python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
import numpy as np import xgboost as xgb import pytest try: import shap except ImportError: shap = None pass pytestmark = pytest.mark.skipif(shap is None, reason="Requires shap package") # Check integration is not broken from xgboost side # Changes in binary format may cause problems def test_with_shap(): X, y = shap.datasets.boston() dtrain = xgb.DMatrix(X, label=y) model = xgb.train({"learning_rate": 0.01}, dtrain, 10) explainer = shap.TreeExplainer(model) shap_values = explainer.shap_values(X) margin = model.predict(dtrain, output_margin=True) assert np.allclose(np.sum(shap_values, axis=len(shap_values.shape) - 1), margin - explainer.expected_value, 1e-3, 1e-3)
spark-xgboost-nv-release_1.4.0
tests/python/test_with_shap.py
import xgboost import numpy as np import os kRounds = 2 kRows = 1000 kCols = 4 kForests = 2 kMaxDepth = 2 kClasses = 3 X = np.random.randn(kRows, kCols) w = np.random.uniform(size=kRows) version = xgboost.__version__ np.random.seed(1994) target_dir = 'models' def booster_bin(model): return os.path.join(target_dir, 'xgboost-' + version + '.' + model + '.bin') def booster_json(model): return os.path.join(target_dir, 'xgboost-' + version + '.' + model + '.json') def skl_bin(model): return os.path.join(target_dir, 'xgboost_scikit-' + version + '.' + model + '.bin') def skl_json(model): return os.path.join(target_dir, 'xgboost_scikit-' + version + '.' + model + '.json') def generate_regression_model(): print('Regression') y = np.random.randn(kRows) data = xgboost.DMatrix(X, label=y, weight=w) booster = xgboost.train({'tree_method': 'hist', 'num_parallel_tree': kForests, 'max_depth': kMaxDepth}, num_boost_round=kRounds, dtrain=data) booster.save_model(booster_bin('reg')) booster.save_model(booster_json('reg')) reg = xgboost.XGBRegressor(tree_method='hist', num_parallel_tree=kForests, max_depth=kMaxDepth, n_estimators=kRounds) reg.fit(X, y, w) reg.save_model(skl_bin('reg')) reg.save_model(skl_json('reg')) def generate_logistic_model(): print('Logistic') y = np.random.randint(0, 2, size=kRows) assert y.max() == 1 and y.min() == 0 for objective, name in [('binary:logistic', 'logit'), ('binary:logitraw', 'logitraw')]: data = xgboost.DMatrix(X, label=y, weight=w) booster = xgboost.train({'tree_method': 'hist', 'num_parallel_tree': kForests, 'max_depth': kMaxDepth, 'objective': objective}, num_boost_round=kRounds, dtrain=data) booster.save_model(booster_bin(name)) booster.save_model(booster_json(name)) reg = xgboost.XGBClassifier(tree_method='hist', num_parallel_tree=kForests, max_depth=kMaxDepth, n_estimators=kRounds, objective=objective) reg.fit(X, y, w) reg.save_model(skl_bin(name)) reg.save_model(skl_json(name)) def generate_classification_model(): print('Classification') y = np.random.randint(0, kClasses, size=kRows) data = xgboost.DMatrix(X, label=y, weight=w) booster = xgboost.train({'num_class': kClasses, 'tree_method': 'hist', 'num_parallel_tree': kForests, 'max_depth': kMaxDepth}, num_boost_round=kRounds, dtrain=data) booster.save_model(booster_bin('cls')) booster.save_model(booster_json('cls')) cls = xgboost.XGBClassifier(tree_method='hist', num_parallel_tree=kForests, max_depth=kMaxDepth, n_estimators=kRounds) cls.fit(X, y, w) cls.save_model(skl_bin('cls')) cls.save_model(skl_json('cls')) def generate_ranking_model(): print('Learning to Rank') y = np.random.randint(5, size=kRows) w = np.random.uniform(size=20) g = np.repeat(50, 20) data = xgboost.DMatrix(X, y, weight=w) data.set_group(g) booster = xgboost.train({'objective': 'rank:ndcg', 'num_parallel_tree': kForests, 'tree_method': 'hist', 'max_depth': kMaxDepth}, num_boost_round=kRounds, dtrain=data) booster.save_model(booster_bin('ltr')) booster.save_model(booster_json('ltr')) ranker = xgboost.sklearn.XGBRanker(n_estimators=kRounds, tree_method='hist', objective='rank:ndcg', max_depth=kMaxDepth, num_parallel_tree=kForests) ranker.fit(X, y, g, sample_weight=w) ranker.save_model(skl_bin('ltr')) ranker.save_model(skl_json('ltr')) def write_versions(): versions = {'numpy': np.__version__, 'xgboost': version} with open(os.path.join(target_dir, 'version'), 'w') as fd: fd.write(str(versions)) if __name__ == '__main__': if not os.path.exists(target_dir): os.mkdir(target_dir) generate_regression_model() generate_logistic_model() generate_classification_model() generate_ranking_model() write_versions()
spark-xgboost-nv-release_1.4.0
tests/python/generate_models.py
import xgboost as xgb import pytest import os import testing as tm import tempfile # We use the dataset for tests. pytestmark = pytest.mark.skipif(**tm.no_sklearn()) class TestCallbacks: @classmethod def setup_class(cls): from sklearn.datasets import load_breast_cancer X, y = load_breast_cancer(return_X_y=True) cls.X = X cls.y = y split = int(X.shape[0]*0.8) cls.X_train = X[: split, ...] cls.y_train = y[: split, ...] cls.X_valid = X[split:, ...] cls.y_valid = y[split:, ...] def run_evaluation_monitor(self, D_train, D_valid, rounds, verbose_eval): evals_result = {} with tm.captured_output() as (out, err): xgb.train({'objective': 'binary:logistic', 'eval_metric': 'error'}, D_train, evals=[(D_train, 'Train'), (D_valid, 'Valid')], num_boost_round=rounds, evals_result=evals_result, verbose_eval=verbose_eval) output: str = out.getvalue().strip() if int(verbose_eval) == 1: # Should print each iteration info assert len(output.split('\n')) == rounds elif int(verbose_eval) > rounds: # Should print first and latest iteration info assert len(output.split('\n')) == 2 else: # Should print info by each period additionaly to first and latest iteration num_periods = rounds // int(verbose_eval) # Extra information is required for latest iteration is_extra_info_required = num_periods * int(verbose_eval) < (rounds - 1) assert len(output.split('\n')) == 1 + num_periods + int(is_extra_info_required) def test_evaluation_monitor(self): D_train = xgb.DMatrix(self.X_train, self.y_train) D_valid = xgb.DMatrix(self.X_valid, self.y_valid) evals_result = {} rounds = 10 xgb.train({'objective': 'binary:logistic', 'eval_metric': 'error'}, D_train, evals=[(D_train, 'Train'), (D_valid, 'Valid')], num_boost_round=rounds, evals_result=evals_result, verbose_eval=True) assert len(evals_result['Train']['error']) == rounds assert len(evals_result['Valid']['error']) == rounds self.run_evaluation_monitor(D_train, D_valid, rounds, True) self.run_evaluation_monitor(D_train, D_valid, rounds, 2) self.run_evaluation_monitor(D_train, D_valid, rounds, 4) self.run_evaluation_monitor(D_train, D_valid, rounds, rounds + 1) def test_early_stopping(self): D_train = xgb.DMatrix(self.X_train, self.y_train) D_valid = xgb.DMatrix(self.X_valid, self.y_valid) evals_result = {} rounds = 30 early_stopping_rounds = 5 booster = xgb.train({'objective': 'binary:logistic', 'eval_metric': 'error'}, D_train, evals=[(D_train, 'Train'), (D_valid, 'Valid')], num_boost_round=rounds, evals_result=evals_result, verbose_eval=True, early_stopping_rounds=early_stopping_rounds) dump = booster.get_dump(dump_format='json') assert len(dump) - booster.best_iteration == early_stopping_rounds + 1 # No early stopping, best_iteration should be set to last epoch booster = xgb.train({'objective': 'binary:logistic', 'eval_metric': 'error'}, D_train, evals=[(D_train, 'Train'), (D_valid, 'Valid')], num_boost_round=10, evals_result=evals_result, verbose_eval=True) assert booster.num_boosted_rounds() - 1 == booster.best_iteration def test_early_stopping_custom_eval(self): D_train = xgb.DMatrix(self.X_train, self.y_train) D_valid = xgb.DMatrix(self.X_valid, self.y_valid) early_stopping_rounds = 5 booster = xgb.train({'objective': 'binary:logistic', 'eval_metric': 'error', 'tree_method': 'hist'}, D_train, evals=[(D_train, 'Train'), (D_valid, 'Valid')], feval=tm.eval_error_metric, num_boost_round=1000, early_stopping_rounds=early_stopping_rounds, verbose_eval=False) dump = booster.get_dump(dump_format='json') assert len(dump) - booster.best_iteration == early_stopping_rounds + 1 def test_early_stopping_customize(self): D_train = xgb.DMatrix(self.X_train, self.y_train) D_valid = xgb.DMatrix(self.X_valid, self.y_valid) early_stopping_rounds = 5 early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds, metric_name='CustomErr', data_name='Train') # Specify which dataset and which metric should be used for early stopping. booster = xgb.train( {'objective': 'binary:logistic', 'eval_metric': ['error', 'rmse'], 'tree_method': 'hist'}, D_train, evals=[(D_train, 'Train'), (D_valid, 'Valid')], feval=tm.eval_error_metric, num_boost_round=1000, callbacks=[early_stop], verbose_eval=False) dump = booster.get_dump(dump_format='json') assert len(dump) - booster.best_iteration == early_stopping_rounds + 1 assert len(early_stop.stopping_history['Train']['CustomErr']) == len(dump) def test_early_stopping_skl(self): from sklearn.datasets import load_breast_cancer X, y = load_breast_cancer(return_X_y=True) cls = xgb.XGBClassifier() early_stopping_rounds = 5 cls.fit(X, y, eval_set=[(X, y)], early_stopping_rounds=early_stopping_rounds, eval_metric='error') booster = cls.get_booster() dump = booster.get_dump(dump_format='json') assert len(dump) - booster.best_iteration == early_stopping_rounds + 1 def test_early_stopping_custom_eval_skl(self): from sklearn.datasets import load_breast_cancer X, y = load_breast_cancer(return_X_y=True) cls = xgb.XGBClassifier() early_stopping_rounds = 5 early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds) cls.fit(X, y, eval_set=[(X, y)], eval_metric=tm.eval_error_metric, callbacks=[early_stop]) booster = cls.get_booster() dump = booster.get_dump(dump_format='json') assert len(dump) - booster.best_iteration == early_stopping_rounds + 1 def test_early_stopping_save_best_model(self): from sklearn.datasets import load_breast_cancer X, y = load_breast_cancer(return_X_y=True) n_estimators = 100 cls = xgb.XGBClassifier(n_estimators=n_estimators) early_stopping_rounds = 5 early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds, save_best=True) cls.fit(X, y, eval_set=[(X, y)], eval_metric=tm.eval_error_metric, callbacks=[early_stop]) booster = cls.get_booster() dump = booster.get_dump(dump_format='json') assert len(dump) == booster.best_iteration + 1 early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds, save_best=True) cls = xgb.XGBClassifier(booster='gblinear', n_estimators=10) with pytest.raises(ValueError): cls.fit(X, y, eval_set=[(X, y)], eval_metric=tm.eval_error_metric, callbacks=[early_stop]) # No error early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds, save_best=False) xgb.XGBClassifier(booster='gblinear', n_estimators=10).fit( X, y, eval_set=[(X, y)], eval_metric=tm.eval_error_metric, callbacks=[early_stop]) def test_early_stopping_continuation(self): from sklearn.datasets import load_breast_cancer X, y = load_breast_cancer(return_X_y=True) cls = xgb.XGBClassifier() early_stopping_rounds = 5 early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds, save_best=True) cls.fit(X, y, eval_set=[(X, y)], eval_metric=tm.eval_error_metric, callbacks=[early_stop]) booster = cls.get_booster() assert booster.num_boosted_rounds() == booster.best_iteration + 1 with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, 'model.json') cls.save_model(path) cls = xgb.XGBClassifier() cls.load_model(path) assert cls._Booster is not None early_stopping_rounds = 3 cls.fit(X, y, eval_set=[(X, y)], eval_metric=tm.eval_error_metric, early_stopping_rounds=early_stopping_rounds) booster = cls.get_booster() assert booster.num_boosted_rounds() == \ booster.best_iteration + early_stopping_rounds + 1 def run_eta_decay(self, tree_method, deprecated_callback): """Test learning rate scheduler, used by both CPU and GPU tests.""" if deprecated_callback: scheduler = xgb.callback.reset_learning_rate else: scheduler = xgb.callback.LearningRateScheduler dpath = os.path.join(tm.PROJECT_ROOT, 'demo/data/') dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') dtest = xgb.DMatrix(dpath + 'agaricus.txt.test') watchlist = [(dtest, 'eval'), (dtrain, 'train')] num_round = 4 if deprecated_callback: warning_check = pytest.warns(UserWarning) else: warning_check = tm.noop_context() # learning_rates as a list # init eta with 0 to check whether learning_rates work param = {'max_depth': 2, 'eta': 0, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': 'error', 'tree_method': tree_method} evals_result = {} with warning_check: bst = xgb.train(param, dtrain, num_round, watchlist, callbacks=[scheduler([ 0.8, 0.7, 0.6, 0.5 ])], evals_result=evals_result) eval_errors_0 = list(map(float, evals_result['eval']['error'])) assert isinstance(bst, xgb.core.Booster) # validation error should decrease, if eta > 0 assert eval_errors_0[0] > eval_errors_0[-1] # init learning_rate with 0 to check whether learning_rates work param = {'max_depth': 2, 'learning_rate': 0, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': 'error', 'tree_method': tree_method} evals_result = {} with warning_check: bst = xgb.train(param, dtrain, num_round, watchlist, callbacks=[scheduler( [0.8, 0.7, 0.6, 0.5])], evals_result=evals_result) eval_errors_1 = list(map(float, evals_result['eval']['error'])) assert isinstance(bst, xgb.core.Booster) # validation error should decrease, if learning_rate > 0 assert eval_errors_1[0] > eval_errors_1[-1] # check if learning_rates override default value of eta/learning_rate param = { 'max_depth': 2, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': 'error', 'tree_method': tree_method } evals_result = {} with warning_check: bst = xgb.train(param, dtrain, num_round, watchlist, callbacks=[scheduler( [0, 0, 0, 0] )], evals_result=evals_result) eval_errors_2 = list(map(float, evals_result['eval']['error'])) assert isinstance(bst, xgb.core.Booster) # validation error should not decrease, if eta/learning_rate = 0 assert eval_errors_2[0] == eval_errors_2[-1] # learning_rates as a customized decay function def eta_decay(ithround, num_boost_round=num_round): return num_boost_round / (ithround + 1) evals_result = {} with warning_check: bst = xgb.train(param, dtrain, num_round, watchlist, callbacks=[ scheduler(eta_decay) ], evals_result=evals_result) eval_errors_3 = list(map(float, evals_result['eval']['error'])) assert isinstance(bst, xgb.core.Booster) assert eval_errors_3[0] == eval_errors_2[0] for i in range(1, len(eval_errors_0)): assert eval_errors_3[i] != eval_errors_2[i] with warning_check: xgb.cv(param, dtrain, num_round, callbacks=[scheduler(eta_decay)]) @pytest.mark.parametrize( "tree_method, deprecated_callback", [ ("hist", True), ("hist", False), ("approx", True), ("approx", False), ("exact", True), ("exact", False), ], ) def test_eta_decay(self, tree_method, deprecated_callback): self.run_eta_decay(tree_method, deprecated_callback) def test_check_point(self): from sklearn.datasets import load_breast_cancer X, y = load_breast_cancer(return_X_y=True) m = xgb.DMatrix(X, y) with tempfile.TemporaryDirectory() as tmpdir: check_point = xgb.callback.TrainingCheckPoint(directory=tmpdir, iterations=1, name='model') xgb.train({'objective': 'binary:logistic'}, m, num_boost_round=10, verbose_eval=False, callbacks=[check_point]) for i in range(1, 10): assert os.path.exists( os.path.join(tmpdir, 'model_' + str(i) + '.json')) check_point = xgb.callback.TrainingCheckPoint(directory=tmpdir, iterations=1, as_pickle=True, name='model') xgb.train({'objective': 'binary:logistic'}, m, num_boost_round=10, verbose_eval=False, callbacks=[check_point]) for i in range(1, 10): assert os.path.exists( os.path.join(tmpdir, 'model_' + str(i) + '.pkl')) def test_callback_list(self): X, y = tm.get_boston() m = xgb.DMatrix(X, y) callbacks = [xgb.callback.EarlyStopping(rounds=10)] for i in range(4): xgb.train({'objective': 'reg:squarederror', 'eval_metric': 'rmse'}, m, evals=[(m, 'Train')], num_boost_round=1, verbose_eval=True, callbacks=callbacks) assert len(callbacks) == 1
spark-xgboost-nv-release_1.4.0
tests/python/test_callback.py
import numpy as np import xgboost as xgb import os import json import testing as tm import pytest import locale import tempfile dpath = os.path.join(tm.PROJECT_ROOT, 'demo/data/') dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') dtest = xgb.DMatrix(dpath + 'agaricus.txt.test') rng = np.random.RandomState(1994) def json_model(model_path, parameters): X = np.random.random((10, 3)) y = np.random.randint(2, size=(10,)) dm1 = xgb.DMatrix(X, y) bst = xgb.train(parameters, dm1) bst.save_model(model_path) with open(model_path, 'r') as fd: model = json.load(fd) return model class TestModels: def test_glm(self): param = {'verbosity': 0, 'objective': 'binary:logistic', 'booster': 'gblinear', 'alpha': 0.0001, 'lambda': 1, 'nthread': 1} watchlist = [(dtest, 'eval'), (dtrain, 'train')] num_round = 4 bst = xgb.train(param, dtrain, num_round, watchlist) assert isinstance(bst, xgb.core.Booster) preds = bst.predict(dtest) labels = dtest.get_label() err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds)) assert err < 0.2 def test_dart(self): dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') dtest = xgb.DMatrix(dpath + 'agaricus.txt.test') param = {'max_depth': 5, 'objective': 'binary:logistic', 'eval_metric': 'logloss', 'booster': 'dart', 'verbosity': 1} # specify validations set to watch performance watchlist = [(dtest, 'eval'), (dtrain, 'train')] num_round = 2 bst = xgb.train(param, dtrain, num_round, watchlist) # this is prediction preds = bst.predict(dtest, ntree_limit=num_round) labels = dtest.get_label() err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds)) # error must be smaller than 10% assert err < 0.1 with tempfile.TemporaryDirectory() as tmpdir: dtest_path = os.path.join(tmpdir, 'dtest.dmatrix') model_path = os.path.join(tmpdir, 'xgboost.model.dart') # save dmatrix into binary buffer dtest.save_binary(dtest_path) model_path = model_path # save model bst.save_model(model_path) # load model and data in bst2 = xgb.Booster(params=param, model_file=model_path) dtest2 = xgb.DMatrix(dtest_path) preds2 = bst2.predict(dtest2, ntree_limit=num_round) # assert they are the same assert np.sum(np.abs(preds2 - preds)) == 0 def my_logloss(preds, dtrain): labels = dtrain.get_label() return 'logloss', np.sum( np.log(np.where(labels, preds, 1 - preds))) # check whether custom evaluation metrics work bst = xgb.train(param, dtrain, num_round, watchlist, feval=my_logloss) preds3 = bst.predict(dtest, ntree_limit=num_round) assert all(preds3 == preds) # check whether sample_type and normalize_type work num_round = 50 param['verbosity'] = 0 param['learning_rate'] = 0.1 param['rate_drop'] = 0.1 preds_list = [] for p in [[p0, p1] for p0 in ['uniform', 'weighted'] for p1 in ['tree', 'forest']]: param['sample_type'] = p[0] param['normalize_type'] = p[1] bst = xgb.train(param, dtrain, num_round, watchlist) preds = bst.predict(dtest, ntree_limit=num_round) err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds)) assert err < 0.1 preds_list.append(preds) for ii in range(len(preds_list)): for jj in range(ii + 1, len(preds_list)): assert np.sum(np.abs(preds_list[ii] - preds_list[jj])) > 0 def test_boost_from_prediction(self): # Re-construct dtrain here to avoid modification margined = xgb.DMatrix(dpath + 'agaricus.txt.train') bst = xgb.train({'tree_method': 'hist'}, margined, 1) predt_0 = bst.predict(margined, output_margin=True) margined.set_base_margin(predt_0) bst = xgb.train({'tree_method': 'hist'}, margined, 1) predt_1 = bst.predict(margined) assert np.any(np.abs(predt_1 - predt_0) > 1e-6) bst = xgb.train({'tree_method': 'hist'}, dtrain, 2) predt_2 = bst.predict(dtrain) assert np.all(np.abs(predt_2 - predt_1) < 1e-6) def test_boost_from_existing_model(self): X = xgb.DMatrix(dpath + 'agaricus.txt.train') booster = xgb.train({'tree_method': 'hist'}, X, num_boost_round=4) assert booster.num_boosted_rounds() == 4 booster = xgb.train({'tree_method': 'hist'}, X, num_boost_round=4, xgb_model=booster) assert booster.num_boosted_rounds() == 8 booster = xgb.train({'updater': 'prune', 'process_type': 'update'}, X, num_boost_round=4, xgb_model=booster) # Trees are moved for update, the rounds is reduced. This test is # written for being compatible with current code (1.0.0). If the # behaviour is considered sub-optimal, feel free to change. assert booster.num_boosted_rounds() == 4 def test_custom_objective(self): param = {'max_depth': 2, 'eta': 1, 'objective': 'reg:logistic'} watchlist = [(dtest, 'eval'), (dtrain, 'train')] num_round = 10 def logregobj(preds, dtrain): labels = dtrain.get_label() preds = 1.0 / (1.0 + np.exp(-preds)) grad = preds - labels hess = preds * (1.0 - preds) return grad, hess def evalerror(preds, dtrain): labels = dtrain.get_label() preds = 1.0 / (1.0 + np.exp(-preds)) return 'error', float(sum(labels != (preds > 0.5))) / len(labels) # test custom_objective in training bst = xgb.train(param, dtrain, num_round, watchlist, obj=logregobj, feval=evalerror) assert isinstance(bst, xgb.core.Booster) preds = bst.predict(dtest) labels = dtest.get_label() err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds)) assert err < 0.1 # test custom_objective in cross-validation xgb.cv(param, dtrain, num_round, nfold=5, seed=0, obj=logregobj, feval=evalerror) # test maximize parameter def neg_evalerror(preds, dtrain): labels = dtrain.get_label() return 'error', float(sum(labels == (preds > 0.0))) / len(labels) bst2 = xgb.train(param, dtrain, num_round, watchlist, logregobj, neg_evalerror, maximize=True) preds2 = bst2.predict(dtest) err2 = sum(1 for i in range(len(preds2)) if int(preds2[i] > 0.5) != labels[i]) / float(len(preds2)) assert err == err2 def test_multi_eval_metric(self): watchlist = [(dtest, 'eval'), (dtrain, 'train')] param = {'max_depth': 2, 'eta': 0.2, 'verbosity': 1, 'objective': 'binary:logistic'} param['eval_metric'] = ["auc", "logloss", 'error'] evals_result = {} bst = xgb.train(param, dtrain, 4, watchlist, evals_result=evals_result) assert isinstance(bst, xgb.core.Booster) assert len(evals_result['eval']) == 3 assert set(evals_result['eval'].keys()) == {'auc', 'error', 'logloss'} def test_fpreproc(self): param = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic'} num_round = 2 def fpreproc(dtrain, dtest, param): label = dtrain.get_label() ratio = float(np.sum(label == 0)) / np.sum(label == 1) param['scale_pos_weight'] = ratio return (dtrain, dtest, param) xgb.cv(param, dtrain, num_round, nfold=5, metrics={'auc'}, seed=0, fpreproc=fpreproc) def test_show_stdv(self): param = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic'} num_round = 2 xgb.cv(param, dtrain, num_round, nfold=5, metrics={'error'}, seed=0, show_stdv=False) def test_feature_names_validation(self): X = np.random.random((10, 3)) y = np.random.randint(2, size=(10,)) dm1 = xgb.DMatrix(X, y, feature_names=("a", "b", "c")) dm2 = xgb.DMatrix(X, y) bst = xgb.train([], dm1) bst.predict(dm1) # success with pytest.raises(ValueError): bst.predict(dm2) bst.predict(dm1) # success bst = xgb.train([], dm2) bst.predict(dm2) # success def test_model_binary_io(self): model_path = 'test_model_binary_io.bin' parameters = {'tree_method': 'hist', 'booster': 'gbtree', 'scale_pos_weight': '0.5'} X = np.random.random((10, 3)) y = np.random.random((10,)) dtrain = xgb.DMatrix(X, y) bst = xgb.train(parameters, dtrain, num_boost_round=2) bst.save_model(model_path) bst = xgb.Booster(model_file=model_path) os.remove(model_path) config = json.loads(bst.save_config()) assert float(config['learner']['objective'][ 'reg_loss_param']['scale_pos_weight']) == 0.5 buf = bst.save_raw() from_raw = xgb.Booster() from_raw.load_model(buf) buf_from_raw = from_raw.save_raw() assert buf == buf_from_raw def test_model_json_io(self): loc = locale.getpreferredencoding(False) model_path = 'test_model_json_io.json' parameters = {'tree_method': 'hist', 'booster': 'gbtree'} j_model = json_model(model_path, parameters) assert isinstance(j_model['learner'], dict) bst = xgb.Booster(model_file=model_path) bst.save_model(fname=model_path) with open(model_path, 'r') as fd: j_model = json.load(fd) assert isinstance(j_model['learner'], dict) os.remove(model_path) assert locale.getpreferredencoding(False) == loc @pytest.mark.skipif(**tm.no_json_schema()) def test_json_io_schema(self): import jsonschema model_path = 'test_json_schema.json' path = os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) doc = os.path.join(path, 'doc', 'model.schema') with open(doc, 'r') as fd: schema = json.load(fd) parameters = {'tree_method': 'hist', 'booster': 'gbtree'} jsonschema.validate(instance=json_model(model_path, parameters), schema=schema) os.remove(model_path) parameters = {'tree_method': 'hist', 'booster': 'dart'} jsonschema.validate(instance=json_model(model_path, parameters), schema=schema) os.remove(model_path) try: xgb.train({'objective': 'foo'}, dtrain, num_boost_round=1) except ValueError as e: e_str = str(e) beg = e_str.find('Objective candidate') end = e_str.find('Stack trace') e_str = e_str[beg: end] e_str = e_str.strip() splited = e_str.splitlines() objectives = [s.split(': ')[1] for s in splited] j_objectives = schema['properties']['learner']['properties'][ 'objective']['oneOf'] objectives_from_schema = set() for j_obj in j_objectives: objectives_from_schema.add( j_obj['properties']['name']['const']) objectives = set(objectives) assert objectives == objectives_from_schema @pytest.mark.skipif(**tm.no_json_schema()) def test_json_dump_schema(self): import jsonschema def validate_model(parameters): X = np.random.random((100, 30)) y = np.random.randint(0, 4, size=(100,)) parameters['num_class'] = 4 m = xgb.DMatrix(X, y) booster = xgb.train(parameters, m) dump = booster.get_dump(dump_format='json') for i in range(len(dump)): jsonschema.validate(instance=json.loads(dump[i]), schema=schema) path = os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) doc = os.path.join(path, 'doc', 'dump.schema') with open(doc, 'r') as fd: schema = json.load(fd) parameters = {'tree_method': 'hist', 'booster': 'gbtree', 'objective': 'multi:softmax'} validate_model(parameters) parameters = {'tree_method': 'hist', 'booster': 'dart', 'objective': 'multi:softmax'} validate_model(parameters) @pytest.mark.skipif(**tm.no_sklearn()) def test_attributes(self): from sklearn.datasets import load_iris X, y = load_iris(return_X_y=True) cls = xgb.XGBClassifier(n_estimators=2) cls.fit(X, y, early_stopping_rounds=1, eval_set=[(X, y)]) assert cls.get_booster().best_ntree_limit == 2 assert cls.best_ntree_limit == cls.get_booster().best_ntree_limit with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, "cls.json") cls.save_model(path) cls = xgb.XGBClassifier(n_estimators=2) cls.load_model(path) assert cls.get_booster().best_ntree_limit == 2 assert cls.best_ntree_limit == cls.get_booster().best_ntree_limit @pytest.mark.skipif(**tm.no_sklearn()) @pytest.mark.parametrize('booster', ['gbtree', 'dart']) def test_slice(self, booster): from sklearn.datasets import make_classification num_classes = 3 X, y = make_classification(n_samples=1000, n_informative=5, n_classes=num_classes) dtrain = xgb.DMatrix(data=X, label=y) num_parallel_tree = 4 num_boost_round = 16 total_trees = num_parallel_tree * num_classes * num_boost_round booster = xgb.train({ 'num_parallel_tree': 4, 'subsample': 0.5, 'num_class': 3, 'booster': booster, 'objective': 'multi:softprob'}, num_boost_round=num_boost_round, dtrain=dtrain) assert len(booster.get_dump()) == total_trees beg = 3 end = 7 sliced: xgb.Booster = booster[beg: end] sliced_trees = (end - beg) * num_parallel_tree * num_classes assert sliced_trees == len(sliced.get_dump()) sliced_trees = sliced_trees // 2 sliced: xgb.Booster = booster[beg: end: 2] assert sliced_trees == len(sliced.get_dump()) sliced: xgb.Booster = booster[beg: ...] sliced_trees = (num_boost_round - beg) * num_parallel_tree * num_classes assert sliced_trees == len(sliced.get_dump()) sliced: xgb.Booster = booster[beg:] sliced_trees = (num_boost_round - beg) * num_parallel_tree * num_classes assert sliced_trees == len(sliced.get_dump()) sliced: xgb.Booster = booster[:end] sliced_trees = end * num_parallel_tree * num_classes assert sliced_trees == len(sliced.get_dump()) sliced: xgb.Booster = booster[...:end] sliced_trees = end * num_parallel_tree * num_classes assert sliced_trees == len(sliced.get_dump()) with pytest.raises(ValueError, match=r'>= 0'): booster[-1: 0] # we do not accept empty slice. with pytest.raises(ValueError): booster[1:1] # stop can not be smaller than begin with pytest.raises(ValueError, match=r'Invalid.*'): booster[3:0] with pytest.raises(ValueError, match=r'Invalid.*'): booster[3:-1] # negative step is not supported. with pytest.raises(ValueError, match=r'.*>= 1.*'): booster[0:2:-1] # step can not be 0. with pytest.raises(ValueError, match=r'.*>= 1.*'): booster[0:2:0] trees = [_ for _ in booster] assert len(trees) == num_boost_round with pytest.raises(TypeError): booster["wrong type"] with pytest.raises(IndexError): booster[:num_boost_round+1] with pytest.raises(ValueError): booster[1, 2] # too many dims # setitem is not implemented as model is immutable during slicing. with pytest.raises(TypeError): booster[...:end] = booster sliced_0 = booster[1:3] np.testing.assert_allclose( booster.predict(dtrain, iteration_range=(1, 3)), sliced_0.predict(dtrain) ) sliced_1 = booster[3:7] np.testing.assert_allclose( booster.predict(dtrain, iteration_range=(3, 7)), sliced_1.predict(dtrain) ) predt_0 = sliced_0.predict(dtrain, output_margin=True) predt_1 = sliced_1.predict(dtrain, output_margin=True) merged = predt_0 + predt_1 - 0.5 # base score. single = booster[1:7].predict(dtrain, output_margin=True) np.testing.assert_allclose(merged, single, atol=1e-6) sliced_0 = booster[1:7:2] # 1,3,5 sliced_1 = booster[2:8:2] # 2,4,6 predt_0 = sliced_0.predict(dtrain, output_margin=True) predt_1 = sliced_1.predict(dtrain, output_margin=True) merged = predt_0 + predt_1 - 0.5 single = booster[1:7].predict(dtrain, output_margin=True) np.testing.assert_allclose(merged, single, atol=1e-6) @pytest.mark.skipif(**tm.no_pandas()) def test_feature_info(self): import pandas as pd rows = 100 cols = 10 X = rng.randn(rows, cols) y = rng.randn(rows) feature_names = ["test_feature_" + str(i) for i in range(cols)] X_pd = pd.DataFrame(X, columns=feature_names) X_pd.iloc[:, 3] = X_pd.iloc[:, 3].astype(np.int) Xy = xgb.DMatrix(X_pd, y) assert Xy.feature_types[3] == "int" booster = xgb.train({}, dtrain=Xy, num_boost_round=1) assert booster.feature_names == Xy.feature_names assert booster.feature_names == feature_names assert booster.feature_types == Xy.feature_types with tempfile.TemporaryDirectory() as tmpdir: path = tmpdir + "model.json" booster.save_model(path) booster = xgb.Booster() booster.load_model(path) assert booster.feature_names == Xy.feature_names assert booster.feature_types == Xy.feature_types
spark-xgboost-nv-release_1.4.0
tests/python/test_basic_models.py
import testing as tm import pytest import numpy as np import xgboost as xgb import json import os dpath = os.path.join(tm.PROJECT_ROOT, 'demo', 'data') def test_aft_survival_toy_data(): # See demo/aft_survival/aft_survival_viz_demo.py X = np.array([1, 2, 3, 4, 5]).reshape((-1, 1)) INF = np.inf y_lower = np.array([ 10, 15, -INF, 30, 100]) y_upper = np.array([INF, INF, 20, 50, INF]) dmat = xgb.DMatrix(X) dmat.set_float_info('label_lower_bound', y_lower) dmat.set_float_info('label_upper_bound', y_upper) # "Accuracy" = the number of data points whose ranged label (y_lower, y_upper) includes # the corresponding predicted label (y_pred) acc_rec = [] def my_callback(env): y_pred = env.model.predict(dmat) acc = np.sum(np.logical_and(y_pred >= y_lower, y_pred <= y_upper)/len(X)) acc_rec.append(acc) evals_result = {} params = {'max_depth': 3, 'objective':'survival:aft', 'min_child_weight': 0} bst = xgb.train(params, dmat, 15, [(dmat, 'train')], evals_result=evals_result, callbacks=[my_callback]) nloglik_rec = evals_result['train']['aft-nloglik'] # AFT metric (negative log likelihood) improve monotonically assert all(p >= q for p, q in zip(nloglik_rec, nloglik_rec[:1])) # "Accuracy" improve monotonically. # Over time, XGBoost model makes predictions that fall within given label ranges. assert all(p <= q for p, q in zip(acc_rec, acc_rec[1:])) assert acc_rec[-1] == 1.0 def gather_split_thresholds(tree): if 'split_condition' in tree: return (gather_split_thresholds(tree['children'][0]) | gather_split_thresholds(tree['children'][1]) | {tree['split_condition']}) return set() # Only 2.5, 3.5, and 4.5 are used as split thresholds. model_json = [json.loads(e) for e in bst.get_dump(dump_format='json')] for tree in model_json: assert gather_split_thresholds(tree).issubset({2.5, 3.5, 4.5}) def test_aft_empty_dmatrix(): X = np.array([]).reshape((0, 2)) y_lower, y_upper = np.array([]), np.array([]) dtrain = xgb.DMatrix(X) dtrain.set_info(label_lower_bound=y_lower, label_upper_bound=y_upper) bst = xgb.train({'objective': 'survival:aft', 'tree_method': 'hist'}, dtrain, num_boost_round=2, evals=[(dtrain, 'train')]) @pytest.mark.skipif(**tm.no_pandas()) def test_aft_survival_demo_data(): import pandas as pd df = pd.read_csv(os.path.join(dpath, 'veterans_lung_cancer.csv')) y_lower_bound = df['Survival_label_lower_bound'] y_upper_bound = df['Survival_label_upper_bound'] X = df.drop(['Survival_label_lower_bound', 'Survival_label_upper_bound'], axis=1) dtrain = xgb.DMatrix(X) dtrain.set_float_info('label_lower_bound', y_lower_bound) dtrain.set_float_info('label_upper_bound', y_upper_bound) base_params = {'verbosity': 0, 'objective': 'survival:aft', 'eval_metric': 'aft-nloglik', 'tree_method': 'hist', 'learning_rate': 0.05, 'aft_loss_distribution_scale': 1.20, 'max_depth': 6, 'lambda': 0.01, 'alpha': 0.02} nloglik_rec = {} dists = ['normal', 'logistic', 'extreme'] for dist in dists: params = base_params params.update({'aft_loss_distribution': dist}) evals_result = {} bst = xgb.train(params, dtrain, num_boost_round=500, evals=[(dtrain, 'train')], evals_result=evals_result) nloglik_rec[dist] = evals_result['train']['aft-nloglik'] # AFT metric (negative log likelihood) improve monotonically assert all(p >= q for p, q in zip(nloglik_rec[dist], nloglik_rec[dist][:1])) # For this data, normal distribution works the best assert nloglik_rec['normal'][-1] < 4.9 assert nloglik_rec['logistic'][-1] > 4.9 assert nloglik_rec['extreme'][-1] > 4.9
spark-xgboost-nv-release_1.4.0
tests/python/test_survival.py
# -*- coding: utf-8 -*- import pytest import numpy as np import testing as tm import xgboost as xgb try: import datatable as dt import pandas as pd except ImportError: pass pytestmark = pytest.mark.skipif( tm.no_dt()['condition'] or tm.no_pandas()['condition'], reason=tm.no_dt()['reason'] + ' or ' + tm.no_pandas()['reason']) class TestDataTable: def test_dt(self): df = pd.DataFrame([[1, 2., True], [2, 3., False]], columns=['a', 'b', 'c']) dtable = dt.Frame(df) labels = dt.Frame([1, 2]) dm = xgb.DMatrix(dtable, label=labels) assert dm.feature_names == ['a', 'b', 'c'] assert dm.feature_types == ['int', 'float', 'i'] assert dm.num_row() == 2 assert dm.num_col() == 3 np.testing.assert_array_equal(np.array([1, 2]), dm.get_label()) # overwrite feature_names dm = xgb.DMatrix(dtable, label=pd.Series([1, 2]), feature_names=['x', 'y', 'z']) assert dm.feature_names == ['x', 'y', 'z'] assert dm.num_row() == 2 assert dm.num_col() == 3 # incorrect dtypes df = pd.DataFrame([[1, 2., 'x'], [2, 3., 'y']], columns=['a', 'b', 'c']) dtable = dt.Frame(df) with pytest.raises(ValueError): xgb.DMatrix(dtable) df = pd.DataFrame({'A=1': [1, 2, 3], 'A=2': [4, 5, 6]}) dtable = dt.Frame(df) dm = xgb.DMatrix(dtable) assert dm.feature_names == ['A=1', 'A=2'] assert dm.feature_types == ['int', 'int'] assert dm.num_row() == 3 assert dm.num_col() == 2
spark-xgboost-nv-release_1.4.0
tests/python/test_dt.py
# -*- coding: utf-8 -*- import os import tempfile import numpy as np import xgboost as xgb import scipy.sparse import pytest from scipy.sparse import rand, csr_matrix import testing as tm rng = np.random.RandomState(1) dpath = 'demo/data/' rng = np.random.RandomState(1994) class TestDMatrix: def test_warn_missing(self): from xgboost import data with pytest.warns(UserWarning): data._warn_unused_missing('uri', 4) with pytest.warns(None) as record: data._warn_unused_missing('uri', None) data._warn_unused_missing('uri', np.nan) assert len(record) == 0 with pytest.warns(None) as record: x = rng.randn(10, 10) y = rng.randn(10) xgb.DMatrix(x, y, missing=4) assert len(record) == 0 with pytest.warns(UserWarning): csr = csr_matrix(x) xgb.DMatrix(csr.tocsc(), y, missing=4) def test_dmatrix_numpy_init(self): data = np.random.randn(5, 5) dm = xgb.DMatrix(data) assert dm.num_row() == 5 assert dm.num_col() == 5 data = np.array([[1, 2], [3, 4]]) dm = xgb.DMatrix(data) assert dm.num_row() == 2 assert dm.num_col() == 2 # 0d array with pytest.raises(ValueError): xgb.DMatrix(np.array(1)) # 1d array with pytest.raises(ValueError): xgb.DMatrix(np.array([1, 2, 3])) # 3d array data = np.random.randn(5, 5, 5) with pytest.raises(ValueError): xgb.DMatrix(data) # object dtype data = np.array([['a', 'b'], ['c', 'd']]) with pytest.raises(ValueError): xgb.DMatrix(data) def test_csr(self): indptr = np.array([0, 2, 3, 6]) indices = np.array([0, 2, 2, 0, 1, 2]) data = np.array([1, 2, 3, 4, 5, 6]) X = scipy.sparse.csr_matrix((data, indices, indptr), shape=(3, 3)) dtrain = xgb.DMatrix(X) assert dtrain.num_row() == 3 assert dtrain.num_col() == 3 def test_csc(self): row = np.array([0, 2, 2, 0, 1, 2]) col = np.array([0, 0, 1, 2, 2, 2]) data = np.array([1, 2, 3, 4, 5, 6]) X = scipy.sparse.csc_matrix((data, (row, col)), shape=(3, 3)) dtrain = xgb.DMatrix(X) assert dtrain.num_row() == 3 assert dtrain.num_col() == 3 def test_coo(self): row = np.array([0, 2, 2, 0, 1, 2]) col = np.array([0, 0, 1, 2, 2, 2]) data = np.array([1, 2, 3, 4, 5, 6]) X = scipy.sparse.coo_matrix((data, (row, col)), shape=(3, 3)) dtrain = xgb.DMatrix(X) assert dtrain.num_row() == 3 assert dtrain.num_col() == 3 def test_np_view(self): # Sliced Float32 array y = np.array([12, 34, 56], np.float32)[::2] from_view = xgb.DMatrix(np.array([[]]), label=y).get_label() from_array = xgb.DMatrix(np.array([[]]), label=y + 0).get_label() assert (from_view.shape == from_array.shape) assert (from_view == from_array).all() # Sliced UInt array z = np.array([12, 34, 56], np.uint32)[::2] dmat = xgb.DMatrix(np.array([[]])) dmat.set_uint_info('group', z) from_view = dmat.get_uint_info('group_ptr') dmat = xgb.DMatrix(np.array([[]])) dmat.set_uint_info('group', z + 0) from_array = dmat.get_uint_info('group_ptr') assert (from_view.shape == from_array.shape) assert (from_view == from_array).all() def test_slice(self): X = rng.randn(100, 100) y = rng.randint(low=0, high=3, size=100).astype(np.float32) d = xgb.DMatrix(X, y) np.testing.assert_equal(d.get_label(), y) fw = rng.uniform(size=100).astype(np.float32) d.set_info(feature_weights=fw) # base margin is per-class in multi-class classifier base_margin = rng.randn(100, 3).astype(np.float32) d.set_base_margin(base_margin.flatten()) ridxs = [1, 2, 3, 4, 5, 6] sliced = d.slice(ridxs) # Slicing works with label and other meta info fields np.testing.assert_equal(sliced.get_label(), y[1:7]) np.testing.assert_equal(sliced.get_float_info('feature_weights'), fw) np.testing.assert_equal(sliced.get_base_margin(), base_margin[1:7, :].flatten()) np.testing.assert_equal(sliced.get_base_margin(), sliced.get_float_info('base_margin')) # Slicing a DMatrix results into a DMatrix that's equivalent to a DMatrix that's # constructed from the corresponding NumPy slice d2 = xgb.DMatrix(X[1:7, :], y[1:7]) d2.set_base_margin(base_margin[1:7, :].flatten()) eval_res = {} _ = xgb.train( {'num_class': 3, 'objective': 'multi:softprob', 'eval_metric': 'mlogloss'}, d, num_boost_round=2, evals=[(d2, 'd2'), (sliced, 'sliced')], evals_result=eval_res) np.testing.assert_equal(eval_res['d2']['mlogloss'], eval_res['sliced']['mlogloss']) ridxs_arr = np.array(ridxs)[1:] # handles numpy slice correctly sliced = d.slice(ridxs_arr) np.testing.assert_equal(sliced.get_label(), y[2:7]) def test_feature_names_slice(self): data = np.random.randn(5, 5) # different length with pytest.raises(ValueError): xgb.DMatrix(data, feature_names=list('abcdef')) # contains duplicates with pytest.raises(ValueError): xgb.DMatrix(data, feature_names=['a', 'b', 'c', 'd', 'd']) # contains symbol with pytest.raises(ValueError): xgb.DMatrix(data, feature_names=['a', 'b', 'c', 'd', 'e<1']) dm = xgb.DMatrix(data) dm.feature_names = list('abcde') assert dm.feature_names == list('abcde') assert dm.slice([0, 1]).num_col() == dm.num_col() assert dm.slice([0, 1]).feature_names == dm.feature_names dm.feature_types = 'q' assert dm.feature_types == list('qqqqq') dm.feature_types = list('qiqiq') assert dm.feature_types == list('qiqiq') with pytest.raises(ValueError): dm.feature_types = list('abcde') # reset dm.feature_names = None assert dm.feature_names is None assert dm.feature_types is None def test_feature_names(self): data = np.random.randn(100, 5) target = np.array([0, 1] * 50) cases = [['Feature1', 'Feature2', 'Feature3', 'Feature4', 'Feature5'], [u'要因1', u'要因2', u'要因3', u'要因4', u'要因5']] for features in cases: dm = xgb.DMatrix(data, label=target, feature_names=features) assert dm.feature_names == features assert dm.num_row() == 100 assert dm.num_col() == 5 params = {'objective': 'multi:softprob', 'eval_metric': 'mlogloss', 'eta': 0.3, 'num_class': 3} bst = xgb.train(params, dm, num_boost_round=10) scores = bst.get_fscore() assert list(sorted(k for k in scores)) == features dummy = np.random.randn(5, 5) dm = xgb.DMatrix(dummy, feature_names=features) bst.predict(dm) # different feature name must raises error dm = xgb.DMatrix(dummy, feature_names=list('abcde')) with pytest.raises(ValueError): bst.predict(dm) @pytest.mark.skipif(**tm.no_pandas()) def test_save_binary(self): import pandas as pd with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, 'm.dmatrix') data = pd.DataFrame({ "a": [0, 1], "b": [2, 3], "c": [4, 5] }) m0 = xgb.DMatrix(data.loc[:, ["a", "b"]], data["c"]) assert m0.feature_names == ['a', 'b'] m0.save_binary(path) m1 = xgb.DMatrix(path) assert m0.feature_names == m1.feature_names assert m0.feature_types == m1.feature_types def test_get_info(self): dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') dtrain.get_float_info('label') dtrain.get_float_info('weight') dtrain.get_float_info('base_margin') dtrain.get_uint_info('group_ptr') def test_qid(self): rows = 100 cols = 10 X, y = rng.randn(rows, cols), rng.randn(rows) qid = rng.randint(low=0, high=10, size=rows, dtype=np.uint32) qid = np.sort(qid) Xy = xgb.DMatrix(X, y) Xy.set_info(qid=qid) group_ptr = Xy.get_uint_info('group_ptr') assert group_ptr[0] == 0 assert group_ptr[-1] == rows def test_feature_weights(self): kRows = 10 kCols = 50 rng = np.random.RandomState(1994) fw = rng.uniform(size=kCols) X = rng.randn(kRows, kCols) m = xgb.DMatrix(X) m.set_info(feature_weights=fw) np.testing.assert_allclose(fw, m.get_float_info('feature_weights')) # Handle empty m.set_info(feature_weights=np.empty((0, 0))) assert m.get_float_info('feature_weights').shape[0] == 0 fw -= 1 with pytest.raises(ValueError): m.set_info(feature_weights=fw) def test_sparse_dmatrix_csr(self): nrow = 100 ncol = 1000 x = rand(nrow, ncol, density=0.0005, format='csr', random_state=rng) assert x.indices.max() < ncol - 1 x.data[:] = 1 dtrain = xgb.DMatrix(x, label=rng.binomial(1, 0.3, nrow)) assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol) watchlist = [(dtrain, 'train')] param = {'max_depth': 3, 'objective': 'binary:logistic', 'verbosity': 0} bst = xgb.train(param, dtrain, 5, watchlist) bst.predict(dtrain) i32 = csr_matrix((x.data.astype(np.int32), x.indices, x.indptr), shape=x.shape) f32 = csr_matrix( (i32.data.astype(np.float32), x.indices, x.indptr), shape=x.shape ) di32 = xgb.DMatrix(i32) df32 = xgb.DMatrix(f32) dense = xgb.DMatrix(f32.toarray(), missing=0) with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, "f32.dmatrix") df32.save_binary(path) with open(path, "rb") as fd: df32_buffer = np.array(fd.read()) path = os.path.join(tmpdir, "f32.dmatrix") di32.save_binary(path) with open(path, "rb") as fd: di32_buffer = np.array(fd.read()) path = os.path.join(tmpdir, "dense.dmatrix") dense.save_binary(path) with open(path, "rb") as fd: dense_buffer = np.array(fd.read()) np.testing.assert_equal(df32_buffer, di32_buffer) np.testing.assert_equal(df32_buffer, dense_buffer) def test_sparse_dmatrix_csc(self): nrow = 1000 ncol = 100 x = rand(nrow, ncol, density=0.0005, format='csc', random_state=rng) assert x.indices.max() < nrow - 1 x.data[:] = 1 dtrain = xgb.DMatrix(x, label=rng.binomial(1, 0.3, nrow)) assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol) watchlist = [(dtrain, 'train')] param = {'max_depth': 3, 'objective': 'binary:logistic', 'verbosity': 0} bst = xgb.train(param, dtrain, 5, watchlist) bst.predict(dtrain) def test_unknown_data(self): class Data: pass with pytest.raises(TypeError): with pytest.warns(UserWarning): d = Data() xgb.DMatrix(d)
spark-xgboost-nv-release_1.4.0
tests/python/test_dmatrix.py
'''Tests for running inplace prediction.''' from concurrent.futures import ThreadPoolExecutor import numpy as np from scipy import sparse import pytest import pandas as pd import testing as tm import xgboost as xgb def run_threaded_predict(X, rows, predict_func): results = [] per_thread = 20 with ThreadPoolExecutor(max_workers=10) as e: for i in range(0, rows, int(rows / per_thread)): if hasattr(X, 'iloc'): predictor = X.iloc[i:i+per_thread, :] else: predictor = X[i:i+per_thread, ...] f = e.submit(predict_func, predictor) results.append(f) for f in results: assert f.result() def verify_leaf_output(leaf: np.ndarray, num_parallel_tree: int): for i in range(leaf.shape[0]): # n_samples for j in range(leaf.shape[1]): # n_rounds for k in range(leaf.shape[2]): # n_classes tree_group = leaf[i, j, k, :] assert tree_group.shape[0] == num_parallel_tree # No sampling, all trees within forest are the same assert np.all(tree_group == tree_group[0]) def run_predict_leaf(predictor): rows = 100 cols = 4 classes = 5 num_parallel_tree = 4 num_boost_round = 10 rng = np.random.RandomState(1994) X = rng.randn(rows, cols) y = rng.randint(low=0, high=classes, size=rows) m = xgb.DMatrix(X, y) booster = xgb.train( { "num_parallel_tree": num_parallel_tree, "num_class": classes, "predictor": predictor, "tree_method": "hist", }, m, num_boost_round=num_boost_round, ) empty = xgb.DMatrix(np.ones(shape=(0, cols))) empty_leaf = booster.predict(empty, pred_leaf=True) assert empty_leaf.shape[0] == 0 leaf = booster.predict(m, pred_leaf=True, strict_shape=True) assert leaf.shape[0] == rows assert leaf.shape[1] == num_boost_round assert leaf.shape[2] == classes assert leaf.shape[3] == num_parallel_tree verify_leaf_output(leaf, num_parallel_tree) ntree_limit = 2 sliced = booster.predict( m, pred_leaf=True, ntree_limit=num_parallel_tree * ntree_limit, strict_shape=True ) first = sliced[0, ...] assert np.prod(first.shape) == classes * num_parallel_tree * ntree_limit # When there's only 1 tree, the output is a 1 dim vector booster = xgb.train({"tree_method": "hist"}, num_boost_round=1, dtrain=m) assert booster.predict(m, pred_leaf=True).shape == (rows, ) return leaf def test_predict_leaf(): run_predict_leaf('cpu_predictor') def test_predict_shape(): from sklearn.datasets import load_boston X, y = load_boston(return_X_y=True) reg = xgb.XGBRegressor(n_estimators=1) reg.fit(X, y) predt = reg.get_booster().predict(xgb.DMatrix(X), strict_shape=True) assert len(predt.shape) == 2 assert predt.shape[0] == X.shape[0] assert predt.shape[1] == 1 contrib = reg.get_booster().predict( xgb.DMatrix(X), pred_contribs=True, strict_shape=True ) assert len(contrib.shape) == 3 assert contrib.shape[1] == 1 contrib = reg.get_booster().predict( xgb.DMatrix(X), pred_contribs=True, approx_contribs=True ) assert len(contrib.shape) == 2 assert contrib.shape[1] == X.shape[1] + 1 interaction = reg.get_booster().predict( xgb.DMatrix(X), pred_interactions=True, approx_contribs=True ) assert len(interaction.shape) == 3 assert interaction.shape[1] == X.shape[1] + 1 assert interaction.shape[2] == X.shape[1] + 1 interaction = reg.get_booster().predict( xgb.DMatrix(X), pred_interactions=True, approx_contribs=True, strict_shape=True ) assert len(interaction.shape) == 4 assert interaction.shape[1] == 1 assert interaction.shape[2] == X.shape[1] + 1 assert interaction.shape[3] == X.shape[1] + 1 class TestInplacePredict: '''Tests for running inplace prediction''' @classmethod def setup_class(cls): cls.rows = 1000 cls.cols = 10 cls.missing = 11 # set to integer for testing cls.rng = np.random.RandomState(1994) cls.X = cls.rng.randn(cls.rows, cls.cols) missing_idx = [i for i in range(0, cls.cols, 4)] cls.X[:, missing_idx] = cls.missing # set to be missing cls.y = cls.rng.randn(cls.rows) dtrain = xgb.DMatrix(cls.X, cls.y) cls.test = xgb.DMatrix(cls.X[:10, ...], missing=cls.missing) cls.booster = xgb.train({'tree_method': 'hist'}, dtrain, num_boost_round=10) def test_predict(self): booster = self.booster X = self.X test = self.test predt_from_array = booster.inplace_predict(X[:10, ...], missing=self.missing) predt_from_dmatrix = booster.predict(test) X_obj = X.copy().astype(object) assert X_obj.dtype.hasobject is True assert X.dtype.hasobject is False np.testing.assert_allclose( booster.inplace_predict(X_obj), booster.inplace_predict(X) ) np.testing.assert_allclose(predt_from_dmatrix, predt_from_array) predt_from_array = booster.inplace_predict( X[:10, ...], iteration_range=(0, 4), missing=self.missing ) predt_from_dmatrix = booster.predict(test, ntree_limit=4) np.testing.assert_allclose(predt_from_dmatrix, predt_from_array) def predict_dense(x): inplace_predt = booster.inplace_predict(x) d = xgb.DMatrix(x) copied_predt = booster.predict(d) return np.all(copied_predt == inplace_predt) for i in range(10): run_threaded_predict(X, self.rows, predict_dense) def predict_csr(x): inplace_predt = booster.inplace_predict(sparse.csr_matrix(x)) d = xgb.DMatrix(x) copied_predt = booster.predict(d) return np.all(copied_predt == inplace_predt) for i in range(10): run_threaded_predict(X, self.rows, predict_csr) @pytest.mark.skipif(**tm.no_pandas()) def test_predict_pd(self): X = self.X # construct it in column major style df = pd.DataFrame({str(i): X[:, i] for i in range(X.shape[1])}) booster = self.booster df_predt = booster.inplace_predict(df) arr_predt = booster.inplace_predict(X) dmat_predt = booster.predict(xgb.DMatrix(X)) X = df.values X = np.asfortranarray(X) fort_predt = booster.inplace_predict(X) np.testing.assert_allclose(dmat_predt, arr_predt) np.testing.assert_allclose(df_predt, arr_predt) np.testing.assert_allclose(fort_predt, arr_predt) def test_base_margin(self): booster = self.booster base_margin = self.rng.randn(self.rows) from_inplace = booster.inplace_predict(data=self.X, base_margin=base_margin) dtrain = xgb.DMatrix(self.X, self.y, base_margin=base_margin) from_dmatrix = booster.predict(dtrain) np.testing.assert_allclose(from_dmatrix, from_inplace)
spark-xgboost-nv-release_1.4.0
tests/python/test_predict.py
import numpy as np from scipy.sparse import csr_matrix import testing as tm import xgboost import os import itertools import shutil import urllib.request import zipfile def test_ranking_with_unweighted_data(): Xrow = np.array([1, 2, 6, 8, 11, 14, 16, 17]) Xcol = np.array([0, 0, 1, 1, 2, 2, 3, 3]) X = csr_matrix((np.ones(shape=8), (Xrow, Xcol)), shape=(20, 4)) y = np.array([0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0]) group = np.array([5, 5, 5, 5], dtype=np.uint) dtrain = xgboost.DMatrix(X, label=y) dtrain.set_group(group) params = {'eta': 1, 'tree_method': 'exact', 'objective': 'rank:pairwise', 'eval_metric': ['auc', 'aucpr'], 'max_depth': 1} evals_result = {} bst = xgboost.train(params, dtrain, 10, evals=[(dtrain, 'train')], evals_result=evals_result) auc_rec = evals_result['train']['auc'] assert all(p <= q for p, q in zip(auc_rec, auc_rec[1:])) auc_rec = evals_result['train']['aucpr'] assert all(p <= q for p, q in zip(auc_rec, auc_rec[1:])) def test_ranking_with_weighted_data(): Xrow = np.array([1, 2, 6, 8, 11, 14, 16, 17]) Xcol = np.array([0, 0, 1, 1, 2, 2, 3, 3]) X = csr_matrix((np.ones(shape=8), (Xrow, Xcol)), shape=(20, 4)) y = np.array([0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0]) weights = np.array([1.0, 2.0, 3.0, 4.0]) group = np.array([5, 5, 5, 5], dtype=np.uint) dtrain = xgboost.DMatrix(X, label=y, weight=weights) dtrain.set_group(group) params = {'eta': 1, 'tree_method': 'exact', 'objective': 'rank:pairwise', 'eval_metric': ['auc', 'aucpr'], 'max_depth': 1} evals_result = {} bst = xgboost.train(params, dtrain, 10, evals=[(dtrain, 'train')], evals_result=evals_result) auc_rec = evals_result['train']['auc'] assert all(p <= q for p, q in zip(auc_rec, auc_rec[1:])) auc_rec = evals_result['train']['aucpr'] assert all(p <= q for p, q in zip(auc_rec, auc_rec[1:])) for i in range(1, 11): pred = bst.predict(dtrain, ntree_limit=i) # is_sorted[i]: is i-th group correctly sorted by the ranking predictor? is_sorted = [] for k in range(0, 20, 5): ind = np.argsort(-pred[k:k+5]) z = y[ind+k] is_sorted.append(all(i >= j for i, j in zip(z, z[1:]))) # Since we give weights 1, 2, 3, 4 to the four query groups, # the ranking predictor will first try to correctly sort the last query group # before correctly sorting other groups. assert all(p <= q for p, q in zip(is_sorted, is_sorted[1:])) class TestRanking: @classmethod def setup_class(cls): """ Download and setup the test fixtures """ cls.dpath = 'demo/rank/' (x_train, y_train, qid_train, x_test, y_test, qid_test, x_valid, y_valid, qid_valid) = tm.get_mq2008(cls.dpath) # instantiate the matrices cls.dtrain = xgboost.DMatrix(x_train, y_train) cls.dvalid = xgboost.DMatrix(x_valid, y_valid) cls.dtest = xgboost.DMatrix(x_test, y_test) # set the group counts from the query IDs cls.dtrain.set_group([len(list(items)) for _key, items in itertools.groupby(qid_train)]) cls.dtest.set_group([len(list(items)) for _key, items in itertools.groupby(qid_test)]) cls.dvalid.set_group([len(list(items)) for _key, items in itertools.groupby(qid_valid)]) # save the query IDs for testing cls.qid_train = qid_train cls.qid_test = qid_test cls.qid_valid = qid_valid # model training parameters cls.params = {'objective': 'rank:pairwise', 'booster': 'gbtree', 'eval_metric': ['ndcg'] } @classmethod def teardown_class(cls): """ Cleanup test artifacts from download and unpacking :return: """ zip_f = cls.dpath + "MQ2008.zip" if os.path.exists(zip_f): os.remove(zip_f) directory = cls.dpath + "MQ2008" if os.path.exists(directory): shutil.rmtree(directory) def test_training(self): """ Train an XGBoost ranking model """ # specify validations set to watch performance watchlist = [(self.dtest, 'eval'), (self.dtrain, 'train')] bst = xgboost.train(self.params, self.dtrain, num_boost_round=2500, early_stopping_rounds=10, evals=watchlist) assert bst.best_score > 0.98 def test_cv(self): """ Test cross-validation with a group specified """ cv = xgboost.cv(self.params, self.dtrain, num_boost_round=2500, early_stopping_rounds=10, nfold=10, as_pandas=False) assert isinstance(cv, dict) assert (set(cv.keys()) == {'test-ndcg-mean', 'train-ndcg-mean', 'test-ndcg-std', 'train-ndcg-std'}, 'CV results dict key mismatch.') def test_cv_no_shuffle(self): """ Test cross-validation with a group specified """ cv = xgboost.cv(self.params, self.dtrain, num_boost_round=2500, early_stopping_rounds=10, shuffle=False, nfold=10, as_pandas=False) assert isinstance(cv, dict) assert len(cv) == 4 def test_get_group(self): """ Retrieve the group number from the dmatrix """ # test the new getter self.dtrain.get_uint_info('group_ptr') for d, qid in [(self.dtrain, self.qid_train), (self.dvalid, self.qid_valid), (self.dtest, self.qid_test)]: # size of each group group_sizes = np.array([len(list(items)) for _key, items in itertools.groupby(qid)]) # indexes of group boundaries group_limits = d.get_uint_info('group_ptr') assert len(group_limits) == len(group_sizes)+1 assert np.array_equal(np.diff(group_limits), group_sizes) assert np.array_equal( group_sizes, np.diff(d.get_uint_info('group_ptr'))) assert np.array_equal(group_sizes, np.diff(d.get_uint_info('group_ptr'))) assert np.array_equal(group_limits, d.get_uint_info('group_ptr'))
spark-xgboost-nv-release_1.4.0
tests/python/test_ranking.py
from xgboost import RabitTracker import xgboost as xgb import pytest import testing as tm import numpy as np import sys if sys.platform.startswith("win"): pytest.skip("Skipping dask tests on Windows", allow_module_level=True) def test_rabit_tracker(): tracker = RabitTracker(hostIP='127.0.0.1', nslave=1) tracker.start(1) rabit_env = [ str.encode('DMLC_TRACKER_URI=127.0.0.1'), str.encode('DMLC_TRACKER_PORT=9091'), str.encode('DMLC_TASK_ID=0')] xgb.rabit.init(rabit_env) ret = xgb.rabit.broadcast('test1234', 0) assert str(ret) == 'test1234' xgb.rabit.finalize() def run_rabit_ops(client, n_workers): from test_with_dask import _get_client_workers from xgboost.dask import RabitContext, _get_rabit_args from xgboost import rabit workers = _get_client_workers(client) rabit_args = client.sync(_get_rabit_args, len(workers), client) assert not rabit.is_distributed() n_workers_from_dask = len(workers) assert n_workers == n_workers_from_dask def local_test(worker_id): with RabitContext(rabit_args): a = 1 assert rabit.is_distributed() a = np.array([a]) reduced = rabit.allreduce(a, rabit.Op.SUM) assert reduced[0] == n_workers worker_id = np.array([worker_id]) reduced = rabit.allreduce(worker_id, rabit.Op.MAX) assert reduced == n_workers - 1 return 1 futures = client.map(local_test, range(len(workers)), workers=workers) results = client.gather(futures) assert sum(results) == n_workers @pytest.mark.skipif(**tm.no_dask()) def test_rabit_ops(): from distributed import Client, LocalCluster n_workers = 3 with LocalCluster(n_workers=n_workers) as cluster: with Client(cluster) as client: run_rabit_ops(client, n_workers)
spark-xgboost-nv-release_1.4.0
tests/python/test_tracker.py
import pickle import numpy as np import xgboost as xgb import os kRows = 100 kCols = 10 def generate_data(): X = np.random.randn(kRows, kCols) y = np.random.randn(kRows) return X, y class TestPickling: def run_model_pickling(self, xgb_params): X, y = generate_data() dtrain = xgb.DMatrix(X, y) bst = xgb.train(xgb_params, dtrain) dump_0 = bst.get_dump(dump_format='json') assert dump_0 filename = 'model.pkl' with open(filename, 'wb') as fd: pickle.dump(bst, fd) with open(filename, 'rb') as fd: bst = pickle.load(fd) with open(filename, 'wb') as fd: pickle.dump(bst, fd) with open(filename, 'rb') as fd: bst = pickle.load(fd) assert bst.get_dump(dump_format='json') == dump_0 if os.path.exists(filename): os.remove(filename) def test_model_pickling_json(self): params = { 'nthread': 1, 'tree_method': 'hist', } self.run_model_pickling(params)
spark-xgboost-nv-release_1.4.0
tests/python/test_pickling.py
# -*- coding: utf-8 -*- import xgboost as xgb import pytest import testing as tm @pytest.mark.parametrize('verbosity_level', [0, 1, 2, 3]) def test_global_config_verbosity(verbosity_level): def get_current_verbosity(): return xgb.get_config()['verbosity'] old_verbosity = get_current_verbosity() with xgb.config_context(verbosity=verbosity_level): new_verbosity = get_current_verbosity() assert new_verbosity == verbosity_level assert old_verbosity == get_current_verbosity() @pytest.mark.parametrize('use_rmm', [False, True]) def test_global_config_use_rmm(use_rmm): def get_current_use_rmm_flag(): return xgb.get_config()['use_rmm'] old_use_rmm_flag = get_current_use_rmm_flag() with xgb.config_context(use_rmm=use_rmm): new_use_rmm_flag = get_current_use_rmm_flag() assert new_use_rmm_flag == use_rmm assert old_use_rmm_flag == get_current_use_rmm_flag()
spark-xgboost-nv-release_1.4.0
tests/python/test_config.py
import os import subprocess import pytest import testing as tm import sys ROOT_DIR = tm.PROJECT_ROOT DEMO_DIR = os.path.join(ROOT_DIR, 'demo') PYTHON_DEMO_DIR = os.path.join(DEMO_DIR, 'guide-python') CLI_DEMO_DIR = os.path.join(DEMO_DIR, 'CLI') def test_basic_walkthrough(): script = os.path.join(PYTHON_DEMO_DIR, 'basic_walkthrough.py') cmd = ['python', script] subprocess.check_call(cmd) os.remove('dump.nice.txt') os.remove('dump.raw.txt') @pytest.mark.skipif(**tm.no_matplotlib()) def test_custom_multiclass_objective(): script = os.path.join(PYTHON_DEMO_DIR, 'custom_softmax.py') cmd = ['python', script, '--plot=0'] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_matplotlib()) def test_custom_rmsle_objective(): script = os.path.join(PYTHON_DEMO_DIR, 'custom_rmsle.py') cmd = ['python', script, '--plot=0'] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_matplotlib()) def test_feature_weights_demo(): script = os.path.join(PYTHON_DEMO_DIR, 'feature_weights.py') cmd = ['python', script, '--plot=0'] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_sklearn()) def test_sklearn_demo(): script = os.path.join(PYTHON_DEMO_DIR, 'sklearn_examples.py') cmd = ['python', script] subprocess.check_call(cmd) assert os.path.exists('best_boston.pkl') os.remove('best_boston.pkl') @pytest.mark.skipif(**tm.no_sklearn()) def test_sklearn_parallel_demo(): script = os.path.join(PYTHON_DEMO_DIR, 'sklearn_parallel.py') cmd = ['python', script] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_sklearn()) def test_sklearn_evals_result_demo(): script = os.path.join(PYTHON_DEMO_DIR, 'sklearn_evals_result.py') cmd = ['python', script] subprocess.check_call(cmd) def test_boost_from_prediction_demo(): script = os.path.join(PYTHON_DEMO_DIR, 'boost_from_prediction.py') cmd = ['python', script] subprocess.check_call(cmd) def test_predict_first_ntree_demo(): script = os.path.join(PYTHON_DEMO_DIR, 'predict_first_ntree.py') cmd = ['python', script] subprocess.check_call(cmd) def test_predict_leaf_indices_demo(): script = os.path.join(PYTHON_DEMO_DIR, 'predict_leaf_indices.py') cmd = ['python', script] subprocess.check_call(cmd) def test_generalized_linear_model_demo(): script = os.path.join(PYTHON_DEMO_DIR, 'generalized_linear_model.py') cmd = ['python', script] subprocess.check_call(cmd) def test_custom_objective_demo(): script = os.path.join(PYTHON_DEMO_DIR, 'custom_objective.py') cmd = ['python', script] subprocess.check_call(cmd) def test_cross_validation_demo(): script = os.path.join(PYTHON_DEMO_DIR, 'cross_validation.py') cmd = ['python', script] subprocess.check_call(cmd) def test_external_memory_demo(): script = os.path.join(PYTHON_DEMO_DIR, 'external_memory.py') cmd = ['python', script] subprocess.check_call(cmd) def test_evals_result_demo(): script = os.path.join(PYTHON_DEMO_DIR, 'evals_result.py') cmd = ['python', script] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_sklearn()) @pytest.mark.skipif(**tm.no_pandas()) def test_aft_demo(): script = os.path.join(DEMO_DIR, 'aft_survival', 'aft_survival_demo.py') cmd = ['python', script] subprocess.check_call(cmd) assert os.path.exists('aft_model.json') os.remove('aft_model.json') def test_callbacks_demo(): script = os.path.join(PYTHON_DEMO_DIR, 'callbacks.py') cmd = ['python', script, '--plot=0'] subprocess.check_call(cmd) # gpu_acceleration is not tested due to covertype dataset is being too huge. # gamma regression is not tested as it requires running a R script first. # aft viz is not tested due to ploting is not controled # aft tunning is not tested due to extra dependency. def test_cli_regression_demo(): reg_dir = os.path.join(CLI_DEMO_DIR, 'regression') script = os.path.join(reg_dir, 'mapfeat.py') cmd = ['python', script] subprocess.check_call(cmd, cwd=reg_dir) script = os.path.join(reg_dir, 'mknfold.py') cmd = ['python', script, 'machine.txt', '1'] subprocess.check_call(cmd, cwd=reg_dir) exe = os.path.join(tm.PROJECT_ROOT, 'xgboost') conf = os.path.join(reg_dir, 'machine.conf') subprocess.check_call([exe, conf], cwd=reg_dir) @pytest.mark.skipif(condition=sys.platform.startswith("win"), reason='Test requires sh execution.') def test_cli_binary_classification(): cls_dir = os.path.join(CLI_DEMO_DIR, 'binary_classification') with tm.DirectoryExcursion(cls_dir, cleanup=True): subprocess.check_call(['./runexp.sh']) os.remove('0002.model') # year prediction is not tested due to data size being too large. # rank is not tested as it requires unrar command.
spark-xgboost-nv-release_1.4.0
tests/python/test_demos.py
import testing as tm from hypothesis import strategies, given, settings, note import xgboost as xgb parameter_strategy = strategies.fixed_dictionaries({ 'booster': strategies.just('gblinear'), 'eta': strategies.floats(0.01, 0.25), 'tolerance': strategies.floats(1e-5, 1e-2), 'nthread': strategies.integers(1, 4), }) coord_strategy = strategies.fixed_dictionaries({ 'feature_selector': strategies.sampled_from(['cyclic', 'shuffle', 'greedy', 'thrifty']), 'top_k': strategies.integers(1, 10), }) def train_result(param, dmat, num_rounds): result = {} xgb.train(param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False, evals_result=result) return result class TestLinear: @given(parameter_strategy, strategies.integers(10, 50), tm.dataset_strategy, coord_strategy) @settings(deadline=None) def test_coordinate(self, param, num_rounds, dataset, coord_param): param['updater'] = 'coord_descent' param.update(coord_param) param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] assert tm.non_increasing(result, 5e-4) # Loss is not guaranteed to always decrease because of regularisation parameters # We test a weaker condition that the loss has not increased between the first and last # iteration @given(parameter_strategy, strategies.integers(10, 50), tm.dataset_strategy, coord_strategy, strategies.floats(1e-5, 2.0), strategies.floats(1e-5, 2.0)) @settings(deadline=None) def test_coordinate_regularised(self, param, num_rounds, dataset, coord_param, alpha, lambd): param['updater'] = 'coord_descent' param['alpha'] = alpha param['lambda'] = lambd param.update(coord_param) param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] assert tm.non_increasing([result[0], result[-1]]) @given(parameter_strategy, strategies.integers(10, 50), tm.dataset_strategy) @settings(deadline=None) def test_shotgun(self, param, num_rounds, dataset): param['updater'] = 'shotgun' param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] # shotgun is non-deterministic, so we relax the test by only using first and last # iteration. if len(result) > 2: sampled_result = (result[0], result[-1]) else: sampled_result = result assert tm.non_increasing(sampled_result) @given(parameter_strategy, strategies.integers(10, 50), tm.dataset_strategy, strategies.floats(1e-5, 2.0), strategies.floats(1e-5, 2.0)) @settings(deadline=None) def test_shotgun_regularised(self, param, num_rounds, dataset, alpha, lambd): param['updater'] = 'shotgun' param['alpha'] = alpha param['lambda'] = lambd param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] assert tm.non_increasing([result[0], result[-1]])
spark-xgboost-nv-release_1.4.0
tests/python/test_linear.py
from pathlib import Path import pickle import testing as tm import pytest import xgboost as xgb import sys import numpy as np import scipy import json from typing import List, Tuple, Dict, Optional, Type, Any import asyncio from functools import partial from concurrent.futures import ThreadPoolExecutor import tempfile from sklearn.datasets import make_classification import sklearn import os import subprocess import hypothesis from hypothesis import given, settings, note, HealthCheck from test_updaters import hist_parameter_strategy, exact_parameter_strategy from test_with_sklearn import run_feature_weights, run_data_initialization from test_predict import verify_leaf_output if sys.platform.startswith("win"): pytest.skip("Skipping dask tests on Windows", allow_module_level=True) if tm.no_dask()['condition']: pytest.skip(msg=tm.no_dask()['reason'], allow_module_level=True) from distributed import LocalCluster, Client from distributed.utils_test import client, loop, cluster_fixture import dask.dataframe as dd import dask.array as da from xgboost.dask import DaskDMatrix if hasattr(HealthCheck, 'function_scoped_fixture'): suppress = [HealthCheck.function_scoped_fixture] else: suppress = hypothesis.utils.conventions.not_set # type:ignore kRows = 1000 kCols = 10 kWorkers = 5 def _get_client_workers(client: "Client") -> List[str]: workers = client.scheduler_info()['workers'] return list(workers.keys()) def generate_array( with_weights: bool = False ) -> Tuple[xgb.dask._DaskCollection, xgb.dask._DaskCollection, Optional[xgb.dask._DaskCollection]]: chunk_size = 20 rng = da.random.RandomState(1994) X = rng.random_sample((kRows, kCols), chunks=(chunk_size, -1)) y = rng.random_sample(kRows, chunks=chunk_size) if with_weights: w = rng.random_sample(kRows, chunks=chunk_size) return X, y, w return X, y, None def test_from_dask_dataframe() -> None: with LocalCluster(n_workers=kWorkers) as cluster: with Client(cluster) as client: X, y, _ = generate_array() X = dd.from_dask_array(X) y = dd.from_dask_array(y) dtrain = DaskDMatrix(client, X, y) booster = xgb.dask.train(client, {}, dtrain, num_boost_round=2)['booster'] prediction = xgb.dask.predict(client, model=booster, data=dtrain) assert prediction.ndim == 1 assert isinstance(prediction, da.Array) assert prediction.shape[0] == kRows with pytest.raises(TypeError): # evals_result is not supported in dask interface. xgb.dask.train( # type:ignore client, {}, dtrain, num_boost_round=2, evals_result={}) # force prediction to be computed from_dmatrix = prediction.compute() prediction = xgb.dask.predict(client, model=booster, data=X) from_df = prediction.compute() assert isinstance(prediction, dd.Series) assert np.all(prediction.compute().values == from_dmatrix) assert np.all(from_dmatrix == from_df.to_numpy()) series_predictions = xgb.dask.inplace_predict(client, booster, X) assert isinstance(series_predictions, dd.Series) np.testing.assert_allclose(series_predictions.compute().values, from_dmatrix) def test_from_dask_array() -> None: with LocalCluster(n_workers=kWorkers, threads_per_worker=5) as cluster: with Client(cluster) as client: X, y, _ = generate_array() dtrain = DaskDMatrix(client, X, y) # results is {'booster': Booster, 'history': {...}} result = xgb.dask.train(client, {}, dtrain) prediction = xgb.dask.predict(client, result, dtrain) assert prediction.shape[0] == kRows assert isinstance(prediction, da.Array) # force prediction to be computed prediction = prediction.compute() booster: xgb.Booster = result['booster'] single_node_predt = booster.predict( xgb.DMatrix(X.compute()) ) np.testing.assert_allclose(prediction, single_node_predt) config = json.loads(booster.save_config()) assert int(config['learner']['generic_param']['nthread']) == 5 from_arr = xgb.dask.predict( client, model=booster, data=X) assert isinstance(from_arr, da.Array) assert np.all(single_node_predt == from_arr.compute()) def test_dask_predict_shape_infer(client: "Client") -> None: X, y = make_classification(n_samples=1000, n_informative=5, n_classes=3) X_ = dd.from_array(X, chunksize=100) y_ = dd.from_array(y, chunksize=100) dtrain = xgb.dask.DaskDMatrix(client, data=X_, label=y_) model = xgb.dask.train( client, {"objective": "multi:softprob", "num_class": 3}, dtrain=dtrain ) preds = xgb.dask.predict(client, model, dtrain) assert preds.shape[0] == preds.compute().shape[0] assert preds.shape[1] == preds.compute().shape[1] prediction = xgb.dask.predict(client, model, X_, output_margin=True) assert isinstance(prediction, dd.DataFrame) prediction = prediction.compute() assert prediction.ndim == 2 assert prediction.shape[0] == kRows assert prediction.shape[1] == 3 prediction = xgb.dask.inplace_predict(client, model, X_, predict_type="margin") assert isinstance(prediction, dd.DataFrame) prediction = prediction.compute() assert prediction.ndim == 2 assert prediction.shape[0] == kRows assert prediction.shape[1] == 3 def run_boost_from_prediction( X: xgb.dask._DaskCollection, y: xgb.dask._DaskCollection, tree_method: str, client: "Client" ) -> None: model_0 = xgb.dask.DaskXGBClassifier( learning_rate=0.3, random_state=0, n_estimators=4, tree_method=tree_method) model_0.fit(X=X, y=y) margin = model_0.predict(X, output_margin=True) model_1 = xgb.dask.DaskXGBClassifier( learning_rate=0.3, random_state=0, n_estimators=4, tree_method=tree_method) model_1.fit(X=X, y=y, base_margin=margin) predictions_1 = model_1.predict(X, base_margin=margin) cls_2 = xgb.dask.DaskXGBClassifier( learning_rate=0.3, random_state=0, n_estimators=8, tree_method=tree_method) cls_2.fit(X=X, y=y) predictions_2 = cls_2.predict(X) assert np.all(predictions_1.compute() == predictions_2.compute()) margined = xgb.dask.DaskXGBClassifier(n_estimators=4) margined.fit( X=X, y=y, base_margin=margin, eval_set=[(X, y)], base_margin_eval_set=[margin] ) unmargined = xgb.dask.DaskXGBClassifier(n_estimators=4) unmargined.fit(X=X, y=y, eval_set=[(X, y)], base_margin=margin) margined_res = margined.evals_result()['validation_0']['logloss'] unmargined_res = unmargined.evals_result()['validation_0']['logloss'] assert len(margined_res) == len(unmargined_res) for i in range(len(margined_res)): # margined is correct one, so smaller error. assert margined_res[i] < unmargined_res[i] @pytest.mark.parametrize("tree_method", ["hist", "approx"]) def test_boost_from_prediction(tree_method: str, client: "Client") -> None: from sklearn.datasets import load_breast_cancer X_, y_ = load_breast_cancer(return_X_y=True) X, y = dd.from_array(X_, chunksize=100), dd.from_array(y_, chunksize=100) run_boost_from_prediction(X, y, tree_method, client) def test_inplace_predict(client: "Client") -> None: from sklearn.datasets import load_boston X_, y_ = load_boston(return_X_y=True) X, y = dd.from_array(X_, chunksize=32), dd.from_array(y_, chunksize=32) reg = xgb.dask.DaskXGBRegressor(n_estimators=4).fit(X, y) booster = reg.get_booster() base_margin = y inplace = xgb.dask.inplace_predict( client, booster, X, base_margin=base_margin ).compute() Xy = xgb.dask.DaskDMatrix(client, X, base_margin=base_margin) copied = xgb.dask.predict(client, booster, Xy).compute() np.testing.assert_allclose(inplace, copied) def test_dask_missing_value_reg(client: "Client") -> None: X_0 = np.ones((20 // 2, kCols)) X_1 = np.zeros((20 // 2, kCols)) X = np.concatenate([X_0, X_1], axis=0) np.random.shuffle(X) X = da.from_array(X) X = X.rechunk(20, 1) y = da.random.randint(0, 3, size=20) y.rechunk(20) regressor = xgb.dask.DaskXGBRegressor(verbosity=1, n_estimators=2, missing=0.0) regressor.client = client regressor.set_params(tree_method='hist') regressor.fit(X, y, eval_set=[(X, y)]) dd_predt = regressor.predict(X).compute() np_X = X.compute() np_predt = regressor.get_booster().predict( xgb.DMatrix(np_X, missing=0.0)) np.testing.assert_allclose(np_predt, dd_predt) def test_dask_missing_value_cls(client: "Client") -> None: X_0 = np.ones((kRows // 2, kCols)) X_1 = np.zeros((kRows // 2, kCols)) X = np.concatenate([X_0, X_1], axis=0) np.random.shuffle(X) X = da.from_array(X) X = X.rechunk(20, None) y = da.random.randint(0, 3, size=kRows) y = y.rechunk(20, 1) cls = xgb.dask.DaskXGBClassifier(verbosity=1, n_estimators=2, tree_method='hist', missing=0.0) cls.client = client cls.fit(X, y, eval_set=[(X, y)]) dd_pred_proba = cls.predict_proba(X).compute() np_X = X.compute() np_pred_proba = cls.get_booster().predict( xgb.DMatrix(np_X, missing=0.0)) np.testing.assert_allclose(np_pred_proba, dd_pred_proba) cls = xgb.dask.DaskXGBClassifier() assert hasattr(cls, 'missing') @pytest.mark.parametrize("model", ["boosting", "rf"]) def test_dask_regressor(model: str, client: "Client") -> None: X, y, w = generate_array(with_weights=True) if model == "boosting": regressor = xgb.dask.DaskXGBRegressor(verbosity=1, n_estimators=2) else: regressor = xgb.dask.DaskXGBRFRegressor(verbosity=1, n_estimators=2) assert regressor._estimator_type == "regressor" assert sklearn.base.is_regressor(regressor) regressor.set_params(tree_method='hist') regressor.client = client regressor.fit(X, y, sample_weight=w, eval_set=[(X, y)]) prediction = regressor.predict(X) assert prediction.ndim == 1 assert prediction.shape[0] == kRows history = regressor.evals_result() assert isinstance(prediction, da.Array) assert isinstance(history, dict) assert list(history['validation_0'].keys())[0] == 'rmse' forest = int( json.loads(regressor.get_booster().save_config())["learner"][ "gradient_booster" ]["gbtree_train_param"]["num_parallel_tree"] ) if model == "boosting": assert len(history['validation_0']['rmse']) == 2 assert forest == 1 else: assert len(history['validation_0']['rmse']) == 1 assert forest == 2 def run_dask_classifier( X: xgb.dask._DaskCollection, y: xgb.dask._DaskCollection, w: xgb.dask._DaskCollection, model: str, tree_method: Optional[str], client: "Client", n_classes, ) -> None: metric = "merror" if n_classes > 2 else "logloss" if model == "boosting": classifier = xgb.dask.DaskXGBClassifier( verbosity=1, n_estimators=2, eval_metric=metric, tree_method=tree_method ) else: classifier = xgb.dask.DaskXGBRFClassifier( verbosity=1, n_estimators=2, eval_metric=metric, tree_method=tree_method ) assert classifier._estimator_type == "classifier" assert sklearn.base.is_classifier(classifier) classifier.client = client classifier.fit(X, y, sample_weight=w, eval_set=[(X, y)]) prediction = classifier.predict(X).compute() assert prediction.ndim == 1 assert prediction.shape[0] == kRows history = classifier.evals_result() assert isinstance(history, dict) assert list(history.keys())[0] == "validation_0" assert list(history["validation_0"].keys())[0] == metric assert len(list(history["validation_0"])) == 1 forest = int( json.loads(classifier.get_booster().save_config())["learner"][ "gradient_booster" ]["gbtree_train_param"]["num_parallel_tree"] ) if model == "boosting": assert len(history["validation_0"][metric]) == 2 assert forest == 1 else: assert len(history["validation_0"][metric]) == 1 assert forest == 2 # Test .predict_proba() probas = classifier.predict_proba(X).compute() assert classifier.n_classes_ == n_classes assert probas.ndim == 2 assert probas.shape[0] == kRows assert probas.shape[1] == n_classes if n_classes > 2: cls_booster = classifier.get_booster() single_node_proba = cls_booster.inplace_predict(X.compute()) # test shared by CPU and GPU if isinstance(single_node_proba, np.ndarray): np.testing.assert_allclose(single_node_proba, probas) else: import cupy cupy.testing.assert_allclose(single_node_proba, probas) # Test with dataframe, not shared with GPU as cupy doesn't work well with da.unique. if isinstance(X, da.Array) and n_classes > 2: X_d: dd.DataFrame = X.to_dask_dataframe() assert classifier.n_classes_ == n_classes prediction_df = classifier.predict(X_d).compute() assert prediction_df.ndim == 1 assert prediction_df.shape[0] == kRows np.testing.assert_allclose(prediction_df, prediction) probas = classifier.predict_proba(X).compute() np.testing.assert_allclose(single_node_proba, probas) @pytest.mark.parametrize("model", ["boosting", "rf"]) def test_dask_classifier(model: str, client: "Client") -> None: X, y, w = generate_array(with_weights=True) y = (y * 10).astype(np.int32) run_dask_classifier(X, y, w, model, None, client, 10) y_bin = y.copy() y_bin[y > 5] = 1.0 y_bin[y <= 5] = 0.0 run_dask_classifier(X, y_bin, w, model, None, client, 2) @pytest.mark.skipif(**tm.no_sklearn()) def test_sklearn_grid_search(client: "Client") -> None: from sklearn.model_selection import GridSearchCV X, y, _ = generate_array() reg = xgb.dask.DaskXGBRegressor(learning_rate=0.1, tree_method='hist') reg.client = client model = GridSearchCV(reg, {'max_depth': [2, 4], 'n_estimators': [5, 10]}, cv=2, verbose=1) model.fit(X, y) # Expect unique results for each parameter value This confirms # sklearn is able to successfully update the parameter means = model.cv_results_['mean_test_score'] assert len(means) == len(set(means)) def test_empty_dmatrix_training_continuation(client: "Client") -> None: kRows, kCols = 1, 97 X = dd.from_array(np.random.randn(kRows, kCols)) y = dd.from_array(np.random.rand(kRows)) X.columns = ['X' + str(i) for i in range(0, 97)] dtrain = xgb.dask.DaskDMatrix(client, X, y) kRows += 1000 X = dd.from_array(np.random.randn(kRows, kCols), chunksize=10) X.columns = ['X' + str(i) for i in range(0, 97)] y = dd.from_array(np.random.rand(kRows), chunksize=10) valid = xgb.dask.DaskDMatrix(client, X, y) out = xgb.dask.train(client, {'tree_method': 'hist'}, dtrain=dtrain, num_boost_round=2, evals=[(valid, 'validation')]) out = xgb.dask.train(client, {'tree_method': 'hist'}, dtrain=dtrain, xgb_model=out['booster'], num_boost_round=2, evals=[(valid, 'validation')]) assert xgb.dask.predict(client, out, dtrain).compute().shape[0] == 1 def run_empty_dmatrix_reg(client: "Client", parameters: dict) -> None: def _check_outputs(out: xgb.dask.TrainReturnT, predictions: np.ndarray) -> None: assert isinstance(out['booster'], xgb.dask.Booster) assert len(out['history']['validation']['rmse']) == 2 assert isinstance(predictions, np.ndarray) assert predictions.shape[0] == 1 kRows, kCols = 1, 97 X = dd.from_array(np.random.randn(kRows, kCols)) y = dd.from_array(np.random.rand(kRows)) dtrain = xgb.dask.DaskDMatrix(client, X, y) out = xgb.dask.train(client, parameters, dtrain=dtrain, evals=[(dtrain, 'validation')], num_boost_round=2) predictions = xgb.dask.predict(client=client, model=out, data=dtrain).compute() _check_outputs(out, predictions) # valid has more rows than train kRows += 1 X = dd.from_array(np.random.randn(kRows, kCols)) y = dd.from_array(np.random.rand(kRows)) valid = xgb.dask.DaskDMatrix(client, X, y) out = xgb.dask.train(client, parameters, dtrain=dtrain, evals=[(valid, 'validation')], num_boost_round=2) predictions = xgb.dask.predict(client=client, model=out, data=dtrain).compute() _check_outputs(out, predictions) # train has more rows than evals valid = dtrain kRows += 1 X = dd.from_array(np.random.randn(kRows, kCols)) y = dd.from_array(np.random.rand(kRows)) dtrain = xgb.dask.DaskDMatrix(client, X, y) out = xgb.dask.train(client, parameters, dtrain=dtrain, evals=[(valid, 'validation')], num_boost_round=2) predictions = xgb.dask.predict(client=client, model=out, data=valid).compute() _check_outputs(out, predictions) def run_empty_dmatrix_cls(client: "Client", parameters: dict) -> None: n_classes = 4 def _check_outputs(out: xgb.dask.TrainReturnT, predictions: np.ndarray) -> None: assert isinstance(out['booster'], xgb.dask.Booster) assert len(out['history']['validation']['merror']) == 2 assert isinstance(predictions, np.ndarray) assert predictions.shape[1] == n_classes, predictions.shape kRows, kCols = 1, 97 X = dd.from_array(np.random.randn(kRows, kCols)) y = dd.from_array(np.random.randint(low=0, high=n_classes, size=kRows)) dtrain = xgb.dask.DaskDMatrix(client, X, y) parameters['objective'] = 'multi:softprob' parameters['eval_metric'] = 'merror' parameters['num_class'] = n_classes out = xgb.dask.train(client, parameters, dtrain=dtrain, evals=[(dtrain, 'validation')], num_boost_round=2) predictions = xgb.dask.predict(client=client, model=out, data=dtrain) assert predictions.shape[1] == n_classes predictions = predictions.compute() _check_outputs(out, predictions) # train has more rows than evals valid = dtrain kRows += 1 X = dd.from_array(np.random.randn(kRows, kCols)) y = dd.from_array(np.random.randint(low=0, high=n_classes, size=kRows)) dtrain = xgb.dask.DaskDMatrix(client, X, y) out = xgb.dask.train(client, parameters, dtrain=dtrain, evals=[(valid, 'validation')], num_boost_round=2) predictions = xgb.dask.predict(client=client, model=out, data=valid).compute() _check_outputs(out, predictions) def run_empty_dmatrix_auc(client: "Client", tree_method: str, n_workers: int) -> None: from sklearn import datasets n_samples = 100 n_features = 97 rng = np.random.RandomState(1994) make_classification = partial( datasets.make_classification, n_features=n_features, random_state=rng ) # binary X_, y_ = make_classification(n_samples=n_samples, random_state=rng) X = dd.from_array(X_, chunksize=10) y = dd.from_array(y_, chunksize=10) n_samples = n_workers - 1 valid_X_, valid_y_ = make_classification(n_samples=n_samples, random_state=rng) valid_X = dd.from_array(valid_X_, chunksize=n_samples) valid_y = dd.from_array(valid_y_, chunksize=n_samples) cls = xgb.dask.DaskXGBClassifier( tree_method=tree_method, n_estimators=2, use_label_encoder=False ) cls.fit(X, y, eval_metric="auc", eval_set=[(valid_X, valid_y)]) # multiclass X_, y_ = make_classification( n_samples=n_samples, n_classes=n_workers, n_informative=n_features, n_redundant=0, n_repeated=0 ) for i in range(y_.shape[0]): y_[i] = i % n_workers X = dd.from_array(X_, chunksize=10) y = dd.from_array(y_, chunksize=10) n_samples = n_workers - 1 valid_X_, valid_y_ = make_classification( n_samples=n_samples, n_classes=n_workers, n_informative=n_features, n_redundant=0, n_repeated=0 ) for i in range(valid_y_.shape[0]): valid_y_[i] = i % n_workers valid_X = dd.from_array(valid_X_, chunksize=n_samples) valid_y = dd.from_array(valid_y_, chunksize=n_samples) cls = xgb.dask.DaskXGBClassifier( tree_method=tree_method, n_estimators=2, use_label_encoder=False ) cls.fit(X, y, eval_metric="auc", eval_set=[(valid_X, valid_y)]) def test_empty_dmatrix_auc() -> None: with LocalCluster(n_workers=8) as cluster: with Client(cluster) as client: run_empty_dmatrix_auc(client, "hist", 8) def run_auc(client: "Client", tree_method: str) -> None: from sklearn import datasets n_samples = 100 n_features = 97 rng = np.random.RandomState(1994) X_, y_ = datasets.make_classification( n_samples=n_samples, n_features=n_features, random_state=rng ) X = dd.from_array(X_, chunksize=10) y = dd.from_array(y_, chunksize=10) valid_X_, valid_y_ = datasets.make_classification( n_samples=n_samples, n_features=n_features, random_state=rng ) valid_X = dd.from_array(valid_X_, chunksize=10) valid_y = dd.from_array(valid_y_, chunksize=10) cls = xgb.XGBClassifier( tree_method=tree_method, n_estimators=2, use_label_encoder=False ) cls.fit(X_, y_, eval_metric="auc", eval_set=[(valid_X_, valid_y_)]) dcls = xgb.dask.DaskXGBClassifier( tree_method=tree_method, n_estimators=2, use_label_encoder=False ) dcls.fit(X, y, eval_metric="auc", eval_set=[(valid_X, valid_y)]) approx = dcls.evals_result()["validation_0"]["auc"] exact = cls.evals_result()["validation_0"]["auc"] for i in range(2): # approximated test. assert np.abs(approx[i] - exact[i]) <= 0.06 def test_auc(client: "Client") -> None: run_auc(client, "hist") # No test for Exact, as empty DMatrix handling are mostly for distributed # environment and Exact doesn't support it. def test_empty_dmatrix_hist() -> None: with LocalCluster(n_workers=kWorkers) as cluster: with Client(cluster) as client: parameters = {'tree_method': 'hist'} run_empty_dmatrix_reg(client, parameters) run_empty_dmatrix_cls(client, parameters) def test_empty_dmatrix_approx() -> None: with LocalCluster(n_workers=kWorkers) as cluster: with Client(cluster) as client: parameters = {'tree_method': 'approx'} run_empty_dmatrix_reg(client, parameters) run_empty_dmatrix_cls(client, parameters) async def run_from_dask_array_asyncio(scheduler_address: str) -> xgb.dask.TrainReturnT: async with Client(scheduler_address, asynchronous=True) as client: X, y, _ = generate_array() m = await DaskDMatrix(client, X, y) output = await xgb.dask.train(client, {}, dtrain=m) with_m = await xgb.dask.predict(client, output, m) with_X = await xgb.dask.predict(client, output, X) inplace = await xgb.dask.inplace_predict(client, output, X) assert isinstance(with_m, da.Array) assert isinstance(with_X, da.Array) assert isinstance(inplace, da.Array) np.testing.assert_allclose(await client.compute(with_m), await client.compute(with_X)) np.testing.assert_allclose(await client.compute(with_m), await client.compute(inplace)) return output async def run_dask_regressor_asyncio(scheduler_address: str) -> None: async with Client(scheduler_address, asynchronous=True) as client: X, y, _ = generate_array() regressor = await xgb.dask.DaskXGBRegressor(verbosity=1, n_estimators=2) regressor.set_params(tree_method='hist') regressor.client = client await regressor.fit(X, y, eval_set=[(X, y)]) prediction = await regressor.predict(X) assert prediction.ndim == 1 assert prediction.shape[0] == kRows history = regressor.evals_result() assert isinstance(prediction, da.Array) assert isinstance(history, dict) assert list(history['validation_0'].keys())[0] == 'rmse' assert len(history['validation_0']['rmse']) == 2 awaited = await client.compute(prediction) assert awaited.shape[0] == kRows async def run_dask_classifier_asyncio(scheduler_address: str) -> None: async with Client(scheduler_address, asynchronous=True) as client: X, y, _ = generate_array() y = (y * 10).astype(np.int32) classifier = await xgb.dask.DaskXGBClassifier( verbosity=1, n_estimators=2, eval_metric='merror') classifier.client = client await classifier.fit(X, y, eval_set=[(X, y)]) prediction = await classifier.predict(X) assert prediction.ndim == 1 assert prediction.shape[0] == kRows history = classifier.evals_result() assert isinstance(prediction, da.Array) assert isinstance(history, dict) assert list(history.keys())[0] == 'validation_0' assert list(history['validation_0'].keys())[0] == 'merror' assert len(list(history['validation_0'])) == 1 assert len(history['validation_0']['merror']) == 2 # Test .predict_proba() probas = await classifier.predict_proba(X) assert classifier.n_classes_ == 10 assert probas.ndim == 2 assert probas.shape[0] == kRows assert probas.shape[1] == 10 # Test with dataframe. X_d = dd.from_dask_array(X) y_d = dd.from_dask_array(y) await classifier.fit(X_d, y_d) assert classifier.n_classes_ == 10 prediction = await client.compute(await classifier.predict(X_d)) assert prediction.ndim == 1 assert prediction.shape[0] == kRows def test_with_asyncio() -> None: with LocalCluster() as cluster: with Client(cluster) as client: address = client.scheduler.address output = asyncio.run(run_from_dask_array_asyncio(address)) assert isinstance(output['booster'], xgb.Booster) assert isinstance(output['history'], dict) asyncio.run(run_dask_regressor_asyncio(address)) asyncio.run(run_dask_classifier_asyncio(address)) async def generate_concurrent_trainings() -> None: async def train() -> None: async with LocalCluster(n_workers=2, threads_per_worker=1, asynchronous=True, dashboard_address=0) as cluster: async with Client(cluster, asynchronous=True) as client: X, y, w = generate_array(with_weights=True) dtrain = await DaskDMatrix(client, X, y, weight=w) dvalid = await DaskDMatrix(client, X, y, weight=w) output = await xgb.dask.train(client, {}, dtrain=dtrain) await xgb.dask.predict(client, output, data=dvalid) await asyncio.gather(train(), train()) def test_concurrent_trainings() -> None: asyncio.run(generate_concurrent_trainings()) def test_predict(client: "Client") -> None: X, y, _ = generate_array() dtrain = DaskDMatrix(client, X, y) booster = xgb.dask.train(client, {}, dtrain, num_boost_round=2)["booster"] predt_0 = xgb.dask.predict(client, model=booster, data=dtrain) assert predt_0.ndim == 1 assert predt_0.shape[0] == kRows margin = xgb.dask.predict(client, model=booster, data=dtrain, output_margin=True) assert margin.ndim == 1 assert margin.shape[0] == kRows shap = xgb.dask.predict(client, model=booster, data=dtrain, pred_contribs=True) assert shap.ndim == 2 assert shap.shape[0] == kRows assert shap.shape[1] == kCols + 1 booster_f = client.scatter(booster, broadcast=True) predt_1 = xgb.dask.predict(client, booster_f, X).compute() predt_2 = xgb.dask.inplace_predict(client, booster_f, X).compute() np.testing.assert_allclose(predt_0, predt_1) np.testing.assert_allclose(predt_0, predt_2) def test_predict_with_meta(client: "Client") -> None: X, y, w = generate_array(with_weights=True) assert w is not None partition_size = 20 margin = da.random.random(kRows, partition_size) + 1e4 dtrain = DaskDMatrix(client, X, y, weight=w, base_margin=margin) booster: xgb.Booster = xgb.dask.train( client, {}, dtrain, num_boost_round=4)['booster'] prediction = xgb.dask.predict(client, model=booster, data=dtrain) assert prediction.ndim == 1 assert prediction.shape[0] == kRows prediction = client.compute(prediction).result() assert np.all(prediction > 1e3) m = xgb.DMatrix(X.compute()) m.set_info(label=y.compute(), weight=w.compute(), base_margin=margin.compute()) single = booster.predict(m) # Make sure the ordering is correct. assert np.all(prediction == single) def run_aft_survival(client: "Client", dmatrix_t: Type) -> None: df = dd.read_csv(os.path.join(tm.PROJECT_ROOT, 'demo', 'data', 'veterans_lung_cancer.csv')) y_lower_bound = df['Survival_label_lower_bound'] y_upper_bound = df['Survival_label_upper_bound'] X = df.drop(['Survival_label_lower_bound', 'Survival_label_upper_bound'], axis=1) m = dmatrix_t(client, X, label_lower_bound=y_lower_bound, label_upper_bound=y_upper_bound) base_params = {'verbosity': 0, 'objective': 'survival:aft', 'eval_metric': 'aft-nloglik', 'learning_rate': 0.05, 'aft_loss_distribution_scale': 1.20, 'max_depth': 6, 'lambda': 0.01, 'alpha': 0.02} nloglik_rec = {} dists = ['normal', 'logistic', 'extreme'] for dist in dists: params = base_params params.update({'aft_loss_distribution': dist}) evals_result = {} out = xgb.dask.train(client, params, m, num_boost_round=100, evals=[(m, 'train')]) evals_result = out['history'] nloglik_rec[dist] = evals_result['train']['aft-nloglik'] # AFT metric (negative log likelihood) improve monotonically assert all(p >= q for p, q in zip(nloglik_rec[dist], nloglik_rec[dist][:1])) # For this data, normal distribution works the best assert nloglik_rec['normal'][-1] < 4.9 assert nloglik_rec['logistic'][-1] > 4.9 assert nloglik_rec['extreme'][-1] > 4.9 def test_dask_aft_survival() -> None: with LocalCluster(n_workers=kWorkers) as cluster: with Client(cluster) as client: run_aft_survival(client, DaskDMatrix) def test_dask_ranking(client: "Client") -> None: dpath = "demo/rank/" mq2008 = tm.get_mq2008(dpath) data = [] for d in mq2008: if isinstance(d, scipy.sparse.csr_matrix): d[d == 0] = np.inf d = d.toarray() d[d == 0] = np.nan d[np.isinf(d)] = 0 data.append(dd.from_array(d, chunksize=32)) else: data.append(dd.from_array(d, chunksize=32)) ( x_train, y_train, qid_train, x_test, y_test, qid_test, x_valid, y_valid, qid_valid, ) = data qid_train = qid_train.astype(np.uint32) qid_valid = qid_valid.astype(np.uint32) qid_test = qid_test.astype(np.uint32) rank = xgb.dask.DaskXGBRanker(n_estimators=2500) rank.fit( x_train, y_train, qid=qid_train, eval_set=[(x_test, y_test), (x_train, y_train)], eval_qid=[qid_test, qid_train], eval_metric=["ndcg"], verbose=True, early_stopping_rounds=10, ) assert rank.n_features_in_ == 46 assert rank.best_score > 0.98 @pytest.mark.parametrize("booster", ["dart", "gbtree"]) def test_dask_predict_leaf(booster: str, client: "Client") -> None: from sklearn.datasets import load_digits X_, y_ = load_digits(return_X_y=True) num_parallel_tree = 4 X, y = dd.from_array(X_, chunksize=32), dd.from_array(y_, chunksize=32) rounds = 4 cls = xgb.dask.DaskXGBClassifier( n_estimators=rounds, num_parallel_tree=num_parallel_tree, booster=booster ) cls.client = client cls.fit(X, y) leaf = xgb.dask.predict( client, cls.get_booster(), X.to_dask_array(), # we can't map_blocks on dataframe when output is 4-dim. pred_leaf=True, strict_shape=True, validate_features=False, ).compute() assert leaf.shape[0] == X_.shape[0] assert leaf.shape[1] == rounds assert leaf.shape[2] == cls.n_classes_ assert leaf.shape[3] == num_parallel_tree leaf_from_apply = cls.apply(X).reshape(leaf.shape).compute() np.testing.assert_allclose(leaf_from_apply, leaf) verify_leaf_output(leaf, num_parallel_tree) class TestWithDask: @pytest.mark.parametrize('config_key,config_value', [('verbosity', 0), ('use_rmm', True)]) def test_global_config( self, client: "Client", config_key: str, config_value: Any ) -> None: X, y, _ = generate_array() xgb.config.set_config(**{config_key: config_value}) dtrain = DaskDMatrix(client, X, y) before_fname = './before_training-test_global_config' after_fname = './after_training-test_global_config' class TestCallback(xgb.callback.TrainingCallback): def write_file(self, fname: str) -> None: with open(fname, 'w') as fd: fd.write(str(xgb.config.get_config()[config_key])) def before_training(self, model: xgb.Booster) -> xgb.Booster: self.write_file(before_fname) assert xgb.config.get_config()[config_key] == config_value return model def after_training(self, model: xgb.Booster) -> xgb.Booster: assert xgb.config.get_config()[config_key] == config_value return model def before_iteration( self, model: xgb.Booster, epoch: int, evals_log: Dict ) -> bool: assert xgb.config.get_config()[config_key] == config_value return False def after_iteration( self, model: xgb.Booster, epoch: int, evals_log: Dict ) -> bool: self.write_file(after_fname) assert xgb.config.get_config()[config_key] == config_value return False xgb.dask.train(client, {}, dtrain, num_boost_round=4, callbacks=[TestCallback()])[ 'booster'] with open(before_fname, 'r') as before, open(after_fname, 'r') as after: assert before.read() == str(config_value) assert after.read() == str(config_value) os.remove(before_fname) os.remove(after_fname) def run_updater_test( self, client: "Client", params: Dict, num_rounds: int, dataset: tm.TestDataset, tree_method: str ) -> None: params['tree_method'] = tree_method params = dataset.set_params(params) # It doesn't make sense to distribute a completely # empty dataset. if dataset.X.shape[0] == 0: return chunk = 128 X = da.from_array(dataset.X, chunks=(chunk, dataset.X.shape[1])) y = da.from_array(dataset.y, chunks=(chunk,)) if dataset.w is not None: w = da.from_array(dataset.w, chunks=(chunk,)) else: w = None m = xgb.dask.DaskDMatrix( client, data=X, label=y, weight=w) history = xgb.dask.train(client, params=params, dtrain=m, num_boost_round=num_rounds, evals=[(m, 'train')])['history'] note(history) history = history['train'][dataset.metric] def is_stump(): return params["max_depth"] == 1 or params["max_leaves"] == 1 def minimum_bin(): return "max_bin" in params and params["max_bin"] == 2 if minimum_bin() and is_stump(): assert tm.non_increasing(history, tolerance=1e-3) else: assert tm.non_increasing(history) # Make sure that it's decreasing assert history[-1] < history[0] @given(params=hist_parameter_strategy, dataset=tm.dataset_strategy) @settings(deadline=None, suppress_health_check=suppress) def test_hist( self, params: Dict, dataset: tm.TestDataset, client: "Client" ) -> None: num_rounds = 30 self.run_updater_test(client, params, num_rounds, dataset, 'hist') @given(params=exact_parameter_strategy, dataset=tm.dataset_strategy) @settings(deadline=None, suppress_health_check=suppress) def test_approx( self, client: "Client", params: Dict, dataset: tm.TestDataset ) -> None: num_rounds = 30 self.run_updater_test(client, params, num_rounds, dataset, 'approx') def run_quantile(self, name: str) -> None: if sys.platform.startswith("win"): pytest.skip("Skipping dask tests on Windows") exe: Optional[str] = None for possible_path in {'./testxgboost', './build/testxgboost', '../build/testxgboost', '../cpu-build/testxgboost'}: if os.path.exists(possible_path): exe = possible_path if exe is None: return test = "--gtest_filter=Quantile." + name def runit( worker_addr: str, rabit_args: List[bytes] ) -> subprocess.CompletedProcess: port_env = '' # setup environment for running the c++ part. for arg in rabit_args: if arg.decode('utf-8').startswith('DMLC_TRACKER_PORT'): port_env = arg.decode('utf-8') port = port_env.split('=') env = os.environ.copy() env[port[0]] = port[1] return subprocess.run([str(exe), test], env=env, capture_output=True) with LocalCluster(n_workers=4) as cluster: with Client(cluster) as client: workers = _get_client_workers(client) rabit_args = client.sync( xgb.dask._get_rabit_args, len(workers), client) futures = client.map(runit, workers, pure=False, workers=workers, rabit_args=rabit_args) results = client.gather(futures) for ret in results: msg = ret.stdout.decode('utf-8') assert msg.find('1 test from Quantile') != -1, msg assert ret.returncode == 0, msg @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.gtest def test_quantile_basic(self) -> None: self.run_quantile('DistributedBasic') @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.gtest def test_quantile(self) -> None: self.run_quantile('Distributed') @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.gtest def test_quantile_same_on_all_workers(self) -> None: self.run_quantile('SameOnAllWorkers') def test_n_workers(self) -> None: with LocalCluster(n_workers=2) as cluster: with Client(cluster) as client: workers = _get_client_workers(client) from sklearn.datasets import load_breast_cancer X, y = load_breast_cancer(return_X_y=True) dX = client.submit(da.from_array, X, workers=[workers[0]]).result() dy = client.submit(da.from_array, y, workers=[workers[0]]).result() train = xgb.dask.DaskDMatrix(client, dX, dy) dX = dd.from_array(X) dX = client.persist(dX, workers=workers[1]) dy = dd.from_array(y) dy = client.persist(dy, workers=workers[1]) valid = xgb.dask.DaskDMatrix(client, dX, dy) merged = xgb.dask._get_workers_from_data(train, evals=[(valid, 'Valid')]) assert len(merged) == 2 @pytest.mark.skipif(**tm.no_dask()) def test_feature_weights(self, client: "Client") -> None: kRows = 1024 kCols = 64 rng = da.random.RandomState(1994) X = rng.random_sample((kRows, kCols), chunks=(32, -1)) y = rng.random_sample(kRows, chunks=32) fw = np.ones(shape=(kCols,)) for i in range(kCols): fw[i] *= float(i) fw = da.from_array(fw) poly_increasing = run_feature_weights(X, y, fw, model=xgb.dask.DaskXGBRegressor) fw = np.ones(shape=(kCols,)) for i in range(kCols): fw[i] *= float(kCols - i) fw = da.from_array(fw) poly_decreasing = run_feature_weights(X, y, fw, model=xgb.dask.DaskXGBRegressor) # Approxmated test, this is dependent on the implementation of random # number generator in std library. assert poly_increasing[0] > 0.08 assert poly_decreasing[0] < -0.08 @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.skipif(**tm.no_sklearn()) def test_custom_objective(self, client: "Client") -> None: from sklearn.datasets import load_boston X, y = load_boston(return_X_y=True) X, y = da.from_array(X), da.from_array(y) rounds = 20 with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, 'log') def sqr( labels: np.ndarray, predts: np.ndarray ) -> Tuple[np.ndarray, np.ndarray]: with open(path, 'a') as fd: print('Running sqr', file=fd) grad = predts - labels hess = np.ones(shape=labels.shape[0]) return grad, hess reg = xgb.dask.DaskXGBRegressor(n_estimators=rounds, objective=sqr, tree_method='hist') reg.fit(X, y, eval_set=[(X, y)]) # Check the obj is ran for rounds. with open(path, 'r') as fd: out = fd.readlines() assert len(out) == rounds results_custom = reg.evals_result() reg = xgb.dask.DaskXGBRegressor(n_estimators=rounds, tree_method='hist') reg.fit(X, y, eval_set=[(X, y)]) results_native = reg.evals_result() np.testing.assert_allclose(results_custom['validation_0']['rmse'], results_native['validation_0']['rmse']) tm.non_increasing(results_native['validation_0']['rmse']) def test_no_duplicated_partition(self) -> None: '''Assert each worker has the correct amount of data, and DMatrix initialization doesn't generate unnecessary copies of data. ''' with LocalCluster(n_workers=2) as cluster: with Client(cluster) as client: X, y, _ = generate_array() n_partitions = X.npartitions m = xgb.dask.DaskDMatrix(client, X, y) workers = _get_client_workers(client) rabit_args = client.sync(xgb.dask._get_rabit_args, len(workers), client) n_workers = len(workers) def worker_fn(worker_addr: str, data_ref: Dict) -> None: with xgb.dask.RabitContext(rabit_args): local_dtrain = xgb.dask._dmatrix_from_list_of_parts(**data_ref) total = np.array([local_dtrain.num_row()]) total = xgb.rabit.allreduce(total, xgb.rabit.Op.SUM) assert total[0] == kRows futures = [] for i in range(len(workers)): futures.append( client.submit( worker_fn, workers[i], m._create_fn_args(workers[i]), pure=False, workers=[workers[i]]) ) client.gather(futures) has_what = client.has_what() cnt = 0 data = set() for k, v in has_what.items(): for d in v: cnt += 1 data.add(d) assert len(data) == cnt # Subtract the on disk resource from each worker assert cnt - n_workers == n_partitions def test_data_initialization(self, client: "Client") -> None: """assert that we don't create duplicated DMatrix""" from sklearn.datasets import load_digits X, y = load_digits(return_X_y=True) X, y = dd.from_array(X, chunksize=32), dd.from_array(y, chunksize=32) run_data_initialization(xgb.dask.DaskDMatrix, xgb.dask.DaskXGBClassifier, X, y) def run_shap(self, X: Any, y: Any, params: Dict[str, Any], client: "Client") -> None: rows = X.shape[0] cols = X.shape[1] def assert_shape(shape: Tuple[int, ...]) -> None: assert shape[0] == rows if "num_class" in params.keys(): assert shape[1] == params["num_class"] assert shape[2] == cols + 1 else: assert shape[1] == cols + 1 X, y = da.from_array(X, chunks=(32, -1)), da.from_array(y, chunks=32) Xy = xgb.dask.DaskDMatrix(client, X, y) booster = xgb.dask.train(client, params, Xy, num_boost_round=10)['booster'] test_Xy = xgb.dask.DaskDMatrix(client, X, y) shap = xgb.dask.predict(client, booster, test_Xy, pred_contribs=True).compute() margin = xgb.dask.predict(client, booster, test_Xy, output_margin=True).compute() assert_shape(shap.shape) assert np.allclose(np.sum(shap, axis=len(shap.shape) - 1), margin, 1e-5, 1e-5) shap = xgb.dask.predict(client, booster, X, pred_contribs=True).compute() margin = xgb.dask.predict(client, booster, X, output_margin=True).compute() assert_shape(shap.shape) assert np.allclose(np.sum(shap, axis=len(shap.shape) - 1), margin, 1e-5, 1e-5) if "num_class" not in params.keys(): X = dd.from_dask_array(X).repartition(npartitions=32) y = dd.from_dask_array(y).repartition(npartitions=32) shap_df = xgb.dask.predict( client, booster, X, pred_contribs=True, validate_features=False ).compute() assert_shape(shap_df.shape) assert np.allclose( np.sum(shap_df, axis=len(shap_df.shape) - 1), margin, 1e-5, 1e-5 ) def run_shap_cls_sklearn(self, X: Any, y: Any, client: "Client") -> None: X, y = da.from_array(X, chunks=(32, -1)), da.from_array(y, chunks=32) cls = xgb.dask.DaskXGBClassifier(n_estimators=4) cls.client = client cls.fit(X, y) booster = cls.get_booster() test_Xy = xgb.dask.DaskDMatrix(client, X, y) shap = xgb.dask.predict(client, booster, test_Xy, pred_contribs=True).compute() margin = xgb.dask.predict(client, booster, test_Xy, output_margin=True).compute() assert np.allclose(np.sum(shap, axis=len(shap.shape) - 1), margin, 1e-5, 1e-5) shap = xgb.dask.predict(client, booster, X, pred_contribs=True).compute() margin = xgb.dask.predict(client, booster, X, output_margin=True).compute() assert np.allclose(np.sum(shap, axis=len(shap.shape) - 1), margin, 1e-5, 1e-5) def test_shap(self, client: "Client") -> None: from sklearn.datasets import load_boston, load_digits X, y = load_boston(return_X_y=True) params: Dict[str, Any] = {'objective': 'reg:squarederror'} self.run_shap(X, y, params, client) X, y = load_digits(return_X_y=True) params = {'objective': 'multi:softmax', 'num_class': 10} self.run_shap(X, y, params, client) params = {'objective': 'multi:softprob', 'num_class': 10} self.run_shap(X, y, params, client) self.run_shap_cls_sklearn(X, y, client) def run_shap_interactions( self, X: Any, y: Any, params: Dict[str, Any], client: "Client" ) -> None: rows = X.shape[0] cols = X.shape[1] X, y = da.from_array(X, chunks=(32, -1)), da.from_array(y, chunks=32) Xy = xgb.dask.DaskDMatrix(client, X, y) booster = xgb.dask.train(client, params, Xy, num_boost_round=10)['booster'] test_Xy = xgb.dask.DaskDMatrix(client, X, y) shap = xgb.dask.predict( client, booster, test_Xy, pred_interactions=True ).compute() assert len(shap.shape) == 3 assert shap.shape[0] == rows assert shap.shape[1] == cols + 1 assert shap.shape[2] == cols + 1 margin = xgb.dask.predict(client, booster, test_Xy, output_margin=True).compute() assert np.allclose(np.sum(shap, axis=(len(shap.shape) - 1, len(shap.shape) - 2)), margin, 1e-5, 1e-5) def test_shap_interactions(self, client: "Client") -> None: from sklearn.datasets import load_boston X, y = load_boston(return_X_y=True) params = {'objective': 'reg:squarederror'} self.run_shap_interactions(X, y, params, client) @pytest.mark.skipif(**tm.no_sklearn()) def test_sklearn_io(self, client: 'Client') -> None: from sklearn.datasets import load_digits X_, y_ = load_digits(return_X_y=True) X, y = da.from_array(X_), da.from_array(y_) cls = xgb.dask.DaskXGBClassifier(n_estimators=10) cls.client = client cls.fit(X, y) predt_0 = cls.predict(X) with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, "model.pkl") with open(path, "wb") as fd: pickle.dump(cls, fd) with open(path, "rb") as fd: cls = pickle.load(fd) predt_1 = cls.predict(X) np.testing.assert_allclose(predt_0.compute(), predt_1.compute()) path = os.path.join(tmpdir, 'cls.json') cls.save_model(path) cls = xgb.dask.DaskXGBClassifier() cls.load_model(path) assert cls.n_classes_ == 10 predt_2 = cls.predict(X) np.testing.assert_allclose(predt_0.compute(), predt_2.compute()) # Use single node to load cls = xgb.XGBClassifier() cls.load_model(path) assert cls.n_classes_ == 10 predt_3 = cls.predict(X_) np.testing.assert_allclose(predt_0.compute(), predt_3) def test_dask_unsupported_features(client: "Client") -> None: X, y, _ = generate_array() # gblinear doesn't support distributed training. with pytest.raises(NotImplementedError, match="gblinear"): xgb.dask.train( client, {"booster": "gblinear"}, xgb.dask.DaskDMatrix(client, X, y) ) def test_parallel_submits(client: "Client") -> None: """Test for running multiple train simultaneously from single clients.""" try: from distributed import MultiLock # NOQA except ImportError: pytest.skip("`distributed.MultiLock' is not available") from sklearn.datasets import load_digits futures = [] workers = _get_client_workers(client) n_submits = len(workers) for i in range(n_submits): X_, y_ = load_digits(return_X_y=True) X = dd.from_array(X_, chunksize=32) y = dd.from_array(y_, chunksize=32) cls = xgb.dask.DaskXGBClassifier( verbosity=1, n_estimators=i + 1, eval_metric="merror", use_label_encoder=False, ) f = client.submit(cls.fit, X, y, pure=False) futures.append(f) classifiers = client.gather(futures) assert len(classifiers) == n_submits for i, cls in enumerate(classifiers): assert cls.get_booster().num_boosted_rounds() == i + 1 def test_parallel_submit_multi_clients() -> None: """Test for running multiple train simultaneously from multiple clients.""" try: from distributed import MultiLock # NOQA except ImportError: pytest.skip("`distributed.MultiLock' is not available") from sklearn.datasets import load_digits with LocalCluster(n_workers=4) as cluster: with Client(cluster) as client: workers = _get_client_workers(client) n_submits = len(workers) assert n_submits == 4 futures = [] for i in range(n_submits): client = Client(cluster) X_, y_ = load_digits(return_X_y=True) X_ += 1.0 X = dd.from_array(X_, chunksize=32) y = dd.from_array(y_, chunksize=32) cls = xgb.dask.DaskXGBClassifier( verbosity=1, n_estimators=i + 1, eval_metric="merror", use_label_encoder=False, ) f = client.submit(cls.fit, X, y, pure=False) futures.append((client, f)) t_futures = [] with ThreadPoolExecutor(max_workers=16) as e: for i in range(n_submits): def _() -> xgb.dask.DaskXGBClassifier: return futures[i][0].compute(futures[i][1]).result() f = e.submit(_) t_futures.append(f) for i, f in enumerate(t_futures): assert f.result().get_booster().num_boosted_rounds() == i + 1 class TestDaskCallbacks: @pytest.mark.skipif(**tm.no_sklearn()) def test_early_stopping(self, client: "Client") -> None: from sklearn.datasets import load_breast_cancer X, y = load_breast_cancer(return_X_y=True) X, y = da.from_array(X), da.from_array(y) m = xgb.dask.DaskDMatrix(client, X, y) valid = xgb.dask.DaskDMatrix(client, X, y) early_stopping_rounds = 5 booster = xgb.dask.train(client, {'objective': 'binary:logistic', 'eval_metric': 'error', 'tree_method': 'hist'}, m, evals=[(valid, 'Valid')], num_boost_round=1000, early_stopping_rounds=early_stopping_rounds)['booster'] assert hasattr(booster, 'best_score') dump = booster.get_dump(dump_format='json') assert len(dump) - booster.best_iteration == early_stopping_rounds + 1 valid_X, valid_y = load_breast_cancer(return_X_y=True) valid_X, valid_y = da.from_array(valid_X), da.from_array(valid_y) cls = xgb.dask.DaskXGBClassifier(objective='binary:logistic', tree_method='hist', n_estimators=1000) cls.client = client cls.fit(X, y, early_stopping_rounds=early_stopping_rounds, eval_set=[(valid_X, valid_y)]) booster = cls.get_booster() dump = booster.get_dump(dump_format='json') assert len(dump) - booster.best_iteration == early_stopping_rounds + 1 # Specify the metric cls = xgb.dask.DaskXGBClassifier(objective='binary:logistic', tree_method='hist', n_estimators=1000) cls.client = client cls.fit(X, y, early_stopping_rounds=early_stopping_rounds, eval_set=[(valid_X, valid_y)], eval_metric='error') assert tm.non_increasing(cls.evals_result()['validation_0']['error']) booster = cls.get_booster() dump = booster.get_dump(dump_format='json') assert len(cls.evals_result()['validation_0']['error']) < 20 assert len(dump) - booster.best_iteration == early_stopping_rounds + 1 @pytest.mark.skipif(**tm.no_sklearn()) def test_early_stopping_custom_eval(self, client: "Client") -> None: from sklearn.datasets import load_breast_cancer X, y = load_breast_cancer(return_X_y=True) X, y = da.from_array(X), da.from_array(y) m = xgb.dask.DaskDMatrix(client, X, y) valid = xgb.dask.DaskDMatrix(client, X, y) early_stopping_rounds = 5 booster = xgb.dask.train( client, {'objective': 'binary:logistic', 'eval_metric': 'error', 'tree_method': 'hist'}, m, evals=[(m, 'Train'), (valid, 'Valid')], feval=tm.eval_error_metric, num_boost_round=1000, early_stopping_rounds=early_stopping_rounds)['booster'] assert hasattr(booster, 'best_score') dump = booster.get_dump(dump_format='json') assert len(dump) - booster.best_iteration == early_stopping_rounds + 1 valid_X, valid_y = load_breast_cancer(return_X_y=True) valid_X, valid_y = da.from_array(valid_X), da.from_array(valid_y) cls = xgb.dask.DaskXGBClassifier(objective='binary:logistic', tree_method='hist', n_estimators=1000) cls.client = client cls.fit(X, y, early_stopping_rounds=early_stopping_rounds, eval_set=[(valid_X, valid_y)], eval_metric=tm.eval_error_metric) booster = cls.get_booster() dump = booster.get_dump(dump_format='json') assert len(dump) - booster.best_iteration == early_stopping_rounds + 1 @pytest.mark.skipif(**tm.no_sklearn()) def test_callback(self, client: "Client") -> None: from sklearn.datasets import load_breast_cancer X, y = load_breast_cancer(return_X_y=True) X, y = da.from_array(X), da.from_array(y) cls = xgb.dask.DaskXGBClassifier(objective='binary:logistic', tree_method='hist', n_estimators=10) cls.client = client with tempfile.TemporaryDirectory() as tmpdir: cls.fit(X, y, callbacks=[xgb.callback.TrainingCheckPoint( directory=Path(tmpdir), iterations=1, name='model' )]) for i in range(1, 10): assert os.path.exists( os.path.join(tmpdir, 'model_' + str(i) + '.json'))
spark-xgboost-nv-release_1.4.0
tests/python/test_with_dask.py
import testing as tm import pytest import xgboost as xgb import numpy as np from hypothesis import given, strategies, settings, note exact_parameter_strategy = strategies.fixed_dictionaries({ 'nthread': strategies.integers(1, 4), 'max_depth': strategies.integers(1, 11), 'min_child_weight': strategies.floats(0.5, 2.0), 'alpha': strategies.floats(0.0, 2.0), 'lambda': strategies.floats(1e-5, 2.0), 'eta': strategies.floats(0.01, 0.5), 'gamma': strategies.floats(0.0, 2.0), 'seed': strategies.integers(0, 10), # We cannot enable subsampling as the training loss can increase # 'subsample': strategies.floats(0.5, 1.0), 'colsample_bytree': strategies.floats(0.5, 1.0), 'colsample_bylevel': strategies.floats(0.5, 1.0), }) hist_parameter_strategy = strategies.fixed_dictionaries({ 'max_depth': strategies.integers(1, 11), 'max_leaves': strategies.integers(0, 1024), 'max_bin': strategies.integers(2, 512), 'grow_policy': strategies.sampled_from(['lossguide', 'depthwise']), }).filter(lambda x: (x['max_depth'] > 0 or x['max_leaves'] > 0) and ( x['max_depth'] > 0 or x['grow_policy'] == 'lossguide')) def train_result(param, dmat, num_rounds): result = {} xgb.train(param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False, evals_result=result) return result class TestTreeMethod: @given(exact_parameter_strategy, strategies.integers(1, 20), tm.dataset_strategy) @settings(deadline=None) def test_exact(self, param, num_rounds, dataset): param['tree_method'] = 'exact' param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds) assert tm.non_increasing(result['train'][dataset.metric]) @given(exact_parameter_strategy, strategies.integers(1, 20), tm.dataset_strategy) @settings(deadline=None) def test_approx(self, param, num_rounds, dataset): param['tree_method'] = 'approx' param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds) assert tm.non_increasing(result['train'][dataset.metric], 1e-3) @pytest.mark.skipif(**tm.no_sklearn()) def test_pruner(self): import sklearn params = {'tree_method': 'exact'} cancer = sklearn.datasets.load_breast_cancer() X = cancer['data'] y = cancer["target"] dtrain = xgb.DMatrix(X, y) booster = xgb.train(params, dtrain=dtrain, num_boost_round=10) grown = str(booster.get_dump()) params = {'updater': 'prune', 'process_type': 'update', 'gamma': '0.2'} booster = xgb.train(params, dtrain=dtrain, num_boost_round=10, xgb_model=booster) after_prune = str(booster.get_dump()) assert grown != after_prune booster = xgb.train(params, dtrain=dtrain, num_boost_round=10, xgb_model=booster) second_prune = str(booster.get_dump()) # Second prune should not change the tree assert after_prune == second_prune @given(exact_parameter_strategy, hist_parameter_strategy, strategies.integers(1, 20), tm.dataset_strategy) @settings(deadline=None) def test_hist(self, param, hist_param, num_rounds, dataset): param['tree_method'] = 'hist' param = dataset.set_params(param) param.update(hist_param) result = train_result(param, dataset.get_dmat(), num_rounds) note(result) assert tm.non_increasing(result['train'][dataset.metric]) def test_hist_categorical(self): # hist must be same as exact on all-categorial data dpath = 'demo/data/' ag_dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') ag_dtest = xgb.DMatrix(dpath + 'agaricus.txt.test') ag_param = {'max_depth': 2, 'tree_method': 'hist', 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': 'auc'} hist_res = {} exact_res = {} xgb.train(ag_param, ag_dtrain, 10, [(ag_dtrain, 'train'), (ag_dtest, 'test')], evals_result=hist_res) ag_param["tree_method"] = "exact" xgb.train(ag_param, ag_dtrain, 10, [(ag_dtrain, 'train'), (ag_dtest, 'test')], evals_result=exact_res) assert hist_res['train']['auc'] == exact_res['train']['auc'] assert hist_res['test']['auc'] == exact_res['test']['auc'] @pytest.mark.skipif(**tm.no_sklearn()) def test_hist_degenerate_case(self): # Test a degenerate case where the quantile sketcher won't return any # quantile points for a particular feature (the second feature in # this example). Source: https://github.com/dmlc/xgboost/issues/2943 nan = np.nan param = {'missing': nan, 'tree_method': 'hist'} model = xgb.XGBRegressor(**param) X = np.array([[6.18827160e+05, 1.73000000e+02], [6.37345679e+05, nan], [6.38888889e+05, nan], [6.28086420e+05, nan]]) y = [1000000., 0., 0., 500000.] w = [0, 0, 1, 0] model.fit(X, y, sample_weight=w)
spark-xgboost-nv-release_1.4.0
tests/python/test_updaters.py
# -*- coding: utf-8 -*- import numpy as np import xgboost as xgb import testing as tm import pytest try: import pandas as pd except ImportError: pass pytestmark = pytest.mark.skipif(**tm.no_pandas()) dpath = 'demo/data/' rng = np.random.RandomState(1994) class TestPandas: def test_pandas(self): df = pd.DataFrame([[1, 2., True], [2, 3., False]], columns=['a', 'b', 'c']) dm = xgb.DMatrix(df, label=pd.Series([1, 2])) assert dm.feature_names == ['a', 'b', 'c'] assert dm.feature_types == ['int', 'float', 'i'] assert dm.num_row() == 2 assert dm.num_col() == 3 np.testing.assert_array_equal(dm.get_label(), np.array([1, 2])) # overwrite feature_names and feature_types dm = xgb.DMatrix(df, label=pd.Series([1, 2]), feature_names=['x', 'y', 'z'], feature_types=['q', 'q', 'q']) assert dm.feature_names == ['x', 'y', 'z'] assert dm.feature_types == ['q', 'q', 'q'] assert dm.num_row() == 2 assert dm.num_col() == 3 # incorrect dtypes df = pd.DataFrame([[1, 2., 'x'], [2, 3., 'y']], columns=['a', 'b', 'c']) with pytest.raises(ValueError): xgb.DMatrix(df) # numeric columns df = pd.DataFrame([[1, 2., True], [2, 3., False]]) dm = xgb.DMatrix(df, label=pd.Series([1, 2])) assert dm.feature_names == ['0', '1', '2'] assert dm.feature_types == ['int', 'float', 'i'] assert dm.num_row() == 2 assert dm.num_col() == 3 np.testing.assert_array_equal(dm.get_label(), np.array([1, 2])) df = pd.DataFrame([[1, 2., 1], [2, 3., 1]], columns=[4, 5, 6]) dm = xgb.DMatrix(df, label=pd.Series([1, 2])) assert dm.feature_names == ['4', '5', '6'] assert dm.feature_types == ['int', 'float', 'int'] assert dm.num_row() == 2 assert dm.num_col() == 3 df = pd.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]}) dummies = pd.get_dummies(df) # B A_X A_Y A_Z # 0 1 1 0 0 # 1 2 0 1 0 # 2 3 0 0 1 result, _, _ = xgb.data._transform_pandas_df(dummies, enable_categorical=False) exp = np.array([[1., 1., 0., 0.], [2., 0., 1., 0.], [3., 0., 0., 1.]]) np.testing.assert_array_equal(result, exp) dm = xgb.DMatrix(dummies) assert dm.feature_names == ['B', 'A_X', 'A_Y', 'A_Z'] assert dm.feature_types == ['int', 'int', 'int', 'int'] assert dm.num_row() == 3 assert dm.num_col() == 4 df = pd.DataFrame({'A=1': [1, 2, 3], 'A=2': [4, 5, 6]}) dm = xgb.DMatrix(df) assert dm.feature_names == ['A=1', 'A=2'] assert dm.feature_types == ['int', 'int'] assert dm.num_row() == 3 assert dm.num_col() == 2 df_int = pd.DataFrame([[1, 1.1], [2, 2.2]], columns=[9, 10]) dm_int = xgb.DMatrix(df_int) df_range = pd.DataFrame([[1, 1.1], [2, 2.2]], columns=range(9, 11, 1)) dm_range = xgb.DMatrix(df_range) assert dm_int.feature_names == ['9', '10'] # assert not "9 " assert dm_int.feature_names == dm_range.feature_names # test MultiIndex as columns df = pd.DataFrame( [ (1, 2, 3, 4, 5, 6), (6, 5, 4, 3, 2, 1) ], columns=pd.MultiIndex.from_tuples(( ('a', 1), ('a', 2), ('a', 3), ('b', 1), ('b', 2), ('b', 3), )) ) dm = xgb.DMatrix(df) assert dm.feature_names == ['a 1', 'a 2', 'a 3', 'b 1', 'b 2', 'b 3'] assert dm.feature_types == ['int', 'int', 'int', 'int', 'int', 'int'] assert dm.num_row() == 2 assert dm.num_col() == 6 def test_slice(self): rng = np.random.RandomState(1994) rows = 100 X = rng.randint(3, 7, size=rows) X = pd.DataFrame({'f0': X}) y = rng.randn(rows) ridxs = [1, 2, 3, 4, 5, 6] m = xgb.DMatrix(X, y) sliced = m.slice(ridxs) assert m.feature_types == sliced.feature_types def test_pandas_categorical(self): rng = np.random.RandomState(1994) rows = 100 X = rng.randint(3, 7, size=rows) X = pd.Series(X, dtype="category") X = pd.DataFrame({'f0': X}) y = rng.randn(rows) m = xgb.DMatrix(X, y, enable_categorical=True) assert m.feature_types[0] == 'categorical' def test_pandas_sparse(self): import pandas as pd rows = 100 X = pd.DataFrame( {"A": pd.arrays.SparseArray(np.random.randint(0, 10, size=rows)), "B": pd.arrays.SparseArray(np.random.randn(rows)), "C": pd.arrays.SparseArray(np.random.permutation( [True, False] * (rows // 2)))} ) y = pd.Series(pd.arrays.SparseArray(np.random.randn(rows))) dtrain = xgb.DMatrix(X, y) booster = xgb.train({}, dtrain, num_boost_round=4) predt_sparse = booster.predict(xgb.DMatrix(X)) predt_dense = booster.predict(xgb.DMatrix(X.sparse.to_dense())) np.testing.assert_allclose(predt_sparse, predt_dense) def test_pandas_label(self): # label must be a single column df = pd.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]}) with pytest.raises(ValueError): xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float') # label must be supported dtype df = pd.DataFrame({'A': np.array(['a', 'b', 'c'], dtype=object)}) with pytest.raises(ValueError): xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float') df = pd.DataFrame({'A': np.array([1, 2, 3], dtype=int)}) result, _, _ = xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float') np.testing.assert_array_equal(result, np.array([[1.], [2.], [3.]], dtype=float)) dm = xgb.DMatrix(np.random.randn(3, 2), label=df) assert dm.num_row() == 3 assert dm.num_col() == 2 def test_pandas_weight(self): kRows = 32 kCols = 8 X = np.random.randn(kRows, kCols) y = np.random.randn(kRows) w = np.random.uniform(size=kRows).astype(np.float32) w_pd = pd.DataFrame(w) data = xgb.DMatrix(X, y, w_pd) assert data.num_row() == kRows assert data.num_col() == kCols np.testing.assert_array_equal(data.get_weight(), w) def test_cv_as_pandas(self): dm = xgb.DMatrix(dpath + 'agaricus.txt.train') params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': 'error'} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10) assert isinstance(cv, pd.DataFrame) exp = pd.Index([u'test-error-mean', u'test-error-std', u'train-error-mean', u'train-error-std']) assert len(cv.columns.intersection(exp)) == 4 # show progress log (result is the same as above) cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, verbose_eval=True) assert isinstance(cv, pd.DataFrame) exp = pd.Index([u'test-error-mean', u'test-error-std', u'train-error-mean', u'train-error-std']) assert len(cv.columns.intersection(exp)) == 4 cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, verbose_eval=True, show_stdv=False) assert isinstance(cv, pd.DataFrame) exp = pd.Index([u'test-error-mean', u'test-error-std', u'train-error-mean', u'train-error-std']) assert len(cv.columns.intersection(exp)) == 4 params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': 'auc'} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True) assert 'eval_metric' in params assert 'auc' in cv.columns[0] params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': ['auc']} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True) assert 'eval_metric' in params assert 'auc' in cv.columns[0] params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': ['auc']} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, early_stopping_rounds=1) assert 'eval_metric' in params assert 'auc' in cv.columns[0] assert cv.shape[0] < 10 params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic'} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics='auc') assert 'auc' in cv.columns[0] params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic'} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=['auc']) assert 'auc' in cv.columns[0] params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic', 'eval_metric': ['auc']} cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics='error') assert 'eval_metric' in params assert 'auc' not in cv.columns[0] assert 'error' in cv.columns[0] cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=['error']) assert 'eval_metric' in params assert 'auc' not in cv.columns[0] assert 'error' in cv.columns[0] params = list(params.items()) cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=['error']) assert isinstance(params, list) assert 'auc' not in cv.columns[0] assert 'error' in cv.columns[0]
spark-xgboost-nv-release_1.4.0
tests/python/test_with_pandas.py
# coding: utf-8 import os import urllib import zipfile import sys from contextlib import contextmanager from io import StringIO from xgboost.compat import SKLEARN_INSTALLED, PANDAS_INSTALLED from xgboost.compat import DASK_INSTALLED import pytest import tempfile import xgboost as xgb import numpy as np hypothesis = pytest.importorskip('hypothesis') sklearn = pytest.importorskip('sklearn') from hypothesis import strategies from hypothesis.extra.numpy import arrays from joblib import Memory from sklearn import datasets try: import cupy as cp except ImportError: cp = None memory = Memory('./cachedir', verbose=0) def no_sklearn(): return {'condition': not SKLEARN_INSTALLED, 'reason': 'Scikit-Learn is not installed'} def no_dask(): return {'condition': not DASK_INSTALLED, 'reason': 'Dask is not installed'} def no_pandas(): return {'condition': not PANDAS_INSTALLED, 'reason': 'Pandas is not installed.'} def no_modin(): reason = 'Modin is not installed.' try: import modin.pandas as _ # noqa return {'condition': False, 'reason': reason} except ImportError: return {'condition': True, 'reason': reason} def no_dt(): import importlib.util spec = importlib.util.find_spec('datatable') return {'condition': spec is None, 'reason': 'Datatable is not installed.'} def no_matplotlib(): reason = 'Matplotlib is not installed.' try: import matplotlib.pyplot as _ # noqa return {'condition': False, 'reason': reason} except ImportError: return {'condition': True, 'reason': reason} def no_dask_cuda(): reason = 'dask_cuda is not installed.' try: import dask_cuda as _ # noqa return {'condition': False, 'reason': reason} except ImportError: return {'condition': True, 'reason': reason} def no_cudf(): try: import cudf # noqa CUDF_INSTALLED = True except ImportError: CUDF_INSTALLED = False return {'condition': not CUDF_INSTALLED, 'reason': 'CUDF is not installed'} def no_cupy(): reason = 'cupy is not installed.' try: import cupy as _ # noqa return {'condition': False, 'reason': reason} except ImportError: return {'condition': True, 'reason': reason} def no_dask_cudf(): reason = 'dask_cudf is not installed.' try: import dask_cudf as _ # noqa return {'condition': False, 'reason': reason} except ImportError: return {'condition': True, 'reason': reason} def no_json_schema(): reason = 'jsonschema is not installed' try: import jsonschema # noqa return {'condition': False, 'reason': reason} except ImportError: return {'condition': True, 'reason': reason} def no_graphviz(): reason = 'graphviz is not installed' try: import graphviz # noqa return {'condition': False, 'reason': reason} except ImportError: return {'condition': True, 'reason': reason} def no_multiple(*args): condition = False reason = '' for arg in args: condition = (condition or arg['condition']) if arg['condition']: reason = arg['reason'] break return {'condition': condition, 'reason': reason} # Contains a dataset in numpy format as well as the relevant objective and metric class TestDataset: def __init__(self, name, get_dataset, objective, metric ): self.name = name self.objective = objective self.metric = metric self.X, self.y = get_dataset() self.w = None self.margin = None def set_params(self, params_in): params_in['objective'] = self.objective params_in['eval_metric'] = self.metric if self.objective == "multi:softmax": params_in["num_class"] = int(np.max(self.y) + 1) return params_in def get_dmat(self): return xgb.DMatrix(self.X, self.y, self.w, base_margin=self.margin) def get_device_dmat(self): w = None if self.w is None else cp.array(self.w) X = cp.array(self.X, dtype=np.float32) y = cp.array(self.y, dtype=np.float32) return xgb.DeviceQuantileDMatrix(X, y, w, base_margin=self.margin) def get_external_dmat(self): with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, 'tmptmp_1234.csv') np.savetxt(path, np.hstack((self.y.reshape(len(self.y), 1), self.X)), delimiter=',') assert os.path.exists(path) uri = path + '?format=csv&label_column=0#tmptmp_' # The uri looks like: # 'tmptmp_1234.csv?format=csv&label_column=0#tmptmp_' return xgb.DMatrix(uri, weight=self.w, base_margin=self.margin) def __repr__(self): return self.name @memory.cache def get_boston(): data = datasets.load_boston() return data.data, data.target @memory.cache def get_digits(): data = datasets.load_digits() return data.data, data.target @memory.cache def get_cancer(): data = datasets.load_breast_cancer() return data.data, data.target @memory.cache def get_sparse(): rng = np.random.RandomState(199) n = 2000 sparsity = 0.75 X, y = datasets.make_regression(n, random_state=rng) flag = rng.binomial(1, sparsity, X.shape) for i in range(X.shape[0]): for j in range(X.shape[1]): if flag[i, j]: X[i, j] = np.nan return X, y @memory.cache def get_mq2008(dpath): from sklearn.datasets import load_svmlight_files src = 'https://s3-us-west-2.amazonaws.com/xgboost-examples/MQ2008.zip' target = dpath + '/MQ2008.zip' if not os.path.exists(target): urllib.request.urlretrieve(url=src, filename=target) with zipfile.ZipFile(target, 'r') as f: f.extractall(path=dpath) (x_train, y_train, qid_train, x_test, y_test, qid_test, x_valid, y_valid, qid_valid) = load_svmlight_files( (dpath + "MQ2008/Fold1/train.txt", dpath + "MQ2008/Fold1/test.txt", dpath + "MQ2008/Fold1/vali.txt"), query_id=True, zero_based=False) return (x_train, y_train, qid_train, x_test, y_test, qid_test, x_valid, y_valid, qid_valid) _unweighted_datasets_strategy = strategies.sampled_from( [TestDataset('boston', get_boston, 'reg:squarederror', 'rmse'), TestDataset('digits', get_digits, 'multi:softmax', 'mlogloss'), TestDataset("cancer", get_cancer, "binary:logistic", "logloss"), TestDataset ("sparse", get_sparse, "reg:squarederror", "rmse"), TestDataset("empty", lambda: (np.empty((0, 100)), np.empty(0)), "reg:squarederror", "rmse")]) @strategies.composite def _dataset_weight_margin(draw): data = draw(_unweighted_datasets_strategy) if draw(strategies.booleans()): data.w = draw(arrays(np.float64, (len(data.y)), elements=strategies.floats(0.1, 2.0))) if draw(strategies.booleans()): num_class = 1 if data.objective == "multi:softmax": num_class = int(np.max(data.y) + 1) data.margin = draw( arrays(np.float64, (len(data.y) * num_class), elements=strategies.floats(0.5, 1.0))) return data # A strategy for drawing from a set of example datasets # May add random weights to the dataset dataset_strategy = _dataset_weight_margin() def non_increasing(L, tolerance=1e-4): return all((y - x) < tolerance for x, y in zip(L, L[1:])) def eval_error_metric(predt, dtrain: xgb.DMatrix): label = dtrain.get_label() r = np.zeros(predt.shape) gt = predt > 0.5 if predt.size == 0: return "CustomErr", 0 r[gt] = 1 - label[gt] le = predt <= 0.5 r[le] = label[le] return 'CustomErr', np.sum(r) def softmax(x): e = np.exp(x) return e / np.sum(e) def softprob_obj(classes): def objective(labels, predt): rows = labels.shape[0] grad = np.zeros((rows, classes), dtype=float) hess = np.zeros((rows, classes), dtype=float) eps = 1e-6 for r in range(predt.shape[0]): target = labels[r] p = softmax(predt[r, :]) for c in range(predt.shape[1]): assert target >= 0 or target <= classes g = p[c] - 1.0 if c == target else p[c] h = max((2.0 * p[c] * (1.0 - p[c])).item(), eps) grad[r, c] = g hess[r, c] = h grad = grad.reshape((rows * classes, 1)) hess = hess.reshape((rows * classes, 1)) return grad, hess return objective class DirectoryExcursion: def __init__(self, path: os.PathLike, cleanup=False): '''Change directory. Change back and optionally cleaning up the directory when exit. ''' self.path = path self.curdir = os.path.normpath(os.path.abspath(os.path.curdir)) self.cleanup = cleanup self.files = {} def __enter__(self): os.chdir(self.path) if self.cleanup: self.files = { os.path.join(root, f) for root, subdir, files in os.walk(self.path) for f in files } def __exit__(self, *args): os.chdir(self.curdir) if self.cleanup: files = { os.path.join(root, f) for root, subdir, files in os.walk(self.path) for f in files } diff = files.difference(self.files) for f in diff: os.remove(f) @contextmanager def captured_output(): """Reassign stdout temporarily in order to test printed statements Taken from: https://stackoverflow.com/questions/4219717/how-to-assert-output-with-nosetest-unittest-in-python Also works for pytest. """ new_out, new_err = StringIO(), StringIO() old_out, old_err = sys.stdout, sys.stderr try: sys.stdout, sys.stderr = new_out, new_err yield sys.stdout, sys.stderr finally: sys.stdout, sys.stderr = old_out, old_err try: # Python 3.7+ from contextlib import nullcontext as noop_context except ImportError: # Python 3.6 from contextlib import suppress as noop_context CURDIR = os.path.normpath(os.path.abspath(os.path.dirname(__file__))) PROJECT_ROOT = os.path.normpath( os.path.join(CURDIR, os.path.pardir, os.path.pardir))
spark-xgboost-nv-release_1.4.0
tests/python/testing.py
# -*- coding: utf-8 -*- import numpy as np import xgboost as xgb import testing as tm import pytest try: import modin.pandas as md except ImportError: pass pytestmark = pytest.mark.skipif(**tm.no_modin()) dpath = 'demo/data/' rng = np.random.RandomState(1994) class TestModin: def test_modin(self): df = md.DataFrame([[1, 2., True], [2, 3., False]], columns=['a', 'b', 'c']) dm = xgb.DMatrix(df, label=md.Series([1, 2])) assert dm.feature_names == ['a', 'b', 'c'] assert dm.feature_types == ['int', 'float', 'i'] assert dm.num_row() == 2 assert dm.num_col() == 3 np.testing.assert_array_equal(dm.get_label(), np.array([1, 2])) # overwrite feature_names and feature_types dm = xgb.DMatrix(df, label=md.Series([1, 2]), feature_names=['x', 'y', 'z'], feature_types=['q', 'q', 'q']) assert dm.feature_names == ['x', 'y', 'z'] assert dm.feature_types == ['q', 'q', 'q'] assert dm.num_row() == 2 assert dm.num_col() == 3 # incorrect dtypes df = md.DataFrame([[1, 2., 'x'], [2, 3., 'y']], columns=['a', 'b', 'c']) with pytest.raises(ValueError): xgb.DMatrix(df) # numeric columns df = md.DataFrame([[1, 2., True], [2, 3., False]]) dm = xgb.DMatrix(df, label=md.Series([1, 2])) assert dm.feature_names == ['0', '1', '2'] assert dm.feature_types == ['int', 'float', 'i'] assert dm.num_row() == 2 assert dm.num_col() == 3 np.testing.assert_array_equal(dm.get_label(), np.array([1, 2])) df = md.DataFrame([[1, 2., 1], [2, 3., 1]], columns=[4, 5, 6]) dm = xgb.DMatrix(df, label=md.Series([1, 2])) assert dm.feature_names == ['4', '5', '6'] assert dm.feature_types == ['int', 'float', 'int'] assert dm.num_row() == 2 assert dm.num_col() == 3 df = md.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]}) dummies = md.get_dummies(df) # B A_X A_Y A_Z # 0 1 1 0 0 # 1 2 0 1 0 # 2 3 0 0 1 result, _, _ = xgb.data._transform_pandas_df(dummies, enable_categorical=False) exp = np.array([[1., 1., 0., 0.], [2., 0., 1., 0.], [3., 0., 0., 1.]]) np.testing.assert_array_equal(result, exp) dm = xgb.DMatrix(dummies) assert dm.feature_names == ['B', 'A_X', 'A_Y', 'A_Z'] assert dm.feature_types == ['int', 'int', 'int', 'int'] assert dm.num_row() == 3 assert dm.num_col() == 4 df = md.DataFrame({'A=1': [1, 2, 3], 'A=2': [4, 5, 6]}) dm = xgb.DMatrix(df) assert dm.feature_names == ['A=1', 'A=2'] assert dm.feature_types == ['int', 'int'] assert dm.num_row() == 3 assert dm.num_col() == 2 df_int = md.DataFrame([[1, 1.1], [2, 2.2]], columns=[9, 10]) dm_int = xgb.DMatrix(df_int) df_range = md.DataFrame([[1, 1.1], [2, 2.2]], columns=range(9, 11, 1)) dm_range = xgb.DMatrix(df_range) assert dm_int.feature_names == ['9', '10'] # assert not "9 " assert dm_int.feature_names == dm_range.feature_names # test MultiIndex as columns df = md.DataFrame( [ (1, 2, 3, 4, 5, 6), (6, 5, 4, 3, 2, 1) ], columns=md.MultiIndex.from_tuples(( ('a', 1), ('a', 2), ('a', 3), ('b', 1), ('b', 2), ('b', 3), )) ) dm = xgb.DMatrix(df) assert dm.feature_names == ['a 1', 'a 2', 'a 3', 'b 1', 'b 2', 'b 3'] assert dm.feature_types == ['int', 'int', 'int', 'int', 'int', 'int'] assert dm.num_row() == 2 assert dm.num_col() == 6 def test_modin_label(self): # label must be a single column df = md.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]}) with pytest.raises(ValueError): xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float') # label must be supported dtype df = md.DataFrame({'A': np.array(['a', 'b', 'c'], dtype=object)}) with pytest.raises(ValueError): xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float') df = md.DataFrame({'A': np.array([1, 2, 3], dtype=int)}) result, _, _ = xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float') np.testing.assert_array_equal(result, np.array([[1.], [2.], [3.]], dtype=float)) dm = xgb.DMatrix(np.random.randn(3, 2), label=df) assert dm.num_row() == 3 assert dm.num_col() == 2 def test_modin_weight(self): kRows = 32 kCols = 8 X = np.random.randn(kRows, kCols) y = np.random.randn(kRows) w = np.random.uniform(size=kRows).astype(np.float32) w_pd = md.DataFrame(w) data = xgb.DMatrix(X, y, w_pd) assert data.num_row() == kRows assert data.num_col() == kCols np.testing.assert_array_equal(data.get_weight(), w)
spark-xgboost-nv-release_1.4.0
tests/python/test_with_modin.py
# -*- coding: utf-8 -*- import xgboost as xgb import numpy as np class TestOMP: def test_omp(self): dpath = 'demo/data/' dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') dtest = xgb.DMatrix(dpath + 'agaricus.txt.test') param = {'booster': 'gbtree', 'objective': 'binary:logistic', 'grow_policy': 'depthwise', 'tree_method': 'hist', 'eval_metric': 'error', 'max_depth': 5, 'min_child_weight': 0} watchlist = [(dtest, 'eval'), (dtrain, 'train')] num_round = 5 def run_trial(): res = {} bst = xgb.train(param, dtrain, num_round, watchlist, evals_result=res) metrics = [res['train']['error'][-1], res['eval']['error'][-1]] preds = bst.predict(dtest) return metrics, preds def consist_test(title, n): auc, pred = run_trial() for i in range(n-1): auc2, pred2 = run_trial() try: assert auc == auc2 assert np.array_equal(pred, pred2) except Exception as e: print('-------test %s failed, num_trial: %d-------' % (title, i)) raise e auc, pred = auc2, pred2 return auc, pred print('test approx ...') param['tree_method'] = 'approx' param['nthread'] = 1 auc_1, pred_1 = consist_test('approx_thread_1', 100) param['nthread'] = 2 auc_2, pred_2 = consist_test('approx_thread_2', 100) param['nthread'] = 3 auc_3, pred_3 = consist_test('approx_thread_3', 100) assert auc_1 == auc_2 == auc_3 assert np.array_equal(auc_1, auc_2) assert np.array_equal(auc_1, auc_3) print('test hist ...') param['tree_method'] = 'hist' param['nthread'] = 1 auc_1, pred_1 = consist_test('hist_thread_1', 100) param['nthread'] = 2 auc_2, pred_2 = consist_test('hist_thread_2', 100) param['nthread'] = 3 auc_3, pred_3 = consist_test('hist_thread_3', 100) assert auc_1 == auc_2 == auc_3 assert np.array_equal(auc_1, auc_2) assert np.array_equal(auc_1, auc_3)
spark-xgboost-nv-release_1.4.0
tests/python/test_openmp.py
import xgboost as xgb import numpy as np import pytest import testing as tm pytestmark = pytest.mark.skipif(**tm.no_pandas()) dpath = 'demo/data/' rng = np.random.RandomState(1994) class TestTreesToDataFrame: def build_model(self, max_depth, num_round): dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') param = {'max_depth': max_depth, 'objective': 'binary:logistic', 'verbosity': 1} num_round = num_round bst = xgb.train(param, dtrain, num_round) return bst def parse_dumped_model(self, booster, item_to_get, splitter): item_to_get += '=' txt_dump = booster.get_dump(with_stats=True) tree_list = [tree.split('/n') for tree in txt_dump] split_trees = [tree[0].split(item_to_get)[1:] for tree in tree_list] res = sum([float(line.split(splitter)[0]) for tree in split_trees for line in tree]) return res def test_trees_to_dataframe(self): bst = self.build_model(max_depth=5, num_round=10) gain_from_dump = self.parse_dumped_model(booster=bst, item_to_get='gain', splitter=',') cover_from_dump = self.parse_dumped_model(booster=bst, item_to_get='cover', splitter='\n') # method being tested df = bst.trees_to_dataframe() # test for equality of gains gain_from_df = df[df.Feature != 'Leaf'][['Gain']].sum() assert np.allclose(gain_from_dump, gain_from_df) # test for equality of covers cover_from_df = df.Cover.sum() assert np.allclose(cover_from_dump, cover_from_df)
spark-xgboost-nv-release_1.4.0
tests/python/test_parse_tree.py
import os import tempfile import platform import xgboost import subprocess import numpy import json import testing as tm class TestCLI: template = ''' booster = gbtree objective = reg:squarederror eta = 1.0 gamma = 1.0 seed = {seed} min_child_weight = 0 max_depth = 3 task = {task} model_in = {model_in} model_out = {model_out} test_path = {test_path} name_pred = {name_pred} model_dir = {model_dir} num_round = 10 data = {data_path} eval[test] = {data_path} ''' PROJECT_ROOT = tm.PROJECT_ROOT def get_exe(self): if platform.system() == 'Windows': exe = 'xgboost.exe' else: exe = 'xgboost' exe = os.path.join(self.PROJECT_ROOT, exe) assert os.path.exists(exe) return exe def test_cli_model(self): data_path = "{root}/demo/data/agaricus.txt.train?format=libsvm".format( root=self.PROJECT_ROOT) exe = self.get_exe() seed = 1994 with tempfile.TemporaryDirectory() as tmpdir: model_out_cli = os.path.join( tmpdir, 'test_load_cli_model-cli.json') model_out_py = os.path.join( tmpdir, 'test_cli_model-py.json') config_path = os.path.join( tmpdir, 'test_load_cli_model.conf') train_conf = self.template.format(data_path=data_path, seed=seed, task='train', model_in='NULL', model_out=model_out_cli, test_path='NULL', name_pred='NULL', model_dir='NULL') with open(config_path, 'w') as fd: fd.write(train_conf) subprocess.run([exe, config_path]) predict_out = os.path.join(tmpdir, 'test_load_cli_model-prediction') predict_conf = self.template.format(task='pred', seed=seed, data_path=data_path, model_in=model_out_cli, model_out='NULL', test_path=data_path, name_pred=predict_out, model_dir='NULL') with open(config_path, 'w') as fd: fd.write(predict_conf) subprocess.run([exe, config_path]) cli_predt = numpy.loadtxt(predict_out) parameters = { 'booster': 'gbtree', 'objective': 'reg:squarederror', 'eta': 1.0, 'gamma': 1.0, 'seed': seed, 'min_child_weight': 0, 'max_depth': 3 } data = xgboost.DMatrix(data_path) booster = xgboost.train(parameters, data, num_boost_round=10) # CLI model doesn't contain feature info. booster.feature_names = None booster.feature_types = None booster.save_model(model_out_py) py_predt = booster.predict(data) numpy.testing.assert_allclose(cli_predt, py_predt) cli_model = xgboost.Booster(model_file=model_out_cli) cli_predt = cli_model.predict(data) numpy.testing.assert_allclose(cli_predt, py_predt) with open(model_out_cli, 'rb') as fd: cli_model_bin = fd.read() with open(model_out_py, 'rb') as fd: py_model_bin = fd.read() assert hash(cli_model_bin) == hash(py_model_bin) def test_cli_help(self): exe = self.get_exe() completed = subprocess.run([exe], stdout=subprocess.PIPE) error_msg = completed.stdout.decode('utf-8') ret = completed.returncode assert ret == 1 assert error_msg.find('Usage') != -1 assert error_msg.find('eval[NAME]') != -1 completed = subprocess.run([exe, '-V'], stdout=subprocess.PIPE) msg = completed.stdout.decode('utf-8') assert msg.find('XGBoost') != -1 v = xgboost.__version__ if v.find('SNAPSHOT') != -1: assert msg.split(':')[1].strip() == v.split('-')[0] elif v.find('rc') != -1: assert msg.split(':')[1].strip() == v.split('rc')[0] else: assert msg.split(':')[1].strip() == v def test_cli_model_json(self): exe = self.get_exe() data_path = "{root}/demo/data/agaricus.txt.train?format=libsvm".format( root=self.PROJECT_ROOT) seed = 1994 with tempfile.TemporaryDirectory() as tmpdir: model_out_cli = os.path.join( tmpdir, 'test_load_cli_model-cli.json') config_path = os.path.join(tmpdir, 'test_load_cli_model.conf') train_conf = self.template.format(data_path=data_path, seed=seed, task='train', model_in='NULL', model_out=model_out_cli, test_path='NULL', name_pred='NULL', model_dir='NULL') with open(config_path, 'w') as fd: fd.write(train_conf) subprocess.run([exe, config_path]) with open(model_out_cli, 'r') as fd: model = json.load(fd) assert model['learner']['gradient_booster']['name'] == 'gbtree' def test_cli_save_model(self): '''Test save on final round''' exe = self.get_exe() data_path = "{root}/demo/data/agaricus.txt.train?format=libsvm".format( root=self.PROJECT_ROOT) seed = 1994 with tempfile.TemporaryDirectory() as tmpdir: model_out_cli = os.path.join(tmpdir, '0010.model') config_path = os.path.join(tmpdir, 'test_load_cli_model.conf') train_conf = self.template.format(data_path=data_path, seed=seed, task='train', model_in='NULL', model_out='NULL', test_path='NULL', name_pred='NULL', model_dir=tmpdir) with open(config_path, 'w') as fd: fd.write(train_conf) subprocess.run([exe, config_path]) assert os.path.exists(model_out_cli)
spark-xgboost-nv-release_1.4.0
tests/python/test_cli.py
import collections import importlib.util import numpy as np import xgboost as xgb import testing as tm import tempfile import os import shutil import pytest import json rng = np.random.RandomState(1994) pytestmark = pytest.mark.skipif(**tm.no_sklearn()) class TemporaryDirectory(object): """Context manager for tempfile.mkdtemp()""" def __enter__(self): self.name = tempfile.mkdtemp() return self.name def __exit__(self, exc_type, exc_value, traceback): shutil.rmtree(self.name) def test_binary_classification(): from sklearn.datasets import load_digits from sklearn.model_selection import KFold digits = load_digits(n_class=2) y = digits['target'] X = digits['data'] kf = KFold(n_splits=2, shuffle=True, random_state=rng) for cls in (xgb.XGBClassifier, xgb.XGBRFClassifier): for train_index, test_index in kf.split(X, y): clf = cls(random_state=42) xgb_model = clf.fit(X[train_index], y[train_index], eval_metric=['auc', 'logloss']) preds = xgb_model.predict(X[test_index]) labels = y[test_index] err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds)) assert err < 0.1 def test_multiclass_classification(): from sklearn.datasets import load_iris from sklearn.model_selection import KFold def check_pred(preds, labels, output_margin): if output_margin: err = sum(1 for i in range(len(preds)) if preds[i].argmax() != labels[i]) / float(len(preds)) else: err = sum(1 for i in range(len(preds)) if preds[i] != labels[i]) / float(len(preds)) assert err < 0.4 iris = load_iris() y = iris['target'] X = iris['data'] kf = KFold(n_splits=2, shuffle=True, random_state=rng) for train_index, test_index in kf.split(X, y): xgb_model = xgb.XGBClassifier().fit(X[train_index], y[train_index]) assert (xgb_model.get_booster().num_boosted_rounds() == xgb_model.n_estimators) preds = xgb_model.predict(X[test_index]) # test other params in XGBClassifier().fit preds2 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=3) preds3 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=0) preds4 = xgb_model.predict(X[test_index], output_margin=False, ntree_limit=3) labels = y[test_index] check_pred(preds, labels, output_margin=False) check_pred(preds2, labels, output_margin=True) check_pred(preds3, labels, output_margin=True) check_pred(preds4, labels, output_margin=False) cls = xgb.XGBClassifier(n_estimators=4).fit(X, y) assert cls.n_classes_ == 3 proba = cls.predict_proba(X) assert proba.shape[0] == X.shape[0] assert proba.shape[1] == cls.n_classes_ # custom objective, the default is multi:softprob so no transformation is required. cls = xgb.XGBClassifier(n_estimators=4, objective=tm.softprob_obj(3)).fit(X, y) proba = cls.predict_proba(X) assert proba.shape[0] == X.shape[0] assert proba.shape[1] == cls.n_classes_ def test_best_ntree_limit(): from sklearn.datasets import load_iris X, y = load_iris(return_X_y=True) def train(booster, forest): rounds = 4 cls = xgb.XGBClassifier( n_estimators=rounds, num_parallel_tree=forest, booster=booster ).fit( X, y, eval_set=[(X, y)], early_stopping_rounds=3 ) if forest: assert cls.best_ntree_limit == rounds * forest else: assert cls.best_ntree_limit == 0 # best_ntree_limit is used by default, assert that under gblinear it's # automatically ignored due to being 0. cls.predict(X) num_parallel_tree = 4 train('gbtree', num_parallel_tree) train('dart', num_parallel_tree) train('gblinear', None) def test_ranking(): # generate random data x_train = np.random.rand(1000, 10) y_train = np.random.randint(5, size=1000) train_group = np.repeat(50, 20) x_valid = np.random.rand(200, 10) y_valid = np.random.randint(5, size=200) valid_group = np.repeat(50, 4) x_test = np.random.rand(100, 10) params = {'tree_method': 'exact', 'objective': 'rank:pairwise', 'learning_rate': 0.1, 'gamma': 1.0, 'min_child_weight': 0.1, 'max_depth': 6, 'n_estimators': 4} model = xgb.sklearn.XGBRanker(**params) model.fit(x_train, y_train, group=train_group, eval_set=[(x_valid, y_valid)], eval_group=[valid_group]) assert model.evals_result() pred = model.predict(x_test) train_data = xgb.DMatrix(x_train, y_train) valid_data = xgb.DMatrix(x_valid, y_valid) test_data = xgb.DMatrix(x_test) train_data.set_group(train_group) assert train_data.get_label().shape[0] == x_train.shape[0] valid_data.set_group(valid_group) params_orig = {'tree_method': 'exact', 'objective': 'rank:pairwise', 'eta': 0.1, 'gamma': 1.0, 'min_child_weight': 0.1, 'max_depth': 6} xgb_model_orig = xgb.train(params_orig, train_data, num_boost_round=4, evals=[(valid_data, 'validation')]) pred_orig = xgb_model_orig.predict(test_data) np.testing.assert_almost_equal(pred, pred_orig) def test_stacking_regression(): from sklearn.model_selection import train_test_split from sklearn.datasets import load_diabetes from sklearn.linear_model import RidgeCV from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import StackingRegressor X, y = load_diabetes(return_X_y=True) estimators = [ ('gbm', xgb.sklearn.XGBRegressor(objective='reg:squarederror')), ('lr', RidgeCV()) ] reg = StackingRegressor( estimators=estimators, final_estimator=RandomForestRegressor(n_estimators=10, random_state=42) ) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) reg.fit(X_train, y_train).score(X_test, y_test) def test_stacking_classification(): from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline from sklearn.ensemble import StackingClassifier X, y = load_iris(return_X_y=True) estimators = [ ('gbm', xgb.sklearn.XGBClassifier()), ('svr', make_pipeline(StandardScaler(), LinearSVC(random_state=42))) ] clf = StackingClassifier( estimators=estimators, final_estimator=LogisticRegression() ) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) clf.fit(X_train, y_train).score(X_test, y_test) @pytest.mark.skipif(**tm.no_pandas()) def test_feature_importances_weight(): from sklearn.datasets import load_digits digits = load_digits(n_class=2) y = digits['target'] X = digits['data'] xgb_model = xgb.XGBClassifier(random_state=0, tree_method="exact", learning_rate=0.1, importance_type="weight").fit(X, y) exp = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.00833333, 0., 0., 0., 0., 0., 0., 0., 0., 0.025, 0.14166667, 0., 0., 0., 0., 0., 0., 0.00833333, 0.25833333, 0., 0., 0., 0., 0.03333334, 0.03333334, 0., 0.32499999, 0., 0., 0., 0., 0.05, 0.06666667, 0., 0., 0., 0., 0., 0., 0., 0.04166667, 0., 0., 0., 0., 0., 0., 0., 0.00833333, 0., 0., 0., 0., 0.], dtype=np.float32) np.testing.assert_almost_equal(xgb_model.feature_importances_, exp) # numeric columns import pandas as pd y = pd.Series(digits['target']) X = pd.DataFrame(digits['data']) xgb_model = xgb.XGBClassifier(random_state=0, tree_method="exact", learning_rate=0.1, importance_type="weight").fit(X, y) np.testing.assert_almost_equal(xgb_model.feature_importances_, exp) xgb_model = xgb.XGBClassifier(random_state=0, tree_method="exact", learning_rate=0.1, importance_type="weight").fit(X, y) np.testing.assert_almost_equal(xgb_model.feature_importances_, exp) @pytest.mark.skipif(**tm.no_pandas()) def test_feature_importances_gain(): from sklearn.datasets import load_digits digits = load_digits(n_class=2) y = digits['target'] X = digits['data'] xgb_model = xgb.XGBClassifier( random_state=0, tree_method="exact", learning_rate=0.1, importance_type="gain", use_label_encoder=False, ).fit(X, y) exp = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.00326159, 0., 0., 0., 0., 0., 0., 0., 0., 0.00297238, 0.00988034, 0., 0., 0., 0., 0., 0., 0.03512521, 0.41123885, 0., 0., 0., 0., 0.01326332, 0.00160674, 0., 0.4206952, 0., 0., 0., 0., 0.00616747, 0.01237546, 0., 0., 0., 0., 0., 0., 0., 0.08240705, 0., 0., 0., 0., 0., 0., 0., 0.00100649, 0., 0., 0., 0., 0.], dtype=np.float32) np.testing.assert_almost_equal(xgb_model.feature_importances_, exp) # numeric columns import pandas as pd y = pd.Series(digits['target']) X = pd.DataFrame(digits['data']) xgb_model = xgb.XGBClassifier( random_state=0, tree_method="exact", learning_rate=0.1, importance_type="gain", use_label_encoder=False, ).fit(X, y) np.testing.assert_almost_equal(xgb_model.feature_importances_, exp) xgb_model = xgb.XGBClassifier( random_state=0, tree_method="exact", learning_rate=0.1, importance_type="gain", use_label_encoder=False, ).fit(X, y) np.testing.assert_almost_equal(xgb_model.feature_importances_, exp) # no split can be found cls = xgb.XGBClassifier( min_child_weight=1000, tree_method="hist", n_estimators=1, use_label_encoder=False ) cls.fit(X, y) assert np.all(cls.feature_importances_ == 0) def test_select_feature(): from sklearn.datasets import load_digits from sklearn.feature_selection import SelectFromModel digits = load_digits(n_class=2) y = digits['target'] X = digits['data'] cls = xgb.XGBClassifier() cls.fit(X, y) selector = SelectFromModel(cls, prefit=True, max_features=1) X_selected = selector.transform(X) assert X_selected.shape[1] == 1 def test_num_parallel_tree(): from sklearn.datasets import load_boston reg = xgb.XGBRegressor(n_estimators=4, num_parallel_tree=4, tree_method='hist') boston = load_boston() bst = reg.fit(X=boston['data'], y=boston['target']) dump = bst.get_booster().get_dump(dump_format='json') assert len(dump) == 16 reg = xgb.XGBRFRegressor(n_estimators=4) bst = reg.fit(X=boston['data'], y=boston['target']) dump = bst.get_booster().get_dump(dump_format='json') assert len(dump) == 4 config = json.loads(bst.get_booster().save_config()) assert int(config['learner']['gradient_booster']['gbtree_train_param'][ 'num_parallel_tree']) == 4 def test_boston_housing_regression(): from sklearn.metrics import mean_squared_error from sklearn.datasets import load_boston from sklearn.model_selection import KFold boston = load_boston() y = boston['target'] X = boston['data'] kf = KFold(n_splits=2, shuffle=True, random_state=rng) for train_index, test_index in kf.split(X, y): xgb_model = xgb.XGBRegressor().fit(X[train_index], y[train_index]) preds = xgb_model.predict(X[test_index]) # test other params in XGBRegressor().fit preds2 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=3) preds3 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=0) preds4 = xgb_model.predict(X[test_index], output_margin=False, ntree_limit=3) labels = y[test_index] assert mean_squared_error(preds, labels) < 25 assert mean_squared_error(preds2, labels) < 350 assert mean_squared_error(preds3, labels) < 25 assert mean_squared_error(preds4, labels) < 350 def run_boston_housing_rf_regression(tree_method): from sklearn.metrics import mean_squared_error from sklearn.datasets import load_boston from sklearn.model_selection import KFold X, y = load_boston(return_X_y=True) kf = KFold(n_splits=2, shuffle=True, random_state=rng) for train_index, test_index in kf.split(X, y): xgb_model = xgb.XGBRFRegressor(random_state=42, tree_method=tree_method).fit( X[train_index], y[train_index] ) preds = xgb_model.predict(X[test_index]) labels = y[test_index] assert mean_squared_error(preds, labels) < 35 def test_boston_housing_rf_regression(): run_boston_housing_rf_regression("hist") def test_parameter_tuning(): from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_boston boston = load_boston() y = boston['target'] X = boston['data'] xgb_model = xgb.XGBRegressor(learning_rate=0.1) clf = GridSearchCV(xgb_model, {'max_depth': [2, 4, 6], 'n_estimators': [50, 100, 200]}, cv=3, verbose=1) clf.fit(X, y) assert clf.best_score_ < 0.7 assert clf.best_params_ == {'n_estimators': 100, 'max_depth': 4} def test_regression_with_custom_objective(): from sklearn.metrics import mean_squared_error from sklearn.datasets import load_boston from sklearn.model_selection import KFold def objective_ls(y_true, y_pred): grad = (y_pred - y_true) hess = np.ones(len(y_true)) return grad, hess boston = load_boston() y = boston['target'] X = boston['data'] kf = KFold(n_splits=2, shuffle=True, random_state=rng) for train_index, test_index in kf.split(X, y): xgb_model = xgb.XGBRegressor(objective=objective_ls).fit( X[train_index], y[train_index] ) preds = xgb_model.predict(X[test_index]) labels = y[test_index] assert mean_squared_error(preds, labels) < 25 # Test that the custom objective function is actually used class XGBCustomObjectiveException(Exception): pass def dummy_objective(y_true, y_pred): raise XGBCustomObjectiveException() xgb_model = xgb.XGBRegressor(objective=dummy_objective) np.testing.assert_raises(XGBCustomObjectiveException, xgb_model.fit, X, y) def test_classification_with_custom_objective(): from sklearn.datasets import load_digits from sklearn.model_selection import KFold def logregobj(y_true, y_pred): y_pred = 1.0 / (1.0 + np.exp(-y_pred)) grad = y_pred - y_true hess = y_pred * (1.0 - y_pred) return grad, hess digits = load_digits(n_class=2) y = digits['target'] X = digits['data'] kf = KFold(n_splits=2, shuffle=True, random_state=rng) for train_index, test_index in kf.split(X, y): xgb_model = xgb.XGBClassifier(objective=logregobj) xgb_model.fit(X[train_index], y[train_index]) preds = xgb_model.predict(X[test_index]) labels = y[test_index] err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds)) assert err < 0.1 # Test that the custom objective function is actually used class XGBCustomObjectiveException(Exception): pass def dummy_objective(y_true, y_preds): raise XGBCustomObjectiveException() xgb_model = xgb.XGBClassifier(objective=dummy_objective) np.testing.assert_raises( XGBCustomObjectiveException, xgb_model.fit, X, y ) cls = xgb.XGBClassifier(use_label_encoder=False, n_estimators=1) cls.fit(X, y) is_called = [False] def wrapped(y, p): is_called[0] = True return logregobj(y, p) cls.set_params(objective=wrapped) cls.predict(X) # no throw cls.fit(X, y) assert is_called[0] def test_sklearn_api(): from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split iris = load_iris() tr_d, te_d, tr_l, te_l = train_test_split(iris.data, iris.target, train_size=120, test_size=0.2) classifier = xgb.XGBClassifier(booster='gbtree', n_estimators=10) classifier.fit(tr_d, tr_l) preds = classifier.predict(te_d) labels = te_l err = sum([1 for p, l in zip(preds, labels) if p != l]) * 1.0 / len(te_l) assert err < 0.2 def test_sklearn_api_gblinear(): from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split iris = load_iris() tr_d, te_d, tr_l, te_l = train_test_split(iris.data, iris.target, train_size=120) classifier = xgb.XGBClassifier(booster='gblinear', n_estimators=100) classifier.fit(tr_d, tr_l) preds = classifier.predict(te_d) labels = te_l err = sum([1 for p, l in zip(preds, labels) if p != l]) * 1.0 / len(te_l) assert err < 0.5 @pytest.mark.skipif(**tm.no_matplotlib()) @pytest.mark.skipif(**tm.no_graphviz()) def test_sklearn_plotting(): from sklearn.datasets import load_iris iris = load_iris() classifier = xgb.XGBClassifier() classifier.fit(iris.data, iris.target) import matplotlib matplotlib.use('Agg') from matplotlib.axes import Axes from graphviz import Source ax = xgb.plot_importance(classifier) assert isinstance(ax, Axes) assert ax.get_title() == 'Feature importance' assert ax.get_xlabel() == 'F score' assert ax.get_ylabel() == 'Features' assert len(ax.patches) == 4 g = xgb.to_graphviz(classifier, num_trees=0) assert isinstance(g, Source) ax = xgb.plot_tree(classifier, num_trees=0) assert isinstance(ax, Axes) @pytest.mark.skipif(**tm.no_pandas()) def test_sklearn_nfolds_cv(): from sklearn.datasets import load_digits from sklearn.model_selection import StratifiedKFold digits = load_digits(n_class=3) X = digits['data'] y = digits['target'] dm = xgb.DMatrix(X, label=y) params = { 'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'multi:softprob', 'num_class': 3 } seed = 2016 nfolds = 5 skf = StratifiedKFold(n_splits=nfolds, shuffle=True, random_state=seed) cv1 = xgb.cv(params, dm, num_boost_round=10, nfold=nfolds, seed=seed, as_pandas=True) cv2 = xgb.cv(params, dm, num_boost_round=10, nfold=nfolds, folds=skf, seed=seed, as_pandas=True) cv3 = xgb.cv(params, dm, num_boost_round=10, nfold=nfolds, stratified=True, seed=seed, as_pandas=True) assert cv1.shape[0] == cv2.shape[0] and cv2.shape[0] == cv3.shape[0] assert cv2.iloc[-1, 0] == cv3.iloc[-1, 0] @pytest.mark.skipif(**tm.no_pandas()) def test_split_value_histograms(): from sklearn.datasets import load_digits digits_2class = load_digits(n_class=2) X = digits_2class['data'] y = digits_2class['target'] dm = xgb.DMatrix(X, label=y) params = {'max_depth': 6, 'eta': 0.01, 'verbosity': 0, 'objective': 'binary:logistic'} gbdt = xgb.train(params, dm, num_boost_round=10) assert gbdt.get_split_value_histogram("not_there", as_pandas=True).shape[0] == 0 assert gbdt.get_split_value_histogram("not_there", as_pandas=False).shape[0] == 0 assert gbdt.get_split_value_histogram("f28", bins=0).shape[0] == 1 assert gbdt.get_split_value_histogram("f28", bins=1).shape[0] == 1 assert gbdt.get_split_value_histogram("f28", bins=2).shape[0] == 2 assert gbdt.get_split_value_histogram("f28", bins=5).shape[0] == 2 assert gbdt.get_split_value_histogram("f28", bins=None).shape[0] == 2 def test_sklearn_random_state(): clf = xgb.XGBClassifier(random_state=402) assert clf.get_xgb_params()['random_state'] == 402 clf = xgb.XGBClassifier(random_state=401) assert clf.get_xgb_params()['random_state'] == 401 random_state = np.random.RandomState(seed=403) clf = xgb.XGBClassifier(random_state=random_state) assert isinstance(clf.get_xgb_params()['random_state'], int) def test_sklearn_n_jobs(): clf = xgb.XGBClassifier(n_jobs=1) assert clf.get_xgb_params()['n_jobs'] == 1 clf = xgb.XGBClassifier(n_jobs=2) assert clf.get_xgb_params()['n_jobs'] == 2 def test_parameters_access(): from sklearn import datasets params = {'updater': 'grow_gpu_hist', 'subsample': .5, 'n_jobs': -1} clf = xgb.XGBClassifier(n_estimators=1000, **params) assert clf.get_params()['updater'] == 'grow_gpu_hist' assert clf.get_params()['subsample'] == .5 assert clf.get_params()['n_estimators'] == 1000 clf = xgb.XGBClassifier(n_estimators=1, nthread=4) X, y = datasets.load_iris(return_X_y=True) clf.fit(X, y) config = json.loads(clf.get_booster().save_config()) assert int(config['learner']['generic_param']['nthread']) == 4 clf.set_params(nthread=16) config = json.loads(clf.get_booster().save_config()) assert int(config['learner']['generic_param']['nthread']) == 16 clf.predict(X) config = json.loads(clf.get_booster().save_config()) assert int(config['learner']['generic_param']['nthread']) == 16 def test_kwargs_error(): params = {'updater': 'grow_gpu_hist', 'subsample': .5, 'n_jobs': -1} with pytest.raises(TypeError): clf = xgb.XGBClassifier(n_jobs=1000, **params) assert isinstance(clf, xgb.XGBClassifier) def test_kwargs_grid_search(): from sklearn.model_selection import GridSearchCV from sklearn import datasets params = {'tree_method': 'hist'} clf = xgb.XGBClassifier(n_estimators=1, learning_rate=1.0, **params) assert clf.get_params()['tree_method'] == 'hist' # 'max_leaves' is not a default argument of XGBClassifier # Check we can still do grid search over this parameter search_params = {'max_leaves': range(2, 5)} grid_cv = GridSearchCV(clf, search_params, cv=5) iris = datasets.load_iris() grid_cv.fit(iris.data, iris.target) # Expect unique results for each parameter value # This confirms sklearn is able to successfully update the parameter means = grid_cv.cv_results_['mean_test_score'] assert len(means) == len(set(means)) def test_sklearn_clone(): from sklearn.base import clone clf = xgb.XGBClassifier(n_jobs=2) clf.n_jobs = -1 clone(clf) def test_sklearn_get_default_params(): from sklearn.datasets import load_digits digits_2class = load_digits(n_class=2) X = digits_2class['data'] y = digits_2class['target'] cls = xgb.XGBClassifier() assert cls.get_params()['base_score'] is None cls.fit(X[:4, ...], y[:4, ...]) assert cls.get_params()['base_score'] is not None def test_validation_weights_xgbmodel(): from sklearn.datasets import make_hastie_10_2 # prepare training and test data X, y = make_hastie_10_2(n_samples=2000, random_state=42) labels, y = np.unique(y, return_inverse=True) X_train, X_test = X[:1600], X[1600:] y_train, y_test = y[:1600], y[1600:] # instantiate model param_dist = {'objective': 'binary:logistic', 'n_estimators': 2, 'random_state': 123} clf = xgb.sklearn.XGBModel(**param_dist) # train it using instance weights only in the training set weights_train = np.random.choice([1, 2], len(X_train)) clf.fit(X_train, y_train, sample_weight=weights_train, eval_set=[(X_test, y_test)], eval_metric='logloss', verbose=False) # evaluate logloss metric on test set *without* using weights evals_result_without_weights = clf.evals_result() logloss_without_weights = evals_result_without_weights[ "validation_0"]["logloss"] # now use weights for the test set np.random.seed(0) weights_test = np.random.choice([1, 2], len(X_test)) clf.fit(X_train, y_train, sample_weight=weights_train, eval_set=[(X_test, y_test)], sample_weight_eval_set=[weights_test], eval_metric='logloss', verbose=False) evals_result_with_weights = clf.evals_result() logloss_with_weights = evals_result_with_weights["validation_0"]["logloss"] # check that the logloss in the test set is actually different when using # weights than when not using them assert all((logloss_with_weights[i] != logloss_without_weights[i] for i in [0, 1])) with pytest.raises(ValueError): # length of eval set and sample weight doesn't match. clf.fit(X_train, y_train, sample_weight=weights_train, eval_set=[(X_train, y_train), (X_test, y_test)], sample_weight_eval_set=[weights_train]) with pytest.raises(ValueError): cls = xgb.XGBClassifier() cls.fit(X_train, y_train, sample_weight=weights_train, eval_set=[(X_train, y_train), (X_test, y_test)], sample_weight_eval_set=[weights_train]) def test_validation_weights_xgbclassifier(): from sklearn.datasets import make_hastie_10_2 # prepare training and test data X, y = make_hastie_10_2(n_samples=2000, random_state=42) labels, y = np.unique(y, return_inverse=True) X_train, X_test = X[:1600], X[1600:] y_train, y_test = y[:1600], y[1600:] # instantiate model param_dist = {'objective': 'binary:logistic', 'n_estimators': 2, 'random_state': 123} clf = xgb.sklearn.XGBClassifier(**param_dist) # train it using instance weights only in the training set weights_train = np.random.choice([1, 2], len(X_train)) clf.fit(X_train, y_train, sample_weight=weights_train, eval_set=[(X_test, y_test)], eval_metric='logloss', verbose=False) # evaluate logloss metric on test set *without* using weights evals_result_without_weights = clf.evals_result() logloss_without_weights = evals_result_without_weights[ "validation_0"]["logloss"] # now use weights for the test set np.random.seed(0) weights_test = np.random.choice([1, 2], len(X_test)) clf.fit(X_train, y_train, sample_weight=weights_train, eval_set=[(X_test, y_test)], sample_weight_eval_set=[weights_test], eval_metric='logloss', verbose=False) evals_result_with_weights = clf.evals_result() logloss_with_weights = evals_result_with_weights["validation_0"]["logloss"] # check that the logloss in the test set is actually different # when using weights than when not using them assert all((logloss_with_weights[i] != logloss_without_weights[i] for i in [0, 1])) def save_load_model(model_path): from sklearn.datasets import load_digits from sklearn.model_selection import KFold digits = load_digits(n_class=2) y = digits['target'] X = digits['data'] kf = KFold(n_splits=2, shuffle=True, random_state=rng) for train_index, test_index in kf.split(X, y): xgb_model = xgb.XGBClassifier(use_label_encoder=False).fit(X[train_index], y[train_index]) xgb_model.save_model(model_path) xgb_model = xgb.XGBClassifier(use_label_encoder=False) xgb_model.load_model(model_path) assert isinstance(xgb_model.classes_, np.ndarray) assert isinstance(xgb_model._Booster, xgb.Booster) preds = xgb_model.predict(X[test_index]) labels = y[test_index] err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds)) assert err < 0.1 assert xgb_model.get_booster().attr('scikit_learn') is None # test native booster preds = xgb_model.predict(X[test_index], output_margin=True) booster = xgb.Booster(model_file=model_path) predt_1 = booster.predict(xgb.DMatrix(X[test_index]), output_margin=True) assert np.allclose(preds, predt_1) with pytest.raises(TypeError): xgb_model = xgb.XGBModel() xgb_model.load_model(model_path) def test_save_load_model(): with TemporaryDirectory() as tempdir: model_path = os.path.join(tempdir, 'digits.model') save_load_model(model_path) with TemporaryDirectory() as tempdir: model_path = os.path.join(tempdir, 'digits.model.json') save_load_model(model_path) from sklearn.datasets import load_digits with TemporaryDirectory() as tempdir: model_path = os.path.join(tempdir, 'digits.model.json') digits = load_digits(n_class=2) y = digits['target'] X = digits['data'] booster = xgb.train({'tree_method': 'hist', 'objective': 'binary:logistic'}, dtrain=xgb.DMatrix(X, y), num_boost_round=4) predt_0 = booster.predict(xgb.DMatrix(X)) booster.save_model(model_path) cls = xgb.XGBClassifier() cls.load_model(model_path) proba = cls.predict_proba(X) assert proba.shape[0] == X.shape[0] assert proba.shape[1] == 2 # binary predt_1 = cls.predict_proba(X)[:, 1] assert np.allclose(predt_0, predt_1) cls = xgb.XGBModel() cls.load_model(model_path) predt_1 = cls.predict(X) assert np.allclose(predt_0, predt_1) def test_RFECV(): from sklearn.datasets import load_boston from sklearn.datasets import load_breast_cancer from sklearn.datasets import load_iris from sklearn.feature_selection import RFECV # Regression X, y = load_boston(return_X_y=True) bst = xgb.XGBRegressor(booster='gblinear', learning_rate=0.1, n_estimators=10, objective='reg:squarederror', random_state=0, verbosity=0) rfecv = RFECV( estimator=bst, step=1, cv=3, scoring='neg_mean_squared_error') rfecv.fit(X, y) # Binary classification X, y = load_breast_cancer(return_X_y=True) bst = xgb.XGBClassifier(booster='gblinear', learning_rate=0.1, n_estimators=10, objective='binary:logistic', random_state=0, verbosity=0, use_label_encoder=False) rfecv = RFECV(estimator=bst, step=1, cv=3, scoring='roc_auc') rfecv.fit(X, y) # Multi-class classification X, y = load_iris(return_X_y=True) bst = xgb.XGBClassifier(base_score=0.4, booster='gblinear', learning_rate=0.1, n_estimators=10, objective='multi:softprob', random_state=0, reg_alpha=0.001, reg_lambda=0.01, scale_pos_weight=0.5, verbosity=0, use_label_encoder=False) rfecv = RFECV(estimator=bst, step=1, cv=3, scoring='neg_log_loss') rfecv.fit(X, y) X[0:4, :] = np.nan # verify scikit_learn doesn't throw with nan reg = xgb.XGBRegressor() rfecv = RFECV(estimator=reg) rfecv.fit(X, y) cls = xgb.XGBClassifier(use_label_encoder=False) rfecv = RFECV(estimator=cls, step=1, cv=3, scoring='neg_mean_squared_error') rfecv.fit(X, y) def test_XGBClassifier_resume(): from sklearn.datasets import load_breast_cancer from sklearn.metrics import log_loss with TemporaryDirectory() as tempdir: model1_path = os.path.join(tempdir, 'test_XGBClassifier.model') model1_booster_path = os.path.join(tempdir, 'test_XGBClassifier.booster') X, Y = load_breast_cancer(return_X_y=True) model1 = xgb.XGBClassifier( learning_rate=0.3, random_state=0, n_estimators=8) model1.fit(X, Y) pred1 = model1.predict(X) log_loss1 = log_loss(pred1, Y) # file name of stored xgb model model1.save_model(model1_path) model2 = xgb.XGBClassifier( learning_rate=0.3, random_state=0, n_estimators=8) model2.fit(X, Y, xgb_model=model1_path) pred2 = model2.predict(X) log_loss2 = log_loss(pred2, Y) assert np.any(pred1 != pred2) assert log_loss1 > log_loss2 # file name of 'Booster' instance Xgb model model1.get_booster().save_model(model1_booster_path) model2 = xgb.XGBClassifier( learning_rate=0.3, random_state=0, n_estimators=8) model2.fit(X, Y, xgb_model=model1_booster_path) pred2 = model2.predict(X) log_loss2 = log_loss(pred2, Y) assert np.any(pred1 != pred2) assert log_loss1 > log_loss2 def test_constraint_parameters(): reg = xgb.XGBRegressor(interaction_constraints='[[0, 1], [2, 3, 4]]') X = np.random.randn(10, 10) y = np.random.randn(10) reg.fit(X, y) config = json.loads(reg.get_booster().save_config()) assert config['learner']['gradient_booster']['updater']['grow_colmaker'][ 'train_param']['interaction_constraints'] == '[[0, 1], [2, 3, 4]]' def test_parameter_validation(): reg = xgb.XGBRegressor(foo='bar', verbosity=1) X = np.random.randn(10, 10) y = np.random.randn(10) with tm.captured_output() as (out, err): reg.fit(X, y) output = out.getvalue().strip() assert output.find('foo') != -1 reg = xgb.XGBRegressor(n_estimators=2, missing=3, importance_type='gain', verbosity=1) X = np.random.randn(10, 10) y = np.random.randn(10) with tm.captured_output() as (out, err): reg.fit(X, y) output = out.getvalue().strip() assert len(output) == 0 def test_deprecate_position_arg(): from sklearn.datasets import load_digits X, y = load_digits(return_X_y=True, n_class=2) w = y with pytest.warns(FutureWarning): xgb.XGBRegressor(3, learning_rate=0.1) model = xgb.XGBRegressor(n_estimators=1) with pytest.warns(FutureWarning): model.fit(X, y, w) with pytest.warns(FutureWarning): xgb.XGBClassifier(1, use_label_encoder=False) model = xgb.XGBClassifier(n_estimators=1, use_label_encoder=False) with pytest.warns(FutureWarning): model.fit(X, y, w) with pytest.warns(FutureWarning): xgb.XGBRanker('rank:ndcg', learning_rate=0.1) model = xgb.XGBRanker(n_estimators=1) group = np.repeat(1, X.shape[0]) with pytest.warns(FutureWarning): model.fit(X, y, group) with pytest.warns(FutureWarning): xgb.XGBRFRegressor(1, learning_rate=0.1) model = xgb.XGBRFRegressor(n_estimators=1) with pytest.warns(FutureWarning): model.fit(X, y, w) with pytest.warns(FutureWarning): xgb.XGBRFClassifier(1, use_label_encoder=True) model = xgb.XGBRFClassifier(n_estimators=1) with pytest.warns(FutureWarning): model.fit(X, y, w) @pytest.mark.skipif(**tm.no_pandas()) def test_pandas_input(): import pandas as pd from sklearn.calibration import CalibratedClassifierCV rng = np.random.RandomState(1994) kRows = 100 kCols = 6 X = rng.randint(low=0, high=2, size=kRows*kCols) X = X.reshape(kRows, kCols) df = pd.DataFrame(X) feature_names = [] for i in range(1, kCols): feature_names += ['k'+str(i)] df.columns = ['status'] + feature_names target = df['status'] train = df.drop(columns=['status']) model = xgb.XGBClassifier() model.fit(train, target) clf_isotonic = CalibratedClassifierCV(model, cv='prefit', method='isotonic') clf_isotonic.fit(train, target) assert isinstance(clf_isotonic.calibrated_classifiers_[0].base_estimator, xgb.XGBClassifier) np.testing.assert_allclose(np.array(clf_isotonic.classes_), np.array([0, 1])) def run_feature_weights(X, y, fw, model=xgb.XGBRegressor): with TemporaryDirectory() as tmpdir: colsample_bynode = 0.5 reg = model(tree_method='hist', colsample_bynode=colsample_bynode) reg.fit(X, y, feature_weights=fw) model_path = os.path.join(tmpdir, 'model.json') reg.save_model(model_path) with open(model_path) as fd: model = json.load(fd) parser_path = os.path.join(tm.PROJECT_ROOT, 'demo', 'json-model', 'json_parser.py') spec = importlib.util.spec_from_file_location("JsonParser", parser_path) foo = importlib.util.module_from_spec(spec) spec.loader.exec_module(foo) model = foo.Model(model) splits = {} total_nodes = 0 for tree in model.trees: n_nodes = len(tree.nodes) total_nodes += n_nodes for n in range(n_nodes): if tree.is_leaf(n): continue if splits.get(tree.split_index(n), None) is None: splits[tree.split_index(n)] = 1 else: splits[tree.split_index(n)] += 1 od = collections.OrderedDict(sorted(splits.items())) tuples = [(k, v) for k, v in od.items()] k, v = list(zip(*tuples)) w = np.polyfit(k, v, deg=1) return w def test_feature_weights(): kRows = 512 kCols = 64 X = rng.randn(kRows, kCols) y = rng.randn(kRows) fw = np.ones(shape=(kCols,)) for i in range(kCols): fw[i] *= float(i) poly_increasing = run_feature_weights(X, y, fw, xgb.XGBRegressor) fw = np.ones(shape=(kCols,)) for i in range(kCols): fw[i] *= float(kCols - i) poly_decreasing = run_feature_weights(X, y, fw, xgb.XGBRegressor) # Approxmated test, this is dependent on the implementation of random # number generator in std library. assert poly_increasing[0] > 0.08 assert poly_decreasing[0] < -0.08 def run_boost_from_prediction(tree_method): from sklearn.datasets import load_breast_cancer X, y = load_breast_cancer(return_X_y=True) model_0 = xgb.XGBClassifier( learning_rate=0.3, random_state=0, n_estimators=4, tree_method=tree_method) model_0.fit(X=X, y=y) margin = model_0.predict(X, output_margin=True) model_1 = xgb.XGBClassifier( learning_rate=0.3, random_state=0, n_estimators=4, tree_method=tree_method) model_1.fit(X=X, y=y, base_margin=margin) predictions_1 = model_1.predict(X, base_margin=margin) cls_2 = xgb.XGBClassifier( learning_rate=0.3, random_state=0, n_estimators=8, tree_method=tree_method) cls_2.fit(X=X, y=y) predictions_2 = cls_2.predict(X) assert np.all(predictions_1 == predictions_2) @pytest.mark.parametrize("tree_method", ["hist", "approx", "exact"]) def test_boost_from_prediction(tree_method): run_boost_from_prediction(tree_method) def test_estimator_type(): assert xgb.XGBClassifier._estimator_type == "classifier" assert xgb.XGBRFClassifier._estimator_type == "classifier" assert xgb.XGBRegressor._estimator_type == "regressor" assert xgb.XGBRFRegressor._estimator_type == "regressor" assert xgb.XGBRanker._estimator_type == "ranker" from sklearn.datasets import load_digits X, y = load_digits(n_class=2, return_X_y=True) cls = xgb.XGBClassifier(n_estimators=2).fit(X, y) with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, "cls.json") cls.save_model(path) reg = xgb.XGBRegressor() with pytest.raises(TypeError): reg.load_model(path) cls = xgb.XGBClassifier() cls.load_model(path) # no error def run_data_initialization(DMatrix, model, X, y): """Assert that we don't create duplicated DMatrix.""" old_init = DMatrix.__init__ count = [0] def new_init(self, **kwargs): count[0] += 1 return old_init(self, **kwargs) DMatrix.__init__ = new_init model(n_estimators=1).fit(X, y, eval_set=[(X, y)]) assert count[0] == 1 count[0] = 0 # only 1 DMatrix is created. y_copy = y.copy() model(n_estimators=1).fit(X, y, eval_set=[(X, y_copy)]) assert count[0] == 2 # a different Python object is considered different DMatrix.__init__ = old_init def test_data_initialization(): from sklearn.datasets import load_digits X, y = load_digits(return_X_y=True) run_data_initialization(xgb.DMatrix, xgb.XGBClassifier, X, y)
spark-xgboost-nv-release_1.4.0
tests/python/test_with_sklearn.py
import xgboost as xgb import testing as tm import numpy as np import pytest rng = np.random.RandomState(1337) class TestEvalMetrics: xgb_params_01 = { 'verbosity': 0, 'nthread': 1, 'eval_metric': 'error' } xgb_params_02 = { 'verbosity': 0, 'nthread': 1, 'eval_metric': ['error'] } xgb_params_03 = { 'verbosity': 0, 'nthread': 1, 'eval_metric': ['rmse', 'error'] } xgb_params_04 = { 'verbosity': 0, 'nthread': 1, 'eval_metric': ['error', 'rmse'] } def evalerror_01(self, preds, dtrain): labels = dtrain.get_label() return 'error', float(sum(labels != (preds > 0.0))) / len(labels) def evalerror_02(self, preds, dtrain): labels = dtrain.get_label() return [('error', float(sum(labels != (preds > 0.0))) / len(labels))] @pytest.mark.skipif(**tm.no_sklearn()) def evalerror_03(self, preds, dtrain): from sklearn.metrics import mean_squared_error labels = dtrain.get_label() return [('rmse', mean_squared_error(labels, preds)), ('error', float(sum(labels != (preds > 0.0))) / len(labels))] @pytest.mark.skipif(**tm.no_sklearn()) def evalerror_04(self, preds, dtrain): from sklearn.metrics import mean_squared_error labels = dtrain.get_label() return [('error', float(sum(labels != (preds > 0.0))) / len(labels)), ('rmse', mean_squared_error(labels, preds))] @pytest.mark.skipif(**tm.no_sklearn()) def test_eval_metrics(self): try: from sklearn.model_selection import train_test_split except ImportError: from sklearn.cross_validation import train_test_split from sklearn.datasets import load_digits digits = load_digits(n_class=2) X = digits['data'] y = digits['target'] Xt, Xv, yt, yv = train_test_split(X, y, test_size=0.2, random_state=0) dtrain = xgb.DMatrix(Xt, label=yt) dvalid = xgb.DMatrix(Xv, label=yv) watchlist = [(dtrain, 'train'), (dvalid, 'val')] gbdt_01 = xgb.train(self.xgb_params_01, dtrain, num_boost_round=10) gbdt_02 = xgb.train(self.xgb_params_02, dtrain, num_boost_round=10) gbdt_03 = xgb.train(self.xgb_params_03, dtrain, num_boost_round=10) assert gbdt_01.predict(dvalid)[0] == gbdt_02.predict(dvalid)[0] assert gbdt_01.predict(dvalid)[0] == gbdt_03.predict(dvalid)[0] gbdt_01 = xgb.train(self.xgb_params_01, dtrain, 10, watchlist, early_stopping_rounds=2) gbdt_02 = xgb.train(self.xgb_params_02, dtrain, 10, watchlist, early_stopping_rounds=2) gbdt_03 = xgb.train(self.xgb_params_03, dtrain, 10, watchlist, early_stopping_rounds=2) gbdt_04 = xgb.train(self.xgb_params_04, dtrain, 10, watchlist, early_stopping_rounds=2) assert gbdt_01.predict(dvalid)[0] == gbdt_02.predict(dvalid)[0] assert gbdt_01.predict(dvalid)[0] == gbdt_03.predict(dvalid)[0] assert gbdt_03.predict(dvalid)[0] != gbdt_04.predict(dvalid)[0] gbdt_01 = xgb.train(self.xgb_params_01, dtrain, 10, watchlist, early_stopping_rounds=2, feval=self.evalerror_01) gbdt_02 = xgb.train(self.xgb_params_02, dtrain, 10, watchlist, early_stopping_rounds=2, feval=self.evalerror_02) gbdt_03 = xgb.train(self.xgb_params_03, dtrain, 10, watchlist, early_stopping_rounds=2, feval=self.evalerror_03) gbdt_04 = xgb.train(self.xgb_params_04, dtrain, 10, watchlist, early_stopping_rounds=2, feval=self.evalerror_04) assert gbdt_01.predict(dvalid)[0] == gbdt_02.predict(dvalid)[0] assert gbdt_01.predict(dvalid)[0] == gbdt_03.predict(dvalid)[0] assert gbdt_03.predict(dvalid)[0] != gbdt_04.predict(dvalid)[0] @pytest.mark.skipif(**tm.no_sklearn()) def test_gamma_deviance(self): from sklearn.metrics import mean_gamma_deviance rng = np.random.RandomState(1994) n_samples = 100 n_features = 30 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) y = y - y.min() * 100 reg = xgb.XGBRegressor(tree_method="hist", objective="reg:gamma", n_estimators=10) reg.fit(X, y, eval_metric="gamma-deviance") booster = reg.get_booster() score = reg.predict(X) gamma_dev = float(booster.eval(xgb.DMatrix(X, y)).split(":")[1].split(":")[0]) skl_gamma_dev = mean_gamma_deviance(y, score) np.testing.assert_allclose(gamma_dev, skl_gamma_dev, rtol=1e-6) def run_roc_auc_binary(self, tree_method, n_samples): import numpy as np from sklearn.datasets import make_classification from sklearn.metrics import roc_auc_score rng = np.random.RandomState(1994) n_samples = n_samples n_features = 10 X, y = make_classification( n_samples, n_features, n_informative=n_features, n_redundant=0, random_state=rng ) Xy = xgb.DMatrix(X, y) booster = xgb.train( { "tree_method": tree_method, "eval_metric": "auc", "objective": "binary:logistic", }, Xy, num_boost_round=8, ) score = booster.predict(Xy) skl_auc = roc_auc_score(y, score) auc = float(booster.eval(Xy).split(":")[1]) np.testing.assert_allclose(skl_auc, auc, rtol=1e-6) X = rng.randn(*X.shape) score = booster.predict(xgb.DMatrix(X)) skl_auc = roc_auc_score(y, score) auc = float(booster.eval(xgb.DMatrix(X, y)).split(":")[1]) np.testing.assert_allclose(skl_auc, auc, rtol=1e-6) @pytest.mark.skipif(**tm.no_sklearn()) @pytest.mark.parametrize("n_samples", [4, 100, 1000]) def test_roc_auc(self, n_samples): self.run_roc_auc_binary("hist", n_samples) def run_roc_auc_multi(self, tree_method, n_samples): import numpy as np from sklearn.datasets import make_classification from sklearn.metrics import roc_auc_score rng = np.random.RandomState(1994) n_samples = n_samples n_features = 10 n_classes = 4 X, y = make_classification( n_samples, n_features, n_informative=n_features, n_redundant=0, n_classes=n_classes, random_state=rng ) Xy = xgb.DMatrix(X, y) booster = xgb.train( { "tree_method": tree_method, "eval_metric": "auc", "objective": "multi:softprob", "num_class": n_classes, }, Xy, num_boost_round=8, ) score = booster.predict(Xy) skl_auc = roc_auc_score(y, score, average="weighted", multi_class="ovr") auc = float(booster.eval(Xy).split(":")[1]) np.testing.assert_allclose(skl_auc, auc, rtol=1e-6) X = rng.randn(*X.shape) score = booster.predict(xgb.DMatrix(X)) skl_auc = roc_auc_score(y, score, average="weighted", multi_class="ovr") auc = float(booster.eval(xgb.DMatrix(X, y)).split(":")[1]) np.testing.assert_allclose(skl_auc, auc, rtol=1e-6) @pytest.mark.parametrize("n_samples", [4, 100, 1000]) def test_roc_auc_multi(self, n_samples): self.run_roc_auc_multi("hist", n_samples)
spark-xgboost-nv-release_1.4.0
tests/python/test_eval_metrics.py
import numpy as np import xgboost as xgb import testing as tm import pytest dpath = 'demo/data/' def is_increasing(y): return np.count_nonzero(np.diff(y) < 0.0) == 0 def is_decreasing(y): return np.count_nonzero(np.diff(y) > 0.0) == 0 def is_correctly_constrained(learner): n = 100 variable_x = np.linspace(0, 1, n).reshape((n, 1)) fixed_xs_values = np.linspace(0, 1, n) for i in range(n): fixed_x = fixed_xs_values[i] * np.ones((n, 1)) monotonically_increasing_x = np.column_stack((variable_x, fixed_x)) monotonically_increasing_dset = xgb.DMatrix(monotonically_increasing_x) monotonically_increasing_y = learner.predict( monotonically_increasing_dset ) monotonically_decreasing_x = np.column_stack((fixed_x, variable_x)) monotonically_decreasing_dset = xgb.DMatrix(monotonically_decreasing_x) monotonically_decreasing_y = learner.predict( monotonically_decreasing_dset ) if not ( is_increasing(monotonically_increasing_y) and is_decreasing(monotonically_decreasing_y) ): return False return True number_of_dpoints = 1000 x1_positively_correlated_with_y = np.random.random(size=number_of_dpoints) x2_negatively_correlated_with_y = np.random.random(size=number_of_dpoints) x = np.column_stack(( x1_positively_correlated_with_y, x2_negatively_correlated_with_y )) zs = np.random.normal(loc=0.0, scale=0.01, size=number_of_dpoints) y = ( 5 * x1_positively_correlated_with_y + np.sin(10 * np.pi * x1_positively_correlated_with_y) - 5 * x2_negatively_correlated_with_y - np.cos(10 * np.pi * x2_negatively_correlated_with_y) + zs ) training_dset = xgb.DMatrix(x, label=y) class TestMonotoneConstraints: def test_monotone_constraints_for_exact_tree_method(self): # first check monotonicity for the 'exact' tree method params_for_constrained_exact_method = { 'tree_method': 'exact', 'verbosity': 1, 'monotone_constraints': '(1, -1)' } constrained_exact_method = xgb.train( params_for_constrained_exact_method, training_dset ) assert is_correctly_constrained(constrained_exact_method) def test_monotone_constraints_for_depthwise_hist_tree_method(self): # next check monotonicity for the 'hist' tree method params_for_constrained_hist_method = { 'tree_method': 'hist', 'verbosity': 1, 'monotone_constraints': '(1, -1)' } constrained_hist_method = xgb.train( params_for_constrained_hist_method, training_dset ) assert is_correctly_constrained(constrained_hist_method) def test_monotone_constraints_for_lossguide_hist_tree_method(self): # next check monotonicity for the 'hist' tree method params_for_constrained_hist_method = { 'tree_method': 'hist', 'verbosity': 1, 'grow_policy': 'lossguide', 'monotone_constraints': '(1, -1)' } constrained_hist_method = xgb.train( params_for_constrained_hist_method, training_dset ) assert is_correctly_constrained(constrained_hist_method) @pytest.mark.skipif(**tm.no_sklearn()) def test_training_accuracy(self): from sklearn.metrics import accuracy_score dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train?indexing_mode=1') dtest = xgb.DMatrix(dpath + 'agaricus.txt.test?indexing_mode=1') params = {'eta': 1, 'max_depth': 6, 'objective': 'binary:logistic', 'tree_method': 'hist', 'monotone_constraints': '(1, 0)'} num_boost_round = 5 params['grow_policy'] = 'lossguide' bst = xgb.train(params, dtrain, num_boost_round) pred_dtest = (bst.predict(dtest) < 0.5) assert accuracy_score(dtest.get_label(), pred_dtest) < 0.1 params['grow_policy'] = 'depthwise' bst = xgb.train(params, dtrain, num_boost_round) pred_dtest = (bst.predict(dtest) < 0.5) assert accuracy_score(dtest.get_label(), pred_dtest) < 0.1
spark-xgboost-nv-release_1.4.0
tests/python/test_monotone_constraints.py
#!/usr/bin/python import xgboost as xgb import numpy as np xgb.rabit.init() X = [ [15.00,28.90,29.00,3143.70,0.00,0.10,69.90,90.00,13726.07,0.00,2299.70,0.00,0.05, 4327.03,0.00,24.00,0.18,3.00,0.41,3.77,0.00,0.00,4.00,0.00,150.92,0.00,2.00,0.00, 0.01,138.00,1.00,0.02,69.90,0.00,0.83,5.00,0.01,0.12,47.30,0.00,296.00,0.16,0.00, 0.00,27.70,7.00,7.25,4406.16,1.00,0.54,245.28,3.00,0.06,306.50,5143.00,29.00,23.74, 548.00,2.00,68.00,70.90,25.45,0.39,0.00,0.01,497.11,0.00,42.00,83.00,4.00,0.00,1.00, 0.00,104.35,94.12,0.03,79.23,237.69,1.00,0.04,0.01,0.02,2.00,108.81,7.00,12.00,0.46, 31.00,0.00,0.15,74.59,0.00,19.50,0.00,0.75,0.06,0.08,118.00,35.90,0.01,0.07,1.00, 0.03,81.18,13.33,0.00,0.00,0.00,0.00,0.00,0.41,0.00,0.15,57.00,0.00,22.00,449.68, 0.00,0.00,2.00,195.26,51.58,306.50,0.10,1.00,0.00,258.00,21.00,0.43,3.00,16.00,0.00, 0.00,0.00,0.00,1.00,74.51,4.00,0.02,35.90,30.00,8.69,0.00,0.36,5.00,2.00,3.00,0.26, 9.50,8.00,11.00,11918.15,0.00,258.00,13.00,9.04,0.14,604.65,0.92,74.59,0.00,0.00, 72.76,1.00,0.22,64.00,2.00,0.00,0.00,0.02,0.00,305.50,27.70,0.02,0.00,177.00,14.00, 0.00,0.05,90.00,0.03,0.00,1.00,0.43,4.00,0.05,0.09,431.00,0.00,2.00,0.00,0.00,1.00, 0.25,0.17,0.00,0.00,21.00,94.12,0.17,0.00,0.00,0.00,548.00,0.00,68.00,0.00,0.00,9.50, 25.45,1390.31,7.00,0.00,2.00,310.70,0.00,0.01,0.01,0.03,81.40,1.00,0.02,0.00,9.00, 6.00,0.00,175.76,36.00,0.00,20.75,2.00,0.00,0.00,0.00,0.22,74.16,0.10,56.81,0.00, 2197.03,0.00,197.66,0.00,55.00,20.00,367.18,22.00,0.00,0.01,1510.26,0.24,0.00,0.01, 0.00,11.00,278.10,61.70,278.10,0.00,0.08,0.57,1.00,0.65,255.60,0.00,0.86,0.25,70.95, 2299.70,0.23,0.05,92.70,1.00,38.00,0.00,0.00,56.81,21.85,0.00,23.74,0.00,2.00,0.03, 2.00,0.00,347.58,30.00,243.55,109.00,0.00,296.00,6.00,6.00,0.00,0.00,109.00,2299.70, 0.00,0.01,0.08,1.00,4745.09,4.00,0.18,0.00,0.17,0.02,0.00,1.00,147.13,71.07,2115.16, 0.00,0.26,0.00,43.00,604.90,49.44,4327.03,0.68,0.75,0.10,86.36,52.98,0.20,0.00,22.50, 305.50,0.00,1.00,0.00,7.00,0.78,0.00,296.00,22.50,0.00,5.00,2979.54,1.00,14.00,51.00, 0.42,0.11,0.00,1.00,0.00,0.00,70.90,37.84,0.02,548.40,0.00,46.35,5.00,1.66,0.29,0.00, 0.02,2255.69,160.53,790.64,6775.15,0.68,19.50,2299.70,79.87,6.00,0.00,60.00,0.27, 233.77,10.00,0.00,0.00,23.00,82.27,1.00,0.00,1.00,0.42,1.00,0.01,0.40,0.41,9.50,2299.70, 46.30,0.00,0.00,2299.70,3.00,0.00,0.00,83.00,1.00], [48.00,80.89,69.90,11570.00,26.00,0.40,468.00,0.00,5739.46,0.00,1480.00,90.89,0.00, 14042.09,3600.08,120.00,0.09,31.00,0.25,2.36,0.00,7.00,22.00,0.00,257.59,0.00,6.00, 260.00,0.05,313.00,1.00,0.07,468.00,0.00,0.67,11.00,0.02,0.32,0.00,0.00,1387.61,0.34, 0.00,0.00,158.04,6.00,13.98,12380.05,0.00,0.16,122.74,3.00,0.18,291.33,7517.79,124.00, 45.08,900.00,1.00,0.00,577.25,79.75,0.39,0.00,0.00,244.62,0.00,57.00,178.00,19.00, 0.00,1.00,386.10,103.51,480.00,0.06,129.41,334.31,1.00,0.06,0.00,0.06,3.00,125.55, 0.00,76.00,0.14,30.00,0.00,0.03,411.29,791.33,55.00,0.12,3.80,0.07,0.01,188.00,221.11, 0.01,0.15,1.00,0.18,144.32,15.00,0.00,0.05,0.00,3.00,0.00,0.20,0.00,0.14,62.00,0.06, 55.00,239.35,0.00,0.00,2.00,534.20,747.50,400.57,0.40,0.00,0.00,219.98,30.00,0.25, 1.00,70.00,0.02,0.04,0.00,0.00,7.00,747.50,8.67,0.06,271.01,28.00,5.63,75.39,0.46, 11.00,3.00,19.00,0.38,131.74,23.00,39.00,30249.41,0.00,202.68,2.00,64.94,0.03,2787.68, 0.54,35.00,0.02,106.03,25.00,1.00,0.10,45.00,2.00,0.00,0.00,0.00,0.00,449.27,172.38, 0.05,0.00,550.00,130.00,2006.55,0.07,0.00,0.03,0.00,5.00,0.21,22.00,0.05,0.01,1011.40, 0.00,4.00,3600.08,0.00,1.00,1.00,1.00,0.00,3.00,9.00,270.00,0.12,0.03,0.00,0.00,820.00, 1827.50,0.00,100.33,0.00,131.74,53.16,9557.97,7.00,0.00,11.00,180.81,0.00,0.01,0.04, 0.02,1480.00,0.92,0.05,0.00,15.00,6.00,0.00,161.42,28.00,169.00,35.60,4.00,0.12,0.00, 0.00,0.27,230.56,0.42,171.90,0.00,28407.51,1.00,883.10,0.00,261.00,9.00,1031.67,38.00, 0.00,0.04,1607.68,0.32,791.33,0.04,1403.00,2.00,2260.50,88.08,2260.50,0.00,0.12,0.75, 3.00,0.00,1231.68,0.07,0.60,0.24,0.00,0.00,0.15,0.14,753.50,1.00,95.00,7.00,0.26, 77.63,38.45,0.00,42.65,0.00,14.00,0.07,6.00,0.00,1911.59,43.00,386.77,1324.80,0.00, 518.00,10.00,10.00,0.11,0.00,1324.80,0.00,0.00,0.02,0.16,1.00,10492.12,5.00,0.94, 5.00,0.08,0.10,1.00,0.92,3731.49,105.81,6931.39,0.00,0.43,0.00,118.00,5323.71,81.66, 14042.09,0.08,0.20,0.40,96.64,0.00,0.08,4.00,1028.82,353.00,0.00,2.00,32.00,43.00, 5.16,75.39,900.00,232.10,3.00,5.00,6049.88,1.00,126.00,46.00,0.59,0.15,0.00,8.00, 7.00,0.00,577.25,0.00,0.07,2415.10,0.00,83.72,9.00,1.76,0.20,0.00,0.17,3278.65,155.26, 4415.50,22731.62,1.00,55.00,0.00,499.94,22.00,0.58,67.00,0.21,341.72,16.00,0.00,965.07, 17.00,138.41,0.00,0.00,1.00,0.14,1.00,0.02,0.35,1.69,369.00,1300.00,25.00,0.00,0.01, 0.00,0.00,0.00,0.00,52.00,8.00]] X = np.array(X) y = [1, 0] dtrain = xgb.DMatrix(X, label=y) param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic' } watchlist = [(dtrain,'train')] num_round = 2 bst = xgb.train(param, dtrain, num_round, watchlist) if xgb.rabit.get_rank() == 0: bst.save_model("test_issue3402.model") xgb.rabit.tracker_print("Finished training\n") # Notify the tracker all training has been successful # This is only needed in distributed training. xgb.rabit.finalize()
spark-xgboost-nv-release_1.4.0
tests/distributed/test_issue3402.py
#!/usr/bin/python import xgboost as xgb # Always call this before using distributed module xgb.rabit.init() # Load file, file will be automatically sharded in distributed mode. dtrain = xgb.DMatrix('../../demo/data/agaricus.txt.train') dtest = xgb.DMatrix('../../demo/data/agaricus.txt.test') # Specify parameters via map, definition are same as c++ version param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'} # Specify validations set to watch performance watchlist = [(dtest, 'eval'), (dtrain, 'train')] num_round = 20 # Run training, all the features in training API is available. # Currently, this script only support calling train once for fault recovery purpose. bst = xgb.train(param, dtrain, num_round, watchlist, early_stopping_rounds=2) # Save the model, only ask process 0 to save the model. if xgb.rabit.get_rank() == 0: bst.save_model("test.model") xgb.rabit.tracker_print("Finished training\n") # Notify the tracker all training has been successful # This is only needed in distributed training. xgb.rabit.finalize()
spark-xgboost-nv-release_1.4.0
tests/distributed/test_basic.py
"""Distributed GPU tests.""" import sys import xgboost as xgb import os import numpy as np def run_test(name, params_fun): """Runs a distributed GPU test.""" # Always call this before using distributed module xgb.rabit.init() rank = xgb.rabit.get_rank() world = xgb.rabit.get_world_size() # Load file, file will be automatically sharded in distributed mode. dtrain = xgb.DMatrix('../../demo/data/agaricus.txt.train') dtest = xgb.DMatrix('../../demo/data/agaricus.txt.test') params, n_rounds = params_fun(rank) # Specify validations set to watch performance watchlist = [(dtest, 'eval'), (dtrain, 'train')] # Run training, all the features in training API is available. # Currently, this script only support calling train once for fault recovery purpose. bst = xgb.train(params, dtrain, n_rounds, watchlist, early_stopping_rounds=2) # Have each worker save its model model_name = "test.model.%s.%d" % (name, rank) bst.dump_model(model_name, with_stats=True) xgb.rabit.allreduce(np.ones((1, 1)), xgb.rabit.Op.MAX) # sync xgb.rabit.tracker_print("Finished training\n") if (rank == 0): for i in range(0, world): model_name_root = "test.model.%s.%d" % (name, i) for j in range(0, world): if i == j: continue with open(model_name_root, 'r') as model_root: contents_root = model_root.read() model_name_rank = "test.model.%s.%d" % (name, j) with open(model_name_rank, 'r') as model_rank: contents_rank = model_rank.read() if contents_root != contents_rank: raise Exception( ('Worker models diverged: test.model.%s.%d ' 'differs from test.model.%s.%d') % (name, i, name, j)) xgb.rabit.finalize() base_params = { 'tree_method': 'gpu_hist', 'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective': 'binary:logistic', 'debug_synchronize': True } def params_basic_1x4(rank): return dict(base_params, **{ 'gpu_id': rank, }), 20 rf_update_params = { 'subsample': 0.5, 'colsample_bynode': 0.5 } def wrap_rf(params_fun): def wrapped_params_fun(rank): params, n_estimators = params_fun(rank) rf_params = dict(rf_update_params, num_parallel_tree=n_estimators) return dict(params, **rf_params), 1 return wrapped_params_fun params_rf_1x4 = wrap_rf(params_basic_1x4) test_name = sys.argv[1] run_test(test_name, globals()['params_%s' % test_name])
spark-xgboost-nv-release_1.4.0
tests/distributed/distributed_gpu.py
import numpy as np import sys import gc import pytest import xgboost as xgb from hypothesis import given, strategies, assume, settings, note sys.path.append("tests/python") import testing as tm parameter_strategy = strategies.fixed_dictionaries({ 'max_depth': strategies.integers(0, 11), 'max_leaves': strategies.integers(0, 256), 'max_bin': strategies.integers(2, 1024), 'grow_policy': strategies.sampled_from(['lossguide', 'depthwise']), 'single_precision_histogram': strategies.booleans(), 'min_child_weight': strategies.floats(0.5, 2.0), 'seed': strategies.integers(0, 10), # We cannot enable subsampling as the training loss can increase # 'subsample': strategies.floats(0.5, 1.0), 'colsample_bytree': strategies.floats(0.5, 1.0), 'colsample_bylevel': strategies.floats(0.5, 1.0), }).filter(lambda x: (x['max_depth'] > 0 or x['max_leaves'] > 0) and ( x['max_depth'] > 0 or x['grow_policy'] == 'lossguide')) def train_result(param, dmat, num_rounds): result = {} xgb.train(param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False, evals_result=result) return result class TestGPUUpdaters: @given(parameter_strategy, strategies.integers(1, 20), tm.dataset_strategy) @settings(deadline=None) def test_gpu_hist(self, param, num_rounds, dataset): param['tree_method'] = 'gpu_hist' param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds) note(result) assert tm.non_increasing(result['train'][dataset.metric]) def run_categorical_basic(self, rows, cols, rounds, cats): import pandas as pd rng = np.random.RandomState(1994) pd_dict = {} for i in range(cols): c = rng.randint(low=0, high=cats+1, size=rows) pd_dict[str(i)] = pd.Series(c, dtype=np.int64) df = pd.DataFrame(pd_dict) label = df.iloc[:, 0] for i in range(0, cols-1): label += df.iloc[:, i] label += 1 df = df.astype('category') onehot = pd.get_dummies(df) cat = df by_etl_results = {} by_builtin_results = {} parameters = {'tree_method': 'gpu_hist', 'predictor': 'gpu_predictor'} m = xgb.DMatrix(onehot, label, enable_categorical=True) xgb.train(parameters, m, num_boost_round=rounds, evals=[(m, 'Train')], evals_result=by_etl_results) m = xgb.DMatrix(cat, label, enable_categorical=True) xgb.train(parameters, m, num_boost_round=rounds, evals=[(m, 'Train')], evals_result=by_builtin_results) np.testing.assert_allclose( np.array(by_etl_results['Train']['rmse']), np.array(by_builtin_results['Train']['rmse']), rtol=1e-3) assert tm.non_increasing(by_builtin_results['Train']['rmse']) @given(strategies.integers(10, 400), strategies.integers(3, 8), strategies.integers(1, 5), strategies.integers(4, 7)) @settings(deadline=None) @pytest.mark.skipif(**tm.no_pandas()) def test_categorical(self, rows, cols, rounds, cats): pytest.xfail(reason='TestGPUUpdaters::test_categorical is flaky') self.run_categorical_basic(rows, cols, rounds, cats) def test_categorical_32_cat(self): '''32 hits the bound of integer bitset, so special test''' rows = 1000 cols = 10 cats = 32 rounds = 4 self.run_categorical_basic(rows, cols, rounds, cats) @pytest.mark.skipif(**tm.no_cupy()) @given(parameter_strategy, strategies.integers(1, 20), tm.dataset_strategy) @settings(deadline=None) def test_gpu_hist_device_dmatrix(self, param, num_rounds, dataset): # We cannot handle empty dataset yet assume(len(dataset.y) > 0) param['tree_method'] = 'gpu_hist' param = dataset.set_params(param) result = train_result(param, dataset.get_device_dmat(), num_rounds) note(result) assert tm.non_increasing(result['train'][dataset.metric]) @given(parameter_strategy, strategies.integers(1, 20), tm.dataset_strategy) @settings(deadline=None) def test_external_memory(self, param, num_rounds, dataset): pytest.xfail(reason='TestGPUUpdaters::test_external_memory is flaky') # We cannot handle empty dataset yet assume(len(dataset.y) > 0) param['tree_method'] = 'gpu_hist' param = dataset.set_params(param) m = dataset.get_external_dmat() external_result = train_result(param, m, num_rounds) del m gc.collect() assert tm.non_increasing(external_result['train'][dataset.metric]) def test_empty_dmatrix_prediction(self): # FIXME(trivialfis): This should be done with all updaters kRows = 0 kCols = 100 X = np.empty((kRows, kCols)) y = np.empty((kRows)) dtrain = xgb.DMatrix(X, y) bst = xgb.train({'verbosity': 2, 'tree_method': 'gpu_hist', 'gpu_id': 0}, dtrain, verbose_eval=True, num_boost_round=6, evals=[(dtrain, 'Train')]) kRows = 100 X = np.random.randn(kRows, kCols) dtest = xgb.DMatrix(X) predictions = bst.predict(dtest) np.testing.assert_allclose(predictions, 0.5, 1e-6) @pytest.mark.mgpu @given(tm.dataset_strategy, strategies.integers(0, 10)) @settings(deadline=None, max_examples=10) def test_specified_gpu_id_gpu_update(self, dataset, gpu_id): param = {'tree_method': 'gpu_hist', 'gpu_id': gpu_id} param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), 10) assert tm.non_increasing(result['train'][dataset.metric])
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_gpu_updaters.py
import sys import pytest import numpy as np import xgboost as xgb from xgboost.compat import PANDAS_INSTALLED from hypothesis import given, strategies, assume, settings, note if PANDAS_INSTALLED: from hypothesis.extra.pandas import column, data_frames, range_indexes else: def noop(*args, **kwargs): pass column, data_frames, range_indexes = noop, noop, noop sys.path.append("tests/python") import testing as tm from test_predict import run_threaded_predict # noqa from test_predict import run_predict_leaf # noqa rng = np.random.RandomState(1994) shap_parameter_strategy = strategies.fixed_dictionaries({ 'max_depth': strategies.integers(0, 11), 'max_leaves': strategies.integers(0, 256), 'num_parallel_tree': strategies.sampled_from([1, 10]), }).filter(lambda x: x['max_depth'] > 0 or x['max_leaves'] > 0) predict_parameter_strategy = strategies.fixed_dictionaries({ 'max_depth': strategies.integers(1, 8), 'num_parallel_tree': strategies.sampled_from([1, 4]), }) class TestGPUPredict: def test_predict(self): iterations = 10 np.random.seed(1) test_num_rows = [10, 1000, 5000] test_num_cols = [10, 50, 500] # This test passes for tree_method=gpu_hist and tree_method=exact. but # for `hist` and `approx` the floating point error accumulates faster # and fails even tol is set to 1e-4. For `hist`, the mismatching rate # with 5000 rows is 0.04. for num_rows in test_num_rows: for num_cols in test_num_cols: dtrain = xgb.DMatrix(np.random.randn(num_rows, num_cols), label=[0, 1] * int(num_rows / 2)) dval = xgb.DMatrix(np.random.randn(num_rows, num_cols), label=[0, 1] * int(num_rows / 2)) dtest = xgb.DMatrix(np.random.randn(num_rows, num_cols), label=[0, 1] * int(num_rows / 2)) watchlist = [(dtrain, 'train'), (dval, 'validation')] res = {} param = { "objective": "binary:logistic", "predictor": "gpu_predictor", 'eval_metric': 'logloss', 'tree_method': 'gpu_hist', 'max_depth': 1 } bst = xgb.train(param, dtrain, iterations, evals=watchlist, evals_result=res) assert self.non_increasing(res["train"]["logloss"]) gpu_pred_train = bst.predict(dtrain, output_margin=True) gpu_pred_test = bst.predict(dtest, output_margin=True) gpu_pred_val = bst.predict(dval, output_margin=True) param["predictor"] = "cpu_predictor" bst_cpu = xgb.train(param, dtrain, iterations, evals=watchlist) cpu_pred_train = bst_cpu.predict(dtrain, output_margin=True) cpu_pred_test = bst_cpu.predict(dtest, output_margin=True) cpu_pred_val = bst_cpu.predict(dval, output_margin=True) np.testing.assert_allclose(cpu_pred_train, gpu_pred_train, rtol=1e-6) np.testing.assert_allclose(cpu_pred_val, gpu_pred_val, rtol=1e-6) np.testing.assert_allclose(cpu_pred_test, gpu_pred_test, rtol=1e-6) def non_increasing(self, L): return all((y - x) < 0.001 for x, y in zip(L, L[1:])) # Test case for a bug where multiple batch predictions made on a # test set produce incorrect results @pytest.mark.skipif(**tm.no_sklearn()) def test_multi_predict(self): from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split n = 1000 X, y = make_regression(n, random_state=rng) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=123) dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test) params = {} params["tree_method"] = "gpu_hist" params['predictor'] = "gpu_predictor" bst_gpu_predict = xgb.train(params, dtrain) params['predictor'] = "cpu_predictor" bst_cpu_predict = xgb.train(params, dtrain) predict0 = bst_gpu_predict.predict(dtest) predict1 = bst_gpu_predict.predict(dtest) cpu_predict = bst_cpu_predict.predict(dtest) assert np.allclose(predict0, predict1) assert np.allclose(predict0, cpu_predict) @pytest.mark.skipif(**tm.no_sklearn()) def test_sklearn(self): m, n = 15000, 14 tr_size = 2500 X = np.random.rand(m, n) y = 200 * np.matmul(X, np.arange(-3, -3 + n)) X_train, y_train = X[:tr_size, :], y[:tr_size] X_test, y_test = X[tr_size:, :], y[tr_size:] # First with cpu_predictor params = {'tree_method': 'gpu_hist', 'predictor': 'cpu_predictor', 'n_jobs': -1, 'seed': 123} m = xgb.XGBRegressor(**params).fit(X_train, y_train) cpu_train_score = m.score(X_train, y_train) cpu_test_score = m.score(X_test, y_test) # Now with gpu_predictor params['predictor'] = 'gpu_predictor' m = xgb.XGBRegressor(**params).fit(X_train, y_train) gpu_train_score = m.score(X_train, y_train) gpu_test_score = m.score(X_test, y_test) assert np.allclose(cpu_train_score, gpu_train_score) assert np.allclose(cpu_test_score, gpu_test_score) def run_inplace_base_margin(self, booster, dtrain, X, base_margin): import cupy as cp dtrain.set_info(base_margin=base_margin) from_inplace = booster.inplace_predict(data=X, base_margin=base_margin) from_dmatrix = booster.predict(dtrain) cp.testing.assert_allclose(from_inplace, from_dmatrix) @pytest.mark.skipif(**tm.no_cupy()) def test_inplace_predict_cupy(self): import cupy as cp cp.cuda.runtime.setDevice(0) rows = 1000 cols = 10 missing = 11 # set to integer for testing cp_rng = cp.random.RandomState(1994) cp.random.set_random_state(cp_rng) X = cp.random.randn(rows, cols) missing_idx = [i for i in range(0, cols, 4)] X[:, missing_idx] = missing # set to be missing y = cp.random.randn(rows) dtrain = xgb.DMatrix(X, y) booster = xgb.train({'tree_method': 'gpu_hist'}, dtrain, num_boost_round=10) test = xgb.DMatrix(X[:10, ...], missing=missing) predt_from_array = booster.inplace_predict(X[:10, ...], missing=missing) predt_from_dmatrix = booster.predict(test) cp.testing.assert_allclose(predt_from_array, predt_from_dmatrix) def predict_dense(x): inplace_predt = booster.inplace_predict(x) d = xgb.DMatrix(x) copied_predt = cp.array(booster.predict(d)) return cp.all(copied_predt == inplace_predt) # Don't do this on Windows, see issue #5793 if sys.platform.startswith("win"): pytest.skip( 'Multi-threaded in-place prediction with cuPy is not working on Windows') for i in range(10): run_threaded_predict(X, rows, predict_dense) base_margin = cp_rng.randn(rows) self.run_inplace_base_margin(booster, dtrain, X, base_margin) # Create a wide dataset X = cp_rng.randn(100, 10000) y = cp_rng.randn(100) missing_idx = [i for i in range(0, X.shape[1], 16)] X[:, missing_idx] = missing reg = xgb.XGBRegressor(tree_method="gpu_hist", n_estimators=8, missing=missing) reg.fit(X, y) gpu_predt = reg.predict(X) reg.set_params(predictor="cpu_predictor") cpu_predt = reg.predict(X) np.testing.assert_allclose(gpu_predt, cpu_predt, atol=1e-6) @pytest.mark.skipif(**tm.no_cudf()) def test_inplace_predict_cudf(self): import cupy as cp import cudf import pandas as pd rows = 1000 cols = 10 rng = np.random.RandomState(1994) cp.cuda.runtime.setDevice(0) X = rng.randn(rows, cols) X = pd.DataFrame(X) y = rng.randn(rows) X = cudf.from_pandas(X) dtrain = xgb.DMatrix(X, y) booster = xgb.train({'tree_method': 'gpu_hist'}, dtrain, num_boost_round=10) test = xgb.DMatrix(X) predt_from_array = booster.inplace_predict(X) predt_from_dmatrix = booster.predict(test) cp.testing.assert_allclose(predt_from_array, predt_from_dmatrix) def predict_df(x): # column major array inplace_predt = booster.inplace_predict(x.values) d = xgb.DMatrix(x) copied_predt = cp.array(booster.predict(d)) assert cp.all(copied_predt == inplace_predt) inplace_predt = booster.inplace_predict(x) return cp.all(copied_predt == inplace_predt) for i in range(10): run_threaded_predict(X, rows, predict_df) base_margin = cudf.Series(rng.randn(rows)) self.run_inplace_base_margin(booster, dtrain, X, base_margin) @given(strategies.integers(1, 10), tm.dataset_strategy, shap_parameter_strategy) @settings(deadline=None) def test_shap(self, num_rounds, dataset, param): param.update({"predictor": "gpu_predictor", "gpu_id": 0}) param = dataset.set_params(param) dmat = dataset.get_dmat() bst = xgb.train(param, dmat, num_rounds) test_dmat = xgb.DMatrix(dataset.X, dataset.y, dataset.w, dataset.margin) shap = bst.predict(test_dmat, pred_contribs=True) margin = bst.predict(test_dmat, output_margin=True) assume(len(dataset.y) > 0) assert np.allclose(np.sum(shap, axis=len(shap.shape) - 1), margin, 1e-3, 1e-3) @given(strategies.integers(1, 10), tm.dataset_strategy, shap_parameter_strategy) @settings(deadline=None, max_examples=20) def test_shap_interactions(self, num_rounds, dataset, param): param.update({"predictor": "gpu_predictor", "gpu_id": 0}) param = dataset.set_params(param) dmat = dataset.get_dmat() bst = xgb.train(param, dmat, num_rounds) test_dmat = xgb.DMatrix(dataset.X, dataset.y, dataset.w, dataset.margin) shap = bst.predict(test_dmat, pred_interactions=True) margin = bst.predict(test_dmat, output_margin=True) assume(len(dataset.y) > 0) assert np.allclose(np.sum(shap, axis=(len(shap.shape) - 1, len(shap.shape) - 2)), margin, 1e-3, 1e-3) def test_predict_leaf_basic(self): gpu_leaf = run_predict_leaf('gpu_predictor') cpu_leaf = run_predict_leaf('cpu_predictor') np.testing.assert_equal(gpu_leaf, cpu_leaf) def run_predict_leaf_booster(self, param, num_rounds, dataset): param = dataset.set_params(param) m = dataset.get_dmat() booster = xgb.train(param, dtrain=dataset.get_dmat(), num_boost_round=num_rounds) booster.set_param({'predictor': 'cpu_predictor'}) cpu_leaf = booster.predict(m, pred_leaf=True) booster.set_param({'predictor': 'gpu_predictor'}) gpu_leaf = booster.predict(m, pred_leaf=True) np.testing.assert_equal(cpu_leaf, gpu_leaf) @given(predict_parameter_strategy, tm.dataset_strategy) @settings(deadline=None) def test_predict_leaf_gbtree(self, param, dataset): param['booster'] = 'gbtree' param['tree_method'] = 'gpu_hist' self.run_predict_leaf_booster(param, 10, dataset) @given(predict_parameter_strategy, tm.dataset_strategy) @settings(deadline=None) def test_predict_leaf_dart(self, param, dataset): param['booster'] = 'dart' param['tree_method'] = 'gpu_hist' self.run_predict_leaf_booster(param, 10, dataset) @pytest.mark.skipif(**tm.no_sklearn()) @pytest.mark.skipif(**tm.no_pandas()) @given(df=data_frames([column('x0', elements=strategies.integers(min_value=0, max_value=3)), column('x1', elements=strategies.integers(min_value=0, max_value=5))], index=range_indexes(min_size=20, max_size=50))) @settings(deadline=None) def test_predict_categorical_split(self, df): from sklearn.metrics import mean_squared_error df = df.astype('category') x0, x1 = df['x0'].to_numpy(), df['x1'].to_numpy() y = (x0 * 10 - 20) + (x1 - 2) dtrain = xgb.DMatrix(df, label=y, enable_categorical=True) params = { 'tree_method': 'gpu_hist', 'predictor': 'gpu_predictor', 'max_depth': 3, 'learning_rate': 1.0, 'base_score': 0.0, 'eval_metric': 'rmse' } eval_history = {} bst = xgb.train(params, dtrain, num_boost_round=5, evals=[(dtrain, 'train')], verbose_eval=False, evals_result=eval_history) pred = bst.predict(dtrain) rmse = mean_squared_error(y_true=y, y_pred=pred, squared=False) np.testing.assert_almost_equal(rmse, eval_history['train']['rmse'][-1], decimal=5) @pytest.mark.parametrize("n_classes", [2, 3]) def test_predict_dart(self, n_classes): from sklearn.datasets import make_classification import cupy as cp n_samples = 1000 X_, y_ = make_classification( n_samples=n_samples, n_informative=5, n_classes=n_classes ) X, y = cp.array(X_), cp.array(y_) Xy = xgb.DMatrix(X, y) if n_classes == 2: params = { "tree_method": "gpu_hist", "booster": "dart", "rate_drop": 0.5, "objective": "binary:logistic" } else: params = { "tree_method": "gpu_hist", "booster": "dart", "rate_drop": 0.5, "objective": "multi:softprob", "num_class": n_classes } booster = xgb.train(params, Xy, num_boost_round=32) # predictor=auto inplace = booster.inplace_predict(X) copied = booster.predict(Xy) cpu_inplace = booster.inplace_predict(X_) booster.set_param({"predictor": "cpu_predictor"}) cpu_copied = booster.predict(Xy) copied = cp.array(copied) cp.testing.assert_allclose(cpu_inplace, copied, atol=1e-6) cp.testing.assert_allclose(cpu_copied, copied, atol=1e-6) cp.testing.assert_allclose(inplace, copied, atol=1e-6) booster.set_param({"predictor": "gpu_predictor"}) inplace = booster.inplace_predict(X) copied = booster.predict(Xy) copied = cp.array(copied) cp.testing.assert_allclose(inplace, copied, atol=1e-6)
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_gpu_prediction.py
'''Loading a pickled model generated by test_pickling.py, only used by `test_gpu_with_dask.py`''' import os import numpy as np import xgboost as xgb import json import pytest import sys from test_gpu_pickling import build_dataset, model_path, load_pickle sys.path.append("tests/python") import testing as tm class TestLoadPickle: def test_load_pkl(self): '''Test whether prediction is correct.''' assert os.environ['CUDA_VISIBLE_DEVICES'] == '-1' bst = load_pickle(model_path) x, y = build_dataset() test_x = xgb.DMatrix(x) res = bst.predict(test_x) assert len(res) == 10 def test_predictor_type_is_auto(self): '''Under invalid CUDA_VISIBLE_DEVICES, predictor should be set to auto''' assert os.environ['CUDA_VISIBLE_DEVICES'] == '-1' bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config['learner']['gradient_booster']['gbtree_train_param'][ 'predictor'] == 'auto' def test_predictor_type_is_gpu(self): '''When CUDA_VISIBLE_DEVICES is not specified, keep using `gpu_predictor`''' assert 'CUDA_VISIBLE_DEVICES' not in os.environ.keys() bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config['learner']['gradient_booster']['gbtree_train_param'][ 'predictor'] == 'gpu_predictor' def test_wrap_gpu_id(self): assert os.environ['CUDA_VISIBLE_DEVICES'] == '0' bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config['learner']['generic_param']['gpu_id'] == '0' x, y = build_dataset() test_x = xgb.DMatrix(x) res = bst.predict(test_x) assert len(res) == 10 def test_training_on_cpu_only_env(self): assert os.environ['CUDA_VISIBLE_DEVICES'] == '-1' rng = np.random.RandomState(1994) X = rng.randn(10, 10) y = rng.randn(10) with tm.captured_output() as (out, err): # Test no thrust exception is thrown with pytest.raises(xgb.core.XGBoostError): xgb.train({'tree_method': 'gpu_hist'}, xgb.DMatrix(X, y)) assert out.getvalue().find('No visible GPU is found') != -1
spark-xgboost-nv-release_1.4.0
tests/python-gpu/load_pickle.py
import sys import pytest import logging sys.path.append("tests/python") import testing as tm # noqa def has_rmm(): try: import rmm return True except ImportError: return False @pytest.fixture(scope='session', autouse=True) def setup_rmm_pool(request, pytestconfig): if pytestconfig.getoption('--use-rmm-pool'): if not has_rmm(): raise ImportError('The --use-rmm-pool option requires the RMM package') import rmm from dask_cuda.utils import get_n_gpus rmm.reinitialize(pool_allocator=True, initial_pool_size=1024*1024*1024, devices=list(range(get_n_gpus()))) @pytest.fixture(scope='function') def local_cuda_cluster(request, pytestconfig): kwargs = {} if hasattr(request, 'param'): kwargs.update(request.param) if pytestconfig.getoption('--use-rmm-pool'): if not has_rmm(): raise ImportError('The --use-rmm-pool option requires the RMM package') import rmm from dask_cuda.utils import get_n_gpus kwargs['rmm_pool_size'] = '2GB' if tm.no_dask_cuda()['condition']: raise ImportError('The local_cuda_cluster fixture requires dask_cuda package') from dask_cuda import LocalCUDACluster with LocalCUDACluster(**kwargs) as cluster: yield cluster def pytest_addoption(parser): parser.addoption('--use-rmm-pool', action='store_true', default=False, help='Use RMM pool') def pytest_collection_modifyitems(config, items): if config.getoption('--use-rmm-pool'): blocklist = [ 'python-gpu/test_gpu_demos.py::test_dask_training', 'python-gpu/test_gpu_prediction.py::TestGPUPredict::test_shap', 'python-gpu/test_gpu_linear.py::TestGPULinear' ] skip_mark = pytest.mark.skip(reason='This test is not run when --use-rmm-pool flag is active') for item in items: if any(item.nodeid.startswith(x) for x in blocklist): item.add_marker(skip_mark) # mark dask tests as `mgpu`. mgpu_mark = pytest.mark.mgpu for item in items: if item.nodeid.startswith("python-gpu/test_gpu_with_dask.py"): item.add_marker(mgpu_mark)
spark-xgboost-nv-release_1.4.0
tests/python-gpu/conftest.py
import numpy as np import xgboost as xgb import sys import pytest sys.path.append("tests/python") import testing as tm def dmatrix_from_cupy(input_type, DMatrixT, missing=np.NAN): '''Test constructing DMatrix from cupy''' import cupy as cp kRows = 80 kCols = 3 np_X = np.random.randn(kRows, kCols).astype(dtype=input_type) X = cp.array(np_X) X[5, 0] = missing X[3, 1] = missing y = cp.random.randn(kRows).astype(dtype=input_type) dtrain = DMatrixT(X, missing=missing, label=y) assert dtrain.num_col() == kCols assert dtrain.num_row() == kRows if DMatrixT is xgb.DeviceQuantileDMatrix: # Slice is not supported by DeviceQuantileDMatrix with pytest.raises(xgb.core.XGBoostError): dtrain.slice(rindex=[0, 1, 2]) dtrain.slice(rindex=[0, 1, 2]) else: dtrain.slice(rindex=[0, 1, 2]) dtrain.slice(rindex=[0, 1, 2]) return dtrain def _test_from_cupy(DMatrixT): '''Test constructing DMatrix from cupy''' import cupy as cp dmatrix_from_cupy(np.float32, DMatrixT, np.NAN) dmatrix_from_cupy(np.float64, DMatrixT, np.NAN) dmatrix_from_cupy(np.uint8, DMatrixT, 2) dmatrix_from_cupy(np.uint32, DMatrixT, 3) dmatrix_from_cupy(np.uint64, DMatrixT, 4) dmatrix_from_cupy(np.int8, DMatrixT, 2) dmatrix_from_cupy(np.int32, DMatrixT, -2) dmatrix_from_cupy(np.int64, DMatrixT, -3) with pytest.raises(Exception): X = cp.random.randn(2, 2, dtype="float32") DMatrixT(X, label=X) def _test_cupy_training(DMatrixT): import cupy as cp np.random.seed(1) cp.random.seed(1) X = cp.random.randn(50, 10, dtype="float32") y = cp.random.randn(50, dtype="float32") weights = np.random.random(50) + 1 cupy_weights = cp.array(weights) base_margin = np.random.random(50) cupy_base_margin = cp.array(base_margin) evals_result_cupy = {} dtrain_cp = DMatrixT(X, y, weight=cupy_weights, base_margin=cupy_base_margin) params = {'gpu_id': 0, 'nthread': 1, 'tree_method': 'gpu_hist'} xgb.train(params, dtrain_cp, evals=[(dtrain_cp, "train")], evals_result=evals_result_cupy) evals_result_np = {} dtrain_np = xgb.DMatrix(cp.asnumpy(X), cp.asnumpy(y), weight=weights, base_margin=base_margin) xgb.train(params, dtrain_np, evals=[(dtrain_np, "train")], evals_result=evals_result_np) assert np.array_equal(evals_result_cupy["train"]["rmse"], evals_result_np["train"]["rmse"]) def _test_cupy_metainfo(DMatrixT): import cupy as cp n = 100 X = np.random.random((n, 2)) dmat_cupy = DMatrixT(cp.array(X)) dmat = xgb.DMatrix(X) floats = np.random.random(n) uints = np.array([4, 2, 8]).astype("uint32") cupy_floats = cp.array(floats) cupy_uints = cp.array(uints) dmat.set_float_info('weight', floats) dmat.set_float_info('label', floats) dmat.set_float_info('base_margin', floats) dmat.set_uint_info('group', uints) dmat_cupy.set_info(weight=cupy_floats) dmat_cupy.set_info(label=cupy_floats) dmat_cupy.set_info(base_margin=cupy_floats) dmat_cupy.set_info(group=cupy_uints) # Test setting info with cupy assert np.array_equal(dmat.get_float_info('weight'), dmat_cupy.get_float_info('weight')) assert np.array_equal(dmat.get_float_info('label'), dmat_cupy.get_float_info('label')) assert np.array_equal(dmat.get_float_info('base_margin'), dmat_cupy.get_float_info('base_margin')) assert np.array_equal(dmat.get_uint_info('group_ptr'), dmat_cupy.get_uint_info('group_ptr')) @pytest.mark.skipif(**tm.no_cupy()) @pytest.mark.skipif(**tm.no_sklearn()) def test_cupy_training_with_sklearn(): import cupy as cp np.random.seed(1) cp.random.seed(1) X = cp.random.randn(50, 10, dtype="float32") y = (cp.random.randn(50, dtype="float32") > 0).astype("int8") weights = np.random.random(50) + 1 cupy_weights = cp.array(weights) base_margin = np.random.random(50) cupy_base_margin = cp.array(base_margin) clf = xgb.XGBClassifier(gpu_id=0, tree_method="gpu_hist", use_label_encoder=False) clf.fit( X, y, sample_weight=cupy_weights, base_margin=cupy_base_margin, eval_set=[(X, y)], ) pred = clf.predict(X) assert np.array_equal(np.unique(pred), np.array([0, 1])) class TestFromCupy: '''Tests for constructing DMatrix from data structure conforming Apache Arrow specification.''' @pytest.mark.skipif(**tm.no_cupy()) def test_simple_dmat_from_cupy(self): _test_from_cupy(xgb.DMatrix) @pytest.mark.skipif(**tm.no_cupy()) def test_device_dmat_from_cupy(self): _test_from_cupy(xgb.DeviceQuantileDMatrix) @pytest.mark.skipif(**tm.no_cupy()) def test_cupy_training_device_dmat(self): _test_cupy_training(xgb.DeviceQuantileDMatrix) @pytest.mark.skipif(**tm.no_cupy()) def test_cupy_training_simple_dmat(self): _test_cupy_training(xgb.DMatrix) @pytest.mark.skipif(**tm.no_cupy()) def test_cupy_metainfo_simple_dmat(self): _test_cupy_metainfo(xgb.DMatrix) @pytest.mark.skipif(**tm.no_cupy()) def test_cupy_metainfo_device_dmat(self): _test_cupy_metainfo(xgb.DeviceQuantileDMatrix) @pytest.mark.skipif(**tm.no_cupy()) def test_dlpack_simple_dmat(self): import cupy as cp n = 100 X = cp.random.random((n, 2)) xgb.DMatrix(X.toDlpack()) @pytest.mark.skipif(**tm.no_cupy()) def test_dlpack_device_dmat(self): import cupy as cp n = 100 X = cp.random.random((n, 2)) m = xgb.DeviceQuantileDMatrix(X.toDlpack()) with pytest.raises(xgb.core.XGBoostError): m.slice(rindex=[0, 1, 2]) @pytest.mark.skipif(**tm.no_cupy()) def test_qid(self): import cupy as cp rng = cp.random.RandomState(1994) rows = 100 cols = 10 X, y = rng.randn(rows, cols), rng.randn(rows) qid = rng.randint(low=0, high=10, size=rows, dtype=np.uint32) qid = cp.sort(qid) Xy = xgb.DMatrix(X, y) Xy.set_info(qid=qid) group_ptr = Xy.get_uint_info('group_ptr') assert group_ptr[0] == 0 assert group_ptr[-1] == rows @pytest.mark.skipif(**tm.no_cupy()) @pytest.mark.mgpu def test_specified_device(self): import cupy as cp cp.cuda.runtime.setDevice(0) dtrain = dmatrix_from_cupy( np.float32, xgb.DeviceQuantileDMatrix, np.nan) with pytest.raises(xgb.core.XGBoostError): xgb.train({'tree_method': 'gpu_hist', 'gpu_id': 1}, dtrain, num_boost_round=10)
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_from_cupy.py
import numpy as np import sys sys.path.append("tests/python") # Don't import the test class, otherwise they will run twice. import test_interaction_constraints as test_ic # noqa rng = np.random.RandomState(1994) class TestGPUInteractionConstraints: cputest = test_ic.TestInteractionConstraints() def test_interaction_constraints(self): self.cputest.run_interaction_constraints(tree_method='gpu_hist') def test_training_accuracy(self): self.cputest.training_accuracy(tree_method='gpu_hist')
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_gpu_interaction_constraints.py
'''Test model IO with pickle.''' import pickle import numpy as np import subprocess import os import sys import json import pytest import xgboost as xgb from xgboost import XGBClassifier sys.path.append("tests/python") import testing as tm model_path = './model.pkl' def build_dataset(): N = 10 x = np.linspace(0, N*N, N*N) x = x.reshape((N, N)) y = np.linspace(0, N, N) return x, y def save_pickle(bst, path): with open(path, 'wb') as fd: pickle.dump(bst, fd) def load_pickle(path): with open(path, 'rb') as fd: bst = pickle.load(fd) return bst class TestPickling: args_template = [ "pytest", "--verbose", "-s", "--fulltrace"] def test_pickling(self): x, y = build_dataset() train_x = xgb.DMatrix(x, label=y) param = {'tree_method': 'gpu_hist', 'verbosity': 1} bst = xgb.train(param, train_x) save_pickle(bst, model_path) args = [ "pytest", "--verbose", "-s", "--fulltrace", "./tests/python-gpu/load_pickle.py::TestLoadPickle::test_load_pkl" ] command = '' for arg in args: command += arg command += ' ' cuda_environment = {'CUDA_VISIBLE_DEVICES': '-1'} env = os.environ.copy() # Passing new_environment directly to `env' argument results # in failure on Windows: # Fatal Python error: _Py_HashRandomization_Init: failed to # get random numbers to initialize Python env.update(cuda_environment) # Load model in a CPU only environment. status = subprocess.call(command, env=env, shell=True) assert status == 0 os.remove(model_path) @pytest.mark.mgpu def test_wrap_gpu_id(self): X, y = build_dataset() dtrain = xgb.DMatrix(X, y) bst = xgb.train({'tree_method': 'gpu_hist', 'gpu_id': 1}, dtrain, num_boost_round=6) model_path = 'model.pkl' save_pickle(bst, model_path) cuda_environment = {'CUDA_VISIBLE_DEVICES': '0'} env = os.environ.copy() env.update(cuda_environment) args = self.args_template.copy() args.append( "./tests/python-gpu/" "load_pickle.py::TestLoadPickle::test_wrap_gpu_id" ) status = subprocess.call(args, env=env) assert status == 0 os.remove(model_path) def test_pickled_predictor(self): x, y = build_dataset() train_x = xgb.DMatrix(x, label=y) param = {'tree_method': 'gpu_hist', 'verbosity': 1, 'predictor': 'gpu_predictor'} bst = xgb.train(param, train_x) config = json.loads(bst.save_config()) assert config['learner']['gradient_booster']['gbtree_train_param'][ 'predictor'] == 'gpu_predictor' save_pickle(bst, model_path) args = self.args_template.copy() args.append( "./tests/python-gpu/" "load_pickle.py::TestLoadPickle::test_predictor_type_is_auto") cuda_environment = {'CUDA_VISIBLE_DEVICES': '-1'} env = os.environ.copy() env.update(cuda_environment) # Load model in a CPU only environment. status = subprocess.call(args, env=env) assert status == 0 args = self.args_template.copy() args.append( "./tests/python-gpu/" "load_pickle.py::TestLoadPickle::test_predictor_type_is_gpu") # Load in environment that has GPU. env = os.environ.copy() assert 'CUDA_VISIBLE_DEVICES' not in env.keys() status = subprocess.call(args, env=env) assert status == 0 os.remove(model_path) def test_predict_sklearn_pickle(self): x, y = build_dataset() kwargs = {'tree_method': 'gpu_hist', 'predictor': 'gpu_predictor', 'objective': 'binary:logistic', 'n_estimators': 10} model = XGBClassifier(**kwargs) model.fit(x, y) save_pickle(model, "model.pkl") del model # load model model: xgb.XGBClassifier = load_pickle("model.pkl") os.remove("model.pkl") gpu_pred = model.predict(x, output_margin=True) # Switch to CPU predictor bst = model.get_booster() bst.set_param({'predictor': 'cpu_predictor'}) cpu_pred = model.predict(x, output_margin=True) np.testing.assert_allclose(cpu_pred, gpu_pred, rtol=1e-5) def test_training_on_cpu_only_env(self): cuda_environment = {'CUDA_VISIBLE_DEVICES': '-1'} env = os.environ.copy() env.update(cuda_environment) args = self.args_template.copy() args.append( "./tests/python-gpu/" "load_pickle.py::TestLoadPickle::test_training_on_cpu_only_env") status = subprocess.call(args, env=env) assert status == 0
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_gpu_pickling.py
import xgboost as xgb import pytest import sys import numpy as np sys.path.append("tests/python") import testing as tm # noqa import test_with_sklearn as twskl # noqa pytestmark = pytest.mark.skipif(**tm.no_sklearn()) rng = np.random.RandomState(1994) def test_gpu_binary_classification(): from sklearn.datasets import load_digits from sklearn.model_selection import KFold digits = load_digits(2) y = digits['target'] X = digits['data'] kf = KFold(n_splits=2, shuffle=True, random_state=rng) for cls in (xgb.XGBClassifier, xgb.XGBRFClassifier): for train_index, test_index in kf.split(X, y): xgb_model = cls( random_state=42, tree_method='gpu_hist', n_estimators=4, gpu_id='0').fit(X[train_index], y[train_index]) preds = xgb_model.predict(X[test_index]) labels = y[test_index] err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds)) assert err < 0.1 def test_boost_from_prediction_gpu_hist(): twskl.run_boost_from_prediction('gpu_hist') def test_num_parallel_tree(): twskl.run_boston_housing_rf_regression("gpu_hist")
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_gpu_with_sklearn.py
import sys import xgboost import pytest sys.path.append("tests/python") import test_eval_metrics as test_em # noqa class TestGPUEvalMetrics: cpu_test = test_em.TestEvalMetrics() @pytest.mark.parametrize("n_samples", [4, 100, 1000]) def test_roc_auc_binary(self, n_samples): self.cpu_test.run_roc_auc_binary("gpu_hist", n_samples) @pytest.mark.parametrize("n_samples", [4, 100, 1000]) def test_roc_auc_multi(self, n_samples): self.cpu_test.run_roc_auc_multi("gpu_hist", n_samples) @pytest.mark.parametrize("n_samples", [4, 100, 1000]) def test_roc_auc_ltr(self, n_samples): import numpy as np rng = np.random.RandomState(1994) n_samples = n_samples n_features = 10 X = rng.randn(n_samples, n_features) y = rng.randint(0, 16, size=n_samples) group = np.array([n_samples // 2, n_samples // 2]) Xy = xgboost.DMatrix(X, y, group=group) cpu = xgboost.train( {"tree_method": "hist", "eval_metric": "auc", "objective": "rank:ndcg"}, Xy, num_boost_round=10, ) cpu_auc = float(cpu.eval(Xy).split(":")[1]) gpu = xgboost.train( {"tree_method": "gpu_hist", "eval_metric": "auc", "objective": "rank:ndcg"}, Xy, num_boost_round=10, ) gpu_auc = float(gpu.eval(Xy).split(":")[1]) np.testing.assert_allclose(cpu_auc, gpu_auc)
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_gpu_eval_metrics.py
import sys import os from typing import Type, TypeVar, Any, Dict, List import pytest import numpy as np import asyncio import xgboost import subprocess from collections import OrderedDict from inspect import signature from hypothesis import given, strategies, settings, note from hypothesis._settings import duration from test_gpu_updaters import parameter_strategy if sys.platform.startswith("win"): pytest.skip("Skipping dask tests on Windows", allow_module_level=True) sys.path.append("tests/python") from test_with_dask import run_empty_dmatrix_reg # noqa from test_with_dask import run_empty_dmatrix_auc # noqa from test_with_dask import run_auc # noqa from test_with_dask import run_boost_from_prediction # noqa from test_with_dask import run_dask_classifier # noqa from test_with_dask import run_empty_dmatrix_cls # noqa from test_with_dask import _get_client_workers # noqa from test_with_dask import generate_array # noqa from test_with_dask import kCols as random_cols # noqa from test_with_dask import suppress # noqa import testing as tm # noqa try: import dask.dataframe as dd from xgboost import dask as dxgb import xgboost as xgb from dask.distributed import Client from dask import array as da from dask_cuda import LocalCUDACluster import cudf except ImportError: pass def run_with_dask_dataframe(DMatrixT: Type, client: Client) -> None: import cupy as cp cp.cuda.runtime.setDevice(0) X, y, _ = generate_array() X = dd.from_dask_array(X) y = dd.from_dask_array(y) X = X.map_partitions(cudf.from_pandas) y = y.map_partitions(cudf.from_pandas) dtrain = DMatrixT(client, X, y) out = dxgb.train(client, {'tree_method': 'gpu_hist', 'debug_synchronize': True}, dtrain=dtrain, evals=[(dtrain, 'X')], num_boost_round=4) assert isinstance(out['booster'], dxgb.Booster) assert len(out['history']['X']['rmse']) == 4 predictions = dxgb.predict(client, out, dtrain).compute() assert isinstance(predictions, np.ndarray) series_predictions = dxgb.inplace_predict(client, out, X) assert isinstance(series_predictions, dd.Series) series_predictions = series_predictions.compute() single_node = out['booster'].predict( xgboost.DMatrix(X.compute())) cp.testing.assert_allclose(single_node, predictions) np.testing.assert_allclose(single_node, series_predictions.to_array()) predt = dxgb.predict(client, out, X) assert isinstance(predt, dd.Series) T = TypeVar('T') def is_df(part: T) -> T: assert isinstance(part, cudf.DataFrame), part return part predt.map_partitions( is_df, meta=dd.utils.make_meta({'prediction': 'f4'})) cp.testing.assert_allclose( predt.values.compute(), single_node) def run_with_dask_array(DMatrixT: Type, client: Client) -> None: import cupy as cp cp.cuda.runtime.setDevice(0) X, y, _ = generate_array() X = X.map_blocks(cp.asarray) y = y.map_blocks(cp.asarray) dtrain = DMatrixT(client, X, y) out = dxgb.train(client, {'tree_method': 'gpu_hist', 'debug_synchronize': True}, dtrain=dtrain, evals=[(dtrain, 'X')], num_boost_round=2) from_dmatrix = dxgb.predict(client, out, dtrain).compute() inplace_predictions = dxgb.inplace_predict( client, out, X).compute() single_node = out['booster'].predict( xgboost.DMatrix(X.compute())) np.testing.assert_allclose(single_node, from_dmatrix) device = cp.cuda.runtime.getDevice() assert device == inplace_predictions.device.id single_node = cp.array(single_node) assert device == single_node.device.id cp.testing.assert_allclose( single_node, inplace_predictions) def to_cp(x: Any, DMatrixT: Type) -> Any: import cupy if isinstance(x, np.ndarray) and \ DMatrixT is dxgb.DaskDeviceQuantileDMatrix: X = cupy.array(x) else: X = x return X def run_gpu_hist( params: Dict, num_rounds: int, dataset: tm.TestDataset, DMatrixT: Type, client: Client, ) -> None: params["tree_method"] = "gpu_hist" params = dataset.set_params(params) # It doesn't make sense to distribute a completely # empty dataset. if dataset.X.shape[0] == 0: return chunk = 128 X = to_cp(dataset.X, DMatrixT) X = da.from_array(X, chunks=(chunk, dataset.X.shape[1])) y = to_cp(dataset.y, DMatrixT) y = da.from_array(y, chunks=(chunk,)) if dataset.w is not None: w = to_cp(dataset.w, DMatrixT) w = da.from_array(w, chunks=(chunk,)) else: w = None if DMatrixT is dxgb.DaskDeviceQuantileDMatrix: m = DMatrixT( client, data=X, label=y, weight=w, max_bin=params.get("max_bin", 256) ) else: m = DMatrixT(client, data=X, label=y, weight=w) history = dxgb.train( client, params=params, dtrain=m, num_boost_round=num_rounds, evals=[(m, "train")], )["history"] note(history) assert tm.non_increasing(history["train"][dataset.metric]) @pytest.mark.skipif(**tm.no_cudf()) def test_boost_from_prediction(local_cuda_cluster: LocalCUDACluster) -> None: from sklearn.datasets import load_breast_cancer with Client(local_cuda_cluster) as client: X_, y_ = load_breast_cancer(return_X_y=True) X = dd.from_array(X_, chunksize=100) y = dd.from_array(y_, chunksize=100) run_boost_from_prediction(X, y, "gpu_hist", client) class TestDistributedGPU: @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.skipif(**tm.no_cudf()) @pytest.mark.skipif(**tm.no_dask_cudf()) @pytest.mark.skipif(**tm.no_dask_cuda()) @pytest.mark.mgpu def test_dask_dataframe(self, local_cuda_cluster: LocalCUDACluster) -> None: with Client(local_cuda_cluster) as client: run_with_dask_dataframe(dxgb.DaskDMatrix, client) run_with_dask_dataframe(dxgb.DaskDeviceQuantileDMatrix, client) @given( params=parameter_strategy, num_rounds=strategies.integers(1, 20), dataset=tm.dataset_strategy, ) @settings(deadline=duration(seconds=120), suppress_health_check=suppress) @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.skipif(**tm.no_dask_cuda()) @pytest.mark.skipif(**tm.no_cupy()) @pytest.mark.parametrize( "local_cuda_cluster", [{"n_workers": 2}], indirect=["local_cuda_cluster"] ) @pytest.mark.mgpu def test_gpu_hist( self, params: Dict, num_rounds: int, dataset: tm.TestDataset, local_cuda_cluster: LocalCUDACluster, ) -> None: with Client(local_cuda_cluster) as client: run_gpu_hist(params, num_rounds, dataset, dxgb.DaskDMatrix, client) run_gpu_hist( params, num_rounds, dataset, dxgb.DaskDeviceQuantileDMatrix, client ) @pytest.mark.skipif(**tm.no_cupy()) @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.skipif(**tm.no_dask_cuda()) @pytest.mark.mgpu def test_dask_array(self, local_cuda_cluster: LocalCUDACluster) -> None: with Client(local_cuda_cluster) as client: run_with_dask_array(dxgb.DaskDMatrix, client) run_with_dask_array(dxgb.DaskDeviceQuantileDMatrix, client) @pytest.mark.skipif(**tm.no_cupy()) @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.skipif(**tm.no_dask_cuda()) def test_early_stopping(self, local_cuda_cluster: LocalCUDACluster) -> None: from sklearn.datasets import load_breast_cancer with Client(local_cuda_cluster) as client: X, y = load_breast_cancer(return_X_y=True) X, y = da.from_array(X), da.from_array(y) m = dxgb.DaskDMatrix(client, X, y) valid = dxgb.DaskDMatrix(client, X, y) early_stopping_rounds = 5 booster = dxgb.train(client, {'objective': 'binary:logistic', 'eval_metric': 'error', 'tree_method': 'gpu_hist'}, m, evals=[(valid, 'Valid')], num_boost_round=1000, early_stopping_rounds=early_stopping_rounds)[ 'booster'] assert hasattr(booster, 'best_score') dump = booster.get_dump(dump_format='json') assert len(dump) - booster.best_iteration == early_stopping_rounds + 1 valid_X = X valid_y = y cls = dxgb.DaskXGBClassifier(objective='binary:logistic', tree_method='gpu_hist', n_estimators=100) cls.client = client cls.fit(X, y, early_stopping_rounds=early_stopping_rounds, eval_set=[(valid_X, valid_y)]) booster = cls.get_booster() dump = booster.get_dump(dump_format='json') assert len(dump) - booster.best_iteration == early_stopping_rounds + 1 @pytest.mark.skipif(**tm.no_cudf()) @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.skipif(**tm.no_dask_cuda()) @pytest.mark.parametrize("model", ["boosting"]) def test_dask_classifier(self, model, local_cuda_cluster: LocalCUDACluster) -> None: import dask_cudf with Client(local_cuda_cluster) as client: X_, y_, w_ = generate_array(with_weights=True) y_ = (y_ * 10).astype(np.int32) X = dask_cudf.from_dask_dataframe(dd.from_dask_array(X_)) y = dask_cudf.from_dask_dataframe(dd.from_dask_array(y_)) w = dask_cudf.from_dask_dataframe(dd.from_dask_array(w_)) run_dask_classifier(X, y, w, model, "gpu_hist", client, 10) @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.skipif(**tm.no_dask_cuda()) @pytest.mark.mgpu def test_empty_dmatrix(self, local_cuda_cluster: LocalCUDACluster) -> None: with Client(local_cuda_cluster) as client: parameters = {'tree_method': 'gpu_hist', 'debug_synchronize': True} run_empty_dmatrix_reg(client, parameters) run_empty_dmatrix_cls(client, parameters) def test_empty_dmatrix_auc(self, local_cuda_cluster: LocalCUDACluster) -> None: with Client(local_cuda_cluster) as client: n_workers = len(_get_client_workers(client)) run_empty_dmatrix_auc(client, "gpu_hist", n_workers) def test_auc(self, local_cuda_cluster: LocalCUDACluster) -> None: with Client(local_cuda_cluster) as client: run_auc(client, "gpu_hist") def test_data_initialization(self, local_cuda_cluster: LocalCUDACluster) -> None: with Client(local_cuda_cluster) as client: X, y, _ = generate_array() fw = da.random.random((random_cols, )) fw = fw - fw.min() m = dxgb.DaskDMatrix(client, X, y, feature_weights=fw) workers = _get_client_workers(client) rabit_args = client.sync(dxgb._get_rabit_args, len(workers), client) def worker_fn(worker_addr: str, data_ref: Dict) -> None: with dxgb.RabitContext(rabit_args): local_dtrain = dxgb._dmatrix_from_list_of_parts(**data_ref) fw_rows = local_dtrain.get_float_info("feature_weights").shape[0] assert fw_rows == local_dtrain.num_col() futures = [] for i in range(len(workers)): futures.append( client.submit( worker_fn, workers[i], m._create_fn_args(workers[i]), pure=False, workers=[workers[i]] ) ) client.gather(futures) def test_interface_consistency(self) -> None: sig = OrderedDict(signature(dxgb.DaskDMatrix).parameters) del sig["client"] ddm_names = list(sig.keys()) sig = OrderedDict(signature(dxgb.DaskDeviceQuantileDMatrix).parameters) del sig["client"] del sig["max_bin"] ddqdm_names = list(sig.keys()) assert len(ddm_names) == len(ddqdm_names) # between dask for i in range(len(ddm_names)): assert ddm_names[i] == ddqdm_names[i] sig = OrderedDict(signature(xgb.DMatrix).parameters) del sig["nthread"] # no nthread in dask dm_names = list(sig.keys()) sig = OrderedDict(signature(xgb.DeviceQuantileDMatrix).parameters) del sig["nthread"] del sig["max_bin"] dqdm_names = list(sig.keys()) # between single node assert len(dm_names) == len(dqdm_names) for i in range(len(dm_names)): assert dm_names[i] == dqdm_names[i] # ddm <-> dm for i in range(len(ddm_names)): assert ddm_names[i] == dm_names[i] # dqdm <-> ddqdm for i in range(len(ddqdm_names)): assert ddqdm_names[i] == dqdm_names[i] sig = OrderedDict(signature(xgb.XGBRanker.fit).parameters) ranker_names = list(sig.keys()) sig = OrderedDict(signature(xgb.dask.DaskXGBRanker.fit).parameters) dranker_names = list(sig.keys()) for rn, drn in zip(ranker_names, dranker_names): assert rn == drn def run_quantile(self, name: str, local_cuda_cluster: LocalCUDACluster) -> None: if sys.platform.startswith("win"): pytest.skip("Skipping dask tests on Windows") exe = None for possible_path in {'./testxgboost', './build/testxgboost', '../build/testxgboost', '../gpu-build/testxgboost'}: if os.path.exists(possible_path): exe = possible_path assert exe, 'No testxgboost executable found.' test = "--gtest_filter=GPUQuantile." + name def runit( worker_addr: str, rabit_args: List[bytes] ) -> subprocess.CompletedProcess: port_env = '' # setup environment for running the c++ part. for arg in rabit_args: if arg.decode('utf-8').startswith('DMLC_TRACKER_PORT'): port_env = arg.decode('utf-8') port = port_env.split('=') env = os.environ.copy() env[port[0]] = port[1] return subprocess.run([str(exe), test], env=env, stdout=subprocess.PIPE) with Client(local_cuda_cluster) as client: workers = _get_client_workers(client) rabit_args = client.sync(dxgb._get_rabit_args, workers, client) futures = client.map(runit, workers, pure=False, workers=workers, rabit_args=rabit_args) results = client.gather(futures) for ret in results: msg = ret.stdout.decode('utf-8') assert msg.find('1 test from GPUQuantile') != -1, msg assert ret.returncode == 0, msg @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.skipif(**tm.no_dask_cuda()) @pytest.mark.mgpu @pytest.mark.gtest def test_quantile_basic(self, local_cuda_cluster: LocalCUDACluster) -> None: self.run_quantile('AllReduceBasic', local_cuda_cluster) @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.skipif(**tm.no_dask_cuda()) @pytest.mark.mgpu @pytest.mark.gtest def test_quantile_same_on_all_workers( self, local_cuda_cluster: LocalCUDACluster ) -> None: self.run_quantile('SameOnAllWorkers', local_cuda_cluster) async def run_from_dask_array_asyncio(scheduler_address: str) -> dxgb.TrainReturnT: async with Client(scheduler_address, asynchronous=True) as client: import cupy as cp X, y, _ = generate_array() X = X.map_blocks(cp.array) y = y.map_blocks(cp.array) m = await xgboost.dask.DaskDeviceQuantileDMatrix(client, X, y) output = await xgboost.dask.train(client, {'tree_method': 'gpu_hist'}, dtrain=m) with_m = await xgboost.dask.predict(client, output, m) with_X = await xgboost.dask.predict(client, output, X) inplace = await xgboost.dask.inplace_predict(client, output, X) assert isinstance(with_m, da.Array) assert isinstance(with_X, da.Array) assert isinstance(inplace, da.Array) cp.testing.assert_allclose(await client.compute(with_m), await client.compute(with_X)) cp.testing.assert_allclose(await client.compute(with_m), await client.compute(inplace)) client.shutdown() return output @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.skipif(**tm.no_dask_cuda()) @pytest.mark.skipif(**tm.no_cupy()) @pytest.mark.mgpu def test_with_asyncio(local_cuda_cluster: LocalCUDACluster) -> None: with Client(local_cuda_cluster) as client: address = client.scheduler.address output = asyncio.run(run_from_dask_array_asyncio(address)) assert isinstance(output['booster'], xgboost.Booster) assert isinstance(output['history'], dict)
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_gpu_with_dask.py
import numpy as np import xgboost import os import itertools import shutil import urllib.request import zipfile import sys sys.path.append("tests/python") import testing as tm # noqa class TestRanking: @classmethod def setup_class(cls): """ Download and setup the test fixtures """ from sklearn.datasets import load_svmlight_files # download the test data cls.dpath = os.path.join(tm.PROJECT_ROOT, "demo/rank/") src = 'https://s3-us-west-2.amazonaws.com/xgboost-examples/MQ2008.zip' target = os.path.join(cls.dpath, "MQ2008.zip") if os.path.exists(cls.dpath) and os.path.exists(target): print("Skipping dataset download...") else: urllib.request.urlretrieve(url=src, filename=target) with zipfile.ZipFile(target, 'r') as f: f.extractall(path=cls.dpath) (x_train, y_train, qid_train, x_test, y_test, qid_test, x_valid, y_valid, qid_valid) = load_svmlight_files( (cls.dpath + "MQ2008/Fold1/train.txt", cls.dpath + "MQ2008/Fold1/test.txt", cls.dpath + "MQ2008/Fold1/vali.txt"), query_id=True, zero_based=False) # instantiate the matrices cls.dtrain = xgboost.DMatrix(x_train, y_train) cls.dvalid = xgboost.DMatrix(x_valid, y_valid) cls.dtest = xgboost.DMatrix(x_test, y_test) # set the group counts from the query IDs cls.dtrain.set_group([len(list(items)) for _key, items in itertools.groupby(qid_train)]) cls.dtest.set_group([len(list(items)) for _key, items in itertools.groupby(qid_test)]) cls.dvalid.set_group([len(list(items)) for _key, items in itertools.groupby(qid_valid)]) # save the query IDs for testing cls.qid_train = qid_train cls.qid_test = qid_test cls.qid_valid = qid_valid def setup_weighted(x, y, groups): # Setup weighted data data = xgboost.DMatrix(x, y) groups_segment = [len(list(items)) for _key, items in itertools.groupby(groups)] data.set_group(groups_segment) n_groups = len(groups_segment) weights = np.ones((n_groups,)) data.set_weight(weights) return data cls.dtrain_w = setup_weighted(x_train, y_train, qid_train) cls.dtest_w = setup_weighted(x_test, y_test, qid_test) cls.dvalid_w = setup_weighted(x_valid, y_valid, qid_valid) # model training parameters cls.params = {'booster': 'gbtree', 'tree_method': 'gpu_hist', 'gpu_id': 0, 'predictor': 'gpu_predictor'} cls.cpu_params = {'booster': 'gbtree', 'tree_method': 'hist', 'gpu_id': -1, 'predictor': 'cpu_predictor'} @classmethod def teardown_class(cls): """ Cleanup test artifacts from download and unpacking :return: """ os.remove(os.path.join(cls.dpath, "MQ2008.zip")) shutil.rmtree(os.path.join(cls.dpath, "MQ2008")) @classmethod def __test_training_with_rank_objective(cls, rank_objective, metric_name, tolerance=1e-02): """ Internal method that trains the dataset using the rank objective on GPU and CPU, evaluates the metric and determines if the delta between the metric is within the tolerance level :return: """ # specify validations set to watch performance watchlist = [(cls.dtest, 'eval'), (cls.dtrain, 'train')] num_trees = 2500 check_metric_improvement_rounds = 10 evals_result = {} cls.params['objective'] = rank_objective cls.params['eval_metric'] = metric_name bst = xgboost.train( cls.params, cls.dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result) gpu_map_metric = evals_result['train'][metric_name][-1] evals_result = {} cls.cpu_params['objective'] = rank_objective cls.cpu_params['eval_metric'] = metric_name bstc = xgboost.train( cls.cpu_params, cls.dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result) cpu_map_metric = evals_result['train'][metric_name][-1] assert np.allclose(gpu_map_metric, cpu_map_metric, tolerance, tolerance) assert np.allclose(bst.best_score, bstc.best_score, tolerance, tolerance) evals_result_weighted = {} watchlist = [(cls.dtest_w, 'eval'), (cls.dtrain_w, 'train')] bst_w = xgboost.train( cls.params, cls.dtrain_w, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result_weighted) weighted_metric = evals_result_weighted['train'][metric_name][-1] # GPU Ranking is not deterministic due to `AtomicAddGpair`, # remove tolerance once the issue is resolved. # https://github.com/dmlc/xgboost/issues/5561 assert np.allclose(bst_w.best_score, bst.best_score, tolerance, tolerance) assert np.allclose(weighted_metric, gpu_map_metric, tolerance, tolerance) def test_training_rank_pairwise_map_metric(self): """ Train an XGBoost ranking model with pairwise objective function and compare map metric """ self.__test_training_with_rank_objective('rank:pairwise', 'map') def test_training_rank_pairwise_auc_metric(self): """ Train an XGBoost ranking model with pairwise objective function and compare auc metric """ self.__test_training_with_rank_objective('rank:pairwise', 'auc') def test_training_rank_pairwise_ndcg_metric(self): """ Train an XGBoost ranking model with pairwise objective function and compare ndcg metric """ self.__test_training_with_rank_objective('rank:pairwise', 'ndcg') def test_training_rank_ndcg_map(self): """ Train an XGBoost ranking model with ndcg objective function and compare map metric """ self.__test_training_with_rank_objective('rank:ndcg', 'map') def test_training_rank_ndcg_auc(self): """ Train an XGBoost ranking model with ndcg objective function and compare auc metric """ self.__test_training_with_rank_objective('rank:ndcg', 'auc') def test_training_rank_ndcg_ndcg(self): """ Train an XGBoost ranking model with ndcg objective function and compare ndcg metric """ self.__test_training_with_rank_objective('rank:ndcg', 'ndcg') def test_training_rank_map_map(self): """ Train an XGBoost ranking model with map objective function and compare map metric """ self.__test_training_with_rank_objective('rank:map', 'map') def test_training_rank_map_auc(self): """ Train an XGBoost ranking model with map objective function and compare auc metric """ self.__test_training_with_rank_objective('rank:map', 'auc') def test_training_rank_map_ndcg(self): """ Train an XGBoost ranking model with map objective function and compare ndcg metric """ self.__test_training_with_rank_objective('rank:map', 'ndcg')
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_gpu_ranking.py
# -*- coding: utf-8 -*- import numpy as np import xgboost as xgb import pytest import sys sys.path.append("tests/python") import testing as tm class TestDeviceQuantileDMatrix: def test_dmatrix_numpy_init(self): data = np.random.randn(5, 5) with pytest.raises(TypeError, match='is not supported'): xgb.DeviceQuantileDMatrix(data, np.ones(5, dtype=np.float64)) @pytest.mark.skipif(**tm.no_cupy()) def test_dmatrix_feature_weights(self): import cupy as cp rng = cp.random.RandomState(1994) data = rng.randn(5, 5) m = xgb.DMatrix(data) feature_weights = rng.uniform(size=5) m.set_info(feature_weights=feature_weights) cp.testing.assert_array_equal( cp.array(m.get_float_info('feature_weights')), feature_weights.astype(np.float32)) @pytest.mark.skipif(**tm.no_cupy()) def test_dmatrix_cupy_init(self): import cupy as cp data = cp.random.randn(5, 5) xgb.DeviceQuantileDMatrix(data, cp.ones(5, dtype=np.float64)) @pytest.mark.skipif(**tm.no_cupy()) def test_metainfo(self) -> None: import cupy as cp rng = cp.random.RandomState(1994) rows = 10 cols = 3 data = rng.randn(rows, cols) labels = rng.randn(rows) fw = rng.randn(rows) fw -= fw.min() m = xgb.DeviceQuantileDMatrix(data=data, label=labels, feature_weights=fw) got_fw = m.get_float_info("feature_weights") got_labels = m.get_label() cp.testing.assert_allclose(fw, got_fw) cp.testing.assert_allclose(labels, got_labels)
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_device_quantile_dmatrix.py
import os import subprocess import sys import pytest sys.path.append("tests/python") import testing as tm import test_demos as td # noqa @pytest.mark.skipif(**tm.no_cupy()) def test_data_iterator(): script = os.path.join(td.PYTHON_DEMO_DIR, 'data_iterator.py') cmd = ['python', script] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_dask()) @pytest.mark.skipif(**tm.no_dask_cuda()) @pytest.mark.skipif(**tm.no_cupy()) @pytest.mark.mgpu def test_dask_training(): script = os.path.join(tm.PROJECT_ROOT, 'demo', 'dask', 'gpu_training.py') cmd = ['python', script, '--ddqdm=1'] subprocess.check_call(cmd) cmd = ['python', script, '--ddqdm=0'] subprocess.check_call(cmd)
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_gpu_demos.py
import numpy as np import xgboost as xgb import sys import pytest sys.path.append("tests/python") import testing as tm def dmatrix_from_cudf(input_type, DMatrixT, missing=np.NAN): '''Test constructing DMatrix from cudf''' import cudf import pandas as pd kRows = 80 kCols = 3 na = np.random.randn(kRows, kCols) na[:, 0:2] = na[:, 0:2].astype(input_type) na[5, 0] = missing na[3, 1] = missing pa = pd.DataFrame({'0': na[:, 0], '1': na[:, 1], '2': na[:, 2].astype(np.int32)}) np_label = np.random.randn(kRows).astype(input_type) pa_label = pd.DataFrame(np_label) cd = cudf.from_pandas(pa) cd_label = cudf.from_pandas(pa_label).iloc[:, 0] dtrain = DMatrixT(cd, missing=missing, label=cd_label) assert dtrain.num_col() == kCols assert dtrain.num_row() == kRows def _test_from_cudf(DMatrixT): '''Test constructing DMatrix from cudf''' import cudf dmatrix_from_cudf(np.float32, DMatrixT, np.NAN) dmatrix_from_cudf(np.float64, DMatrixT, np.NAN) dmatrix_from_cudf(np.int8, DMatrixT, 2) dmatrix_from_cudf(np.int32, DMatrixT, -2) dmatrix_from_cudf(np.int64, DMatrixT, -3) cd = cudf.DataFrame({'x': [1, 2, 3], 'y': [0.1, 0.2, 0.3]}) dtrain = DMatrixT(cd) assert dtrain.feature_names == ['x', 'y'] assert dtrain.feature_types == ['int', 'float'] series = cudf.DataFrame({'x': [1, 2, 3]}).iloc[:, 0] assert isinstance(series, cudf.Series) dtrain = DMatrixT(series) assert dtrain.feature_names == ['x'] assert dtrain.feature_types == ['int'] with pytest.raises(Exception): dtrain = DMatrixT(cd, label=cd) # Test when number of elements is less than 8 X = cudf.DataFrame({'x': cudf.Series([0, 1, 2, np.NAN, 4], dtype=np.int32)}) dtrain = DMatrixT(X) assert dtrain.num_col() == 1 assert dtrain.num_row() == 5 # Boolean is not supported. X_boolean = cudf.DataFrame({'x': cudf.Series([True, False])}) with pytest.raises(Exception): dtrain = DMatrixT(X_boolean) y_boolean = cudf.DataFrame({ 'x': cudf.Series([True, False, True, True, True])}) with pytest.raises(Exception): dtrain = DMatrixT(X_boolean, label=y_boolean) def _test_cudf_training(DMatrixT): from cudf import DataFrame as df import pandas as pd np.random.seed(1) X = pd.DataFrame(np.random.randn(50, 10)) y = pd.DataFrame(np.random.randn(50)) weights = np.random.random(50) + 1.0 cudf_weights = df.from_pandas(pd.DataFrame(weights)) base_margin = np.random.random(50) cudf_base_margin = df.from_pandas(pd.DataFrame(base_margin)) evals_result_cudf = {} dtrain_cudf = DMatrixT(df.from_pandas(X), df.from_pandas(y), weight=cudf_weights, base_margin=cudf_base_margin) params = {'gpu_id': 0, 'tree_method': 'gpu_hist'} xgb.train(params, dtrain_cudf, evals=[(dtrain_cudf, "train")], evals_result=evals_result_cudf) evals_result_np = {} dtrain_np = xgb.DMatrix(X, y, weight=weights, base_margin=base_margin) xgb.train(params, dtrain_np, evals=[(dtrain_np, "train")], evals_result=evals_result_np) assert np.array_equal(evals_result_cudf["train"]["rmse"], evals_result_np["train"]["rmse"]) def _test_cudf_metainfo(DMatrixT): from cudf import DataFrame as df import pandas as pd n = 100 X = np.random.random((n, 2)) dmat_cudf = DMatrixT(df.from_pandas(pd.DataFrame(X))) dmat = xgb.DMatrix(X) floats = np.random.random(n) uints = np.array([4, 2, 8]).astype("uint32") cudf_floats = df.from_pandas(pd.DataFrame(floats)) cudf_uints = df.from_pandas(pd.DataFrame(uints)) dmat.set_float_info('weight', floats) dmat.set_float_info('label', floats) dmat.set_float_info('base_margin', floats) dmat.set_uint_info('group', uints) dmat_cudf.set_info(weight=cudf_floats) dmat_cudf.set_info(label=cudf_floats) dmat_cudf.set_info(base_margin=cudf_floats) dmat_cudf.set_info(group=cudf_uints) # Test setting info with cudf DataFrame assert np.array_equal(dmat.get_float_info('weight'), dmat_cudf.get_float_info('weight')) assert np.array_equal(dmat.get_float_info('label'), dmat_cudf.get_float_info('label')) assert np.array_equal(dmat.get_float_info('base_margin'), dmat_cudf.get_float_info('base_margin')) assert np.array_equal(dmat.get_uint_info('group_ptr'), dmat_cudf.get_uint_info('group_ptr')) # Test setting info with cudf Series dmat_cudf.set_info(weight=cudf_floats[cudf_floats.columns[0]]) dmat_cudf.set_info(label=cudf_floats[cudf_floats.columns[0]]) dmat_cudf.set_info(base_margin=cudf_floats[cudf_floats.columns[0]]) dmat_cudf.set_info(group=cudf_uints[cudf_uints.columns[0]]) assert np.array_equal(dmat.get_float_info('weight'), dmat_cudf.get_float_info('weight')) assert np.array_equal(dmat.get_float_info('label'), dmat_cudf.get_float_info('label')) assert np.array_equal(dmat.get_float_info('base_margin'), dmat_cudf.get_float_info('base_margin')) assert np.array_equal(dmat.get_uint_info('group_ptr'), dmat_cudf.get_uint_info('group_ptr')) class TestFromColumnar: '''Tests for constructing DMatrix from data structure conforming Apache Arrow specification.''' @pytest.mark.skipif(**tm.no_cudf()) def test_simple_dmatrix_from_cudf(self): _test_from_cudf(xgb.DMatrix) @pytest.mark.skipif(**tm.no_cudf()) def test_device_dmatrix_from_cudf(self): _test_from_cudf(xgb.DeviceQuantileDMatrix) @pytest.mark.skipif(**tm.no_cudf()) def test_cudf_training_simple_dmatrix(self): _test_cudf_training(xgb.DMatrix) @pytest.mark.skipif(**tm.no_cudf()) def test_cudf_training_device_dmatrix(self): _test_cudf_training(xgb.DeviceQuantileDMatrix) @pytest.mark.skipif(**tm.no_cudf()) def test_cudf_metainfo_simple_dmatrix(self): _test_cudf_metainfo(xgb.DMatrix) @pytest.mark.skipif(**tm.no_cudf()) def test_cudf_metainfo_device_dmatrix(self): _test_cudf_metainfo(xgb.DeviceQuantileDMatrix) @pytest.mark.skipif(**tm.no_cudf()) @pytest.mark.skipif(**tm.no_cupy()) @pytest.mark.skipif(**tm.no_sklearn()) @pytest.mark.skipif(**tm.no_pandas()) def test_cudf_training_with_sklearn(): from cudf import DataFrame as df from cudf import Series as ss import pandas as pd np.random.seed(1) X = pd.DataFrame(np.random.randn(50, 10)) y = pd.DataFrame((np.random.randn(50) > 0).astype(np.int8)) weights = np.random.random(50) + 1.0 cudf_weights = df.from_pandas(pd.DataFrame(weights)) base_margin = np.random.random(50) cudf_base_margin = df.from_pandas(pd.DataFrame(base_margin)) X_cudf = df.from_pandas(X) y_cudf = df.from_pandas(y) y_cudf_series = ss(data=y.iloc[:, 0]) for y_obj in [y_cudf, y_cudf_series]: clf = xgb.XGBClassifier(gpu_id=0, tree_method='gpu_hist', use_label_encoder=False) clf.fit(X_cudf, y_obj, sample_weight=cudf_weights, base_margin=cudf_base_margin, eval_set=[(X_cudf, y_obj)]) pred = clf.predict(X_cudf) assert np.array_equal(np.unique(pred), np.array([0, 1])) class IterForDMatrixTest(xgb.core.DataIter): '''A data iterator for XGBoost DMatrix. `reset` and `next` are required for any data iterator, other functions here are utilites for demonstration's purpose. ''' ROWS_PER_BATCH = 100 # data is splited by rows BATCHES = 16 def __init__(self): '''Generate some random data for demostration. Actual data can be anything that is currently supported by XGBoost. ''' import cudf self.rows = self.ROWS_PER_BATCH rng = np.random.RandomState(1994) self._data = [ cudf.DataFrame( {'a': rng.randn(self.ROWS_PER_BATCH), 'b': rng.randn(self.ROWS_PER_BATCH)})] * self.BATCHES self._labels = [rng.randn(self.rows)] * self.BATCHES self.it = 0 # set iterator to 0 super().__init__() def as_array(self): import cudf return cudf.concat(self._data) def as_array_labels(self): return np.concatenate(self._labels) def data(self): '''Utility function for obtaining current batch of data.''' return self._data[self.it] def labels(self): '''Utility function for obtaining current batch of label.''' return self._labels[self.it] def reset(self): '''Reset the iterator''' self.it = 0 def next(self, input_data): '''Yield next batch of data''' if self.it == len(self._data): # Return 0 when there's no more batch. return 0 input_data(data=self.data(), label=self.labels()) self.it += 1 return 1 @pytest.mark.skipif(**tm.no_cudf()) def test_from_cudf_iter(): rounds = 100 it = IterForDMatrixTest() # Use iterator m_it = xgb.DeviceQuantileDMatrix(it) reg_with_it = xgb.train({'tree_method': 'gpu_hist'}, m_it, num_boost_round=rounds) predict_with_it = reg_with_it.predict(m_it) # Without using iterator m = xgb.DMatrix(it.as_array(), it.as_array_labels()) assert m_it.num_col() == m.num_col() assert m_it.num_row() == m.num_row() reg = xgb.train({'tree_method': 'gpu_hist'}, m, num_boost_round=rounds) predict = reg.predict(m) np.testing.assert_allclose(predict_with_it, predict)
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_from_cudf.py
import numpy as np import xgboost as xgb import cupy as cp import time import pytest # Test for integer overflow or out of memory exceptions def test_large_input(): available_bytes, _ = cp.cuda.runtime.memGetInfo() # 15 GB required_bytes = 1.5e+10 if available_bytes < required_bytes: pytest.skip("Not enough memory on this device") n = 1000 m = ((1 << 31) + n - 1) // n assert (np.log2(m * n) > 31) X = cp.ones((m, n), dtype=np.float32) y = cp.ones(m) dmat = xgb.DeviceQuantileDMatrix(X, y) xgb.train({"tree_method": "gpu_hist", "max_depth": 1}, dmat, 1)
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_large_input.py
import sys import os import numpy as np import xgboost as xgb import pytest sys.path.append("tests/python") # Don't import the test class, otherwise they will run twice. import test_callback as test_cb # noqa rng = np.random.RandomState(1994) class TestGPUBasicModels: cputest = test_cb.TestCallbacks() def run_cls(self, X, y, deterministic): cls = xgb.XGBClassifier(tree_method='gpu_hist', deterministic_histogram=deterministic, single_precision_histogram=True) cls.fit(X, y) cls.get_booster().save_model('test_deterministic_gpu_hist-0.json') cls = xgb.XGBClassifier(tree_method='gpu_hist', deterministic_histogram=deterministic, single_precision_histogram=True) cls.fit(X, y) cls.get_booster().save_model('test_deterministic_gpu_hist-1.json') with open('test_deterministic_gpu_hist-0.json', 'r') as fd: model_0 = fd.read() with open('test_deterministic_gpu_hist-1.json', 'r') as fd: model_1 = fd.read() os.remove('test_deterministic_gpu_hist-0.json') os.remove('test_deterministic_gpu_hist-1.json') return hash(model_0), hash(model_1) def test_eta_decay_gpu_hist(self): self.cputest.run_eta_decay('gpu_hist', True) self.cputest.run_eta_decay('gpu_hist', False) def test_deterministic_gpu_hist(self): kRows = 1000 kCols = 64 kClasses = 4 # Create large values to force rounding. X = np.random.randn(kRows, kCols) * 1e4 y = np.random.randint(0, kClasses, size=kRows) * 1e4 model_0, model_1 = self.run_cls(X, y, True) assert model_0 == model_1 model_0, model_1 = self.run_cls(X, y, False) assert model_0 != model_1 def test_invalid_gpu_id(self): X = np.random.randn(10, 5) * 1e4 y = np.random.randint(0, 2, size=10) * 1e4 # should pass with invalid gpu id cls1 = xgb.XGBClassifier(tree_method='gpu_hist', gpu_id=9999) cls1.fit(X, y) # should throw error with fail_on_invalid_gpu_id enabled cls2 = xgb.XGBClassifier(tree_method='gpu_hist', gpu_id=9999, fail_on_invalid_gpu_id=True) try: cls2.fit(X, y) assert False, "Should have failed with with fail_on_invalid_gpu_id enabled" except xgb.core.XGBoostError as err: assert "gpu_id 9999 is invalid" in str(err)
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_gpu_basic_models.py
import sys import numpy as np import pytest import xgboost as xgb sys.path.append("tests/python") import testing as tm import test_monotone_constraints as tmc rng = np.random.RandomState(1994) def non_decreasing(L): return all((x - y) < 0.001 for x, y in zip(L, L[1:])) def non_increasing(L): return all((y - x) < 0.001 for x, y in zip(L, L[1:])) def assert_constraint(constraint, tree_method): from sklearn.datasets import make_regression n = 1000 X, y = make_regression(n, random_state=rng, n_features=1, n_informative=1) dtrain = xgb.DMatrix(X, y) param = {} param['tree_method'] = tree_method param['monotone_constraints'] = "(" + str(constraint) + ")" bst = xgb.train(param, dtrain) dpredict = xgb.DMatrix(X[X[:, 0].argsort()]) pred = bst.predict(dpredict) if constraint > 0: assert non_decreasing(pred) elif constraint < 0: assert non_increasing(pred) @pytest.mark.skipif(**tm.no_sklearn()) def test_gpu_hist_basic(): assert_constraint(1, 'gpu_hist') assert_constraint(-1, 'gpu_hist') def test_gpu_hist_depthwise(): params = { 'tree_method': 'gpu_hist', 'grow_policy': 'depthwise', 'monotone_constraints': '(1, -1)' } model = xgb.train(params, tmc.training_dset) tmc.is_correctly_constrained(model) def test_gpu_hist_lossguide(): params = { 'tree_method': 'gpu_hist', 'grow_policy': 'lossguide', 'monotone_constraints': '(1, -1)' } model = xgb.train(params, tmc.training_dset) tmc.is_correctly_constrained(model)
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_monotonic_constraints.py
import sys from hypothesis import strategies, given, settings, assume import pytest import numpy import xgboost as xgb sys.path.append("tests/python") import testing as tm parameter_strategy = strategies.fixed_dictionaries({ 'booster': strategies.just('gblinear'), 'eta': strategies.floats(0.01, 0.25), 'tolerance': strategies.floats(1e-5, 1e-2), 'nthread': strategies.integers(1, 4), 'feature_selector': strategies.sampled_from(['cyclic', 'shuffle', 'greedy', 'thrifty']), 'top_k': strategies.integers(1, 10), }) def train_result(param, dmat, num_rounds): result = {} xgb.train(param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False, evals_result=result) return result class TestGPULinear: @given(parameter_strategy, strategies.integers(10, 50), tm.dataset_strategy) @settings(deadline=None) def test_gpu_coordinate(self, param, num_rounds, dataset): assume(len(dataset.y) > 0) param['updater'] = 'gpu_coord_descent' param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] assert tm.non_increasing(result) # Loss is not guaranteed to always decrease because of regularisation parameters # We test a weaker condition that the loss has not increased between the first and last # iteration @given(parameter_strategy, strategies.integers(10, 50), tm.dataset_strategy, strategies.floats(1e-5, 2.0), strategies.floats(1e-5, 2.0)) @settings(deadline=None) def test_gpu_coordinate_regularised(self, param, num_rounds, dataset, alpha, lambd): assume(len(dataset.y) > 0) param['updater'] = 'gpu_coord_descent' param['alpha'] = alpha param['lambda'] = lambd param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] assert tm.non_increasing([result[0], result[-1]]) @pytest.mark.skipif(**tm.no_cupy()) def test_gpu_coordinate_from_cupy(self): # Training linear model is quite expensive, so we don't include it in # test_from_cupy.py import cupy params = {'booster': 'gblinear', 'updater': 'gpu_coord_descent', 'n_estimators': 100} X, y = tm.get_boston() cpu_model = xgb.XGBRegressor(**params) cpu_model.fit(X, y) cpu_predt = cpu_model.predict(X) X = cupy.array(X) y = cupy.array(y) gpu_model = xgb.XGBRegressor(**params) gpu_model.fit(X, y) gpu_predt = gpu_model.predict(X) cupy.testing.assert_allclose(cpu_predt, gpu_predt)
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_gpu_linear.py
import numpy as np import xgboost as xgb import json rng = np.random.RandomState(1994) class TestGPUTrainingContinuation: def test_training_continuation(self): kRows = 64 kCols = 32 X = np.random.randn(kRows, kCols) y = np.random.randn(kRows) dtrain = xgb.DMatrix(X, y) params = {'tree_method': 'gpu_hist', 'max_depth': '2', 'gamma': '0.1', 'alpha': '0.01'} bst_0 = xgb.train(params, dtrain, num_boost_round=64) dump_0 = bst_0.get_dump(dump_format='json') bst_1 = xgb.train(params, dtrain, num_boost_round=32) bst_1 = xgb.train(params, dtrain, num_boost_round=32, xgb_model=bst_1) dump_1 = bst_1.get_dump(dump_format='json') def recursive_compare(obj_0, obj_1): if isinstance(obj_0, float): assert np.isclose(obj_0, obj_1, atol=1e-6) elif isinstance(obj_0, str): assert obj_0 == obj_1 elif isinstance(obj_0, int): assert obj_0 == obj_1 elif isinstance(obj_0, dict): keys_0 = list(obj_0.keys()) keys_1 = list(obj_1.keys()) values_0 = list(obj_0.values()) values_1 = list(obj_1.values()) for i in range(len(obj_0.items())): assert keys_0[i] == keys_1[i] if list(obj_0.keys())[i] != 'missing': recursive_compare(values_0[i], values_1[i]) else: for i in range(len(obj_0)): recursive_compare(obj_0[i], obj_1[i]) assert len(dump_0) == len(dump_1) for i in range(len(dump_0)): obj_0 = json.loads(dump_0[i]) obj_1 = json.loads(dump_1[i]) recursive_compare(obj_0, obj_1)
spark-xgboost-nv-release_1.4.0
tests/python-gpu/test_gpu_training_continuation.py
"""Setup xgboost package.""" import os import shutil import subprocess import logging import distutils import sys from platform import system from setuptools import setup, find_packages, Extension from setuptools.command import build_ext, sdist, install_lib, install # You can't use `pip install .` as pip copies setup.py to a temporary # directory, parent directory is no longer reachable (isolated build) . CURRENT_DIR = os.path.abspath(os.path.dirname(__file__)) sys.path.insert(0, CURRENT_DIR) # Options only effect `python setup.py install`, building `bdist_wheel` # requires using CMake directly. USER_OPTIONS = { # libxgboost options. 'use-openmp': (None, 'Build with OpenMP support.', 1), 'use-cuda': (None, 'Build with GPU acceleration.', 0), 'use-nccl': (None, 'Build with NCCL to enable distributed GPU support.', 0), 'build-with-shared-nccl': (None, 'Build with shared NCCL library.', 0), 'hide-cxx-symbols': (None, 'Hide all C++ symbols during build.', 1), 'use-hdfs': (None, 'Build with HDFS support', 0), 'use-azure': (None, 'Build with AZURE support.', 0), 'use-s3': (None, 'Build with S3 support', 0), 'plugin-lz4': (None, 'Build lz4 plugin.', 0), 'plugin-dense-parser': (None, 'Build dense parser plugin.', 0), # Python specific 'use-system-libxgboost': (None, 'Use libxgboost.so in system path.', 0) } NEED_CLEAN_TREE = set() NEED_CLEAN_FILE = set() BUILD_TEMP_DIR = None def lib_name(): '''Return platform dependent shared object name.''' if system() == 'Linux' or system().upper().endswith('BSD'): name = 'libxgboost.so' elif system() == 'Darwin': name = 'libxgboost.dylib' elif system() == 'Windows': name = 'xgboost.dll' return name def copy_tree(src_dir, target_dir): '''Copy source tree into build directory.''' def clean_copy_tree(src, dst): distutils.dir_util.copy_tree(src, dst) NEED_CLEAN_TREE.add(os.path.abspath(dst)) def clean_copy_file(src, dst): distutils.file_util.copy_file(src, dst) NEED_CLEAN_FILE.add(os.path.abspath(dst)) src = os.path.join(src_dir, 'src') inc = os.path.join(src_dir, 'include') dmlc_core = os.path.join(src_dir, 'dmlc-core') rabit = os.path.join(src_dir, 'rabit') cmake = os.path.join(src_dir, 'cmake') plugin = os.path.join(src_dir, 'plugin') clean_copy_tree(src, os.path.join(target_dir, 'src')) clean_copy_tree(inc, os.path.join(target_dir, 'include')) clean_copy_tree(dmlc_core, os.path.join(target_dir, 'dmlc-core')) clean_copy_tree(rabit, os.path.join(target_dir, 'rabit')) clean_copy_tree(cmake, os.path.join(target_dir, 'cmake')) clean_copy_tree(plugin, os.path.join(target_dir, 'plugin')) cmake_list = os.path.join(src_dir, 'CMakeLists.txt') clean_copy_file(cmake_list, os.path.join(target_dir, 'CMakeLists.txt')) lic = os.path.join(src_dir, 'LICENSE') clean_copy_file(lic, os.path.join(target_dir, 'LICENSE')) def clean_up(): '''Removed copied files.''' for path in NEED_CLEAN_TREE: shutil.rmtree(path) for path in NEED_CLEAN_FILE: os.remove(path) class CMakeExtension(Extension): # pylint: disable=too-few-public-methods '''Wrapper for extension''' def __init__(self, name): super().__init__(name=name, sources=[]) class BuildExt(build_ext.build_ext): # pylint: disable=too-many-ancestors '''Custom build_ext command using CMake.''' logger = logging.getLogger('XGBoost build_ext') # pylint: disable=too-many-arguments,no-self-use def build(self, src_dir, build_dir, generator, build_tool=None, use_omp=1): '''Build the core library with CMake.''' cmake_cmd = ['cmake', src_dir, generator] for k, v in USER_OPTIONS.items(): arg = k.replace('-', '_').upper() value = str(v[2]) if arg == 'USE_SYSTEM_LIBXGBOOST': continue if arg == 'USE_OPENMP' and use_omp == 0: cmake_cmd.append("-D" + arg + "=0") continue cmake_cmd.append('-D' + arg + '=' + value) self.logger.info('Run CMake command: %s', str(cmake_cmd)) subprocess.check_call(cmake_cmd, cwd=build_dir) if system() != 'Windows': nproc = os.cpu_count() subprocess.check_call([build_tool, '-j' + str(nproc)], cwd=build_dir) else: subprocess.check_call(['cmake', '--build', '.', '--config', 'Release'], cwd=build_dir) def build_cmake_extension(self): '''Configure and build using CMake''' if USER_OPTIONS['use-system-libxgboost'][2]: self.logger.info('Using system libxgboost.') return build_dir = self.build_temp global BUILD_TEMP_DIR # pylint: disable=global-statement BUILD_TEMP_DIR = build_dir libxgboost = os.path.abspath( os.path.join(CURRENT_DIR, os.path.pardir, 'lib', lib_name())) if os.path.exists(libxgboost): self.logger.info('Found shared library, skipping build.') return src_dir = 'xgboost' try: copy_tree(os.path.join(CURRENT_DIR, os.path.pardir), os.path.join(self.build_temp, src_dir)) except Exception: # pylint: disable=broad-except copy_tree(src_dir, os.path.join(self.build_temp, src_dir)) self.logger.info('Building from source. %s', libxgboost) if not os.path.exists(build_dir): os.mkdir(build_dir) if shutil.which('ninja'): build_tool = 'ninja' else: build_tool = 'make' if system() == 'Windows': # Pick up from LGB, just test every possible tool chain. for vs in ('-GVisual Studio 16 2019', '-GVisual Studio 15 2017', '-GVisual Studio 14 2015', '-GMinGW Makefiles'): try: self.build(src_dir, build_dir, vs) self.logger.info( '%s is used for building Windows distribution.', vs) break except subprocess.CalledProcessError: shutil.rmtree(build_dir) os.mkdir(build_dir) continue else: gen = '-GNinja' if build_tool == 'ninja' else '-GUnix Makefiles' try: self.build(src_dir, build_dir, gen, build_tool, use_omp=1) except subprocess.CalledProcessError: self.logger.warning('Disabling OpenMP support.') self.build(src_dir, build_dir, gen, build_tool, use_omp=0) def build_extension(self, ext): '''Override the method for dispatching.''' if isinstance(ext, CMakeExtension): self.build_cmake_extension() else: super().build_extension(ext) def copy_extensions_to_source(self): '''Dummy override. Invoked during editable installation. Our binary should available in `lib`. ''' if not os.path.exists( os.path.join(CURRENT_DIR, os.path.pardir, 'lib', lib_name())): raise ValueError('For using editable installation, please ' + 'build the shared object first with CMake.') class Sdist(sdist.sdist): # pylint: disable=too-many-ancestors '''Copy c++ source into Python directory.''' logger = logging.getLogger('xgboost sdist') def run(self): copy_tree(os.path.join(CURRENT_DIR, os.path.pardir), os.path.join(CURRENT_DIR, 'xgboost')) libxgboost = os.path.join( CURRENT_DIR, os.path.pardir, 'lib', lib_name()) if os.path.exists(libxgboost): self.logger.warning( 'Found shared library, removing to avoid being included in source distribution.' ) os.remove(libxgboost) super().run() class InstallLib(install_lib.install_lib): '''Copy shared object into installation directory.''' logger = logging.getLogger('xgboost install_lib') def install(self): outfiles = super().install() if USER_OPTIONS['use-system-libxgboost'][2] != 0: self.logger.info('Using system libxgboost.') lib_path = os.path.join(sys.prefix, 'lib') msg = 'use-system-libxgboost is specified, but ' + lib_name() + \ ' is not found in: ' + lib_path assert os.path.exists(os.path.join(lib_path, lib_name())), msg return [] lib_dir = os.path.join(self.install_dir, 'xgboost', 'lib') if not os.path.exists(lib_dir): os.mkdir(lib_dir) dst = os.path.join(self.install_dir, 'xgboost', 'lib', lib_name()) global BUILD_TEMP_DIR # pylint: disable=global-statement libxgboost_path = lib_name() dft_lib_dir = os.path.join(CURRENT_DIR, os.path.pardir, 'lib') build_dir = os.path.join(BUILD_TEMP_DIR, 'xgboost', 'lib') if os.path.exists(os.path.join(dft_lib_dir, libxgboost_path)): # The library is built by CMake directly src = os.path.join(dft_lib_dir, libxgboost_path) else: # The library is built by setup.py src = os.path.join(build_dir, libxgboost_path) self.logger.info('Installing shared library: %s', src) dst, _ = self.copy_file(src, dst) outfiles.append(dst) return outfiles class Install(install.install): # pylint: disable=too-many-instance-attributes '''An interface to install command, accepting XGBoost specific arguments. ''' user_options = install.install.user_options + list( (k, v[0], v[1]) for k, v in USER_OPTIONS.items()) def initialize_options(self): super().initialize_options() self.use_openmp = 1 self.use_cuda = 0 self.use_nccl = 0 self.build_with_shared_nccl = 0 self.hide_cxx_symbols = 1 self.use_hdfs = 0 self.use_azure = 0 self.use_s3 = 0 self.plugin_lz4 = 0 self.plugin_dense_parser = 0 self.use_system_libxgboost = 0 def run(self): # setuptools will configure the options according to user supplied command line # arguments, then here we propagate them into `USER_OPTIONS` for visibility to # other sub-commands like `build_ext`. for k, v in USER_OPTIONS.items(): arg = k.replace('-', '_') if hasattr(self, arg): USER_OPTIONS[k] = (v[0], v[1], getattr(self, arg)) super().run() if __name__ == '__main__': # Supported commands: # From internet: # - pip install xgboost # - pip install --no-binary :all: xgboost # From source tree `xgboost/python-package`: # - python setup.py build # - python setup.py build_ext # - python setup.py install # - python setup.py sdist && pip install <sdist-name> # - python setup.py bdist_wheel && pip install <wheel-name> # When XGBoost is compiled directly with CMake: # - pip install . -e # - python setup.py develop # same as above logging.basicConfig(level=logging.INFO) setup(name='xgboost', version=open(os.path.join( CURRENT_DIR, 'xgboost/VERSION')).read().strip(), description="XGBoost Python Package", long_description=open(os.path.join(CURRENT_DIR, 'README.rst'), encoding='utf-8').read(), long_description_content_type="text/x-rst", install_requires=[ 'numpy', 'scipy', ], ext_modules=[CMakeExtension('libxgboost')], cmdclass={ 'build_ext': BuildExt, 'sdist': Sdist, 'install_lib': InstallLib, 'install': Install }, extras_require={ 'pandas': ['pandas'], 'scikit-learn': ['scikit-learn'], 'dask': ['dask', 'pandas', 'distributed'], 'datatable': ['datatable'], 'plotting': ['graphviz', 'matplotlib'] }, maintainer='Hyunsu Cho', maintainer_email='[email protected]', zip_safe=False, packages=find_packages(), include_package_data=True, license='Apache-2.0', classifiers=['License :: OSI Approved :: Apache Software License', 'Development Status :: 5 - Production/Stable', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8'], python_requires='>=3.6', url='https://github.com/dmlc/xgboost') clean_up()
spark-xgboost-nv-release_1.4.0
python-package/setup.py
# coding: utf-8 # pylint: disable= invalid-name """Distributed XGBoost Rabit related API.""" import ctypes import pickle import numpy as np from .core import _LIB, c_str, STRING_TYPES, _check_call def _init_rabit(): """internal library initializer.""" if _LIB is not None: _LIB.RabitGetRank.restype = ctypes.c_int _LIB.RabitGetWorldSize.restype = ctypes.c_int _LIB.RabitIsDistributed.restype = ctypes.c_int _LIB.RabitVersionNumber.restype = ctypes.c_int def init(args=None): """Initialize the rabit library with arguments""" if args is None: args = [] arr = (ctypes.c_char_p * len(args))() arr[:] = args _LIB.RabitInit(len(arr), arr) def finalize(): """Finalize the process, notify tracker everything is done.""" _LIB.RabitFinalize() def get_rank(): """Get rank of current process. Returns ------- rank : int Rank of current process. """ ret = _LIB.RabitGetRank() return ret def get_world_size(): """Get total number workers. Returns ------- n : int Total number of process. """ ret = _LIB.RabitGetWorldSize() return ret def is_distributed(): '''If rabit is distributed.''' is_dist = _LIB.RabitIsDistributed() return is_dist def tracker_print(msg): """Print message to the tracker. This function can be used to communicate the information of the progress to the tracker Parameters ---------- msg : str The message to be printed to tracker. """ if not isinstance(msg, STRING_TYPES): msg = str(msg) is_dist = _LIB.RabitIsDistributed() if is_dist != 0: _check_call(_LIB.RabitTrackerPrint(c_str(msg))) else: print(msg.strip(), flush=True) def get_processor_name(): """Get the processor name. Returns ------- name : str the name of processor(host) """ mxlen = 256 length = ctypes.c_ulong() buf = ctypes.create_string_buffer(mxlen) _LIB.RabitGetProcessorName(buf, ctypes.byref(length), mxlen) return buf.value def broadcast(data, root): """Broadcast object from one node to all other nodes. Parameters ---------- data : any type that can be pickled Input data, if current rank does not equal root, this can be None root : int Rank of the node to broadcast data from. Returns ------- object : int the result of broadcast. """ rank = get_rank() length = ctypes.c_ulong() if root == rank: assert data is not None, 'need to pass in data when broadcasting' s = pickle.dumps(data, protocol=pickle.HIGHEST_PROTOCOL) length.value = len(s) # run first broadcast _check_call(_LIB.RabitBroadcast(ctypes.byref(length), ctypes.sizeof(ctypes.c_ulong), root)) if root != rank: dptr = (ctypes.c_char * length.value)() # run second _check_call(_LIB.RabitBroadcast(ctypes.cast(dptr, ctypes.c_void_p), length.value, root)) data = pickle.loads(dptr.raw) del dptr else: _check_call(_LIB.RabitBroadcast(ctypes.cast(ctypes.c_char_p(s), ctypes.c_void_p), length.value, root)) del s return data # enumeration of dtypes DTYPE_ENUM__ = { np.dtype('int8'): 0, np.dtype('uint8'): 1, np.dtype('int32'): 2, np.dtype('uint32'): 3, np.dtype('int64'): 4, np.dtype('uint64'): 5, np.dtype('float32'): 6, np.dtype('float64'): 7 } class Op: # pylint: disable=too-few-public-methods '''Supported operations for rabit.''' MAX = 0 MIN = 1 SUM = 2 OR = 3 def allreduce(data, op, prepare_fun=None): """Perform allreduce, return the result. Parameters ---------- data: numpy array Input data. op: int Reduction operators, can be MIN, MAX, SUM, BITOR prepare_fun: function Lazy preprocessing function, if it is not None, prepare_fun(data) will be called by the function before performing allreduce, to initialize the data If the result of Allreduce can be recovered directly, then prepare_fun will NOT be called Returns ------- result : array_like The result of allreduce, have same shape as data Notes ----- This function is not thread-safe. """ if not isinstance(data, np.ndarray): raise Exception('allreduce only takes in numpy.ndarray') buf = data.ravel() if buf.base is data.base: buf = buf.copy() if buf.dtype not in DTYPE_ENUM__: raise Exception('data type %s not supported' % str(buf.dtype)) if prepare_fun is None: _check_call(_LIB.RabitAllreduce(buf.ctypes.data_as(ctypes.c_void_p), buf.size, DTYPE_ENUM__[buf.dtype], op, None, None)) else: func_ptr = ctypes.CFUNCTYPE(None, ctypes.c_void_p) def pfunc(_): """prepare function.""" prepare_fun(data) _check_call(_LIB.RabitAllreduce(buf.ctypes.data_as(ctypes.c_void_p), buf.size, DTYPE_ENUM__[buf.dtype], op, func_ptr(pfunc), None)) return buf def version_number(): """Returns version number of current stored model. This means how many calls to CheckPoint we made so far. Returns ------- version : int Version number of currently stored model """ ret = _LIB.RabitVersionNumber() return ret # intialization script _init_rabit()
spark-xgboost-nv-release_1.4.0
python-package/xgboost/rabit.py
# coding: utf-8 # pylint: disable=invalid-name, too-many-statements, no-self-use # pylint: disable=too-many-arguments """Training Library containing training routines.""" from abc import ABC import collections import os import pickle from typing import Callable, List, Optional, Union, Dict, Tuple import numpy from . import rabit from .core import EarlyStopException, CallbackEnv, Booster, XGBoostError from .compat import STRING_TYPES def _get_callback_context(env): """return whether the current callback context is cv or train""" if env.model is not None and env.cvfolds is None: context = 'train' elif env.model is None and env.cvfolds is not None: context = 'cv' else: raise ValueError("Unexpected input with both model and cvfolds.") return context def _fmt_metric(value, show_stdv=True): """format metric string""" if len(value) == 2: return '{0}:{1:.5f}'.format(value[0], value[1]) if len(value) == 3: if show_stdv: return '{0}:{1:.5f}+{2:.5f}'.format(value[0], value[1], value[2]) return '{0}:{1:.5f}'.format(value[0], value[1]) raise ValueError("wrong metric value", value) def print_evaluation(period=1, show_stdv=True): """Create a callback that print evaluation result. We print the evaluation results every **period** iterations and on the first and the last iterations. Parameters ---------- period : int The period to log the evaluation results show_stdv : bool, optional Whether show stdv if provided Returns ------- callback : function A callback that print evaluation every period iterations. """ def callback(env): """internal function""" if env.rank != 0 or (not env.evaluation_result_list) or period is False or period == 0: return i = env.iteration if i % period == 0 or i + 1 == env.begin_iteration or i + 1 == env.end_iteration: msg = '\t'.join([_fmt_metric(x, show_stdv) for x in env.evaluation_result_list]) rabit.tracker_print('[%d]\t%s\n' % (i, msg)) return callback def record_evaluation(eval_result): """Create a call back that records the evaluation history into **eval_result**. Parameters ---------- eval_result : dict A dictionary to store the evaluation results. Returns ------- callback : function The requested callback function. """ if not isinstance(eval_result, dict): raise TypeError('eval_result has to be a dictionary') eval_result.clear() def init(env): """internal function""" for k, _ in env.evaluation_result_list: pos = k.index('-') key = k[:pos] metric = k[pos + 1:] if key not in eval_result: eval_result[key] = {} if metric not in eval_result[key]: eval_result[key][metric] = [] def callback(env): """internal function""" if not eval_result: init(env) for k, v in env.evaluation_result_list: pos = k.index('-') key = k[:pos] metric = k[pos + 1:] eval_result[key][metric].append(v) return callback def reset_learning_rate(learning_rates): """Reset learning rate after iteration 1 NOTE: the initial learning rate will still take in-effect on first iteration. Parameters ---------- learning_rates: list or function List of learning rate for each boosting round or a customized function that calculates eta in terms of current number of round and the total number of boosting round (e.g. yields learning rate decay) * list ``l``: ``eta = l[boosting_round]`` * function ``f``: ``eta = f(boosting_round, num_boost_round)`` Returns ------- callback : function The requested callback function. """ def get_learning_rate(i, n, learning_rates): """helper providing the learning rate""" if isinstance(learning_rates, list): if len(learning_rates) != n: raise ValueError("Length of list 'learning_rates' has to equal 'num_boost_round'.") new_learning_rate = learning_rates[i] else: new_learning_rate = learning_rates(i, n) return new_learning_rate def callback(env): """internal function""" context = _get_callback_context(env) if context == 'train': bst, i, n = env.model, env.iteration, env.end_iteration bst.set_param( 'learning_rate', get_learning_rate(i, n, learning_rates)) elif context == 'cv': i, n = env.iteration, env.end_iteration for cvpack in env.cvfolds: bst = cvpack.bst bst.set_param( 'learning_rate', get_learning_rate(i, n, learning_rates)) callback.before_iteration = False return callback def early_stop(stopping_rounds, maximize=False, verbose=True): """Create a callback that activates early stoppping. Validation error needs to decrease at least every **stopping_rounds** round(s) to continue training. Requires at least one item in **evals**. If there's more than one, will use the last. Returns the model from the last iteration (not the best one). If early stopping occurs, the model will have three additional fields: ``bst.best_score``, ``bst.best_iteration`` and ``bst.best_ntree_limit``. (Use ``bst.best_ntree_limit`` to get the correct value if ``num_parallel_tree`` and/or ``num_class`` appears in the parameters) Parameters ---------- stopping_rounds : int The stopping rounds before the trend occur. maximize : bool Whether to maximize evaluation metric. verbose : optional, bool Whether to print message about early stopping information. Returns ------- callback : function The requested callback function. """ state = {} def init(env): """internal function""" bst = env.model if not env.evaluation_result_list: raise ValueError('For early stopping you need at least one set in evals.') if len(env.evaluation_result_list) > 1 and verbose: msg = ("Multiple eval metrics have been passed: " "'{0}' will be used for early stopping.\n\n") rabit.tracker_print(msg.format(env.evaluation_result_list[-1][0])) maximize_metrics = ('auc', 'aucpr', 'map', 'ndcg') maximize_at_n_metrics = ('auc@', 'aucpr@', 'map@', 'ndcg@') maximize_score = maximize metric_label = env.evaluation_result_list[-1][0] metric = metric_label.split('-', 1)[-1] if any(metric.startswith(x) for x in maximize_at_n_metrics): maximize_score = True if any(metric.split(":")[0] == x for x in maximize_metrics): maximize_score = True if verbose and env.rank == 0: msg = "Will train until {} hasn't improved in {} rounds.\n" rabit.tracker_print(msg.format(metric_label, stopping_rounds)) state['maximize_score'] = maximize_score state['best_iteration'] = 0 if maximize_score: state['best_score'] = float('-inf') else: state['best_score'] = float('inf') msg = '[%d]\t%s' % ( env.iteration, '\t'.join([_fmt_metric(x) for x in env.evaluation_result_list])) state['best_msg'] = msg if bst is not None: if bst.attr('best_score') is not None: state['best_score'] = float(bst.attr('best_score')) state['best_iteration'] = int(bst.attr('best_iteration')) state['best_msg'] = bst.attr('best_msg') else: bst.set_attr(best_iteration=str(state['best_iteration'])) bst.set_attr(best_score=str(state['best_score'])) else: assert env.cvfolds is not None def callback(env): """internal function""" if not state: init(env) score = env.evaluation_result_list[-1][1] best_score = state['best_score'] best_iteration = state['best_iteration'] maximize_score = state['maximize_score'] if (maximize_score and score > best_score) or \ (not maximize_score and score < best_score): msg = '[%d]\t%s' % ( env.iteration, '\t'.join([_fmt_metric(x) for x in env.evaluation_result_list])) state['best_msg'] = msg state['best_score'] = score state['best_iteration'] = env.iteration # save the property to attributes, so they will occur in checkpoint. if env.model is not None: env.model.set_attr(best_score=str(state['best_score']), best_iteration=str(state['best_iteration']), best_msg=state['best_msg']) elif env.iteration - best_iteration >= stopping_rounds: best_msg = state['best_msg'] if verbose and env.rank == 0: msg = "Stopping. Best iteration:\n{}\n\n" rabit.tracker_print(msg.format(best_msg)) raise EarlyStopException(best_iteration) return callback # The new implementation of callback functions. # Breaking: # - reset learning rate no longer accepts total boosting rounds # pylint: disable=unused-argument class TrainingCallback(ABC): '''Interface for training callback. .. versionadded:: 1.3.0 ''' def __init__(self): pass def before_training(self, model): '''Run before training starts.''' return model def after_training(self, model): '''Run after training is finished.''' return model def before_iteration(self, model, epoch: int, evals_log: 'CallbackContainer.EvalsLog') -> bool: '''Run before each iteration. Return True when training should stop.''' return False def after_iteration(self, model, epoch: int, evals_log: 'CallbackContainer.EvalsLog') -> bool: '''Run after each iteration. Return True when training should stop.''' return False def _aggcv(rlist): # pylint: disable=invalid-name """Aggregate cross-validation results. """ cvmap = {} idx = rlist[0].split()[0] for line in rlist: arr = line.split() assert idx == arr[0] for metric_idx, it in enumerate(arr[1:]): if not isinstance(it, STRING_TYPES): it = it.decode() k, v = it.split(':') if (metric_idx, k) not in cvmap: cvmap[(metric_idx, k)] = [] cvmap[(metric_idx, k)].append(float(v)) msg = idx results = [] for (metric_idx, k), v in sorted(cvmap.items(), key=lambda x: x[0][0]): v = numpy.array(v) if not isinstance(msg, STRING_TYPES): msg = msg.decode() mean, std = numpy.mean(v), numpy.std(v) results.extend([(k, mean, std)]) return results def _allreduce_metric(score): '''Helper function for computing customized metric in distributed environment. Not strictly correct as many functions don't use mean value as final result. ''' world = rabit.get_world_size() assert world != 0 if world == 1: return score if isinstance(score, tuple): # has mean and stdv raise ValueError( 'xgboost.cv function should not be used in distributed environment.') score = numpy.array([score]) score = rabit.allreduce(score, rabit.Op.SUM) / world return score[0] class CallbackContainer: '''A special callback for invoking a list of other callbacks. .. versionadded:: 1.3.0 ''' EvalsLog = Dict[str, Dict[str, Union[List[float], List[Tuple[float, float]]]]] def __init__(self, callbacks: List[TrainingCallback], metric: Callable = None, is_cv: bool = False): self.callbacks = set(callbacks) if metric is not None: msg = 'metric must be callable object for monitoring. For ' + \ 'builtin metrics, passing them in training parameter' + \ ' will invoke monitor automatically.' assert callable(metric), msg self.metric = metric self.history: CallbackContainer.EvalsLog = collections.OrderedDict() self.is_cv = is_cv if self.is_cv: self.aggregated_cv = None def before_training(self, model): '''Function called before training.''' for c in self.callbacks: model = c.before_training(model=model) msg = 'before_training should return the model' if self.is_cv: assert isinstance(model.cvfolds, list), msg else: assert isinstance(model, Booster), msg return model def after_training(self, model): '''Function called after training.''' for c in self.callbacks: model = c.after_training(model=model) msg = 'after_training should return the model' if self.is_cv: assert isinstance(model.cvfolds, list), msg else: assert isinstance(model, Booster), msg return model def before_iteration(self, model, epoch, dtrain, evals) -> bool: '''Function called before training iteration.''' return any(c.before_iteration(model, epoch, self.history) for c in self.callbacks) def _update_history(self, score, epoch): for d in score: name, s = d[0], float(d[1]) if self.is_cv: std = float(d[2]) s = (s, std) splited_names = name.split('-') data_name = splited_names[0] metric_name = '-'.join(splited_names[1:]) s = _allreduce_metric(s) if data_name in self.history: data_history = self.history[data_name] if metric_name in data_history: data_history[metric_name].append(s) else: data_history[metric_name] = [s] else: self.history[data_name] = collections.OrderedDict() self.history[data_name][metric_name] = [s] return False def after_iteration(self, model, epoch, dtrain, evals) -> bool: '''Function called after training iteration.''' if self.is_cv: scores = model.eval(epoch, self.metric) scores = _aggcv(scores) self.aggregated_cv = scores self._update_history(scores, epoch) else: evals = [] if evals is None else evals for _, name in evals: assert name.find('-') == -1, 'Dataset name should not contain `-`' score = model.eval_set(evals, epoch, self.metric) score = score.split()[1:] # into datasets # split up `test-error:0.1234` score = [tuple(s.split(':')) for s in score] self._update_history(score, epoch) ret = any(c.after_iteration(model, epoch, self.history) for c in self.callbacks) return ret class LearningRateScheduler(TrainingCallback): '''Callback function for scheduling learning rate. .. versionadded:: 1.3.0 Parameters ---------- learning_rates : callable/collections.Sequence If it's a callable object, then it should accept an integer parameter `epoch` and returns the corresponding learning rate. Otherwise it should be a sequence like list or tuple with the same size of boosting rounds. ''' def __init__(self, learning_rates) -> None: assert callable(learning_rates) or \ isinstance(learning_rates, collections.abc.Sequence) if callable(learning_rates): self.learning_rates = learning_rates else: self.learning_rates = lambda epoch: learning_rates[epoch] super().__init__() def after_iteration(self, model, epoch, evals_log) -> bool: model.set_param('learning_rate', self.learning_rates(epoch)) return False # pylint: disable=too-many-instance-attributes class EarlyStopping(TrainingCallback): """Callback function for early stopping .. versionadded:: 1.3.0 Parameters ---------- rounds Early stopping rounds. metric_name Name of metric that is used for early stopping. data_name Name of dataset that is used for early stopping. maximize Whether to maximize evaluation metric. None means auto (discouraged). save_best Whether training should return the best model or the last model. """ def __init__(self, rounds: int, metric_name: Optional[str] = None, data_name: Optional[str] = None, maximize: Optional[bool] = None, save_best: Optional[bool] = False) -> None: self.data = data_name self.metric_name = metric_name self.rounds = rounds self.save_best = save_best self.maximize = maximize self.stopping_history: CallbackContainer.EvalsLog = {} if self.maximize is not None: if self.maximize: self.improve_op = lambda x, y: x > y else: self.improve_op = lambda x, y: x < y self.current_rounds: int = 0 self.best_scores: dict = {} self.starting_round: int = 0 super().__init__() def before_training(self, model): self.starting_round = model.num_boosted_rounds() return model def _update_rounds(self, score, name, metric, model, epoch) -> bool: # Just to be compatibility with old behavior before 1.3. We should let # user to decide. if self.maximize is None: maximize_metrics = ('auc', 'aucpr', 'map', 'ndcg', 'auc@', 'aucpr@', 'map@', 'ndcg@') if any(metric.startswith(x) for x in maximize_metrics): self.improve_op = lambda x, y: x > y self.maximize = True else: self.improve_op = lambda x, y: x < y self.maximize = False if not self.stopping_history: # First round self.current_rounds = 0 self.stopping_history[name] = {} self.stopping_history[name][metric] = [score] self.best_scores[name] = {} self.best_scores[name][metric] = [score] model.set_attr(best_score=str(score), best_iteration=str(epoch)) elif not self.improve_op(score, self.best_scores[name][metric][-1]): # Not improved self.stopping_history[name][metric].append(score) self.current_rounds += 1 else: # Improved self.stopping_history[name][metric].append(score) self.best_scores[name][metric].append(score) record = self.stopping_history[name][metric][-1] model.set_attr(best_score=str(record), best_iteration=str(epoch)) self.current_rounds = 0 # reset if self.current_rounds >= self.rounds: # Should stop return True return False def after_iteration(self, model, epoch: int, evals_log: CallbackContainer.EvalsLog) -> bool: epoch += self.starting_round # training continuation msg = 'Must have at least 1 validation dataset for early stopping.' assert len(evals_log.keys()) >= 1, msg data_name = '' if self.data: for d, _ in evals_log.items(): if d == self.data: data_name = d if not data_name: raise ValueError('No dataset named:', self.data) else: # Use the last one as default. data_name = list(evals_log.keys())[-1] assert isinstance(data_name, str) and data_name data_log = evals_log[data_name] # Filter out scores that can not be used for early stopping. if self.metric_name: metric_name = self.metric_name else: # Use last metric by default. assert isinstance(data_log, collections.OrderedDict) metric_name = list(data_log.keys())[-1] score = data_log[metric_name][-1] return self._update_rounds(score, data_name, metric_name, model, epoch) def after_training(self, model): try: if self.save_best: model = model[: int(model.attr("best_iteration")) + 1] except XGBoostError as e: raise XGBoostError( "`save_best` is not applicable to current booster" ) from e return model class EvaluationMonitor(TrainingCallback): '''Print the evaluation result at each iteration. .. versionadded:: 1.3.0 Parameters ---------- metric : callable Extra user defined metric. rank : int Which worker should be used for printing the result. period : int How many epoches between printing. show_stdv : bool Used in cv to show standard deviation. Users should not specify it. ''' def __init__(self, rank=0, period=1, show_stdv=False) -> None: self.printer_rank = rank self.show_stdv = show_stdv self.period = period assert period > 0 # last error message, useful when early stopping and period are used together. self._latest: Optional[str] = None super().__init__() def _fmt_metric(self, data, metric, score, std) -> str: if std is not None and self.show_stdv: msg = '\t{0}:{1:.5f}+{2:.5f}'.format(data + '-' + metric, score, std) else: msg = '\t{0}:{1:.5f}'.format(data + '-' + metric, score) return msg def after_iteration(self, model, epoch: int, evals_log: CallbackContainer.EvalsLog) -> bool: if not evals_log: return False msg: str = f'[{epoch}]' if rabit.get_rank() == self.printer_rank: for data, metric in evals_log.items(): for metric_name, log in metric.items(): stdv: Optional[float] = None if isinstance(log[-1], tuple): score = log[-1][0] stdv = log[-1][1] else: score = log[-1] msg += self._fmt_metric(data, metric_name, score, stdv) msg += '\n' if (epoch % self.period) == 0 or self.period == 1: rabit.tracker_print(msg) self._latest = None else: # There is skipped message self._latest = msg return False def after_training(self, model): if rabit.get_rank() == self.printer_rank and self._latest is not None: rabit.tracker_print(self._latest) return model class TrainingCheckPoint(TrainingCallback): '''Checkpointing operation. .. versionadded:: 1.3.0 Parameters ---------- directory : os.PathLike Output model directory. name : str pattern of output model file. Models will be saved as name_0.json, name_1.json, name_2.json .... as_pickle : boolean When set to Ture, all training parameters will be saved in pickle format, instead of saving only the model. iterations : int Interval of checkpointing. Checkpointing is slow so setting a larger number can reduce performance hit. ''' def __init__(self, directory: os.PathLike, name: str = 'model', as_pickle=False, iterations: int = 100): self._path = directory self._name = name self._as_pickle = as_pickle self._iterations = iterations self._epoch = 0 super().__init__() def after_iteration(self, model, epoch: int, evals_log: CallbackContainer.EvalsLog) -> bool: if self._epoch == self._iterations: path = os.path.join(self._path, self._name + '_' + str(epoch) + ('.pkl' if self._as_pickle else '.json')) self._epoch = 0 if rabit.get_rank() == 0: if self._as_pickle: with open(path, 'wb') as fd: pickle.dump(model, fd) else: model.save_model(path) self._epoch += 1 return False class LegacyCallbacks: '''Adapter for legacy callback functions. .. versionadded:: 1.3.0 Parameters ---------- callbacks : Sequence A sequence of legacy callbacks (callbacks that are not instance of TrainingCallback) start_iteration : int Begining iteration. end_iteration : int End iteration, normally is the number of boosting rounds. evals : Sequence Sequence of evaluation dataset tuples. feval : Custom evaluation metric. ''' def __init__(self, callbacks, start_iteration, end_iteration, feval, cvfolds=None): self.callbacks_before_iter = [ cb for cb in callbacks if cb.__dict__.get('before_iteration', False)] self.callbacks_after_iter = [ cb for cb in callbacks if not cb.__dict__.get('before_iteration', False)] self.start_iteration = start_iteration self.end_iteration = end_iteration self.cvfolds = cvfolds self.feval = feval assert self.feval is None or callable(self.feval) if cvfolds is not None: self.aggregated_cv = None super().__init__() def before_training(self, model): '''Nothing to do for legacy callbacks''' return model def after_training(self, model): '''Nothing to do for legacy callbacks''' return model def before_iteration(self, model, epoch, dtrain, evals): '''Called before each iteration.''' for cb in self.callbacks_before_iter: rank = rabit.get_rank() cb(CallbackEnv(model=None if self.cvfolds is not None else model, cvfolds=self.cvfolds, iteration=epoch, begin_iteration=self.start_iteration, end_iteration=self.end_iteration, rank=rank, evaluation_result_list=None)) return False def after_iteration(self, model, epoch, dtrain, evals): '''Called after each iteration.''' evaluation_result_list = [] if self.cvfolds is not None: # dtrain is not used here. scores = model.eval(epoch, self.feval) self.aggregated_cv = _aggcv(scores) evaluation_result_list = self.aggregated_cv if evals: # When cv is used, evals are embedded into folds. assert self.cvfolds is None bst_eval_set = model.eval_set(evals, epoch, self.feval) if isinstance(bst_eval_set, STRING_TYPES): msg = bst_eval_set else: msg = bst_eval_set.decode() res = [x.split(':') for x in msg.split()] evaluation_result_list = [(k, float(v)) for k, v in res[1:]] try: for cb in self.callbacks_after_iter: rank = rabit.get_rank() cb(CallbackEnv(model=None if self.cvfolds is not None else model, cvfolds=self.cvfolds, iteration=epoch, begin_iteration=self.start_iteration, end_iteration=self.end_iteration, rank=rank, evaluation_result_list=evaluation_result_list)) except EarlyStopException: return True return False
spark-xgboost-nv-release_1.4.0
python-package/xgboost/callback.py
# pylint: disable=missing-function-docstring """Global configuration for XGBoost""" import ctypes import json from contextlib import contextmanager from functools import wraps from .core import _LIB, _check_call, c_str, py_str def config_doc(*, header=None, extra_note=None, parameters=None, returns=None, see_also=None): """Decorator to format docstring for config functions. Parameters ---------- header: str An introducion to the function extra_note: str Additional notes parameters: str Parameters of the function returns: str Return value see_also: str Related functions """ doc_template = """ {header} Global configuration consists of a collection of parameters that can be applied in the global scope. See https://xgboost.readthedocs.io/en/stable/parameter.html for the full list of parameters supported in the global configuration. {extra_note} .. versionadded:: 1.4.0 """ common_example = """ Example ------- .. code-block:: python import xgboost as xgb # Show all messages, including ones pertaining to debugging xgb.set_config(verbosity=2) # Get current value of global configuration # This is a dict containing all parameters in the global configuration, # including 'verbosity' config = xgb.get_config() assert config['verbosity'] == 2 # Example of using the context manager xgb.config_context(). # The context manager will restore the previous value of the global # configuration upon exiting. with xgb.config_context(verbosity=0): # Suppress warning caused by model generated with XGBoost version < 1.0.0 bst = xgb.Booster(model_file='./old_model.bin') assert xgb.get_config()['verbosity'] == 2 # old value restored """ def none_to_str(value): return '' if value is None else value def config_doc_decorator(func): func.__doc__ = (doc_template.format(header=none_to_str(header), extra_note=none_to_str(extra_note)) + none_to_str(parameters) + none_to_str(returns) + none_to_str(common_example) + none_to_str(see_also)) @wraps(func) def wrap(*args, **kwargs): return func(*args, **kwargs) return wrap return config_doc_decorator @config_doc(header=""" Set global configuration. """, parameters=""" Parameters ---------- new_config: Dict[str, Any] Keyword arguments representing the parameters and their values """) def set_config(**new_config): config = json.dumps(new_config) _check_call(_LIB.XGBSetGlobalConfig(c_str(config))) @config_doc(header=""" Get current values of the global configuration. """, returns=""" Returns ------- args: Dict[str, Any] The list of global parameters and their values """) def get_config(): config_str = ctypes.c_char_p() _check_call(_LIB.XGBGetGlobalConfig(ctypes.byref(config_str))) config = json.loads(py_str(config_str.value)) return config @contextmanager @config_doc(header=""" Context manager for global XGBoost configuration. """, parameters=""" Parameters ---------- new_config: Dict[str, Any] Keyword arguments representing the parameters and their values """, extra_note=""" .. note:: All settings, not just those presently modified, will be returned to their previous values when the context manager is exited. This is not thread-safe. """, see_also=""" See Also -------- set_config: Set global XGBoost configuration get_config: Get current values of the global configuration """) def config_context(**new_config): old_config = get_config().copy() set_config(**new_config) try: yield finally: set_config(**old_config)
spark-xgboost-nv-release_1.4.0
python-package/xgboost/config.py
# coding: utf-8 # pylint: disable= invalid-name, unused-import """For compatibility and optional dependencies.""" import sys import types import importlib.util import logging import numpy as np assert (sys.version_info[0] == 3), 'Python 2 is no longer supported.' # pylint: disable=invalid-name, redefined-builtin STRING_TYPES = (str,) def py_str(x): """convert c string back to python string""" return x.decode('utf-8') def lazy_isinstance(instance, module, name): '''Use string representation to identify a type.''' module = type(instance).__module__ == module name = type(instance).__name__ == name return module and name # pandas try: from pandas import DataFrame, Series from pandas import MultiIndex, Int64Index from pandas import concat as pandas_concat PANDAS_INSTALLED = True except ImportError: MultiIndex = object Int64Index = object DataFrame = object Series = object pandas_concat = None PANDAS_INSTALLED = False # sklearn try: from sklearn.base import BaseEstimator from sklearn.base import RegressorMixin, ClassifierMixin from sklearn.preprocessing import LabelEncoder try: from sklearn.model_selection import KFold, StratifiedKFold except ImportError: from sklearn.cross_validation import KFold, StratifiedKFold SKLEARN_INSTALLED = True XGBModelBase = BaseEstimator XGBRegressorBase = RegressorMixin XGBClassifierBase = ClassifierMixin XGBKFold = KFold XGBStratifiedKFold = StratifiedKFold class XGBoostLabelEncoder(LabelEncoder): '''Label encoder with JSON serialization methods.''' def to_json(self): '''Returns a JSON compatible dictionary''' meta = dict() for k, v in self.__dict__.items(): if isinstance(v, np.ndarray): meta[k] = v.tolist() else: meta[k] = v return meta def from_json(self, doc): # pylint: disable=attribute-defined-outside-init '''Load the encoder back from a JSON compatible dict.''' meta = dict() for k, v in doc.items(): if k == 'classes_': self.classes_ = np.array(v) continue meta[k] = v self.__dict__.update(meta) except ImportError: SKLEARN_INSTALLED = False # used for compatibility without sklearn XGBModelBase = object XGBClassifierBase = object XGBRegressorBase = object XGBKFold = None XGBStratifiedKFold = None XGBoostLabelEncoder = None # dask try: import pkg_resources pkg_resources.get_distribution('dask') DASK_INSTALLED = True except pkg_resources.DistributionNotFound: dask = None DASK_INSTALLED = False try: import sparse import scipy.sparse as scipy_sparse SCIPY_INSTALLED = True except ImportError: sparse = False scipy_sparse = False SCIPY_INSTALLED = False # Modified from tensorflow with added caching. There's a `LazyLoader` in # `importlib.utils`, except it's unclear from its document on how to use it. This one # seems to be easy to understand and works out of box. # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this # file except in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the specific language governing # permissions and limitations under the License. class LazyLoader(types.ModuleType): """Lazily import a module, mainly to avoid pulling in large dependencies. """ def __init__(self, local_name, parent_module_globals, name, warning=None): self._local_name = local_name self._parent_module_globals = parent_module_globals self._warning = warning self.module = None super().__init__(name) def _load(self): """Load the module and insert it into the parent's globals.""" # Import the target module and insert it into the parent's namespace module = importlib.import_module(self.__name__) self._parent_module_globals[self._local_name] = module # Emit a warning if one was specified if self._warning: logging.warning(self._warning) # Make sure to only warn once. self._warning = None # Update this object's dict so that if someone keeps a reference to the # LazyLoader, lookups are efficient (__getattr__ is only called on lookups # that fail). self.__dict__.update(module.__dict__) return module def __getattr__(self, item): if not self.module: self.module = self._load() return getattr(self.module, item) def __dir__(self): if not self.module: self.module = self._load() return dir(self.module)
spark-xgboost-nv-release_1.4.0
python-package/xgboost/compat.py
# pylint: disable=too-many-locals, too-many-arguments, invalid-name, # pylint: disable=too-many-branches # coding: utf-8 """Plotting Library.""" from io import BytesIO import numpy as np from .core import Booster from .sklearn import XGBModel def plot_importance(booster, ax=None, height=0.2, xlim=None, ylim=None, title='Feature importance', xlabel='F score', ylabel='Features', fmap='', importance_type='weight', max_num_features=None, grid=True, show_values=True, **kwargs): """Plot importance based on fitted trees. Parameters ---------- booster : Booster, XGBModel or dict Booster or XGBModel instance, or dict taken by Booster.get_fscore() ax : matplotlib Axes, default None Target axes instance. If None, new figure and axes will be created. grid : bool, Turn the axes grids on or off. Default is True (On). importance_type : str, default "weight" How the importance is calculated: either "weight", "gain", or "cover" * "weight" is the number of times a feature appears in a tree * "gain" is the average gain of splits which use the feature * "cover" is the average coverage of splits which use the feature where coverage is defined as the number of samples affected by the split max_num_features : int, default None Maximum number of top features displayed on plot. If None, all features will be displayed. height : float, default 0.2 Bar height, passed to ax.barh() xlim : tuple, default None Tuple passed to axes.xlim() ylim : tuple, default None Tuple passed to axes.ylim() title : str, default "Feature importance" Axes title. To disable, pass None. xlabel : str, default "F score" X axis title label. To disable, pass None. ylabel : str, default "Features" Y axis title label. To disable, pass None. fmap: str or os.PathLike (optional) The name of feature map file. show_values : bool, default True Show values on plot. To disable, pass False. kwargs : Other keywords passed to ax.barh() Returns ------- ax : matplotlib Axes """ try: import matplotlib.pyplot as plt except ImportError as e: raise ImportError('You must install matplotlib to plot importance') from e if isinstance(booster, XGBModel): importance = booster.get_booster().get_score( importance_type=importance_type, fmap=fmap) elif isinstance(booster, Booster): importance = booster.get_score(importance_type=importance_type, fmap=fmap) elif isinstance(booster, dict): importance = booster else: raise ValueError('tree must be Booster, XGBModel or dict instance') if not importance: raise ValueError( 'Booster.get_score() results in empty. ' + 'This maybe caused by having all trees as decision dumps.') tuples = [(k, importance[k]) for k in importance] if max_num_features is not None: # pylint: disable=invalid-unary-operand-type tuples = sorted(tuples, key=lambda x: x[1])[-max_num_features:] else: tuples = sorted(tuples, key=lambda x: x[1]) labels, values = zip(*tuples) if ax is None: _, ax = plt.subplots(1, 1) ylocs = np.arange(len(values)) ax.barh(ylocs, values, align='center', height=height, **kwargs) if show_values is True: for x, y in zip(values, ylocs): ax.text(x + 1, y, x, va='center') ax.set_yticks(ylocs) ax.set_yticklabels(labels) if xlim is not None: if not isinstance(xlim, tuple) or len(xlim) != 2: raise ValueError('xlim must be a tuple of 2 elements') else: xlim = (0, max(values) * 1.1) ax.set_xlim(xlim) if ylim is not None: if not isinstance(ylim, tuple) or len(ylim) != 2: raise ValueError('ylim must be a tuple of 2 elements') else: ylim = (-1, len(values)) ax.set_ylim(ylim) if title is not None: ax.set_title(title) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) ax.grid(grid) return ax def to_graphviz(booster, fmap='', num_trees=0, rankdir=None, yes_color=None, no_color=None, condition_node_params=None, leaf_node_params=None, **kwargs): """Convert specified tree to graphviz instance. IPython can automatically plot the returned graphiz instance. Otherwise, you should call .render() method of the returned graphiz instance. Parameters ---------- booster : Booster, XGBModel Booster or XGBModel instance fmap: str (optional) The name of feature map file num_trees : int, default 0 Specify the ordinal number of target tree rankdir : str, default "UT" Passed to graphiz via graph_attr yes_color : str, default '#0000FF' Edge color when meets the node condition. no_color : str, default '#FF0000' Edge color when doesn't meet the node condition. condition_node_params : dict, optional Condition node configuration for for graphviz. Example: .. code-block:: python {'shape': 'box', 'style': 'filled,rounded', 'fillcolor': '#78bceb'} leaf_node_params : dict, optional Leaf node configuration for graphviz. Example: .. code-block:: python {'shape': 'box', 'style': 'filled', 'fillcolor': '#e48038'} \\*\\*kwargs: dict, optional Other keywords passed to graphviz graph_attr, e.g. ``graph [ {key} = {value} ]`` Returns ------- graph: graphviz.Source """ try: from graphviz import Source except ImportError as e: raise ImportError('You must install graphviz to plot tree') from e if isinstance(booster, XGBModel): booster = booster.get_booster() # squash everything back into kwargs again for compatibility parameters = 'dot' extra = {} for key, value in kwargs.items(): extra[key] = value if rankdir is not None: kwargs['graph_attrs'] = {} kwargs['graph_attrs']['rankdir'] = rankdir for key, value in extra.items(): if 'graph_attrs' in kwargs.keys(): kwargs['graph_attrs'][key] = value else: kwargs['graph_attrs'] = {} del kwargs[key] if yes_color is not None or no_color is not None: kwargs['edge'] = {} if yes_color is not None: kwargs['edge']['yes_color'] = yes_color if no_color is not None: kwargs['edge']['no_color'] = no_color if condition_node_params is not None: kwargs['condition_node_params'] = condition_node_params if leaf_node_params is not None: kwargs['leaf_node_params'] = leaf_node_params if kwargs: parameters += ':' parameters += str(kwargs) tree = booster.get_dump( fmap=fmap, dump_format=parameters)[num_trees] g = Source(tree) return g def plot_tree(booster, fmap='', num_trees=0, rankdir=None, ax=None, **kwargs): """Plot specified tree. Parameters ---------- booster : Booster, XGBModel Booster or XGBModel instance fmap: str (optional) The name of feature map file num_trees : int, default 0 Specify the ordinal number of target tree rankdir : str, default "TB" Passed to graphiz via graph_attr ax : matplotlib Axes, default None Target axes instance. If None, new figure and axes will be created. kwargs : Other keywords passed to to_graphviz Returns ------- ax : matplotlib Axes """ try: from matplotlib import pyplot as plt from matplotlib import image except ImportError as e: raise ImportError('You must install matplotlib to plot tree') from e if ax is None: _, ax = plt.subplots(1, 1) g = to_graphviz(booster, fmap=fmap, num_trees=num_trees, rankdir=rankdir, **kwargs) s = BytesIO() s.write(g.pipe(format='png')) s.seek(0) img = image.imread(s) ax.imshow(img) ax.axis('off') return ax
spark-xgboost-nv-release_1.4.0
python-package/xgboost/plotting.py
# coding: utf-8 """XGBoost: eXtreme Gradient Boosting library. Contributors: https://github.com/dmlc/xgboost/blob/master/CONTRIBUTORS.md """ import os from .core import DMatrix, DeviceQuantileDMatrix, Booster from .training import train, cv from . import rabit # noqa from . import tracker # noqa from .tracker import RabitTracker # noqa from . import dask try: from .sklearn import XGBModel, XGBClassifier, XGBRegressor, XGBRanker from .sklearn import XGBRFClassifier, XGBRFRegressor from .plotting import plot_importance, plot_tree, to_graphviz from .config import set_config, get_config, config_context except ImportError: pass VERSION_FILE = os.path.join(os.path.dirname(__file__), 'VERSION') with open(VERSION_FILE) as f: __version__ = f.read().strip() __all__ = ['DMatrix', 'DeviceQuantileDMatrix', 'Booster', 'train', 'cv', 'RabitTracker', 'XGBModel', 'XGBClassifier', 'XGBRegressor', 'XGBRanker', 'XGBRFClassifier', 'XGBRFRegressor', 'plot_importance', 'plot_tree', 'to_graphviz', 'dask', 'set_config', 'get_config', 'config_context']
spark-xgboost-nv-release_1.4.0
python-package/xgboost/__init__.py
# coding: utf-8 # pylint: disable=too-many-arguments, too-many-branches, invalid-name # pylint: disable=too-many-lines, too-many-locals, no-self-use """Core XGBoost Library.""" import collections # pylint: disable=no-name-in-module,import-error from collections.abc import Mapping from typing import List, Optional, Any, Union, Dict # pylint: enable=no-name-in-module,import-error from typing import Callable, Tuple import ctypes import os import re import sys import json import warnings from functools import wraps from inspect import signature, Parameter import numpy as np import scipy.sparse from .compat import (STRING_TYPES, DataFrame, py_str, PANDAS_INSTALLED, lazy_isinstance) from .libpath import find_lib_path # c_bst_ulong corresponds to bst_ulong defined in xgboost/c_api.h c_bst_ulong = ctypes.c_uint64 class XGBoostError(ValueError): """Error thrown by xgboost trainer.""" class EarlyStopException(Exception): """Exception to signal early stopping. Parameters ---------- best_iteration : int The best iteration stopped. """ def __init__(self, best_iteration): super().__init__() self.best_iteration = best_iteration # Callback environment used by callbacks CallbackEnv = collections.namedtuple( "XGBoostCallbackEnv", ["model", "cvfolds", "iteration", "begin_iteration", "end_iteration", "rank", "evaluation_result_list"]) def from_pystr_to_cstr(data: Union[str, List[str]]): """Convert a Python str or list of Python str to C pointer Parameters ---------- data str or list of str """ if isinstance(data, str): return bytes(data, "utf-8") if isinstance(data, list): pointers = (ctypes.c_char_p * len(data))() data = [bytes(d, 'utf-8') for d in data] pointers[:] = data return pointers raise TypeError() def from_cstr_to_pystr(data, length) -> List[str]: """Revert C pointer to Python str Parameters ---------- data : ctypes pointer pointer to data length : ctypes pointer pointer to length of data """ res = [] for i in range(length.value): try: res.append(str(data[i].decode('ascii'))) except UnicodeDecodeError: res.append(str(data[i].decode('utf-8'))) return res def _convert_ntree_limit(booster, ntree_limit, iteration_range): if ntree_limit is not None and ntree_limit != 0: warnings.warn( "ntree_limit is deprecated, use `iteration_range` or model " "slicing instead.", UserWarning ) if iteration_range is not None and iteration_range[1] != 0: raise ValueError( "Only one of `iteration_range` and `ntree_limit` can be non zero." ) num_parallel_tree, num_groups = _get_booster_layer_trees(booster) num_parallel_tree = max([num_parallel_tree, 1]) num_groups = max([num_groups, 1]) iteration_range = (0, ntree_limit // num_parallel_tree) return iteration_range def _expect(expectations, got): """Translate input error into string. Parameters ---------- expectations: sequence a list of expected value. got: actual input Returns ------- msg: str """ msg = 'Expecting ' for t in range(len(expectations) - 1): msg += str(expectations[t]) msg += ' or ' msg += str(expectations[-1]) msg += '. Got ' + str(got) return msg def _log_callback(msg): """Redirect logs from native library into Python console""" print("{0:s}".format(py_str(msg))) def _get_log_callback_func(): """Wrap log_callback() method in ctypes callback type""" # pylint: disable=invalid-name CALLBACK = ctypes.CFUNCTYPE(None, ctypes.c_char_p) return CALLBACK(_log_callback) def _load_lib(): """Load xgboost Library.""" lib_paths = find_lib_path() if not lib_paths: return None try: pathBackup = os.environ['PATH'].split(os.pathsep) except KeyError: pathBackup = [] lib_success = False os_error_list = [] for lib_path in lib_paths: try: # needed when the lib is linked with non-system-available # dependencies os.environ['PATH'] = os.pathsep.join( pathBackup + [os.path.dirname(lib_path)]) lib = ctypes.cdll.LoadLibrary(lib_path) lib_success = True except OSError as e: os_error_list.append(str(e)) continue finally: os.environ['PATH'] = os.pathsep.join(pathBackup) if not lib_success: libname = os.path.basename(lib_paths[0]) raise XGBoostError( 'XGBoost Library ({}) could not be loaded.\n'.format(libname) + 'Likely causes:\n' + ' * OpenMP runtime is not installed ' + '(vcomp140.dll or libgomp-1.dll for Windows, libomp.dylib for Mac OSX, ' + 'libgomp.so for Linux and other UNIX-like OSes). Mac OSX users: Run ' + '`brew install libomp` to install OpenMP runtime.\n' + ' * You are running 32-bit Python on a 64-bit OS\n' + 'Error message(s): {}\n'.format(os_error_list)) lib.XGBGetLastError.restype = ctypes.c_char_p lib.callback = _get_log_callback_func() if lib.XGBRegisterLogCallback(lib.callback) != 0: raise XGBoostError(lib.XGBGetLastError()) return lib # load the XGBoost library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: raise XGBoostError(py_str(_LIB.XGBGetLastError())) def _numpy2ctypes_type(dtype): _NUMPY_TO_CTYPES_MAPPING = { np.float32: ctypes.c_float, np.float64: ctypes.c_double, np.uint32: ctypes.c_uint, np.uint64: ctypes.c_uint64, np.int32: ctypes.c_int32, np.int64: ctypes.c_int64, } if np.intc is not np.int32: # Windows _NUMPY_TO_CTYPES_MAPPING[np.intc] = _NUMPY_TO_CTYPES_MAPPING[np.int32] if dtype not in _NUMPY_TO_CTYPES_MAPPING.keys(): raise TypeError( f"Supported types: {_NUMPY_TO_CTYPES_MAPPING.keys()}, got: {dtype}" ) return _NUMPY_TO_CTYPES_MAPPING[dtype] def _array_interface(data: np.ndarray) -> bytes: assert ( data.dtype.hasobject is False ), "Input data contains `object` dtype. Expecting numeric data." interface = data.__array_interface__ if "mask" in interface: interface["mask"] = interface["mask"].__array_interface__ interface_str = bytes(json.dumps(interface, indent=2), "utf-8") return interface_str def ctypes2numpy(cptr, length, dtype): """Convert a ctypes pointer array to a numpy array.""" ctype = _numpy2ctypes_type(dtype) if not isinstance(cptr, ctypes.POINTER(ctype)): raise RuntimeError("expected {} pointer".format(ctype)) res = np.zeros(length, dtype=dtype) if not ctypes.memmove(res.ctypes.data, cptr, length * res.strides[0]): raise RuntimeError("memmove failed") return res def ctypes2cupy(cptr, length, dtype): """Convert a ctypes pointer array to a cupy array.""" # pylint: disable=import-error import cupy from cupy.cuda.memory import MemoryPointer from cupy.cuda.memory import UnownedMemory CUPY_TO_CTYPES_MAPPING = {cupy.float32: ctypes.c_float, cupy.uint32: ctypes.c_uint} if dtype not in CUPY_TO_CTYPES_MAPPING.keys(): raise RuntimeError("Supported types: {}".format(CUPY_TO_CTYPES_MAPPING.keys())) addr = ctypes.cast(cptr, ctypes.c_void_p).value # pylint: disable=c-extension-no-member,no-member device = cupy.cuda.runtime.pointerGetAttributes(addr).device # The owner field is just used to keep the memory alive with ref count. As # unowned's life time is scoped within this function we don't need that. unownd = UnownedMemory( addr, length * ctypes.sizeof(CUPY_TO_CTYPES_MAPPING[dtype]), owner=None ) memptr = MemoryPointer(unownd, 0) # pylint: disable=unexpected-keyword-arg mem = cupy.ndarray((length,), dtype=dtype, memptr=memptr) assert mem.device.id == device arr = cupy.array(mem, copy=True) return arr def ctypes2buffer(cptr, length): """Convert ctypes pointer to buffer type.""" if not isinstance(cptr, ctypes.POINTER(ctypes.c_char)): raise RuntimeError('expected char pointer') res = bytearray(length) rptr = (ctypes.c_char * length).from_buffer(res) if not ctypes.memmove(rptr, cptr, length): raise RuntimeError('memmove failed') return res def c_str(string): """Convert a python string to cstring.""" return ctypes.c_char_p(string.encode('utf-8')) def c_array(ctype, values): """Convert a python string to c array.""" if isinstance(values, np.ndarray) and values.dtype.itemsize == ctypes.sizeof(ctype): return (ctype * len(values)).from_buffer_copy(values) return (ctype * len(values))(*values) def _prediction_output(shape, dims, predts, is_cuda): arr_shape: np.ndarray = ctypes2numpy(shape, dims.value, np.uint64) length = int(np.prod(arr_shape)) if is_cuda: arr_predict = ctypes2cupy(predts, length, np.float32) else: arr_predict: np.ndarray = ctypes2numpy(predts, length, np.float32) arr_predict = arr_predict.reshape(arr_shape) return arr_predict class DataIter: '''The interface for user defined data iterator. Currently is only supported by Device DMatrix. ''' def __init__(self): self._handle = _ProxyDMatrix() self.exception = None @property def proxy(self): '''Handler of DMatrix proxy.''' return self._handle def reset_wrapper(self, this): # pylint: disable=unused-argument '''A wrapper for user defined `reset` function.''' self.reset() def next_wrapper(self, this): # pylint: disable=unused-argument '''A wrapper for user defined `next` function. `this` is not used in Python. ctypes can handle `self` of a Python member function automatically when converting it to c function pointer. ''' if self.exception is not None: return 0 def data_handle(data, feature_names=None, feature_types=None, **kwargs): from .data import dispatch_device_quantile_dmatrix_set_data from .data import _device_quantile_transform data, feature_names, feature_types = _device_quantile_transform( data, feature_names, feature_types ) dispatch_device_quantile_dmatrix_set_data(self.proxy, data) self.proxy.set_info( feature_names=feature_names, feature_types=feature_types, **kwargs, ) try: # Differ the exception in order to return 0 and stop the iteration. # Exception inside a ctype callback function has no effect except # for printing to stderr (doesn't stop the execution). ret = self.next(data_handle) # pylint: disable=not-callable except Exception as e: # pylint: disable=broad-except tb = sys.exc_info()[2] # On dask the worker is restarted and somehow the information is # lost. self.exception = e.with_traceback(tb) return 0 return ret def reset(self): '''Reset the data iterator. Prototype for user defined function.''' raise NotImplementedError() def next(self, input_data): '''Set the next batch of data. Parameters ---------- data_handle: callable A function with same data fields like `data`, `label` with `xgboost.DMatrix`. Returns ------- 0 if there's no more batch, otherwise 1. ''' raise NotImplementedError() # Notice for `_deprecate_positional_args` # Authors: Olivier Grisel # Gael Varoquaux # Andreas Mueller # Lars Buitinck # Alexandre Gramfort # Nicolas Tresegnie # Sylvain Marie # License: BSD 3 clause def _deprecate_positional_args(f): """Decorator for methods that issues warnings for positional arguments Using the keyword-only argument syntax in pep 3102, arguments after the * will issue a warning when passed as a positional argument. Modifed from sklearn utils.validation. Parameters ---------- f : function function to check arguments on """ sig = signature(f) kwonly_args = [] all_args = [] for name, param in sig.parameters.items(): if param.kind == Parameter.POSITIONAL_OR_KEYWORD: all_args.append(name) elif param.kind == Parameter.KEYWORD_ONLY: kwonly_args.append(name) @wraps(f) def inner_f(*args, **kwargs): extra_args = len(args) - len(all_args) if extra_args > 0: # ignore first 'self' argument for instance methods args_msg = [ '{}'.format(name) for name, _ in zip( kwonly_args[:extra_args], args[-extra_args:]) ] warnings.warn( "Pass `{}` as keyword args. Passing these as positional " "arguments will be considered as error in future releases.". format(", ".join(args_msg)), FutureWarning) for k, arg in zip(sig.parameters, args): kwargs[k] = arg return f(**kwargs) return inner_f class DMatrix: # pylint: disable=too-many-instance-attributes """Data Matrix used in XGBoost. DMatrix is an internal data structure that is used by XGBoost, which is optimized for both memory efficiency and training speed. You can construct DMatrix from multiple different sources of data. """ @_deprecate_positional_args def __init__( self, data, label=None, *, weight=None, base_margin=None, missing: Optional[float] = None, silent=False, feature_names=None, feature_types=None, nthread: Optional[int] = None, group=None, qid=None, label_lower_bound=None, label_upper_bound=None, feature_weights=None, enable_categorical: bool = False, ) -> None: """Parameters ---------- data : os.PathLike/string/numpy.array/scipy.sparse/pd.DataFrame/ dt.Frame/cudf.DataFrame/cupy.array/dlpack Data source of DMatrix. When data is string or os.PathLike type, it represents the path libsvm format txt file, csv file (by specifying uri parameter 'path_to_csv?format=csv'), or binary file that xgboost can read from. label : array_like Label of the training data. weight : array_like Weight for each instance. .. note:: For ranking task, weights are per-group. In ranking task, one weight is assigned to each group (not each data point). This is because we only care about the relative ordering of data points within each group, so it doesn't make sense to assign weights to individual data points. base_margin: array_like Base margin used for boosting from existing model. missing : float, optional Value in the input data which needs to be present as a missing value. If None, defaults to np.nan. silent : boolean, optional Whether print messages during construction feature_names : list, optional Set names for features. feature_types : list, optional Set types for features. nthread : integer, optional Number of threads to use for loading data when parallelization is applicable. If -1, uses maximum threads available on the system. group : array_like Group size for all ranking group. qid : array_like Query ID for data samples, used for ranking. label_lower_bound : array_like Lower bound for survival training. label_upper_bound : array_like Upper bound for survival training. feature_weights : array_like, optional Set feature weights for column sampling. enable_categorical: boolean, optional .. versionadded:: 1.3.0 Experimental support of specializing for categorical features. Do not set to True unless you are interested in development. Currently it's only available for `gpu_hist` tree method with 1 vs rest (one hot) categorical split. Also, JSON serialization format, `gpu_predictor` and pandas input are required. """ if isinstance(data, list): raise TypeError("Input data can not be a list.") if group is not None and qid is not None: raise ValueError("Either one of `group` or `qid` should be None.") self.missing = missing if missing is not None else np.nan self.nthread = nthread if nthread is not None else -1 self.silent = silent # force into void_p, mac need to pass things in as void_p if data is None: self.handle = None return from .data import dispatch_data_backend handle, feature_names, feature_types = dispatch_data_backend( data, missing=self.missing, threads=self.nthread, feature_names=feature_names, feature_types=feature_types, enable_categorical=enable_categorical, ) assert handle is not None self.handle = handle self.set_info( label=label, weight=weight, base_margin=base_margin, group=group, qid=qid, label_lower_bound=label_lower_bound, label_upper_bound=label_upper_bound, feature_weights=feature_weights, ) if feature_names is not None: self.feature_names = feature_names if feature_types is not None: self.feature_types = feature_types def __del__(self): if hasattr(self, "handle") and self.handle: _check_call(_LIB.XGDMatrixFree(self.handle)) self.handle = None @_deprecate_positional_args def set_info( self, *, label=None, weight=None, base_margin=None, group=None, qid=None, label_lower_bound=None, label_upper_bound=None, feature_names=None, feature_types=None, feature_weights=None ) -> None: """Set meta info for DMatrix. See doc string for :py:obj:`xgboost.DMatrix`.""" from .data import dispatch_meta_backend if label is not None: self.set_label(label) if weight is not None: self.set_weight(weight) if base_margin is not None: self.set_base_margin(base_margin) if group is not None: self.set_group(group) if qid is not None: self.set_uint_info('qid', qid) if label_lower_bound is not None: self.set_float_info('label_lower_bound', label_lower_bound) if label_upper_bound is not None: self.set_float_info('label_upper_bound', label_upper_bound) if feature_names is not None: self.feature_names = feature_names if feature_types is not None: self.feature_types = feature_types if feature_weights is not None: dispatch_meta_backend(matrix=self, data=feature_weights, name='feature_weights') def get_float_info(self, field): """Get float property from the DMatrix. Parameters ---------- field: str The field name of the information Returns ------- info : array a numpy array of float information of the data """ length = c_bst_ulong() ret = ctypes.POINTER(ctypes.c_float)() _check_call(_LIB.XGDMatrixGetFloatInfo(self.handle, c_str(field), ctypes.byref(length), ctypes.byref(ret))) return ctypes2numpy(ret, length.value, np.float32) def get_uint_info(self, field): """Get unsigned integer property from the DMatrix. Parameters ---------- field: str The field name of the information Returns ------- info : array a numpy array of unsigned integer information of the data """ length = c_bst_ulong() ret = ctypes.POINTER(ctypes.c_uint)() _check_call(_LIB.XGDMatrixGetUIntInfo(self.handle, c_str(field), ctypes.byref(length), ctypes.byref(ret))) return ctypes2numpy(ret, length.value, np.uint32) def set_float_info(self, field, data): """Set float type property into the DMatrix. Parameters ---------- field: str The field name of the information data: numpy array The array of data to be set """ from .data import dispatch_meta_backend dispatch_meta_backend(self, data, field, 'float') def set_float_info_npy2d(self, field, data): """Set float type property into the DMatrix for numpy 2d array input Parameters ---------- field: str The field name of the information data: numpy array The array of data to be set """ from .data import dispatch_meta_backend dispatch_meta_backend(self, data, field, 'float') def set_uint_info(self, field, data): """Set uint type property into the DMatrix. Parameters ---------- field: str The field name of the information data: numpy array The array of data to be set """ from .data import dispatch_meta_backend dispatch_meta_backend(self, data, field, 'uint32') def save_binary(self, fname, silent=True): """Save DMatrix to an XGBoost buffer. Saved binary can be later loaded by providing the path to :py:func:`xgboost.DMatrix` as input. Parameters ---------- fname : string or os.PathLike Name of the output buffer file. silent : bool (optional; default: True) If set, the output is suppressed. """ fname = os.fspath(os.path.expanduser(fname)) _check_call(_LIB.XGDMatrixSaveBinary(self.handle, c_str(fname), ctypes.c_int(silent))) def set_label(self, label): """Set label of dmatrix Parameters ---------- label: array like The label information to be set into DMatrix """ from .data import dispatch_meta_backend dispatch_meta_backend(self, label, 'label', 'float') def set_weight(self, weight): """Set weight of each instance. Parameters ---------- weight : array like Weight for each data point .. note:: For ranking task, weights are per-group. In ranking task, one weight is assigned to each group (not each data point). This is because we only care about the relative ordering of data points within each group, so it doesn't make sense to assign weights to individual data points. """ from .data import dispatch_meta_backend dispatch_meta_backend(self, weight, 'weight', 'float') def set_base_margin(self, margin): """Set base margin of booster to start from. This can be used to specify a prediction value of existing model to be base_margin However, remember margin is needed, instead of transformed prediction e.g. for logistic regression: need to put in value before logistic transformation see also example/demo.py Parameters ---------- margin: array like Prediction margin of each datapoint """ from .data import dispatch_meta_backend dispatch_meta_backend(self, margin, 'base_margin', 'float') def set_group(self, group): """Set group size of DMatrix (used for ranking). Parameters ---------- group : array like Group size of each group """ from .data import dispatch_meta_backend dispatch_meta_backend(self, group, 'group', 'uint32') def get_label(self): """Get the label of the DMatrix. Returns ------- label : array """ return self.get_float_info('label') def get_weight(self): """Get the weight of the DMatrix. Returns ------- weight : array """ return self.get_float_info('weight') def get_base_margin(self): """Get the base margin of the DMatrix. Returns ------- base_margin : float """ return self.get_float_info('base_margin') def num_row(self): """Get the number of rows in the DMatrix. Returns ------- number of rows : int """ ret = c_bst_ulong() _check_call(_LIB.XGDMatrixNumRow(self.handle, ctypes.byref(ret))) return ret.value def num_col(self): """Get the number of columns (features) in the DMatrix. Returns ------- number of columns : int """ ret = c_bst_ulong() _check_call(_LIB.XGDMatrixNumCol(self.handle, ctypes.byref(ret))) return ret.value def slice( self, rindex: Union[List[int], np.ndarray], allow_groups: bool = False ) -> "DMatrix": """Slice the DMatrix and return a new DMatrix that only contains `rindex`. Parameters ---------- rindex List of indices to be selected. allow_groups Allow slicing of a matrix with a groups attribute Returns ------- res A new DMatrix containing only selected indices. """ from .data import _maybe_np_slice res = DMatrix(None) res.handle = ctypes.c_void_p() rindex = _maybe_np_slice(rindex, dtype=np.int32) _check_call( _LIB.XGDMatrixSliceDMatrixEx( self.handle, c_array(ctypes.c_int, rindex), c_bst_ulong(len(rindex)), ctypes.byref(res.handle), ctypes.c_int(1 if allow_groups else 0), ) ) return res @property def feature_names(self) -> List[str]: """Get feature names (column labels). Returns ------- feature_names : list or None """ length = c_bst_ulong() sarr = ctypes.POINTER(ctypes.c_char_p)() _check_call( _LIB.XGDMatrixGetStrFeatureInfo( self.handle, c_str("feature_name"), ctypes.byref(length), ctypes.byref(sarr), ) ) feature_names = from_cstr_to_pystr(sarr, length) if not feature_names: return None return feature_names @feature_names.setter def feature_names(self, feature_names: Optional[Union[List[str], str]]) -> None: """Set feature names (column labels). Parameters ---------- feature_names : list or None Labels for features. None will reset existing feature names """ if feature_names is not None: # validate feature name try: if not isinstance(feature_names, str): feature_names = list(feature_names) else: feature_names = [feature_names] except TypeError: feature_names = [feature_names] if len(feature_names) != len(set(feature_names)): raise ValueError('feature_names must be unique') if len(feature_names) != self.num_col() and self.num_col() != 0: msg = 'feature_names must have the same length as data' raise ValueError(msg) # prohibit to use symbols may affect to parse. e.g. []< if not all(isinstance(f, str) and not any(x in f for x in set(('[', ']', '<'))) for f in feature_names): raise ValueError('feature_names must be string, and may not contain [, ] or <') c_feature_names = [bytes(f, encoding='utf-8') for f in feature_names] c_feature_names = (ctypes.c_char_p * len(c_feature_names))(*c_feature_names) _check_call(_LIB.XGDMatrixSetStrFeatureInfo( self.handle, c_str('feature_name'), c_feature_names, c_bst_ulong(len(feature_names)))) else: # reset feature_types also _check_call(_LIB.XGDMatrixSetStrFeatureInfo( self.handle, c_str('feature_name'), None, c_bst_ulong(0))) self.feature_types = None @property def feature_types(self) -> Optional[List[str]]: """Get feature types (column types). Returns ------- feature_types : list or None """ length = c_bst_ulong() sarr = ctypes.POINTER(ctypes.c_char_p)() _check_call(_LIB.XGDMatrixGetStrFeatureInfo(self.handle, c_str('feature_type'), ctypes.byref(length), ctypes.byref(sarr))) res = from_cstr_to_pystr(sarr, length) if not res: return None return res @feature_types.setter def feature_types(self, feature_types: Optional[Union[List[Any], Any]]) -> None: """Set feature types (column types). This is for displaying the results and unrelated to the learning process. Parameters ---------- feature_types : list or None Labels for features. None will reset existing feature names """ if feature_types is not None: if not isinstance(feature_types, (list, str)): raise TypeError( 'feature_types must be string or list of strings') if isinstance(feature_types, str): # single string will be applied to all columns feature_types = [feature_types] * self.num_col() try: if not isinstance(feature_types, str): feature_types = list(feature_types) else: feature_types = [feature_types] except TypeError: feature_types = [feature_types] c_feature_types = [bytes(f, encoding='utf-8') for f in feature_types] c_feature_types = (ctypes.c_char_p * len(c_feature_types))(*c_feature_types) _check_call(_LIB.XGDMatrixSetStrFeatureInfo( self.handle, c_str('feature_type'), c_feature_types, c_bst_ulong(len(feature_types)))) if len(feature_types) != self.num_col(): msg = 'feature_types must have the same length as data' raise ValueError(msg) else: # Reset. _check_call(_LIB.XGDMatrixSetStrFeatureInfo( self.handle, c_str('feature_type'), None, c_bst_ulong(0))) class _ProxyDMatrix(DMatrix): """A placeholder class when DMatrix cannot be constructed (DeviceQuantileDMatrix, inplace_predict). """ def __init__(self): # pylint: disable=super-init-not-called self.handle = ctypes.c_void_p() _check_call(_LIB.XGProxyDMatrixCreate(ctypes.byref(self.handle))) def _set_data_from_cuda_interface(self, data): '''Set data from CUDA array interface.''' interface = data.__cuda_array_interface__ interface_str = bytes(json.dumps(interface, indent=2), 'utf-8') _check_call( _LIB.XGDeviceQuantileDMatrixSetDataCudaArrayInterface( self.handle, interface_str ) ) def _set_data_from_cuda_columnar(self, data): '''Set data from CUDA columnar format.1''' from .data import _cudf_array_interfaces interfaces_str = _cudf_array_interfaces(data) _check_call( _LIB.XGDeviceQuantileDMatrixSetDataCudaColumnar( self.handle, interfaces_str ) ) class DeviceQuantileDMatrix(DMatrix): """Device memory Data Matrix used in XGBoost for training with tree_method='gpu_hist'. Do not use this for test/validation tasks as some information may be lost in quantisation. This DMatrix is primarily designed to save memory in training from device memory inputs by avoiding intermediate storage. Set max_bin to control the number of bins during quantisation. See doc string in :py:obj:`xgboost.DMatrix` for documents on meta info. You can construct DeviceQuantileDMatrix from cupy/cudf/dlpack. .. versionadded:: 1.1.0 """ @_deprecate_positional_args def __init__( # pylint: disable=super-init-not-called self, data, label=None, *, weight=None, base_margin=None, missing=None, silent=False, feature_names=None, feature_types=None, nthread: Optional[int] = None, max_bin: int = 256, group=None, qid=None, label_lower_bound=None, label_upper_bound=None, feature_weights=None, enable_categorical: bool = False, ): self.max_bin = max_bin self.missing = missing if missing is not None else np.nan self.nthread = nthread if nthread is not None else 1 self._silent = silent # unused, kept for compatibility if isinstance(data, ctypes.c_void_p): self.handle = data return if enable_categorical: raise NotImplementedError( 'categorical support is not enabled on DeviceQuantileDMatrix.' ) if qid is not None and group is not None: raise ValueError( 'Only one of the eval_qid or eval_group for each evaluation ' 'dataset should be provided.' ) self._init( data, label=label, weight=weight, base_margin=base_margin, group=group, qid=qid, label_lower_bound=label_lower_bound, label_upper_bound=label_upper_bound, feature_weights=feature_weights, feature_names=feature_names, feature_types=feature_types, ) def _init(self, data, feature_names, feature_types, **meta): from .data import ( _is_dlpack, _transform_dlpack, _is_iter, SingleBatchInternalIter, ) if _is_dlpack(data): # We specialize for dlpack because cupy will take the memory from it so # it can't be transformed twice. data = _transform_dlpack(data) if _is_iter(data): it = data else: it = SingleBatchInternalIter( data, **meta, feature_names=feature_names, feature_types=feature_types ) reset_callback = ctypes.CFUNCTYPE(None, ctypes.c_void_p)(it.reset_wrapper) next_callback = ctypes.CFUNCTYPE( ctypes.c_int, ctypes.c_void_p, )(it.next_wrapper) handle = ctypes.c_void_p() ret = _LIB.XGDeviceQuantileDMatrixCreateFromCallback( None, it.proxy.handle, reset_callback, next_callback, ctypes.c_float(self.missing), ctypes.c_int(self.nthread), ctypes.c_int(self.max_bin), ctypes.byref(handle), ) if it.exception is not None: # pylint 2.7.0 believes `it.exception` can be None even with `assert # isinstace` raise it.exception # pylint: disable=raising-bad-type # delay check_call to throw intermediate exception first _check_call(ret) self.handle = handle Objective = Callable[[np.ndarray, DMatrix], Tuple[np.ndarray, np.ndarray]] Metric = Callable[[np.ndarray, DMatrix], Tuple[str, float]] def _get_booster_layer_trees(model: "Booster") -> Tuple[int, int]: """Get number of trees added to booster per-iteration. This function will be removed once `best_ntree_limit` is dropped in favor of `best_iteration`. Returns `num_parallel_tree` and `num_groups`. """ config = json.loads(model.save_config()) booster = config["learner"]["gradient_booster"]["name"] if booster == "gblinear": num_parallel_tree = 0 elif booster == "dart": num_parallel_tree = int( config["learner"]["gradient_booster"]["gbtree"]["gbtree_train_param"][ "num_parallel_tree" ] ) elif booster == "gbtree": num_parallel_tree = int( config["learner"]["gradient_booster"]["gbtree_train_param"][ "num_parallel_tree" ] ) else: raise ValueError(f"Unknown booster: {booster}") num_groups = int(config["learner"]["learner_model_param"]["num_class"]) return num_parallel_tree, num_groups class Booster(object): # pylint: disable=too-many-public-methods """A Booster of XGBoost. Booster is the model of xgboost, that contains low level routines for training, prediction and evaluation. """ def __init__(self, params=None, cache=(), model_file=None): # pylint: disable=invalid-name """ Parameters ---------- params : dict Parameters for boosters. cache : list List of cache items. model_file : string/os.PathLike/Booster/bytearray Path to the model file if it's string or PathLike. """ for d in cache: if not isinstance(d, DMatrix): raise TypeError('invalid cache item: {}'.format(type(d).__name__), cache) dmats = c_array(ctypes.c_void_p, [d.handle for d in cache]) self.handle = ctypes.c_void_p() _check_call(_LIB.XGBoosterCreate(dmats, c_bst_ulong(len(cache)), ctypes.byref(self.handle))) for d in cache: # Validate feature only after the feature names are saved into booster. self._validate_features(d) params = params or {} params = self._configure_metrics(params.copy()) if isinstance(params, list): params.append(('validate_parameters', True)) else: params['validate_parameters'] = True self.set_param(params or {}) if (params is not None) and ('booster' in params): self.booster = params['booster'] else: self.booster = 'gbtree' if isinstance(model_file, Booster): assert self.handle is not None # We use the pickle interface for getting memory snapshot from # another model, and load the snapshot with this booster. state = model_file.__getstate__() handle = state['handle'] del state['handle'] ptr = (ctypes.c_char * len(handle)).from_buffer(handle) length = c_bst_ulong(len(handle)) _check_call( _LIB.XGBoosterUnserializeFromBuffer(self.handle, ptr, length)) self.__dict__.update(state) elif isinstance(model_file, (STRING_TYPES, os.PathLike, bytearray)): self.load_model(model_file) elif model_file is None: pass else: raise TypeError('Unknown type:', model_file) def _configure_metrics(self, params: Union[Dict, List]) -> Union[Dict, List]: if isinstance(params, dict) and 'eval_metric' in params \ and isinstance(params['eval_metric'], list): params = dict((k, v) for k, v in params.items()) eval_metrics = params['eval_metric'] params.pop("eval_metric", None) params = list(params.items()) for eval_metric in eval_metrics: params += [('eval_metric', eval_metric)] return params def __del__(self): if hasattr(self, 'handle') and self.handle is not None: _check_call(_LIB.XGBoosterFree(self.handle)) self.handle = None def __getstate__(self): # can't pickle ctypes pointers, put model content in bytearray this = self.__dict__.copy() handle = this['handle'] if handle is not None: length = c_bst_ulong() cptr = ctypes.POINTER(ctypes.c_char)() _check_call(_LIB.XGBoosterSerializeToBuffer(self.handle, ctypes.byref(length), ctypes.byref(cptr))) buf = ctypes2buffer(cptr, length.value) this["handle"] = buf return this def __setstate__(self, state): # reconstruct handle from raw data handle = state['handle'] if handle is not None: buf = handle dmats = c_array(ctypes.c_void_p, []) handle = ctypes.c_void_p() _check_call(_LIB.XGBoosterCreate( dmats, c_bst_ulong(0), ctypes.byref(handle))) length = c_bst_ulong(len(buf)) ptr = (ctypes.c_char * len(buf)).from_buffer(buf) _check_call( _LIB.XGBoosterUnserializeFromBuffer(handle, ptr, length)) state['handle'] = handle self.__dict__.update(state) def __getitem__(self, val): if isinstance(val, int): val = slice(val, val+1) if isinstance(val, tuple): raise ValueError('Only supports slicing through 1 dimension.') if not isinstance(val, slice): msg = _expect((int, slice), type(val)) raise TypeError(msg) if isinstance(val.start, type(Ellipsis)) or val.start is None: start = 0 else: start = val.start if isinstance(val.stop, type(Ellipsis)) or val.stop is None: stop = 0 else: stop = val.stop if stop < start: raise ValueError('Invalid slice', val) step = val.step if val.step is not None else 1 start = ctypes.c_int(start) stop = ctypes.c_int(stop) step = ctypes.c_int(step) sliced_handle = ctypes.c_void_p() status = _LIB.XGBoosterSlice(self.handle, start, stop, step, ctypes.byref(sliced_handle)) if status == -2: raise IndexError('Layer index out of range') _check_call(status) sliced = Booster() _check_call(_LIB.XGBoosterFree(sliced.handle)) sliced.handle = sliced_handle return sliced def save_config(self): '''Output internal parameter configuration of Booster as a JSON string. .. versionadded:: 1.0.0 ''' json_string = ctypes.c_char_p() length = c_bst_ulong() _check_call(_LIB.XGBoosterSaveJsonConfig( self.handle, ctypes.byref(length), ctypes.byref(json_string))) json_string = json_string.value.decode() # pylint: disable=no-member return json_string def load_config(self, config): '''Load configuration returned by `save_config`. .. versionadded:: 1.0.0 ''' assert isinstance(config, str) _check_call(_LIB.XGBoosterLoadJsonConfig( self.handle, c_str(config))) def __copy__(self): return self.__deepcopy__(None) def __deepcopy__(self, _): '''Return a copy of booster.''' return Booster(model_file=self) def copy(self): """Copy the booster object. Returns ------- booster: `Booster` a copied booster model """ return self.__copy__() def attr(self, key): """Get attribute string from the Booster. Parameters ---------- key : str The key to get attribute from. Returns ------- value : str The attribute value of the key, returns None if attribute do not exist. """ ret = ctypes.c_char_p() success = ctypes.c_int() _check_call(_LIB.XGBoosterGetAttr( self.handle, c_str(key), ctypes.byref(ret), ctypes.byref(success))) if success.value != 0: return py_str(ret.value) return None def attributes(self): """Get attributes stored in the Booster as a dictionary. Returns ------- result : dictionary of attribute_name: attribute_value pairs of strings. Returns an empty dict if there's no attributes. """ length = c_bst_ulong() sarr = ctypes.POINTER(ctypes.c_char_p)() _check_call(_LIB.XGBoosterGetAttrNames(self.handle, ctypes.byref(length), ctypes.byref(sarr))) attr_names = from_cstr_to_pystr(sarr, length) return {n: self.attr(n) for n in attr_names} def set_attr(self, **kwargs): """Set the attribute of the Booster. Parameters ---------- **kwargs The attributes to set. Setting a value to None deletes an attribute. """ for key, value in kwargs.items(): if value is not None: if not isinstance(value, STRING_TYPES): raise ValueError("Set Attr only accepts string values") value = c_str(str(value)) _check_call(_LIB.XGBoosterSetAttr( self.handle, c_str(key), value)) def _get_feature_info(self, field: str): length = c_bst_ulong() sarr = ctypes.POINTER(ctypes.c_char_p)() if not hasattr(self, "handle") or self.handle is None: return None _check_call( _LIB.XGBoosterGetStrFeatureInfo( self.handle, c_str(field), ctypes.byref(length), ctypes.byref(sarr), ) ) feature_info = from_cstr_to_pystr(sarr, length) return feature_info if feature_info else None @property def feature_types(self) -> Optional[List[str]]: """Feature types for this booster. Can be directly set by input data or by assignment. """ return self._get_feature_info("feature_type") @property def feature_names(self) -> Optional[List[str]]: """Feature names for this booster. Can be directly set by input data or by assignment. """ return self._get_feature_info("feature_name") def _set_feature_info(self, features: Optional[List[str]], field: str) -> None: if features is not None: assert isinstance(features, list) c_feature_info = [bytes(f, encoding="utf-8") for f in features] c_feature_info = (ctypes.c_char_p * len(c_feature_info))(*c_feature_info) _check_call( _LIB.XGBoosterSetStrFeatureInfo( self.handle, c_str(field), c_feature_info, c_bst_ulong(len(features)) ) ) else: _check_call( _LIB.XGBoosterSetStrFeatureInfo( self.handle, c_str(field), None, c_bst_ulong(0) ) ) @feature_names.setter def feature_names(self, features: Optional[List[str]]) -> None: self._set_feature_info(features, "feature_name") @feature_types.setter def feature_types(self, features: Optional[List[str]]) -> None: self._set_feature_info(features, "feature_type") def set_param(self, params, value=None): """Set parameters into the Booster. Parameters ---------- params: dict/list/str list of key,value pairs, dict of key to value or simply str key value: optional value of the specified parameter, when params is str key """ if isinstance(params, Mapping): params = params.items() elif isinstance(params, STRING_TYPES) and value is not None: params = [(params, value)] for key, val in params: if val is not None: _check_call(_LIB.XGBoosterSetParam(self.handle, c_str(key), c_str(str(val)))) def update(self, dtrain, iteration, fobj=None): """Update for one iteration, with objective function calculated internally. This function should not be called directly by users. Parameters ---------- dtrain : DMatrix Training data. iteration : int Current iteration number. fobj : function Customized objective function. """ if not isinstance(dtrain, DMatrix): raise TypeError('invalid training matrix: {}'.format( type(dtrain).__name__)) self._validate_features(dtrain) if fobj is None: _check_call(_LIB.XGBoosterUpdateOneIter(self.handle, ctypes.c_int(iteration), dtrain.handle)) else: pred = self.predict(dtrain, output_margin=True, training=True) grad, hess = fobj(pred, dtrain) self.boost(dtrain, grad, hess) def boost(self, dtrain, grad, hess): """Boost the booster for one iteration, with customized gradient statistics. Like :py:func:`xgboost.Booster.update`, this function should not be called directly by users. Parameters ---------- dtrain : DMatrix The training DMatrix. grad : list The first order of gradient. hess : list The second order of gradient. """ if len(grad) != len(hess): raise ValueError( 'grad / hess length mismatch: {} / {}'.format(len(grad), len(hess)) ) if not isinstance(dtrain, DMatrix): raise TypeError('invalid training matrix: {}'.format(type(dtrain).__name__)) self._validate_features(dtrain) _check_call(_LIB.XGBoosterBoostOneIter(self.handle, dtrain.handle, c_array(ctypes.c_float, grad), c_array(ctypes.c_float, hess), c_bst_ulong(len(grad)))) def eval_set(self, evals, iteration=0, feval=None): # pylint: disable=invalid-name """Evaluate a set of data. Parameters ---------- evals : list of tuples (DMatrix, string) List of items to be evaluated. iteration : int Current iteration. feval : function Custom evaluation function. Returns ------- result: str Evaluation result string. """ for d in evals: if not isinstance(d[0], DMatrix): raise TypeError('expected DMatrix, got {}'.format( type(d[0]).__name__)) if not isinstance(d[1], STRING_TYPES): raise TypeError('expected string, got {}'.format( type(d[1]).__name__)) self._validate_features(d[0]) dmats = c_array(ctypes.c_void_p, [d[0].handle for d in evals]) evnames = c_array(ctypes.c_char_p, [c_str(d[1]) for d in evals]) msg = ctypes.c_char_p() _check_call(_LIB.XGBoosterEvalOneIter(self.handle, ctypes.c_int(iteration), dmats, evnames, c_bst_ulong(len(evals)), ctypes.byref(msg))) res = msg.value.decode() # pylint: disable=no-member if feval is not None: for dmat, evname in evals: feval_ret = feval(self.predict(dmat, training=False, output_margin=True), dmat) if isinstance(feval_ret, list): for name, val in feval_ret: res += '\t%s-%s:%f' % (evname, name, val) else: name, val = feval_ret res += '\t%s-%s:%f' % (evname, name, val) return res def eval(self, data, name='eval', iteration=0): """Evaluate the model on mat. Parameters ---------- data : DMatrix The dmatrix storing the input. name : str, optional The name of the dataset. iteration : int, optional The current iteration number. Returns ------- result: str Evaluation result string. """ self._validate_features(data) return self.eval_set([(data, name)], iteration) # pylint: disable=too-many-function-args def predict( self, data: DMatrix, output_margin: bool = False, ntree_limit: int = 0, pred_leaf: bool = False, pred_contribs: bool = False, approx_contribs: bool = False, pred_interactions: bool = False, validate_features: bool = True, training: bool = False, iteration_range: Tuple[int, int] = (0, 0), strict_shape: bool = False, ) -> np.ndarray: """Predict with data. .. note:: This function is not thread safe except for ``gbtree`` booster. When using booster other than ``gbtree``, predict can only be called from one thread. If you want to run prediction using multiple thread, call :py:meth:`xgboost.Booster.copy` to make copies of model object and then call ``predict()``. Parameters ---------- data : The dmatrix storing the input. output_margin : Whether to output the raw untransformed margin value. ntree_limit : Deprecated, use `iteration_range` instead. pred_leaf : When this option is on, the output will be a matrix of (nsample, ntrees) with each record indicating the predicted leaf index of each sample in each tree. Note that the leaf index of a tree is unique per tree, so you may find leaf 1 in both tree 1 and tree 0. pred_contribs : When this is True the output will be a matrix of size (nsample, nfeats + 1) with each record indicating the feature contributions (SHAP values) for that prediction. The sum of all feature contributions is equal to the raw untransformed margin value of the prediction. Note the final column is the bias term. approx_contribs : Approximate the contributions of each feature. Used when ``pred_contribs`` or ``pred_interactions`` is set to True. Changing the default of this parameter (False) is not recommended. pred_interactions : When this is True the output will be a matrix of size (nsample, nfeats + 1, nfeats + 1) indicating the SHAP interaction values for each pair of features. The sum of each row (or column) of the interaction values equals the corresponding SHAP value (from pred_contribs), and the sum of the entire matrix equals the raw untransformed margin value of the prediction. Note the last row and column correspond to the bias term. validate_features : When this is True, validate that the Booster's and data's feature_names are identical. Otherwise, it is assumed that the feature_names are the same. training : Whether the prediction value is used for training. This can effect `dart` booster, which performs dropouts during training iterations. .. versionadded:: 1.0.0 iteration_range : Specifies which layer of trees are used in prediction. For example, if a random forest is trained with 100 rounds. Specifying `iteration_range=(10, 20)`, then only the forests built during [10, 20) (half open set) rounds are used in this prediction. .. versionadded:: 1.4.0 strict_shape : When set to True, output shape is invariant to whether classification is used. For both value and margin prediction, the output shape is (n_samples, n_groups), n_groups == 1 when multi-class is not used. Default to False, in which case the output shape can be (n_samples, ) if multi-class is not used. .. versionadded:: 1.4.0 .. note:: Using ``predict()`` with DART booster If the booster object is DART type, ``predict()`` will not perform dropouts, i.e. all the trees will be evaluated. If you want to obtain result with dropouts, provide `training=True`. Returns ------- prediction : numpy array """ if not isinstance(data, DMatrix): raise TypeError('Expecting data to be a DMatrix object, got: ', type(data)) if validate_features: self._validate_features(data) iteration_range = _convert_ntree_limit(self, ntree_limit, iteration_range) args = { "type": 0, "training": training, "iteration_begin": iteration_range[0], "iteration_end": iteration_range[1], "strict_shape": strict_shape, } def assign_type(t: int) -> None: if args["type"] != 0: raise ValueError("One type of prediction at a time.") args["type"] = t if output_margin: assign_type(1) if pred_contribs: assign_type(2 if not approx_contribs else 3) if pred_interactions: assign_type(4 if not approx_contribs else 5) if pred_leaf: assign_type(6) preds = ctypes.POINTER(ctypes.c_float)() shape = ctypes.POINTER(c_bst_ulong)() dims = c_bst_ulong() _check_call( _LIB.XGBoosterPredictFromDMatrix( self.handle, data.handle, from_pystr_to_cstr(json.dumps(args)), ctypes.byref(shape), ctypes.byref(dims), ctypes.byref(preds) ) ) return _prediction_output(shape, dims, preds, False) def inplace_predict( self, data: Any, iteration_range: Tuple[int, int] = (0, 0), predict_type: str = "value", missing: float = np.nan, validate_features: bool = True, base_margin: Any = None, strict_shape: bool = False ): """Run prediction in-place, Unlike ``predict`` method, inplace prediction does not cache the prediction result. Calling only ``inplace_predict`` in multiple threads is safe and lock free. But the safety does not hold when used in conjunction with other methods. E.g. you can't train the booster in one thread and perform prediction in the other. .. code-block:: python booster.set_param({'predictor': 'gpu_predictor'}) booster.inplace_predict(cupy_array) booster.set_param({'predictor': 'cpu_predictor}) booster.inplace_predict(numpy_array) .. versionadded:: 1.1.0 Parameters ---------- data : numpy.ndarray/scipy.sparse.csr_matrix/cupy.ndarray/ cudf.DataFrame/pd.DataFrame The input data, must not be a view for numpy array. Set ``predictor`` to ``gpu_predictor`` for running prediction on CuPy array or CuDF DataFrame. iteration_range : See :py:meth:`xgboost.Booster.predict` for details. predict_type : * `value` Output model prediction values. * `margin` Output the raw untransformed margin value. missing : See :py:obj:`xgboost.DMatrix` for details. validate_features: See :py:meth:`xgboost.Booster.predict` for details. base_margin: See :py:obj:`xgboost.DMatrix` for details. .. versionadded:: 1.4.0 strict_shape: See :py:meth:`xgboost.Booster.predict` for details. .. versionadded:: 1.4.0 Returns ------- prediction : numpy.ndarray/cupy.ndarray The prediction result. When input data is on GPU, prediction result is stored in a cupy array. """ preds = ctypes.POINTER(ctypes.c_float)() # once caching is supported, we can pass id(data) as cache id. try: import pandas as pd if isinstance(data, pd.DataFrame): data = data.values except ImportError: pass args = { "type": 0, "training": False, "iteration_begin": iteration_range[0], "iteration_end": iteration_range[1], "missing": missing, "strict_shape": strict_shape, "cache_id": 0, } if predict_type == "margin": args["type"] = 1 shape = ctypes.POINTER(c_bst_ulong)() dims = c_bst_ulong() if base_margin is not None: proxy = _ProxyDMatrix() proxy.set_info(base_margin=base_margin) p_handle = proxy.handle else: proxy = None p_handle = ctypes.c_void_p() assert proxy is None or isinstance(proxy, _ProxyDMatrix) if validate_features: if len(data.shape) != 1 and self.num_features() != data.shape[1]: raise ValueError( f"Feature shape mismatch, expected: {self.num_features()}, " f"got {data.shape[0]}" ) if isinstance(data, np.ndarray): from .data import _ensure_np_dtype data, _ = _ensure_np_dtype(data, data.dtype) _check_call( _LIB.XGBoosterPredictFromDense( self.handle, _array_interface(data), from_pystr_to_cstr(json.dumps(args)), p_handle, ctypes.byref(shape), ctypes.byref(dims), ctypes.byref(preds), ) ) return _prediction_output(shape, dims, preds, False) if isinstance(data, scipy.sparse.csr_matrix): csr = data _check_call( _LIB.XGBoosterPredictFromCSR( self.handle, _array_interface(csr.indptr), _array_interface(csr.indices), _array_interface(csr.data), ctypes.c_size_t(csr.shape[1]), from_pystr_to_cstr(json.dumps(args)), p_handle, ctypes.byref(shape), ctypes.byref(dims), ctypes.byref(preds), ) ) return _prediction_output(shape, dims, preds, False) if lazy_isinstance(data, "cupy.core.core", "ndarray") or lazy_isinstance( data, "cupy._core.core", "ndarray" ): from .data import _transform_cupy_array data = _transform_cupy_array(data) interface = data.__cuda_array_interface__ if "mask" in interface: interface["mask"] = interface["mask"].__cuda_array_interface__ interface_str = bytes(json.dumps(interface, indent=2), "utf-8") _check_call( _LIB.XGBoosterPredictFromCudaArray( self.handle, interface_str, from_pystr_to_cstr(json.dumps(args)), p_handle, ctypes.byref(shape), ctypes.byref(dims), ctypes.byref(preds), ) ) return _prediction_output(shape, dims, preds, True) if lazy_isinstance(data, "cudf.core.dataframe", "DataFrame"): from .data import _cudf_array_interfaces interfaces_str = _cudf_array_interfaces(data) _check_call( _LIB.XGBoosterPredictFromCudaColumnar( self.handle, interfaces_str, from_pystr_to_cstr(json.dumps(args)), p_handle, ctypes.byref(shape), ctypes.byref(dims), ctypes.byref(preds), ) ) return _prediction_output(shape, dims, preds, True) raise TypeError( "Data type:" + str(type(data)) + " not supported by inplace prediction." ) def save_model(self, fname): """Save the model to a file. The model is saved in an XGBoost internal format which is universal among the various XGBoost interfaces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved when using binary format. To save those attributes, use JSON instead. See: https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html for more info. Parameters ---------- fname : string or os.PathLike Output file name """ if isinstance(fname, (STRING_TYPES, os.PathLike)): # assume file name fname = os.fspath(os.path.expanduser(fname)) _check_call(_LIB.XGBoosterSaveModel( self.handle, c_str(fname))) else: raise TypeError("fname must be a string or os PathLike") def save_raw(self): """Save the model to a in memory buffer representation instead of file. Returns ------- a in memory buffer representation of the model """ length = c_bst_ulong() cptr = ctypes.POINTER(ctypes.c_char)() _check_call(_LIB.XGBoosterGetModelRaw(self.handle, ctypes.byref(length), ctypes.byref(cptr))) return ctypes2buffer(cptr, length.value) def load_model(self, fname): """Load the model from a file or bytearray. Path to file can be local or as an URI. The model is loaded from XGBoost format which is universal among the various XGBoost interfaces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded when using binary format. To save those attributes, use JSON instead. See: https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html for more info. Parameters ---------- fname : string, os.PathLike, or a memory buffer Input file name or memory buffer(see also save_raw) """ if isinstance(fname, (STRING_TYPES, os.PathLike)): # assume file name, cannot use os.path.exist to check, file can be # from URL. fname = os.fspath(os.path.expanduser(fname)) _check_call(_LIB.XGBoosterLoadModel( self.handle, c_str(fname))) elif isinstance(fname, bytearray): buf = fname length = c_bst_ulong(len(buf)) ptr = (ctypes.c_char * len(buf)).from_buffer(buf) _check_call(_LIB.XGBoosterLoadModelFromBuffer(self.handle, ptr, length)) else: raise TypeError('Unknown file type: ', fname) if self.attr("best_iteration") is not None: self.best_iteration = int(self.attr("best_iteration")) if self.attr("best_score") is not None: self.best_score = float(self.attr("best_score")) if self.attr("best_ntree_limit") is not None: self.best_ntree_limit = int(self.attr("best_ntree_limit")) def num_boosted_rounds(self) -> int: '''Get number of boosted rounds. For gblinear this is reset to 0 after serializing the model. ''' rounds = ctypes.c_int() assert self.handle is not None _check_call(_LIB.XGBoosterBoostedRounds(self.handle, ctypes.byref(rounds))) return rounds.value def num_features(self) -> int: '''Number of features in booster.''' features = ctypes.c_int() assert self.handle is not None _check_call(_LIB.XGBoosterGetNumFeature(self.handle, ctypes.byref(features))) return features.value def dump_model(self, fout, fmap='', with_stats=False, dump_format="text"): """Dump model into a text or JSON file. Unlike `save_model`, the output format is primarily used for visualization or interpretation, hence it's more human readable but cannot be loaded back to XGBoost. Parameters ---------- fout : string or os.PathLike Output file name. fmap : string or os.PathLike, optional Name of the file containing feature map names. with_stats : bool, optional Controls whether the split statistics are output. dump_format : string, optional Format of model dump file. Can be 'text' or 'json'. """ if isinstance(fout, (STRING_TYPES, os.PathLike)): fout = os.fspath(os.path.expanduser(fout)) fout = open(fout, 'w') # pylint: disable=consider-using-with need_close = True else: need_close = False ret = self.get_dump(fmap, with_stats, dump_format) if dump_format == 'json': fout.write('[\n') for i, _ in enumerate(ret): fout.write(ret[i]) if i < len(ret) - 1: fout.write(",\n") fout.write('\n]') else: for i, _ in enumerate(ret): fout.write('booster[{}]:\n'.format(i)) fout.write(ret[i]) if need_close: fout.close() def get_dump(self, fmap='', with_stats=False, dump_format="text"): """Returns the model dump as a list of strings. Unlike `save_model`, the output format is primarily used for visualization or interpretation, hence it's more human readable but cannot be loaded back to XGBoost. Parameters ---------- fmap : string or os.PathLike, optional Name of the file containing feature map names. with_stats : bool, optional Controls whether the split statistics are output. dump_format : string, optional Format of model dump. Can be 'text', 'json' or 'dot'. """ fmap = os.fspath(os.path.expanduser(fmap)) length = c_bst_ulong() sarr = ctypes.POINTER(ctypes.c_char_p)() if self.feature_names is not None and fmap == '': flen = len(self.feature_names) fname = from_pystr_to_cstr(self.feature_names) if self.feature_types is None: # use quantitative as default # {'q': quantitative, 'i': indicator} ftype = from_pystr_to_cstr(['q'] * flen) else: ftype = from_pystr_to_cstr(self.feature_types) _check_call(_LIB.XGBoosterDumpModelExWithFeatures( self.handle, ctypes.c_int(flen), fname, ftype, ctypes.c_int(with_stats), c_str(dump_format), ctypes.byref(length), ctypes.byref(sarr))) else: if fmap != '' and not os.path.exists(fmap): raise ValueError("No such file: {0}".format(fmap)) _check_call(_LIB.XGBoosterDumpModelEx(self.handle, c_str(fmap), ctypes.c_int(with_stats), c_str(dump_format), ctypes.byref(length), ctypes.byref(sarr))) res = from_cstr_to_pystr(sarr, length) return res def get_fscore(self, fmap=''): """Get feature importance of each feature. .. note:: Feature importance is defined only for tree boosters Feature importance is only defined when the decision tree model is chosen as base learner (`booster=gbtree`). It is not defined for other base learner types, such as linear learners (`booster=gblinear`). .. note:: Zero-importance features will not be included Keep in mind that this function does not include zero-importance feature, i.e. those features that have not been used in any split conditions. Parameters ---------- fmap: str or os.PathLike (optional) The name of feature map file """ return self.get_score(fmap, importance_type='weight') def get_score(self, fmap='', importance_type='weight'): """Get feature importance of each feature. Importance type can be defined as: * 'weight': the number of times a feature is used to split the data across all trees. * 'gain': the average gain across all splits the feature is used in. * 'cover': the average coverage across all splits the feature is used in. * 'total_gain': the total gain across all splits the feature is used in. * 'total_cover': the total coverage across all splits the feature is used in. .. note:: Feature importance is defined only for tree boosters Feature importance is only defined when the decision tree model is chosen as base learner (`booster=gbtree`). It is not defined for other base learner types, such as linear learners (`booster=gblinear`). Parameters ---------- fmap: str or os.PathLike (optional) The name of feature map file. importance_type: str, default 'weight' One of the importance types defined above. """ fmap = os.fspath(os.path.expanduser(fmap)) if getattr(self, 'booster', None) is not None and self.booster not in {'gbtree', 'dart'}: raise ValueError('Feature importance is not defined for Booster type {}' .format(self.booster)) allowed_importance_types = ['weight', 'gain', 'cover', 'total_gain', 'total_cover'] if importance_type not in allowed_importance_types: msg = ("importance_type mismatch, got '{}', expected one of " + repr(allowed_importance_types)) raise ValueError(msg.format(importance_type)) # if it's weight, then omap stores the number of missing values if importance_type == 'weight': # do a simpler tree dump to save time trees = self.get_dump(fmap, with_stats=False) fmap = {} for tree in trees: for line in tree.split('\n'): # look for the opening square bracket arr = line.split('[') # if no opening bracket (leaf node), ignore this line if len(arr) == 1: continue # extract feature name from string between [] fid = arr[1].split(']')[0].split('<')[0] if fid not in fmap: # if the feature hasn't been seen yet fmap[fid] = 1 else: fmap[fid] += 1 return fmap average_over_splits = True if importance_type == 'total_gain': importance_type = 'gain' average_over_splits = False elif importance_type == 'total_cover': importance_type = 'cover' average_over_splits = False trees = self.get_dump(fmap, with_stats=True) importance_type += '=' fmap = {} gmap = {} for tree in trees: for line in tree.split('\n'): # look for the opening square bracket arr = line.split('[') # if no opening bracket (leaf node), ignore this line if len(arr) == 1: continue # look for the closing bracket, extract only info within that bracket fid = arr[1].split(']') # extract gain or cover from string after closing bracket g = float(fid[1].split(importance_type)[1].split(',')[0]) # extract feature name from string before closing bracket fid = fid[0].split('<')[0] if fid not in fmap: # if the feature hasn't been seen yet fmap[fid] = 1 gmap[fid] = g else: fmap[fid] += 1 gmap[fid] += g # calculate average value (gain/cover) for each feature if average_over_splits: for fid in gmap: gmap[fid] = gmap[fid] / fmap[fid] return gmap def trees_to_dataframe(self, fmap=''): """Parse a boosted tree model text dump into a pandas DataFrame structure. This feature is only defined when the decision tree model is chosen as base learner (`booster in {gbtree, dart}`). It is not defined for other base learner types, such as linear learners (`booster=gblinear`). Parameters ---------- fmap: str or os.PathLike (optional) The name of feature map file. """ # pylint: disable=too-many-locals fmap = os.fspath(os.path.expanduser(fmap)) if not PANDAS_INSTALLED: raise Exception(('pandas must be available to use this method.' 'Install pandas before calling again.')) if getattr(self, 'booster', None) is not None and self.booster not in {'gbtree', 'dart'}: raise ValueError('This method is not defined for Booster type {}' .format(self.booster)) tree_ids = [] node_ids = [] fids = [] splits = [] y_directs = [] n_directs = [] missings = [] gains = [] covers = [] trees = self.get_dump(fmap, with_stats=True) for i, tree in enumerate(trees): for line in tree.split('\n'): arr = line.split('[') # Leaf node if len(arr) == 1: # Last element of line.split is an empy string if arr == ['']: continue # parse string parse = arr[0].split(':') stats = re.split('=|,', parse[1]) # append to lists tree_ids.append(i) node_ids.append(int(re.findall(r'\b\d+\b', parse[0])[0])) fids.append('Leaf') splits.append(float('NAN')) y_directs.append(float('NAN')) n_directs.append(float('NAN')) missings.append(float('NAN')) gains.append(float(stats[1])) covers.append(float(stats[3])) # Not a Leaf Node else: # parse string fid = arr[1].split(']') parse = fid[0].split('<') stats = re.split('=|,', fid[1]) # append to lists tree_ids.append(i) node_ids.append(int(re.findall(r'\b\d+\b', arr[0])[0])) fids.append(parse[0]) splits.append(float(parse[1])) str_i = str(i) y_directs.append(str_i + '-' + stats[1]) n_directs.append(str_i + '-' + stats[3]) missings.append(str_i + '-' + stats[5]) gains.append(float(stats[7])) covers.append(float(stats[9])) ids = [str(t_id) + '-' + str(n_id) for t_id, n_id in zip(tree_ids, node_ids)] df = DataFrame({'Tree': tree_ids, 'Node': node_ids, 'ID': ids, 'Feature': fids, 'Split': splits, 'Yes': y_directs, 'No': n_directs, 'Missing': missings, 'Gain': gains, 'Cover': covers}) if callable(getattr(df, 'sort_values', None)): # pylint: disable=no-member return df.sort_values(['Tree', 'Node']).reset_index(drop=True) # pylint: disable=no-member return df.sort(['Tree', 'Node']).reset_index(drop=True) def _validate_features(self, data: DMatrix): """ Validate Booster and data's feature_names are identical. Set feature_names and feature_types from DMatrix """ if data.num_row() == 0: return if self.feature_names is None: self.feature_names = data.feature_names self.feature_types = data.feature_types if data.feature_names is None and self.feature_names is not None: raise ValueError( "training data did not have the following fields: " + ", ".join(self.feature_names) ) # Booster can't accept data with different feature names if self.feature_names != data.feature_names: dat_missing = set(self.feature_names) - set(data.feature_names) my_missing = set(data.feature_names) - set(self.feature_names) msg = 'feature_names mismatch: {0} {1}' if dat_missing: msg += ('\nexpected ' + ', '.join( str(s) for s in dat_missing) + ' in input data') if my_missing: msg += ('\ntraining data did not have the following fields: ' + ', '.join(str(s) for s in my_missing)) raise ValueError(msg.format(self.feature_names, data.feature_names)) def get_split_value_histogram(self, feature, fmap='', bins=None, as_pandas=True): """Get split value histogram of a feature Parameters ---------- feature: str The name of the feature. fmap: str or os.PathLike (optional) The name of feature map file. bin: int, default None The maximum number of bins. Number of bins equals number of unique split values n_unique, if bins == None or bins > n_unique. as_pandas: bool, default True Return pd.DataFrame when pandas is installed. If False or pandas is not installed, return numpy ndarray. Returns ------- a histogram of used splitting values for the specified feature either as numpy array or pandas DataFrame. """ xgdump = self.get_dump(fmap=fmap) values = [] regexp = re.compile(r"\[{0}<([\d.Ee+-]+)\]".format(feature)) for i, _ in enumerate(xgdump): m = re.findall(regexp, xgdump[i]) values.extend([float(x) for x in m]) n_unique = len(np.unique(values)) bins = max(min(n_unique, bins) if bins is not None else n_unique, 1) nph = np.histogram(values, bins=bins) nph = np.column_stack((nph[1][1:], nph[0])) nph = nph[nph[:, 1] > 0] if as_pandas and PANDAS_INSTALLED: return DataFrame(nph, columns=['SplitValue', 'Count']) if as_pandas and not PANDAS_INSTALLED: sys.stderr.write( "Returning histogram as ndarray (as_pandas == True, but pandas is not installed).") return nph
spark-xgboost-nv-release_1.4.0
python-package/xgboost/core.py
# pylint: disable=too-many-arguments, too-many-locals, no-name-in-module # pylint: disable=missing-class-docstring, invalid-name # pylint: disable=too-many-lines, fixme # pylint: disable=too-few-public-methods # pylint: disable=import-error """Dask extensions for distributed training. See https://xgboost.readthedocs.io/en/latest/tutorials/dask.html for simple tutorial. Also xgboost/demo/dask for some examples. There are two sets of APIs in this module, one is the functional API including ``train`` and ``predict`` methods. Another is stateful Scikit-Learner wrapper inherited from single-node Scikit-Learn interface. The implementation is heavily influenced by dask_xgboost: https://github.com/dask/dask-xgboost """ import platform import logging from contextlib import contextmanager from collections import defaultdict from collections.abc import Sequence from threading import Thread from functools import partial, update_wrapper from typing import TYPE_CHECKING, List, Tuple, Callable, Optional, Any, Union, Dict, Set from typing import Awaitable, Generator, TypeVar import numpy from . import rabit, config from .callback import TrainingCallback from .compat import LazyLoader from .compat import sparse, scipy_sparse from .compat import PANDAS_INSTALLED, DataFrame, Series, pandas_concat from .compat import lazy_isinstance from .core import DMatrix, DeviceQuantileDMatrix, Booster, _expect, DataIter from .core import Objective, Metric from .core import _deprecate_positional_args from .training import train as worker_train from .tracker import RabitTracker, get_host_ip from .sklearn import XGBModel, XGBClassifier, XGBRegressorBase, XGBClassifierBase from .sklearn import _wrap_evaluation_matrices, _objective_decorator from .sklearn import XGBRankerMixIn from .sklearn import xgboost_model_doc from .sklearn import _cls_predict_proba from .sklearn import XGBRanker if TYPE_CHECKING: from dask import dataframe as dd from dask import array as da import dask import distributed else: dd = LazyLoader('dd', globals(), 'dask.dataframe') da = LazyLoader('da', globals(), 'dask.array') dask = LazyLoader('dask', globals(), 'dask') distributed = LazyLoader('distributed', globals(), 'dask.distributed') _DaskCollection = Union["da.Array", "dd.DataFrame", "dd.Series"] try: from mypy_extensions import TypedDict TrainReturnT = TypedDict('TrainReturnT', { 'booster': Booster, 'history': Dict, }) except ImportError: TrainReturnT = Dict[str, Any] # type:ignore # TODOs: # - CV # # Note for developers: # # As of writing asyncio is still a new feature of Python and in depth documentation is # rare. Best examples of various asyncio tricks are in dask (luckily). Classes like # Client, Worker are awaitable. Some general rules for the implementation here: # # - Synchronous world is different from asynchronous one, and they don't mix well. # - Write everything with async, then use distributed Client sync function to do the # switch. # - Use Any for type hint when the return value can be union of Awaitable and plain # value. This is caused by Client.sync can return both types depending on context. # Right now there's no good way to silent: # # await train(...) # # if train returns an Union type. LOGGER = logging.getLogger('[xgboost.dask]') def _multi_lock() -> Any: """MultiLock is only available on latest distributed. See: https://github.com/dask/distributed/pull/4503 """ try: from distributed import MultiLock except ImportError: class MultiLock: # type:ignore def __init__(self, *args: Any, **kwargs: Any) -> None: pass def __enter__(self) -> "MultiLock": return self def __exit__(self, *args: Any, **kwargs: Any) -> None: return async def __aenter__(self) -> "MultiLock": return self async def __aexit__(self, *args: Any, **kwargs: Any) -> None: return return MultiLock def _start_tracker(n_workers: int) -> Dict[str, Any]: """Start Rabit tracker """ env = {'DMLC_NUM_WORKER': n_workers} host = get_host_ip('auto') rabit_context = RabitTracker(hostIP=host, nslave=n_workers) env.update(rabit_context.slave_envs()) rabit_context.start(n_workers) thread = Thread(target=rabit_context.join) thread.daemon = True thread.start() return env def _assert_dask_support() -> None: try: import dask # pylint: disable=W0621,W0611 except ImportError as e: raise ImportError( "Dask needs to be installed in order to use this module" ) from e if platform.system() == "Windows": msg = "Windows is not officially supported for dask/xgboost," msg += " contribution are welcomed." LOGGER.warning(msg) class RabitContext: '''A context controling rabit initialization and finalization.''' def __init__(self, args: List[bytes]) -> None: self.args = args worker = distributed.get_worker() self.args.append( ('DMLC_TASK_ID=[xgboost.dask]:' + str(worker.address)).encode()) def __enter__(self) -> None: rabit.init(self.args) LOGGER.debug('-------------- rabit say hello ------------------') def __exit__(self, *args: List) -> None: rabit.finalize() LOGGER.debug('--------------- rabit say bye ------------------') def concat(value: Any) -> Any: # pylint: disable=too-many-return-statements '''To be replaced with dask builtin.''' if isinstance(value[0], numpy.ndarray): return numpy.concatenate(value, axis=0) if scipy_sparse and isinstance(value[0], scipy_sparse.spmatrix): return scipy_sparse.vstack(value, format='csr') if sparse and isinstance(value[0], sparse.SparseArray): return sparse.concatenate(value, axis=0) if PANDAS_INSTALLED and isinstance(value[0], (DataFrame, Series)): return pandas_concat(value, axis=0) if lazy_isinstance(value[0], 'cudf.core.dataframe', 'DataFrame') or \ lazy_isinstance(value[0], 'cudf.core.series', 'Series'): from cudf import concat as CUDF_concat # pylint: disable=import-error return CUDF_concat(value, axis=0) if lazy_isinstance(value[0], 'cupy.core.core', 'ndarray'): import cupy # pylint: disable=c-extension-no-member,no-member d = cupy.cuda.runtime.getDevice() for v in value: d_v = v.device.id assert d_v == d, 'Concatenating arrays on different devices.' return cupy.concatenate(value, axis=0) return dd.multi.concat(list(value), axis=0) def _xgb_get_client(client: Optional["distributed.Client"]) -> "distributed.Client": '''Simple wrapper around testing None.''' if not isinstance(client, (type(distributed.get_client()), type(None))): raise TypeError( _expect([type(distributed.get_client()), type(None)], type(client))) ret = distributed.get_client() if client is None else client return ret # From the implementation point of view, DaskDMatrix complicates a lots of # things. A large portion of the code base is about syncing and extracting # stuffs from DaskDMatrix. But having an independent data structure gives us a # chance to perform some specialized optimizations, like building histogram # index directly. class DaskDMatrix: # pylint: disable=missing-docstring, too-many-instance-attributes '''DMatrix holding on references to Dask DataFrame or Dask Array. Constructing a `DaskDMatrix` forces all lazy computation to be carried out. Wait for the input data explicitly if you want to see actual computation of constructing `DaskDMatrix`. See doc for :py:obj:`xgboost.DMatrix` constructor for other parameters. DaskDMatrix accepts only dask collection. .. note:: DaskDMatrix does not repartition or move data between workers. It's the caller's responsibility to balance the data. .. versionadded:: 1.0.0 Parameters ---------- client : Specify the dask client used for training. Use default client returned from dask if it's set to None. ''' @_deprecate_positional_args def __init__( self, client: "distributed.Client", data: _DaskCollection, label: Optional[_DaskCollection] = None, *, weight: Optional[_DaskCollection] = None, base_margin: Optional[_DaskCollection] = None, missing: float = None, silent: bool = False, # pylint: disable=unused-argument feature_names: Optional[Union[str, List[str]]] = None, feature_types: Optional[Union[Any, List[Any]]] = None, group: Optional[_DaskCollection] = None, qid: Optional[_DaskCollection] = None, label_lower_bound: Optional[_DaskCollection] = None, label_upper_bound: Optional[_DaskCollection] = None, feature_weights: Optional[_DaskCollection] = None, enable_categorical: bool = False ) -> None: _assert_dask_support() client = _xgb_get_client(client) self.feature_names = feature_names self.feature_types = feature_types self.missing = missing if qid is not None and weight is not None: raise NotImplementedError("per-group weight is not implemented.") if group is not None: raise NotImplementedError( "group structure is not implemented, use qid instead." ) if enable_categorical: raise NotImplementedError( "categorical support is not enabled on `DaskDMatrix`." ) if len(data.shape) != 2: raise ValueError( "Expecting 2 dimensional input, got: {shape}".format(shape=data.shape) ) if not isinstance(data, (dd.DataFrame, da.Array)): raise TypeError(_expect((dd.DataFrame, da.Array), type(data))) if not isinstance(label, (dd.DataFrame, da.Array, dd.Series, type(None))): raise TypeError(_expect((dd.DataFrame, da.Array, dd.Series), type(label))) self._n_cols = data.shape[1] assert isinstance(self._n_cols, int) self.worker_map: Dict[str, "distributed.Future"] = defaultdict(list) self.is_quantile: bool = False self._init = client.sync( self._map_local_data, client, data, label=label, weights=weight, base_margin=base_margin, qid=qid, feature_weights=feature_weights, label_lower_bound=label_lower_bound, label_upper_bound=label_upper_bound, ) def __await__(self) -> Generator: return self._init.__await__() async def _map_local_data( self, client: "distributed.Client", data: _DaskCollection, label: Optional[_DaskCollection] = None, weights: Optional[_DaskCollection] = None, base_margin: Optional[_DaskCollection] = None, qid: Optional[_DaskCollection] = None, feature_weights: Optional[_DaskCollection] = None, label_lower_bound: Optional[_DaskCollection] = None, label_upper_bound: Optional[_DaskCollection] = None ) -> "DaskDMatrix": '''Obtain references to local data.''' def inconsistent( left: List[Any], left_name: str, right: List[Any], right_name: str ) -> str: msg = 'Partitions between {a_name} and {b_name} are not ' \ 'consistent: {a_len} != {b_len}. ' \ 'Please try to repartition/rechunk your data.'.format( a_name=left_name, b_name=right_name, a_len=len(left), b_len=len(right) ) return msg def check_columns(parts: Any) -> None: # x is required to be 2 dim in __init__ assert parts.ndim == 1 or parts.shape[1], 'Data should be' \ ' partitioned by row. To avoid this specify the number' \ ' of columns for your dask Array explicitly. e.g.' \ ' chunks=(partition_size, X.shape[1])' data = client.persist(data) for meta in [label, weights, base_margin, label_lower_bound, label_upper_bound]: if meta is not None: meta = client.persist(meta) # Breaking data into partitions, a trick borrowed from dask_xgboost. # `to_delayed` downgrades high-level objects into numpy or pandas # equivalents. X_parts = data.to_delayed() if isinstance(X_parts, numpy.ndarray): check_columns(X_parts) X_parts = X_parts.flatten().tolist() def flatten_meta( meta: Optional[_DaskCollection] ) -> "Optional[List[dask.delayed.Delayed]]": if meta is not None: meta_parts = meta.to_delayed() if isinstance(meta_parts, numpy.ndarray): check_columns(meta_parts) meta_parts = meta_parts.flatten().tolist() return meta_parts return None y_parts = flatten_meta(label) w_parts = flatten_meta(weights) margin_parts = flatten_meta(base_margin) qid_parts = flatten_meta(qid) ll_parts = flatten_meta(label_lower_bound) lu_parts = flatten_meta(label_upper_bound) parts = [X_parts] meta_names = [] def append_meta( m_parts: Optional[List["dask.delayed.delayed"]], name: str ) -> None: if m_parts is not None: assert len(X_parts) == len( m_parts), inconsistent(X_parts, 'X', m_parts, name) parts.append(m_parts) meta_names.append(name) append_meta(y_parts, 'labels') append_meta(w_parts, 'weights') append_meta(margin_parts, 'base_margin') append_meta(qid_parts, 'qid') append_meta(ll_parts, 'label_lower_bound') append_meta(lu_parts, 'label_upper_bound') # At this point, `parts` looks like: # [(x0, x1, ..), (y0, y1, ..), ..] in delayed form # delay the zipped result parts = list(map(dask.delayed, zip(*parts))) # pylint: disable=no-member # At this point, the mental model should look like: # [(x0, y0, ..), (x1, y1, ..), ..] in delayed form parts = client.compute(parts) await distributed.wait(parts) # async wait for parts to be computed for part in parts: assert part.status == 'finished', part.status # Preserving the partition order for prediction. self.partition_order = {} for i, part in enumerate(parts): self.partition_order[part.key] = i key_to_partition = {part.key: part for part in parts} who_has = await client.scheduler.who_has(keys=[part.key for part in parts]) worker_map: Dict[str, "distributed.Future"] = defaultdict(list) for key, workers in who_has.items(): worker_map[next(iter(workers))].append(key_to_partition[key]) self.worker_map = worker_map self.meta_names = meta_names if feature_weights is None: self.feature_weights = None else: self.feature_weights = await client.compute(feature_weights).result() return self def _create_fn_args(self, worker_addr: str) -> Dict[str, Any]: '''Create a dictionary of objects that can be pickled for function arguments. ''' return {'feature_names': self.feature_names, 'feature_types': self.feature_types, 'feature_weights': self.feature_weights, 'meta_names': self.meta_names, 'missing': self.missing, 'parts': self.worker_map.get(worker_addr, None), 'is_quantile': self.is_quantile} def num_col(self) -> int: return self._n_cols _DataParts = List[Tuple[Any, Optional[Any], Optional[Any], Optional[Any], Optional[Any], Optional[Any], Optional[Any]]] def _get_worker_parts_ordered( meta_names: List[str], list_of_parts: _DataParts ) -> _DataParts: # List of partitions like: [(x3, y3, w3, m3, ..), ..], order is not preserved. assert isinstance(list_of_parts, list) result = [] for i, _ in enumerate(list_of_parts): data = list_of_parts[i][0] labels = None weights = None base_margin = None qid = None label_lower_bound = None label_upper_bound = None # Iterate through all possible meta info, brings small overhead as in xgboost # there are constant number of meta info available. for j, blob in enumerate(list_of_parts[i][1:]): if meta_names[j] == 'labels': labels = blob elif meta_names[j] == 'weights': weights = blob elif meta_names[j] == 'base_margin': base_margin = blob elif meta_names[j] == 'qid': qid = blob elif meta_names[j] == 'label_lower_bound': label_lower_bound = blob elif meta_names[j] == 'label_upper_bound': label_upper_bound = blob else: raise ValueError('Unknown metainfo:', meta_names[j]) result.append((data, labels, weights, base_margin, qid, label_lower_bound, label_upper_bound)) return result def _unzip(list_of_parts: _DataParts) -> List[Tuple[Any, ...]]: return list(zip(*list_of_parts)) def _get_worker_parts( list_of_parts: _DataParts, meta_names: List[str] ) -> List[Tuple[Any, ...]]: partitions = _get_worker_parts_ordered(meta_names, list_of_parts) partitions_unzipped = _unzip(partitions) return partitions_unzipped class DaskPartitionIter(DataIter): # pylint: disable=R0902 """A data iterator for `DaskDeviceQuantileDMatrix`.""" def __init__( self, data: Tuple[Any, ...], label: Optional[Tuple[Any, ...]] = None, weight: Optional[Tuple[Any, ...]] = None, base_margin: Optional[Tuple[Any, ...]] = None, qid: Optional[Tuple[Any, ...]] = None, label_lower_bound: Optional[Tuple[Any, ...]] = None, label_upper_bound: Optional[Tuple[Any, ...]] = None, feature_names: Optional[Union[str, List[str]]] = None, feature_types: Optional[Union[Any, List[Any]]] = None ) -> None: self._data = data self._labels = label self._weights = weight self._base_margin = base_margin self._qid = qid self._label_lower_bound = label_lower_bound self._label_upper_bound = label_upper_bound self._feature_names = feature_names self._feature_types = feature_types assert isinstance(self._data, Sequence) types = (Sequence, type(None)) assert isinstance(self._labels, types) assert isinstance(self._weights, types) assert isinstance(self._base_margin, types) assert isinstance(self._label_lower_bound, types) assert isinstance(self._label_upper_bound, types) self._iter = 0 # set iterator to 0 super().__init__() def data(self) -> Any: '''Utility function for obtaining current batch of data.''' return self._data[self._iter] def labels(self) -> Any: '''Utility function for obtaining current batch of label.''' if self._labels is not None: return self._labels[self._iter] return None def weights(self) -> Any: '''Utility function for obtaining current batch of label.''' if self._weights is not None: return self._weights[self._iter] return None def qids(self) -> Any: '''Utility function for obtaining current batch of query id.''' if self._qid is not None: return self._qid[self._iter] return None def base_margins(self) -> Any: '''Utility function for obtaining current batch of base_margin.''' if self._base_margin is not None: return self._base_margin[self._iter] return None def label_lower_bounds(self) -> Any: '''Utility function for obtaining current batch of label_lower_bound. ''' if self._label_lower_bound is not None: return self._label_lower_bound[self._iter] return None def label_upper_bounds(self) -> Any: '''Utility function for obtaining current batch of label_upper_bound. ''' if self._label_upper_bound is not None: return self._label_upper_bound[self._iter] return None def reset(self) -> None: '''Reset the iterator''' self._iter = 0 def next(self, input_data: Callable) -> int: '''Yield next batch of data''' if self._iter == len(self._data): # Return 0 when there's no more batch. return 0 feature_names: Optional[Union[List[str], str]] = None if self._feature_names: feature_names = self._feature_names else: if hasattr(self.data(), 'columns'): feature_names = self.data().columns.format() else: feature_names = None input_data(data=self.data(), label=self.labels(), weight=self.weights(), group=None, qid=self.qids(), label_lower_bound=self.label_lower_bounds(), label_upper_bound=self.label_upper_bounds(), feature_names=feature_names, feature_types=self._feature_types) self._iter += 1 return 1 class DaskDeviceQuantileDMatrix(DaskDMatrix): '''Specialized data type for `gpu_hist` tree method. This class is used to reduce the memory usage by eliminating data copies. Internally the all partitions/chunks of data are merged by weighted GK sketching. So the number of partitions from dask may affect training accuracy as GK generates bounded error for each merge. See doc string for :py:obj:`xgboost.DeviceQuantileDMatrix` and :py:obj:`xgboost.DMatrix` for other parameters. .. versionadded:: 1.2.0 Parameters ---------- max_bin : Number of bins for histogram construction. ''' @_deprecate_positional_args def __init__( self, client: "distributed.Client", data: _DaskCollection, label: Optional[_DaskCollection] = None, *, weight: Optional[_DaskCollection] = None, base_margin: Optional[_DaskCollection] = None, missing: float = None, silent: bool = False, # disable=unused-argument feature_names: Optional[Union[str, List[str]]] = None, feature_types: Optional[Union[Any, List[Any]]] = None, max_bin: int = 256, group: Optional[_DaskCollection] = None, qid: Optional[_DaskCollection] = None, label_lower_bound: Optional[_DaskCollection] = None, label_upper_bound: Optional[_DaskCollection] = None, feature_weights: Optional[_DaskCollection] = None, enable_categorical: bool = False, ) -> None: super().__init__( client=client, data=data, label=label, weight=weight, base_margin=base_margin, group=group, qid=qid, label_lower_bound=label_lower_bound, label_upper_bound=label_upper_bound, missing=missing, silent=silent, feature_weights=feature_weights, feature_names=feature_names, feature_types=feature_types, enable_categorical=enable_categorical, ) self.max_bin = max_bin self.is_quantile = True def _create_fn_args(self, worker_addr: str) -> Dict[str, Any]: args = super()._create_fn_args(worker_addr) args["max_bin"] = self.max_bin return args def _create_device_quantile_dmatrix( feature_names: Optional[Union[str, List[str]]], feature_types: Optional[Union[Any, List[Any]]], feature_weights: Optional[Any], meta_names: List[str], missing: float, parts: Optional[_DataParts], max_bin: int, ) -> DeviceQuantileDMatrix: worker = distributed.get_worker() if parts is None: msg = "worker {address} has an empty DMatrix.".format(address=worker.address) LOGGER.warning(msg) import cupy d = DeviceQuantileDMatrix( cupy.zeros((0, 0)), feature_names=feature_names, feature_types=feature_types, max_bin=max_bin, ) return d ( data, labels, weights, base_margin, qid, label_lower_bound, label_upper_bound, ) = _get_worker_parts(parts, meta_names) it = DaskPartitionIter( data=data, label=labels, weight=weights, base_margin=base_margin, qid=qid, label_lower_bound=label_lower_bound, label_upper_bound=label_upper_bound, ) dmatrix = DeviceQuantileDMatrix( it, missing=missing, feature_names=feature_names, feature_types=feature_types, nthread=worker.nthreads, max_bin=max_bin, ) dmatrix.set_info(feature_weights=feature_weights) return dmatrix def _create_dmatrix( feature_names: Optional[Union[str, List[str]]], feature_types: Optional[Union[Any, List[Any]]], feature_weights: Optional[Any], meta_names: List[str], missing: float, parts: Optional[_DataParts] ) -> DMatrix: '''Get data that local to worker from DaskDMatrix. Returns ------- A DMatrix object. ''' worker = distributed.get_worker() list_of_parts = parts if list_of_parts is None: msg = 'worker {address} has an empty DMatrix. '.format(address=worker.address) LOGGER.warning(msg) d = DMatrix(numpy.empty((0, 0)), feature_names=feature_names, feature_types=feature_types) return d T = TypeVar('T') def concat_or_none(data: Tuple[Optional[T], ...]) -> Optional[T]: if any(part is None for part in data): return None return concat(data) (data, labels, weights, base_margin, qid, label_lower_bound, label_upper_bound) = _get_worker_parts(list_of_parts, meta_names) _labels = concat_or_none(labels) _weights = concat_or_none(weights) _base_margin = concat_or_none(base_margin) _qid = concat_or_none(qid) _label_lower_bound = concat_or_none(label_lower_bound) _label_upper_bound = concat_or_none(label_upper_bound) _data = concat(data) dmatrix = DMatrix( _data, _labels, missing=missing, feature_names=feature_names, feature_types=feature_types, nthread=worker.nthreads, ) dmatrix.set_info( base_margin=_base_margin, qid=_qid, weight=_weights, label_lower_bound=_label_lower_bound, label_upper_bound=_label_upper_bound, feature_weights=feature_weights, ) return dmatrix def _dmatrix_from_list_of_parts( is_quantile: bool, **kwargs: Any ) -> Union[DMatrix, DeviceQuantileDMatrix]: if is_quantile: return _create_device_quantile_dmatrix(**kwargs) return _create_dmatrix(**kwargs) async def _get_rabit_args(n_workers: int, client: "distributed.Client") -> List[bytes]: '''Get rabit context arguments from data distribution in DaskDMatrix.''' env = await client.run_on_scheduler(_start_tracker, n_workers) rabit_args = [('%s=%s' % item).encode() for item in env.items()] return rabit_args # train and predict methods are supposed to be "functional", which meets the # dask paradigm. But as a side effect, the `evals_result` in single-node API # is no longer supported since it mutates the input parameter, and it's not # intuitive to sync the mutation result. Therefore, a dictionary containing # evaluation history is instead returned. def _get_workers_from_data( dtrain: DaskDMatrix, evals: Optional[List[Tuple[DaskDMatrix, str]]] ) -> List[str]: X_worker_map: Set[str] = set(dtrain.worker_map.keys()) if evals: for e in evals: assert len(e) == 2 assert isinstance(e[0], DaskDMatrix) and isinstance(e[1], str) if e[0] is dtrain: continue worker_map = set(e[0].worker_map.keys()) X_worker_map = X_worker_map.union(worker_map) return list(X_worker_map) async def _train_async( client: "distributed.Client", global_config: Dict[str, Any], params: Dict[str, Any], dtrain: DaskDMatrix, num_boost_round: int, evals: Optional[List[Tuple[DaskDMatrix, str]]], obj: Optional[Objective], feval: Optional[Metric], early_stopping_rounds: Optional[int], verbose_eval: Union[int, bool], xgb_model: Optional[Booster], callbacks: Optional[List[TrainingCallback]], ) -> Optional[TrainReturnT]: workers = _get_workers_from_data(dtrain, evals) _rabit_args = await _get_rabit_args(len(workers), client) if params.get("booster", None) == "gblinear": raise NotImplementedError( f"booster `{params['booster']}` is not yet supported for dask." ) def dispatched_train( worker_addr: str, rabit_args: List[bytes], dtrain_ref: Dict, dtrain_idt: int, evals_ref: Dict ) -> Optional[Dict[str, Union[Booster, Dict]]]: '''Perform training on a single worker. A local function prevents pickling. ''' LOGGER.debug('Training on %s', str(worker_addr)) worker = distributed.get_worker() with RabitContext(rabit_args), config.config_context(**global_config): local_dtrain = _dmatrix_from_list_of_parts(**dtrain_ref) local_evals = [] if evals_ref: for ref, name, idt in evals_ref: if idt == dtrain_idt: local_evals.append((local_dtrain, name)) continue local_evals.append((_dmatrix_from_list_of_parts(**ref), name)) local_history: Dict = {} local_param = params.copy() # just to be consistent msg = 'Overriding `nthreads` defined in dask worker.' override = ['nthread', 'n_jobs'] for p in override: val = local_param.get(p, None) if val is not None and val != worker.nthreads: LOGGER.info(msg) else: local_param[p] = worker.nthreads bst = worker_train(params=local_param, dtrain=local_dtrain, num_boost_round=num_boost_round, evals_result=local_history, evals=local_evals, obj=obj, feval=feval, early_stopping_rounds=early_stopping_rounds, verbose_eval=verbose_eval, xgb_model=xgb_model, callbacks=callbacks) ret: Optional[Dict[str, Union[Booster, Dict]]] = { 'booster': bst, 'history': local_history} if local_dtrain.num_row() == 0: ret = None return ret # Note for function purity: # XGBoost is deterministic in most of the cases, which means train function is # supposed to be idempotent. One known exception is gblinear with shotgun updater. # We haven't been able to do a full verification so here we keep pure to be False. async with _multi_lock()(workers, client): futures = [] for worker_addr in workers: if evals: # pylint: disable=protected-access evals_per_worker = [ (e._create_fn_args(worker_addr), name, id(e)) for e, name in evals ] else: evals_per_worker = [] f = client.submit( dispatched_train, worker_addr, _rabit_args, # pylint: disable=protected-access dtrain._create_fn_args(worker_addr), id(dtrain), evals_per_worker, pure=False, workers=[worker_addr], ) futures.append(f) results = await client.gather(futures, asynchronous=True) return list(filter(lambda ret: ret is not None, results))[0] def train( # pylint: disable=unused-argument client: "distributed.Client", params: Dict[str, Any], dtrain: DaskDMatrix, num_boost_round: int = 10, evals: Optional[List[Tuple[DaskDMatrix, str]]] = None, obj: Optional[Objective] = None, feval: Optional[Metric] = None, early_stopping_rounds: Optional[int] = None, xgb_model: Optional[Booster] = None, verbose_eval: Union[int, bool] = True, callbacks: Optional[List[TrainingCallback]] = None, ) -> Any: """Train XGBoost model. .. versionadded:: 1.0.0 .. note:: Other parameters are the same as :py:func:`xgboost.train` except for `evals_result`, which is returned as part of function return value instead of argument. Parameters ---------- client : Specify the dask client used for training. Use default client returned from dask if it's set to None. Returns ------- results: dict A dictionary containing trained booster and evaluation history. `history` field is the same as `eval_result` from `xgboost.train`. .. code-block:: python {'booster': xgboost.Booster, 'history': {'train': {'logloss': ['0.48253', '0.35953']}, 'eval': {'logloss': ['0.480385', '0.357756']}}} """ _assert_dask_support() client = _xgb_get_client(client) args = locals() return client.sync(_train_async, global_config=config.get_config(), **args) def _can_output_df(is_df: bool, output_shape: Tuple) -> bool: return is_df and len(output_shape) <= 2 async def _direct_predict_impl( # pylint: disable=too-many-branches mapped_predict: Callable, booster: "distributed.Future", data: _DaskCollection, base_margin: Optional[_DaskCollection], output_shape: Tuple[int, ...], meta: Dict[int, str], ) -> _DaskCollection: columns = list(meta.keys()) if len(output_shape) >= 3 and isinstance(data, dd.DataFrame): # Without this check, dask will finish the prediction silently even if output # dimension is greater than 3. But during map_partitions, dask passes a # `dd.DataFrame` as local input to xgboost, which is converted to csr_matrix by # `_convert_unknown_data` since dd.DataFrame is not known to xgboost native # binding. raise ValueError( "Use `da.Array` or `DaskDMatrix` when output has more than 2 dimensions." ) if _can_output_df(isinstance(data, dd.DataFrame), output_shape): if base_margin is not None and isinstance(base_margin, da.Array): # Easier for map_partitions base_margin_df: Optional[dd.DataFrame] = base_margin.to_dask_dataframe() else: base_margin_df = base_margin predictions = dd.map_partitions( mapped_predict, booster, data, True, columns, base_margin_df, meta=dd.utils.make_meta(meta), ) # classification can return a dataframe, drop 1 dim when it's reg/binary if len(output_shape) == 1: predictions = predictions.iloc[:, 0] else: if base_margin is not None and isinstance( base_margin, (dd.Series, dd.DataFrame) ): # Easier for map_blocks base_margin_array: Optional[da.Array] = base_margin.to_dask_array() else: base_margin_array = base_margin # Input data is 2-dim array, output can be 1(reg, binary)/2(multi-class, # contrib)/3(contrib, interaction)/4(interaction) dims. if len(output_shape) == 1: drop_axis: Union[int, List[int]] = [1] # drop from 2 to 1 dim. new_axis: Union[int, List[int]] = [] else: drop_axis = [] if isinstance(data, dd.DataFrame): new_axis = list(range(len(output_shape) - 2)) else: new_axis = [i + 2 for i in range(len(output_shape) - 2)] if len(output_shape) == 2: # Somehow dask fail to infer output shape change for 2-dim prediction, and # `chunks = (None, output_shape[1])` doesn't work due to None is not # supported in map_blocks. chunks = list(data.chunks) chunks[1] = (output_shape[1], ) else: chunks = None predictions = da.map_blocks( mapped_predict, booster, data, False, columns, base_margin_array, chunks=chunks, drop_axis=drop_axis, new_axis=new_axis, dtype=numpy.float32, ) return predictions def _infer_predict_output( booster: Booster, features: int, is_df: bool, inplace: bool, **kwargs: Any ) -> Tuple[Tuple[int, ...], Dict[int, str]]: """Create a dummy test sample to infer output shape for prediction.""" assert isinstance(features, int) rng = numpy.random.RandomState(1994) test_sample = rng.randn(1, features) if inplace: kwargs = kwargs.copy() if kwargs.pop("predict_type") == "margin": kwargs["output_margin"] = True m = DMatrix(test_sample) # generated DMatrix doesn't have feature name, so no validation. test_predt = booster.predict(m, validate_features=False, **kwargs) n_columns = test_predt.shape[1] if len(test_predt.shape) > 1 else 1 meta: Dict[int, str] = {} if _can_output_df(is_df, test_predt.shape): for i in range(n_columns): meta[i] = "f4" return test_predt.shape, meta async def _get_model_future( client: "distributed.Client", model: Union[Booster, Dict, "distributed.Future"] ) -> "distributed.Future": if isinstance(model, Booster): booster = await client.scatter(model, broadcast=True) elif isinstance(model, dict): booster = await client.scatter(model["booster"], broadcast=True) elif isinstance(model, distributed.Future): booster = model if booster.type is not Booster: raise TypeError( f"Underlying type of model future should be `Booster`, got {booster.type}" ) else: raise TypeError(_expect([Booster, dict, distributed.Future], type(model))) return booster # pylint: disable=too-many-statements async def _predict_async( client: "distributed.Client", global_config: Dict[str, Any], model: Union[Booster, Dict, "distributed.Future"], data: _DaskCollection, output_margin: bool, missing: float, pred_leaf: bool, pred_contribs: bool, approx_contribs: bool, pred_interactions: bool, validate_features: bool, iteration_range: Tuple[int, int], strict_shape: bool, ) -> _DaskCollection: _booster = await _get_model_future(client, model) if not isinstance(data, (DaskDMatrix, da.Array, dd.DataFrame)): raise TypeError(_expect([DaskDMatrix, da.Array, dd.DataFrame], type(data))) def mapped_predict( booster: Booster, partition: Any, is_df: bool, columns: List[int], _: Any ) -> Any: with config.config_context(**global_config): m = DMatrix(data=partition, missing=missing) predt = booster.predict( data=m, output_margin=output_margin, pred_leaf=pred_leaf, pred_contribs=pred_contribs, approx_contribs=approx_contribs, pred_interactions=pred_interactions, validate_features=validate_features, iteration_range=iteration_range, strict_shape=strict_shape, ) if _can_output_df(is_df, predt.shape): if lazy_isinstance(partition, "cudf", "core.dataframe.DataFrame"): import cudf predt = cudf.DataFrame(predt, columns=columns, dtype=numpy.float32) else: predt = DataFrame(predt, columns=columns, dtype=numpy.float32) return predt # Predict on dask collection directly. if isinstance(data, (da.Array, dd.DataFrame)): _output_shape, meta = await client.compute( client.submit( _infer_predict_output, _booster, features=data.shape[1], is_df=isinstance(data, dd.DataFrame), inplace=False, output_margin=output_margin, pred_leaf=pred_leaf, pred_contribs=pred_contribs, approx_contribs=approx_contribs, pred_interactions=pred_interactions, strict_shape=strict_shape, ) ) return await _direct_predict_impl( mapped_predict, _booster, data, None, _output_shape, meta ) output_shape, _ = await client.compute( client.submit( _infer_predict_output, booster=_booster, features=data.num_col(), is_df=False, inplace=False, output_margin=output_margin, pred_leaf=pred_leaf, pred_contribs=pred_contribs, approx_contribs=approx_contribs, pred_interactions=pred_interactions, strict_shape=strict_shape, ) ) # Prediction on dask DMatrix. partition_order = data.partition_order feature_names = data.feature_names feature_types = data.feature_types missing = data.missing meta_names = data.meta_names def dispatched_predict(booster: Booster, part: Any) -> numpy.ndarray: data = part[0] assert isinstance(part, tuple), type(part) base_margin = None for i, blob in enumerate(part[1:]): if meta_names[i] == "base_margin": base_margin = blob with config.config_context(**global_config): m = DMatrix( data, missing=missing, base_margin=base_margin, feature_names=feature_names, feature_types=feature_types, ) predt = booster.predict( m, output_margin=output_margin, pred_leaf=pred_leaf, pred_contribs=pred_contribs, approx_contribs=approx_contribs, pred_interactions=pred_interactions, validate_features=validate_features, ) return predt all_parts = [] all_orders = [] all_shapes = [] workers_address = list(data.worker_map.keys()) for worker_addr in workers_address: list_of_parts = data.worker_map[worker_addr] all_parts.extend(list_of_parts) all_orders.extend([partition_order[part.key] for part in list_of_parts]) for part in all_parts: s = client.submit(lambda part: part[0].shape[0], part) all_shapes.append(s) all_shapes = await client.gather(all_shapes) parts_with_order = list(zip(all_parts, all_shapes, all_orders)) parts_with_order = sorted(parts_with_order, key=lambda p: p[2]) all_parts = [part for part, shape, order in parts_with_order] all_shapes = [shape for part, shape, order in parts_with_order] futures = [] for part in all_parts: f = client.submit(dispatched_predict, _booster, part) futures.append(f) # Constructing a dask array from list of numpy arrays # See https://docs.dask.org/en/latest/array-creation.html arrays = [] for i, rows in enumerate(all_shapes): arrays.append( da.from_delayed( futures[i], shape=(rows,) + output_shape[1:], dtype=numpy.float32 ) ) predictions = da.concatenate(arrays, axis=0) return predictions def predict( # pylint: disable=unused-argument client: "distributed.Client", model: Union[TrainReturnT, Booster, "distributed.Future"], data: Union[DaskDMatrix, _DaskCollection], output_margin: bool = False, missing: float = numpy.nan, pred_leaf: bool = False, pred_contribs: bool = False, approx_contribs: bool = False, pred_interactions: bool = False, validate_features: bool = True, iteration_range: Tuple[int, int] = (0, 0), strict_shape: bool = False, ) -> Any: '''Run prediction with a trained booster. .. note:: Using ``inplace_predict`` might be faster when some features are not needed. See :py:meth:`xgboost.Booster.predict` for details on various parameters. When output has more than 2 dimensions (shap value, leaf with strict_shape), input should be ``da.Array`` or ``DaskDMatrix``. .. versionadded:: 1.0.0 Parameters ---------- client: Specify the dask client used for training. Use default client returned from dask if it's set to None. model: The trained model. It can be a distributed.Future so user can pre-scatter it onto all workers. data: Input data used for prediction. When input is a dataframe object, prediction output is a series. missing: Used when input data is not DaskDMatrix. Specify the value considered as missing. Returns ------- prediction: dask.array.Array/dask.dataframe.Series When input data is ``dask.array.Array`` or ``DaskDMatrix``, the return value is an array, when input data is ``dask.dataframe.DataFrame``, return value can be ``dask.dataframe.Series``, ``dask.dataframe.DataFrame``, depending on the output shape. ''' _assert_dask_support() client = _xgb_get_client(client) return client.sync(_predict_async, global_config=config.get_config(), **locals()) async def _inplace_predict_async( # pylint: disable=too-many-branches client: "distributed.Client", global_config: Dict[str, Any], model: Union[Booster, Dict, "distributed.Future"], data: _DaskCollection, iteration_range: Tuple[int, int], predict_type: str, missing: float, validate_features: bool, base_margin: Optional[_DaskCollection], strict_shape: bool, ) -> _DaskCollection: client = _xgb_get_client(client) booster = await _get_model_future(client, model) if not isinstance(data, (da.Array, dd.DataFrame)): raise TypeError(_expect([da.Array, dd.DataFrame], type(data))) if base_margin is not None and not isinstance( data, (da.Array, dd.DataFrame, dd.Series) ): raise TypeError(_expect([da.Array, dd.DataFrame, dd.Series], type(base_margin))) def mapped_predict( booster: Booster, data: Any, is_df: bool, columns: List[int], base_margin: Any ) -> Any: with config.config_context(**global_config): prediction = booster.inplace_predict( data, iteration_range=iteration_range, predict_type=predict_type, missing=missing, base_margin=base_margin, validate_features=validate_features, strict_shape=strict_shape, ) if _can_output_df(is_df, prediction.shape): if lazy_isinstance(data, "cudf.core.dataframe", "DataFrame"): import cudf prediction = cudf.DataFrame( prediction, columns=columns, dtype=numpy.float32 ) else: # If it's from pandas, the partition is a numpy array prediction = DataFrame(prediction, columns=columns, dtype=numpy.float32) return prediction # await turns future into value. shape, meta = await client.compute( client.submit( _infer_predict_output, booster, features=data.shape[1], is_df=isinstance(data, dd.DataFrame), inplace=True, predict_type=predict_type, iteration_range=iteration_range, strict_shape=strict_shape, ) ) return await _direct_predict_impl( mapped_predict, booster, data, base_margin, shape, meta ) def inplace_predict( # pylint: disable=unused-argument client: "distributed.Client", model: Union[TrainReturnT, Booster, "distributed.Future"], data: _DaskCollection, iteration_range: Tuple[int, int] = (0, 0), predict_type: str = "value", missing: float = numpy.nan, validate_features: bool = True, base_margin: Optional[_DaskCollection] = None, strict_shape: bool = False, ) -> Any: """Inplace prediction. See doc in :py:meth:`xgboost.Booster.inplace_predict` for details. .. versionadded:: 1.1.0 Parameters ---------- client: Specify the dask client used for training. Use default client returned from dask if it's set to None. model: See :py:func:`xgboost.dask.predict` for details. data : dask collection. iteration_range: See :py:meth:`xgboost.Booster.predict` for details. predict_type: See :py:meth:`xgboost.Booster.inplace_predict` for details. missing: Value in the input data which needs to be present as a missing value. If None, defaults to np.nan. base_margin: See :py:obj:`xgboost.DMatrix` for details. Right now classifier is not well supported with base_margin as it requires the size of base margin to be `n_classes * n_samples`. .. versionadded:: 1.4.0 strict_shape: See :py:meth:`xgboost.Booster.predict` for details. .. versionadded:: 1.4.0 Returns ------- prediction : When input data is ``dask.array.Array``, the return value is an array, when input data is ``dask.dataframe.DataFrame``, return value can be ``dask.dataframe.Series``, ``dask.dataframe.DataFrame``, depending on the output shape. """ _assert_dask_support() client = _xgb_get_client(client) # When used in asynchronous environment, the `client` object should have # `asynchronous` attribute as True. When invoked by the skl interface, it's # responsible for setting up the client. return client.sync( _inplace_predict_async, global_config=config.get_config(), **locals() ) async def _async_wrap_evaluation_matrices( client: "distributed.Client", **kwargs: Any ) -> Tuple[DaskDMatrix, Optional[List[Tuple[DaskDMatrix, str]]]]: """A switch function for async environment.""" def _inner(**kwargs: Any) -> DaskDMatrix: m = DaskDMatrix(client=client, **kwargs) return m train_dmatrix, evals = _wrap_evaluation_matrices(create_dmatrix=_inner, **kwargs) train_dmatrix = await train_dmatrix if evals is None: return train_dmatrix, evals awaited = [] for e in evals: if e[0] is train_dmatrix: # already awaited awaited.append(e) continue awaited.append((await e[0], e[1])) return train_dmatrix, awaited @contextmanager def _set_worker_client( model: "DaskScikitLearnBase", client: "distributed.Client" ) -> Generator: """Temporarily set the client for sklearn model.""" try: model.client = client yield model finally: model.client = None class DaskScikitLearnBase(XGBModel): """Base class for implementing scikit-learn interface with Dask""" _client = None async def _predict_async( self, data: _DaskCollection, output_margin: bool, validate_features: bool, base_margin: Optional[_DaskCollection], iteration_range: Optional[Tuple[int, int]], ) -> Any: iteration_range = self._get_iteration_range(iteration_range) if self._can_use_inplace_predict(): predts = await inplace_predict( client=self.client, model=self.get_booster(), data=data, iteration_range=iteration_range, predict_type="margin" if output_margin else "value", missing=self.missing, base_margin=base_margin, validate_features=validate_features, ) if isinstance(predts, dd.DataFrame): predts = predts.to_dask_array() else: test_dmatrix = await DaskDMatrix( self.client, data=data, base_margin=base_margin, missing=self.missing ) predts = await predict( self.client, model=self.get_booster(), data=test_dmatrix, output_margin=output_margin, validate_features=validate_features, iteration_range=iteration_range, ) return predts def predict( self, X: _DaskCollection, output_margin: bool = False, ntree_limit: Optional[int] = None, validate_features: bool = True, base_margin: Optional[_DaskCollection] = None, iteration_range: Optional[Tuple[int, int]] = None, ) -> Any: _assert_dask_support() msg = "`ntree_limit` is not supported on dask, use `iteration_range` instead." assert ntree_limit is None, msg return self.client.sync( self._predict_async, X, output_margin=output_margin, validate_features=validate_features, base_margin=base_margin, iteration_range=iteration_range, ) async def _apply_async( self, X: _DaskCollection, iteration_range: Optional[Tuple[int, int]] = None, ) -> Any: iteration_range = self._get_iteration_range(iteration_range) test_dmatrix = await DaskDMatrix(self.client, data=X, missing=self.missing) predts = await predict( self.client, model=self.get_booster(), data=test_dmatrix, pred_leaf=True, iteration_range=iteration_range, ) return predts def apply( self, X: _DaskCollection, ntree_limit: Optional[int] = None, iteration_range: Optional[Tuple[int, int]] = None, ) -> Any: _assert_dask_support() msg = "`ntree_limit` is not supported on dask, use `iteration_range` instead." assert ntree_limit is None, msg return self.client.sync(self._apply_async, X, iteration_range=iteration_range) def __await__(self) -> Awaitable[Any]: # Generate a coroutine wrapper to make this class awaitable. async def _() -> Awaitable[Any]: return self return self._client_sync(_).__await__() def __getstate__(self) -> Dict: this = self.__dict__.copy() if "_client" in this.keys(): del this["_client"] return this @property def client(self) -> "distributed.Client": """The dask client used in this model. The `Client` object can not be serialized for transmission, so if task is launched from a worker instead of directly from the client process, this attribute needs to be set at that worker. """ client = _xgb_get_client(self._client) return client @client.setter def client(self, clt: "distributed.Client") -> None: # calling `worker_client' doesn't return the correct `asynchronous` attribute, so # we have to pass it ourselves. self._asynchronous = clt.asynchronous if clt is not None else False self._client = clt def _client_sync(self, func: Callable, **kwargs: Any) -> Any: """Get the correct client, when method is invoked inside a worker we should use `worker_client' instead of default client. """ asynchronous = getattr(self, "_asynchronous", False) if self._client is None: try: distributed.get_worker() in_worker = True except ValueError: in_worker = False if in_worker: with distributed.worker_client() as client: with _set_worker_client(self, client) as this: ret = this.client.sync(func, **kwargs, asynchronous=asynchronous) return ret return ret return self.client.sync(func, **kwargs, asynchronous=asynchronous) @xgboost_model_doc( """Implementation of the Scikit-Learn API for XGBoost.""", ["estimators", "model"] ) class DaskXGBRegressor(DaskScikitLearnBase, XGBRegressorBase): # pylint: disable=missing-class-docstring async def _fit_async( self, X: _DaskCollection, y: _DaskCollection, sample_weight: Optional[_DaskCollection], base_margin: Optional[_DaskCollection], eval_set: Optional[List[Tuple[_DaskCollection, _DaskCollection]]], eval_metric: Optional[Union[str, List[str], Metric]], sample_weight_eval_set: Optional[List[_DaskCollection]], base_margin_eval_set: Optional[List[_DaskCollection]], early_stopping_rounds: int, verbose: bool, xgb_model: Optional[Union[Booster, XGBModel]], feature_weights: Optional[_DaskCollection], callbacks: Optional[List[TrainingCallback]], ) -> _DaskCollection: params = self.get_xgb_params() dtrain, evals = await _async_wrap_evaluation_matrices( client=self.client, X=X, y=y, group=None, qid=None, sample_weight=sample_weight, base_margin=base_margin, feature_weights=feature_weights, eval_set=eval_set, sample_weight_eval_set=sample_weight_eval_set, base_margin_eval_set=base_margin_eval_set, eval_group=None, eval_qid=None, missing=self.missing, ) if callable(self.objective): obj = _objective_decorator(self.objective) else: obj = None model, metric, params = self._configure_fit( booster=xgb_model, eval_metric=eval_metric, params=params ) results = await self.client.sync( _train_async, asynchronous=True, client=self.client, global_config=config.get_config(), params=params, dtrain=dtrain, num_boost_round=self.get_num_boosting_rounds(), evals=evals, obj=obj, feval=metric, verbose_eval=verbose, early_stopping_rounds=early_stopping_rounds, callbacks=callbacks, xgb_model=model, ) self._Booster = results["booster"] self._set_evaluation_result(results["history"]) return self # pylint: disable=missing-docstring, disable=unused-argument @_deprecate_positional_args def fit( self, X: _DaskCollection, y: _DaskCollection, *, sample_weight: Optional[_DaskCollection] = None, base_margin: Optional[_DaskCollection] = None, eval_set: Optional[List[Tuple[_DaskCollection, _DaskCollection]]] = None, eval_metric: Optional[Union[str, List[str], Metric]] = None, early_stopping_rounds: Optional[int] = None, verbose: bool = True, xgb_model: Optional[Union[Booster, XGBModel]] = None, sample_weight_eval_set: Optional[List[_DaskCollection]] = None, base_margin_eval_set: Optional[List[_DaskCollection]] = None, feature_weights: Optional[_DaskCollection] = None, callbacks: Optional[List[TrainingCallback]] = None, ) -> "DaskXGBRegressor": _assert_dask_support() args = {k: v for k, v in locals().items() if k != "self"} return self._client_sync(self._fit_async, **args) @xgboost_model_doc( 'Implementation of the scikit-learn API for XGBoost classification.', ['estimators', 'model']) class DaskXGBClassifier(DaskScikitLearnBase, XGBClassifierBase): # pylint: disable=missing-class-docstring async def _fit_async( self, X: _DaskCollection, y: _DaskCollection, sample_weight: Optional[_DaskCollection], base_margin: Optional[_DaskCollection], eval_set: Optional[List[Tuple[_DaskCollection, _DaskCollection]]], eval_metric: Optional[Union[str, List[str], Metric]], sample_weight_eval_set: Optional[List[_DaskCollection]], base_margin_eval_set: Optional[List[_DaskCollection]], early_stopping_rounds: int, verbose: bool, xgb_model: Optional[Union[Booster, XGBModel]], feature_weights: Optional[_DaskCollection], callbacks: Optional[List[TrainingCallback]] ) -> "DaskXGBClassifier": params = self.get_xgb_params() dtrain, evals = await _async_wrap_evaluation_matrices( self.client, X=X, y=y, group=None, qid=None, sample_weight=sample_weight, base_margin=base_margin, feature_weights=feature_weights, eval_set=eval_set, sample_weight_eval_set=sample_weight_eval_set, base_margin_eval_set=base_margin_eval_set, eval_group=None, eval_qid=None, missing=self.missing, ) # pylint: disable=attribute-defined-outside-init if isinstance(y, (da.Array)): self.classes_ = await self.client.compute(da.unique(y)) else: self.classes_ = await self.client.compute(y.drop_duplicates()) self.n_classes_ = len(self.classes_) if self.n_classes_ > 2: params["objective"] = "multi:softprob" params['num_class'] = self.n_classes_ else: params["objective"] = "binary:logistic" if callable(self.objective): obj = _objective_decorator(self.objective) else: obj = None model, metric, params = self._configure_fit( booster=xgb_model, eval_metric=eval_metric, params=params ) results = await self.client.sync( _train_async, asynchronous=True, client=self.client, global_config=config.get_config(), params=params, dtrain=dtrain, num_boost_round=self.get_num_boosting_rounds(), evals=evals, obj=obj, feval=metric, verbose_eval=verbose, early_stopping_rounds=early_stopping_rounds, callbacks=callbacks, xgb_model=model, ) self._Booster = results['booster'] if not callable(self.objective): self.objective = params["objective"] self._set_evaluation_result(results["history"]) return self # pylint: disable=unused-argument def fit( self, X: _DaskCollection, y: _DaskCollection, *, sample_weight: Optional[_DaskCollection] = None, base_margin: Optional[_DaskCollection] = None, eval_set: Optional[List[Tuple[_DaskCollection, _DaskCollection]]] = None, eval_metric: Optional[Union[str, List[str], Metric]] = None, early_stopping_rounds: Optional[int] = None, verbose: bool = True, xgb_model: Optional[Union[Booster, XGBModel]] = None, sample_weight_eval_set: Optional[List[_DaskCollection]] = None, base_margin_eval_set: Optional[List[_DaskCollection]] = None, feature_weights: Optional[_DaskCollection] = None, callbacks: Optional[List[TrainingCallback]] = None ) -> "DaskXGBClassifier": _assert_dask_support() args = {k: v for k, v in locals().items() if k != 'self'} return self._client_sync(self._fit_async, **args) async def _predict_proba_async( self, X: _DaskCollection, validate_features: bool, base_margin: Optional[_DaskCollection], iteration_range: Optional[Tuple[int, int]], ) -> _DaskCollection: predts = await super()._predict_async( data=X, output_margin=self.objective == "multi:softmax", validate_features=validate_features, base_margin=base_margin, iteration_range=iteration_range, ) vstack = update_wrapper( partial(da.vstack, allow_unknown_chunksizes=True), da.vstack ) return _cls_predict_proba(getattr(self, "n_classes_", None), predts, vstack) # pylint: disable=missing-function-docstring def predict_proba( self, X: _DaskCollection, ntree_limit: Optional[int] = None, validate_features: bool = True, base_margin: Optional[_DaskCollection] = None, iteration_range: Optional[Tuple[int, int]] = None, ) -> Any: _assert_dask_support() msg = "`ntree_limit` is not supported on dask, use `iteration_range` instead." assert ntree_limit is None, msg return self._client_sync( self._predict_proba_async, X=X, validate_features=validate_features, base_margin=base_margin, iteration_range=iteration_range, ) predict_proba.__doc__ = XGBClassifier.predict_proba.__doc__ async def _predict_async( self, data: _DaskCollection, output_margin: bool, validate_features: bool, base_margin: Optional[_DaskCollection], iteration_range: Optional[Tuple[int, int]], ) -> _DaskCollection: pred_probs = await super()._predict_async( data, output_margin, validate_features, base_margin, iteration_range ) if output_margin: return pred_probs if len(pred_probs.shape) == 1: preds = (pred_probs > 0.5).astype(int) else: assert len(pred_probs.shape) == 2 assert isinstance(pred_probs, da.Array) # when using da.argmax directly, dask will construct a numpy based return # array, which runs into error when computing GPU based prediction. def _argmax(x: Any) -> Any: return x.argmax(axis=1) preds = da.map_blocks(_argmax, pred_probs, drop_axis=1) return preds @xgboost_model_doc( """Implementation of the Scikit-Learn API for XGBoost Ranking. .. versionadded:: 1.4.0 """, ["estimators", "model"], end_note=""" Note ---- For dask implementation, group is not supported, use qid instead. """, ) class DaskXGBRanker(DaskScikitLearnBase, XGBRankerMixIn): @_deprecate_positional_args def __init__(self, *, objective: str = "rank:pairwise", **kwargs: Any): if callable(objective): raise ValueError("Custom objective function not supported by XGBRanker.") super().__init__(objective=objective, kwargs=kwargs) async def _fit_async( self, X: _DaskCollection, y: _DaskCollection, group: Optional[_DaskCollection], qid: Optional[_DaskCollection], sample_weight: Optional[_DaskCollection], base_margin: Optional[_DaskCollection], eval_set: Optional[List[Tuple[_DaskCollection, _DaskCollection]]], sample_weight_eval_set: Optional[List[_DaskCollection]], base_margin_eval_set: Optional[List[_DaskCollection]], eval_group: Optional[List[_DaskCollection]], eval_qid: Optional[List[_DaskCollection]], eval_metric: Optional[Union[str, List[str], Metric]], early_stopping_rounds: int, verbose: bool, xgb_model: Optional[Union[XGBModel, Booster]], feature_weights: Optional[_DaskCollection], callbacks: Optional[List[TrainingCallback]], ) -> "DaskXGBRanker": msg = "Use `qid` instead of `group` on dask interface." if not (group is None and eval_group is None): raise ValueError(msg) if qid is None: raise ValueError("`qid` is required for ranking.") params = self.get_xgb_params() dtrain, evals = await _async_wrap_evaluation_matrices( self.client, X=X, y=y, group=None, qid=qid, sample_weight=sample_weight, base_margin=base_margin, feature_weights=feature_weights, eval_set=eval_set, sample_weight_eval_set=sample_weight_eval_set, base_margin_eval_set=base_margin_eval_set, eval_group=None, eval_qid=eval_qid, missing=self.missing, ) if eval_metric is not None: if callable(eval_metric): raise ValueError( "Custom evaluation metric is not yet supported for XGBRanker." ) model, metric, params = self._configure_fit( booster=xgb_model, eval_metric=eval_metric, params=params ) results = await self.client.sync( _train_async, asynchronous=True, client=self.client, global_config=config.get_config(), params=params, dtrain=dtrain, num_boost_round=self.get_num_boosting_rounds(), evals=evals, obj=None, feval=metric, verbose_eval=verbose, early_stopping_rounds=early_stopping_rounds, callbacks=callbacks, xgb_model=model, ) self._Booster = results["booster"] self.evals_result_ = results["history"] return self # pylint: disable=unused-argument, arguments-differ @_deprecate_positional_args def fit( self, X: _DaskCollection, y: _DaskCollection, *, group: Optional[_DaskCollection] = None, qid: Optional[_DaskCollection] = None, sample_weight: Optional[_DaskCollection] = None, base_margin: Optional[_DaskCollection] = None, eval_set: Optional[List[Tuple[_DaskCollection, _DaskCollection]]] = None, eval_group: Optional[List[_DaskCollection]] = None, eval_qid: Optional[List[_DaskCollection]] = None, eval_metric: Optional[Union[str, List[str], Metric]] = None, early_stopping_rounds: int = None, verbose: bool = False, xgb_model: Optional[Union[XGBModel, Booster]] = None, sample_weight_eval_set: Optional[List[_DaskCollection]] = None, base_margin_eval_set: Optional[List[_DaskCollection]] = None, feature_weights: Optional[_DaskCollection] = None, callbacks: Optional[List[TrainingCallback]] = None ) -> "DaskXGBRanker": _assert_dask_support() args = {k: v for k, v in locals().items() if k != "self"} return self._client_sync(self._fit_async, **args) # FIXME(trivialfis): arguments differ due to additional parameters like group and qid. fit.__doc__ = XGBRanker.fit.__doc__ @xgboost_model_doc( """Implementation of the Scikit-Learn API for XGBoost Random Forest Regressor. .. versionadded:: 1.4.0 """, ["model", "objective"], extra_parameters=""" n_estimators : int Number of trees in random forest to fit. """, ) class DaskXGBRFRegressor(DaskXGBRegressor): @_deprecate_positional_args def __init__( self, *, learning_rate: Optional[float] = 1, subsample: Optional[float] = 0.8, colsample_bynode: Optional[float] = 0.8, reg_lambda: Optional[float] = 1e-5, **kwargs: Any ) -> None: super().__init__( learning_rate=learning_rate, subsample=subsample, colsample_bynode=colsample_bynode, reg_lambda=reg_lambda, **kwargs ) def get_xgb_params(self) -> Dict[str, Any]: params = super().get_xgb_params() params["num_parallel_tree"] = self.n_estimators return params def get_num_boosting_rounds(self) -> int: return 1 @xgboost_model_doc( """Implementation of the Scikit-Learn API for XGBoost Random Forest Classifier. .. versionadded:: 1.4.0 """, ["model", "objective"], extra_parameters=""" n_estimators : int Number of trees in random forest to fit. """, ) class DaskXGBRFClassifier(DaskXGBClassifier): @_deprecate_positional_args def __init__( self, *, learning_rate: Optional[float] = 1, subsample: Optional[float] = 0.8, colsample_bynode: Optional[float] = 0.8, reg_lambda: Optional[float] = 1e-5, **kwargs: Any ) -> None: super().__init__( learning_rate=learning_rate, subsample=subsample, colsample_bynode=colsample_bynode, reg_lambda=reg_lambda, **kwargs ) def get_xgb_params(self) -> Dict[str, Any]: params = super().get_xgb_params() params["num_parallel_tree"] = self.n_estimators return params def get_num_boosting_rounds(self) -> int: return 1
spark-xgboost-nv-release_1.4.0
python-package/xgboost/dask.py
""" This script is a variant of dmlc-core/dmlc_tracker/tracker.py, which is a specialized version for xgboost tasks. """ # pylint: disable=invalid-name, missing-docstring, too-many-arguments, too-many-locals # pylint: disable=too-many-branches, too-many-statements, too-many-instance-attributes import socket import struct import time import logging from threading import Thread class ExSocket(object): """ Extension of socket to handle recv and send of special data """ def __init__(self, sock): self.sock = sock def recvall(self, nbytes): res = [] nread = 0 while nread < nbytes: chunk = self.sock.recv(min(nbytes - nread, 1024)) nread += len(chunk) res.append(chunk) return b''.join(res) def recvint(self): return struct.unpack('@i', self.recvall(4))[0] def sendint(self, n): self.sock.sendall(struct.pack('@i', n)) def sendstr(self, s): self.sendint(len(s)) self.sock.sendall(s.encode()) def recvstr(self): slen = self.recvint() return self.recvall(slen).decode() # magic number used to verify existence of data kMagic = 0xff99 def get_some_ip(host): return socket.getaddrinfo(host, None)[0][4][0] def get_host_ip(hostIP=None): if hostIP is None or hostIP == 'auto': hostIP = 'ip' if hostIP == 'dns': hostIP = socket.getfqdn() elif hostIP == 'ip': from socket import gaierror try: hostIP = socket.gethostbyname(socket.getfqdn()) except gaierror: logging.debug( 'gethostbyname(socket.getfqdn()) failed... trying on hostname()' ) hostIP = socket.gethostbyname(socket.gethostname()) if hostIP.startswith("127."): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # doesn't have to be reachable s.connect(('10.255.255.255', 1)) hostIP = s.getsockname()[0] return hostIP def get_family(addr): return socket.getaddrinfo(addr, None)[0][0] class SlaveEntry(object): def __init__(self, sock, s_addr): slave = ExSocket(sock) self.sock = slave self.host = get_some_ip(s_addr[0]) magic = slave.recvint() assert magic == kMagic, 'invalid magic number=%d from %s' % (magic, self.host) slave.sendint(kMagic) self.rank = slave.recvint() self.world_size = slave.recvint() self.jobid = slave.recvstr() self.cmd = slave.recvstr() self.wait_accept = 0 self.port = None def decide_rank(self, job_map): if self.rank >= 0: return self.rank if self.jobid != 'NULL' and self.jobid in job_map: return job_map[self.jobid] return -1 def assign_rank(self, rank, wait_conn, tree_map, parent_map, ring_map): self.rank = rank nnset = set(tree_map[rank]) rprev, rnext = ring_map[rank] self.sock.sendint(rank) # send parent rank self.sock.sendint(parent_map[rank]) # send world size self.sock.sendint(len(tree_map)) self.sock.sendint(len(nnset)) # send the rprev and next link for r in nnset: self.sock.sendint(r) # send prev link if rprev not in (-1, rank): nnset.add(rprev) self.sock.sendint(rprev) else: self.sock.sendint(-1) # send next link if rnext not in (-1, rank): nnset.add(rnext) self.sock.sendint(rnext) else: self.sock.sendint(-1) while True: ngood = self.sock.recvint() goodset = set([]) for _ in range(ngood): goodset.add(self.sock.recvint()) assert goodset.issubset(nnset) badset = nnset - goodset conset = [] for r in badset: if r in wait_conn: conset.append(r) self.sock.sendint(len(conset)) self.sock.sendint(len(badset) - len(conset)) for r in conset: self.sock.sendstr(wait_conn[r].host) self.sock.sendint(wait_conn[r].port) self.sock.sendint(r) nerr = self.sock.recvint() if nerr != 0: continue self.port = self.sock.recvint() rmset = [] # all connection was successuly setup for r in conset: wait_conn[r].wait_accept -= 1 if wait_conn[r].wait_accept == 0: rmset.append(r) for r in rmset: wait_conn.pop(r, None) self.wait_accept = len(badset) - len(conset) return rmset class RabitTracker(object): """ tracker for rabit """ def __init__(self, hostIP, nslave, port=9091, port_end=9999): sock = socket.socket(get_family(hostIP), socket.SOCK_STREAM) for _port in range(port, port_end): try: sock.bind((hostIP, _port)) self.port = _port break except socket.error as e: if e.errno in [98, 48]: continue raise sock.listen(256) self.sock = sock self.hostIP = hostIP self.thread = None self.start_time = None self.end_time = None self.nslave = nslave logging.info('start listen on %s:%d', hostIP, self.port) def __del__(self): self.sock.close() @staticmethod def get_neighbor(rank, nslave): rank = rank + 1 ret = [] if rank > 1: ret.append(rank // 2 - 1) if rank * 2 - 1 < nslave: ret.append(rank * 2 - 1) if rank * 2 < nslave: ret.append(rank * 2) return ret def slave_envs(self): """ get enviroment variables for slaves can be passed in as args or envs """ return {'DMLC_TRACKER_URI': self.hostIP, 'DMLC_TRACKER_PORT': self.port} def get_tree(self, nslave): tree_map = {} parent_map = {} for r in range(nslave): tree_map[r] = self.get_neighbor(r, nslave) parent_map[r] = (r + 1) // 2 - 1 return tree_map, parent_map def find_share_ring(self, tree_map, parent_map, r): """ get a ring structure that tends to share nodes with the tree return a list starting from r """ nset = set(tree_map[r]) cset = nset - set([parent_map[r]]) if not cset: return [r] rlst = [r] cnt = 0 for v in cset: vlst = self.find_share_ring(tree_map, parent_map, v) cnt += 1 if cnt == len(cset): vlst.reverse() rlst += vlst return rlst def get_ring(self, tree_map, parent_map): """ get a ring connection used to recover local data """ assert parent_map[0] == -1 rlst = self.find_share_ring(tree_map, parent_map, 0) assert len(rlst) == len(tree_map) ring_map = {} nslave = len(tree_map) for r in range(nslave): rprev = (r + nslave - 1) % nslave rnext = (r + 1) % nslave ring_map[rlst[r]] = (rlst[rprev], rlst[rnext]) return ring_map def get_link_map(self, nslave): """ get the link map, this is a bit hacky, call for better algorithm to place similar nodes together """ tree_map, parent_map = self.get_tree(nslave) ring_map = self.get_ring(tree_map, parent_map) rmap = {0: 0} k = 0 for i in range(nslave - 1): k = ring_map[k][1] rmap[k] = i + 1 ring_map_ = {} tree_map_ = {} parent_map_ = {} for k, v in ring_map.items(): ring_map_[rmap[k]] = (rmap[v[0]], rmap[v[1]]) for k, v in tree_map.items(): tree_map_[rmap[k]] = [rmap[x] for x in v] for k, v in parent_map.items(): if k != 0: parent_map_[rmap[k]] = rmap[v] else: parent_map_[rmap[k]] = -1 return tree_map_, parent_map_, ring_map_ def accept_slaves(self, nslave): # set of nodes that finishs the job shutdown = {} # set of nodes that is waiting for connections wait_conn = {} # maps job id to rank job_map = {} # list of workers that is pending to be assigned rank pending = [] # lazy initialize tree_map tree_map = None while len(shutdown) != nslave: fd, s_addr = self.sock.accept() s = SlaveEntry(fd, s_addr) if s.cmd == 'print': msg = s.sock.recvstr() print(msg.strip(), flush=True) continue if s.cmd == 'shutdown': assert s.rank >= 0 and s.rank not in shutdown assert s.rank not in wait_conn shutdown[s.rank] = s logging.debug('Received %s signal from %d', s.cmd, s.rank) continue assert s.cmd == 'start' or s.cmd == 'recover' # lazily initialize the slaves if tree_map is None: assert s.cmd == 'start' if s.world_size > 0: nslave = s.world_size tree_map, parent_map, ring_map = self.get_link_map(nslave) # set of nodes that is pending for getting up todo_nodes = list(range(nslave)) else: assert s.world_size == -1 or s.world_size == nslave if s.cmd == 'recover': assert s.rank >= 0 rank = s.decide_rank(job_map) # batch assignment of ranks if rank == -1: assert todo_nodes pending.append(s) if len(pending) == len(todo_nodes): pending.sort(key=lambda x: x.host) for s in pending: rank = todo_nodes.pop(0) if s.jobid != 'NULL': job_map[s.jobid] = rank s.assign_rank(rank, wait_conn, tree_map, parent_map, ring_map) if s.wait_accept > 0: wait_conn[rank] = s logging.debug('Received %s signal from %s; assign rank %d', s.cmd, s.host, s.rank) if not todo_nodes: logging.info('@tracker All of %d nodes getting started', nslave) self.start_time = time.time() else: s.assign_rank(rank, wait_conn, tree_map, parent_map, ring_map) logging.debug('Received %s signal from %d', s.cmd, s.rank) if s.wait_accept > 0: wait_conn[rank] = s logging.info('@tracker All nodes finishes job') self.end_time = time.time() logging.info('@tracker %s secs between node start and job finish', str(self.end_time - self.start_time)) def start(self, nslave): def run(): self.accept_slaves(nslave) self.thread = Thread(target=run, args=()) self.thread.setDaemon(True) self.thread.start() def join(self): while self.thread.is_alive(): self.thread.join(100) def alive(self): return self.thread.is_alive()
spark-xgboost-nv-release_1.4.0
python-package/xgboost/tracker.py
# coding: utf-8 """Find the path to xgboost dynamic library files.""" import os import platform from typing import List import sys class XGBoostLibraryNotFound(Exception): """Error thrown by when xgboost is not found""" def find_lib_path() -> List[str]: """Find the path to xgboost dynamic library files. Returns ------- lib_path List of all found library path to xgboost """ curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) dll_path = [ # normal, after installation `lib` is copied into Python package tree. os.path.join(curr_path, 'lib'), # editable installation, no copying is performed. os.path.join(curr_path, os.path.pardir, os.path.pardir, 'lib'), # use libxgboost from a system prefix, if available. This should be the last # option. os.path.join(sys.prefix, 'lib'), ] if sys.platform == 'win32': if platform.architecture()[0] == '64bit': dll_path.append( os.path.join(curr_path, '../../windows/x64/Release/')) # hack for pip installation when copy all parent source # directory here dll_path.append(os.path.join(curr_path, './windows/x64/Release/')) else: dll_path.append(os.path.join(curr_path, '../../windows/Release/')) # hack for pip installation when copy all parent source # directory here dll_path.append(os.path.join(curr_path, './windows/Release/')) dll_path = [os.path.join(p, 'xgboost.dll') for p in dll_path] elif sys.platform.startswith('linux') or sys.platform.startswith( 'freebsd'): dll_path = [os.path.join(p, 'libxgboost.so') for p in dll_path] elif sys.platform == 'darwin': dll_path = [os.path.join(p, 'libxgboost.dylib') for p in dll_path] elif sys.platform == 'cygwin': dll_path = [os.path.join(p, 'cygxgboost.dll') for p in dll_path] lib_path = [p for p in dll_path if os.path.exists(p) and os.path.isfile(p)] # XGBOOST_BUILD_DOC is defined by sphinx conf. if not lib_path and not os.environ.get('XGBOOST_BUILD_DOC', False): link = 'https://xgboost.readthedocs.io/en/latest/build.html' msg = 'Cannot find XGBoost Library in the candidate path. ' + \ 'List of candidates:\n- ' + ('\n- '.join(dll_path)) + \ '\nXGBoost Python package path: ' + curr_path + \ '\nsys.prefix: ' + sys.prefix + \ '\nSee: ' + link + ' for installing XGBoost.' raise XGBoostLibraryNotFound(msg) return lib_path
spark-xgboost-nv-release_1.4.0
python-package/xgboost/libpath.py
# coding: utf-8 # pylint: disable=too-many-arguments, too-many-locals, invalid-name, fixme, E0012, R0912, C0302 """Scikit-Learn Wrapper interface for XGBoost.""" import copy import warnings import json from typing import Union, Optional, List, Dict, Callable, Tuple, Any, TypeVar import numpy as np from .core import Booster, DMatrix, XGBoostError from .core import _deprecate_positional_args, _convert_ntree_limit from .core import Metric from .training import train from .data import _is_cudf_df, _is_cudf_ser, _is_cupy_array # Do not use class names on scikit-learn directly. Re-define the classes on # .compat to guarantee the behavior without scikit-learn from .compat import (SKLEARN_INSTALLED, XGBModelBase, XGBClassifierBase, XGBRegressorBase, XGBoostLabelEncoder) class XGBRankerMixIn: # pylint: disable=too-few-public-methods """MixIn for ranking, defines the _estimator_type usually defined in scikit-learn base classes.""" _estimator_type = "ranker" def _objective_decorator(func): """Decorate an objective function Converts an objective function using the typical sklearn metrics signature so that it is usable with ``xgboost.training.train`` Parameters ---------- func: callable Expects a callable with signature ``func(y_true, y_pred)``: y_true: array_like of shape [n_samples] The target values y_pred: array_like of shape [n_samples] The predicted values Returns ------- new_func: callable The new objective function as expected by ``xgboost.training.train``. The signature is ``new_func(preds, dmatrix)``: preds: array_like, shape [n_samples] The predicted values dmatrix: ``DMatrix`` The training set from which the labels will be extracted using ``dmatrix.get_label()`` """ def inner(preds, dmatrix): """internal function""" labels = dmatrix.get_label() return func(labels, preds) return inner __estimator_doc = ''' n_estimators : int Number of gradient boosted trees. Equivalent to number of boosting rounds. ''' __model_doc = ''' max_depth : int Maximum tree depth for base learners. learning_rate : float Boosting learning rate (xgb's "eta") verbosity : int The degree of verbosity. Valid values are 0 (silent) - 3 (debug). objective : string or callable Specify the learning task and the corresponding learning objective or a custom objective function to be used (see note below). booster: string Specify which booster to use: gbtree, gblinear or dart. tree_method: string Specify which tree method to use. Default to auto. If this parameter is set to default, XGBoost will choose the most conservative option available. It's recommended to study this option from parameters document. n_jobs : int Number of parallel threads used to run xgboost. When used with other Scikit-Learn algorithms like grid search, you may choose which algorithm to parallelize and balance the threads. Creating thread contention will significantly slow down both algorithms. gamma : float Minimum loss reduction required to make a further partition on a leaf node of the tree. min_child_weight : float Minimum sum of instance weight(hessian) needed in a child. max_delta_step : float Maximum delta step we allow each tree's weight estimation to be. subsample : float Subsample ratio of the training instance. colsample_bytree : float Subsample ratio of columns when constructing each tree. colsample_bylevel : float Subsample ratio of columns for each level. colsample_bynode : float Subsample ratio of columns for each split. reg_alpha : float (xgb's alpha) L1 regularization term on weights reg_lambda : float (xgb's lambda) L2 regularization term on weights scale_pos_weight : float Balancing of positive and negative weights. base_score: The initial prediction score of all instances, global bias. random_state : int Random number seed. .. note:: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild algorithm. missing : float, default np.nan Value in the data which needs to be present as a missing value. num_parallel_tree: int Used for boosting random forest. monotone_constraints : str Constraint of variable monotonicity. See tutorial for more information. interaction_constraints : str Constraints for interaction representing permitted interactions. The constraints must be specified in the form of a nest list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of indices of features that are allowed to interact with each other. See tutorial for more information importance_type: string, default "gain" The feature importance type for the feature_importances\\_ property: either "gain", "weight", "cover", "total_gain" or "total_cover". gpu_id : Device ordinal. validate_parameters : Give warnings for unknown parameter. \\*\\*kwargs : dict, optional Keyword arguments for XGBoost Booster object. Full documentation of parameters can be found here: https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst. Attempting to set a parameter via the constructor args and \\*\\*kwargs dict simultaneously will result in a TypeError. .. note:: \\*\\*kwargs unsupported by scikit-learn \\*\\*kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via this argument will interact properly with scikit-learn. ''' __custom_obj_note = ''' .. note:: Custom objective function A custom objective function can be provided for the ``objective`` parameter. In this case, it should have the signature ``objective(y_true, y_pred) -> grad, hess``: y_true: array_like of shape [n_samples] The target values y_pred: array_like of shape [n_samples] The predicted values grad: array_like of shape [n_samples] The value of the gradient for each sample point. hess: array_like of shape [n_samples] The value of the second derivative for each sample point ''' def xgboost_model_doc(header, items, extra_parameters=None, end_note=None): '''Obtain documentation for Scikit-Learn wrappers Parameters ---------- header: str An introducion to the class. items : list A list of commom doc items. Available items are: - estimators: the meaning of n_estimators - model: All the other parameters - objective: note for customized objective extra_parameters: str Document for class specific parameters, placed at the head. end_note: str Extra notes put to the end. ''' def get_doc(item): '''Return selected item''' __doc = {'estimators': __estimator_doc, 'model': __model_doc, 'objective': __custom_obj_note} return __doc[item] def adddoc(cls): doc = [''' Parameters ---------- '''] if extra_parameters: doc.append(extra_parameters) doc.extend([get_doc(i) for i in items]) if end_note: doc.append(end_note) full_doc = [header + '\n\n'] full_doc.extend(doc) cls.__doc__ = ''.join(full_doc) return cls return adddoc def _wrap_evaluation_matrices( missing: float, X: Any, y: Any, group: Optional[Any], qid: Optional[Any], sample_weight: Optional[Any], base_margin: Optional[Any], feature_weights: Optional[Any], eval_set: Optional[List[Tuple[Any, Any]]], sample_weight_eval_set: Optional[List[Any]], base_margin_eval_set: Optional[List[Any]], eval_group: Optional[List[Any]], eval_qid: Optional[List[Any]], create_dmatrix: Callable, label_transform: Callable = lambda x: x, ) -> Tuple[Any, Optional[List[Tuple[Any, str]]]]: """Convert array_like evaluation matrices into DMatrix. Perform validation on the way. """ train_dmatrix = create_dmatrix( data=X, label=label_transform(y), group=group, qid=qid, weight=sample_weight, base_margin=base_margin, feature_weights=feature_weights, missing=missing, ) def validate_or_none(meta: Optional[List], name: str) -> List: if meta is None: return [None] * len(eval_set) if len(meta) != len(eval_set): raise ValueError( f"{name}'s length does not eqaul to `eval_set`, " + f"expecting {len(eval_set)}, got {len(meta)}" ) return meta if eval_set is not None: sample_weight_eval_set = validate_or_none( sample_weight_eval_set, "sample_weight_eval_set" ) base_margin_eval_set = validate_or_none( base_margin_eval_set, "base_margin_eval_set" ) eval_group = validate_or_none(eval_group, "eval_group") eval_qid = validate_or_none(eval_qid, "eval_qid") evals = [] for i, (valid_X, valid_y) in enumerate(eval_set): # Skip the duplicated entry. if all( ( valid_X is X, valid_y is y, sample_weight_eval_set[i] is sample_weight, base_margin_eval_set[i] is base_margin, eval_group[i] is group, eval_qid[i] is qid ) ): evals.append(train_dmatrix) else: m = create_dmatrix( data=valid_X, label=label_transform(valid_y), weight=sample_weight_eval_set[i], group=eval_group[i], qid=eval_qid[i], base_margin=base_margin_eval_set[i], missing=missing, ) evals.append(m) nevals = len(evals) eval_names = ["validation_{}".format(i) for i in range(nevals)] evals = list(zip(evals, eval_names)) else: if any( meta is not None for meta in [ sample_weight_eval_set, base_margin_eval_set, eval_group, eval_qid, ] ): raise ValueError( "`eval_set` is not set but one of the other evaluation meta info is " "not None." ) evals = [] return train_dmatrix, evals @xgboost_model_doc("""Implementation of the Scikit-Learn API for XGBoost.""", ['estimators', 'model', 'objective']) class XGBModel(XGBModelBase): # pylint: disable=too-many-arguments, too-many-instance-attributes, missing-docstring def __init__( self, max_depth=None, learning_rate=None, n_estimators=100, verbosity=None, objective=None, booster=None, tree_method=None, n_jobs=None, gamma=None, min_child_weight=None, max_delta_step=None, subsample=None, colsample_bytree=None, colsample_bylevel=None, colsample_bynode=None, reg_alpha=None, reg_lambda=None, scale_pos_weight=None, base_score=None, random_state=None, missing=np.nan, num_parallel_tree=None, monotone_constraints=None, interaction_constraints=None, importance_type="gain", gpu_id=None, validate_parameters=None, **kwargs ): if not SKLEARN_INSTALLED: raise XGBoostError( "sklearn needs to be installed in order to use this module" ) self.n_estimators = n_estimators self.objective = objective self.max_depth = max_depth self.learning_rate = learning_rate self.verbosity = verbosity self.booster = booster self.tree_method = tree_method self.gamma = gamma self.min_child_weight = min_child_weight self.max_delta_step = max_delta_step self.subsample = subsample self.colsample_bytree = colsample_bytree self.colsample_bylevel = colsample_bylevel self.colsample_bynode = colsample_bynode self.reg_alpha = reg_alpha self.reg_lambda = reg_lambda self.scale_pos_weight = scale_pos_weight self.base_score = base_score self.missing = missing self.num_parallel_tree = num_parallel_tree self.kwargs = kwargs self.random_state = random_state self.n_jobs = n_jobs self.monotone_constraints = monotone_constraints self.interaction_constraints = interaction_constraints self.importance_type = importance_type self.gpu_id = gpu_id self.validate_parameters = validate_parameters def _more_tags(self): '''Tags used for scikit-learn data validation.''' return {'allow_nan': True, 'no_validation': True} def get_booster(self): """Get the underlying xgboost Booster of this model. This will raise an exception when fit was not called Returns ------- booster : a xgboost booster of underlying model """ if not hasattr(self, '_Booster'): from sklearn.exceptions import NotFittedError raise NotFittedError('need to call fit or load_model beforehand') return self._Booster def set_params(self, **params): """Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid search. Returns ------- self """ if not params: # Simple optimization to gain speed (inspect is slow) return self # this concatenates kwargs into parameters, enabling `get_params` for # obtaining parameters from keyword parameters. for key, value in params.items(): if hasattr(self, key): setattr(self, key, value) else: self.kwargs[key] = value if hasattr(self, '_Booster'): parameters = self.get_xgb_params() self.get_booster().set_param(parameters) return self def get_params(self, deep=True): # pylint: disable=attribute-defined-outside-init """Get parameters.""" # Based on: https://stackoverflow.com/questions/59248211 # The basic flow in `get_params` is: # 0. Return parameters in subclass first, by using inspect. # 1. Return parameters in `XGBModel` (the base class). # 2. Return whatever in `**kwargs`. # 3. Merge them. params = super().get_params(deep) cp = copy.copy(self) cp.__class__ = cp.__class__.__bases__[0] params.update(cp.__class__.get_params(cp, deep)) # if kwargs is a dict, update params accordingly if isinstance(self.kwargs, dict): params.update(self.kwargs) if isinstance(params['random_state'], np.random.RandomState): params['random_state'] = params['random_state'].randint( np.iinfo(np.int32).max) def parse_parameter(value): for t in (int, float, str): try: ret = t(value) return ret except ValueError: continue return None # Get internal parameter values try: config = json.loads(self.get_booster().save_config()) stack = [config] internal = {} while stack: obj = stack.pop() for k, v in obj.items(): if k.endswith('_param'): for p_k, p_v in v.items(): internal[p_k] = p_v elif isinstance(v, dict): stack.append(v) for k, v in internal.items(): if k in params.keys() and params[k] is None: params[k] = parse_parameter(v) except ValueError: pass return params def get_xgb_params(self): """Get xgboost specific parameters.""" params = self.get_params() # Parameters that should not go into native learner. wrapper_specific = { 'importance_type', 'kwargs', 'missing', 'n_estimators', 'use_label_encoder'} filtered = dict() for k, v in params.items(): if k not in wrapper_specific and not callable(v): filtered[k] = v return filtered def get_num_boosting_rounds(self): """Gets the number of xgboost boosting rounds.""" return self.n_estimators def _get_type(self) -> str: if not hasattr(self, '_estimator_type'): raise TypeError( "`_estimator_type` undefined. " "Please use appropriate mixin to define estimator type." ) return self._estimator_type # pylint: disable=no-member def save_model(self, fname: str): """Save the model to a file. The model is saved in an XGBoost internal format which is universal among the various XGBoost interfaces. Auxiliary attributes of the Python Booster object (such as feature names) will not be saved. .. note:: See: https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html Parameters ---------- fname : string Output file name """ meta = dict() for k, v in self.__dict__.items(): if k == '_le': meta['_le'] = self._le.to_json() continue if k == '_Booster': continue if k == 'classes_': # numpy array is not JSON serializable meta['classes_'] = self.classes_.tolist() continue try: json.dumps({k: v}) meta[k] = v except TypeError: warnings.warn(str(k) + ' is not saved in Scikit-Learn meta.', UserWarning) meta['_estimator_type'] = self._get_type() meta_str = json.dumps(meta) self.get_booster().set_attr(scikit_learn=meta_str) self.get_booster().save_model(fname) # Delete the attribute after save self.get_booster().set_attr(scikit_learn=None) def load_model(self, fname): # pylint: disable=attribute-defined-outside-init """Load the model from a file. The model is loaded from an XGBoost internal format which is universal among the various XGBoost interfaces. Auxiliary attributes of the Python Booster object (such as feature names) will not be loaded. Parameters ---------- fname : string Input file name. """ if not hasattr(self, '_Booster'): self._Booster = Booster({'n_jobs': self.n_jobs}) self._Booster.load_model(fname) meta = self._Booster.attr('scikit_learn') if meta is None: # FIXME(jiaming): This doesn't have to be a problem as most of the needed # information like num_class and objective is in Learner class. warnings.warn( 'Loading a native XGBoost model with Scikit-Learn interface.') return meta = json.loads(meta) states = dict() for k, v in meta.items(): if k == '_le': self._le = XGBoostLabelEncoder() self._le.from_json(v) continue # FIXME(jiaming): This can be removed once label encoder is gone since we can # generate it from `np.arange(self.n_classes_)` if k == 'classes_': self.classes_ = np.array(v) continue if k == 'use_label_encoder': self.use_label_encoder = bool(v) continue if k == "_estimator_type": if self._get_type() != v: raise TypeError( "Loading an estimator with different type. " f"Expecting: {self._get_type()}, got: {v}" ) continue states[k] = v self.__dict__.update(states) # Delete the attribute after load self.get_booster().set_attr(scikit_learn=None) def _configure_fit( self, booster: Optional[Union[Booster, "XGBModel"]], eval_metric: Optional[Union[Callable, str, List[str]]], params: Dict[str, Any], ) -> Tuple[Booster, Optional[Metric], Dict[str, Any]]: # pylint: disable=protected-access, no-self-use model = booster if hasattr(model, '_Booster'): model = model._Booster # Handle the case when xgb_model is a sklearn model object feval = eval_metric if callable(eval_metric) else None if eval_metric is not None: if callable(eval_metric): eval_metric = None else: params.update({"eval_metric": eval_metric}) return model, feval, params def _set_evaluation_result(self, evals_result: Optional[dict]) -> None: if evals_result: for val in evals_result.items(): evals_result_key = list(val[1].keys())[0] evals_result[val[0]][evals_result_key] = val[1][evals_result_key] self.evals_result_ = evals_result @_deprecate_positional_args def fit( self, X, y, *, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None, early_stopping_rounds=None, verbose=True, xgb_model: Optional[Union[Booster, str, "XGBModel"]] = None, sample_weight_eval_set=None, base_margin_eval_set=None, feature_weights=None, callbacks=None ): # pylint: disable=invalid-name,attribute-defined-outside-init """Fit gradient boosting model. Note that calling ``fit()`` multiple times will cause the model object to be re-fit from scratch. To resume training from a previous checkpoint, explicitly pass ``xgb_model`` argument. Parameters ---------- X : array_like Feature matrix y : array_like Labels sample_weight : array_like instance weights base_margin : array_like global bias for each instance. eval_set : list, optional A list of (X, y) tuple pairs to use as validation sets, for which metrics will be computed. Validation metrics will help us track the performance of the model. eval_metric : str, list of str, or callable, optional If a str, should be a built-in evaluation metric to use. See doc/parameter.rst. If a list of str, should be the list of multiple built-in evaluation metrics to use. If callable, a custom evaluation metric. The call signature is ``func(y_predicted, y_true)`` where ``y_true`` will be a DMatrix object such that you may need to call the ``get_label`` method. It must return a str, value pair where the str is a name for the evaluation and value is the value of the evaluation function. The callable custom objective is always minimized. early_stopping_rounds : int Activates early stopping. Validation metric needs to improve at least once in every **early_stopping_rounds** round(s) to continue training. Requires at least one item in **eval_set**. The method returns the model from the last iteration (not the best one). If there's more than one item in **eval_set**, the last entry will be used for early stopping. If there's more than one metric in **eval_metric**, the last metric will be used for early stopping. If early stopping occurs, the model will have three additional fields: ``clf.best_score``, ``clf.best_iteration`` and ``clf.best_ntree_limit``. verbose : bool If `verbose` and an evaluation set is used, writes the evaluation metric measured on the validation set to stderr. xgb_model : file name of stored XGBoost model or 'Booster' instance XGBoost model to be loaded before training (allows training continuation). sample_weight_eval_set : list, optional A list of the form [L_1, L_2, ..., L_n], where each L_i is an array like object storing instance weights for the i-th validation set. base_margin_eval_set : list, optional A list of the form [M_1, M_2, ..., M_n], where each M_i is an array like object storing base margin for the i-th validation set. feature_weights: array_like Weight for each feature, defines the probability of each feature being selected when colsample is being used. All values must be greater than 0, otherwise a `ValueError` is thrown. Only available for `hist`, `gpu_hist` and `exact` tree methods. callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`callback_api`. Example: .. code-block:: python callbacks = [xgb.callback.EarlyStopping(rounds=early_stopping_rounds, save_best=True)] """ evals_result = {} train_dmatrix, evals = _wrap_evaluation_matrices( missing=self.missing, X=X, y=y, group=None, qid=None, sample_weight=sample_weight, base_margin=base_margin, feature_weights=feature_weights, eval_set=eval_set, sample_weight_eval_set=sample_weight_eval_set, base_margin_eval_set=base_margin_eval_set, eval_group=None, eval_qid=None, create_dmatrix=lambda **kwargs: DMatrix(nthread=self.n_jobs, **kwargs), ) params = self.get_xgb_params() if callable(self.objective): obj = _objective_decorator(self.objective) params["objective"] = "reg:squarederror" else: obj = None model, feval, params = self._configure_fit(xgb_model, eval_metric, params) self._Booster = train( params, train_dmatrix, self.get_num_boosting_rounds(), evals=evals, early_stopping_rounds=early_stopping_rounds, evals_result=evals_result, obj=obj, feval=feval, verbose_eval=verbose, xgb_model=model, callbacks=callbacks, ) self._set_evaluation_result(evals_result) return self def _can_use_inplace_predict(self) -> bool: # When predictor is explicitly set, using `inplace_predict` might result into # error with incompatible data type. # Inplace predict doesn't handle as many data types as DMatrix, but it's # sufficient for dask interface where input is simpiler. params = self.get_params() if params.get("predictor", None) is None and self.booster != "gblinear": return True return False def _get_iteration_range( self, iteration_range: Optional[Tuple[int, int]] ) -> Tuple[int, int]: if (iteration_range is None or iteration_range[1] == 0): # Use best_iteration if defined. try: iteration_range = (0, self.best_iteration + 1) except AttributeError: iteration_range = (0, 0) if self.booster == "gblinear": iteration_range = (0, 0) return iteration_range def predict( self, X, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None, iteration_range=None, ): """ Predict with `X`. .. note:: This function is only thread safe for `gbtree` and `dart`. Parameters ---------- X : array_like Data to predict with output_margin : bool Whether to output the raw untransformed margin value. ntree_limit : int Deprecated, use `iteration_range` instead. validate_features : bool When this is True, validate that the Booster's and data's feature_names are identical. Otherwise, it is assumed that the feature_names are the same. base_margin : array_like Margin added to prediction. iteration_range : Specifies which layer of trees are used in prediction. For example, if a random forest is trained with 100 rounds. Specifying `iteration_range=(10, 20)`, then only the forests built during [10, 20) (half open set) rounds are used in this prediction. .. versionadded:: 1.4.0 Returns ------- prediction : numpy array """ iteration_range = _convert_ntree_limit( self.get_booster(), ntree_limit, iteration_range ) iteration_range = self._get_iteration_range(iteration_range) if self._can_use_inplace_predict(): try: predts = self.get_booster().inplace_predict( data=X, iteration_range=iteration_range, predict_type="margin" if output_margin else "value", missing=self.missing, base_margin=base_margin, validate_features=validate_features, ) if _is_cupy_array(predts): import cupy # pylint: disable=import-error predts = cupy.asnumpy(predts) # ensure numpy array is used. return predts except TypeError: # coo, csc, dt pass test = DMatrix( X, base_margin=base_margin, missing=self.missing, nthread=self.n_jobs ) return self.get_booster().predict( data=test, iteration_range=iteration_range, output_margin=output_margin, validate_features=validate_features, ) def apply( self, X, ntree_limit: int = 0, iteration_range: Optional[Tuple[int, int]] = None ) -> np.ndarray: """Return the predicted leaf every tree for each sample. Parameters ---------- X : array_like, shape=[n_samples, n_features] Input features matrix. ntree_limit : int Limit number of trees in the prediction; defaults to 0 (use all trees). Returns ------- X_leaves : array_like, shape=[n_samples, n_trees] For each datapoint x in X and for each tree, return the index of the leaf x ends up in. Leaves are numbered within ``[0; 2**(self.max_depth+1))``, possibly with gaps in the numbering. """ iteration_range = _convert_ntree_limit( self.get_booster(), ntree_limit, iteration_range ) iteration_range = self._get_iteration_range(iteration_range) test_dmatrix = DMatrix(X, missing=self.missing, nthread=self.n_jobs) return self.get_booster().predict( test_dmatrix, pred_leaf=True, iteration_range=iteration_range ) def evals_result(self): """Return the evaluation results. If **eval_set** is passed to the `fit` function, you can call ``evals_result()`` to get evaluation results for all passed **eval_sets**. When **eval_metric** is also passed to the `fit` function, the **evals_result** will contain the **eval_metrics** passed to the `fit` function. Returns ------- evals_result : dictionary Example ------- .. code-block:: python param_dist = {'objective':'binary:logistic', 'n_estimators':2} clf = xgb.XGBModel(**param_dist) clf.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], eval_metric='logloss', verbose=True) evals_result = clf.evals_result() The variable **evals_result** will contain: .. code-block:: python {'validation_0': {'logloss': ['0.604835', '0.531479']}, 'validation_1': {'logloss': ['0.41965', '0.17686']}} """ if self.evals_result_: evals_result = self.evals_result_ else: raise XGBoostError('No results.') return evals_result @property def n_features_in_(self) -> int: booster = self.get_booster() return booster.num_features() def _early_stopping_attr(self, attr: str) -> Union[float, int]: booster = self.get_booster() try: return getattr(booster, attr) except AttributeError as e: raise AttributeError( f'`{attr}` in only defined when early stopping is used.' ) from e @property def best_score(self) -> float: return float(self._early_stopping_attr('best_score')) @property def best_iteration(self) -> int: return int(self._early_stopping_attr('best_iteration')) @property def best_ntree_limit(self) -> int: return int(self._early_stopping_attr('best_ntree_limit')) @property def feature_importances_(self): """ Feature importances property .. note:: Feature importance is defined only for tree boosters Feature importance is only defined when the decision tree model is chosen as base learner (`booster=gbtree`). It is not defined for other base learner types, such as linear learners (`booster=gblinear`). Returns ------- feature_importances_ : array of shape ``[n_features]`` """ if self.get_params()['booster'] not in {'gbtree', 'dart'}: raise AttributeError( 'Feature importance is not defined for Booster type {}' .format(self.booster)) b: Booster = self.get_booster() score = b.get_score(importance_type=self.importance_type) if b.feature_names is None: feature_names = ["f{0}".format(i) for i in range(self.n_features_in_)] else: feature_names = b.feature_names all_features = [score.get(f, 0.) for f in feature_names] all_features = np.array(all_features, dtype=np.float32) total = all_features.sum() if total == 0: return all_features return all_features / total @property def coef_(self): """ Coefficients property .. note:: Coefficients are defined only for linear learners Coefficients are only defined when the linear model is chosen as base learner (`booster=gblinear`). It is not defined for other base learner types, such as tree learners (`booster=gbtree`). Returns ------- coef_ : array of shape ``[n_features]`` or ``[n_classes, n_features]`` """ if self.get_params()['booster'] != 'gblinear': raise AttributeError( 'Coefficients are not defined for Booster type {}' .format(self.booster)) b = self.get_booster() coef = np.array(json.loads(b.get_dump(dump_format='json')[0])['weight']) # Logic for multiclass classification n_classes = getattr(self, 'n_classes_', None) if n_classes is not None: if n_classes > 2: assert len(coef.shape) == 1 assert coef.shape[0] % n_classes == 0 coef = coef.reshape((n_classes, -1)) return coef @property def intercept_(self): """ Intercept (bias) property .. note:: Intercept is defined only for linear learners Intercept (bias) is only defined when the linear model is chosen as base learner (`booster=gblinear`). It is not defined for other base learner types, such as tree learners (`booster=gbtree`). Returns ------- intercept_ : array of shape ``(1,)`` or ``[n_classes]`` """ if self.get_params()['booster'] != 'gblinear': raise AttributeError( 'Intercept (bias) is not defined for Booster type {}' .format(self.booster)) b = self.get_booster() return np.array(json.loads(b.get_dump(dump_format='json')[0])['bias']) PredtT = TypeVar("PredtT") def _cls_predict_proba(n_classes: int, prediction: PredtT, vstack: Callable) -> PredtT: assert len(prediction.shape) <= 2 if len(prediction.shape) == 2 and prediction.shape[1] == n_classes: return prediction # binary logistic function classone_probs = prediction classzero_probs = 1.0 - classone_probs return vstack((classzero_probs, classone_probs)).transpose() @xgboost_model_doc( "Implementation of the scikit-learn API for XGBoost classification.", ['model', 'objective'], extra_parameters=''' n_estimators : int Number of boosting rounds. use_label_encoder : bool (Deprecated) Use the label encoder from scikit-learn to encode the labels. For new code, we recommend that you set this parameter to False. ''') class XGBClassifier(XGBModel, XGBClassifierBase): # pylint: disable=missing-docstring,invalid-name,too-many-instance-attributes @_deprecate_positional_args def __init__(self, *, objective="binary:logistic", use_label_encoder=True, **kwargs): self.use_label_encoder = use_label_encoder super().__init__(objective=objective, **kwargs) @_deprecate_positional_args def fit( self, X, y, *, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None, early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None, base_margin_eval_set=None, feature_weights=None, callbacks=None ): # pylint: disable = attribute-defined-outside-init,too-many-statements can_use_label_encoder = True label_encoding_check_error = ( "The label must consist of integer " "labels of form 0, 1, 2, ..., [num_class - 1]." ) label_encoder_deprecation_msg = ( "The use of label encoder in XGBClassifier is deprecated and will be " "removed in a future release. To remove this warning, do the " "following: 1) Pass option use_label_encoder=False when constructing " "XGBClassifier object; and 2) Encode your labels (y) as integers " "starting with 0, i.e. 0, 1, 2, ..., [num_class - 1]." ) evals_result = {} if _is_cudf_df(y) or _is_cudf_ser(y): import cupy as cp # pylint: disable=E0401 self.classes_ = cp.unique(y.values) self.n_classes_ = len(self.classes_) can_use_label_encoder = False expected_classes = cp.arange(self.n_classes_) if ( self.classes_.shape != expected_classes.shape or not (self.classes_ == expected_classes).all() ): raise ValueError(label_encoding_check_error) elif _is_cupy_array(y): import cupy as cp # pylint: disable=E0401 self.classes_ = cp.unique(y) self.n_classes_ = len(self.classes_) can_use_label_encoder = False expected_classes = cp.arange(self.n_classes_) if ( self.classes_.shape != expected_classes.shape or not (self.classes_ == expected_classes).all() ): raise ValueError(label_encoding_check_error) else: self.classes_ = np.unique(y) self.n_classes_ = len(self.classes_) if not self.use_label_encoder and ( not np.array_equal(self.classes_, np.arange(self.n_classes_)) ): raise ValueError(label_encoding_check_error) params = self.get_xgb_params() if callable(self.objective): obj = _objective_decorator(self.objective) # Use default value. Is it really not used ? params["objective"] = "binary:logistic" else: obj = None if self.n_classes_ > 2: # Switch to using a multiclass objective in the underlying # XGB instance params["objective"] = "multi:softprob" params["num_class"] = self.n_classes_ if self.use_label_encoder: if not can_use_label_encoder: raise ValueError('The option use_label_encoder=True is incompatible with inputs ' + 'of type cuDF or cuPy. Please set use_label_encoder=False when ' + 'constructing XGBClassifier object. NOTE: ' + label_encoder_deprecation_msg) warnings.warn(label_encoder_deprecation_msg, UserWarning) self._le = XGBoostLabelEncoder().fit(y) label_transform = self._le.transform else: label_transform = lambda x: x model, feval, params = self._configure_fit(xgb_model, eval_metric, params) if len(X.shape) != 2: # Simply raise an error here since there might be many # different ways of reshaping raise ValueError("Please reshape the input data X into 2-dimensional matrix.") train_dmatrix, evals = _wrap_evaluation_matrices( missing=self.missing, X=X, y=y, group=None, qid=None, sample_weight=sample_weight, base_margin=base_margin, feature_weights=feature_weights, eval_set=eval_set, sample_weight_eval_set=sample_weight_eval_set, base_margin_eval_set=base_margin_eval_set, eval_group=None, eval_qid=None, create_dmatrix=lambda **kwargs: DMatrix(nthread=self.n_jobs, **kwargs), label_transform=label_transform, ) self._Booster = train( params, train_dmatrix, self.get_num_boosting_rounds(), evals=evals, early_stopping_rounds=early_stopping_rounds, evals_result=evals_result, obj=obj, feval=feval, verbose_eval=verbose, xgb_model=model, callbacks=callbacks, ) if not callable(self.objective): self.objective = params["objective"] self._set_evaluation_result(evals_result) return self fit.__doc__ = XGBModel.fit.__doc__.replace( 'Fit gradient boosting model', 'Fit gradient boosting classifier', 1) def predict( self, X, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None, iteration_range: Optional[Tuple[int, int]] = None, ): class_probs = super().predict( X=X, output_margin=output_margin, ntree_limit=ntree_limit, validate_features=validate_features, base_margin=base_margin, iteration_range=iteration_range, ) if output_margin: # If output_margin is active, simply return the scores return class_probs if len(class_probs.shape) > 1: # turns softprob into softmax column_indexes = np.argmax(class_probs, axis=1) else: # turns soft logit into class label column_indexes = np.repeat(0, class_probs.shape[0]) column_indexes[class_probs > 0.5] = 1 if hasattr(self, '_le'): return self._le.inverse_transform(column_indexes) return column_indexes def predict_proba( self, X, ntree_limit=None, validate_features=False, base_margin=None, iteration_range: Optional[Tuple[int, int]] = None, ) -> np.ndarray: """ Predict the probability of each `X` example being of a given class. .. note:: This function is only thread safe for `gbtree` and `dart`. Parameters ---------- X : array_like Feature matrix. ntree_limit : int Deprecated, use `iteration_range` instead. validate_features : bool When this is True, validate that the Booster's and data's feature_names are identical. Otherwise, it is assumed that the feature_names are the same. base_margin : array_like Margin added to prediction. iteration_range : Specifies which layer of trees are used in prediction. For example, if a random forest is trained with 100 rounds. Specifying `iteration_range=(10, 20)`, then only the forests built during [10, 20) (half open set) rounds are used in this prediction. Returns ------- prediction : numpy array a numpy array of shape array-like of shape (n_samples, n_classes) with the probability of each data example being of a given class. """ # custom obj: Do nothing as we don't know what to do. # softprob: Do nothing, output is proba. # softmax: Use output margin to remove the argmax in PredTransform. # binary:logistic: Expand the prob vector into 2-class matrix after predict. # binary:logitraw: Unsupported by predict_proba() class_probs = super().predict( X=X, output_margin=self.objective == "multi:softmax", ntree_limit=ntree_limit, validate_features=validate_features, base_margin=base_margin, iteration_range=iteration_range ) # If model is loaded from a raw booster there's no `n_classes_` return _cls_predict_proba( getattr(self, "n_classes_", None), class_probs, np.vstack ) def evals_result(self): """Return the evaluation results. If **eval_set** is passed to the `fit` function, you can call ``evals_result()`` to get evaluation results for all passed **eval_sets**. When **eval_metric** is also passed to the `fit` function, the **evals_result** will contain the **eval_metrics** passed to the `fit` function. Returns ------- evals_result : dictionary Example ------- .. code-block:: python param_dist = {'objective':'binary:logistic', 'n_estimators':2} clf = xgb.XGBClassifier(**param_dist) clf.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], eval_metric='logloss', verbose=True) evals_result = clf.evals_result() The variable **evals_result** will contain .. code-block:: python {'validation_0': {'logloss': ['0.604835', '0.531479']}, 'validation_1': {'logloss': ['0.41965', '0.17686']}} """ if self.evals_result_: evals_result = self.evals_result_ else: raise XGBoostError('No results.') return evals_result @xgboost_model_doc( "scikit-learn API for XGBoost random forest classification.", ['model', 'objective'], extra_parameters=''' n_estimators : int Number of trees in random forest to fit. use_label_encoder : bool (Deprecated) Use the label encoder from scikit-learn to encode the labels. For new code, we recommend that you set this parameter to False. ''') class XGBRFClassifier(XGBClassifier): # pylint: disable=missing-docstring @_deprecate_positional_args def __init__(self, *, learning_rate=1, subsample=0.8, colsample_bynode=0.8, reg_lambda=1e-5, use_label_encoder=True, **kwargs): super().__init__(learning_rate=learning_rate, subsample=subsample, colsample_bynode=colsample_bynode, reg_lambda=reg_lambda, use_label_encoder=use_label_encoder, **kwargs) def get_xgb_params(self): params = super().get_xgb_params() params['num_parallel_tree'] = self.n_estimators return params def get_num_boosting_rounds(self): return 1 @xgboost_model_doc( "Implementation of the scikit-learn API for XGBoost regression.", ['estimators', 'model', 'objective']) class XGBRegressor(XGBModel, XGBRegressorBase): # pylint: disable=missing-docstring @_deprecate_positional_args def __init__(self, *, objective="reg:squarederror", **kwargs): super().__init__(objective=objective, **kwargs) @xgboost_model_doc( "scikit-learn API for XGBoost random forest regression.", ['model', 'objective'], extra_parameters=''' n_estimators : int Number of trees in random forest to fit. ''') class XGBRFRegressor(XGBRegressor): # pylint: disable=missing-docstring @_deprecate_positional_args def __init__(self, *, learning_rate=1, subsample=0.8, colsample_bynode=0.8, reg_lambda=1e-5, **kwargs): super().__init__(learning_rate=learning_rate, subsample=subsample, colsample_bynode=colsample_bynode, reg_lambda=reg_lambda, **kwargs) def get_xgb_params(self): params = super().get_xgb_params() params['num_parallel_tree'] = self.n_estimators return params def get_num_boosting_rounds(self): return 1 @xgboost_model_doc( 'Implementation of the Scikit-Learn API for XGBoost Ranking.', ['estimators', 'model'], end_note=''' Note ---- A custom objective function is currently not supported by XGBRanker. Likewise, a custom metric function is not supported either. Note ---- Query group information is required for ranking tasks by either using the `group` parameter or `qid` parameter in `fit` method. Before fitting the model, your data need to be sorted by query group. When fitting the model, you need to provide an additional array that contains the size of each query group. For example, if your original data look like: +-------+-----------+---------------+ | qid | label | features | +-------+-----------+---------------+ | 1 | 0 | x_1 | +-------+-----------+---------------+ | 1 | 1 | x_2 | +-------+-----------+---------------+ | 1 | 0 | x_3 | +-------+-----------+---------------+ | 2 | 0 | x_4 | +-------+-----------+---------------+ | 2 | 1 | x_5 | +-------+-----------+---------------+ | 2 | 1 | x_6 | +-------+-----------+---------------+ | 2 | 1 | x_7 | +-------+-----------+---------------+ then your group array should be ``[3, 4]``. Sometimes using query id (`qid`) instead of group can be more convenient. ''') class XGBRanker(XGBModel, XGBRankerMixIn): # pylint: disable=missing-docstring,too-many-arguments,invalid-name @_deprecate_positional_args def __init__(self, *, objective="rank:pairwise", **kwargs): super().__init__(objective=objective, **kwargs) if callable(self.objective): raise ValueError("custom objective function not supported by XGBRanker") if "rank:" not in self.objective: raise ValueError("please use XGBRanker for ranking task") @_deprecate_positional_args def fit( self, X, y, *, group=None, qid=None, sample_weight=None, base_margin=None, eval_set=None, eval_group=None, eval_qid=None, eval_metric=None, early_stopping_rounds=None, verbose=False, xgb_model: Optional[Union[Booster, str, XGBModel]] = None, sample_weight_eval_set=None, base_margin_eval_set=None, feature_weights=None, callbacks=None ) -> "XGBRanker": # pylint: disable = attribute-defined-outside-init,arguments-differ """Fit gradient boosting ranker Note that calling ``fit()`` multiple times will cause the model object to be re-fit from scratch. To resume training from a previous checkpoint, explicitly pass ``xgb_model`` argument. Parameters ---------- X : array_like Feature matrix y : array_like Labels group : array_like Size of each query group of training data. Should have as many elements as the query groups in the training data. If this is set to None, then user must provide qid. qid : array_like Query ID for each training sample. Should have the size of n_samples. If this is set to None, then user must provide group. sample_weight : array_like Query group weights .. note:: Weights are per-group for ranking tasks In ranking task, one weight is assigned to each query group/id (not each data point). This is because we only care about the relative ordering of data points within each group, so it doesn't make sense to assign weights to individual data points. base_margin : array_like Global bias for each instance. eval_set : list, optional A list of (X, y) tuple pairs to use as validation sets, for which metrics will be computed. Validation metrics will help us track the performance of the model. eval_group : list of arrays, optional A list in which ``eval_group[i]`` is the list containing the sizes of all query groups in the ``i``-th pair in **eval_set**. eval_qid : list of array_like, optional A list in which ``eval_qid[i]`` is the array containing query ID of ``i``-th pair in **eval_set**. eval_metric : str, list of str, optional If a str, should be a built-in evaluation metric to use. See doc/parameter.rst. If a list of str, should be the list of multiple built-in evaluation metrics to use. The custom evaluation metric is not yet supported for the ranker. early_stopping_rounds : int Activates early stopping. Validation metric needs to improve at least once in every **early_stopping_rounds** round(s) to continue training. Requires at least one item in **eval_set**. The method returns the model from the last iteration (not the best one). If there's more than one item in **eval_set**, the last entry will be used for early stopping. If there's more than one metric in **eval_metric**, the last metric will be used for early stopping. If early stopping occurs, the model will have three additional fields: ``clf.best_score``, ``clf.best_iteration`` and ``clf.best_ntree_limit``. verbose : bool If `verbose` and an evaluation set is used, writes the evaluation metric measured on the validation set to stderr. xgb_model : file name of stored XGBoost model or 'Booster' instance XGBoost model to be loaded before training (allows training continuation). sample_weight_eval_set : list, optional A list of the form [L_1, L_2, ..., L_n], where each L_i is a list of group weights on the i-th validation set. .. note:: Weights are per-group for ranking tasks In ranking task, one weight is assigned to each query group (not each data point). This is because we only care about the relative ordering of data points within each group, so it doesn't make sense to assign weights to individual data points. base_margin_eval_set : list, optional A list of the form [M_1, M_2, ..., M_n], where each M_i is an array like object storing base margin for the i-th validation set. feature_weights: array_like Weight for each feature, defines the probability of each feature being selected when colsample is being used. All values must be greater than 0, otherwise a `ValueError` is thrown. Only available for `hist`, `gpu_hist` and `exact` tree methods. callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`callback_api`. Example: .. code-block:: python callbacks = [xgb.callback.EarlyStopping(rounds=early_stopping_rounds, save_best=True)] """ # check if group information is provided if group is None and qid is None: raise ValueError("group or qid is required for ranking task") if eval_set is not None: if eval_group is None and eval_qid is None: raise ValueError( "eval_group or eval_qid is required if eval_set is not None") train_dmatrix, evals = _wrap_evaluation_matrices( missing=self.missing, X=X, y=y, group=group, qid=qid, sample_weight=sample_weight, base_margin=base_margin, feature_weights=feature_weights, eval_set=eval_set, sample_weight_eval_set=sample_weight_eval_set, base_margin_eval_set=base_margin_eval_set, eval_group=eval_group, eval_qid=eval_qid, create_dmatrix=lambda **kwargs: DMatrix(nthread=self.n_jobs, **kwargs), ) evals_result = {} params = self.get_xgb_params() model, feval, params = self._configure_fit(xgb_model, eval_metric, params) if callable(feval): raise ValueError( 'Custom evaluation metric is not yet supported for XGBRanker.' ) self._Booster = train( params, train_dmatrix, self.n_estimators, early_stopping_rounds=early_stopping_rounds, evals=evals, evals_result=evals_result, feval=feval, verbose_eval=verbose, xgb_model=model, callbacks=callbacks ) self.objective = params["objective"] self._set_evaluation_result(evals_result) return self
spark-xgboost-nv-release_1.4.0
python-package/xgboost/sklearn.py
# coding: utf-8 # pylint: disable=too-many-locals, too-many-arguments, invalid-name # pylint: disable=too-many-branches, too-many-statements """Training Library containing training routines.""" import warnings import copy import numpy as np from .core import Booster, XGBoostError, _get_booster_layer_trees from .compat import (SKLEARN_INSTALLED, XGBStratifiedKFold) from . import callback def _configure_deprecated_callbacks( verbose_eval, early_stopping_rounds, maximize, start_iteration, num_boost_round, feval, evals_result, callbacks, show_stdv, cvfolds): link = 'https://xgboost.readthedocs.io/en/latest/python/callbacks.html' warnings.warn(f'Old style callback is deprecated. See: {link}', UserWarning) # Most of legacy advanced options becomes callbacks if early_stopping_rounds is not None: callbacks.append(callback.early_stop(early_stopping_rounds, maximize=maximize, verbose=bool(verbose_eval))) if isinstance(verbose_eval, bool) and verbose_eval: callbacks.append(callback.print_evaluation(show_stdv=show_stdv)) else: if isinstance(verbose_eval, int): callbacks.append(callback.print_evaluation(verbose_eval, show_stdv=show_stdv)) if evals_result is not None: callbacks.append(callback.record_evaluation(evals_result)) callbacks = callback.LegacyCallbacks( callbacks, start_iteration, num_boost_round, feval, cvfolds=cvfolds) return callbacks def _is_new_callback(callbacks): return any(isinstance(c, callback.TrainingCallback) for c in callbacks) or not callbacks def _train_internal(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, xgb_model=None, callbacks=None, evals_result=None, maximize=None, verbose_eval=None, early_stopping_rounds=None): """internal training function""" callbacks = [] if callbacks is None else copy.copy(callbacks) evals = list(evals) bst = Booster(params, [dtrain] + [d[0] for d in evals]) if xgb_model is not None: bst = Booster(params, [dtrain] + [d[0] for d in evals], model_file=xgb_model) start_iteration = 0 is_new_callback = _is_new_callback(callbacks) if is_new_callback: assert all(isinstance(c, callback.TrainingCallback) for c in callbacks), "You can't mix new and old callback styles." if verbose_eval: verbose_eval = 1 if verbose_eval is True else verbose_eval callbacks.append(callback.EvaluationMonitor(period=verbose_eval)) if early_stopping_rounds: callbacks.append(callback.EarlyStopping( rounds=early_stopping_rounds, maximize=maximize)) callbacks = callback.CallbackContainer(callbacks, metric=feval) else: callbacks = _configure_deprecated_callbacks( verbose_eval, early_stopping_rounds, maximize, start_iteration, num_boost_round, feval, evals_result, callbacks, show_stdv=False, cvfolds=None) bst = callbacks.before_training(bst) for i in range(start_iteration, num_boost_round): if callbacks.before_iteration(bst, i, dtrain, evals): break bst.update(dtrain, i, obj) if callbacks.after_iteration(bst, i, dtrain, evals): break bst = callbacks.after_training(bst) if evals_result is not None and is_new_callback: evals_result.update(callbacks.history) # These should be moved into callback functions `after_training`, but until old # callbacks are removed, the train function is the only place for setting the # attributes. num_parallel_tree, _ = _get_booster_layer_trees(bst) if bst.attr('best_score') is not None: bst.best_score = float(bst.attr('best_score')) bst.best_iteration = int(bst.attr('best_iteration')) # num_class is handled internally bst.set_attr( best_ntree_limit=str((bst.best_iteration + 1) * num_parallel_tree) ) bst.best_ntree_limit = int(bst.attr("best_ntree_limit")) else: # Due to compatibility with version older than 1.4, these attributes are added # to Python object even if early stopping is not used. bst.best_iteration = bst.num_boosted_rounds() - 1 bst.best_ntree_limit = (bst.best_iteration + 1) * num_parallel_tree # Copy to serialise and unserialise booster to reset state and free # training memory return bst.copy() def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, maximize=None, early_stopping_rounds=None, evals_result=None, verbose_eval=True, xgb_model=None, callbacks=None): # pylint: disable=too-many-statements,too-many-branches, attribute-defined-outside-init """Train a booster with given parameters. Parameters ---------- params : dict Booster params. dtrain : DMatrix Data to be trained. num_boost_round: int Number of boosting iterations. evals: list of pairs (DMatrix, string) List of validation sets for which metrics will evaluated during training. Validation metrics will help us track the performance of the model. obj : function Customized objective function. feval : function Customized evaluation function. maximize : bool Whether to maximize feval. early_stopping_rounds: int Activates early stopping. Validation metric needs to improve at least once in every **early_stopping_rounds** round(s) to continue training. Requires at least one item in **evals**. The method returns the model from the last iteration (not the best one). Use custom callback or model slicing if the best model is desired. If there's more than one item in **evals**, the last entry will be used for early stopping. If there's more than one metric in the **eval_metric** parameter given in **params**, the last metric will be used for early stopping. If early stopping occurs, the model will have three additional fields: ``bst.best_score``, ``bst.best_iteration`` and ``bst.best_ntree_limit``. Use ``bst.best_ntree_limit`` to get the correct value if ``num_parallel_tree`` and/or ``num_class`` appears in the parameters. ``best_ntree_limit`` is the result of ``num_parallel_tree * best_iteration``. evals_result: dict This dictionary stores the evaluation results of all the items in watchlist. Example: with a watchlist containing ``[(dtest,'eval'), (dtrain,'train')]`` and a parameter containing ``('eval_metric': 'logloss')``, the **evals_result** returns .. code-block:: python {'train': {'logloss': ['0.48253', '0.35953']}, 'eval': {'logloss': ['0.480385', '0.357756']}} verbose_eval : bool or int Requires at least one item in **evals**. If **verbose_eval** is True then the evaluation metric on the validation set is printed at each boosting stage. If **verbose_eval** is an integer then the evaluation metric on the validation set is printed at every given **verbose_eval** boosting stage. The last boosting stage / the boosting stage found by using **early_stopping_rounds** is also printed. Example: with ``verbose_eval=4`` and at least one item in **evals**, an evaluation metric is printed every 4 boosting stages, instead of every boosting stage. xgb_model : file name of stored xgb model or 'Booster' instance Xgb model to be loaded before training (allows training continuation). callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`Callback API <callback_api>`. Example: .. code-block:: python [xgb.callback.LearningRateScheduler(custom_rates)] Returns ------- Booster : a trained booster model """ bst = _train_internal(params, dtrain, num_boost_round=num_boost_round, evals=evals, obj=obj, feval=feval, xgb_model=xgb_model, callbacks=callbacks, verbose_eval=verbose_eval, evals_result=evals_result, maximize=maximize, early_stopping_rounds=early_stopping_rounds) return bst class CVPack(object): """"Auxiliary datastruct to hold one fold of CV.""" def __init__(self, dtrain, dtest, param): """"Initialize the CVPack""" self.dtrain = dtrain self.dtest = dtest self.watchlist = [(dtrain, 'train'), (dtest, 'test')] self.bst = Booster(param, [dtrain, dtest]) def __getattr__(self, name): def _inner(*args, **kwargs): return getattr(self.bst, name)(*args, **kwargs) return _inner def update(self, iteration, fobj): """"Update the boosters for one iteration""" self.bst.update(self.dtrain, iteration, fobj) def eval(self, iteration, feval): """"Evaluate the CVPack for one iteration.""" return self.bst.eval_set(self.watchlist, iteration, feval) class _PackedBooster: def __init__(self, cvfolds) -> None: self.cvfolds = cvfolds def update(self, iteration, obj): '''Iterate through folds for update''' for fold in self.cvfolds: fold.update(iteration, obj) def eval(self, iteration, feval): '''Iterate through folds for eval''' result = [f.eval(iteration, feval) for f in self.cvfolds] return result def set_attr(self, **kwargs): '''Iterate through folds for setting attributes''' for f in self.cvfolds: f.bst.set_attr(**kwargs) def attr(self, key): '''Redirect to booster attr.''' return self.cvfolds[0].bst.attr(key) def set_param(self, params, value=None): """Iterate through folds for set_param""" for f in self.cvfolds: f.bst.set_param(params, value) def num_boosted_rounds(self): '''Number of boosted rounds.''' return self.cvfolds[0].num_boosted_rounds() @property def best_iteration(self): '''Get best_iteration''' return int(self.cvfolds[0].bst.attr("best_iteration")) @property def best_score(self): """Get best_score.""" return float(self.cvfolds[0].bst.attr("best_score")) def groups_to_rows(groups, boundaries): """ Given group row boundaries, convert ground indexes to row indexes :param groups: list of groups for testing :param boundaries: rows index limits of each group :return: row in group """ return np.concatenate([np.arange(boundaries[g], boundaries[g+1]) for g in groups]) def mkgroupfold(dall, nfold, param, evals=(), fpreproc=None, shuffle=True): """ Make n folds for cross-validation maintaining groups :return: cross-validation folds """ # we have groups for pairwise ranking... get a list of the group indexes group_boundaries = dall.get_uint_info('group_ptr') group_sizes = np.diff(group_boundaries) if shuffle is True: idx = np.random.permutation(len(group_sizes)) else: idx = np.arange(len(group_sizes)) # list by fold of test group indexes out_group_idset = np.array_split(idx, nfold) # list by fold of train group indexes in_group_idset = [np.concatenate([out_group_idset[i] for i in range(nfold) if k != i]) for k in range(nfold)] # from the group indexes, convert them to row indexes in_idset = [groups_to_rows(in_groups, group_boundaries) for in_groups in in_group_idset] out_idset = [groups_to_rows(out_groups, group_boundaries) for out_groups in out_group_idset] # build the folds by taking the appropriate slices ret = [] for k in range(nfold): # perform the slicing using the indexes determined by the above methods dtrain = dall.slice(in_idset[k], allow_groups=True) dtrain.set_group(group_sizes[in_group_idset[k]]) dtest = dall.slice(out_idset[k], allow_groups=True) dtest.set_group(group_sizes[out_group_idset[k]]) # run preprocessing on the data set if needed if fpreproc is not None: dtrain, dtest, tparam = fpreproc(dtrain, dtest, param.copy()) else: tparam = param plst = list(tparam.items()) + [('eval_metric', itm) for itm in evals] ret.append(CVPack(dtrain, dtest, plst)) return ret def mknfold(dall, nfold, param, seed, evals=(), fpreproc=None, stratified=False, folds=None, shuffle=True): """ Make an n-fold list of CVPack from random indices. """ evals = list(evals) np.random.seed(seed) if stratified is False and folds is None: # Do standard k-fold cross validation. Automatically determine the folds. if len(dall.get_uint_info('group_ptr')) > 1: return mkgroupfold(dall, nfold, param, evals=evals, fpreproc=fpreproc, shuffle=shuffle) if shuffle is True: idx = np.random.permutation(dall.num_row()) else: idx = np.arange(dall.num_row()) out_idset = np.array_split(idx, nfold) in_idset = [np.concatenate([out_idset[i] for i in range(nfold) if k != i]) for k in range(nfold)] elif folds is not None: # Use user specified custom split using indices try: in_idset = [x[0] for x in folds] out_idset = [x[1] for x in folds] except TypeError: # Custom stratification using Sklearn KFoldSplit object splits = list(folds.split(X=dall.get_label(), y=dall.get_label())) in_idset = [x[0] for x in splits] out_idset = [x[1] for x in splits] nfold = len(out_idset) else: # Do standard stratefied shuffle k-fold split sfk = XGBStratifiedKFold(n_splits=nfold, shuffle=True, random_state=seed) splits = list(sfk.split(X=dall.get_label(), y=dall.get_label())) in_idset = [x[0] for x in splits] out_idset = [x[1] for x in splits] nfold = len(out_idset) ret = [] for k in range(nfold): # perform the slicing using the indexes determined by the above methods dtrain = dall.slice(in_idset[k]) dtest = dall.slice(out_idset[k]) # run preprocessing on the data set if needed if fpreproc is not None: dtrain, dtest, tparam = fpreproc(dtrain, dtest, param.copy()) else: tparam = param plst = list(tparam.items()) + [('eval_metric', itm) for itm in evals] ret.append(CVPack(dtrain, dtest, plst)) return ret def cv(params, dtrain, num_boost_round=10, nfold=3, stratified=False, folds=None, metrics=(), obj=None, feval=None, maximize=None, early_stopping_rounds=None, fpreproc=None, as_pandas=True, verbose_eval=None, show_stdv=True, seed=0, callbacks=None, shuffle=True): # pylint: disable = invalid-name """Cross-validation with given parameters. Parameters ---------- params : dict Booster params. dtrain : DMatrix Data to be trained. num_boost_round : int Number of boosting iterations. nfold : int Number of folds in CV. stratified : bool Perform stratified sampling. folds : a KFold or StratifiedKFold instance or list of fold indices Sklearn KFolds or StratifiedKFolds object. Alternatively may explicitly pass sample indices for each fold. For ``n`` folds, **folds** should be a length ``n`` list of tuples. Each tuple is ``(in,out)`` where ``in`` is a list of indices to be used as the training samples for the ``n`` th fold and ``out`` is a list of indices to be used as the testing samples for the ``n`` th fold. metrics : string or list of strings Evaluation metrics to be watched in CV. obj : function Custom objective function. feval : function Custom evaluation function. maximize : bool Whether to maximize feval. early_stopping_rounds: int Activates early stopping. Cross-Validation metric (average of validation metric computed over CV folds) needs to improve at least once in every **early_stopping_rounds** round(s) to continue training. The last entry in the evaluation history will represent the best iteration. If there's more than one metric in the **eval_metric** parameter given in **params**, the last metric will be used for early stopping. fpreproc : function Preprocessing function that takes (dtrain, dtest, param) and returns transformed versions of those. as_pandas : bool, default True Return pd.DataFrame when pandas is installed. If False or pandas is not installed, return np.ndarray verbose_eval : bool, int, or None, default None Whether to display the progress. If None, progress will be displayed when np.ndarray is returned. If True, progress will be displayed at boosting stage. If an integer is given, progress will be displayed at every given `verbose_eval` boosting stage. show_stdv : bool, default True Whether to display the standard deviation in progress. Results are not affected, and always contains std. seed : int Seed used to generate the folds (passed to numpy.random.seed). callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`Callback API <callback_api>`. Example: .. code-block:: python [xgb.callback.LearningRateScheduler(custom_rates)] shuffle : bool Shuffle data before creating folds. Returns ------- evaluation history : list(string) """ if stratified is True and not SKLEARN_INSTALLED: raise XGBoostError('sklearn needs to be installed in order to use stratified cv') if isinstance(metrics, str): metrics = [metrics] if isinstance(params, list): _metrics = [x[1] for x in params if x[0] == 'eval_metric'] params = dict(params) if 'eval_metric' in params: params['eval_metric'] = _metrics else: params = dict((k, v) for k, v in params.items()) if (not metrics) and 'eval_metric' in params: if isinstance(params['eval_metric'], list): metrics = params['eval_metric'] else: metrics = [params['eval_metric']] params.pop("eval_metric", None) results = {} cvfolds = mknfold(dtrain, nfold, params, seed, metrics, fpreproc, stratified, folds, shuffle) # setup callbacks callbacks = [] if callbacks is None else callbacks is_new_callback = _is_new_callback(callbacks) if is_new_callback: assert all(isinstance(c, callback.TrainingCallback) for c in callbacks), "You can't mix new and old callback styles." if isinstance(verbose_eval, bool) and verbose_eval: verbose_eval = 1 if verbose_eval is True else verbose_eval callbacks.append(callback.EvaluationMonitor(period=verbose_eval, show_stdv=show_stdv)) if early_stopping_rounds: callbacks.append(callback.EarlyStopping( rounds=early_stopping_rounds, maximize=maximize)) callbacks = callback.CallbackContainer(callbacks, metric=feval, is_cv=True) else: callbacks = _configure_deprecated_callbacks( verbose_eval, early_stopping_rounds, maximize, 0, num_boost_round, feval, None, callbacks, show_stdv=show_stdv, cvfolds=cvfolds) booster = _PackedBooster(cvfolds) callbacks.before_training(booster) for i in range(num_boost_round): if callbacks.before_iteration(booster, i, dtrain, None): break booster.update(i, obj) should_break = callbacks.after_iteration(booster, i, dtrain, None) res = callbacks.aggregated_cv for key, mean, std in res: if key + '-mean' not in results: results[key + '-mean'] = [] if key + '-std' not in results: results[key + '-std'] = [] results[key + '-mean'].append(mean) results[key + '-std'].append(std) if should_break: for k in results: results[k] = results[k][:(booster.best_iteration + 1)] break if as_pandas: try: import pandas as pd results = pd.DataFrame.from_dict(results) except ImportError: pass callbacks.after_training(booster) return results
spark-xgboost-nv-release_1.4.0
python-package/xgboost/training.py
# pylint: disable=too-many-arguments, too-many-branches # pylint: disable=too-many-return-statements, import-error '''Data dispatching for DMatrix.''' import ctypes import json import warnings import os from typing import Any import numpy as np from .core import c_array, _LIB, _check_call, c_str, _array_interface from .core import DataIter, _ProxyDMatrix, DMatrix from .compat import lazy_isinstance c_bst_ulong = ctypes.c_uint64 # pylint: disable=invalid-name def _warn_unused_missing(data, missing): if (missing is not None) and (not np.isnan(missing)): warnings.warn( '`missing` is not used for current input data type:' + str(type(data)), UserWarning) def _check_complex(data): '''Test whether data is complex using `dtype` attribute.''' complex_dtypes = (np.complex128, np.complex64, np.cfloat, np.cdouble, np.clongdouble) if hasattr(data, 'dtype') and data.dtype in complex_dtypes: raise ValueError('Complex data not supported') def _is_scipy_csr(data): try: import scipy except ImportError: scipy = None return False return isinstance(data, scipy.sparse.csr_matrix) def _from_scipy_csr(data, missing, nthread, feature_names, feature_types): """Initialize data from a CSR matrix.""" if len(data.indices) != len(data.data): raise ValueError( "length mismatch: {} vs {}".format(len(data.indices), len(data.data)) ) handle = ctypes.c_void_p() args = { "missing": float(missing), "nthread": int(nthread), } config = bytes(json.dumps(args), "utf-8") _check_call( _LIB.XGDMatrixCreateFromCSR( _array_interface(data.indptr), _array_interface(data.indices), _array_interface(data.data), ctypes.c_size_t(data.shape[1]), config, ctypes.byref(handle), ) ) return handle, feature_names, feature_types def _is_scipy_csc(data): try: import scipy except ImportError: scipy = None return False return isinstance(data, scipy.sparse.csc_matrix) def _from_scipy_csc(data, missing, feature_names, feature_types): if len(data.indices) != len(data.data): raise ValueError('length mismatch: {} vs {}'.format( len(data.indices), len(data.data))) _warn_unused_missing(data, missing) handle = ctypes.c_void_p() _check_call(_LIB.XGDMatrixCreateFromCSCEx( c_array(ctypes.c_size_t, data.indptr), c_array(ctypes.c_uint, data.indices), c_array(ctypes.c_float, data.data), ctypes.c_size_t(len(data.indptr)), ctypes.c_size_t(len(data.data)), ctypes.c_size_t(data.shape[0]), ctypes.byref(handle))) return handle, feature_names, feature_types def _is_scipy_coo(data): try: import scipy except ImportError: scipy = None return False return isinstance(data, scipy.sparse.coo_matrix) def _is_numpy_array(data): return isinstance(data, (np.ndarray, np.matrix)) def _ensure_np_dtype(data, dtype): if data.dtype.hasobject: data = data.astype(np.float32, copy=False) dtype = np.float32 return data, dtype def _maybe_np_slice(data, dtype): '''Handle numpy slice. This can be removed if we use __array_interface__. ''' try: if not data.flags.c_contiguous: warnings.warn( "Use subset (sliced data) of np.ndarray is not recommended " + "because it will generate extra copies and increase " + "memory consumption") data = np.array(data, copy=True, dtype=dtype) else: data = np.array(data, copy=False, dtype=dtype) except AttributeError: data = np.array(data, copy=False, dtype=dtype) data, dtype = _ensure_np_dtype(data, dtype) return data def _transform_np_array(data: np.ndarray) -> np.ndarray: if not isinstance(data, np.ndarray) and hasattr(data, '__array__'): data = np.array(data, copy=False) if len(data.shape) != 2: raise ValueError('Expecting 2 dimensional numpy.ndarray, got: ', data.shape) # flatten the array by rows and ensure it is float32. we try to avoid # data copies if possible (reshape returns a view when possible and we # explicitly tell np.array to try and avoid copying) flatten = np.array(data.reshape(data.size), copy=False, dtype=np.float32) flatten = _maybe_np_slice(flatten, np.float32) _check_complex(data) return flatten def _from_numpy_array(data, missing, nthread, feature_names, feature_types): """Initialize data from a 2-D numpy matrix. If ``mat`` does not have ``order='C'`` (aka row-major) or is not contiguous, a temporary copy will be made. If ``mat`` does not have ``dtype=numpy.float32``, a temporary copy will be made. So there could be as many as two temporary data copies; be mindful of input layout and type if memory use is a concern. """ flatten: np.ndarray = _transform_np_array(data) handle = ctypes.c_void_p() _check_call(_LIB.XGDMatrixCreateFromMat_omp( flatten.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), c_bst_ulong(data.shape[0]), c_bst_ulong(data.shape[1]), ctypes.c_float(missing), ctypes.byref(handle), ctypes.c_int(nthread))) return handle, feature_names, feature_types def _is_pandas_df(data): try: import pandas as pd except ImportError: return False return isinstance(data, pd.DataFrame) def _is_modin_df(data): try: import modin.pandas as pd except ImportError: return False return isinstance(data, pd.DataFrame) _pandas_dtype_mapper = { 'int8': 'int', 'int16': 'int', 'int32': 'int', 'int64': 'int', 'uint8': 'int', 'uint16': 'int', 'uint32': 'int', 'uint64': 'int', 'float16': 'float', 'float32': 'float', 'float64': 'float', 'bool': 'i' } def _transform_pandas_df(data, enable_categorical, feature_names=None, feature_types=None, meta=None, meta_type=None): from pandas import MultiIndex, Int64Index from pandas.api.types import is_sparse, is_categorical_dtype data_dtypes = data.dtypes if not all(dtype.name in _pandas_dtype_mapper or is_sparse(dtype) or (is_categorical_dtype(dtype) and enable_categorical) for dtype in data_dtypes): bad_fields = [ str(data.columns[i]) for i, dtype in enumerate(data_dtypes) if dtype.name not in _pandas_dtype_mapper ] msg = """DataFrame.dtypes for data must be int, float, bool or categorical. When categorical type is supplied, DMatrix parameter `enable_categorical` must be set to `True`.""" raise ValueError(msg + ', '.join(bad_fields)) if feature_names is None and meta is None: if isinstance(data.columns, MultiIndex): feature_names = [ ' '.join([str(x) for x in i]) for i in data.columns ] elif isinstance(data.columns, Int64Index): feature_names = list(map(str, data.columns)) else: feature_names = data.columns.format() if feature_types is None and meta is None: feature_types = [] for dtype in data_dtypes: if is_sparse(dtype): feature_types.append(_pandas_dtype_mapper[ dtype.subtype.name]) elif is_categorical_dtype(dtype) and enable_categorical: feature_types.append('categorical') else: feature_types.append(_pandas_dtype_mapper[dtype.name]) if meta and len(data.columns) > 1: raise ValueError( 'DataFrame for {meta} cannot have multiple columns'.format( meta=meta)) dtype = meta_type if meta_type else np.float32 data = np.ascontiguousarray(data.values, dtype=dtype) return data, feature_names, feature_types def _from_pandas_df(data, enable_categorical, missing, nthread, feature_names, feature_types): data, feature_names, feature_types = _transform_pandas_df( data, enable_categorical, feature_names, feature_types) return _from_numpy_array(data, missing, nthread, feature_names, feature_types) def _is_pandas_series(data): try: import pandas as pd except ImportError: return False return isinstance(data, pd.Series) def _is_modin_series(data): try: import modin.pandas as pd except ImportError: return False return isinstance(data, pd.Series) def _from_pandas_series(data, missing, nthread, feature_types, feature_names): return _from_numpy_array(data.values.astype('float'), missing, nthread, feature_names, feature_types) def _is_dt_df(data): return lazy_isinstance(data, 'datatable', 'Frame') or \ lazy_isinstance(data, 'datatable', 'DataTable') _dt_type_mapper = {'bool': 'bool', 'int': 'int', 'real': 'float'} _dt_type_mapper2 = {'bool': 'i', 'int': 'int', 'real': 'float'} def _transform_dt_df(data, feature_names, feature_types, meta=None, meta_type=None): """Validate feature names and types if data table""" if meta and data.shape[1] > 1: raise ValueError( 'DataTable for label or weight cannot have multiple columns') if meta: # below requires new dt version # extract first column data = data.to_numpy()[:, 0].astype(meta_type) return data, None, None data_types_names = tuple(lt.name for lt in data.ltypes) bad_fields = [data.names[i] for i, type_name in enumerate(data_types_names) if type_name not in _dt_type_mapper] if bad_fields: msg = """DataFrame.types for data must be int, float or bool. Did not expect the data types in fields """ raise ValueError(msg + ', '.join(bad_fields)) if feature_names is None and meta is None: feature_names = data.names # always return stypes for dt ingestion if feature_types is not None: raise ValueError( 'DataTable has own feature types, cannot pass them in.') feature_types = np.vectorize(_dt_type_mapper2.get)( data_types_names).tolist() return data, feature_names, feature_types def _from_dt_df(data, missing, nthread, feature_names, feature_types): data, feature_names, feature_types = _transform_dt_df( data, feature_names, feature_types, None, None) ptrs = (ctypes.c_void_p * data.ncols)() if hasattr(data, "internal") and hasattr(data.internal, "column"): # datatable>0.8.0 for icol in range(data.ncols): col = data.internal.column(icol) ptr = col.data_pointer ptrs[icol] = ctypes.c_void_p(ptr) else: # datatable<=0.8.0 from datatable.internal import \ frame_column_data_r # pylint: disable=no-name-in-module for icol in range(data.ncols): ptrs[icol] = frame_column_data_r(data, icol) # always return stypes for dt ingestion feature_type_strings = (ctypes.c_char_p * data.ncols)() for icol in range(data.ncols): feature_type_strings[icol] = ctypes.c_char_p( data.stypes[icol].name.encode('utf-8')) _warn_unused_missing(data, missing) handle = ctypes.c_void_p() _check_call(_LIB.XGDMatrixCreateFromDT( ptrs, feature_type_strings, c_bst_ulong(data.shape[0]), c_bst_ulong(data.shape[1]), ctypes.byref(handle), ctypes.c_int(nthread))) return handle, feature_names, feature_types def _is_cudf_df(data): try: import cudf except ImportError: return False return hasattr(cudf, 'DataFrame') and isinstance(data, cudf.DataFrame) def _cudf_array_interfaces(data) -> Tuple[list, bytes]: """Extract CuDF __cuda_array_interface__. This is special as it returns a new list of data and a list of array interfaces. The data is list of categorical codes that caller can safely ignore, but have to keep their reference alive until usage of array interface is finished. """ try: from cudf.api.types import is_categorical_dtype except ImportError: from cudf.utils.dtypes import is_categorical_dtype cat_codes = [] interfaces = [] if _is_cudf_ser(data): interfaces.append(data.__cuda_array_interface__) else: for col in data: interface = data[col].__cuda_array_interface__ if 'mask' in interface: interface['mask'] = interface['mask'].__cuda_array_interface__ interfaces.append(interface) interfaces_str = bytes(json.dumps(interfaces, indent=2), 'utf-8') return interfaces_str def _transform_cudf_df( data, feature_names: Optional[List[str]], feature_types: Optional[List[str]], enable_categorical: bool, ): try: from cudf.api.types import is_categorical_dtype except ImportError: from cudf.utils.dtypes import is_categorical_dtype if feature_names is None: if _is_cudf_ser(data): feature_names = [data.name] elif lazy_isinstance( data.columns, 'cudf.core.multiindex', 'MultiIndex'): feature_names = [ ' '.join([str(x) for x in i]) for i in data.columns ] else: feature_names = data.columns.format() if feature_types is None: if _is_cudf_ser(data): dtypes = [data.dtype] else: dtypes = data.dtypes feature_types = [_pandas_dtype_mapper[d.name] for d in dtypes] return data, feature_names, feature_types def _from_cudf_df(data, missing, nthread, feature_names, feature_types): data, feature_names, feature_types = _transform_cudf_df( data, feature_names, feature_types) interfaces_str = _cudf_array_interfaces(data) handle = ctypes.c_void_p() _check_call( _LIB.XGDMatrixCreateFromArrayInterfaceColumns( interfaces_str, ctypes.c_float(missing), ctypes.c_int(nthread), ctypes.byref(handle))) return handle, feature_names, feature_types def _is_cudf_ser(data): try: import cudf except ImportError: return False return isinstance(data, cudf.Series) def _is_cupy_array(data): try: import cupy except ImportError: return False return isinstance(data, cupy.ndarray) def _transform_cupy_array(data): if not hasattr(data, '__cuda_array_interface__') and hasattr( data, '__array__'): import cupy # pylint: disable=import-error data = cupy.array(data, copy=False) return data def _from_cupy_array(data, missing, nthread, feature_names, feature_types): """Initialize DMatrix from cupy ndarray.""" data = _transform_cupy_array(data) interface = data.__cuda_array_interface__ if 'mask' in interface: interface['mask'] = interface['mask'].__cuda_array_interface__ interface_str = bytes(json.dumps(interface, indent=2), 'utf-8') handle = ctypes.c_void_p() _check_call( _LIB.XGDMatrixCreateFromArrayInterface( interface_str, ctypes.c_float(missing), ctypes.c_int(nthread), ctypes.byref(handle))) return handle, feature_names, feature_types def _is_cupy_csr(data): try: import cupyx except ImportError: return False return isinstance(data, cupyx.scipy.sparse.csr_matrix) def _is_cupy_csc(data): try: import cupyx except ImportError: return False return isinstance(data, cupyx.scipy.sparse.csc_matrix) def _is_dlpack(data): return 'PyCapsule' in str(type(data)) and "dltensor" in str(data) def _transform_dlpack(data): from cupy import fromDlpack # pylint: disable=E0401 assert 'used_dltensor' not in str(data) data = fromDlpack(data) return data def _from_dlpack(data, missing, nthread, feature_names, feature_types): data = _transform_dlpack(data) return _from_cupy_array(data, missing, nthread, feature_names, feature_types) def _is_uri(data): return isinstance(data, (str, os.PathLike)) def _from_uri(data, missing, feature_names, feature_types): _warn_unused_missing(data, missing) handle = ctypes.c_void_p() data = os.fspath(os.path.expanduser(data)) _check_call(_LIB.XGDMatrixCreateFromFile(c_str(data), ctypes.c_int(1), ctypes.byref(handle))) return handle, feature_names, feature_types def _is_list(data): return isinstance(data, list) def _from_list(data, missing, feature_names, feature_types): raise TypeError('List input data is not supported for data') def _is_tuple(data): return isinstance(data, tuple) def _from_tuple(data, missing, feature_names, feature_types): return _from_list(data, missing, feature_names, feature_types) def _is_iter(data): return isinstance(data, DataIter) def _has_array_protocol(data): return hasattr(data, '__array__') def _convert_unknown_data(data): warnings.warn( f'Unknown data type: {type(data)}, trying to convert it to csr_matrix', UserWarning ) try: import scipy except ImportError: return None try: data = scipy.sparse.csr_matrix(data) except Exception: # pylint: disable=broad-except return None return data def dispatch_data_backend(data, missing, threads, feature_names, feature_types, enable_categorical=False): '''Dispatch data for DMatrix.''' if _is_scipy_csr(data): return _from_scipy_csr(data, missing, threads, feature_names, feature_types) if _is_scipy_csc(data): return _from_scipy_csc(data, missing, feature_names, feature_types) if _is_scipy_coo(data): return _from_scipy_csr(data.tocsr(), missing, threads, feature_names, feature_types) if _is_numpy_array(data): return _from_numpy_array(data, missing, threads, feature_names, feature_types) if _is_uri(data): return _from_uri(data, missing, feature_names, feature_types) if _is_list(data): return _from_list(data, missing, feature_names, feature_types) if _is_tuple(data): return _from_tuple(data, missing, feature_names, feature_types) if _is_pandas_df(data): return _from_pandas_df(data, enable_categorical, missing, threads, feature_names, feature_types) if _is_pandas_series(data): return _from_pandas_series(data, missing, threads, feature_names, feature_types) if _is_cudf_df(data): return _from_cudf_df(data, missing, threads, feature_names, feature_types) if _is_cudf_ser(data): return _from_cudf_df(data, missing, threads, feature_names, feature_types) if _is_cupy_array(data): return _from_cupy_array(data, missing, threads, feature_names, feature_types) if _is_cupy_csr(data): raise TypeError('cupyx CSR is not supported yet.') if _is_cupy_csc(data): raise TypeError('cupyx CSC is not supported yet.') if _is_dlpack(data): return _from_dlpack(data, missing, threads, feature_names, feature_types) if _is_dt_df(data): _warn_unused_missing(data, missing) return _from_dt_df(data, missing, threads, feature_names, feature_types) if _is_modin_df(data): return _from_pandas_df(data, enable_categorical, missing, threads, feature_names, feature_types) if _is_modin_series(data): return _from_pandas_series(data, missing, threads, feature_names, feature_types) if _has_array_protocol(data): pass converted = _convert_unknown_data(data) if converted: return _from_scipy_csr(data, missing, threads, feature_names, feature_types) raise TypeError('Not supported type for data.' + str(type(data))) def _to_data_type(dtype: str, name: str): dtype_map = {'float32': 1, 'float64': 2, 'uint32': 3, 'uint64': 4} if dtype not in dtype_map.keys(): raise TypeError( f'Expecting float32, float64, uint32, uint64, got {dtype} ' + f'for {name}.') return dtype_map[dtype] def _validate_meta_shape(data): if hasattr(data, 'shape'): assert len(data.shape) == 1 or ( len(data.shape) == 2 and (data.shape[1] == 0 or data.shape[1] == 1)) def _meta_from_numpy(data, field, dtype, handle): data = _maybe_np_slice(data, dtype) interface = data.__array_interface__ assert interface.get('mask', None) is None, 'Masked array is not supported' size = data.shape[0] c_type = _to_data_type(str(data.dtype), field) ptr = interface['data'][0] ptr = ctypes.c_void_p(ptr) _check_call(_LIB.XGDMatrixSetDenseInfo( handle, c_str(field), ptr, c_bst_ulong(size), c_type )) def _meta_from_list(data, field, dtype, handle): data = np.array(data) _meta_from_numpy(data, field, dtype, handle) def _meta_from_tuple(data, field, dtype, handle): return _meta_from_list(data, field, dtype, handle) def _meta_from_cudf_df(data, field, handle): if len(data.columns) != 1: raise ValueError( 'Expecting meta-info to contain a single column') data = data[data.columns[0]] interface = bytes(json.dumps([data.__cuda_array_interface__], indent=2), 'utf-8') _check_call(_LIB.XGDMatrixSetInfoFromInterface(handle, c_str(field), interface)) def _meta_from_cudf_series(data, field, handle): interface = bytes(json.dumps([data.__cuda_array_interface__], indent=2), 'utf-8') _check_call(_LIB.XGDMatrixSetInfoFromInterface(handle, c_str(field), interface)) def _meta_from_cupy_array(data, field, handle): data = _transform_cupy_array(data) interface = bytes(json.dumps([data.__cuda_array_interface__], indent=2), 'utf-8') _check_call(_LIB.XGDMatrixSetInfoFromInterface(handle, c_str(field), interface)) def _meta_from_dt(data, field, dtype, handle): data, _, _ = _transform_dt_df(data, None, None) _meta_from_numpy(data, field, dtype, handle) def dispatch_meta_backend(matrix: DMatrix, data, name: str, dtype: str = None): '''Dispatch for meta info.''' handle = matrix.handle _validate_meta_shape(data) if data is None: return if _is_list(data): _meta_from_list(data, name, dtype, handle) return if _is_tuple(data): _meta_from_tuple(data, name, dtype, handle) return if _is_numpy_array(data): _meta_from_numpy(data, name, dtype, handle) return if _is_pandas_df(data): data, _, _ = _transform_pandas_df(data, False, meta=name, meta_type=dtype) _meta_from_numpy(data, name, dtype, handle) return if _is_pandas_series(data): data = data.values.astype('float') assert len(data.shape) == 1 or data.shape[1] == 0 or data.shape[1] == 1 _meta_from_numpy(data, name, dtype, handle) return if _is_dlpack(data): data = _transform_dlpack(data) _meta_from_cupy_array(data, name, handle) return if _is_cupy_array(data): _meta_from_cupy_array(data, name, handle) return if _is_cudf_ser(data): _meta_from_cudf_series(data, name, handle) return if _is_cudf_df(data): _meta_from_cudf_df(data, name, handle) return if _is_dt_df(data): _meta_from_dt(data, name, dtype, handle) return if _is_modin_df(data): data, _, _ = _transform_pandas_df( data, False, meta=name, meta_type=dtype) _meta_from_numpy(data, name, dtype, handle) return if _is_modin_series(data): data = data.values.astype('float') assert len(data.shape) == 1 or data.shape[1] == 0 or data.shape[1] == 1 _meta_from_numpy(data, name, dtype, handle) return if _has_array_protocol(data): pass raise TypeError('Unsupported type for ' + name, str(type(data))) class SingleBatchInternalIter(DataIter): # pylint: disable=R0902 '''An iterator for single batch data to help creating device DMatrix. Transforming input directly to histogram with normal single batch data API can not access weight for sketching. So this iterator acts as a staging area for meta info. ''' def __init__( self, data, label, weight, base_margin, group, qid, label_lower_bound, label_upper_bound, feature_weights, feature_names, feature_types ): self.data = data self.label = label self.weight = weight self.base_margin = base_margin self.group = group self.qid = qid self.label_lower_bound = label_lower_bound self.label_upper_bound = label_upper_bound self.feature_weights = feature_weights self.feature_names = feature_names self.feature_types = feature_types self.it = 0 # pylint: disable=invalid-name super().__init__() def next(self, input_data): if self.it == 1: return 0 self.it += 1 input_data(data=self.data, label=self.label, weight=self.weight, base_margin=self.base_margin, group=self.group, qid=self.qid, label_lower_bound=self.label_lower_bound, label_upper_bound=self.label_upper_bound, feature_weights=self.feature_weights, feature_names=self.feature_names, feature_types=self.feature_types) return 1 def reset(self): self.it = 0 def _device_quantile_transform(data, feature_names, feature_types): if _is_cudf_df(data): return _transform_cudf_df(data, feature_names, feature_types) if _is_cudf_ser(data): return _transform_cudf_df(data, feature_names, feature_types) if _is_cupy_array(data): data = _transform_cupy_array(data) return data, feature_names, feature_types if _is_dlpack(data): return _transform_dlpack(data), feature_names, feature_types raise TypeError('Value type is not supported for data iterator:' + str(type(data))) def dispatch_device_quantile_dmatrix_set_data(proxy: _ProxyDMatrix, data: Any) -> None: '''Dispatch for DeviceQuantileDMatrix.''' if _is_cudf_df(data): proxy._set_data_from_cuda_columnar(data) # pylint: disable=W0212 return if _is_cudf_ser(data): proxy._set_data_from_cuda_columnar(data) # pylint: disable=W0212 return if _is_cupy_array(data): proxy._set_data_from_cuda_interface(data) # pylint: disable=W0212 return if _is_dlpack(data): data = _transform_dlpack(data) proxy._set_data_from_cuda_interface(data) # pylint: disable=W0212 return raise TypeError('Value type is not supported for data iterator:' + str(type(data)))
spark-xgboost-nv-release_1.4.0
python-package/xgboost/data.py
#!/usr/bin/env python import errno import argparse import glob import os import platform import shutil import subprocess import sys from contextlib import contextmanager from cudautils import cudaver # Monkey-patch the API inconsistency between Python2.X and 3.X. if sys.platform.startswith("linux"): sys.platform = "linux" CONFIG = { "USE_OPENMP": "ON", "USE_HDFS": "OFF", "USE_AZURE": "OFF", "USE_S3": "OFF", "USE_CUDA": "ON", "USE_NCCL": "ON", "PLUGIN_RMM": "ON", "JVM_BINDINGS": "ON", "LOG_CAPI_INVOCATION": "OFF", "BUILD_WITH_CUDA_CUB": "ON" } @contextmanager def cd(path): path = normpath(path) cwd = os.getcwd() os.chdir(path) print("cd " + path) try: yield path finally: os.chdir(cwd) def maybe_makedirs(path): path = normpath(path) print("mkdir -p " + path) try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise def run(command, **kwargs): print(command) subprocess.check_call(command, shell=True, **kwargs) def cp(source, target): source = normpath(source) target = normpath(target) print("cp {0} {1}".format(source, target)) shutil.copy(source, target) def normpath(path): """Normalize UNIX path to a native path.""" normalized = os.path.join(*path.split("/")) if os.path.isabs(path): return os.path.abspath("/") + normalized else: return normalized if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--log-capi-invocation', type=str, choices=['ON', 'OFF'], default='OFF') parser.add_argument('--use-cuda', type=str, choices=['ON', 'OFF'], default='OFF') cli_args = parser.parse_args() if sys.platform == "darwin": # Enable of your compiler supports OpenMP. CONFIG["USE_OPENMP"] = "OFF" os.environ["JAVA_HOME"] = subprocess.check_output( "/usr/libexec/java_home").strip().decode() cuda = cudaver() print("building Java wrapper on " + cuda) with cd(".."): build_dir = 'build-gpu' if cli_args.use_cuda == 'ON' else 'build' maybe_makedirs(build_dir) with cd(build_dir): if sys.platform == "win32": # Force x64 build on Windows. maybe_generator = ' -A x64' else: maybe_generator = "" if sys.platform == "linux": maybe_parallel_build = " -- -j $(nproc)" else: maybe_parallel_build = "" if cli_args.log_capi_invocation == 'ON': CONFIG['LOG_CAPI_INVOCATION'] = 'ON' if cli_args.use_cuda == 'ON': CONFIG['USE_CUDA'] = 'ON' CONFIG['USE_NCCL'] = 'ON' args = ["-D{0}:BOOL={1}".format(k, v) for k, v in CONFIG.items()] # if enviorment set rabit_mock if os.getenv("RABIT_MOCK", None) is not None: args.append("-DRABIT_MOCK:BOOL=ON") # if enviorment set GPU_ARCH_FLAG gpu_arch_flag = os.getenv("GPU_ARCH_FLAG", None) if gpu_arch_flag is not None: args.append("%s" % gpu_arch_flag) lib_dir = os.path.join(os.pardir, 'lib') if os.path.exists(lib_dir): shutil.rmtree(lib_dir) run("cmake .. " + " ".join(args) + maybe_generator) run("cmake --build . --config Release" + maybe_parallel_build) with cd("demo/CLI/regression"): run(sys.executable + " mapfeat.py") run(sys.executable + " mknfold.py machine.txt 1") xgboost4j = 'xgboost4j-gpu' if cli_args.use_cuda == 'ON' else 'xgboost4j' xgboost4j_spark = 'xgboost4j-spark-gpu' if cli_args.use_cuda == 'ON' else 'xgboost4j-spark' print("copying native library") library_name, os_folder = { "Windows": ("xgboost4j.dll", "windows"), "Darwin": ("libxgboost4j.dylib", "macos"), "Linux": ("libxgboost4j.so", "linux"), "SunOS": ("libxgboost4j.so", "solaris"), }[platform.system()] arch_folder = { "x86_64": "x86_64", # on Linux & macOS x86_64 "amd64": "x86_64", # on Windows x86_64 "i86pc": "x86_64", # on Solaris x86_64 "sun4v": "sparc", # on Solaris sparc "arm64": "aarch64", # on macOS & Windows ARM 64-bit "aarch64": "aarch64" }[platform.machine().lower()] # get major version, e.g. get 'x' from 'x.y' cuda_major = cuda.split(".")[0] maybe_makedirs("xgboost4j/src/main/resources/lib/" + cuda_major) cp("../lib/" + library_name, "xgboost4j/src/main/resources/lib/" + cuda_major) print("copying pure-Python tracker") cp("../dmlc-core/tracker/dmlc_tracker/tracker.py", "{}/src/main/resources".format(xgboost4j)) print("copying train/test files") maybe_makedirs("{}/src/test/resources".format(xgboost4j_spark)) with cd("../demo/CLI/regression"): run("{} mapfeat.py".format(sys.executable)) run("{} mknfold.py machine.txt 1".format(sys.executable)) for file in glob.glob("../demo/CLI/regression/machine.txt.t*"): cp(file, "{}/src/test/resources".format(xgboost4j_spark)) for file in glob.glob("../demo/data/agaricus.*"): cp(file, "{}/src/test/resources".format(xgboost4j_spark)) maybe_makedirs("{}/src/test/resources".format(xgboost4j)) for file in glob.glob("../demo/data/agaricus.*"): cp(file, "{}/src/test/resources".format(xgboost4j))
spark-xgboost-nv-release_1.4.0
jvm-packages/create_jni.py
#!/usr/bin/env python import os import re import subprocess import sys # version -> classifier # '' means default classifier cuda_vers = { '11.2': ['cuda11', ''] } def check_classifier(classifier): ''' Check the mapping from cuda version to jar classifier. Used by maven build. ''' cu_ver = detect_cuda_ver() classifier_list = cuda_vers[cu_ver] if classifier not in classifier_list: raise Exception("Jar classifier '{}' mismatches the 'nvcc' version {} !".format(classifier, cu_ver)) def get_classifier(): cu_ver = detect_cuda_ver() classifier_list = cuda_vers[cu_ver] return classifier_list[0] def get_supported_vers(): ''' Get the supported cuda versions. ''' return cuda_vers.keys() def get_supported_vers_str(): ''' Get the supported cuda versions and join them as a string. Used by shell script. ''' return ' '.join(cuda_vers.keys()) def detect_cuda_ver(): ''' Detect the cuda version from current nvcc tool. ''' nvcc_ver_bin = subprocess.check_output('nvcc --version', shell=True) nvcc_ver = re.search('release ([.0-9]+), V([.0-9]+)', str(nvcc_ver_bin)).group(1) if nvcc_ver in get_supported_vers(): return nvcc_ver else: raise Exception("Unsupported cuda version: {}, Please check your 'nvcc' version.".format(nvcc_ver)) def cudaver(): return 'cuda{}'.format(detect_cuda_ver()) if __name__ == "__main__": num_args = len(sys.argv) action = sys.argv[1].lower() if num_args > 1 else 'l' if action =='c': classifier = sys.argv[2].lower() if num_args > 2 else '' check_classifier(classifier) elif action == 'd': print(detect_cuda_ver()) elif action == 'g': print(get_classifier()) elif action == 'l': print(get_supported_vers_str()) else: print("Unsupported action: " + action)
spark-xgboost-nv-release_1.4.0
jvm-packages/cudautils.py
# # Copyright (c) 2019 by Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from codecs import open from os import path from setuptools import setup, find_packages # Read the long description from README.MD here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='spark-xgboost', version='1.2.0', description='spark-xgboost is the PySpark package for XGBoost', long_description=long_description, long_description_content_type='text/markdown', url='https://xgboost.ai/', author='DMLC', classifiers=[ # Project Maturity 'Development Status :: 5 - Production/Stable', # Intended Users 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', # License 'License :: OSI Approved :: Apache Software License', # Supported Python Versions 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], keywords='development spark xgboost', packages=find_packages(), include_package_data=False )
spark-xgboost-nv-release_1.4.0
jvm-packages/xgboost4j-spark/src/main/resources/setup.py
spark-xgboost-nv-release_1.4.0
jvm-packages/xgboost4j-spark/src/main/resources/ml/__init__.py
spark-xgboost-nv-release_1.4.0
jvm-packages/xgboost4j-spark/src/main/resources/ml/dmlc/__init__.py
spark-xgboost-nv-release_1.4.0
jvm-packages/xgboost4j-spark/src/main/resources/ml/dmlc/xgboost4j/__init__.py
spark-xgboost-nv-release_1.4.0
jvm-packages/xgboost4j-spark/src/main/resources/ml/dmlc/xgboost4j/scala/__init__.py
# # Copyright (c) 2019 by Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import sparkxgb # Allows Pipeline()/PipelineModel() with XGBoost stages to be loaded from disk. # Needed because they try to import Python objects from their Java location. sys.modules['ml.dmlc.xgboost4j.scala.spark'] = sparkxgb
spark-xgboost-nv-release_1.4.0
jvm-packages/xgboost4j-spark/src/main/resources/ml/dmlc/xgboost4j/scala/spark/__init__.py
# # Copyright (c) 2019 by Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pyspark.ml.tuning from pyspark.ml.wrapper import JavaWrapper from pyspark.ml.tuning import CrossValidatorModel class CrossValidator(JavaWrapper, pyspark.ml.tuning.CrossValidator): def __init__(self): super(CrossValidator, self).__init__() self._java_obj = self._new_java_obj( 'ml.dmlc.xgboost4j.scala.spark.rapids.CrossValidator') def fit(self, dataset): estimator, epms, evaluator = self._to_java_impl() self._java_obj.setEstimatorParamMaps(epms) self._java_obj.setEvaluator(evaluator) self._java_obj.setEstimator(estimator) self._java_obj.setSeed(self.getSeed()) self._java_obj.setNumFolds(self.getNumFolds()) self._java_obj.setParallelism(self.getParallelism()) self._java_obj.setCollectSubModels(self.getCollectSubModels()) cv_java_model = self._java_obj.fit(dataset._jdf) cv_py_model = CrossValidatorModel._from_java(cv_java_model) xgbModel = self.getEstimator()._create_model(cv_java_model.bestModel()) # return CrossValidatorModel return CrossValidatorModel(xgbModel, cv_py_model.avgMetrics, cv_py_model.subModels)
spark-xgboost-nv-release_1.4.0
jvm-packages/xgboost4j-spark/src/main/resources/sparkxgb/rapids.py
# # Copyright (c) 2019 by Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pyspark.ml.util import JavaMLReadable, JavaMLReader class XGBoostReadable(JavaMLReadable): """ Mixin class that provides a read() method for XGBoostReader. """ @classmethod def read(cls): """Returns an XGBoostReader instance for this class.""" return XGBoostReader(cls) class XGBoostReader(JavaMLReader): """ A reader mixin class for XGBoost objects. """ @classmethod def _java_loader_class(cls, clazz): if hasattr(clazz, '_java_class_name') and clazz._java_class_name is not None: return clazz._java_class_name else: return JavaMLReader._java_loader_class(clazz)
spark-xgboost-nv-release_1.4.0
jvm-packages/xgboost4j-spark/src/main/resources/sparkxgb/util.py
# # Copyright (c) 2019 by Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from sparkxgb import xgboost from sparkxgb.xgboost import XGBoostClassifier, XGBoostRegressor, XGBoostClassificationModel, XGBoostRegressionModel __all__ = ["XGBoostClassifier", "XGBoostRegressor", "XGBoostClassificationModel", "XGBoostRegressionModel"] __version__ = "1.3.0"
spark-xgboost-nv-release_1.4.0
jvm-packages/xgboost4j-spark/src/main/resources/sparkxgb/__init__.py
# # Copyright (c) 2019 by Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re from pyspark.ml.param import Params from pyspark.ml.util import _jvm, JavaMLWritable from pyspark.ml.wrapper import JavaModel, JavaEstimator from pyspark.sql import DataFrame from sparkxgb.util import XGBoostReadable class ParamGettersSetters(Params): """ Mixin class used to generate the setters/getters for all params. """ def _create_param_getters_and_setters(self): for param in self.params: param_name = param.name fg_attr = "get" + re.sub(r"(?:^|_)(.)", lambda m: m.group(1).upper(), param_name) fs_attr = "set" + re.sub(r"(?:^|_)(.)", lambda m: m.group(1).upper(), param_name) # Generates getter and setter only if not exists try: getattr(self, fg_attr) except AttributeError: setattr(self, fg_attr, self._get_param_value(param_name)) try: getattr(self, fs_attr) except AttributeError: setattr(self, fs_attr, self._set_param_value(param_name)) def _get_param_value(self, param_name): def r(): try: return self.getOrDefault(param_name) except KeyError: return None return r def _set_param_value(self, param_name): def r(v): self.set(self.getParam(param_name), v) return self return r class XGboostEstimator(JavaEstimator, XGBoostReadable, JavaMLWritable, ParamGettersSetters): """ Mixin class for XGBoost estimators, like XGBoostClassifier and XGBoostRegressor. """ def __init__(self, classname): super(XGboostEstimator, self).__init__() self.__class__._java_class_name = classname self._java_obj = self._new_java_obj(classname, self.uid) self._create_params_from_java() self._create_param_getters_and_setters() def setFeaturesCols(self, features_cols): self._java_obj.setFeaturesCols(_jvm().PythonUtils.toSeq(features_cols)) return self def setEvalSets(self, eval_sets): if eval_sets: jvm_eval_sets = _jvm().PythonUtils.toScalaMap( { k: v._jdf for k, v in eval_sets.items() }) self._java_obj.setEvalSets(jvm_eval_sets) return self class XGboostModel(JavaModel, XGBoostReadable, JavaMLWritable, ParamGettersSetters): """ Mixin class for XGBoost models, like XGBoostClassificationModel and XGBoostRegressionModel. """ def __init__(self, classname, java_model=None): super(XGboostModel, self).__init__(java_model=java_model) if classname and not java_model: self.__class__._java_class_name = classname self._java_obj = self._new_java_obj(classname, self.uid) if java_model is not None: self._transfer_params_from_java() self._create_param_getters_and_setters()
spark-xgboost-nv-release_1.4.0
jvm-packages/xgboost4j-spark/src/main/resources/sparkxgb/common.py
# # Copyright (c) 2019 by Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pyspark import keyword_only from sparkxgb.common import XGboostEstimator, XGboostModel class XGBoostClassifier(XGboostEstimator): """ A PySpark wrapper of ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier """ @keyword_only def __init__(self, alpha=0.0, baseMarginCol=None, baseScore=0.5, cacheTrainingSet=False, checkpointInterval=-1, checkpointPath="", colsampleBylevel=1.0, colsampleBytree=1.0, contribPredictionCol=None, ## EXCLUDED: customEval=None, ## EXCLUDED: customObj=None, eta=0.3, evalMetric=None, featuresCol="features", gamma=0.0, growPolicy="depthwise", interactionConstraints=None, labelCol="label", lambda_=1.0, # Rename of 'lambda' param, as this is a reserved keyword in python. lambdaBias=0.0, leafPredictionCol=None, maxBins=16, maxDeltaStep=0.0, maxDepth=6, maxLeaves=None, maximizeEvaluationMetrics=None, minChildWeight=1.0, missing=float('nan'), monotoneConstraints=None, normalizeType="tree", nthread=1, numClass=None, numEarlyStoppingRounds=0, numRound=1, numWorkers=1, objective="reg:squarederror", objectiveType=None, predictionCol="prediction", probabilityCol="probability", rateDrop=0.0, rawPredictionCol="rawPrediction", sampleType="uniform", scalePosWeight=1.0, seed=0, silent=0, sketchEps=0.03, skipDrop=0.0, subsample=1.0, thresholds=None, timeoutRequestWorkers=1800000, ## EXCLUDED: trackerConf=None, trainTestRatio=1.0, treeLimit=0, treeMethod="auto", useExternalMemory=False, verbosity=1, weightCol=None): super(XGBoostClassifier, self).__init__(classname="ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier") kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only def setParams(self, alpha=0.0, baseMarginCol=None, baseScore=0.5, cacheTrainingSet=False, checkpointInterval=-1, checkpointPath="", colsampleBylevel=1.0, colsampleBytree=1.0, contribPredictionCol=None, ## EXCLUDED: customEval=None, ## EXCLUDED: customObj=None, eta=0.3, evalMetric=None, featuresCol="features", gamma=0.0, growPolicy="depthwise", interactionConstraints=None, labelCol="label", lambda_=1.0, # Rename of 'lambda' param, as this is a reserved keyword in python. lambdaBias=0.0, leafPredictionCol=None, maxBins=16, maxDeltaStep=0.0, maxDepth=6, maxLeaves=None, maximizeEvaluationMetrics=None, minChildWeight=1.0, missing=float('nan'), monotoneConstraints=None, normalizeType="tree", nthread=1, numClass=None, numEarlyStoppingRounds=0, numRound=1, numWorkers=1, objective="reg:squarederror", objectiveType=None, predictionCol="prediction", probabilityCol="probability", rateDrop=0.0, rawPredictionCol="rawPrediction", sampleType="uniform", scalePosWeight=1.0, seed=0, silent=0, sketchEps=0.03, skipDrop=0.0, subsample=1.0, thresholds=None, timeoutRequestWorkers=1800000, ## EXCLUDED: trackerConf=None, trainTestRatio=1.0, treeLimit=0, treeMethod="auto", useExternalMemory=False, verbosity=1, weightCol=None): kwargs = self._input_kwargs if "lambda_" in kwargs: kwargs["lambda"] = kwargs.pop("lambda_") return self._set(**kwargs) def _create_model(self, java_model): return XGBoostClassificationModel(java_model=java_model) class XGBoostClassificationModel(XGboostModel): """ A PySpark wrapper of ml.dmlc.xgboost4j.scala.spark.XGBoostClassificationModel """ def __init__(self, classname="ml.dmlc.xgboost4j.scala.spark.XGBoostClassificationModel", java_model=None): super(XGBoostClassificationModel, self).__init__(classname=classname, java_model=java_model) @property def nativeBooster(self): """ Get the native booster instance of this model. This is used to call low-level APIs on native booster, such as "getFeatureScore". """ return self._call_java("nativeBooster") class XGBoostRegressor(XGboostEstimator): """ A PySpark wrapper of ml.dmlc.xgboost4j.scala.spark.XGBoostRegressor """ @keyword_only def __init__(self, alpha=0.0, baseMarginCol=None, baseScore=0.5, cacheTrainingSet=False, checkpointInterval=-1, checkpointPath="", colsampleBylevel=1.0, colsampleBytree=1.0, contribPredictionCol=None, ## EXCLUDED: customEval=None, ## EXCLUDED: customObj=None, eta=0.3, evalMetric=None, featuresCol="features", gamma=0.0, groupCol=None, growPolicy="depthwise", interactionConstraints=None, labelCol="label", lambda_=1.0, # Rename of 'lambda' param, as this is a reserved keyword in python. lambdaBias=0.0, leafPredictionCol=None, maxBins=16, maxDeltaStep=0.0, maxDepth=6, maxLeaves=None, maximizeEvaluationMetrics=None, minChildWeight=1.0, missing=float('nan'), monotoneConstraints=None, normalizeType="tree", nthread=1, numClass=None, numEarlyStoppingRounds=0, numRound=1, numWorkers=1, objective="reg:squarederror", objectiveType=None, predictionCol="prediction", probabilityCol="probability", rateDrop=0.0, rawPredictionCol="rawPrediction", sampleType="uniform", scalePosWeight=1.0, seed=0, silent=0, sketchEps=0.03, skipDrop=0.0, subsample=1.0, thresholds=None, timeoutRequestWorkers=1800000, ## EXCLUDED: trackerConf=None, trainTestRatio=1.0, treeLimit=0, treeMethod="auto", useExternalMemory=False, verbosity=1, weightCol=None): super(XGBoostRegressor, self).__init__(classname="ml.dmlc.xgboost4j.scala.spark.XGBoostRegressor") kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only def setParams(self, alpha=0.0, baseMarginCol=None, baseScore=0.5, cacheTrainingSet=False, checkpointInterval=-1, checkpointPath="", colsampleBylevel=1.0, colsampleBytree=1.0, contribPredictionCol=None, ## EXCLUDED: customEval=None, ## EXCLUDED: customObj=None, eta=0.3, evalMetric=None, featuresCol="features", gamma=0.0, groupCol=None, growPolicy="depthwise", interactionConstraints=None, labelCol="label", lambda_=1.0, # Rename of 'lambda' param, as this is a reserved keyword in python. lambdaBias=0.0, leafPredictionCol=None, maxBins=16, maxDeltaStep=0.0, maxDepth=6, maxLeaves=None, maximizeEvaluationMetrics=None, minChildWeight=1.0, missing=float('nan'), monotoneConstraints=None, normalizeType="tree", nthread=1, numClass=None, numEarlyStoppingRounds=0, numRound=1, numWorkers=1, objective="reg:squarederror", objectiveType=None, predictionCol="prediction", probabilityCol="probability", rateDrop=0.0, rawPredictionCol="rawPrediction", sampleType="uniform", scalePosWeight=1.0, seed=0, silent=0, sketchEps=0.03, skipDrop=0.0, subsample=1.0, thresholds=None, timeoutRequestWorkers=1800000, ## EXCLUDED: trackerConf=None, trainTestRatio=1.0, treeLimit=0, treeMethod="auto", useExternalMemory=False, verbosity=1, weightCol=None): kwargs = self._input_kwargs if "lambda_" in kwargs: kwargs["lambda"] = kwargs.pop("lambda_") return self._set(**kwargs) def _create_model(self, java_model): return XGBoostRegressionModel(java_model=java_model) class XGBoostRegressionModel(XGboostModel): """ A PySpark wrapper of ml.dmlc.xgboost4j.scala.spark.XGBoostRegressionModel """ def __init__(self, classname="ml.dmlc.xgboost4j.scala.spark.XGBoostRegressionModel", java_model=None): super(XGBoostRegressionModel, self).__init__(classname=classname, java_model=java_model) @property def nativeBooster(self): """ Get the native booster instance of this model. This is used to call low-level APIs on native booster, such as "getFeatureScore". """ return self._call_java("nativeBooster")
spark-xgboost-nv-release_1.4.0
jvm-packages/xgboost4j-spark/src/main/resources/sparkxgb/xgboost.py
from sklearn.datasets import load_iris import numpy as np import pandas X, y = load_iris(return_X_y=True) y = y.astype(np.int) df = pandas.DataFrame(data=X, columns=['sepal length', 'sepal width', 'petal length', 'petal width']) class_id_to_name = {0:'Iris-setosa', 1:'Iris-versicolor', 2:'Iris-virginica'} df['class'] = np.vectorize(class_id_to_name.get)(y) df.to_csv('./iris.csv', float_format='%.1f', header=False, index=False)
spark-xgboost-nv-release_1.4.0
jvm-packages/xgboost4j-tester/get_iris.py
import sys pom_template = """ <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>ml.dmlc</groupId> <artifactId>xgboost4j-tester_2.12</artifactId> <version>1.0-SNAPSHOT</version> <name>xgboost4j-tester_2.12</name> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <maven.compiler.source>{maven_compiler_source}</maven.compiler.source> <maven.compiler.target>{maven_compiler_target}</maven.compiler.target> <spark.version>{spark_version}</spark.version> <scala.version>{scala_version}</scala.version> <scala.binary.version>{scala_binary_version}</scala.binary.version> </properties> <dependencies> <dependency> <groupId>com.esotericsoftware</groupId> <artifactId>kryo</artifactId> <version>4.0.2</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-compiler</artifactId> <version>${{scala.version}}</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-reflect</artifactId> <version>${{scala.version}}</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>${{scala.version}}</version> </dependency> <dependency> <groupId>commons-logging</groupId> <artifactId>commons-logging</artifactId> <version>1.2</version> </dependency> <dependency> <groupId>com.typesafe.akka</groupId> <artifactId>akka-actor_${{scala.binary.version}}</artifactId> <version>2.5.23</version> <scope>compile</scope> </dependency> <dependency> <groupId>com.typesafe.akka</groupId> <artifactId>akka-testkit_${{scala.binary.version}}</artifactId> <version>2.5.23</version> <scope>test</scope> </dependency> <dependency> <groupId>org.scalatest</groupId> <artifactId>scalatest_${{scala.binary.version}}</artifactId> <version>3.0.8</version> <scope>test</scope> </dependency> <dependency> <groupId>org.scalactic</groupId> <artifactId>scalactic_${{scala.binary.version}}</artifactId> <version>3.0.8</version> <scope>test</scope> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-lang3</artifactId> <version>3.4</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_${{scala.binary.version}}</artifactId> <version>${{spark.version}}</version> <scope>provided</scope> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_${{scala.binary.version}}</artifactId> <version>${{spark.version}}</version> <scope>provided</scope> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-mllib_${{scala.binary.version}}</artifactId> <version>${{spark.version}}</version> <scope>provided</scope> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.11</version> <scope>test</scope> </dependency> <dependency> <groupId>ml.dmlc</groupId> <artifactId>xgboost4j_${{scala.binary.version}}</artifactId> <version>{xgboost4j_version}</version> </dependency> <dependency> <groupId>ml.dmlc</groupId> <artifactId>xgboost4j_${{scala.binary.version}}</artifactId> <version>{xgboost4j_version}</version> <classifier>tests</classifier> <type>test-jar</type> <scope>test</scope> </dependency> <dependency> <groupId>ml.dmlc</groupId> <artifactId>xgboost4j-spark_${{scala.binary.version}}</artifactId> <version>{xgboost4j_version}</version> </dependency> <dependency> <groupId>ml.dmlc</groupId> <artifactId>xgboost4j-example_${{scala.binary.version}}</artifactId> <version>{xgboost4j_version}</version> </dependency> </dependencies> <build> <plugins> <!-- clean lifecycle, see https://maven.apache.org/ref/current/maven-core/lifecycles.html#clean_Lifecycle --> <plugin> <artifactId>maven-clean-plugin</artifactId> <version>3.1.0</version> </plugin> <!-- default lifecycle, jar packaging: see https://maven.apache.org/ref/current/maven-core/default-bindings.html#Plugin_bindings_for_jar_packaging --> <plugin> <artifactId>maven-resources-plugin</artifactId> <version>3.0.2</version> </plugin> <plugin> <artifactId>maven-compiler-plugin</artifactId> <version>3.8.0</version> </plugin> <plugin> <artifactId>maven-jar-plugin</artifactId> <version>3.0.2</version> </plugin> <plugin> <artifactId>maven-install-plugin</artifactId> <version>2.5.2</version> </plugin> <plugin> <artifactId>maven-deploy-plugin</artifactId> <version>2.8.2</version> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-assembly-plugin</artifactId> <version>2.4</version> <configuration> <descriptorRefs> <descriptorRef>jar-with-dependencies</descriptorRef> </descriptorRefs> <archive> <manifest> <mainClass>ml.dmlc.xgboost4j.tester.App</mainClass> </manifest> </archive> </configuration> <executions> <execution> <phase>package</phase> <goals> <goal>single</goal> </goals> </execution> </executions> </plugin> <!-- site lifecycle, see https://maven.apache.org/ref/current/maven-core/lifecycles.html#site_Lifecycle --> <plugin> <artifactId>maven-site-plugin</artifactId> <version>3.7.1</version> </plugin> <plugin> <artifactId>maven-project-info-reports-plugin</artifactId> <version>3.0.0</version> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.22.1</version> <configuration> <dependenciesToScan> <dependency>ml.dmlc:xgboost4j_2.12</dependency> </dependenciesToScan> </configuration> </plugin> </plugins> </build> </project> """ if __name__ == '__main__': if len(sys.argv) != 7: print('Usage: {} [xgboost4j version] [maven compiler source level] [maven compiler target level] [spark version] [scala version] [scala binary version]'.format(sys.argv[0])) sys.exit(1) with open('pom.xml', 'w') as f: print(pom_template.format(xgboost4j_version=sys.argv[1], maven_compiler_source=sys.argv[2], maven_compiler_target=sys.argv[3], spark_version=sys.argv[4], scala_version=sys.argv[5], scala_binary_version=sys.argv[6]), file=f)
spark-xgboost-nv-release_1.4.0
jvm-packages/xgboost4j-tester/generate_pom.py
#!/usr/bin/python """ demo python script of rabit: Lazy preparation function """ import os import sys import numpy as np # import rabit, the tracker script will setup the lib path correctly # for normal run without tracker script, add following line # sys.path.append(os.path.dirname(__file__) + '/../wrapper') import rabit # use mock library so that we can run failure test rabit.init(lib = 'mock') n = 3 rank = rabit.get_rank() a = np.zeros(n) def prepare(a): print('@node[%d] run prepare function' % rank) # must take in reference and modify the reference for i in xrange(n): a[i] = rank + i print('@node[%d] before-allreduce: a=%s' % (rank, str(a))) a = rabit.allreduce(a, rabit.MAX, prepare_fun = prepare) print('@node[%d] after-allreduce-max: a=%s' % (rank, str(a))) a = rabit.allreduce(a, rabit.SUM) print('@node[%d] after-allreduce-sum: a=%s' % (rank, str(a))) rabit.finalize()
spark-xgboost-nv-release_1.4.0
rabit/guide/lazy_allreduce.py
#!/usr/bin/python """ demo python script of rabit """ from __future__ import print_function from builtins import range import os import sys import numpy as np # import rabit, the tracker script will setup the lib path correctly # for normal run without tracker script, add following line # sys.path.append(os.path.dirname(__file__) + '/../python') import rabit rabit.init() n = 3 rank = rabit.get_rank() a = np.zeros(n) for i in range(n): a[i] = rank + i print('@node[%d] before-allreduce: a=%s' % (rank, str(a))) a = rabit.allreduce(a, rabit.MAX) print('@node[%d] after-allreduce-max: a=%s' % (rank, str(a))) a = rabit.allreduce(a, rabit.SUM) print('@node[%d] after-allreduce-sum: a=%s' % (rank, str(a))) rabit.finalize()
spark-xgboost-nv-release_1.4.0
rabit/guide/basic.py
#!/usr/bin/python """ demo python script of rabit """ from __future__ import print_function import os import sys # add path to wrapper # for normal run without tracker script, add following line # sys.path.append(os.path.dirname(__file__) + '/../wrapper') import rabit rabit.init() n = 3 rank = rabit.get_rank() s = None if rank == 0: s = {'hello world':100, 2:3} print('@node[%d] before-broadcast: s=\"%s\"' % (rank, str(s))) s = rabit.broadcast(s, 0) print('@node[%d] after-broadcast: s=\"%s\"' % (rank, str(s))) rabit.finalize()
spark-xgboost-nv-release_1.4.0
rabit/guide/broadcast.py
# -*- coding: utf-8 -*- """Helper utilty function for customization.""" import sys import os import docutils import subprocess if os.environ.get('READTHEDOCS', None) == 'True': subprocess.call('cd ..; rm -rf recommonmark;' + 'git clone https://github.com/tqchen/recommonmark', shell=True) sys.path.insert(0, os.path.abspath('../recommonmark/')) from recommonmark import parser, transform MarkdownParser = parser.CommonMarkParser AutoStructify = transform.AutoStructify
spark-xgboost-nv-release_1.4.0
rabit/doc/sphinx_util.py
# -*- coding: utf-8 -*- # # documentation build configuration file, created by # sphinx-quickstart on Thu Jul 23 19:40:08 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os, subprocess import shlex # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) libpath = os.path.join(curr_path, '../wrapper/') sys.path.insert(0, os.path.join(curr_path, '../wrapper/')) sys.path.insert(0, curr_path) from sphinx_util import MarkdownParser, AutoStructify # -- General configuration ------------------------------------------------ # General information about the project. project = u'rabit' copyright = u'2015, rabit developers' author = u'rabit developers' github_doc_root = 'https://github.com/dmlc/rabit/tree/master/doc/' # add markdown parser MarkdownParser.github_doc_root = github_doc_root source_parsers = { '.md': MarkdownParser, } # Version information. import rabit version = rabit.__version__ release = rabit.__version__ # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.mathjax', 'breathe', ] # Use breathe to include doxygen documents breathe_projects = {'rabit' : 'doxygen/xml/'} breathe_default_project = 'rabit' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = ['.rst', '.md'] # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Output file base name for HTML help builder. htmlhelp_basename = project + 'doc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'rabit.tex', project, author, 'manual'), ] # hook for doxygen def run_doxygen(folder): """Run the doxygen make command in the designated folder.""" try: retcode = subprocess.call("cd %s; make doxygen" % folder, shell=True) if retcode < 0: sys.stderr.write("doxygen terminated by signal %s" % (-retcode)) except OSError as e: sys.stderr.write("doxygen execution failed: %s" % e) def run_build_lib(folder): """Run the doxygen make command in the designated folder.""" try: retcode = subprocess.call("cd %s; make" % folder, shell=True) retcode = subprocess.call("rm -rf _build/html/doxygen", shell=True) retcode = subprocess.call("mkdir _build", shell=True) retcode = subprocess.call("mkdir _build/html", shell=True) retcode = subprocess.call("cp -rf doxygen/html _build/html/doxygen", shell=True) if retcode < 0: sys.stderr.write("build terminated by signal %s" % (-retcode)) except OSError as e: sys.stderr.write("build execution failed: %s" % e) def generate_doxygen_xml(app): """Run the doxygen make commands if we're on the ReadTheDocs server""" read_the_docs_build = os.environ.get('READTHEDOCS', None) == 'True' if read_the_docs_build: run_doxygen('..') sys.stderr.write('Check if shared lib exists\n') run_build_lib('..') sys.stderr.write('The wrapper path: %s\n' % str(os.listdir('../wrapper'))) rabit._loadlib() def setup(app): # Add hook for building doxygen xml when needed app.connect("builder-inited", generate_doxygen_xml) app.add_config_value('recommonmark_config', { 'url_resolver': lambda url: github_doc_root + url, }, True) app.add_transform(AutoStructify)
spark-xgboost-nv-release_1.4.0
rabit/doc/conf.py
"""Query list of all contributors and reviewers in a release""" from sh.contrib import git import sys import re import requests import json if len(sys.argv) != 5: print(f'Usage: {sys.argv[0]} [starting commit/tag] [ending commit/tag] [GitHub username] ' + '[GitHub password]') sys.exit(1) from_commit = sys.argv[1] to_commit = sys.argv[2] username = sys.argv[3] password = sys.argv[4] contributors = set() reviewers = set() def paginate_request(url, callback): r = requests.get(url, auth=(username, password)) assert r.status_code == requests.codes.ok, f'Code: {r.status_code}, Text: {r.text}' callback(json.loads(r.text)) while 'next' in r.links: r = requests.get(r.links['next']['url'], auth=(username, password)) callback(json.loads(r.text)) for line in git.log(f'{from_commit}..{to_commit}', '--pretty=format:%s', '--reverse', '--first-parent'): m = re.search('\(#([0-9]+)\)$', line.rstrip()) if m: pr_id = m.group(1) print(f'PR #{pr_id}') def process_commit_list(commit_list): try: contributors.update([commit['author']['login'] for commit in commit_list]) except TypeError: prompt = (f'Error fetching contributors for PR #{pr_id}. Enter it manually, ' + 'as a space-separated list: ') contributors.update(str(input(prompt)).split(' ')) def process_review_list(review_list): reviewers.update([x['user']['login'] for x in review_list]) def process_comment_list(comment_list): reviewers.update([x['user']['login'] for x in comment_list]) paginate_request(f'https://api.github.com/repos/dmlc/xgboost/pulls/{pr_id}/commits', process_commit_list) paginate_request(f'https://api.github.com/repos/dmlc/xgboost/pulls/{pr_id}/reviews', process_review_list) paginate_request(f'https://api.github.com/repos/dmlc/xgboost/issues/{pr_id}/comments', process_comment_list) print('Contributors: ', end='') for x in sorted(contributors): r = requests.get(f'https://api.github.com/users/{x}', auth=(username, password)) assert r.status_code == requests.codes.ok, f'Code: {r.status_code}, Text: {r.text}' user_info = json.loads(r.text) if user_info['name'] is None: print(f"@{x}, ", end='') else: print(f"{user_info['name']} (@{x}), ", end='') print('\nReviewers: ', end='') for x in sorted(reviewers): r = requests.get(f'https://api.github.com/users/{x}', auth=(username, password)) assert r.status_code == requests.codes.ok, f'Code: {r.status_code}, Text: {r.text}' user_info = json.loads(r.text) if user_info['name'] is None: print(f"@{x}, ", end='') else: print(f"{user_info['name']} (@{x}), ", end='') print('')
spark-xgboost-nv-release_1.4.0
dev/query_contributors.py
"""Simple script for downloading and checking pypi release wheels. tqdm, sh are required to run this script. """ from urllib.request import urlretrieve import argparse from typing import List from sh.contrib import git from distutils import version import subprocess import tqdm import os # The package building is managed by Jenkins CI. PREFIX = "https://s3-us-west-2.amazonaws.com/xgboost-nightly-builds/release_" DIST = os.path.join(os.path.curdir, "python-package", "dist") pbar = None def show_progress(block_num, block_size, total_size): "Show file download progress." global pbar if pbar is None: pbar = tqdm.tqdm(total=total_size / 1024, unit="kB") downloaded = block_num * block_size if downloaded < total_size: pbar.update(block_size / 1024) else: pbar.close() pbar = None def retrieve(url, filename=None): return urlretrieve(url, filename, reporthook=show_progress) def lastest_hash() -> str: "Get latest commit hash." ret = subprocess.run(["git", "rev-parse", "HEAD"], capture_output=True) assert ret.returncode == 0, "Failed to get lastest commit hash." commit_hash = ret.stdout.decode("utf-8").strip() return commit_hash def download_wheels( platforms: List[str], dir_URL: str, src_filename_prefix: str, target_filename_prefix: str, ) -> List[str]: """Download all binary wheels. dir_URL is the URL for remote directory storing the release wheels """ filenames = [] for platform in platforms: src_wheel = src_filename_prefix + platform + ".whl" url = dir_URL + src_wheel target_wheel = target_filename_prefix + platform + ".whl" filename = os.path.join(DIST, target_wheel) filenames.append(filename) print("Downloading from:", url, "to:", filename) retrieve(url=url, filename=filename) ret = subprocess.run(["twine", "check", filename], capture_output=True) assert ret.returncode == 0, "Failed twine check" stderr = ret.stderr.decode("utf-8") stdout = ret.stdout.decode("utf-8") assert stderr.find("warning") == -1, "Unresolved warnings:\n" + stderr assert stdout.find("warning") == -1, "Unresolved warnings:\n" + stdout return filenames def check_path(): root = os.path.abspath(os.path.curdir) assert os.path.basename(root) == "xgboost", "Must be run on project root." def main(args: argparse.Namespace) -> None: check_path() rel = version.StrictVersion(args.release) platforms = [ "win_amd64", "manylinux2010_x86_64", "manylinux2014_aarch64", "macosx_10_14_x86_64.macosx_10_15_x86_64.macosx_11_0_x86_64", ] print("Release:", rel) major, minor, patch = rel.version branch = "release_" + str(major) + "." + str(minor) + ".0" git.clean("-xdf") git.checkout(branch) git.pull("origin", branch) git.submodule("update") commit_hash = lastest_hash() dir_URL = PREFIX + str(major) + "." + str(minor) + ".0" + "/" src_filename_prefix = "xgboost-" + args.release + "%2B" + commit_hash + "-py3-none-" target_filename_prefix = "xgboost-" + args.release + "-py3-none-" if not os.path.exists(DIST): os.mkdir(DIST) filenames = download_wheels( platforms, dir_URL, src_filename_prefix, target_filename_prefix ) print("List of downloaded wheels:", filenames) print( """ Following steps should be done manually: - Generate source package by running `python setup.py sdist`. - Upload pypi package by `python3 -m twine upload dist/<Package Name>` for all wheels. - Check the uploaded files on `https://pypi.org/project/xgboost/<VERSION>/#files` and `pip install xgboost==<VERSION>` """ ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--release", type=str, required=True, help="Version tag, e.g. '1.3.2'." ) args = parser.parse_args() main(args)
spark-xgboost-nv-release_1.4.0
dev/release-pypi.py
# -*- coding: utf-8 -*- """Helper utility function for customization.""" import sys import os import subprocess READTHEDOCS_BUILD = (os.environ.get('READTHEDOCS', None) is not None) if not os.path.exists('web-data'): subprocess.call('rm -rf web-data;' + 'git clone https://github.com/dmlc/web-data', shell = True) else: subprocess.call('cd web-data; git pull', shell=True) sys.stderr.write('READTHEDOCS=%s\n' % (READTHEDOCS_BUILD))
spark-xgboost-nv-release_1.4.0
doc/sphinx_util.py
# -*- coding: utf-8 -*- # # documentation build configuration file, created by # sphinx-quickstart on Thu Jul 23 19:40:08 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from subprocess import call from sh.contrib import git import urllib.request from urllib.error import HTTPError import sys import re import os import subprocess import guzzle_sphinx_theme git_branch = os.getenv('SPHINX_GIT_BRANCH', default=None) if not git_branch: # If SPHINX_GIT_BRANCH environment variable is not given, run git # to determine branch name git_branch = [ re.sub(r'origin/', '', x.lstrip(' ')) for x in str( git.branch('-r', '--contains', 'HEAD')).rstrip('\n').split('\n') ] git_branch = [x for x in git_branch if 'HEAD' not in x] else: git_branch = [git_branch] print('git_branch = {}'.format(git_branch[0])) try: filename, _ = urllib.request.urlretrieve( 'https://s3-us-west-2.amazonaws.com/xgboost-docs/{}.tar.bz2'.format( git_branch[0])) call( 'if [ -d tmp ]; then rm -rf tmp; fi; mkdir -p tmp/jvm; cd tmp/jvm; tar xvf {}' .format(filename), shell=True) except HTTPError: print('JVM doc not found. Skipping...') try: filename, _ = urllib.request.urlretrieve( 'https://s3-us-west-2.amazonaws.com/xgboost-docs/doxygen/{}.tar.bz2'. format(git_branch[0])) call( 'mkdir -p tmp/dev; cd tmp/dev; tar xvf {}; mv doc_doxygen/html/* .; rm -rf doc_doxygen' .format(filename), shell=True) except HTTPError: print('C API doc not found. Skipping...') # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) libpath = os.path.join(curr_path, '../python-package/') sys.path.insert(0, libpath) sys.path.insert(0, curr_path) # -- mock out modules import mock # NOQA MOCK_MODULES = ['scipy', 'scipy.sparse', 'sklearn', 'pandas'] for mod_name in MOCK_MODULES: sys.modules[mod_name] = mock.Mock() # -- General configuration ------------------------------------------------ # General information about the project. project = u'xgboost' author = u'%s developers' % project copyright = u'2020, %s' % author github_doc_root = 'https://github.com/dmlc/xgboost/tree/master/doc/' os.environ['XGBOOST_BUILD_DOC'] = '1' # Version information. import xgboost # NOQA version = xgboost.__version__ release = xgboost.__version__ # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones extensions = [ 'matplotlib.sphinxext.plot_directive', 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.mathjax', 'sphinx.ext.intersphinx', 'breathe', 'recommonmark' ] autodoc_typehints = "description" graphviz_output_format = 'png' plot_formats = [('svg', 300), ('png', 100), ('hires.png', 300)] plot_html_show_source_link = False plot_html_show_formats = False # Breathe extension variables breathe_projects = {"xgboost": "doxyxml/"} breathe_default_project = "xgboost" # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: source_suffix = ['.rst', '.md'] # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None autoclass_content = 'both' # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] html_extra_path = ['./tmp'] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme_path = guzzle_sphinx_theme.html_theme_path() html_theme = 'guzzle_sphinx_theme' # Register the theme as an extension to generate a sitemap.xml extensions.append("guzzle_sphinx_theme") # Guzzle theme options (see theme.conf for more information) html_theme_options = { # Set the name of the project to appear in the sidebar "project_nav_name": "XGBoost" } html_sidebars = { '**': ['logo-text.html', 'globaltoc.html', 'searchbox.html'] } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Output file base name for HTML help builder. htmlhelp_basename = project + 'doc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, '%s.tex' % project, project, author, 'manual'), ] intersphinx_mapping = { 'python': ('https://docs.python.org/3.6', None), 'numpy': ('http://docs.scipy.org/doc/numpy/', None), 'scipy': ('http://docs.scipy.org/doc/scipy/reference/', None), 'pandas': ('http://pandas-docs.github.io/pandas-docs-travis/', None), 'sklearn': ('http://scikit-learn.org/stable', None) } # hook for doxygen def run_doxygen(folder): """Run the doxygen make command in the designated folder.""" try: retcode = subprocess.call("cd %s; make doxygen" % folder, shell=True) if retcode < 0: sys.stderr.write("doxygen terminated by signal %s" % (-retcode)) except OSError as e: sys.stderr.write("doxygen execution failed: %s" % e) def generate_doxygen_xml(app): """Run the doxygen make commands if we're on the ReadTheDocs server""" read_the_docs_build = os.environ.get('READTHEDOCS', None) == 'True' if read_the_docs_build: run_doxygen('..') # app.add_stylesheet() is deprecated. Use app.add_css_file() def setup(app): app.add_css_file('custom.css')
spark-xgboost-nv-release_1.4.0
doc/conf.py
'''This is a simple script that converts a pickled XGBoost Scikit-Learn interface object from 0.90 to a native model. Pickle format is not stable as it's a direct serialization of Python object. We advice not to use it when stability is needed. ''' import pickle import json import os import argparse import numpy as np import xgboost import warnings def save_label_encoder(le): '''Save the label encoder in XGBClassifier''' meta = dict() for k, v in le.__dict__.items(): if isinstance(v, np.ndarray): meta[k] = v.tolist() else: meta[k] = v return meta def xgboost_skl_90to100(skl_model): '''Extract the model and related metadata in SKL model.''' model = {} with open(skl_model, 'rb') as fd: old = pickle.load(fd) if not isinstance(old, xgboost.XGBModel): raise TypeError( 'The script only handes Scikit-Learn interface object') # Save Scikit-Learn specific Python attributes into a JSON document. for k, v in old.__dict__.items(): if k == '_le': model[k] = save_label_encoder(v) elif k == 'classes_': model[k] = v.tolist() elif k == '_Booster': continue else: try: json.dumps({k: v}) model[k] = v except TypeError: warnings.warn(str(k) + ' is not saved in Scikit-Learn meta.') booster = old.get_booster() # Store the JSON serialization as an attribute booster.set_attr(scikit_learn=json.dumps(model)) # Save it into a native model. i = 0 while True: path = 'xgboost_native_model_from_' + skl_model + '-' + str(i) + '.bin' if os.path.exists(path): i += 1 continue booster.save_model(path) break if __name__ == '__main__': assert xgboost.__version__ != '1.0.0', ('Please use the XGBoost version' ' that generates this pickle.') parser = argparse.ArgumentParser( description=('A simple script to convert pickle generated by' ' XGBoost 0.90 to XGBoost 1.0.0 model (not pickle).')) parser.add_argument( '--old-pickle', type=str, help='Path to old pickle file of Scikit-Learn interface object. ' 'Will output a native model converted from this pickle file', required=True) args = parser.parse_args() xgboost_skl_90to100(args.old_pickle)
spark-xgboost-nv-release_1.4.0
doc/python/convert_090to100.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import re from setuptools import setup, find_packages import importlib.util package_dir = 'nemo_chem' spec = importlib.util.spec_from_file_location('package_info', os.path.join(package_dir, 'package_info.py')) package_info = importlib.util.module_from_spec(spec) spec.loader.exec_module(package_info) package_name = package_info.__package_name__ if os.path.exists('README.rmd'): with open("README.md", "r") as fh: long_description = fh.read() long_description_content_type = "text/markdown" else: long_description = 'See ' + package_info.__homepage__ long_description_content_type = 'text' ### setup( name=package_name, version=package_info.__version__, description=package_info.__description__, long_description=long_description, long_description_content_type=long_description_content_type, url=package_info.__repository_url__, download_url=package_info.__download_url__, author=package_info.__contact_names__, maintainer=package_info.__contact_names__, license=package_info.__license__, packages=find_packages(include=[package_dir, package_dir + '.*']), include_package_data=True, package_dir={package_name: package_dir}, package_data={package_name: ['vocab/*']} )
MegaMolBART-dev
setup.py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: megamolbart.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x11megamolbart.proto\x12!nemo_chem.models.megamolbart.grpc\"L\n\tInputSpec\x12\x0c\n\x04smis\x18\x01 \x03(\t\x12\x15\n\rhidden_states\x18\x02 \x03(\x02\x12\x0b\n\x03\x64im\x18\x03 \x03(\x05\x12\r\n\x05masks\x18\x04 \x03(\x08\"a\n\nOutputSpec\x12\x0c\n\x04smis\x18\x01 \x03(\t\x12\x15\n\rhidden_states\x18\x02 \x03(\x02\x12\x12\n\nembeddings\x18\x03 \x03(\x02\x12\x0b\n\x03\x64im\x18\x04 \x03(\x05\x12\r\n\x05masks\x18\x05 \x03(\x08\x32\xe7\x02\n\x11GenerativeSampler\x12r\n\x11SmilesToEmbedding\x12,.nemo_chem.models.megamolbart.grpc.InputSpec\x1a-.nemo_chem.models.megamolbart.grpc.OutputSpec\"\x00\x12o\n\x0eSmilesToHidden\x12,.nemo_chem.models.megamolbart.grpc.InputSpec\x1a-.nemo_chem.models.megamolbart.grpc.OutputSpec\"\x00\x12m\n\x0cHiddenToSmis\x12,.nemo_chem.models.megamolbart.grpc.InputSpec\x1a-.nemo_chem.models.megamolbart.grpc.OutputSpec\"\x00\x62\x06proto3') _INPUTSPEC = DESCRIPTOR.message_types_by_name['InputSpec'] _OUTPUTSPEC = DESCRIPTOR.message_types_by_name['OutputSpec'] InputSpec = _reflection.GeneratedProtocolMessageType('InputSpec', (_message.Message,), { 'DESCRIPTOR' : _INPUTSPEC, '__module__' : 'megamolbart_pb2' # @@protoc_insertion_point(class_scope:nemo_chem.models.megamolbart.grpc.InputSpec) }) _sym_db.RegisterMessage(InputSpec) OutputSpec = _reflection.GeneratedProtocolMessageType('OutputSpec', (_message.Message,), { 'DESCRIPTOR' : _OUTPUTSPEC, '__module__' : 'megamolbart_pb2' # @@protoc_insertion_point(class_scope:nemo_chem.models.megamolbart.grpc.OutputSpec) }) _sym_db.RegisterMessage(OutputSpec) _GENERATIVESAMPLER = DESCRIPTOR.services_by_name['GenerativeSampler'] if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _INPUTSPEC._serialized_start=56 _INPUTSPEC._serialized_end=132 _OUTPUTSPEC._serialized_start=134 _OUTPUTSPEC._serialized_end=231 _GENERATIVESAMPLER._serialized_start=234 _GENERATIVESAMPLER._serialized_end=593 # @@protoc_insertion_point(module_scope)
MegaMolBART-dev
generated/megamolbart_pb2.py
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc import megamolbart_pb2 as megamolbart__pb2 class GenerativeSamplerStub(object): """import "google/protobuf/empty.proto"; python -m pip install grpcio python -m pip install grpcio-tools python -m grpc_tools.protoc -I./setup/ \ --python_out=./generated/ \ --grpc_python_out=./generated/ \ --experimental_allow_proto3_optional \ ./setup/megamolbart.proto """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.SmilesToEmbedding = channel.unary_unary( '/nemo_chem.models.megamolbart.grpc.GenerativeSampler/SmilesToEmbedding', request_serializer=megamolbart__pb2.InputSpec.SerializeToString, response_deserializer=megamolbart__pb2.OutputSpec.FromString, ) self.SmilesToHidden = channel.unary_unary( '/nemo_chem.models.megamolbart.grpc.GenerativeSampler/SmilesToHidden', request_serializer=megamolbart__pb2.InputSpec.SerializeToString, response_deserializer=megamolbart__pb2.OutputSpec.FromString, ) self.HiddenToSmis = channel.unary_unary( '/nemo_chem.models.megamolbart.grpc.GenerativeSampler/HiddenToSmis', request_serializer=megamolbart__pb2.InputSpec.SerializeToString, response_deserializer=megamolbart__pb2.OutputSpec.FromString, ) class GenerativeSamplerServicer(object): """import "google/protobuf/empty.proto"; python -m pip install grpcio python -m pip install grpcio-tools python -m grpc_tools.protoc -I./setup/ \ --python_out=./generated/ \ --grpc_python_out=./generated/ \ --experimental_allow_proto3_optional \ ./setup/megamolbart.proto """ def SmilesToEmbedding(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SmilesToHidden(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def HiddenToSmis(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_GenerativeSamplerServicer_to_server(servicer, server): rpc_method_handlers = { 'SmilesToEmbedding': grpc.unary_unary_rpc_method_handler( servicer.SmilesToEmbedding, request_deserializer=megamolbart__pb2.InputSpec.FromString, response_serializer=megamolbart__pb2.OutputSpec.SerializeToString, ), 'SmilesToHidden': grpc.unary_unary_rpc_method_handler( servicer.SmilesToHidden, request_deserializer=megamolbart__pb2.InputSpec.FromString, response_serializer=megamolbart__pb2.OutputSpec.SerializeToString, ), 'HiddenToSmis': grpc.unary_unary_rpc_method_handler( servicer.HiddenToSmis, request_deserializer=megamolbart__pb2.InputSpec.FromString, response_serializer=megamolbart__pb2.OutputSpec.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'nemo_chem.models.megamolbart.grpc.GenerativeSampler', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class GenerativeSampler(object): """import "google/protobuf/empty.proto"; python -m pip install grpcio python -m pip install grpcio-tools python -m grpc_tools.protoc -I./setup/ \ --python_out=./generated/ \ --grpc_python_out=./generated/ \ --experimental_allow_proto3_optional \ ./setup/megamolbart.proto """ @staticmethod def SmilesToEmbedding(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/nemo_chem.models.megamolbart.grpc.GenerativeSampler/SmilesToEmbedding', megamolbart__pb2.InputSpec.SerializeToString, megamolbart__pb2.OutputSpec.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def SmilesToHidden(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/nemo_chem.models.megamolbart.grpc.GenerativeSampler/SmilesToHidden', megamolbart__pb2.InputSpec.SerializeToString, megamolbart__pb2.OutputSpec.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def HiddenToSmis(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/nemo_chem.models.megamolbart.grpc.GenerativeSampler/HiddenToSmis', megamolbart__pb2.InputSpec.SerializeToString, megamolbart__pb2.OutputSpec.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
MegaMolBART-dev
generated/megamolbart_pb2_grpc.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. MAJOR = 0 MINOR = 2 PATCH = 0 PRE_RELEASE = 'dev' # Use the following formatting: (major, minor, patch, pre-release) VERSION = (MAJOR, MINOR, PATCH, PRE_RELEASE) __shortversion__ = '.'.join(map(str, VERSION[:3])) __version__ = '.'.join(map(str, VERSION[:3])) + ''.join(VERSION[3:]) __package_name__ = 'nemo_chem' __contact_names__ = 'NVIDIA' __homepage__ = 'https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/megamolbart' __repository_url__ = 'https://github.com/NVIDIA/MegaMolBART' # TODO FIX THIS __download_url__ = 'https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/megamolbart' __description__ = 'MegaMolBART, a deep learning model for Chemistry. Trainable with NeMo.' __license__ = 'Apache2' __keywords__ = 'drug discovery, cheminformatics, deep learning, machine learning, gpu, NeMo, nvidia, pytorch, torch'
MegaMolBART-dev
nemo_chem/package_info.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
MegaMolBART-dev
nemo_chem/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .tokenizer import *
MegaMolBART-dev
nemo_chem/tokenizer/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import os import torch import random from pathlib import Path from dataclasses import dataclass from typing import Optional, List, Tuple, Any from nemo.utils import logging import nemo_chem import warnings __all__ = ['MolEncTokenizer', 'MolEncTokenizerBaseConfig', 'MolEncTokenizerFromVocabFileConfig', 'MolEncTokenizerFromSmilesConfig', 'DEFAULT_SEQ_LEN', 'DEFAULT_VOCAB_PATH', 'DEFAULT_MODEL_PATH'] DEFAULT_VOCAB_DIR = os.path.join(nemo_chem.__path__[0], '../models/vocab') DEFAULT_VOCAB_PATH = os.path.join(DEFAULT_VOCAB_DIR, 'megamolbart.vocab') DEFAULT_MODEL_PATH = os.path.join(DEFAULT_VOCAB_DIR, 'megamolbart.model') # Defaults DEFAULT_SEQ_LEN = 512 DEFAULT_CHEM_TOKEN_START = 272 DEFAULT_BEGIN_TOKEN = "^" DEFAULT_END_TOKEN = "&" DEFAULT_PAD_TOKEN = "<PAD>" DEFAULT_UNK_TOKEN = "?" DEFAULT_MASK_TOKEN = "<MASK>" DEFAULT_SEP_TOKEN = "<SEP>" DEFAULT_MASK_PROB = 0.15 DEFAULT_SHOW_MASK_TOKEN_PROB = 1.0 DEFAULT_MASK_SCHEME = "span" DEFAULT_SPAN_LAMBDA = 3.0 # DEFAULT_REGEX = r"""\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9]""" with open(DEFAULT_MODEL_PATH, 'r') as fh: DEFAULT_REGEX = fh.read().strip() DEFAULT_REGEX = r"""{}""".format(DEFAULT_REGEX) # force literal string @dataclass class MolEncTokenizerBaseConfig(): vocab: Tuple[str] = ('',) chem_token_idxs: Tuple[int] = (0,) prog: Any = '' begin_token: str = DEFAULT_BEGIN_TOKEN end_token: str = DEFAULT_END_TOKEN pad_token: str = DEFAULT_PAD_TOKEN unk_token: str = DEFAULT_UNK_TOKEN mask_token: str = DEFAULT_MASK_TOKEN sep_token: str = DEFAULT_SEP_TOKEN mask_prob: float = DEFAULT_MASK_PROB show_mask_token_prob: float = DEFAULT_SHOW_MASK_TOKEN_PROB mask_scheme: str = DEFAULT_MASK_SCHEME # TODO limit to possible options span_lambda: float = DEFAULT_SPAN_LAMBDA @dataclass class MolEncTokenizerFromVocabFileConfig(): vocab_path: str = DEFAULT_VOCAB_PATH regex: str = DEFAULT_REGEX chem_tokens_start_idx: int = DEFAULT_CHEM_TOKEN_START pad_token_idx: int = 0 unk_token_idx: int = 1 begin_token_idx: int = 2 end_token_idx: int = 3 mask_token_idx: int = 4 sep_token_idx: int = 5 mask_prob: float = DEFAULT_MASK_PROB show_mask_token_prob: float = DEFAULT_SHOW_MASK_TOKEN_PROB mask_scheme: str = DEFAULT_MASK_SCHEME # TODO limit to possible options span_lambda: float = DEFAULT_SPAN_LAMBDA @dataclass class MolEncTokenizerFromSmilesConfig(): smiles: Tuple[str] = ('c',) regex: str = DEFAULT_REGEX extra_tokens: Optional[List[str]] = None begin_token: str = DEFAULT_BEGIN_TOKEN end_token: str = DEFAULT_END_TOKEN pad_token: str = DEFAULT_PAD_TOKEN unk_token: str = DEFAULT_UNK_TOKEN mask_token: str = DEFAULT_MASK_TOKEN sep_token: str = DEFAULT_SEP_TOKEN mask_prob: float = DEFAULT_MASK_PROB show_mask_token_prob: float = DEFAULT_SHOW_MASK_TOKEN_PROB mask_scheme: str = DEFAULT_MASK_SCHEME # TODO limit to possible options span_lambda: float = DEFAULT_SPAN_LAMBDA class MolEncTokenizer: def __init__( self, vocab, chem_token_idxs, prog, begin_token=DEFAULT_BEGIN_TOKEN, end_token=DEFAULT_END_TOKEN, pad_token=DEFAULT_PAD_TOKEN, unk_token=DEFAULT_UNK_TOKEN, mask_token=DEFAULT_MASK_TOKEN, sep_token=DEFAULT_SEP_TOKEN, mask_prob=DEFAULT_MASK_PROB, show_mask_token_prob=DEFAULT_SHOW_MASK_TOKEN_PROB, mask_scheme=DEFAULT_MASK_SCHEME, span_lambda=DEFAULT_SPAN_LAMBDA ): """ Initialise the tokenizer Args: vocab (List[str]): Vocabulary for tokenizer chem_token_idxs (List[int]): List of idxs of chemical tokens prog (re.Pattern): Regex object for tokenizing begin_token (str): Token to use at start of each sequence end_token (str): Token to use at end of each sequence pad_token (str): Token to use when padding batches of sequences unk_token (str): Token to use for tokens which are not in the vocabulary mask_token (str): Token to use when masking pieces of the sequence sep_token (str): Token to use when sepatating two sentences mask_prob (float): Probability of token being masked when masking is enabled show_mask_token_prob (float): Probability of a masked token being replaced with mask token mask_scheme (str): Masking scheme used by the tokenizer when masking span_lambda (float): Mean for poisson distribution when sampling a span of tokens """ self.vocab = {t: i for i, t in enumerate(vocab)} self.decode_vocab = {i: t for t, i in self.vocab.items()} self.chem_token_idxs = chem_token_idxs self.prog = prog self.begin_token = begin_token self.end_token = end_token self.pad_token = pad_token self.unk_token = unk_token self.mask_token = mask_token self.sep_token = sep_token self.mask_prob = mask_prob self.show_mask_token_prob = show_mask_token_prob self.mask_scheme = mask_scheme self.span_lambda = span_lambda self.unk_id = self.vocab[unk_token] self.unk_token_cnt = {} @staticmethod def from_vocab_file( vocab_path, regex=DEFAULT_REGEX, chem_tokens_start_idx=DEFAULT_CHEM_TOKEN_START, pad_token_idx=0, unk_token_idx=1, begin_token_idx=2, end_token_idx=3, mask_token_idx=4, sep_token_idx=5, mask_prob=DEFAULT_MASK_PROB, show_mask_token_prob=DEFAULT_SHOW_MASK_TOKEN_PROB, mask_scheme=DEFAULT_MASK_SCHEME, span_lambda=DEFAULT_SPAN_LAMBDA, **kwargs ): """ Load the tokenizer object from a vocab file and regex Reads a newline separated list of tokens from a file to use as the vocabulary Note: Assumes that the chemical tokens run from chem_tokens_start_idx to the end of the tokens list Anything after the defined tokens and before chem_tokens_start_idx is assumed to be an extra token and is added to the regex for tokenizing Args: vocab_path (str): Path to vocab file regex (str): Regex to use for tokenizing chem_tokens_start_idx (int): Index of the start of the chemical tokens in the tokens list Returns: MolEncTokenizer object """ text = Path(vocab_path).read_text() tokens = text.split("\n") tokens = [t for t in tokens if t is not None and t != ""] token_idxs = [pad_token_idx, unk_token_idx, begin_token_idx, end_token_idx, mask_token_idx, sep_token_idx] extra_tokens_idxs = range(max(token_idxs) + 1, chem_tokens_start_idx) extra_tokens = [tokens[idx] for idx in extra_tokens_idxs] prog = MolEncTokenizer._get_compiled_regex(regex, extra_tokens) pad_token = tokens[pad_token_idx] unk_token = tokens[unk_token_idx] begin_token = tokens[begin_token_idx] end_token = tokens[end_token_idx] mask_token = tokens[mask_token_idx] sep_token = tokens[sep_token_idx] chem_tokens_idxs = list(range(chem_tokens_start_idx, len(tokens))) tokenizer = MolEncTokenizer( tokens, chem_tokens_idxs, prog, begin_token=begin_token, end_token=end_token, pad_token=pad_token, unk_token=unk_token, mask_token=mask_token, sep_token=sep_token, mask_prob=mask_prob, show_mask_token_prob=show_mask_token_prob, mask_scheme=mask_scheme, span_lambda=span_lambda ) return tokenizer def vocab_size(self): """ Return the size of the vocab being used.""" return len(self.vocab) @staticmethod def from_smiles( smiles, regex=DEFAULT_REGEX, extra_tokens=None, begin_token=DEFAULT_BEGIN_TOKEN, end_token=DEFAULT_END_TOKEN, pad_token=DEFAULT_PAD_TOKEN, unk_token=DEFAULT_UNK_TOKEN, mask_token=DEFAULT_MASK_TOKEN, sep_token=DEFAULT_SEP_TOKEN, mask_prob=DEFAULT_MASK_PROB, show_mask_token_prob=DEFAULT_SHOW_MASK_TOKEN_PROB, mask_scheme=DEFAULT_MASK_SCHEME, span_lambda=DEFAULT_SPAN_LAMBDA ): """ Build the tokenizer from smiles strings and a regex Args: smiles (List[str]): SMILES strings to use to build vocabulary regex (str): Regex to use for tokenizing extra_tokens (Optional[List[str]]): Additional tokens to add to the vocabulary that may not appear in the SMILES strings """ vocab = { pad_token: 0, unk_token: 1, begin_token: 2, end_token: 3, mask_token: 4, sep_token: 5 } extra_tokens = [] if extra_tokens is None else extra_tokens [vocab.setdefault(token, len(vocab)) for token in extra_tokens] chem_start_idx = len(vocab) prog = MolEncTokenizer._get_compiled_regex(regex, extra_tokens) print(f"Chemistry tokens start at index {chem_start_idx}") for smi in smiles: for token in prog.findall(smi): vocab.setdefault(token, len(vocab)) chem_token_idxs = list(range(chem_start_idx, len(vocab))) vocab = sorted(vocab.items(), key=lambda k_v: k_v[1]) vocab = [key for key, val in vocab] tokenizer = MolEncTokenizer( vocab, chem_token_idxs, prog, begin_token=begin_token, end_token=end_token, pad_token=pad_token, unk_token=unk_token, mask_token=mask_token, sep_token=sep_token, mask_prob=mask_prob, show_mask_token_prob=show_mask_token_prob, mask_scheme=mask_scheme, span_lambda=span_lambda ) return tokenizer def save_vocab(self, vocab_path): tokens = sorted(self.vocab.items(), key=lambda k_v: k_v[1]) tokens = [key for key, val in tokens] tokens_str = "" for token in tokens: tokens_str += f"{token}\n" p = Path(vocab_path) p.write_text(tokens_str) def __len__(self): return len(self.vocab) def tokenize(self, sents1, sents2=None, mask=False, pad=False): # TODO this function needs cleanup if sents2: warnings.simplefilter('error', DeprecationWarning) # This functionality does not work, fail loudly warnings.warn('Sentence tokenization is not currently supported in MegaMolBART and will not produce correct results', category=DeprecationWarning) if pad is True: warnings.simplefilter('always', DeprecationWarning) warnings.warn('Padding by the tokenizer is not supported in this version of MegaMolBART and may not produce correct results', category=DeprecationWarning) if sents2 is not None and len(sents1) != len(sents2): raise ValueError("Sentence 1 batch and sentence 2 batch must have the same number of elements") tokens = self._regex_match(sents1) m_tokens, token_masks = self.mask_tokens(tokens, empty_mask=not mask) sent_masks = None if sents2 is not None: sents2_tokens = self._regex_match(sents2) sents2_m_tokens, sents2_masks = self.mask_tokens(sents2_tokens, empty_mask=not mask) tokens, sent_masks = self._concat_sentences(tokens, sents2_tokens, self.sep_token) m_tokens, _ = self._concat_sentences(m_tokens, sents2_m_tokens, self.sep_token) token_masks, _ = self._concat_sentences(token_masks, sents2_masks, False) # TODO this removes bos/eos addition since NeMo handles differently. # Now handled in collate function # tokens = [[self.begin_token] + ts + [self.end_token] for ts in tokens] # m_tokens = [[self.begin_token] + ts + [self.end_token] for ts in m_tokens] # token_masks = [[True] + ts + [True] for ts in token_masks] # sent_masks = [[1] + mask + [0] for mask in sent_masks] if sent_masks is not None else None output = {} if pad: tokens, orig_pad_masks = self._pad_seqs(tokens, self.pad_token) m_tokens, masked_pad_masks = self._pad_seqs(m_tokens, self.pad_token) token_masks, _ = self._pad_seqs(token_masks, False) sent_masks, _ = self._pad_seqs(sent_masks, False) if sent_masks is not None else (None, None) output["original_pad_masks"] = orig_pad_masks output["masked_pad_masks"] = masked_pad_masks output["original_tokens"] = tokens if mask: output["masked_tokens"] = m_tokens output["token_masks"] = token_masks if sent_masks is not None: output["sentence_masks"] = sent_masks return output def _regex_match(self, smiles): tokenized = [] for smi in smiles: tokens = self.prog.findall(smi) tokenized.append(tokens) return tokenized @staticmethod def _get_compiled_regex(regex, extra_tokens): regex_string = r"(" for token in extra_tokens: processed_token = token for special_character in "()[].|": processed_token = processed_token.replace(special_character, f"\\{special_character}") regex_string += processed_token + r"|" regex_string += regex + r"|" regex_string += r".)" return re.compile(regex_string) @staticmethod def _concat_sentences(tokens1, tokens2, sep): warnings.simplefilter('error', DeprecationWarning) # This function does not work, fail loudly warnings.warn('Sentence tokenization is not currently supported in MegaMolBART and will not produce correct results', category=DeprecationWarning) tokens = [ts1 + [sep] + ts2 for ts1, ts2 in zip(tokens1, tokens2)] sent_masks = [([1] * len(ts1)) + [1] + ([0] * len(ts2)) for ts1, ts2 in zip(tokens1, tokens2)] # 1/True = Active, 0/False = Inactive return tokens, sent_masks def detokenize(self, tokens_list): new_tokens_list = [] for tokens in tokens_list: if tokens[0] == self.begin_token: tokens = tokens[1:] # Remove any tokens after the end token (and end token) if it's there if self.end_token in tokens: end_token_idx = tokens.index(self.end_token) tokens = tokens[:end_token_idx] new_tokens_list.append(tokens) strs = ["".join(tokens) for tokens in new_tokens_list] return strs def convert_tokens_to_ids(self, token_data): ids_list = [] for tokens in token_data: for token in tokens: token_id = self.vocab.get(token) if token_id is None: self._inc_in_dict(self.unk_token_cnt, token) ids = [self.vocab.get(token, self.unk_id) for token in tokens] ids_list.append(ids) return ids_list def convert_ids_to_tokens(self, token_ids): tokens_list = [] for ids in token_ids: for token_id in ids: token = self.decode_vocab.get(token_id) if token is None: raise ValueError(f"Token id {token_id} is not recognised") tokens = [self.decode_vocab.get(token_id) for token_id in ids] tokens_list.append(tokens) return tokens_list def print_unknown_tokens(self): print(f"{'Token':<10}Count") for token, cnt in self.unk_token_cnt.items(): print(f"{token:<10}{cnt}") print() @staticmethod def _inc_in_dict(coll, item): cnt = coll.get(item, 0) cnt += 1 coll[item] = cnt def mask_tokens(self, tokens, empty_mask=False): if empty_mask: mask = [[True] * len(ts) for ts in tokens] return tokens, mask masked_tokens = [] token_masks = [] for ts in tokens: if self.mask_scheme == "replace": masked, token_mask = self._mask_replace(ts) elif self.mask_scheme == "span": masked, token_mask = self._mask_span(ts) else: raise ValueError(f"Unrecognised mask scheme: {self.mask_scheme}") masked_tokens.append(masked) token_masks.append(token_mask) return masked_tokens, token_masks def _mask_replace(self, ts): mask_bools = [True, False] weights = [self.mask_prob, 1 - self.mask_prob] token_mask = random.choices(mask_bools, weights=weights, k=len(ts)) masked = [self._mask_token(ts[i]) if m else ts[i] for i, m in enumerate(token_mask)] return masked, token_mask def _mask_span(self, ts): curr_token = 0 masked = [] token_mask = [] mask_bools = [True, False] weights = [self.mask_prob, 1 - self.mask_prob] sampled_mask = random.choices(mask_bools, weights=weights, k=len(ts)) while curr_token < len(ts): # If mask, sample from a poisson dist to get length of mask if sampled_mask[curr_token]: mask_len = torch.poisson(torch.tensor(self.span_lambda)).long().item() masked.append(self.mask_token) token_mask.append(True) curr_token += mask_len # Otherwise don't mask else: masked.append(ts[curr_token]) token_mask.append(False) curr_token += 1 return masked, token_mask def _mask_token(self, token): rand = random.random() if rand < self.show_mask_token_prob: return self.mask_token elif rand < self.show_mask_token_prob + ((1 - self.show_mask_token_prob) / 2): token_idx = random.choice(self.chem_token_idxs) return self.decode_vocab[token_idx] else: return token @staticmethod def _pad_seqs(seqs, pad_token): warnings.simplefilter('always', DeprecationWarning) warnings.warn('Padding by the tokenizer is not supported in this version of MegaMolBART and may not produce correct results', category=DeprecationWarning) pad_length = max([len(seq) for seq in seqs]) padded = [seq + ([pad_token] * (pad_length - len(seq))) for seq in seqs] masks = [([1] * len(seq)) + ([0] * (pad_length - len(seq))) for seq in seqs] return padded, masks # NeMo compatbility @property def vocab_size(self): return len(self.vocab) def tokens_to_ids(self, token_data): return self.convert_tokens_to_ids(token_data) def ids_to_tokens(self, ids): return self.convert_ids_to_tokens(ids) def tokens_to_text(self, tokens_list): return self.detokenize(tokens_list) @property def pad_id(self): return self.tokens_to_ids([[self.pad_token]])[0][0] @property def bos_token(self): return self.begin_token @property def bos_id(self): return self.tokens_to_ids([[self.bos_token]])[0][0] @property def eos_token(self): return self.end_token @property def eos_id(self): return self.tokens_to_ids([[self.eos_token]])[0][0] @property def sep_id(self): return self.tokens_to_ids([[self.sep_token]])[0][0] @property def mask_id(self): return self.tokens_to_ids([[self.mask_token]])[0][0] # @property # def cls_id(self): # return self.tokens_to_ids([[self.cls_token]])[0][0]
MegaMolBART-dev
nemo_chem/tokenizer/tokenizer.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from collections import defaultdict from dataclasses import asdict from nemo.utils import logging def update_dataclass_config(cfg, dataset_config_class): """Update a dataset configuration with existing defaults""" default_cfg = asdict(dataset_config_class()) default_cfg.update(cfg) return default_cfg def recursive_make_dirs(directory): """Recursively create required directory structure""" logging.info(f'Creating directory {str(directory)}...') if isinstance(directory, str): directory = Path(directory) directory.mkdir(parents=True, exist_ok=True) def flatten_dict(list_of_dicts): """Flatten a list of dictionaries to list without assuming all keys are identical""" flattened_dict = defaultdict(list) for metric_dict in list_of_dicts: for metric_name, metric_value in metric_dict.items(): flattened_dict[metric_name].append(metric_value) return flattened_dict
MegaMolBART-dev
nemo_chem/utils/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
MegaMolBART-dev
nemo_chem/models/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from omegaconf.dictconfig import DictConfig from rdkit import Chem import torch from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.models.language_modeling.megatron_lm_encoder_decoder_model import MegatronLMEncoderDecoderModel from nemo.utils import logging from nemo.collections.nlp.modules.common.megatron.utils import average_losses_across_data_parallel_group from nemo_chem.utils import flatten_dict from nemo_chem.data import DatasetTypes, MoleculeEnumeration, build_train_valid_test_datasets, PrepareDataset # Disable logging of invalid SMILES moloecules from rdkit import RDLogger lg = RDLogger.logger() lg.setLevel(RDLogger.CRITICAL) __all__ = ["MegaMolBARTModel"] class MegaMolBARTModel(MegatronLMEncoderDecoderModel): """ MegaMolBART pretraining """ def __init__(self, cfg: DictConfig, trainer: Trainer): self._check_scheduler(cfg) super().__init__(cfg, trainer=trainer) def _check_scheduler(self, cfg): """Warn if maximum learning rate with Noam is less than minimum learning rate""" # TODO add to Noam Scheduler in NeMo if cfg.optim.sched.name == 'NoamAnnealing': if cfg.optim.sched.warmup_steps: warmup_steps = cfg.optim.sched.warmup_steps else: warmup_steps = int(cfg.optim.sched.warmup_ratio * cfg.optim.sched.max_steps) max_lr = cfg.optim.lr * cfg.optim.sched.d_model**(-0.5) * warmup_steps**(-0.5) min_lr = cfg.optim.sched.min_lr if max_lr <= min_lr: logging.warning(f'Warning: maximum learning rate for Noam Scheduler ({max_lr}) is less than minimum ({min_lr}).') return def build_train_valid_test_datasets(self): logging.info('Building MegaMolBART datasets.') tensor_model_parallel_size = self._cfg.get('tensor_model_parallel_size', 1) global_batch_size = self.trainer.world_size * self._cfg.micro_batch_size / tensor_model_parallel_size eval_iters = (self.trainer.max_steps // self.trainer.val_check_interval + 1) * self.trainer.limit_val_batches test_iters = self.trainer.limit_test_batches train_valid_test_num_samples = [ int(self.trainer.max_steps * global_batch_size), int(eval_iters * global_batch_size), int(test_iters * global_batch_size), ] if self._cfg.data.get('dataset_type', None) is not None: dataset_types = DatasetTypes.__members__ if self._cfg.data.get('dataset_type') not in dataset_types: raise ValueError(f"dataset_type must be in {dataset_types}. Found {self._cfg.data.get('dataset_type')}") self._train_ds, self._validation_ds, self._test_ds = build_train_valid_test_datasets( self._cfg.data, self.trainer, train_valid_test_num_samples ) logging.info(f'Length of train dataset: {len(self._train_ds)}') logging.info(f'Length of val dataset: {len(self._validation_ds)}') logging.info(f'Length of test dataset: {len(self._test_ds)}') logging.info(f'Finished building MegaMolBART datasets.') return self._train_ds, self._validation_ds, self._test_ds def build_pretraining_data_loader(self, dataset, consumed_samples): """Buld dataloader given an input dataset.""" assert self._cfg.data.dataloader_type == 'single', AssertionError( f'Only the Megatron sequential ("single") sampler is currently supported. {self._cfg.data.dataloader_type} was chosen.' ) dataloader = super().build_pretraining_data_loader(dataset=dataset, consumed_samples=consumed_samples) # Add collate function and unpin memory to avoid crash with CUDA misaligned address dataloader.pin_memory = False # must be False with CSV dataset TODO check with binary pad_size_divisible_by_8 = True if self._cfg.masked_softmax_fusion else False ## TODO: We can use the Enum DatasetType() defined in the utils.py here. if self._cfg.data.dataset_format == "bin": dataloader.collate_fn = PrepareDataset(tokenizer=self.tokenizer, seq_length=self._cfg.seq_length, pad_size_divisible_by_8=pad_size_divisible_by_8, **self._cfg.data).collate_fn elif self._cfg.data.dataset_format == "csv": dataloader.collate_fn = MoleculeEnumeration(tokenizer=self.tokenizer, seq_length=self._cfg.seq_length, pad_size_divisible_by_8=pad_size_divisible_by_8, **self._cfg.data).collate_fn return dataloader def process_global_batch(self, global_batch): # FIXME: move to device correctly # FIXME: move to precission correctly (fails with 16) tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask = ( global_batch["text_enc"], global_batch["text_dec"], global_batch["loss_mask"], global_batch["labels"], global_batch["enc_mask"], global_batch["dec_mask"], ) device = next(self.parameters()).device tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask = [t.to(device) for t in (tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask)] return (tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask) def _inference_epoch_end(self, outputs, mode): results_dict = flatten_dict(outputs) # Calculate metric averages # TODO this reduces all metrics across all data parallel groups # if too slow, can only reduce loss instead averaged_results = {} for metric_name, metric_list in results_dict.items(): reduced_metric = average_losses_across_data_parallel_group(metric_list) logged_name = 'reduced_loss' if metric_name == 'loss' else metric_name averaged_results[logged_name] = reduced_metric.cpu().detach().numpy().mean() # Log results log_list = [] for metric_name, metric_val in averaged_results.items(): metric_name = metric_name.replace('_', ' ').title() log_list.append(f'{metric_name}: {metric_val:.2f}') logging.info(f'{mode.title()} Results: ' + ', '.join(log_list)) # Prepend val/test tag to metric for Tensorboard / WandB logged_results = {} for metric_name, metric_val in averaged_results.items(): logged_results[f'{mode}_{metric_name}'] = metric_val self.log_dict(logged_results, prog_bar=True) def validation_step(self, batch, batch_idx): loss_mean = super().validation_step(batch, batch_idx) token_logits = self.validation_step_logits(batch, batch_idx) tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask = \ self.process_global_batch(batch) target_smiles = batch['target_smiles'] token_logits[:, :, self.tokenizer.vocab_size:] = -float('Inf') # never pick padded tokens log_n_batches=10 log_mol = True if batch_idx < log_n_batches else False # TODO enable logging in yaml config metrics = self.calculate_metrics(token_logits=token_logits, loss_mask=loss_mask, labels=labels, tokens_enc=tokens_enc, enc_mask=enc_mask, target_smiles=target_smiles, batch_idx=batch_idx, log_char=False, log_mol=log_mol) logs = {'loss': loss_mean} for metric_name, metric_value in metrics.items(): logs[metric_name] = metric_value # return loss_mean return logs def validation_epoch_end(self, outputs): if len(outputs) == 0: return logging.info('Finishing validation epoch') all_keys = list(outputs[0].keys()) new_outputs = {} for k in all_keys: new_outputs[k] = super().validation_epoch_end([o[k] for o in outputs]) self._inference_epoch_end(outputs, mode='val') def test_epoch_end(self, outputs): logging.info('Finishing test epoch') super().test_epoch_end(outputs) self._inference_epoch_end(outputs, mode='test') def sample_molecules(self, tokens_enc, enc_mask, hidden_states=None): """Autoregressively sample SMILES molecules from encoder hidden state Args: tokens_enc (torch.Tensor, long): token ID values for samples enc_mask (torch.Tensor, long): boolean mask for padded sections Returns: sampled_smiles (list[str]): a list of sampled SMILES strings """ self.freeze() # Decode encoder hidden state to tokens predicted_tokens_ids, log_probs = self.decode(tokens_enc, enc_mask, self._cfg.max_position_embeddings, enc_output=hidden_states) predicted_tokens_ids = predicted_tokens_ids.cpu().detach().numpy().tolist() # Prune tokens by eos / padding and convert to SMILES for item, predicted_tokens_ in enumerate(predicted_tokens_ids): if self.tokenizer.eos_id in predicted_tokens_: idx = predicted_tokens_.index(self.tokenizer.eos_id) predicted_tokens_ids[item] = predicted_tokens_[:idx] else: # NB: this is slightly different from previous version in that pad tokens can be in the middle of sequence predicted_tokens_ids[item] = [id for id in predicted_tokens_ if id != self.tokenizer.pad_id] predicted_tokens_text = self.tokenizer.ids_to_tokens(predicted_tokens_ids) sampled_smiles = self.tokenizer.tokens_to_text(predicted_tokens_text) self.unfreeze() return sampled_smiles def calculate_character_accuracy(self, token_logits, loss_mask, labels, batch_idx=None, log=False): """Character (token) level accuracy Args: token_logits (torch.Tensor, float): softmax values for all tokens loss_mask (torch.Tensor, float): binary mask for ignored data (1=active, 0=mask), must be float labels (torch.Tensor, long): token IDs for correct output Returns: float: character accuracy value """ # Get most probable token _, predicted_tokens = torch.max(token_logits, dim=2) correct_tokens = torch.eq(labels, predicted_tokens) * loss_mask # NB: mask includes EOS in calculation # Calculate percent of correct tokens num_correct = correct_tokens.detach().sum() total = loss_mask.detach().sum() character_accuracy = num_correct / total if log: logging.info(f'Character accuracy for batch {batch_idx}:') for idx in range(predicted_tokens.shape[0]): mask = loss_mask[idx].to(int) correct_ = labels[idx][mask] == predicted_tokens[idx][mask] logging.info(f' Sample {idx} has {correct_} / {sum(mask)}') return character_accuracy def calculate_molecular_accuracy(self, tokens_enc, enc_mask, target_smiles, batch_idx=None, log=False): """Calculate molecular accuracy (with canonicalization) Args: tokens_enc (torch.Tensor, long): token ID values for samples enc_mask (torch.Tensor, long): boolean mask for padded sections target_smiles (str): ground truth for canonicalized SMILES Returns: float, float: molecular accuracy and percent invalid """ sampled_smiles = self.sample_molecules(tokens_enc, enc_mask) sampled_mols = [Chem.MolFromSmiles(smi) for smi in sampled_smiles] invalid = [mol is None for mol in sampled_mols] canonical_smiles = ["Unknown" if mol is None else Chem.MolToSmiles(mol, canonical=True) for mol in sampled_mols] correct_smiles = [target_smiles[idx] == smi for idx, smi in enumerate(canonical_smiles)] num_correct = sum(correct_smiles) total = len(correct_smiles) num_invalid = sum(invalid) percent_invalid = torch.tensor([num_invalid / total]).to(tokens_enc.device) molecular_accuracy = torch.tensor([num_correct / total]).to(tokens_enc.device) if log: logging.info(f'Molecular accuracy for batch {batch_idx}:') for idx, (invalid_, correct_) in enumerate(zip(invalid, correct_smiles)): if invalid_: result = 'invalid' elif correct_: result = 'correct' else: result = 'incorrect' logging.info(f' Sample {idx} is {result}, target: {target_smiles[idx]}, sample: {sampled_smiles[idx]}') return molecular_accuracy, percent_invalid def calculate_metrics(self, token_logits, loss_mask, labels, tokens_enc, enc_mask, target_smiles, batch_idx=None, log_char=False, log_mol=False): """Calculate metrics for character accuracy, molecular accuracy, and invalid molecules Args: token_logits (torch.Tensor, float): softmax values for all tokens loss_mask (torch.Tensor, float): binary mask for ignored data (1=active, 0=mask), must be float labels (torch.Tensor, long): token IDs for correct output tokens_enc (torch.Tensor, long): token ID values for samples enc_mask (torch.Tensor, long): boolean mask for padded sections target_smiles (str): ground truth for canonicalized SMILES Returns: dict: dictionary of metric values """ character_accuracy = self.calculate_character_accuracy(token_logits, loss_mask, labels, batch_idx, log=log_char) molecular_accuracy, percent_invalid = self.calculate_molecular_accuracy(tokens_enc, enc_mask, target_smiles, batch_idx, log=log_mol) metrics = {'character_accuracy': character_accuracy, 'molecular_accuracy': molecular_accuracy, 'percent_invalid': percent_invalid} return metrics def list_available_models(self): pass
MegaMolBART-dev
nemo_chem/models/megamolbart/megamolbart_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. # SPDX-License-Identifier: Apache-2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .megamolbart_model import * from .infer import *
MegaMolBART-dev
nemo_chem/models/megamolbart/__init__.py
import logging import torch from typing import List from omegaconf import OmegaConf from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.parts.nlp_overrides import (NLPDDPPlugin, NLPSaveRestoreConnector) from nemo.utils.app_state import AppState from nemo_chem.data import MoleculeEnumeration from nemo_chem.models.megamolbart import MegaMolBARTModel log = logging.getLogger(__name__) __all__ = ["NeMoMegaMolBARTWrapper"] class NeMoMegaMolBARTWrapper(): ''' Implements functions to infer using MegaMolBART model ''' def __init__(self, model_cfg=None, random_weights=False) -> None: super().__init__() if model_cfg is None: log.info('Loading default configuration...') model_cfg = OmegaConf.load( '/workspace/nemo_chem/examples/chem/conf/infer.yaml') if random_weights: model_cfg['model']['model_path'] = None self.model = self.load_model(model_cfg) self.cfg = self.model._cfg self.max_seq_len = self.cfg.max_position_embeddings self.tokenizer = self.model.tokenizer pad_size_divisible_by_8 = True if self.cfg.masked_softmax_fusion else False self.mol_enum = MoleculeEnumeration(tokenizer=self.tokenizer, seq_length=self.cfg.seq_length, pad_size_divisible_by_8=pad_size_divisible_by_8, **self.cfg.data) self.mol_enum.encoder_mask = False self.mol_enum.encoder_augment = False self.mol_enum.encoder_mask = False self.mol_enum.canonicalize_input = False self.mol_enum.decoder_augment = False self.mol_enum.decoder_mask = False self.mol_enum.mask_prob = 0 def _tokenize(self, smis: List[str]): tokens = [self.tokenizer.text_to_tokens(s) for s in smis] token_ids = [self.tokenizer.token_to_ids(t) for t in tokens] pad_length = max([len(seq) for seq in token_ids]) # if self.pad_size_divisible_by_8: # pad_length = int(math.ceil(pad_length/8) * 8) # 1/True = Active, 0/False = Inactive encoder_mask = [([1] * len(seq)) + ([0] * (pad_length - len(seq))) for seq in token_ids] token_ids = [seq + ([self.tokenizer.pad_id] * (pad_length - len(seq))) for seq in token_ids] token_ids = torch.tensor(token_ids, dtype=torch.int64).cuda() encoder_mask = torch.tensor(encoder_mask, dtype=torch.int64, device=token_ids.device) return token_ids, encoder_mask def _transform(self, smis): ''' Transforms SMILES into hidden state. Args: smis (list[str]): list of SMILES strings Returns: tokens_enc (torch.Tensor, long): token ID values for samples hidden_states (torch.Tensor, float): enc_mask (torch.Tensor, long): boolean mask for padded sections ''' tokens_enc, enc_mask = self._tokenize(smis) hidden_states = self.model.encode(tokens_enc, enc_mask) return hidden_states, enc_mask def load_model(self, model_cfg): """Load saved model checkpoint Params: checkpoint_path: path to nemo checkpoint Returns: MegaMolBART trained model # """ torch.set_grad_enabled(False) # trainer required for restoring model parallel models trainer = Trainer( plugins=NLPDDPPlugin(), devices=1, accelerator='gpu', precision=32, #TODO: Run benchmark to verify this value has no or # minimum impact on KPIs. ) app_state = AppState() if model_cfg.model.model_path is not None: model = MegaMolBARTModel.restore_from( restore_path=model_cfg.model.model_path, trainer=trainer, save_restore_connector=NLPSaveRestoreConnector(), ) else: # Initialize with random weights cfg = OmegaConf.load( '/workspace/nemo_chem/examples/chem/conf/megamolbart_pretrain_base.yaml') cfg.model.num_layers=6 cfg.model.hidden_size=512 cfg.model.num_attention_heads=8 cfg.model.precision = cfg.trainer.precision model = MegaMolBARTModel(cfg.model, trainer) model.freeze() return model def smis_to_hidden(self, smis: List[str]): """Compute hidden-state and padding mask for smiles. Params smi: string, input SMILES molecule Returns hidden-state array and boolean mask """ if isinstance(smis, str): smis = [smis] hidden_states, enc_masks = self._transform(smis) return hidden_states, enc_masks def smis_to_embedding(self, smis: List[str]): """Computes embedding and padding mask for smiles. Params smi: string, input SMILES molecule Returns hidden-state array and boolean mask """ if isinstance(smis, str): smis = [smis] hiddens, _ = self.smis_to_hidden(smis) return torch.mean(hiddens, dim=1) def hidden_to_smis(self, hidden_states, enc_mask): predicted_tokens_ids, _ = self.model.decode(None, enc_mask, self.cfg.max_position_embeddings, enc_output=hidden_states) predicted_tokens_ids = predicted_tokens_ids.cpu().detach().numpy().tolist() for i, predicted_token_id in enumerate(predicted_tokens_ids): if self.tokenizer.eos_id in predicted_token_id: idx = predicted_token_id.index(self.tokenizer.eos_id) predicted_tokens_ids[i] = predicted_token_id[:idx] else: predicted_tokens_ids[i] = [id for id in predicted_token_id if id != self.tokenizer.pad_id] smis = self.tokenizer.ids_to_text(predicted_tokens_ids) return smis def sample(self, smis, num_samples=10, return_embedding=False, sampling_method='greedy-perturbate', sampling_kwarg={'scaled_radius': 1, 'topk': 10}): """ Sample from model given hidden states and mask """ hidden_states, enc_masks = self.smis_to_hidden(smis) if sampling_method == 'greedy-perturbate': # 1.1 is experimentally derived. At this radius we get optimal # sampling KPIs values. scaled_radius = 1.1 * sampling_kwarg['scaled_radius'] sample_masks = enc_masks.repeat_interleave(num_samples, 0) perturbed_hiddens = hidden_states.repeat_interleave(num_samples, 0) perturbed_hiddens = perturbed_hiddens + (scaled_radius * torch.randn(perturbed_hiddens.shape).to(perturbed_hiddens.device)) samples = self.hidden_to_smis(perturbed_hiddens, sample_masks) if return_embedding: embs = torch.mean(perturbed_hiddens, dim=1) else: raise ValueError(f'Invalid samping method {sampling_method}') if return_embedding: return samples, embs else: return samples
MegaMolBART-dev
nemo_chem/models/megamolbart/infer.py
import grpc import torch import logging from concurrent import futures from hydra import compose, initialize from nemo_chem.models.megamolbart import NeMoMegaMolBARTWrapper import megamolbart_pb2_grpc from megamolbart_pb2 import OutputSpec logger = logging.getLogger(__name__) class InferenceService(megamolbart_pb2_grpc.GenerativeSampler): def __init__(self): if not hasattr(self, '_inferer'): with initialize(config_path="../../../../examples/chem/conf"): inf_cfg = compose(config_name="infer") self._inferer = NeMoMegaMolBARTWrapper(model_cfg=inf_cfg) def SmilesToEmbedding(self, spec, context): embeddings = self._inferer.smis_to_embedding(spec.smis) output = OutputSpec(embeddings=embeddings.flatten().tolist(), dim=embeddings.shape) return output def SmilesToHidden(self, spec, context): hidden_states, pad_masks = self._inferer.smis_to_hidden(spec.smis) output = OutputSpec(hidden_states=hidden_states.flatten().tolist(), dim=hidden_states.shape, masks=pad_masks.flatten().tolist()) return output def HiddenToSmis(self, spec, context): pad_mask = torch.BoolTensor(list(spec.masks)) pad_mask = torch.reshape(pad_mask, tuple(spec.dim[:2])).cuda() hidden_states = torch.FloatTensor(list(spec.hidden_states)) hidden_states = torch.reshape(hidden_states, tuple(spec.dim)).cuda() smis = self._inferer.hidden_to_smis(hidden_states, pad_mask) output = OutputSpec(smis=smis) return output def main(): server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) megamolbart_pb2_grpc.add_GenerativeSamplerServicer_to_server( InferenceService(), server) server.add_insecure_port(f'[::]:{50051}') server.start() server.wait_for_termination() if __name__ == "__main__": main()
MegaMolBART-dev
nemo_chem/models/megamolbart/grpc/service.py
MegaMolBART-dev
nemo_chem/models/megamolbart/grpc/__init__.py