python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
import torch from nemo.utils import logging from rdkit import Chem from pysmilesutils.augment import SMILESAugmenter from typing import List import numpy as np import math from nemo_chem.tokenizer import MolEncTokenizer import time __all__ = ['PrepareDataset'] class PrepareDataset: def __init__(self, tokenizer: MolEncTokenizer, seq_length: int, pad_size_divisible_by_8: bool, **kwargs): self.tokenizer = tokenizer self.seq_length = seq_length self.pad_size_divisible_by_8 = pad_size_divisible_by_8 def _check_seq_len(self, tokens): """ Warn user and shorten sequence if the tokens are too long, otherwise return original Args: tokens (List[List[str]]): List of token sequences mask (List[List[int]]): List of mask sequences Returns: tokens (List[List[str]]): List of token sequences (shortened, if necessary) mask (List[List[int]]): List of mask sequences (shortened, if necessary) """ seq_len = max([len(ts) for ts in tokens]) if seq_len > self.seq_length: tokens_short = [ts[:self.seq_length] for ts in tokens] return tokens_short return tokens def _canonicalize_smile(self, smile): mol = Chem.MolFromSmiles(smile) canon_smile = Chem.MolToSmiles(mol, canonical=True) return canon_smile def convert_tokens_to_smiles(self, tokens, canonical: True): """Take in a token array and convert it back to a canonicalized smile""" smiles = self.tokenizer.detokenize(tokens) if canonical: canon_smiles = [self._canonicalize_smile(smile) for smile in smiles] return canon_smiles return smiles def _pad_seqs(self, seqs, pad_token): pad_length = max([len(seq) for seq in seqs]) if self.pad_size_divisible_by_8: pad_length = int(math.ceil(pad_length/8) * 8) padded = [np.append(seq, np.array([pad_token] * (pad_length - len(seq)))) for seq in seqs] masks = [([1] * len(seq)) + ([0] * (pad_length - len(seq))) for seq in seqs] # 1/True = Active, 0/False = Inactive return padded, masks def _prepare_tokens(self, token_ids, canonicalize: bool = False): """Prepare tokens for encoder or decoder from batch of input SMILES strings Args: batch (List[str]): Batch of input SMILES strings tokenizer: Tokenizer instantiation. mask (bool, optional): Mask decoder tokens. Defaults to False. canonicalize (bool, optional): Canonicalize input SMILES. Defaults to False. smiles_augmenter (optional): Function to augment SMILES. Defaults to None. Returns: dict: token output """ tokens = self.tokenizer.convert_ids_to_tokens(token_ids) #canonicalize all ids canon_target = self.convert_tokens_to_smiles(tokens, canonical=False) # pad and optionally mask the tokens token_ids = self._check_seq_len(token_ids) token_output = { "token_ids": token_ids, "target_smiles": canon_target } return token_output def collate_fn(self, batch: List[np.array], label_pad: int = -1): encoder_tokens = self._prepare_tokens(batch, canonicalize=False) enc_token_ids, enc_pad_mask = self._pad_seqs(encoder_tokens['token_ids'], self.tokenizer.pad_id) enc_token_ids = torch.tensor(enc_token_ids, dtype=torch.int64) #converting a list into torch tensor is very slow, convert to np.array first enc_pad_mask = torch.tensor(enc_pad_mask, dtype=torch.int64) decoder_tokens = self._prepare_tokens(batch, canonicalize=False) label_ids = [sample + [self.tokenizer.eos_id] for sample in decoder_tokens['token_ids']] # assign label_ids before adding bos_id to decoder dec_token_ids = [[self.tokenizer.bos_id] + sample for sample in decoder_tokens['token_ids']] dec_token_ids, dec_pad_mask = self._pad_seqs(dec_token_ids, self.tokenizer.pad_id) dec_token_ids = torch.tensor(dec_token_ids, dtype=torch.int64) dec_pad_mask = torch.tensor(dec_pad_mask, dtype=torch.int64) label_token_ids, loss_mask = self._pad_seqs(label_ids, self.tokenizer.pad_id) label_token_ids = torch.tensor(label_token_ids, dtype=torch.int64) loss_mask = torch.tensor(loss_mask, dtype=torch.int64) label_token_ids[~loss_mask.to(torch.bool)] = label_pad collate_output = { "text_enc": enc_token_ids, "enc_mask": enc_pad_mask, "text_dec": dec_token_ids, "dec_mask": dec_pad_mask, 'labels': label_token_ids, 'loss_mask': loss_mask, 'target_smiles': encoder_tokens['target_smiles']} # smiles strings return collate_output
MegaMolBART-dev
nemo_chem/data/prepare_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .augment import * from .molecule_binary_dataset import * from .csv_dataset import * from .prepare_dataset import * from .utils import * from .preprocess.preprocess import * from .preprocess.csv_to_binary import *
MegaMolBART-dev
nemo_chem/data/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from nemo.utils import logging from rdkit import Chem import math from pysmilesutils.augment import SMILESAugmenter from typing import List import numpy as np import math import random from nemo.collections.common.tokenizers.char_tokenizer import TokenizerSpec __all__ = ['MoleculeEnumeration'] # FIXME: apply masking on ids instead of tokens class MoleculeEnumeration(object): def __init__(self, tokenizer: TokenizerSpec, seq_length: int, encoder_augment: bool, encoder_mask: bool, decoder_augment: bool, decoder_mask: bool, canonicalize_input: bool, pad_size_divisible_by_8: bool, mask_scheme: str, mask_prob: float, span_lambda: float, **kwargs): self.tokenizer = tokenizer self.seq_length = seq_length self.encoder_augment = encoder_augment self.encoder_mask = encoder_mask self.decoder_augment = decoder_augment self.decoder_mask = decoder_mask self.canonicalize_input = canonicalize_input self.pad_size_divisible_by_8 = pad_size_divisible_by_8 # workaround for CUDA alignment bug self.mask_scheme = mask_scheme self.mask_prob = mask_prob self.span_lambda = span_lambda # self.aug = CanonicalSMILESAugmenter().randomize_mol_restricted def _smiles_augmeter_func(self, smiles: str, augment_data: bool, canonicalize_input: bool): """Regularize SMILES by coverting to RDKit mol objects and back Args: smiles (str): Input SMILES from dataset canonicalize_input (bool, optional): Canonicalize by default. Defaults to False. smiles_augmenter: Function to augment/randomize SMILES. Defaults to None """ mol = Chem.MolFromSmiles(smiles) canon_smiles = Chem.MolToSmiles(mol, canonical=True) if canonicalize_input else smiles if augment_data: # aug_mol = self.aug(mol) atom_order = list(range(mol.GetNumAtoms())) np.random.shuffle(atom_order) aug_mol = Chem.RenumberAtoms(mol, atom_order) # TODO how to use PySMILESutils for this # There is a very rare possibility that RDKit will not be able to generate # the SMILES for the augmented mol. In this case we just use the canonical # mol to generate the SMILES try: aug_smiles = Chem.MolToSmiles(aug_mol, canonical=False) except RuntimeError: logging.info(f'Could not generate smiles for {smiles} after augmenting. Forcing canonicalization') aug_smiles = canon_smiles if canonicalize_input else Chem.MolToSmiles(mol, canonical=True) else: aug_smiles = Chem.MolToSmiles(mol, canonical=False) assert len(aug_smiles) > 0, AssertionError('Augmented SMILES string is empty') assert len(canon_smiles) > 0, AssertionError('Canonical SMILES string is empty') return aug_smiles, canon_smiles def _check_seq_len(self, tokens: List[List[str]], mask: List[List[int]]): """ Warn user and shorten sequence if the tokens are too long, otherwise return original Args: tokens (List[List[str]]): List of token sequences mask (List[List[int]]): List of mask sequences Returns: tokens (List[List[str]]): List of token sequences (shortened, if necessary) mask (List[List[int]]): List of mask sequences (shortened, if necessary) """ seq_len = max([len(ts) for ts in tokens]) if seq_len > self.seq_length: tokens_short = [ts[:self.seq_length] for ts in tokens] mask_short = [ms[:self.seq_length] for ms in mask] return (tokens_short, mask_short) return (tokens, mask) def _prepare_tokens(self, batch: List[str], mask_data: bool = False): """Prepare tokens for encoder or decoder from batch of input SMILES strings Args: batch (List[str]): Batch of input SMILES strings augment_data (bool): Augment SMILES mask_data (bool, optional): Mask decoder tokens. Defaults to False. Returns: dict: token output """ # Tokenize with optional masking, padding is done later due to differences in encoder/decoder bos/eos tokens token_output = self.tokenize(batch, mask=mask_data) if mask_data: tokens = token_output['masked_tokens'] mask = token_output['token_masks'] else: tokens = token_output['original_tokens'] mask = [[True] * len(ts) for ts in tokens] # 1/True = Active, 0/False = Inactive # Verify sequence length tokens, mask = self._check_seq_len(tokens, mask) token_output = { "tokens": tokens, "mask": mask } return token_output def _pad_seqs(self, seqs, pad_token): # TODO: switch to torch.nn.utils.rnn.pad_sequence pad_length = max([len(seq) for seq in seqs]) if self.pad_size_divisible_by_8: pad_length = int(math.ceil(pad_length/8) * 8) padded = [seq + ([pad_token] * (pad_length - len(seq))) for seq in seqs] masks = [([1] * len(seq)) + ([0] * (pad_length - len(seq))) for seq in seqs] # 1/True = Active, 0/False = Inactive return padded, masks def collate_fn(self, batch: List[str], label_pad: int = -1): """Collate function for NeMo MegaMolBART. Format of data has been altered for NeMo per 'NB' comments. This code should be cleaned up and validated once new tokenizer from NeMo is incorporated.""" # Dimensions required by NeMo: [batch, sequence + padding] # Encoder encoder_smiles_list = [self._smiles_augmeter_func(smiles, augment_data=self.encoder_augment, canonicalize_input=self.canonicalize_input) for smiles in batch] encoder_smiles = [x[0] for x in encoder_smiles_list] canon_targets = [x[1] for x in encoder_smiles_list] encoder_dict = self._prepare_tokens(encoder_smiles, mask_data=self.encoder_mask) encoder_tokens = encoder_dict['tokens'] # TODO boolean masks are never used from this function -- remove enc_token_ids = [self.tokenizer.token_to_ids(t) for t in encoder_tokens] enc_token_ids, encoder_mask = self._pad_seqs(enc_token_ids, self.tokenizer.pad_id) enc_token_ids = torch.tensor(enc_token_ids, dtype=torch.int64) encoder_mask = torch.tensor(encoder_mask, dtype=torch.int64) # Decoder if self.decoder_augment: decoder_smiles_list = [self._smiles_augmeter_func(smiles, augment_data=self.decoder_augment, canonicalize_input=False) for smiles in encoder_smiles] decoder_smiles = [x[0] for x in decoder_smiles_list] else: decoder_smiles = encoder_smiles decoder_dict = self._prepare_tokens(decoder_smiles, mask_data=self.decoder_mask) decoder_tokens = decoder_dict['tokens'] dec_token_ids = [self.tokenizer.token_to_ids(t) for t in decoder_tokens] label_ids = [sample + [self.tokenizer.eos_id] for sample in dec_token_ids] # assign label_ids before adding bos_id to decoder dec_token_ids = [[self.tokenizer.bos_id] + sample for sample in dec_token_ids] dec_token_ids, decoder_mask = self._pad_seqs(dec_token_ids, self.tokenizer.pad_id) dec_token_ids = torch.tensor(dec_token_ids, dtype=torch.int64) decoder_mask = torch.tensor(decoder_mask, dtype=torch.int64) label_token_ids, loss_mask = self._pad_seqs(label_ids, self.tokenizer.pad_id) label_token_ids = torch.tensor(label_token_ids, dtype=torch.int64) loss_mask = torch.tensor(loss_mask, dtype=torch.int64) label_token_ids[~loss_mask.to(torch.bool)] = label_pad collate_output = {'text_enc': enc_token_ids, 'enc_mask': encoder_mask, 'text_dec': dec_token_ids, 'dec_mask': decoder_mask, 'labels': label_token_ids, 'loss_mask': loss_mask, 'target_smiles': canon_targets} # smiles strings return collate_output def tokenize(self, sents1, mask=False): # TODO this function needs cleanup tokens = [self.tokenizer.text_to_tokens(s) for s in sents1] m_tokens, token_masks = self.mask_tokens(tokens, empty_mask=not mask) output = {} output["original_tokens"] = tokens if mask: output["masked_tokens"] = m_tokens output["token_masks"] = token_masks return output def mask_tokens(self, tokens, empty_mask=False): if empty_mask: mask = [[True] * len(ts) for ts in tokens] return tokens, mask masked_tokens = [] token_masks = [] for ts in tokens: # FIXME: add config # if self.mask_scheme == "replace": # masked, token_mask = self._mask_replace(ts) # elif self.mask_scheme == "span": masked, token_mask = self._mask_span(ts) # else: # raise ValueError(f"Unrecognised mask scheme: {self.mask_scheme}") masked_tokens.append(masked) token_masks.append(token_mask) return masked_tokens, token_masks def _mask_replace(self, ts): mask_bools = [True, False] weights = [self.mask_prob, 1 - self.mask_prob] token_mask = random.choices(mask_bools, weights=weights, k=len(ts)) masked = [self._mask_token(ts[i]) if m else ts[i] for i, m in enumerate(token_mask)] return masked, token_mask def _mask_span(self, ts): curr_token = 0 masked = [] token_mask = [] mask_bools = [True, False] weights = [self.mask_prob, 1 - self.mask_prob] sampled_mask = random.choices(mask_bools, weights=weights, k=len(ts)) while curr_token < len(ts): # If mask, sample from a poisson dist to get length of mask if sampled_mask[curr_token]: mask_len = torch.poisson(torch.tensor(self.span_lambda)).long().item() masked.append(self.tokenizer.mask_token) token_mask.append(True) curr_token += mask_len # Otherwise don't mask else: masked.append(ts[curr_token]) token_mask.append(False) curr_token += 1 return masked, token_mask def _mask_token(self, token): # FIXME: not working rand = random.random() if rand < self.show_mask_token_prob: return self.tokenizer.mask_token elif rand < self.show_mask_token_prob + ((1 - self.show_mask_token_prob) / 2): token_idx = random.choice(self.chem_token_idxs) return self.decode_vocab[token_idx] else: return token
MegaMolBART-dev
nemo_chem/data/augment.py
# coding=utf-8 import os import re import math import mmap from typing import Optional from dataclasses import dataclass import torch from nemo.core import Dataset, IterableDataset from nemo.core.classes.dataset import DatasetConfig from nemo.utils import logging from nemo.collections.nlp.data.language_modeling.megatron.indexed_dataset import make_dataset import time __all__ = ['MoleculeBinaryDatasetConfig', 'MoleculeBinaryDataset'] @dataclass class MoleculeBinaryDatasetConfig(DatasetConfig): filepath: str = 'data.csv' micro_batch_size: int = 1 use_iterable: bool = False map_data: bool = False encoder_augment: bool = True encoder_mask: bool = False decoder_augment: bool = False canonicalize_input: bool = False metadata_path: Optional[str] = None num_samples: Optional[int] = None drop_last: bool = False shuffle: bool = False num_workers: Optional[int] = None pin_memory: bool = True # TODO: remove this if value is fixed class MoleculeBinaryABCDataset(): # TODO should inheret from MegatronDataset """Molecule base dataset that reads tokenized data from binarized input files.""" def __init__(self, filepath: str, metadata_path: str = None, num_samples: int = None, map_data: bool = False): """ Args: filepath (str): path to dataset file with unmasked tokenized smiles """ self.filepath = filepath self._cache = None def __len__(self): return self.len def _initialize_file(self): start_time = time.time() self.indexed_dataset = make_dataset(self.filepath,"mmap", skip_warmup=False) self.len = self.indexed_dataset.sizes.shape[0] assert self.indexed_dataset.sizes.shape[0] == self.indexed_dataset.doc_idx[-1] logging.info(' > finished creating indexed dataset in {:4f} ' 'seconds'.format(time.time() - start_time)) logging.info(' > indexed dataset stats:') logging.info(' number of documents: {}'.format(self.indexed_dataset.doc_idx.shape[0] - 1)) logging.info(' number of sentences: {}'.format(self.indexed_dataset.sizes.shape[0])) def __exit__(self): if self.map_data: self.fh.close() class MoleculeBinaryDataset(Dataset, MoleculeBinaryABCDataset): """Dataset that reads GPU-specific portion of data into memory from Binary file""" def __init__(self, filepath: str, metadata_path: str = None, num_samples: int = None, map_data: bool = False, **kwargs): super().__init__(filepath=filepath, metadata_path=metadata_path, num_samples=num_samples, map_data=map_data) self._initialize_file() def __getitem__(self, idx): st = time.time() if torch.is_tensor(idx): idx = idx.item() return self.indexed_dataset.get(idx)
MegaMolBART-dev
nemo_chem/data/molecule_binary_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from enum import Enum import re import braceexpand import os from copy import deepcopy from omegaconf import DictConfig, open_dict import torch.utils.data as pt_data from pytorch_lightning.trainer.trainer import Trainer from nemo.utils import logging from .csv_dataset import MoleculeCsvDataset from .molecule_binary_dataset import MoleculeBinaryDataset __all__ = ['DatasetTypes', 'expand_dataset_paths', 'build_train_valid_test_datasets'] class DatasetTypes(Enum): zinc_csv = 0 def expand_dataset_paths(filepath: str, ext: str) -> List[str]: """Expand dataset paths from braces""" filepath = filepath + ext if ext else filepath # TODO this should eventually be moved to a Nemo fileutils module or similar filepath = re.sub(r"""\(|\[|\<|_OP_""", '{', filepath) # replaces '(', '[', '<' and '_OP_' with '{' filepath = re.sub(r"""\)|\]|\>|_CL_""", '}', filepath) # replaces ')', ']', '>' and '_CL_' with '}' dataset_paths = list(braceexpand.braceexpand(filepath)) return dataset_paths def check_paths_exist(dataset_paths, dataset_format): """Check that the expanded dataset paths are valid and they exist.""" errors = [] for filepath in dataset_paths: if dataset_format == "csv": if not os.path.exists(filepath): errors.append(filepath) if dataset_format == "bin": binfile = filepath + ".bin" if not os.path.exists(binfile): errors.append(binfile) return errors def _build_train_valid_test_datasets( cfg: DictConfig, trainer: Trainer, num_samples: int, filepath: str, metadata_path: str, dataset_format: str ): # TODO num_samples is currently not used cfg = deepcopy(cfg) with open_dict(cfg): cfg['metadata_path'] = metadata_path # Get datasets and load data logging.info(f'Loading data from {filepath}') dataset_paths = expand_dataset_paths(filepath, ".csv") if dataset_format == "csv" else expand_dataset_paths(filepath, None) errors = check_paths_exist(dataset_paths, dataset_format) assert len(errors) == 0, "Following files do not exist %s" % ' '.join(errors) logging.info(f'Loading data from {dataset_paths}') dataset_list = [] if dataset_format == "csv": dataset = MoleculeCsvDataset(dataset_paths=dataset_paths, cfg=cfg) elif dataset_format == "bin": for path in dataset_paths: data = MoleculeBinaryDataset(filepath=path, cfg=cfg, trainer=trainer, num_samples=num_samples) dataset_list.append(data) num_samples -= len(data) if num_samples < 1: break if len(dataset_list) == 1: dataset = dataset_list[0] else: dataset = pt_data.ConcatDataset(dataset_list) else: raise ValueError("Unrecognized data format. Expected csv or bin.") return dataset def build_train_valid_test_datasets( cfg: DictConfig, trainer: Trainer, train_valid_test_num_samples: List[int] ): # TODO metadata_file is currently not used cfg = deepcopy(cfg) with open_dict(cfg): dataset_path = cfg.pop('dataset_path', '') # dataset = cfg.pop('dataset') metadata_file = cfg.pop('metadata_file', None) dataset_format = cfg.pop('dataset_format') ds_train = cfg.dataset.train ds_val = cfg.dataset.val ds_test = cfg.dataset.test cfg.pop('dataset') # Build individual datasets. filepath = os.path.join(dataset_path, 'train', ds_train) metadata_path = os.path.join(dataset_path, 'train', metadata_file) if metadata_file else None train_dataset = _build_train_valid_test_datasets(cfg, trainer, train_valid_test_num_samples[0], filepath, metadata_path, dataset_format) filepath = os.path.join(dataset_path, 'val', ds_val) metadata_path = os.path.join(dataset_path, 'val', metadata_file) if metadata_file else None validation_dataset = _build_train_valid_test_datasets(cfg, trainer, train_valid_test_num_samples[1], filepath, metadata_path, dataset_format) filepath = os.path.join(dataset_path, 'test', ds_test) metadata_path = os.path.join(dataset_path, 'test', metadata_file) if metadata_file else None test_dataset = _build_train_valid_test_datasets(cfg, trainer, train_valid_test_num_samples[2], filepath, metadata_path, dataset_format) return (train_dataset, validation_dataset, test_dataset)
MegaMolBART-dev
nemo_chem/data/utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import pickle from typing import Optional from dataclasses import dataclass import torch import numpy as np from nemo.core import Dataset from nemo.utils import logging from nemo.collections.nlp.data.language_modeling.text_memmap_dataset import CSVMemMapDataset try: from apex.transformer.parallel_state import get_rank_info HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False __all__ = ['MoleculeCsvDatasetConfig', 'MoleculeCsvDataset', 'DatasetFileConfig'] @dataclass class DatasetFileConfig(): train: str = None test: str = None val: str = None @dataclass class MoleculeCsvDatasetConfig(): dataset_path: str = '' dataset: DatasetFileConfig = None newline_int: int = 10 header_lines: int = 1 data_col: int = 1 data_sep: str = ',' sort_dataset_paths: bool = True # FIXME: remove unneeded config variables skip_lines: int = 0 micro_batch_size: int = 1 encoder_augment: bool = False encoder_mask: bool = False decoder_augment: bool = False decoder_mask: bool = False canonicalize_input: bool = True dataloader_type: str = 'single' drop_last: bool = False pin_memory: bool = False # must be False with CSV dataset num_workers: Optional[int] = None class MoleculeCsvDataset(CSVMemMapDataset): """ Allow per-line lazy access to multiple text files using numpy memmap. """ def __init__(self, dataset_paths, cfg, workers=None): super().__init__( dataset_paths=dataset_paths, newline_int=cfg.get('newline_int'), header_lines=cfg.get('header_lines'), # skip first N lines workers=workers, tokenizer=None, sort_dataset_paths=cfg.get('sort_dataset_paths'), data_col=cfg.get('data_col'), data_sep=cfg.get('data_sep'), )
MegaMolBART-dev
nemo_chem/data/csv_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "Preprocess megamolbart data" "Take text files as input and output tokenized data in binarized format" ##TODO Merge it with the CSV format data preprocessing script import logging import os from glob import glob from omegaconf import OmegaConf import multiprocessing import re from typing import List from rdkit import Chem import numpy as np import torch from nemo.collections.nlp.data.language_modeling.megatron import indexed_dataset from nemo.utils import logging from nemo_chem.tokenizer import MolEncTokenizer, MolEncTokenizerFromVocabFileConfig DATAFORMAT_EXT = [".csv", ".CSV"] __all__ = ['CsvToBinary'] class CsvToBinary: def __init__(self, input_dir: str, out_dir: str, config, num_enumerations, num_workers): """ input_dir: This is the directory where the CSV data exists. We support nested directory structure for input directories out_dir: Directory path to save the bin files. out_dir will mimic the same directory structure as input_dir and the output files will be named identical to the input files, but with a .bin extension num_enumerations: Number of enumerations to perform on every smile num_workers: Number of workers to use for multi-processing. """ self.input_dir = input_dir self.out_dir = out_dir self.cfg = config self.num_enumerations = num_enumerations self.num_workers = num_workers self.tokenizer = self._initialize_tokenizer() assert os.path.isdir(input_dir), "Expected --input to be a directory." self.inputfiles = [ifile for path, subdir, files in os.walk(self.input_dir) for dformat in DATAFORMAT_EXT for ifile in glob(os.path.join(path, "*" + dformat))] if len(self.inputfiles) == 0: raise FileNotFoundError('No CSV files found in folder.') else: logging.info(f'Found {len(self.inputfiles)} .csv files.') # If the destination path is not the same as where the CSVs exist, make an identical # folder structure as the input directory at the destination if self.out_dir != self.input_dir: os.makedirs(self.out_dir, exist_ok=True) os.access(self.out_dir, os.W_OK) # Create an identical folder structure in the output directory as the input dir. for path, subdir, files in os.walk(self.input_dir): subdir = path[len(self.input_dir)+1:] os.makedirs(os.path.join(self.out_dir, subdir), exist_ok=True) outbinfiles = [] outidxfiles = [] for path, subdir, files in os.walk(self.out_dir): outbinfiles = [ifile for path, subdir, files in os.walk(self.out_dir) for dformat in DATAFORMAT_EXT for ifile in glob(os.path.join(path, "*.bin"))] assert len(outbinfiles) == 0, "Found existing .bin files at the output location %s." "Cannot overwrite the existing data. Please delete and retry." % outbinfiles outidxfiles = [ifile for path, subdir, files in os.walk(self.out_dir) for dformat in DATAFORMAT_EXT for ifile in glob(os.path.join(path, "*.bin"))] assert len(outidxfiles) == 0, "Found existing .idx files at the output location %s. " "Cannot overwrite the existing data. Please delete and retry." % outidxfiles def _initialize_tokenizer(self): default_tokenizer = OmegaConf.create(MolEncTokenizerFromVocabFileConfig()) cfg_tokenizer = self.cfg.tokenizer if self.cfg.get('tokenizer', False) else default_tokenizer merge_cfg_tokenizer = OmegaConf.merge(default_tokenizer, cfg_tokenizer) if not os.path.exists(merge_cfg_tokenizer.vocab_path): raise ValueError(f'Vocab file not found at {merge_cfg_tokenizer.vocab_path}') # Initialize tokenizer tokenizer = MolEncTokenizer.from_vocab_file(**merge_cfg_tokenizer) return tokenizer def prepare_dataset(self, num_workers=25): pool = multiprocessing.Pool(self.num_workers) for inputfile in self.inputfiles: # Ignore metadata.csv files if "metadata.csv" in inputfile: continue subfolder_path = os.path.dirname(inputfile[len(self.input_dir)+1:]) ifilebasename = os.path.splitext(os.path.basename(inputfile))[0] output_file = os.path.join(self.out_dir, subfolder_path, ifilebasename + ".bin") index_file = os.path.join(self.out_dir, subfolder_path, ifilebasename + ".idx") dataset_builder = indexed_dataset.make_builder(output_file, impl="mmap", vocab_size=self.tokenizer.vocab_size) ifile = open(inputfile, "r") out_iterator = pool.imap(self._process_data, ifile, num_workers) for enc_token_ids in out_iterator: # We may return an empty list when the row doesn't match with our regex query if not enc_token_ids: continue # If num_enumerations > 0, we will have more than one element # in the list and we can't convert the list of lists into torch # tensor because they all may have different lengths. # Padding should only be done during training, so we cannot pad them here. for num, enc_token_id in enumerate(enc_token_ids): dataset_builder.add_item(torch.tensor(enc_token_id)) logging.debug(f'Created {num} canonicalized smiles.') dataset_builder.end_document() dataset_builder.finalize(index_file) def _process_data(self, line): # First column is zincID and second column is the smiles string all_smiles = [] # Ignore header # TODO: This is specific to the current AZ format. Make this a config param in future. if not (re.match('^[0-9]+', line)): return all_smiles zinc_id, smiles = line.strip().split(",") all_smiles.append(smiles) mol = Chem.MolFromSmiles(smiles) atom_order: List[int] = list(range(mol.GetNumAtoms())) num_enumerations = self.num_enumerations # NOTE: Don't increment self.num_enumerations to preserve starting value while(num_enumerations): np.random.shuffle(atom_order) aug_mol = Chem.RenumberAtoms(mol, atom_order) try: aug_smiles = Chem.MolToSmiles(aug_mol, canonical=False) if aug_smiles not in all_smiles: all_smiles.append(aug_smiles) except: # If RDKit couldn't generate augmented smile, we ignore and try again pass num_enumerations -= 1 token_output = self.tokenizer.tokenize(all_smiles, pad=False) enc_token_ids = self.tokenizer.convert_tokens_to_ids(token_output["original_tokens"]) return enc_token_ids
MegaMolBART-dev
nemo_chem/data/preprocess/csv_to_binary.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import requests import multiprocessing as mp import pandas as pd from datetime import datetime from subprocess import run from multiprocessing import Pool from functools import partial from rdkit import Chem from nemo.utils import logging MAX_LENGTH = 150 __all__ = ['Preprocess'] class Preprocess(object): def __init__(self) -> None: super().__init__() self.retry = False def _run_cmd(self, cmd, failure_error='Unexpected error while executing bash cmd'): logging.debug(f'Running cmd: {cmd}') process = run(['bash', '-c', cmd], capture_output=True, text=True) if process.returncode != 0: logging.error(failure_error) sys.exit(process.returncode) return process def _process_file(self, url, download_dir='/tmp/zinc15/raw'): filename = url.split('/')[-1] if os.path.exists(os.path.join(download_dir, filename)): logging.info(f'{url} already downloaded...') return logging.debug(f'Downloading file {filename}...') try: with requests.get(url, stream=True) as r: r.raise_for_status() tmp_filename = os.path.join(download_dir, filename + '_tmp') header = True with open(tmp_filename, 'w') as f: for line in r.iter_lines(): if header: header = False f.write("zinc_id,SMILES\n") continue line = line.decode("utf-8") splits = line.split("\t") if len(splits) < 2: continue smi, zinc_id = splits[0], splits[1] try: mol = Chem.MolFromSmiles(smi) smi = Chem.MolToSmiles(mol, canonical=True) except RuntimeError: continue if len(smi) > MAX_LENGTH: continue f.write(f"{zinc_id},{smi}\n") os.rename(tmp_filename, os.path.join(download_dir, filename)) return except requests.exceptions.HTTPError as e: if e.response.status_code == 404: logging.error(f'{url} Not found') return else: logging.error( f'Could not download file {url}: {e.response.status_code}') raise e def __processing_failure(self, e): logging.info(f'Processing failure: {e}') self.retry = True def process_files(self, links_file, pool_size=8, download_dir='/tmp/zinc15/raw'): """ Download all the files in the links file. Parameters: links_file (str): File containing links to be downloaded. pool_size (int): Number of processes to use. download_dir (str): Directory to download the files to. """ logging.info( f'Downloading files from {links_file} with poolsize {pool_size}...') os.makedirs(download_dir, exist_ok=True) with open(links_file, 'r') as f: links = list(set([x.strip() for x in f])) download_funct = partial(self._process_file, download_dir=download_dir) while True: pool = Pool(processes=pool_size) pool.map_async(download_funct, links, error_callback=self.__processing_failure) pool.close() pool.join() if self.retry: logging.info( 'Retrying to download files that failed with 503...') self.retry = False else: break def _process_split(self, datafile, output_dir='/tmp/zinc15/processed/'): filename = f'{output_dir}/split_data/{datafile}' logging.info(f'Processing file {filename}...') df = pd.read_csv(filename, header=None, names=['zinc_id', 'smiles']) recs = int(df.shape[0] * 0.01) test_df = df.sample(n=recs) df = df.drop(test_df.index) # remove test data from training data val_df = df.sample(n=recs) df = df.drop(val_df.index) # remove test data from training data df.to_csv(f'{output_dir}/train/{datafile}.csv', index=False) test_df.to_csv(f'{output_dir}/test/{datafile}.csv', index=False) val_df.to_csv(f'{output_dir}/val/{datafile}.csv', index=False) with open(f'{output_dir}/val/metadata.csv', 'a') as f: f.write(f"{datafile},{val_df.shape[0]}\n") with open(f'{output_dir}/test/metadata.csv', 'a') as f: f.write(f"{datafile},{test_df.shape[0]}\n") with open(f'{output_dir}/train/metadata.csv', 'a') as f: f.write(f"{datafile},{df.shape[0]}\n") del df del test_df del val_df def balanced_split(self, download_dir, output_dir, pool_size=8): if os.path.exists(output_dir): logging.info(f'{output_dir} already exists...') os.rename(output_dir, output_dir + datetime.now().strftime('%Y%m%d%H%M%S')) split_data = os.path.join(output_dir, 'split_data') os.makedirs(split_data, exist_ok=True) os.makedirs(os.path.join(output_dir, 'train'), exist_ok=True) os.makedirs(os.path.join(output_dir, 'test'), exist_ok=True) os.makedirs(os.path.join(output_dir, 'val'), exist_ok=True) self._run_cmd(f"cd {split_data}; tail -q -n +2 {download_dir}/** | split -d -l 10000000 -a 3", failure_error='Error while merging files') split_files = os.listdir(split_data) with open(f'{output_dir}/val/metadata.csv', 'w') as f: f.write(f"file,size\n") with open(f'{output_dir}/test/metadata.csv', 'w') as f: f.write(f"file,size\n") with open(f'{output_dir}/train/metadata.csv', 'w') as f: f.write(f"file,size\n") with Pool(processes=pool_size) as pool: split_funct = partial(self._process_split, output_dir=output_dir) pool.map(split_funct, split_files) def prepare_dataset(self, links_file='conf/model/data/ZINC-downloader.txt', download_dir='/tmp/zinc15/raw', output_dir='/tmp/zinc15/processed'): """ Download zinc15 dataset and slits it into train, valid, and test sets. Parameters: links_file (str): File containing links to be downloaded. download_dir (str): Directory to download the files to. output_dir (str): Directory to save the processed data to. """ # More than 8 cores may cause 503 errors. Please avoid larger pool size. self.process_files(links_file, pool_size=8, download_dir=download_dir) logging.info('Download complete.') self.balanced_split(download_dir, output_dir, pool_size=8)
MegaMolBART-dev
nemo_chem/data/preprocess/preprocess.py
import logging from contextlib import contextmanager from rdkit import Chem from hydra import compose, initialize from nemo_chem.models.megamolbart import NeMoMegaMolBARTWrapper log = logging.getLogger(__name__) _INFERER = None @contextmanager def load_model(inf_cfg): global _INFERER if _INFERER is None: _INFERER = NeMoMegaMolBARTWrapper(model_cfg=inf_cfg) yield _INFERER def test_smis_to_hiddens(): with initialize(config_path="../examples/chem/conf"): cfg = compose(config_name="infer") with load_model(cfg) as inferer: smis = ['c1cc2ccccc2cc1', 'COc1cc2nc(N3CCN(C(=O)c4ccco4)CC3)nc(N)c2cc1OC', 'CC(=O)C(=O)N1CCC([C@H]2CCCCN2C(=O)c2ccc3c(n2)CCN(C(=O)OC(C)(C)C)C3)CC1'] hidden_state, pad_masks = inferer.smis_to_hidden(smis) assert hidden_state is not None assert hidden_state.shape[0] == len(smis) assert hidden_state.shape[2] == inferer.cfg.max_position_embeddings assert pad_masks is not None def test_smis_to_embedding(): with initialize(config_path="../examples/chem/conf"): cfg = compose(config_name="infer") with load_model(cfg) as inferer: smis = ['c1cc2ccccc2cc1', 'COc1cc2nc(N3CCN(C(=O)c4ccco4)CC3)nc(N)c2cc1OC', 'CC(=O)C(=O)N1CCC([C@H]2CCCCN2C(=O)c2ccc3c(n2)CCN(C(=O)OC(C)(C)C)C3)CC1'] embedding = inferer.smis_to_embedding(smis) assert embedding is not None assert embedding.shape[0] == len(smis) assert embedding.shape[1] == inferer.cfg.max_position_embeddings def test_hidden_to_smis(): with initialize(config_path="../examples/chem/conf"): cfg = compose(config_name="infer") with load_model(cfg) as inferer: smis = ['c1cc2ccccc2cc1', 'COc1cc2nc(N3CCN(C(=O)c4ccco4)CC3)nc(N)c2cc1OC', 'CC(=O)C(=O)N1CCC([C@H]2CCCCN2C(=O)c2ccc3c(n2)CCN(C(=O)OC(C)(C)C)C3)CC1'] hidden_state, pad_masks = inferer.smis_to_hidden(smis) infered_smis = inferer.hidden_to_smis(hidden_state, pad_masks) log.info(f'Input SMILES and Infered: {smis}, {infered_smis}') assert(len(infered_smis) == len(smis)) for smi, infered_smi in zip(smis, infered_smis): log.info(f'Input and Infered:{smi}, {infered_smi}') input_mol = Chem.MolFromSmiles(smi) infer_mol = Chem.MolFromSmiles(infered_smi) assert input_mol is not None and infer_mol is not None canonical_smi = Chem.MolToSmiles(input_mol, canonical=True) canonical_infered_smi = Chem.MolToSmiles(infer_mol, canonical=True) log.info(f'Canonical Input and Infered: {canonical_smi}, {canonical_infered_smi}') assert(canonical_smi == canonical_infered_smi) def test_sample(): with initialize(config_path="../examples/chem/conf"): cfg = compose(config_name="infer") with load_model(cfg) as inferer: smis = ['c1cc2ccccc2cc1', 'COc1cc2nc(N3CCN(C(=O)c4ccco4)CC3)nc(N)c2cc1OC', 'CC(=O)C(=O)N1CCC([C@H]2CCCCN2C(=O)c2ccc3c(n2)CCN(C(=O)OC(C)(C)C)C3)CC1'] samples = inferer.sample(smis, num_samples=10, sampling_method='greedy-perturbate') samples = set(samples) log.info('\n'.join(smis)) log.info('\n'.join(samples)) valid_molecules = [] for smi in set(samples): isvalid = False mol = Chem.MolFromSmiles(smi) if mol: isvalid = True valid_molecules.append(smi) log.info(f'Sample: {smi}, {isvalid}') log.info('Valid Molecules' + "\n".join(valid_molecules)) log.info(f'Total samples = {len(samples)} unique samples {len(set(samples))} valids {len(valid_molecules)}') if len(valid_molecules) < len(samples) * 0.3: log.warning("TOO FEW VALID SAMPLES") assert len(valid_molecules) != 0
MegaMolBART-dev
tests/test_inference.py
# # Copyright (c) 2022, NVIDIA CORPORATION. # # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # import pytest # import random # import torch # from nemo_chem.decoder import DecodeSampler # from nemo_chem.tokenizer import MolEncTokenizer, MolEncTokenizerFromSmilesConfig # from nemo_chem.models import MegaMolBARTModel, MegatronBARTConfig # from nemo.collections.nlp.modules.common.megatron.megatron_init import initialize_model_parallel_for_nemo # # TODO cleanup model tests # # Use dummy SMILES strings # react_data = [ # "CCO.C", # "CCCl", # "C(=O)CBr" # ] # prod_data = [ # "cc", # "CCl", # "CBr" # ] # random.seed(a=1) # torch.manual_seed(1) # initialize_model_parallel_for_nemo( # world_size=1, # global_rank=0, # local_rank=0, # tensor_model_parallel_size=1, # seed=1234, # ) # TEST_MODEL_CONFIG = MegatronBARTConfig() # TEST_PERCEIVER_CONFIG = MegatronBARTConfig(encoder_type='perceiver') # @pytest.mark.skip(reason="Model tests are currently deprecated") # @pytest.fixture(params=[TEST_MODEL_CONFIG, TEST_PERCEIVER_CONFIG]) # def args(request): # _args = request.param # return _args # @pytest.mark.skip(reason="Model tests are currently deprecated") # @pytest.fixture # def tokenizer(): # cfg = MolEncTokenizerFromSmilesConfig({'smiles': react_data + prod_data}) # _tokenizer = MolEncTokenizer.from_smiles( # cfg.smiles["smiles"], cfg.regex, mask_scheme="replace") # return _tokenizer # @pytest.mark.skip(reason="Model tests are currently deprecated") # @pytest.fixture # def model(args, tokenizer, sampler): # pad_token_idx = tokenizer.vocab[tokenizer.pad_token] # vocab_size = len(tokenizer) # _model = MegatronBART(sampler, # args.encoder_type, # pad_token_idx, # vocab_size, # args.blocks_model, # args.steps_model, # args.d_model, # args.num_layers, # args.num_heads, # args.d_feedforward, # args.seq_len, # dropout=0.1) # return _model.cuda() # @pytest.mark.skip(reason="Model tests are currently deprecated") # def test_pos_emb_shape(model, sampler, tokenizer, args): # pos_embs = model._positional_embs() # assert pos_embs.shape[0] == args.seq_len # assert pos_embs.shape[1] == model.d_model # hidden size # @pytest.mark.skip(reason="Model tests are currently deprecated") # def test_construct_input_shape(model, sampler, tokenizer, args): # token_output = tokenizer.tokenize(react_data, sents2=prod_data, pad=True) # tokens = token_output["original_tokens"] # sent_masks = token_output["sentence_masks"] # token_ids = torch.tensor( # tokenizer.convert_tokens_to_ids(tokens)).transpose(0, 1).cuda() # sent_masks = torch.tensor(sent_masks).transpose(0, 1).cuda() # emb = model._construct_input(token_ids, sent_masks) # assert emb.shape[0] == max([len(ts) for ts in tokens]) # assert emb.shape[1] == 3 # assert emb.shape[2] == args.d_model # @pytest.mark.skip(reason="Model tests are currently deprecated") # def test_bart_forward_shape(model, sampler, tokenizer, args): # react_token_output = tokenizer.tokenize(react_data, mask=True, pad=True) # react_tokens = react_token_output["masked_tokens"] # react_pad_mask = react_token_output["masked_pad_masks"] # react_ids = torch.tensor(tokenizer.convert_tokens_to_ids(react_tokens)).T # react_mask = torch.tensor(react_pad_mask).T # prod_token_output = tokenizer.tokenize(prod_data, pad=True) # prod_tokens = prod_token_output["original_tokens"] # prod_pad_mask = prod_token_output["original_pad_masks"] # prod_ids = torch.tensor(tokenizer.convert_tokens_to_ids(prod_tokens)).T # prod_mask = torch.tensor(prod_pad_mask).T # batch_input = { # "encoder_input": react_ids.cuda(), # "encoder_pad_mask": react_mask.cuda(), # "decoder_input": prod_ids.cuda(), # "decoder_pad_mask": prod_mask.cuda() # } # output = model(batch_input) # model_output = output["model_output"] # token_output = output["token_output"] # exp_seq_len = 4 # From expected tokenized length of prod data # exp_batch_size = len(prod_data) # exp_dim = args.d_model # hidden_size # exp_vocab_size = len(tokenizer) # assert tuple(model_output.shape) == (exp_seq_len, exp_batch_size, exp_dim) # assert tuple(token_output.shape) == (exp_seq_len, exp_batch_size, exp_vocab_size) # @pytest.mark.skip(reason="Model tests are currently deprecated") # def test_bart_encode_shape(model, sampler, tokenizer, args): # react_token_output = tokenizer.tokenize(react_data, mask=True, pad=True) # react_tokens = react_token_output["masked_tokens"] # react_pad_mask = react_token_output["masked_pad_masks"] # react_ids = torch.tensor(tokenizer.convert_tokens_to_ids(react_tokens)).T # react_mask = torch.tensor(react_pad_mask).T # batch_input = { # "encoder_input": react_ids.cuda(), # "encoder_pad_mask": react_mask.cuda() # } # output = model.encode(batch_input) # if args.encoder_type == 'seq2seq': # exp_seq_len = 9 # From expected tokenized length of react data # elif args.encoder_type == 'perceiver': # exp_seq_len = args.steps_model # From expected num_hidden_steps of the Perceiver encoder # exp_batch_size = len(react_data) # exp_dim = args.d_model # hidden_size # assert tuple(output.shape) == (exp_seq_len, exp_batch_size, exp_dim) # @pytest.mark.skip(reason="Model tests are currently deprecated") # def test_bart_decode_shape(model, sampler, tokenizer, args): # react_token_output = tokenizer.tokenize(react_data, mask=True, pad=True) # react_tokens = react_token_output["masked_tokens"] # react_pad_mask = react_token_output["masked_pad_masks"] # react_ids = torch.tensor(tokenizer.convert_tokens_to_ids(react_tokens)).T # react_mask = torch.tensor(react_pad_mask).T # encode_input = { # "encoder_input": react_ids.cuda(), # "encoder_pad_mask": react_mask.cuda() # } # memory = model.encode(encode_input) # prod_token_output = tokenizer.tokenize(prod_data, pad=True) # prod_tokens = prod_token_output["original_tokens"] # prod_pad_mask = prod_token_output["original_pad_masks"] # prod_ids = torch.tensor(tokenizer.convert_tokens_to_ids(prod_tokens)).T # prod_mask = torch.tensor(prod_pad_mask).T # if args.encoder_type == "perceiver": # react_mask = torch.zeros( # (memory.shape[0:2]), dtype=react_mask.dtype, device=react_mask.device) # batch_input = { # "decoder_input": prod_ids.cuda(), # "decoder_pad_mask": prod_mask.cuda(), # "memory_input": memory.cuda(), # "memory_pad_mask": react_mask.cuda() # } # output = model.decode(batch_input) # exp_seq_len = 4 # From expected tokenized length of prod data # exp_batch_size = len(react_data) # exp_vocab_size = len(tokenizer) # assert tuple(output.shape) == (exp_seq_len, exp_batch_size, exp_vocab_size) # @pytest.mark.skip(reason="Model tests are currently deprecated") # def test_calc_char_acc(model, sampler, tokenizer, args): # react_token_output = tokenizer.tokenize(react_data[1:], pad=True) # react_tokens = react_token_output["original_tokens"] # react_pad_mask = react_token_output["original_pad_masks"] # target_ids = torch.tensor( # tokenizer.convert_tokens_to_ids(react_tokens)).T[1:, :] # target_mask = torch.tensor(react_pad_mask).T[1:, :] # # 9 is expected seq len of react data when padded # token_output = torch.rand([8, len(react_data[1:]), len(tokenizer)]) # """ # Expected outputs # CCCl # C(=O)CBr # Vocab: # 0 <PAD> # 3 & # 6 C # 7 O # 8 . # 9 Cl # 10 ( # 11 = # 12 ) # 13 Br # """ # # Batch element 0 # token_output[0, 0, 6] += 1 # token_output[1, 0, 6] -= 1 # token_output[2, 0, 9] += 1 # token_output[3, 0, 3] += 1 # token_output[4, 0, 0] += 1 # token_output[5, 0, 0] -= 1 # # Batch element 1 # token_output[0, 1, 6] += 1 # token_output[1, 1, 10] += 1 # token_output[2, 1, 11] += 1 # token_output[3, 1, 7] += 1 # token_output[4, 1, 12] -= 1 # token_output[5, 1, 6] += 1 # token_output[6, 1, 13] -= 1 # token_output[7, 1, 3] += 1 # batch_input = { # "target": target_ids.cuda(), # "target_pad_mask": target_mask.cuda() # } # model_output = { # "token_output": token_output.cuda() # } # token_acc = model._calc_char_acc(batch_input, model_output) # exp_token_acc = (3 + 6) / (4 + 8) # assert exp_token_acc == token_acc
MegaMolBART-dev
tests/pre_train_model_test.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import random import torch from nemo_chem.tokenizer import MolEncTokenizer, MolEncTokenizerFromSmilesConfig # Use dummy SMILES strings smiles_data = [ "CCO.Ccc", "CCClCCl", "C(=O)CBr" ] cfg = MolEncTokenizerFromSmilesConfig({'smiles': smiles_data}) example_tokens = [ ["^", "C", "(", "=", "O", ")", "unknown", "&"], ["^", "C", "C", "<SEP>", "C", "Br", "&"] ] # Setting seed here only applies when all tests run in same order, so these are now set per test SEED = 0 def test_create_vocab(): tokenizer = MolEncTokenizer.from_smiles(smiles_data, cfg.regex) expected = { "<PAD>": 0, "?": 1, "^": 2, "&": 3, "<MASK>": 4, "<SEP>": 5, "C": 6, "O": 7, ".": 8, "c": 9, "Cl": 10, "(": 11, "=": 12, ")": 13, "Br": 14 } vocab = dict(sorted(tokenizer.vocab.items(), key=lambda x: x[1])) assert expected == vocab assert len(vocab) == tokenizer.vocab_size == len(tokenizer) def test_pad_seqs_padding(): seqs = [[1,2], [2,3,4,5], []] padded, _ = MolEncTokenizer._pad_seqs(seqs, " ") expected = [[1,2, " ", " "], [2,3,4,5], [" ", " ", " ", " "]] assert padded == expected def test_pad_seqs_mask(): seqs = [[1,2], [2,3,4,5], []] _, mask = MolEncTokenizer._pad_seqs(seqs, " ") expected_mask = [[1, 1, 0, 0], [1, 1, 1, 1], [0, 0, 0, 0]] # masking is inverted with NeMo assert expected_mask == mask def test_mask_tokens_empty_mask(): tokenizer = MolEncTokenizer.from_smiles(cfg.smiles, cfg.regex) masked, token_mask = tokenizer.mask_tokens(example_tokens, empty_mask=True) expected_sum = 15 # masking is inverted with NeMo mask_sum = sum([sum(m) for m in token_mask]) assert masked == example_tokens assert expected_sum == mask_sum # Run tests which require random masking first so we get deterministic masking # NB: ordered running no longer required, this is kept for compatiiblity with previous versions @pytest.mark.order(1) def test_mask_tokens_replace(): random.seed(a=1) torch.manual_seed(SEED) tokenizer = MolEncTokenizer.from_smiles(cfg.smiles, cfg.regex, mask_prob=0.4, mask_scheme='replace') masked, token_mask = tokenizer.mask_tokens(example_tokens) expected_masks = [ [True, False, False, True, False, False, False, False], [False, False, False, True, False, False, True] ] assert expected_masks == token_mask @pytest.mark.order(3) def test_mask_tokens_span(): random.seed(a=1) torch.manual_seed(SEED) tokenizer = MolEncTokenizer.from_smiles(cfg.smiles, cfg.regex, mask_prob=0.4) masked, token_mask = tokenizer.mask_tokens(example_tokens) expected_masks = [ [True, False, False], [True, False, False, True] ] assert token_mask == expected_masks def test_convert_tokens_to_ids(): tokenizer = MolEncTokenizer.from_smiles(smiles_data[2:3], cfg.regex) expected_ids = [[2, 6, 7, 8, 9, 10, 1, 3], [2, 6, 6, 5, 6, 11, 3]] ids = tokenizer.convert_tokens_to_ids(example_tokens) assert expected_ids == ids ids = tokenizer.tokens_to_ids(example_tokens) assert expected_ids == ids def test_convert_ids_to_tokens(): tokenizer = MolEncTokenizer.from_smiles(smiles_data[2:3], cfg.regex) ids = [[2, 6, 7, 8, 9, 10, 1, 3], [2, 6, 6, 5, 6, 11, 3]] expected_tokens = [['^', 'C', '(', '=', 'O', ')', '?', '&'], ['^', 'C', 'C', '<SEP>', 'C', 'Br', '&']] tokens = tokenizer.convert_ids_to_tokens(ids) assert expected_tokens == tokens tokens = tokenizer.ids_to_tokens(ids) assert expected_tokens == tokens def test_tokenize_one_sentence(): tokenizer = MolEncTokenizer.from_smiles(cfg.smiles, cfg.regex) tokens = tokenizer.tokenize(smiles_data) # BOS/EOS no longer added in tokenizer expected = [ ["C", "C", "O", ".", "C", "c", "c"], ["C", "C", "Cl", "C", "Cl"], ["C", "(", "=", "O", ")", "C", "Br"] ] assert expected == tokens["original_tokens"] @pytest.mark.skip(reason="Sentences are not currently supported") def test_tokenize_two_sentences(): tokenizer = MolEncTokenizer.from_smiles(cfg.smiles, cfg.regex) tokens = tokenizer.tokenize(smiles_data, sents2=smiles_data) expected = [ ["^", "C", "C", "O", ".", "C", "c", "c", "<SEP>", "C", "C", "O", ".", "C", "c", "c", "&"], ["^", "C", "C", "Cl", "C", "Cl", "<SEP>", "C", "C", "Cl", "C", "Cl", "&"], ["^", "C", "(", "=", "O", ")", "C", "Br", "<SEP>", "C", "(", "=", "O", ")", "C", "Br", "&"] ] expected_sent_masks = [ ([0] * 9) + ([1] * 8), ([0] * 7) + ([1] * 6), ([0] * 9) + ([1] * 8), ] assert expected == tokens["original_tokens"] assert expected_sent_masks == tokens["sentence_masks"] @pytest.mark.skip(reason="Sentences are not currently supported") @pytest.mark.order(2) def test_tokenize_mask_replace(): random.seed(a=1) torch.manual_seed(SEED) tokenizer = MolEncTokenizer.from_smiles(cfg.smiles, cfg.regex, mask_prob=0.4, mask_scheme="replace") tokens = tokenizer.tokenize(smiles_data, sents2=smiles_data, mask=True) expected_m_tokens = [ ['^', '<MASK>', 'C', 'O', '<MASK>', 'C', 'c', 'c', '<SEP>', '<MASK>', '<MASK>', 'O', '.', '<MASK>', '<MASK>', '<MASK>', '&'], ['^', '<MASK>', 'C', 'Cl', 'C', '<MASK>', '<SEP>', 'C', '<MASK>', 'Cl', 'C', '<MASK>', '&'], ['^', '<MASK>', '(', '=', '<MASK>', '<MASK>', 'C', 'Br', '<SEP>', 'C', '(', '=', 'O', ')', '<MASK>', 'Br', '&'] ] expected_tokens = [ ['^', 'C', 'C', 'O', '.', 'C', 'c', 'c', '<SEP>', 'C', 'C', 'O', '.', 'C', 'c', 'c', '&'], ['^', 'C', 'C', 'Cl', 'C', 'Cl', '<SEP>', 'C', 'C', 'Cl', 'C', 'Cl', '&'], ['^', 'C', '(', '=', 'O', ')', 'C', 'Br', '<SEP>', 'C', '(', '=', 'O', ')', 'C', 'Br', '&'] ] assert expected_m_tokens == tokens["masked_tokens"] assert expected_tokens == tokens["original_tokens"] @pytest.mark.skip(reason="Sentences are not currently supported") @pytest.mark.order(4) def test_tokenize_mask_span(): random.seed(a=1) torch.manual_seed(SEED) tokenizer = MolEncTokenizer.from_smiles(cfg.smiles, cfg.regex, mask_prob=0.4) tokens = tokenizer.tokenize(smiles_data, sents2=smiles_data, mask=True) expected_m_tokens = [ ['^', '<MASK>', 'c', '<SEP>', '<MASK>', '<MASK>', '&'], ['^', 'C', '<MASK>', 'Cl', '<SEP>', '<MASK>', '&'], ['^', 'C', '<MASK>', 'O', '<MASK>', '<SEP>', '<MASK>', '<MASK>', 'Br', '&'] ] expected_tokens = [ ['^', 'C', 'C', 'O', '.', 'C', 'c', 'c', '<SEP>', 'C', 'C', 'O', '.', 'C', 'c', 'c', '&'], ['^', 'C', 'C', 'Cl', 'C', 'Cl', '<SEP>', 'C', 'C', 'Cl', 'C', 'Cl', '&'], ['^', 'C', '(', '=', 'O', ')', 'C', 'Br', '<SEP>', 'C', '(', '=', 'O', ')', 'C', 'Br', '&'] ] assert expected_m_tokens == tokens["masked_tokens"] assert expected_tokens == tokens["original_tokens"] assert len(tokens["masked_tokens"]) == len(tokens["token_masks"]) for ts, tms in zip(tokens["masked_tokens"], tokens["token_masks"]): assert len(ts) == len(tms) @pytest.mark.order(5) def test_tokenize_mask_span_pad(): random.seed(a=1) torch.manual_seed(SEED) tokenizer = MolEncTokenizer.from_smiles(cfg.smiles, cfg.regex, mask_prob=0.4) tokens = tokenizer.tokenize(smiles_data, mask=True, pad=True) # BOS / EOS no longer added in tokenizer expected_m_tokens = [ ['<MASK>', 'c', '<PAD>', '<PAD>'], ['C', '<MASK>', 'Cl', '<PAD>'], ['C', '<MASK>', 'O', '<MASK>'] ] expected_tokens = [ ['C', 'C', 'O', '.', 'C', 'c', 'c'], ['C', 'C', 'Cl', 'C', 'Cl', '<PAD>', '<PAD>'], ['C', '(', '=', 'O', ')', 'C', 'Br'] ] assert expected_m_tokens == tokens["masked_tokens"] assert expected_tokens == tokens["original_tokens"] assert len(tokens["masked_tokens"]) == len(tokens["token_masks"]) assert len(tokens["masked_tokens"]) == len(tokens["masked_pad_masks"]) for ts, tms in zip(tokens["masked_tokens"], tokens["token_masks"]): assert len(ts) == len(tms) for ts, pms in zip(tokens["masked_tokens"], tokens["masked_pad_masks"]): assert len(ts) == len(pms) @pytest.mark.skip(reason="Sentences are not currently supported") def test_tokenize_padding(): tokenizer = MolEncTokenizer.from_smiles(cfg.smiles, cfg.regex) output = tokenizer.tokenize(smiles_data, sents2=smiles_data, pad=True) expected_tokens = [ ["^", "C", "C", "O", ".", "C", "c", "c", "<SEP>", "C", "C", "O", ".", "C", "c", "c", "&"], ["^", "C", "C", "Cl", "C", "Cl", "<SEP>", "C", "C", "Cl", "C", "Cl", "&", "<PAD>", "<PAD>", "<PAD>", "<PAD>"], ["^", "C", "(", "=", "O", ")", "C", "Br", "<SEP>", "C", "(", "=", "O", ")", "C", "Br", "&"] ] expected_pad_masks = [ [0] * 17, ([0] * 13) + ([1] * 4), [0] * 17 ] expected_sent_masks = [ ([0] * 9) + ([1] * 8), ([0] * 7) + ([1] * 6) + ([0] * 4), ([0] * 9) + ([1] * 8), ] assert expected_tokens == output["original_tokens"] assert expected_pad_masks == output["original_pad_masks"] assert expected_sent_masks == output["sentence_masks"]
MegaMolBART-dev
tests/test_tokenizer.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
MegaMolBART-dev
tests/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser import torch from pytorch_lightning.trainer.trainer import Trainer from torch.utils.data import DataLoader from nemo_chem.models.megamolbart import MegaMolBARTModel from nemo.collections.nlp.modules.common.megatron.megatron_init import fake_initialize_model_parallel from nemo.collections.nlp.parts.nlp_overrides import NLPDDPPlugin, NLPSaveRestoreConnector from nemo.utils.app_state import AppState assert torch.cuda.is_available() from torch.utils.data.dataset import Dataset from typing import Dict class MoleculeRequestDataset(Dataset): def __init__(self, request: Dict, tokenizer) -> None: super().__init__() self.request = request self.tokenizer = tokenizer # tokenize prompt self.request['tokenized_prompt'] = ' '.join(self.tokenizer.text_to_tokens(request['prompt'])) tokens = self.tokenizer.text_to_ids(request['prompt']) self.request['tokens'] = torch.tensor(tokens) self.mask_prompt(self.request['prompt']) def mask_prompt(self, sample): sample = torch.LongTensor(self.tokenizer.text_to_ids(sample)) self.request['masked_sample'] = sample def __len__(self): return 1 def __getitem__(self, index): return self.request def main(): parser = ArgumentParser() parser.add_argument("--model_file", type=str, required=True, help="Pass path to model's .nemo file") parser.add_argument( "--prompt", type=str, default="N[C@H]1CCC(=O)[C@H](O)[C@H](O)[C@H]1O", required=False, help="Prompt for the model (a text to complete)" ) parser.add_argument( "--tokens_to_generate", type=int, default="100", required=False, help="How many tokens to add to prompt" ) parser.add_argument( "--tensor_model_parallel_size", type=int, default=1, required=False, ) parser.add_argument( "--pipeline_model_parallel_size", type=int, default=1, required=False, ) parser.add_argument( "--pipeline_model_parallel_split_rank", type=int, default=0, required=False, ) parser.add_argument("--precision", default="16", type=str, help="PyTorch Lightning Trainer precision flag") args = parser.parse_args() # cast precision to int if 32 or 16 if args.precision in ["32", "16"]: args.precision = int(float(args.precision)) # trainer required for restoring model parallel models trainer = Trainer( plugins=NLPDDPPlugin(), devices=args.tensor_model_parallel_size * args.pipeline_model_parallel_size, accelerator='gpu', precision=args.precision, ) app_state = AppState() if args.tensor_model_parallel_size > 1 or args.pipeline_model_parallel_size > 1: app_state.model_parallel_size = args.tensor_model_parallel_size * args.pipeline_model_parallel_size ( app_state.tensor_model_parallel_rank, app_state.pipeline_model_parallel_rank, app_state.model_parallel_size, app_state.data_parallel_size, app_state.pipeline_model_parallel_split_rank, ) = fake_initialize_model_parallel( world_size=app_state.model_parallel_size, rank=trainer.global_rank, tensor_model_parallel_size_=args.tensor_model_parallel_size, pipeline_model_parallel_size_=args.pipeline_model_parallel_size, pipeline_model_parallel_split_rank_=args.pipeline_model_parallel_split_rank, ) model = MegaMolBARTModel.restore_from( restore_path=args.model_file, trainer=trainer, save_restore_connector=NLPSaveRestoreConnector(), ) model.freeze() request = { "prompt": args.prompt, "tokens_to_generate": args.tokens_to_generate, } dataset = MoleculeRequestDataset(request, model.tokenizer) request_dl = DataLoader(dataset) response = trainer.predict(model, request_dl)[0] input_mol = response['prompt'] recon_mol = ''.join(response['completion']['text']) print("***************************") print(f"Reconstruction: {'PASS' if input_mol == recon_mol else 'FAIL'}") print(f"input molecule: {input_mol}") print(f"reconstructed molecule: {recon_mol}") print("***************************") if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
MegaMolBART-dev
examples/chem/megamolbart_eval.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from omegaconf.omegaconf import OmegaConf, open_dict from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelSummary from pytorch_lightning.callbacks.timer import Timer from pytorch_lightning.plugins.environments.torchelastic_environment import TorchElasticEnvironment from pytorch_lightning.plugins.precision.native_amp import NativeMixedPrecisionPlugin from pytorch_lightning.trainer.connectors.checkpoint_connector import CheckpointConnector from nemo.collections.nlp.parts.nlp_overrides import ( GradScaler, MegatronHalfPrecisionPlugin, NLPDDPPlugin, PipelineMixedPrecisionPlugin, ) from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import StatelessTimer, exp_manager from nemo_chem.models.megamolbart import MegaMolBARTModel from nemo_chem.data import MoleculeCsvDatasetConfig from nemo_chem.utils import recursive_make_dirs, update_dataclass_config from nemo_chem.data import Preprocess, CsvToBinary import os def setup_trainer(cfg): """Trainer setup functions""" megatron_amp_o2 = cfg.model.get('megatron_amp_O2', False) plugins = [ NLPDDPPlugin( no_ddp_communication_hook=True, gradient_as_bucket_view=cfg.model.gradient_as_bucket_view, find_unused_parameters=False, ) ] if cfg.trainer.precision in [16, 'bf16']: scaler = None if cfg.trainer.precision == 16: scaler = GradScaler( init_scale=cfg.model.get('native_amp_init_scale', 2 ** 32), growth_interval=cfg.model.get('native_amp_growth_interval', 1000), hysteresis=cfg.model.get('hysteresis', 2), ) if megatron_amp_o2: plugins.append(MegatronHalfPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler)) else: plugins.append(PipelineMixedPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler)) if cfg.get('cluster_type', None) == 'BCP': plugins.append(TorchElasticEnvironment()) trainer = Trainer(plugins=plugins, **cfg.trainer, callbacks=[ModelSummary(max_depth=3)]) exp_manager(trainer, cfg.get("exp_manager", None)) # recursive_make_dirs(log_dir) # recursive_make_dirs(trainer.checkpoint_callback.dirpath) # update resume from checkpoint found by exp_manager if cfg.model.resume_from_checkpoint is not None: resume_from_checkpoint = cfg.model.resume_from_checkpoint else: resume_from_checkpoint = trainer._checkpoint_connector.resume_from_checkpoint_fit_path logging.info(f'Resuming training from checkpoint: {resume_from_checkpoint}') trainer._checkpoint_connector = CheckpointConnector(trainer, resume_from_checkpoint=resume_from_checkpoint) # Override timer callback to a stateless one for idx, callback in enumerate(trainer.callbacks): if isinstance(callback, Timer): trainer.callbacks[idx] = StatelessTimer(cfg.trainer.max_time,) # hydra interpolation does not work here as the interpolation key is lost when PTL saves hparams with open_dict(cfg): cfg.model.precision = cfg.trainer.precision return trainer @hydra_runner(config_path="conf", config_name="megamolbart_pretrain_xsmall_span_aug") def main(cfg) -> None: with open_dict(cfg): cfg.model.data = update_dataclass_config(cfg.model.data, MoleculeCsvDatasetConfig) logging.info("\n\n************** Experiment configuration ***********") logging.info(f'\n{OmegaConf.to_yaml(cfg)}') trainer = setup_trainer(cfg) model = MegaMolBARTModel(cfg.model, trainer) logging.info("************** Model parameters and their sizes ***********") for name, param in model.named_parameters(): logging.info(f'{name}: {param.size()}') logging.info("***********************************************************") if cfg.do_training: logging.info("************** Starting Training ***********") trainer.fit(model) logging.info("************** Finished Training ***********") else: logging.info("************** Starting Data PreProcessing ***********") logging.info("Processing data into CSV files") preprocess = Preprocess() preprocess.prepare_dataset(links_file=cfg.model.data.links_file, output_dir=cfg.model.data.dataset_path) if cfg.model.data.dataset_format == "bin": logging.info("Converting CSV data into Binary") csvtobin = CsvToBinary(input_dir=cfg.model.data.dataset_path, out_dir=cfg.model.data.dataset_path, config=cfg, num_enumerations=cfg.model.data.num_enumerations, num_workers=cfg.model.data.num_workers) csvtobin.prepare_dataset() logging.info("************** Finished Data PreProcessing ***********") if cfg.do_testing: logging.info("************** Starting Testing ***********") trainer.test(model) logging.info("************** Finished Testing ***********") if __name__ == '__main__': main()
MegaMolBART-dev
examples/chem/megamolbart_pretrain.py
import grpc import torch import logging from megamolbart_pb2_grpc import GenerativeSamplerStub from megamolbart_pb2 import InputSpec log = logging.getLogger(__name__) class InferenceWrapper(): def __init__(self): channel = grpc.insecure_channel('localhost:50051') self.stub = GenerativeSamplerStub(channel) def smis_to_embedding(self, smis): spec = InputSpec(smis=smis) resp = self.stub.SmilesToEmbedding(spec) embeddings = torch.FloatTensor(list(resp.embeddings)) embeddings = torch.reshape(embeddings, tuple(resp.dim)).cuda() return embeddings def smis_to_hidden(self, smis): spec = InputSpec(smis=smis) resp = self.stub.SmilesToHidden(spec) hidden_states = torch.FloatTensor(list(resp.hidden_states)) hidden_states = torch.reshape(hidden_states, tuple(resp.dim)).cuda() masks = torch.BoolTensor(list(resp.masks)) masks = torch.reshape(masks, tuple(resp.dim[:2])).cuda() return hidden_states, masks def hidden_to_smis(self, hidden_states, masks): dim = hidden_states.shape spec = InputSpec(hidden_states=hidden_states.flatten().tolist(), dim=dim, masks=masks.flatten().tolist()) resp = self.stub.HiddenToSmis(spec) return resp.smis
MegaMolBART-dev
examples/chem/nbs/infer.py
#!/usr/bin/python3 # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: MIT # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. """Modules imported for unpack tool""" import argparse import hashlib import json import math import os import re import stat import sys import time import uuid UNPACK_TOOL_VERSION = "4.0.6" class Util: """ Class with static helper functions """ LOG_FILE = "./fwpkg_unpack_log.txt" LOGFILE_PATH = "" @staticmethod def cli_log(log_msg, log_file_only=False): """ Append log message to cli log file """ log_file = Util.LOG_FILE file_handle = None try: with open(log_file, "a+", encoding="utf-8") as file_handle: localtime = time.asctime(time.localtime(time.time())) file_handle.write(f"{localtime} : {log_msg}\n") Util.LOGFILE_PATH = os.path.abspath(file_handle.name) if log_file_only is False: print(log_msg) except PermissionError as _: print(log_msg) print(f"Error: Failed to open or create {log_file}") @staticmethod def get_descriptor_type_name(desc_type): """ Return the descriptive name for given integer descriptor type. """ desc_type_dict = { 0x0000: "PCI Vendor ID", 0x0001: "IANA Enterprise ID", 0x0002: "UUID", 0x0003: "PnP Vendor ID", 0x0004: "ACPI Vendor ID", 0x0005: "IEEE Assigned Company ID", 0x0006: "SCSI Vendor ID", 0x0100: "PCI Device ID", 0x0101: "PCI Subsystem Vendor ID", 0x0102: "PCI Subsystem ID", 0x0103: "PCI Revision ID", 0x0104: "PnP Product Identifier", 0x0105: "ACPI Product Identifier", 0x0106: "ASCII Model Number", 0x0107: "ASCII Model Number", 0x0108: "SCSI Product ID", 0x0109: "UBM Controller Device Code", 0xffff: "Vendor Defined", } name = desc_type_dict.get(desc_type, f'{desc_type:#x}') return name @staticmethod def get_timestamp_str(timestamp): """ Return timestamp string from 13 byte binary data according to PLDM Base specification """ year = timestamp[11] year = year << 8 year = year | timestamp[10] time_str = str(year) + "-" time_str = time_str + str(timestamp[9]) time_str = time_str + "-" + str(timestamp[8]) time_str = time_str + " " + str(timestamp[7]) time_str = time_str + ":" + str(timestamp[6]) time_str = time_str + ":" + str(timestamp[5]) micro_sec = timestamp[4] micro_sec = micro_sec << 8 micro_sec = micro_sec | timestamp[3] micro_sec = micro_sec << 8 micro_sec = micro_sec | timestamp[2] time_str = time_str + ":" + str(micro_sec) utc_offset = timestamp[1] utc_offset = utc_offset << 8 utc_offset = utc_offset | timestamp[0] sign = "+" if utc_offset < 0: utc_offset = utc_offset * -1 sign = "-" time_str = time_str + " " + sign + str(utc_offset) return time_str @staticmethod def get_checksum_for_component_image(fw_image): """ Compute SHA256 for the given component image. """ sha256 = "" try: with open(fw_image, 'rb') as file_name: data = file_name.read() sha256 = hashlib.sha256(data).hexdigest() except (FileNotFoundError, IOError) as err: log_msg = f'Error: {err}' Util.cli_log(log_msg, False) return sha256 @staticmethod def get_padded_hex(byte_arr): """ Get hex formatted version of a byte array padded with 0 """ total_len = len(byte_arr) hex_str = hex( int.from_bytes(byte_arr, byteorder='little', signed=False))[2:] padded_str = '0x' + hex_str.zfill(total_len * 2) return padded_str class PLDMUnpack: # pylint: disable=too-many-instance-attributes """ PLDMUnpack class implements a PLDM parser and the unpack tool along with its required features. ... Attributes ---------- package : str Path/Name of the input firmware package unpack : bool True if tool should unpack firmware images fwpkg_fd : io.TextIOWrapper Instance used to read from package file header_map : dict Stores the PLDM Package Header Information parsed from given package device_id_record_count : int Number of PLDM FirmwareDeviceIDRecords found in given package fd_id_record_list : list List of FirmwareDeviceIDRecords parsed from given package component_img_info_list : list List of ComponentImageInformation parsed from given package Methods ------- parse_header() : Parses PLDM Package Header Information parse_device_id_records() : Parses FirmwareDeviceIDRecords from package parse_component_img_info() : Parses ComponentImageInformation from package get_image_name_from_records(comp_info_index) : Identify records which which contain metadata for image naming get_image_name(comp_info_index) : Get image name string by appending various metadata create_unpacked_files(output_dir) : Extract each firmware image in a file unpack_pldm_package(package_name, output_dir) : Perform complete parsing and extraction of package get_applicable_component_index(applicable_component): Return applicable_component as list of indices get_ec_info(filepath) : Get all EC metadata from extraxted firmware get_ap_metadata(filepath) : Get all AP metadata from extraxted firmware get_signature_type(fw_image, component_identifier): Get Signature type for given firmware image and component identifier is_glacier_device(product, device_name): Is this device a glacer device get_formatted_descriptors(record_desc, components): Method to prepare descriptor section for json output prepare_records_json(): Prepares the JSON output. """ def __init__(self): """ Contructor for PLDMUnpack class """ self.unpack = True self.package = "" self.fwpkg_fd = 0 self.header_map = {} self.device_id_record_count = 0 self.fd_id_record_list = [] self.component_img_info_list = [] self.full_header = { "PackageHeaderInformation": {}, "FirmwareDeviceIdentificationArea": {}, "ComponentImageInformationArea": {}, "Package Header Checksum": '' } self.verbose = False self.little_endian_list = [ "IANA Enterprise ID", "PCI Vendor ID", "PCI Device ID", "PCI Subsystem Vendor ID", "PCI Subsystem ID" ] def parse_header(self): """ Parse PLDM header data into self.header_map Returns : True if parsing successful """ # check if UUID is valid pldm_fw_header_id_v1_0 = b'\xf0\x18\x87\x8c\xcb\x7d\x49\x43\x98\x00\xa0\x2f\x05\x9a\xca\x02' uuid_v1_0 = str(uuid.UUID(bytes=pldm_fw_header_id_v1_0)) self.header_map["PackageHeaderIdentifier"] = str( uuid.UUID(bytes=self.fwpkg_fd.read(16))) if uuid_v1_0 != self.header_map["PackageHeaderIdentifier"]: log_msg = "Expected PLDM v1.0 but PackageHeaderIdentifier is "\ + self.header_map["PackageHeaderIdentifier"] Util.cli_log(log_msg, False) return False self.header_map["PackageHeaderFormatRevision"] = str( int.from_bytes(self.fwpkg_fd.read(1), byteorder='little', signed=False)) self.header_map["PackageHeaderSize"] = int.from_bytes( self.fwpkg_fd.read(2), byteorder='little', signed=False) timestamp = self.fwpkg_fd.read(13) self.header_map["PackageReleaseDateTime"] = Util.get_timestamp_str( timestamp) self.header_map["ComponentBitmapBitLength"] = int.from_bytes( self.fwpkg_fd.read(2), byteorder='little', signed=False) self.header_map["PackageVersionStringType"] = int.from_bytes( self.fwpkg_fd.read(1), byteorder='little', signed=False) version_str_len = int.from_bytes(self.fwpkg_fd.read(1), byteorder='little', signed=False) self.header_map["PackageVersionStringLength"] = version_str_len self.header_map["PackageVersionString"] = self.fwpkg_fd.read( version_str_len).decode('utf-8') self.full_header["PackageHeaderInformation"] = self.header_map return True def parse_device_id_records(self): """ Parse PLDM FirmwareDeviceIDRecords data into self.fd_id_record_list Returns: True if parsing is successful """ # pylint: disable=line-too-long self.device_id_record_count = int.from_bytes(self.fwpkg_fd.read(1), byteorder='little', signed=False) for _ in range(self.device_id_record_count): id_record_map = {} id_record_map["RecordLength"] = int.from_bytes( self.fwpkg_fd.read(2), byteorder='little', signed=False) id_record_map["DescriptorCount"] = int.from_bytes( self.fwpkg_fd.read(1), byteorder='little', signed=False) id_record_map["DeviceUpdateOptionFlags"] = int.from_bytes( self.fwpkg_fd.read(4), byteorder='little', signed=False) id_record_map[ "ComponentImageSetVersionStringType"] = int.from_bytes( self.fwpkg_fd.read(1), byteorder='little', signed=False) id_record_map[ "ComponentImageSetVersionStringLength"] = int.from_bytes( self.fwpkg_fd.read(1), byteorder='little', signed=False) id_record_map["FirmwareDevicePackageDataLength"] = int.from_bytes( self.fwpkg_fd.read(2), byteorder='little', signed=False) applicable_component_size = math.ceil( self.header_map["ComponentBitmapBitLength"] / 8) id_record_map["ApplicableComponents"] = int.from_bytes( self.fwpkg_fd.read(applicable_component_size), byteorder='little', signed=False) id_record_map[ "ComponentImageSetVersionString"] = self.fwpkg_fd.read( id_record_map["ComponentImageSetVersionStringLength"] ).decode('utf-8') descriptors = [] for j in range(id_record_map["DescriptorCount"]): descriptor_map = {} if j == 0: descriptor_map["InitialDescriptorType"] = int.from_bytes( self.fwpkg_fd.read(2), byteorder='little', signed=False) descriptor_map["InitialDescriptorLength"] = int.from_bytes( self.fwpkg_fd.read(2), byteorder='little', signed=False) value = self.fwpkg_fd.read( descriptor_map["InitialDescriptorLength"]) descriptor_map["InitialDescriptorData"] = value else: descriptor_map[ "AdditionalDescriptorType"] = int.from_bytes( self.fwpkg_fd.read(2), byteorder='little', signed=False) descriptor_map[ "AdditionalDescriptorLength"] = int.from_bytes( self.fwpkg_fd.read(2), byteorder='little', signed=False) if descriptor_map["AdditionalDescriptorType"] == 0xFFFF: descriptor_map[ "VendorDefinedDescriptorTitleStringType"] = int.from_bytes( self.fwpkg_fd.read(1), byteorder='little', signed=False) descriptor_map[ "VendorDefinedDescriptorTitleStringLength"] = int.from_bytes( self.fwpkg_fd.read(1), byteorder='little', signed=False) descriptor_map[ "VendorDefinedDescriptorTitleString"] = self.fwpkg_fd.read( descriptor_map[ "VendorDefinedDescriptorTitleStringLength"] ).decode('utf-8') vendor_def_data_len = ( descriptor_map["AdditionalDescriptorLength"] - (2 + descriptor_map[ "VendorDefinedDescriptorTitleStringLength"])) descriptor_map[ "VendorDefinedDescriptorData"] = self.fwpkg_fd.read( vendor_def_data_len).hex() else: descriptor_map[ "AdditionalDescriptorIdentifierData"] = self.fwpkg_fd.read( descriptor_map["AdditionalDescriptorLength"]) descriptors.append(descriptor_map) id_record_map["RecordDescriptors"] = descriptors id_record_map["FirmwareDevicePackageData"] = self.fwpkg_fd.read( id_record_map["FirmwareDevicePackageDataLength"]).decode( 'utf-8') self.fd_id_record_list.append(id_record_map) self.full_header["FirmwareDeviceIdentificationArea"] = { "DeviceIDRecordCount": self.device_id_record_count, "FirmwareDeviceIDRecords": self.fd_id_record_list } return True def parse_component_img_info(self): """ Parse PLDM Component Image info data into self.fd_id_record_list Returns : True if parsing successful """ component_image_count = int.from_bytes(self.fwpkg_fd.read(2), byteorder='little', signed=False) for _ in range(component_image_count): comp_info = {} comp_info["ComponentClassification"] = int.from_bytes( self.fwpkg_fd.read(2), byteorder='little', signed=False) comp_info["ComponentIdentifier"] = hex( int.from_bytes(self.fwpkg_fd.read(2), byteorder='little', signed=False)) comp_info["ComponentComparisonStamp"] = int.from_bytes( self.fwpkg_fd.read(4), byteorder='little', signed=False) comp_info["ComponentOptions"] = int.from_bytes( self.fwpkg_fd.read(2), byteorder='little', signed=False) comp_info["RequestedComponentActivationMethod"] = int.from_bytes( self.fwpkg_fd.read(2), byteorder='little', signed=False) # RequestedComponentActivationMethod can have any combination of bits 0:5 set # Any value above 0x3F is invalid activation_val = comp_info["RequestedComponentActivationMethod"] if activation_val > 0x3F: Util.cli_log( f"Found invalid value for RequestedComponentActivationMethod={activation_val}", True) comp_info["ComponentLocationOffset"] = int.from_bytes( self.fwpkg_fd.read(4), byteorder='little', signed=False) comp_info["ComponentSize"] = int.from_bytes(self.fwpkg_fd.read(4), byteorder='little', signed=False) comp_info["ComponentVersionStringType"] = int.from_bytes( self.fwpkg_fd.read(1), byteorder='little', signed=False) comp_info["ComponentVersionStringLength"] = int.from_bytes( self.fwpkg_fd.read(1), byteorder='little', signed=False) comp_info["ComponentVersionString"] = self.fwpkg_fd.read( comp_info["ComponentVersionStringLength"]).decode('utf-8') self.component_img_info_list.append(comp_info) self.full_header["ComponentImageInformationArea"] = { "ComponentImageCount": component_image_count, "ComponentImageInformation": self.component_img_info_list } return True def get_image_name_from_records(self, comp_info_index): """ Identify records which which contain metadata for image at index comp_info_index component image info list Parameter: comp_info_index index of image in component image info section Returns: Name of the applicable record for given image or "" if nothing found """ mask = 1 << comp_info_index for rec in self.fd_id_record_list: applicable_comp_indices = rec["ApplicableComponents"] name = rec["ComponentImageSetVersionString"] if mask & applicable_comp_indices == mask: if name.find(",") == -1: return name, rec['RecordDescriptors'] components = name.split(",") applicable_comp = applicable_comp_indices count = 0 for _ in range(comp_info_index + 1): if applicable_comp & 1 == 1: count = count + 1 applicable_comp = applicable_comp >> 1 return components[count - 1], rec['RecordDescriptors'] return "", None def get_image_name(self, comp_info_index): """ Create the image name string by appending various metadata separated by '_' Parameter: comp_info_index index of image in component image for naming Returns: Name of the image for unpacking or "" """ comp_info = self.component_img_info_list[comp_info_index] name, _ = self.get_image_name_from_records(comp_info_index) if name != "": name = name.replace(":", "_") name = name.replace("_N/A", "") name = name + "_" + comp_info["ComponentVersionString"] if name.startswith("FW-Package"): name = name + ".fwpkg" else: name = name + "_image.bin" name = re.sub("_+", "_", name) return name def create_unpacked_files(self, output_dir): """ Extract each firmware image from the Firmware Package Payload section of the input file. Parameter: output_dir path of the directory to store the extracted files Returns: True if unpacking was successful """ package_size = os.path.getsize(self.package) for index, info in enumerate(self.component_img_info_list): offset = info["ComponentLocationOffset"] size = info["ComponentSize"] if offset + size > package_size: log_msg = f"Error: ComponentLocationOffset {offset} + \ ComponentSize {size} exceeds given package size {package_size}" Util.cli_log(log_msg, False) return False img_name = output_dir + self.get_image_name(index) if img_name == "": log_msg = "Error: The input firmware package does not conform to \ the format created by NVIDIA packaging tool." Util.cli_log(log_msg, False) return False try: if os.path.exists(img_name): os.remove(img_name) with open(img_name, "w+b") as component_img_fd: self.fwpkg_fd.seek(offset, 0) bytes_left = size buffer_size = 2048 while bytes_left > 0: if bytes_left < 2048: buffer_size = bytes_left buffer = self.fwpkg_fd.read(buffer_size) component_img_fd.write(buffer) bytes_left = bytes_left - buffer_size info["FWImageName"] = img_name if os.path.exists(img_name): os.chmod(img_name, stat.S_IRUSR | stat.S_IRGRP | stat.S_IROTH) except OSError as err: log_msg = f"Error: Could not create file {img_name} due to {err}" Util.cli_log(log_msg, False) return False return True def get_pldm_header_checksum(self): """ Read PLDM header checksum """ self.full_header['Package Header Checksum'] = int.from_bytes( self.fwpkg_fd.read(4), byteorder='little', signed=False) def unpack_pldm_package(self, package_name, output_dir): """ Parse the PLDM package and get information about components included in the FW image. Unpack the package if required. Parameters: package_name filepath of input package file output_dir directory to store the resulting unpacked files Returns: True if parsing and unpacking was successful """ if package_name == "" or package_name is None: log_msg = "ERROR: Firmware package file is mandatory." Util.cli_log(log_msg, False) return False if os.path.exists(package_name) is False: log_msg = print("ERROR: File does not exist at path ", package_name) Util.cli_log(log_msg, False) return False self.package = package_name try: with open(self.package, "rb") as self.fwpkg_fd: parsing_valid = self.parse_header() if parsing_valid: parsing_valid = self.parse_device_id_records() if parsing_valid: parsing_valid = self.parse_component_img_info() self.get_pldm_header_checksum() if parsing_valid and self.unpack: if output_dir == "" or output_dir is None: # If outdir was not given in command # assume current directory output_dir = "." output_dir = os.path.abspath(output_dir) + "/" # If dir doesn't exist, create it if os.path.isdir(output_dir) is False: os.makedirs(output_dir) parsing_valid = self.create_unpacked_files(output_dir) if self.verbose: log_message = f"PLDM Output directory: {output_dir}, \ Package name: {package_name}" Util.cli_log(log_message, True) if parsing_valid is False: log_message = "Package Header Contents:\ " + str(self.header_map) Util.cli_log(log_message, True) log_message = "FirmwareDeviceIDRecords Contents:\ " + str(self.fd_id_record_list) Util.cli_log(log_message, True) log_message = "ComponentImageInformation Contents:\ " + str(self.component_img_info_list) Util.cli_log(log_message, True) return parsing_valid except IOError as e_io_error: log_message = f"Couldn't open or read given FW package ({e_io_error})" Util.cli_log(log_message, False) return False def get_applicable_component_index(self, applicable_component): """ Return list of indices of applicable component images from applicable_component index bitmap. """ # number of images in the image section max_bits = len(self.component_img_info_list) indices = [] for shift in range(max_bits): # for each index check if the bit at that position is set in applicable_component mask = 1 << shift result = applicable_component & mask if result == mask: indices.append(shift) return indices def get_signature_type(self, fw_image, component_identifier): """ Method to tell if unpacked bin is prod signed or debug signed """ return 'N/A' @staticmethod def is_glacier_device(record, device_name): """ Is this device a glacer device """ if device_name.startswith("ERoT"): return True if record["DescriptorCount"] == 0: return False record_desc = record["RecordDescriptors"] for desc in record_desc: descriptor_type = desc.get("AdditionalDescriptorType", "") if descriptor_type == 65535: title = desc.get("VendorDefinedDescriptorTitleString", "") if title == "GLACIERDSD": return True return False def get_applicable_components_names(self, record): # pylint: disable=too-many-branches """ Method to create list of applicable component images and their metadata like ComponentIdentifier and Version. FWImage is included if unpacking was done. Also prepares ComponentImageSetVersionString in name:model:vendor,... format if it is not already so. """ index = self.get_applicable_component_index( record["ApplicableComponents"]) components = [] device_name = record["ComponentImageSetVersionString"] for i in index: component = {} img = self.component_img_info_list[i] if self.unpack is True: component = { "ComponentIdentifier": "", "ComponentVersionString": "", "FWImage": "" } component["FWImage"] = img["FWImageName"] component[ "FWImageSHA256"] = Util.get_checksum_for_component_image( component["FWImage"]) # For ERoT associated devices get signature type if self.is_glacier_device( record, component["FWImage"].rsplit('/', 1)[-1]): signature_type = self.get_signature_type( component["FWImage"], img["ComponentIdentifier"]) if signature_type: component["SignatureType"] = signature_type else: component["SignatureType"] = "N/A" component["FWImageSize"] = img["ComponentSize"] else: component = { "ComponentIdentifier": "", "ComponentVersionString": "" } component["ComponentIdentifier"] = img["ComponentIdentifier"] component["ComponentVersionString"] = img["ComponentVersionString"] components.append(component) if not self.unpack: ap_sku, ec_sku = 'N/A', 'N/A' records = record["RecordDescriptors"] for i in range(1, len(records)): if records[i]["AdditionalDescriptorType"] == 65535: if records[i][ "VendorDefinedDescriptorTitleString"] == "APSKU": ap_sku = "0x" + records[i][ "VendorDefinedDescriptorData"] elif records[i][ "VendorDefinedDescriptorTitleString"] == "ECSKU": ec_sku = "0x" + records[i][ "VendorDefinedDescriptorData"] for component in components: if component.get("ComponentIdentifier") == "0xff00": component["ECSKUID"] = ec_sku else: component["APSKUID"] = ap_sku return components, device_name def decode_descriptor_data(self, desc_type_name, desc_data): """ Formatting for descriptor data based on endianess""" desc_val = "" if desc_type_name in self.little_endian_list: desc_val = Util.get_padded_hex(desc_data) else: desc_val = "0x" + desc_data.hex() return desc_val def get_formatted_descriptors(self, record_desc, components): """ Method to prepare stripped and formatted descriptor section for json output. """ records = record_desc["RecordDescriptors"] descriptors = [] desc = {} if len(records) == 0: return descriptors desc["InitialDescriptorType"] = Util.get_descriptor_type_name( records[0]["InitialDescriptorType"]) desc["InitialDescriptorData"] = self.decode_descriptor_data( desc["InitialDescriptorType"], records[0]["InitialDescriptorData"]) descriptors.append(desc) for i in range(1, len(records)): desc = {} desc["AdditionalDescriptorType"] = Util.get_descriptor_type_name( records[i]["AdditionalDescriptorType"]) if records[i]["AdditionalDescriptorType"] == 65535: desc["VendorDefinedDescriptorTitleString"] = records[i][ "VendorDefinedDescriptorTitleString"] desc_data = records[i]["VendorDefinedDescriptorData"] desc["VendorDefinedDescriptorData"] = '0x' + str(desc_data) if desc["VendorDefinedDescriptorTitleString"] == "APSKU": # AP SKU on Retimer is just vendor id, not a real AP SKU ID. So skip if "FWImage" in components[-1] and \ not "PCIeRetimer" in components[-1]["FWImage"]: bin_ary = bytearray.fromhex( desc_data[:-2]) # First byte is strap id bin_ary.reverse() ap_sku_id = ''.join(format(x, '02x') for x in bin_ary) components[-1]["AP_SKU_ID"] = "0x" + ap_sku_id desc["VendorDefinedDescriptorData"] = components[-1][ "AP_SKU_ID"] else: desc["AdditionalDescriptorData"] = self.decode_descriptor_data( desc["AdditionalDescriptorType"], records[i]["AdditionalDescriptorIdentifierData"]) descriptors.append(desc) return descriptors def get_full_metadata_json(self): """ Decode byte value descriptors for full package metadata command """ for device_records in self.full_header[ 'FirmwareDeviceIdentificationArea']['FirmwareDeviceIDRecords']: device_records[ 'ApplicableComponents'] = self.get_applicable_component_index( device_records['ApplicableComponents']) records = device_records["RecordDescriptors"] descriptors = [] if len(records) == 0: continue desc = records[0] desc["InitialDescriptorType"] = Util.get_descriptor_type_name( records[0]["InitialDescriptorType"]) desc["InitialDescriptorData"] = self.decode_descriptor_data( desc["InitialDescriptorType"], desc["InitialDescriptorData"]) descriptors.append(desc) for i in range(1, len(records)): desc = records[i] desc[ "AdditionalDescriptorType"] = Util.get_descriptor_type_name( records[i]["AdditionalDescriptorType"]) if desc["AdditionalDescriptorType"] == 'Vendor Defined': desc["VendorDefinedDescriptorTitleString"] = records[i][ "VendorDefinedDescriptorTitleString"] desc_data = records[i]["VendorDefinedDescriptorData"] desc["VendorDefinedDescriptorData"] = '0x' + str(desc_data) else: desc[ "AdditionalDescriptorIdentifierData"] = self.decode_descriptor_data( desc["AdditionalDescriptorType"], desc["AdditionalDescriptorIdentifierData"]) descriptors.append(desc) device_records["RecordDescriptors"] = descriptors def prepare_records_json(self): # pylint: disable=line-too-long """ Prepares the JSON output for the tool. """ package_json = { "PackageHeaderInformation": {}, "FirmwareDeviceRecords": [] } package_json["PackageHeaderInformation"]["PackageHeaderIdentifier"] = ( self.header_map["PackageHeaderIdentifier"]) package_json["PackageHeaderInformation"][ "PackageHeaderFormatRevision"] = ( self.header_map["PackageHeaderFormatRevision"]) if package_json["PackageHeaderInformation"][ "PackageHeaderFormatRevision"] != "1": return False, "The input firmware package version does not conform \ to the format created by NVIDIA packaging tool." package_json["PackageHeaderInformation"]["PackageReleaseDateTime"] = ( self.header_map["PackageReleaseDateTime"]) package_json["PackageHeaderInformation"]["PackageVersionString"] = ( self.header_map["PackageVersionString"]) package_json['PackageHeaderInformation']["PackageSHA256"] = ( Util.get_checksum_for_component_image(self.package)) recordlist = [] for record in self.fd_id_record_list: rec = { "ComponentImageSetVersionString": "", "DeviceDescriptors": [], "Components": [] } components, name = self.get_applicable_components_names(record) if not components or not name: return False, "The input firmware package does not conform to \ the format created by NVIDIA packaging tool." rec["DeviceDescriptors"] = self.get_formatted_descriptors( record, components) rec["Components"] = components rec["ComponentImageSetVersionString"] = name recordlist.append(rec) package_json["FirmwareDeviceRecords"] = recordlist json_string = json.dumps(package_json, indent=4) return True, json_string def main(): """ Call upack parser and prepare output json """ arg_parser = argparse.ArgumentParser(prog='fwpkg-unpack', description="\ NVIDIA fwpkg-unpack v{UNPACK_TOOL_VERSION} The firmware package unpack tool performs parsing of\ the firmware package and unpacking. The unpacker will extract all firmware\ images from the package and create bin files for each.", allow_abbrev=False) arg_parser.add_argument( "file", help="Provide firmware package filename to unpack.", nargs='?') arg_group = arg_parser.add_mutually_exclusive_group(required=True) arg_group.add_argument( "--unpack", action='store_true', help="Unpack the firmware package and extract all component images.") arg_group.add_argument( "--show_pkg_content", action='store_true', help= "Provide package content description without extracting firmware images." ) arg_group.add_argument( "--show_all_metadata", action='store_true', help= "Provide all PLDM metadata in package without extracting firmware images." ) arg_parser.add_argument( "--outdir", help= "Provide path to the directory where unpacked FW files will be stored. \ This option is used along with --unpack. \ If this option not specified with --unpack, current directory is assumed as outdir. \ Creates the directory at a given path if it does not exist.") arg_group.add_argument("--version", action='store_true', help="Show tool version.") arg_parser.add_argument( "--verbose", action='store_true', help= "Verbose Mode, This option is used along with --unpack or --show_pkg_content. \ By using this command, debug prints from the code will be copied in a debug \ logfile created in the same directory with name fwpkg_unpack_log.txt from\ unpack tool.") tool_args = arg_parser.parse_args() pldm_parser = PLDMUnpack() pldm_parser.unpack = tool_args.unpack if tool_args.show_pkg_content is True: pldm_parser.unpack = False if tool_args.version is True: print(f"NVIDIA fwpkg-unpack - version {UNPACK_TOOL_VERSION}") sys.exit(0) else: parser_status = pldm_parser.unpack_pldm_package( tool_args.file, tool_args.outdir) if parser_status is True: json_output = {} if tool_args.show_all_metadata is False: parser_status, json_output = pldm_parser.prepare_records_json() if not parser_status: print("Status : Failed to prepare JSON records") print("Path for LogFile ", Util.LOGFILE_PATH) else: pldm_parser.get_full_metadata_json() json_output = json.dumps(pldm_parser.full_header, sort_keys=False, indent=4) print(json_output) sys.exit(0) else: print("Status : Failed") print("Path for LogFile ", Util.LOGFILE_PATH) sys.exit(1) if __name__ == "__main__": main()
PLDM-unpack-main
fwpkg_unpack.py
#!/usr/bin/python3 """ Auto unit test vector generator. Looks in the GENERATORS_DIR directory for any executable scripts or binaries, and runs them to generate test vectors. Writes out a manifest file for caching vectors that have already been generated. """ import os import subprocess import hashlib import csv import pathlib GENERATORS_DIR_REL = "generators/" GENERATED_DIR = "generated/" MANIFEST_FILE_REL = "manifest.txt" cur_path = str(pathlib.Path(__file__).parent.absolute()) cwd = os.getcwd() abs_matx = cur_path[:cur_path.find('/matx/') + len('/matx/')] GENERATORS_DIR = f"{cur_path}/{GENERATORS_DIR_REL}" MANIFEST_FILE = f"{cwd}/{MANIFEST_FILE_REL}" print("Running test vector pre-flight check script", flush=True) manifest = {} if not os.path.isdir(GENERATED_DIR): os.mkdir(GENERATED_DIR) try: with open(MANIFEST_FILE) as ml: lines = ml.readlines() for line in lines: line = line.split(',') manifest[line[0].strip()] = line[1].strip() except FileNotFoundError: print('No test vectors generated yet. Regenerating all...', flush=True) for _, _, files in os.walk(GENERATORS_DIR, topdown=False): for f in files: if f[-3:] != '.py' or f == 'matx_common.py': continue hash = hashlib.md5(open(GENERATORS_DIR + f,'rb').read()).hexdigest().strip() if f not in manifest or manifest[f] != hash: print(f"Regenerating {f}", flush=True) try: p = subprocess.check_output(GENERATORS_DIR + f, cwd=GENERATED_DIR) manifest[f] = hash except subprocess.CalledProcessError as ec: print(f"Calling script {f} failed with error code {ec.returncode}: {ec.output}", flush=True) m = open(MANIFEST_FILE, "w") for k, v in manifest.items(): m.write(f"{k},{v}\n")
MatX-main
test/test_vectors/GenerateTestVectors.py
#!/usr/bin/env python3 import numpy as np from scipy import signal from scipy import io from numpy import random import math import matx_common from typing import Dict, List class mvdr_beamformer: def __init__(self, dtype: str, size: List[int]): self.size = size self.dtype = dtype np.random.seed(1234) def run(self): data_len = self.size[0] num_beams = self.size[1] num_el = self.size[2] v = np.random.randn(num_el, num_beams) + \ np.random.randn(num_el, num_beams)*1j vh = v.conj().T in_vec = np.random.randn(num_el, data_len) + \ np.random.randn(num_el, data_len)*1j out_cbf = np.matmul(vh, in_vec) snap_len = 2 * num_el load_coeff = 0.1 inv_slice = in_vec[:, 0:snap_len] cov_mat = np.matmul(inv_slice, inv_slice.conj().T) / \ snap_len + load_coeff * np.eye(num_el) cov_inv = np.linalg.inv(cov_mat) return { 'cov_inv': cov_inv, 'cov_mat': cov_mat, 'in_vec': in_vec, 'v': v, 'out_cbf': out_cbf }
MatX-main
test/test_vectors/generators/mvdr_beamformer.py
#!/usr/bin/env python3 import numpy as np from scipy import linalg as slinalg from numpy import random import math import matx_common from typing import Dict, List class inv: def __init__(self, dtype: str, size: List[int]): self.size = size self.dtype = dtype np.random.seed(1234) def run(self): n = self.size[0] batches = self.size[1] # Create a positive-definite matrix if batches > 1: A = matx_common.randn_ndarray((batches, n,n), self.dtype) else: A = matx_common.randn_ndarray((n,n), self.dtype) A_inv = np.linalg.inv(A) return { 'A': A, 'A_inv': A_inv } class cholesky: def __init__(self, dtype: str, size: List[int]): self.size = size self.dtype = dtype np.random.seed(1234) def run(self): n = self.size[0] A = np.random.randn(n, n) B = np.matmul(A, A.conj().T) B = B + n*np.eye(n) L = np.linalg.cholesky(B) return { 'B': B, 'L': L } class lu: def __init__(self, dtype: str, size: List[int]): self.size = size self.dtype = dtype np.random.seed(1234) def run(self): m, n = self.size[0], self.size[1] A = np.random.randn(m, n) P, L, U = slinalg.lu(A) return { 'A': A, 'P': P, 'L': L, 'U': U, } class qr: def __init__(self, dtype: str, size: List[int]): self.size = size self.dtype = dtype np.random.seed(1234) def run(self): m, n = self.size[0], self.size[1] A = np.random.randn(m, n) Q, R = np.linalg.qr(A) return { 'A': A, 'Q': Q, 'R': R, } class svd: def __init__(self, dtype: str, size: List[int]): self.size = size self.dtype = dtype np.random.seed(1234) def run(self): m, n = self.size[0], self.size[1] A = matx_common.randn_ndarray((m,n), self.dtype) U, S, V = np.linalg.svd(A) return { 'A': A, 'U': U, 'S': S, 'V': V } class eig: def __init__(self, dtype: str, size: List[int]): self.size = size self.dtype = dtype np.random.seed(1234) def run(self): n = self.size[0] # Create a positive-definite matrix A = np.random.randn(n, n) B = np.matmul(A, A.conj().T) B = B + n*np.eye(n) W, V = np.linalg.eig(B) return { 'B': B, 'W': W, 'V': V } class det: def __init__(self, dtype: str, size: List[int]): self.size = size self.dtype = dtype np.random.seed(1234) def run(self): n = self.size[0] # Create a positive-definite matrix A = np.random.randn(n, n) det = np.linalg.det(A) return { 'A': A, 'det': det }
MatX-main
test/test_vectors/generators/00_solver.py
#!/usr/bin/env python3 import numpy as np import scipy.signal as ss from typing import Dict, List class kron_operator: def __init__(self, dtype: str, size: List[int]): pass def run(self) -> Dict[str, np.array]: b = np.array([[1, -1], [-1, 1]]) self.square = np.kron(np.eye(4), b) a = np.array([[1, 2, 3], [4, 5, 6]]) self.rect = np.kron(a, np.ones([2, 2])) return { 'square': self.square, 'rect': self.rect } class meshgrid_operator: def __init__(self, dtype: str, size: List[int]): self.size = size def run(self) -> Dict[str, np.array]: self.x = np.linspace(1, self.size[0], self.size[0]) self.y = np.linspace(1, self.size[1], self.size[1]) [X, Y] = np.meshgrid(self.x, self.y) return { 'X': X, 'Y': Y } class window: def __init__(self, dtype: str, size: List[int]): self.win_size = size[0] def run(self) -> Dict[str, np.array]: self.hamming = np.hamming(self.win_size) self.hanning = np.hanning(self.win_size) self.blackman = np.blackman(self.win_size) self.bartlett = np.bartlett(self.win_size) self.flattop = ss.flattop(self.win_size) return { 'hamming': self.hamming, 'hanning': self.hanning, 'blackman': self.blackman, 'bartlett': self.bartlett, 'flattop': self.flattop } class stats: def __init__(self, dtype: str, size: List[int]): self.size = size def run(self) -> Dict[str, np.array]: x = np.random.rand(self.size[0]) var_ub = np.var(x) var_ml = np.var(x, ddof = 0) std = np.std(x) return { 'x': x, 'var_ub': var_ub, 'var_ml': var_ml, 'std': std } class contraction: def __init__(self, dtype: str, size: List[int]): pass def run(self) -> Dict[str, np.array]: a1 = np.arange(60.).reshape(3,4,5) b1 = np.arange(24.).reshape(4,3,2) c1 = np.einsum('ijk,jil->kl', a1, b1) return { 'a_float3d': a1, 'b_float3d': b1, 'c_float3d': c1 }
MatX-main
test/test_vectors/generators/00_operators.py
#!/usr/bin/env python3 import numpy as np from scipy import fft as sf from scipy import signal as ss from numpy import random from typing import Dict, List class dct: def __init__(self, dtype: str, size: List[int]): self.size = size self.dtype = dtype def run(self): N = self.size[0] # Create a positive-definite matrix x = np.random.randn(N,) Y = sf.dct(x) return { 'x': x, 'Y': Y } class chirp: def __init__(self, dtype: str, size: List[int]): self.size = size self.dtype = dtype def run(self): N = self.size[0] end = self.size[1] f0 = self.size[2] f1 = self.size[3] t = np.linspace(0, end, N) Y = ss.chirp(t, f0, t[-1], f1, 'linear') return { 'Y': Y } class fftfreq: def __init__(self, dtype: str, size: List[int]): self.size = size self.dtype = dtype def run(self): N = self.size[0] F1 = sf.fftfreq(N) F2 = sf.fftfreq(N+1) F3 = sf.fftfreq(N, 0.5) return { 'F1':F1, 'F2':F2, 'F3':F3, }
MatX-main
test/test_vectors/generators/01_signal.py
#!/usr/bin/env python3 import numpy as np import sys from scipy import special from scipy.constants import c, pi import matx_common from typing import Dict, List class softmax: def __init__(self, dtype: str, size: List[int]): np.random.seed(1234) self.t1 = matx_common.randn_ndarray((size[-1],), dtype) self.t3 = matx_common.randn_ndarray((size[0], size[1], size[2]), dtype) self.res = { 't1': self.t1, 't3': self.t3 } def run(self): self.res['t1'] = self.t1 self.res['t3'] = self.t3 self.res['t1_sm'] = special.softmax(self.t1) self.res['t3_sm_axis2'] = special.softmax(self.t3, axis=2) return self.res class percentile: def __init__(self, dtype: str, size: List[int]): np.random.seed(1234) self.t1e = matx_common.randn_ndarray((size[0],), dtype) self.t1o = matx_common.randn_ndarray((size[0] + 1,), dtype) self.res = { 't1e': self.t1e, 't1o': self.t1o } def run(self): self.res['t1e_linear50'] = np.percentile(self.t1e, 50, interpolation='linear') self.res['t1e_linear80'] = np.percentile(self.t1e, 80, interpolation='linear') self.res['t1e_lower50'] = np.percentile(self.t1e, 50, interpolation='lower') self.res['t1e_lower80'] = np.percentile(self.t1e, 80, interpolation='lower') self.res['t1e_higher50'] = np.percentile(self.t1e, 50, interpolation='higher') self.res['t1e_higher80'] = np.percentile(self.t1e, 80, interpolation='higher') self.res['t1o_linear50'] = np.percentile(self.t1o, 50, interpolation='linear') self.res['t1o_linear80'] = np.percentile(self.t1o, 80, interpolation='linear') self.res['t1o_lower50'] = np.percentile(self.t1o, 50, interpolation='lower') self.res['t1o_lower80'] = np.percentile(self.t1o, 80, interpolation='lower') self.res['t1o_higher50'] = np.percentile(self.t1o, 50, interpolation='higher') self.res['t1o_higher80'] = np.percentile(self.t1o, 80, interpolation='higher') return self.res
MatX-main
test/test_vectors/generators/00_reductions.py
#!/usr/bin/env python3 import numpy as np from scipy import signal from scipy import io from numpy import random import math import os import matx_common import cupy as cp from typing import Dict, List class simple_radar_pipeline: def __init__(self, dtype: str, size: List[int]): self.size = size self.dtype = dtype np.random.seed(1234) self.num_channels = 1 def set_channels(self, nc: int): self.num_channels = nc def run(self): num_pulses = self.size[0] num_uncompressed_range_bins = self.size[1] waveform_length = self.size[2] num_compressed_range_bins = num_uncompressed_range_bins - waveform_length + 1 NDfft = 256 #num_channels = 16 res = {} x = matx_common.randn_ndarray( (num_pulses, num_uncompressed_range_bins), self.dtype) res['x_init'] = x.copy() waveform = matx_common.randn_ndarray((waveform_length,), self.dtype) res['waveform'] = waveform.copy() window = signal.hamming(waveform_length) waveform_windowed = waveform * window res['waveform_windowed'] = waveform_windowed.copy() waveform_windowed_norm = waveform_windowed / \ np.linalg.norm(waveform_windowed) res['waveform_windowed_norm'] = waveform_windowed_norm.copy() Nfft = 2**math.ceil( math.log2(np.max([num_uncompressed_range_bins, waveform_length]))) W = np.conj(np.fft.fft(waveform_windowed_norm, Nfft)) res['W'] = W.copy() X = np.fft.fft(x, Nfft, 1) res['X'] = X.copy() for pulse in range(num_pulses): y = np.fft.ifft(np.multiply(X[pulse, :], W), Nfft, 0) x[pulse, 0:num_compressed_range_bins] = y[0:num_compressed_range_bins] x_compressed = x[:, 0:num_compressed_range_bins] if self.num_channels > 1: x_compressed_stack = np.stack([x_compressed] * self.num_channels) res['x_compressed'] = x_compressed_stack.copy() else: res['x_compressed'] = x_compressed.copy() x_conv2 = signal.convolve2d( x_compressed, np.matrix([[1], [-2], [1]]), 'valid') if self.num_channels > 1: x_conv2_stack = np.stack([x_conv2] * self.num_channels) res['x_conv2'] = x_conv2_stack.copy() else: res['x_conv2'] = x_conv2.copy() num_pulses = x_conv2.shape[0] window = np.transpose(np.repeat(np.expand_dims( signal.hamming(num_pulses), 0), num_compressed_range_bins, axis=0)) X_window = np.fft.fft(np.multiply(x_conv2, window), NDfft, 0) if self.num_channels > 1: X_window_stack = np.stack([X_window] * self.num_channels).copy() res['X_window'] = X_window_stack else: res['X_window'] = X_window.copy() mask = np.transpose(np.asarray([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]])) norm = signal.convolve2d(np.ones(X_window.shape), mask, 'same') res['norm_conv2'] = norm.copy() Xpow = np.abs(X_window)**2 res['Xpow'] = Xpow.copy() background_averages = np.divide( signal.convolve2d(Xpow, mask, 'same'), norm) if self.num_channels > 1: ba_stacked = np.stack([background_averages] * self.num_channels) res['background_averages'] = ba_stacked.copy() else: res['background_averages'] = background_averages.copy() Pfa = 1e-5 alpha = np.multiply(norm, np.power(Pfa, np.divide(-1.0, norm)) - 1) dets = np.zeros(Xpow.shape) dets[np.where(Xpow > np.multiply(alpha, background_averages))] = 1 res['alpha'] = alpha.copy() res['dets'] = dets.copy() if self.num_channels > 1: dets_stacked = np.stack([dets] * self.num_channels) res['dets'] = dets_stacked.copy() else: res['dets'] = dets.copy() return res class ambgfun: def __init__(self, dtype: str, size: List[int]): cp.random.seed(1234) self.size = size self.dtype = dtype os.environ['CUPY_CACHE_DIR'] = "/tmp" def run(self): siglen = self.size[0] x = matx_common.randn_ndarray((siglen,), self.dtype) y = None fs = 1e3 cutValue = 1.0 _new_ynorm_kernel = cp.ElementwiseKernel( "int32 xlen, raw T xnorm, raw T ynorm", "T out", """ int row = i / xlen; int col = i % xlen; int x_col = col - ( xlen - 1 ) + row; if ( ( x_col >= 0 ) && ( x_col < xlen ) ) { out = ynorm[col] * thrust::conj( xnorm[x_col] ); } else { out = T(0,0); } """, "_new_ynorm_kernel", options=("-std=c++11",), ) cut = 'delay' if 'float64' in x.dtype.name: x = cp.asarray(x, dtype=cp.complex128) elif 'float32' in x.dtype.name: x = cp.asarray(x, dtype=cp.complex64) else: x = cp.asarray(x) xnorm = x / cp.linalg.norm(x) if y is None: y = x ynorm = xnorm else: ynorm = y / cp.linalg.norm(y) len_seq = len(xnorm) + len(ynorm) nfreq = 2**math.ceil(math.log2(len_seq - 1)) # Consider for deletion as we add different cut values """ if len(xnorm) < len(ynorm): len_diff = len(ynorm) - len(xnorm) ynorm = cp.concatenate(ynorm, cp.zeros(len_diff)) elif len(xnorm) > len(ynorm): len_diff = len(xnorm) - len(ynorm) xnorm = cp.concatenate(xnorm, cp.zeros(len_diff)) """ xlen = len(xnorm) # if cut == '2d': new_ynorm = cp.empty((len_seq - 1, xlen), dtype=xnorm.dtype) _new_ynorm_kernel(xlen, xnorm, ynorm, new_ynorm) amf_2d = nfreq * cp.abs(cp.fft.fftshift( cp.fft.ifft(new_ynorm, nfreq, axis=1), axes=1)) # elif cut == 'delay': Fd = cp.arange(-fs / 2, fs / 2, fs / nfreq) fftx = cp.fft.fft(xnorm, nfreq) * \ cp.exp(1j * 2 * cp.pi * Fd * cutValue) xshift = cp.fft.ifft(fftx) ynorm_pad = cp.zeros(nfreq) + cp.zeros(nfreq)*1j ynorm_pad[:ynorm.shape[0]] = ynorm amf_delay = nfreq * cp.abs(cp.fft.ifftshift( cp.fft.ifft(ynorm_pad * cp.conj(xshift), nfreq))) # elif cut == 'doppler': t = cp.arange(0, xlen) / fs ffty = cp.fft.fft(ynorm, len_seq - 1) fftx = cp.fft.fft(xnorm * cp.exp(1j * 2 * cp.pi * cutValue * t), len_seq - 1) amf_doppler = cp.abs(cp.fft.fftshift( cp.fft.ifft(ffty * cp.conj(fftx)))) return { 'amf_2d': cp.asnumpy(amf_2d), 'amf_delay': cp.asnumpy(amf_delay), 'amf_doppler': cp.asnumpy(amf_doppler), 'x': cp.asnumpy(x), }
MatX-main
test/test_vectors/generators/01_radar.py
import numpy as np def tup_2_string(x): return '_'.join(reversed(list(map(str, x)))) def to_file(var, name): if (var.dtype == np.complex128): var.astype(np.complex64).tofile( f'{name}_{tup_2_string(var.shape)}_complex64.bin') elif (var.dtype == np.float64): var.astype(np.float32).tofile( f'{name}_{tup_2_string(var.shape)}_float32.bin') else: var.tofile(f'{name}_{tup_2_string(var.shape)}_{str(var.dtype)}.bin') def randn_ndarray(tshape, dtype): if np.issubdtype(dtype, np.floating): return np.random.randn(*tshape) else: return np.random.randn(*tshape) + 1j*np.random.randn(*tshape)
MatX-main
test/test_vectors/generators/matx_common.py
#!/usr/bin/env python3 import math import numpy as np import sys from scipy import io from scipy import signal from scipy.constants import c, pi from scipy.fft import ifft import matx_common from typing import Dict, List class conv_operators: def __init__(self, dtype: str, size: List[int]): np.random.seed(1234) self.a = matx_common.randn_ndarray((size[0],), dtype) self.b = matx_common.randn_ndarray((size[1],), dtype) self.res = { 'a_op': self.a, 'b_op': self.b } def conv(self): self.res['conv_full'] = np.convolve(self.a, self.b, 'full') self.res['conv_same'] = np.convolve(self.a, self.b, 'same') self.res['conv_valid'] = np.convolve(self.a, self.b, 'valid') return self.res def corr(self): self.res['corr'] = np.correlate(self.a, self.b, 'full') return self.res def corr_swap(self): self.res['corr_swap'] = np.correlate(self.b, self.a, 'full') return self.res class conv2d_operators: def __init__(self, dtype: str, size: List[int]): np.random.seed(1234) self.a = matx_common.randn_ndarray((size[0],size[1]), dtype) self.b = matx_common.randn_ndarray((size[2],size[3]), dtype) self.res = { 'a_op': self.a, 'b_op': self.b } def conv2d(self): self.res['conv_full'] = signal.convolve2d(self.a, self.b, 'full') self.res['conv_same'] = signal.convolve2d(self.a, self.b, 'same') self.res['conv_valid'] = signal.convolve2d(self.a, self.b, 'valid') return self.res class matmul_operators: def __init__(self, dtype: str, size: List[int]): np.random.seed(1234) self.size = size self.dtype = dtype if len(size) == 3: self.res = { 'a': matx_common.randn_ndarray((size[-3], size[-2]), dtype), 'b': matx_common.randn_ndarray((size[-2], size[-1]), dtype) } else: self.res = { 'a': matx_common.randn_ndarray((*size[:-3], size[-3], size[-2]), dtype), 'b': matx_common.randn_ndarray((*size[:-3], size[-2], size[-1]), dtype) } def run(self) -> Dict[str, np.ndarray]: self.res['c'] = self.res['a'] @ self.res['b'] # Create the strided batched version if len(self.res['c'].shape) == 3: self.res['cs'] = self.res['c'][::2,:,:] return self.res def run_a_transpose(self) -> Dict[str, np.ndarray]: self.res['a'] = matx_common.randn_ndarray((self.size[1], self.size[0]), self.dtype) self.res['c'] = np.transpose(self.res['a']) @ self.res['b'] return self.res def run_b_transpose(self) -> Dict[str, np.ndarray]: self.res['b'] = matx_common.randn_ndarray((self.size[2], self.size[1]), self.dtype) self.res['c'] = self.res['a'] @ np.transpose(self.res['b']) return self.res def run_transpose(self) -> Dict[str, np.ndarray]: self.res['c'] = np.transpose(self.res['a'] @ self.res['b']) return self.res def run_mixed(self) -> Dict[str, np.ndarray]: float_to_complex_dtype = {np.float32 : np.complex64, np.float64 : np.complex128} a = self.res['a'] complex_type = float_to_complex_dtype[a.dtype.type] complex_a = a.astype(complex_type) self.res['c'] = complex_a @ self.res['b'] return self.res class cov_operators: def __init__(self, dtype: str, size: List[int]): np.random.seed(1234) self.size = size self.res = { 'a': matx_common.randn_ndarray((size[0], size[0]), dtype) } def cov(self) -> Dict[str, np.ndarray]: # Python uses rows instead of columns for samples. Transpose here to match MATLAB c_cov = np.cov(self.res['a'], rowvar=False) # When computing covariance, Python uses E[XX'] whereas MATLAB and MatX use E[X'X]. Conjugate the # answer here to make them match c_cov = np.conj(c_cov) self.res['c_cov'] = c_cov return self.res class resample_poly_operators: np_random_state = None def __init__(self, dtype: str, size: List[int]): if not resample_poly_operators.np_random_state: # We want reproducible results, but do not want to create random vectors that # are too similar between test cases. If we seed every time with the same value # and then create test cases with e.g. 1000 and 2000 samples, the first 1000 # samples will be identical in both case. Thus, we seed only once and store the # state from one call to the next thereafter. np.random.seed(1234) else: np.random.set_state(resample_poly_operators.np_random_state) self.size = size up = size[2] down = size[3] gcd = math.gcd(up, down) up //= gcd down //= gcd self.res = { 'a': matx_common.randn_ndarray((size[0],), dtype), 'filter_random': matx_common.randn_ndarray((size[1],), dtype), 'up': up, 'down': down } # Create a filter compatible with scipy's resample_poly max_rate = max(up, down) f_c = 1. / max_rate half_len = 10 * max_rate if up != 1 or down != 1: self.res['filter_default'] = signal.firwin(2 * half_len + 1, f_c, window=('kaiser',5.0)).astype(dtype) resample_poly_operators.np_random_state = np.random.get_state() def resample(self) -> Dict[str, np.ndarray]: self.res['b_random'] = signal.resample_poly(self.res['a'], self.res['up'], self.res['down'], window=self.res['filter_random']) if 'filter_default' in self.res: self.res['b_default'] = signal.resample_poly(self.res['a'], self.res['up'], self.res['down']) return self.res class channelize_poly_operators: np_random_state = None def __init__(self, dtype: str, size: List[int]): if not channelize_poly_operators.np_random_state: # We want reproducible results, but do not want to create random vectors that # are too similar between test cases. If we seed every time with the same value # and then create test cases with e.g. 1000 and 2000 samples, the first 1000 # samples will be identical in both case. Thus, we seed only once and store the # state from one call to the next thereafter. np.random.seed(1234) else: np.random.set_state(channelize_poly_operators.np_random_state) self.size = size self.dtype = dtype signal_len = size[0] filter_len = size[1] num_channels = size[2] # Remaining dimensions are batch dimensions if len(size) > 3: a_dims = size[3:] a_dims = np.append(a_dims, signal_len) else: a_dims = [signal_len] self.res = { 'a': matx_common.randn_ndarray(a_dims, dtype=dtype), 'filter_random': matx_common.randn_ndarray((filter_len,), dtype=dtype), 'num_channels': num_channels, } channelize_poly_operators.np_random_state = np.random.get_state() def channelize(self) -> Dict[str, np.ndarray]: def idivup(a, b) -> int: return (a+b-1)//b h = self.res['filter_random'] num_channels = self.res['num_channels'] x = self.res['a'] num_taps_per_channel = idivup(h.size, num_channels) if num_channels * num_taps_per_channel > h.size: h = np.pad(h, (0,num_channels*num_taps_per_channel-h.size)) h = np.reshape(h, (num_channels, num_taps_per_channel), order='F') x_len_per_channel = idivup(x.shape[-1], num_channels) x_pad_len = x_len_per_channel * num_channels num_batches = x.size // x.shape[-1] out = np.zeros((num_batches, num_channels, x_len_per_channel), dtype=np.complex128) xr = np.reshape(x, (num_batches, x.shape[-1])) for batch_ind in range(num_batches): xpad = xr[batch_ind, :] if x_pad_len > x.shape[-1]: xpad = np.pad(xpad, (0,x_pad_len-x.shape[-1])) # flipud because samples are inserted into the filter banks in order # M-1, M-2, ..., 0 xf = np.flipud(np.reshape(xpad, (num_channels,x_len_per_channel), order='F')) buf = np.zeros((num_channels, num_taps_per_channel), dtype=self.dtype) # We scale the outputs by num_channels because we use the ifft # and it scales by 1/N for an N-point FFT. We use ifft instead # of fft because the complex exponentials in the Harris paper # (c.f. Equation 17) are exp(j * ...) instead of exp(-j * ...) # whereas scipy uses the negative version for DFTs. scale = num_channels for i in range(x_len_per_channel): buf[:, 1:] = buf[:, 0:num_taps_per_channel-1] buf[:, 0] = xf[:, i] for j in range(num_channels): out[batch_ind, j, i] = scale * np.dot(np.squeeze(buf[j,:]), np.squeeze(h[j,:])) out[batch_ind,:,:] = ifft(out[batch_ind,:,:], axis=0) if num_batches > 1: s = list(x.shape) s[-1] = num_channels s = np.append(s, x_len_per_channel) perm = np.arange(len(x.shape)+1) perm[-2] = len(x.shape) perm[-1] = len(x.shape)-1 out = np.transpose(np.reshape(out, s), axes=perm) else: out = np.transpose(np.reshape(out, out.shape[1:]), axes=[1,0]) self.res['b_random'] = out return self.res class fft_operators: def __init__(self, dtype: str, size: List[int]): self.size = size self.dtype = dtype np.random.seed(1234) def fft_1d(self) -> Dict[str, np.ndarray]: seq = matx_common.randn_ndarray((self.size[0],), self.dtype) return { 'a_in': seq, 'a_out': np.fft.fft(seq, self.size[1]) } def fft_1d_ortho(self) -> Dict[str, np.ndarray]: seq = matx_common.randn_ndarray((self.size[0],), self.dtype) return { 'a_in': seq, 'a_out': np.fft.fft(seq, self.size[1], norm="ortho") } def fft_1d_fwd(self) -> Dict[str, np.ndarray]: seq = matx_common.randn_ndarray((self.size[0],), self.dtype) return { 'a_in': seq, 'a_out': np.fft.fft(seq, self.size[1], norm="forward") } def fft_1d_batched(self) -> Dict[str, np.ndarray]: seq = matx_common.randn_ndarray((self.size[0],self.size[1]), self.dtype) return { 'a_in': seq, 'a_out': np.fft.fft(seq, self.size[2]) } def ifft_1d(self) -> Dict[str, np.ndarray]: seq = matx_common.randn_ndarray((self.size[0],), self.dtype) return { 'a_in': seq, 'a_out': np.fft.ifft(seq, self.size[1]) } def ifft_1d_ortho(self) -> Dict[str, np.ndarray]: seq = matx_common.randn_ndarray((self.size[0],), self.dtype) return { 'a_in': seq, 'a_out': np.fft.ifft(seq, self.size[1], norm="ortho") } def ifft_1d_fwd(self) -> Dict[str, np.ndarray]: seq = matx_common.randn_ndarray((self.size[0],), self.dtype) return { 'a_in': seq, 'a_out': np.fft.ifft(seq, self.size[1], norm="forward") } def rfft_1d(self) -> Dict[str, np.ndarray]: seq = matx_common.randn_ndarray((self.size[0],), self.dtype) return { 'a_in': seq, 'a_out': np.fft.rfft(seq, self.size[1]) } def rfft_1d_batched(self) -> Dict[str, np.ndarray]: seq = matx_common.randn_ndarray((self.size[0],self.size[1]), self.dtype) return { 'a_in': seq, 'a_out': np.fft.rfft(seq, self.size[2]) } def irfft_1d(self) -> Dict[str, np.ndarray]: seq = matx_common.randn_ndarray((self.size[0],), self.dtype) return { 'a_in': seq, 'a_out': np.fft.irfft(seq, self.size[1]) } def fft_2d(self) -> Dict[str, np.ndarray]: seq = matx_common.randn_ndarray( (self.size[0], self.size[1]), self.dtype) return { 'a_in': seq, 'a_out': np.fft.fft2(seq, (self.size[1], self.size[1])) } def ifft_2d(self) -> Dict[str, np.ndarray]: seq = matx_common.randn_ndarray( (self.size[0], self.size[1]), self.dtype) return { 'a_in': seq, 'a_out': np.fft.ifft2(seq, (self.size[1], self.size[1])) } class pwelch_operators: def __init__(self, dtype: str, params: List[int]): self.dtype = dtype self.signal_size = params[0] self.nperseg = params[1] self.noverlap = params[2] self.nfft = params[3] self.ftone = params[4] self.sigma = params[5] np.random.seed(1234) def pwelch_complex_exponential(self) -> Dict[str, np.ndarray]: s = np.exp(2j*np.pi*self.ftone*np.linspace(0,self.signal_size-1,self.signal_size)/self.nfft) n = np.random.normal(loc=0,scale=self.sigma,size=self.signal_size) + 1j*np.random.normal(loc=0,scale=self.sigma,size=self.signal_size) x = s + n f, Pxx = signal.welch(x, fs=1./self.nfft, window=np.ones(self.nperseg), nperseg=self.nperseg, noverlap=self.noverlap, nfft=self.nfft, return_onesided=False, scaling = 'density', detrend=False) return { 'x_in': x, 'Pxx_out': Pxx }
MatX-main
test/test_vectors/generators/00_transforms.py
#!/usr/bin/env python3 import numpy as np from typing import Dict, List import os class csv: def __init__(self, dtype: str, sizes: List[int]): self.dtype = dtype self.files = ("../test/00_io/small_csv_comma_nh.csv", "../test/00_io/small_csv_complex_comma_nh.csv") def run(self) -> Dict[str, np.array]: res = {} for file in self.files: res[file] = np.genfromtxt(file, delimiter=',', skip_header=1, dtype=self.dtype) return res
MatX-main
test/test_vectors/generators/00_file_io.py
#!/usr/bin/env python3 import numpy as np import sys from scipy import io from scipy.constants import c, pi import matx_common from typing import Dict, List class matx_python_tests: def __init__(self, dtype: str, size: List[int]): pass def run(self) -> Dict[str, np.ndarray]: seye = np.eye(1000, dtype=float) return { 'eye_1000': seye, }
MatX-main
test/test_vectors/generators/00_python_tests.py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os # -- Project information ----------------------------------------------------- project = "rapids-cmake" copyright = "2021, NVIDIA" author = "NVIDIA" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "22.10" # The full version, including alpha/beta/rc tags. release = "22.10.00" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.intersphinx", "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx_copybutton", "sphinxcontrib.moderncmakedomain" ] copybutton_prompt_text = ">>> " ipython_mplbackend = "str" # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst'] source_suffix = {".rst": "restructuredtext"} # The master toctree document. master_doc = "index" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_pydata_theme" # on_rtd is whether we are on readthedocs.org on_rtd = os.environ.get("READTHEDOCS", None) == "True" if not on_rtd: # only import and set the theme if we're building docs locally # otherwise, readthedocs.org uses their theme by default, # so no need to specify it import sphinx_rtd_theme html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ["_static"] # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = "rapidscmakedoc" # Intersphinx mappings for referencing external documentation intersphinx_mapping = { "python": ("https://docs.python.org/3", None), "cmake": ("https://cmake.org/cmake/help/latest/", None), } # Config numpydoc numpydoc_show_inherited_class_members = True numpydoc_class_members_toctree = False autoclass_content = "init" def setup(app): app.add_js_file("copybutton_pydocs.js") app.add_css_file("params.css") app.add_css_file("https://docs.rapids.ai/assets/css/custom.css")
MatX-main
cmake/rapids-cmake/docs/conf.py
#!/usr/bin/python3 import os from pathlib import Path from subprocess import PIPE, run examples = [ x for x in Path(__file__).parent.iterdir() if x.is_dir() and (x / 'CMakeLists.txt').exists() ] assert(len(examples) > 0) def runCommand(command): print('- %s' % command) result = run(command, stdout=PIPE, stderr=PIPE, universal_newlines=True, shell=True) if result.returncode != 0: print("error while running '%s':\n" % command, ' ' + str(result.stderr).replace('\n', '\n ')) exit(result.returncode) return result.stdout print('') for example in examples: print("running example %s" % example.name) print("================" + ('=' * len(example.name))) project = Path(".") / 'build' / example.name configure = runCommand('cmake -H%s -B%s' % (example, project)) print(' ' + '\n '.join([line for line in configure.split('\n') if 'CPM:' in line])) build = runCommand('cmake --build %s -- -j%i' % (project, os.cpu_count() / 2)) print(' ' + '\n '.join([line for line in build.split('\n') if 'Built target' in line])) print('')
MatX-main
public/cpm-cmake/examples/build_all.py
# Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # SPDX-License-Identifier: BSD-2-Clause-Patent ############################################################################### # Stuart build for host-based unittests. from edk2nv.stuart import NVIDIACiSettingsManager class HostBasedTestSettingsManager(NVIDIACiSettingsManager): ''' CiSettingsManager for host-based tests. ''' def GetName(self): return "HostBasedTests" def GetPackagesPath(self): return super().GetPackagesPath() + ["edk2-nvidia/Platform/NVIDIA/"]
edk2-nvidia-main
Platform/NVIDIA/HostBasedTests/TestBuild.py
# Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # SPDX-License-Identifier: BSD-2-Clause-Patent ############################################################################### # Stuart build for NVIDIA StandaloneMm UEFI firmware from pathlib import Path from edk2nv.stuart import NVIDIASettingsManager, NVIDIAPlatformBuilder from edk2nv.sptool import sptool class StandaloneMmSettingsManager(NVIDIASettingsManager): ''' SettingsManager for NVIDIA's StandaloneMm platform. ''' def GetName(self): return "StandaloneMm" def GetActiveScopes(self): return super().GetActiveScopes() + ["standalonemm"] def GetFirmwareVolume(self): return "FV/UEFI_MM.Fv" def GetDscName(self): return ("edk2-nvidia/Platform/NVIDIA/StandaloneMm/StandaloneMm.dsc") def GetDtbManifestFile(self): ''' Return the name of the built DTB manifest file. ''' return ( "AARCH64/Silicon/NVIDIA/StandaloneMm/Manifest/Manifest/OUTPUT/" "StandaloneMm.dtb" ) class PlatformBuilder(NVIDIAPlatformBuilder): ''' PlatformBuilder for NVIDIA's StandaloneMm. ''' SettingsManager = StandaloneMmSettingsManager def PlatformPostBuild(self): ''' Additional build steps for StandaloneMm platform. ''' ret = super().PlatformPostBuild() if ret != 0: return ret build_dir = Path(self.env.GetValue("BUILD_OUTPUT_BASE")) # Generate the StMM pkg file. target = self.settings.GetTarget() sptool( manifest_file=build_dir / self.settings.GetDtbManifestFile(), img_file=build_dir / self.settings.GetFirmwareVolume(), out_file=f"images/StandaloneMm_{target}.pkg" ) return 0
edk2-nvidia-main
Platform/NVIDIA/StandaloneMm/PlatformBuild.py
# Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # SPDX-License-Identifier: BSD-2-Clause-Patent ############################################################################### # Stuart build for NVIDIA Jetson UEFI firmware from edk2nv.stuart import NVIDIASettingsManager, NVIDIAPlatformBuilder class JetsonSettingsManager(NVIDIASettingsManager): ''' SettingsManager for NVIDIA's Jetson platform. ''' def GetName(self): return "Jetson" def GetActiveScopes(self): return super().GetActiveScopes() + ["jetson"] def GetFirmwareVolume(self): return "FV/UEFI_NS.Fv" def GetBootAppName(self): return "AARCH64/L4TLauncher.efi" def GetDscName(self): return "edk2-nvidia/Platform/NVIDIA/Jetson/Jetson.dsc" def GetDtbPath(self): return "AARCH64/Silicon/NVIDIA/Tegra/DeviceTree/DeviceTree/OUTPUT" def GetConfigFiles(self): return ["edk2-nvidia/Platform/NVIDIA/Jetson/Jetson.defconfig"] class PlatformBuilder(NVIDIAPlatformBuilder): ''' PlatformBuilder for NVIDIA's Jetson. ''' SettingsManager = JetsonSettingsManager
edk2-nvidia-main
Platform/NVIDIA/Jetson/PlatformBuild.py
# Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # SPDX-License-Identifier: BSD-2-Clause-Patent ############################################################################### # Stuart build for NVIDIA Server UEFI firmware from edk2nv.stuart import NVIDIASettingsManager, NVIDIAPlatformBuilder class ServerSettingsManager(NVIDIASettingsManager): ''' SettingsManager for NVIDIA's Server platform. ''' def GetName(self): return "Server" def GetActiveScopes(self): return super().GetActiveScopes() + ["server"] def GetPackagesPath(self): return super().GetPackagesPath() + [ "edk2-nvidia-server-gpu-sdk" ] def GetFirmwareVolume(self): return "FV/UEFI_NS.Fv" def GetDscName(self): return ("edk2-nvidia/Platform/NVIDIA/Server/Server.dsc") def GetConfigFiles(self): return ["edk2-nvidia/Platform/NVIDIA/Server/Server.defconfig"] class PlatformBuilder(NVIDIAPlatformBuilder): ''' PlatformBuilder for NVIDIA's Server. ''' SettingsManager = ServerSettingsManager
edk2-nvidia-main
Platform/NVIDIA/Server/PlatformBuild.py
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # SPDX-License-Identifier: BSD-2-Clause-Patent ############################################################################### # Stuart build for NVIDIA TegraVirt UEFI firmware from edk2nv.stuart import NVIDIASettingsManager, NVIDIAPlatformBuilder class TegraVirtSettingsManager(NVIDIASettingsManager): ''' SettingsManager for NVIDIA's TegraVirt platform. ''' def GetName(self): return "TegraVirt" def GetActiveScopes(self): return super().GetActiveScopes() + ["tegravirt"] def GetFirmwareVolume(self): return "FV/FVMAIN_COMPACT.Fv" def GetDscName(self): return "edk2-nvidia/Platform/NVIDIA/TegraVirt/TegraVirt.dsc" class PlatformBuilder(NVIDIAPlatformBuilder): ''' PlatformBuilder for NVIDIA's TegraVirt. ''' SettingsManager = TegraVirtSettingsManager
edk2-nvidia-main
Platform/NVIDIA/TegraVirt/PlatformBuild.py
# Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # SPDX-License-Identifier: BSD-2-Clause-Patent ############################################################################### # Stuart build for NVIDIA StandaloneMm UEFI firmware from edk2nv.stuart import NVIDIASettingsManager, NVIDIAPlatformBuilder class StandaloneMmOpteeSettingsManager(NVIDIASettingsManager): ''' SettingsManager for NVIDIA's StandaloneMmOptee platform. ''' def GetName(self): return "StandaloneMmOptee" def GetFirmwareVolume(self): return "FV/UEFI_MM.Fv" def GetDscName(self): return ("edk2-nvidia/Platform/NVIDIA/StandaloneMmOptee/" "StandaloneMmOptee.dsc") class PlatformBuilder(NVIDIAPlatformBuilder): ''' PlatformBuilder for NVIDIA's StandaloneMmOptee. ''' SettingsManager = StandaloneMmOpteeSettingsManager
edk2-nvidia-main
Platform/NVIDIA/StandaloneMmOptee/PlatformBuild.py
#!/usr/bin/env python3 # Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # SPDX-License-Identifier: BSD-2-Clause-Patent import argparse import io import os import sys DEFAULT_ALIGNMENT = 0x10000 def check_file_exists(filename): """ Checks that the given filename exists. If the file does not exist, prints an error and exits. Otherwise returns silently """ if filename and not os.path.isfile(filename): print("Error: could not find given file:\n" " {}".format(filename)) sys.exit(1) def parse_command_line_args(): """ Parses the command line arguments for the program. There are two required positional arguments, the first being the input file name and the second being the output file name. """ parser = argparse.ArgumentParser() parser.add_argument( "input_file", metavar="INPUT_FILE", help="Input UEFI FV file name." ) parser.add_argument( "output_file", metavar="OUTPUT_FILE", help="Output UEFI binary file name." ) parser.add_argument( "--alignment", type=int, default=DEFAULT_ALIGNMENT, help=("Required alignment of the output file given as a decimal value. " "Default value is {}.".format(DEFAULT_ALIGNMENT)) ) args = parser.parse_args() check_file_exists(args.input_file) return ( args.input_file, args.output_file, args.alignment ) def FormatUefiBinary (input_filename, output_filename, alignment=DEFAULT_ALIGNMENT): with io.open(input_filename, 'rb') as input_file: output_bytes = input_file.read() unaligned_bytes = os.path.getsize (input_filename) % alignment if unaligned_bytes!= 0: output_bytes += bytearray(b'\xFF'*(alignment - unaligned_bytes)) if (not os.path.isdir(os.path.dirname(output_filename))): os.mkdir(os.path.dirname(output_filename)) with io.open(output_filename, 'wb') as output_file: output_file.write(output_bytes) def main(): (input_filename, output_filename, alignment) = parse_command_line_args() FormatUefiBinary (input_filename, output_filename, alignment) print("Successfully formatted uefi binary to {}".format(output_filename)) if __name__ == '__main__': main()
edk2-nvidia-main
Silicon/NVIDIA/edk2nv/FormatUefiBinary.py
# Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # SPDX-License-Identifier: BSD-2-Clause-Patent ''' Package containing Python-based tools developed by NVIDIA for EDK2. '''
edk2-nvidia-main
Silicon/NVIDIA/edk2nv/__init__.py
# # This module builds a secure partition pkg file. # # Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # SPDX-License-Identifier: BSD-2-Clause-Patent # import struct import os import logging PAGE_SIZE = 4096 OFFSET_MAGIC = struct.pack("!I", 0x52415346) def sptool(manifest_file, img_file, out_file): logging.info("Generating secure partition pkg: %s", out_file) logging.info(" from image: %s", img_file) logging.info(" from manifest: %s", manifest_file) # Header is defined as 6*U32, which is a Python structure of format 'IIIIII' header_structure = 'IIIIII' if not os.path.exists(img_file): logging.fatal("Cannot find image file: %s" % img_file) return 1 if not os.path.exists(manifest_file): logging.fatal("Cannot find DTB file: %s" % manifest_file) return 1 try: with open(manifest_file, mode='rb') as file: manifest_data = file.read() except Exception as e: logging.error("Could not read DTB file", exc_info=True) try: with open(img_file, mode='rb') as file: img_data = file.read() except Exception as e: logging.error("Could not read image file", exc_info=True) # Prepare the header, magic spells "SPKG", version 1. magic = 0x474B5053 version = 1 # The Manifest DTB goes after the header, offset is size of header (6*U32) dtb_offset = 6*4 dtb_size = len(manifest_data) # The firmware images goes after the DTB and is PAGE_SIZE aligned fw_offset = int((dtb_size+dtb_offset) / PAGE_SIZE)*PAGE_SIZE + PAGE_SIZE fw_size = len(img_data) #Empty space between Manifest and image space = bytearray(fw_offset - dtb_size - dtb_offset) header = struct.pack(header_structure, magic, version, dtb_offset, dtb_size, fw_offset, fw_size) # Check if a magic is present in DTB and replace it with the actual fw_offset if OFFSET_MAGIC in manifest_data: manifest_data = manifest_data.replace(OFFSET_MAGIC, bytearray(struct.pack("!I", fw_offset))) logging.info("Patched Manifest with Image offset") try: with open(out_file, 'wb') as f: f.write(header) f.write(manifest_data) f.write(space) f.write(img_data) except Exception as e: logging.error("Could not write output file", exc_info=True) return 1 logging.info("Wrote PKG into: %s Entrypoint-offset: 0x%x" % (out_file, fw_offset)) return 0
edk2-nvidia-main
Silicon/NVIDIA/edk2nv/sptool.py
# Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # SPDX-License-Identifier: BSD-2-Clause-Patent ''' Package containing NVIDIA's extensions to EDK2's stuart build system. ''' from .builder import * # noqa from .settings import * # noqa
edk2-nvidia-main
Silicon/NVIDIA/edk2nv/stuart/__init__.py
# Copyright (c) Microsoft Corporation. # Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # SPDX-License-Identifier: BSD-2-Clause-Patent import os import sys import datetime import logging import shutil from pathlib import Path from edk2toolext.environment.uefi_build import UefiBuilder from edk2toolext.environment import shell_environment from edk2toolext.environment.conf_mgmt import ConfMgmt __all__ = [ "NVIDIAPlatformBuilder", ] _base_populate_conf_dir = ConfMgmt.populate_conf_dir ''' Stuart's implementation of ConfMgmt.populate_conf_dir(). We're going to wrap this. ''' reason_required = "Required by NVIDIA platforms" reason_setman = "Set in platform SettingsManager" reason_dynamic = "Dynamically populated" class NVIDIAPlatformBuilder(UefiBuilder): ''' Base class for NVIDIA PlatformBuilders. ''' def __init__(self): super().__init__() # Create an instance of our SettingsManager to use. # - stuart's invokeables framework finds the SettingsManager and uses # it, but the edk2_platform_build invokeable doesn't pass the # SettingsManager into UefiBuilder. So, we have to create our own # instance. # - We definitely want the settings manager. In order to support # stuart, the settings manager already has nearly everything we need. # We just need to add a few things to support our build extensions. self.settings = self.SettingsManager() def MoveConfDir(self): ''' Use a platform-specific Conf directory. Convince stuart to use `settings.GetConfDirName()` as the Conf directory. If the Conf directory does not exist, it will be populated with the template. Stuart is hard-coded to always use <workspace_root>/Conf as its Conf directory. However, we want to have platform-specific Conf directories. In the near term, that avoids race conditions when building multiple platforms in parallel. In the long term, should we choose to customize the contents of the Conf directory for a given platform, we'll have a way to do that. build.py allows the Conf directory to be moved via command line or via env. Since stuart wraps our call to build.py, we'll rely on the env. ''' ws_dir = Path(self.settings.GetWorkspaceRoot()) confdir_path = ws_dir / self.settings.GetConfDirName() confdir_name = str(confdir_path) # Stuart will populate the conf directory with templates. Since it # doesn't ask a SettingsManager for the name of the Conf directory, we # need to monkey-patch in an override. def hooked_populate_conf_dir(self, conf_folder_path, *args, **kwargs): _base_populate_conf_dir(self, confdir_name, *args, **kwargs) ConfMgmt.populate_conf_dir = hooked_populate_conf_dir # Add this Conf directory to UefiBuilder's search path. When it's # looking for "Conf/target.txt", for example, it will look in each of # these directories. self.mws.PACKAGES_PATH.append(confdir_name) # Stuart doesn't look for "<search_path>/target.txt", but looks for # "<search_path>/Conf/target.txt" instead. Rather than add another # "Conf" to our path, we'll no-op it with a symlink. confconf_path = confdir_path / "Conf" if not confconf_path.exists(): confdir_path.mkdir(parents=True, exist_ok=True) confconf_path.symlink_to(".") def ParseTargetFile(self): ''' Let the user know about expected "error" messages. ''' # See comments in SetPlatformEnv() for an explanation. logging.debug("The following 'Can't set value' messages are expected") return super().ParseTargetFile() ####################################### # UefiBuilder hooks def AddPlatformCommandLineOptions(self, parserObj): ''' Add build-specific command-line options. The stuart_build command lacks a --target option, but the other commands, e.g. stuart_setup, stuart_update, inherit one from Edk2MultiPkgAwareInvocable. This is the opposite of what we want for NVIDIA builds. Other vendors use the multi-pkg aware features to control which scopes are used during setup and update. That seems appropriate for architecture, but not for target. We see target as a build-time option, not a setup-time option. To work-around stuart, we'll add the --target option here, where only stuart_build will hit it, but retrieve and handle it in settings. ''' super().AddPlatformCommandLineOptions(parserObj) # Add --target for builds parserObj.add_argument('--target', dest="nvidia_target", default="DEBUG", help="Platform target to build") # build.py uses "-n" and make uses "-j" or "--jobs". Split the # difference and accept a little of both. parserObj.add_argument('-n', '--jobs', dest="JOBS", type=int, help="Number of concurrent build jobs to run") def RetrievePlatformCommandLineOptions(self, args): ''' Retrieve command line options from the argparser namespace ''' self._jobs = args.JOBS def GetMaxJobs(self): ''' Return the value of the --jobs option. Defaults to `None`, telling stuart to use its default, which is num_cpus. ''' return self._jobs def BuildConfigFile(self): ''' Builds the kconfig .config file for platform if needed. ''' from kconfiglib import Kconfig ws_dir = Path(self.settings.GetWorkspaceRoot()) config_out = ws_dir / "nvidia-config" / self.settings.GetName() / ".config" if config_out.is_file (): return 0 kconf_file = self.settings.GetKConfigFile() if (kconf_file == None): return 0 kconf_path = ws_dir / kconf_file kconf = Kconfig(kconf_path, warn_to_stderr=False, suppress_traceback=True) kconf.warn_assign_undef = True kconf.warn_assign_override = False kconf.warn_assign_redun = False configs = self.settings.GetConfigFiles() print(kconf.load_config(ws_dir /configs[0])) for config in configs[1:]: # replace=False creates a merged configuration print(kconf.load_config(ws_dir / config, replace=False)) kconf.write_config(os.devnull) if kconf.warnings: # Put a blank line between warnings to make them easier to read for warning in kconf.warnings: print("\n" + warning, file=sys.stderr) # Turn all warnings into errors, so that e.g. assignments to undefined # Kconfig symbols become errors. # # A warning is generated by this script whenever a symbol gets a # different value than the one it was assigned. Keep that one as just a # warning for now. raise ValueError("Aborting due to Kconfig warnings") # Write the merged configuration print(kconf.write_config(config_out)) return 0 def SetPlatformEnv(self): ''' Setup the environment for this platform. Called by UefiBuilder.SetEnv() prior to the build and after some basic defaults have been added. Values from target.txt and the DEFINE section in the platform's DSC/FDF file are added after this. Some values are used directly by stuart while most are passed through the shell environment or the build environment. Shell environment values can be set as follows: shell_env = shell_environment.GetEnvironment() shell_env.set_shell_var("KEY", "value") Build environment values can be set two ways. If set as follows, they cannot be overridden: self.env.SetValue("KEY", "value", "reason") If the build environment value is set as follows, it can be overridden by a subclass, target.txt, etc. shell_env = shell_environment.GetEnvironment() shell_env.set_build_var("KEY", "value") Build environment variables eventually find their way into make. ''' # Move the Conf directory. This isn't an "env" thing, but this is the # first callback, __init__() is too early, and the next callback is too # late. Given the options available, this is the right place. self.MoveConfDir() logging.debug("Setting env from SettingsManager") # Preempt the contents of target.txt. # # If we don't provide a target.txt for a platform, which is normally # the case, stuart will copy in a template filled with defaults. Then # stuart will load those defaults and start using them, which is most # likely not what we want. # # Ideally, we'd load target.txt first, then override where the subclass # had an opinion. Unfortunately, "after target.txt" is too late; # stuart immediately uses some values without giving us a chance to # override them first. Instead, we'll have to set values here and not # allow target.txt to override them. This works fine, but results in # annoying "Can't set value" messages. We'll just have to ignore # those. ws_dir = Path(self.settings.GetWorkspaceRoot()) # ACTIVE_PLATFORM # - If not provided by the SettingsManager, the value in target.txt # will be taken. dsc_name = self.settings.GetDscName() if dsc_name: self.env.SetValue("ACTIVE_PLATFORM", dsc_name, reason_setman) # TARGET - always take the --target argument via GetTarget(). We # can't defer to target.txt here because we use GetTarget() to name # the directory target.txt lives in (via GetConfDirName()). self.env.SetValue("TARGET", self.settings.GetTarget(), reason_required) # MAX_CONCURRENT_THREAD_NUMBER - always take the --jobs argument, if # one was provided. max_jobs = self.GetMaxJobs() if max_jobs: self.env.SetValue("MAX_CONCURRENT_THREAD_NUMBER", max_jobs, reason_required) # TARGET_ARCH - always AARCH64 on NVIDIA platforms. self.env.SetValue("TARGET_ARCH", "AARCH64", reason_required) # TOOL_CHAIN_TAG # - If not provided by the SettingsManager, the value in target.txt # will be taken. toolchain_tag = self.settings.GetToolchainTag() if toolchain_tag: self.env.SetValue("TOOL_CHAIN_TAG", toolchain_tag, reason_setman) # Set additional build variables cur_time = datetime.datetime.now() build_ts = cur_time.astimezone().replace(microsecond=0).isoformat() self.env.SetValue("BLD_*_BUILD_DATE_TIME", build_ts, reason_dynamic) self.env.SetValue("BLD_*_BUILD_PROJECT_TYPE", "EDK2", reason_required) self.env.SetValue("BLD_*_BUILDID_STRING", self.settings.GetFirmwareVersion(), reason_dynamic) # Setup build reporting self.env.SetValue("BUILDREPORTING", "TRUE", reason_required) self.env.SetValue("BUILDREPORT_TYPES", self.settings.GetReportTypes(), reason_required) self.env.SetValue("BUILDREPORT_FILE", str(ws_dir / self.settings.GetReportFile()), reason_setman) # Set shell env shell_environment.GetEnvironment().set_shell_var( f"{toolchain_tag}_AARCH64_PREFIX", self.settings.GetCrossCompilerPrefix()) shell_environment.GetEnvironment().set_shell_var( f"DTCPP_PREFIX", self.settings.GetCrossCompilerPrefix()) # - Needed by build.py. confdir_path = ws_dir / self.settings.GetConfDirName() shell_environment.GetEnvironment().set_shell_var( "CONF_PATH", str(confdir_path)) defconf = self.settings.GetConfigFiles() if defconf: self.BuildConfigFile () # Must return 0 to indicate success. return 0 def PlatformPreBuild(self): return 0 def PlatformPostBuild(self): ''' Additional build steps for NVIDIA platforms. ''' from edk2nv.FormatUefiBinary import FormatUefiBinary ws_dir = Path(self.settings.GetWorkspaceRoot()) build_dir = Path(self.env.GetValue("BUILD_OUTPUT_BASE")) target = self.settings.GetTarget() # Store the path to the build directory in a place an upstream build # system can find it. builddirfile = ws_dir / self.settings.GetBuildDirFile() builddirfile.parent.mkdir(parents=True, exist_ok=True) builddirfile.write_text(str(build_dir)) # Remove the Conf link we added earlier. It can cause problems for # tools, such as find, that want to spider the build directory. Since # we're done building, we don't need it any more. confdir_path = ws_dir / self.settings.GetConfDirName() confconf_path = confdir_path / "Conf" if confconf_path.is_symlink(): confconf_path.unlink() # Generate the firmware image, if appropriate for this platform fw_rel = self.settings.GetFirmwareVolume() if fw_rel: fw_vol = build_dir / fw_rel fw_img = ws_dir / self.settings.GetFirmwareImageFile() logging.info("Generating uefi image %s", fw_img) fw_img.parent.mkdir(parents=True, exist_ok=True) FormatUefiBinary(str(fw_vol), str(fw_img)) # Copy the boot app, if appropriate for this platform boot_rel = self.settings.GetBootAppName() if boot_rel: boot_path = build_dir / boot_rel boot_out = ws_dir / self.settings.GetBootAppFile() logging.info("Copying boot app %s", boot_out) boot_out.parent.mkdir(parents=True, exist_ok=True) FormatUefiBinary(str(fw_vol), str(fw_img)) shutil.copyfile(boot_path, boot_out) # Copy DTBs, if appropriate for this platform dtb_path = self.settings.GetDtbPath() if dtb_path: full_dtb_path = build_dir / dtb_path # Copy each generated DTB for src_dtb in full_dtb_path.glob("*.dtb"): dest_dtb = self.settings.GetDtbFile(src_dtb.stem) logging.info("Copying DTB %s", dest_dtb) shutil.copyfile(src_dtb, dest_dtb) return 0 def PlatformFlashImage(self): logging.critical("Flash Image not supported") return 1
edk2-nvidia-main
Silicon/NVIDIA/edk2nv/stuart/builder.py
# Copyright (c) Microsoft Corporation. # Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # SPDX-License-Identifier: BSD-2-Clause-Patent import os import sys from pathlib import Path from edk2toolext.invocables.edk2_update import UpdateSettingsManager from edk2toolext.invocables.edk2_setup import SetupSettingsManager from edk2toolext.invocables.edk2_pr_eval import PrEvalSettingsManager from edk2toolext.invocables.edk2_platform_build import BuildSettingsManager from edk2toolext.invocables.edk2_ci_setup import CiSetupSettingsManager from edk2toolext.invocables.edk2_ci_build import CiBuildSettingsManager from edk2toollib.utility_functions import RunCmd from edk2toolext.environment import shell_environment __all__ = [ "NVIDIASettingsManager", "NVIDIACiSettingsManager", ] reason_setman = "Set in platform CiSettingsManager" class AbstractNVIDIASettingsManager(UpdateSettingsManager, SetupSettingsManager): ''' Abstract stuart SettingsManager. ''' def GetName(self): ''' Get the name of the platform being built. ''' raise NotImplementedError( "GetName() must be implemented in NVIDIASettingsManager " "subclasses." ) ####################################### # Edk2InvocableSettingsInterface def GetWorkspaceRoot(self): ''' Return the root of the workspace. This implementation will defer to the WORKSPACE environment variable. ''' workspace = os.getenv("WORKSPACE") if workspace: # Use pathlib to normalize it, but stuart requires it to be a # string, not a PathLike. return str(Path(os.getenv("WORKSPACE"))) else: raise AttributeError("WORKSPACE not defined") def GetPackagesPath(self): ''' Return paths that should be mapped as edk2 PACKAGE_PATH. This is the list of directories, relative to the workspace, where the build will look for packages. ''' # NOTE: These paths must use a trailing slash to ensure stuart treats # them properly when computing relative paths. packages_paths = [path + "/" for path in self._insert_pkgs_paths] packages_paths.extend([ "edk2/BaseTools/", "edk2/", "edk2-platforms/", "edk2-nvidia/", "edk2-nvidia-non-osi/", "edk2-non-osi", "edk2-platforms/Features/Intel/OutOfBandManagement/" ]) if self.GetConfigFiles (): ws_dir = Path(self.GetWorkspaceRoot()) config_path = "nvidia-config/" + self.GetName() config_fullpath = ws_dir / config_path config_fullpath.mkdir(parents=True, exist_ok=True) packages_paths.extend([ config_path ]) return packages_paths def GetSkippedDirectories(self): ''' Return tuple containing workspace-relative directory paths that should be skipped for processing. Absolute paths are not supported. ''' # NOTE: These paths must use a trailing slash to ensure stuart treats # them properly when computing relative paths. skipped_dirs = [path + "/" for path in self._skipped_dirs] return skipped_dirs def GetActiveScopes(self): ''' List of scopes we need for this platform. ''' return ['edk2-build'] def AddCommandLineOptions(self, parserObj): ''' Add command line options to the argparser ''' super().AddCommandLineOptions(parserObj) parserObj.add_argument( '--insert-packages-path', dest='nvidia_pkgs_paths', type=str, help='Insert the given path into the beginning of the list of ' 'package paths. Allows build time overrides.', action="append", default=[]) parserObj.add_argument( '--insert-skipped-dir', dest='nvidia_skipped_dirs', type=str, help='Insert the given path into the beginning of the list of ' 'skipped paths. Allows build time overrides.', action="append", default=[]) parserObj.add_argument( '--require-submodule', dest='nvidia_submodules', type=str, help='Add a required submodule.', action="append", default=[]) def RetrieveCommandLineOptions(self, args): ''' Retrieve command line options from the argparser namespace ''' super().RetrieveCommandLineOptions(args) self._insert_pkgs_paths = args.nvidia_pkgs_paths self._skipped_dirs = args.nvidia_skipped_dirs self._added_submodules = args.nvidia_submodules ####################################### # MultiPkgAwareSettingsInterface def GetPackagesSupported(self): ''' No-op. We don't use SetPackages(), so we don't need to implement this method. ''' return [] def GetArchitecturesSupported(self): ''' No-op. We don't use SetArchitectures(), so we don't need to implement this method. ''' return [] def GetTargetsSupported(self): ''' No-op. We don't use SetTargets(), so we don't need to implement this method. ''' return [] def GetConfigFiles(self): ''' Return the list of config files that will used for this build these will be applied in order and are relative to the workspace ''' return None class NVIDIASettingsManager(AbstractNVIDIASettingsManager, PrEvalSettingsManager, BuildSettingsManager, metaclass=shell_environment.Singleton): ''' Base SettingsManager for various stuart build steps. Implements the SettingsManager for update, setup, pr-eval, and build steps for portions common to all NVIDIA platforms. Platforms must provide a subclass in their PlatformBuid.py. ''' ####################################### # Edk2InvocableSettingsInterface def RetrieveCommandLineOptions(self, args): ''' Retrieve command line options from the argparser namespace ''' super().RetrieveCommandLineOptions(args) if hasattr(args, "nvidia_target"): # We're in the build step. Pick up the target argument we added in # builder.py. See the comments in AddPlatformCommandLineOptions() # to understand this bit of hack. self._target = args.nvidia_target else: # We're not in the build step. Make sure the multi-pkg aware # options were not used. We don't support them. if (args.packageList or args.requested_arch or args.requested_target): print("The --pkg, --arch, --target are not supported") sys.exit(1) ####################################### # NVIDIA settings # - Additional settings for NVIDIAPlatformBuilder def GetFirmwareVersionBase(self): ''' Return the base firmware version as a string. The return from this method will be used as the prefix when setting BUILDID_STRING, unless the FIRMWARE_VERSION_BASE env is set. ''' return "202308.0" def GetFirmwareVersion(self): ''' Return the firmware version as a string. The return from this method will be used to set BUILDID_STRING. Subclasses may override it to generate the BUILDID differently. This implementation will use the format {base}-{suffix}. - The base can be set via the FIRMWARE_VERSION_BASE env var. If it is not set, we'll use GetFirmwareVersionBase(). - The suffix can be set via the GIT_SYNC_REVISION env var. If it is not set, we'll use `git describe`. ''' base = os.getenv("FIRMWARE_VERSION_BASE") if not base: base = self.GetFirmwareVersionBase() if os.getenv("GIT_SYNC_REVISION") is not None: return base + "-" + os.getenv("GIT_SYNC_REVISION") else: import io result = io.StringIO() ret = RunCmd("git", "-C edk2-nvidia describe --always --dirty", workingdir=self.GetWorkspaceRoot(), outstream=result) if (ret == 0): return base + "-" + result.getvalue() else: return base + "-Unknown" def GetFirmwareVolume(self): ''' Return the flash volume to use when generating the firmware image. Must match a flash volume in the platform's FDF file. The return must be a string and identify a path relative to the platform's build output directory. ''' raise NotImplementedError( "GetFirmwareVolume() must be implemented in " "NVIDIASettingsManager subclasses." ) def GetFirmwareImageFile(self): ''' Return the name of the firmware image. The firmware image will be generated from the firmware volume and stored to this filename. This default implementation will use "images/uefi_{platform_name}_{target}.bin". Returned as a string identifying a path relative to the workspace root. ''' platform_name = self.GetName() target = self.GetTarget() return str(Path("images") / f"uefi_{platform_name}_{target}.bin") def GetDscName(self): ''' Optionally return the path to the platform's DSC file. If `None`, the value is taken from target.txt. Otherwise, this will override target.txt The path must be relative to GetWorkspaceRoot(). This will be used to set ACTIVE_PLATFORM. ''' return None def GetToolchainTag(self): ''' Optionally return the toolchain identifier. Defaults to GCC5. If `None`, the value is taken from target.txt. Otherwise, this will override target.txt This will be used to set TOOL_CHAIN_TAG. ''' tool_chain_tag = os.getenv("TOOL_CHAIN_TAG") if not tool_chain_tag: tool_chain_tag = "GCC5" return tool_chain_tag def GetReportTypes(self): ''' Return the build report types. This will be used to set BUILDREPORT_TYPES. ''' return ("PCD LIBRARY FLASH DEPEX BUILD_FLAGS FIXED_ADDRESS HASH") def GetReportFile(self): ''' Return the build report filename. The report will copied to this location after the build. Returned as a string. This default implementation will use "reports/{platform_name}_{target}.report" ''' platform_name = self.GetName() target = self.GetTarget() return f"reports/{platform_name}_{target}.report" def GetCrossCompilerPrefix(self): ''' Return prefix to the toolchain. This implementation will defer to the CROSS_COMPILER_PREFIX environment variable. ''' prefix = os.getenv("CROSS_COMPILER_PREFIX") if prefix: # Use pathlib to normalize it, but stuart requires it # to be a string, not a PathLike. return str(Path(os.getenv("CROSS_COMPILER_PREFIX"))) else: raise AttributeError("CROSS_COMPILER_PREFIX not defined") def GetTarget(self): ''' Return the value of the --target option. ''' return self._target def GetConfDirName(self): ''' Return the name of the Conf directory. This directory name will include the target so that targets can be built in parallel. Returned as a string. This default implementation will use "Conf/{platform_name}/{target}". ''' platform_name = self.GetName() target = self.GetTarget() return f"Conf/{platform_name}/{target}" def GetBootAppName(self): ''' Optionally, the build name of this platform's boot app. If the platform does not have a boot app, this method should return `None`. Returns a path relative to the build directory. ''' return None def GetBootAppFile(self): ''' Return the file name of the boot app. We'll copy the built boot app to this location. This default implementation will use "images/BOOTAA64_{platform_name}_{target}.efi". Returns a path relative to the workspace. ''' platform_name = self.GetName() target = self.GetTarget() return str(Path("images") / f"BOOTAA64_{platform_name}_{target}.efi") def GetDtbPath(self): ''' Optionally, the build path of this platform's DTB files. If the platform does not have DTBs, this method should return `None`. Returns a path relative to the build directory. ''' return None def GetDtbFile(self, dtb_stem): ''' Return the file name of the given DTB file. We'll copy the built DTB to this location. This default implementation will use "images/{dtb_stem}_{platform_name}_{target}.dtbo". Returns a path relative to the workspace. ''' platform_name = self.GetName() target = self.GetTarget() return str(Path("images") / f"{dtb_stem}_{platform_name}_{target}.dtbo") def GetBuildDirFile(self): ''' Return the file name of the build dir file. This file will contain the full path to the build directory. Useful when an upstream build system needs access to arbitrary build artifacts. This default implementation will use "images/builddir_{platform_name}_{target}.txt". Returns a path relative to the workspace. ''' platform_name = self.GetName() target = self.GetTarget() return str(Path("images") / f"builddir_{platform_name}_{target}.txt") def GetKConfigFile(self): ''' Return the file name of the main Kconfig configuration. This file will is used with the platform Kconfig file to generate the specific configuration. The path must be relative to GetWorkspaceRoot(). ''' return "edk2-nvidia/Silicon/NVIDIA/Kconfig" class NVIDIACiSettingsManager(AbstractNVIDIASettingsManager, CiSetupSettingsManager, CiBuildSettingsManager, metaclass=shell_environment.Singleton): ''' Base SettingsManager for various stuart CI steps. Implement some sane defaults for CI steps. ''' def __init__(self, *args, **kwargs): ''' Initialize the SettingsManager and set up build environment. This is the best opportunity we have to set the build environment. Unlike the "build" step, the "ci_build" step doesn't provide a callback like SetPlatformEnv(). ''' super().__init__(*args, **kwargs) env = shell_environment.GetBuildVars() ws_dir = Path(self.GetWorkspaceRoot()) # TOOL_CHAIN_TAG # - If not provided by the SettingsManager, the value in target.txt # will be taken. toolchain_tag = self.GetToolchainTag() if toolchain_tag: env.SetValue("TOOL_CHAIN_TAG", toolchain_tag, reason_setman) # Setup build reporting env.SetValue("BUILDREPORTING", "TRUE", reason_setman) env.SetValue("BUILDREPORT_TYPES", self.GetReportTypes(), reason_setman) env.SetValue("BUILDREPORT_FILE", str(ws_dir / self.GetReportFile()), reason_setman) def GetArchitecturesSupported(self): ''' return iterable of edk2 architectures supported by this build ''' return ("X64",) def GetTargetsSupported(self): ''' return iterable of edk2 target tags supported by this build ''' return ("NOOPT",) def GetActiveScopes(self): # Add the "host-based-test" scope, which will trigger the plugin that # runs the unittests after the build. return super().GetActiveScopes() + ["cibuild", "host-based-test"] ####################################### # NVIDIA settings def GetToolchainTag(self): ''' Return the toolchain identifier. At this time, we only support CI runs with the GCC5 toolchain. This will be used to set TOOL_CHAIN_TAG. ''' tool_chain_tag = os.getenv("TOOL_CHAIN_TAG") if not tool_chain_tag: tool_chain_tag = "GCC5" return tool_chain_tag def GetReportTypes(self): ''' Return the build report types. This will be used to set BUILDREPORT_TYPES. ''' return ("PCD LIBRARY FLASH DEPEX BUILD_FLAGS FIXED_ADDRESS HASH") def GetReportFile(self): ''' Return the build report filename. The report will copied to this location after the build. Returned as a string. This default implementation will use "reports/{platform_name}.report" ''' platform_name = self.GetName() return f"reports/{platform_name}.report"
edk2-nvidia-main
Silicon/NVIDIA/edk2nv/stuart/settings.py
#!/usr/bin/env python3 # Copyright 2020 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorrt as trt import pycuda.driver as cuda import pycuda.autoinit import numpy as np import argparse def build_profile(builder, network, profile_shapes, default_shape_value=1): """ Build optimization profile for the builder and configure the min, opt, max shapes appropriately. """ def is_dimension_dynamic(dim): return dim is None or dim <= 0 def override_shape(shape): return tuple([1 if is_dimension_dynamic(dim) else dim for dim in shape]) profile = builder.create_optimization_profile() for idx in range(network.num_inputs): inp = network.get_input(idx) def get_profile_shape(name): if name not in profile_shapes: return None shapes = profile_shapes[name] if not isinstance(shapes, list) or len(shapes) != 3: G_LOGGER.critical("Profile values must be a list containing exactly 3 shapes (tuples or Dims), but received shapes: {:} for input: {:}.\nNote: profile was: {:}.\nNote: Network inputs were: {:}".format(shapes, name, profile_shapes, get_network_inputs(network))) return shapes if inp.is_shape_tensor: shapes = get_profile_shape(inp.name) if not shapes: rank = inp.shape[0] shapes = [(default_shape_value, ) * rank] * 3 print("Setting shape input to {:}. If this is incorrect, for shape input: {:}, please provide tuples for min, opt, and max shapes containing {:} elements".format(shapes[0], inp.name, rank)) min, opt, max = shapes profile.set_shape_input(inp.name, min, opt, max) print("Setting shape input: {:} values to min: {:}, opt: {:}, max: {:}".format(inp.name, min, opt, max)) elif -1 in inp.shape: shapes = get_profile_shape(inp.name) if not shapes: shapes = [override_shape(inp.shape)] * 3 print("Overriding dynamic input shape {:} to {:}. If this is incorrect, for input tensor: {:}, please provide tuples for min, opt, and max shapes containing values: {:} with dynamic dimensions replaced,".format(inp.shape, shapes[0], inp.name, inp.shape)) min, opt, max = shapes profile.set_shape(inp.name, min, opt, max) print("Setting input: {:} shape to min: {:}, opt: {:}, max: {:}".format(inp.name, min, opt, max)) if not profile: print("Profile is not valid, please provide profile data. Note: profile was: {:}".format(profile_shapes)) return profile def preprocess_network(network): """ Add quantize and dequantize nodes after the input placeholder. The scale values are currently picked on emperical basis. Ideally, you need to add these nodes during quantization aware training and learn the dynamic ranges of input node. """ quant_scale = np.array([1.0/127.0], dtype=np.float32) dequant_scale = np.array([127.0/1.0], dtype=np.float32) # Zero point is always zero for quantization in TensorRT. zeros = np.zeros(shape=(1, ), dtype=np.float32) for i in range(network.num_inputs): inp = network.get_input(i) # Find layer consuming input tensor found = False for layer in network: if found: break; for k in range(layer.num_inputs): if (inp == layer.get_input(k)): mode = trt.ScaleMode.UNIFORM quantize = network.add_scale(inp, mode, scale=quant_scale, shift=zeros) quantize.set_output_type(0, trt.int8) quantize.name = "InputQuantizeNode" quantize.get_output(0).name = "QuantizedInput" dequantize = network.add_scale(quantize.get_output(0), mode, scale=dequant_scale, shift=zeros) dequantize.set_output_type(0, trt.float32) dequantize.name = "InputDequantizeNode" dequantize.get_output(0).name = "DequantizedInput" layer.set_input(k, dequantize.get_output(0)) found = True break def build_engine_onnx(model_file, verbose=False): """ Parse the model file through TensorRT, build TRT engine and run inference """ # Create builder and network if verbose: TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) else: TRT_LOGGER = trt.Logger(trt.Logger.INFO) network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) network_flags = network_flags | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(flags=network_flags) as network, trt.OnnxParser(network, TRT_LOGGER) as parser: with open(model_file, 'rb') as model: if not parser.parse(model.read()): print ('ERROR: Failed to parse the ONNX file.') for error in range(parser.num_errors): print (parser.get_error(error)) return None # Add quantize and dequantize nodes for input of the network preprocess_network(network) config = builder.create_builder_config() config.max_workspace_size = 1 << 30 config.flags = config.flags | 1 << int(trt.BuilderFlag.INT8) # Setting the (min, opt, max) batch sizes to be 1. Users need to configure this according to their requirements. config.add_optimization_profile(build_profile(builder, network, profile_shapes={'input' : [(1, 3, 224, 224),(1, 3, 224, 224),(1, 3, 224, 224)]})) return builder.build_engine(network, config) def main(args): model_file = args.onnx # Parse the ONNX graph through TensorRT and build the engine trt_engine = build_engine_onnx(model_file, args.verbose) # Serialize the engine and save to file with open(args.engine, "wb") as file: file.write(trt_engine.serialize()) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--onnx", type=str, default='rn50.onnx', help="Path to RN50 ONNX graph") parser.add_argument("--engine", type=str, default='rn50_trt.engine', help="output path to TensorRT engine") parser.add_argument('-v', '--verbose', action='store_true', help="Flag to enable verbose logging") args = parser.parse_args() main(args)
sampleQAT-master
build_engine.py
#!/usr/bin/env python3 # Copyright 2020 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import onnx_graphsurgeon as gs import argparse import onnx import numpy as np def process_transpose_nodes(graph): """ This is a workaround to manually transpose the conv weights and remove the existing transpose nodes. Currently TRT has a limitation when there is a transpose node as an input to the weights of the conv layer. This utility would be removed in future releases. """ # Find all the transposes before the convolutional nodes conv_nodes = [node for node in graph.nodes if node.op == "Conv"] for node in conv_nodes: # Transpose the convolutional weights and reset them to the weights conv_weights_tensor = node.i(1).i().i().inputs[0] conv_weights_transposed = np.transpose(conv_weights_tensor.values, [3, 2, 0, 1]) conv_weights_tensor.values = conv_weights_transposed # Remove the transpose nodes after the dequant node. TensorRT does not support transpose nodes after QDQ nodes. dequant_node_output = node.i(1).i(0).outputs[0] node.inputs[1] = dequant_node_output # Remove unused nodes, and topologically sort the graph. return graph.cleanup().toposort() if __name__=='__main__': parser = argparse.ArgumentParser("Post process ONNX graph by removing transpose nodes") parser.add_argument("--input", required=True, help="Input onnx graph") parser.add_argument("--output", default='postprocessed_rn50.onnx', help="Name of post processed onnx graph") args = parser.parse_args() # Load the rn50 graph graph = gs.import_onnx(onnx.load(args.input)) # Remove the transpose nodes and reshape the convolution weights graph = process_transpose_nodes(graph) # Export the onnx graph from graphsurgeon onnx_model = gs.export_onnx(graph) print("Output ONNX graph generated: ", args.output) onnx.save_model(onnx_model, args.output)
sampleQAT-master
postprocess_onnx.py
#!/usr/bin/env python3 # Copyright 2020 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from tensorflow.core.protobuf import config_pb2, rewriter_config_pb2, meta_graph_pb2 from tensorflow.core.framework import graph_pb2 from tensorflow.python.framework import importer, ops from tensorflow.python.grappler import tf_optimizer from tensorflow.python.training import saver def constfold(graphdef, output_name): graph = ops.Graph() with graph.as_default(): outputs = output_name.split(',') output_collection = meta_graph_pb2.CollectionDef() output_list = output_collection.node_list.value for output in outputs: output_list.append(output) importer.import_graph_def(graphdef, name="") metagraph = saver.export_meta_graph(graph_def=graph.as_graph_def(add_shapes=True), graph=graph) metagraph.collection_def["train_op"].CopyFrom(output_collection) rewriter_config = rewriter_config_pb2.RewriterConfig() rewriter_config.optimizers.extend(["constfold"]) rewriter_config.meta_optimizer_iterations = (rewriter_config_pb2.RewriterConfig.ONE) session_config = config_pb2.ConfigProto() session_config.graph_options.rewrite_options.CopyFrom(rewriter_config) return tf_optimizer.OptimizeGraph(session_config, metagraph) if __name__ == '__main__': parser = argparse.ArgumentParser("Folds constants in the provided frozen model") parser.add_argument("-i", "--input", help="The input frozen model to be constant folded.") parser.add_argument("--output_node", default="resnet50/output/softmax_1", help="Output node names separated by commas") parser.add_argument("-o", "--output", default="folded_rn50.pb", help="Path to constant folded output graph") args, _ = parser.parse_known_args() with open(args.input, 'rb') as f: graphdef = graph_pb2.GraphDef() graphdef.ParseFromString(f.read()) folded_graph = constfold(graphdef, args.output_node) print("Writing output to {:}".format(args.output)) with open(args.output, "wb") as f: f.write(folded_graph.SerializeToString())
sampleQAT-master
fold_constants.py
#!/usr/bin/env python3 # Copyright 2020 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import argparse import PIL.Image import numpy as np import tensorrt as trt import pycuda.driver as cuda import pycuda.autoinit import image_processing TRT_DYNAMIC_DIM = -1 def load_normalized_test_case(test_image, pagelocked_buffer, preprocess_func): # Expected input dimensions C, H, W = (3, 224, 224) # Normalize the images, concatenate them and copy to pagelocked memory. data = np.asarray([preprocess_func(PIL.Image.open(test_image).convert('RGB'), C, H, W)]).flatten() np.copyto(pagelocked_buffer, data) class HostDeviceMem(object): r""" Simple helper data class that's a little nicer to use than a 2-tuple. """ def __init__(self, host_mem, device_mem): self.host = host_mem self.device = device_mem def __str__(self): return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device) def __repr__(self): return self.__str__() def allocate_buffers(engine: trt.ICudaEngine, batch_size: int): print('Allocating buffers ...') inputs = [] outputs = [] dbindings = [] stream = cuda.Stream() for binding in engine: size = batch_size * abs(trt.volume(engine.get_binding_shape(binding))) dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. dbindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, dbindings, stream def infer(engine_path, preprocess_func, batch_size, input_image, labels=[], verbose=False): if verbose: logger = trt.Logger(trt.Logger.VERBOSE) else: logger = trt.Logger(trt.Logger.INFO) with open(engine_path, 'rb') as f, trt.Runtime(logger) as runtime: engine = runtime.deserialize_cuda_engine(f.read()) def override_shape(shape, batch_size): return tuple([batch_size if dim==TRT_DYNAMIC_DIM else dim for dim in shape]) # Allocate buffers and create a CUDA stream. inputs, outputs, dbindings, stream = allocate_buffers(engine, batch_size) # Contexts are used to perform inference. with engine.create_execution_context() as context: # Resolve dynamic shapes in the context for binding in engine: binding_idx = engine.get_binding_index(binding) shape = engine.get_binding_shape(binding_idx) if engine.binding_is_input(binding_idx): if TRT_DYNAMIC_DIM in shape: shape = override_shape(shape, batch_size) context.set_binding_shape(binding_idx, shape) # Load the test images and preprocess them load_normalized_test_case(input_image, inputs[0].host, preprocess_func) # Transfer input data to the GPU. cuda.memcpy_htod(inputs[0].device, inputs[0].host) # Run inference. context.execute(batch_size, dbindings) # Transfer predictions back to host from GPU out = outputs[0] cuda.memcpy_dtoh(out.host, out.device) softmax_output = np.array(out.host) top1_idx = np.argmax(softmax_output) output_class = labels[top1_idx+1] output_confidence = softmax_output[top1_idx] print ("Output class of the image: {} Confidence: {}".format(output_class, output_confidence)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Run inference on TensorRT engines for Imagenet-based Classification models.') parser.add_argument('-e', '--engine', type=str, required=True, help='Path to RN50 TensorRT engine') parser.add_argument('-i', '--image', required=True, type=str, help="Path to input image.") parser.add_argument("-l", "--labels", type=str, default=os.path.join("labels", "class_labels.txt"), help="Path to file which has imagenet 1k labels.") parser.add_argument('-b', '--batch_size', default=1, type=int, help="Batch size of inputs") parser.add_argument('-v', '--verbose', action='store_true', help="Flag to enable verbose loggin") args = parser.parse_args() # Class 0 is not used and is treated as background class. Renaming it to "background" with open(args.labels, "r") as f: background_class = ["background"] imagenet_synsets = f.read().splitlines() imagenet_classes=[] for synset in imagenet_synsets: class_name = synset.strip() imagenet_classes.append(class_name) all_classes = background_class + imagenet_classes labels = np.array(all_classes) # Preprocessing for input images preprocess_func = image_processing.preprocess_resnet50 # Run inference on the test image infer(args.engine, preprocess_func, args.batch_size, args.image, labels, args.verbose)
sampleQAT-master
infer.py
# Copyright 2020 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import numpy as np from PIL import Image logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S") logger = logging.getLogger(__name__) _RESIZE_MIN = 256 _R_MEAN = 123.68 _G_MEAN = 116.78 _B_MEAN = 103.94 _CHANNEL_MEANS = [_R_MEAN, _G_MEAN, _B_MEAN] def preprocess_imagenet(image, channels=3, height=224, width=224): """Pre-processing for Imagenet-based Image Classification Models: resnet50, vgg16, mobilenet, etc. (Doesn't seem to work for Inception) Parameters ---------- image: PIL.Image The image resulting from PIL.Image.open(filename) to preprocess channels: int The number of channels the image has (Usually 1 or 3) height: int The desired height of the image (usually 224 for Imagenet data) width: int The desired width of the image (usually 224 for Imagenet data) Returns ------- img_data: numpy array The preprocessed image data in the form of a numpy array """ # Get the image in CHW format resized_image = image.resize((width, height), Image.ANTIALIAS) img_data = np.asarray(resized_image).astype(np.float32) if len(img_data.shape) == 2: # For images without a channel dimension, we stack img_data = np.stack([img_data] * 3) logger.debug("Received grayscale image. Reshaped to {:}".format(img_data.shape)) else: img_data = img_data.transpose([2, 0, 1]) mean_vec = np.array([0.485, 0.456, 0.406]) stddev_vec = np.array([0.229, 0.224, 0.225]) assert img_data.shape[0] == channels for i in range(img_data.shape[0]): # Scale each pixel to [0, 1] and normalize per channel. img_data[i, :, :] = (img_data[i, :, :] / 255 - mean_vec[i]) / stddev_vec[i] return img_data def _smallest_size_at_least(height, width, resize_min): smaller_dim = np.minimum(float(height), float(width)) scale_ratio = resize_min / smaller_dim # Convert back to ints to make heights and widths that TF ops will accept. new_height = int(height * scale_ratio) new_width = int(width * scale_ratio) return new_height, new_width def _central_crop(image, crop_height, crop_width): shape = image.shape height, width = shape[0], shape[1] amount_to_be_cropped_h = (height - crop_height) crop_top = amount_to_be_cropped_h // 2 amount_to_be_cropped_w = (width - crop_width) crop_left = amount_to_be_cropped_w // 2 cropped_image = image[crop_top:crop_height+crop_top, crop_left:crop_width+crop_left] return cropped_image def normalize_inputs(inputs): num_channels = inputs.shape[-1] if len(_CHANNEL_MEANS) != num_channels: raise ValueError('len(means) must match the number of channels') # We have a 1-D tensor of means; convert to 3-D. means_per_channel = np.reshape(_CHANNEL_MEANS, [1, 1, num_channels]) # means_per_channel = tf.cast(means_per_channel, dtype=inputs.dtype) inputs = np.subtract(inputs, means_per_channel)/255.0 return inputs def preprocess_resnet50(image, channels=3, height=224, width=224): """Pre-processing for Imagenet-based Image Classification Models: resnet50 (resnet_v1_1.5 designed by Nvidia Parameters ---------- image: PIL.Image The image resulting from PIL.Image.open(filename) to preprocess channels: int The number of channels the image has (Usually 1 or 3) height: int The desired height of the image (usually 224 for Imagenet data) width: int The desired width of the image (usually 224 for Imagenet data) Returns ------- img_data: numpy array The preprocessed image data in the form of a numpy array """ # Get the shape of the image. w, h= image.size new_height, new_width = _smallest_size_at_least(h, w, _RESIZE_MIN) # Image is still in WH format in PIL resized_image = image.resize((new_width, new_height), Image.BILINEAR) # Changes to HWC due to numpy img_data = np.asarray(resized_image).astype(np.float32) # Do a central crop cropped_image = _central_crop(img_data, height, width) assert cropped_image.shape[0] == height assert cropped_image.shape[1] == width if len(cropped_image.shape) == 2: # For images without a channel dimension, we stack cropped_image = np.stack([cropped_image] * 3) return cropped_image # logger.debug("Received grayscale image. Reshaped to {:}".format(cropped_image.shape)) normalized_inputs = normalize_inputs(cropped_image) cropped_image = np.transpose(normalized_inputs, [2, 0, 1]) return cropped_image def preprocess_inception(image, channels=3, height=224, width=224): """Pre-processing for InceptionV1. Inception expects different pre-processing than {resnet50, vgg16, mobilenet}. This may not be totally correct, but it worked for some simple test images. Parameters ---------- image: PIL.Image The image resulting from PIL.Image.open(filename) to preprocess channels: int The number of channels the image has (Usually 1 or 3) height: int The desired height of the image (usually 224 for Imagenet data) width: int The desired width of the image (usually 224 for Imagenet data) Returns ------- img_data: numpy array The preprocessed image data in the form of a numpy array """ # Get the image in CHW format resized_image = image.resize((width, height), Image.BILINEAR) img_data = np.asarray(resized_image).astype(np.float32) if len(img_data.shape) == 2: # For images without a channel dimension, we stack img_data = np.stack([img_data] * 3) logger.debug("Received grayscale image. Reshaped to {:}".format(img_data.shape)) else: img_data = img_data.transpose([2, 0, 1]) return img_data
sampleQAT-master
image_processing.py
""" Basic HTTP Multithreaeded Server. Steps to run: $ python server.py Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. """ import argparse from http.server import HTTPServer, BaseHTTPRequestHandler from socketserver import ThreadingMixIn class Handler(BaseHTTPRequestHandler): def log_request(self, code="-", size="-"): # Don't log successful requests info. Unsuccessful logged by log_error(). pass def _set_headers(self): self.send_response(200) self.send_header("Content-Type", "text/plain") self.end_headers() def do_PUT(self): self._set_headers() self.wfile.write(b"Hello World!") def do_GET(self): if self.path == "/health": self._set_headers() self.wfile.write(b"Running") return self._set_headers() self.wfile.write(b"Hello World!") class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): """Handle requests in a separate thread.""" def run(addr="localhost", port=8000): server = ThreadedHTTPServer((addr, port), Handler) print(f"Starting HTTP server on {addr}:{port}") server.serve_forever() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run a simple HTTP server") parser.add_argument( "-l", "--listen", default="localhost", help="Specify the IP address on which the server listens", ) parser.add_argument( "-p", "--port", type=int, default=8000, help="Specify the port on which the server listens", ) args = parser.parse_args() run(addr=args.listen, port=args.port)
ais-etl-master
bench/http-server/server.py
""" A basic web server using Flask for demonstration purposes. Steps to run: $ # with built-in flask server $ flask --app app run $ # with gunicorn $ gunicorn -w 4 'app:app' Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. """ import logging from flask import Flask, request app = Flask(__name__) @app.route("/", defaults={"path": ""}, methods=["PUT", "GET"]) @app.route("/<path:path>", methods=["PUT", "GET"]) def image_handler(path): try: if request.method == "PUT": # Read the request body # Transform the bytes # Return the transformed bytes transformed_data = b"Hello World!" return transformed_data, 200 elif request.method == "GET": # Get the destination/name of the object from the URL or the path variable # Fetch the object from the AIS target based on the destination/name # Use request.get(ais_target_url + "/" + path).get to get the object # Transform the bytes # Return the transformed bytes transformed_data = b"Hello World!" return transformed_data, 200 except Exception as exception: logging.error("Error processing request: %s", str(exception)) return "Data processing failed", 500 if __name__ == "__main__": app.run()
ais-etl-master
bench/flask-server/app.py
""" A basic web server using FastAPI for demonstration purposes. Steps to run: $ # with uvicorn $ uvicorn main:app --reload $ # with multiple uvicorn processes managed by gunicorn $ gunicorn main:app --workers 4 --worker-class uvicorn.workers.UvicornWorker --bind 0.0.0.0:8000 Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. """ from fastapi import FastAPI, Request app = FastAPI() @app.put("/") @app.put("/{full_path:path}") async def put_handler(request: Request, full_path: str): """ Handles PUT requests. Reads bytes from the request, performs byte transformation, and returns the modified bytes. """ # Read bytes from request (request.body) # Transform the bytes # Return the transformed bytes return b"Hello World from PUT!" @app.get("/") @app.get("/{full_path:path}") async def get_handler(request: Request, full_path: str): """ Handles GET requests. Retrieves the destination/name of the object from the URL or the full_path variable, fetches the object from the AIS target based on the destination/name, transforms the bytes, and returns the modified bytes. """ # Get destination/name of object from URL or from full_path variable # Fetch object from AIS target based on the destination/name # Perform byte transformation # Return the transformed bytes return b"Hello World from GET!"
ais-etl-master
bench/fast-api/main.py
""" Test client for all the webservers. Steps to run: $ pip install locust $ locust Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. """ from locust import HttpUser, task class MyTestUser(HttpUser): @task def test_put_request(self): self._perform_put_request() @task def test_get_request(self): self._perform_get_request() def _perform_put_request(self): url = "/" data = "test" self.client.put(url=url, data=data) def _perform_get_request(self): url = "/" self.client.get(url=url)
ais-etl-master
bench/client/locustfile.py
#!/usr/bin/env python import os import importlib.util from typing import Iterator from inspect import signature from http.server import HTTPServer, BaseHTTPRequestHandler from socketserver import ThreadingMixIn import requests host_target = os.environ["AIS_TARGET_URL"] code_file = os.getenv("MOD_NAME") arg_type = os.getenv("ARG_TYPE", "bytes") spec = importlib.util.spec_from_file_location(name="function", location=f"./code/{code_file}.py") mod = importlib.util.module_from_spec(spec) spec.loader.exec_module(mod) try: CHUNK_SIZE = int(os.getenv("CHUNK_SIZE", 0)) except Exception: CHUNK_SIZE = 0 transform = getattr(mod, os.getenv("FUNC_TRANSFORM")) def _assert_validations(): transform_params = len(signature(transform).parameters) if CHUNK_SIZE > 0 and transform_params < 2: raise ValueError( "Required to pass context as a parameter to transform if CHUNK_SIZE > 0" ) class StreamWrapper: def __init__(self, rfile, content_length, chunk_size): self._rfile = rfile self._content_length = content_length self._chunk_size = chunk_size self._remaining_length = content_length def read(self) -> bytes: return next(self) def read_all(self) -> bytes: return self._rfile.read(self._remaining_length) def __iter__(self) -> Iterator[bytes]: while self._remaining_length > 0: read_buffer = ( self._chunk_size if self._remaining_length >= self._chunk_size else self._remaining_length ) self._remaining_length -= read_buffer yield self._rfile.read(read_buffer) class Handler(BaseHTTPRequestHandler): def log_request(self, *args): # Don't log successful requests info. Unsuccessful logged by log_error(). pass def _set_headers(self): self.send_response(200) self.send_header("Content-Type", "application/octet-stream") self.end_headers() def do_PUT(self): content_length = int(self.headers["Content-Length"]) reader = StreamWrapper(self.rfile, content_length, CHUNK_SIZE) if CHUNK_SIZE == 0: result = transform(reader.read_all()) self._set_headers() self.wfile.write(result) return # TODO: validate if transform takes writer as input # NOTE: for streaming transforms the writer is expected to write bytes into response as stream. self._set_headers() transform(reader, self.wfile) def do_GET(self): if self.path == "/health": self._set_headers() self.wfile.write(b"Running") return query_path = host_target + self.path if arg_type == "url": result = transform(query_path) else: input_bytes = requests.get(query_path).content result = transform(input_bytes) self._set_headers() self.wfile.write(result) class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): """Handle requests in a separate thread.""" def run(addr="0.0.0.0", port=80): server = ThreadedHTTPServer((addr, port), Handler) print(f"Starting HTTP server on {addr}:{port}") _assert_validations() server.serve_forever() if __name__ == "__main__": run(addr="0.0.0.0", port=80)
ais-etl-master
runtime/python/server.py
#!/usr/bin/env python # # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-docstring, invalid-name import argparse import json import logging import os from http.server import HTTPServer, BaseHTTPRequestHandler from socketserver import ThreadingMixIn import ffmpeg import filetype import requests class Handler(BaseHTTPRequestHandler): def __init__(self, *args, **kwargs): self.host_target = os.environ["AIS_TARGET_URL"] self.ffmpeg_options = json.loads(os.environ["FFMPEG_OPTIONS"]) if not self.ffmpeg_options or not isinstance(self.ffmpeg_options, dict): raise ValueError("FFMPEG_OPTIONS must be a valid JSON dictionary") self.ffmpeg_format = self.ffmpeg_options.get("format") super().__init__(*args, **kwargs) def log_request(self, code="-", size="-"): pass def handle_error(self, error_message): logging.error(error_message) self.send_response(500) self.end_headers() self.wfile.write(b"Data processing failed") def _set_headers(self, content_type): self.send_response(200) self.send_header("Content-Type", f"{content_type}") self.end_headers() def process_data(self, data): input_stream = ffmpeg.input("pipe:0") output_stream = ffmpeg.output(input_stream, "pipe:1", **self.ffmpeg_options) try: output, _ = ffmpeg.run( output_stream, input=data, capture_stdout=True, capture_stderr=True ) self.wfile.write(output) except ffmpeg.Error as error: self.handle_error(f"FFMPEG Error: {error.stderr.decode()}") def handle_request(self, data): if self.ffmpeg_format: self._set_headers(content_type=f"audio/{self.ffmpeg_format}") else: input_type = filetype.guess(data) self._set_headers(content_type=str(input_type.mime)) self.ffmpeg_options["format"] = input_type.extension self.process_data(data) def do_PUT(self): try: content_length = int(self.headers["Content-Length"]) post_data = self.rfile.read(content_length) self.handle_request(post_data) except Exception as error: self.handle_error(f"Error processing PUT request: {str(error)}") def do_GET(self): try: if self.path == "/health": self._set_headers(content_type="text/plain") self.wfile.write(b"Running") return response = requests.get(self.host_target + self.path, timeout=3.05) self.handle_request(response.content) except Exception as error: self.handle_error(f"Error processing GET request: {str(error)}") class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): pass def run(addr="localhost", port=8000): server = ThreadedHTTPServer((addr, port), Handler) print(f"Starting HTTP server on {addr}:{port}") server.serve_forever() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run a simple HTTP server") parser.add_argument( "-l", "--listen", default="localhost", required=False, help="Specify the IP address on which the server listens", ) parser.add_argument( "-p", "--port", type=int, default=8000, required=False, help="Specify the port on which the server listens", ) parser_args = parser.parse_args() run(addr=parser_args.listen, port=parser_args.port)
ais-etl-master
transformers/ffmpeg/server.py
#!/usr/bin/env python import argparse import hashlib import requests import os from http.server import HTTPServer, BaseHTTPRequestHandler from socketserver import ThreadingMixIn host_target = os.environ['AIS_TARGET_URL'] class Handler(BaseHTTPRequestHandler): def log_request(self, code='-', size='-'): # Don't log successful requests info. Unsuccessful logged by log_error(). pass def _set_headers(self): self.send_response(200) self.send_header("Content-Type", "text/plain") self.end_headers() def do_PUT(self): content_length = int(self.headers['Content-Length']) post_data = self.rfile.read(content_length) md5 = hashlib.md5() md5.update(post_data) self._set_headers() self.wfile.write(md5.hexdigest().encode()) def do_GET(self): if self.path == "/health": self._set_headers() self.wfile.write(b"Running") return x = requests.get(host_target + self.path) md5 = hashlib.md5() md5.update(x.content) self._set_headers() self.wfile.write(md5.hexdigest().encode()) class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): """Handle requests in a separate thread.""" def run(addr="localhost", port=8000): server = ThreadedHTTPServer((addr, port), Handler) print(f"Starting HTTP server on {addr}:{port}") server.serve_forever() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run a simple HTTP server") parser.add_argument( "-l", "--listen", default="localhost", help="Specify the IP address on which the server listens", ) parser.add_argument( "-p", "--port", type=int, default=8000, help="Specify the port on which the server listens", ) args = parser.parse_args() run(addr=args.listen, port=args.port)
ais-etl-master
transformers/md5/server.py
#!/usr/bin/env python # # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # import argparse import bz2 import gzip import json import logging import os from http.server import HTTPServer, BaseHTTPRequestHandler from socketserver import ThreadingMixIn import requests host_target = os.environ["AIS_TARGET_URL"] compress_options = json.loads(os.environ["COMPRESS_OPTIONS"]) if "mode" not in compress_options: mode = "compress" else: mode = compress_options["mode"] if "compression" not in compress_options: compression = "gzip" else: compression = compress_options["compression"] class Handler(BaseHTTPRequestHandler): # Overriding log_request to not log successful requests def log_request(self, code="-", size="-"): pass # Set standard headers for responses def _set_headers(self): self.send_response(200) self.send_header("Content-Type", "application/octet-stream") self.end_headers() def process_data(self, data): if mode == "compress" and compression == "gzip": return gzip.compress(data) if mode == "compress" and compression == "bz2": return bz2.compress(data) if mode == "decompress" and compression == "gzip": return gzip.decompress(data) if mode == "decompress" and compression == "bz2": return bz2.decompress(data) raise ValueError( f"Unsupported data processing mode ({mode}) or compression algorithm ({compression})" ) # PUT handler supports `hpush` operation def do_PUT(self): try: content_length = int(self.headers["Content-Length"]) post_data = self.rfile.read(content_length) processed_data = self.process_data(post_data) self._set_headers() self.wfile.write(processed_data) except Exception as exception: logging.error("Error processing PUT request: %s", str(exception)) self.send_response(500) self.end_headers() self.wfile.write(b"Data processing failed") # GET handler supports `hpull` operation def do_GET(self): try: if self.path == "/health": self._set_headers() self.wfile.write(b"Running") return response = requests.get(host_target + self.path) processed_data = self.process_data(response.content) self._set_headers() self.wfile.write(processed_data) except Exception as exception: logging.error("Error processing GET request: %s", str(exception)) self.send_response(500) self.end_headers() self.wfile.write(b"Data processing failed") class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): """Handle requests in a separate thread.""" def run(addr, port): server = ThreadedHTTPServer((addr, port), Handler) print(f"Starting HTTP server on {addr}:{port}") server.serve_forever() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run a simple HTTP server") parser.add_argument( "-l", "--listen", help="Specify the IP address on which the server listens", ) parser.add_argument( "-p", "--port", type=int, help="Specify the port on which the server listens", ) args = parser.parse_args() run(addr=args.listen, port=args.port)
ais-etl-master
transformers/compress/server.py
""" A simple echo transformation using FastAPI framework and Gunivorn and Uvicorn webserver. Steps to run: $ # with uvicorn $ uvicorn main:app --reload $ # with multiple uvicorn processes managed by gunicorn $ gunicorn main:app --workers 4 --worker-class uvicorn.workers.UvicornWorker --bind 0.0.0.0:8000 Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. """ # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring, broad-exception-caught import os import urllib.parse from fastapi import FastAPI, Request, Depends, Response, HTTPException import aiohttp # async app = FastAPI() host_target = os.environ["AIS_TARGET_URL"] class HttpClient: session: aiohttp.ClientSession = None def start(self): self.session = aiohttp.ClientSession() async def stop(self): await self.session.close() self.session = None def __call__(self) -> aiohttp.ClientSession: assert self.session is not None return self.session http_client = HttpClient() @app.on_event("startup") async def startup(): http_client.start() @app.get("/health") async def health(): return b"Running" @app.get("/") @app.get("/{full_path:path}", response_class=Response) async def get_handler( full_path: str, client: aiohttp.ClientSession = Depends(http_client) ): """ Handles GET requests. Retrieves the destination/name of the object from the URL or the full_path variable, fetches the object from the AIS target based on the destination/name, transforms the bytes, and returns the modified bytes. """ # Get destination/name of object from URL or from full_path variable # Fetch object from AIS target based on the destination/name # Transform the bytes # Return the transformed bytes object_path = urllib.parse.quote(full_path, safe="@") object_url = f"{host_target}/{object_path}" resp = await client.get(object_url) if not resp or resp.status != 200: raise HTTPException( status_code=500, detail="Error retreiving object ({full_path}) from target" ) return Response(content=await resp.read(), media_type="application/octet-stream") @app.put("/") @app.put("/{full_path:path}", response_class=Response) async def put_handler(request: Request): """ Handles PUT requests. Reads bytes from the request, performs byte transformation, and returns the modified bytes. """ # Read bytes from request (request.body) # Transform the bytes # Return the transformed bytes return Response(content=await request.body(), media_type="application/octet-stream")
ais-etl-master
transformers/echo/main.py
#!/usr/bin/env python import argparse import requests import os from http.server import HTTPServer, BaseHTTPRequestHandler from socketserver import ThreadingMixIn host_target = os.environ['AIS_TARGET_URL'] class Handler(BaseHTTPRequestHandler): def log_request(self, code='-', size='-'): # Don't log successful requests info. Unsuccessful logged by log_error(). pass def _set_headers(self): self.send_response(200) self.send_header("Content-Type", "application/octet-stream") self.end_headers() def do_PUT(self): content_length = int(self.headers['Content-Length']) post_data = self.rfile.read(content_length) self._set_headers() self.wfile.write(post_data) def do_GET(self): if self.path == "/health": self._set_headers() self.wfile.write(b"Running") return self._set_headers() x = requests.get(host_target + self.path) self.wfile.write(x.content) class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): """Handle requests in a separate thread.""" def run(addr="localhost", port=8000): server = ThreadedHTTPServer((addr, port), Handler) print(f"Starting HTTP server on {addr}:{port}") server.serve_forever() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run a simple HTTP server") parser.add_argument( "-l", "--listen", default="localhost", help="Specify the IP address on which the server listens", ) parser.add_argument( "-p", "--port", type=int, default=8000, help="Specify the port on which the server listens", ) args = parser.parse_args() run(addr=args.listen, port=args.port)
ais-etl-master
transformers/echo/http-multithreaded-server/server.py
""" A simple hello world transformation using FastAPI framework and Gunicorn and Uvicorn webserver. Steps to run: $ # with uvicorn $ uvicorn main:app --reload $ # with multiple uvicorn processes managed by gunicorn $ gunicorn main:app --workers 4 --worker-class uvicorn.workers.UvicornWorker --bind 0.0.0.0:8000 Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. """ # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring, broad-exception-caught import os import urllib.parse from fastapi import FastAPI, Request, Depends, Response, HTTPException import aiohttp # async # from aistore.sdk.errors import AISError app = FastAPI() host_target = os.environ.get("AIS_TARGET_URL") if not host_target: raise EnvironmentError("AIS_TARGET_URL environment variable missing") arg_type = os.getenv("ARG_TYPE", "") class HttpClient: session: aiohttp.ClientSession = None def start(self): self.session = aiohttp.ClientSession() async def stop(self): await self.session.close() self.session = None def __call__(self) -> aiohttp.ClientSession: assert self.session is not None return self.session http_client = HttpClient() @app.on_event("startup") async def startup(): http_client.start() @app.get("/health") async def health(): return b"Running" @app.get("/") @app.get("/{full_path:path}", response_class=Response) async def get_handler( full_path: str, client: aiohttp.ClientSession = Depends(http_client) ): """ Handles `hpull://` and `hrev://` requests. Retrieves the destination/name of the object from the URL or the full_path variable, fetches the object from the AIS target based on the destination/name, transforms the bytes, and returns the modified bytes. """ # Get destination/name of object from URL or from full_path variable if arg_type.lower() == "fqn": with open(full_path, "rb") as file: file.read() else: object_path = urllib.parse.quote(full_path, safe="@") object_url = f"{host_target}/{object_path}" # Fetch object from AIS target based on the destination/name resp = await client.get(object_url) if not resp or resp.status != 200: raise HTTPException( status_code=500, detail="Error retreiving object ({full_path}) from target", ) # Transform the bytes await resp.read() return Response(content=b"Hello World!", media_type="application/octet-stream") @app.put("/") @app.put("/{full_path:path}", response_class=Response) async def put_handler(request: Request, full_path: str): """ Handles `hpush://` requests. Reads bytes from the request, performs byte transformation, and returns the modified bytes. """ # Read bytes from request (request.body) if arg_type.lower() == "fqn": with open(full_path, "rb") as file: file.read() else: await request.body() # Transform the bytes # Return the transformed bytes return Response(content=b"Hello World!", media_type="application/octet-stream")
ais-etl-master
transformers/hello_world/main.py
#!/usr/bin/env python import argparse import requests import os from http.server import HTTPServer, BaseHTTPRequestHandler from socketserver import ThreadingMixIn host_target = os.environ['AIS_TARGET_URL'] class Handler(BaseHTTPRequestHandler): def log_request(self, code='-', size='-'): # Don't log successful requests info. Unsuccessful logged by log_error(). pass def _set_headers(self): self.send_response(200) self.send_header("Content-Type", "text/plain") self.end_headers() def do_PUT(self): content_length = int(self.headers['Content-Length']) self.rfile.read(content_length) self._set_headers() self.wfile.write(b"Hello World!") def do_GET(self): if self.path == "/health": self._set_headers() self.wfile.write(b"Running") return requests.get(host_target + self.path) self._set_headers() self.wfile.write(b"Hello World!") class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): """Handle requests in a separate thread.""" def run(addr="localhost", port=8000): server = ThreadedHTTPServer((addr, port), Handler) print(f"Starting HTTP server on {addr}:{port}") server.serve_forever() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run a simple HTTP server") parser.add_argument( "-l", "--listen", default="localhost", help="Specify the IP address on which the server listens", ) parser.add_argument( "-p", "--port", type=int, default=8000, help="Specify the port on which the server listens", ) args = parser.parse_args() run(addr=args.listen, port=args.port)
ais-etl-master
transformers/hello_world/http-multithreaded-server/server.py
""" Transorming images with Keras API using FastAPI framework and Gunivorn and Uvicorn webserver. Steps to run: $ # with uvicorn $ uvicorn main:app --reload $ # with multiple uvicorn processes managed by gunicorn $ gunicorn main:app --workers 4 --worker-class uvicorn.workers.UvicornWorker --bind 0.0.0.0:8000 Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. """ # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring, broad-exception-caught import os import urllib.parse import json import io import logging from fastapi import FastAPI, Request, Depends, Response import aiohttp # async from keras.preprocessing.image import ( ImageDataGenerator, load_img, array_to_img, img_to_array, ) app = FastAPI() # Constants FORMAT = os.getenv("FORMAT", "JPEG") ARG_TYPE = os.getenv("ARG_TYPE", "bytes") # Environment Variables host_target = os.environ.get("AIS_TARGET_URL") TRANSFORM = os.environ.get("TRANSFORM") if not host_target: raise EnvironmentError("AIS_TARGET_URL environment variable missing") if not TRANSFORM: raise EnvironmentError( "TRANSFORM environment variable missing. Check documentation for examples (link)" ) transform_dict = json.loads(TRANSFORM) class HttpClient: session: aiohttp.ClientSession = None def start(self): self.session = aiohttp.ClientSession() async def stop(self): await self.session.close() self.session = None def __call__(self) -> aiohttp.ClientSession: assert self.session is not None return self.session http_client = HttpClient() @app.on_event("startup") async def startup(): http_client.start() @app.get("/health") async def health(): return b"Ok" async def transform_image(data: bytes) -> bytes: """Process image data as bytes using the specified transformation.""" try: img = load_img(io.BytesIO(data)) img = img_to_array(img) datagen = ImageDataGenerator() img = datagen.apply_transform(x=img, transform_parameters=transform_dict) img = array_to_img(img) buf = io.BytesIO() img.save(buf, format=FORMAT) return buf.getvalue() except Exception as e: logging.error("Error processing data: %s", str(e)) raise @app.get("/") @app.get("/{full_path:path}", response_class=Response) async def get_handler( full_path: str, client: aiohttp.ClientSession = Depends(http_client) ): """ Handles GET requests. Retrieves the destination/name of the object from the URL or the full_path variable, fetches the object from the AIS target based on the destination/name, transforms the bytes, and returns the modified bytes. """ # Get destination/name of object from URL or from full_path variable # Fetch object from AIS target based on the destination/name # Transform the bytes # Return the transformed bytes object_path = urllib.parse.quote(full_path, safe="@") object_url = f"{host_target}/{object_path}" resp = await client.get(object_url) body = await resp.read() return Response( content=await transform_image(body), media_type="application/octet-stream" ) @app.put("/") @app.put("/{full_path:path}", response_class=Response) async def put_handler(request: Request): """ Handles PUT requests. Reads bytes from the request, performs byte transformation, and returns the modified bytes. """ # Read bytes from request (request.body) # Transform the bytes # Return the transformed bytes body = await request.body() return Response( content=await transform_image(body), media_type="application/octet-stream" )
ais-etl-master
transformers/keras_preprocess/main.py
#!/usr/bin/env python # # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring, broad-exception-caught import os import json import logging import io import urllib import requests from flask import Flask, request from keras.preprocessing.image import ( ImageDataGenerator, load_img, array_to_img, img_to_array, ) app = Flask(__name__) # Constants FORMAT = os.getenv("FORMAT", "JPEG") ARG_TYPE = os.getenv("ARG_TYPE", "bytes") # Environment Variables host_target = os.environ.get("AIS_TARGET_URL") logging.info(host_target) TRANSFORM = os.environ.get("TRANSFORM") if not host_target: raise EnvironmentError("AIS_TARGET_URL environment variable missing") if not TRANSFORM: raise EnvironmentError( "TRANSFORM environment variable missing. Check documentation for examples (link)" ) transform_dict = json.loads(TRANSFORM) def transform_image(data: bytes) -> bytes: """Process image data as bytes using the specified transformation.""" try: img = load_img(io.BytesIO(data)) img = img_to_array(img) datagen = ImageDataGenerator() img = datagen.apply_transform(x=img, transform_parameters=transform_dict) img = array_to_img(img) buf = io.BytesIO() img.save(buf, format=FORMAT) return buf.getvalue() except Exception as exp: logging.error("Error processing data in transform_image: %s", str(exp)) raise exp @app.route("/health") def health_check(): return "Running" @app.route("/", defaults={"path": ""}, methods=["PUT", "GET"]) @app.route("/<path:path>", methods=["PUT", "GET"]) def image_handler(path: str): # pylint: disable=unused-argument try: if request.method == "PUT": post_data = request.data processed_data = transform_image(post_data) if processed_data is not None: return processed_data, 200 return "Data processing failed", 500 if request.method == "GET": if ARG_TYPE == "url": # webdataset query_path = request.args.get("url") result = transform_image(requests.get(query_path, timeout=5).content) else: # normal GET - hpull and hrev object_path = urllib.parse.quote(path, safe="@") object_url = f"{host_target}/{object_path}" resp = requests.get(object_url, timeout=5) if resp.status_code != 200: raise FileNotFoundError(f"Error getting '{path}' from '{host_target}'") result = transform_image(resp.content) if result is not None: return result, 200 return "Data processing failed", 500 except Exception as exp: logging.error("Error processing request: %s", str(exp)) return "Data processing failed", 500
ais-etl-master
transformers/keras_preprocess/flask-gunicorn/app.py
#!/usr/bin/env python # # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # import os import json import logging import requests from http.server import HTTPServer, BaseHTTPRequestHandler from socketserver import ThreadingMixIn import io from keras.preprocessing.image import ( ImageDataGenerator, load_img, array_to_img, img_to_array, ) # Constants FORMAT = os.getenv("FORMAT", "JPEG") ARG_TYPE = os.getenv("ARG_TYPE", "bytes") # Environment Variables host_target = os.environ.get("AIS_TARGET_URL") TRANSFORM = os.environ.get("TRANSFORM") if not host_target: raise EnvironmentError("AIS_TARGET_URL environment variable missing") if not TRANSFORM: raise EnvironmentError( "TRANSFORM environment variable missing. Check documentation for examples (link)" ) transform_dict = json.loads(TRANSFORM) class Handler(BaseHTTPRequestHandler): def log_request(self, code="-", size="-"): """Override log_request to not log successful requests.""" pass def _set_headers(self): """Set standard headers for responses.""" self.send_response(200) self.send_header("Content-Type", "application/octet-stream") self.end_headers() def transform(self, data: bytes) -> bytes: """Process image data as bytes using the specified transformation.""" try: img = load_img(io.BytesIO(data)) img = img_to_array(img) datagen = ImageDataGenerator() img = datagen.apply_transform(x=img, transform_parameters=transform_dict) img = array_to_img(img) buf = io.BytesIO() img.save(buf, format=FORMAT) return buf.getvalue() except Exception as e: logging.error("Error processing data: %s", str(e)) raise def do_PUT(self): """PUT handler supports `hpush` operation.""" try: content_length = int(self.headers["Content-Length"]) post_data = self.rfile.read(content_length) processed_data = self.transform(post_data) if processed_data is not None: self._set_headers() self.wfile.write(processed_data) else: self.send_response(500) self.end_headers() self.wfile.write(b"Data processing failed") except Exception as e: logging.error("Error processing PUT request: %s", str(e)) self.send_response(500) self.end_headers() self.wfile.write(b"Data processing failed") def do_GET(self): """GET handler supports `hpull` operation.""" try: if self.path == "/health": self._set_headers() self.wfile.write(b"Running") return query_path = host_target + self.path if ARG_TYPE == "url": # need this for webdataset result = self.transform(query_path) else: input_bytes = requests.get(query_path).content result = self.transform(input_bytes) if result is not None: self._set_headers() self.wfile.write(result) else: self.send_response(500) self.end_headers() self.wfile.write(b"Data processing failed") except Exception as e: logging.error("Error processing GET request: %s", str(e)) self.send_response(500) self.end_headers() self.wfile.write(b"Data processing failed") class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): """Handle requests in a separate thread.""" def run(addr="0.0.0.0", port=80): server = ThreadedHTTPServer((addr, port), Handler) logging.info(f"Starting HTTP server on {addr}:{port}") server.serve_forever() if __name__ == "__main__": run(addr="0.0.0.0", port=80)
ais-etl-master
transformers/keras_preprocess/http-multithreaded-server/server.py
""" Stress testing Keras Transformer for 50k images for all communication types Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. """ # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring import logging from datetime import datetime from tests.base import TestBase from aistore.sdk.etl_const import ETL_COMM_HPULL, ETL_COMM_HPUSH, ETL_COMM_HREV from aistore.sdk.etl_templates import KERAS_TRANSFORMER logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO, ) logger = logging.getLogger(__name__) class TestKerasStress(TestBase): def setUp(self): super().setUp() # Keep this bucket self.images_bck = self.client.bucket(bck_name="stress-test-images") def run_test(self, comm_type: str, func_name: str): template = KERAS_TRANSFORMER.format( communication_type=comm_type, format="JPEG", transform='{"theta":40, "brightness":0.8, "zx":0.9, "zy":0.9}', ) self.test_etl.init_spec(template=template, communication_type=comm_type) start_time = datetime.now() job_id = self.images_bck.transform( etl_name=self.test_etl.name, timeout="30m", to_bck=self.test_bck, ext={"JPEG": "JPEG"}, ) self.client.job(job_id).wait(timeout=1800) time_elapsed = datetime.now() - start_time job_status = self.client.job(job_id).status() self.assertEqual(job_status.err, "") self.assertEqual( len(self.images_bck.list_all_objects()), len(self.test_bck.list_all_objects()), ) logger.info("%s %s", func_name, time_elapsed) with open("metrics.txt", "a+", encoding="utf-8") as file: file.write(f"{func_name} {time_elapsed}\n") def test_keras_hpush_fastapi(self): self.run_test(ETL_COMM_HPUSH, "test_keras_hpush_fastapi") def test_keras_hpull_fastapi(self): self.run_test(ETL_COMM_HPULL, "test_keras_hpull_fastapi") def test_keras_hrev_fastapi(self): self.run_test(ETL_COMM_HREV, "test_keras_hrev_fastapi")
ais-etl-master
transformers/tests/test_keras_stress.py
""" Stress testing Hello World Transformer for 1 Million objects for all communication types Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. """ # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring import logging from datetime import datetime from aistore.sdk.etl_const import ETL_COMM_HPULL, ETL_COMM_HPUSH, ETL_COMM_HREV from aistore.sdk.etl_templates import HELLO_WORLD from tests.base import TestBase from tests.utils import git_test_mode_format_image_tag_test FQN = """ apiVersion: v1 kind: Pod metadata: name: transformer-hello-world annotations: communication_type: "hpull://" wait_timeout: 5m spec: containers: - name: server image: aistorage/transformer_hello_world:test imagePullPolicy: Always ports: - name: default containerPort: 8000 command: ["gunicorn", "main:app", "--workers", "20", "--worker-class", "uvicorn.workers.UvicornWorker", "--bind", "0.0.0.0:8000"] # command: ["uvicorn", "main:app", "--reload"] env: - name: ARG_TYPE value: "fqn" readinessProbe: httpGet: path: /health port: default volumeMounts: - name: ais mountPath: /tmp/ volumes: - name: ais hostPath: path: /tmp/ type: Directory """ logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO, ) logger = logging.getLogger(__name__) class TestHelloWorldStress(TestBase): def setUp(self): super().setUp() # dont delete this bucket self.images_bck = self.client.bucket(bck_name="stress-test-objects") def test_hello_world_hpush_fastapi(self): self.run_test(ETL_COMM_HPUSH, "test_hello_world_hpush_fastapi") def test_hello_world_hpull_fastapi(self): self.run_test(ETL_COMM_HPULL, "test_hello_world_hpull_fastapi") def test_hello_world_hrev_fastapi(self): self.run_test(ETL_COMM_HREV, "test_hello_world_hrev_fastapi") def test_hello_world_hpull_fastapi_fqn(self): self.run_test( ETL_COMM_HPULL, "test_hello_world_hpull_fastapi_fqn", arg_type="fqn" ) def test_hello_world_hpush_fastapi_fqn(self): self.run_test( ETL_COMM_HPUSH, "test_hello_world_hpush_fastapi_fqn", arg_type="fqn" ) def run_test(self, comm_type: str, func_name: str, arg_type: str = ""): template = HELLO_WORLD.format(communication_type=comm_type) if arg_type.lower() == "fqn": template = FQN template = git_test_mode_format_image_tag_test(template, "hello_world") self.test_etl.init_spec( template=template, communication_type=comm_type, arg_type=arg_type ) logger.info(self.test_etl.view()) start_time = datetime.now() job_id = self.images_bck.transform( etl_name=self.test_etl.name, timeout="5m", to_bck=self.test_bck ) self.client.job(job_id).wait(timeout=600, verbose=False) time_elapsed = datetime.now() - start_time self.assertEqual(self.client.job(job_id).status().err, "") self.assertEqual( len(self.images_bck.list_all_objects()), len(self.test_bck.list_all_objects()), ) logger.info("%s %s", func_name, time_elapsed) with open("metrics.txt", "a+", encoding="utf-8") as file: file.write(f"{func_name} {time_elapsed}\n")
ais-etl-master
transformers/tests/test_hello_world_stress.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring import io import os import unittest from PIL import Image from torchvision import transforms from tests.base import TestBase from tests.utils import git_test_mode_format_image_tag_test from aistore.sdk.etl_const import ETL_COMM_HPULL, ETL_COMM_HPUSH, ETL_COMM_HREV from aistore.sdk.etl_templates import TORCHVISION_TRANSFORMER class TestTransformers(TestBase): def setUp(self): super().setUp() self.test_image_filename = "test-image.jpg" self.test_image_source = "./resources/test-image.jpg" self.test_bck.object(self.test_image_filename).put_file(self.test_image_source) def simple_torchvision_test(self, communication_type): template = TORCHVISION_TRANSFORMER.format( communication_type=communication_type, transform='{"Resize": {"size": [100, 100]}, "Grayscale": {"num_output_channels": 1}}', format="JPEG", ) if self.git_test_mode: template = git_test_mode_format_image_tag_test(template, "torchvision") # Transform via AIStore self.test_etl.init_spec( template=template, communication_type=communication_type, timeout="10m" ) etl_transformed_image_bytes = ( self.test_bck.object(self.test_image_filename) .get(etl_name=self.test_etl.name) .read_all() ) # Transform via Locally transform = transforms.Compose( [ transforms.Resize((100, 100)), # Resize the image to 100x100 pixels transforms.Grayscale( num_output_channels=1 ), # Convert the image to grayscale ] ) image = Image.open("./resources/test-image.jpg") tensor = transforms.ToTensor()(image) transformed_tensor = transform(tensor) transformed_image = transforms.ToPILImage()(transformed_tensor) byte_arr = io.BytesIO() transformed_image.save(byte_arr, format="JPEG") transformed_image_bytes = byte_arr.getvalue() # Compare Results of Separate Transforms self.assertEqual(transformed_image_bytes, etl_transformed_image_bytes) @unittest.skipIf( os.getenv("TORCHVISION_ENABLE", "true") == "false", "TORCHVISION_PREPROCESS is diabled", ) def test_torch_transformer_simple_hpull(self): self.simple_torchvision_test(ETL_COMM_HPULL) @unittest.skipIf( os.getenv("TORCHVISION_ENABLE", "true") == "false", "TORCHVISION_PREPROCESS is diabled", ) def test_torch_transformer_simple_hpush(self): self.simple_torchvision_test(ETL_COMM_HPUSH) @unittest.skipIf( os.getenv("TORCHVISION_ENABLE", "true") == "false", "TORCHVISION_PREPROCESS is diabled", ) def test_torch_transformer_simple_hrev(self): self.simple_torchvision_test(ETL_COMM_HREV)
ais-etl-master
transformers/tests/test_torchvision_transformer.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring import logging from aistore.sdk.etl_const import ETL_COMM_HPULL, ETL_COMM_HPUSH, ETL_COMM_HREV from aistore.sdk.etl_templates import HELLO_WORLD from tests.base import TestBase from tests.utils import git_test_mode_format_image_tag_test logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO, ) logger = logging.getLogger(__name__) FQN = """ apiVersion: v1 kind: Pod metadata: name: transformer-hello-world annotations: communication_type: "hpull://" wait_timeout: 5m spec: containers: - name: server image: aistorage/transformer_hello_world:test imagePullPolicy: Always ports: - name: default containerPort: 8000 command: ["gunicorn", "main:app", "--workers", "20", "--worker-class", "uvicorn.workers.UvicornWorker", "--bind", "0.0.0.0:8000"] # command: ["uvicorn", "main:app", "--reload"] env: - name: ARG_TYPE value: "fqn" readinessProbe: httpGet: path: /health port: default volumeMounts: - name: ais mountPath: /tmp/ volumes: - name: ais hostPath: path: /tmp/ type: Directory """ class TestHelloWorldTransformer(TestBase): def setUp(self): super().setUp() self.test_image_filename = "test-image.jpg" self.test_image_source = "./resources/test-image.jpg" self.test_text_filename = "test-text.txt" self.test_text_source = "./resources/test-text.txt" self.test_bck.object(self.test_image_filename).put_file(self.test_image_source) self.test_bck.object(self.test_text_filename).put_file(self.test_text_source) def compare_transformed_data_with_hello_world(self, filename: str): transformed_data_bytes = ( self.test_bck.object(filename).get(etl_name=self.test_etl.name).read_all() ) self.assertEqual(b"Hello World!", transformed_data_bytes) def run_hello_world_test(self, communication_type: str, fqn_flag: bool = False): template = HELLO_WORLD.format(communication_type=communication_type) arg_type = "fqn" if fqn_flag else "" if fqn_flag: template = FQN if self.git_test_mode == "true": template = git_test_mode_format_image_tag_test(template, "hello_world") self.test_etl.init_spec( template=template, communication_type=communication_type, arg_type=arg_type ) logger.info(self.test_etl.view()) self.compare_transformed_data_with_hello_world(self.test_image_filename) self.compare_transformed_data_with_hello_world(self.test_text_filename) def test_hello_world_hpull(self): self.run_hello_world_test(ETL_COMM_HPULL) def test_hello_world_hpush(self): self.run_hello_world_test(ETL_COMM_HPUSH) def test_hello_world_hrev(self): self.run_hello_world_test(ETL_COMM_HREV) def test_hello_world_hpull_fqn(self): self.run_hello_world_test(ETL_COMM_HPULL, True) def test_hello_world_hpush_fqn(self): self.run_hello_world_test(ETL_COMM_HPUSH, True)
ais-etl-master
transformers/tests/test_hello_world.py
ais-etl-master
transformers/tests/__init__.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring import json import os import shutil import tarfile import unittest import numpy as np import tensorflow as tf from PIL import Image from skimage.metrics import structural_similarity as ssim from tests.base import TestBase from tests.utils import git_test_mode_format_image_tag_test from aistore.sdk.etl_const import ETL_COMM_HREV from aistore.sdk.etl_templates import TAR2TF class TestTar2TFTransformer(TestBase): def setUp(self): super().setUp() self.test_tar_filename = "test-tar-single.tar" self.test_tar_source = "./resources/test-tar-single.tar" self.test_tfrecord_filename = "test-tar-single.tfrecord" self.test_bck.object(self.test_tar_filename).put_file(self.test_tar_source) def tearDown(self): file_path = "./test.tfrecord" os.remove(file_path) dir_path = "./tmp/" shutil.rmtree(dir_path) super().tearDown() @unittest.skipIf( os.getenv("TAR2TF_ENABLE", "true") == "false", "TAR2TF is disabled" ) def test_tar2tf_simple(self): template = TAR2TF.format(communication_type=ETL_COMM_HREV, arg="", val="") if self.git_test_mode == "true": template = git_test_mode_format_image_tag_test(template, "tar2tf") self.test_etl.init_spec(communication_type=ETL_COMM_HREV, template=template) tfrecord_bytes = ( self.test_bck.object(self.test_tar_filename) .get(etl_name=self.test_etl.name) .read_all() ) tfrecord_filename = "test.tfrecord" with open(tfrecord_filename, "wb") as f: f.write(tfrecord_bytes) tfrecord = next(iter(tf.data.TFRecordDataset([tfrecord_filename]))) example = tf.train.Example() example.ParseFromString(tfrecord.numpy()) cls = example.features.feature["cls"].bytes_list.value[0] cls = cls.decode("utf-8") transformed_img = example.features.feature["png"].bytes_list.value[0] transformed_img = tf.image.decode_image(transformed_img) with tarfile.open(self.test_tar_source, "r") as tar: tar.extractall(path="./tmp") original_img = Image.open("./tmp/tar-single/0001.png") original_img_tensor = tf.convert_to_tensor(np.array(original_img)) with open("./tmp/tar-single/0001.cls", "r", encoding="utf-8") as file: original_cls = file.read().strip() self.assertTrue( np.array_equal(transformed_img.numpy(), original_img_tensor.numpy()) ) self.assertEqual(cls, original_cls) @unittest.skipIf( os.getenv("TAR2TF_ENABLE", "true") == "false", "TAR2TF is disabled" ) def test_tar2tf_rotation(self): spec = { "conversions": [ {"type": "Decode", "ext_name": "png"}, {"type": "Rotate", "ext_name": "png", "angle": 30}, ], "selections": [{"ext_name": "png"}, {"ext_name": "cls"}], } spec = json.dumps(spec) template = TAR2TF.format( communication_type=ETL_COMM_HREV, arg="-spec", val=spec ) if self.git_test_mode == "true": template = git_test_mode_format_image_tag_test(template, "tar2tf") self.test_etl.init_spec(template=template, communication_type=ETL_COMM_HREV) tfrecord_bytes = ( self.test_bck.object(self.test_tar_filename) .get(etl_name=self.test_etl.name) .read_all() ) tfrecord_filename = "test.tfrecord" with open(tfrecord_filename, "wb") as file: file.write(tfrecord_bytes) tfrecord = tf.data.TFRecordDataset([tfrecord_filename]) raw_record = next(iter(tfrecord)) example = tf.train.Example() example.ParseFromString(raw_record.numpy()) cls = example.features.feature["cls"].bytes_list.value[0] cls = cls.decode("utf-8") transformed_img = example.features.feature["png"].bytes_list.value[0] transformed_img = tf.image.decode_image(transformed_img) with tarfile.open(self.test_tar_source, "r") as tar: tar.extractall(path="./tmp") original_img = Image.open("./tmp/tar-single/0001.png").rotate( angle=30, expand=True, fillcolor=(0, 0, 0) ) original_img_tensor = tf.convert_to_tensor(np.array(original_img)) with open("./tmp/tar-single/0001.cls", "r", encoding="utf-8") as file: original_cls = file.read().strip() # Ensure both images have the same dimensions transformed_img = tf.image.resize( transformed_img, original_img_tensor.shape[:2] ) # Calculate the SSIM score, _ = ssim( transformed_img.numpy(), original_img_tensor.numpy(), full=True, multichannel=True, win_size=3, data_range=255, ) # Assuming we consider images with SSIM > 0.99 as visually identical self.assertTrue(score > 0.99) self.assertEqual(cls, original_cls)
ais-etl-master
transformers/tests/test_tar2tf.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # import random import string import yaml def generate_random_str(): return "".join(random.choice(string.ascii_lowercase) for i in range(5)) def git_test_mode_format_image_tag_test(template, img): template = yaml.safe_load(template) template["spec"]["containers"][0]["image"] = f"aistorage/transformer_{img}:test" return yaml.dump(template)
ais-etl-master
transformers/tests/utils.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring import os import unittest from tests.base import TestBase from tests.utils import git_test_mode_format_image_tag_test from aistore.sdk.etl_const import ETL_COMM_HPULL from aistore.sdk.etl_templates import GO_ECHO class TestGoEchoTransformer(TestBase): def setUp(self): super().setUp() self.test_image_filename = "test-image.jpg" self.test_image_source = "./resources/test-image.jpg" self.test_text_filename = "test-text.txt" self.test_text_source = "./resources/test-text.txt" self.test_bck.object(self.test_image_filename).put_file(self.test_image_source) self.test_bck.object(self.test_text_filename).put_file(self.test_text_source) @unittest.skipIf( os.getenv("GO_ECHO_ENABLE", "true") == "false", "GO_ECHO is disabled" ) def test_go_echo(self): template = GO_ECHO.format(communication_type=ETL_COMM_HPULL) if self.git_test_mode == "true": template = git_test_mode_format_image_tag_test(template, "echo_go") self.test_etl.init_spec(template=template, communication_type=ETL_COMM_HPULL) transformed_image_bytes = ( self.test_bck.object(self.test_image_filename) .get(etl_name=self.test_etl.name) .read_all() ) transformed_text_bytes = ( self.test_bck.object(self.test_text_filename) .get(etl_name=self.test_etl.name) .read_all() ) # Compare image content with open(self.test_image_source, "rb") as file: original_image_content = file.read() self.assertEqual(transformed_image_bytes, original_image_content) # Compare text content with open(self.test_text_source, "r", encoding="utf-8") as file: original_text_content = file.read() self.assertEqual(transformed_text_bytes.decode("utf-8"), original_text_content)
ais-etl-master
transformers/tests/test_go_echo.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring import hashlib import os import unittest from aistore.sdk.etl_const import ETL_COMM_HPULL, ETL_COMM_HPUSH, ETL_COMM_HREV from aistore.sdk.etl_templates import MD5 from tests.utils import git_test_mode_format_image_tag_test from tests.base import TestBase class TestMD5Transformer(TestBase): def setUp(self): super().setUp() self.test_image_filename = "test-image.jpg" self.test_image_source = "./resources/test-image.jpg" self.test_text_filename = "test-text.txt" self.test_text_source = "./resources/test-text.txt" self.test_bck.object(self.test_image_filename).put_file(self.test_image_source) self.test_bck.object(self.test_text_filename).put_file(self.test_text_source) def md5_hash_file(self, filepath): with open(filepath, "rb") as file: file_content = file.read() return hashlib.md5(file_content).hexdigest() def compare_transformed_data_with_md5_hash(self, filename, original_filepath): transformed_data_bytes = ( self.test_bck.object(filename).get(etl_name=self.test_etl.name).read_all() ) original_file_hash = self.md5_hash_file(original_filepath) self.assertEqual(transformed_data_bytes.decode("utf-8"), original_file_hash) def run_md5_test(self, communication_type): template = MD5.format(communication_type=communication_type) if self.git_test_mode == "true": template = git_test_mode_format_image_tag_test(template, "md5") self.test_etl.init_spec( template=template, communication_type=communication_type ) self.compare_transformed_data_with_md5_hash( self.test_image_filename, self.test_image_source ) self.compare_transformed_data_with_md5_hash( self.test_text_filename, self.test_text_source ) @unittest.skipIf(os.getenv("MD5_ENABLE", "true") == "false", "MD5 is disabled") def test_md5_hpull(self): self.run_md5_test(ETL_COMM_HPULL) @unittest.skipIf(os.getenv("MD5_ENABLE", "true") == "false", "MD5 is disabled") def test_md5_hpush(self): self.run_md5_test(ETL_COMM_HPUSH) @unittest.skipIf(os.getenv("MD5_ENABLE", "true") == "false", "MD5 is disabled") def test_md5_hrev(self): self.run_md5_test(ETL_COMM_HREV)
ais-etl-master
transformers/tests/test_md5.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring import os import unittest from aistore.sdk.etl_const import ETL_COMM_HPULL, ETL_COMM_HPUSH, ETL_COMM_HREV from aistore.sdk.etl_templates import ECHO from tests.base import TestBase from tests.utils import git_test_mode_format_image_tag_test class TestEchoTransformer(TestBase): def setUp(self): super().setUp() self.test_image_filename = "test-image.jpg" self.test_image_source = "./resources/test-image.jpg" self.test_text_filename = "test-text.txt" self.test_text_source = "./resources/test-text.txt" self.test_bck.object(self.test_image_filename).put_file(self.test_image_source) self.test_bck.object(self.test_text_filename).put_file(self.test_text_source) def initialize_template(self, communication_type: str): template = ECHO.format(communication_type=communication_type) if self.git_test_mode == "true": template = git_test_mode_format_image_tag_test(template, "echo") self.test_etl.init_spec( template=template, communication_type=communication_type ) def compare_transformed_data(self, filename: str, source: str): transformed_bytes = ( self.test_bck.object(filename).get(etl_name=self.test_etl.name).read_all() ) with open(source, "rb") as file: original_content = file.read() self.assertEqual(transformed_bytes, original_content) @unittest.skipIf(os.getenv("ECHO_ENABLE", "true") == "false", "ECHO is disabled") def test_echo_hpull(self): self.initialize_template(ETL_COMM_HPULL) self.compare_transformed_data(self.test_image_filename, self.test_image_source) self.compare_transformed_data(self.test_text_filename, self.test_text_source) @unittest.skipIf(os.getenv("ECHO_ENABLE", "true") == "false", "ECHO is disabled") def test_echo_hpush(self): self.initialize_template(ETL_COMM_HPUSH) self.compare_transformed_data(self.test_image_filename, self.test_image_source) self.compare_transformed_data(self.test_text_filename, self.test_text_source) @unittest.skipIf(os.getenv("ECHO_ENABLE", "true") == "false", "ECHO is disabled") def test_echo_hrev(self): self.initialize_template(ETL_COMM_HREV) self.compare_transformed_data(self.test_image_filename, self.test_image_source) self.compare_transformed_data(self.test_text_filename, self.test_text_source)
ais-etl-master
transformers/tests/test_echo.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # import json import os import unittest import ffmpeg from aistore.sdk.etl_const import ETL_COMM_HPULL, ETL_COMM_HPUSH, ETL_COMM_HREV from aistore.sdk.etl_templates import FFMPEG from tests.base import TestBase from tests.utils import git_test_mode_format_image_tag_test class TestFFMPEGTransformer(TestBase): def decode_data(self, data, **kwargs): input_stream = ffmpeg.input("pipe:0") output_stream = ffmpeg.output(input_stream, "pipe:1", **kwargs) out, _ = ffmpeg.run( output_stream, input=data, capture_stdout=True, capture_stderr=True ) return out @unittest.skipIf( os.getenv("FFMPEG_ENABLE", "true") == "false", "FFMPEG is disabled" ) def test_ffmpeg_from_wav_to_flac_hpull(self): self.run_ffmpeg_test( ETL_COMM_HPULL, "test-audio-wav.wav", "./resources/test-audio-wav.wav", {"format": "flac", "ar": 48000, "ac": 2}, ) @unittest.skipIf( os.getenv("FFMPEG_ENABLE", "true") == "false", "FFMPEG is disabled" ) def test_ffmpeg_from_mp3_to_wav_hpull(self): self.run_ffmpeg_test( ETL_COMM_HPULL, "test-audio-mp3.mp3", "./resources/test-audio-mp3.mp3", {"format": "wav", "ar": 44100, "ac": 2, "af": "loudnorm"}, ) @unittest.skipIf( os.getenv("FFMPEG_ENABLE", "true") == "false", "FFMPEG is disabled" ) def test_ffmpeg_format_autodetection_hpull(self): test_filename = "test-audio-wav.wav" test_source = "./resources/test-audio-wav.wav" _, extension = os.path.splitext(test_filename) file_format = extension[1:] self.run_ffmpeg_test( ETL_COMM_HPULL, test_filename, test_source, {"acodec": "pcm_s16le"}, autodetect_format=file_format, ) @unittest.skipIf( os.getenv("FFMPEG_ENABLE", "true") == "false", "FFMPEG is disabled" ) def test_ffmpeg_from_wav_to_flac_hpush(self): self.run_ffmpeg_test( ETL_COMM_HPUSH, "test-audio-wav.wav", "./resources/test-audio-wav.wav", {"format": "flac", "ar": 48000, "ac": 2}, ) @unittest.skipIf( os.getenv("FFMPEG_ENABLE", "true") == "false", "FFMPEG is disabled" ) def test_ffmpeg_from_mp3_to_wav_hpush(self): self.run_ffmpeg_test( ETL_COMM_HPUSH, "test-audio-mp3.mp3", "./resources/test-audio-mp3.mp3", {"format": "wav", "ar": 44100, "ac": 2, "af": "loudnorm"}, ) @unittest.skipIf( os.getenv("FFMPEG_ENABLE", "true") == "false", "FFMPEG is disabled" ) def test_ffmpeg_format_autodetection_hpush(self): test_filename = "test-audio-wav.wav" test_source = "./resources/test-audio-wav.wav" _, extension = os.path.splitext(test_filename) file_format = extension[1:] self.run_ffmpeg_test( ETL_COMM_HPUSH, test_filename, test_source, {"acodec": "pcm_s16le"}, autodetect_format=file_format, ) @unittest.skipIf( os.getenv("FFMPEG_ENABLE", "true") == "false", "FFMPEG is disabled" ) def test_ffmpeg_from_wav_to_flac_hrev(self): self.run_ffmpeg_test( ETL_COMM_HREV, "test-audio-wav.wav", "./resources/test-audio-wav.wav", {"format": "flac", "ar": 48000, "ac": 2}, ) @unittest.skipIf( os.getenv("FFMPEG_ENABLE", "true") == "false", "FFMPEG is disabled" ) def test_ffmpeg_from_mp3_to_wav_hrev(self): self.run_ffmpeg_test( ETL_COMM_HREV, "test-audio-mp3.mp3", "./resources/test-audio-mp3.mp3", {"format": "wav", "ar": 44100, "ac": 2, "af": "loudnorm"}, ) @unittest.skipIf( os.getenv("FFMPEG_ENABLE", "true") == "false", "FFMPEG is disabled" ) def test_ffmpeg_format_autodetection_hrev(self): test_filename = "test-audio-wav.wav" test_source = "./resources/test-audio-wav.wav" _, extension = os.path.splitext(test_filename) file_format = extension[1:] self.run_ffmpeg_test( ETL_COMM_HREV, test_filename, test_source, {"acodec": "pcm_s16le"}, autodetect_format=file_format, ) # pylint: disable=too-many-arguments def run_ffmpeg_test( self, communication_type, test_filename, test_source, ffmpeg_options, autodetect_format=None, ): self.test_bck.object(test_filename).put_file(test_source) if autodetect_format is not None: ffmpeg_options["format"] = autodetect_format template = FFMPEG.format( communication_type=communication_type, ffmpeg_options=json.dumps(ffmpeg_options), ) if self.git_test_mode == "true": template = git_test_mode_format_image_tag_test(template, "ffmpeg") self.test_etl.init_spec( template=template, communication_type=communication_type ) etl_transformed_content = ( self.test_bck.object(test_filename) .get(etl_name=self.test_etl.name) .read_all() ) with open(test_source, "rb") as file: original_audio_content = file.read() local_transformed_content = self.decode_data( original_audio_content, **ffmpeg_options ) self.assertEqual(local_transformed_content, etl_transformed_content)
ais-etl-master
transformers/tests/test_ffmpeg.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring import unittest import io import os from tests.base import TestBase from tests.utils import git_test_mode_format_image_tag_test from keras.preprocessing.image import ( ImageDataGenerator, load_img, array_to_img, img_to_array, ) from aistore.sdk.etl_const import ETL_COMM_HPULL, ETL_COMM_HPUSH, ETL_COMM_HREV from aistore.sdk.etl_templates import KERAS_TRANSFORMER class TestTransformers(TestBase): def setUp(self): super().setUp() self.test_image_filename = "test-image.jpg" self.test_image_source = "./resources/test-image.jpg" self.test_bck.object(self.test_image_filename).put_file(self.test_image_source) def get_transformed_image_local(self) -> bytes: # transformed image - local img = load_img(self.test_image_source) img = img_to_array(img) datagen = ImageDataGenerator() rotate = datagen.apply_transform( x=img, transform_parameters={"theta": 40, "brightness": 0.8, "zx": 0.9, "zy": 0.9}, ) img = array_to_img(rotate) buf = io.BytesIO() img.save(buf, format="JPEG") return buf.getvalue() def get_template(self, comm_type: str) -> str: template = KERAS_TRANSFORMER.format( communication_type=comm_type, format="JPEG", transform='{"theta":40, "brightness":0.8, "zx":0.9, "zy":0.9}', ) if self.git_test_mode == "true": template = git_test_mode_format_image_tag_test(template, "keras") return template @unittest.skipIf( os.getenv("KERAS_ENABLE", "true") == "false", "Keras image was not built, skipping keras test", ) def test_keras_transformer_hpull(self): self.test_etl.init_spec(template=self.get_template(ETL_COMM_HPULL)) transformed_image_etl = ( self.test_bck.object(self.test_image_filename) .get(etl_name=self.test_etl.name) .read_all() ) self.assertEqual(self.get_transformed_image_local(), transformed_image_etl) @unittest.skipIf( os.getenv("KERAS_ENABLE", "true") == "false", "Keras image was not built, skipping keras test", ) def test_keras_transformer_hrev(self): self.test_etl.init_spec(template=self.get_template(ETL_COMM_HREV)) transformed_image_etl = ( self.test_bck.object(self.test_image_filename) .get(etl_name=self.test_etl.name) .read_all() ) self.assertEqual(self.get_transformed_image_local(), transformed_image_etl) @unittest.skipIf( os.getenv("KERAS_ENABLE", "true") == "false", "Keras image was not built, skipping keras test", ) def test_keras_transformer_hpush(self): self.test_etl.init_spec(template=self.get_template(ETL_COMM_HPUSH)) transformed_image_etl = ( self.test_bck.object(self.test_image_filename) .get(etl_name=self.test_etl.name) .read_all() ) self.assertEqual(self.get_transformed_image_local(), transformed_image_etl)
ais-etl-master
transformers/tests/test_keras_transformer.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring import bz2 import gzip import json import os import unittest from aistore.sdk.etl_const import ETL_COMM_HPULL, ETL_COMM_HPUSH, ETL_COMM_HREV from aistore.sdk.etl_templates import COMPRESS from tests.base import TestBase from tests.utils import git_test_mode_format_image_tag_test class TestCompressTransformer(TestBase): def setUp(self): super().setUp() self.test_image_filename = "test-image.jpg" self.test_image_source = "./resources/test-image.jpg" self.test_text_filename = "test-text.txt" self.test_text_source = "./resources/test-text.txt" self.test_image_gz_filename = "test-image.jpg.gz" self.test_image_gz_source = "./resources/test-image.jpg.gz" self.test_text_gz_filename = "test-text.txt.gz" self.test_text_gz_source = "./resources/test-text.txt.gz" self.test_image_bz2_filename = "test-image.jpg.bz2" self.test_image_bz2_source = "./resources/test-image.jpg.bz2" self.test_text_bz2_filename = "test-text.txt.bz2" self.test_text_bz2_source = "./resources/test-text.txt.bz2" self.test_text_bz2_filename = "test-text.txt.bz2" self.test_text_bz2_source = "./resources/test-text.txt.bz2" def _get_compression_algorithm(self, compress_options): if compress_options.get("compression") == "bz2": algorithm = bz2 else: algorithm = gzip return algorithm def _compress_test_helper(self, communication_type, compress_options): algorithm = self._get_compression_algorithm(compress_options) self.test_bck.object(self.test_image_filename).put_file(self.test_image_source) self.test_bck.object(self.test_text_filename).put_file(self.test_text_source) compress_options = json.dumps(compress_options) template = COMPRESS.format( communication_type=communication_type, compress_options=compress_options ) if self.git_test_mode == "true": template = git_test_mode_format_image_tag_test(template, "compress") self.test_etl.init_spec( template=template, communication_type=communication_type ) etl_compressed_img = ( self.test_bck.object(self.test_image_filename) .get(etl_name=self.test_etl.name) .read_all() ) etl_compressed_txt = ( self.test_bck.object(self.test_text_filename) .get(etl_name=self.test_etl.name) .read_all() ) with open(self.test_image_source, "rb") as file: original_image_content = file.read() with open(self.test_text_source, "r", encoding="utf-8") as file: original_text_content = file.read() self.assertEqual( algorithm.decompress(etl_compressed_img), original_image_content ) self.assertEqual( original_text_content, algorithm.decompress(etl_compressed_txt).decode("utf-8"), ) def _decompress_test_helper(self, communication_type, compress_options): algorithm = self._get_compression_algorithm(compress_options) if algorithm == bz2: self.test_bck.object(self.test_image_bz2_filename).put_file( self.test_image_bz2_source ) self.test_bck.object(self.test_text_bz2_filename).put_file( self.test_text_bz2_source ) compress_options = json.dumps(compress_options) template = COMPRESS.format( communication_type=communication_type, compress_options=compress_options ) if self.git_test_mode == "true": template = git_test_mode_format_image_tag_test(template, "compress") self.test_etl.init_spec( template=template, communication_type=communication_type ) etl_decompressed_img = ( self.test_bck.object(self.test_image_bz2_filename) .get(etl_name=self.test_etl.name) .read_all() ) etl_decompressed_txt = ( self.test_bck.object(self.test_text_bz2_filename) .get(etl_name=self.test_etl.name) .read_all() .decode("utf-8") ) elif algorithm == gzip: self.test_bck.object(self.test_image_gz_filename).put_file( self.test_image_gz_source ) self.test_bck.object(self.test_text_gz_filename).put_file( self.test_text_gz_source ) compress_options = json.dumps(compress_options) template = COMPRESS.format( communication_type=communication_type, compress_options=compress_options ) if self.git_test_mode == "true": template = git_test_mode_format_image_tag_test(template, "compress") self.test_etl.init_spec( template=template, communication_type=communication_type ) etl_decompressed_img = ( self.test_bck.object(self.test_image_gz_filename) .get(etl_name=self.test_etl.name) .read_all() ) etl_decompressed_txt = ( self.test_bck.object(self.test_text_gz_filename) .get(etl_name=self.test_etl.name) .read_all() .decode("utf-8") ) else: raise ValueError("Unexpected compression algorithm") with open(self.test_image_source, "rb") as file: original_image_content = file.read() with open(self.test_text_source, "r", encoding="utf-8") as file: original_text_content = file.read() self.assertEqual(original_image_content, etl_decompressed_img) self.assertEqual(original_text_content, etl_decompressed_txt) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_default_compress_hpull(self): self._compress_test_helper(ETL_COMM_HPULL, {}) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_default_compress_hpush(self): self._compress_test_helper(ETL_COMM_HPUSH, {}) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_default_compress_hrev(self): self._compress_test_helper(ETL_COMM_HREV, {}) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_gzip_compress_hpull(self): self._compress_test_helper(ETL_COMM_HPULL, {"compression": "gzip"}) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_gzip_compress_hpush(self): self._compress_test_helper(ETL_COMM_HPUSH, {"compression": "gzip"}) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_gzip_compress_hrev(self): self._compress_test_helper(ETL_COMM_HREV, {"compression": "gzip"}) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_bz2_compress_hpull(self): self._compress_test_helper(ETL_COMM_HPULL, {"compression": "bz2"}) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_bz2_compress_hpush(self): self._compress_test_helper(ETL_COMM_HPUSH, {"compression": "bz2"}) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_bz2_compress_hrev(self): self._compress_test_helper(ETL_COMM_HREV, {"compression": "bz2"}) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_gzip_decompress_hpull(self): self._decompress_test_helper( ETL_COMM_HPULL, {"mode": "decompress", "compression": "gzip"} ) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_gzip_decompress_hpush(self): self._decompress_test_helper( ETL_COMM_HPUSH, {"mode": "decompress", "compression": "gzip"} ) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_gzip_decompress_hrev(self): self._decompress_test_helper( ETL_COMM_HREV, {"mode": "decompress", "compression": "gzip"} ) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_bz2_decompress_hpull(self): self._decompress_test_helper( ETL_COMM_HPULL, {"mode": "decompress", "compression": "bz2"} ) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_bz2_decompress_hpush(self): self._decompress_test_helper( ETL_COMM_HPUSH, {"mode": "decompress", "compression": "bz2"} ) @unittest.skipIf( os.getenv("COMPRESS_ENABLE", "true") == "false", "COMPRESS is disabled" ) def test_bz2_decompress_hrev(self): self._decompress_test_helper( ETL_COMM_HREV, {"mode": "decompress", "compression": "bz2"} )
ais-etl-master
transformers/tests/test_compress.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring import os import unittest from tests.utils import generate_random_str from aistore import Client class TestBase(unittest.TestCase): def setUp(self): self.endpoint = os.environ.get("AIS_ENDPOINT", "http://192.168.49.2:8080") self.git_test_mode = os.getenv("GIT_TEST", "false") self.client = Client(self.endpoint) self.test_bck = self.client.bucket("test-bucket" + generate_random_str()).create(exist_ok=True) self.test_etl = self.client.etl("test-etl-" + generate_random_str()) def tearDown(self): self.test_bck.delete() self.test_etl.stop() self.test_etl.delete()
ais-etl-master
transformers/tests/base.py
""" Transorming images with Keras API using FastAPI framework and Gunivorn and Uvicorn webserver. Steps to run: $ # with uvicorn $ uvicorn main:app --reload $ # with multiple uvicorn processes managed by gunicorn $ gunicorn main:app --workers 4 --worker-class uvicorn.workers.UvicornWorker --bind 0.0.0.0:8000 Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. """ # pylint: disable=missing-class-docstring, missing-function-docstring, missing-module-docstring, broad-exception-caught import os import urllib.parse import json import io from fastapi import FastAPI, Request, Depends, Response import aiohttp # async from PIL import Image from torchvision import transforms app = FastAPI() host_target = os.environ["AIS_TARGET_URL"] transform_format = os.environ["FORMAT"] transform_json = os.environ["TRANSFORM"] transform_dict = json.loads(transform_json) # Create a list to hold the transformations transform_list = [] # Add each transformation to the list for transform_name, params in transform_dict.items(): # Get the transform class from torchvision.transforms transform_class = getattr(transforms, transform_name) # Create an instance of the transform class with the specified parameters transform_instance = transform_class(**params) # Add the transform instance to the list transform_list.append(transform_instance) # Combine the transformations into a single transform transform = transforms.Compose(transform_list) class HttpClient: session: aiohttp.ClientSession = None def start(self): self.session = aiohttp.ClientSession() async def stop(self): await self.session.close() self.session = None def __call__(self) -> aiohttp.ClientSession: assert self.session is not None return self.session http_client = HttpClient() @app.on_event("startup") async def startup(): http_client.start() @app.get("/health") async def health(): return b"Running" async def transform_image(image_bytes: bytes) -> bytes: # Convert bytes to PIL Image image = Image.open(io.BytesIO(image_bytes)) # Convert the PIL image to a PyTorch tensor tensor_transform = transforms.ToTensor() tensor = tensor_transform(image) # Apply the transformation transformed_tensor = transform(tensor) # Convert the transformed tensor back to a PIL image pil_transform = transforms.ToPILImage() transformed_image = pil_transform(transformed_tensor) # Convert the PIL image back to bytes byte_arr = io.BytesIO() transformed_image.save(byte_arr, format=transform_format) # Get the byte array transformed_image_bytes = byte_arr.getvalue() return transformed_image_bytes @app.get("/") @app.get("/{full_path:path}", response_class=Response) async def get_handler( full_path: str, client: aiohttp.ClientSession = Depends(http_client) ): """ Handles GET requests. Retrieves the destination/name of the object from the URL or the full_path variable, fetches the object from the AIS target based on the destination/name, transforms the bytes, and returns the modified bytes. """ # Get destination/name of object from URL or from full_path variable # Fetch object from AIS target based on the destination/name # Transform the bytes # Return the transformed bytes object_path = urllib.parse.quote(full_path, safe="@") object_url = f"{host_target}/{object_path}" resp = await client.get(object_url) body = await resp.read() return Response( content=await transform_image(body), media_type="application/octet-stream" ) @app.put("/") @app.put("/{full_path:path}", response_class=Response) async def put_handler(request: Request): """ Handles PUT requests. Reads bytes from the request, performs byte transformation, and returns the modified bytes. """ # Read bytes from request (request.body) # Transform the bytes # Return the transformed bytes body = await request.body() return Response( content=await transform_image(body), media_type="application/octet-stream" )
ais-etl-master
transformers/torchvision_preprocess/main.py
#!/usr/bin/env python # # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # import argparse import io import json import logging import os from http.server import HTTPServer, BaseHTTPRequestHandler from socketserver import ThreadingMixIn import requests from PIL import Image from torchvision import transforms host_target = os.environ["AIS_TARGET_URL"] transform_format = os.environ["FORMAT"] transform_json = os.environ["TRANSFORM"] transform_dict = json.loads(transform_json) # Create a list to hold the transformations transform_list = [] # Add each transformation to the list for transform_name, params in transform_dict.items(): # Get the transform class from torchvision.transforms transform_class = getattr(transforms, transform_name) # Create an instance of the transform class with the specified parameters transform_instance = transform_class(**params) # Add the transform instance to the list transform_list.append(transform_instance) # Combine the transformations into a single transform transform = transforms.Compose(transform_list) class Handler(BaseHTTPRequestHandler): def log_request(self, code="-", size="-"): # Don't log successful requests info. Unsuccessful logged by log_error(). pass def _set_headers(self): self.send_response(200) self.send_header("Content-Type", "application/octet-stream") self.end_headers() def transform_image(self, image_bytes): # Convert bytes to PIL Image image = Image.open(io.BytesIO(image_bytes)) # Convert the PIL image to a PyTorch tensor tensor_transform = transforms.ToTensor() tensor = tensor_transform(image) # Apply the transformation transformed_tensor = transform(tensor) # Convert the transformed tensor back to a PIL image pil_transform = transforms.ToPILImage() transformed_image = pil_transform(transformed_tensor) # Convert the PIL image back to bytes byte_arr = io.BytesIO() transformed_image.save(byte_arr, format=transform_format) # Get the byte array transformed_image_bytes = byte_arr.getvalue() return transformed_image_bytes def do_PUT(self): try: content_length = int(self.headers["Content-Length"]) put_data = self.rfile.read(content_length) self._set_headers() self.wfile.write(self.transform_image(put_data)) except Exception as e: logging.error("Error processing PUT request: %s", str(e)) self.send_response(500) self.end_headers() self.wfile.write(b"Data processing failed") def do_GET(self): try: if self.path == "/health": self._set_headers() self.wfile.write(b"Running") return response = requests.get(host_target + self.path) self._set_headers() self.wfile.write(self.transform_image(response.content)) except Exception as e: logging.error("Error processing GET request: %s", str(e)) self.send_response(500) self.end_headers() self.wfile.write(b"Data processing failed") class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): """Handle requests in a separate thread.""" def run(addr="localhost", port=8000): server = ThreadedHTTPServer((addr, port), Handler) print(f"Starting HTTP server on {addr}:{port}") server.serve_forever() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run a simple HTTP server") parser.add_argument( "-l", "--listen", default="localhost", help="Specify the IP address on which the server listens", ) parser.add_argument( "-p", "--port", type=int, default=8000, help="Specify the port on which the server listens", ) args = parser.parse_args() run(addr=args.listen, port=args.port)
ais-etl-master
transformers/torchvision_preprocess/http-multithreaded-server/server.py
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from aistore.tf import Dataset from aistore.tf.ops import Decode, Convert, Resize EPOCHS = 5 BATCH_SIZE = 20 # ADJUST Dataset PARAMETERS BELOW BUCKET_NAME = "tar-bucket" PROXY_URL = "http://localhost:8080" # Create Dataset. # Values will be extracted from tar-records according to Resize(Convert(Decode("jpg"), tf.float32), (224, 224)) operation, # meaning that bytes under "jpg" in tar-record will be decoded as an image, converted to tf.float32 type and then Resized to (224, 224) # Labels will be extracted from tar-records according to Select("cls") operation, meaning that bytes under "cls" will be treated as label. conversions = [Decode("jpg"), Convert("jpg", tf.float32), Resize("jpg", (224, 224))] selections = ["jpg", "cls"] dataset = Dataset(BUCKET_NAME, PROXY_URL, conversions, selections) # prepare your bucket first with tars (for instance gsutil ls gs://lpr-gtc2020) train_dataset = dataset.load("train-{0..5}.tar", remote_exec=False, num_workers=4).prefetch(EPOCHS * BATCH_SIZE).shuffle(buffer_size=1024).batch(BATCH_SIZE) test_dataset = dataset.load("train-{5..10}.tar", remote_exec=False, num_workers=4).prefetch(BATCH_SIZE).batch(BATCH_SIZE) # TRAINING PART BELOW inputs = keras.Input(shape=(224, 224, 3), name="images") x = layers.Flatten()(inputs) x = layers.Dense(64, activation="relu", name="dense_1")(x) x = layers.Dense(64, activation="relu", name="dense_2")(x) outputs = layers.Dense(10, name="predictions")(x) model = keras.Model(inputs=inputs, outputs=outputs) model.compile(optimizer=keras.optimizers.Adam(1e-4), loss=keras.losses.mean_squared_error, metrics=["acc"]) model.summary() model.fit(train_dataset, epochs=EPOCHS) result = model.evaluate(test_dataset) print(dict(zip(model.metrics_names, result)))
ais-etl-master
examples/imagenet_in_memory.py
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from aistore.tf import Dataset, default_record_parser from aistore.tf.ops import Select, Decode, Convert, Resize def path_generator(): i = 1 while True: yield "train.record-{}".format(i) i += 1 EPOCHS = 10 BATCH_SIZE = 20 # ADJUST Dataset PARAMETERS BELOW BUCKET_NAME = "tar-bucket" PROXY_URL = "http://localhost:8080" # Create Dataset. # Values will be extracted from tar-records according to Resize(Convert(Decode("jpg"), tf.float32), (224, 224)) operation, # meaning that bytes under "jpg" in tar-record will be decoded as an image, converted to tf.float32 type and then Resized to (224, 224) # Labels will be extracted from tar-records according to Select("cls") operation, meaning that bytes under "cls" will be treated as label. dataset = Dataset(BUCKET_NAME, PROXY_URL, [Decode("jpg"), Convert("jpg", tf.float32), Resize("jpg", (224, 224))], [Select("jpg"), Select("cls")]) # prepare your bucket, for example from `gsutil ls gs://lpr-gtc2020` # save multiple TFRecord files with max size 2MB to paths generated by path_generator train_records_files = dataset.load("train-{0..3}.tar", path=path_generator, max_shard_size="2MB", num_workers=4) # save TFRecord file to test.record path dataset.load("train-{4..7}.tar", path="test.record", num_workers=4) train_dataset = tf.data.TFRecordDataset(filenames=train_records_files) train_dataset = train_dataset.map(default_record_parser) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(BATCH_SIZE) test_dataset = tf.data.TFRecordDataset(filenames=["test.record"]) test_dataset = test_dataset.map(default_record_parser).batch(BATCH_SIZE) # TRAINING PART BELOW inputs = keras.Input(shape=(224, 224, 3), name="images") x = layers.Flatten()(inputs) x = layers.Dense(64, activation="relu", name="dense_1")(x) x = layers.Dense(64, activation="relu", name="dense_2")(x) outputs = layers.Dense(10, name="predictions")(x) model = keras.Model(inputs=inputs, outputs=outputs) model.compile(optimizer=keras.optimizers.Adam(1e-4), loss=keras.losses.mean_squared_error, metrics=["acc"]) model.summary() model.fit(train_dataset, epochs=EPOCHS) result = model.evaluate(test_dataset) print(dict(zip(model.metrics_names, result))) dataset.stop()
ais-etl-master
examples/imagenet_from_disk.py
import os import re import sys import platform import subprocess from setuptools import setup, find_packages, Extension from setuptools.command.build_ext import build_ext from distutils.version import LooseVersion def maybe_install_c_libs(): if sys.platform == 'linux': cmd = 'sudo apt-get update' subprocess.check_call(cmd.split()) cmd = 'sudo apt-get install libzmq3-dev libzmq5' subprocess.check_call(cmd.split()) ''' Build latest version 3.1.1 from git using cmake apt-get installed old 0.5.7 version, which can't build code. see: https://packages.ubuntu.com/source/xenial/msgpack ''' # cmd = 'sudo apt-get install libmsgpack-dev' cmd = './requirements.sh' subprocess.check_call(cmd.split()) class CMakeExtension(Extension): def __init__(self, name, sourcedir=''): Extension.__init__(self, name, sources=[]) self.sourcedir = os.path.abspath(sourcedir) #Reference: https://github.com/pybind/cmake_example/blob/master/setup.py class CMakeBuild(build_ext): def run(self): try: out = subprocess.check_output(['cmake', '--version']) except OSError: raise RuntimeError( "CMake must be installed to build the following extensions: " + ", ".join(e.name for e in self.extensions)) for ext in self.extensions: self.build_extension(ext) def build_extension(self, ext): extdir = os.path.abspath(os.path.dirname(self.get_ext_fullpath(ext.name))) cmake_args = ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + extdir, '-DPYTHON_EXECUTABLE=' + sys.executable] build_args = [] if platform.system() != "Windows": build_args += ['--', '-j2'] env = os.environ.copy() env['CXXFLAGS'] = '{} -DVERSION_INFO=\\"{}\\"'.format( env.get('CXXFLAGS', ''), self.distribution.get_version()) if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) subprocess.check_call(['cmake', ext.sourcedir] + cmake_args, cwd=self.build_temp, env=env) subprocess.check_call(['cmake', '--build', '.'] + build_args, cwd=self.build_temp) print() # Add an empty line for cleaner output. project_name = 'nvzmq_ops' __version__ = '0.0.1' REQUIRED_PACKAGES = [ 'tensorflow >= 1.12.0', ] maybe_install_c_libs() setup( name=project_name, version=__version__, description=('The TensorFlow custom zmq op'), author='Nvidia', install_requires=REQUIRED_PACKAGES, packages=['nvzmq_ops'], # Set extension name with top_level dir, otherwise it will be copied to pip dist-packages dir. # Alternative solution: pre build a nvzmq_ops.so and include it into MANIFEST.in. ext_modules=[CMakeExtension('nvzmq_ops/nvzmq_ops')], cmdclass=dict(build_ext=CMakeBuild), include_package_data=True, zip_safe=False, license='Apache-2.0', )
dlinput-tf-master
setup.py
import time import threading import os import numpy as np import zmq import msgpack import tensorflow as tf from tensorflow.python.platform import test from tensorflow.python.framework import dtypes from tensorflow.python.ops import resources zmq_module = tf.load_op_library('./build/nvzmq_ops/kernel/nvzmq_ops.so') zmq_op = zmq_module.nv_zmq zmq_conn_handle = zmq_module.zmq_conn_handle allowable_dtypes = {"uint8", "uint16", "int16", "int32", "float16", "float32", "float64"} TADDR_ARGS = 'zrpull://127.0.0.1:5678' ZMQ_HWM = 100 class TestZMQResourceHandle(test.TestCase): def test_simple(self): with self.session(): TADDR_VALID = 'zrpull://127.0.0.1:5555' output = zmq_conn_handle(TADDR_VALID, ZMQ_HWM, 0) resources.initialize_resources(resources.local_resources()).run() # assertDTypeEqual not working for resource type. it trans tf.dtype to np.dtype and resource is incompatible with numpy #self.assertDtypeEqual(output, dtypes.resource.as_numpy_type) self.assertEqual(type(output.dtype), type(dtypes.resource)) def test_invalid_address_type(self): INVALID_ADDR = 'localhost:8089' with self.assertRaises(tf.errors.InvalidArgumentError): with self.session(): zmq_conn_handle(INVALID_ADDR, ZMQ_HWM, 0).eval() class TestZMQOpArguments(test.TestCase): def test_no_arguments(self): with self.assertRaises(TypeError): zmq_op() def test_invalid_type_format(self): with self.assertRaises(TypeError): zmq_op(handle=zmq_conn_handle(address=TADDR_ARGS, zmq_hwm=ZMQ_HWM, zmq_buff=0), types=tf.int32) def test_invalid_type_length(self): with self.assertRaises(ValueError): zmq_op(handle=zmq_conn_handle(address=TADDR_ARGS, zmq_hwm=ZMQ_HWM, zmq_buff=0), types=[]) def test_invalid_output_type(self): with self.assertRaises(TypeError): zmq_op(handle=zmq_conn_handle(address=TADDR_ARGS, zmq_hwm=ZMQ_HWM, zmq_buff=0), types=[tf.bool]) def test_valid_arguments(self): zmq_layer = zmq_op(handle=zmq_conn_handle(address=TADDR_ARGS, zmq_hwm=ZMQ_HWM, zmq_buff=0), types=[tf.int32, tf.float32]) self.assertEqual(len(zmq_layer), 2) self.assertEqual(type(zmq_layer[0]), tf.Tensor) self.assertEqual(type(zmq_layer[1]), tf.Tensor) self.assertEqual(zmq_layer[0].dtype, tf.int32) self.assertEqual(zmq_layer[1].dtype, tf.float32) self.assertEqual(zmq_layer[0].shape, tf.TensorShape(None)) self.assertEqual(zmq_layer[1].shape, tf.TensorShape(None)) class TestZMQOpParse(test.TestCase): def send_msgs(socket, msgs, multipart = False): if multipart: socket.send_multipart(msgs) else: for msg in msgs: socket.send(msg) time.sleep(len(msg) / 1000) # dlinput def np2dict(a, parts=None, allow_float64=False): """Recursively convert numpy tensors in data structures to dictionaries.""" if isinstance(a, np.ndarray): assert allow_float64 or a.dtype != np.dtype("float64") dtype = str(a.dtype) assert dtype in allowable_dtypes, dtype if parts is None: return dict(_shape=list(a.shape), _dtype=dtype, _data=a.tobytes()) else: index = len(parts) parts.append(a.tobytes()) return dict(_shape=list(a.shape), _dtype=dtype, _part=index) elif isinstance(a, list): return [TestZMQOpParse.np2dict(x, parts) for x in a] elif isinstance(a, dict): return {k: TestZMQOpParse.np2dict(v, parts) for k,v in a.items()} else: return a def test_corrupt_msg_pack_data(self): CORRUPT_ADDR = 'zrpull://127.0.0.1:5555' TSENDER_ADDR_CORRUPT = 'tcp://127.0.0.1:5555' ctx = zmq.Context(1) socket = ctx.socket(zmq.PUSH) try: socket.bind(TSENDER_ADDR_CORRUPT) tensor_msg = msgpack.packb([['garbage data']], use_bin_type=True) thread = self.checkedThread(target=TestZMQOpParse.send_msgs, args=(socket, [tensor_msg])) thread.start() with self.assertRaises(tf.errors.DataLossError): with self.session() as sess: zmq_op(handle=zmq_conn_handle(address=CORRUPT_ADDR, zmq_hwm=ZMQ_HWM, zmq_buff=0), types=[tf.int32])[0].eval() except Exception as e: self.fail() finally: thread.join() socket.close() ctx.term() ''' If no timeout setting, comment following two timeout tests ''' # def test_timeout(self): # TADDR_VALID = 'zrpull://127.0.0.1:5555' # output = zmq_op(handle=zmq_conn_handle(), address=TADDR_VALID, types=[tf.float32, tf.int32]) # with self.assertRaises(tf.errors.CancelledError): # with tf.Session() as sess: # sess.run(output) # def test_timeout_multithread(self): # TADDR_VALID = 'zrpull://127.0.0.1:5555' # handle = zmq_conn_handle() # ops = [] # for i in range(2): # ops.extend(zmq_op(handle=handle, address=TADDR_VALID, types=[tf.float32, tf.int32])) # with self.assertRaises(tf.errors.CancelledError): # with self.session() as sess: # sess.run(tf.tuple(ops)) def test_single_op_valid(self): TADDR_VALID = 'zrpull://127.0.0.1:5555' TSENDER_ADDR_VALID = 'tcp://127.0.0.1:5555' SINGLE_DATA = [44] ctx = zmq.Context(1) socket = ctx.socket(zmq.PUSH) try: socket.bind(TSENDER_ADDR_VALID) tensor_data1 = np.arange(16, dtype=np.uint8).reshape((4,4)) tensor_data2 = np.array(SINGLE_DATA, dtype=np.int32) tensor_data_list = [tensor_data1, tensor_data2] packed = msgpack.dumps(TestZMQOpParse.np2dict(tensor_data_list)) thread = self.checkedThread(target=TestZMQOpParse.send_msgs, args=(socket, [packed])) thread.start() tensors = zmq_op(handle=zmq_conn_handle(address=TADDR_VALID, zmq_hwm=ZMQ_HWM, zmq_buff=0), types=[tf.uint8, tf.int32]) with self.session() as sess: outputs = sess.run(tensors) self.assertEqual(len(outputs), 2) self.assertTrue(np.array_equal(outputs[0], np.arange(16, dtype=np.float32).reshape(4,4))) self.assertTrue(np.array_equal(outputs[1], np.array(SINGLE_DATA, dtype=np.int32))) except Exception as e: self.fail() finally: thread.join() socket.close() ctx.term() def test_multithread(self): TADDR_VALID = 'zrpull://127.0.0.1:5556' TSENDER_ADDR_VALID = 'tcp://127.0.0.1:5556' NUM_THREAD= 4 try: ctx = zmq.Context(1) socket = ctx.socket(zmq.PUSH) socket.bind(TSENDER_ADDR_VALID) msgs = [] expected = [] for i in range(1, NUM_THREAD + 1): tensor_data1 = np.arange(i*i, dtype=np.float32).reshape((i*i)) tensor_data2 = np.array([i], dtype=np.int32) tensor_data3 = np.array([i], dtype=np.uint8) tensor_data_list = [tensor_data1, tensor_data2, tensor_data3] expected.append(tensor_data_list) packed = msgpack.dumps(TestZMQOpParse.np2dict(tensor_data_list)) msgs.append(packed) thread = self.checkedThread(target=TestZMQOpParse.send_msgs, args=(socket, msgs)) thread.start() handle = zmq_conn_handle(address=TADDR_VALID, zmq_hwm=ZMQ_HWM, zmq_buff=0) tensor_lists = [] for i in range(NUM_THREAD): tensors = zmq_op(handle=handle, types=[tf.float32, tf.int32, tf.uint8]) tensor_lists.append(tensors) with self.session() as sess: # Writing a graph on tensorboard # cwd = os.getcwd() # writer = tf.summary.FileWriter(cwd + '/tfboardlogs/', sess.graph) output = sess.run(tensor_lists) self.assertEqual(len(output), len(expected)) output.sort(key=lambda x: (x[0].shape[0])) for a, b in zip(output, expected): for x, y in zip(a, b): self.assertAllEqual(x, y) # writer.close() except Exception as e: self.fail() finally: thread.join() socket.close() ctx.term() def test_multipart(self): TADDR_VALID = 'zrpull://127.0.0.1:5555' TSENDER_ADDR_VALID = 'tcp://127.0.0.1:5555' SINGLE_DATA = [44] ctx = zmq.Context(1) socket = ctx.socket(zmq.PUSH) try: socket.bind(TSENDER_ADDR_VALID) tensor_data1 = np.arange(16, dtype=np.uint8).reshape((4,4)) tensor_data2 = np.array(SINGLE_DATA, dtype=np.int32) tensor_data_list = [tensor_data1, tensor_data2] parts = [None] packed = msgpack.dumps(TestZMQOpParse.np2dict(tensor_data_list, parts)) parts[0] = packed thread = self.checkedThread(target=TestZMQOpParse.send_msgs, args=(socket, parts, True)) thread.start() tensors = zmq_op(handle=zmq_conn_handle(address=TADDR_VALID, zmq_hwm=ZMQ_HWM, zmq_buff=0), types=[tf.uint8, tf.int32]) with self.session() as sess: outputs = sess.run(tensors) self.assertEqual(len(outputs), 2) self.assertTrue(np.array_equal(outputs[0], np.arange(16, dtype=np.float32).reshape(4,4))) self.assertTrue(np.array_equal(outputs[1], np.array(SINGLE_DATA, dtype=np.int32))) except Exception as e: self.fail() finally: thread.join() socket.close() ctx.term() if __name__ == '__main__': test.main()
dlinput-tf-master
test/zmq_ops_test.py
import math import time import argparse import numpy as np import tensorflow as tf from nvzmq_ops import ZmqOp from tensorcom.zcom import Statistics from math import inf parser = argparse.ArgumentParser(description='Performance test') parser.add_argument("-addr", "--address", type=str, default="zsub://127.0.0.1:7880") parser.add_argument("-n", "--num", type=int, default=100) args = parser.parse_args() num = args.num class Stats(object): def __init__(self): self.lo = inf self.hi = -inf self.sx = 0 self.sx2 = 0 self.n = 0 def __iadd__(self, x): self.lo = min(self.lo, np.amin(x)) self.hi = max(self.hi, np.amax(x)) self.sx += np.sum(x) self.sx2 += np.sum(x**2) self.n += x.size return self def summary(self): return "[{:.3g} {:.3g}] mean={:.3g} std={:.3g} n={:d}".format( self.lo, self.hi, self.sx/self.n, (self.sx2/self.n - (self.sx/self.n)**2)**.5, self.n ) def tf_client(): zmq_op = ZmqOp(address=args.address, zmq_hwm=100) types = [tf.dtypes.as_dtype(np.dtype('float16')), tf.dtypes.as_dtype(np.dtype('int32'))] # Define static node and graph before for-loop tensor_op = zmq_op.pull(types) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) shapes = set() stats = Stats() thoughout_stats = Statistics(1000) count = 0 total = 0 start = time.time() for i in range(num): outs = sess.run(tensor_op) thoughout_stats.add(sum([x.nbytes for x in outs])) count += 1 a = outs[0] total += len(a) shapes.add((str(a.dtype),) + tuple(a.shape)) # stats is a heavy compute here. # if you comment, you can see speed goes up stats += a.astype(np.float32) finish = time.time() print("{} batches, {} samples".format(count, total)) print("{:.3g} s per batch, {:.3g} s per sample".format( (finish - start)/count, (finish - start)/total)) print("shapes:", shapes) print(stats.summary()) print(thoughout_stats.summary()) tf_client()
dlinput-tf-master
example/perf_test.py
from .zmq_ops import ZmqOp
dlinput-tf-master
nvzmq_ops/__init__.py
from tensorflow.python.framework import load_library from tensorflow.python.platform import resource_loader zmq_ops = load_library.load_op_library( resource_loader.get_path_to_datafile('nvzmq_ops.so')) zmq_conn_handle = zmq_ops.zmq_conn_handle zmq_op = zmq_ops.nv_zmq ''' TODO: update when kernel changes. ''' class ZmqOp(object): def __init__(self, address, zmq_hwm=0, zmq_buff=0): self._zmq_conn_handle = zmq_conn_handle(address, zmq_hwm, zmq_buff) self._address = address @property def address(self): return self._address def pull(self, types): return zmq_op(handle=self._zmq_conn_handle, types=types)
dlinput-tf-master
nvzmq_ops/zmq_ops.py
""" greenflowlab setup """ import json import os from jupyter_packaging import ( create_cmdclass, install_npm, ensure_targets, combine_commands, skip_if_exists ) import setuptools HERE = os.path.abspath(os.path.dirname(__file__)) # The name of the project name="greenflowlab" # Get our version with open(os.path.join(HERE, 'package.json')) as f: version = json.load(f)['version'] lab_path = os.path.join(HERE, name, "labextension") # Representative files that should exist after a successful build jstargets = [ os.path.join(lab_path, "package.json"), ] package_data_spec = { name: [ "*" ] } labext_name = "greenflowlab" data_files_spec = [ ("share/jupyter/labextensions/%s" % labext_name, lab_path, "**"), ("share/jupyter/labextensions/%s" % labext_name, HERE, "install.json"),("etc/jupyter/jupyter_server_config.d", "jupyter-config", "greenflowlab.json"), ] cmdclass = create_cmdclass("jsdeps", package_data_spec=package_data_spec, data_files_spec=data_files_spec ) js_command = combine_commands( install_npm(HERE, build_cmd="build:prod", npm=["jlpm"]), ensure_targets(jstargets), ) is_repo = os.path.exists(os.path.join(HERE, ".git")) if is_repo: cmdclass["jsdeps"] = js_command else: cmdclass["jsdeps"] = skip_if_exists(jstargets, js_command) with open("README.md", "r") as fh: long_description = fh.read() setup_args = dict( name=name, version=version, url="https://github.com/NVIDIA/fsi-samples/tree/main/greenflowlab", author="{'name': 'Yi Dong', 'email': '[email protected]'}", description="greenflow Jupyterlab extension", long_description= long_description, long_description_content_type="text/markdown", cmdclass= cmdclass, packages=setuptools.find_packages(), install_requires=[ "jupyterlab>=3.0.0rc13,==3.*", "ipywidgets", "greenflow" ], zip_safe=False, include_package_data=True, python_requires=">=3.6", license="Apache", platforms="Linux, Mac OS X, Windows", keywords=["Jupyter", "JupyterLab", "JupyterLab3"], classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Framework :: Jupyter", ], ) if __name__ == "__main__": setuptools.setup(**setup_args)
fsi-samples-main
greenflowlab/setup.py
#!/usr/bin/env python # coding: utf-8 """ TODO: Add module docstring """ import ipywidgets.widgets as widgets import ipywidgets from ipywidgets import DOMWidget from traitlets import Unicode, List, Dict, Instance from ._frontend import module_name, module_version class GreenflowWidget(DOMWidget): """TODO: Add docstring here """ _model_name = Unicode('GreenflowModel').tag(sync=True) _model_module = Unicode(module_name).tag(sync=True) _model_module_version = Unicode(module_version).tag(sync=True) _view_name = Unicode('GreenflowView').tag(sync=True) _view_module = Unicode(module_name).tag(sync=True) _view_module_version = Unicode(module_version).tag(sync=True) value = List().tag(sync=True) cache = Dict().tag(sync=True) sub = Instance(widgets.Widget).tag(sync=True, **widgets.widget_serialization) def __init__(self): self.sub = ipywidgets.HBox() super().__init__() self.on_msg(self._handle_event) def _handle_event(self, _, content, buffers): if content.get('event', '') == 'run': self.run() elif content.get('event', '') == 'clean': self.task_graph.run_cleanup(ui_clean=True) self.sub = ipywidgets.HBox() def set_taskgraph(self, task_graph): self.task_graph = task_graph def set_state(self, sync_data): super().set_state(sync_data) self.task_graph.reset() self.task_graph.extend(sync_data['value']) def run(self): result = self.task_graph.run(formated=True) self.sub = result
fsi-samples-main
greenflowlab/greenflowlab/greenflowmodel.py
__all__ = ['__version__'] def _fetchVersion(): import json import os HERE = os.path.abspath(os.path.dirname(__file__)) for d, _, _ in os.walk(HERE): try: with open(os.path.join(d, 'package.json')) as f: return json.load(f)['version'] except FileNotFoundError: pass raise FileNotFoundError('Could not find package.json under dir {}'.format(HERE)) __version__ = _fetchVersion()
fsi-samples-main
greenflowlab/greenflowlab/_version.py
#!/usr/bin/env python # coding: utf-8 """ Information about the frontend package of the widgets. """ module_name = "greenflowlab" module_version = "^0.1.0"
fsi-samples-main
greenflowlab/greenflowlab/_frontend.py
import os import json import tornado from jupyter_server.base.handlers import APIHandler from jupyter_server.utils import url_path_join from greenflow.dataframe_flow import TaskGraph from greenflow.dataframe_flow.taskGraph import add_module_from_base64 from greenflow.dataframe_flow.config_nodes_modules import ( get_greenflow_config_modules, load_modules) from .server_utils import (get_nodes, add_nodes) try: # For python 3.8 and later import importlib.metadata as importlib_metadata except ImportError: # prior to python 3.8 need to install importlib-metadata import importlib_metadata class RouteHandlerLoadGraph(APIHandler): @tornado.web.authenticated def get(self): self.finish("abcde") @tornado.web.authenticated def post(self): # input_data is a dictionnary with a key "name" input_data = self.get_json_body() task_graph = TaskGraph(input_data) # import pudb # pudb.set_trace() nodes_and_edges = get_nodes(task_graph) self.finish(json.dumps(nodes_and_edges)) class RouteHandlerLoadGraphFromPath(APIHandler): @tornado.web.authenticated def post(self): # input_data is a dictionnary with a key "name" input_data = self.get_json_body() task_graph = TaskGraph.load_taskgraph(input_data['path']) nodes_and_edges = get_nodes(task_graph) self.finish(json.dumps(nodes_and_edges)) class RouteHandlerPlugins(APIHandler): @tornado.web.authenticated def get(self): # load all the plugin information from the backend modules = get_greenflow_config_modules() client_info = {} client_info['validation'] = {} client_info['display'] = {} for key in modules.keys(): if os.path.isdir(modules[key]): mod = load_modules(modules[key]) # if hasattr(mod.mod, 'client'): client_mod = mod.mod if hasattr(client_mod, 'validation'): val_dict = getattr(client_mod, 'validation') client_info['validation'].update(val_dict) else: pass # print(client_mod, 'no validation') if hasattr(client_mod, 'display'): val_dict = getattr(client_mod, 'display') client_info['display'].update(val_dict) else: pass # print(client_mod, 'no display') # else: # print(key, mod.mod, 'no client') # load all the plugins from entry points for entry_point in importlib_metadata.entry_points().get( 'greenflow.plugin', ()): client_mod = entry_point.load() if hasattr(client_mod, 'validation'): val_dict = getattr(client_mod, 'validation') client_info['validation'].update(val_dict) else: pass # print(client_mod, 'no validation') if hasattr(client_mod, 'display'): val_dict = getattr(client_mod, 'display') client_info['display'].update(val_dict) else: pass # print(client_mod, 'no display') self.finish(json.dumps(client_info)) class RouteHandlerRegister(APIHandler): @tornado.web.authenticated def post(self): from .server_utils import register_node # input_data is a dictionnary with a key "name" input_data = self.get_json_body() module_name = input_data['module'] class_str = input_data['class'] class_obj = add_module_from_base64(module_name, class_str) register_node(module_name, class_obj) self.finish(json.dumps(class_obj.__name__)) class RouteHandlerLoadAllNodes(APIHandler): @tornado.web.authenticated def get(self): # input_data is a dictionnary with a key "name" result = add_nodes() self.finish(json.dumps(result)) def setup_handlers(web_app): host_pattern = ".*$" base_url = web_app.settings["base_url"] # pass the jupyterlab server root directory to # environment variable `GREENFLOWROOT`. Note, this # variable is not meant to be overwritten by user. # This variable can be used by other utility function # to compute the absolute path of the files. os.environ['GREENFLOWROOT'] = os.getcwd() # load all the graphs given the input gq.yaml file contents route_pattern0 = url_path_join(base_url, "greenflowlab", "load_graph") route_pattern1 = url_path_join(base_url, "greenflowlab", "all_nodes") route_pattern2 = url_path_join(base_url, "greenflowlab", "load_graph_path") route_pattern3 = url_path_join(base_url, "greenflowlab", "register_node") route_pattern4 = url_path_join(base_url, "greenflowlab", "register_plugins") handlers = [(route_pattern0, RouteHandlerLoadGraph), (route_pattern1, RouteHandlerLoadAllNodes), (route_pattern2, RouteHandlerLoadGraphFromPath), (route_pattern3, RouteHandlerRegister), (route_pattern4, RouteHandlerPlugins)] web_app.add_handlers(host_pattern, handlers)
fsi-samples-main
greenflowlab/greenflowlab/handlers.py
import json import os.path as osp from ._version import __version__ HERE = osp.abspath(osp.dirname(__file__)) with open(osp.join(HERE, 'labextension', 'package.json')) as fid: data = json.load(fid) def _jupyter_labextension_paths(): return [{ 'src': 'labextension', 'dest': data['name'] }] from .handlers import setup_handlers def _jupyter_server_extension_points(): return [{ "module": "greenflowlab" }] def _load_jupyter_server_extension(server_app): """Registers the API handler to receive HTTP requests from the frontend extension. Parameters ---------- lab_app: jupyterlab.labapp.LabApp JupyterLab application instance """ setup_handlers(server_app.web_app) server_app.log.info("Registered greenflowLab extension at URL path /greenflowlab")
fsi-samples-main
greenflowlab/greenflowlab/__init__.py
import inspect import uuid from greenflow.dataframe_flow import TaskGraph from greenflow.dataframe_flow import Node from greenflow.dataframe_flow.task import Task from greenflow.dataframe_flow.output_collector_node import ( OUTPUT_TYPE, OUTPUT_ID) from greenflow.dataframe_flow import (TaskSpecSchema, PortsSpecSchema) from greenflow.dataframe_flow.config_nodes_modules import ( load_modules, get_greenflow_config_modules, get_node_tgraphmixin_instance) import greenflow.plugin_nodes as plugin_nodes try: # For python 3.8 and later import importlib.metadata as importlib_metadata except ImportError: # prior to python 3.8 need to install importlib-metadata import importlib_metadata from pathlib import Path DYNAMIC_MODULES = {} def register_node(module, classObj): if module not in DYNAMIC_MODULES: container = {} DYNAMIC_MODULES[module] = container else: container = DYNAMIC_MODULES[module] # Snippet below is important so that dynamic modules appear under the # "Add Nodes" menu. key = classObj.__name__ container[key] = classObj def _format_port(port): """ compute the right port type str Arguments ------- port: input/output port object Returns ------- list a list of ports with name and type """ dynamic = PortsSpecSchema.dynamic all_ports = [] for key in port: one_port = {} one_port['name'] = key if dynamic in port[key]: one_port[dynamic] = port[key][dynamic] port_type = port[key][PortsSpecSchema.port_type] if isinstance(port_type, list): types = [] for t in port_type: type_names = [e.__module__+'.'+e.__name__ for e in t.mro()] types.append(type_names) one_port['type'] = types else: type_name = [e.__module__+'.'+e.__name__ for e in port_type.mro()] one_port['type'] = [type_name] all_ports.append(one_port) return all_ports def get_nodes(task_graph): """ It is a private function taking an input task graph. It will run the column flow and compute the column names and types for all the nodes. It returns a dict which has two keys. nodes: - list of node objects for the UI client. It contains all the necessary information about the node including the size of the node input ports, output ports, output meta names/types, conf schema and conf data. edges: - list of edge objects for the UI client. It enumerate all the edges in the graph. Arguments ------- task_graph: TaskGraph taskgraph object Returns ------- dict nodes and edges of the graph data """ for task in task_graph: if (task.get(TaskSpecSchema.node_type) == OUTPUT_TYPE): # Setting output collector ID should not be needed. task._task_spec[TaskSpecSchema.task_id] = OUTPUT_ID # task._task_spec[TaskSpecSchema.node_type] = Output_Collector task_graph.build() nodes = [] edges = [] for task in task_graph: node = task_graph[task[TaskSpecSchema.task_id]] out_node = get_labnode_obj(node) connection_inputs = task.get('inputs') nodes.append(out_node) # out_node['output_meta'] = task_graph[node.uid].output_meta for port, v in connection_inputs.items(): edge = {"from": v, "to": node.uid+"."+port} edges.append(edge) # fix the output collector inputs if (task[TaskSpecSchema.task_id] == OUTPUT_ID): inputs = [] num = 0 for port, v in connection_inputs.items(): inputs.append({'name': port, "type": [["any"]]}) num = max(int(port[2:]), num) inputs.append({'name': 'in'+str(num+1), "type": [["any"]]}) out_node['inputs'] = inputs task_graph.run_cleanup() return {'nodes': nodes, 'edges': edges} def init_get_labnode_obj(node, count_id=True): node.init() node.update() return get_labnode_obj(node, count_id=count_id) def get_labnode_obj(node, count_id=True): """ It is a private function to convert a Node instance into a dictionary for client to consume. Arguments ------- node: Node greenflow Node Returns ------- dict node data for client """ ports = node.ports_setup() metadata = node.meta_setup() schema = node.conf_schema() typeName = node._task_obj.get('type') if node.uid == OUTPUT_ID: width = 160 typeName = OUTPUT_TYPE else: if count_id: width = max(max(len(node.uid), len(typeName)) * 10, 100) else: width = max(len(typeName) * 10, 100) conf = node._task_obj.get('conf') out_node = {'width': width, 'id': node.uid, 'type': typeName, 'schema': schema.json, 'ui': schema.ui, 'conf': conf, 'inputs': _format_port(ports.inports), 'outputs': _format_port(ports.outports)} out_node['output_meta'] = metadata.outports if node._task_obj.get('filepath'): out_node['filepath'] = node._task_obj.get('filepath') if node._task_obj.get('module'): out_node['module'] = node._task_obj.get('module') out_node['required'] = metadata.inports return out_node def get_nodes_from_file(file): """ Given an input yaml file string. It returns a dict which has two keys. nodes: - list of node objects for the UI client. It contains all the necessary information about the node including the size of the node input ports, output ports, output meta names/types, conf schema and conf data. edges: - list of edge objects for the UI client. It enumerate all the edges in the graph. Arguments ------- file: string file name Returns ------- dict nodes and edges of the graph data """ task_graph = TaskGraph.load_taskgraph(file) return get_nodes(task_graph) def add_nodes(): """ It will load all the nodes for the UI client so user can add new node to the graph. The nodes are from two sources: default greenflow nodes and customized node modules. The output is a dictionary whose keys are module names and values are a list of the nodes inside that module. Arguments ------- Returns ------- dict dictionary of all the nodes that can be added in the client """ loaded_node_classes = [] all_modules = get_greenflow_config_modules() # print('Greenflow config modules: {}\n'.format(all_modules)) all_nodes = {} # not implemented yet for greenflow for item in inspect.getmembers(plugin_nodes): if inspect.ismodule(item[1]): # print('Greenflow builtin plugin: {}'.format(item)) labmod_pkg = 'greenflow.{}'.format(item[0]) all_nodes[labmod_pkg] = [] for node in inspect.getmembers(item[1]): nodecls = node[1] if not inspect.isclass(nodecls): continue if not issubclass(nodecls, Node): continue if nodecls in loaded_node_classes: continue task = {'id': 'node_'+str(uuid.uuid4()), 'type': node[0], 'conf': {}, 'inputs': []} task_inst = Task(task) node_inst = get_node_tgraphmixin_instance(nodecls, task_inst) nodeObj = init_get_labnode_obj(node_inst, False) all_nodes[labmod_pkg].append(nodeObj) loaded_node_classes.append(nodecls) for module in all_modules: module_file_or_path = Path(all_modules[module]) loaded = load_modules(all_modules[module], module) mod = loaded.mod modulename = module # all_nodes[modulename] = [] for node in inspect.getmembers(mod): nodecls = node[1] if not inspect.isclass(nodecls): continue if nodecls == Node: continue if not issubclass(nodecls, Node): continue if nodecls in loaded_node_classes: continue task = {'id': 'node_'+str(uuid.uuid4()), 'type': node[0], 'conf': {}, 'inputs': [], 'module': module } task_inst = Task(task) node_inst = get_node_tgraphmixin_instance(nodecls, task_inst) nodeObj = init_get_labnode_obj(node_inst, False) if module_file_or_path.is_dir(): # submod = nodecls.__module__.split('.')[1:] # flatten out the namespace hierarchy submod = nodecls.__module__.split('.')[1:2] modulename_ = '.'.join([modulename, '.'.join(submod)]) \ if submod else modulename all_nodes.setdefault(modulename_, []).append(nodeObj) else: all_nodes.setdefault(modulename, []).append(nodeObj) loaded_node_classes.append(nodecls) for module in DYNAMIC_MODULES.keys(): modulename = module all_nodes[modulename] = [] for class_name in DYNAMIC_MODULES[module].keys(): nodecls = DYNAMIC_MODULES[module][class_name] if not issubclass(nodecls, Node): continue if nodecls in loaded_node_classes: continue task = {'id': 'node_'+str(uuid.uuid4()), 'type': nodecls.__name__, 'conf': {}, 'inputs': [], 'module': module } task_inst = Task(task) node_inst = get_node_tgraphmixin_instance(nodecls, task_inst) nodeObj = init_get_labnode_obj(node_inst, False) all_nodes.setdefault(modulename, []).append(nodeObj) loaded_node_classes.append(nodecls) # load all the plugins from entry points for entry_point in importlib_metadata.entry_points().get( 'greenflow.plugin', ()): mod = entry_point.load() modulename = entry_point.name for node in inspect.getmembers(mod): nodecls = node[1] if not inspect.isclass(nodecls): continue if nodecls == Node: continue if not issubclass(nodecls, Node): continue if nodecls in loaded_node_classes: continue task = {'id': 'node_'+str(uuid.uuid4()), 'type': node[0], 'conf': {}, 'inputs': [], 'module': modulename } task_inst = Task(task) node_inst = get_node_tgraphmixin_instance(nodecls, task_inst) nodeObj = init_get_labnode_obj(node_inst, False) all_nodes.setdefault(modulename, []).append(nodeObj) loaded_node_classes.append(nodecls) return all_nodes
fsi-samples-main
greenflowlab/greenflowlab/server_utils.py
#//////////////////////////////////////////////////////////////////////////// #// #// Copyright (C) NVIDIA Corporation. All rights reserved. #// #// NVIDIA Sample Code #// #// Please refer to the NVIDIA end user license agreement (EULA) associated #// with this source code for terms and conditions that govern your use of #// this software. Any use, reproduction, disclosure, or distribution of #// this software and related documentation outside the terms of the EULA #// is strictly prohibited. #// #//////////////////////////////////////////////////////////////////////////// import csv import os import sys if len(sys.argv)==1: dir = 'data/MVO3.2021.02/NYSE/' dir = 'data/MVO3.2021.02/NASDAQ/' elif len(sys.argv)==2: dir = sys.argv[1] print(dir) else: exit() os.chdir(dir) fileList = os.listdir(dir) print('files:', fileList) print('file count:', len(fileList)) prices = []; lab = [] for file in fileList: print(file) f = open(file, 'r') x = [line.split('\n')[0] for line in f.readlines()] if (file[0:6] == 'cached') and (x[1] != 'NA'): l = list(map(float,x[1:])) prices.append(l) if file == 'cachedGME.csv': print(l) lab.append(file[6:][:-4]) print('*****') print(len(lab)) prices = [list(x) for x in zip(*prices)] D = len(prices) print(D) length = len(prices[0]) print(length) outFile = open(dir+'/'+'prices.csv','w') with outFile: writer = csv.writer(outFile) writer.writerow(lab) writer.writerows(prices)
fsi-samples-main
backtesting_equity_investment_strats/scripts/coalescePrices.py
''' ''' import pathlib from setuptools import setup, find_packages here = pathlib.Path(__file__).parent.resolve() # Get the long description from the README file long_description = (here / 'README.md').read_text(encoding='utf-8') install_requires = ['dask[distributed]', 'dask[dataframe]', 'configparser', 'cloudpickle', 'PyYaml', 'jsonpath_ng', 'ruamel.yaml', 'pandas'] setup( name='greenflow', version='1.0.5', description='greenflow - RAPIDS Financial Services Algorithms', long_description=long_description, long_description_content_type='text/markdown', author='NVIDIA Corporation', url='https://github.com/NVIDIA/fsi-samples/tree/main/greenflow', packages=find_packages(include=['greenflow', 'greenflow.*']), install_requires=install_requires, license="Apache", classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3', 'Operating System :: POSIX :: Linux', ], entry_points={ 'console_scripts': ['greenflow-flow=greenflow.flow:main'], } )
fsi-samples-main
greenflow/setup.py
from collections import namedtuple from collections.abc import Mapping __all__ = ['_namedtuple_with_defaults'] def _namedtuple_with_defaults(typename, field_names, default_values=()): # https://stackoverflow.com/a/18348004/3457624 T = namedtuple(typename, field_names) T.__new__.__defaults__ = (None,) * len(T._fields) if isinstance(default_values, Mapping): prototype = T(**default_values) else: prototype = T(*default_values) T.__new__.__defaults__ = tuple(prototype) return T
fsi-samples-main
greenflow/greenflow/_common.py
from .dataframe_flow import TaskGraph from .dataframe_flow.node import Node from .dataframe_flow import PortsSpecSchema __all__ = ["TaskGraph", "Node", "PortsSpecSchema"]
fsi-samples-main
greenflow/greenflow/__init__.py
from greenflow.dataframe_flow import TaskGraph import argparse def main(): parser = argparse.ArgumentParser( description='Evaluate the dataframe flow graph') parser.add_argument('-t', '--task', help="the yaml task file") parser.add_argument('output', help="the output nodes", nargs='+') args = parser.parse_args() import pudb pudb.set_trace() task_graph = TaskGraph.load_taskgraph(args.task) print('output nodes:', args.output) task_graph.run(args.output) if __name__ == "__main__": main()
fsi-samples-main
greenflow/greenflow/flow.py
import copy from .taskSpecSchema import TaskSpecSchema module_cache = {} __all__ = ['Task'] class Task(object): ''' A strong typed Task class that is converted from dictionary. ''' def __init__(self, task_spec): self._task_spec = {} # internal dict # whatever is passed in has to be valid TaskSpecSchema.validate(task_spec) self._task_spec = copy.copy(task_spec) # deepcopies of inputs can still be done self._task_spec[TaskSpecSchema.inputs] = \ copy.deepcopy(task_spec[TaskSpecSchema.inputs]) def __getitem__(self, key): return self._task_spec[key] def get(self, key, default=None): return self._task_spec.get(key, default) if __name__ == "__main__": t = {'id': 'test', 'type': "DropNode", 'conf': {}, 'inputs': ["node_other"]} task = Task(t)
fsi-samples-main
greenflow/greenflow/dataframe_flow/task.py
import re import importlib from .portsSpecSchema import (PortsSpecSchema, NodePorts) from .metaSpec import (MetaDataSchema, MetaData) __all__ = ['NodeExtensionMixin'] TYPES_CACHE = {} class NodeExtensionMixin: def _sep_variable(self, variable): assert isinstance(variable, str) e = re.search('^\${(.*):(.*)}$', variable) # noqa if e is None and variable.startswith('$'): raise ValueError("varaible format is wrong") if e is None: return None groups = e.groups() return groups def _parse_variable(self, variable, port_inports): if isinstance(variable, int): return variable if isinstance(variable, dict): return variable if variable is None: return None port_type = PortsSpecSchema.port_type groups = self._sep_variable(variable) if groups is None: return variable if groups[0] == 'conf': return self.conf[groups[1]] elif groups[0] == 'port': return port_inports[groups[1]][port_type] else: raise KeyError('Cannot parse variable {}'.format(groups)) def _load_type(self, type_str): return_list = False if isinstance(type_str, list): return_list = True type_str_list = type_str else: type_str_list = [type_str] clsobj_list = [] for type_str in type_str_list: if type_str in TYPES_CACHE: clsobj_list.append(TYPES_CACHE[type_str]) if isinstance(type_str, type): clsobj = type_str elif isinstance(type_str, str): splits = type_str.split('.') mod_str = ".".join(splits[:-1]) mod = importlib.import_module(mod_str) clsobj = getattr(mod, splits[-1]) TYPES_CACHE[type_str] = clsobj else: raise Exception('Cannot load type: {}'.format(type_str)) clsobj_list.append(clsobj) if return_list: return clsobj_list else: return clsobj_list[0] def _resolve_ports(self, ports_template): '''The ports can be defined via template specification. Example: port_inports = { "port0_name": { PortsSpecSchema.port_type: ["type0", "type1"] }, "port1_name": { PortsSpecSchema.port_type: "${conf:some_type}", PortsSpecSchema.dynamic: { # choie can be True/False, list of types or string # True, generate outports matching the # connected dynamic input ports, use the # the same type as the dynamic port # False, not generate matching outports # list of types or string, same as True condition, # but use the specified types PortsSpecSchema.DYN_MATCH: ['type0', 'type1'] } }, ... } port_outports = { "port0_name": { PortsSpecSchema.port_type: ["type0", "type1"] }, "port1_name": { PortsSpecSchema.port_type: "${port:port0_name}" }, ... } ports_template = NodePorts(inports=port_inports, outports=port_outports) ports_resolved = self._resolve_ports(ports_template) Above, the types are specified as strings and loaded dynamically. Additionally an input port can use "dynamic" syntax for automatically resolving types for the input connections to that port. The output ports can similarlly define types as string to be loaded dynamically, and make references to port inputs to re-use an input port's types. After calling _resolve_ports the ports definitions would look something as follows: ports_resolved.inports == { "port0_name": { PortsSpecSchema.port_type: [type0, type1] }, "port1_name": { PortsSpecSchema.port_type: "${conf:some_type}", PortsSpecSchema.dynamic: { PortsSpecSchema.DYN_MATCH: [type0, type1] } }, ... } ports_resolved.inports == { "port0_name": { PortsSpecSchema.port_type: [type0, type1] }, "port1_name": { PortsSpecSchema.port_type: "${port:port0_name}" }, ... } Port types using "$" syntax are resolved when the node is within a taskgraph context. This additional resolve logic is handled in :class:`NodeTaskGraphExtensionMixin.port_setup_ext`. :param ports_template: Ports definition via convenience templating. :type ports_template: NodePorts :returns: Resolved ports. :rtype: NodePorts ''' ports = ports_template dy = PortsSpecSchema.dynamic port_type = PortsSpecSchema.port_type # resolve all the variables port_inports = {} inports = ports.inports for key in inports: key_name = self._parse_variable(key, inports) value = inports[key] ptype = value[port_type] return_list = False if isinstance(ptype, list): return_list = True ptype_list = ptype else: ptype_list = [ptype] loaded_types = [ self._load_type(self._parse_variable(item, inports)) if not isinstance(item, type) else item for item in ptype_list ] if return_list: value[port_type] = loaded_types else: value[port_type] = loaded_types[0] if dy in value: dynamic_value = value[dy] m_outputs = dynamic_value[PortsSpecSchema.DYN_MATCH] if isinstance(m_outputs, bool): pass elif isinstance(m_outputs, list): dynamic_value[PortsSpecSchema.DYN_MATCH] = [ self._load_type(self._parse_variable(item, inports)) if not isinstance(item, type) else item for item in m_outputs ] elif isinstance(m_outputs, str): dynamic_value[PortsSpecSchema.DYN_MATCH] = self._load_type( self._parse_variable(m_outputs, inports)) else: raise ValueError port_inports[key_name] = value # resolve all the variables port_outports = {} outports = ports.outports for key in outports: key_name = self._parse_variable(key, port_inports) value = outports[key] if isinstance(value[port_type], list): value[port_type] = [ self._load_type(self._parse_variable(item, port_inports)) if not isinstance(item, type) else item for item in value[port_type] ] elif isinstance(value[port_type], str): # This part is valid if node is part of NodeTaskGraphMixin if not value[port_type].startswith('$'): value[port_type] = self._load_type( self._parse_variable(value[port_type], port_inports)) else: # it will be resolved inside the port_setup_ext pass elif isinstance(value[port_type], type): pass else: raise ValueError port_outports[key_name] = value return NodePorts(inports=port_inports, outports=port_outports) def _resolve_meta(self, meta_template, port_inports): meta = meta_template meta_inports = {} metainports = meta.inports for key in metainports: key_name = self._parse_variable(key, port_inports) value = metainports[key] new_value = {} for vk in value: nvk = self._parse_variable(vk, port_inports) new_value[nvk] = self._parse_variable(value[vk], port_inports) meta_inports[key_name] = new_value meta_outports = {} metaoutports = meta.outports data_accessor = MetaDataSchema.META_DATA order_accessor = MetaDataSchema.META_ORDER for key in metaoutports: meta_outports[key] = metaoutports[key].copy() key_name = self._parse_variable(key, port_inports) value = metaoutports[key] if data_accessor in value: new_data = {} for vk in value[data_accessor]: nvk = self._parse_variable(vk, port_inports) new_data[nvk] = self._parse_variable( value[data_accessor][vk], port_inports) meta_outports[key_name][data_accessor] = new_data if order_accessor in value: new_order = {} for vk in value[order_accessor]: nvk = self._parse_variable(vk, port_inports) new_order[nvk] = value[order_accessor][vk] meta_outports[key_name][order_accessor] = new_order return MetaData(inports=meta_inports, outports=meta_outports)
fsi-samples-main
greenflow/greenflow/dataframe_flow/_node_extension_mixin.py
import abc __all__ = ['_Node'] # compatible with Python 2 *and* 3: _ABC = abc.ABCMeta('ABC', (object,), {'__slots__': ()}) class _Node(_ABC): '''Intermediate class to identify Node class instances and avoid cyclic imports.'''
fsi-samples-main
greenflow/greenflow/dataframe_flow/_node.py
import os import cloudpickle import base64 import pathlib def get_file_path(path: str) -> str: """ @path: the relative or absolute file path returns: absolute file path """ if path.startswith('/'): return path if 'GREENFLOWROOT' in os.environ: ROOT = pathlib.Path(os.environ['GREENFLOWROOT']) else: ROOT = pathlib.Path(os.getcwd()) if os.path.exists(path): return path path = pathlib.Path(path) if (ROOT/path).absolute().parent.exists(): return str(ROOT/path) else: print('current path', os.getcwd()) print('input path', path) print('cannot find the file') raise FileNotFoundError("File path cannnot be found") def get_encoded_class(classObj): pickled = cloudpickle.dumps(classObj) encoding = base64.b64encode(pickled).decode() return encoding
fsi-samples-main
greenflow/greenflow/dataframe_flow/util.py