python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
from .rolling import Rolling from numba import cuda import math import numba number_of_threads = 128 def diff(in_arr, n): if n < 0: return Rolling(1, in_arr, forward_window=-n).forward_diff() elif n > 0: return Rolling(n + 1, in_arr).backward_diff() else: return in_arr def shift(in_arr, n): if n < 0: return Rolling(1, in_arr, forward_window=-n).forward_shift() elif n > 0: return Rolling(n + 1, in_arr).backward_shift() else: return in_arr @cuda.jit def ultimate_oscillator_kernel(high_arr, low_arr, close_arr, TR_arr, BP_arr, arr_len): i = cuda.grid(1) if i < arr_len: if i == 0: TR_arr[i] = 0 BP_arr[i] = 0 else: TR = (max(high_arr[i], close_arr[i - 1]) - min(low_arr[i], close_arr[i - 1])) TR_arr[i] = TR BP = close_arr[i] - min(low_arr[i], close_arr[i - 1]) BP_arr[i] = BP @cuda.jit def port_ultimate_oscillator_kernel(asset_ind, high_arr, low_arr, close_arr, TR_arr, BP_arr, arr_len): i = cuda.grid(1) if i < arr_len: if asset_ind[i] == 1: TR_arr[i] = 0 BP_arr[i] = 0 else: TR = (max(high_arr[i], close_arr[i - 1]) - min(low_arr[i], close_arr[i - 1])) TR_arr[i] = TR BP = close_arr[i] - min(low_arr[i], close_arr[i - 1]) BP_arr[i] = BP @cuda.jit def moneyflow_kernel(pp_arr, volume_arr, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if i == 0: out_arr[i] = 0 else: if pp_arr[i] > pp_arr[i - 1]: out_arr[i] = pp_arr[i] * volume_arr[i] else: out_arr[i] = 0.0 @cuda.jit def port_moneyflow_kernel(asset_ind, pp_arr, volume_arr, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if asset_ind[i] == 1: out_arr[i] = 0 else: if pp_arr[i] > pp_arr[i - 1]: out_arr[i] = pp_arr[i] * volume_arr[i] else: out_arr[i] = 0.0 @cuda.jit def onbalance_kernel(close_arr, volume_arr, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if i == 0: out_arr[i] = 0 else: if close_arr[i] - close_arr[i - 1] > 0: out_arr[i] = volume_arr[i] elif close_arr[i] - close_arr[i - 1] == 0: out_arr[i] = 0.0 else: out_arr[i] = -volume_arr[i] @cuda.jit def port_onbalance_kernel(asset_ind, close_arr, volume_arr, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if asset_ind[i] == 1: out_arr[i] = 0 else: if close_arr[i] - close_arr[i - 1] > 0: out_arr[i] = volume_arr[i] elif close_arr[i] - close_arr[i - 1] == 0: out_arr[i] = 0.0 else: out_arr[i] = -volume_arr[i] @cuda.jit def average_price_kernel(high_arr, low_arr, close_arr, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: out_arr[i] = (high_arr[i] + low_arr[i] + close_arr[i]) / 3.0 @cuda.jit def true_range_kernel(high_arr, low_arr, close_arr, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if i == 0: out_arr[i] = 0 else: out_arr[i] = max(high_arr[i], close_arr[i - 1]) - min(low_arr[i], close_arr[i - 1]) @cuda.jit def port_true_range_kernel(asset_ind, high_arr, low_arr, close_arr, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if asset_ind[i] == 1: out_arr[i] = 0 else: out_arr[i] = max(high_arr[i], close_arr[i - 1]) - min(low_arr[i], close_arr[i - 1]) @cuda.jit def port_mask_kernel(asset_ind, beg, end, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if asset_ind[i] == 1: if beg + i >= 0: for j in range(beg + i, min(end + i, arr_len)): out_arr[j] = math.nan else: for j in range(beg + i + arr_len, min(end + i + arr_len, arr_len)): out_arr[j] = math.nan for j in range(0, min(end + i, arr_len)): out_arr[j] = math.nan @cuda.jit def port_mask_zero_kernel(asset_ind, beg, end, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if asset_ind[i] == 1: if beg + i >= 0: for j in range(beg + i, min(end + i, arr_len)): out_arr[j] = 0 else: for j in range(beg + i + arr_len, min(end + i + arr_len, arr_len)): out_arr[j] = 0 for j in range(0, min(end + i, arr_len)): out_arr[j] = 0 @cuda.jit def lowhigh_diff_kernel(high_arr, low_arr, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if i == 0: out_arr[i] = 0 else: out_arr[i] = abs(high_arr[i] - low_arr[i - 1]) - \ abs(low_arr[i] - high_arr[i - 1]) @cuda.jit def port_lowhigh_diff_kernel(asset_ind, high_arr, low_arr, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if asset_ind[i] == 1: out_arr[i] = 0 else: out_arr[i] = abs(high_arr[i] - low_arr[i - 1]) - \ abs(low_arr[i] - high_arr[i - 1]) @cuda.jit def up_down_kernel(high_arr, low_arr, upD_arr, doD_arr, arr_len): i = cuda.grid(1) if i < arr_len - 1: if (math.isnan(high_arr[i]) or math.isnan(high_arr[i + 1]) or math.isnan(low_arr[i]) or math.isnan(low_arr[i + 1])): upD_arr[i] = math.nan doD_arr[i] = math.nan else: upMove = high_arr[i + 1] - high_arr[i] doMove = low_arr[i] - low_arr[i + 1] if upMove > doMove and upMove > 0: upD_arr[i] = upMove else: upD_arr[i] = 0 if doMove > upMove and doMove > 0: doD_arr[i] = doMove else: doD_arr[i] = 0 elif i == arr_len - 1: upD_arr[i] = math.nan doD_arr[i] = math.nan @cuda.jit def abs_kernel(in_arr, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if math.isnan(in_arr[i]): out_arr[i] = math.nan else: out_arr[i] = abs(in_arr[i]) @cuda.jit def binary_substract(in_arr1, in_arr2, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if (math.isnan(in_arr1[i]) or math.isnan(in_arr2[i])): out_arr[i] = math.nan else: out_arr[i] = in_arr1[i] - in_arr2[i] @cuda.jit def binary_sum(in_arr1, in_arr2, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if (math.isnan(in_arr1[i]) or math.isnan(in_arr2[i])): out_arr[i] = math.nan else: out_arr[i] = in_arr1[i] + in_arr2[i] @cuda.jit def binary_multiply(in_arr1, in_arr2, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if (math.isnan(in_arr1[i]) or math.isnan(in_arr2[i])): out_arr[i] = math.nan else: out_arr[i] = in_arr1[i] * in_arr2[i] @cuda.jit def binary_div(in_arr1, in_arr2, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if (math.isnan(in_arr1[i]) or math.isnan(in_arr2[i])): out_arr[i] = math.nan else: if in_arr2[i] == 0 and in_arr1[i] == 0: out_arr[i] = math.nan elif in_arr2[i] == 0 and in_arr1[i] > 0: out_arr[i] = math.inf elif in_arr2[i] == 0 and in_arr1[i] < 0: out_arr[i] = -math.inf else: out_arr[i] = in_arr1[i] / in_arr2[i] @cuda.jit def scale_kernel(in_arr, scaler, out_arr, arr_len): i = cuda.grid(1) if i < arr_len: if math.isnan(in_arr[i]): out_arr[i] = math.nan else: out_arr[i] = in_arr[i] * scaler def upDownMove(high_arr, low_arr): upD_arr = cuda.device_array_like(high_arr) doD_arr = cuda.device_array_like(high_arr) array_len = len(high_arr) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads up_down_kernel[(number_of_blocks,), (number_of_threads,)](high_arr, low_arr, upD_arr, doD_arr, array_len) return upD_arr, doD_arr def ultimate_osc(high_arr, low_arr, close_arr): TR_arr = cuda.device_array_like(high_arr) BP_arr = cuda.device_array_like(high_arr) array_len = len(high_arr) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads ultimate_oscillator_kernel[(number_of_blocks,), (number_of_threads,)](high_arr, low_arr, close_arr, TR_arr, BP_arr, array_len) return TR_arr, BP_arr def port_ultimate_osc(asset_ind, high_arr, low_arr, close_arr): TR_arr = cuda.device_array_like(high_arr) BP_arr = cuda.device_array_like(high_arr) array_len = len(high_arr) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads port_ultimate_oscillator_kernel[(number_of_blocks,), (number_of_threads,)](asset_ind, high_arr, low_arr, close_arr, TR_arr, BP_arr, array_len) return TR_arr, BP_arr def abs_arr(in_arr): out_arr = cuda.device_array_like(in_arr) array_len = len(in_arr) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads abs_kernel[(number_of_blocks,), (number_of_threads,)](in_arr, out_arr, array_len) return out_arr def true_range(high_arr, low_arr, close_arr): out_arr = cuda.device_array_like(high_arr) array_len = len(high_arr) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads true_range_kernel[(number_of_blocks,), (number_of_threads,)](high_arr, low_arr, close_arr, out_arr, array_len) return out_arr def port_true_range(asset_indicator, high_arr, low_arr, close_arr): out_arr = cuda.device_array_like(high_arr) array_len = len(high_arr) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads port_true_range_kernel[(number_of_blocks,), (number_of_threads,)](asset_indicator, high_arr, low_arr, close_arr, out_arr, array_len) return out_arr def port_mask_nan(asset_indicator, input_arr, beg, end): array_len = len(input_arr) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads port_mask_kernel[(number_of_blocks,), (number_of_threads,)](asset_indicator, beg, end, input_arr, array_len) def port_mask_zero(asset_indicator, input_arr, beg, end): array_len = len(input_arr) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads port_mask_zero_kernel[(number_of_blocks,), (number_of_threads,)](asset_indicator, beg, end, input_arr, array_len) def average_price(high_arr, low_arr, close_arr): out_arr = cuda.device_array_like(high_arr) array_len = len(high_arr) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads average_price_kernel[(number_of_blocks,), (number_of_threads,)](high_arr, low_arr, close_arr, out_arr, array_len) return out_arr def money_flow(pp_arr, volume_arr): out_arr = cuda.device_array_like(pp_arr) array_len = len(pp_arr) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads moneyflow_kernel[(number_of_blocks,), (number_of_threads,)](pp_arr, volume_arr, out_arr, array_len) return out_arr def port_money_flow(asset_ind, pp_arr, volume_arr): out_arr = cuda.device_array_like(pp_arr) array_len = len(pp_arr) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads port_moneyflow_kernel[(number_of_blocks,), (number_of_threads,)](asset_ind, pp_arr, volume_arr, out_arr, array_len) return out_arr def onbalance_volume(close_arr, volume_arr): out_arr = cuda.device_array_like(close_arr) array_len = len(close_arr) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads onbalance_kernel[(number_of_blocks,), (number_of_threads,)](close_arr, volume_arr, out_arr, array_len) return out_arr def port_onbalance_volume(asset_ind, close_arr, volume_arr): out_arr = cuda.device_array_like(close_arr) array_len = len(close_arr) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads port_onbalance_kernel[(number_of_blocks,), (number_of_threads,)](asset_ind, close_arr, volume_arr, out_arr, array_len) return out_arr def lowhigh_diff(high_arr, low_arr): out_arr = cuda.device_array_like(high_arr) array_len = len(high_arr) number_of_blocks = \ (array_len + (number_of_threads - 1)) // number_of_threads lowhigh_diff_kernel[(number_of_blocks,), (number_of_threads,)](high_arr, low_arr, out_arr, array_len) return out_arr def port_lowhigh_diff(asset_ind, high_arr, low_arr): out_arr = cuda.device_array_like(high_arr) array_len = len(high_arr) number_of_blocks = \ (array_len + (number_of_threads - 1)) // number_of_threads port_lowhigh_diff_kernel[(number_of_blocks,), (number_of_threads,)](asset_ind, high_arr, low_arr, out_arr, array_len) return out_arr def substract(in_arr1, in_arr2): out_arr = cuda.device_array_like(in_arr1) array_len = len(in_arr1) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads binary_substract[(number_of_blocks,), (number_of_threads,)](in_arr1, in_arr2, out_arr, array_len) return out_arr def summation(in_arr1, in_arr2): out_arr = cuda.device_array_like(in_arr1) array_len = len(in_arr1) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads binary_sum[(number_of_blocks,), (number_of_threads,)](in_arr1, in_arr2, out_arr, array_len) return out_arr def multiply(in_arr1, in_arr2): out_arr = cuda.device_array_like(in_arr1) array_len = len(in_arr1) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads binary_multiply[(number_of_blocks,), (number_of_threads,)](in_arr1, in_arr2, out_arr, array_len) return out_arr def division(in_arr1, in_arr2): out_arr = cuda.device_array_like(in_arr1) array_len = len(in_arr1) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads binary_div[(number_of_blocks,), (number_of_threads,)](in_arr1, in_arr2, out_arr, array_len) return out_arr def scale(in_arr1, scaler): out_arr = cuda.device_array_like(in_arr1) array_len = len(in_arr1) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads scale_kernel[(number_of_blocks,), (number_of_threads,)](in_arr1, scaler, out_arr, array_len) return out_arr @cuda.jit def cumsum_kernel(in_arr, out_arr, block_arr, arr_len): shared = cuda.shared.array(shape=0, dtype=numba.float64) num_threads = cuda.blockDim.x tx = cuda.threadIdx.x bid = cuda.blockIdx.x partial_sum_offset = num_threads * 2 starting_id = bid * partial_sum_offset # load the in_arr to shared for j in range(2): offset = tx + j * num_threads if (offset + starting_id) < arr_len: shared[offset] = in_arr[offset + starting_id] else: shared[offset] = 0.0 cuda.syncthreads() offset = 1 d = num_threads while d > 0: cuda.syncthreads() if (tx < d): ai = offset*(2*tx+1)-1 bi = offset*(2*tx+2)-1 shared[bi] += shared[ai] offset *= 2 d = d // 2 if (tx == 0): block_arr[bid] = shared[2 * num_threads - 1] shared[2 * num_threads - 1] = 0.0 d = 1 while d < 2 * num_threads: offset = offset // 2 cuda.syncthreads() if tx < d: ai = offset*(2*tx+1)-1 bi = offset*(2*tx+2)-1 t = shared[ai] shared[ai] = shared[bi] shared[bi] += t d *= 2 cuda.syncthreads() # load back to the output for j in range(2): offset = tx + j * num_threads if (offset + starting_id) < arr_len and offset + 1 < 2 * num_threads: out_arr[offset + starting_id] = shared[offset + 1] if tx == 0: arr_id = min(arr_len - 1, starting_id + 2 * num_threads - 1) out_arr[arr_id] = block_arr[bid] @cuda.jit def correct_kernel(in_arr, block_arr, arr_len): num_threads = cuda.blockDim.x tx = cuda.threadIdx.x bid = cuda.blockIdx.x partial_sum_offset = num_threads * 2 starting_id = bid * partial_sum_offset for j in range(2): offset = tx + j * num_threads lookup = bid - 1 if lookup >= 0 and (offset + starting_id) < arr_len: in_arr[offset + starting_id] += block_arr[lookup] def cumsum(g_input, number_of_threads=1024): array_len = len(g_input) number_of_blocks = (array_len + ( number_of_threads * 2 - 1)) // (number_of_threads * 2) shared_buffer_size = (number_of_threads * 2) block_summary = numba.cuda.device_array(number_of_blocks) gpu_out = numba.cuda.device_array_like(g_input) cumsum_kernel[(number_of_blocks,), (number_of_threads,), 0, shared_buffer_size * 8](g_input, gpu_out, block_summary, array_len) if (number_of_blocks == 1): return gpu_out else: block_sum = cumsum(block_summary) correct_kernel[(number_of_blocks,), (number_of_threads,)](gpu_out, block_sum, array_len) return gpu_out
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/cuindicator/util.py
from numba import cuda import numba from .windows import (portfolio_ewma_mean_window) kernel_cache = {} def get_ewm_kernel(method): if method in kernel_cache: return kernel_cache[method] @cuda.jit def kernel(asset_indicator, in_arr, out_arr, average_length, span, arr_len, thread_tile, min_size): """ This kernel is to copy input array elements into shared array. The total window size. To compute output element at i, it uses [i - average_length - 1, i] elements in history. Arguments: in_arr: input gpu array out_arr: output gpu_array average_length: is the size used to compute expoential weighted average span: the span size for the exponential weighted average arr_len: the input/output array length thread_tile: each thread is responsible for `thread_tile` number of elements min_size: the minimum number of non-na elements """ shared = cuda.shared.array(shape=0, dtype=numba.float64) block_size = cuda.blockDim.x tx = cuda.threadIdx.x # Block id in a 1D grid bid = cuda.blockIdx.x starting_id = bid * block_size * thread_tile # copy the thread_tile * number_of_thread_per_block into the shared for j in range(thread_tile): offset = tx + j * block_size if (starting_id + offset) < arr_len: shared[offset + average_length - 1] = in_arr[ starting_id + offset] cuda.syncthreads() # copy the average_length - 1 into the shared for j in range(0, average_length - 1, block_size): if (((tx + j) < average_length - 1) and (starting_id - average_length + 1 + tx + j >= 0)): shared[tx + j] = \ in_arr[starting_id - average_length + 1 + tx + j] cuda.syncthreads() # slice the shared memory for each threads start_shared = tx * thread_tile his_len = min(average_length - 1, starting_id + tx * thread_tile) # slice the global memory for each threads start = starting_id + tx * thread_tile end = min(starting_id + (tx + 1) * thread_tile, arr_len) sub_outarr = out_arr[start:end] sub_len = end - start method(asset_indicator, shared, his_len, sub_outarr, average_length, span, sub_len, average_length - 1 + start_shared, min_size, start) kernel_cache[method] = kernel return kernel class PEwm(object): def __init__(self, span, input_arr, asset_indicator, min_periods=None, thread_tile=48, number_of_threads=64, expand_multiplier=10): """ The Ewm class that is used to do rolling exponential weighted moving average. It uses expand_multiplier * span elements to do the weighted average. So adjust expand_multiplier to adjust accuracy. Arguments: span: the span parameter in the exponential weighted moving average input_arr: the input GPU array or cudf.Series min_periods: the minimum number of non-na elements need to get an output thread_tile: each thread will be responsible for `thread_tile` number of elements in window computation number_of_threads: num. of threads in a block for CUDA computation expand_multiplier: the number of elements used computing EWM is controled by this constant. The higher this number, the better the accuracy but slower in performance """ if isinstance(input_arr, numba.cuda.cudadrv.devicearray.DeviceNDArray): self.gpu_in = input_arr else: self.gpu_in = input_arr.to_gpu_array() if min_periods is None: self.min_periods = span else: self.min_periods = min_periods self.span = span self.window = span * expand_multiplier self.number_of_threads = number_of_threads self.array_len = len(self.gpu_in) self.thread_tile = thread_tile self.number_of_blocks = (self.array_len + (number_of_threads * thread_tile - 1)) // ( number_of_threads * thread_tile) self.shared_buffer_size = \ (self.number_of_threads * self.thread_tile + self.window - 1) if isinstance(asset_indicator, numba.cuda.cudadrv.devicearray.DeviceNDArray): self.asset_indicator = asset_indicator else: self.asset_indicator = asset_indicator.to_gpu_array() def apply(self, method): gpu_out = numba.cuda.device_array_like(self.gpu_in) kernel = get_ewm_kernel(method) kernel[(self.number_of_blocks,), (self.number_of_threads,), 0, self.shared_buffer_size * 8](self.asset_indicator, self.gpu_in, gpu_out, self.window, self.span, self.array_len, self.thread_tile, self.min_periods) return gpu_out def mean(self): return self.apply(portfolio_ewma_mean_window)
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/cuindicator/pewm.py
from .util import shift, diff from .rolling import Rolling from .ewm import Ewm from .pewm import PEwm import cudf import collections import math import numba from .util import (substract, summation, multiply, division, upDownMove, abs_arr, true_range, lowhigh_diff, money_flow, average_price, onbalance_volume, ultimate_osc, scale, port_true_range, port_mask_nan, port_lowhigh_diff, port_money_flow, port_onbalance_volume, port_ultimate_osc, port_mask_zero) def moving_average(close_arr, n): """Calculate the moving average for the given data. :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: moving average in cu.Series """ MA = Rolling(n, close_arr).mean() return cudf.Series(MA, nan_as_null=False) def exponential_moving_average(close_arr, n): """Calculate the exponential weighted moving average for the given data. :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: expoential weighted moving average in cu.Series """ EMA = Ewm(n, close_arr).mean() return cudf.Series(EMA, nan_as_null=False) def port_exponential_moving_average(asset_indicator, close_arr, n): """Calculate the port exponential weighted moving average for the given data. :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: expoential weighted moving average in cu.Series """ EMA = PEwm(n, close_arr, asset_indicator).mean() return cudf.Series(EMA, nan_as_null=False) def port_moving_average(asset_indicator, close_arr, n): """Calculate the port moving average for the given data. :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: expoential weighted moving average in cu.Series """ MA = Rolling(n, close_arr).mean() port_mask_nan(asset_indicator.to_gpu_array(), MA, 0, n - 1) return cudf.Series(MA, nan_as_null=False) def momentum(close_arr, n): """Calculate the momentum for the given data. :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: momentum in cu.Series """ return cudf.Series(diff(close_arr, n), nan_as_null=False) def rate_of_change(close_arr, n): """ Calculate the rate of return :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: rate of change in cu.Series """ M = diff(close_arr, n - 1) N = shift(close_arr, n - 1) return cudf.Series(division(M, N), nan_as_null=False) def port_rate_of_change(asset_indicator, close_arr, n): """ Calculate the port rate of return :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: rate of change in cu.Series """ M = diff(close_arr, n - 1) N = shift(close_arr, n - 1) out = division(M, N) if n - 1 >= 0: port_mask_nan(asset_indicator.to_gpu_array(), out, 0, n - 1) else: port_mask_nan(asset_indicator.to_gpu_array(), out, n - 1, 0) return cudf.Series(out, nan_as_null=False) def port_diff(asset_indicator, close_arr, n): """ Calculate the port diff :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: diff in cu.Series """ M = diff(close_arr.to_gpu_array(), n) if n >= 0: port_mask_nan(asset_indicator.to_gpu_array(), M, 0, n) else: port_mask_nan(asset_indicator.to_gpu_array(), M, n, 0) return cudf.Series(M, nan_as_null=False) def port_shift(asset_indicator, close_arr, n): """ Calculate the port diff :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: shift in cu.Series """ M = shift(close_arr.to_gpu_array(), n) if n >= 0: port_mask_nan(asset_indicator.to_gpu_array(), M, 0, n) else: port_mask_nan(asset_indicator.to_gpu_array(), M, n, 0) return cudf.Series(M, nan_as_null=False) def bollinger_bands(close_arr, n): """Calculate the Bollinger Bands. See https://www.investopedia.com/terms/b/bollingerbands.asp for details :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: b1 b2 """ MA = Rolling(n, close_arr).mean() MSD = Rolling(n, close_arr).std() close_arr_gpu = numba.cuda.device_array_like(close_arr.to_gpu_array()) close_arr_gpu[:] = close_arr.to_gpu_array()[:] close_arr_gpu[0:n-1] = math.nan MSD_4 = scale(MSD, 4.0) b1 = division(MSD_4, MA) b2 = division(summation(substract(close_arr_gpu, MA), scale(MSD, 2.0)), MSD_4) out = collections.namedtuple('Bollinger', 'b1 b2') return out(b1=cudf.Series(b1, nan_as_null=False), b2=cudf.Series(b2, nan_as_null=False)) def port_bollinger_bands(asset_indicator, close_arr, n): """Calculate the port Bollinger Bands. See https://www.investopedia.com/terms/b/bollingerbands.asp for details :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: b1 b2 """ MA = Rolling(n, close_arr).mean() port_mask_nan(asset_indicator.to_gpu_array(), MA, 0, n - 1) MSD = Rolling(n, close_arr).std() port_mask_nan(asset_indicator.to_gpu_array(), MSD, 0, n - 1) close_arr_gpu = numba.cuda.device_array_like(close_arr.to_gpu_array()) close_arr_gpu[:] = close_arr.to_gpu_array()[:] close_arr_gpu[0:n-1] = math.nan MSD_4 = scale(MSD, 4.0) b1 = division(MSD_4, MA) b2 = division(summation(substract(close_arr_gpu, MA), scale(MSD, 2.0)), MSD_4) out = collections.namedtuple('Bollinger', 'b1 b2') return out(b1=cudf.Series(b1, nan_as_null=False), b2=cudf.Series(b2, nan_as_null=False)) def trix(close_arr, n): """Calculate TRIX for given data. :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: trix indicator in cudf.Series """ EX1 = Ewm(n, close_arr).mean() EX2 = Ewm(n, EX1).mean() EX3 = Ewm(n, EX2).mean() return rate_of_change(cudf.Series(EX3, nan_as_null=False), 2) def port_trix(asset_indicator, close_arr, n): """Calculate the port trix. :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: expoential weighted moving average in cu.Series """ EX1 = PEwm(n, close_arr, asset_indicator).mean() EX2 = PEwm(n, EX1, asset_indicator).mean() EX3 = PEwm(n, EX2, asset_indicator).mean() return rate_of_change(cudf.Series(EX3, nan_as_null=False), 2) def macd(close_arr, n_fast, n_slow): """Calculate MACD, MACD Signal and MACD difference :param close_arr: close price of the bar, expect series from cudf :param n_fast: fast time steps :param n_slow: slow time steps :return: MACD MACDsign MACDdiff """ EMAfast = Ewm(n_fast, close_arr).mean() EMAslow = Ewm(n_slow, close_arr).mean() MACD = substract(EMAfast, EMAslow) average_window = 9 MACDsign = Ewm(average_window, MACD).mean() MACDdiff = substract(MACD, MACDsign) out = collections.namedtuple('MACD', 'MACD MACDsign MACDdiff') return out(MACD=cudf.Series(MACD, nan_as_null=False), MACDsign=cudf.Series(MACDsign, nan_as_null=False), MACDdiff=cudf.Series(MACDdiff, nan_as_null=False)) def port_macd(asset_indicator, close_arr, n_fast, n_slow): """Calculate MACD, MACD Signal and MACD difference :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param n_fast: fast time steps :param n_slow: slow time steps :return: MACD MACDsign MACDdiff """ EMAfast = PEwm(n_fast, close_arr, asset_indicator).mean() EMAslow = PEwm(n_slow, close_arr, asset_indicator).mean() MACD = substract(EMAfast, EMAslow) average_window = 9 MACDsign = PEwm(average_window, MACD, asset_indicator).mean() MACDdiff = substract(MACD, MACDsign) out = collections.namedtuple('MACD', 'MACD MACDsign MACDdiff') return out(MACD=cudf.Series(MACD, nan_as_null=False), MACDsign=cudf.Series(MACDsign, nan_as_null=False), MACDdiff=cudf.Series(MACDdiff, nan_as_null=False)) def average_true_range(high_arr, low_arr, close_arr, n): """Calculate the Average True Range See https://www.investopedia.com/terms/a/atr.asp for details :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: average true range indicator """ tr = true_range(high_arr.to_gpu_array(), low_arr.to_gpu_array(), close_arr.to_gpu_array()) ATR = Ewm(n, tr).mean() return cudf.Series(ATR, nan_as_null=False) def port_average_true_range(asset_indicator, high_arr, low_arr, close_arr, n): """Calculate the port Average True Range See https://www.investopedia.com/terms/a/atr.asp for details :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: average true range indicator """ tr = port_true_range(asset_indicator.to_gpu_array(), high_arr.to_gpu_array(), low_arr.to_gpu_array(), close_arr.to_gpu_array()) ATR = PEwm(n, tr, asset_indicator).mean() return cudf.Series(ATR, nan_as_null=False) def ppsr(high_arr, low_arr, close_arr): """Calculate Pivot Points, Supports and Resistances for given data :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :return: PP R1 S1 R2 S2 R3 S3 """ high_gpu = high_arr.to_gpu_array() low_gpu = low_arr.to_gpu_array() close_gpu = close_arr.to_gpu_array() PP = average_price(high_gpu, low_gpu, close_gpu) R1 = substract(scale(PP, 2.0), low_gpu) S1 = substract(scale(PP, 2.0), high_gpu) R2 = substract(summation(PP, high_gpu), low_gpu) S2 = summation(substract(PP, high_gpu), low_gpu) R3 = summation(high_gpu, scale(substract(PP, low_gpu), 2.0)) S3 = substract(low_gpu, scale(substract(high_gpu, PP), 2.0)) out = collections.namedtuple('PPSR', 'PP R1 S1 R2 S2 R3 S3') return out(PP=cudf.Series(PP, nan_as_null=False), R1=cudf.Series(R1, nan_as_null=False), S1=cudf.Series(S1, nan_as_null=False), R2=cudf.Series(R2, nan_as_null=False), S2=cudf.Series(S2, nan_as_null=False), R3=cudf.Series(R3, nan_as_null=False), S3=cudf.Series(S3, nan_as_null=False)) def port_ppsr(asset_indicator, high_arr, low_arr, close_arr): """Calculate port Pivot Points, Supports and Resistances for given data :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :return: PP R1 S1 R2 S2 R3 S3 """ high_gpu = high_arr.to_gpu_array() low_gpu = low_arr.to_gpu_array() close_gpu = close_arr.to_gpu_array() PP = average_price(high_gpu, low_gpu, close_gpu) R1 = substract(scale(PP, 2.0), low_gpu) S1 = substract(scale(PP, 2.0), high_gpu) R2 = substract(summation(PP, high_gpu), low_gpu) S2 = summation(substract(PP, high_gpu), low_gpu) R3 = summation(high_gpu, scale(substract(PP, low_gpu), 2.0)) S3 = substract(low_gpu, scale(substract(high_gpu, PP), 2.0)) out = collections.namedtuple('PPSR', 'PP R1 S1 R2 S2 R3 S3') return out(PP=cudf.Series(PP, nan_as_null=False), R1=cudf.Series(R1, nan_as_null=False), S1=cudf.Series(S1, nan_as_null=False), R2=cudf.Series(R2, nan_as_null=False), S2=cudf.Series(S2, nan_as_null=False), R3=cudf.Series(R3, nan_as_null=False), S3=cudf.Series(S3, nan_as_null=False)) def stochastic_oscillator_k(high_arr, low_arr, close_arr): """Calculate stochastic oscillator K for given data. :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :return: stochastic oscillator K in cudf.Series """ SOk = (close_arr - low_arr) / (high_arr - low_arr) return SOk def port_stochastic_oscillator_k(asset_indicator, high_arr, low_arr, close_arr): """Calculate stochastic oscillator K for given data. :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :return: stochastic oscillator K in cudf.Series """ SOk = (close_arr - low_arr) / (high_arr - low_arr) return SOk def stochastic_oscillator_d(high_arr, low_arr, close_arr, n): """Calculate stochastic oscillator D for given data. :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: stochastic oscillator D in cudf.Series """ SOk = stochastic_oscillator_k(high_arr, low_arr, close_arr) SOd = Ewm(n, SOk).mean() return cudf.Series(SOd, nan_as_null=False) def port_stochastic_oscillator_d(asset_indicator, high_arr, low_arr, close_arr, n): """Calculate port stochastic oscillator D for given data. :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: stochastic oscillator D in cudf.Series """ SOk = stochastic_oscillator_k(high_arr, low_arr, close_arr) SOd = PEwm(n, SOk, asset_indicator).mean() return cudf.Series(SOd, nan_as_null=False) def average_directional_movement_index(high_arr, low_arr, close_arr, n, n_ADX): """Calculate the Average Directional Movement Index for given data. :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param n: time steps to do EWM average :param n_ADX: time steps to do EWM average of ADX :return: Average Directional Movement Index in cudf.Series """ UpI, DoI = upDownMove(high_arr.to_gpu_array(), low_arr.to_gpu_array()) last_ele = len(high_arr) - 1 tr = true_range(high_arr.to_gpu_array(), low_arr.to_gpu_array(), close_arr.to_gpu_array()) ATR = Ewm(n, tr).mean() PosDI = division(Ewm(n, UpI).mean(), ATR) NegDI = division(Ewm(n, DoI).mean(), ATR) NORM = division(abs_arr(substract(PosDI, NegDI)), summation(PosDI, NegDI)) NORM[last_ele] = math.nan ADX = cudf.Series(Ewm(n_ADX, NORM).mean(), nan_as_null=False) return ADX def port_average_directional_movement_index(asset_indicator, high_arr, low_arr, close_arr, n, n_ADX): """Calculate the port Average Directional Movement Index for given data. :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param n: time steps to do EWM average :param n_ADX: time steps to do EWM average of ADX :return: Average Directional Movement Index in cudf.Series """ UpI, DoI = upDownMove(high_arr.to_gpu_array(), low_arr.to_gpu_array()) tr = port_true_range(asset_indicator.to_gpu_array(), high_arr.to_gpu_array(), low_arr.to_gpu_array(), close_arr.to_gpu_array()) ATR = PEwm(n, tr, asset_indicator).mean() PosDI = division(PEwm(n, UpI, asset_indicator).mean(), ATR) NegDI = division(PEwm(n, DoI, asset_indicator).mean(), ATR) NORM = division(abs_arr(substract(PosDI, NegDI)), summation(PosDI, NegDI)) port_mask_nan(asset_indicator.to_gpu_array(), NORM, -1, 0) ADX = cudf.Series(PEwm(n_ADX, NORM, asset_indicator).mean(), nan_as_null=False) return ADX def vortex_indicator(high_arr, low_arr, close_arr, n): """Calculate the Vortex Indicator for given data. Vortex Indicator described here: http://www.vortexindicator.com/VFX_VORTEX.PDF :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param n: time steps to do EWM average :return: Vortex Indicator in cudf.Series """ TR = true_range(high_arr.to_gpu_array(), low_arr.to_gpu_array(), close_arr.to_gpu_array()) VM = lowhigh_diff(high_arr.to_gpu_array(), low_arr.to_gpu_array()) VI = division(Rolling(n, VM).sum(), Rolling(n, TR).sum()) return cudf.Series(VI, nan_as_null=False) def port_vortex_indicator(asset_indicator, high_arr, low_arr, close_arr, n): """Calculate the port Vortex Indicator for given data. Vortex Indicator described here: http://www.vortexindicator.com/VFX_VORTEX.PDF :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param n: time steps to do EWM average :return: Vortex Indicator in cudf.Series """ TR = port_true_range(asset_indicator.to_gpu_array(), high_arr.to_gpu_array(), low_arr.to_gpu_array(), close_arr.to_gpu_array()) VM = port_lowhigh_diff(asset_indicator.to_gpu_array(), high_arr.to_gpu_array(), low_arr.to_gpu_array()) VI = division(Rolling(n, VM).sum(), Rolling(n, TR).sum()) port_mask_nan(asset_indicator.to_gpu_array(), VI, 0, n - 1) return cudf.Series(VI, nan_as_null=False) def kst_oscillator(close_arr, r1, r2, r3, r4, n1, n2, n3, n4): """Calculate KST Oscillator for given data. :param close_arr: close price of the bar, expect series from cudf :param r1: r1 time steps :param r2: r2 time steps :param r3: r3 time steps :param r4: r4 time steps :param n1: n1 time steps :param n2: n2 time steps :param n3: n3 time steps :param n4: n4 time steps :return: KST Oscillator in cudf.Series """ M1 = diff(close_arr, r1 - 1) N1 = shift(close_arr, r1 - 1) M2 = diff(close_arr, r2 - 1) N2 = shift(close_arr, r2 - 1) M3 = diff(close_arr, r3 - 1) N3 = shift(close_arr, r3 - 1) M4 = diff(close_arr, r4 - 1) N4 = shift(close_arr, r4 - 1) term1 = Rolling(n1, division(M1, N1)).sum() term2 = scale(Rolling(n2, division(M2, N2)).sum(), 2.0) term3 = scale(Rolling(n3, division(M3, N3)).sum(), 3.0) term4 = scale(Rolling(n4, division(M4, N4)).sum(), 4.0) KST = summation(summation(summation(term1, term2), term3), term4) return cudf.Series(KST, nan_as_null=False) def port_kst_oscillator(asset_indicator, close_arr, r1, r2, r3, r4, n1, n2, n3, n4): """Calculate port KST Oscillator for given data. :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param r1: r1 time steps :param r2: r2 time steps :param r3: r3 time steps :param r4: r4 time steps :param n1: n1 time steps :param n2: n2 time steps :param n3: n3 time steps :param n4: n4 time steps :return: KST Oscillator in cudf.Series """ M1 = diff(close_arr, r1 - 1) N1 = shift(close_arr, r1 - 1) port_mask_nan(asset_indicator.to_gpu_array(), M1, 0, r1 - 1) port_mask_nan(asset_indicator.to_gpu_array(), N1, 0, r1 - 1) M2 = diff(close_arr, r2 - 1) N2 = shift(close_arr, r2 - 1) port_mask_nan(asset_indicator.to_gpu_array(), M2, 0, r2 - 1) port_mask_nan(asset_indicator.to_gpu_array(), N2, 0, r2 - 1) M3 = diff(close_arr, r3 - 1) N3 = shift(close_arr, r3 - 1) port_mask_nan(asset_indicator.to_gpu_array(), M3, 0, r3 - 1) port_mask_nan(asset_indicator.to_gpu_array(), N3, 0, r3 - 1) M4 = diff(close_arr, r4 - 1) N4 = shift(close_arr, r4 - 1) port_mask_nan(asset_indicator.to_gpu_array(), M4, 0, r4 - 1) port_mask_nan(asset_indicator.to_gpu_array(), N4, 0, r4 - 1) term1 = Rolling(n1, division(M1, N1)).sum() port_mask_nan(asset_indicator.to_gpu_array(), term1, 0, n1 - 1) term2 = scale(Rolling(n2, division(M2, N2)).sum(), 2.0) port_mask_nan(asset_indicator.to_gpu_array(), term2, 0, n2 - 1) term3 = scale(Rolling(n3, division(M3, N3)).sum(), 3.0) port_mask_nan(asset_indicator.to_gpu_array(), term3, 0, n3 - 1) term4 = scale(Rolling(n4, division(M4, N4)).sum(), 4.0) port_mask_nan(asset_indicator.to_gpu_array(), term4, 0, n4 - 1) KST = summation(summation(summation(term1, term2), term3), term4) return cudf.Series(KST, nan_as_null=False) def relative_strength_index(high_arr, low_arr, n): """Calculate Relative Strength Index(RSI) for given data. :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param n: time steps to do EWM average :return: Relative Strength Index in cudf.Series """ UpI, DoI = upDownMove(high_arr.to_gpu_array(), low_arr.to_gpu_array()) UpI_s = shift(UpI, 1) UpI_s[0] = 0 DoI_s = shift(DoI, 1) DoI_s[0] = 0 PosDI = Ewm(n, UpI_s).mean() NegDI = Ewm(n, DoI_s).mean() RSI = division(PosDI, summation(PosDI, NegDI)) return cudf.Series(RSI, nan_as_null=False) def port_relative_strength_index(asset_indicator, high_arr, low_arr, n): """Calculate Relative Strength Index(RSI) for given data. :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param n: time steps to do EWM average :return: Relative Strength Index in cudf.Series """ UpI, DoI = upDownMove(high_arr.to_gpu_array(), low_arr.to_gpu_array()) UpI_s = shift(UpI, 1) UpI_s[0] = 0 UpI_s = cudf.Series(UpI_s, nan_as_null=False) * (1.0 - asset_indicator.reset_index( drop=True)) DoI_s = shift(DoI, 1) DoI_s[0] = 0 DoI_s = cudf.Series(DoI_s, nan_as_null=False) * (1.0 - asset_indicator.reset_index( drop=True)) PosDI = PEwm(n, UpI_s, asset_indicator).mean() NegDI = PEwm(n, DoI_s, asset_indicator).mean() RSI = division(PosDI, summation(PosDI, NegDI)) return cudf.Series(RSI, nan_as_null=False) def mass_index(high_arr, low_arr, n1, n2): """Calculate the Mass Index for given data. :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param n1: n1 time steps :param n1: n2 time steps :return: Mass Index in cudf.Series """ Range = high_arr - low_arr EX1 = Ewm(n1, Range).mean() EX2 = Ewm(n1, EX1).mean() Mass = division(EX1, EX2) MassI = Rolling(n2, Mass).sum() return cudf.Series(MassI, nan_as_null=False) def port_mass_index(asset_indicator, high_arr, low_arr, n1, n2): """Calculate the port Mass Index for given data. :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param n1: n1 time steps :param n1: n2 time steps :return: Mass Index in cudf.Series """ Range = high_arr - low_arr EX1 = PEwm(n1, Range, asset_indicator).mean() EX2 = PEwm(n1, EX1, asset_indicator).mean() Mass = division(EX1, EX2) MassI = Rolling(n2, Mass).sum() port_mask_nan(asset_indicator.to_gpu_array(), MassI, 0, n2 - 1) return cudf.Series(MassI, nan_as_null=False) def true_strength_index(close_arr, r, s): """Calculate True Strength Index (TSI) for given data. :param close_arr: close price of the bar, expect series from cudf :param r: r time steps :param s: s time steps :return: True Strength Index in cudf.Series """ M = diff(close_arr, 1) aM = abs_arr(M) EMA1 = Ewm(r, M).mean() aEMA1 = Ewm(r, aM).mean() EMA2 = Ewm(s, EMA1).mean() aEMA2 = Ewm(s, aEMA1).mean() TSI = division(EMA2, aEMA2) return cudf.Series(TSI, nan_as_null=False) def port_true_strength_index(asset_indicator, close_arr, r, s): """Calculate port True Strength Index (TSI) for given data. :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param r: r time steps :param s: s time steps :return: True Strength Index in cudf.Series """ M = diff(close_arr, 1) port_mask_nan(asset_indicator.to_gpu_array(), M, 0, 1) aM = abs_arr(M) EMA1 = PEwm(r, M, asset_indicator).mean() aEMA1 = PEwm(r, aM, asset_indicator).mean() EMA2 = PEwm(s, EMA1, asset_indicator).mean() aEMA2 = PEwm(s, aEMA1, asset_indicator).mean() TSI = division(EMA2, aEMA2) return cudf.Series(TSI, nan_as_null=False) def chaikin_oscillator(high_arr, low_arr, close_arr, volume_arr, n1, n2): """Calculate Chaikin Oscillator for given data. :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param volume_arr: volume the bar, expect series from cudf :param n1: n1 time steps :param n2: n2 time steps :return: Chaikin Oscillator indicator in cudf.Series """ ad = (2.0 * close_arr - high_arr - low_arr) / ( high_arr - low_arr) * volume_arr Chaikin = cudf.Series(Ewm(n1, ad).mean(), nan_as_null=False) - cudf.Series(Ewm(n2, ad).mean(), nan_as_null=False) return Chaikin def port_chaikin_oscillator(asset_indicator, high_arr, low_arr, close_arr, volume_arr, n1, n2): """Calculate port Chaikin Oscillator for given data. :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param volume_arr: volume the bar, expect series from cudf :param n1: n1 time steps :param n2: n2 time steps :return: Chaikin Oscillator indicator in cudf.Series """ ad = (2.0 * close_arr - high_arr - low_arr) / ( high_arr - low_arr) * volume_arr first = PEwm(n1, ad, asset_indicator).mean() second = PEwm(n2, ad, asset_indicator).mean() Chaikin = cudf.Series(substract(first, second), nan_as_null=False) return Chaikin def money_flow_index(high_arr, low_arr, close_arr, volume_arr, n): """Calculate Money Flow Index and Ratio for given data. :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param volume_arr: volume the bar, expect series from cudf :param n: time steps :return: Money Flow Index in cudf.Series """ PP = average_price(high_arr.to_gpu_array(), low_arr.to_gpu_array(), close_arr.to_gpu_array()) PosMF = money_flow(PP, volume_arr.to_gpu_array()) MFR = division(PosMF, (multiply(PP, volume_arr.to_gpu_array()))) # TotMF MFI = Rolling(n, MFR).mean() return cudf.Series(MFI, nan_as_null=False) def port_money_flow_index(asset_indicator, high_arr, low_arr, close_arr, volume_arr, n): """Calculate port Money Flow Index and Ratio for given data. :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param volume_arr: volume the bar, expect series from cudf :param n: time steps :return: Money Flow Index in cudf.Series """ PP = average_price(high_arr.to_gpu_array(), low_arr.to_gpu_array(), close_arr.to_gpu_array()) PosMF = port_money_flow(asset_indicator.to_gpu_array(), PP, volume_arr.to_gpu_array()) MFR = division(PosMF, (multiply(PP, volume_arr.to_gpu_array()))) # TotMF MFI = Rolling(n, MFR).mean() port_mask_nan(asset_indicator.to_gpu_array(), MFI, 0, n - 1) return cudf.Series(MFI, nan_as_null=False) def on_balance_volume(close_arr, volume_arr, n): """Calculate On-Balance Volume for given data. :param close_arr: close price of the bar, expect series from cudf :param volume_arr: volume the bar, expect series from cudf :param n: time steps :return: On-Balance Volume in cudf.Series """ OBV = onbalance_volume(close_arr.to_gpu_array(), volume_arr.to_gpu_array()) OBV_ma = Rolling(n, OBV).mean() return cudf.Series(OBV_ma, nan_as_null=False) def port_on_balance_volume(asset_indicator, close_arr, volume_arr, n): """Calculate port On-Balance Volume for given data. :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param volume_arr: volume the bar, expect series from cudf :param n: time steps :return: On-Balance Volume in cudf.Series """ OBV = port_onbalance_volume(asset_indicator.to_gpu_array(), close_arr.to_gpu_array(), volume_arr.to_gpu_array()) OBV_ma = Rolling(n, OBV).mean() port_mask_nan(asset_indicator.to_gpu_array(), OBV_ma, 0, n - 1) return cudf.Series(OBV_ma, nan_as_null=False) def force_index(close_arr, volume_arr, n): """Calculate Force Index for given data. :param close_arr: close price of the bar, expect series from cudf :param volume_arr: volume the bar, expect series from cudf :param n: time steps :return: Force Index in cudf.Series """ F = multiply(diff(close_arr, n), diff(volume_arr, n)) return cudf.Series(F, nan_as_null=False) def port_force_index(asset_indicator, close_arr, volume_arr, n): """Calculate port Force Index for given data. :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param volume_arr: volume the bar, expect series from cudf :param n: time steps :return: Force Index in cudf.Series """ F = multiply(diff(close_arr, n), diff(volume_arr, n)) port_mask_nan(asset_indicator.to_gpu_array(), F, 0, n) return cudf.Series(F, nan_as_null=False) def ease_of_movement(high_arr, low_arr, volume_arr, n): """Calculate Ease of Movement for given data. :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param volume_arr: volume the bar, expect series from cudf :param n: time steps :return: Ease of Movement in cudf.Series """ high_arr_gpu = high_arr.to_gpu_array() low_arr_gpu = low_arr.to_gpu_array() EoM = division(multiply(summation(diff(high_arr_gpu, 1), diff(low_arr_gpu, 1)), substract(high_arr_gpu, low_arr_gpu)), scale(volume_arr.to_gpu_array(), 2.0)) Eom_ma = Rolling(n, EoM).mean() return cudf.Series(Eom_ma, nan_as_null=False) def port_ease_of_movement(asset_indicator, high_arr, low_arr, volume_arr, n): """Calculate port Ease of Movement for given data. :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param volume_arr: volume the bar, expect series from cudf :param n: time steps :return: Ease of Movement in cudf.Series """ high_arr_gpu = high_arr.to_gpu_array() low_arr_gpu = low_arr.to_gpu_array() EoM = division(multiply(summation(diff(high_arr_gpu, 1), diff(low_arr_gpu, 1)), substract(high_arr_gpu, low_arr_gpu)), scale(volume_arr.to_gpu_array(), 2.0)) port_mask_nan(asset_indicator.to_gpu_array(), EoM, 0, 1) Eom_ma = Rolling(n, EoM).mean() port_mask_nan(asset_indicator.to_gpu_array(), Eom_ma, 0, n - 1) return cudf.Series(Eom_ma, nan_as_null=False) def ultimate_oscillator(high_arr, low_arr, close_arr): """Calculate Ultimate Oscillator for given data. :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :return: Ultimate Oscillator in cudf.Series """ TR_l, BP_l = ultimate_osc(high_arr.to_gpu_array(), low_arr.to_gpu_array(), close_arr.to_gpu_array()) term1 = division(scale(Rolling(7, BP_l).sum(), 4.0), Rolling(7, TR_l).sum()) term2 = division(scale(Rolling(14, BP_l).sum(), 2.0), Rolling(14, TR_l).sum()) term3 = division(Rolling(28, BP_l).sum(), Rolling(28, TR_l).sum()) UltO = summation(summation(term1, term2), term3) return cudf.Series(UltO, nan_as_null=False) def port_ultimate_oscillator(asset_indicator, high_arr, low_arr, close_arr): """Calculate port Ultimate Oscillator for given data. :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :return: Ultimate Oscillator in cudf.Series """ TR_l, BP_l = port_ultimate_osc(asset_indicator.to_gpu_array(), high_arr.to_gpu_array(), low_arr.to_gpu_array(), close_arr.to_gpu_array()) term1 = division(scale(Rolling(7, BP_l).sum(), 4.0), Rolling(7, TR_l).sum()) term2 = division(scale(Rolling(14, BP_l).sum(), 2.0), Rolling(14, TR_l).sum()) term3 = division(Rolling(28, BP_l).sum(), Rolling(28, TR_l).sum()) port_mask_nan(asset_indicator.to_gpu_array(), term1, 0, 6) port_mask_nan(asset_indicator.to_gpu_array(), term2, 0, 13) port_mask_nan(asset_indicator.to_gpu_array(), term3, 0, 27) UltO = summation(summation(term1, term2), term3) return cudf.Series(UltO, nan_as_null=False) def donchian_channel(high_arr, low_arr, n): """Calculate donchian channel of given pandas data frame. :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param n: time steps :return: donchian channel in cudf.Series """ max_high = Rolling(n, high_arr).max() min_low = Rolling(n, low_arr).min() dc_l = substract(max_high, min_low) dc_l[:n-1] = 0.0 donchian_chan = shift(dc_l, n - 1) return cudf.Series(donchian_chan, nan_as_null=False) def port_donchian_channel(asset_indicator, high_arr, low_arr, n): """Calculate port donchian channel of given pandas data frame. :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param n: time steps :return: donchian channel in cudf.Series """ max_high = Rolling(n, high_arr).max() port_mask_nan(asset_indicator.to_gpu_array(), max_high, 0, n - 1) min_low = Rolling(n, low_arr).min() port_mask_nan(asset_indicator.to_gpu_array(), min_low, 0, n - 1) dc_l = substract(max_high, min_low) # dc_l[:n-1] = 0.0 port_mask_zero(asset_indicator.to_gpu_array(), dc_l, 0, n - 1) donchian_chan = shift(dc_l, n - 1) port_mask_nan(asset_indicator.to_gpu_array(), donchian_chan, 0, n - 1) return cudf.Series(donchian_chan, nan_as_null=False) def keltner_channel(high_arr, low_arr, close_arr, n): """Calculate Keltner Channel for given data. :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: Keltner Channel in cudf.Series """ M = ((high_arr + low_arr + close_arr) / 3.0) KelChM = cudf.Series(Rolling(n, M).mean(), nan_as_null=False) U = ((4.0 * high_arr - 2.0 * low_arr + close_arr) / 3.0) KelChU = cudf.Series(Rolling(n, U).mean(), nan_as_null=False) D = ((-2.0 * high_arr + 4.0 * low_arr + close_arr) / 3.0) KelChD = cudf.Series(Rolling(n, D).mean(), nan_as_null=False) out = collections.namedtuple('Keltner', 'KelChM KelChU KelChD') return out(KelChM=KelChM, KelChU=KelChU, KelChD=KelChD) def port_keltner_channel(asset_indicator, high_arr, low_arr, close_arr, n): """Calculate port Keltner Channel for given data. :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: Keltner Channel in cudf.Series """ M = ((high_arr + low_arr + close_arr) / 3.0) KelChM = Rolling(n, M).mean() port_mask_nan(asset_indicator.to_gpu_array(), KelChM, 0, n - 1) U = ((4.0 * high_arr - 2.0 * low_arr + close_arr) / 3.0) KelChU = Rolling(n, U).mean() port_mask_nan(asset_indicator.to_gpu_array(), KelChU, 0, n - 1) D = ((-2.0 * high_arr + 4.0 * low_arr + close_arr) / 3.0) KelChD = Rolling(n, D).mean() port_mask_nan(asset_indicator.to_gpu_array(), KelChD, 0, n - 1) out = collections.namedtuple('Keltner', 'KelChM KelChU KelChD') return out(KelChM=cudf.Series(KelChM, nan_as_null=False), KelChU=cudf.Series(KelChU, nan_as_null=False), KelChD=cudf.Series(KelChD, nan_as_null=False)) def coppock_curve(close_arr, n): """Calculate Coppock Curve for given data. :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: Coppock Curve in cudf.Series """ M = diff(close_arr, int(n * 11 / 10) - 1) N = shift(close_arr, int(n * 11 / 10) - 1) ROC1 = division(M, N) M = diff(close_arr, int(n * 14 / 10) - 1) N = shift(close_arr, int(n * 14 / 10) - 1) ROC2 = division(M, N) Copp = Ewm(n, summation(ROC1, ROC2)).mean() return cudf.Series(Copp, nan_as_null=False) def port_coppock_curve(asset_indicator, close_arr, n): """Calculate port Coppock Curve for given data. :param asset_indicator: the indicator of beginning of the stock :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: Coppock Curve in cudf.Series """ M = diff(close_arr, int(n * 11 / 10) - 1) N = shift(close_arr, int(n * 11 / 10) - 1) port_mask_nan(asset_indicator.to_gpu_array(), M, 0, int(n * 11 / 10) - 1) port_mask_nan(asset_indicator.to_gpu_array(), N, 0, int(n * 11 / 10) - 1) ROC1 = division(M, N) M = diff(close_arr, int(n * 14 / 10) - 1) N = shift(close_arr, int(n * 14 / 10) - 1) port_mask_nan(asset_indicator.to_gpu_array(), M, 0, int(n * 14 / 10) - 1) port_mask_nan(asset_indicator.to_gpu_array(), N, 0, int(n * 14 / 10) - 1) ROC2 = division(M, N) Copp = PEwm(n, summation(ROC1, ROC2), asset_indicator).mean() return cudf.Series(Copp, nan_as_null=False) def accumulation_distribution(high_arr, low_arr, close_arr, vol_arr, n): """Calculate Accumulation/Distribution for given data. :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param vol_arr: volume of the bar, expect series from cudf :param n: time steps :return: Accumulation/Distribution in cudf.Series """ ad = (2.0 * close_arr - high_arr - low_arr)/(high_arr - low_arr) * vol_arr M = diff(ad, n-1) N = shift(ad, n-1) return cudf.Series(division(M, N), nan_as_null=False) def port_accumulation_distribution(asset_indicator, high_arr, low_arr, close_arr, vol_arr, n): """Calculate port Accumulation/Distribution for given data. :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param vol_arr: volume of the bar, expect series from cudf :param n: time steps :return: Accumulation/Distribution in cudf.Series """ ad = (2.0 * close_arr - high_arr - low_arr)/(high_arr - low_arr) * vol_arr M = diff(ad, n-1) port_mask_nan(asset_indicator.to_gpu_array(), M, 0, n - 1) N = shift(ad, n-1) port_mask_nan(asset_indicator.to_gpu_array(), N, 0, n - 1) return cudf.Series(division(M, N), nan_as_null=False) def commodity_channel_index(high_arr, low_arr, close_arr, n): """Calculate Commodity Channel Index for given data. :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: Commodity Channel Index in cudf.Series """ PP = average_price(high_arr.to_gpu_array(), low_arr.to_gpu_array(), close_arr.to_gpu_array()) M = Rolling(n, PP).mean() N = Rolling(n, PP).std() CCI = division(substract(PP, M), N) return cudf.Series(CCI, nan_as_null=False) def port_commodity_channel_index(asset_indicator, high_arr, low_arr, close_arr, n): """Calculate port Commodity Channel Index for given data. :param asset_indicator: the indicator of beginning of the stock :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param n: time steps :return: Commodity Channel Index in cudf.Series """ PP = average_price(high_arr.to_gpu_array(), low_arr.to_gpu_array(), close_arr.to_gpu_array()) M = Rolling(n, PP).mean() port_mask_nan(asset_indicator.to_gpu_array(), M, 0, n - 1) N = Rolling(n, PP).std() port_mask_nan(asset_indicator.to_gpu_array(), N, 0, n - 1) CCI = division(substract(PP, M), N) return cudf.Series(CCI, nan_as_null=False)
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/cuindicator/indicator.py
from .ewm import Ewm from .indicator import * # noqa: F403, F401 from .pewm import PEwm from .rolling import Rolling from .util import (shift, diff, substract, summation, multiply, division, scale, cumsum) from .frac_diff import (fractional_diff, get_weights_floored, port_fractional_diff) __all__ = ["Ewm", "PEwm", "Rolling", "shift", "diff", "substract", "summation", "multiply", "division", "scale", "cumsum", "fractional_diff", "port_fractional_diff", "get_weights_floored"]
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/cuindicator/__init__.py
from numba import cuda import numba from .windows import (mean_window, std_window, var_window, min_window, max_window, sum_window, backward_diff_window, backward_shift_window, forward_diff_window, forward_shift_window) kernel_cache = {} def get_rolling_kernel(method): if method in kernel_cache: return kernel_cache[method] @cuda.jit def kernel(in_arr, out_arr, backward_length, forward_length, arr_len, thread_tile, min_size): """ This kernel is to copy input array elements into shared array. The total window size is backward_length + forward_length. To compute output element at i, it uses [i - backward_length - 1, i] elements in history, and [i + 1, i + forward_lengh] elements in the future. Arguments: in_arr: input gpu array out_arr: output gpu_array backward_length: the history elements in the windonw forward_length: the forward elements in the window arr_len: the input/output array length thread_tile: each thread is responsible for `thread_tile` number of elements min_size: the minimum number of non-na elements """ shared = cuda.shared.array(shape=0, dtype=numba.float64) block_size = cuda.blockDim.x # total number of threads tx = cuda.threadIdx.x # Block id in a 1D grid bid = cuda.blockIdx.x starting_id = bid * block_size * thread_tile # copy the thread_tile * number_of_thread_per_block into the shared for j in range(thread_tile): offset = tx + j * block_size if (starting_id + offset) < arr_len: shared[offset + backward_length - 1] = in_arr[ starting_id + offset] cuda.syncthreads() # copy the backward_length - 1 into the shared for j in range(0, backward_length - 1, block_size): if (((tx + j) < backward_length - 1) and ( starting_id - backward_length + 1 + tx + j >= 0)): shared[tx + j] = \ in_arr[starting_id - backward_length + 1 + tx + j] cuda.syncthreads() # copy the forward_length into the shared for j in range(0, forward_length, block_size): element_id = (starting_id + thread_tile * block_size + tx + j) if (((tx + j) < forward_length) and (element_id < arr_len)): shared[thread_tile * block_size + backward_length - 1 + tx + j] = in_arr[element_id] cuda.syncthreads() # slice the shared memory for each threads start_shared = tx * thread_tile his_len = min(backward_length - 1, starting_id + tx * thread_tile) future_len = max(arr_len - (starting_id + tx * thread_tile), 0) # slice the global memory for each threads start = starting_id + tx * thread_tile end = min(starting_id + (tx + 1) * thread_tile, arr_len) sub_outarr = out_arr[start:end] sub_len = end - start method(shared, his_len, future_len, sub_outarr, backward_length, forward_length, sub_len, backward_length - 1 + start_shared, min_size ) kernel_cache[method] = kernel return kernel class Rolling(object): def __init__(self, window, input_arr, min_periods=None, forward_window=0, thread_tile=48, number_of_threads=64): """ The Rolling class that is used to do rolling window computations. The window size is `window + forward_window`. The element i uses [i - window -1, i + forward_window] elements to do the window computation. Arguments: window: the history window size. input_arr: the input GPU array or cudf.Series min_periods: the minimum number of non-na elements need to get an output forward_window: the windows size in the forward direction thread_tile: each thread will be responsible for `thread_tile` number of elements in window computation number_of_threads: num. of threads in a block for CUDA computation """ if isinstance(input_arr, numba.cuda.cudadrv.devicearray.DeviceNDArray): self.gpu_in = input_arr else: self.gpu_in = input_arr.to_gpu_array() if min_periods is None: self.min_periods = window + forward_window else: self.min_periods = min_periods self.window = window self.forward_window = forward_window self.number_of_threads = number_of_threads self.array_len = len(self.gpu_in) self.gpu_out = numba.cuda.device_array_like(self.gpu_in) self.thread_tile = thread_tile self.number_of_blocks = \ (self.array_len + (number_of_threads * thread_tile - 1)) // \ (number_of_threads * thread_tile) self.shared_buffer_size = (self.number_of_threads * self.thread_tile + self.window - 1 + self.forward_window) def apply(self, method): gpu_out = numba.cuda.device_array_like(self.gpu_in) # gpu_out = cudf.Series(gpu_out, nan_as_null=False) kernel = get_rolling_kernel(method) kernel[(self.number_of_blocks,), (self.number_of_threads,), 0, self.shared_buffer_size * 8](self.gpu_in, gpu_out, self.window, self.forward_window, self.array_len, self.thread_tile, self.min_periods) # numba.cuda.synchronize() return gpu_out def mean(self): return self.apply(mean_window) def std(self): return self.apply(std_window) def var(self): return self.apply(var_window) def max(self): return self.apply(max_window) def min(self): return self.apply(min_window) def sum(self): return self.apply(sum_window) def backward_diff(self): return self.apply(backward_diff_window) def backward_shift(self): return self.apply(backward_shift_window) def forward_diff(self): return self.apply(forward_diff_window) def forward_shift(self): return self.apply(forward_shift_window)
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/cuindicator/rolling.py
import numba import cmath import numpy as np from numba import cuda from .util import port_mask_nan __all__ = ["fractional_diff", "get_weights_floored", "port_fractional_diff"] def get_weights_floored(d, num_k, floor=1e-3): r"""Calculate weights ($w$) for each lag ($k$) through $w_k = -w_{k-1} \frac{d - k + 1}{k}$ provided weight above a minimum value (floor) for the weights to prevent computation of weights for the entire time series. Args: d (int): differencing value. num_k (int): number of lags (typically length of timeseries) to calculate w. floor (float): minimum value for the weights for computational efficiency. """ w_k = np.array([1]) k = 1 while k < num_k: w_k_latest = -w_k[-1] * ((d - k + 1)) / k if abs(w_k_latest) <= floor: break w_k = np.append(w_k, w_k_latest) k += 1 w_k = w_k.reshape(-1, 1) return w_k @cuda.jit(device=True) def conv_window(shared, history_len, out_arr, window_size, arr_len, offset, offset2, min_size): """ This function is to do convolution for one thread Arguments: ------ shared: numba.cuda.DeviceNDArray 3 chunks of data are stored in the shared memory the first [0, window_size) elements is the chunk of data that is necessary to compute the first convolution element. then [window_size, window_size + thread_tile * blockDim) elements are the inputs allocated for this block of threads the last [window_size + thread_tile, window_size + thread_tile + window_size) is to store the kernel values history_len: int total number of historical elements available for this chunk of data out_arr: numba.cuda.DeviceNDArray output gpu_array of size of `thread_tile` window_size: int the number of elements in the kernel arr_len: int the chunk array length, same as `thread_tile` offset: int indicate the starting index of the chunk array in the shared for this thread. offset: int indicate the starting position of the weights/kernel array min_size: int the minimum number of non-na elements """ for i in range(arr_len): if i + history_len < window_size-1: out_arr[i] = np.nan else: s = 0.0 average_size = 0 for j in range(0, window_size): if not (cmath.isnan( shared[offset + i - j])): s += (shared[offset + i - j] * shared[offset2 + window_size - 1 - j]) average_size += 1 if average_size >= min_size: out_arr[i] = s else: out_arr[i] = np.nan @cuda.jit def kernel(in_arr, weight_arr, out_arr, window, arr_len, thread_tile, min_size): """ This kernel is to do 1D convlution on `in_arr` array with `weight_arr` as kernel. The results is saved on `out_arr`. Arguments: ------ in_arr: numba.cuda.DeviceNDArray input gpu array weight_arr: numba.cuda.DeviceNDArray convolution kernel gpu array out_arr: numba.cuda.DeviceNDArray output gpu_array window: int the number of elements in the weight_arr arr_len: int the input/output array length thread_tile: int each thread is responsible for `thread_tile` number of elements min_size: int the minimum number of non-na elements """ shared = cuda.shared.array(shape=0, dtype=numba.float64) block_size = cuda.blockDim.x # total number of threads tx = cuda.threadIdx.x # Block id in a 1D grid bid = cuda.blockIdx.x starting_id = bid * block_size * thread_tile # copy the thread_tile * number_of_thread_per_block into the shared for j in range(thread_tile): offset = tx + j * block_size if (starting_id + offset) < arr_len: shared[offset + window - 1] = in_arr[ starting_id + offset] cuda.syncthreads() # copy the window - 1 into the shared for j in range(0, window - 1, block_size): if (((tx + j) < window - 1) and ( starting_id - window + 1 + tx + j >= 0)): shared[tx + j] = \ in_arr[starting_id - window + 1 + tx + j] cuda.syncthreads() # copy the weights into the shared for j in range(0, window, block_size): element_id = tx + j if (((tx + j) < window) and (element_id < window)): shared[thread_tile * block_size + window - 1 + tx + j] = weight_arr[tx + j] cuda.syncthreads() # slice the shared memory for each threads start_shared = tx * thread_tile his_len = min(window - 1, starting_id + tx * thread_tile) # slice the global memory for each threads start = starting_id + tx * thread_tile end = min(starting_id + (tx + 1) * thread_tile, arr_len) sub_outarr = out_arr[start:end] sub_len = end - start conv_window(shared, his_len, sub_outarr, window, sub_len, window - 1 + start_shared, thread_tile * block_size + window - 1, min_size) def fractional_diff(input_arr, d=0.5, floor=1e-3, min_periods=None, thread_tile=2, number_of_threads=512): """ The fractional difference computation method. Arguments: ------- input_arr: numba.cuda.DeviceNDArray or cudf.Series the input array to compute the fractional difference d: float the differencing value. range from 0 to 1 floor: float minimum value for the weights for computational efficiency. min_periods: int default the lengths of the weights. Need at least min_periods of non-na elements to get fractional difference value thread_tile: int each thread will be responsible for `thread_tile` number of elements in window computation number_of_threads: int number of threads in a block for CUDA computation Returns ------- (numba.cuda.DeviceNDArray, np.array) the computed fractional difference array and the weight array tuple """ if isinstance(input_arr, numba.cuda.cudadrv.devicearray.DeviceNDArray): gpu_in = input_arr else: gpu_in = input_arr.to_gpu_array() # compute the weights for the fractional difference weights = get_weights_floored(d=d, num_k=len(input_arr), floor=floor)[::-1, 0] weights_out = np.ascontiguousarray(weights) weights = numba.cuda.to_device(weights_out) window = len(weights) if min_periods is None: min_periods = window else: min_periods = min_periods number_of_threads = number_of_threads array_len = len(gpu_in) # allocate the output array gpu_out = numba.cuda.device_array_like(gpu_in) number_of_blocks = \ (array_len + (number_of_threads * thread_tile - 1)) // \ (number_of_threads * thread_tile) shared_buffer_size = (number_of_threads * thread_tile + window - 1 + window) # call the conv kernel kernel[(number_of_blocks,), (number_of_threads,), 0, shared_buffer_size * 8](gpu_in, weights, gpu_out, window, array_len, thread_tile, min_periods) return gpu_out, weights_out def port_fractional_diff(asset_indicator, input_arr, d=0.5, floor=1e-3, min_periods=None, thread_tile=2, number_of_threads=512): """ Calculate the fractional differencing signal for all the financial assets indicated by asset_indicator. Arguments: ------- asset_indicator: cudf.Series the integer indicator array to indicate the start of the different asset input_arr: numba.cuda.DeviceNDArray or cudf.Series the input array to compute the fractional difference d: float the differencing value. range from 0 to 1 floor: float minimum value for the weights for computational efficiency. min_periods: int default the lengths of the weights. Need at least min_periods of non-na elements to get fractional difference value thread_tile: int each thread will be responsible for `thread_tile` number of elements in window computation number_of_threads: int number of threads in a block for CUDA computation Returns ------- (numba.cuda.DeviceNDArray, np.array) the computed fractional difference array and the weight array tuple """ out, weights = fractional_diff(input_arr, d=d, floor=floor, min_periods=min_periods, thread_tile=thread_tile, number_of_threads=number_of_threads) port_mask_nan(asset_indicator.to_gpu_array(), out, 0, len(weights) - 1) return out, weights
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/cuindicator/frac_diff.py
import numpy as np import math from numba import cuda import cmath @cuda.jit(device=True) def window_kernel(shared, history_len, future_len, out_arr, window_size, forward_window_size, arr_len, offset, min_size): """ This function is to do window computation. Only one thread is assumed to do the computation. This thread is responsible for the `arr_len` of elements in the input array, which is cached in the `shared` array. Due to the limitation of numba, shared array cannot be sliced properly. As a work around, the passed-in `offset` position specify the beginning of the input array. Arguments: shared: a chunk of the array stored in shared memory. The first element of the data starts at `offset`. It has `history_len` of historical records for the first elements computation. history_len: the history length, which is mostly `window_size - 1`. For the early elements of the array, the history can be shorter for the beginning elements of the original array. future_len: the total future elements length from array_len to the first element that the current thread is responsible for. out_arr: the output array of size `arr_len`. window_size: the window size for the window function arr_len: the length of the output array offset: the starting position of the input shared array for the current thread min_size: at least there are min_size of non NA elements to compuate """ pass @cuda.jit(device=True) def portfolio_ewma_mean_window(asset_indicator, shared, history_len, out_arr, window_size, span, arr_len, offset, min_size, indicator_start): """ This function is to compute the exponetially-weighted moving average for the window. See `window_kernel` for detailed arguments """ s = 0.0 v = 0.0 v_current = 0.0 first = False alpha = 2 / (span + 1) lam = 1 total_weight = 0 counter = 0 weight_scale = 1.0 weight_scale_current = 1.0 average_size = 0 for i in range(arr_len): if asset_indicator[i + indicator_start] == 1: history_len = -i s = 0.0 v = 0.0 v_current = 0.0 first = False lam = 1 total_weight = 0 counter = 0 weight_scale = 1.0 weight_scale_current = 1.0 average_size = 0 if i + history_len < span - 1: out_arr[i] = np.nan else: if not first: # print(i, i + history_len + 1, window_size, history_len) for j in range(0, min(i + history_len + 1, window_size)): if (cmath.isnan(shared[i + offset - j])): v = 0.0 weight_scale = 0.0 else: v = shared[i + offset - j] weight_scale = 1.0 average_size += 1 s += v * lam counter += 1 total_weight += lam * weight_scale lam *= (1 - alpha) if (i + indicator_start - j >= 0 and asset_indicator[i + indicator_start - j] == 1): break if average_size >= min_size: out_arr[i] = s / total_weight else: out_arr[i] = np.nan first = True else: if (cmath.isnan(shared[i + offset])): v_current = 0.0 weight_scale_current = 0.0 else: v_current = shared[i + offset] weight_scale_current = 1.0 average_size += 1 if counter >= window_size: if (cmath.isnan(shared[i + offset - window_size])): v = 0.0 weight_scale = 0.0 else: v = shared[i + offset - window_size] weight_scale = 1.0 average_size -= 1 s -= v * lam / (1 - alpha) total_weight -= lam / (1 - alpha) * weight_scale else: counter += 1 # total_weight += lam * weight_scale_current lam *= (1 - alpha) total_weight *= (1 - alpha) total_weight += 1.0 * weight_scale_current s *= (1 - alpha) s += v_current if average_size >= min_size: out_arr[i] = s / total_weight else: out_arr[i] = np.nan @cuda.jit(device=True) def ewma_mean_window(shared, history_len, out_arr, window_size, span, arr_len, offset, min_size): """ This function is to compute the exponetially-weighted moving average for the window. See `window_kernel` for detailed arguments """ s = 0.0 v = 0.0 v_current = 0.0 first = False alpha = 2 / (span + 1) lam = 1 total_weight = 0 counter = 0 weight_scale = 1.0 weight_scale_current = 1.0 average_size = 0 for i in range(arr_len): if i + history_len < span - 1: out_arr[i] = np.nan else: if not first: # print(i, i + history_len + 1, window_size, history_len) for j in range(0, min(i + history_len + 1, window_size)): if (cmath.isnan(shared[i + offset - j])): v = 0.0 weight_scale = 0.0 else: v = shared[i + offset - j] weight_scale = 1.0 average_size += 1 s += v * lam counter += 1 total_weight += lam * weight_scale lam *= (1 - alpha) if average_size >= min_size: out_arr[i] = s / total_weight else: out_arr[i] = np.nan first = True else: if (cmath.isnan(shared[i + offset])): v_current = 0.0 weight_scale_current = 0.0 else: v_current = shared[i + offset] weight_scale_current = 1.0 average_size += 1 if counter >= window_size: if (cmath.isnan(shared[i + offset - window_size])): v = 0.0 weight_scale = 0.0 else: v = shared[i + offset - window_size] weight_scale = 1.0 average_size -= 1 s -= v * lam / (1 - alpha) total_weight -= lam / (1 - alpha) * weight_scale else: counter += 1 # total_weight += lam * weight_scale_current lam *= (1 - alpha) total_weight *= (1 - alpha) total_weight += 1.0 * weight_scale_current s *= (1 - alpha) s += v_current if average_size >= min_size: out_arr[i] = s / total_weight else: out_arr[i] = np.nan @cuda.jit(device=True) def mean_window(shared, history_len, future_len, out_arr, window_size, forward_window_size, arr_len, offset, min_size): """ This function is to compute the moving average for the window See `window_kernel` for detailed arguments """ first = False s = 0.0 average_size = 0 for i in range(arr_len): if i + history_len < window_size-1: out_arr[i] = np.nan elif future_len - i < forward_window_size + 1: out_arr[i] = np.nan else: if not first: for j in range(0, window_size + forward_window_size): if not (cmath.isnan( shared[offset + i - j + forward_window_size])): s += shared[offset + i - j + forward_window_size] average_size += 1 if average_size >= min_size: out_arr[i] = s / np.float64(average_size) else: out_arr[i] = np.nan first = True else: if not (cmath.isnan( shared[offset + i + forward_window_size])): s += shared[offset + i + forward_window_size] average_size += 1 if not (cmath.isnan( shared[offset + i - window_size])): s -= shared[offset + i - window_size] average_size -= 1 if average_size >= min_size: out_arr[i] = s / np.float64(average_size) else: out_arr[i] = np.nan @cuda.jit(device=True) def var_window(shared, history_len, future_len, out_arr, window_size, forward_window_size, arr_len, offset, min_size): """ This function is to compute the var for the window See `window_kernel` for detailed arguments """ s = 0.0 # this is mean var = 0.0 # this is variance first = False average_size = 0 for i in range(arr_len): if i + history_len < window_size-1: out_arr[i] = np.nan elif future_len - i < forward_window_size + 1: out_arr[i] = np.nan else: if not first: for j in range(0, window_size + forward_window_size): if not (cmath.isnan( shared[offset + i - j + forward_window_size])): s += shared[offset + i - j + forward_window_size] var += shared[offset + i - j + forward_window_size] * \ shared[offset + i - j + forward_window_size] average_size += 1 if average_size >= min_size: out_arr[i] = (var - s * s / np.float64(average_size)) / \ np.float64(average_size - 1.0) else: out_arr[i] = np.nan first = True else: if not (cmath.isnan( shared[offset + i + forward_window_size])): s += shared[offset + i + forward_window_size] var += shared[offset + i + forward_window_size] * \ shared[offset + i + forward_window_size] average_size += 1 if not (cmath.isnan( shared[offset + i - window_size])): s -= shared[offset + i - window_size] var -= shared[offset + i - window_size] * \ shared[offset + i - window_size] average_size -= 1 if average_size >= min_size: out_arr[i] = (var - s * s / np.float64(average_size)) / \ np.float64(average_size - 1.0) else: out_arr[i] = np.nan @cuda.jit(device=True) def std_window(shared, history_len, future_len, out_arr, window_size, forward_window_size, arr_len, offset, min_size): """ This function is to compute the std for the window See `window_kernel` for detailed arguments """ s = 0.0 # this is mean var = 0.0 # this is variance first = False average_size = 0 for i in range(arr_len): if i + history_len < window_size-1: out_arr[i] = np.nan elif future_len - i < forward_window_size + 1: out_arr[i] = np.nan else: if not first: for j in range(0, window_size + forward_window_size): if not (cmath.isnan( shared[offset + i - j + forward_window_size])): s += shared[offset + i - j + forward_window_size] var += shared[offset + i - j + forward_window_size] * \ shared[offset + i - j + forward_window_size] average_size += 1 if average_size >= min_size: v = math.sqrt( abs((var - s * s / np.float64(average_size)) / np.float64(average_size - 1.0))) out_arr[i] = v else: out_arr[i] = np.nan first = True else: if not (cmath.isnan( shared[offset + i + forward_window_size])): s += shared[offset + i + forward_window_size] var += shared[offset + i + forward_window_size] * \ shared[offset + i + forward_window_size] average_size += 1 if not (cmath.isnan( shared[offset + i - window_size])): s -= shared[offset + i - window_size] var -= shared[offset + i - window_size] * \ shared[offset + i - window_size] average_size -= 1 if average_size >= min_size: v = math.sqrt( abs((var - s * s / np.float64(average_size)) / np.float64(average_size - 1.0))) out_arr[i] = v else: out_arr[i] = np.nan @cuda.jit(device=True) def sum_window(shared, history_len, future_len, out_arr, window_size, forward_window_size, arr_len, offset, min_size): """ This function is to compute the sum for the window See `window_kernel` for detailed arguments """ first = False s = 0.0 average_size = 0 for i in range(arr_len): if i + history_len < window_size-1: out_arr[i] = np.nan elif future_len - i < forward_window_size + 1: out_arr[i] = np.nan else: if not first: for j in range(0, window_size + forward_window_size): if not (cmath.isnan( shared[offset + i - j + forward_window_size])): s += shared[offset + i - j + forward_window_size] average_size += 1 if average_size >= min_size: out_arr[i] = s else: out_arr[i] = np.nan first = True else: if not (cmath.isnan( shared[offset + i + forward_window_size])): s += shared[offset + i + forward_window_size] average_size += 1 if not (cmath.isnan( shared[offset + i - window_size])): s -= shared[offset + i - window_size] average_size -= 1 if average_size >= min_size: out_arr[i] = s else: out_arr[i] = np.nan @cuda.jit(device=True) def max_window(shared, history_len, future_len, out_arr, window_size, forward_window_size, arr_len, offset, min_size): """ This function is to compute the max for the window See `window_kernel` for detailed arguments """ for i in range(arr_len): if i + history_len < window_size-1: out_arr[i] = np.nan elif future_len - i < forward_window_size + 1: out_arr[i] = np.nan else: s = -np.inf # maximum average_size = 0 for j in range(0, window_size + forward_window_size): if not (cmath.isnan( shared[offset + i - j + forward_window_size])): # bigger than the max if shared[i + offset - j + forward_window_size] > s: s = shared[i + offset - j + forward_window_size] average_size += 1 if average_size >= min_size: out_arr[i] = s else: out_arr[i] = np.nan @cuda.jit(device=True) def min_window(shared, history_len, future_len, out_arr, window_size, forward_window_size, arr_len, offset, min_size): """ This function is to compute the min for the window See `window_kernel` for detailed arguments """ for i in range(arr_len): if i + history_len < window_size-1: out_arr[i] = np.nan elif future_len - i < forward_window_size + 1: out_arr[i] = np.nan else: s = np.inf # minimum average_size = 0 for j in range(0, window_size + forward_window_size): if not (cmath.isnan( shared[offset + i - j + forward_window_size])): # smaller than the min if shared[i + offset - j + forward_window_size] < s: s = shared[i + offset - j + forward_window_size] average_size += 1 if average_size >= min_size: out_arr[i] = s else: out_arr[i] = np.nan @cuda.jit(device=True) def backward_diff_window(shared, history_len, future_len, out_arr, window_size, forward_window_size, arr_len, offset, min_size): """ This function is to compute the backward element difference. See `window_kernel` for detailed arguments """ for i in range(arr_len): if i + history_len < window_size-1: out_arr[i] = np.nan elif future_len - i < forward_window_size + 1: out_arr[i] = np.nan else: if (cmath.isnan(shared[offset + i]) or cmath.isnan(shared[offset + i - window_size + 1])): out_arr[i] = np.nan else: out_arr[i] = shared[offset + i] - \ shared[offset + i - window_size + 1] @cuda.jit(device=True) def backward_shift_window(shared, history_len, future_len, out_arr, window_size, forward_window_size, arr_len, offset, min_size): """ This function is to shfit elements backward See `window_kernel` for detailed arguments """ for i in range(arr_len): if i + history_len < window_size-1: out_arr[i] = np.nan elif future_len - i < forward_window_size + 1: out_arr[i] = np.nan else: if (cmath.isnan(shared[offset + i - window_size + 1])): out_arr[i] = np.nan else: out_arr[i] = shared[offset + i - window_size + 1] @cuda.jit(device=True) def forward_diff_window(shared, history_len, future_len, out_arr, window_size, forward_window_size, arr_len, offset, min_size): """ This function is to compute the forward element difference. See `window_kernel` for detailed arguments """ for i in range(arr_len): if i + history_len < window_size-1: out_arr[i] = np.nan elif future_len - i < forward_window_size + 1: out_arr[i] = np.nan else: if (cmath.isnan(shared[offset + i]) or cmath.isnan(shared[offset + i + forward_window_size])): out_arr[i] = np.nan else: out_arr[i] = shared[offset + i] - \ shared[offset + i + forward_window_size] @cuda.jit(device=True) def forward_shift_window(shared, history_len, future_len, out_arr, window_size, forward_window_size, arr_len, offset, min_size): """ This function is to compute the forward element difference. See `window_kernel` for detailed arguments """ for i in range(arr_len): if i + history_len < window_size-1: out_arr[i] = np.nan elif future_len - i < forward_window_size + 1: out_arr[i] = np.nan else: if (cmath.isnan(shared[offset + i + forward_window_size])): out_arr[i] = np.nan else: out_arr[i] = shared[offset + i + forward_window_size]
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/cuindicator/windows.py
from greenflow.dataframe_flow import Node, PortsSpecSchema from greenflow.dataframe_flow.portsSpecSchema import ConfSchema from greenflow.dataframe_flow.metaSpec import MetaDataSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from ..node_hdf_cache import NodeHDFCacheMixin __all__ = ['XGBoostStrategyNode'] class XGBoostStrategyNode(TemplateNodeMixin, NodeHDFCacheMixin, Node): """ This is the Node used to compute trading signal from XGBoost Strategy. """ def init(self): TemplateNodeMixin.init(self) self.INPUT_PORT_NAME = 'stock_in' self.OUTPUT_PORT_NAME = 'stock_out' port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] }, } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:stock_in}" } } cols_required = {'predict': None, "asset": "int64"} addition = {} addition['signal'] = 'float64' meta_inports = { self.INPUT_PORT_NAME: cols_required } meta_outports = { self.OUTPUT_PORT_NAME: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_ADDITION, MetaDataSchema.META_REF_INPUT: self.INPUT_PORT_NAME, MetaDataSchema.META_DATA: addition } } self.template_ports_setup( in_ports=port_inports, out_ports=port_outports ) self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): json = { "title": "XGBoost Node configure", "type": "object", "description": """convert the predicted next day return as trading actions """, "properties": { }, } ui = { } return ConfSchema(json=json, ui=ui) def process(self, inputs): input_df = inputs[self.INPUT_PORT_NAME] # convert the signal to trading action # 1 is buy and -1 is sell # It predicts the tomorrow's return (shift -1) # We shift 1 for trading actions so that it acts on the second day input_df['signal'] = (( input_df['predict'] >= 0).astype('float') * 2 - 1).shift(1) # remove the bad datapints input_df = input_df.dropna() return {self.OUTPUT_PORT_NAME: input_df}
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/strategy/xgboostStrategyNode.py
from .movingAverageStrategyNode import MovingAverageStrategyNode from .portExpMovingAverageStrategyNode import PortExpMovingAverageStrategyNode from .xgboostStrategyNode import XGBoostStrategyNode __all__ = ["MovingAverageStrategyNode", "PortExpMovingAverageStrategyNode", "XGBoostStrategyNode"]
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/strategy/__init__.py
from numba import cuda from functools import partial import math import numpy as np import cudf import pandas as pd from greenflow.dataframe_flow import Node, PortsSpecSchema from greenflow.dataframe_flow.portsSpecSchema import ConfSchema from greenflow.dataframe_flow.metaSpec import MetaDataSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from ..node_hdf_cache import NodeHDFCacheMixin from .. import cuindicator as ci @cuda.jit def moving_average_signal_kernel(ma_fast, ma_slow, out_arr, arr_len): i = cuda.grid(1) if i == 0: out_arr[i] = np.nan if i < arr_len - 1: if math.isnan(ma_slow[i]) or math.isnan(ma_fast[i]): out_arr[i + 1] = np.nan elif ma_fast[i] - ma_slow[i] > 0.00001: # shift 1 time to make sure no peeking into the future out_arr[i + 1] = -1.0 else: out_arr[i + 1] = 1.0 def port_exponential_moving_average(stock_df, n_fast, n_slow): ma_slow = ci.port_exponential_moving_average(stock_df['indicator'], stock_df['close'], n_slow).to_gpu_array() ma_fast = ci.port_exponential_moving_average(stock_df['indicator'], stock_df['close'], n_fast).to_gpu_array() out_arr = cuda.device_array_like(ma_fast) number_of_threads = 256 array_len = len(stock_df) number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads moving_average_signal_kernel[(number_of_blocks,), (number_of_threads,)](ma_fast, ma_slow, out_arr, array_len) return out_arr, ma_slow, ma_fast def cpu_exp_moving_average(df, n_slow=1, n_fast=3): df['exp_ma_slow'] = df['close'].ewm(span=n_slow, min_periods=n_slow).mean() df['exp_ma_fast'] = df['close'].ewm(span=n_fast, min_periods=n_fast).mean() df['signal'] = 1.0 df['signal'][df['exp_ma_fast'] - df['exp_ma_slow'] > 0.00001] = -1.0 df['signal'] = df['signal'].shift(1) df['signal'].values[0:n_slow] = np.nan return df class PortExpMovingAverageStrategyNode( TemplateNodeMixin, NodeHDFCacheMixin, Node): def init(self): TemplateNodeMixin.init(self) self.INPUT_PORT_NAME = 'stock_in' self.OUTPUT_PORT_NAME = 'stock_out' self.delayed_process = True port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] }, } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:stock_in}" } } cols_required = {"close": "float64", "indicator": "int32"} addition = {"signal": "float64", "exp_ma_slow": "float64", "exp_ma_fast": "float64"} meta_inports = { self.INPUT_PORT_NAME: cols_required } meta_outports = { self.OUTPUT_PORT_NAME: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_ADDITION, MetaDataSchema.META_REF_INPUT: self.INPUT_PORT_NAME, MetaDataSchema.META_DATA: addition } } self.template_ports_setup( in_ports=port_inports, out_ports=port_outports ) self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): json = { "title": "Portfollio Moving Average Strategy Node configure", "type": "object", "description": """Simple mean reversion trading strategy. It computes two exponential moving average signals of the `close` prices and decides long/short of asset when these two signals cross over.""", "properties": { "fast": { "type": "number", "description": "fast moving average window" }, "slow": { "type": "number", "description": "slow moving average window" } }, "required": ["fast", "slow"], } ui = { } return ConfSchema(json=json, ui=ui) def process(self, inputs): """ Simple mean reversion trading strategy. It computes two exponential moving average signals of the `close` prices and decides long/short of asset when these two signals cross over. It computes the trading signals for all the assets in the dataframe. The trading signal is named as `signal` in the dataframe. positive value means long and negative value means short. The resulting moving average signals are added to the dataframe. Arguments ------- inputs: list list of input dataframes. Returns ------- dataframe """ input_df = inputs[self.INPUT_PORT_NAME] n_fast = self.conf['fast'] n_slow = self.conf['slow'] if isinstance(input_df, pd.DataFrame): fun = partial(cpu_exp_moving_average, n_fast=n_fast, n_slow=n_slow) input_df = input_df.groupby("asset").apply(fun) else: signal, slow, fast = port_exponential_moving_average(input_df, n_fast, n_slow) signal = cudf.Series(signal, index=input_df.index) slow = cudf.Series(slow, index=input_df.index) fast = cudf.Series(fast, index=input_df.index) input_df['signal'] = signal input_df['exp_ma_slow'] = slow input_df['exp_ma_slow'] = input_df['exp_ma_slow'].fillna(0.0) input_df['exp_ma_fast'] = fast input_df['exp_ma_fast'] = input_df['exp_ma_fast'].fillna(0.0) # remove the bad datapints input_df = input_df.dropna() input_df = input_df.query('indicator == 0') return {self.OUTPUT_PORT_NAME: input_df}
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/strategy/portExpMovingAverageStrategyNode.py
from .. import cuindicator as ci from greenflow.dataframe_flow import Node, PortsSpecSchema from numba import cuda import math import numpy as np import cudf from greenflow.dataframe_flow.portsSpecSchema import ConfSchema from greenflow.dataframe_flow.metaSpec import MetaDataSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from ..node_hdf_cache import NodeHDFCacheMixin @cuda.jit def moving_average_signal_kernel(ma_fast, ma_slow, out_arr, arr_len): i = cuda.grid(1) if i == 0: out_arr[i] = np.nan if i < arr_len - 1: if math.isnan(ma_slow[i]) or math.isnan(ma_fast[i]): out_arr[i + 1] = np.nan elif ma_fast[i] - ma_slow[i] > 0.00001: # shift 1 time to make sure no peeking into the future out_arr[i + 1] = -1.0 else: out_arr[i + 1] = 1.0 def moving_average_signal(stock_df, n_fast, n_slow): ma_slow = ci.moving_average(stock_df['close'], n_slow).to_gpu_array() ma_fast = ci.moving_average(stock_df['close'], n_fast).to_gpu_array() out_arr = cuda.device_array_like(ma_fast) array_len = len(ma_slow) number_of_threads = 256 number_of_blocks = (array_len + ( number_of_threads - 1)) // number_of_threads moving_average_signal_kernel[(number_of_blocks,), (number_of_threads,)](ma_fast, ma_slow, out_arr, array_len) return out_arr, ma_slow, ma_fast class MovingAverageStrategyNode(TemplateNodeMixin, NodeHDFCacheMixin, Node): def init(self): TemplateNodeMixin.init(self) self.INPUT_PORT_NAME = 'stock_in' self.OUTPUT_PORT_NAME = 'stock_out' self.delayed_process = True port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] }, } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:stock_in}" } } cols_required = {"close": "float64"} addition = {"signal": "float64", "ma_slow": "float64", "ma_fast": "float64"} meta_inports = { self.INPUT_PORT_NAME: cols_required } meta_outports = { self.OUTPUT_PORT_NAME: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_ADDITION, MetaDataSchema.META_REF_INPUT: self.INPUT_PORT_NAME, MetaDataSchema.META_DATA: addition } } self.template_ports_setup( in_ports=port_inports, out_ports=port_outports ) self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): json = { "title": "Moving Average Strategy Node configure", "type": "object", "description": """Simple mean reversion trading strategy. It computes two moving average signals of the `close` prices and decides long/short of asset when these two signals cross over.select the asset based on asset id""", "properties": { "fast": { "type": "number", "description": "fast moving average window" }, "slow": { "type": "number", "description": "slow moving average window" } }, "required": ["fast", "slow"], } ui = { } return ConfSchema(json=json, ui=ui) def process(self, inputs): """ Simple mean reversion trading strategy. It computes two moving average signals of the `close` prices and decides long/short of asset when these two signals cross over. The trading signal is named as `signal` in the dataframe. positive value means long and negative value means short. The resulting moving average signals are added to the dataframe. Arguments ------- inputs: list list of input dataframes. Returns ------- dataframe """ input_df = inputs[self.INPUT_PORT_NAME] n_fast = self.conf['fast'] n_slow = self.conf['slow'] signal, slow, fast = moving_average_signal(input_df, n_fast, n_slow) signal = cudf.Series(signal, index=input_df.index) slow = cudf.Series(slow, index=input_df.index) fast = cudf.Series(fast, index=input_df.index) input_df['signal'] = signal input_df['ma_slow'] = slow input_df['ma_slow'] = input_df['ma_slow'].fillna(0.0) input_df['ma_fast'] = fast input_df['ma_fast'] = input_df['ma_fast'].fillna(0.0) input_df = input_df.dropna() return {self.OUTPUT_PORT_NAME: input_df}
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/strategy/movingAverageStrategyNode.py
class StockMap(object): def __init__(self): pass
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/dataloader/stockMap.py
from greenflow.dataframe_flow import Node import cudf from greenflow.dataframe_flow.portsSpecSchema import ( PortsSpecSchema, NodePorts, ConfSchema) from greenflow.dataframe_flow.metaSpec import MetaData from ..cache import CACHE_NAME from greenflow.dataframe_flow.util import get_file_path from .stockMap import StockMap from ..node_hdf_cache import NodeHDFCacheMixin STOCK_NAME_PORT_NAME = 'stock_name' STOCK_MAP_PORT_NAME = 'map_data' class StockNameLoader(NodeHDFCacheMixin, Node): def _compute_hash_key(self): return hash((self.uid, self.conf['file'])) def ports_setup(self): input_ports = {} output_ports = { STOCK_NAME_PORT_NAME: { PortsSpecSchema.port_type: cudf.DataFrame }, STOCK_MAP_PORT_NAME: { PortsSpecSchema.port_type: StockMap } } return NodePorts(inports=input_ports, outports=output_ports) def meta_setup(self): required = {} column_types = {"asset": "int64", "asset_name": "object"} out_cols = { STOCK_NAME_PORT_NAME: column_types, } if self.outport_connected(STOCK_MAP_PORT_NAME): if 'file' in self.conf: hash_key = self._compute_hash_key() if hash_key in CACHE_NAME: out_cols.update({ STOCK_MAP_PORT_NAME: CACHE_NAME[hash_key]}) else: path = get_file_path(self.conf['file']) name_df = cudf.read_csv(path)[['SM_ID', 'SYMBOL']] name_df.columns = ["asset", 'asset_name'] pdf = name_df.to_pandas() column_data = pdf.to_dict('list') CACHE_NAME[hash_key] = column_data out_cols.update({STOCK_MAP_PORT_NAME: column_data}) metadata = MetaData(inports=required, outports=out_cols) return metadata def conf_schema(self): json = { "title": "Stock name csv file loader configure", "type": "object", "description": "Load the stock name data from the csv file", "properties": { "file": { "type": "string", "description": "stock name csv file with full path" } }, "required": ["file"], } ui = { "file": {"ui:widget": "CsvFileSelector"} } return ConfSchema(json=json, ui=ui) def process(self, inputs): """ Load the csv file mapping stock id to symbol name into cudf DataFrame Arguments ------- inputs: list empty list Returns ------- cudf.DataFrame """ output = {} if self.outport_connected(STOCK_NAME_PORT_NAME): path = get_file_path(self.conf['file']) name_df = cudf.read_csv(path)[['SM_ID', 'SYMBOL']] # change the names name_df.columns = ["asset", 'asset_name'] output.update({STOCK_NAME_PORT_NAME: name_df}) if self.outport_connected(STOCK_MAP_PORT_NAME): output.update({STOCK_MAP_PORT_NAME: StockMap()}) return output
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/dataloader/stockNameLoader.py
from greenflow.dataframe_flow import Node from greenflow.dataframe_flow.portsSpecSchema import ( PortsSpecSchema, NodePorts, ConfSchema) from greenflow.dataframe_flow.metaSpec import MetaData import cudf import dask_cudf import cuml import copy import cuml.dask.datasets.classification from ..node_hdf_cache import NodeHDFCacheMixin CUDF_PORT_NAME = 'cudf_out' DASK_CUDF_PORT_NAME = 'dask_cudf_out' class ClassificationData(NodeHDFCacheMixin, Node): def ports_setup(self): input_ports = {} output_ports = { CUDF_PORT_NAME: { PortsSpecSchema.port_type: cudf.DataFrame }, DASK_CUDF_PORT_NAME: { PortsSpecSchema.port_type: dask_cudf.DataFrame } } return NodePorts(inports=input_ports, outports=output_ports) def meta_setup(self): column_types = {} total_features = self.conf.get("n_features", 20) dtype = self.conf.get("dtype", "float32") for i in range(total_features): column_types["x"+str(i)] = dtype column_types['y'] = 'int64' inputs = { } out_cols = { CUDF_PORT_NAME: column_types, DASK_CUDF_PORT_NAME: column_types, } metadata = MetaData(inports=inputs, outports=out_cols) return metadata def conf_schema(self): json = { "title": "Classification Node configure", "type": "object", "description": """Generate random dataframe for classification tasks. Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of an n_informative-dimensional hypercube with sides of length 2*class_sep and assigns an equal number of clusters to each class.""", "properties": { "n_samples": {"type": "number", "description": "The number of samples.", "default": 100}, "n_features": {"type": "number", "description": """The total number of features. These comprise n_informative informative features, n_redundant redundant features, n_repeated duplicated features and n_features-n_informative-n_redundant-n_repeated useless features drawn at random.""", "default": 20}, "n_informative": {"type": "number", "description": """The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension n_informative. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube.""", "default": 2}, "n_redundant": {"type": "number", "description": """The number of redundant features. These features are generated as random linear combinations of the informative features.""", "default": 2}, "n_repeated": {"type": "number", "description": """The number of duplicated features, drawn randomly from the informative and the redundant features.""", "default": 0}, "n_classes": {"type": "number", "description": """The number of classes (or labels) of the classification problem.""", "default": 2}, "n_clusters_per_class": {"type": "number", "description": """The number of clusters per class.""", "default": 2}, "weights": {"type": "array", "items": { "type": "number" }, "description": """The proportions of samples assigned to each class. If None, then classes are balanced. Note that if len(weights) == n_classes - 1, then the last class weight is automatically inferred. More than n_samples samples may be returned if the sum of weights exceeds 1."""}, "flip_y": {"type": "number", "description": """The fraction of samples whose class is assigned randomly. Larger values introduce noise in the labels and make the classification task harder.""", "default": 0.01}, "class_sep": {"type": "number", "description": """The factor multiplying the hypercube size. Larger values spread out the clusters/classes and make the classification task easier.""", "default": 1.0}, "hypercube": {"type": "boolean", "description": """If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope.""", "default": True}, "shift": {"type": "number", "description": """Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep].""", "default": 0.0}, "scale": {"type": "number", "description": """Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting.""", "default": 1.0}, "shuffle": {"type": "boolean", "description": """Shuffle the samples and the features.""", "default": True}, "random_state": {"type": "number", "description": """Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary."""}, "order": {"type": "string", "description": "The order of the generated samples", "enum": ["F", "C"], "default": "F"}, "dtype": {"type": "string", "description": "Dtype of the generated samples", "enum": ["float64", "float32"], "default": "float64"}, "n_parts": {"type": "number", "description": """used for Dask dataframe, number of partitions to generate (this can be greater than the number of workers""", "default": 4} } } ui = { } return ConfSchema(json=json, ui=ui) def process(self, inputs): """ genearte the fake data for classification Arguments ------- inputs: list empty list Returns ------- cudf.DataFrame """ output = {} def get_cudf(offset=None): conf = copy.copy(self.conf) if 'n_parts' in conf: del conf['n_parts'] x, y = cuml.datasets.make_classification(**conf) df = cudf.DataFrame({'x'+str(i): x[:, i] for i in range(x.shape[1])}) df['y'] = y if offset is not None: df.index += offset return df if self.outport_connected(CUDF_PORT_NAME): df = get_cudf() output.update({CUDF_PORT_NAME: df}) if self.outport_connected(DASK_CUDF_PORT_NAME): def mapfun(x): return x.get() x, y = cuml.dask.datasets.classification.make_classification( **self.conf) ddf = x.map_blocks(mapfun, dtype=x.dtype).to_dask_dataframe() out = dask_cudf.from_dask_dataframe(ddf) out.columns = ['x'+str(i) for i in range(x.shape[1])] out['y'] = y.astype('int64') output.update({DASK_CUDF_PORT_NAME: out}) return output
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/dataloader/classificationGenerator.py
from .csvStockLoader import CsvStockLoader from .stockNameLoader import StockNameLoader from .classificationGenerator import ClassificationData __all__ = ["CsvStockLoader", "StockNameLoader", "ClassificationData"]
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/dataloader/__init__.py
from greenflow.dataframe_flow import Node from greenflow.dataframe_flow.portsSpecSchema import ( PortsSpecSchema, NodePorts, ConfSchema) from greenflow.dataframe_flow.metaSpec import MetaData import cudf import dask_cudf import pandas as pd from greenflow.dataframe_flow.util import get_file_path from ..node_hdf_cache import NodeHDFCacheMixin CUDF_PORT_NAME = 'cudf_out' DASK_CUDF_PORT_NAME = 'dask_cudf_out' PANDAS_PORT_NAME = 'pandas_out' class CsvStockLoader(NodeHDFCacheMixin, Node): def ports_setup(self): input_ports = {} output_ports = { CUDF_PORT_NAME: { PortsSpecSchema.port_type: cudf.DataFrame }, DASK_CUDF_PORT_NAME: { PortsSpecSchema.port_type: dask_cudf.DataFrame }, PANDAS_PORT_NAME: { PortsSpecSchema.port_type: pd.DataFrame } } return NodePorts(inports=input_ports, outports=output_ports) def meta_setup(self): column_types = { "datetime": "datetime64[ns]", "open": "float64", "close": "float64", "high": "float64", "low": "float64", "asset": "int64", "volume": "float64" } out_cols = { CUDF_PORT_NAME: column_types, DASK_CUDF_PORT_NAME: column_types, PANDAS_PORT_NAME: column_types } required = {} metadata = MetaData(inports=required, outports=out_cols) return metadata def conf_schema(self): json = { "title": "Stock csv data loader configure", "type": "object", "description": "Load the stock daily bar data from the csv file", "properties": { "file": { "type": "string", "description": "stock csv data file with full path" }, "path": { "type": "string", "description": "path to the directory for csv files" } } } ui = { "file": {"ui:widget": "CsvFileSelector"}, "path": {"ui:widget": "PathSelector"} } return ConfSchema(json=json, ui=ui) def process(self, inputs): """ Load the end of day stock CSV data into cuDF dataframe Arguments ------- inputs: list empty list Returns ------- cudf.DataFrame """ output = {} if self.outport_connected(CUDF_PORT_NAME): path = get_file_path(self.conf['file']) df = cudf.read_csv(path) # extract the year, month, day ymd = df['DTE'].astype( 'str').str.extract(r'(\d\d\d\d)(\d\d)(\d\d)') # construct the standard datetime str df['DTE'] = ymd[0].str.cat( ymd[1], '-').str.cat(ymd[2], '-').astype('datetime64[ns]') df = df[['DTE', 'OPEN', 'CLOSE', 'HIGH', 'LOW', 'SM_ID', 'VOLUME']] df['VOLUME'] /= 1000 # change the names df.columns = ['datetime', 'open', 'close', 'high', 'low', "asset", 'volume'] output.update({CUDF_PORT_NAME: df}) if self.outport_connected(PANDAS_PORT_NAME): path = get_file_path(self.conf['file']) df = pd.read_csv(path, converters={'DTE': lambda x: pd.Timestamp(str(x))}) df = df[['DTE', 'OPEN', 'CLOSE', 'HIGH', 'LOW', 'SM_ID', 'VOLUME']] df['VOLUME'] /= 1000 df.columns = ['datetime', 'open', 'close', 'high', 'low', "asset", 'volume'] output.update({PANDAS_PORT_NAME: df}) if self.outport_connected(DASK_CUDF_PORT_NAME): path = get_file_path(self.conf['path']) df = dask_cudf.read_csv(path+'/*.csv', parse_dates=['datetime']) output.update({DASK_CUDF_PORT_NAME: df}) return output
fsi-samples-main
gQuant/plugins/gquant_plugin/greenflow_gquant_plugin/dataloader/csvStockLoader.py
import greenflow from greenflow.dataframe_flow.portsSpecSchema import ConfSchema import json data = """{ "conf": { "input": [ "train_norm.df_in", "test_norm.df_in" ], "output": [ "train_infer.out", "test_infer.out", "train_xgboost.model_out", "train_norm.df_out", "test_norm.df_out" ], "subnode_ids": [ "train_norm", "train_xgboost" ], "subnodes_conf": {}, "taskgraph": "taskgraphs/xgboost_example/xgboost_model.gq.yaml" } } """ class CustXGBoostNode(greenflow.plugin_nodes.util.CompositeNode): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # modify the self.conf to the one that this Composite node wants global data node_conf = self.conf data_obj = json.loads(data) data_obj['conf']['subnodes_conf'].update(node_conf) self.conf = data_obj['conf'] def conf_schema(self): full_schema = super().conf_schema() full_schema_json = full_schema.json ui = full_schema.ui json = { "title": "CustXGBoostNode configure", "type": "object", "description": "Enter your node description here", "properties": { } } item_dict = full_schema_json['properties'][ 'subnodes_conf']['properties'] for key in item_dict.keys(): json['properties'][key] = item_dict[key] return ConfSchema(json=json, ui=ui)
fsi-samples-main
gQuant/plugins/gquant_plugin/modules/my_node.py
import math import numpy as np from numba import cuda import cupy import cudf import dask_cudf import dask from greenflow.dataframe_flow import Node, MetaData from greenflow.dataframe_flow import NodePorts, PortsSpecSchema from greenflow.dataframe_flow import ConfSchema import copy class PointNode(Node): def ports_setup(self): input_ports = {} output_ports = { 'points_df_out': { PortsSpecSchema.port_type: cudf.DataFrame }, 'points_ddf_out': { PortsSpecSchema.port_type: dask_cudf.DataFrame }, } return NodePorts(inports=input_ports, outports=output_ports) def conf_schema(self): json = { "title": "PointNode configure", "type": "object", "properties": { "npts": { "type": "number", "description": "number of data points", "minimum": 10 }, "npartitions": { "type": "number", "description": "num of partitions in the Dask dataframe", "minimum": 1 } }, "required": ["npts", "npartitions"], } ui = { "npts": {"ui:widget": "updown"}, "npartitions": {"ui:widget": "updown"} } return ConfSchema(json=json, ui=ui) def init(self): pass def meta_setup(self): columns_out = { 'points_df_out': { 'x': 'float64', 'y': 'float64' }, 'points_ddf_out': { 'x': 'float64', 'y': 'float64' } } return MetaData(inports={}, outports=columns_out) def process(self, inputs): npts = self.conf['npts'] df = cudf.DataFrame() df['x'] = np.random.rand(npts) df['y'] = np.random.rand(npts) output = {} if self.outport_connected('points_df_out'): output.update({'points_df_out': df}) if self.outport_connected('points_ddf_out'): npartitions = self.conf['npartitions'] ddf = dask_cudf.from_cudf(df, npartitions=npartitions) output.update({'points_ddf_out': ddf}) return output class DistanceNode(Node): def ports_setup(self): port_type = PortsSpecSchema.port_type input_ports = { 'points_df_in': { port_type: [cudf.DataFrame, dask_cudf.DataFrame] } } output_ports = { 'distance_df': { port_type: [cudf.DataFrame, dask_cudf.DataFrame] }, 'distance_abs_df': { PortsSpecSchema.port_type: [cudf.DataFrame, dask_cudf.DataFrame] } } input_connections = self.get_connected_inports() if 'points_df_in' in input_connections: types = input_connections['points_df_in'] # connected, use the types passed in from parent return NodePorts(inports={'points_df_in': {port_type: types}}, outports={'distance_df': {port_type: types}, 'distance_abs_df': {port_type: types}, }) else: return NodePorts(inports=input_ports, outports=output_ports) def conf_schema(self): return ConfSchema() def init(self): self.delayed_process = True def meta_setup(self): req_cols = { 'x': 'float64', 'y': 'float64' } required = { 'points_df_in': req_cols, } input_meta = self.get_input_meta() output_cols = ({ 'distance_df': { 'x': 'float64', 'y': 'float64', 'distance_cudf': 'float64', }, 'distance_abs_df': { 'x': 'float64', 'y': 'float64', 'distance_abs_cudf': 'float64', } }) if 'points_df_in' in input_meta: col_from_inport = input_meta['points_df_in'] # additional ports output_cols['distance_df'].update(col_from_inport) output_cols['distance_abs_df'].update(col_from_inport) return MetaData(inports=required, outports=output_cols) def process(self, inputs): df = inputs['points_df_in'] output = {} if self.outport_connected('distance_df'): copy_df = df.copy() copy_df['distance_cudf'] = (df['x'] ** 2 + df['y'] ** 2).sqrt() output.update({'distance_df': copy_df}) if self.outport_connected('distance_abs_df'): copy_df = df.copy() copy_df['distance_abs_cudf'] = df['x'].abs() + df['y'].abs() output.update({'distance_abs_df': copy_df}) return output @cuda.jit def distance_kernel(x, y, distance, array_len): # ii - overall thread index ii = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x if ii < array_len: distance[ii] = math.sqrt(x[ii] ** 2 + y[ii] ** 2) class NumbaDistanceNode(Node): def ports_setup(self): port_type = PortsSpecSchema.port_type input_ports = { 'points_df_in': { port_type: [cudf.DataFrame, dask_cudf.DataFrame] } } output_ports = { 'distance_df': { port_type: [cudf.DataFrame, dask_cudf.DataFrame] } } input_connections = self.get_connected_inports() if 'points_df_in' in input_connections: types = input_connections['points_df_in'] # connected return NodePorts(inports={'points_df_in': {port_type: types}}, outports={'distance_df': {port_type: types}}) else: return NodePorts(inports=input_ports, outports=output_ports) def init(self): self.delayed_process = True def meta_setup(self,): required_cols = {'x': 'float64', 'y': 'float64'} required = { 'points_df_in': required_cols, 'distance_df': required_cols } input_meta = self.get_input_meta() output_cols = ({ 'distance_df': { 'x': 'float64', 'y': 'float64', 'distance_numba': 'float64', } }) if 'points_df_in' in input_meta: col_from_inport = input_meta['points_df_in'] # additional ports output_cols['distance_df'].update(col_from_inport) return MetaData(inports=required, outports=output_cols) def conf_schema(self): return ConfSchema() def process(self, inputs): df = inputs['points_df_in'] # DEBUGGING # try: # from dask.distributed import get_worker # worker = get_worker() # print('worker{} process NODE "{}" worker: {}'.format( # worker.name, self.uid, worker)) # except (ValueError, ImportError): # pass number_of_threads = 16 number_of_blocks = ((len(df) - 1) // number_of_threads) + 1 # Inits device array by setting 0 for each index. darr = cuda.device_array(len(df)) distance_kernel[(number_of_blocks,), (number_of_threads,)]( df['x'], df['y'], darr, len(df)) df['distance_numba'] = darr return {'distance_df': df} kernel_string = r''' extern "C" __global__ void compute_distance(const double* x, const double* y, double* distance, int arr_len) { int tid = blockDim.x * blockIdx.x + threadIdx.x; if (tid < arr_len){ distance[tid] = sqrt(x[tid]*x[tid] + y[tid]*y[tid]); } } ''' class CupyDistanceNode(Node): def ports_setup(self): port_type = PortsSpecSchema.port_type input_ports = { 'points_df_in': { port_type: [cudf.DataFrame, dask_cudf.DataFrame] } } output_ports = { 'distance_df': { port_type: [cudf.DataFrame, dask_cudf.DataFrame] } } input_connections = self.get_connected_inports() if 'points_df_in' in input_connections: types = input_connections['points_df_in'] # connected return NodePorts(inports={'points_df_in': {port_type: types}}, outports={'distance_df': {port_type: types}}) else: return NodePorts(inports=input_ports, outports=output_ports) def init(self): self.delayed_process = True def meta_setup(self,): cols_required = {'x': 'float64', 'y': 'float64'} required = { 'points_df_in': cols_required, 'distance_df': cols_required } input_meta = self.get_input_meta() output_cols = ({ 'distance_df': { 'x': 'float64', 'y': 'float64', 'distance_cupy': 'float64', } }) if 'points_df_in' in input_meta: col_from_inport = input_meta['points_df_in'] # additional ports output_cols['distance_df'].update(col_from_inport) return MetaData(inports=required, outports=output_cols) def conf_schema(self): return ConfSchema() def get_kernel(self): raw_kernel = cupy.RawKernel(kernel_string, 'compute_distance') return raw_kernel def process(self, inputs): df = inputs['points_df_in'] cupy_x = cupy.asarray(df['x']) cupy_y = cupy.asarray(df['y']) number_of_threads = 16 number_of_blocks = (len(df) - 1) // number_of_threads + 1 dis = cupy.ndarray(len(df), dtype=cupy.float64) self.get_kernel()((number_of_blocks,), (number_of_threads,), (cupy_x, cupy_y, dis, len(df))) df['distance_cupy'] = dis return {'distance_df': df} class DistributedNode(Node): def ports_setup(self): input_ports = { 'points_df_in': { PortsSpecSchema.port_type: cudf.DataFrame } } output_ports = { 'points_ddf_out': { PortsSpecSchema.port_type: dask_cudf.DataFrame } } return NodePorts(inports=input_ports, outports=output_ports) def init(self): pass def meta_setup(self,): cols_required = { 'x': 'float64', 'y': 'float64' } required = { 'points_df_in': cols_required, 'points_ddf_out': cols_required } input_meta = self.get_input_meta() output_cols = ({ 'points_ddf_out': { 'x': 'float64', 'y': 'float64' } }) if 'points_df_in' in input_meta: col_from_inport = input_meta['points_df_in'] # additional ports output_cols['points_ddf_out'].update(col_from_inport) return MetaData(inports=required, outports=output_cols) def conf_schema(self): json = { "title": "DistributedNode configure", "type": "object", "properties": { "npartitions": { "type": "number", "description": "num of partitions in the Dask dataframe", "minimum": 1 } }, "required": ["npartitions"], } ui = { "npartitions": {"ui:widget": "updown"} } return ConfSchema(json=json, ui=ui) def process(self, inputs): npartitions = self.conf['npartitions'] df = inputs['points_df_in'] ddf = dask_cudf.from_cudf(df, npartitions=npartitions) return {'points_ddf_out': ddf} class VerifyNode(Node): def ports_setup(self): input_ports = { 'df1': { PortsSpecSchema.port_type: [cudf.DataFrame, dask_cudf.DataFrame] }, 'df2': { PortsSpecSchema.port_type: [cudf.DataFrame, dask_cudf.DataFrame] } } output_ports = { 'max_diff': { PortsSpecSchema.port_type: float } } connections = self.get_connected_inports() for key in input_ports: if key in connections: # connected types = connections[key] input_ports[key].update({PortsSpecSchema.port_type: types}) return NodePorts(inports=input_ports, outports=output_ports) def meta_setup(self): required ={ "df1": {}, "df2": {} } return MetaData(inports=required, outports={'max_diff': {}}) def conf_schema(self): json = { "title": "VerifyNode configure", "type": "object", "properties": { "df1_col": { "type": "string", "description": "dataframe1 column name" }, "df2_col": { "type": "string", "description": "dataframe2 column name" } }, "required": ["df1_col", "df2_col"], } ui = { "df1_col": {"ui:widget": "text"}, "df2_col": {"ui:widget": "text"} } return ConfSchema(json=json, ui=ui) def process(self, inputs): df1 = inputs['df1'] df2 = inputs['df2'] col_df1 = self.conf['df1_col'] col_df2 = self.conf['df2_col'] df1_col = df1[col_df1] if isinstance(df1, dask_cudf.DataFrame): # df1_col = df1_col.compute() pass df2_col = df2[col_df2] if isinstance(df2, dask_cudf.DataFrame): # df2_col = df2_col.compute() pass max_difference = (df1_col - df2_col).abs().max() if isinstance(max_difference, dask.dataframe.core.Scalar): max_difference = float(max_difference.compute()) max_difference = float(max_difference) # print('Max Difference: {}'.format(max_difference)) # assert(max_difference < 1e-8) return {'max_diff': max_difference}
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/custom_port_nodes.py
import ipywidgets as widgets def getXGBoostWidget(replace_spec, task_graph, plot_figures): def getRangeSlider(val0, val1, des=""): return widgets.IntRangeSlider(value=[val0, val1], min=1, max=60, step=1, description=des, disabled=False, continuous_update=False, orientation='horizontal', readout=True) def getSlider(val, des=""): return widgets.IntSlider(value=val, min=1, max=60, step=1, description=des, disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d') out = widgets.Output(layout={'border': '1px solid black'}) with out: indicators = \ replace_spec['technical_indicator']['conf']['indicators'] chaikin_selector = getRangeSlider(indicators[0]['args'][0], indicators[0]['args'][1], "Chaikin") def chaikin_selection(*stocks): with out: indicators[0]['args'][0] = chaikin_selector.value[0] indicators[0]['args'][1] = chaikin_selector.value[1] chaikin_selector.observe(chaikin_selection, 'value') bollinger_selector = getSlider(indicators[1]['args'][0], "bollinger") def bollinger_selection(*stocks): with out: indicators[1]['args'][0] = bollinger_selector.value bollinger_selector.observe(bollinger_selection, 'value') macd_selector = getRangeSlider(indicators[2]['args'][0], indicators[2]['args'][1], "MACD") def macd_selection(*stocks): with out: indicators[2]['args'][0] = macd_selector.value[0] indicators[2]['args'][1] = macd_selector.value[1] macd_selector.observe(macd_selection, 'value') rsi_selector = getSlider(indicators[3]['args'][0], "Relative Str") def rsi_selection(*stocks): with out: indicators[3]['args'][0] = rsi_selector.value rsi_selector.observe(rsi_selection, 'value') atr_selector = getSlider(indicators[4]['args'][0], "ATR") def atr_selection(*stocks): with out: indicators[4]['args'][0] = atr_selector.value atr_selector.observe(atr_selection, 'value') sod_selector = getSlider(indicators[6]['args'][0], "Sto Osc") def sod_selection(*stocks): with out: indicators[6]['args'][0] = sod_selector.value sod_selector.observe(sod_selection, 'value') mflow_selector = getSlider(indicators[7]['args'][0], "Money F") def mflow_selection(*stocks): with out: indicators[7]['args'][0] = mflow_selector.value mflow_selector.observe(mflow_selection, 'value') findex_selector = getSlider(indicators[8]['args'][0], "Force Index") def findex_selection(*stocks): with out: indicators[8]['args'][0] = findex_selector.value findex_selector.observe(findex_selection, 'value') adis_selector = getSlider(indicators[10]['args'][0], "Ave DMI") def adis_selection(*stocks): with out: indicators[10]['args'][0] = adis_selector.value adis_selector.observe(adis_selection, 'value') ccindex_selector = getSlider(indicators[11]['args'][0], "Comm Cha") def ccindex_selection(*stocks): with out: indicators[11]['args'][0] = ccindex_selector.value ccindex_selector.observe(ccindex_selection, 'value') bvol_selector = getSlider(indicators[12]['args'][0], "On Balance") def bvol_selection(*stocks): with out: indicators[12]['args'][0] = bvol_selector.value bvol_selector.observe(bvol_selection, 'value') vindex_selector = getSlider(indicators[13]['args'][0], "Vortex") def vindex_selection(*stocks): with out: indicators[13]['args'][0] = vindex_selector.value vindex_selector.observe(vindex_selection, 'value') mindex_selector = getRangeSlider(indicators[15]['args'][0], indicators[15]['args'][1], "Mass Index") def mindex_selection(*stocks): with out: indicators[15]['args'][0] = mindex_selector.value[0] indicators[15]['args'][1] = mindex_selector.value[1] mindex_selector.observe(mindex_selection, 'value') tindex_selector = getRangeSlider(indicators[16]['args'][0], indicators[16]['args'][1], "True Strength") def tindex_selection(*stocks): with out: indicators[16]['args'][0] = tindex_selector.value[0] indicators[16]['args'][1] = tindex_selector.value[1] tindex_selector.observe(tindex_selection, 'value') emove_selector = getSlider(indicators[17]['args'][0], "Easy Move") def emove_selection(*stocks): with out: indicators[17]['args'][0] = emove_selector.value emove_selector.observe(emove_selection, 'value') cc_selector = getSlider(indicators[18]['args'][0], "Cppock Curve") def cc_selection(*stocks): with out: indicators[18]['args'][0] = cc_selector.value cc_selector.observe(cc_selection, 'value') kchannel_selector = getSlider(indicators[19]['args'][0], "Keltner Channel") def kchannel_selection(*stocks): with out: indicators[19]['args'][0] = kchannel_selector.value kchannel_selector.observe(kchannel_selection, 'value') button = widgets.Button( description='Compute', disabled=False, button_style='', tooltip='Click me') def on_button_clicked(b): with out: print("Button clicked.") w.children = (w.children[0], widgets.Label("Busy...."),) o_gpu = task_graph.run(replace=replace_spec) figure_combo = plot_figures(o_gpu) w.children = (w.children[0], figure_combo,) button.on_click(on_button_clicked) selectors = widgets.VBox([chaikin_selector, bollinger_selector, macd_selector, rsi_selector, atr_selector, sod_selector, mflow_selector, findex_selector, adis_selector, ccindex_selector, bvol_selector, vindex_selector, mindex_selector, tindex_selector, emove_selector, cc_selector, kchannel_selector, button]) w = widgets.VBox([selectors]) return w
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/plotutils.py
''' ''' import sys from collections import OrderedDict import re import numpy as np from greenflow.dataframe_flow import Node import logging # logging.config.dictConfig({ # 'version': 1, # 'disable_existing_loggers': False # }) _DISTRIB_FORMATTER = None def init_workers_logger(): '''Initialize logger within all workers. Meant to be run as: client.run(init_workers_logger) ''' global _DISTRIB_FORMATTER distrib_logger = logging.getLogger('distributed.worker') formatter = logging.Formatter( '%(asctime)s.%(msecs)03d %(name)s:%(levelname)s: %(message)s', datefmt='%H:%M:%S' ) if _DISTRIB_FORMATTER is None: _DISTRIB_FORMATTER = distrib_logger.handlers[0].formatter distrib_logger.handlers[0].setFormatter(formatter) def restore_workers_logger(): '''Restore logger within all workers. Meant to be run as: client.run(restore_workers_logger) Run this after printing worker logs i.e. after: wlogs = client.get_worker_logs() # print entries form wlogs ''' global _DISTRIB_FORMATTER distrib_logger = logging.getLogger('distributed.worker') if _DISTRIB_FORMATTER is not None: distrib_logger.handlers[0].setFormatter(_DISTRIB_FORMATTER) _DISTRIB_FORMATTER = None _CONFIGLOG = True class MortgagePluginsLoggerMgr(object): '''Logger manager for greenflow mortgage plugins. When using this log manager to hijack dask distributed.worker logger (worker is not None), must first initialize worker loggers via: client.run(init_workers_logger) Afer printing out entries from worker logs restore worker loggers via: client.run(restore_workers_logger) WARNING: HIJACKING Dask Distributed logger within dask-workers!!! This is NOT a great implementation. Done to capture and display logs in Jupyter. TODO: Implement a server/client logger per example: https://docs.python.org/3/howto/logging-cookbook.html#sending-and-receiving-logging-events-across-a-network ''' def __init__(self, worker=None, logname='mortgage_plugins'): if worker is None: logger = self._get_mortgage_plugins_logger() console_handler = None else: # WARNING: HIJACKING Dask Distributed logger!!! logger = logging.getLogger('distributed.worker.' + logname) console_handler = self._config_log_handler( logger, propagate=True, addtimestamp=True) self._logger = logger self._console_handler = console_handler @staticmethod def _config_log_handler(logger, propagate=True, addtimestamp=False): '''Configure logger handler with streaming to stdout and formatter. Add the handler to the logger. ''' if addtimestamp: formatter = logging.Formatter( '%(asctime)s.%(msecs)03d %(name)s:%(levelname)s: %(message)s', datefmt='%H:%M:%S' ) else: formatter = logging.Formatter( '%(name)s:%(levelname)s: %(message)s') console_handler = logging.StreamHandler(sys.stdout) # console handeler console_handler.setLevel(logging.INFO) console_handler.setFormatter(formatter) logger.addHandler(console_handler) logger.setLevel(logging.INFO) logger.propagate = propagate # logger.info('CONFIGURING LOGGER') return console_handler @classmethod def _get_mortgage_plugins_logger(cls): '''Obtain a logger for mortgage plugins. Used when the running process is not a dask-worker. ''' logger = logging.getLogger(__name__) global _CONFIGLOG if _CONFIGLOG: cls._config_log_handler(logger, propagate=False) _CONFIGLOG = False # Should only be one handler. With Dask there's a race condition and # could have multiple logging handlers. while len(logger.handlers) > 1: logger.handlers.pop() return logger def get_logger(self): '''Get the logger being managed by instante of this log manager.''' return self._logger def cleanup(self): '''Clean up the logger.''' if self._console_handler is not None: self._logger.removeHandler(self._console_handler) first_cap_re = re.compile('(.)([A-Z][a-z]+)') all_cap_re = re.compile('([a-z0-9])([A-Z])') def convert(name): '''Convert CamelCase to snake_case. https://stackoverflow.com/a/1176023/3457624 ''' s1 = first_cap_re.sub(r'\1_\2', name) return all_cap_re.sub(r'\1_\2', s1).lower() class CsvMortgageAcquisitionDataLoader(Node): '''greenflow task/node to read in a mortgage acquisition CSV file into a cudf dataframe. Configuration requirements: 'conf': { 'csvfile_names': path to mortgage seller names csv datafile 'csvfile_acqdata': path to mortgage acquisition csv datafile } ''' cols_dtypes = OrderedDict([ ('loan_id', 'int64'), # ('orig_channel', 'category'), ('orig_channel', 'int32'), # ('seller_name', 'category'), ('seller_name', 'int32'), ('orig_interest_rate', 'float64'), ('orig_upb', 'int64'), ('orig_loan_term', 'int64'), ('orig_date', 'date'), ('first_pay_date', 'date'), ('orig_ltv', 'float64'), ('orig_cltv', 'float64'), ('num_borrowers', 'float64'), ('dti', 'float64'), ('borrower_credit_score', 'float64'), # ('first_home_buyer', 'category'), ('first_home_buyer', 'int32'), # ('loan_purpose', 'category'), ('loan_purpose', 'int32'), # ('property_type', 'category'), ('property_type', 'int32'), ('num_units', 'int64'), # ('occupancy_status', 'category'), ('occupancy_status', 'int32'), # ('property_state', 'category'), ('property_state', 'int32'), ('zip', 'int64'), ('mortgage_insurance_percent', 'float64'), # ('product_type', 'category'), ('product_type', 'int32'), ('coborrow_credit_score', 'float64'), ('mortgage_insurance_type', 'float64'), # ('relocation_mortgage_indicator', 'category') ('relocation_mortgage_indicator', 'int32') ]) def meta_setup(self): self.addition = self.cols_dtypes def process(self, inputs): ''' ''' import cudf worker = None try: from dask.distributed import get_worker worker = get_worker() except (ValueError, ImportError): pass logname = convert(self.__class__.__name__) logmgr = MortgagePluginsLoggerMgr(worker, logname) logger = logmgr.get_logger() worker_name = '' if worker is not None: worker_name = 'WORKER {} '.format(worker.name) col_names_path = self.conf['csvfile_names'] cols_dtypes = OrderedDict([ ('seller_name', 'int32'), ('new', 'int32'), ]) cols = list(cols_dtypes.keys()) dtypes = list(cols_dtypes.values()) names_gdf = cudf.read_csv( col_names_path, names=cols, dtype=dtypes, delimiter='|', skiprows=1) acquisition_path = self.conf['csvfile_acqdata'] cols = list(self.addition.keys()) dtypes = list(self.addition.values()) logger.info(worker_name + 'LOADING: {}'.format(acquisition_path)) acq_gdf = cudf.read_csv( acquisition_path, names=cols, dtype=dtypes, delimiter='|', skiprows=1) acq_gdf = acq_gdf.merge(names_gdf, how='left', on=['seller_name']) acq_gdf['seller_name'] = acq_gdf['new'] acq_gdf.drop_column('new') logmgr.cleanup() return acq_gdf class CsvMortgagePerformanceDataLoader(Node): '''greenflow task/node to read in a mortgage performance CSV file into a cudf dataframe. Configuration requirements: 'conf': { 'csvfile_perfdata': path to mortgage performance csv datafile } ''' cols_dtypes = OrderedDict([ ('loan_id', 'int64'), ('monthly_reporting_period', 'date'), # ('servicer', 'category'), ('servicer', 'int32'), ('interest_rate', 'float64'), ('current_actual_upb', 'float64'), ('loan_age', 'float64'), ('remaining_months_to_legal_maturity', 'float64'), ('adj_remaining_months_to_maturity', 'float64'), ('maturity_date', 'date'), ('msa', 'float64'), ('current_loan_delinquency_status', 'int32'), # ('mod_flag', 'category'), ('mod_flag', 'int32'), # ('zero_balance_code', 'category'), ('zero_balance_code', 'int32'), ('zero_balance_effective_date', 'date'), ('last_paid_installment_date', 'date'), ('foreclosed_after', 'date'), ('disposition_date', 'date'), ('foreclosure_costs', 'float64'), ('prop_preservation_and_repair_costs', 'float64'), ('asset_recovery_costs', 'float64'), ('misc_holding_expenses', 'float64'), ('holding_taxes', 'float64'), ('net_sale_proceeds', 'float64'), ('credit_enhancement_proceeds', 'float64'), ('repurchase_make_whole_proceeds', 'float64'), ('other_foreclosure_proceeds', 'float64'), ('non_interest_bearing_upb', 'float64'), ('principal_forgiveness_upb', 'float64'), # ('repurchase_make_whole_proceeds_flag', 'category'), ('repurchase_make_whole_proceeds_flag', 'int32'), ('foreclosure_principal_write_off_amount', 'float64'), # ('servicing_activity_indicator', 'category') ('servicing_activity_indicator', 'int32') ]) def meta_setup(self): self.addition = self.cols_dtypes def process(self, inputs): ''' ''' import cudf worker = None try: from dask.distributed import get_worker worker = get_worker() except (ValueError, ImportError): pass logname = convert(self.__class__.__name__) logmgr = MortgagePluginsLoggerMgr(worker, logname) logger = logmgr.get_logger() worker_name = '' if worker is not None: worker_name = 'WORKER {} '.format(worker.name) performance_path = self.conf['csvfile_perfdata'] logger.info(worker_name + 'LOADING: {}'.format(performance_path)) cols = list(self.addition.keys()) dtypes = list(self.addition.values()) mortgage_gdf = cudf.read_csv( performance_path, names=cols, dtype=dtypes, delimiter='|', skiprows=1) logmgr.cleanup() return mortgage_gdf class CreateEverFeatures(Node): '''greenflow task/node to calculate delinquecy status period features. Refer to meta_setup method for the columns produced. ''' def meta_setup(self): self.required = OrderedDict([ ('loan_id', 'int64'), ('current_loan_delinquency_status', 'int32') ]) self.retention = { 'loan_id': 'int64', 'ever_30': 'int8', 'ever_90': 'int8', 'ever_180': 'int8' } def process(self, inputs): ''' ''' gdf = inputs[0] everdf = gdf[['loan_id', 'current_loan_delinquency_status']] everdf = everdf.groupby('loan_id', method='hash', as_index=False).max() everdf['ever_30'] = \ (everdf['current_loan_delinquency_status'] >= 1).astype('int8') everdf['ever_90'] = \ (everdf['current_loan_delinquency_status'] >= 3).astype('int8') everdf['ever_180'] = \ (everdf['current_loan_delinquency_status'] >= 6).astype('int8') everdf.drop_column('current_loan_delinquency_status') return everdf class CreateDelinqFeatures(Node): '''greenflow task/node to calculate delinquecy features. Refer to meta_setup method for the columns produced. ''' def meta_setup(self): self.required = OrderedDict([ ('loan_id', 'int64'), ('monthly_reporting_period', 'date'), ('current_loan_delinquency_status', 'int32') ]) self.retention = { 'loan_id': 'int64', 'delinquency_30': 'date', 'delinquency_90': 'date', 'delinquency_180': 'date' } def process(self, inputs): ''' ''' perf_df = inputs[0] delinq_gdf = perf_df[[ 'loan_id', 'monthly_reporting_period', 'current_loan_delinquency_status']] delinq_30 = delinq_gdf.query('current_loan_delinquency_status >= 1')[[ 'loan_id', 'monthly_reporting_period']]\ .groupby('loan_id', method='hash', as_index=False).min() delinq_30['delinquency_30'] = delinq_30['monthly_reporting_period'] delinq_30.drop_column('monthly_reporting_period') delinq_90 = delinq_gdf.query('current_loan_delinquency_status >= 3')[[ 'loan_id', 'monthly_reporting_period']]\ .groupby('loan_id', method='hash', as_index=False).min() delinq_90['delinquency_90'] = delinq_90['monthly_reporting_period'] delinq_90.drop_column('monthly_reporting_period') delinq_180 = delinq_gdf.query('current_loan_delinquency_status >= 6')[[ 'loan_id', 'monthly_reporting_period']]\ .groupby('loan_id', method='hash', as_index=False).min() delinq_180['delinquency_180'] = delinq_180['monthly_reporting_period'] delinq_180.drop_column('monthly_reporting_period') delinq_merge = delinq_30.merge( delinq_90, how='left', on=['loan_id'], type='hash') delinq_merge['delinquency_90'] = delinq_merge['delinquency_90']\ .fillna(np.dtype('datetime64[ms]').type('1970-01-01') .astype('datetime64[ms]')) delinq_merge = delinq_merge.merge( delinq_180, how='left', on=['loan_id'], type='hash') delinq_merge['delinquency_180'] = delinq_merge['delinquency_180']\ .fillna(np.dtype('datetime64[ms]').type('1970-01-01') .astype('datetime64[ms]')) del(delinq_30) del(delinq_90) del(delinq_180) return delinq_merge class JoinPerfEverDelinqFeatures(Node): '''greenflow task/node to merge delinquecy features. Merges dataframes produced by CreateEverFeatures and CreateDelinqFeatures. Refer to meta_setup method for the columns produced. ''' cols_dtypes = { 'timestamp': 'date', 'delinquency_12': 'int32', 'upb_12': 'float64', 'ever_30': 'int8', 'ever_90': 'int8', 'ever_180': 'int8', 'delinquency_30': 'date', 'delinquency_90': 'date', 'delinquency_180': 'date' } def meta_setup(self): ''' ''' self.retention = { 'loan_id': 'int64', 'timestamp_month': 'int32', 'timestamp_year': 'int32' } self.retention.update(self.cols_dtypes) def __join_ever_delinq_features(self, everdf_in, delinqdf_in): everdf = everdf_in.merge( delinqdf_in, on=['loan_id'], how='left', type='hash') everdf['delinquency_30'] = everdf['delinquency_30']\ .fillna(np.dtype('datetime64[ms]').type('1970-01-01') .astype('datetime64[ms]')) everdf['delinquency_90'] = everdf['delinquency_90']\ .fillna(np.dtype('datetime64[ms]').type('1970-01-01') .astype('datetime64[ms]')) everdf['delinquency_180'] = everdf['delinquency_180']\ .fillna(np.dtype('datetime64[ms]').type('1970-01-01') .astype('datetime64[ms]')) return everdf def process(self, inputs): ''' ''' perf_df = inputs[0] # if using JoinEverDelinqFeatures. Seems unnecessary # ever_delinq_df = inputs[1] everdf_in = inputs[1] delinqdf_in = inputs[2] ever_delinq_df = \ self.__join_ever_delinq_features(everdf_in, delinqdf_in) test = perf_df[[ 'loan_id', 'monthly_reporting_period', 'current_loan_delinquency_status', 'current_actual_upb' ]] test['timestamp'] = test['monthly_reporting_period'] test.drop_column('monthly_reporting_period') test['timestamp_month'] = test['timestamp'].dt.month test['timestamp_year'] = test['timestamp'].dt.year test['delinquency_12'] = test['current_loan_delinquency_status'] test.drop_column('current_loan_delinquency_status') test['upb_12'] = test['current_actual_upb'] test.drop_column('current_actual_upb') test['upb_12'] = test['upb_12'].fillna(999999999) test['delinquency_12'] = test['delinquency_12'].fillna(-1) joined_df = test.merge( ever_delinq_df, how='left', on=['loan_id'], type='hash') joined_df['ever_30'] = joined_df['ever_30'].fillna(-1) joined_df['ever_90'] = joined_df['ever_90'].fillna(-1) joined_df['ever_180'] = joined_df['ever_180'].fillna(-1) joined_df['delinquency_30'] = joined_df['delinquency_30'].fillna(-1) joined_df['delinquency_90'] = joined_df['delinquency_90'].fillna(-1) joined_df['delinquency_180'] = joined_df['delinquency_180'].fillna(-1) joined_df['timestamp_month'] = \ joined_df['timestamp_month'].astype('int32') joined_df['timestamp_year'] = \ joined_df['timestamp_year'].astype('int32') return joined_df class Create12MonFeatures(Node): '''greenflow task/node to calculate delinquecy feature over 12 months. Refer to meta_setup method for the columns produced. ''' def meta_setup(self): ''' ''' self.retention = { 'loan_id': 'int64', 'delinquency_12': 'int32', 'upb_12': 'float64', 'timestamp_month': 'int8', 'timestamp_year': 'int16' } def process(self, inputs): ''' ''' import cudf perf_ever_delinq_df = inputs[0] testdfs = [] n_months = 12 for y in range(1, n_months + 1): tmpdf = perf_ever_delinq_df[[ 'loan_id', 'timestamp_year', 'timestamp_month', 'delinquency_12', 'upb_12' ]] tmpdf['josh_months'] = \ tmpdf['timestamp_year'] * 12 + tmpdf['timestamp_month'] tmpdf['josh_mody_n'] = \ ((tmpdf['josh_months'].astype('float64') - 24000 - y) / 12)\ .floor() tmpdf = tmpdf.groupby( ['loan_id', 'josh_mody_n'], method='hash', as_index=False)\ .agg({'delinquency_12': 'max', 'upb_12': 'min'}) # tmpdf['delinquency_12'] = \ # (tmpdf['max_delinquency_12'] > 3).astype('int32') # tmpdf.drop_column('max_delinquency_12') # # tmpdf['delinquency_12'] += \ # (tmpdf['min_upb_12'] == 0).astype('int32') # # tmpdf['upb_12'] = tmpdf['min_upb_12'] # tmpdf.drop_column('min_upb_12') tmpdf['timestamp_year'] = \ (((tmpdf['josh_mody_n'] * n_months) + 24000 + (y - 1)) / 12)\ .floor().astype('int16') tmpdf.drop_column('josh_mody_n') tmpdf['timestamp_month'] = np.int8(y) testdfs.append(tmpdf) test_12mon_feat_df = cudf.concat(testdfs) return test_12mon_feat_df def _null_workaround(df): '''Fix up null entries in dataframes. This is specific to the mortgage workflow. ''' for column, data_type in df.dtypes.items(): if str(data_type) == "category": df[column] = df[column]\ .astype('int32').fillna(np.dtype(np.int32).type(-1)) if str(data_type) in \ ['int8', 'int16', 'int32', 'int64', 'float32', 'float64']: df[column] = df[column]\ .fillna(np.dtype(data_type).type(-1)).astype(data_type) return df class FinalPerfDelinq(Node): '''Merge performance dataframe with calculated features dataframes. Refer to meta_setup method for the columns produced. ''' cols_dtypes = dict() cols_dtypes.update(CsvMortgagePerformanceDataLoader.cols_dtypes) cols_dtypes.update(JoinPerfEverDelinqFeatures.cols_dtypes) def meta_setup(self): ''' ''' self.retention = self.cols_dtypes @staticmethod def __combine_joined_12_mon(perf_ever_delinq_df, test_12mon_df): perf_ever_delinq_df.drop_column('delinquency_12') perf_ever_delinq_df.drop_column('upb_12') perf_ever_delinq_df['timestamp_year'] = \ perf_ever_delinq_df['timestamp_year'].astype('int16') perf_ever_delinq_df['timestamp_month'] = \ perf_ever_delinq_df['timestamp_month'].astype('int8') return perf_ever_delinq_df.merge( test_12mon_df, how='left', on=['loan_id', 'timestamp_year', 'timestamp_month'], type='hash') @classmethod def __final_performance_delinquency( cls, perf_df, perf_ever_delinq_df, test_12mon_df): joined_df = \ cls.__combine_joined_12_mon(perf_ever_delinq_df, test_12mon_df) merged = _null_workaround(perf_df) joined_df = _null_workaround(joined_df) joined_df['timestamp_month'] = \ joined_df['timestamp_month'].astype('int8') joined_df['timestamp_year'] = \ joined_df['timestamp_year'].astype('int16') merged['timestamp_month'] = merged['monthly_reporting_period'].dt.month merged['timestamp_month'] = merged['timestamp_month'].astype('int8') merged['timestamp_year'] = merged['monthly_reporting_period'].dt.year merged['timestamp_year'] = merged['timestamp_year'].astype('int16') merged = merged.merge( joined_df, how='left', on=['loan_id', 'timestamp_year', 'timestamp_month'], type='hash') merged.drop_column('timestamp_month') merged.drop_column('timestamp_year') return merged def process(self, inputs): ''' ''' perf_df = inputs[0].copy() perf_ever_delinq_df = inputs[1].copy() test_12mon_df = inputs[2] final_perf_df = self.__final_performance_delinquency( perf_df, perf_ever_delinq_df, test_12mon_df) return final_perf_df class JoinFinalPerfAcqClean(Node): '''Merge acquisition dataframe with dataframe produced by FinalPerfDelinq. Refer to meta_setup method for the columns produced. ''' _drop_list = [ 'loan_id', 'orig_date', 'first_pay_date', 'seller_name', 'monthly_reporting_period', 'last_paid_installment_date', 'maturity_date', 'ever_30', 'ever_90', 'ever_180', 'delinquency_30', 'delinquency_90', 'delinquency_180', 'upb_12', 'zero_balance_effective_date', 'foreclosed_after', 'disposition_date', 'timestamp' ] cols_dtypes = dict() cols_dtypes.update(FinalPerfDelinq.cols_dtypes) cols_dtypes.update(CsvMortgageAcquisitionDataLoader.cols_dtypes) # all float64, int32 and int64 types are converted to float32 types. for icol, itype in cols_dtypes.items(): if itype in ('float64', 'int32', 'int64',): cols_dtypes[icol] = 'float32' # The only exception is delinquency_12 which becomes int8 cols_dtypes.update({'delinquency_12': 'int8'}) for col in _drop_list: cols_dtypes.pop(col) def meta_setup(self): ''' ''' self.retention = self.cols_dtypes @classmethod def __last_mile_cleaning(cls, df, cols_to_keep=tuple()): drop_list = cls._drop_list for column in drop_list: if column in cols_to_keep: continue if column not in df.columns: continue df.drop_column(column) for col, dtype in df.dtypes.iteritems(): if str(dtype) == 'category': df[col] = df[col].cat.codes df[col] = df[col].astype('float32') if 'delinquency_12' in df.columns: df['delinquency_12'] = df['delinquency_12'] > 0 df['delinquency_12'] = \ df['delinquency_12'].fillna(False).astype('int8') for column in df.columns: df[column] = df[column].fillna(-1) # return df.to_arrow(preserve_index=False) return df def process(self, inputs): ''' ''' perf_df = inputs[0].copy() acq_df = inputs[1].copy() perf_df = _null_workaround(perf_df) acq_df = _null_workaround(acq_df) cols_to_keep = ('loan_id', 'seller_name',) perf_df = self.__last_mile_cleaning(perf_df, cols_to_keep=cols_to_keep) # cleaning acq_df causes out of memory error during merge!? rapids 0.14 # acq_df = self.__last_mile_cleaning(acq_df, cols_to_keep=cols_to_keep) acq_df['seller_name'] = acq_df['seller_name'].astype('category') perf_acq_df = perf_df.merge( acq_df, how='left', on=['loan_id'], type='hash') perf_acq_df = self.__last_mile_cleaning(perf_acq_df) return perf_acq_df def mortgage_greenflow_run(run_params_dict): '''Using dataframe-flow runs the tasks/workflow specified in the run_params_dict. Expected run_params_dict ex: run_params_dict = { 'replace_spec': replace_spec, 'task_spec_list': greenflow_task_spec_list, 'out_list': out_list } greenflow_task_spec_list - Mortgage ETL workflow list of task-specs. Refer to module mortgage_common function mortgage_etl_workflow_def. out_list - Expected to specify one output which should be the final dataframe produced by the mortgage ETL workflow. :param run_params_dict: Dictionary with parameters and greenflow task list to run mortgage workflow. ''' from greenflow.dataframe_flow import TaskGraph task_spec_list = run_params_dict['task_spec_list'] out_list = run_params_dict['out_list'] replace_spec = run_params_dict['replace_spec'] task_graph = TaskGraph(task_spec_list) (final_perf_acq_df,) = task_graph.run(out_list, replace_spec) return final_perf_acq_df def print_ram_usage(worker_name='', logger=None): '''Display host RAM usage on the system using free -m command.''' import os logmgr = None if logger is None: logmgr = MortgagePluginsLoggerMgr() logger = logmgr.get_logger() tot_m, used_m, free_m = \ map(int, os.popen('free -t -m').readlines()[-1].split()[1:]) logger.info( worker_name + 'HOST RAM (MB) TOTAL {}; USED {}; FREE {}' .format(tot_m, used_m, free_m)) if logmgr is not None: logmgr.cleanup() def mortgage_workflow_runner(mortgage_run_params_dict_list): '''Runs the mortgage_greenflow_run for each entry in the mortgage_run_params_dict_list. Each entry is a run_params_dict. Expected run_params_dict: run_params_dict = { 'replace_spec': replace_spec, 'task_spec_list': greenflow_task_spec_list, 'out_list': out_list } :param mortgage_run_params_dict_list: List of run_params_dict ''' import os # @Reimport import gc import pyarrow as pa # count = len(mortgage_run_params_dict_list) # print('LOGGER: ', logger) worker = None try: from dask.distributed import get_worker worker = get_worker() except (ValueError, ImportError): pass logname = 'mortgage_workflow_runner' logmgr = MortgagePluginsLoggerMgr(worker, logname) logger = logmgr.get_logger() worker_name = '' if worker is not None: worker_name = 'WORKER {} '.format(worker.name) logger.info(worker_name + 'RUNNING MORTGAGE Greenflow DataframeFlow') logger.info(worker_name + 'NCCL_P2P_DISABLE: {}'.format( os.environ.get('NCCL_P2P_DISABLE'))) logger.info(worker_name + 'CUDA_VISIBLE_DEVICES: {}'.format( os.environ.get('CUDA_VISIBLE_DEVICES'))) # cpu_df_concat_pandas = None final_perf_acq_arrow_concat = None for ii, run_params_dict in enumerate(mortgage_run_params_dict_list): # performance_path = run_params_dict['csvfile_perfdata'] # logger.info(worker_name + 'LOADING: {}'.format(performance_path)) final_perf_acq_gdf = mortgage_greenflow_run(run_params_dict) # CONCATENATE DATAFRAMES AS THEY ARE CALCULATED # cpu_df_pandas = gpu_df.to_pandas() # if cpu_df_concat_pandas is None: # cpu_df_concat_pandas = cpu_df_pandas # else: # cpu_df_concat_pandas = \ # pd.concat([cpu_df_concat_pandas, cpu_df_pandas]) # del(cpu_df_pandas) final_perf_acq_arrow = \ final_perf_acq_gdf.to_arrow(preserve_index=False) if final_perf_acq_arrow_concat is None: final_perf_acq_arrow_concat = final_perf_acq_arrow else: final_perf_acq_arrow_concat = pa.concat_tables([ final_perf_acq_arrow_concat, final_perf_acq_arrow]) del(final_perf_acq_gdf) logger.info(worker_name + 'LOADED {} FRAMES'.format(ii + 1)) print_ram_usage(worker_name, logger) logger.info(worker_name + 'RUN PYTHON GARBAGE COLLECTION TO MAYBE CLEAR ' 'CPU AND GPU MEMORY') gc.collect() print_ram_usage(worker_name, logger) # df_concat = cpu_df_concat_pandas # delinq_df = df_concat[['delinquency_12']] # indexes_besides_delinq = \ # df_concat.columns.difference(['delinquency_12']) # mortgage_feat_df = df_concat[list(indexes_besides_delinq)] # del(df_concat) logger.info(worker_name + 'USING ARROW') cpu_df_concat_arrow = final_perf_acq_arrow_concat delinq_arrow_col = cpu_df_concat_arrow.column('delinquency_12') mortgage_feat_arrow_table = cpu_df_concat_arrow.drop(['delinquency_12']) # logger.info(worker_name + 'ARROW TO CUDF') # delinq_arrow_table = pa.Table.from_arrays([delinq_arrow_col]) # delinq_df = cudf.DataFrame.from_arrow(delinq_arrow_table) # mortgage_feat_df = cudf.DataFrame.from_arrow(mortgage_feat_arrow_table) logger.info(worker_name + 'ARROW TO PANDAS') delinq_df = delinq_arrow_col.to_pandas() mortgage_feat_df = mortgage_feat_arrow_table.to_pandas() del(delinq_arrow_col) del(mortgage_feat_arrow_table) # clear CPU/GPU memory gc.collect() print_ram_usage(worker_name, logger) logmgr.cleanup() return (mortgage_feat_df, delinq_df) class MortgageWorkflowRunner(Node): '''Runs the mortgage greenflow workflow and returns the mortgage features dataframe and mortgage delinquency dataframe. These can be passed on to xgboost for training. conf: { 'mortgage_run_params_dict_list': REQUIRED. List of dictionaries of mortgage run params. } mortgage_run_param_dict = { 'replace_spec': replace_spec, 'task_spec_list': greenflow_task_spec_list, 'out_list': out_list } Returns: mortgage_feat_df_pandas, delinq_df_pandas DataframeFlow will return a tuple so unpack as tuple of tuples: ((mortgage_feat_df_pandas, delinq_df_pandas),) ''' def meta_setup(self): ''' ''' pass def process(self, inputs): logmgr = MortgagePluginsLoggerMgr() logger = logmgr.get_logger() mortgage_run_params_dict_list = \ self.conf['mortgage_run_params_dict_list'] count = len(mortgage_run_params_dict_list) logger.info('TRYING TO LOAD {} FRAMES'.format(count)) mortgage_feat_df_pandas, delinq_df_pandas = \ mortgage_workflow_runner(mortgage_run_params_dict_list) logmgr.cleanup() return mortgage_feat_df_pandas, delinq_df_pandas class XgbMortgageTrainer(Node): '''Trains an XGBoost booster. Configuration: conf: { 'delete_dataframes': OPTIONAL. Boolean (True or False). Delete the intermediate mortgage dataframes from which an xgboost dmatrix is created. This is to potentially clear up CPU/GPU memory. 'xgb_gpu_params': REQUIRED. Dictionary of xgboost trainer parameters. } Example of xgb_gpu_params: xgb_gpu_params = { 'nround': 100, 'max_depth': 8, 'max_leaves': 2 ** 8, 'alpha': 0.9, 'eta': 0.1, 'gamma': 0.1, 'learning_rate': 0.1, 'subsample': 1, 'reg_lambda': 1, 'scale_pos_weight': 2, 'min_child_weight': 30, 'tree_method': 'gpu_hist', 'n_gpus': 1, 'loss': 'ls', # 'objective': 'gpu:reg:linear', 'objective': 'reg:squarederror', 'max_features': 'auto', 'criterion': 'friedman_mse', 'grow_policy': 'lossguide', 'verbose': True } Inputs: mortgage_feat_df_pandas, delinq_df_pandas = inputs[0] These inputs are provided by MortgageWorkflowRunner. Outputs: bst - XGBoost trained booster model. ''' def meta_setup(self): ''' ''' pass def process(self, inputs): import gc # python standard lib garbage collector import xgboost as xgb logmgr = MortgagePluginsLoggerMgr() logger = logmgr.get_logger() mortgage_feat_df_pandas, delinq_df_pandas = inputs[0] delete_dataframes = self.conf.get('delete_dataframes') xgb_gpu_params = self.conf['xgb_gpu_params'] logger.info('JUST BEFORE DMATRIX') print_ram_usage() logger.info('CREATING DMATRIX') # DMatrix directly from dataframe requires xgboost from rapidsai: # https://github.com/rapidsai/xgboost # Convert to DMatrix for XGBoost training. xgb_dmatrix = xgb.DMatrix(mortgage_feat_df_pandas, delinq_df_pandas) # logger.info('XGB_DMATRIX:\n', xgb_dmatrix) logger.info('JUST AFTER DMATRIX') print_ram_usage() # clear CPU/GPU memory if delete_dataframes: del(mortgage_feat_df_pandas) del(delinq_df_pandas) gc.collect() logger.info('CLEAR MEMORY JUST BEFORE XGBOOST TRAINING') print_ram_usage() logger.info('RUNNING XGBOOST TRAINING') # booster object bst = xgb.train( xgb_gpu_params, xgb_dmatrix, num_boost_round=xgb_gpu_params['nround']) logmgr.cleanup() return bst # RMM - RAPIDS Memory Manager. # IMPORTANT!!! IF USING RMM START CLIENT prior to any cudf imports and that # means prior to any greenflow imports, 3rd party libs with cudf, etc. # This is needed if distributing workflows to workers. def initialize_rmm_pool(): import rmm return rmm.reinitialize( pool_allocator=True, # default is False managed_memory=False ) def initialize_rmm_no_pool(): import rmm return rmm.reinitialize( pool_allocator=False, # default is False managed_memory=False ) def finalize_rmm(): import rmm return rmm.rmm.librmm.rmm_finalize() def print_distributed_dask_hijacked_logs(wlogs, logger, filters=None): '''Prints (uses logger.info) the log entries from worker logs (wlogs = client.get_worker_logs()). Filters what is printed based on keywords in the filters. If filters is None then prints everything. :param filters: A tuple. Even if one entry ('somestr',) ''' # print('WORKER LOGS:\n{}'.format(json.dumps(wlogs, indent=2))) for iworker_log in wlogs.values(): for _, msg in iworker_log: # if 'distributed.worker.' in msg: # if filter in msg: if filters is None: logger.info(msg) continue if any(ff in msg for ff in filters): logger.info(msg) class DaskMortgageWorkflowRunner(Node): '''Runs the mortgage greenflow workflow and returns the mortgage features dataframe and mortgage delinquency dataframe. These can be passed on to xgboost for training. conf: { 'mortgage_run_params_dict_list': REQUIRED. List of dictionaries of mortgage run params. 'client': REQUIRED. Dask distributed client. Runs with distributed dask. 'use_rmm': OPTIONAL. Boolean (True or False). Use RAPIDS Memory Manager., 'filter_dask_logger': OPTIONAL. Boolean to display hijacked dask.distributed log. If False (default) then doesn't display. } Format of expected mortgage run params: mortgage_run_param_dict = { 'replace_spec': replace_spec, 'task_spec_list': greenflow_task_spec_list, 'out_list': out_list } Returns: dask-distributed Futures where each future holds a tuple: mortgage_feat_df_pandas, delinq_df_pandas The number of futures returned corresponds to the number of workers obtained from the client. DataframeFlow will return a tuple so unpack as tuple of tuples in whatever operates on the future: ((mortgage_feat_df_pandas, delinq_df_pandas),) ''' def meta_setup(self): ''' ''' pass def process(self, inputs): from dask.distributed import wait logmgr = MortgagePluginsLoggerMgr() logger = logmgr.get_logger() filter_dask_logger = self.conf.get('filter_dask_logger') client = self.conf['client'] client.run(init_workers_logger) use_rmm = self.conf.get('use_rmm') if use_rmm: rmm_init_results = client.run(initialize_rmm_pool) logger.info('RMM INIT RESULTS:\n', rmm_init_results) mortgage_run_params_dict_list = \ self.conf['mortgage_run_params_dict_list'] workers_names = \ [iw['name'] for iw in client.scheduler_info()['workers'].values()] nworkers = len(workers_names) count = len(mortgage_run_params_dict_list) logger.info('TRYING TO LOAD {} FRAMES'.format(count)) # Make a list of size nworkers where each element is a sublist of # mortgage_run_params_dict_list. subset_sz = count // nworkers mortgage_run_params_dict_list_chunks = [ mortgage_run_params_dict_list[iw * subset_sz:(iw + 1) * subset_sz] if iw < (nworkers - 1) else mortgage_run_params_dict_list[iw * subset_sz:] for iw in range(nworkers)] logger.info( 'SPLIT MORTGAGE DATA INTO {} CHUNKS AMONGST {} WORKERS' .format(len(mortgage_run_params_dict_list_chunks), nworkers)) # For debugging. Add entry 'csvfile_perfdata' to run_params_dict. # for ii, ichunk in enumerate(mortgage_run_params_dict_list_chunks): # files_in_chunk = \ # [iparam['csvfile_perfdata'] for iparam in ichunk] # logger.info('CHUNK {} FILES TO LOAD: {}'.format( # ii, files_in_chunk)) # List of dask Futures of PyArrow Tables from final_perf_acq cudf # dataframe mortgage_feat_df_delinq_df_pandas_futures = client.map( mortgage_workflow_runner, mortgage_run_params_dict_list_chunks) wait(mortgage_feat_df_delinq_df_pandas_futures) if filter_dask_logger: wlogs = client.get_worker_logs() print_distributed_dask_hijacked_logs( wlogs, logger, ('mortgage_workflow_runner', convert(CsvMortgagePerformanceDataLoader.__name__), convert(CsvMortgageAcquisitionDataLoader.__name__)) ) client.run(restore_workers_logger) cinfo = client.who_has(mortgage_feat_df_delinq_df_pandas_futures) logger.info('CLIENT INFO WHO HAS WHAT: {}'.format(str(cinfo))) if use_rmm: client.run(finalize_rmm) client.run(initialize_rmm_no_pool) logmgr.cleanup() return mortgage_feat_df_delinq_df_pandas_futures class DaskXgbMortgageTrainer(Node): '''Trains an XGBoost booster using Dask-XGBoost Configuration: conf: { 'delete_dataframes': OPTIONAL. Boolean (True or False). Delete the intermediate mortgage dataframes from which an xgboost dmatrix is created. This is to potentially clear up CPU//GPU memory. 'dxgb_gpu_params': REQUIRED. Dictionary of dask-xgboost trainer parameters. 'client': REQUIRED. Dask distributed client. Runs with distributed dask. 'create_dmatrix_serially': OPTIONAL. Boolean (True or False) Might be able to process more data/dataframes. Creating a dmatrix takes a lot of host memory. Set delete_dataframes to True as well to hopefully help with memory. 'filter_dask_logger': OPTIONAL. Boolean to display hijacked dask.distributed log. } Example of dxgb_gpu_params: dxgb_gpu_params = { 'nround': 100, 'max_depth': 8, 'max_leaves': 2 ** 8, 'alpha': 0.9, 'eta': 0.1, 'gamma': 0.1, 'learning_rate': 0.1, 'subsample': 1, 'reg_lambda': 1, 'scale_pos_weight': 2, 'min_child_weight': 30, 'tree_method': 'gpu_hist', 'n_gpus': 1, 'distributed_dask': True, 'loss': 'ls', # 'objective': 'gpu:reg:linear', 'objective': 'reg:squarederror', 'max_features': 'auto', 'criterion': 'friedman_mse', 'grow_policy': 'lossguide', 'verbose': True } Inputs: mortgage_feat_df_delinq_df_pandas_futures = inputs[0] These inputs are provided by DaskMortgageWorkflowRunner. Outputs: bst - XGBoost trained booster model. ''' def meta_setup(self): ''' ''' pass def process(self, inputs): import gc # python standard lib garbage collector import xgboost as xgb from dask.delayed import delayed from dask.distributed import (wait, get_worker) import dask_xgboost as dxgb_gpu logmgr = MortgagePluginsLoggerMgr() logger = logmgr.get_logger() filter_dask_logger = self.conf.get('filter_dask_logger') client = self.conf['client'] client.run(init_workers_logger) dxgb_gpu_params = self.conf['dxgb_gpu_params'] delete_dataframes = self.conf.get('delete_dataframes') create_dmatrix_serially = self.conf.get('create_dmatrix_serially') mortgage_feat_df_delinq_df_pandas_futures = inputs[0] # TODO: Update to xgb.dask.DaskDMatrix and xgb.dask.train API. Refer to # https://medium.com/rapids-ai/a-new-official-dask-api-for-xgboost-e8b10f3d1eb7 def make_xgb_dmatrix( mortgage_feat_df_delinq_df_pandas_tuple, delete_dataframes=None): worker = get_worker() logname = 'make_xgb_dmatrix' logmgr = MortgagePluginsLoggerMgr(worker, logname) logger = logmgr.get_logger() logger.info('CREATING DMATRIX ON WORKER {}'.format(worker.name)) (mortgage_feat_df, delinq_df) = \ mortgage_feat_df_delinq_df_pandas_tuple dmat = xgb.DMatrix(mortgage_feat_df, delinq_df) if delete_dataframes: del(mortgage_feat_df) del(delinq_df) # del(mortgage_feat_df_delinq_df_pandas_tuple) gc.collect() logmgr.cleanup() return dmat dmatrix_delayed_list = [] nworkers = len(mortgage_feat_df_delinq_df_pandas_futures) if create_dmatrix_serially: logger.info('CREATING DMATRIX SERIALLY ACROSS {} WORKERS' .format(nworkers)) else: logger.info('CREATING DMATRIX IN PARALLEL ACROSS {} WORKERS' .format(nworkers)) for ifut in mortgage_feat_df_delinq_df_pandas_futures: dmat_delayed = delayed(make_xgb_dmatrix)(ifut, delete_dataframes) dmat_delayed_persist = dmat_delayed.persist() if create_dmatrix_serially: # TODO: For multinode efficiency need to poll the futures # such that only doing serial dmatrix creation on the # same node, but across nodes should be in parallel. wait(dmat_delayed_persist) dmatrix_delayed_list.append(dmat_delayed_persist) wait(dmatrix_delayed_list) if filter_dask_logger: wlogs = client.get_worker_logs() print_distributed_dask_hijacked_logs( wlogs, logger, ('make_xgb_dmatrix',) ) client.run(restore_workers_logger) logger.info('JUST AFTER DMATRIX') print_ram_usage() logger.info('RUNNING XGBOOST TRAINING USING DASK-XGBOOST') labels = None bst = dxgb_gpu.train( client, dxgb_gpu_params, dmatrix_delayed_list, labels, num_boost_round=dxgb_gpu_params['nround']) logmgr.cleanup() return bst
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/mortgage_e2e_gquant/mortgage_greenflow_plugins.py
''' ''' import os from greenflow.dataframe_flow import (TaskSpecSchema, TaskGraph) from mortgage_common import ( mortgage_etl_workflow_def, generate_mortgage_greenflow_run_params_list, MortgageTaskNames) def main(): _basedir = os.path.dirname(__file__) # mortgage_data_path = '/datasets/rapids_data/mortgage' mortgage_data_path = os.path.join(_basedir, 'mortgage_data') # Using some default csv files for testing. # csvfile_names = os.path.join(mortgage_data_path, 'names.csv') # acq_data_path = os.path.join(mortgage_data_path, 'acq') # perf_data_path = os.path.join(mortgage_data_path, 'perf') # csvfile_acqdata = os.path.join(acq_data_path, 'Acquisition_2000Q1.txt') # csvfile_perfdata = \ # os.path.join(perf_data_path, 'Performance_2000Q1.txt_0') # mortgage_etl_workflow_def( # csvfile_names, csvfile_acqdata, csvfile_perfdata) greenflow_task_spec_list = mortgage_etl_workflow_def() start_year = 2000 end_year = 2001 # end_year is inclusive # end_year = 2016 # end_year is inclusive # part_count = 16 # the number of data files to train against part_count = 12 # the number of data files to train against # part_count = 4 # the number of data files to train against mortgage_run_params_dict_list = generate_mortgage_greenflow_run_params_list( mortgage_data_path, start_year, end_year, part_count, greenflow_task_spec_list) _basedir = os.path.dirname(__file__) mortgage_lib_module = os.path.join(_basedir, 'mortgage_greenflow_plugins.py') mortgage_workflow_runner_task = { TaskSpecSchema.task_id: MortgageTaskNames.mortgage_workflow_runner_task_name, TaskSpecSchema.node_type: 'MortgageWorkflowRunner', TaskSpecSchema.conf: { 'mortgage_run_params_dict_list': mortgage_run_params_dict_list }, TaskSpecSchema.inputs: [], TaskSpecSchema.filepath: mortgage_lib_module } # Can be multi-gpu. Set ngpus > 1. This is different than dask xgboost # which is distributed multi-gpu i.e. dask-xgboost could distribute on one # node or multiple nodes. In distributed mode the dmatrix is disributed. ngpus = 1 xgb_gpu_params = { 'nround': 100, 'max_depth': 8, 'max_leaves': 2 ** 8, 'alpha': 0.9, 'eta': 0.1, 'gamma': 0.1, 'learning_rate': 0.1, 'subsample': 1, 'reg_lambda': 1, 'scale_pos_weight': 2, 'min_child_weight': 30, 'tree_method': 'gpu_hist', 'n_gpus': ngpus, # 'distributed_dask': True, 'loss': 'ls', # 'objective': 'gpu:reg:linear', 'objective': 'reg:squarederror', 'max_features': 'auto', 'criterion': 'friedman_mse', 'grow_policy': 'lossguide', 'verbose': True } xgb_trainer_task = { TaskSpecSchema.task_id: MortgageTaskNames.xgb_trainer_task_name, TaskSpecSchema.node_type: 'XgbMortgageTrainer', TaskSpecSchema.conf: { 'delete_dataframes': False, 'xgb_gpu_params': xgb_gpu_params }, TaskSpecSchema.inputs: [ MortgageTaskNames.mortgage_workflow_runner_task_name ], TaskSpecSchema.filepath: mortgage_lib_module } task_spec_list = [mortgage_workflow_runner_task, xgb_trainer_task] task_graph = TaskGraph(task_spec_list) # out_list = [MortgageTaskNames.mortgage_workflow_runner_task_name] # ((mortgage_feat_df_pandas, delinq_df_pandas),) = task_graph.run(out_list) out_list = [MortgageTaskNames.xgb_trainer_task_name] (bst,) = task_graph.run(out_list) print('XGBOOST BOOSTER:\n', bst) if __name__ == '__main__': main()
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/mortgage_e2e_gquant/mortgage_run_workflow_local.py
''' Collection of functions to run the mortgage example. ''' import os from glob import glob class MortgageTaskNames(object): '''Task names commonly used by scripts for naming tasks when creating a greenflow mortgage workflow. ''' load_acqdata_task_name = 'acqdata' load_perfdata_task_name = 'perfdata' ever_feat_task_name = 'ever_features' delinq_feat_task_name = 'delinq_features' join_perf_ever_delinq_feat_task_name = 'join_perf_ever_delinq_features' create_12mon_feat_task_name = 'create_12mon_features' final_perf_delinq_task_name = 'final_perf_delinq_features' final_perf_acq_task_name = 'final_perf_acq_df' mortgage_workflow_runner_task_name = 'mortgage_workflow_runner' xgb_trainer_task_name = 'xgb_trainer' dask_mortgage_workflow_runner_task_name = 'dask_mortgage_workflow_runner' dask_xgb_trainer_task_name = 'dask_xgb_trainer' def mortgage_etl_workflow_def( csvfile_names=None, csvfile_acqdata=None, csvfile_perfdata=None): '''Define the ETL (extract-transform-load) portion of the mortgage workflow. :returns: greenflow task-spec list. Currently a simple list of dictionaries. Each dict is a task-spec per TaskSpecSchema. :rtype: list ''' from greenflow.dataframe_flow import TaskSpecSchema _basedir = os.path.dirname(__file__) mortgage_lib_module = os.path.join(_basedir, 'mortgage_greenflow_plugins.py') # print('CSVFILE_ACQDATA: ', csvfile_acqdata) # print('CSVFILE_PERFDATA: ', csvfile_perfdata) # load acquisition load_acqdata_task = { TaskSpecSchema.task_id: MortgageTaskNames.load_acqdata_task_name, TaskSpecSchema.node_type: 'CsvMortgageAcquisitionDataLoader', TaskSpecSchema.conf: { 'csvfile_names': csvfile_names, 'csvfile_acqdata': csvfile_acqdata }, TaskSpecSchema.inputs: [], TaskSpecSchema.filepath: mortgage_lib_module } # load performance data load_perfdata_task = { TaskSpecSchema.task_id: MortgageTaskNames.load_perfdata_task_name, TaskSpecSchema.node_type: 'CsvMortgagePerformanceDataLoader', TaskSpecSchema.conf: { 'csvfile_perfdata': csvfile_perfdata }, TaskSpecSchema.inputs: [], TaskSpecSchema.filepath: mortgage_lib_module } # calculate loan delinquency stats ever_feat_task = { TaskSpecSchema.task_id: MortgageTaskNames.ever_feat_task_name, TaskSpecSchema.node_type: 'CreateEverFeatures', TaskSpecSchema.conf: dict(), TaskSpecSchema.inputs: [MortgageTaskNames.load_perfdata_task_name], TaskSpecSchema.filepath: mortgage_lib_module } delinq_feat_task = { TaskSpecSchema.task_id: MortgageTaskNames.delinq_feat_task_name, TaskSpecSchema.node_type: 'CreateDelinqFeatures', TaskSpecSchema.conf: dict(), TaskSpecSchema.inputs: [MortgageTaskNames.load_perfdata_task_name], TaskSpecSchema.filepath: mortgage_lib_module } join_perf_ever_delinq_feat_task = { TaskSpecSchema.task_id: MortgageTaskNames.join_perf_ever_delinq_feat_task_name, TaskSpecSchema.node_type: 'JoinPerfEverDelinqFeatures', TaskSpecSchema.conf: dict(), TaskSpecSchema.inputs: [ MortgageTaskNames.load_perfdata_task_name, MortgageTaskNames.ever_feat_task_name, MortgageTaskNames.delinq_feat_task_name ], TaskSpecSchema.filepath: mortgage_lib_module } create_12mon_feat_task = { TaskSpecSchema.task_id: MortgageTaskNames.create_12mon_feat_task_name, TaskSpecSchema.node_type: 'Create12MonFeatures', TaskSpecSchema.conf: dict(), TaskSpecSchema.inputs: [ MortgageTaskNames.join_perf_ever_delinq_feat_task_name ], TaskSpecSchema.filepath: mortgage_lib_module } final_perf_delinq_task = { TaskSpecSchema.task_id: MortgageTaskNames.final_perf_delinq_task_name, TaskSpecSchema.node_type: 'FinalPerfDelinq', TaskSpecSchema.conf: dict(), TaskSpecSchema.inputs: [ MortgageTaskNames.load_perfdata_task_name, MortgageTaskNames.join_perf_ever_delinq_feat_task_name, MortgageTaskNames.create_12mon_feat_task_name ], TaskSpecSchema.filepath: mortgage_lib_module } final_perf_acq_task = { TaskSpecSchema.task_id: MortgageTaskNames.final_perf_acq_task_name, TaskSpecSchema.node_type: 'JoinFinalPerfAcqClean', TaskSpecSchema.conf: dict(), TaskSpecSchema.inputs: [ MortgageTaskNames.final_perf_delinq_task_name, MortgageTaskNames.load_acqdata_task_name ], TaskSpecSchema.filepath: mortgage_lib_module } task_spec_list = [ load_acqdata_task, load_perfdata_task, ever_feat_task, delinq_feat_task, join_perf_ever_delinq_feat_task, create_12mon_feat_task, final_perf_delinq_task, final_perf_acq_task ] return task_spec_list def generate_mortgage_greenflow_run_params_list( mortgage_data_path, start_year, end_year, part_count, greenflow_task_spec_list): '''For the specified years and limit (part_count) to the number of files (performance files), generates a list of run_params_dict. run_params_dict = { 'replace_spec': replace_spec, 'task_spec_list': greenflow_task_spec_list, 'out_list': out_list } replace_spec - to be passed to Dataframe flow run command's replace option. replace_spec = { MortgageTaskNames.load_acqdata_task_name: { TaskSpecSchema.conf: { 'csvfile_names': csvfile_names, 'csvfile_acqdata': csvfile_acqdata } }, MortgageTaskNames.load_perfdata_task_name: { TaskSpecSchema.conf: { 'csvfile_perfdata': csvfile_perfdata } } } out_list - Expected to specify one output which should be the final dataframe produced by the mortgage ETL workflow. Example: from greenflow.dataframe_flow import TaskGraph task_spec_list = run_params_dict['task_spec_list'] out_list = run_params_dict['out_list'] replace_spec = run_params_dict['replace_spec'] task_graph = TaskGraph(task_spec_list) (final_perf_acq_df,) = task_graph.run(out_list, replace_spec) :param str mortgage_data_path: Path to mortgage data. Should have a file "names.csv" and two subdirectories "acq" and "perf". :param int start_year: Start year is used to traverse the appropriate range of directories with corresponding year(s) in mortgage data. :param int end_year: End year is used to traverse the appropriate range of directories with corresponding year(s) in mortgage data. :param int part_count: Limit to how many performance files to load. There is a single corresponding acquisition file for year and quarter. Performance files are very large csv files (1GB files) and are broken down i.e. for a given year and quarter you could have several file chunks: *.txt_0, *.txt_1, etc. :param greenflow_task_spec_list: Mortgage ETL workflow list of tasks. Refer to function mortgage_etl_workflow_def. :returns: list of run_params_dict :rtype: list ''' from greenflow.dataframe_flow import TaskSpecSchema csvfile_names = os.path.join(mortgage_data_path, 'names.csv') acq_data_path = os.path.join(mortgage_data_path, 'acq') perf_data_path = os.path.join(mortgage_data_path, 'perf') quarter = 1 year = start_year count = 0 out_list = [MortgageTaskNames.final_perf_acq_task_name] mortgage_run_params_dict_list = [] while year <= end_year: if count >= part_count: break perf_data_files = glob(os.path.join( perf_data_path + "/Performance_{}Q{}*".format( str(year), str(quarter)))) csvfile_acqdata = acq_data_path + "/Acquisition_" + \ str(year) + "Q" + str(quarter) + ".txt" for csvfile_perfdata in perf_data_files: if count >= part_count: break replace_spec = { MortgageTaskNames.load_acqdata_task_name: { TaskSpecSchema.conf: { 'csvfile_names': csvfile_names, 'csvfile_acqdata': csvfile_acqdata } }, MortgageTaskNames.load_perfdata_task_name: { TaskSpecSchema.conf: { 'csvfile_perfdata': csvfile_perfdata } } } # Uncomment 'csvfile_perfdata' for debugging chunks in # DaskMortgageWorkflowRunner. run_params_dict = { # 'csvfile_perfdata': csvfile_perfdata, 'replace_spec': replace_spec, 'task_spec_list': greenflow_task_spec_list, 'out_list': out_list } mortgage_run_params_dict_list.append(run_params_dict) count += 1 quarter += 1 if quarter == 5: year += 1 quarter = 1 return mortgage_run_params_dict_list
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/mortgage_e2e_gquant/mortgage_common.py
''' ''' import os try: # Disable NCCL P2P. Only necessary for versions of NCCL < 2.4 # https://rapidsai.github.io/projects/cudf/en/0.8.0/dask-xgb-10min.html#Disable-NCCL-P2P.-Only-necessary-for-versions-of-NCCL-%3C-2.4 os.environ["NCCL_P2P_DISABLE"] = "1" except Exception: pass import json from dask_cuda import LocalCUDACluster from dask.distributed import Client # from distributed import Client from mortgage_common import ( mortgage_etl_workflow_def, generate_mortgage_greenflow_run_params_list, MortgageTaskNames) def main(): memory_limit = 128e9 threads_per_worker = 4 cluster = LocalCUDACluster( memory_limit=memory_limit, threads_per_worker=threads_per_worker) client = Client(cluster) sched_info = client.scheduler_info() print('CLIENT: {}'.format(client)) print('SCHEDULER INFO:\n{}'.format(json.dumps(sched_info, indent=2))) # Importing here in case RMM is used later on. Must start client prior # to importing cudf stuff if using RMM. from greenflow.dataframe_flow import (TaskSpecSchema, TaskGraph) # workers_names = \ # [iw['name'] for iw in client.scheduler_info()['workers'].values()] # nworkers = len(workers_names) _basedir = os.path.dirname(__file__) # mortgage_data_path = '/datasets/rapids_data/mortgage' mortgage_data_path = os.path.join(_basedir, 'mortgage_data') # Using some default csv files for testing. # csvfile_names = os.path.join(mortgage_data_path, 'names.csv') # acq_data_path = os.path.join(mortgage_data_path, 'acq') # perf_data_path = os.path.join(mortgage_data_path, 'perf') # csvfile_acqdata = os.path.join(acq_data_path, 'Acquisition_2000Q1.txt') # csvfile_perfdata = \ # os.path.join(perf_data_path, 'Performance_2000Q1.txt_0') # mortgage_etl_workflow_def( # csvfile_names, csvfile_acqdata, csvfile_perfdata) greenflow_task_spec_list = mortgage_etl_workflow_def() start_year = 2000 end_year = 2001 # end_year is inclusive # end_year = 2016 # end_year is inclusive # part_count = 16 # the number of data files to train against # create_dmatrix_serially - When False on same node if not enough host RAM # then it's a race condition when creating the dmatrix. Make sure enough # host RAM otherwise set to True. # create_dmatrix_serially = False # able to do 18 with create_dmatrix_serially set to True part_count = 18 # the number of data files to train against create_dmatrix_serially = True # part_count = 4 # the number of data files to train against # Use RAPIDS Memory Manager. Seems to work fine without it. use_rmm = False # Clean up intermediate dataframes in the xgboost training task. delete_dataframes = True mortgage_run_params_dict_list = generate_mortgage_greenflow_run_params_list( mortgage_data_path, start_year, end_year, part_count, greenflow_task_spec_list) _basedir = os.path.dirname(__file__) mortgage_lib_module = os.path.join(_basedir, 'mortgage_greenflow_plugins.py') filter_dask_logger = False mortgage_workflow_runner_task = { TaskSpecSchema.task_id: MortgageTaskNames.dask_mortgage_workflow_runner_task_name, TaskSpecSchema.node_type: 'DaskMortgageWorkflowRunner', TaskSpecSchema.conf: { 'mortgage_run_params_dict_list': mortgage_run_params_dict_list, 'client': client, 'use_rmm': use_rmm, 'filter_dask_logger': filter_dask_logger, }, TaskSpecSchema.inputs: [], TaskSpecSchema.filepath: mortgage_lib_module } dxgb_gpu_params = { 'nround': 100, 'max_depth': 8, 'max_leaves': 2 ** 8, 'alpha': 0.9, 'eta': 0.1, 'gamma': 0.1, 'learning_rate': 0.1, 'subsample': 1, 'reg_lambda': 1, 'scale_pos_weight': 2, 'min_child_weight': 30, 'tree_method': 'gpu_hist', 'n_gpus': 1, 'distributed_dask': True, 'loss': 'ls', # 'objective': 'gpu:reg:linear', 'objective': 'reg:squarederror', 'max_features': 'auto', 'criterion': 'friedman_mse', 'grow_policy': 'lossguide', 'verbose': True } dxgb_trainer_task = { TaskSpecSchema.task_id: MortgageTaskNames.dask_xgb_trainer_task_name, TaskSpecSchema.node_type: 'DaskXgbMortgageTrainer', TaskSpecSchema.conf: { 'create_dmatrix_serially': create_dmatrix_serially, 'delete_dataframes': delete_dataframes, 'dxgb_gpu_params': dxgb_gpu_params, 'client': client, 'filter_dask_logger': filter_dask_logger }, TaskSpecSchema.inputs: [ MortgageTaskNames.dask_mortgage_workflow_runner_task_name ], TaskSpecSchema.filepath: mortgage_lib_module } task_spec_list = [mortgage_workflow_runner_task, dxgb_trainer_task] out_list = [MortgageTaskNames.dask_xgb_trainer_task_name] task_graph = TaskGraph(task_spec_list) (bst,) = task_graph.run(out_list) print('XGBOOST BOOSTER:\n', bst) if __name__ == '__main__': main()
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/mortgage_e2e_gquant/mortgage_run_workflow_daskdistrib.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import chaikin_oscillator as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntRangeSlider(value=[10, 30], min=3, max=60, step=1, description="Ch Oscillator:", disabled=False, continuous_update=False, orientation='horizontal', readout=True) para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): widget = para_selector_widgets[0] return (stock_df["high"], stock_df["low"], stock_df["close"], stock_df["volume"], widget.value[0], widget.value[1]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = stock_df['out'].fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Ch Osc', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/ch_oscillator.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import on_balance_volume as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="On Balance volume") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["close"], stock_df["volume"]) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='On Balance volume', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/on_balance_volume.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import mass_index as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntRangeSlider(value=[10, 30], min=3, max=60, step=1, description="Mass Index:", disabled=False, continuous_update=False, orientation='horizontal', readout=True) para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): widget = para_selector_widgets[0] return (stock_df["high"], stock_df["low"], widget.value[0], widget.value[1]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = stock_df['out'].fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Mass Index', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/mass_index.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import money_flow_index as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="Money Flow Index") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["high"], stock_df["low"], stock_df["close"], stock_df["volume"]) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Money Flow Index', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/money_flow_index.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import kst_oscillator as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="KST Oscillator") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): param = [w.value for w in para_selector_widgets] param_grp = [param[0] + i for i in range(8)] return (stock_df["close"], param_grp[0], param_grp[1], param_grp[2], param_grp[3], param_grp[4], param_grp[5], param_grp[6], param_grp[7]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='KST Oscillator', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/kst_oscillator.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import accumulation_distribution as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="Accumulation Distribution") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["high"], stock_df["low"], stock_df["close"], stock_df["volume"]) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Accumulation Distribution', scale=sc_co, orientation='vertical') new_line = Lines( x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/accumulation_distribution.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Lines import math import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import moving_average as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider(min=2, max=60, description="avg periods") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["close"],) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = stock_df['out'].fillna(math.inf) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc}, colors=[CATEGORY20[color_id[0]]]) figs = [line] f.marks = f.marks + figs return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/ma.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import true_strength_index as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntRangeSlider(value=[10, 30], min=3, max=60, step=1, description="True Strength Index", disabled=False, continuous_update=False, orientation='horizontal', readout=True) para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): widget = para_selector_widgets[0] return (stock_df["close"], widget.value[0], widget.value[1]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = stock_df['out'].fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='True Strength Index', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/true_strength_index.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import stochastic_oscillator_d as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="Stochastic Oscillator D") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["high"], stock_df["low"], stock_df["close"]) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Stochastic Oscillator D', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/stochastic_oscillator_d.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import rate_of_change as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="Rate of Change") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["close"],) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Rate of Change', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/rate_of_change.py
import ipywidgets as widgets from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import macd as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntRangeSlider(value=[10, 30], min=3, max=60, step=1, description="MACD:", disabled=False, continuous_update=False, orientation='horizontal', readout=True) para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): widget = para_selector_widgets[0] return (stock_df["close"], widget.value[0], widget.value[1]) def process_outputs(output, stock_df): output.MACD.index = stock_df.index output.MACDsign.index = stock_df.index output.MACDdiff.index = stock_df.index stock_df['out0'] = output.MACD stock_df['out0'] = stock_df['out0'].fillna(0) stock_df['out1'] = output.MACDsign stock_df['out1'] = stock_df['out1'].fillna(0) stock_df['out2'] = output.MACDdiff stock_df['out2'] = stock_df['out2'].fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='MACD', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=[stock['out0'].to_array(), stock['out1'].to_array(), stock['out2'].to_array()], scales={'x': dt_scale, 'y': sc_co}) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs def update_figure(stock, objects): line = objects[0] with line.hold_trait_notifications(): line.y = [stock['out0'].to_array(), stock['out1'].to_array(), stock['out2'].to_array()] line.x = stock.datetime.to_array()
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/macd.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import donchian_channel as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="Donchian Channel") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["high"], stock_df["low"]) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Donchian Channel', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/donchian_channel.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import average_directional_movement_index as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntRangeSlider(value=[10, 30], min=3, max=60, step=1, description="ADMI:", disabled=False, continuous_update=False, orientation='horizontal', readout=True) para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): widget = para_selector_widgets[0] return (stock_df["high"], stock_df["low"], stock_df["close"], widget.value[0], widget.value[1]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = stock_df['out'].fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='ADMI', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/admi.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import force_index as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider(min=2, max=60, description="Force Index") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["close"], stock_df["volume"]) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Force Index', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/force_index.py
from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import stochastic_oscillator_k as indicator_fun # noqa #F401 def get_para_widgets(): para_selector_widgets = [] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["high"], stock_df["low"], stock_df["close"]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Stochastic Oscillator K', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/stochastic_oscillator_k.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import bollinger_bands as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="Bollinger Bands") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["close"],) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.b1.index = stock_df.index output.b2.index = stock_df.index stock_df['out0'] = output.b1 stock_df['out0'] = stock_df['out0'].fillna(0) stock_df['out1'] = output.b2 stock_df['out1'] = stock_df['out1'].fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() sc_co2 = LinearScale() ax_y = Axis(label='Bollinger b1', scale=sc_co, orientation='vertical') ax_y2 = Axis(label='Bollinger b2', scale=sc_co2, orientation='vertical', side='right') new_line = Lines(x=stock.datetime.to_array(), y=stock['out0'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_line2 = Lines(x=stock.datetime.to_array(), y=stock['out1'].to_array(), scales={'x': dt_scale, 'y': sc_co2}, colors=[CATEGORY20[(color_id[0] + 1) % len(CATEGORY20)]]) new_fig = Figure(marks=[new_line, new_line2], axes=[ax_y, ax_y2]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line, new_line2] add_new_indicator(new_fig) return figs def update_figure(stock, objects): line = objects[0] line2 = objects[1] with (line.hold_trait_notifications(), line2.hold_trait_notifications()): line.y = stock['out0'].to_array() line.x = stock.datetime.to_array() line2.y = stock['out1'].to_array() line2.x = stock.datetime.to_array()
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/bollinger_bands.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import coppock_curve as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="Coppock Curve") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["close"],) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Coppock Curve', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/coppock_curve.py
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/__init__.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import vortex_indicator as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="Vortex Indicator") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["high"], stock_df["low"], stock_df["close"]) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Vortex Indicator', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/vortex_indicator.py
import ipywidgets as widgets from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import keltner_channel as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider(min=2, max=60, description="Keltner Channel") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["high"], stock_df["low"], stock_df["close"]) + tuple([ w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.KelChM.index = stock_df.index output.KelChU.index = stock_df.index output.KelChD.index = stock_df.index stock_df['out0'] = output.KelChM stock_df['out0'] = stock_df['out0'].fillna(0) stock_df['out1'] = output.KelChU stock_df['out1'] = stock_df['out1'].fillna(0) stock_df['out2'] = output.KelChD stock_df['out2'] = stock_df['out2'].fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Keltner Channel', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=[stock['out0'].to_array(), stock['out1'].to_array(), stock['out2'].to_array()], scales={'x': dt_scale, 'y': sc_co}) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs def update_figure(stock, objects): line = objects[0] with line.hold_trait_notifications(): line.y = [stock['out0'].to_array(), stock['out1'].to_array(), stock['out2'].to_array()] line.x = stock.datetime.to_array()
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/keltner_channel.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Lines import math import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import exponential_moving_average as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="ewa avg periods") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["close"],) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = stock_df['out'].fillna(math.inf) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc}, colors=[CATEGORY20[color_id[0]]]) figs = [line] f.marks = f.marks + figs return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/ewa.py
from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import ultimate_oscillator as indicator_fun # noqa #F401 def get_para_widgets(): para_selector_widgets = [] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["high"], stock_df["low"], stock_df["close"]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Ultimate Oscillator', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/ultimate_oscillator.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import commodity_channel_index as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="Commodity Channel Index") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["high"], stock_df["low"], stock_df["close"]) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='CCI', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/commodity_channel_index.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import relative_strength_index as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider(min=2, max=60, description="RSI") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["high"], stock_df["low"]) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = stock_df['out'].fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='RSI', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/rsi.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import average_true_range as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="Average True Range") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["high"], stock_df["low"], stock_df["close"]) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Average True Range', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/average_true_range.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import exponential_moving_average as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider(min=2, max=60, description="TRIX") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["close"],) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = stock_df['out'].fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='TRIX', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/trix.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import ease_of_movement as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider( min=2, max=60, description="Ease of Movement") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["high"], stock_df["low"], stock_df["volume"]) + tuple([ w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Ease of Movement', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/ease_of_movement.py
from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import ppsr as indicator_fun # noqa #F401 def get_para_widgets(): para_selector_widgets = [] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["high"], stock_df["low"], stock_df["close"]) def process_outputs(output, stock_df): output.PP.index = stock_df.index output.R1.index = stock_df.index output.S1.index = stock_df.index output.R2.index = stock_df.index output.S2.index = stock_df.index output.R3.index = stock_df.index output.S3.index = stock_df.index stock_df['out0'] = output.PP stock_df['out0'] = stock_df['out0'].fillna(0) stock_df['out1'] = output.R1 stock_df['out1'] = stock_df['out1'].fillna(0) stock_df['out2'] = output.S1 stock_df['out2'] = stock_df['out2'].fillna(0) stock_df['out3'] = output.R2 stock_df['out3'] = stock_df['out3'].fillna(0) stock_df['out4'] = output.S2 stock_df['out4'] = stock_df['out4'].fillna(0) stock_df['out5'] = output.R3 stock_df['out5'] = stock_df['out5'].fillna(0) stock_df['out6'] = output.S3 stock_df['out6'] = stock_df['out6'].fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() sc_co2 = LinearScale() sc_co3 = LinearScale() sc_co4 = LinearScale() sc_co5 = LinearScale() sc_co6 = LinearScale() sc_co7 = LinearScale() ax_y = Axis(label='PPSR PP', scale=sc_co, orientation='vertical') ax_y2 = Axis(label='PPSR R1', scale=sc_co2, orientation='vertical', side='right') ax_y3 = Axis(label='PPSR S1', scale=sc_co3, orientation='vertical', side='right') ax_y4 = Axis(label='PPSR R2', scale=sc_co4, orientation='vertical', side='right') ax_y5 = Axis(label='PPSR S2', scale=sc_co5, orientation='vertical', side='right') ax_y6 = Axis(label='PPSR R3', scale=sc_co6, orientation='vertical', side='right') ax_y7 = Axis(label='PPSR S3', scale=sc_co7, orientation='vertical', side='right') new_line = Lines(x=stock.datetime.to_array(), y=stock['out0'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_line2 = Lines(x=stock.datetime.to_array(), y=stock['out1'].to_array(), scales={'x': dt_scale, 'y': sc_co2}, colors=[CATEGORY20[(color_id[0] + 1) % len(CATEGORY20)]]) new_line3 = Lines(x=stock.datetime.to_array(), y=stock['out2'].to_array(), scales={'x': dt_scale, 'y': sc_co3}, colors=[CATEGORY20[(color_id[0] + 2) % len(CATEGORY20)]]) new_line4 = Lines(x=stock.datetime.to_array(), y=stock['out3'].to_array(), scales={'x': dt_scale, 'y': sc_co4}, colors=[CATEGORY20[(color_id[0] + 3) % len(CATEGORY20)]]) new_line5 = Lines(x=stock.datetime.to_array(), y=stock['out4'].to_array(), scales={'x': dt_scale, 'y': sc_co5}, colors=[CATEGORY20[(color_id[0] + 4) % len(CATEGORY20)]]) new_line6 = Lines(x=stock.datetime.to_array(), y=stock['out5'].to_array(), scales={'x': dt_scale, 'y': sc_co6}, colors=[CATEGORY20[(color_id[0] + 5) % len(CATEGORY20)]]) new_line7 = Lines(x=stock.datetime.to_array(), y=stock['out6'].to_array(), scales={'x': dt_scale, 'y': sc_co7}, colors=[CATEGORY20[(color_id[0] + 6) % len(CATEGORY20)]]) new_fig = Figure(marks=[new_line, new_line2, new_line3, new_line4, new_line5, new_line6, new_line7], axes=[ax_y, ax_y2, ax_y3, ax_y4, ax_y5, ax_y6, ax_y7]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line, new_line2, new_line3, new_line4, new_line5, new_line6, new_line7] add_new_indicator(new_fig) return figs def update_figure(stock, objects): line = objects[0] line2 = objects[1] with line.hold_trait_notifications(), line2.hold_trait_notifications(): line.y = stock['out0'].to_array() line.x = stock.datetime.to_array() line2.y = stock['out1'].to_array() line2.x = stock.datetime.to_array()
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/parabolic_sar.py
import ipywidgets as widgets from bqplot.colorschemes import CATEGORY20 from bqplot import Axis, Figure, LinearScale, Lines import os from greenflow.dataframe_flow.config_nodes_modules import load_modules load_modules(os.getenv('MODULEPATH')+'/rapids_modules/') from rapids_modules.cuindicator import momentum as indicator_fun # noqa #F401 def get_para_widgets(): para_selector = widgets.IntSlider(min=2, max=60, description="Momentum") para_selector_widgets = [para_selector] return para_selector_widgets def get_parameters(stock_df, para_selector_widgets): return (stock_df["close"],) + tuple( [w.value for w in para_selector_widgets]) def process_outputs(output, stock_df): output.index = stock_df.index stock_df['out'] = output stock_df['out'] = output.fillna(0) return stock_df def create_figure(stock, dt_scale, sc, color_id, f, indicator_figure_height, figure_width, add_new_indicator): sc_co = LinearScale() ax_y = Axis(label='Momentum', scale=sc_co, orientation='vertical') new_line = Lines(x=stock.datetime.to_array(), y=stock['out'].to_array(), scales={'x': dt_scale, 'y': sc_co}, colors=[CATEGORY20[color_id[0]]]) new_fig = Figure(marks=[new_line], axes=[ax_y]) new_fig.layout.height = indicator_figure_height new_fig.layout.width = figure_width figs = [new_line] # add new figure add_new_indicator(new_fig) return figs
fsi-samples-main
gQuant/plugins/gquant_plugin/notebooks/cuIndicator/viz/momentum.py
from setuptools import setup, find_packages setup( name='greenflow_nemo_plugin', packages=find_packages(include=['greenflow_nemo_plugin', 'greenflow_nemo_plugin.nemo_util']), entry_points={ 'greenflow.plugin': ['greenflow_nemo_plugin = greenflow_nemo_plugin', 'greenflow_nemo_plugin.asr = greenflow_nemo_plugin.asr', 'greenflow_nemo_plugin.cv = greenflow_nemo_plugin.cv', 'greenflow_nemo_plugin.nlp = greenflow_nemo_plugin.nlp', 'greenflow_nemo_plugin.util = greenflow_nemo_plugin.nemo_util', 'greenflow_nemo_plugin.gan = greenflow_nemo_plugin.simple_gan', 'greenflow_nemo_plugin.tts = greenflow_nemo_plugin.tts', 'greenflow_nemo_plugin.tutorials = greenflow_nemo_plugin.tutorials'], } )
fsi-samples-main
gQuant/plugins/nemo_plugin/setup.py
from greenflow.dataframe_flow import Node from .nemoBaseNode import NeMoBase import nemo import nemo.collections.simple_gan class DiscriminatorLossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.simple_gan.gan.DiscriminatorLoss) class GradientPenaltyNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.simple_gan.gan.GradientPenalty) class InterpolateImageNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.simple_gan.gan.InterpolateImage) class MnistGanDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.simple_gan.gan.MnistGanDataLayer) class RandomDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.simple_gan.gan.RandomDataLayer) class SimpleDiscriminatorNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.simple_gan.gan.SimpleDiscriminator) class SimpleGeneratorNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.simple_gan.gan.SimpleGenerator)
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/simple_gan.py
from greenflow.dataframe_flow import Node from .nemoBaseNode import NeMoBase import nemo import nemo.backends.pytorch.tutorials class DialogDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.tutorials.chatbot.modules.DialogDataLayer) class EncoderRNNNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.tutorials.chatbot.modules.EncoderRNN) class GreedyLuongAttnDecoderRNNNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.tutorials.chatbot.modules.GreedyLuongAttnDecoderRNN) class LuongAttnDecoderRNNNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.tutorials.chatbot.modules.LuongAttnDecoderRNN) class MaskedXEntropyLossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.tutorials.chatbot.modules.MaskedXEntropyLoss) class CrossEntropyLossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.tutorials.toys.CrossEntropyLoss) class L1LossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.tutorials.toys.L1Loss) class MSELossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.tutorials.toys.MSELoss) class RealFunctionDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.tutorials.toys.RealFunctionDataLayer) class TaylorNetNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.tutorials.toys.TaylorNet)
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/tutorials.py
validation_fun = """ //first check types const reqElement = required['element']; const outElement = outputs['element']; if ( outElement['types'][0] !== 'VoidType' && reqElement['types'][0] !== 'VoidType' ) { if ( outElement['types'].findIndex( (d) => d === reqElement['types'][0] ) < 0 ) { // req type should be generic, // out type should be specific, i.e. subclass of req // first required element type should be the parent type of the output element return false; } if (outElement['fields'] !== reqElement['fields']) { return false; } if (outElement['parameters'] !== reqElement['parameters']) { return false; } } const reqAxes = required['axes']; const outAxes = outputs['axes']; if (reqAxes.length === 0) { return true; } if (reqAxes.length !== outAxes.length) { return false; } for (let i = 0; i < reqAxes.length; i++) { if (reqAxes[i]['kind'] !== outAxes[i]['kind']) { return false; } if ( reqAxes[i]['size'] !== null && outAxes[i]['size'] !== null && reqAxes[i]['size'] !== outAxes['size'] ) { return false; } } return true; """ display_fun = """ const axes = metaObj['axes']; const element = metaObj['element']; header = ''; header += '<table>'; header += '<tr>'; header += '<th>Axes: </th>'; if ('axes' in metaObj && axes.length > 0) { for (let i = 0; i < axes.length; i++) { if (axes[i]['size']) { header += `<th>${i === 0 ? '(' : ''}${axes[i]['kind']}(${ axes[i]['size'] })${i === axes.length - 1 ? ')' : ''}</th>`; } else { header += `<th>${i === 0 ? '(' : ''}${axes[i]['kind']}${ i === axes.length - 1 ? ')' : '' }</th>`; } } } else { header += '<th>()</th>'; } header += '</tr>'; header += '</table>'; header += '<ul>'; if ('types' in element) { header += `<li>Element Type: ${element['types'][0]}</li>`; if ('fileds' in element && element['fields'] !== 'None') { header += `<li>Element fileds: ${element['fields']}</li>`; } if ('parameters' in element && element['parameters'] !== '{}') { header += `<li>Element parameters: ${element['parameters']}</li>`; } } header += '</ul>'; return header; """ validation = {} display = {} validation['nemo.core.neural_types.neural_type.NmTensor'] = validation_fun display['nemo.core.neural_types.neural_type.NmTensor'] = display_fun
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/client.py
from greenflow.dataframe_flow import Node from .nemoBaseNode import NeMoBase import nemo import nemo.collections.tts class AudioDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.data_layers.AudioDataLayer) class FastSpeechNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.fastspeech_modules.FastSpeech) class FastSpeechDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.fastspeech_modules.FastSpeechDataLayer) class FastSpeechLossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.fastspeech_modules.FastSpeechLoss) class MakeGateNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.tacotron2_modules.MakeGate) class Tacotron2DecoderNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.tacotron2_modules.Tacotron2Decoder) class Tacotron2DecoderInferNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.tacotron2_modules.Tacotron2DecoderInfer) class Tacotron2EncoderNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.tacotron2_modules.Tacotron2Encoder) class Tacotron2LossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.tacotron2_modules.Tacotron2Loss) class Tacotron2PostnetNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.tacotron2_modules.Tacotron2Postnet) class TextEmbeddingNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.tacotron2_modules.TextEmbedding) class LenSamplerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.talknet_modules.LenSampler) class TalkNetNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.talknet_modules.TalkNet) class TalkNetDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.talknet_modules.TalkNetDataLayer) class TalkNetDursLossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.talknet_modules.TalkNetDursLoss) class TalkNetMelsLossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.talknet_modules.TalkNetMelsLoss) class WaveGlowInferNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.waveglow_modules.WaveGlowInferNM) class WaveGlowLossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.waveglow_modules.WaveGlowLoss) class WaveGlowNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.tts.waveglow_modules.WaveGlowNM)
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/tts.py
from .client import validation, display # noqa: #401 from greenflow.dataframe_flow._node_flow import register_cleanup def clean_nemo(ui_clean): """ ui_clean is True if the client send 'clean' command to the greenflow backend """ try: import nemo nf = nemo.core.NeuralModuleFactory.get_default_factory() except ModuleNotFoundError: nf = None if nf is not None: nf.reset_trainer() if ui_clean: state = nemo.utils.app_state.AppState() state._module_registry.clear() state.active_graph.modules.clear() register_cleanup('cleannemo', clean_nemo)
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/__init__.py
from greenflow.dataframe_flow import Node from .nemoBaseNode import NeMoBase import nemo import nemo.collections.asr class AudioPreprocessorNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.audio_preprocessing.AudioPreprocessor) class AudioToMFCCPreprocessorNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.audio_preprocessing.AudioToMFCCPreprocessor) class AudioToMelSpectrogramPreprocessorNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.audio_preprocessing.AudioToMelSpectrogramPreprocessor) class AudioToSpectrogramPreprocessorNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.audio_preprocessing.AudioToSpectrogramPreprocessor) class CropOrPadSpectrogramAugmentationNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.audio_preprocessing.CropOrPadSpectrogramAugmentation) class MultiplyBatchNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.audio_preprocessing.MultiplyBatch) class SpectrogramAugmentationNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.audio_preprocessing.SpectrogramAugmentation) class TimeStretchAugmentationNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.audio_preprocessing.TimeStretchAugmentation) class BeamSearchDecoderWithLMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.beam_search_decoder.BeamSearchDecoderWithLM) class ContextNetDecoderForCTCNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.contextnet.ContextNetDecoderForCTC) class ContextNetEncoderNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.contextnet.ContextNetEncoder) class JasperEncoderNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.jasper.JasperEncoder) class AudioToSpeechLabelDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.data_layer.AudioToSpeechLabelDataLayer) class AudioToTextDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.data_layer.AudioToTextDataLayer) class KaldiFeatureDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.data_layer.KaldiFeatureDataLayer) class TarredAudioToTextDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.data_layer.TarredAudioToTextDataLayer) class TranscriptDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.data_layer.TranscriptDataLayer) class GreedyCTCDecoderNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.greedy_ctc_decoder.GreedyCTCDecoder) class JasperDecoderForCTCNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.jasper.JasperDecoderForCTC) class JasperDecoderForClassificationNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.jasper.JasperDecoderForClassification) class JasperDecoderForSpkrClassNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.jasper.JasperDecoderForSpkrClass) class CTCLossNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.losses.CTCLossNM) class ASRConvCTCModelNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.models.asrconvctcmodel.ASRConvCTCModel) class JasperNetNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.models.asrconvctcmodel.JasperNet) class QuartzNetNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.asr.models.asrconvctcmodel.QuartzNet)
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/asr.py
from greenflow.dataframe_flow import Node from .nemoBaseNode import NeMoBase import nemo import nemo.collections.nlp.nm class BertInferDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.data_layers.bert_inference_datalayer.BertInferDataLayer) class BertPretrainingDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.data_layers.lm_bert_datalayer.BertPretrainingDataLayer) class BertPretrainingPreprocessedDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.data_layers.lm_bert_datalayer.BertPretrainingPreprocessedDataLayer) class TextDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.data_layers.text_datalayer.TextDataLayer) class MaskedLogLossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.losses.masked_xentropy_loss.MaskedLogLoss) class SGDDialogueStateLossNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.losses.sgd_loss.SGDDialogueStateLossNM) class SmoothedCrossEntropyLossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.losses.smoothed_cross_entropy_loss.SmoothedCrossEntropyLoss) class SpanningLossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.losses.spanning_loss.SpanningLoss) class AlbertNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.common.huggingface.albert_nm.Albert) class BERTNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.common.huggingface.bert_nm.BERT) class BeamSearchTranslatorNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.common.transformer.transformer_nm.BeamSearchTranslatorNM) class BertTokenClassifierNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.common.token_classification_nm.BertTokenClassifier) class EncoderRNNNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.common.encoder_rnn.EncoderRNN) class GreedyLanguageGeneratorNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.common.transformer.transformer_nm.GreedyLanguageGeneratorNM) class JointIntentSlotClassifierNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.joint_intent_slot.joint_intent_slot_classifier_nm.JointIntentSlotClassifier) class PunctCapitTokenClassifierNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.punctuation_capitalization.punctuation_capitalization_classifier_nm.PunctCapitTokenClassifier) class RobertaNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.common.huggingface.roberta_nm.Roberta) class SGDDecoderNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.dialogue_state_tracking.sgd.sgd_decoder_nm.SGDDecoderNM) class SGDEncoderNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.dialogue_state_tracking.sgd.sgd_encoder_nm.SGDEncoderNM) class SequenceClassifierNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.common.sequence_classification_nm.SequenceClassifier) class SequenceRegressionNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.common.sequence_regression_nm.SequenceRegression) class TRADEGeneratorNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.dialogue_state_tracking.trade_generator_nm.TRADEGenerator) class TokenClassifierNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.common.token_classification_nm.TokenClassifier) class TransformerDecoderNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.common.transformer.transformer_nm.TransformerDecoderNM) class TransformerEncoderNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.nlp.nm.trainables.common.transformer.transformer_nm.TransformerEncoderNM)
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/nlp.py
from greenflow.dataframe_flow import ( ConfSchema, PortsSpecSchema, NodePorts, MetaData) from nemo.core.neural_types import NmTensor import inspect from greenflow.plugin_nodes.util.json_util import type_map from collections import OrderedDict from greenflow.dataframe_flow.util import get_file_path from nemo.backends.pytorch.nm import (DataLayerNM, TrainableNM, LossNM) import nemo __all__ = ["NeMoBase"] defaut_type = 'number' share_weight = 'share_weight' class FeedProperty(object): def __init__(self, conf): self.__dict__.update(conf) def serialize_type(neural_type): output = {} axes = [] if neural_type.axes is None: pass else: for ax in neural_type.axes: axes.append({'kind': str(ax.kind), 'size': ax.size}) output['axes'] = axes ele = {} ele_type = neural_type.elements_type ele['types'] = [cla.__name__ for cla in ele_type.__class__.mro() if cla.__name__ != 'ABC' and cla.__name__ != 'object'] ele['fields'] = str(ele_type.fields) ele['parameters'] = str(ele_type.type_parameters) output['element'] = ele return output def get_parameters(class_obj, conf): init_fun = class_obj.__init__ sig = inspect.signature(init_fun) hasEmpty = False init_para = {} for key in sig.parameters.keys(): if key == 'self': # ignore the self continue if key in conf: init_para[key] = conf[key] else: hasEmpty = True break if not hasEmpty: return init_para else: return None def get_conf_parameters(class_obj): init_fun = class_obj.__init__ sig = inspect.signature(init_fun) init_para = OrderedDict() for key in sig.parameters.keys(): if key == 'self': # ignore the self continue para = sig.parameters[key] default_val = None if para.default == inspect._empty: p_type = defaut_type elif para.default is None: p_type = defaut_type else: if para.default.__class__.__name__ not in type_map: print(para.default, type(para.default)) p_type = defaut_type else: p_type = type_map[para.default.__class__.__name__] default_val = para.default init_para[para.name] = (p_type, default_val) return init_para class NeMoBase: def init(self, class_obj): if nemo.core.NeuralModuleFactory.get_default_factory() is None: nemo.core.NeuralModuleFactory() self.instanceClass = class_obj self.instance = None self.file_fields = [] conf_para = get_conf_parameters(class_obj) self.fix_type = {} self.INPUT_NM = 'in_nm' self.OUTPUT_NM = 'out_nm' for key in conf_para.keys(): if key.find('name') >= 0: self.fix_type[key] = "string" if key.find('model') >= 0: self.fix_type[key] = "string" if key.find('file') >= 0: self.file_fields.append(key) for f in self.file_fields: self.fix_type[f] = 'string' if f in self.conf and self.conf[f]: self.conf[f] = get_file_path(self.conf[f]) if not issubclass(class_obj, DataLayerNM): try: if issubclass(self.instanceClass, TrainableNM): input_meta = self.get_input_meta() if self.INPUT_NM in input_meta: if (share_weight in self.conf and self.conf[share_weight] == 'Reuse'): self.conf = input_meta[self.INPUT_NM] app = nemo.utils.app_state.AppState() ins = None for mod in app._module_registry: if isinstance(mod, self.instanceClass): ins = mod break if ins is None: ins = class_obj(**self.conf) if self.instance is None: self.instance = ins except Exception as e: print(e) pass def _clean_dup(self): app = nemo.utils.app_state.AppState() if 'name' in self.conf: if app._module_registry.has(self.conf['name']): existing = app._module_registry[self.conf['name']] app._module_registry.remove(existing) removeList = [] for mod in app._module_registry: if isinstance(mod, self.instanceClass): # remove the duplicate instances removeList.append(mod) for mod in removeList: app._module_registry.remove(mod) def ports_setup(self): port_type = PortsSpecSchema.port_type if self.instance is not None: inports = self.instance.input_ports outports = self.instance.output_ports else: try: p_inports = self.instanceClass.input_ports p_outports = self.instanceClass.output_ports feeder = FeedProperty(self.conf) inports = p_inports.fget(feeder) outports = p_outports.fget(feeder) except Exception: inports = None outports = None o_inports = {} o_outports = {} if inports is not None: for k in inports.keys(): o_inports[k] = {port_type: NmTensor} if outports is not None: for k in outports.keys(): o_outports[k] = {port_type: NmTensor} if issubclass(self.instanceClass, TrainableNM): # added the port for tying the weights o_inports[self.INPUT_NM] = {port_type: TrainableNM} o_outports[self.OUTPUT_NM] = {port_type: TrainableNM} elif issubclass(self.instanceClass, LossNM): o_outports[self.OUTPUT_NM] = {port_type: LossNM} elif issubclass(self.instanceClass, DataLayerNM): o_outports[self.OUTPUT_NM] = {port_type: DataLayerNM} return NodePorts(inports=o_inports, outports=o_outports) def meta_setup(self): input_meta = self.get_input_meta() if issubclass(self.instanceClass, TrainableNM): input_meta = self.get_input_meta() if self.INPUT_NM in input_meta: if (share_weight in self.conf and self.conf[share_weight] == 'Reuse'): self.conf = input_meta[self.INPUT_NM] if self.instance is not None: inports = self.instance.input_ports outports = self.instance.output_ports else: try: p_inports = self.instanceClass.input_ports p_outports = self.instanceClass.output_ports feeder = FeedProperty(self.conf) inports = p_inports.fget(feeder) outports = p_outports.fget(feeder) except Exception: inports = None outports = None required = {} out_meta = {} if inports is not None: for k in inports.keys(): required[k] = serialize_type(inports[k]) if outports is not None: for k in outports.keys(): out_meta[k] = serialize_type(outports[k]) if self.instance is not None: out_meta[self.OUTPUT_NM] = self.conf metadata = MetaData(inports=required, outports=out_meta) return metadata def conf_schema(self): conf_para = get_conf_parameters(self.instanceClass) class_doc = self.instanceClass.__doc__ desc = "" if class_doc is None else class_doc init_doc = self.instanceClass.__init__.__doc__ desc += "" if init_doc is None else init_doc json = { "title": "NeMo "+self.instanceClass.__name__+" Node", "type": "object", "description": desc, "properties": { }, } ui = { } for f in self.file_fields: if f in conf_para: ui[f] = {"ui:widget": "FileSelector"} for p in conf_para.keys(): stype = conf_para[p][0] if p in self.fix_type: stype = self.fix_type[p] json['properties'][p] = { "type": stype, "default": conf_para[p][1] } if issubclass(self.instanceClass, TrainableNM): if share_weight in conf_para: print('warning, share_weight parameter name collision') json['properties'][share_weight] = { "type": 'string', "description": """Weight Sharing between Modules: Reuse, re-use neural modules between training, evaluation and inference graphs; Copy: copy weights betwen modules. subsequent update of weights in one module will not affect weights in the other module. This means that the weights will get DIFFERENT gradients on the update step. Tying: the default one, tie weights between two or more modules. Tied weights are identical across all modules. Gradients to the weights will be the SAME.""", "enum": ['Reuse', 'Copy', 'Tying'], "default": 'Tying' } return ConfSchema(json=json, ui=ui) def process(self, inputs): para = get_parameters(self.instanceClass, self.conf) app = nemo.utils.app_state.AppState() self.instance = None if issubclass(self.instanceClass, TrainableNM): if self.INPUT_NM in inputs: inputIn = inputs[self.INPUT_NM] if (share_weight in self.conf and self.conf[share_weight] == 'Reuse'): self.instance = inputIn if para is not None and self.instance is None: self._clean_dup() self.instance = self.instanceClass(**para) if self.instance is None: return {} if issubclass(self.instanceClass, TrainableNM): if self.INPUT_NM in inputs: inputIn = inputs[self.INPUT_NM] if (share_weight in self.conf and self.conf[share_weight] == 'Reuse'): pass elif (share_weight in self.conf and self.conf[share_weight] == 'Copy'): self.instance.set_weights(inputIn.get_weights()) else: self.instance.tie_weights_with(inputIn, list( inputIn.get_weights( ).keys())) inputsCopy = OrderedDict() for k in self.instance.input_ports.keys(): if k in inputs: inputsCopy[k] = inputs[k] instanceName = self.instance.name if instanceName in app.active_graph._modules: del app.active_graph._modules[instanceName] o = self.instance(**inputsCopy) if isinstance(o, tuple): output = {} for key in self.instance.output_ports.keys(): output[key] = getattr(o, key) else: key = list(self.instance.output_ports.keys())[0] output = {key: o} # if self.uid == 'eval_data': # print(inputs, output) # for k in output.keys(): # print(output[k].name) # print(output[k].unique_name) output[self.OUTPUT_NM] = self.instance return output
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/nemoBaseNode.py
from greenflow.dataframe_flow import Node from .nemoBaseNode import NeMoBase import nemo import nemo.backends.pytorch.common class BCEWithLogitsLossNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.common.losses.BCEWithLogitsLossNM) class CrossEntropyLossNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.common.losses.CrossEntropyLossNM) class LossAggregatorNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.common.losses.LossAggregatorNM) class MSELossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.common.losses.MSELoss) class SequenceLossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.common.losses.SequenceLoss) class SequenceEmbeddingNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.common.other.SequenceEmbedding) class ZerosLikeNMNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.common.other.ZerosLikeNM) class DecoderRNNNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.common.rnn.DecoderRNN) class EncoderRNNNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.common.rnn.EncoderRNN) class NeMoModelNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.core.nemo_model.NeMoModel) class NeuralModuleNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.core.neural_modules.NeuralModule) class BeamSearchNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.common.search.BeamSearch) class GreedySearchNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.common.search.GreedySearch) class ZerosDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.backends.pytorch.common.zero_data.ZerosDataLayer)
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/common.py
from greenflow.dataframe_flow import Node from .nemoBaseNode import NeMoBase import nemo import nemo.collections.cv class CIFAR100DataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.cv.modules.data_layers.cifar100_datalayer.CIFAR100DataLayer) class CIFAR10DataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.cv.modules.data_layers.cifar10_datalayer.CIFAR10DataLayer) class MNISTDataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.cv.modules.data_layers.mnist_datalayer.MNISTDataLayer) class STL10DataLayerNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.cv.modules.data_layers.stl10_datalayer.STL10DataLayer) class NLLLossNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.cv.modules.losses.nll_loss.NLLLoss) class NonLinearityNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.cv.modules.non_trainables.non_linearity.NonLinearity) class ReshapeTensorNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.cv.modules.non_trainables.reshape_tensor.ReshapeTensor) class ConvNetEncoderNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.cv.modules.trainables.convnet_encoder.ConvNetEncoder) class FeedForwardNetworkNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.cv.modules.trainables.feed_forward_network.FeedForwardNetwork) class ImageEncoderNode(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.cv.modules.trainables.image_encoder.ImageEncoder) class LeNet5Node(NeMoBase, Node): def init(self): NeMoBase.init(self, nemo.collections.cv.modules.trainables.lenet5.LeNet5)
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/cv.py
from greenflow_gquant_plugin.ml import GridRandomSearchNode from greenflow.plugin_nodes.util.contextCompositeNode import ContextCompositeNode # noqa #E402 from greenflow.dataframe_flow.portsSpecSchema import (ConfSchema, # noqa #E402 NodePorts) from greenflow.dataframe_flow import TaskGraph # noqa #E402 from greenflow.dataframe_flow import Node # noqa #E402 from greenflow.dataframe_flow.util import get_file_path # noqa #E402 from greenflow.dataframe_flow.cache import CACHE_SCHEMA # noqa #E402 from greenflow.dataframe_flow.taskSpecSchema import TaskSpecSchema # noqa #E402 import cudf # noqa #E402 import uuid # noqa #E402 import pandas # noqa #E402 import copy # noqa #E402 __all__ = ["NemoHyperTuneNode"] _SCHED_CONF = { "type": "object", "description": """distributed implementations of early stopping algorithms such as Median Stopping Rule, HyperBand, and ASHA.""", "properties": { "name": { "type": "string", "enum": ["AsyncHyperBandScheduler", "HyperBandScheduler", "MedianStoppingRule"] }, }, "dependencies": { "name": { "oneOf": [ { "properties": { "name": { "type": "string", "enum": ["AsyncHyperBandScheduler"] }, "parameters": { "type": "object", "properties": { "time_attr": { "type": "string", "description": """A training result attr to use for comparing time. Note that you can pass in something non-temporal such as training_iteration as a measure of progress, the only requirement is that the attribute should increase monotonically.""", "enum": ["training_iteration"], "default": "training_iteration" }, "max_t": { "type": "number", "description": """max time units per trial. Trials will be stopped after max_t time units (determined by time_attr) have passed.""", "default": 100.0 }, "grace_period": { "type": "number", "description": """Only stop trials at least this old in time. The units are the same as the attribute named by time_attr""", "default": 1.0 }, "reduction_factor": { "type": "number", "description": """Used to set halving rate and amount. This is simply a unit-less scalar.""", "default": 4.0 }, "brackets": { "type": "integer", "description": """Number of brackets. Each bracket has a different halving rate, specified by the reduction factor.""", "default": 1 } } } } }, { "properties": { "name": { "type": "string", "enum": ["HyperBandScheduler"] }, "parameters": { "type": "object", "properties": { "time_attr": { "type": "string", "description": """A training result attr to use for comparing time. Note that you can pass in something non-temporal such as training_iteration as a measure of progress, the only requirement is that the attribute should increase monotonically.""", "enum": ["training_iteration"], "default": "training_iteration" }, "max_t": { "type": "number", "description": """max time units per trial. Trials will be stopped after max_t time units (determined by time_attr) have passed.""", "default": 100.0 }, "reduction_factor": { "type": "number", "description": """Used to set halving rate and amount. This is simply a unit-less scalar.""", "default": 4.0 }, } } } }, { "properties": { "name": { "type": "string", "enum": ["MedianStoppingRule"] }, "parameters": { "type": "object", "properties": { "time_attr": { "type": "string", "description": """A training result attr to use for comparing time. Note that you can pass in something non-temporal such as training_iteration as a measure of progress, the only requirement is that the attribute should increase monotonically.""", "enum": ["training_iteration"], "default": "training_iteration" }, "grace_period": { "type": "number", "description": """Only stop trials at least this old in time. The units are the same as the attribute named by time_attr""", "default": 60.0 }, "min_samples_required": { "type": "integer", "description": """Minimum number of trials to compute median over.""", "default": 3 }, "min_time_slice": { "type": "number", "description": """Each trial runs at least this long before yielding (assuming it isn’t stopped). Note: trials ONLY yield if there are not enough samples to evaluate performance for the current result AND there are other trials waiting to run. The units are the same as the attribute named by time_attr.""", "default": 0.0 }, "hard_stop": { "type": "boolean", "description": """If False, pauses trials instead of stopping them. When all other trials are complete, paused trials will be resumed and allowed to run FIFO.""", "default": True }, } } } }, ] } } } class NemoHyperTuneNode(GridRandomSearchNode): def init(self): GridRandomSearchNode.init(self) def ports_setup(self): return GridRandomSearchNode.ports_setup(self) def meta_setup(self): return GridRandomSearchNode.meta_setup(self) def conf_schema(self): cache_key, task_graph, _ = self._compute_hash_key() if cache_key in CACHE_SCHEMA: return CACHE_SCHEMA[cache_key] tensors = [] if task_graph is not None: for task in task_graph: if task.get('type') == 'NemoTrainNode': conf = task.get('conf') if ('eval_callback' in conf and 'eval_tensors' in conf['eval_callback']): tensors = conf['eval_callback']['eval_tensors'] tensors = [t.split('@')[-1] for t in tensors] print(tensors) conf = GridRandomSearchNode.conf_schema(self) json = conf.json if 'properties' in json: del json['properties']['metrics'] json['properties']['best'][ 'properties']['metric']['enum'] = tensors json['properties']['scheduler'] = copy.deepcopy(_SCHED_CONF) return ConfSchema(json=json, ui=conf.ui) def process(self, inputs): _, task_graph, _ = self._compute_hash_key() train_id = None if task_graph is not None: for task in task_graph: if task.get('type') == 'NemoTrainNode': conf = task.get('conf') if ('eval_callback' in conf and 'eval_tensors' in conf['eval_callback']): tensors = conf['eval_callback']['eval_tensors'] tensors = [t.split('@')[-1] for t in tensors] train_id = task.get('id') if train_id is None: print('no train node detected') return {} import ray from ray import tune if self.INPUT_CONFIG in inputs: self.conf.update(inputs[self.INPUT_CONFIG].data) output = {} if self.outport_connected(self.OUTPUT_CONFIG): data_store = {} for key in inputs.keys(): v = inputs[key] if isinstance(v, cudf.DataFrame): # it is a work around, # the ray.put doesn't support GPU cudf data_store[key] = ray.put(v.to_pandas()) else: data_store[key] = ray.put(v) # here we need to do the hyper parameter search def search_fun(config, checkpoint_dir=None): myinputs = {} for key in data_store.keys(): v = ray.get(data_store[key]) if isinstance(v, pandas.DataFrame): myinputs[key] = cudf.from_pandas(v) else: myinputs[key] = v task_graph = TaskGraph.load_taskgraph( get_file_path(self.conf['taskgraph'])) task_graph.build() outputLists = [train_id+'.'+'checkpoint_dir'] replaceObj = {} input_feeders = [] def inputNode_fun(inputNode, in_ports): inports = inputNode.ports_setup().inports class InputFeed(Node): def meta_setup(self): output = {} for inp in inputNode.inputs: output[inp['to_port']] = inp[ 'from_node'].meta_setup()[ inp['from_port']] # it will be something like { input_port: columns } return output def ports_setup(self): # it will be something like { input_port: types } return NodePorts(inports={}, outports=inports) def conf_schema(self): return ConfSchema() def process(self, empty): output = {} for key in inports.keys(): if (inputNode.uid+'@'+key in myinputs): output[key] = myinputs[ inputNode.uid+'@'+key] return output uni_id = str(uuid.uuid1()) obj = { TaskSpecSchema.task_id: uni_id, TaskSpecSchema.conf: {}, TaskSpecSchema.node_type: InputFeed, TaskSpecSchema.inputs: [] } input_feeders.append(obj) newInputs = {} for key in inports.keys(): if inputNode.uid+'@'+key in myinputs: newInputs[key] = uni_id+'.'+key for inp in inputNode.inputs: if inp['to_port'] not in in_ports: # need to keep the old connections newInputs[inp['to_port']] = ( inp['from_node'].uid + '.' + inp['from_port']) replaceObj.update({inputNode.uid: { TaskSpecSchema.inputs: newInputs} }) def outNode_fun(outNode, out_ports): pass self._make_sub_graph_connection(task_graph, inputNode_fun, outNode_fun) task_graph.extend(input_feeders) self.update_conf_for_search(replaceObj, task_graph, config) task_graph.run(outputLists, replace=replaceObj) # metric_report = {item: result[item] for item in outputLists} # tune.report(**metric_report) config = {} for para in self.conf['parameters']: fun_name = para['search']['function'] fun = getattr(tune, fun_name) if fun_name == 'grid_search' or fun_name == 'choice': config[para['name']] = fun(para['search']['args']) else: config[para['name']] = fun(*para['search']['args']) scheduler_instance = None if 'scheduler' in self.conf and 'name' in self.conf['scheduler']: import ray.tune.schedulers sconf = self.conf['scheduler'] name = sconf['name'] scheduler = getattr(ray.tune.schedulers, name) para = sconf['parameters'] para.update(self.conf['best']) print(para) scheduler_instance = scheduler(**para) if scheduler_instance is None: analysis = tune.run(search_fun, **self.conf['tune'], config=config) else: analysis = tune.run(search_fun, **self.conf['tune'], config=config, scheduler=scheduler_instance) best = analysis.get_best_config(**self.conf['best']) print('best parameter', best) for key in best.keys(): self.conf['context'][key]['value'] = best[key] output[self.OUTPUT_CONFIG] = self.conf # TODO: Fix the check point directory loading. Ray creates checkpoint # directories under its "tune->local_dir". The directory names are # taken from the taskgraph on which the HPO is being perfomed. # These checkpoint directories within ray subdirectory need to # override or deal with the checkpoint directories that might be # set for the taskgraph for which the HPO is being performed. # print('NemoHyperTuneNode CONF:\n{}'.format(self.conf)) more_output = ContextCompositeNode.process(self, inputs) output.update(more_output) return output
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/nemo_util/nemoHPO.py
from greenflow.dataframe_flow import Node from greenflow.dataframe_flow import ( ConfSchema, PortsSpecSchema, NodePorts, MetaData) from nemo.core.neural_types import NmTensor import nemo import numpy import copy __all__ = ["NemoTrainNode"] class CallBack(object): def __init__(self): self.counter = 0 def __call__(self, global_vars): import ray from ray import tune reports = {} for key in global_vars.keys(): value = numpy.array(global_vars[key]).mean() print('eval:', key, value) reports[key] = value if ray.is_initialized(): reports['training_iteration'] = self.counter tune.report(**reports) self.counter += 1 class NemoTrainNode(Node): def init(self): self.OUTPUT_PORT_NAME = 'checkpoint_dir' def ports_setup(self): dy = PortsSpecSchema.dynamic port_type = PortsSpecSchema.port_type o_inports = {} o_outports = {} o_inports['input_tensor'] = {port_type: NmTensor, dy: True} # if hasattr(self, 'inputs'): # for inp in self.inputs: # # TODO: Move TaskGrah rewire logic here instead of in # # chartEngine.tsx ChartEngine._fixNeMoPorts # o_inports[inp['from_node'].uid+'@'+inp['from_port']] = { # port_type: NmTensor} o_outports[self.OUTPUT_PORT_NAME] = {port_type: str} return NodePorts(inports=o_inports, outports=o_outports) def meta_setup(self): required = {} output = {} output['axes'] = [] output['element'] = {} output['element']['types'] = ['VoidType'] output['element']['fields'] = 'None' output['element']['parameters'] = '{}' required = self.get_input_meta() required['input_tensor'] = copy.deepcopy(output) metadata = MetaData(inports=required, outports={self.OUTPUT_PORT_NAME: {}}) return metadata def conf_schema(self): json = { "title": "NeMo Train Node", "type": "object", "description": "Node used to train a NeMo neural network", "properties": { "parameters": { "type": "object", "description": "parameters for train method", "properties": { "tensors_to_optimize": { "type": "array", "items": { "type": "string", } }, "batches_per_step": { "type": "number", "default": None }, "stop_on_nan_loss": { "type": "boolean", "default": False }, "synced_batchnorm": { "type": "boolean", "default": False }, "synced_batchnorm_groupsize": { "type": "number", "default": 0 }, "gradient_predivide": { "type": "boolean", "default": False }, "amp_max_loss_scale": { "type": "number", "default": 16777216.0 }, "reset": { "type": "boolean", "default": False } } }, "check_point": { "type": "object", "description": "parameters for checkpoint method", "properties": { "folder": { "type": "string", "description": """A path where checkpoints are to be stored and loaded from if load_from_folder is None""" }, "load_from_folder": { "type": ["string", "null"], "description": """A path where checkpoints can be loaded from""", "default": None }, "step_freq": { "type": ["integer", "null"], "description": """How often in terms of steps to save checkpoints. One of step_freq or epoch_freq is required""", "default": None }, "epoch_freq": { "type": ["integer", "null"], "description": """How often in terms of epochs to save checkpoints. One of step_freq or epoch_freq is required.""", "default": None }, "checkpoints_to_keep": { "type": "integer", "description": """Number of most recent checkpoints to keep. Older checkpoints will be deleted.""", "default": 4 }, "force_load": { "type": "boolean", "description": """Whether to crash if loading is unsuccessful.""", "default": False } } }, "simple_logger": { "type": "object", "description": """A simple callback that prints tensors to screen. It's default option is to print the training loss every 100 steps. Additional tensors can be printed by adding them to the tensors_to_log argument.""", "properties": { "step_freq": { "type": "integer", "description": """The frequency of printing to screen. Defaults to every 100 steps""", "default": 100 }, "tensors_to_log": { "type": "array", "description": """A list of NmTensors which will be printed every step_freq steps.""", "items": { "type": "string", } } } }, "eval_callback": { "type": "object", "description": """Used to report the statistics of evaluation dataset""", "properties": { "eval_step": { "type": ["integer", "null"], "description": """The frequency of running eval""", "default": None }, "eval_tensors": { "type": "array", "description": """A list of NmTensors which will be evaluated every eval_step steps.""", "items": { "type": "string", } } } }, "warmup_policy": { "type": "object", "description": """Choose a warm up policy""", "properties": { "name": { "type": "string", "enum": ["WarmupPolicy", "WarmupHoldPolicy", "SquareAnnealing", "SquareRootAnnealing", "CosineAnnealing", "WarmupAnnealing", "InverseSquareRootAnnealing", "PolynomialDecayAnnealing", "PolynomialHoldDecayAnnealing"] }, }, "dependencies": { "name": { "oneOf": [ { "properties": { "name": { "type": "string", "enum": ["WarmupPolicy"] }, "parameters": { "type": "object", "properties": { "warmup_steps": { "type": ["integer", "null"], "description": """Number of training steps in warmup stage""", "default": None }, "warmup_ratio": { "type": ["number", "null"], "description": """Ratio of warmup steps to total steps""", "default": None }, "total_steps": { "type": ["integer", "null"], "description": """Total number of steps while training or `None` for infinite training""", "default": None } } }, } }, { "properties": { "name": { "type": "string", "enum": ["WarmupHoldPolicy"] }, "parameters": { "type": "object", "properties": { "warmup_steps": { "type": ["integer", "null"], "description": """Number of training steps in warmup stage""", "default": None }, "warmup_ratio": { "type": ["number", "null"], "description": """Ratio of warmup steps to total steps""", "default": None }, "total_steps": { "type": ["integer", "null"], "description": """Total number of steps while training or `None` for infinite training""", "default": None }, "hold_steps": { "type": ["integer", "null"], "description": """Number of training steps to hold the learning rate after warm up""", "default": None }, "hold_ratio": { "type": ["integer", "null"], "description": """Ratio of hold steps to total steps""", "default": None }, "min_lr": { "type": "number", "description": """minimum learing rate""", "default": 0.0 }, } }, } }, { "properties": { "name": { "type": "string", "enum": ["SquareAnnealing"] }, "parameters": { "type": "object", "properties": { "warmup_steps": { "type": ["integer", "null"], "description": """Number of training steps in warmup stage""", "default": None }, "warmup_ratio": { "type": ["number", "null"], "description": """Ratio of warmup steps to total steps""", "default": None }, "total_steps": { "type": ["integer", "null"], "description": """Total number of steps while training or `None` for infinite training""", "default": None }, "min_lr": { "type": "number", "description": """minimum learing rate""", "default": 0.00001 }, } }, } }, { "properties": { "name": { "type": "string", "enum": ["SquareRootAnnealing"] }, "parameters": { "type": "object", "properties": { "warmup_steps": { "type": ["integer", "null"], "description": """Number of training steps in warmup stage""", "default": None }, "warmup_ratio": { "type": ["number", "null"], "description": """Ratio of warmup steps to total steps""", "default": None }, "total_steps": { "type": ["integer", "null"], "description": """Total number of steps while training or `None` for infinite training""", "default": None }, "min_lr": { "type": "number", "description": """minimum learing rate""", "default": 0.0 }, } }, } }, { "properties": { "name": { "type": "string", "enum": ["CosineAnnealing"] }, "parameters": { "type": "object", "properties": { "warmup_steps": { "type": ["integer", "null"], "description": """Number of training steps in warmup stage""", "default": None }, "warmup_ratio": { "type": ["number", "null"], "description": """Ratio of warmup steps to total steps""", "default": None }, "total_steps": { "type": ["integer", "null"], "description": """Total number of steps while training or `None` for infinite training""", "default": None }, "min_lr": { "type": "number", "description": """minimum learing rate""", "default": 0.0 }, } }, } }, { "properties": { "name": { "type": "string", "enum": ["WarmupAnnealing"] }, "parameters": { "type": "object", "properties": { "warmup_steps": { "type": ["integer", "null"], "description": """Number of training steps in warmup stage""", "default": None }, "warmup_ratio": { "type": ["number", "null"], "description": """Ratio of warmup steps to total steps""", "default": None }, "total_steps": { "type": ["integer", "null"], "description": """Total number of steps while training or `None` for infinite training""", "default": None }, } }, } }, { "properties": { "name": { "type": "string", "enum": [ "InverseSquareRootAnnealing"] }, "parameters": { "type": "object", "properties": { "warmup_steps": { "type": ["integer", "null"], "description": """Number of training steps in warmup stage""", "default": None }, "warmup_ratio": { "type": ["number", "null"], "description": """Ratio of warmup steps to total steps""", "default": None }, "total_steps": { "type": ["integer", "null"], "description": """Total number of steps while training or `None` for infinite training""", "default": None }, } }, } }, { "properties": { "name": { "type": "string", "enum": [ "PolynomialDecayAnnealing"] }, "parameters": { "type": "object", "properties": { "warmup_steps": { "type": ["integer", "null"], "description": """Number of training steps in warmup stage""", "default": None }, "warmup_ratio": { "type": ["number", "null"], "description": """Ratio of warmup steps to total steps""", "default": None }, "total_steps": { "type": ["integer", "null"], "description": """Total number of steps while training or `None` for infinite training""", "default": None }, "min_lr": { "type": "number", "description": """minimum learing rate""", "default": 0.0 }, "power": { "type": "number", "default": 1.0 }, "cycle": { "type": "boolean", "default": False }, } }, } }, { "properties": { "name": { "type": "string", "enum": [ "PolynomialHoldDecayAnnealing"] }, "parameters": { "type": "object", "properties": { "warmup_steps": { "type": ["integer", "null"], "description": """Number of training steps in warmup stage""", "default": None }, "warmup_ratio": { "type": ["number", "null"], "description": """Ratio of warmup steps to total steps""", "default": None }, "total_steps": { "type": ["integer", "null"], "description": """Total number of steps while training or `None` for infinite training""", "default": None }, "hold_steps": { "type": ["integer", "null"], "description": """Number of training steps to hold the learning rate after warm up""", "default": None }, "hold_ratio": { "type": ["integer", "null"], "description": """Ratio of hold steps to total steps""", "default": None }, "min_lr": { "type": "number", "description": """minimum learing rate""", "default": 0.0 }, "power": { "type": "number", "default": 1.0 }, "cycle": { "type": "boolean", "default": False }, } }, } } ] } } }, "optimizer": { "type": "object", "description": """The optimization algorithm""", "properties": { "name": { "type": "string", "enum": ["sgd", "adam", "fused_adam", "adam_w", "novograd", "fused_novograd", "fused_lamb"] }, }, "dependencies": { "name": { "oneOf": [ { "properties": { "name": { "type": "string", "enum": ["sgd"] }, "parameters": { "type": "object", "properties": { "num_epochs": { "type": "integer", "default": 10 }, "lr": { "type": "number", "default": 0.001 }, "momentum": { "type": "number", "default": 0.9 }, "weight_decay": { "type": "number", "default": 0.0 }, } }, } }, { "properties": { "name": { "type": "string", "enum": ["adam"] }, "parameters": { "type": "object", "properties": { "num_epochs": { "type": "integer", "default": 10 }, "lr": { "type": "number", "default": 0.001 }, "betas": { "type": "array", "items": [ { "type": "number", "default": 0.9 }, { "type": "number", "default": 0.999 } ] }, "eps": { "type": "number", "default": 0.000000001 }, "weight_decay": { "type": "number", "default": 0.0 }, "amsgrad": { "type": "boolean", "default": False }, } }, } }, { "properties": { "name": { "type": "string", "enum": ["fused_adam"] }, "parameters": { "type": "object", "properties": { "num_epochs": { "type": "integer", "default": 10 }, "lr": { "type": "number", "default": 0.001 }, "betas": { "type": "array", "items": [ { "type": "number", "default": 0.9 }, { "type": "number", "default": 0.999 } ] }, "eps": { "type": "number", "default": 0.00000001, }, "weight_decay": { "type": "number", "default": 0.0 } } }, } }, { "properties": { "name": { "type": "string", "enum": ["adam_w"] }, "parameters": { "type": "object", "properties": { "num_epochs": { "type": "integer", "default": 10 }, "lr": { "type": "number", "default": 0.001 }, "betas": { "type": "array", "items": [ { "type": "number", "default": 0.9 }, { "type": "number", "default": 0.999 } ] }, "eps": { "type": "number", "default": 0.00000001, }, "weight_decay": { "type": "number", "default": 0.0 }, "amsgrad": { "type": "boolean", "default": False }, } }, } }, { "properties": { "name": { "type": "string", "enum": ["novograd"] }, "parameters": { "type": "object", "properties": { "num_epochs": { "type": "integer", "default": 10 }, "lr": { "type": "number", "default": 0.001 }, "betas": { "type": "array", "items": [ { "type": "number", "default": 0.9 }, { "type": "number", "default": 0.999 } ] }, "luc": { "type": "boolean", "default": False }, "luc_eta": { "type": "number", "default": 0.001 }, "weight_decay": { "type": "number", "default": 0.0 }, } }, } }, { "properties": { "name": { "type": "string", "enum": ["fused_novograd"] }, "parameters": { "type": "object", "properties": { "num_epochs": { "type": "integer", "default": 10 }, "lr": { "type": "number", "default": 0.001 }, "betas": { "type": "array", "items": [ { "type": "number", "default": 0.9 }, { "type": "number", "default": 0.999 } ] }, "reg_inside_moment": { "type": "boolean", "default": True }, "grad_averaging": { "type": "boolean", "default": False }, "weight_decay": { "type": "number", "default": 0.0 }, } }, } }, { "properties": { "name": { "type": "string", "enum": ["fused_lamb"] }, "parameters": { "type": "object", "properties": { "num_epochs": { "type": "integer", "default": 10 }, "lr": { "type": "number", "default": 0.001 }, } }, } } ] } } } } } ui = { "check_point": { "folder": {"ui:widget": "PathSelector"}, "load_from_folder": {"ui:widget": "PathSelector"}, }, "warmup_policy": { "parameters": { "warmup_steps": {"ui:widget": "updown"}, "total_steps": {"ui:widget": "updown"}, "warmup_ratio": {"ui:widget": "updown"}, "hold_steps": {"ui:widget": "updown"}, "hold_ratio": {"ui:widget": "updown"} }, }, "eval_callback": { "eval_step": {"ui:widget": "updown"}, } } enum = [] enumNames = [] count = 1 if hasattr(self, 'inputs'): for i in self.inputs: enum.append(i['from_node'].uid+'@'+i['from_port']) enumNames.append(i['from_node'].uid+'.'+i['from_port']) count += 1 json['properties']['parameters'][ 'properties']["tensors_to_optimize"][ 'items']['enum'] = enum json['properties']['parameters'][ 'properties']["tensors_to_optimize"][ 'items']['enumNames'] = enumNames json['properties']['simple_logger'][ 'properties']["tensors_to_log"][ 'items']['enum'] = enum json['properties']['simple_logger'][ 'properties']["tensors_to_log"][ 'items']['enumNames'] = enumNames json['properties']['eval_callback'][ 'properties']["eval_tensors"][ 'items']['enum'] = enum json['properties']['eval_callback'][ 'properties']["eval_tensors"][ 'items']['enumNames'] = enumNames return ConfSchema(json=json, ui=ui) def process(self, inputs): nf = nemo.core.NeuralModuleFactory.get_default_factory() log_conf = copy.copy(self.conf["simple_logger"]) log_conf['tensors_to_log'] = [ inputs[i] for i in log_conf['tensors_to_log']] log_callback = nemo.core.SimpleLogger(**log_conf) check_callback = nemo.core.CheckpointCallback( **self.conf['check_point']) all_args = copy.copy(self.conf['parameters']) all_args['tensors_to_optimize'] = [ inputs[i] for i in all_args['tensors_to_optimize']] # eval callbacks def eval_iter_callback(tensors, global_vars): for e_name in eval_names: if e_name not in global_vars: global_vars[e_name] = [] for e_name in eval_names: for kv, v in tensors.items(): if kv.startswith(e_name): global_vars[e_name].append(v[0].cpu().numpy().mean()) all_args['callbacks'] = [check_callback, log_callback] if ('eval_callback' in self.conf and 'eval_tensors' in self.conf['eval_callback'] and len(self.conf['eval_callback']['eval_tensors']) > 0): eval_conf = copy.copy(self.conf['eval_callback']) eval_conf['eval_tensors'] = [ inputs[i] for i in eval_conf['eval_tensors']] eval_names = [i.name for i in eval_conf['eval_tensors']] eval_conf['user_iter_callback'] = eval_iter_callback eval_conf['user_epochs_done_callback'] = CallBack() eval_callback = nemo.core.EvaluatorCallback(**eval_conf) all_args['callbacks'].append(eval_callback) all_args['optimizer'] = self.conf['optimizer']['name'] all_args['optimization_params'] = self.conf['optimizer']['parameters'] if 'warmup_policy' in self.conf and 'name' in self.conf[ "warmup_policy"]: policy_name = self.conf["warmup_policy"]['name'] from nemo.utils import lr_policies policy_class = getattr(lr_policies, policy_name) lr_policy = policy_class( **self.conf["warmup_policy"]['parameters']) all_args['lr_policy'] = lr_policy nf.train(**all_args) log_directory = '' if (('step_freq' in self.conf['check_point'] and self.conf['check_point']['step_freq'] is not None) or ('epoch_freq' in self.conf['check_point'] and self.conf['check_point']['epoch_freq'] is not None)): log_directory = self.conf['check_point']['folder'] return { self.OUTPUT_PORT_NAME: log_directory, }
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/nemo_util/trainNemo.py
# from .toy import TaylorNetNode # from .toy import MSELossNode # from .toy import RealFunctionDataNode from .trainNemo import NemoTrainNode from .inferNemo import NemoInferNode from .nemoHPO import NemoHyperTuneNode __all__ = ["NemoTrainNode", "NemoInferNode", "NemoHyperTuneNode"]
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/nemo_util/__init__.py
from pathlib import Path from greenflow.dataframe_flow import Node from greenflow.dataframe_flow import ( ConfSchema, PortsSpecSchema, NodePorts, MetaData) from nemo.core.neural_types import NmTensor import nemo import copy __all__ = ["NemoInferNode"] def _isempty(pp): '''pp is pathlib Path :type pp: Path ''' if not pp.is_dir(): return True try: next(pp.rglob('*')) except StopIteration: return True return False class NemoInferNode(Node): def init(self): self.OUTPUT_PORT_NAME = 'torch_tensor' self.INPUT_PORT_NAME = 'log_dir' def ports_setup(self): port_type = PortsSpecSchema.port_type dy = PortsSpecSchema.dynamic o_inports = {} o_inports[self.INPUT_PORT_NAME] = {port_type: str} o_inports['input_tensor'] = {port_type: NmTensor, dy: True} # if hasattr(self, 'inputs'): # for inp in self.inputs: # if inp['to_port'] in (self.INPUT_PORT_NAME,): # continue # # TODO: Move TaskGrah rewire logic here instead of in # # chartEngine.tsx ChartEngine._fixNeMoPorts # o_inports[inp['from_node'].uid+'@'+inp['from_port']] = { # port_type: NmTensor} o_outports = {} o_outports[self.OUTPUT_PORT_NAME] = {port_type: list} return NodePorts(inports=o_inports, outports=o_outports) def meta_setup(self): required = {} output = {} output['axes'] = [] output['element'] = {} output['element']['types'] = ['VoidType'] output['element']['fields'] = 'None' output['element']['parameters'] = '{}' required = self.get_input_meta() required['input_tensor'] = copy.deepcopy(output) metadata = MetaData(inports=required, outports={self.OUTPUT_PORT_NAME: {}}) return metadata def conf_schema(self): json = { "title": "NeMo Infer Node", "type": "object", "description": """Node used to run NeMo neural network inference to obtain values for tensors""", "properties": { "tensors": { "type": "array", "description": """List of NeMo tensors that we want to get values of""", "items": { "type": "string", } }, "checkpoint_dir": { "type": ["string", "null"], "description": """Path to checkpoint directory. Default is None which does not load checkpoints.""", "default": None }, "ckpt_pattern": { "type": "string", "description": """Pattern used to check for checkpoints inside checkpoint_dir. Default is '' which matches any checkpoints inside checkpoint_dir.""", "default": '', }, "verbose": { "type": "boolean", "description": """Controls printing.""", "default": True }, "cache": { "type": "boolean", "description": """If True, cache all `tensors` and intermediate tensors so that future calls that have use_cache set will avoid computation.""", "default": False }, "use_cache": { "type": "boolean", "description": """Values from `tensors` will be always re-computed. It will re-use intermediate tensors from the DAG leading to `tensors`. If you want something to be re-computed, put it into `tensors` list.""", "default": False }, "offload_to_cpu": { "type": "boolean", "description": """If True, all evaluated tensors are moved to cpu memory after each inference batch.""", "default": True } } } ui = { "checkpoint_dir": {"ui:widget": "PathSelector"}, } enum = [] enumNames = [] count = 1 if hasattr(self, 'inputs'): for i in self.inputs: if i['to_port'] in (self.INPUT_PORT_NAME,): continue enum.append(i['from_node'].uid+'@'+i['from_port']) enumNames.append(i['from_node'].uid+'.'+i['from_port']) count += 1 json['properties']["tensors"]['items']['enum'] = enum json['properties']["tensors"]['items']['enumNames'] = enumNames return ConfSchema(json=json, ui=ui) def process(self, inputs): nf = nemo.core.NeuralModuleFactory.get_default_factory() conf = copy.copy(self.conf) log_dir = inputs.get(self.INPUT_PORT_NAME, conf['checkpoint_dir']) if not _isempty(Path(log_dir)): conf['checkpoint_dir'] = log_dir conf['tensors'] = [inputs[i] for i in conf['tensors']] result = nf.infer(**conf) return {self.OUTPUT_PORT_NAME: result}
fsi-samples-main
gQuant/plugins/nemo_plugin/greenflow_nemo_plugin/nemo_util/inferNemo.py
from setuptools import setup, find_packages setup( name='example_plugin', packages=find_packages(include=['example']), entry_points={ 'greenflow.plugin': [ 'custom_nodes = example', ], } )
fsi-samples-main
gQuant/plugins/simple_example/setup.py
display_fun = """ const columnKeys = Object.keys(metaObj); let header = ''; if (columnKeys.length > 0) { header += '<table>'; header += '<tr>'; header += '<th>Column Name</th>'; for (let i = 0; i < columnKeys.length; i++) { header += `<th>${columnKeys[i]}</th>`; } header += '</tr>'; header += '<tr>'; header += '<th>Type</th>'; for (let i = 0; i < columnKeys.length; i++) { header += `<td>${metaObj[columnKeys[i]]}</td>`; } header += '</tr>'; header += '</table>'; } return header; """ validation = {} display = {} display['pandas.core.frame.DataFrame'] = display_fun
fsi-samples-main
gQuant/plugins/simple_example/example/client.py
from .distanceNode import DistanceNode from .pointNode import PointNode import pandas as pd import numpy as np from .client import validation, display # noqa: F40 from greenflow.dataframe_flow._node_flow import register_validator from greenflow.dataframe_flow._node_flow import register_copy_function def _validate_df(df_to_val, ref_cols, obj): '''Validate a pandas DataFrame. :param df_to_val: A dataframe typically of type pd.DataFrame :param ref_cols: Dictionary of column names and their expected types. :returns: True or False based on matching all columns in the df_to_val and columns spec in ref_cols. :raises: Exception - Raised when invalid dataframe length or unexpected number of columns. TODO: Create a ValidationError subclass. ''' if (isinstance(df_to_val, pd.DataFrame) and len(df_to_val) == 0): err_msg = 'Node "{}" produced empty output'.format(obj.uid) raise Exception(err_msg) if not isinstance(df_to_val, pd.DataFrame): return True i_cols = df_to_val.columns if len(i_cols) != len(ref_cols): print("expect %d columns, only see %d columns" % (len(ref_cols), len(i_cols))) print("ref:", ref_cols) print("columns", i_cols) raise Exception("not valid for node %s" % (obj.uid)) for col in ref_cols.keys(): if col not in i_cols: print("error for node %s, column %s is not in the required " "output df" % (obj.uid, col)) return False if ref_cols[col] is None: continue err_msg = "for node {} type {}, column {} type {} "\ "does not match expected type {}".format( obj.uid, type(obj), col, df_to_val[col].dtype, ref_cols[col]) if ref_cols[col] == 'category': # comparing pandas.core.dtypes.dtypes.CategoricalDtype to # numpy.dtype causes TypeError. Instead, let's compare # after converting all types to their string representation # d_type_tuple = (pd.core.dtypes.dtypes.CategoricalDtype(),) d_type_tuple = (str(pd.CategoricalDtype()),) elif ref_cols[col] == 'date': # Cudf read_csv doesn't understand 'datetime64[ms]' even # though it reads the data in as 'datetime64[ms]', but # expects 'date' as dtype specified passed to read_csv. d_type_tuple = ('datetime64[ms]', 'date', 'datetime64[ns]') else: d_type_tuple = (str(np.dtype(ref_cols[col])),) if (str(df_to_val[col].dtype) not in d_type_tuple): print("ERROR: {}".format(err_msg)) # Maybe raise an exception here and have the caller # try/except the validation routine. return False return True def copy_df(df_obj): return df_obj.copy(deep=False) register_validator(pd.DataFrame, _validate_df) register_copy_function(pd.DataFrame, copy_df)
fsi-samples-main
gQuant/plugins/simple_example/example/__init__.py
import numpy as np from greenflow.dataframe_flow import Node from greenflow.dataframe_flow import PortsSpecSchema from greenflow.dataframe_flow import ConfSchema from greenflow.dataframe_flow.metaSpec import MetaDataSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin class DistanceNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.delayed_process = True port_type = PortsSpecSchema.port_type self.INPUT_PORT_NAME = "points_df_in" self.OUTPUT_PORT_NAME = "distance_df" self.ABS_OUTPUT_PORT_NAME = "distance_abs_df" port_inports = { self.INPUT_PORT_NAME: { port_type: ["pandas.DataFrame"] } } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:points_df_in}" }, self.ABS_OUTPUT_PORT_NAME: { port_type: "${port:points_df_in}" }, } req_cols = { 'x': 'float64', 'y': 'float64' } meta_inports = { self.INPUT_PORT_NAME: req_cols } meta_outports = { self.OUTPUT_PORT_NAME: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_ADDITION, MetaDataSchema.META_REF_INPUT: self.INPUT_PORT_NAME, MetaDataSchema.META_DATA: { 'distance_cudf': 'float64', } }, self.ABS_OUTPUT_PORT_NAME: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_ADDITION, MetaDataSchema.META_REF_INPUT: self.INPUT_PORT_NAME, MetaDataSchema.META_DATA: { 'distance_abs_cudf': 'float64', } } } self.template_ports_setup( in_ports=port_inports, out_ports=port_outports ) self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): return ConfSchema() def process(self, inputs): df = inputs[self.INPUT_PORT_NAME] output = {} if self.outport_connected(self.OUTPUT_PORT_NAME): copy_df = df.copy() copy_df['distance_cudf'] = np.sqrt((df['x'] ** 2 + df['y'] ** 2)) output.update({self.OUTPUT_PORT_NAME: copy_df}) if self.outport_connected(self.ABS_OUTPUT_PORT_NAME): copy_df = df.copy() copy_df['distance_abs_cudf'] = np.abs(df['x']) + np.abs(df['y']) output.update({self.ABS_OUTPUT_PORT_NAME: copy_df}) return output
fsi-samples-main
gQuant/plugins/simple_example/example/distanceNode.py
import numpy as np import pandas as pd from greenflow.dataframe_flow import Node from greenflow.dataframe_flow import PortsSpecSchema from greenflow.dataframe_flow import ConfSchema from greenflow.dataframe_flow.metaSpec import MetaDataSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin class PointNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.OUTPUT_PORT_NAME = 'points_df_out' port_inports = {} port_outports = { self.OUTPUT_PORT_NAME: { PortsSpecSchema.port_type: ["pandas.DataFrame"] } } meta_inports = {} meta_outports = { self.OUTPUT_PORT_NAME: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_RETENTION, MetaDataSchema.META_DATA: { 'x': 'float64', 'y': 'float64' } } } self.template_ports_setup( in_ports=port_inports, out_ports=port_outports ) self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): json = { "title": "PointNode configure", "type": "object", "properties": { "npts": { "type": "number", "description": "number of data points", "minimum": 10 } }, "required": ["npts"], } ui = { "npts": {"ui:widget": "updown"} } return ConfSchema(json=json, ui=ui) def process(self, inputs): npts = self.conf['npts'] df = pd.DataFrame() df['x'] = np.random.rand(npts) df['y'] = np.random.rand(npts) output = {} if self.outport_connected(self.OUTPUT_PORT_NAME): output.update({self.OUTPUT_PORT_NAME: df}) return output
fsi-samples-main
gQuant/plugins/simple_example/example/pointNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from setuptools import setup, find_packages setup( name='greenflow_hrp_plugin', install_requires=[ "matplotlib", "shap" ], packages=find_packages(include=['greenflow_hrp_plugin']), entry_points={ 'greenflow.plugin': [ 'investment_nodes = greenflow_hrp_plugin', ], } )
fsi-samples-main
gQuant/plugins/hrp_plugin/setup.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ #!/usr/bin/env python # -*- coding: utf-8 -*- ''' python -m unittest tests/unit/test_hrp_weight.py -v ''' import unittest import cupy from greenflow_hrp_plugin.kernels import HRP_weights import numpy as np import pandas as pd def compute_HRP_weights(covariances, res_order): weights = pd.Series(1, index=res_order) clustered_alphas = [res_order] while len(clustered_alphas) > 0: clustered_alphas = [cluster[start:end] for cluster in clustered_alphas for start, end in ((0, len(cluster) // 2), (len(cluster) // 2, len(cluster))) if len(cluster) > 1] for subcluster in range(0, len(clustered_alphas), 2): left_cluster = clustered_alphas[subcluster] right_cluster = clustered_alphas[subcluster + 1] left_subcovar = covariances[left_cluster, :][:, left_cluster] inv_diag = 1 / cupy.diag(left_subcovar) parity_w = inv_diag * (1 / cupy.sum(inv_diag)) left_cluster_var = cupy.dot( parity_w, cupy.dot(left_subcovar, parity_w)) right_subcovar = covariances[right_cluster, :][:, right_cluster] inv_diag = 1 / cupy.diag(right_subcovar) parity_w = inv_diag * (1 / cupy.sum(inv_diag)) right_cluster_var = cupy.dot( parity_w, cupy.dot(right_subcovar, parity_w)) alloc_factor = 1 - left_cluster_var / \ (left_cluster_var + right_cluster_var) weights[left_cluster] *= alloc_factor.item() weights[right_cluster] *= 1 - alloc_factor.item() return weights class TestHRPWeight(unittest.TestCase): def setUp(self): self.assets = 10 self.samples = 5 self.numbers = 30 seq = 100 cupy.random.seed(10) self.cov_matrix = cupy.zeros( (self.samples, self.numbers, self.assets, self.assets)) self.order_matrix = cupy.random.randint( 0, self.assets, (self.samples, self.numbers, self.assets)) for i in range(self.samples): for j in range(self.numbers): cov = cupy.cov(cupy.random.rand(self.assets, seq)) self.cov_matrix[i, j] = cov order = cupy.arange(self.assets) cupy.random.shuffle(order) self.order_matrix[i, j] = order def test_order(self): num_months = self.numbers total_samples = self.samples assets = self.assets number_of_threads = 1 number_of_blocks = num_months * total_samples weights = cupy.ones((total_samples, num_months, assets)) HRP_weights[(number_of_blocks,), (number_of_threads,)]( weights, self.cov_matrix, self.order_matrix, assets, num_months) for i in range(self.samples): for j in range(self.numbers): cpu_weights = compute_HRP_weights( self.cov_matrix[i][j], self.order_matrix[i][j].get()) cpu_weights = cpu_weights[range(self.assets)].values self.assertTrue(np.allclose(cpu_weights, weights[i][j].get()))
fsi-samples-main
gQuant/plugins/hrp_plugin/tests/unit/test_hrp_weight.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ #!/usr/bin/env python # -*- coding: utf-8 -*- ''' python -m unittest tests/unit/test_distance.py -v ''' import unittest import pandas as pd import cupy import cudf from greenflow_hrp_plugin.kernels import _get_log_return_matrix from greenflow_hrp_plugin.kernels import _get_month_start_pos from greenflow_hrp_plugin.kernels import compute_cov, MAX_YEARS from scipy.spatial.distance import squareform import math class TestDistance(unittest.TestCase): def create_df(self): date_df = cudf.DataFrame() date_df['date'] = pd.date_range('1/1/1990', '12/31/1991', freq='B') full_df = cudf.concat([date_df, date_df]) sample_id = cupy.repeat(cupy.arange(2), len(date_df)) full_df['sample_id'] = sample_id full_df['year'] = full_df['date'].dt.year full_df['month'] = full_df['date'].dt.month-1 cupy.random.seed(3) full_df[0] = cupy.random.rand(len(full_df)) full_df[1] = cupy.random.rand(len(full_df)) full_df[2] = cupy.random.rand(len(full_df)) return full_df def setUp(self): self.df = self.create_df() def test_months_start(self): log_return = self.df first_sample = log_return['sample_id'].min().item() all_dates = log_return[first_sample == log_return['sample_id']]['date'] months_start = _get_month_start_pos(all_dates) print(type(months_start)) self.assertTrue(months_start[0].item() == 0) for i in range(1, len(months_start)): start_day_month = log_return.iloc[months_start[i].item( )]['date'].dt.month last_day_month = log_return.iloc[( months_start[i].item()-1)]['date'].dt.month diff = start_day_month.values[0] - last_day_month.values[0] self.assertTrue(abs(diff) != 0) def test_distance(self): total_samples = 2 window = 6 log_return = self.df first_sample = log_return['sample_id'].min().item() all_dates = log_return[first_sample == log_return['sample_id']]['date'] months_start = _get_month_start_pos(all_dates) log_return_ma = _get_log_return_matrix(total_samples, log_return) _, assets, timelen = log_return_ma.shape number_of_threads = 256 num_months = len(months_start) - window number_of_blocks = num_months * total_samples means = cupy.zeros((total_samples, num_months, assets)) cov = cupy.zeros((total_samples, num_months, assets, assets)) distance = cupy.zeros( (total_samples, num_months, (assets - 1) * assets // 2)) compute_cov[(number_of_blocks, ), (number_of_threads, ), 0, 256 * MAX_YEARS * 8](means, cov, distance, log_return_ma, months_start, num_months, assets, timelen, window) print('return shape', log_return_ma.shape) num = 0 for sample in range(2): for num in range(num_months): truth = ( log_return_ma[sample, :, months_start[num]:months_start[ num + window]].mean(axis=1)) compute = means[sample][num] self.assertTrue(cupy.allclose(compute, truth)) for sample in range(2): for num in range(num_months): s = log_return_ma[sample, :, months_start[num]:months_start[ num + window]] truth = (cupy.cov(s, bias=True)) compute = cov[sample][num] self.assertTrue(cupy.allclose(compute, truth)) for sample in range(2): for num in range(num_months): cov_m = cov[sample][num] corr_m = cov_m.copy() for i in range(3): for j in range(3): corr_m[i, j] = corr_m[i, j] / \ math.sqrt(cov_m[i, i] * cov_m[j, j]) dis = cupy.sqrt((1.0 - corr_m)/2.0) res = cupy.zeros_like(dis) for i in range(3): for j in range(3): res[i, j] = cupy.sqrt( ((dis[i, :] - dis[j, :])**2).sum()) truth = (squareform(res.get())) compute = distance[sample][num] self.assertTrue(cupy.allclose(compute, truth))
fsi-samples-main
gQuant/plugins/hrp_plugin/tests/unit/test_distance.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ #!/usr/bin/env python # -*- coding: utf-8 -*- ''' python -m unittest tests/unit/test_max_drawdown.py -v ''' import unittest import pandas as pd import cupy import numpy as np import cudf from greenflow_hrp_plugin.kernels import _get_log_return_matrix from greenflow_hrp_plugin.kernels import _get_month_start_pos from greenflow_hrp_plugin.kernels import drawdown_kernel class TestMaxDrawdown(unittest.TestCase): def create_df(self): date_df = cudf.DataFrame() date_df['date'] = pd.date_range('1/1/1990', '12/31/1992', freq='B') full_df = cudf.concat([date_df, date_df]) sample_id = cupy.repeat(cupy.arange(2), len(date_df)) full_df['sample_id'] = sample_id full_df['year'] = full_df['date'].dt.year full_df['month'] = full_df['date'].dt.month-1 cupy.random.seed(3) full_df[0] = cupy.random.normal(0, 0.02, len(full_df)) full_df[1] = cupy.random.normal(0, 0.02, len(full_df)) full_df[2] = cupy.random.normal(0, 0.02, len(full_df)) return full_df def setUp(self): self.df = self.create_df() def compute_drawdown(self, times): cumsum = np.cumsum(times) cumsum = np.exp(cumsum) maxreturn = np.maximum.accumulate(np.concatenate([np.array([1.0]), cumsum]))[1:] drawdown = cumsum/maxreturn - 1.0 return -drawdown.min() def test_max_drawdown(self): total_samples = 2 window = 12 log_return = self.df first_sample = log_return['sample_id'].min().item() all_dates = log_return[first_sample == log_return['sample_id']]['date'] all_dates = all_dates.reset_index(drop=True) months_start = _get_month_start_pos(all_dates) log_return_ma = _get_log_return_matrix(total_samples, log_return) _, assets, timelen = log_return_ma.shape number_of_threads = 128 num_months = len(months_start) - window number_of_blocks = num_months * total_samples drawdown = cupy.zeros((total_samples, num_months, assets)) drawdown_kernel[(number_of_blocks, ), (number_of_threads, )](drawdown, log_return_ma, months_start, window) for s in range(total_samples): for a in range(assets): for i in range(num_months): gpu_drawdown = drawdown[s][i][a] cpu_drawdown = self.compute_drawdown( log_return_ma[s][a][ months_start[i]:months_start[i+window]].get()) self.assertTrue(cupy.allclose(gpu_drawdown, cpu_drawdown))
fsi-samples-main
gQuant/plugins/hrp_plugin/tests/unit/test_max_drawdown.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """
fsi-samples-main
gQuant/plugins/hrp_plugin/tests/unit/__init__.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ #!/usr/bin/env python # -*- coding: utf-8 -*- ''' python -m unittest tests/unit/test_leverage.py -v ''' import unittest import pandas as pd import cupy import cudf from greenflow_hrp_plugin.kernels import _get_log_return_matrix from greenflow_hrp_plugin.kernels import _get_month_start_pos from greenflow_hrp_plugin.kernels import leverage_for_target_vol, MAX_YEARS import math class TestDistance(unittest.TestCase): def create_df(self): date_df = cudf.DataFrame() date_df['date'] = pd.date_range('1/1/1990', '12/31/1991', freq='B') full_df = cudf.concat([date_df, date_df]) sample_id = cupy.repeat(cupy.arange(2), len(date_df)) full_df['sample_id'] = sample_id full_df['year'] = full_df['date'].dt.year full_df['month'] = full_df['date'].dt.month-1 cupy.random.seed(3) full_df['portfolio'] = cupy.random.rand(len(full_df)) return full_df def setUp(self): self.df = self.create_df() def test_months_start(self): log_return = self.df first_sample = log_return['sample_id'].min().item() all_dates = log_return[first_sample == log_return['sample_id']]['date'] months_start = _get_month_start_pos(all_dates) self.assertTrue(months_start[0].item() == 0) for i in range(1, len(months_start)): start_day_month = log_return.iloc[months_start[i].item( )]['date'].dt.month last_day_month = log_return.iloc[( months_start[i].item()-1)]['date'].dt.month diff = start_day_month.values[0] - last_day_month.values[0] self.assertTrue(abs(diff) != 0) def test_distance(self): total_samples = 2 # window = 3 long_window = 59 short_window = 19 target_vol = 0.05 log_return = self.df first_sample = log_return['sample_id'].min().item() all_dates = log_return[first_sample == log_return['sample_id']]['date'] all_dates = all_dates.reset_index(drop=True) months_start = _get_month_start_pos(all_dates) for window in range(len(months_start)): if (months_start[window] - long_window) > 0: break print(window) print('offset', months_start[window] - long_window) port_return_ma = log_return['portfolio'].values.reshape( total_samples, -1) number_of_threads = 256 num_months = len(months_start) - window if num_months == 0: # this case, use all the data to compute num_months = 1 number_of_blocks = num_months * total_samples leverage = cupy.zeros((total_samples, num_months)) leverage_for_target_vol[(number_of_blocks, ), (number_of_threads, ), 0, 256 * MAX_YEARS * 8](leverage, port_return_ma, months_start, num_months, window, long_window, short_window, target_vol) for sample in range(2): for num in range(num_months): end_id = months_start[num + window] mean = port_return_ma[sample, end_id - long_window:end_id].mean() sd_long = cupy.sqrt( ((port_return_ma[sample, end_id - long_window:end_id] - mean)**2).mean()) # print('long', sd_long) mean = (port_return_ma[sample, end_id - short_window:end_id].mean()) sd_short = cupy.sqrt( ((port_return_ma[sample, end_id - short_window:end_id] - mean)**2).mean()) # print('sort', sd_short) max_sd = max(sd_long, sd_short) lev = target_vol / (max_sd * math.sqrt(252)) # print(lev) # print(leverage[sample, num], lev-leverage[sample, num]) # compute = means[sample][num] self.assertTrue(cupy.allclose(leverage[sample, num], lev)) # for sample in range(2): # for num in range(num_months): # s = log_return_ma[sample, :, months_start[num]:months_start[ # num + window]] # truth = (cupy.cov(s, bias=True)) # compute = cov[sample][num] # self.assertTrue(cupy.allclose(compute, truth)) # for sample in range(1): # for num in range(1): # cov_m = cov[sample][num] # corr_m = cov_m.copy() # for i in range(3): # for j in range(3): # corr_m[i, j] = corr_m[i, j] / \ # math.sqrt(cov_m[i, i] * cov_m[j, j]) # dis = (1.0 - corr_m)/2.0 # truth = (squareform(dis.get())) # compute = distance[sample][num] # self.assertTrue(cupy.allclose(compute, truth))
fsi-samples-main
gQuant/plugins/hrp_plugin/tests/unit/test_leverage.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ #!/usr/bin/env python # -*- coding: utf-8 -*- ''' python -m unittest tests/unit/test_bootstrap.py -v ''' import unittest import cupy from greenflow_hrp_plugin.kernels import boot_strap class TestBootstrap(unittest.TestCase): def setUp(self): pass def test_bootstrap(self): number_samples = 2 block_size = 2 number_of_threads = 256 length, assets = (6, 2) ref = cupy.array([[1.0, 2.0], [2.0, 3.0], [3.0, 4.0], [4.0, 5.0], [5.0, 6.0]]) output = cupy.zeros((number_samples, assets, length)) # output results num_positions = ( length - 2 ) // block_size + 1 # number of positions to sample to cover the whole seq length # sample starting position, exclusive sample_range = length - block_size print('price_len', length, 'sample range', sample_range) sample_positions = cupy.array([0, 1, 2, 3, 2, 1]) number_of_blocks = len(sample_positions) boot_strap[(number_of_blocks,), (number_of_threads,)]( output, ref.T, block_size, num_positions, sample_positions) truth0 = cupy.array([[0., 1., 2., 2., 3., 3.], [0., 2., 3., 3., 4., 4.]]) truth1 = cupy.array([[0., 4., 5., 3., 4., 2.], [0., 5., 6., 4., 5., 3.]]) self.assertTrue(cupy.allclose(truth0, output[0])) self.assertTrue(cupy.allclose(truth1, output[1])) print(output)
fsi-samples-main
gQuant/plugins/hrp_plugin/tests/unit/test_bootstrap.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ #!/usr/bin/env python # -*- coding: utf-8 -*- ''' python -m unittest tests/unit/test_order.py -v ''' import unittest import cupy from greenflow_hrp_plugin.kernels import single_linkage from scipy.spatial.distance import squareform from scipy.cluster.hierarchy import linkage import numpy as np def seriation(Z, N, cur_index): """Returns the order implied by a hierarchical tree (dendrogram). :param Z: A hierarchical tree (dendrogram). :param N: The number of points given to the clustering process. :param cur_index: The position in the tree for the recursive traversal. :return: The order implied by the hierarchical tree Z. """ if cur_index < N: return [cur_index] else: left = int(Z[cur_index - N, 0]) right = int(Z[cur_index - N, 1]) return (seriation(Z, N, left) + seriation(Z, N, right)) class TestOrder(unittest.TestCase): def setUp(self): self.assets = 10 self.samples = 5 self.numbers = 30 seq = 100 self.distance = cupy.zeros( (self.samples, self.numbers, self.assets * (self.assets-1) // 2)) cupy.random.seed(10) for i in range(self.samples): for j in range(self.numbers): cov = cupy.cov(cupy.random.rand(self.assets, seq)) dia = cupy.diag(cov) corr = cov / cupy.sqrt(cupy.outer(dia, dia)) dist = (1.0 - corr) / 2.0 self.distance[i, j] = cupy.array(squareform(dist.get())) def test_order(self): num_months = self.numbers total_samples = self.samples assets = self.assets number_of_threads = 1 number_of_blocks = num_months * total_samples output = cupy.zeros((total_samples, num_months, assets-1, 3)) orders = cupy.zeros( (total_samples, num_months, assets), dtype=cupy.int64) single_linkage[(number_of_blocks,), (number_of_threads,)]( output, orders, self.distance, num_months, assets) for i in range(self.samples): for j in range(self.numbers): gpu_order = orders[0][0] gpu_linkage = output[0][0] cpu_linkage = linkage(self.distance[0][0].get()) cpu_order = seriation(cpu_linkage, assets, assets*2 - 2) self.assertTrue(np.allclose(gpu_order.get(), cpu_order)) self.assertTrue(np.allclose( gpu_linkage.get(), cpu_linkage[:, :-1]))
fsi-samples-main
gQuant/plugins/hrp_plugin/tests/unit/test_order.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import (ConfSchema, PortsSpecSchema) from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from greenflow.dataframe_flow import Node class FeatureNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.delayed_process = True self.infer_meta = False self.SIGNAL_DF = 'signal_df' self.FEATURE_DF = 'feature_df' self.OUTPUT_PORT_NAME = 'out' port_type = PortsSpecSchema.port_type port_inports = { self.SIGNAL_DF: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] }, self.FEATURE_DF: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ], PortsSpecSchema.optional: True } } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:signal_df}" }, } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) def conf_schema(self): json = { "title": "Calculate the std and mean across assets as features", "type": "object", "properties": { "name": { "type": "string", "title": "Feature Name" } }, } ui = { } return ConfSchema(json=json, ui=ui) def update(self): TemplateNodeMixin.update(self) meta_outports = self.template_meta_setup().outports meta_inports = self.template_meta_setup().inports required = { 'year': 'int16', 'month': 'int16', 'sample_id': 'int64', } name = self.conf.get("name", "feature") input_meta = self.get_input_meta() if self.FEATURE_DF not in input_meta: col_from_inport = required.copy() else: col_from_inport = input_meta[self.FEATURE_DF].copy() meta_inports[self.SIGNAL_DF] = required meta_inports[self.FEATURE_DF] = required # additional ports cols = { name+"_mean": "float64", name+"_std": "float64" } col_from_inport.update(cols) meta_outports[self.OUTPUT_PORT_NAME] = col_from_inport self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def process(self, inputs): df = inputs[self.SIGNAL_DF] name = self.conf.get("name", "feature") if self.FEATURE_DF not in inputs: output_df = df[['year', 'month', 'sample_id']].copy() else: output_df = inputs[self.FEATURE_DF] # df = df.drop('datetime', axis=1) output = {} if self.outport_connected(self.OUTPUT_PORT_NAME): col = list(df.columns) col.remove('sample_id') col.remove('year') col.remove('month') mean_val = df[col].values.mean(axis=1) std_val = df[col].values.std(axis=1) output_df[name+'_mean'] = mean_val output_df[name+'_std'] = std_val output.update({self.OUTPUT_PORT_NAME: output_df}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/featureNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import (ConfSchema, PortsSpecSchema) from greenflow.dataframe_flow import Node from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from .kernels import get_weights import cudf import math class HRPWeightNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.COV_IN = 'covariance_df' self.ORDER_IN = 'asset_order_df' self.OUTPUT_PORT_NAME = 'out' self.delayed_process = True self.infer_meta = False port_type = PortsSpecSchema.port_type port_inports = { self.COV_IN: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] }, self.ORDER_IN: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] } } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:covariance_df}" }, } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) def conf_schema(self): json = { "title": "Compute the HRP weights", "type": "object", "properties": { }, } ui = { } return ConfSchema(json=json, ui=ui) def update(self): TemplateNodeMixin.update(self) meta_outports = self.template_meta_setup().outports meta_inports = self.template_meta_setup().inports required = { 'month': 'int16', 'year': 'int16', 'sample_id': 'int64', } meta_inports[self.COV_IN] = required meta_inports[self.ORDER_IN] = required json = {} input_meta = self.get_input_meta() if self.COV_IN in input_meta: assets = int(math.sqrt(len(input_meta[self.COV_IN]) - 3)) for i in range(assets): json[i] = 'float64' elif self.ORDER_IN in input_meta: assets = len(input_meta[self.ORDER_IN]) - 3 for i in range(assets): json[i] = 'float64' json.update(required) meta_outports[self.OUTPUT_PORT_NAME] = json self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def process(self, inputs): input_meta = self.get_input_meta() df_cov = inputs[self.COV_IN] df_order = inputs[self.ORDER_IN] all_sample_ids = df_cov['sample_id'].unique() # print(all_sample_ids - df_order['sample_id'].unique()) total_samples = len(all_sample_ids) input_meta = self.get_input_meta() if self.COV_IN in input_meta: assets = int(math.sqrt(len(input_meta[self.COV_IN]) - 3)) elif self.ORDER_IN in input_meta: assets = len(input_meta[self.ORDER_IN]) - 3 output = {} col = list(df_cov.columns) col.remove('sample_id') col.remove('year') col.remove('month') cov = df_cov[col].values cov = cov.reshape( total_samples, -1, assets, assets) _, num_months, _, _ = cov.shape col = list(df_order.columns) col.remove('sample_id') col.remove('year') col.remove('month') order = df_order[col].values order = order.reshape( total_samples, -1, assets) weights = get_weights(total_samples, cov, order, num_months, assets) weights = weights.reshape(-1, assets) weight_df = cudf.DataFrame(weights) weight_df['month'] = df_order['month'] weight_df['year'] = df_order['year'] weight_df['sample_id'] = df_order['sample_id'] output.update({self.OUTPUT_PORT_NAME: weight_df}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/hrpWeight.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import (ConfSchema, PortsSpecSchema) from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from greenflow.dataframe_flow import Node import cudf import cupy class PortfolioNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.delayed_process = True self.infer_meta = False self.RETURN_IN = 'return_df' self.WEIGHT_IN = 'weight_df' self.TRANS_IN = 'transaction_df' self.OUTPUT_PORT_NAME = 'out' port_type = PortsSpecSchema.port_type port_inports = { self.RETURN_IN: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] }, self.WEIGHT_IN: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] }, self.TRANS_IN: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] } } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:return_df}" }, } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) def conf_schema(self): json = { "title": "Construct the portfolio", "type": "object", "properties": { }, } ui = { } return ConfSchema(json=json, ui=ui) def update(self): TemplateNodeMixin.update(self) meta_outports = self.template_meta_setup().outports meta_inports = self.template_meta_setup().inports return_required = { "date": "datetime64[ns]", 'sample_id': 'int64', 'year': 'int16', 'month': 'int16', } weight_required = { 'sample_id': 'int64', 'year': 'int16', 'month': 'int16', } tran_required = { 'sample_id': 'int64', 'year': 'int16', 'month': 'int16', } addition = { 'portfolio': 'float64' } input_meta = self.get_input_meta() if self.RETURN_IN not in input_meta: col_from_inport = return_required.copy() else: col_from_inport = input_meta[self.RETURN_IN].copy() meta_inports[self.RETURN_IN] = return_required meta_inports[self.WEIGHT_IN] = weight_required meta_inports[self.TRANS_IN] = tran_required col_from_inport.update(addition) # additional ports meta_outports[self.OUTPUT_PORT_NAME] = col_from_inport self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def process(self, inputs): input_meta = self.get_input_meta() if self.RETURN_IN in input_meta: assets = len(input_meta[self.RETURN_IN]) - 4 elif self.WEIGHT_IN in input_meta: assets = len(input_meta[self.WEIGHT_IN]) - 3 elif self.TRANS_IN in input_meta: assets = len(input_meta[self.TRANS_IN]) - 3 return_df = inputs[self.RETURN_IN] weight_df = inputs[self.WEIGHT_IN] date_df = return_df[['date', 'sample_id', 'year', 'month']] expand_table = date_df.reset_index().merge( weight_df, on=['sample_id', 'year', 'month'], how='left').set_index('index') price_table = return_df[list(range(assets))] weight_table = expand_table[list(range(assets))] if self.TRANS_IN in input_meta: tran_df = inputs[self.TRANS_IN] tran_expand_table = date_df.reset_index().merge( tran_df, on=['sample_id', 'year', 'month'], how='left').set_index('index') tran_expand_table = tran_expand_table.sort_index().dropna() months = (tran_expand_table['year'] * 12 + tran_expand_table['month']).values months = ((months[1:] - months[:-1]) != 0).astype(cupy.float64) months = cupy.pad(months, ((1, 0)), mode='constant') months[0] = 1.0 tran_table = tran_expand_table[list(range(assets))].values tran_table = tran_table * months[:, None] tran_table = cudf.DataFrame(tran_table) tran_table.index = tran_expand_table.index apply_table = (price_table * weight_table).sort_index().dropna() # hack to fix the column names apply_table.columns = list(range(assets)) apply_weight = (apply_table - tran_table).sum(axis=1) else: apply_weight = (price_table * weight_table).sum(axis=1) return_df['portfolio'] = apply_weight.astype('float64') return_df = return_df.dropna() output = {} output.update({self.OUTPUT_PORT_NAME: return_df}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/portfolioNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ validation = {} display = {}
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/client.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import Node from greenflow.dataframe_flow.portsSpecSchema import ConfSchema from greenflow.dataframe_flow.portsSpecSchema import PortsSpecSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin import cudf class MergeNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.INPUT_PORT_LEFT_NAME = 'left' self.INPUT_PORT_RIGHT_NAME = 'right' self.OUTPUT_PORT_NAME = 'merged' self.delayed_process = True self.infer_meta = False port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_LEFT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] }, self.INPUT_PORT_RIGHT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] } } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:left}" }, } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) def update(self): TemplateNodeMixin.update(self) meta_outports = self.template_meta_setup().outports meta_inports = self.template_meta_setup().inports cols_required = {} input_meta = self.get_input_meta() if (self.INPUT_PORT_LEFT_NAME in input_meta and self.INPUT_PORT_RIGHT_NAME in input_meta): col_from_left_inport = input_meta[self.INPUT_PORT_LEFT_NAME] col_from_right_inport = input_meta[self.INPUT_PORT_RIGHT_NAME] col_from_left_inport.update(col_from_right_inport) meta_outports[self.OUTPUT_PORT_NAME] = col_from_left_inport elif self.INPUT_PORT_LEFT_NAME in input_meta: col_from_left_inport = input_meta[self.INPUT_PORT_LEFT_NAME] meta_outports[self.OUTPUT_PORT_NAME] = col_from_left_inport elif self.INPUT_PORT_RIGHT_NAME in input_meta: col_from_right_inport = input_meta[self.INPUT_PORT_RIGHT_NAME] meta_outports[self.OUTPUT_PORT_NAME] = col_from_right_inport else: meta_outports[self.OUTPUT_PORT_NAME] = {} meta_inports[self.INPUT_PORT_RIGHT_NAME] = cols_required meta_inports[self.INPUT_PORT_LEFT_NAME] = cols_required self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): json = { "title": "DataFrame Merge configure", "type": "object", "description": """Merge two dataframes""", "properties": { "column": { "type": "string", "description": "column name on which to do the merge" } }, "required": ["column"], } input_meta = self.get_input_meta() if (self.INPUT_PORT_LEFT_NAME in input_meta and self.INPUT_PORT_RIGHT_NAME in input_meta): col_left_inport = input_meta[self.INPUT_PORT_LEFT_NAME] col_right_inport = input_meta[self.INPUT_PORT_RIGHT_NAME] enums1 = set([col for col in col_left_inport.keys()]) enums2 = set([col for col in col_right_inport.keys()]) json['properties']['column']['enum'] = list( enums1.intersection(enums2)) ui = {} return ConfSchema(json=json, ui=ui) else: ui = { "column": {"ui:widget": "text"} } return ConfSchema(json=json, ui=ui) def process(self, inputs): """ left merge the two dataframes in the inputs. the `on column` is defined in the `column` of the node's conf Arguments ------- inputs: list list of input dataframes. Returns ------- dataframe """ df1 = inputs[self.INPUT_PORT_LEFT_NAME] df2 = inputs[self.INPUT_PORT_RIGHT_NAME] return {self.OUTPUT_PORT_NAME: cudf.merge(df1, df2, on=self.conf['column'], how='inner')}
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/mergeNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import ConfSchema, PortsSpecSchema from greenflow.dataframe_flow.metaSpec import MetaDataSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from greenflow.dataframe_flow import Node import math import datetime import cudf import cupy from .kernels import get_drawdown_metric class PerformanceMetricNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.delayed_process = True self.infer_meta = False self.INPUT_PORT_NAME = 'in' self.RET_DF = 'ret_df' self.SD_DF = 'sd_df' self.SHARPE_DF = 'sharpe_df' self.CALMAR_DF = 'calmar_df' self.MDD_DF = 'maxdd_df' port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] } } port_outports = { self.RET_DF: { port_type: "${port:in}" }, self.SD_DF: { port_type: "${port:in}" }, self.SHARPE_DF: { port_type: "${port:in}" }, self.CALMAR_DF: { port_type: "${port:in}" }, self.MDD_DF: { port_type: "${port:in}" } } required = { "date": "datetime64[ns]", 'sample_id': 'int64', 'portfolio': 'float64' } output = { 'sample_id': 'int64', 'portfolio': 'float64', } meta_inports = { self.INPUT_PORT_NAME: required } meta_outports = { self.RET_DF: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_RETENTION, MetaDataSchema.META_DATA: output }, self.SD_DF: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_RETENTION, MetaDataSchema.META_DATA: output }, self.SHARPE_DF: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_RETENTION, MetaDataSchema.META_DATA: output }, self.CALMAR_DF: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_RETENTION, MetaDataSchema.META_DATA: output }, self.MDD_DF: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_RETENTION, MetaDataSchema.META_DATA: output } } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): json = { "title": "Compute the Sharpe Ratio", "type": "object", "properties": { }, } ui = { } return ConfSchema(json=json, ui=ui) def process(self, inputs): df = inputs[self.INPUT_PORT_NAME] # df = df.drop('datetime', axis=1) output = {} df = df.sort_values(['date']) group_obj = df.groupby('sample_id') beg = datetime.datetime.utcfromtimestamp( group_obj.nth(0)['date'].values[0].item() // 1e9) end = datetime.datetime.utcfromtimestamp( group_obj.nth(-1)['date'].values[0].item() // 1e9) total_days = (end - beg).days total = cudf.exp(group_obj['portfolio'].sum()) avg_return = cupy.power(total, (365/total_days)) - 1.0 return_series = cudf.Series(avg_return) return_series.index = total.index mean_df = cudf.DataFrame({'portfolio': return_series}) # mean_df = df.groupby(['sample_id']).agg({'portfolio': 'mean'}) std_df = df.groupby(['sample_id']).agg( {'portfolio': 'std'}) * math.sqrt(252) if self.outport_connected(self.SHARPE_DF): # sort by dates out_df = (mean_df / std_df).reset_index() output.update({self.SHARPE_DF: out_df}) if self.outport_connected(self.SD_DF): output.update({self.SD_DF: std_df.reset_index()}) if self.outport_connected(self.RET_DF): output.update({self.RET_DF: mean_df.reset_index()}) if (self.outport_connected(self.MDD_DF) or self.outport_connected(self.CALMAR_DF)): all_sample_ids = df['sample_id'].unique() total_samples = len(all_sample_ids) drawdown, all_dates = get_drawdown_metric(df, total_samples) drawdown_series = cudf.Series( cupy.abs(drawdown.reshape(total_samples))) drawdown_series.index = mean_df.index drawdown_df = cudf.DataFrame({'portfolio': drawdown_series}) if self.outport_connected(self.MDD_DF): output.update({self.MDD_DF: drawdown_df.reset_index()}) if self.outport_connected(self.CALMAR_DF): calmar_df = (mean_df / drawdown_df).reset_index() output.update({self.CALMAR_DF: calmar_df}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/performanceMetricNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from .loadCsvNode import LoadCsvNode from .bootstrapNode import BootstrapNode from .logReturnNode import LogReturnNode from .distanceNode import DistanceNode from .hierarchicalClusteringNode import HierarchicalClusteringNode from .hrpWeight import HRPWeightNode from .portfolioNode import PortfolioNode from .performanceMetricNode import PerformanceMetricNode from .nrpWeightNode import NRPWeightNode from .maxDrawdownNode import MaxDrawdownNode from .featureNode import FeatureNode from .aggregateTimeFeature import AggregateTimeFeatureNode from .mergeNode import MergeNode from .diffNode import DiffNode from .rSquaredNode import RSquaredNode from .shapSummaryPlotNode import ShapSummaryPlotPlotNode from .leverageNode import LeverageNode from .rawDataNode import RawDataNode from .transactionCostNode import TransactionCostNode __all__ = ["LoadCsvNode", "BootstrapNode", "LogReturnNode", "DistanceNode", "HierarchicalClusteringNode", "HRPWeightNode", "PortfolioNode", "PerformanceMetricNode", "NRPWeightNode", "MaxDrawdownNode", "FeatureNode", "AggregateTimeFeatureNode", "MergeNode", "DiffNode", "RSquaredNode", "ShapSummaryPlotPlotNode", "LeverageNode", "RawDataNode", "TransactionCostNode"]
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/__init__.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import ConfSchema, PortsSpecSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from greenflow.dataframe_flow.metaSpec import MetaDataSchema from greenflow.dataframe_flow import Node from .kernels import compute_leverage import cupy import cudf class LeverageNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.delayed_process = True self.infer_meta = False self.LEVERAGE_DF = 'lev_df' self.INPUT_PORT_NAME = "in" port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] } } port_outports = { self.LEVERAGE_DF: { port_type: "${port:in}" }, } sub_dict = { "date": "datetime64[ns]", 'sample_id': 'int64', 'year': 'int16', 'month': 'int16', 'portfolio': "float64", } meta_inports = { self.INPUT_PORT_NAME: sub_dict } meta_outports = { self.LEVERAGE_DF: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_RETENTION, MetaDataSchema.META_DATA: sub_dict } } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): json = { "title": "Compute the Leverage to match the target volatility", "type": "object", "properties": { "target_vol": { 'type': "number", "title": "Target Volativity", "description": """The target volatility to match""", "default": 0.05 }, "long_window": { 'type': "integer", "title": "Long window size", "description": """the large number of days in the past to compute volatility""", "default": 59 }, "short_window": { 'type': "integer", "title": "Short window size", "description": """the small number of days in the past to compute volatility""", "default": 19 } }, } ui = { } return ConfSchema(json=json, ui=ui) def process(self, inputs): df = inputs[self.INPUT_PORT_NAME] all_sample_ids = df['sample_id'].unique() total_samples = len(all_sample_ids) lev, all_dates, window = compute_leverage(total_samples, df, **self.conf) total_samples, num_months = lev.shape months_id = all_dates.dt.year*12 + (all_dates.dt.month-1) months_id = months_id - months_id.min() mid = (cupy.arange(months_id.max() + 1) + (all_dates.dt.month - 1)[0])[window:] minyear = all_dates.dt.year.min() if len(mid) == 0: mid = cupy.array([0]) months = mid % 12 years = mid // 12 + minyear output = {} df_lev = cudf.DataFrame( {'leverage': lev.reshape(total_samples * num_months)}) df_lev['year'] = cupy.concatenate( [years]*total_samples).astype(cupy.int16) df_lev['month'] = cupy.concatenate( [months]*total_samples).astype(cupy.int16) df_lev['sample_id'] = cupy.repeat(cupy.arange( total_samples) + all_sample_ids.min(), len(mid)) date_df = df[['date', 'sample_id', 'year', 'month', 'portfolio']] expand_table = date_df.reset_index().merge( df_lev, on=['sample_id', 'year', 'month'], how='left').set_index('index') expand_table['portfolio'] = expand_table[ 'portfolio'] * expand_table['leverage'] expand_table = expand_table.dropna()[[ 'date', 'sample_id', 'year', 'month', 'portfolio' ]] output.update({self.LEVERAGE_DF: expand_table}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/leverageNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import (ConfSchema, PortsSpecSchema) from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from greenflow.dataframe_flow import Node from greenflow.dataframe_flow.metaSpec import MetaDataSchema class DiffNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.delayed_process = True self.infer_meta = False self.OUTPUT_PORT_NAME = 'out' self.DIFF_A = 'diff_a' self.DIFF_B = 'diff_b' port_type = PortsSpecSchema.port_type port_inports = { self.DIFF_A: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] }, self.DIFF_B: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] } } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:diff_a}" }, } col_required = { 'sample_id': 'int64', 'portfolio': 'float64', } meta_inports = { self.DIFF_A: col_required, self.DIFF_B: col_required } output_meta = { 'sample_id': 'int64', 'portfolio': 'float64', } meta_outports = { self.OUTPUT_PORT_NAME: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_RETENTION, MetaDataSchema.META_DATA: output_meta } } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): json = { "title": "Calculate Sharpe diff", "type": "object", "properties": { }, } ui = { } return ConfSchema(json=json, ui=ui) def process(self, inputs): df_a = inputs[self.DIFF_A].set_index('sample_id') df_b = inputs[self.DIFF_B].set_index('sample_id') # df = df.drop('datetime', axis=1) output = {} diff = df_a - df_b output.update({self.OUTPUT_PORT_NAME: diff.reset_index()}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/diffNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import ConfSchema, PortsSpecSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from greenflow.dataframe_flow import Node from .kernels import get_orders import math import cudf class HierarchicalClusteringNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.delayed_process = True self.infer_meta = False self.INPUT_PORT_NAME = 'in' self.OUTPUT_PORT_NAME = 'out' port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] } } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:in}" }, } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) def conf_schema(self): json = { "title": "Hierachical Clustering Node", "type": "object", "properties": { }, } ui = { } return ConfSchema(json=json, ui=ui) def update(self): TemplateNodeMixin.update(self) meta_outports = self.template_meta_setup().outports meta_inports = self.template_meta_setup().inports required = { 'month': 'int16', 'year': 'int16', 'sample_id': 'int64', } meta_inports[self.INPUT_PORT_NAME] = required json = {} input_meta = self.get_input_meta() if self.INPUT_PORT_NAME in input_meta: num = len(input_meta[self.INPUT_PORT_NAME]) - 3 assets = (1 + int(math.sqrt(1 + 8 * num))) // 2 for i in range(assets): json[i] = 'int64' json.update(required) meta_outports[self.OUTPUT_PORT_NAME] = json self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def process(self, inputs): input_meta = self.get_input_meta() df = inputs[self.INPUT_PORT_NAME] all_sample_ids = df['sample_id'].unique() total_samples = len(all_sample_ids) if self.INPUT_PORT_NAME in input_meta: num = len(input_meta[self.INPUT_PORT_NAME]) - 3 assets = (1 + int(math.sqrt(1 + 8 * num))) // 2 df = inputs[self.INPUT_PORT_NAME] output = {} col = list(df.columns) col.remove('sample_id') col.remove('year') col.remove('month') distance = df[col].values distance = distance.reshape( total_samples, -1, assets*(assets-1)//2) _, num_months, _ = distance.shape orders = get_orders(total_samples, num_months, assets, distance) orders = orders.reshape(-1, assets) order_df = cudf.DataFrame(orders) order_df['month'] = df['month'] order_df['year'] = df['year'] order_df['sample_id'] = df['sample_id'] output.update({self.OUTPUT_PORT_NAME: order_df}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/hierarchicalClusteringNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import ConfSchema from greenflow.dataframe_flow.portsSpecSchema import PortsSpecSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from greenflow.dataframe_flow.metaSpec import MetaDataSchema from greenflow.dataframe_flow import Node import cudf class AggregateTimeFeatureNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.INPUT_PORT_NAME = 'in' self.OUTPUT_PORT_NAME = 'out' self.delayed_process = True self.infer_meta = False port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] } } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:in}" } } cols_required = { 'sample_id': 'int64', 'year': 'int16', 'month': 'int16', } meta_inports = { self.INPUT_PORT_NAME: cols_required } meta_outports = { self.OUTPUT_PORT_NAME: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_RETENTION, MetaDataSchema.META_DATA: {} } } self.template_ports_setup( in_ports=port_inports, out_ports=port_outports ) self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def update(self): TemplateNodeMixin.update(self) input_meta = self.get_input_meta() meta_outports = self.template_meta_setup().outports meta_inports = self.template_meta_setup().inports required = meta_inports[self.INPUT_PORT_NAME] if self.INPUT_PORT_NAME not in input_meta: col_from_inport = { 'sample_id': 'int64' } col_ref = {} else: col_from_inport = { 'sample_id': 'int64' } col_ref = input_meta[self.INPUT_PORT_NAME].copy() for key in col_ref.keys(): if key in required: continue new_key = key+"_mean" col_from_inport[new_key] = col_ref[key] for key in col_ref.keys(): if key in required: continue new_key = key+"_std" col_from_inport[new_key] = col_ref[key] meta_outports[self.OUTPUT_PORT_NAME] = col_from_inport self.template_meta_setup( in_ports=None, out_ports=meta_outports ) def conf_schema(self): json = { "title": "Aggregate feature across time, get mean and std", "type": "object", "properties": { }, } ui = { } return ConfSchema(json=json, ui=ui) def process(self, inputs): df = inputs[self.INPUT_PORT_NAME] output = {} col = list(df.columns) col.remove('year') col.remove('month') mdf = df[col].groupby('sample_id').mean() mdf.columns = [c+"_mean" for c in mdf.columns] sdf = df[col].groupby('sample_id').std() sdf.columns = [c+"_std" for c in sdf.columns] out = cudf.merge(mdf, sdf, left_index=True, right_index=True).reset_index() output.update({self.OUTPUT_PORT_NAME: out}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/aggregateTimeFeature.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from numba import cuda import numba import cupy import math MAX_ASSETS = 32 MAX_YEARS = 24 PARENT_MAX_ASSETS = 2 * MAX_ASSETS - 1 SUM_LEN = 256 * 32 # MAX_SHARE = 256 * MAX_YEARS * 4 @cuda.jit def boot_strap(result, ref, block_size, num_positions, positions): sample, assets, length = result.shape i = cuda.threadIdx.x sample_id = cuda.blockIdx.x // num_positions position_id = cuda.blockIdx.x % num_positions sample_at = positions[cuda.blockIdx.x] for k in range(i, block_size*assets, cuda.blockDim.x): asset_id = k // block_size loc = k % block_size if (position_id * block_size + loc + 1 < length): result[sample_id, asset_id, position_id * block_size + loc + 1] = ref[asset_id, sample_at + loc] @cuda.jit(device=True) def gpu_sum(array): i = cuda.threadIdx.x total_len = SUM_LEN length = total_len while length > 0: length = length // 2 for k in range(i, length, cuda.blockDim.x): if k+length < total_len: array[k] += array[k + length] cuda.syncthreads() @cuda.jit def compute_cov(means, cov, distance, returns, months_starts, num_months, assets, time_len, window): """ means of size [sample, months, assets] num_months should be 60 - 12, as the windows size is one year 12 months """ shared = cuda.shared.array(shape=0, dtype=numba.float32) shared_buffer_size = shared.size i = cuda.threadIdx.x sample_id = cuda.blockIdx.x // num_months step_id = cuda.blockIdx.x % num_months start_id = months_starts[step_id] end_id = months_starts[ step_id + window] if step_id + window < months_starts.size else time_len for a in range(assets): # copy asset return to shared for k in range(i, shared_buffer_size, cuda.blockDim.x): shared[k] = 0 cuda.syncthreads() for k in range(i + start_id, end_id, cuda.blockDim.x): shared[k - start_id] = returns[sample_id, a, k] cuda.syncthreads() gpu_sum(shared) if i == 0: means[sample_id, step_id, a] = shared[0] / (end_id - start_id) cuda.syncthreads() for a in range(assets): for b in range(a, assets): # copy asset return to shared for k in range(i, shared_buffer_size, cuda.blockDim.x): shared[k] = 0 cuda.syncthreads() mean_a = means[sample_id, step_id, a] mean_b = means[sample_id, step_id, b] for k in range(i + start_id, end_id, cuda.blockDim.x): shared[k - start_id] = (returns[sample_id, a, k] - mean_a) * ( returns[sample_id, b, k] - mean_b) cuda.syncthreads() gpu_sum(shared) if i == 0: cov[sample_id, step_id, a, b] = shared[0] / (end_id - start_id) cov[sample_id, step_id, b, a] = shared[0] / (end_id - start_id) cuda.syncthreads() # compute distance for k in range(i, assets*assets, cuda.blockDim.x): a = k // assets b = k % assets if b > a: var_a = cov[sample_id, step_id, a, a] var_b = cov[sample_id, step_id, b, b] cov_ab = cov[sample_id, step_id, a, b] dis_ab = math.sqrt((1.0 - cov_ab / math.sqrt(var_a * var_b)) / 2.0) offset = (2 * assets - 1 - a) * a // 2 + (b - a - 1) shared[offset] = dis_ab # distance[sample_id, step_id, offset] = dis_ab cuda.syncthreads() # compute distance of the distance for k in range(i, assets*assets, cuda.blockDim.x): a = k // assets b = k % assets if b > a: summ = 0.0 for col_id in range(assets): if col_id > a: offset_a = (2 * assets - 1 - a) * a // 2 + (col_id - a - 1) val_a = shared[offset_a] elif col_id < a: offset_a = (2 * assets - 1 - col_id) * col_id // 2 + ( a - col_id - 1) val_a = shared[offset_a] else: val_a = 0.0 if col_id > b: offset_b = (2 * assets - 1 - b) * b // 2 + (col_id - b - 1) val_b = shared[offset_b] elif col_id < b: offset_b = (2 * assets - 1 - col_id) * col_id // 2 + ( b - col_id - 1) val_b = shared[offset_b] else: val_b = 0.0 summ += (val_a - val_b) * (val_a - val_b) offset = (2 * assets - 1 - a) * a // 2 + (b - a - 1) distance[sample_id, step_id, offset] = math.sqrt(summ) @cuda.jit def leverage_for_target_vol(leverage, returns, months_starts, num_months, window, long_window, short_window, target_vol): """ each block calculate for one rebalancing month, leverage of shape [sample, months] returns of shape [sample, time_len] num_months should be 60 - 12, as the windows size is one year 12 months """ # shared = cuda.shared.array(MAX_SHARE, dtype=numba.float64) shared = cuda.shared.array(shape=0, dtype=numba.float32) total_samples, time_len = returns.shape # means = cuda.shared.array(1, dtype=numba.float64) # sds = cuda.shared.array(2, dtype=numba.float64) # means = shared[-1:] # sds = shared[-3:-1] annual_const = math.sqrt(252.) shared_buffer_size = shared.size i = cuda.threadIdx.x sample_id = cuda.blockIdx.x // num_months step_id = cuda.blockIdx.x % num_months start_id = months_starts[step_id] end_id = months_starts[ step_id + window] if step_id + window < months_starts.size else time_len # calculate the means for the long window start_id = end_id - long_window # copy asset return to shared for k in range(i, shared_buffer_size, cuda.blockDim.x): shared[k] = 0 cuda.syncthreads() for k in range(i + start_id, end_id, cuda.blockDim.x): shared[k - start_id] = returns[sample_id, k] cuda.syncthreads() gpu_sum(shared) cuda.syncthreads() means = shared[0] / (end_id - start_id) # calculate the std for the long window # copy asset return to shared for k in range(i, shared_buffer_size, cuda.blockDim.x): shared[k] = 0 cuda.syncthreads() for k in range(i + start_id, end_id, cuda.blockDim.x): shared[k - start_id] = (returns[sample_id, k] - means) * (returns[sample_id, k] - means) cuda.syncthreads() gpu_sum(shared) sd_long = math.sqrt(shared[0] / (end_id - start_id)) # calculate the means for the short window start_id = end_id - short_window # copy asset return to shared for k in range(i, shared_buffer_size, cuda.blockDim.x): shared[k] = 0 cuda.syncthreads() for k in range(i + start_id, end_id, cuda.blockDim.x): shared[k - start_id] = returns[sample_id, k] cuda.syncthreads() gpu_sum(shared) cuda.syncthreads() means = shared[0] / (end_id - start_id) cuda.syncthreads() # calculate the std for the short window for k in range(i, shared_buffer_size, cuda.blockDim.x): shared[k] = 0 cuda.syncthreads() for k in range(i + start_id, end_id, cuda.blockDim.x): shared[k - start_id] = (returns[sample_id, k] - means) * ( returns[sample_id, k] - means) cuda.syncthreads() gpu_sum(shared) sd_short = math.sqrt(shared[0] / (end_id - start_id)) if i == 0: lev = target_vol / (max(sd_short, sd_long)*annual_const) leverage[sample_id, step_id] = lev @cuda.jit(device=True) def find(x, parent): p = x while parent[x] != x: x = parent[x] while parent[p] != x: p, parent[p] = parent[p], x return x @cuda.jit(device=True) def label(Z, n, parent): """Correctly label clusters in unsorted dendrogram.""" next_label = n for i in range(n - 1): x, y = int(Z[i, 0]), int(Z[i, 1]) x_root, y_root = find(x, parent), find(y, parent) if x_root < y_root: Z[i, 0], Z[i, 1] = x_root, y_root else: Z[i, 0], Z[i, 1] = y_root, x_root parent[x_root] = next_label parent[y_root] = next_label next_label += 1 @cuda.jit(device=True) def mergeSort(a, L, R): current_size = 1 # Outer loop for traversing Each # sub array of current_size while current_size < len(a): left = 0 # Inner loop for merge call # in a sub array # Each complete Iteration sorts # the iterating sub array while left < len(a)-1: # mid index = left index of # sub array + current sub # array size - 1 mid = min((left + current_size - 1), (len(a)-1)) # (False result,True result) # [Condition] Can use current_size # if 2 * current_size < len(a)-1 # else len(a)-1 if 2 * current_size + left - 1 > len(a)-1: right = len(a) - 1 else: right = 2 * current_size + left - 1 # Merge call for each sub array merge(a, left, mid, right, L, R) left = left + current_size*2 # Increasing sub array size by # multiple of 2 current_size = 2 * current_size @cuda.jit(device=True) def merge(a, ll, m, r, L, R): n1 = m - ll + 1 n2 = r - m L[:, :] = 0 R[:, :] = 0 for i in range(0, n1): L[i, 0] = a[ll + i, 0] L[i, 1] = a[ll + i, 1] L[i, 2] = a[ll + i, 2] for i in range(0, n2): R[i, 0] = a[m + i + 1, 0] R[i, 1] = a[m + i + 1, 1] R[i, 2] = a[m + i + 1, 2] i, j, k = 0, 0, ll while i < n1 and j < n2: if L[i, 2] > R[j, 2]: a[k, 0] = R[j, 0] a[k, 1] = R[j, 1] a[k, 2] = R[j, 2] j += 1 else: a[k, 0] = L[i, 0] a[k, 1] = L[i, 1] a[k, 2] = L[i, 2] i += 1 k += 1 while i < n1: a[k, 0] = L[i, 0] a[k, 1] = L[i, 1] a[k, 2] = L[i, 2] i += 1 k += 1 while j < n2: a[k, 0] = R[j, 0] a[k, 1] = R[j, 1] a[k, 2] = R[j, 2] j += 1 k += 1 @cuda.jit(device=True) def condensed_index(n, i, j): """ Calculate the condensed index of element (i, j) in an n x n condensed matrix. """ if i < j: return n * i - (i * (i + 1) // 2) + (j - i - 1) elif i > j: return n * j - (j * (j + 1) // 2) + (i - j - 1) @cuda.jit(device=True) def my_seriation(Z, N, stack, result): """Returns the order implied by a hierarchical tree (dendrogram). :param Z: A hierarchical tree (dendrogram). :param N: The number of points given to the clustering process. :param cur_index: The position in the tree for the recursive traversal. :return: The order implied by the hierarchical tree Z. """ o_point = -1 stack_point = 0 stack[0] = N + N - 2 while stack_point >= 0: v = stack[stack_point] stack_point -= 1 left = int(Z[v - N, 0]) right = int(Z[v - N, 1]) if right >= N: stack_point += 1 stack[stack_point] = right if left >= N: stack_point += 1 stack[stack_point] = left if left < N: o_point += 1 result[o_point] = left if right < N: o_point += 1 result[o_point] = right return result @cuda.jit def single_linkage(output, orders, dists, num_months, n): """ dists is shape [sample, months, distance] output is of shape [sample, months, n-1, 3] """ large = 1e200 merged = cuda.shared.array(MAX_ASSETS, dtype=numba.int64) merged[:] = 0 D = cuda.shared.array(MAX_ASSETS, dtype=numba.float64) D[:] = large L = cuda.shared.array(shape=(MAX_ASSETS, 3), dtype=numba.float64) R = cuda.shared.array(shape=(MAX_ASSETS, 3), dtype=numba.float64) parent = cuda.shared.array(PARENT_MAX_ASSETS, dtype=numba.int64) for k in range(PARENT_MAX_ASSETS): parent[k] = k stack = cuda.shared.array(MAX_ASSETS, dtype=numba.int64) sample_id = cuda.blockIdx.x // num_months step_id = cuda.blockIdx.x % num_months x = 0 for k in range(n - 1): current_min = large merged[x] = 1 for i in range(n): if merged[i] == 1: continue dis_id = int(condensed_index(n, x, i)) dist = dists[sample_id, step_id, dis_id] # print(k, i, dis_id, dist, D[i]) if D[i] > dist: D[i] = dist if D[i] < current_min: y = i current_min = D[i] output[sample_id, step_id, k, 0] = x output[sample_id, step_id, k, 1] = y output[sample_id, step_id, k, 2] = current_min x = y # # Sort Z by cluster distances. mergeSort(output[sample_id, step_id], L, R) # # Find correct cluster labels and compute cluster sizes inplace. label(output[sample_id, step_id], n, parent) my_seriation(output[sample_id, step_id], n, stack, orders[sample_id, step_id]) @cuda.jit def HRP_weights(weights, covariances, res_order, N, num_months): """ covariances, [samples, number, N, N] res_order, [sample, number, N] """ start_pos = cuda.shared.array(MAX_ASSETS, dtype=numba.int64) end_pos = cuda.shared.array(MAX_ASSETS, dtype=numba.int64) old_start_pos = cuda.shared.array(MAX_ASSETS, dtype=numba.int64) old_end_pos = cuda.shared.array(MAX_ASSETS, dtype=numba.int64) parity_w = cuda.shared.array(MAX_ASSETS, dtype=numba.float64) sample_id = cuda.blockIdx.x // num_months step_id = cuda.blockIdx.x % num_months cluster_num = 1 old_cluster_num = 1 start_pos[0] = 0 end_pos[0] = N old_start_pos[0] = 0 old_end_pos[0] = N while cluster_num > 0: cluster_num = 0 for i in range(old_cluster_num): start = old_start_pos[i] end = old_end_pos[i] half = (end - start) // 2 if half > 0: start_pos[cluster_num] = start end_pos[cluster_num] = start + half cluster_num += 1 if half > 0: start_pos[cluster_num] = start + half end_pos[cluster_num] = end cluster_num += 1 for subcluster in range(0, cluster_num, 2): left_s = start_pos[subcluster] left_e = end_pos[subcluster] right_s = start_pos[subcluster+1] right_e = end_pos[subcluster+1] summ = 0.0 for i in range(left_s, left_e): idd = res_order[sample_id, step_id, i] parity_w[i - left_s] = 1.0 / \ covariances[sample_id, step_id, idd, idd] # print('parity', i, parity_w[i - left_s]) summ += parity_w[i - left_s] for i in range(left_s, left_e): parity_w[i - left_s] *= 1.0 / summ summ = 0.0 for i in range(left_s, left_e): idd_x = res_order[sample_id, step_id, i] for j in range(left_s, left_e): idd_y = res_order[sample_id, step_id, j] summ += parity_w[i - left_s]*parity_w[j - left_s] * \ covariances[sample_id, step_id, idd_x, idd_y] left_cluster_var = summ summ = 0.0 for i in range(right_s, right_e): idd = res_order[sample_id, step_id, i] parity_w[i - right_s] = 1.0 / \ covariances[sample_id, step_id, idd, idd] summ += parity_w[i - right_s] for i in range(right_s, right_e): parity_w[i - right_s] *= 1.0 / summ summ = 0.0 for i in range(right_s, right_e): idd_x = res_order[sample_id, step_id, i] for j in range(right_s, right_e): idd_y = res_order[sample_id, step_id, j] summ += parity_w[i - right_s]*parity_w[j - right_s] * \ covariances[sample_id, step_id, idd_x, idd_y] right_cluster_var = summ alloc_factor = 1 - left_cluster_var / \ (left_cluster_var + right_cluster_var) for i in range(left_s, left_e): idd = res_order[sample_id, step_id, i] weights[sample_id, step_id, idd] *= alloc_factor for i in range(right_s, right_e): idd = res_order[sample_id, step_id, i] weights[sample_id, step_id, idd] *= 1 - alloc_factor for i in range(cluster_num): old_start_pos[i] = start_pos[i] old_end_pos[i] = end_pos[i] old_cluster_num = cluster_num @cuda.jit def drawdown_kernel(drawdown, returns, months_starts, window): """ returns, [samples, assets, length] drawdown, [smaples, months, assets] num_months should be 60 - 12, as the windows size is one year 12 months """ # shared = cuda.shared.array(shape=0, dtype=numba.float64) # shared_buffer_size = shared.size total_samples, assets, time_len = returns.shape _, num_months, _ = drawdown.shape i = cuda.threadIdx.x sample_id = cuda.blockIdx.x // num_months step_id = cuda.blockIdx.x % num_months start_id = months_starts[step_id] end_id = months_starts[ step_id + window] if step_id + window < months_starts.size else time_len for a in range(i, assets, cuda.blockDim.x): cumsum = 0.0 currentMax = 1.0 minDrawDown = 100.0 for k in range(start_id, end_id): cumsum += returns[sample_id, a, k] value = math.exp(cumsum) if value > currentMax: currentMax = value currDrawdown = value / currentMax - 1.0 if currDrawdown < minDrawDown: minDrawDown = currDrawdown drawdown[sample_id, step_id, a] = -minDrawDown def get_drawdown(log_return, total_samples, negative=False, window=12): first_sample = log_return['sample_id'].min().item() all_dates = log_return[first_sample == log_return['sample_id']]['date'] all_dates = all_dates.reset_index(drop=True) months_start = _get_month_start_pos(all_dates) log_return_ma = _get_log_return_matrix(total_samples, log_return) if negative: log_return_ma = -1.0 * log_return_ma _, assets, timelen = log_return_ma.shape number_of_threads = 128 num_months = len(months_start) - window if num_months == 0: # use all the months to compute num_months = 1 number_of_blocks = num_months * total_samples drawdown = cupy.zeros((total_samples, num_months, assets)) drawdown_kernel[(number_of_blocks, ), (number_of_threads, )](drawdown, log_return_ma, months_start, window) return drawdown, all_dates def get_drawdown_metric(log_return, total_samples): first_sample = log_return['sample_id'].min().item() all_dates = log_return[first_sample == log_return['sample_id']]['date'] all_dates = all_dates.reset_index(drop=True) months_start = _get_month_start_pos(all_dates) # log_return_ma = _get_log_return_matrix(total_samples, log_return) port_return_ma = log_return['portfolio'].values.reshape( total_samples, 1, -1) _, assets, timelen = port_return_ma.shape number_of_threads = 128 window = len(months_start) num_months = len(months_start) - window if num_months == 0: # use all the months to compute num_months = 1 number_of_blocks = num_months * total_samples drawdown = cupy.zeros((total_samples, num_months, assets)) drawdown_kernel[(number_of_blocks, ), (number_of_threads, )](drawdown, port_return_ma, months_start, window) return drawdown, all_dates def get_weights(total_samples, cov, orders, num_months, assets): number_of_threads = 1 number_of_blocks = num_months * total_samples weights = cupy.ones((total_samples, num_months, assets)) HRP_weights[(number_of_blocks,), (number_of_threads,)]( weights, cov, orders, assets, num_months) return weights def get_orders(total_samples, num_months, assets, distance): number_of_threads = 1 number_of_blocks = num_months * total_samples output = cupy.zeros((total_samples, num_months, assets-1, 3)) orders = cupy.zeros((total_samples, num_months, assets), dtype=cupy.int64) single_linkage[(number_of_blocks,), (number_of_threads,)]( output, orders, distance, num_months, assets) return orders def run_bootstrap(v, number_samples=2, block_size=60, number_of_threads=256): """ @v, stock price matrix. [time, stocks] @number_samples, number of samples @block_size, sample block size """ length, assets = v.shape # get the time length and the number of assets, init_prices = v[0, :].reshape(1, -1, 1) # initial prices for all assets v = cupy.log(v) # compute the price difference, dimension of [length -1, assets] ref = cupy.diff(v, axis=0) # output results output = cupy.zeros((number_samples, assets, length)) # sample starting position, exclusive sample_range = length - block_size # number of positions to sample to cover the whole seq length num_positions = (length - 2) // block_size + 1 sample_positions = cupy.random.randint( 0, sample_range, num_positions * number_samples) # compute random starting posistion number_of_blocks = len(sample_positions) boot_strap[(number_of_blocks,), (number_of_threads,)]( output, ref.T, block_size, num_positions, sample_positions) # reshape the results [number_samples, number assets, time] # output = output.reshape(number_samples, assets, length) # convert it into prices return (cupy.exp(output.cumsum(axis=2)) * init_prices) def _get_month_start_pos(all_dates): months_id = all_dates.dt.year*12 + (all_dates.dt.month-1) months_id = months_id - months_id.min() # months_id = months_id[1:] month_start = months_id - months_id.shift(1) month_start[0] = 1 months_start = cupy.where((month_start == 1).values)[0] # print('month start position', months_start) return months_start def _get_log_return_matrix(total_samples, log_return): col = list(log_return.columns) col.remove('date') col.remove('sample_id') col.remove('year') col.remove('month') log_return_ma = log_return[col].values log_return_ma = log_return_ma.reshape(total_samples, -1, len(col)) log_return_ma = log_return_ma.transpose((0, 2, 1)) # sample #, assets dim, time length return log_return_ma def compute_cov_distance(total_samples, log_return, window=12): first_sample = log_return['sample_id'].min().item() all_dates = log_return[first_sample == log_return['sample_id']]['date'] all_dates = all_dates.reset_index(drop=True) months_start = _get_month_start_pos(all_dates) log_return_ma = _get_log_return_matrix(total_samples, log_return) _, assets, timelen = log_return_ma.shape number_of_threads = 256 num_months = len(months_start) - window # print('num', num_months, len(months_start), window) if num_months == 0: # this case, use all the data to compute num_months = 1 number_of_blocks = num_months * total_samples means = cupy.zeros((total_samples, num_months, assets)) cov = cupy.zeros((total_samples, num_months, assets, assets)) distance = cupy.zeros( (total_samples, num_months, (assets - 1) * assets // 2)) compute_cov[(number_of_blocks, ), (number_of_threads, ), 0, 256 * MAX_YEARS * 8](means, cov, distance, log_return_ma, months_start, num_months, assets, timelen, window) return means, cov, distance, all_dates def compute_leverage(total_samples, log_return, long_window=59, short_window=19, target_vol=0.05): first_sample = log_return['sample_id'].min().item() all_dates = log_return[first_sample == log_return['sample_id']]['date'] all_dates = all_dates.reset_index(drop=True) months_start = _get_month_start_pos(all_dates) for window in range(len(months_start)): if (months_start[window] - long_window) > 0: break port_return_ma = log_return['portfolio'].values.reshape(total_samples, -1) number_of_threads = 256 num_months = len(months_start) - window if num_months == 0: # this case, use all the data to compute num_months = 1 number_of_blocks = num_months * total_samples leverage = cupy.zeros((total_samples, num_months)) leverage_for_target_vol[(number_of_blocks, ), (number_of_threads, ), 0, 256 * MAX_YEARS * 8](leverage, port_return_ma, months_start, num_months, window, long_window, short_window, target_vol) return leverage, all_dates, window
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/kernels.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import Node from greenflow.dataframe_flow.portsSpecSchema import (ConfSchema, PortsSpecSchema, NodePorts) from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from greenflow.dataframe_flow.metaSpec import MetaDataSchema import cudf from xgboost import Booster import pandas as pd from matplotlib.figure import Figure from dask.dataframe import DataFrame as DaskDataFrame import shap class ShapSummaryPlotPlotNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.SHAP_INPUT_PORT_NAME = 'shap_in' self.MODEL_INPUT_PORT_NAME = 'model_in' self.DATA_INPUT_PORT_NAME = 'data_in' self.OUTPUT_PORT_NAME = 'summary_plot' port_type = PortsSpecSchema.port_type port_inports = { self.SHAP_INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] }, self.MODEL_INPUT_PORT_NAME: { port_type: [ "xgboost.Booster", "builtins.dict", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] }, self.DATA_INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] } } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "matplotlib.figure.Figure" }, } meta_inports = { self.MODEL_INPUT_PORT_NAME: {}, self.DATA_INPUT_PORT_NAME: {}, self.SHAP_INPUT_PORT_NAME: {} } meta_outports = { self.OUTPUT_PORT_NAME: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_RETENTION, MetaDataSchema.META_DATA: {} } } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): json = { "title": "Shap Summary Plot Node", "type": "object", "description": """Plot the Shap summary""", "properties": { "max_display": { "type": "integer", "description": """ How many top features to include in the plot (default is 20, or 7 for interaction plots) """, "default": 20 }, "plot_type": { "type": "string", "description": """ "dot" (default for single output), "bar" (default for multi-output), "violin", """, "enum": ["dot", "bar", "violin"] } } } # input_meta = self.get_input_meta() ui = { } return ConfSchema(json=json, ui=ui) def ports_setup(self): types = [cudf.DataFrame, DaskDataFrame, pd.DataFrame] port_type = PortsSpecSchema.port_type input_ports = { self.SHAP_INPUT_PORT_NAME: { port_type: types }, self.MODEL_INPUT_PORT_NAME: { port_type: [Booster, dict] }, self.DATA_INPUT_PORT_NAME: { port_type: types } } output_ports = { self.OUTPUT_PORT_NAME: { port_type: Figure } } input_connections = self.get_connected_inports() if (self.SHAP_INPUT_PORT_NAME in input_connections): determined_type = input_connections[self.SHAP_INPUT_PORT_NAME] input_ports[self.SHAP_INPUT_PORT_NAME] = { port_type: determined_type } if (self.DATA_INPUT_PORT_NAME in input_connections): determined_type = input_connections[self.DATA_INPUT_PORT_NAME] input_ports[self.DATA_INPUT_PORT_NAME] = { port_type: determined_type } if (self.MODEL_INPUT_PORT_NAME in input_connections): determined_type = input_connections[self.MODEL_INPUT_PORT_NAME] input_ports[self.MODEL_INPUT_PORT_NAME] = { port_type: determined_type } ports = NodePorts(inports=input_ports, outports=output_ports) return ports def process(self, inputs): """ Plot the lines from the input dataframe. The plotted lines are the columns in the input dataframe which are specified in the `lines` of node's `conf` The plot title is defined in the `title` of the node's `conf` Arguments ------- inputs: list list of input dataframes. Returns ------- Figure """ import matplotlib.pyplot as pl pl.figure() shap_values = inputs[self.SHAP_INPUT_PORT_NAME] df = inputs[self.DATA_INPUT_PORT_NAME] if isinstance(shap_values, DaskDataFrame): shap_values = shap_values.compute() if isinstance(df, DaskDataFrame): df = df.compute() if isinstance(shap_values, cudf.DataFrame): shap_values = shap_values.values.get() else: shap_values = shap_values.values if isinstance(df, cudf.DataFrame): df = df.to_pandas() input_meta = self.get_input_meta() required_cols = input_meta[ self.MODEL_INPUT_PORT_NAME]['train'] df = df[required_cols] self.conf['show'] = False # max_display = self.conf.get('max_display', 20) # plot_type = self.conf.get('plot_type', 'bar') shap.summary_plot(shap_values[:, :-1], df, **self.conf) f = pl.gcf() return {self.OUTPUT_PORT_NAME: f}
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/shapSummaryPlotNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import ConfSchema, PortsSpecSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from greenflow.dataframe_flow import Node import math import cupy import cudf class NRPWeightNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.INPUT_PORT_NAME = 'in' self.OUTPUT_PORT_NAME = 'out' self.delayed_process = True self.infer_meta = False port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] } } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:in}" }, } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) def conf_schema(self): json = { "title": "Compute the Sharpe Ratio", "type": "object", "properties": { }, } ui = { } return ConfSchema(json=json, ui=ui) def update(self): TemplateNodeMixin.update(self) meta_outports = self.template_meta_setup().outports meta_inports = self.template_meta_setup().inports required = { 'month': 'int16', 'year': 'int16', 'sample_id': 'int64', } meta_inports[self.INPUT_PORT_NAME] = required json = {} input_meta = self.get_input_meta() if self.INPUT_PORT_NAME in input_meta: assets = int(math.sqrt(len(input_meta[self.INPUT_PORT_NAME]) - 3)) for i in range(assets): json[i] = 'float64' json.update(required) meta_outports[self.OUTPUT_PORT_NAME] = json self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def process(self, inputs): df = inputs[self.INPUT_PORT_NAME] all_sample_ids = df['sample_id'].unique() total_samples = len(all_sample_ids) # df = df.drop('datetime', axis=1) input_meta = self.get_input_meta() if self.INPUT_PORT_NAME in input_meta: assets = int(math.sqrt(len(input_meta[self.INPUT_PORT_NAME]) - 3)) output = {} data_ma = df[list(range(assets*assets))].values data_ma = data_ma.reshape(total_samples, -1, assets, assets) diagonzied = cupy.diagonal(data_ma, 0, 2, 3) diagonzied = cupy.sqrt(1.0 / diagonzied) # inverse variance diagonzied = diagonzied / diagonzied.sum(axis=2, keepdims=True) diagonzied = diagonzied.reshape(-1, assets) weight_df = cudf.DataFrame(diagonzied) weight_df['month'] = df['month'] weight_df['year'] = df['year'] weight_df['sample_id'] = df['sample_id'] output.update({self.OUTPUT_PORT_NAME: weight_df}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/nrpWeightNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ import cudf from greenflow.dataframe_flow import Node from greenflow.dataframe_flow import PortsSpecSchema from greenflow.dataframe_flow import ConfSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from .kernels import run_bootstrap import cupy import dask import dask_cudf from collections import OrderedDict class BootstrapNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.INPUT_PORT_NAME = 'in' self.OUTPUT_PORT_NAME = 'out' self.OUTPUT_DASK_PORT = 'dask_df' port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", ] }, } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:in}" }, self.OUTPUT_DASK_PORT: { port_type: ["dask_cudf.DataFrame", "dask.dataframe.DataFrame"] } } self.template_ports_setup( in_ports=port_inports, out_ports=port_outports ) def update(self): TemplateNodeMixin.update(self) meta_outports = self.template_meta_setup().outports meta_inports = self.template_meta_setup().inports col_required = { "date": "date" } input_meta = self.get_input_meta() json = OrderedDict() if self.INPUT_PORT_NAME in input_meta: assets = len(input_meta[self.INPUT_PORT_NAME]) - 1 for i in range(assets): json[i] = 'float64' json['date'] = "datetime64[ns]" json['sample_id'] = 'int64' json['year'] = 'int16' json['month'] = 'int16' meta_inports[self.INPUT_PORT_NAME] = col_required meta_outports[self.OUTPUT_DASK_PORT] = json meta_outports[self.OUTPUT_PORT_NAME] = json self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): json = { "title": "Generate bootstrap dataframe", "type": "object", "properties": { "samples": { "type": "integer", "description": "Number of samples to bootstrap" }, "partitions": { "type": "integer", "description": "Number of partitions for Dask Dataframe" }, "offset": { "type": "integer", "description": "Sample id offset", "default": 0 }, }, "required": ["samples"], } ui = { } return ConfSchema(json=json, ui=ui) def _process(self, df, partition_id): number_samples = self.conf['samples'] all_dates = df['date'] cols = list(df.columns) cols.remove('date') price_matrix = df[cols].values result = run_bootstrap(price_matrix, number_samples=number_samples) # print('bootstrap') total_samples, assets, length = result.shape datetime_col = cudf.concat([all_dates] * total_samples).reset_index(drop=True) result = result.transpose([0, 2, 1]).reshape(-1, assets) df = cudf.DataFrame(result) df['date'] = datetime_col sample_id = cupy.repeat(cupy.arange(0, total_samples), length) df['sample_id'] = sample_id + partition_id * number_samples df['year'] = df['date'].dt.year df['month'] = df['date'].dt.month - 1 return df def process(self, inputs): df = inputs[self.INPUT_PORT_NAME] # df = df.drop('datetime', axis=1) output = {} if self.outport_connected(self.OUTPUT_PORT_NAME): offset = self.conf.get('offset', 0) out_df = self._process(df, offset) output.update({self.OUTPUT_PORT_NAME: out_df}) if self.outport_connected(self.OUTPUT_DASK_PORT): partitions = self.conf['partitions'] out_dfs = [ dask.delayed(self._process)(df, i) for i in range(partitions) ] meta = self.meta_setup().outports[self.OUTPUT_DASK_PORT] meta['date'] = 'datetime64[ns]' dask_df = dask_cudf.from_delayed( out_dfs, meta=meta) output.update({self.OUTPUT_DASK_PORT: dask_df}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/bootstrapNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ import cudf from greenflow.dataframe_flow import Node, MetaData from greenflow.dataframe_flow import NodePorts, PortsSpecSchema from greenflow.dataframe_flow.util import get_file_path from greenflow.dataframe_flow import ConfSchema class LoadCsvNode(Node): def ports_setup(self): input_ports = {} output_ports = { 'df_out': { PortsSpecSchema.port_type: cudf.DataFrame } } return NodePorts(inports=input_ports, outports=output_ports) def conf_schema(self): json = { "title": "Load stock data", "type": "object", "properties": { "csvfile": { "type": "string", "description": "csv tick data" }, "17assets": { "type": "boolean", "description": "17 assets dataset" } }, "required": ["csvfile"], } ui = { "csvfile": {"ui:widget": "CsvFileSelector"} } return ConfSchema(json=json, ui=ui) def init(self): pass def meta_setup(self): df_out_10 = { 'date': 'date', 'AAA': 'float64', 'BBB': 'float64', 'CCC': 'float64', 'DDD': 'float64', 'EEE': 'float64', 'FFF': 'float64', 'GGG': 'float64', 'HHH': 'float64', 'III': 'float64', 'JJJ': 'float64', } df_out_17 = { 'date': 'date', 'BZA Index (Equities)': 'float64', 'CLA Comdty (Commodities)': 'float64', 'CNA Comdty (Fixed Income)': 'float64', 'ESA Index (Equities)': 'float64', 'G A Comdty (Fixed Income)': 'float64', 'GCA Comdty (Commodities)': 'float64', 'HIA Index (Equities)': 'float64', 'NKA Index (Equities)': 'float64', 'NQA Index (Equities)': 'float64', 'RXA Comdty (Fixed Income)': 'float64', 'SIA Comdty (Commodities)': 'float64', 'SMA Index (Equities)': 'float64', 'TYA Comdty (Fixed Income)': 'float64', 'VGA Index (Equities)': 'float64', 'XMA Comdty (Fixed Income)': 'float64', 'XPA Index (Equities)': 'float64', 'Z A Index (Equities)': 'float64', } assets_17 = self.conf.get('17assets', False) columns_out = { } columns_out['df_out'] = df_out_17 if assets_17 else df_out_10 return MetaData(inports={}, outports=columns_out) def process(self, inputs): import dask.distributed try: client = dask.distributed.client.default_client() except ValueError: from dask_cuda import LocalCUDACluster cluster = LocalCUDACluster() from dask.distributed import Client client = Client(cluster) # noqa print('start new Cluster') filename = get_file_path(self.conf['csvfile']) df = cudf.read_csv(filename, parse_dates=[0]) df.columns = ['date']+[c for c in df.columns][1:] output = {} if self.outport_connected('df_out'): output.update({'df_out': df}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/loadCsvNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import ConfSchema, PortsSpecSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from greenflow.dataframe_flow.metaSpec import MetaDataSchema from greenflow.dataframe_flow import Node from dask.dataframe import DataFrame as DaskDataFrame class RSquaredNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.INPUT_PORT_NAME = 'in' self.OUTPUT_PORT_NAME = 'out' port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame" ] }, } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "builtins.float" }, } meta_inports = { self.INPUT_PORT_NAME: {} } meta_outports = { self.OUTPUT_PORT_NAME: { MetaDataSchema.META_OP: MetaDataSchema.META_OP_ADDITION, MetaDataSchema.META_REF_INPUT: self.INPUT_PORT_NAME, MetaDataSchema.META_DATA: {} } } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): json = { "title": "Compute the R-squared score for regression problems", "type": "object", "properties": { "columns": { "type": "array", "items": { "type": "string" }, "description": """Two columns used to compute the R-squared score""", "minItems": 2, "maxItems": 2 } }, "required": ["columns"] } input_meta = self.get_input_meta() if self.INPUT_PORT_NAME in input_meta: col_from_inport = input_meta[self.INPUT_PORT_NAME] enums = [col for col in col_from_inport.keys()] json['properties']['columns']['items']['enum'] = enums ui = {} return ConfSchema(json=json, ui=ui) else: ui = { "column": {"ui:widget": "text"} } return ConfSchema(json=json, ui=ui) def process(self, inputs): df = inputs[self.INPUT_PORT_NAME] # df = df.drop('datetime', axis=1) output = {} subdf = df[self.conf['columns']] if isinstance(subdf, DaskDataFrame): result = subdf.corr().compute().values[0, 1]**2 else: result = subdf.corr().values[0, 1]**2 output.update({self.OUTPUT_PORT_NAME: result.item()}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/rSquaredNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import ConfSchema, PortsSpecSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from greenflow.dataframe_flow import Node from .kernels import compute_cov_distance import cupy import cudf class DistanceNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.delayed_process = True self.infer_meta = False self.INPUT_PORT_NAME = 'in' self.COV_DF = 'cov_df' self.MEAN_DF = 'mean_df' self.STD_DF = 'std_df' self.CORR_DF = 'corr_df' self.DISTANCE_DF = 'distance_df' port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] } } port_outports = { self.MEAN_DF: { port_type: "${port:in}" }, self.STD_DF: { port_type: "${port:in}" }, self.COV_DF: { port_type: "${port:in}" }, self.CORR_DF: { port_type: "${port:in}" }, self.DISTANCE_DF: { port_type: "${port:in}" } } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) def update(self): TemplateNodeMixin.update(self) meta_outports = self.template_meta_setup().outports meta_inports = self.template_meta_setup().inports sub_dict = { 'year': 'int16', 'month': 'int16', 'sample_id': 'int64', } required = { "date": "datetime64[ns]", } required.update(sub_dict) meta_inports[self.INPUT_PORT_NAME] = required json_cov = {} json_dis = {} json_mean = {} json_corr = {} json_std = {} input_meta = self.get_input_meta() if self.INPUT_PORT_NAME in input_meta: assets = len(input_meta[self.INPUT_PORT_NAME]) - 4 for i in range(assets*assets): json_cov[i] = 'float64' for i in range(assets): json_mean[i] = 'float64' json_std[i] = 'float64' for i in range(assets*(assets-1)//2): json_dis[i] = 'float64' json_corr[i] = 'float64' json_cov.update(sub_dict) json_dis.update(sub_dict) json_mean.update(sub_dict) json_std.update(sub_dict) json_corr.update(sub_dict) meta_outports[self.MEAN_DF] = json_mean meta_outports[self.STD_DF] = json_std meta_outports[self.COV_DF] = json_cov meta_outports[self.CORR_DF] = json_corr meta_outports[self.DISTANCE_DF] = json_dis self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def conf_schema(self): json = { "title": "Compute the Distance Matrix and Cov df", "type": "object", "properties": { "window": { 'type': "integer", "title": "Window size", "description": """the number of months used to compute the distance and vairance""" } }, "required": ["window"], } ui = { } return ConfSchema(json=json, ui=ui) def process(self, inputs): df = inputs[self.INPUT_PORT_NAME] all_sample_ids = df['sample_id'].unique() total_samples = len(all_sample_ids) window = self.conf['window'] means, cov, distance, all_dates = compute_cov_distance(total_samples, df, window=window) total_samples, num_months, assets, assets = cov.shape months_id = all_dates.dt.year*12 + (all_dates.dt.month-1) months_id = months_id - months_id.min() mid = (cupy.arange(months_id.max() + 1) + (all_dates.dt.month - 1)[0])[window:] minyear = all_dates.dt.year.min() if len(mid) == 0: mid = cupy.array([0]) months = mid % 12 years = mid // 12 + minyear output = {} # print(num_months, len(mid)) if self.outport_connected(self.MEAN_DF): df_mean = cudf.DataFrame( means.reshape(total_samples*num_months, -1)) df_mean['year'] = cupy.concatenate( [years]*total_samples).astype(cupy.int16) df_mean['month'] = cupy.concatenate( [months]*total_samples).astype(cupy.int16) df_mean['sample_id'] = cupy.repeat(cupy.arange( total_samples) + all_sample_ids.min(), len(mid)) output.update({self.MEAN_DF: df_mean}) if self.outport_connected(self.STD_DF): data_ma = cov.reshape(total_samples*num_months, assets, assets) diagonzied = cupy.diagonal(data_ma, 0, 1, 2) # get var diagonzied = cupy.sqrt(diagonzied) # get std df_std = cudf.DataFrame(diagonzied) df_std['year'] = cupy.concatenate( [years]*total_samples).astype(cupy.int16) df_std['month'] = cupy.concatenate( [months]*total_samples).astype(cupy.int16) df_std['sample_id'] = cupy.repeat(cupy.arange( total_samples) + all_sample_ids.min(), len(mid)) output.update({self.STD_DF: df_std}) if self.outport_connected(self.COV_DF): df_cov = cudf.DataFrame(cov.reshape(total_samples*num_months, -1)) df_cov['year'] = cupy.concatenate( [years]*total_samples).astype(cupy.int16) df_cov['month'] = cupy.concatenate( [months]*total_samples).astype(cupy.int16) df_cov['sample_id'] = cupy.repeat(cupy.arange( total_samples) + all_sample_ids.min(), len(mid)) output.update({self.COV_DF: df_cov}) if self.outport_connected(self.CORR_DF): dis_ma = distance.reshape(total_samples*num_months, -1) dis_ma = 1 - 2.0 * dis_ma df_corr = cudf.DataFrame(dis_ma) df_corr['year'] = cupy.concatenate( [years]*total_samples).astype(cupy.int16) df_corr['month'] = cupy.concatenate( [months]*total_samples).astype(cupy.int16) df_corr['sample_id'] = cupy.repeat(cupy.arange( total_samples) + all_sample_ids.min(), len(mid)) output.update({self.CORR_DF: df_corr}) if self.outport_connected(self.DISTANCE_DF): df_dis = cudf.DataFrame(distance.reshape(total_samples*num_months, -1)) df_dis['year'] = cupy.concatenate( [years]*total_samples).astype(cupy.int16) df_dis['month'] = cupy.concatenate( [months]*total_samples).astype(cupy.int16) df_dis['sample_id'] = cupy.repeat(cupy.arange( total_samples) + all_sample_ids.min(), len(mid)) output.update({self.DISTANCE_DF: df_dis}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/distanceNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import Node from greenflow.dataframe_flow import PortsSpecSchema from greenflow.dataframe_flow import ConfSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from collections import OrderedDict class RawDataNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.INPUT_PORT_NAME = 'in' self.OUTPUT_PORT_NAME = 'out' port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame" ] }, } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:in}" }, } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) def conf_schema(self): json = { "title": "Pass along the raw dataframe dataframe", "type": "object", "properties": { }, } ui = { } return ConfSchema(json=json, ui=ui) def update(self): TemplateNodeMixin.update(self) meta_outports = self.template_meta_setup().outports meta_inports = self.template_meta_setup().inports required = { "date": "date" } input_meta = self.get_input_meta() json = OrderedDict() if self.INPUT_PORT_NAME in input_meta: assets = len(input_meta[self.INPUT_PORT_NAME]) - 1 for i in range(assets): json[i] = 'float64' json['date'] = "datetime64[ns]" json['sample_id'] = 'int64' json['year'] = 'int16' json['month'] = 'int16' meta_outports[self.INPUT_PORT_NAME] = required meta_outports[self.OUTPUT_PORT_NAME] = json self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def _process(self, df, partition_id): all_dates = df['date'] cols = list(df.columns) cols.remove('date') df = df[cols] df.columns = list(range(len(df.columns))) df['date'] = all_dates df['sample_id'] = partition_id df['year'] = df['date'].dt.year df['month'] = df['date'].dt.month - 1 return df def process(self, inputs): df = inputs[self.INPUT_PORT_NAME] # df = df.drop('datetime', axis=1) output = {} offset = self.conf.get('offset', 0) out_df = self._process(df, offset) output.update({self.OUTPUT_PORT_NAME: out_df}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/rawDataNode.py
""" //////////////////////////////////////////////////////////////////////////// // // Copyright (C) NVIDIA Corporation. All rights reserved. // // NVIDIA Sample Code // // Please refer to the NVIDIA end user license agreement (EULA) associated // with this source code for terms and conditions that govern your use of // this software. Any use, reproduction, disclosure, or distribution of // this software and related documentation outside the terms of the EULA // is strictly prohibited. // //////////////////////////////////////////////////////////////////////////// """ from greenflow.dataframe_flow import ConfSchema, PortsSpecSchema from greenflow.dataframe_flow.template_node_mixin import TemplateNodeMixin from greenflow.dataframe_flow import Node from .kernels import get_drawdown import cupy import cudf class MaxDrawdownNode(TemplateNodeMixin, Node): def init(self): TemplateNodeMixin.init(self) self.delayed_process = True self.infer_meta = False self.INPUT_PORT_NAME = 'logreturn_df' self.OUTPUT_PORT_NAME = "out" port_type = PortsSpecSchema.port_type port_inports = { self.INPUT_PORT_NAME: { port_type: [ "pandas.DataFrame", "cudf.DataFrame", "dask_cudf.DataFrame", "dask.dataframe.DataFrame" ] } } port_outports = { self.OUTPUT_PORT_NAME: { port_type: "${port:logreturn_df}" }, } self.template_ports_setup(in_ports=port_inports, out_ports=port_outports) def conf_schema(self): json = { "title": "Compute the Maximum Drawdown Matrix Dataframe", "type": "object", "properties": { "window": { 'type': "integer", "title": "Window size", "description": """the number of months used to compute the distance and vairance""" }, "negative": { 'type': "boolean", "title": "Negative return", "description": """Compute max drawdown on negative return""", "default": False } }, "required": ["window"], } ui = { } return ConfSchema(json=json, ui=ui) def update(self): TemplateNodeMixin.update(self) meta_outports = self.template_meta_setup().outports meta_inports = self.template_meta_setup().inports sub_dict = { 'year': 'int16', 'month': 'int16', 'sample_id': 'int64', } required = { "date": "datetime64[ns]", } required.update(sub_dict) meta_inports[self.INPUT_PORT_NAME] = required json_drawdown = {} input_meta = self.get_input_meta() if self.INPUT_PORT_NAME in input_meta: assets = len(input_meta[self.INPUT_PORT_NAME]) - 4 for i in range(assets): json_drawdown[i] = 'float64' json_drawdown.update(sub_dict) meta_outports[self.OUTPUT_PORT_NAME] = json_drawdown self.template_meta_setup( in_ports=meta_inports, out_ports=meta_outports ) def process(self, inputs): df = inputs[self.INPUT_PORT_NAME] all_sample_ids = df['sample_id'].unique() total_samples = len(all_sample_ids) window = self.conf['window'] negative = self.conf.get("negative", False) drawdown, all_dates = get_drawdown(df, total_samples, negative=negative, window=window) total_samples, num_months, assets = drawdown.shape months_id = all_dates.dt.year*12 + (all_dates.dt.month-1) months_id = months_id - months_id.min() mid = (cupy.arange(months_id.max() + 1) + (all_dates.dt.month - 1)[0])[window:] minyear = all_dates.dt.year.min() if len(mid) == 0: mid = cupy.array([0]) months = mid % 12 years = mid // 12 + minyear output = {} df_drawdown = cudf.DataFrame( drawdown.reshape(total_samples*num_months, -1)) df_drawdown['year'] = cupy.concatenate( [years]*total_samples).astype(cupy.int16) df_drawdown['month'] = cupy.concatenate( [months]*total_samples).astype(cupy.int16) df_drawdown['sample_id'] = cupy.repeat(cupy.arange( total_samples) + all_sample_ids.min(), len(mid)) output.update({self.OUTPUT_PORT_NAME: df_drawdown}) return output
fsi-samples-main
gQuant/plugins/hrp_plugin/greenflow_hrp_plugin/maxDrawdownNode.py