destination format. for layout in layouts: if data_type_mixed["c_type"] in [DataType.s32, DataType.f32]: layout[2][1] = 4 elif data_type_mixed["c_type"] in [DataType.f16, DataType.bf16]: layout[2][1] = 8 CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type_mixed, schedules) CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type_mixed, stream_k_schedules, tile_schedulers=[TileSchedulerType.StreamK]) # persistent kernels with TMA epilogues if CudaToolkitVersionSatisfies(cuda_version, 12, 1): CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type_mixed, [[KernelScheduleType.TmaWarpSpecializedPingpong, EpilogueScheduleType.TmaWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative]]) CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type_mixed, [[KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative]], tile_schedulers=[TileSchedulerType.StreamK]) # Emit instance without C allocation+load data_type_mixed["c_type"] = DataType.void CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type_mixed, [[KernelScheduleType.TmaWarpSpecializedPingpong, EpilogueScheduleType.TmaWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative]]) CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type_mixed, [[KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative]], tile_schedulers=[TileSchedulerType.StreamK]) # def GenerateSM90_TensorOp_tf32_WGMMA_gemm(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 12, 0): return # layouts for ABC and their alignments layouts_tf32 = [ [[LayoutType.RowMajor, 4], [LayoutType.ColumnMajor, 4], [LayoutType.ColumnMajor, 4]], [[LayoutType.RowMajor, 4], [LayoutType.RowMajor, 4], [LayoutType.ColumnMajor, 4]], [[LayoutType.ColumnMajor, 4], [LayoutType.ColumnMajor, 4], [LayoutType.ColumnMajor, 4]], [[LayoutType.ColumnMajor, 4], [LayoutType.RowMajor, 4], [LayoutType.ColumnMajor, 4]], ] math_inst = MathInstruction( [64, 128, 8], DataType.tf32, DataType.tf32, DataType.f32, OpcodeClass.TensorOp, MathOperation.multiply_add) math_inst_largeN = MathInstruction( [64, 256, 8], DataType.tf32, DataType.tf32, DataType.f32, OpcodeClass.TensorOp, MathOperation.multiply_add) min_cc = 90 max_cc = 90 tile_descriptions_large = [ TileDescription([math_inst.instruction_shape[0]*4, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [1,2,1]), TileDescription([math_inst.instruction_shape[0]*4, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [2,1,1]), TileDescription([math_inst_largeN.instruction_shape[0]*2, math_inst_largeN.instruction_shape[1], math_inst_largeN.instruction_shape[2]*4], 0, [4, 1, 1], math_inst_largeN, min_cc, max_cc, [2,1,1]), TileDescription([math_inst_largeN.instruction_shape[0]*2, math_inst_largeN.instruction_shape[1], math_inst_largeN.instruction_shape[2]*4], 0, [4, 1, 1], math_inst_largeN, min_cc, max_cc, [1,2,1]), ] tile_descriptions_medium = [ TileDescription([math_inst.instruction_shape[0]*2, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [2,1,1]), TileDescription([math_inst.instruction_shape[0]*2, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [1,2,1]), ] tile_descriptions_small = [ TileDescription([math_inst.instruction_shape[0], math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [2,1,1]), TileDescription([math_inst.instruction_shape[0], math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [1,2,1]), ] tile_descriptions = tile_descriptions_medium + tile_descriptions_small data_types = [ { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : math_inst.element_accumulator, "d_type" : math_inst.element_accumulator, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator }, { "a_type" : DataType.f32, "b_type" : DataType.f32, "c_type" : math_inst.element_accumulator, "d_type" : math_inst.element_accumulator, "acc_type" : math_inst.element_accumulator, "epi_type" : DataType.f32 } ] schedules_default = [ [KernelScheduleType.ScheduleAuto, EpilogueScheduleType.ScheduleAuto], [KernelScheduleType.TmaWarpSpecialized, EpilogueScheduleType.NoSmemWarpSpecialized], ] # TMA kernels with TT layout use EpilogueTransposed (NoSmemWarpSpecialized with swapped strides), # because they use NN kernels underneath and transposing its epilogue will get the correct output schedules_transposed_epilogue = [ [KernelScheduleType.ScheduleAuto, EpilogueScheduleType.EpilogueTransposed], [KernelScheduleType.TmaWarpSpecialized, EpilogueScheduleType.EpilogueTransposed] ] # TMA kernels with TN, NN, or NT layout layouts_tf32_tn_nn_nt = [layouts_tf32[0], layouts_tf32[2], layouts_tf32[3]] # TMA kernels with TT layout layouts_tf32_tt = [layouts_tf32[1]] if CudaToolkitVersionSatisfies(cuda_version, 12, 1): CreateGemmUniversal3xOperator(manifest, layouts_tf32_tn_nn_nt, tile_descriptions_small, data_types, [ [KernelScheduleType.TmaWarpSpecializedPingpong, EpilogueScheduleType.TmaWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedPingpong, EpilogueScheduleType.NoSmemWarpSpecialized] ]) CreateGemmUniversal3xOperator(manifest, layouts_tf32_tn_nn_nt, tile_descriptions_medium, data_types, [ [KernelScheduleType.TmaWarpSpecializedPingpong, EpilogueScheduleType.TmaWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedPingpong, EpilogueScheduleType.NoSmemWarpSpecialized] ]) CreateGemmUniversal3xOperator(manifest, layouts_tf32_tn_nn_nt, tile_descriptions_large, data_types, [ [KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.NoSmemWarpSpecialized], ]) CreateGemmUniversal3xOperator(manifest, layouts_tf32_tn_nn_nt, tile_descriptions_medium, data_types, [ [KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative], [KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.NoSmemWarpSpecialized] ]) CreateGemmUniversal3xOperator(manifest, layouts_tf32_tt, tile_descriptions_small, data_types, [ [KernelScheduleType.TmaWarpSpecializedPingpong, EpilogueScheduleType.EpilogueTransposed] ]) CreateGemmUniversal3xOperator(manifest, layouts_tf32_tt, tile_descriptions_medium, data_types, [ [KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.EpilogueTransposed] ]) CreateGemmUniversal3xOperator(manifest, layouts_tf32_tt, tile_descriptions_large, data_types, [ [KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.EpilogueTransposed] ]) else: CreateGemmUniversal3xOperator(manifest, layouts_tf32_tn_nn_nt, tile_descriptions, data_types, schedules_default) CreateGemmUniversal3xOperator(manifest, layouts_tf32_tt, tile_descriptions, data_types, schedules_transposed_epilogue) # def GenerateSM90_TensorOp_int8_WGMMA_gemm(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 12, 0): return # layouts for ABC and their alignments layouts = [ [[LayoutType.RowMajor, 16], [LayoutType.ColumnMajor, 16], [LayoutType.ColumnMajor, 16]], ] math_instructions = [ MathInstruction( [64, 128, 32], DataType.s8, DataType.s8, DataType.s32, OpcodeClass.TensorOp, MathOperation.multiply_add), MathInstruction( [64, 128, 32], DataType.u8, DataType.u8, DataType.s32, OpcodeClass.TensorOp, MathOperation.multiply_add), ] min_cc = 90 max_cc = 90 for math_inst in math_instructions: tile_descriptions_small = [ TileDescription([math_inst.instruction_shape[0], math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [2,1,1]), TileDescription([math_inst.instruction_shape[0], math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [1,2,1]), ] tile_descriptions_medium = [ TileDescription([math_inst.instruction_shape[0]*2, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [2,1,1]), TileDescription([math_inst.instruction_shape[0]*2, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [1,2,1]), ] tile_descriptions = tile_descriptions_medium + tile_descriptions_small data_types = [ { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : math_inst.element_accumulator, "d_type" : math_inst.element_accumulator, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator }, { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : DataType.s8, "d_type" : math_inst.element_a, "acc_type" : math_inst.element_accumulator, "epi_type" : DataType.f32 } ] for data_type in data_types: for layout in layouts: layout[2][1] = 128 // DataTypeSize[data_type["d_type"]] CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type) # persistent kernels with TMA epilogues if CudaToolkitVersionSatisfies(cuda_version, 12, 1): # Emit instance without C allocation+load data_types += [ { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : DataType.void, "d_type" : math_inst.element_accumulator, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator } ] for data_type in data_types: # Set output alignment based on destination format first for layout in layouts: layout[2][1] = 128 // DataTypeSize[data_type["d_type"]] # Pingpong persistent CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type, [[KernelScheduleType.TmaWarpSpecializedPingpong, EpilogueScheduleType.TmaWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedPingpong, EpilogueScheduleType.NoSmemWarpSpecialized]]) # Cooperative persistent CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions_medium, data_type, [[KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative], [KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.NoSmemWarpSpecialized]], tile_schedulers=[TileSchedulerType.Persistent, TileSchedulerType.StreamK] ) def GenerateSM90_TensorOp_fp8_WGMMA_gemm(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 12, 0): return # layouts for ABC and their alignments layouts = [ [[LayoutType.RowMajor, 16], [LayoutType.ColumnMajor, 16], [LayoutType.ColumnMajor, 1]], # TN Layout ] math_instructions = [ # inst 64x128x32 MathInstruction( [64, 128, 32], DataType.e4m3, DataType.e4m3, DataType.f32, OpcodeClass.TensorOp, MathOperation.multiply_add), MathInstruction( [64, 128, 32], DataType.e4m3, DataType.e5m2, DataType.f32, OpcodeClass.TensorOp, MathOperation.multiply_add), MathInstruction( [64, 128, 32], DataType.e5m2, DataType.e4m3, DataType.f32, OpcodeClass.TensorOp, MathOperation.multiply_add), MathInstruction( [64, 128, 32], DataType.e5m2, DataType.e5m2, DataType.f32, OpcodeClass.TensorOp, MathOperation.multiply_add), # inst 64x64x32 MathInstruction( [64, 64, 32], DataType.e4m3, DataType.e4m3, DataType.f32, OpcodeClass.TensorOp, MathOperation.multiply_add), MathInstruction( [64, 64, 32], DataType.e4m3, DataType.e5m2, DataType.f32, OpcodeClass.TensorOp, MathOperation.multiply_add), MathInstruction( [64, 64, 32], DataType.e5m2, DataType.e4m3, DataType.f32, OpcodeClass.TensorOp, MathOperation.multiply_add), MathInstruction( [64, 64, 32], DataType.e5m2, DataType.e5m2, DataType.f32, OpcodeClass.TensorOp, MathOperation.multiply_add), ] min_cc = 90 max_cc = 90 for math_inst in math_instructions: data_types = [ { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : DataType.f32, "d_type" : DataType.f32, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator }, { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : DataType.f32, "d_type" : DataType.e4m3, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator }, { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : DataType.f32, "d_type" : DataType.e5m2, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator }, { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : DataType.bf16, "d_type" : DataType.bf16, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator }, { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : DataType.bf16, "d_type" : DataType.e4m3, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator }, { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : DataType.bf16, "d_type" : DataType.e5m2, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator }, { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : DataType.f16, "d_type" : DataType.f16, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator }, { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : DataType.f16, "d_type" : DataType.e4m3, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator }, { "a_type" : math_inst.element_a, "b_type" : math_inst.element_b, "c_type" : DataType.f16, "d_type" : DataType.e5m2, "acc_type" : math_inst.element_accumulator, "epi_type" : math_inst.element_accumulator }, ] if math_inst.instruction_shape[1] == 128: tile_descriptions_small = [ # 64x128x128 TileDescription([math_inst.instruction_shape[0], math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [1,2,1]), TileDescription([math_inst.instruction_shape[0], math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [2,1,1]), ] tile_descriptions = [ # 128x128x128 TileDescription([math_inst.instruction_shape[0]*2, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [1,2,1]), TileDescription([math_inst.instruction_shape[0]*2, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [2,1,1]), ] elif math_inst.instruction_shape[1] == 64: tile_descriptions = [ # 256x64x128 TileDescription([math_inst.instruction_shape[0]*4, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [1,2,1]), TileDescription([math_inst.instruction_shape[0]*4, math_inst.instruction_shape[1], math_inst.instruction_shape[2]*4], 0, [4, 1, 1], math_inst, min_cc, max_cc, [2,1,1]), ] else: assert False, "math inst is not supported" # some schedules disabled to save on library size if CudaToolkitVersionSatisfies(cuda_version, 12, 1): schedules = [ #[KernelScheduleType.ScheduleAuto, EpilogueScheduleType.ScheduleAuto], [KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.NoSmemWarpSpecialized], [KernelScheduleType.TmaWarpSpecialized, EpilogueScheduleType.NoSmemWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedPingpongFP8FastAccum, EpilogueScheduleType.NoSmemWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum, EpilogueScheduleType.NoSmemWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedFP8FastAccum, EpilogueScheduleType.NoSmemWarpSpecialized] ] stream_k_schedules = [[KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.NoSmemWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum, EpilogueScheduleType.NoSmemWarpSpecialized]] else: schedules = [ # [KernelScheduleType.ScheduleAuto, EpilogueScheduleType.ScheduleAuto], [KernelScheduleType.TmaWarpSpecialized, EpilogueScheduleType.NoSmemWarpSpecialized] # TmaWarpSpecializedCooperative require CUDA version >= 12.1 for optimal performance. ] stream_k_schedules = [] for data_type in data_types: # With No-SMEM epilogues CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type, schedules) if CudaToolkitVersionSatisfies(cuda_version, 12, 1): # Persistent kernels with TMA epilogues CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type, [[KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative], [KernelScheduleType.TmaWarpSpecializedPingpongFP8FastAccum, EpilogueScheduleType.TmaWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum, EpilogueScheduleType.TmaWarpSpecializedCooperative]]) # Small tiles CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions_small, data_type, [[KernelScheduleType.TmaWarpSpecializedPingpongFP8FastAccum, EpilogueScheduleType.TmaWarpSpecialized], [KernelScheduleType.TmaWarpSpecializedPingpongFP8FastAccum, EpilogueScheduleType.NoSmemWarpSpecialized]]) # Add stream-K variants (with and without TMA epilogues) CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type, stream_k_schedules, tile_schedulers=[TileSchedulerType.StreamK]) CreateGemmUniversal3xOperator(manifest, layouts, tile_descriptions, data_type, [[KernelScheduleType.TmaWarpSpecializedCooperative, EpilogueScheduleType.TmaWarpSpecializedCooperative], [KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum, EpilogueScheduleType.TmaWarpSpecializedCooperative]], tile_schedulers=[TileSchedulerType.StreamK]) # def GenerateSM90_TensorOp_1684(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 8): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_inst = MathInstruction( [16, 8, 4], DataType.f64, DataType.f64, DataType.f64, OpcodeClass.TensorOp, MathOperation.multiply_add) min_cc = 90 max_cc = 90 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 256, 16], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 32, 16], 3, [4, 1, 1], math_inst, min_cc, max_cc), TileDescription([32, 256, 16], 3, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 16], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 32, 16], 5, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 16, 16], 5, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f64, DataType.f64, DataType.f64, DataType.f64] CreateGemmOperator(manifest, layouts, tile_descriptions, data_type, alignment_constraints) # # def GenerateSM90_TensorOp_1684_complex(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 8): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_inst = \ MathInstruction( \ [16, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex) min_cc = 90 max_cc = 90 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 64, 8 ], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 8 ], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 8 ], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 8 ], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 8 ], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 8 ], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 32, 8 ], 4, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 16, 8 ], 4, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 32, 16], 4, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 16, 16], 3, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64, DataType.cf64] complex_transforms = [ (ComplexTransform.none, ComplexTransform.none), (ComplexTransform.conj, ComplexTransform.none), (ComplexTransform.none, ComplexTransform.conj), (ComplexTransform.conj, ComplexTransform.conj) ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # # def GenerateSM90_TensorOp_1684_complex_gaussian(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 8): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.ColumnMajor), ] math_inst = \ MathInstruction( \ [16, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex_gaussian) min_cc = 90 max_cc = 90 alignment_constraints = [1,] tile_descriptions = [ TileDescription([64, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 32, 8], 4, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 16, 8], 4, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64, DataType.cf64] complex_transforms = [ (ComplexTransform.none, ComplexTransform.none), (ComplexTransform.conj, ComplexTransform.none), (ComplexTransform.none, ComplexTransform.conj), (ComplexTransform.conj, ComplexTransform.conj) ] CreateGemmOperator(manifest, layouts, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # # def GenerateSM90_TensorOp_1684_rank_k(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 8): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor), ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_inst = \ MathInstruction( \ [16, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add) min_cc = 90 max_cc = 90 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 16], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 32, 16], 5, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 16, 16], 5, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f64, DataType.f64, DataType.f64] CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # # def GenerateSM90_TensorOp_1684_rank_k_complex(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 8): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor), ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_inst = \ MathInstruction( \ [16, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex) min_cc = 90 max_cc = 90 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 8], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 8], 3, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([16, 32, 8], 4, [1, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 16, 8], 4, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64] # SYRK computation CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # HERK computation CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.hermitian) # # def GenerateSM90_TensorOp_1684_rank_k_complex_gaussian(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 8): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor), ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_inst = \ MathInstruction( \ [16, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex_gaussian) min_cc = 90 max_cc = 90 alignment_constraints = [1,] tile_descriptions = [ TileDescription([64, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([16, 32, 8], 4, [1, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 16, 8], 4, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64] complex_transforms = [ComplexTransform.none,] # SYRK computation CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # HERK computation CreateRankKOperator(manifest, layouts, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.hermitian) # # def GenerateSM90_TensorOp_1684_trmm(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 8): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] diag_types = [ DiagType.NonUnit, DiagType.Unit, ] math_inst = \ MathInstruction( \ [16, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add) min_cc = 90 max_cc = 90 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f64, DataType.f64, DataType.f64, DataType.f64] CreateTrmmOperator(manifest, layouts, side_modes, fill_modes, diag_types, tile_descriptions, \ data_type, alignment_constraints) # # def GenerateSM90_TensorOp_1684_trmm_complex(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 8): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] diag_types = [ DiagType.NonUnit, DiagType.Unit, ] math_inst = \ MathInstruction( \ [16, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex) min_cc = 90 max_cc = 90 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 8], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 8], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64, DataType.cf64] complex_transforms = [ ComplexTransform.none, ComplexTransform.conj, ] CreateTrmmOperator(manifest, layouts, side_modes, fill_modes, diag_types, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # # def GenerateSM90_TensorOp_1684_trmm_complex_gaussian(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 8): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] diag_types = [ DiagType.NonUnit, DiagType.Unit, ] math_inst = \ MathInstruction( \ [16, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex_gaussian) min_cc = 90 max_cc = 90 alignment_constraints = [1,] tile_descriptions = [ TileDescription([64, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64, DataType.cf64] complex_transforms = [ ComplexTransform.none, ComplexTransform.conj, ] CreateTrmmOperator(manifest, layouts, side_modes, fill_modes, diag_types, tile_descriptions, \ data_type, alignment_constraints, complex_transforms) # # def GenerateSM90_TensorOp_1684_symm(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 8): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_inst = \ MathInstruction( \ [16, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add) min_cc = 90 max_cc = 90 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 128, 16], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 16], 3, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 16], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 32, 16], 5, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 32, 16], 5, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 16, 16], 5, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.f64, DataType.f64, DataType.f64, DataType.f64] CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # # def GenerateSM90_TensorOp_1684_symm_complex(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 8): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_inst = \ MathInstruction( \ [16, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex) min_cc = 90 max_cc = 90 alignment_constraints = [1,] tile_descriptions = [ TileDescription([128, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 128, 8], 3, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([64, 64, 8], 3, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([16, 32, 8], 4, [1, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 16, 8], 4, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64, DataType.cf64] # SYMM computation CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # HEMM computation CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.hermitian) # # def GenerateSM90_TensorOp_1684_symm_complex_gaussian(manifest, cuda_version): if not CudaToolkitVersionSatisfies(cuda_version, 11, 8): return layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor), ] side_modes = [ SideMode.Left, SideMode.Right, ] fill_modes = [ FillMode.Lower, FillMode.Upper, ] math_inst = \ MathInstruction( \ [16, 8, 4], \ DataType.f64, DataType.f64, DataType.f64, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_complex_gaussian) min_cc = 90 max_cc = 90 alignment_constraints = [1,] tile_descriptions = [ TileDescription([64, 64, 8], 3, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([64, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([32, 64, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 32, 8], 4, [2, 2, 1], math_inst, min_cc, max_cc), #TileDescription([16, 32, 8], 4, [1, 2, 1], math_inst, min_cc, max_cc), #TileDescription([32, 16, 8], 4, [2, 1, 1], math_inst, min_cc, max_cc), ] data_type = [DataType.cf64, DataType.cf64, DataType.cf64, DataType.cf64] complex_transforms = [ComplexTransform.none,] # SYMM computation CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.symmetric) # HEMM computation CreateSymmOperator(manifest, layouts, side_modes, fill_modes, tile_descriptions, \ data_type, alignment_constraints, BlasMode.hermitian) # ################################################################################################### # def GenerateSM90(manifest, cuda_version): GenerateSM90_TensorOp_16b_WGMMA_gemm(manifest, cuda_version) GenerateSM90_TensorOp_tf32_WGMMA_gemm(manifest, cuda_version) GenerateSM90_TensorOp_int8_WGMMA_gemm(manifest, cuda_version) GenerateSM90_TensorOp_fp8_WGMMA_gemm(manifest, cuda_version) GenerateSM90_TensorOp_1684(manifest, cuda_version) GenerateSM90_TensorOp_1684_complex(manifest, cuda_version) GenerateSM90_TensorOp_1684_complex_gaussian(manifest, cuda_version) GenerateSM90_TensorOp_1684_rank_k(manifest, cuda_version) GenerateSM90_TensorOp_1684_rank_k_complex(manifest, cuda_version) GenerateSM90_TensorOp_1684_rank_k_complex_gaussian(manifest, cuda_version) GenerateSM90_TensorOp_1684_trmm(manifest, cuda_version) GenerateSM90_TensorOp_1684_trmm_complex(manifest, cuda_version) GenerateSM90_TensorOp_1684_trmm_complex_gaussian(manifest, cuda_version) GenerateSM90_TensorOp_1684_symm(manifest, cuda_version) GenerateSM90_TensorOp_1684_symm_complex(manifest, cuda_version) GenerateSM90_TensorOp_1684_symm_complex_gaussian(manifest, cuda_version) ################################################################################################### def numeric_log_level(log_level: str) -> int: """ Converts the string identifier of the log level into the numeric identifier used in setting the log level :param x: string representation of log level (e.g., 'INFO', 'DEBUG') :type x: str :return: numeric representation of log level :rtype: int """ numeric_level = getattr(logging, log_level.upper(), None) if not isinstance(numeric_level, int): raise ValueError(f'Invalid log level: {log_level}') return numeric_level # This function for defining the ArgumentParser is used to make it easy for the CUTLASS Python interface # to leverage the functionality in this file without running this script via a shell prompt. def define_parser(): parser = argparse.ArgumentParser(description="Generates device kernel registration code for CUTLASS Kernels") parser.add_argument("--operations", default="all", help="Specifies the operation to generate (gemm, all)") parser.add_argument("--build-dir", default=".", required=False, help="CUTLASS top-level build directory") parser.add_argument("--curr-build-dir", default=".", help="CUTLASS current build directory. cmake files will be emitted in this directory") parser.add_argument("--generator-target", default='library', help="Target of CUTLASS Library Generator.") parser.add_argument("--architectures", default='53;60;61;70;75;80;90', help="Target compute architectures") parser.add_argument("--kernels", default='', help='Comma delimited list to filter kernels by name.') parser.add_argument("--ignore-kernels", default='', help='Comma delimited list of kernels to exclude from build.') parser.add_argument("--filter-by-cc", default='True', type=str, help='If enabled, kernels whose compute capability range is not satisfied by the build target are excluded.') parser.add_argument("--cuda-version", default="11.0.0", help="Semantic version string of CUDA Toolkit") parser.add_argument('--kernel-filter-file', type=str, default=None, required=False, help='Full path of filter file') parser.add_argument('--selected-kernel-list', type=str, default=None, required=False, help='Specify the output log file containing all enabled kernels in this build') parser.add_argument("--interface-dir", default=None, required=False, help="Interface header to kernels") parser.add_argument("--disable-full-archs-compilation", action="store_true", required=False, help="Disable compilation for every archs in --architectures") parser.add_argument("--log-level", default='info', type=numeric_log_level, required=False, help='Logging level to be used by the generator script') return parser if __name__ == "__main__": parser = define_parser() args = parser.parse_args() # Set the logging level based on the user-provided `--log-level` command-line option logging.basicConfig(level=args.log_level) manifest = Manifest(args) GenerateSM50(manifest, args.cuda_version) GenerateSM60(manifest, args.cuda_version) GenerateSM61(manifest, args.cuda_version) GenerateSM70(manifest, args.cuda_version) GenerateSM75(manifest, args.cuda_version) GenerateSM80(manifest, args.cuda_version) GenerateSM90(manifest, args.cuda_version) if 'library' in args.generator_target.split(','): manifest.emit(GeneratorTarget.Library) if args.selected_kernel_list is not None: if len(manifest.selected_kernels) > 0: with open(args.selected_kernel_list, 'w') as file_writer: for line in manifest.selected_kernels: file_writer.write("%s\n" % line) # ###################################################################################################
cutlass-main
tools/library/scripts/generator.py
# # \file generator.py # # \brief Generates the CUTLASS Library's instances # # import enum import os.path import shutil from library import * ################################################################################################### # class Conv3dOperation: # def __init__(self, conv_kind, iterator_algorithm, arch, tile_description, A, B, C, element_epilogue, \ stride_support, epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity4): self.operation_kind = OperationKind.Conv3d self.arch = arch self.tile_description = tile_description self.conv_kind = conv_kind self.A = A self.B = B self.C = C self.element_epilogue = element_epilogue self.epilogue_functor = epilogue_functor self.iterator_algorithm = iterator_algorithm self.stride_support = stride_support self.swizzling_functor = swizzling_functor # def core_name(self): ''' The basic operation kind is prefixed with a letter indicating the accumulation type. ''' intermediate_type = '' if self.tile_description.math_instruction.opcode_class == OpcodeClass.TensorOp: inst_shape = "%d%d%d" % tuple(self.tile_description.math_instruction.instruction_shape) if self.tile_description.math_instruction.element_a != self.A.element and \ self.tile_description.math_instruction.element_a != self.tile_description.math_instruction.element_accumulator: intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] else: inst_shape = '' return "%s%s%s%s3d_%s" % (ShortDataTypeNames[self.tile_description.math_instruction.element_accumulator], \ inst_shape, intermediate_type, ConvKindNames[self.conv_kind], IteratorAlgorithmNames[self.iterator_algorithm]) # def extended_name(self): ''' Append data types if they differ from compute type. ''' if self.C.element != self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${element_c}_${core_name}_${element_a}" elif self.C.element == self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = SubstituteTemplate(extended_name, { 'element_a': DataTypeNames[self.A.element], 'element_c': DataTypeNames[self.C.element], 'core_name': self.core_name() }) return extended_name # def configuration_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] threadblock = "%dx%d_%dx%d" % ( self.tile_description.threadblock_shape[0], self.tile_description.threadblock_shape[1], self.tile_description.threadblock_shape[2], self.tile_description.stages ) if self.stride_support == StrideSupport.Unity: configuration_name = "cutlass_${opcode_class}_${extended_name}_${threadblock}_unity_stride" else: configuration_name = "cutlass_${opcode_class}_${extended_name}_${threadblock}" return SubstituteTemplate( configuration_name, { 'opcode_class': opcode_class_name, 'extended_name': self.extended_name(), 'threadblock': threadblock, } ) # def procedural_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' return self.configuration_name() ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### class EmitConv3dInstance: def __init__(self): self.template = """ // Conv3d${conv_kind_name} ${iterator_algorithm_name} kernel instance "${operation_name}" using ${operation_name}_base = typename cutlass::conv::kernel::DefaultConv3d${conv_kind_name}< ${element_a}, cutlass::layout::TensorNDHWC, ${element_b}, cutlass::layout::TensorNDHWC, ${element_c}, cutlass::layout::TensorNDHWC, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k} >, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, // cutlass::gemm::threadblock::GemmSplitKIdentityThreadblockSwizzle<>, ${stages}, cutlass::arch::OpMultiplyAdd, ${iterator_algorithm}, ${stride_support} >::Kernel; """ def emit(self, operation): warp_shape = [int(operation.tile_description.threadblock_shape[idx] / operation.tile_description.warp_count[idx]) for idx in range(3)] epilogue_vector_length = int(min(operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element]) values = { 'operation_name': operation.procedural_name(), 'conv_kind': ConvKindTag[operation.conv_kind], 'conv_kind_name': ConvKindNames[operation.conv_kind].capitalize(), 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[operation.A.layout], 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[operation.B.layout], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'element_accumulator': DataTypeTag[operation.tile_description.math_instruction.element_accumulator], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_vector_length': str(epilogue_vector_length), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'iterator_algorithm': IteratorAlgorithmTag[operation.iterator_algorithm], 'iterator_algorithm_name': IteratorAlgorithmNames[operation.iterator_algorithm].capitalize(), 'stride_support': StrideSupportTag[operation.stride_support] } return SubstituteTemplate(self.template, values) ################################################################################################### # # Generator functions for all layouts # ################################################################################################### # def GenerateConv3dTensorOp(manifest, tile_descriptions, min_cc, align = 128): for tile in tile_descriptions: for conv_kind in [ConvKind.Fprop, ConvKind.Dgrad, ConvKind.Wgrad]: if conv_kind == ConvKind.Fprop or (tile.math_instruction.element_accumulator in [DataType.f16, DataType.f32]): # output_types = [tile.math_instruction.element_a, tile.math_instruction.element_accumulator] \ if DataTypeSize[tile.math_instruction.element_accumulator] == 32 \ else [tile.math_instruction.element_accumulator,] for output_type in output_types: A = TensorDescription(tile.math_instruction.element_a, LayoutType.TensorNDHWC, int(align / DataTypeSize[tile.math_instruction.element_a])) B = TensorDescription(tile.math_instruction.element_b, LayoutType.TensorNDHWC, int(align / DataTypeSize[tile.math_instruction.element_b])) C = TensorDescription(output_type, LayoutType.TensorNDHWC, max(1, int(align / DataTypeSize[output_type]))) manifest.append(Conv3dOperation(conv_kind, min_cc, tile, A, B, C, tile.math_instruction.element_accumulator)) ################################################################################################### # # Emitters functions for all targets # ################################################################################################### class EmitConv3dConfigurationLibrary: def __init__(self, operation_path, configuration_name): self.configuration_name = configuration_name self.configuration_path = os.path.join(operation_path, "%s.cu" % configuration_name) self.instance_emitter = EmitConv3dInstance() self.instance_template = """ ${operation_instance} // Derived class struct ${operation_name} : public ${operation_name}_base { }; /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.header_template = """ /* Generated by conv3d_operation.py - Do not edit. */ /////////////////////////////////////////////////////////////////////////////////////////////////// #include "cutlass/cutlass.h" #include "cutlass/library/library.h" #include "cutlass/library/manifest.h" #include "library_internal.h" #include "conv3d_operation.h" /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.configuration_header = """ namespace cutlass { namespace library { // Initialize all instances void initialize_${configuration_name}(Manifest &manifest) { """ self.configuration_instance = """ using Operation_${operation_name} = cutlass::conv::device::ImplicitGemmConvolution< ${operation_name}>; manifest.append(new cutlass::library::Conv3dOperation< Operation_${operation_name}>( "${operation_name}")); """ self.configuration_epilogue = """ } """ self.epilogue_template = """ /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////// """ # def __enter__(self): self.configuration_file = open(self.configuration_path, "w") self.configuration_file.write(SubstituteTemplate(self.header_template, { 'configuration_name': self.configuration_name })) self.operations = [] return self # def emit(self, operation): self.operations.append(operation) self.configuration_file.write(SubstituteTemplate(self.instance_template, { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name(), 'operation_instance': self.instance_emitter.emit(operation) })) # def __exit__(self, exception_type, exception_value, traceback): self.configuration_file.write(SubstituteTemplate(self.configuration_header, { 'configuration_name': self.configuration_name })) for operation in self.operations: self.configuration_file.write(SubstituteTemplate(self.configuration_instance, { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name() })) self.configuration_file.write(self.configuration_epilogue) self.configuration_file.write(self.epilogue_template) self.configuration_file.close() ################################################################################################### ###################################################################################################
cutlass-main
tools/library/scripts/conv3d_operation.py
# # \file generator.py # # \brief Generates the CUTLASS Library's instances # # import enum import os.path import shutil import functools import operator from library import * ################################################################################################### # # Data structure modeling a Rank K update operation # ################################################################################################### # class Rank2KOperation: # def __init__(self, rank_k_kind, arch, tile_description, A, C, element_epilogue, \ epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity8, \ blas_mode = BlasMode.symmetric): self.blas_mode = blas_mode self.operation_kind = OperationKind.Rank2K self.arch = arch self.tile_description = tile_description self.rank_k_kind = rank_k_kind # tensor A and B have same data type and layout self.A = A self.B = A self.C = C self.element_epilogue = element_epilogue self.epilogue_functor = epilogue_functor self.swizzling_functor = swizzling_functor # def is_complex(self): complex_operators = [ MathOperation.multiply_add_complex, MathOperation.multiply_add_complex_gaussian, MathOperation.multiply_add_complex_fast_f32 ] return self.tile_description.math_instruction.math_operation in complex_operators return False # def is_planar_complex(self): return False # def accumulator_type(self): accum = self.tile_description.math_instruction.element_accumulator if self.is_complex(): return get_complex_from_real(accum) return accum # def short_math_name(self): if self.tile_description.math_instruction.math_operation == MathOperation.multiply_add_complex_gaussian: return "g%s" % ShortDataTypeNames[self.accumulator_type()] return ShortDataTypeNames[self.accumulator_type()] # def core_name(self): ''' The basic operation kind is prefixed with a letter indicating the accumulation type. ''' inst_shape = '' inst_operation = '' intermediate_type = '' math_operations_map = { MathOperation.xor_popc: 'xor', MathOperation.and_popc: 'and' } if self.tile_description.math_instruction.opcode_class == OpcodeClass.TensorOp or \ self.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp: math_op = self.tile_description.math_instruction.math_operation math_op_string = math_operations_map[math_op] if math_op in math_operations_map.keys() else '' inst_shape = "%d%d%d" % tuple(self.tile_description.math_instruction.instruction_shape) inst_shape += math_op_string if self.tile_description.math_instruction.element_a != self.A.element and \ self.tile_description.math_instruction.element_a != self.tile_description.math_instruction.element_accumulator: intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] operation_name = 'syr2k' if self.blas_mode == BlasMode.symmetric else 'her2k' return "%s%s%s%s" % (self.short_math_name(), inst_shape, intermediate_type, operation_name) # def extended_name(self): ''' Append data types if they differ from compute type. ''' if self.is_complex(): extended_name = "${core_name}" else: if self.C.element != self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${element_c}_${core_name}_${element_a}" elif self.C.element == self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = SubstituteTemplate(extended_name, { 'element_a': DataTypeNames[self.A.element], 'element_c': DataTypeNames[self.C.element], 'core_name': self.core_name() }) return extended_name # def layout_name(self): if self.is_complex() or self.is_planar_complex(): return "%s" % ( ShortComplexLayoutNames[(self.A.layout, self.A.complex_transform)] ) return "%s" % (ShortLayoutTypeNames[self.A.layout]) # def fill_mode_name(self): return "%s" % (ShortFillModeNames[self.C.fill_mode]) # def procedural_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' threadblock = self.tile_description.procedural_name() opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] alignment = max([self.A.alignment, self.C.alignment]) return SubstituteTemplate( "cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}_${fill_mode}_align${alignment}", { 'opcode_class': opcode_class_name, 'extended_name': self.extended_name(), 'threadblock': threadblock, 'layout': self.layout_name(), 'fill_mode': self.fill_mode_name(), 'alignment': "%d" % self.A.alignment, } ) # def configuration_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' return self.procedural_name() ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### # class EmitRank2KUniversalInstance: ''' Responsible for emitting a CUTLASS template definition''' def __init__(self): self.rank_k_template = """ // Rank K operator ${operation_name} using Operation_${operation_name} = typename cutlass::gemm::device::Rank2K< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${fill_mode}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, ${stages}, ${align_a}, ${align_b}, ${split_k_serial}, ${math_operation} >; """ self.rank_k_complex_template = """ // Rank K operator ${operation_name} using Operation_${operation_name} = typename cutlass::gemm::device::Rank2K< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${fill_mode}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, ${stages}, ${align_a}, ${align_b}, ${split_k_serial}, ${math_operation}, ${transform_a}, ${transform_b}, ${blas_mode} >; """ def emit(self, operation): threadblock_shape = operation.tile_description.threadblock_shape warp_count = operation.tile_description.warp_count warp_shape = [threadblock_shape[idx] // warp_count[idx] for idx in range(3)] epilogue_vector_length = int(min(operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element]) values = { 'operation_name': operation.procedural_name(), 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[operation.A.layout], 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[operation.B.layout], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'fill_mode': FillModeTag[operation.C.fill_mode], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_vector_length': str(epilogue_vector_length), 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'align_a': str(operation.A.alignment), 'align_b': str(operation.B.alignment), 'split_k_serial': 'false', 'math_operation': MathOperationTag[operation.tile_description.math_instruction.math_operation], 'transform_a': ComplexTransformTag[operation.A.complex_transform], 'transform_b': ComplexTransformTag[operation.B.complex_transform], 'blas_mode': BlasModeTag[operation.blas_mode] } rank_k_template = self.rank_k_complex_template if operation.is_complex() else self.rank_k_template return SubstituteTemplate(rank_k_template, values) ################################################################################################### ################################################################################################### # # Emitters functions for all targets # ################################################################################################### class EmitRank2KConfigurationLibrary: def __init__(self, operation_path, configuration_name): self.configuration_name = configuration_name self.configuration_path = os.path.join(operation_path, "%s.cu" % configuration_name).replace('\\', '/') self.instance_emitter = { RankKKind.Universal: EmitRank2KUniversalInstance, } self.rank_k_kind_wrappers = { RankKKind.Universal: 'Rank2KOperation', } self.instance_template = { RankKKind.Universal: """ ${compile_guard_start} manifest.append(new ${rank_k_kind}< Operation_${operation_name} >("${operation_name}")); ${compile_guard_end} """ } self.header_template = """ /* Generated by rank_2k_operation.py - Do not edit. */ /////////////////////////////////////////////////////////////////////////////////////////////////// #include "cutlass/cutlass.h" #include "cutlass/library/library.h" #include "cutlass/library/manifest.h" #include "library_internal.h" #include "rank_2k_operation.h" /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.initialize_function_template = """ /////////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace library { /////////////////////////////////////////////////////////////////////////////////////////////////// void initialize_${configuration_name}(Manifest &manifest) { """ self.epilogue_template = """ } /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////// """ def __enter__(self): self.configuration_file = open(self.configuration_path, "w") self.configuration_file.write(self.header_template) self.instance_definitions = [] self.instance_wrappers = [] self.operations = [] return self def emit(self, operation): emitter = self.instance_emitter[operation.rank_k_kind]() self.operations.append(operation) self.instance_definitions.append(emitter.emit(operation)) self.instance_wrappers.append(SubstituteTemplate(self.instance_template[operation.rank_k_kind], { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name(), 'rank_k_kind': self.rank_k_kind_wrappers[operation.rank_k_kind], 'compile_guard_start': SubstituteTemplate(self.wmma_guard_start, {'sm_number': str(operation.arch)}) \ if operation.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp else "", 'compile_guard_end': "#endif" \ if operation.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp else "" })) def __exit__(self, exception_type, exception_value, traceback): # Write instance definitions in top-level namespace for instance_definition in self.instance_definitions: self.configuration_file.write(instance_definition) # Add wrapper objects within initialize() function self.configuration_file.write(SubstituteTemplate(self.initialize_function_template, { 'configuration_name': self.configuration_name })) for instance_wrapper in self.instance_wrappers: self.configuration_file.write(instance_wrapper) self.configuration_file.write(self.epilogue_template) self.configuration_file.close() ###################################################################################################
cutlass-main
tools/library/scripts/rank_2k_operation.py
# # \file generator.py # # \brief Generates the CUTLASS Library's instances # # import enum import os.path import shutil import functools import operator from library import * ################################################################################################### # # Data structure modeling a Symm update operation # ################################################################################################### # class SymmOperation: # def __init__(self, symm_kind, arch, tile_description, A, B, C, element_epilogue, \ epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity8, \ blas_mode = BlasMode.symmetric): self.blas_mode = blas_mode self.operation_kind = OperationKind.Symm self.arch = arch self.tile_description = tile_description self.symm_kind = symm_kind # tensor A and B have same data type and layout self.A = A self.B = B self.C = C self.element_epilogue = element_epilogue self.epilogue_functor = epilogue_functor self.swizzling_functor = swizzling_functor # def is_complex(self): complex_operators = [ MathOperation.multiply_add_complex, MathOperation.multiply_add_complex_gaussian, MathOperation.multiply_add_complex_fast_f32 ] return self.tile_description.math_instruction.math_operation in complex_operators return False # def is_planar_complex(self): return False # def accumulator_type(self): accum = self.tile_description.math_instruction.element_accumulator if self.is_complex(): return get_complex_from_real(accum) return accum # def short_math_name(self): if self.tile_description.math_instruction.math_operation == MathOperation.multiply_add_complex_gaussian: return "g%s" % ShortDataTypeNames[self.accumulator_type()] return ShortDataTypeNames[self.accumulator_type()] # def core_name(self): ''' The basic operation kind is prefixed with a letter indicating the accumulation type. ''' inst_shape = '' inst_operation = '' intermediate_type = '' math_operations_map = { MathOperation.xor_popc: 'xor', MathOperation.and_popc: 'and' } if self.tile_description.math_instruction.opcode_class == OpcodeClass.TensorOp or \ self.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp: math_op = self.tile_description.math_instruction.math_operation math_op_string = math_operations_map[math_op] if math_op in math_operations_map.keys() else '' inst_shape = "%d%d%d" % tuple(self.tile_description.math_instruction.instruction_shape) inst_shape += math_op_string if self.tile_description.math_instruction.element_a != self.A.element and \ self.tile_description.math_instruction.element_a != self.tile_description.math_instruction.element_accumulator: intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] operation_name = 'symm' if self.blas_mode == BlasMode.symmetric else 'hemm' return "%s%s%s%s" % (self.short_math_name(), inst_shape, intermediate_type, operation_name) # def extended_name(self): ''' Append data types if they differ from compute type. ''' if self.is_complex(): extended_name = "${core_name}" else: if self.C.element != self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${element_c}_${core_name}_${element_a}" elif self.C.element == self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = SubstituteTemplate(extended_name, { 'element_a': DataTypeNames[self.A.element], 'element_c': DataTypeNames[self.C.element], 'core_name': self.core_name() }) return extended_name # def layout_name(self): if self.is_complex() or self.is_planar_complex(): return "%s" % ( ShortComplexLayoutNames[(self.A.layout, self.A.complex_transform)] ) return "%s" % (ShortLayoutTypeNames[self.A.layout]) # def side_mode_name(self): return "%s" % (ShortSideModeNames[self.A.side_mode]) # def fill_mode_name(self): return "%s" % (ShortFillModeNames[self.A.fill_mode]) # def procedural_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' threadblock = self.tile_description.procedural_name() opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] alignment = self.C.alignment return SubstituteTemplate( "cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}_${side_mode}_${fill_mode}_align${alignment}", { 'opcode_class': opcode_class_name, 'extended_name': self.extended_name(), 'threadblock': threadblock, 'layout': self.layout_name(), 'side_mode': self.side_mode_name(), 'fill_mode': self.fill_mode_name(), 'alignment': "%d" % alignment, } ) # def configuration_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' return self.procedural_name() ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### # class EmitSymmUniversalInstance: ''' Responsible for emitting a CUTLASS template definition''' def __init__(self): self.symm_template = """ // Symm operator ${operation_name} using Operation_${operation_name} = typename cutlass::gemm::device::Symm< ${element_a}, ${layout_a}, ${side_mode}, ${fill_mode}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, ${stages}, ${align_a}, ${align_b}, ${split_k_serial}, ${math_operation} >; """ self.symm_complex_template = """ // Symm operator ${operation_name} using Operation_${operation_name} = typename cutlass::gemm::device::Symm< ${element_a}, ${layout_a}, ${side_mode}, ${fill_mode}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, ${stages}, ${align_a}, ${align_b}, ${split_k_serial}, ${math_operation}, ${blas_mode} >; """ def emit(self, operation): threadblock_shape = operation.tile_description.threadblock_shape warp_count = operation.tile_description.warp_count warp_shape = [threadblock_shape[idx] // warp_count[idx] for idx in range(3)] epilogue_vector_length = int(min(operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element]) values = { 'operation_name': operation.procedural_name(), 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[operation.A.layout], 'side_mode': SideModeTag[operation.A.side_mode], 'fill_mode': FillModeTag[operation.A.fill_mode], 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[operation.B.layout], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_vector_length': str(epilogue_vector_length), 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'align_a': str(operation.A.alignment), 'align_b': str(operation.B.alignment), 'split_k_serial': 'false', 'math_operation': MathOperationTag[operation.tile_description.math_instruction.math_operation], 'blas_mode': BlasModeTag[operation.blas_mode] } symm_template = self.symm_complex_template if operation.is_complex() else self.symm_template return SubstituteTemplate(symm_template, values) ################################################################################################### ################################################################################################### # # Emitters functions for all targets # ################################################################################################### class EmitSymmConfigurationLibrary: def __init__(self, operation_path, configuration_name): self.configuration_name = configuration_name self.configuration_path = os.path.join(operation_path, "%s.cu" % configuration_name).replace('\\', '/') self.instance_emitter = { SymmKind.Universal: EmitSymmUniversalInstance, } self.symm_kind_wrappers = { SymmKind.Universal: 'SymmOperation', } self.instance_template = { SymmKind.Universal: """ ${compile_guard_start} manifest.append(new ${symm_kind}< Operation_${operation_name} >("${operation_name}")); ${compile_guard_end} """ } self.header_template = """ /* Generated by symm_operation.py - Do not edit. */ /////////////////////////////////////////////////////////////////////////////////////////////////// #include "cutlass/cutlass.h" #include "cutlass/library/library.h" #include "cutlass/library/manifest.h" #include "library_internal.h" #include "symm_operation.h" /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.initialize_function_template = """ /////////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace library { /////////////////////////////////////////////////////////////////////////////////////////////////// void initialize_${configuration_name}(Manifest &manifest) { """ self.epilogue_template = """ } /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////// """ def __enter__(self): self.configuration_file = open(self.configuration_path, "w") self.configuration_file.write(self.header_template) self.instance_definitions = [] self.instance_wrappers = [] self.operations = [] return self def emit(self, operation): emitter = self.instance_emitter[operation.symm_kind]() self.operations.append(operation) self.instance_definitions.append(emitter.emit(operation)) self.instance_wrappers.append(SubstituteTemplate(self.instance_template[operation.symm_kind], { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name(), 'symm_kind': self.symm_kind_wrappers[operation.symm_kind], 'compile_guard_start': SubstituteTemplate(self.wmma_guard_start, {'sm_number': str(operation.arch)}) \ if operation.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp else "", 'compile_guard_end': "#endif" \ if operation.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp else "" })) def __exit__(self, exception_type, exception_value, traceback): # Write instance definitions in top-level namespace for instance_definition in self.instance_definitions: self.configuration_file.write(instance_definition) # Add wrapper objects within initialize() function self.configuration_file.write(SubstituteTemplate(self.initialize_function_template, { 'configuration_name': self.configuration_name })) for instance_wrapper in self.instance_wrappers: self.configuration_file.write(instance_wrapper) self.configuration_file.write(self.epilogue_template) self.configuration_file.close() ###################################################################################################
cutlass-main
tools/library/scripts/symm_operation.py
# # \file generator.py # # \brief Generates the CUTLASS Library's instances # # import enum import os.path import shutil import functools import operator from library import * ################################################################################################### # # Data structure modeling a TRMM operation # ################################################################################################### # class TrmmOperation: # def __init__(self, trmm_kind, arch, tile_description, A, B, C, element_epilogue, \ epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity8): self.operation_kind = OperationKind.Trmm self.arch = arch self.tile_description = tile_description self.trmm_kind = trmm_kind self.A = A self.B = B self.C = C self.element_epilogue = element_epilogue self.epilogue_functor = epilogue_functor self.swizzling_functor = swizzling_functor # def is_complex(self): complex_operators = [ MathOperation.multiply_add_complex, MathOperation.multiply_add_complex_gaussian, MathOperation.multiply_add_complex_fast_f32 ] return self.tile_description.math_instruction.math_operation in complex_operators return False # def is_planar_complex(self): # return self.trmm_kind in (TrmmKind.PlanarComplex, TrmmKind.PlanarComplexArray) return False # def accumulator_type(self): accum = self.tile_description.math_instruction.element_accumulator if self.is_complex(): return get_complex_from_real(accum) return accum # def short_math_name(self): if self.tile_description.math_instruction.math_operation == MathOperation.multiply_add_complex_gaussian: return "g%s" % ShortDataTypeNames[self.accumulator_type()] return ShortDataTypeNames[self.accumulator_type()] # def core_name(self): ''' The basic operation kind is prefixed with a letter indicating the accumulation type. ''' inst_shape = '' inst_operation = '' intermediate_type = '' math_operations_map = { MathOperation.xor_popc: 'xor', MathOperation.and_popc: 'and' } if self.tile_description.math_instruction.opcode_class == OpcodeClass.TensorOp or \ self.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp: math_op = self.tile_description.math_instruction.math_operation math_op_string = math_operations_map[math_op] if math_op in math_operations_map.keys() else '' inst_shape = "%d%d%d" % tuple(self.tile_description.math_instruction.instruction_shape) inst_shape += math_op_string if self.tile_description.math_instruction.element_a != self.A.element and \ self.tile_description.math_instruction.element_a != self.tile_description.math_instruction.element_accumulator: intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] return "%s%s%s%s" % (self.short_math_name(), inst_shape, intermediate_type, TrmmKindNames[self.trmm_kind]) # def extended_name(self): ''' Append data types if they differ from compute type. ''' if self.is_complex(): extended_name = "${core_name}" else: if self.C.element != self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${element_c}_${core_name}_${element_a}" elif self.C.element == self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = SubstituteTemplate(extended_name, { 'element_a': DataTypeNames[self.A.element], 'element_c': DataTypeNames[self.C.element], 'core_name': self.core_name() }) return extended_name # def layout_name(self): if self.is_complex() or self.is_planar_complex(): return "%s%s" % ( ShortComplexLayoutNames[(self.A.layout, self.A.complex_transform)], ShortComplexLayoutNames[(self.B.layout, self.B.complex_transform)] ) return "%s%s" % (ShortLayoutTypeNames[self.A.layout], ShortLayoutTypeNames[self.B.layout]) # def side_mode_name(self): return "%s" % (ShortSideModeNames[self.A.side_mode]) # def fill_mode_name(self): return "%s" % (ShortFillModeNames[self.A.fill_mode]) # def diag_type_name(self): return "%s" % (ShortDiagTypeNames[self.A.diag_type]) # def procedural_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' threadblock = self.tile_description.procedural_name() opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] alignment = max([self.C.alignment]) return SubstituteTemplate( "cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}_${side_mode}_${fill_mode}_${diag_type}_align${alignment}", { 'opcode_class': opcode_class_name, 'extended_name': self.extended_name(), 'threadblock': threadblock, 'layout': self.layout_name(), 'side_mode': self.side_mode_name(), 'fill_mode': self.fill_mode_name(), 'diag_type': self.diag_type_name(), 'alignment': "%d" % self.C.alignment, } ) # def configuration_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' return self.procedural_name() ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### # class EmitTrmmUniversalInstance: ''' Responsible for emitting a CUTLASS template definition''' def __init__(self): self.trmm_template = """ // Trmm operator ${operation_name} using Operation_${operation_name} = typename cutlass::gemm::device::Trmm< ${element_a}, ${layout_a}, ${side_mode}, ${fill_mode}, ${diag_type}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue}, cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling >, ${swizzling_functor}, ${stages}, ${align_a}, ${align_b}, ${split_k_serial}, ${math_operation} >; """ self.trmm_complex_template = """ // Trmm operator ${operation_name} using Operation_${operation_name} = typename cutlass::gemm::device::Trmm< ${element_a}, ${layout_a}, ${side_mode}, ${fill_mode}, ${diag_type}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue}, cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling >, ${swizzling_functor}, ${stages}, ${align_a}, ${align_b}, ${split_k_serial}, ${math_operation}, ${transform_a} >; """ def emit(self, operation): threadblock_shape = operation.tile_description.threadblock_shape warp_count = operation.tile_description.warp_count warp_shape = [threadblock_shape[idx] // warp_count[idx] for idx in range(3)] epilogue_vector_length = int(min(operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element]) values = { 'operation_name': operation.procedural_name(), 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[operation.A.layout], 'side_mode' : SideModeTag[operation.A.side_mode], 'fill_mode': FillModeTag[operation.A.fill_mode], 'diag_type' : DiagTypeTag[operation.A.diag_type], 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[operation.B.layout], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_vector_length': str(epilogue_vector_length), 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'align_a': str(1), # TRMM A's alignment is always 1 for no padding to work until we make zfill work with variable bytes 'align_b': str(operation.B.alignment), 'split_k_serial': 'false', 'math_operation': MathOperationTag[operation.tile_description.math_instruction.math_operation], 'transform_a': ComplexTransformTag[operation.A.complex_transform] } trmm_template = self.trmm_complex_template if operation.is_complex() else self.trmm_template return SubstituteTemplate(trmm_template, values) ################################################################################################### ################################################################################################### # # Emitters functions for all targets # ################################################################################################### class EmitTrmmConfigurationLibrary: def __init__(self, operation_path, configuration_name): self.configuration_name = configuration_name self.configuration_path = os.path.join(operation_path, "%s.cu" % configuration_name).replace('\\', '/') self.instance_emitter = { TrmmKind.Universal: EmitTrmmUniversalInstance, } self.trmm_kind_wrappers = { TrmmKind.Universal: 'TrmmOperation', } self.instance_template = { TrmmKind.Universal: """ ${compile_guard_start} manifest.append(new ${trmm_kind}< Operation_${operation_name} >("${operation_name}")); ${compile_guard_end} """ } self.header_template = """ /* Generated by trmm_operation.py - Do not edit. */ /////////////////////////////////////////////////////////////////////////////////////////////////// #include "cutlass/cutlass.h" #include "cutlass/library/library.h" #include "cutlass/library/manifest.h" #include "library_internal.h" #include "trmm_operation.h" /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.initialize_function_template = """ /////////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace library { /////////////////////////////////////////////////////////////////////////////////////////////////// void initialize_${configuration_name}(Manifest &manifest) { """ self.epilogue_template = """ } /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////// """ def __enter__(self): self.configuration_file = open(self.configuration_path, "w") self.configuration_file.write(self.header_template) self.instance_definitions = [] self.instance_wrappers = [] self.operations = [] return self def emit(self, operation): emitter = self.instance_emitter[operation.trmm_kind]() self.operations.append(operation) self.instance_definitions.append(emitter.emit(operation)) self.instance_wrappers.append(SubstituteTemplate(self.instance_template[operation.trmm_kind], { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name(), 'trmm_kind': self.trmm_kind_wrappers[operation.trmm_kind], 'compile_guard_start': SubstituteTemplate(self.wmma_guard_start, {'sm_number': str(operation.arch)}) \ if operation.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp else "", 'compile_guard_end': "#endif" \ if operation.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp else "" })) def __exit__(self, exception_type, exception_value, traceback): # Write instance definitions in top-level namespace for instance_definition in self.instance_definitions: self.configuration_file.write(instance_definition) # Add wrapper objects within initialize() function self.configuration_file.write(SubstituteTemplate(self.initialize_function_template, { 'configuration_name': self.configuration_name })) for instance_wrapper in self.instance_wrappers: self.configuration_file.write(instance_wrapper) self.configuration_file.write(self.epilogue_template) self.configuration_file.close() ###################################################################################################
cutlass-main
tools/library/scripts/trmm_operation.py
# Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # this file creates the test/unit/gemm/device simt tests outputDir = "" ################################################################################ # parameters # Edge - for tiles, the edges represent the length of one side # Ratio - the maximum ratio between 2 edges, limits the skinnyness of tiles # MaxEdge - maximum length of each edge # Min/Max - minimum/maximum of the product of edge lengths ################################################################################ warpsPerThreadblockEdge = [1, 2, 4, 8, 16] warpsPerThreadblockRatio = 2 warpsPerThreadblockMax = 16 # NOTE 1x32 and 2x16 warp tile shapes fail validation for ~10% of cases warpShapeEdges = [8, 16, 32, 64, 128, 256] warpShapeRatio = 4 warpShapeMax = 64*64 warpShapeMin = 8*8 threadblockEdgeMax = 256 # char, type bits/elem, max tile, L0 threadblock tiles precisions = [ ["c", "cutlass::complex<float>", 64, 64*128, [ [ 64, 128], [ 64, 32] ] ], ["q", "cutlass::Quaternion<float>", 64, 64*128, [ [ 64, 128], [ 64, 32] ] ], ["d", "double", 64, 64*64, [ [ 64, 64], [ 32, 32] ] ], ["h", "cutlass::half_t", 16, 128*256, [ [256, 128], [ 64, 128], [ 64, 32] ] ], ["i", "int", 32, 128*128, [ [128, 64], [ 16, 32] ] ], ["s", "float", 32, 128*128, [ [128, 256], [128, 128], [ 64, 64] ] ], ["z", "cutlass::complex<double>", 128, 64*64, [ [ 32, 64], [ 16, 32] ] ], ] # L1 will have a single kernel for every unique shape # L2 will have everything else transposes = [ [False, False], [False, True], [True, False], [True, True] ] ################################################################################ # warps per threadblock ################################################################################ warpsPerThreadblocks = [] for warpsPerThreadblock0 in warpsPerThreadblockEdge: for warpsPerThreadblock1 in warpsPerThreadblockEdge: if warpsPerThreadblock0 / warpsPerThreadblock1 <= warpsPerThreadblockRatio and warpsPerThreadblock1 / warpsPerThreadblock0 <= warpsPerThreadblockRatio and warpsPerThreadblock0 * warpsPerThreadblock1 <= warpsPerThreadblockMax: warpsPerThreadblocks.append([warpsPerThreadblock0, warpsPerThreadblock1]) print("WarpsPerThreadblocks",warpsPerThreadblocks) ################################################################################ # warp shapes ################################################################################ warpNumThreads = 32 warpShapes = [] for warp0 in warpShapeEdges: for warp1 in warpShapeEdges: if warp0 / warp1 <= warpShapeRatio and warp1 / warp0 <= warpShapeRatio and warp0*warp1 <= warpShapeMax and warp0*warp1 > warpShapeMin: warpShapes.append([warp0, warp1]) print("WarpShapes", warpShapes) numL0 = 0 numL1 = 0 numL2 = 0 ################################################################################ # create kernels # create a file for each precision/transpose # each file contains many tile sizes ################################################################################ # precisions for precision in precisions: # get precision char precisionChar = precision[0] precisionType = precision[1] precisionBits = precision[2] threadblockMaxElements = precision[3] threadblockTilesL0 = precision[4] # transposes for transpose in transposes: # get transpose char columnMajorA = transpose[0] columnMajorB = transpose[1] transCharA = "n" if columnMajorA else "t" transCharB = "n" if columnMajorB else "t" # open file fileName="simt_%sgemm_%s%s_sm50.cu" % (precisionChar, transCharA, transCharB) print("\n", fileName) filePath = "%s%s" % (outputDir, fileName) out = open(filePath, "w+") # write file header out.write("/***************************************************************************************************\n" " * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. \n" " * SPDX-License-Identifier: BSD-3-Clause \n" " * \n" " * Redistribution and use in source and binary forms, with or without \n" " * modification, are permitted provided that the following conditions are met: \n" " * \n" " * 1. Redistributions of source code must retain the above copyright notice, this \n" " * list of conditions and the following disclaimer. \n" " * \n" " * 2. Redistributions in binary form must reproduce the above copyright notice, \n" " * this list of conditions and the following disclaimer in the documentation \n" " * and/or other materials provided with the distribution. \n" " * \n" " * 3. Neither the name of the copyright holder nor the names of its \n" " * contributors may be used to endorse or promote products derived from \n" " * this software without specific prior written permission. \n" " * \n" " * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" \n" " * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE \n" " * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE \n" " * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE \n" " * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL \n" " * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR \n" " * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER \n" " * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, \n" " * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE \n" " * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. \n" " *\n" " **************************************************************************************************/\n" "/*! \\file\n" " \\brief Tests for device-wide GEMM interface\n" "*/\n" "\n" "#include <iostream>\n" "\n" "#include \"cutlass/cutlass.h\"\n" "#include \"cutlass/gemm/device/gemm.h\"\n" "#include \"cutlass/numeric_types.h\"\n" "\n" "#include \"../../common/cutlass_unit_test.h\"\n" "\n" "#include \"cutlass/util/host_tensor.h\"\n" "#include \"cutlass/util/tensor_view_io.h\"\n" "#include \"cutlass/util/reference/host/tensor_fill.h\"\n" "#include \"cutlass/util/reference/host/tensor_copy.h\"\n" "#include \"cutlass/util/reference/host/tensor_compare.h\"\n" "#include \"cutlass/util/reference/host/gemm.h\"\n" "\n" "#include \"testbed.h\"\n" "\n") foundThreadblockTilesL0 = {} foundThreadblockTilesL1 = {} ######################################################################## # for each combination of tile sizes ######################################################################## for warpsPerThreadblock in warpsPerThreadblocks: for warpShape in warpShapes: warpThreadsM = 0 if warpShape[0] > warpShape[1]: warpThreadsM = 8 else: warpThreadsM = 4 warpThreadsN = warpNumThreads / warpThreadsM # skip shapes with conflicting rectangularity # they are unlikely to be fastest blockG = warpsPerThreadblock[0] > warpsPerThreadblock[1] blockL = warpsPerThreadblock[0] < warpsPerThreadblock[1] warpG = warpShape[0] > warpShape[1] warpL = warpShape[0] < warpShape[1] blockG2 = warpsPerThreadblock[0] > warpsPerThreadblock[1]*2 blockL2 = warpsPerThreadblock[0]*2 < warpsPerThreadblock[1] warpG2 = warpShape[0] > warpShape[1]*2 warpL2 = warpShape[0]*2 < warpShape[1] if blockG2 and warpL: continue if blockL2 and warpG: continue if warpG2 and blockL: continue if warpL2 and blockG: continue # check threadblock ratios and max threadblockTile = [warpShape[0]*warpsPerThreadblock[0], warpShape[1]*warpsPerThreadblock[1]] if threadblockTile[0] * threadblockTile[1] > threadblockMaxElements: continue if threadblockTile[0] > threadblockEdgeMax: continue if threadblockTile[1] > threadblockEdgeMax: continue totalThreads = warpNumThreads*warpsPerThreadblock[0]*warpsPerThreadblock[1] # calculate unroll # ensure that every iteration at least a full load of A,B are done unrollMin = 8 unrollMin0 = totalThreads / threadblockTile[0] unrollMin1 = totalThreads / threadblockTile[1] unroll = max(unrollMin, unrollMin0, unrollMin1) threadTileM = warpShape[0] / warpThreadsM threadTileN = warpShape[1] / warpThreadsN if threadTileM < 2 or threadTileN < 2: continue if threadTileM*threadTileN*precisionBits > 8*8*32: continue # epilogue currently only supports N < WarpNumThreads if threadblockTile[1] < warpNumThreads: continue # limit smem smemBitsA = threadblockTile[0]*unroll*2*precisionBits smemBitsB = threadblockTile[1]*unroll*2*precisionBits smemKBytes = (smemBitsA+smemBitsB)/8/1024 if (smemKBytes > 48): continue # test level 0 testLevel = -1 for tileId in range(0, len(threadblockTilesL0)): tbTile = threadblockTilesL0[tileId] if tbTile[0] == threadblockTile[0] and tbTile[1] == threadblockTile[1]: if tuple(tbTile) not in foundThreadblockTilesL0: testLevel = 0 numL0 += 1 foundThreadblockTilesL0[tuple(tbTile)] = True # test level 1 if testLevel < 0: threadblockTileAlreadyUsed = False if tuple(threadblockTile) not in foundThreadblockTilesL1: testLevel = 1 numL1 += 1 foundThreadblockTilesL1[tuple(threadblockTile)] = True # test level 2 if testLevel < 0: testLevel = 2 numL2 += 1 ################################################################ # write this tile to file ################################################################ print("%ix%ix%i__%ix%i_%ix%i_%ix%i L%i" % ( threadblockTile[0], threadblockTile[1], unroll, threadTileM, threadTileN, warpThreadsM, warpThreadsN, warpsPerThreadblock[0], warpsPerThreadblock[1], testLevel)) out.write("////////////////////////////////////////////////////////////////////////////////\n" "// Elements / Thread: %3i x %3i\n" "// Threads / Warp: %3i x %3i\n" "// Warps / Block: %3i x %3i\n" "// Threadblock: %3i x %3i x %2i\n" % ( threadTileM, threadTileN, warpThreadsM, warpThreadsN, warpsPerThreadblock[0], warpsPerThreadblock[1], threadblockTile[0], threadblockTile[1], unroll ) ) out.write("CUTLASS_TEST_L%i(SM50_device_%sgemm_%s%s, %ix%ix%i_%ix%ix1_%ix%i_%ix%i_%ix%i, {\n" % ( testLevel, precisionChar, transCharA, transCharB, threadblockTile[0], threadblockTile[1], unroll, warpShape[0], warpShape[1], threadTileM, threadTileN, warpThreadsM, warpThreadsN, warpsPerThreadblock[0], warpsPerThreadblock[1] )) out.write(" using precision = %s;\n" % precisionType) out.write(" using ThreadblockShape = cutlass::gemm::GemmShape<%i, %i, %i>;\n" % ( threadblockTile[0], threadblockTile[1], unroll)) out.write(" using WarpShape = cutlass::gemm::GemmShape<%i, %i, %i>;\n\n" % ( warpShape[0], warpShape[1], unroll)) out.write(" static int const kEpilogueElementsPerAccess = 1;\n" " using InstructionShape = cutlass::gemm::GemmShape<1, 1, 1>;\n" " using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombination<\n" " precision, kEpilogueElementsPerAccess, precision, precision>;\n\n") out.write(" using Gemm = cutlass::gemm::device::Gemm<\n" " precision, cutlass::layout::%sMajor,\n" " precision, cutlass::layout::%sMajor,\n" " precision, cutlass::layout::RowMajor,\n" " precision,\n" " cutlass::arch::OpClassSimt,\n" " cutlass::arch::Sm50,\n" " ThreadblockShape, WarpShape, InstructionShape,\n" " EpilogueOutputOp,\n" " cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,\n" " 2 // Stages\n" " >;\n" % ( "Column" if columnMajorA else "Row", "Column" if columnMajorB else "Row", )) out.write(" EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());\n" "} )\n\n") out.close() print("NumKernels:", numL0, numL1, numL2)
cutlass-main
test/unit/gemm/device/simt_sm50.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Tests the high-level GEMM interface """ from math import ceil import unittest import cutlass import cutlass_bindings import cutlass.utils.datatypes as datatypes from cutlass.backend.utils.device import device_cc from utils import ExpectException class GemmEquivalence: """ Helper class for testing the equivalence of different constructions of the Gemm interface """ def __init__(self, element_A, element_B, element_C, element_D, element_accumulator, layout_A, layout_B, layout_C, alignment_A, alignment_B, alignment_C): self.element_A = element_A self.element_B = element_B self.element_C = element_C self.element_D = element_D self.element_accumulator = element_accumulator self.layout_A = layout_A self.layout_B = layout_B self.layout_C = layout_C self.alignment_A = alignment_A self.alignment_B = alignment_B self.alignment_C = alignment_C self.plan = cutlass.op.Gemm(element_A=element_A, element_B=element_B, element_C=element_C, element_D=element_D, element_accumulator=element_accumulator, layout_A=layout_A, layout_B=layout_B, layout_C=layout_C) self.op = self.plan.construct(alignment_A=alignment_A, alignment_B=alignment_B, alignment_C=alignment_C) def _plans_equal(self, other_plan) -> bool: """ Compares whether two plans are equal :param other_plan: plan to compare against the default GEMM :type other_plan: cutlass.op.Gemm :return: whether `other_plan` is equivalent to `self.plan` :rtype: bool """ other_op = other_plan.construct(alignment_A=self.alignment_A, alignment_B=self.alignment_B, alignment_C=self.alignment_C) # Compare whether the operations are equal by comparing the C++ code that would be emitted for them return self.op.rt_module.emit() == other_op.rt_module.emit() def generic_test(self): """ Tests the equivalence of various constructions of the Gemm interface when using CUTLASS data types and layouts for constructing the Gemm interface """ if not datatypes.numpy_available: return # Test when specifying all parameters plan_other = cutlass.op.Gemm(element_A=self.element_A, element_B=self.element_B, element_C=self.element_C, element_D=self.element_D, element_accumulator=self.element_accumulator, layout_A=self.layout_A, layout_B=self.layout_B, layout_C=self.layout_C) assert self._plans_equal(plan_other) # Test when specifying all parameters but A plan_other = cutlass.op.Gemm(element_B=self.element_B, element_C=self.element_C, element_D=self.element_D, element_accumulator=self.element_accumulator, layout_B=self.layout_B, layout_C=self.layout_C, element=self.element_A, layout=self.layout_A) assert self._plans_equal(plan_other) # Test when specifying all parameters but A and B as tensors and using generic element and output # Only run this test if the layouts and types for A and B are equal. if self.element_A == self.element_B and self.layout_A == self.layout_B: plan_other = cutlass.op.Gemm(element_C=self.element_C, element_D=self.element_D, element_accumulator=self.element_accumulator, layout_C=self.layout_C, element=self.element_A, layout=self.layout_A) assert self._plans_equal(plan_other) # Test without explicit accumulator. Only run if the type of C and the accumulator. if self.element_C == self.element_accumulator: plan_other = cutlass.op.Gemm(element_A=self.element_A, element_B=self.element_B, element_C=self.element_C, element_D=self.element_D, layout_A=self.layout_A, layout_B=self.layout_B, layout_C=self.layout_C) assert self._plans_equal(plan_other) # Test with only the generic types and layouts. Only run if types and layouts of A, B, C, and D are the same. if (self.element_A == self.element_B and self.element_A == self.element_C and self.element_A == self.element_D and self.element_A == self.element_accumulator and self.layout_A == self.layout_B and self.layout_A == self.layout_C): plan_other = cutlass.op.Gemm(element=self.element_A, layout=self.layout_A) assert self._plans_equal(plan_other) def numpy_test(self): """ Tests the equivalence of various constructions of the Gemm interface when using numpy as a frontend """ if not datatypes.numpy_available: return import numpy as np type_A = datatypes.numpy_type(self.element_A) type_B = datatypes.numpy_type(self.element_B) type_C = datatypes.numpy_type(self.element_C) type_D = datatypes.numpy_type(self.element_D) type_accum = datatypes.numpy_type(self.element_accumulator) layout_to_order = { cutlass.LayoutType.RowMajor: 'C', cutlass.LayoutType.ColumnMajor: 'F' } size = (2, 2) A = np.zeros(size, order=layout_to_order[self.layout_A], dtype=type_A) B = np.zeros(size, order=layout_to_order[self.layout_B], dtype=type_B) C = np.zeros(size, order=layout_to_order[self.layout_C], dtype=type_C) D = np.zeros(size, order=layout_to_order[self.layout_C], dtype=type_D) # Test when specifying all parameters via tensors plan_np = cutlass.op.Gemm(A=A, B=B, C=C, D=D, element_accumulator=type_accum) assert self._plans_equal(plan_np) # Test when specifying all parameters but A as tensors plan_np = cutlass.op.Gemm(B=B, C=C, D=D, element_accumulator=type_accum, element_A=type_A, layout_A=self.layout_A) assert self._plans_equal(plan_np) # Test when specifying all parameters but A and B as tensors and using generic element and output # Only run this test if the layouts and types for A and B are equal. if type_A == type_B and self.layout_A == self.layout_B: plan_np = cutlass.op.Gemm(C=C, D=D, element_accumulator=type_accum, element=type_A, layout=self.layout_A) assert self._plans_equal(plan_np) # Test without explicit accumulator. Only run if the type of C and the accumulator. if type_C == type_accum: plan_np = cutlass.op.Gemm(A=A, B=B, C=C, D=D) assert self._plans_equal(plan_np) # Test with only the generic types and layouts. Only run if types and layouts of A, B, C, and D are the same. if (type_A == type_B and type_A == type_C and type_A == type_D and type_A == type_accum and self.layout_A == self.layout_B and self.layout_A == self.layout_C): plan_np = cutlass.op.Gemm(element=type_A, layout=self.layout_A) assert self._plans_equal(plan_np) def test_all(self): """ Runs all tests on the Gemm interface """ self.generic_test() self.numpy_test() class GemmEquivalenceTest(unittest.TestCase): """ Tests the equivalence of different constructions of the Gemm interface """ @unittest.skipIf(device_cc() < 70, "Device compute capability is insufficient for FP16 Tensor Core tests.") def test_gemm_equivalence_f16_f16_f16_f16_f16_ttt_8_8_8(self): gemm_eq = GemmEquivalence( element_A=cutlass.DataType.f16, element_B=cutlass.DataType.f16, element_C=cutlass.DataType.f16, element_D=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, layout_A=cutlass.LayoutType.RowMajor, layout_B=cutlass.LayoutType.RowMajor, layout_C=cutlass.LayoutType.RowMajor, alignment_A=8, alignment_B=8, alignment_C=8) gemm_eq.test_all() @unittest.skipIf(device_cc() < 70, "Device compute capability is insufficient for FP16 Tensor Core tests.") def test_gemm_equivalence_f16_f16_f16_f16_f32_ntn_8_8_8(self): gemm_eq = GemmEquivalence( element_A=cutlass.DataType.f16, element_B=cutlass.DataType.f16, element_C=cutlass.DataType.f16, element_D=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, layout_A=cutlass.LayoutType.ColumnMajor, layout_B=cutlass.LayoutType.RowMajor, layout_C=cutlass.LayoutType.ColumnMajor, alignment_A=8, alignment_B=8, alignment_C=8) gemm_eq.test_all() @unittest.skipIf(device_cc() < 70, "Device compute capability is insufficient for FP16 Tensor Core tests.") def test_gemm_equivalence_f16_f16_f16_f16_f16_ttt_4_4_4(self): gemm_eq = GemmEquivalence( element_A=cutlass.DataType.f16, element_B=cutlass.DataType.f16, element_C=cutlass.DataType.f16, element_D=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, layout_A=cutlass.LayoutType.RowMajor, layout_B=cutlass.LayoutType.RowMajor, layout_C=cutlass.LayoutType.RowMajor, alignment_A=8, alignment_B=8, alignment_C=8) gemm_eq.test_all() @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for F64 Tensor Core tests.") def test_gemm_equivalence_f64_f64_f64_f64_f64_tnt_1_1_1(self): gemm_eq = GemmEquivalence( element_A=cutlass.DataType.f64, element_B=cutlass.DataType.f64, element_C=cutlass.DataType.f64, element_D=cutlass.DataType.f64, element_accumulator=cutlass.DataType.f64, layout_A=cutlass.LayoutType.RowMajor, layout_B=cutlass.LayoutType.ColumnMajor, layout_C=cutlass.LayoutType.RowMajor, alignment_A=1, alignment_B=1, alignment_C=1) gemm_eq.test_all() class GemmErrorTests(unittest.TestCase): """ Tests various error scenarios that arise with the high-level Gemm interface """ def test_alignment(self): """ Tests case in which the alignment specified is unsupported """ plan = cutlass.op.Gemm(element=cutlass.DataType.f16, layout=cutlass.LayoutType.RowMajor) with ExpectException(True, 'Alignment 16 is not supported for F16. The construction should fail.'): op = plan.construct(alignment_A=16, alignment_B=16, alignment_C=16) def test_tensorop_availability(self): """ Tests case in which only SIMT operations are available but TensorOp is requested """ cc = device_cc() # F64 Tensor Core operations are only avaiable on devices with CC >= 80 supports_tensorop_f64 = cc >= 80 plan = cutlass.op.Gemm(cc=cc, element=cutlass.DataType.f64, layout=cutlass.LayoutType.RowMajor) error_msg = f'Incorrectly raised an exception for availability of TensorOp with F64 operands on SM{cc}' with ExpectException(not supports_tensorop_f64, error_msg): plan.opclass = cutlass.OpcodeClass.TensorOp expected_opclass = cutlass.OpcodeClass.TensorOp if supports_tensorop_f64 else cutlass.OpcodeClass.Simt assert plan.opclass == expected_opclass, f'Expected opclass to be {expected_opclass}, but received {plan.opclass} for SM{cc}' @unittest.skipIf(device_cc() < 70, "Device compute capability is insufficient for F16 Tensor Core tests.") def test_opclass_switch(self): """ Tests cases in which the opcode class in question is switched (e.g., from TensorOp to SIMT) """ plan = cutlass.op.Gemm( element=cutlass.DataType.f16, layout=cutlass.LayoutType.RowMajor) assert plan.opclass == cutlass.OpcodeClass.TensorOp # Ensure that all tile descriptions have opclass of TensorOp for td in plan.tile_descriptions(): assert td.math_instruction.opcode_class == cutlass_bindings.OpClass.TensorOp plan.opclass = cutlass.OpcodeClass.Simt # Ensure that all tile descriptions have opclass of Simt for td in plan.tile_descriptions(): assert td.math_instruction.opcode_class == cutlass_bindings.OpClass.Simt def test_invalid_tile_description(self): """ Tests scenarios in which an invalid tile description is provided for a given CC """ cc = device_cc() plan = cutlass.op.Gemm(cc=cc, element=cutlass.DataType.f16, layout=cutlass.LayoutType.RowMajor) td = plan.tile_descriptions()[0] stages = td.stages # Zero stage count is valid for SM90+, as this is used to indicate that the builder's auto stage # count should be used with ExpectException(cc < 90, f'Requested zero stages'): td.stages = 0 plan.construct(td) if cc < 90: with ExpectException(cc < 80, f'Requested more than 2 stages on SM{cc}'): td.stages = 3 plan.construct(td) else: original_kschedule = td.kernel_schedule original_eschedule = td.epilogue_schedule with ExpectException(False, f'Incorrectly flagged an error for insufficient shared memory'): td.kernel_schedule = cutlass.KernelScheduleType.TmaWarpSpecializedPingpong td.epilogue_schedule = cutlass.EpilogueScheduleType.NoSmemWarpSpecialized td.stages = 3 plan.construct(td) # Reset schedules td.kernel_schedule = original_kschedule td.epilogue_schedule = original_eschedule with ExpectException(True, f'Requested too many stages'): td.stages = 100 plan.construct(td) # Reset stage count td.stages = stages cluster_shape = td.cluster_shape with ExpectException(cc < 90, f'Requested non-unit cluster shape on SM{cc}'): td.cluster_shape = [2, 1, 1] plan.construct(td) # Reset cluster shape td.cluster_shape = cluster_shape with ExpectException(cc < 90, f'Requested a non-auto schedule on SM{cc}'): td.kernel_schedule = cutlass.KernelScheduleType.TmaWarpSpecializedPingpong td.epilogue_schedule = cutlass.EpilogueScheduleType.TmaWarpSpecialized plan.construct(td) with ExpectException(True, f'Requested a non-auto kernel schedule with an auto epilogue schedule'): td.kernel_schedule = cutlass.KernelScheduleType.TmaWarpSpecializedPingpong td.epilogue_schedule = cutlass.EpilogueScheduleType.ScheduleAuto plan.construct(td) with ExpectException(True, f'Requested an auto kernel schedule with a non-auto epilogue schedule'): td.kernel_schedule = cutlass.KernelScheduleType.ScheduleAuto td.epilogue_schedule = cutlass.EpilogueScheduleType.TmaWarpSpecialized plan.construct(td) with ExpectException(cc < 90, f'Requested a tile scheduler on SM{cc}'): td.kernel_schedule = cutlass.KernelScheduleType.TmaWarpSpecializedCooperative td.epilogue_schedule = cutlass.EpilogueScheduleType.TmaWarpSpecializedCooperative td.tile_scheduler = cutlass.TileSchedulerType.StreamK plan.construct(td) # Ensure that all returned tile descriptions are unique ops = {} for i, td in enumerate(plan.tile_descriptions()): op = plan.construct(td) code_str = op.rt_module.emit() if code_str in ops: conflicting_td = ops[code_str] assert False, f'Multiple tile descriptions emitted {code_str}\nTile descriptions are:\n{td}\n{conflicting_td}' if __name__ == '__main__': unittest.main()
cutlass-main
test/python/interface/gemm_interface.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Tests the high-level Conv2d interface """ from math import ceil import unittest import cutlass import cutlass_bindings import cutlass.utils.datatypes as datatypes from cutlass.backend.utils.device import device_cc from utils import ExpectException import os class Conv2dEquivalence: """ Helper class for testing the equivalence of different constructions of the Conv2d interface """ def __init__(self, conv_kind, element_A, element_B, element_C, element_D, element_accumulator, alignment_A, alignment_B, alignment_C): self.element_A = element_A self.element_B = element_B self.element_C = element_C self.element_D = element_D self.element_accumulator = element_accumulator self.alignment_A = alignment_A self.alignment_B = alignment_B self.alignment_C = alignment_C self.conv_kind = conv_kind self.plan = cutlass.op.Conv2d( kind=self.conv_kind, element_A=element_A, element_B=element_B, element_C=element_C, element_D=element_D, element_accumulator=element_accumulator) self.op = self.plan.construct( alignment_A=self.alignment_A, alignment_B=self.alignment_B, alignment_C=self.alignment_C) def _plans_equal(self, other_plan) -> bool: """ Compares whether two plans are equal :param other_plan: plan to compare against the default Conv2d :type other_plan: cutlass.op.Conv2d :return: whether `other_plan` is equivalent to `self.plan` :rtype: bool """ other_op = other_plan.construct( alignment_A=self.alignment_A, alignment_B=self.alignment_B, alignment_C=self.alignment_C) return self.op.rt_module.emit() == other_op.rt_module.emit() def generic_test(self): """ Tests the equivalence of various constructions of the Conv2d interface when using CUTLASS data types and layouts for constructing the Conv2d interface """ if not datatypes.numpy_available: return # Test when specifying all parameters plan_other = cutlass.op.Conv2d( kind=self.conv_kind, element_A=self.element_A, element_B=self.element_B, element_C=self.element_C, element_D=self.element_D, element_accumulator=self.element_accumulator) assert self._plans_equal(plan_other) # Test when specifying all parameters but A plan_other = cutlass.op.Conv2d( kind=self.conv_kind, element_B=self.element_B, element_C=self.element_C, element_D=self.element_D, element_accumulator=self.element_accumulator, element=self.element_A) assert self._plans_equal(plan_other) # Test when specifying all parameters but A and B as tensors using generic element and output plan_other = cutlass.op.Conv2d( kind=self.conv_kind, element_C=self.element_C, element_D=self.element_D, element_accumulator=self.element_accumulator, element=self.element_A) assert self._plans_equal(plan_other) # Test without explicit accumulator. Only run if the type of C and the accumulator are equal if self.element_C == self.element_accumulator: plan_other = cutlass.op.Conv2d( kind=self.conv_kind, element_C=self.element_C, element_D=self.element_D, element=self.element_A) assert self._plans_equal(plan_other) # Test with only the generic types. Only rune if the types of A, B, C, and D are the same if (self.element_A == self.element_B and self.element_A == self.element_C and self.element_A == self.element_D and self.element_A == self.element_accumulator): plan_other = cutlass.op.Conv2d(kind=self.conv_kind, element=self.element_A) assert self._plans_equal(plan_other) def numpy_test(self): """ Tests the equivalence of various constructions of the Conv2d interface when using numpy as a frontend """ if not datatypes.numpy_available: return import numpy as np type_A = datatypes.numpy_type(self.element_A) type_B = datatypes.numpy_type(self.element_B) type_C = datatypes.numpy_type(self.element_C) type_D = datatypes.numpy_type(self.element_D) type_accum = datatypes.numpy_type(self.element_accumulator) size = (2, 2) A = np.zeros(size, dtype=type_A) B = np.zeros(size, dtype=type_B) C = np.zeros(size, dtype=type_C) D = np.zeros(size, dtype=type_D) return self.tensor_test(type_A, type_B, type_C, type_D, type_accum, A, B, C, D) def torch_test(self): """ Tests the equivalence of various constructions of the Conv2d interface when using torch as a frontend """ if not datatypes.torch_available: return import torch type_A = datatypes.torch_type(self.element_A) type_B = datatypes.torch_type(self.element_B) type_C = datatypes.torch_type(self.element_C) type_D = datatypes.torch_type(self.element_D) type_accum = datatypes.torch_type(self.element_accumulator) size = (2, 2) A = torch.empty(size, dtype=type_A) B = torch.empty(size, dtype=type_B) C = torch.empty(size, dtype=type_C) D = torch.empty(size, dtype=type_D) return self.tensor_test(type_A, type_B, type_C, type_D, type_accum, A, B, C, D) def tensor_test(self, type_A, type_B, type_C, type_D, type_accum, A, B, C, D): # Test when specifying all parameters via tensors plan_np = cutlass.op.Conv2d(kind=self.conv_kind, A=A, B=B, C=C, D=D, element_accumulator=type_accum) assert self._plans_equal(plan_np) # Test when specifying all parameters but A as tensors plan_np = cutlass.op.Conv2d(kind=self.conv_kind, B=B, C=C, D=D, element_accumulator=type_accum, element_A=type_A) assert self._plans_equal(plan_np) # Test when specifying all parameters but A and B as tensors and using generic element and output if type_A == type_B: plan_np = cutlass.op.Conv2d(kind=self.conv_kind, C=C, D=D, element_accumulator=type_accum, element=type_A) assert self._plans_equal(plan_np) # Test without explicit accumulator. Only run if the type of C and the accumulator. if type_C == type_accum: plan_np = cutlass.op.Conv2d(kind=self.conv_kind, A=A, B=B, C=C, D=D) assert self._plans_equal(plan_np) # Test with only the generic types and layouts. Only run if types and layouts of A, B, C, and D are the same. if (type_A == type_B and type_A == type_C and type_A == type_D and type_A == type_accum): plan_np = cutlass.op.Conv2d(kind=self.conv_kind, element=type_A) assert self._plans_equal(plan_np) def test_all(self): """ Runs all tests on the Gemm interface """ self.generic_test() self.numpy_test() self.torch_test() @unittest.skipIf(device_cc() <= 80, 'Device compute capability is insufficient for SM80 tests.') class ConvEquivalenceTest(unittest.TestCase): """ Tests the equivalence of different constructions of the Conv2d interface """ pass type2alignment = { cutlass.DataType.f16: 8, cutlass.DataType.f32: 4 } def add_test(conv_kind, element_A, element_B, element_C, element_D, element_accumulator): test_name = f"test_conv2d_{conv_kind}_{element_A}_{element_B}_{element_C}_{element_D}_{element_accumulator}" def run(self): conv2d_eq = Conv2dEquivalence( conv_kind=conv_kind, element_A=element_A, element_B=element_B, element_C=element_C, element_D=element_D, element_accumulator=element_accumulator, alignment_A=type2alignment[element_A], alignment_B=type2alignment[element_B], alignment_C=type2alignment[element_C] ) conv2d_eq.test_all() setattr(ConvEquivalenceTest, test_name, run) for conv_kind in ["fprop", "wgrad", "dgrad"]: for types in [ [cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16], [cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f32], [cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f16], [cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32], [cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32] ]: add_test(conv_kind, types[0], types[1], types[2], types[3], types[4]) @unittest.skipIf(device_cc() <= 80, 'Device compute capability is insufficient for SM80 tests.') class Conv2dErrorTests(unittest.TestCase): """ Tests various error scenarios that arise with the high-level Gemm interface """ def test_alignment(self): """ Tests case in which the alignment specified is unsupported """ plan = cutlass.op.Conv2d(kind="fprop", element=cutlass.DataType.f16) with ExpectException(True, 'Alignment 3 is not supported for F16. The construction should fail.'): op = plan.construct(alignment_A=3, alignment_B=3, alignment_C=3) def test_invalid_tile_description(self): """ Tests scenarios in which an invalid tile description is provided for a given CC """ plan = cutlass.op.Conv2d(kind="fprop", element=cutlass.DataType.f16) td = plan.tile_descriptions()[0] td.threadblock_shape=[17, 32, 5] plan.tile_description = td with ExpectException(True, 'The threadblock shape is invalid. The compilation should fail.'): plan.compile() # Clean up the error message os.remove("./cutlass_python_compilation_device_error.txt") if __name__ == '__main__': unittest.main()
cutlass-main
test/python/interface/conv2d_interface.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Helper functions & classes for interface test """ class ExpectException: """ Utility class to assert that an exception was raised when expected Example: .. highlight:: python .. code-block:: python with ExceptionExpected(True, 'Division by zero'): x = 1.0 / 0.0 :param exception_expected: whether an exception is expected to be raised :type exception_expected: bool :param message: message to print if an exception is raised when not expected or vice versa :type message: str """ def __init__(self, exception_expected: bool, message: str = ''): self.exception_expected = exception_expected self.message = message def __enter__(self): return self def __exit__(self, exc_type, exc_val, traceback): exception_raised = exc_type is not None assert self.exception_expected == exception_raised, self.message # Suppress the exception return True
cutlass-main
test/python/interface/utils.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Low-level functionality tests for Conv2d operands on SM80 """ from conv2d_test_utils import * import cutlass import logging cutlass.set_log_level(logging.WARNING) cc = 80 @unittest.skipIf(device_cc() != cc, 'Device compute capability is invalid for SM80 tests.') class Conv2dSm80(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass conv_problems = get_conv_problems() # Tests for optimized & analytic for conv_kind in ["fprop", "wgrad", "dgrad"]: # F16, simt add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="simt", threadblock_shape=[128, 128, 8], warp_count=[4, 2, 1], stages=2, instruction_shape=[1, 1, 1]) # F16, tensor op add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16]) # F16, tensor op, analytic iterator add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], iterator_algorithm="analytic") # F16, tensor op, f32 output add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f32, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16]) # F16, tensor op, different tile description add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 64, 32], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 8]) # F32, simt add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32, opclass="simt", threadblock_shape=[128, 128, 8], warp_count=[4, 2, 1], stages=4, instruction_shape=[1, 1, 1]) # Tf32, tensorop add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32, opclass="tensor_op", threadblock_shape=[128, 128, 16], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 8] ) # Split-K add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], split_k_mode="serial", split_k_slices=2) add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], split_k_mode="parallel", split_k_slices=5) # Swizzling functor add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 64, 32], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 8], swizzle=4) # Tests for few channels and fixed channels # F16, tensor op, few channels for c, tb, stage, inst in zip([2, 1], [[128, 128, 64], [128, 128, 32]], [3, 2], [[16, 8, 16], [16, 8, 8]]): add_test( Conv2dSm80, cc, "fprop", conv2d_few_channel_problemsizes(c), cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=tb, warp_count=[2, 2, 1], stages=stage, instruction_shape=inst, iterator_algorithm="few_channels" ) # F16, tensor op, fixed channels for c in [8, 4, 2]: add_test( Conv2dSm80, cc, "fprop", conv2d_few_channel_problemsizes(c), cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], iterator_algorithm="fixed_channels" ) # Test activations for activation in ["relu", "leaky_relu"]: for split_k_mode, split_k_slices in zip(["parallel", "serial", "parallel"], [1, 7, 5]): add_test( Conv2dSm80, cc, "fprop", conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], split_k_mode=split_k_mode, split_k_slices=split_k_slices, activation=activation) if __name__ == '__main__': unittest.main()
cutlass-main
test/python/conv2d/conv2d_sm80.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Util Functions for Conv2d Test """ import torch import cutlass import unittest import cutlass_bindings from cutlass.utils.datatypes import binding_type, binding_opclass from cutlass.backend.test.conv2d_testbed import Conv2dLauncher, getTensorRef, getTensorView from cutlass.backend.utils.device import device_cc from cutlass.backend.test.utils import get_name_conv2d import numpy as np def conv2d_few_channel_problemsizes(channels): problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 8, 8, channels), cutlass_bindings.Tensor4DCoord(16, 3, 3, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 16, 16, channels), cutlass_bindings.Tensor4DCoord(16, 3, 3, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 16, 16, channels), cutlass_bindings.Tensor4DCoord(16, 7, 7, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 224, 224, channels), cutlass_bindings.Tensor4DCoord(32, 7, 7, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 224, 224, channels), cutlass_bindings.Tensor4DCoord(64, 7, 7, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 224, 224, channels), cutlass_bindings.Tensor4DCoord(64, 5, 5, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 224, 224, channels), cutlass_bindings.Tensor4DCoord(64, 5, 5, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] return problem_sizes torch_dtype = { cutlass.DataType.f16: torch.float16, cutlass.DataType.f32: torch.float32, cutlass.DataType.f64: torch.float64 } numpy_dtype = { cutlass.DataType.f16: np.float16, cutlass.DataType.f32: np.float32, cutlass.DataType.f64: np.float64 } def validate_problem_size(ps, conv_kind, split_k_slices): P = (ps.H + 2 * ps.pad_h - ps.dilation_h * (ps.R - 1) - 1) // ps.stride_h + 1 Q = (ps.W + 2 * ps.pad_w - ps.dilation_w * (ps.S - 1) - 1) // ps.stride_w + 1 if P != ps.P or Q != ps.Q: return False # Split-K (serial or parallel) is not supported for strided dgrad if conv_kind == "dgrad" and split_k_slices > 1 and (ps.stride_h > 1 or ps.stride_w > 1): return False return True # Override the backend launcher class Conv2dLauncherFrontend(Conv2dLauncher): def __init__(self, plan: cutlass.Conv2d, seed: int = 80, backend="numpy"): self.operation = plan self.conv_kind = plan.conv_kind self.seed = seed self.backend = backend self.dtype_A = plan._element_a self.dtype_B = plan._element_b self.dtype_C = plan._element_c self.dtype_acc = plan._element_accumulator self.layout_A = cutlass_bindings.TensorNHWC self.layout_B = cutlass_bindings.TensorNHWC self.layout_C = cutlass_bindings.TensorNHWC self.layout_D = cutlass_bindings.TensorNHWC self.element_compute = cutlass_bindings.float32 self.enable_cached_results = True # Get randomization_max if self.dtype_A in [cutlass.DataType.f16, cutlass.DataType.bf16]: if self.dtype_acc in [cutlass.DataType.f16, cutlass.DataType.bf16]: self.randomization_max = 2 else: self.randomization_max = 3 else: self.randomization_max = 7 self.activation = plan.activation self.host_conv2d = cutlass_bindings.test.conv.host.conv2d def set_seed(self): if self.backend == "numpy": np.random.seed(self.seed) else: torch.manual_seed(self.seed) def uniform_init(self, size, dtype): if self.backend == "numpy": return super().uniform_init(size, numpy_dtype[dtype]) else: tensor = torch.ceil( torch.empty(size=size, dtype=torch_dtype[dtype], device="cuda").uniform_(-self.randomization_max - 0.5, self.randomization_max - 0.5) ).to(memory_format=torch.channels_last) return tensor def zeros_like(self, tensor): if self.backend == "numpy": return np.zeros_like(tensor) else: return torch.zeros_like(tensor).to(memory_format=torch.channels_last) def reference(self, ps, A, B, C, alpha, beta, activation): if self.backend == "numpy": numpy_result = self.host_reference(ps, A, B, C, alpha, beta, activation) return numpy_result else: if self.conv_kind == cutlass_bindings.conv.Operator.fprop: torch_result = alpha * torch.ops.aten.conv2d( A, B, stride=(ps.stride_h, ps.stride_w), padding=(ps.pad_h, ps.pad_w), dilation=(ps.dilation_h, ps.dilation_w) ) + beta * C elif self.conv_kind == cutlass_bindings.conv.Operator.dgrad: torch_result = alpha * torch.nn.grad.conv2d_input( (ps.N, ps.C, ps.H, ps.W), B, A, padding=(ps.pad_h, ps.pad_w), stride=(ps.stride_h, ps.stride_w) ) + beta * C elif self.conv_kind == cutlass_bindings.conv.Operator.wgrad: torch_result = alpha * torch.nn.grad.conv2d_weight( B, (ps.K, ps.C, ps.R, ps.S), A, padding=(ps.pad_h, ps.pad_w), stride=(ps.stride_h, ps.stride_w) ) + beta * C else: raise Exception(f"Conv kind {self.conv_kind} is currently unsupported.") if activation == cutlass.backend.epilogue.relu: torch_result = torch.nn.functional.relu(torch_result) elif activation == cutlass.backend.epilogue.leaky_relu: torch_result = torch.nn.functional.leaky_relu(torch_result, 0.5) return torch_result def host_reference(self, problem_size, tensor_A, tensor_B, tensor_C, alpha, beta, activation): if self.element_compute == cutlass_bindings.float16: alpha = cutlass_bindings.float16(alpha) beta = cutlass_bindings.float16(beta) elif self.element_compute == cutlass_bindings.int32: alpha = int(alpha) beta = int(beta) else: alpha = alpha beta = beta # If cached result is loaded cached_result_loaded = False if self.enable_cached_results: # Get problem key cached_test_key = cutlass_bindings.test.conv.host.CreateCachedConv2dTestKey( self.conv_kind, problem_size, alpha, beta, getTensorView( tensor_A, self.layout_A, self.conv_kind, problem_size, "a" ), getTensorView( tensor_B, self.layout_B, self.conv_kind, problem_size, "b" ), getTensorView( tensor_C, self.layout_C, self.conv_kind, problem_size, "c" ), ) cached_test_key.problem = cached_test_key.problem + f"_{activation.tag.split('::')[-1]}" cached_test_result = cutlass_bindings.test.conv.host.CachedTestResult() conv2d_result_cache_name = "cached_results_SM%d_%d.txt" % ( self.operation.arch, self.seed, ) cached_results = cutlass_bindings.test.conv.host.CachedTestResultListing( conv2d_result_cache_name ) # CachedTestResultListing cached_results(conv2d_result_cache_name); cached = cached_results.find(cached_test_key) cached_result_loaded = cached[0] if cached_result_loaded: cached_test_result = cached[1] if not cached_result_loaded: # Compute the conv2d on host tensor_D_ref = np.ones_like(tensor_C) tensor_ref_A = getTensorRef( tensor_A, self.layout_A, self.conv_kind, problem_size, "a" ) tensor_ref_B = getTensorRef( tensor_B, self.layout_B, self.conv_kind, problem_size, "b" ) tensor_ref_C = getTensorRef( tensor_C, self.layout_C, self.conv_kind, problem_size, "c" ) tensor_ref_D_ref = getTensorRef( tensor_D_ref, self.layout_D, self.conv_kind, problem_size, "d" ) self.host_conv2d( self.conv_kind, problem_size, tensor_ref_A, tensor_ref_B, tensor_ref_C, tensor_ref_D_ref, alpha, beta, ) if activation == cutlass.backend.epilogue.leaky_relu: tensor_D_ref = activation.numpy(tensor_D_ref, 0.5) else: tensor_D_ref = activation.numpy(tensor_D_ref) tensor_view_D_ref = getTensorView( tensor_D_ref, self.layout_D, self.conv_kind, problem_size, "d" ) if self.enable_cached_results: cached_test_result.D = cutlass_bindings.test.conv.host.TensorHash( tensor_view_D_ref ) cached_results = ( cutlass_bindings.test.conv.host.CachedTestResultListing( conv2d_result_cache_name ) ) cached_results.append(cached_test_key, cached_test_result) cached_results.write(conv2d_result_cache_name) else: return tensor_D_ref return cached_test_result.D def equal(self, tensor_D, tensor_D_ref, problem_size): if self.backend == "numpy": return super().equal(tensor_D, tensor_D_ref, problem_size) else: torch.cuda.synchronize() return torch.equal(tensor_D, tensor_D_ref) def run(self, ps, split_k_mode=cutlass_bindings.conv.SplitKMode.Serial, split_k_slices=1, alpha=1.0, beta=0.0): # # Initialize input and output tensors # if self.conv_kind == cutlass_bindings.conv.Operator.fprop: if self.backend == "torch": tensor_A_size = (ps.N, ps.C, ps.H, ps.W) tensor_B_size = (ps.K, ps.C, ps.R, ps.S) tensor_C_size = (ps.N, ps.K, ps.P, ps.Q) else: tensor_A_size = (ps.N, ps.H, ps.W, ps.C) tensor_B_size = (ps.K, ps.R, ps.S, ps.C) tensor_C_size = (ps.N, ps.P, ps.Q, ps.K) elif self.conv_kind == cutlass_bindings.conv.Operator.dgrad: if self.backend == "torch": tensor_A_size = (ps.N, ps.K, ps.P, ps.Q) tensor_B_size = (ps.K, ps.C, ps.R, ps.S) tensor_C_size = (ps.N, ps.C, ps.H, ps.W) else: tensor_A_size = (ps.N, ps.P, ps.Q, ps.K) tensor_B_size = (ps.K, ps.R, ps.S, ps.C) tensor_C_size = (ps.N, ps.H, ps.W, ps.C) elif self.conv_kind == cutlass_bindings.conv.Operator.wgrad: if self.backend == "torch": tensor_A_size = (ps.N, ps.K, ps.P, ps.Q) tensor_B_size = (ps.N, ps.C, ps.H, ps.W) tensor_C_size = (ps.K, ps.C, ps.R, ps.S) else: tensor_A_size = (ps.N, ps.P, ps.Q, ps.K) tensor_B_size = (ps.N, ps.H, ps.W, ps.C) tensor_C_size = (ps.K, ps.R, ps.S, ps.C) else: raise Exception(f"Conv kind {self.conv_kind} is not supported") self.set_seed() tensor_A = self.uniform_init(size=tensor_A_size, dtype=self.dtype_A) tensor_B = self.uniform_init(size=tensor_B_size, dtype=self.dtype_B) tensor_C = self.uniform_init(size=tensor_C_size, dtype=self.dtype_C) tensor_D = self.zeros_like(tensor_C) self.operation.run(tensor_A, tensor_B, tensor_C, tensor_D, stride=(ps.stride_h, ps.stride_w), padding=(ps.pad_h, ps.pad_w), dilation=(ps.dilation_h, ps.dilation_w), alpha=alpha, beta=beta, split_k=(split_k_mode, split_k_slices)) tensor_D_ref = self.reference( ps, tensor_A, tensor_B, tensor_C, alpha, beta, self.activation ) return self.equal(tensor_D, tensor_D_ref, ps) def add_test( cls, cc, conv_kind, problem_sizes, element, element_accumulator, element_output, opclass, threadblock_shape, warp_count, instruction_shape, stages, iterator_algorithm=None, swizzle=None, split_k_mode="serial", split_k_slices=1, activation = "identity" ): """Create a test-running function with the given specification""" test_name = get_name_conv2d( cc, conv_kind, element, element_accumulator, element_output, opclass, threadblock_shape, warp_count, instruction_shape, stages, iterator_algorithm, swizzle, split_k_mode, split_k_slices, activation) def run(self): # Create the plan plan = cutlass.Conv2d( kind=conv_kind, element=element, element_accumulator=element_accumulator, element_C=element_output, element_D=element_output ) # Set the opclass plan.opclass = opclass # Set the tile description td = { "threadblock_shape": threadblock_shape, "warp_count": warp_count, "stages": stages, "instruction_shape": instruction_shape, } plan.tile_description = td # Set iterator algorithm if iterator_algorithm is not None: plan.iterator_algorithm = iterator_algorithm # Set swizzling functor if swizzle is not None: plan.swizzling_stride = swizzle if activation != "identity": if activation == "leaky_relu": plan.activation = (cutlass.epilogue.leaky_relu, 0.5) else: plan.activation = getattr(cutlass.epilogue, activation) conv2d_launcher = Conv2dLauncherFrontend(plan, 80, backend="numpy") for ps in problem_sizes: if not validate_problem_size(ps, conv_kind, split_k_slices): continue self.assertTrue( conv2d_launcher.run(ps, split_k_mode, split_k_slices, 1.0, 0.5) ) setattr(cls, test_name, run) return run def get_conv_problems(): # 64: minimum channel size conv_problems = list(cutlass_bindings.test.conv.TestbedConv2dProblemSizes(64).conv2d_default_sizes) # Insert alignment 4 & 2 tests conv_problems += [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 12), cutlass_bindings.Tensor4DCoord(8, 3, 3, 12), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 14), cutlass_bindings.Tensor4DCoord(8, 3, 3, 14), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 23, 56, 98), cutlass_bindings.Tensor4DCoord(128, 3, 3, 98), cutlass_bindings.Tensor4DCoord(4, 0, 5, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] return conv_problems
cutlass-main
test/python/conv2d/conv2d_test_utils.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import unittest if __name__ == '__main__': loader = unittest.TestLoader() tests = loader.discover('./', 'conv2d_*.py') testRunner = unittest.runner.TextTestRunner() results = testRunner.run(tests) if not results.wasSuccessful(): raise Exception('Test cases failed')
cutlass-main
test/python/conv2d/run_all_tests.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.cu import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class Conv2dDgradImplicitGemmTF32nhwcTF32nhwcTF32nhwcTensorOpF32SM80(unittest.TestCase): def test_SM80_Device_Conv2d_Dgrad_Analytic_ImplicitGemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 16], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Unity, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Dgrad_Optimized_ImplicitGemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 16], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Unity, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class Conv2dDgradImplicitGemmF16nhwcF16nhwcF32nhwcTensorOpF32SM80(unittest.TestCase): def test_SM80_Device_Conv2d_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_unity_stride_stage3(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Unity, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_unity_stride_stage4(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=4, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Unity, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_unity_stride_stage3_64(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Unity, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_unity_stride_stage4_64(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=4, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Unity, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu from cutlass.backend.conv2d_operation import * from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class Conv2dDgradImplicitGemmF16nhwcF16nhwcF16nhwcTensorOpF16SM80(unittest.TestCase): def test_SM80_Device_Conv2d_Dgrad_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float16, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float16) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Unity, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float16, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float16) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Unity, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Dgrad_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_align4(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float16, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float16) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Unity, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 12), cutlass_bindings.Tensor4DCoord(8, 3, 3, 12), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] self.assertTrue(test_all_conv2d(operation, problem_sizes)) def test_SM80_Device_Conv2d_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_align4(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float16, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float16) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Unity, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 12), cutlass_bindings.Tensor4DCoord(8, 3, 3, 12), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] self.assertTrue(test_all_conv2d(operation, problem_sizes)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class Conv2dStridedDgradImplicitGemmF16NHWCF16NHWCF32NHWCTensorOpF32SM80(unittest.TestCase): def test_SM80_Device_Conv2d_Strided_Dgrad_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_128x128_32x3_64x64x32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.StridedDgradIdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Strided_Dgrad_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_128x256_64x3_64x64x64(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 256, 64], stages=3, warp_count=[2, 4, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.StridedDgradIdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Strided_Dgrad_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_align4_128x128_32x3_64x64x32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.StridedDgradIdentitySwizzle1 ) problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 12), cutlass_bindings.Tensor4DCoord(8, 3, 3, 12), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] self.assertTrue(test_all_conv2d(operation, problem_sizes)) def test_SM80_Device_Conv2d_Strided_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_128x128_32x3_64x64x32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.StridedDgradIdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Strided_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_128x128_32x3_64x64x32_align4(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.StridedDgradIdentitySwizzle1 ) problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 56, 56, 12), cutlass_bindings.Tensor4DCoord(8, 1, 1, 12), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 55, 55, 12), cutlass_bindings.Tensor4DCoord(8, 1, 1, 12), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] self.assertTrue(test_all_conv2d(operation, problem_sizes)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") def conv2d_few_channel_problemsizes(channels): problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 8, 8, channels), cutlass_bindings.Tensor4DCoord(16, 3, 3, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 16, 16, channels), cutlass_bindings.Tensor4DCoord(16, 3, 3, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 16, 16, channels), cutlass_bindings.Tensor4DCoord(16, 7, 7, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 224, 224, channels), cutlass_bindings.Tensor4DCoord(32, 7, 7, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 224, 224, channels), cutlass_bindings.Tensor4DCoord(64, 7, 7, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 224, 224, channels), cutlass_bindings.Tensor4DCoord(64, 5, 5, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 224, 224, channels), cutlass_bindings.Tensor4DCoord(64, 5, 5, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] return problem_sizes class Conv2dFpropFewChannelsF16NHWCF16NHWCF16HNWCTensorOpF32SM80(unittest.TestCase): def test_SM80_Device_Conv2d_Fprop_Few_Channels_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_channels_2(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=2) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=2) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.few_channels, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation, conv2d_few_channel_problemsizes(2))) def test_SM80_Device_Conv2d_Fprop_Few_Channels_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_channels_1(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=1) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=1) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=2, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.few_channels, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation, conv2d_few_channel_problemsizes(1))) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class Conv2dWgradImplicitGemmF16nhwcF16nhwcF32nhwcTensorOpF32SM80(unittest.TestCase): def test_Device_Conv2d_Wgrad_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 16], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.wgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Wgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 16], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.wgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Wgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_64x256_32x4_64x64x32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[64, 256, 32], stages=3, warp_count=[1, 4, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.wgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_Device_Conv2d_Wgrad_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_align4(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 16], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.wgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 12), cutlass_bindings.Tensor4DCoord(8, 3, 3, 12), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] self.assertTrue(test_all_conv2d(operation, problem_sizes)) def test_Device_Conv2d_Wgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_align4(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 16], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.wgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 12), cutlass_bindings.Tensor4DCoord(8, 3, 3, 12), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] self.assertTrue(test_all_conv2d(operation, problem_sizes)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py