python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright 2015 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runs protoc with the gRPC plugin to generate messages and gRPC stubs.""" from grpc_tools import protoc protoc.main(( '', '-Iprotos', '--python_out=.', '--grpc_python_out=.', 'proto/riva_nlp.proto', ))
speechsquad-master
reference/qa/run_codegen.py
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim: fileencoding=utf-8 # # Copyright © 2009 Adrian Perez <[email protected]> # # Distributed under terms of the GPLv2 license or newer. # # Frank Marien ([email protected]) 6 Sep 2012 # - quick fixes for 5.1 binary protocol # - updated to python 3 # - fixed for larger packet sizes (possible on lo interface) # - fixed comment typo (decode_network_string decodes a string) """ Collectd network protocol implementation. """ import socket,struct import platform if platform.python_version() < '2.8.0': # Python 2.7 and below io.StringIO does not like unicode from StringIO import StringIO else: try: from io import StringIO except ImportError: from cStringIO import StringIO from datetime import datetime from copy import deepcopy DEFAULT_PORT = 25826 """Default port""" DEFAULT_IPv4_GROUP = "239.192.74.66" """Default IPv4 multicast group""" DEFAULT_IPv6_GROUP = "ff18::efc0:4a42" """Default IPv6 multicast group""" HR_TIME_DIV = (2.0**30) # Message kinds TYPE_HOST = 0x0000 TYPE_TIME = 0x0001 TYPE_TIME_HR = 0x0008 TYPE_PLUGIN = 0x0002 TYPE_PLUGIN_INSTANCE = 0x0003 TYPE_TYPE = 0x0004 TYPE_TYPE_INSTANCE = 0x0005 TYPE_VALUES = 0x0006 TYPE_INTERVAL = 0x0007 TYPE_INTERVAL_HR = 0x0009 # For notifications TYPE_MESSAGE = 0x0100 TYPE_SEVERITY = 0x0101 # DS kinds DS_TYPE_COUNTER = 0 DS_TYPE_GAUGE = 1 DS_TYPE_DERIVE = 2 DS_TYPE_ABSOLUTE = 3 header = struct.Struct("!2H") number = struct.Struct("!Q") short = struct.Struct("!H") double = struct.Struct("<d") def decode_network_values(ptype, plen, buf): """Decodes a list of DS values in collectd network format """ nvalues = short.unpack_from(buf, header.size)[0] off = header.size + short.size + nvalues valskip = double.size # Check whether our expected packet size is the reported one assert ((valskip + 1) * nvalues + short.size + header.size) == plen assert double.size == number.size result = [] for dstype in [ord(x) for x in buf[header.size+short.size:off]]: if dstype == DS_TYPE_COUNTER: result.append((dstype, number.unpack_from(buf, off)[0])) off += valskip elif dstype == DS_TYPE_GAUGE: result.append((dstype, double.unpack_from(buf, off)[0])) off += valskip elif dstype == DS_TYPE_DERIVE: result.append((dstype, number.unpack_from(buf, off)[0])) off += valskip elif dstype == DS_TYPE_ABSOLUTE: result.append((dstype, number.unpack_from(buf, off)[0])) off += valskip else: raise ValueError("DS type %i unsupported" % dstype) return result def decode_network_number(ptype, plen, buf): """Decodes a number (64-bit unsigned) from collectd network format. """ return number.unpack_from(buf, header.size)[0] def decode_network_string(msgtype, plen, buf): """Decodes a string from collectd network format. """ return buf[header.size:plen-1] # Mapping of message types to decoding functions. _decoders = { TYPE_VALUES : decode_network_values, TYPE_TIME : decode_network_number, TYPE_TIME_HR : decode_network_number, TYPE_INTERVAL : decode_network_number, TYPE_INTERVAL_HR : decode_network_number, TYPE_HOST : decode_network_string, TYPE_PLUGIN : decode_network_string, TYPE_PLUGIN_INSTANCE: decode_network_string, TYPE_TYPE : decode_network_string, TYPE_TYPE_INSTANCE : decode_network_string, TYPE_MESSAGE : decode_network_string, TYPE_SEVERITY : decode_network_number, } def decode_network_packet(buf): """Decodes a network packet in collectd format. """ off = 0 blen = len(buf) while off < blen: ptype, plen = header.unpack_from(buf, off) if plen > blen - off: raise ValueError("Packet longer than amount of data in buffer") if ptype not in _decoders: raise ValueError("Message type %i not recognized" % ptype) yield ptype, _decoders[ptype](ptype, plen, buf[off:]) off += plen class Data(object): time = 0 host = None plugin = None plugininstance = None type = None typeinstance = None def __init__(self, **kw): [setattr(self, k, v) for k, v in kw.items()] @property def datetime(self): return datetime.fromtimestamp(self.time) @property def source(self): buf = StringIO() if self.host: buf.write(str(self.host)) if self.plugin: buf.write("/") buf.write(str(self.plugin)) if self.plugininstance: buf.write("/") buf.write(str(self.plugininstance)) if self.type: buf.write("/") buf.write(str(self.type)) if self.typeinstance: buf.write("/") buf.write(str(self.typeinstance)) return buf.getvalue() def __str__(self): return "[%i] %s" % (self.time, self.source) class Notification(Data): FAILURE = 1 WARNING = 2 OKAY = 4 SEVERITY = { FAILURE: "FAILURE", WARNING: "WARNING", OKAY : "OKAY", } __severity = 0 message = "" def __set_severity(self, value): if value in (self.FAILURE, self.WARNING, self.OKAY): self.__severity = value severity = property(lambda self: self.__severity, __set_severity) @property def severitystring(self): return self.SEVERITY.get(self.severity, "UNKNOWN") def __str__(self): return "%s [%s] %s" % ( super(Notification, self).__str__(), self.severitystring, self.message) class Values(Data, list): def __str__(self): return "%s %s" % (Data.__str__(self), list.__str__(self)) def interpret_opcodes(iterable): vl = Values() nt = Notification() for kind, data in iterable: if kind == TYPE_TIME: vl.time = nt.time = data elif kind == TYPE_TIME_HR: vl.time = nt.time = data / HR_TIME_DIV elif kind == TYPE_INTERVAL: vl.interval = data elif kind == TYPE_INTERVAL_HR: vl.interval = data / HR_TIME_DIV elif kind == TYPE_HOST: vl.host = nt.host = data elif kind == TYPE_PLUGIN: vl.plugin = nt.plugin = data elif kind == TYPE_PLUGIN_INSTANCE: vl.plugininstance = nt.plugininstance = data elif kind == TYPE_TYPE: vl.type = nt.type = data elif kind == TYPE_TYPE_INSTANCE: vl.typeinstance = nt.typeinstance = data elif kind == TYPE_SEVERITY: nt.severity = data elif kind == TYPE_MESSAGE: nt.message = data yield deepcopy(nt) elif kind == TYPE_VALUES: vl[:] = data yield deepcopy(vl) class Reader(object): """Network reader for collectd data. Listens on the network in a given address, which can be a multicast group address, and handles reading data when it arrives. """ addr = None host = None port = DEFAULT_PORT BUFFER_SIZE = 16384 def __init__(self, host=None, port=DEFAULT_PORT, multicast=False): if host is None: multicast = True host = DEFAULT_IPv4_GROUP self.host, self.port = host, port self.ipv6 = ":" in self.host family, socktype, proto, canonname, sockaddr = socket.getaddrinfo( None if multicast else self.host, self.port, socket.AF_INET6 if self.ipv6 else socket.AF_UNSPEC, socket.SOCK_DGRAM, 0, socket.AI_PASSIVE)[0] self._sock = socket.socket(family, socktype, proto) self._sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self._sock.bind(sockaddr) if multicast: if hasattr(socket, "SO_REUSEPORT"): self._sock.setsockopt( socket.SOL_SOCKET, socket.SO_REUSEPORT, 1) val = None if family == socket.AF_INET: assert "." in self.host val = struct.pack("4sl", socket.inet_aton(self.host), socket.INADDR_ANY) elif family == socket.AF_INET6: raise NotImplementedError("IPv6 support not ready yet") else: raise ValueError("Unsupported network address family") self._sock.setsockopt( socket.IPPROTO_IPV6 if self.ipv6 else socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, val) self._sock.setsockopt( socket.IPPROTO_IPV6 if self.ipv6 else socket.IPPROTO_IP, socket.IP_MULTICAST_LOOP, 0) def receive(self): """Receives a single raw collect network packet. """ return self._sock.recv(self.BUFFER_SIZE) def decode(self, buf=None): """Decodes a given buffer or the next received packet. """ if buf is None: buf = self.receive() return decode_network_packet(buf) def interpret(self, iterable=None): """Interprets a sequence """ if iterable is None: iterable = self.decode() if isinstance(iterable, str): iterable = self.decode(iterable) return interpret_opcodes(iterable)
swiftstack-collectd-master
contrib/collectd_network.py
#-*- coding: ISO-8859-1 -*- # collect.py: the python collectd-unixsock module. # # Requires collectd to be configured with the unixsock plugin, like so: # # LoadPlugin unixsock # <Plugin unixsock> # SocketFile "/var/run/collectd-unixsock" # SocketPerms "0775" # </Plugin> # # Copyright (C) 2008 Clay Loveless <[email protected]> # # This software is provided 'as-is', without any express or implied # warranty. In no event will the author be held liable for any damages # arising from the use of this software. # # Permission is granted to anyone to use this software for any purpose, # including commercial applications, and to alter it and redistribute it # freely, subject to the following restrictions: # # 1. The origin of this software must not be misrepresented; you must not # claim that you wrote the original software. If you use this software # in a product, an acknowledgment in the product documentation would be # appreciated but is not required. # 2. Altered source versions must be plainly marked as such, and must not be # misrepresented as being the original software. # 3. This notice may not be removed or altered from any source distribution. import socket import sys class Collectd(): def __init__(self, path='/var/run/collectd-unixsock', noisy=False): self.noisy = noisy self.path = path self._sock = self._connect() def flush(self, timeout=None, plugins=[], identifiers=[]): """Send a FLUSH command. Full documentation: http://collectd.org/wiki/index.php/Plain_text_protocol#FLUSH """ # have to pass at least one plugin or identifier if not plugins and not identifiers: return None args = [] if timeout: args.append("timeout=%s" % timeout) if plugins: plugin_args = map(lambda x: "plugin=%s" % x, plugins) args.extend(plugin_args) if identifiers: identifier_args = map(lambda x: "identifier=%s" % x, identifiers) args.extend(identifier_args) return self._cmd('FLUSH %s' % ' '.join(args)) def getthreshold(self, identifier): """Send a GETTHRESHOLD command. Full documentation: http://collectd.org/wiki/index.php/Plain_text_protocol#GETTHRESHOLD """ numvalues = self._cmd('GETTHRESHOLD "%s"' % identifier) lines = [] if not numvalues or numvalues < 0: raise KeyError("Identifier '%s' not found" % identifier) lines = self._readlines(numvalues) return lines def getval(self, identifier, flush_after=True): """Send a GETVAL command. Also flushes the identifier if flush_after is True. Full documentation: http://collectd.org/wiki/index.php/Plain_text_protocol#GETVAL """ numvalues = self._cmd('GETVAL "%s"' % identifier) lines = [] if not numvalues or numvalues < 0: raise KeyError("Identifier '%s' not found" % identifier) lines = self._readlines(numvalues) if flush_after: self.flush(identifiers=[identifier]) return lines def listval(self): """Send a LISTVAL command. Full documentation: http://collectd.org/wiki/index.php/Plain_text_protocol#LISTVAL """ numvalues = self._cmd('LISTVAL') lines = [] if numvalues: lines = self._readlines(numvalues) return lines def putnotif(self, message, options={}): """Send a PUTNOTIF command. Options must be passed as a Python dictionary. Example: options={'severity': 'failure', 'host': 'example.com'} Full documentation: http://collectd.org/wiki/index.php/Plain_text_protocol#PUTNOTIF """ args = [] if options: options_args = map(lambda x: "%s=%s" % (x, options[x]), options) args.extend(options_args) args.append('message="%s"' % message) return self._cmd('PUTNOTIF %s' % ' '.join(args)) def putval(self, identifier, values, options={}): """Send a PUTVAL command. Options must be passed as a Python dictionary. Example: options={'interval': 10} Full documentation: http://collectd.org/wiki/index.php/Plain_text_protocol#PUTVAL """ args = [] args.append('"%s"' % identifier) if options: options_args = map(lambda x: "%s=%s" % (x, options[x]), options) args.extend(options_args) values = map(str, values) args.append(':'.join(values)) return self._cmd('PUTVAL %s' % ' '.join(args)) def _cmd(self, c): try: return self._cmdattempt(c) except socket.error, (errno, errstr): sys.stderr.write("[error] Sending to socket failed: [%d] %s\n" % (errno, errstr)) self._sock = self._connect() return self._cmdattempt(c) def _cmdattempt(self, c): if self.noisy: print "[send] %s" % c if not self._sock: sys.stderr.write("[error] Socket unavailable. Can not send.") return False self._sock.send(c + "\n") status_message = self._readline() if self.noisy: print "[receive] %s" % status_message if not status_message: return None code, message = status_message.split(' ', 1) if int(code): return int(code) return False def _connect(self): try: sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) sock.connect(self.path) if self.noisy: print "[socket] connected to %s" % self.path return sock except socket.error, (errno, errstr): sys.stderr.write("[error] Connecting to socket failed: [%d] %s" % (errno, errstr)) return None def _readline(self): """Read single line from socket""" if not self._sock: sys.stderr.write("[error] Socket unavailable. Can not read.") return None try: data = '' buf = [] recv = self._sock.recv while data != "\n": data = recv(1) if not data: break if data != "\n": buf.append(data) return ''.join(buf) except socket.error, (errno, errstr): sys.stderr.write("[error] Reading from socket failed: [%d] %s" % (errno, errstr)) self._sock = self._connect() return None def _readlines(self, sizehint=0): """Read multiple lines from socket""" total = 0 list = [] while True: line = self._readline() if not line: break list.append(line) total = len(list) if sizehint and total >= sizehint: break return list def __del__(self): if not self._sock: return try: self._sock.close() except socket.error, (errno, errstr): sys.stderr.write("[error] Closing socket failed: [%d] %s" % (errno, errstr)) if __name__ == '__main__': """Collect values from socket and dump to STDOUT""" c = Collectd('/var/run/collectd-unixsock', noisy=True) list = c.listval() for val in list: stamp, identifier = val.split() print "\n%s" % identifier print "\tUpdate time: %s" % stamp values = c.getval(identifier) print "\tValue list: %s" % ', '.join(values) # don't fetch thresholds by default because collectd will crash # if there is no treshold for the given identifier #thresholds = c.getthreshold(identifier) #print "\tThresholds: %s" % ', '.join(thresholds)
swiftstack-collectd-master
contrib/collectd_unixsock.py
#!/usr/bin/env python # vim: sts=4 sw=4 et # Simple unicast proxy to send collectd traffic to another host/port. # Copyright (C) 2007 Pavel Shramov <shramov at mexmat.net> # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation; only version 2 of the License is applicable. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 59 Temple # Place, Suite 330, Boston, MA 02111-1307 USA """ Simple unicast proxy for collectd (>= 4.0). Binds to 'local' address and forwards all traffic to 'remote'. """ import socket import struct """ Local multicast group/port""" local = ("239.192.74.66", 25826) """ Address to send packets """ remote = ("grid.pp.ru", 35826) sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) mreq = struct.pack("4sl", socket.inet_aton(local[0]), socket.INADDR_ANY) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_LOOP, 1) sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq) sock.bind(local) out = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) if __name__ == "__main__": while True: (buf, addr) = sock.recvfrom(2048) sock.sendto(buf, remote)
swiftstack-collectd-master
contrib/network-proxy.py
#!/usr/bin/python ############################################################################### # WARNING! Importing this script will break the exec plugin! # ############################################################################### # Use this if you want to create new processes from your python scripts. # # Normally you will get a OSError exception when the new process terminates # # because collectd will ignore the SIGCHLD python is waiting for. # # This script will restore the default SIGCHLD behavior so python scripts can # # create new processes without errors. # ############################################################################### # WARNING! Importing this script will break the exec plugin! # ############################################################################### import signal import collectd def init(): signal.signal(signal.SIGCHLD, signal.SIG_DFL) collectd.register_init(init)
swiftstack-collectd-master
contrib/python/getsigchld.py
import numpy as np from matplotlib import pyplot as plt import os DALI_EXTRA = os.environ['DALI_EXTRA_PATH'] cat = plt.imread(os.path.join(DALI_EXTRA, 'db/single/tiff/0/kitty-2948404_640.tiff')) images = [ ('horizontal', cat), ('mirror_horizontal', np.flip(cat, axis=1)), ('rotate_180', np.rot90(cat, 2)), ('mirror_vertical', np.flip(cat, axis=0)), ('mirror_horizontal_rotate_270', np.rot90(np.flip(cat, axis=1))), ('rotate_90', np.rot90(cat, 3)), ('mirror_horizontal_rotate_90', np.rot90(np.flip(cat, axis=1), 3)), ('rotate_270', np.rot90(cat)), ] for name, img in images: path = os.path.join(DALI_EXTRA, f'db/imgcodec/orientation/kitty-2948404_640_{name}.npy') np.save(path, img.astype('uint8'))
DALI_extra-main
db/imgcodec/orientation/make.py
#!/bin/python3 from os import system from PIL import Image import numpy as np import cv2 # Bitdepth conversion is done via ImageMagick def convert_bitdepth(name, bitdepth): input = '../../single/jpeg2k/' + name output = name + f'-{bitdepth}bit' system(f'convert {input}.jp2 -depth {bitdepth} {output}.jp2') return output def gen_reference(name): np.save(name, cv2.imread(name + '.jp2', mode='RGB')) gen_reference(convert_bitdepth('0/cat-1245673_640', 5)) gen_reference(convert_bitdepth('0/cat-1245673_640', 12))
DALI_extra-main
db/imgcodec/jpeg2k/generating.py
#!/bin/python3 # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from PIL import Image import numpy as np def save_reference(filename, angle, flip_x, flip_y): img = Image.open(filename + '.jpg') if flip_x: img = img.transpose(Image.FLIP_LEFT_RIGHT) if flip_y: img = img.transpose(Image.FLIP_TOP_BOTTOM) img = img.rotate(angle, expand=True) np.save(filename, np.asarray(img)) save_reference('orientation/padlock-406986_640_horizontal', 0, False, False) save_reference('orientation/padlock-406986_640_mirror_horizontal_rotate_270', 90, True, False) save_reference('orientation/padlock-406986_640_mirror_vertical', 0, False, True) save_reference('orientation/padlock-406986_640_no_orientation', 0, False, False) save_reference('orientation/padlock-406986_640_rotate_270', 90, False, False) save_reference('orientation/padlock-406986_640_mirror_horizontal', 0, True, False) save_reference('orientation/padlock-406986_640_mirror_horizontal_rotate_90', 270, True, False) save_reference('orientation/padlock-406986_640_no_exif', 0, False, False) save_reference('orientation/padlock-406986_640_rotate_180', 180, False, False) save_reference('orientation/padlock-406986_640_rotate_90', 270, False, False)
DALI_extra-main
db/imgcodec/jpeg/generate.py
import os import numpy as np from matplotlib import pyplot as plt def to_uint8(float_image): return np.round(float_image * 255).astype('uint8') def save(name, float_image): float_image = float_image.astype('float32') uint8_image = to_uint8(float_image) np.save(f'{output_path}/cat-111793_640_{name}_float.npy', float_image) np.save(f'{output_path}/cat-111793_640_{name}_uint8.npy', uint8_image) def ycbcr_to_rgb(ycbcr): ycbcr -= np.asarray([0.0625, 0.5, 0.5]) ycbcr *= np.asarray([1.164, 1, 1]) rgb = np.matmul(ycbcr, np.asarray([[1, 0, 1.596], [1, -0.392, -0.813], [1, 2.017, 0]]).T) return rgb def rgb_to_ycbcr(rgb): ycbcr_weights = np.asarray([[0.257, 0.504, 0.098], [-0.148, -0.291, 0.439], [0.439, -0.368, -0.071]]).T ycbcr = np.matmul(rgb, ycbcr_weights) + np.asarray([0.0625, 0.5, 0.5]) return ycbcr def rgb_to_gray(rgb): gray_weights = np.asarray([0.299, 0.587, 0.114]) gray = np.dot(rgb, gray_weights) return np.expand_dims(gray, axis=-1) def gray_to_ycbcr(gray): chroma = np.full_like(gray, 0.5) y = gray * (0.257 + 0.504 + 0.098) + 0.0625 return np.dstack([y, chroma, chroma]) def rgb_to_bgr(rgb): return np.flip(rgb, axis=2) def gray_to_rgb(gray): return np.dstack([gray, gray, gray]) dali_extra_path = os.environ['DALI_EXTRA_PATH'] output_path = os.path.join(dali_extra_path, 'db/imgcodec/colorspaces/') tiff = plt.imread(os.path.join(dali_extra_path, 'db/single/tiff/0/cat-111793_640.tiff')) rgb = tiff.astype('float32')/255 ycbcr = rgb_to_ycbcr(rgb) gray = rgb_to_gray(rgb) bgr = rgb_to_bgr(rgb) save('rgb', rgb) save('ycbcr', ycbcr) save('gray', gray) save('bgr', bgr) save('rgb_from_gray', gray_to_rgb(gray)) save('ycbcr_from_gray', gray_to_ycbcr(gray)) save('bgr_from_gray', rgb_to_bgr(gray_to_rgb(gray)))
DALI_extra-main
db/imgcodec/colorspaces/make.py
import os import tifffile import matplotlib.pyplot as plt import numpy as np dali_extra_path = os.environ['DALI_EXTRA_PATH'] source_path = os.path.join(dali_extra_path, 'db/imgcodec/colorspaces/cat-111793_640_rgb_float.npy') def output_path(color_format, layout): output_directory = os.path.join(dali_extra_path, 'db/imgcodec/colorspaces/layouts') return os.path.join(output_directory, f'cat-111793_640_{color_format}_float_{layout}.npy') def rgb_to_ycbcr(rgb): ycbcr_weights = np.asarray([[0.257, 0.504, 0.098], [-0.148, -0.291, 0.439], [0.439, -0.368, -0.071]]).T ycbcr = np.matmul(rgb, ycbcr_weights) + np.asarray([0.0625, 0.5, 0.5]) return ycbcr.astype('float32') dir_path = os.path.join(dali_extra_path, 'db/imgcodec/colorspaces/') hwc_rgb = np.load(source_path).astype('float32') hwc_ycbcr = rgb_to_ycbcr(hwc_rgb) np.save(output_path('rgb', 'hwc'), hwc_rgb) np.save(output_path('rgb', 'hcw'), hwc_rgb.transpose(0,2,1)) np.save(output_path('rgb', 'chw'), hwc_rgb.transpose(2,0,1)) np.save(output_path('ycbcr', 'hwc'), hwc_ycbcr) np.save(output_path('ycbcr', 'hcw'), hwc_ycbcr.transpose(0,2,1)) np.save(output_path('ycbcr', 'chw'), hwc_ycbcr.transpose(2,0,1))
DALI_extra-main
db/imgcodec/colorspaces/layouts/make.py
import os import tifffile import numpy as np import tempfile dali_extra_path = os.environ['DALI_EXTRA_PATH'] tiff_path = os.path.join(dali_extra_path, 'db/imgcodec/tiff/bitdepths') ref_path = os.path.join(dali_extra_path, 'db/imgcodec/tiff/bitdepths/reference') h, w = 123, 321 hgrad = np.tile(np.linspace(0., 1., w), (h, 1)) vgrad = np.tile(np.linspace(0., 1., h), (w, 1)).T image = np.dstack([hgrad, vgrad, 1. - hgrad]) # RGB gradient def filename(bits): return os.path.join(tiff_path, f'rgb_{bits}bit.tiff') def ref_filename(bits): return os.path.join(ref_path, f'rgb_{bits}bit.tiff.npy') def ref_float_filename(bits): return os.path.join(ref_path, f'rgb_{bits}bit_float.tiff.npy') standard_bitdepths = [8, 16, 32] for bits in range(1, 32+1): ref = np.round(image * (2**bits - 1)) / (2**bits - 1) np.save(ref_float_filename(bits), ref) if bits in standard_bitdepths: # For standard bit-depths it's possible to test for exact match np.save(ref_filename(bits), (image * (2**bits - 1)).astype(f'uint{bits}')) if bits in standard_bitdepths: # For images in standard bit-depths save the image as is tifffile.imwrite(filename(bits), (image * (2**bits - 1)).astype(f'uint{bits}')) else: # For non-standard bit-depths make a 32-bit image and convert it. tmp = tempfile.NamedTemporaryFile() tifffile.imwrite(tmp, (ref * (2**32 - 1)).astype('uint32')) os.system(f'convert -type TrueColor -define tiff:bits-per-sample={bits} -depth {bits} {tmp.name} {filename(bits)}')
DALI_extra-main
db/imgcodec/tiff/bitdepths/make.py
import numpy as np np.random.seed(123456) shapes = [(10, 22, 3), (30, 20, 3), (100, 5, 3)] dtype = np.uint8 arrays = [np.array(np.random.rand(*sh) * 255, dtype=dtype) for sh in shapes] for i, arr in enumerate(arrays): np.save(f"./input{i}.npy", arr) def gen_crop(): start = [(2, 8, 0), (22, 2, 0), (55, 4, 0)] end = [(8, 19, 3), (28, 4, 3), (100, 5, 3)] for i, arr in enumerate(arrays): y0, x0, c0 = start[i] y1, x1, c1 = end[i] arr = arr[y0:y1, x0:x1, c0:c1] np.save(f"./output{i}_c.npy", arr) def gen_crop_mirror(): start = [(2, 8, 0), (22, 2, 0), (55, 4, 0)] end = [(8, 19, 3), (28, 4, 3), (100, 5, 3)] flip = [(False, True), (True, True), (False, False)] for i, arr in enumerate(arrays): y0, x0, c0 = start[i] y1, x1, c1 = end[i] arr = arr[y0:y1, x0:x1, c0:c1] flip_y, flip_x = flip[i] if flip_y: arr = np.flip(arr, axis=0) if flip_x: arr = np.flip(arr, axis=1) np.save(f"./output{i}_cm.npy", arr) def gen_crop_mirror_normalize(): start = [(2, 8, 0), (22, 2, 0), (55, 4, 0)] end = [(8, 19, 3), (28, 4, 3), (100, 5, 3)] flip = [(False, True), (True, True), (False, False)] mean = [255 * np.array([0.485, 0.456, 0.406], dtype=np.float32), 255 * np.array([0.455, 0.436, 0.416], dtype=np.float32), 255 * np.array([0.495, 0.466, 0.396], dtype=np.float32)] stddev = [255 * np.array([0.229, 0.224, 0.225], dtype=np.float32), 255 * np.array([0.225, 0.224, 0.221], dtype=np.float32), 255 * np.array([0.226, 0.229, 0.222], dtype=np.float32)] for i, arr in enumerate(arrays): y0, x0, c0 = start[i] y1, x1, c1 = end[i] arr = arr.astype(np.float32) arr = (arr - mean[i]) / stddev[i] arr = arr[y0:y1, x0:x1, c0:c1] flip_y, flip_x = flip[i] if flip_y: arr = np.flip(arr, axis=0) if flip_x: arr = np.flip(arr, axis=1) np.save(f"./output{i}_cmn.npy", arr) def gen_crop_mirror_normalize_transpose(): start = [(2, 8, 0), (22, 2, 0), (55, 4, 0)] end = [(8, 19, 3), (28, 4, 3), (100, 5, 3)] flip = [(False, True), (True, True), (False, False)] mean = [255 * np.array([0.485, 0.456, 0.406], dtype=np.float32), 255 * np.array([0.455, 0.436, 0.416], dtype=np.float32), 255 * np.array([0.495, 0.466, 0.396], dtype=np.float32)] stddev = [255 * np.array([0.229, 0.224, 0.225], dtype=np.float32), 255 * np.array([0.225, 0.224, 0.221], dtype=np.float32), 255 * np.array([0.226, 0.229, 0.222], dtype=np.float32)] for i, arr in enumerate(arrays): y0, x0, c0 = start[i] y1, x1, c1 = end[i] arr = arr.astype(np.float32) arr = (arr - mean[i]) / stddev[i] arr = arr[y0:y1, x0:x1, c0:c1] flip_y, flip_x = flip[i] if flip_y: arr = np.flip(arr, axis=0) if flip_x: arr = np.flip(arr, axis=1) arr = np.transpose(arr, (2, 0, 1)) np.save(f"./output{i}_cmnt.npy", arr) def gen_pad_normalize(): start = np.array([[-2, 0, 0], [0, -4, 0], [0, 0, 0]]) end = np.array([[8, 19, 4], [28, 4, 4], [120, 5, 4]]) mean = [255 * np.array([0.485, 0.456, 0.406], dtype=np.float32), 255 * np.array([0.455, 0.436, 0.416], dtype=np.float32), 255 * np.array([0.495, 0.466, 0.396], dtype=np.float32)] stddev = [255 * np.array([0.229, 0.224, 0.225], dtype=np.float32), 255 * np.array([0.225, 0.224, 0.221], dtype=np.float32), 255 * np.array([0.226, 0.229, 0.222], dtype=np.float32)] # Padding channels too fill_values = [np.array([255.0, 128.0, 64.0, 32.0], dtype=np.float32) + np.float32(i) for i in range(3)] out_sh = end - start out0 = np.zeros(out_sh[0], dtype=np.float32) out0 = out0 + fill_values[0] out0[2:10, :, :3] = (arrays[0][0:8, :19, :3].astype(np.float32) - mean[0]) / stddev[0] np.save(f"./output0_pn.npy", out0) out1 = np.zeros(out_sh[1], dtype=np.float32) out1 = out1 + fill_values[1] out1[:, 4:8, :3] = (arrays[1][:28, :4, :3].astype(np.float32) - mean[1]) / stddev[1] np.save(f"./output1_pn.npy", out1) out2 = np.zeros(out_sh[2], dtype=np.float32) out2 = out2 + fill_values[2] out2[:100, :, :3] = (arrays[2][:100, :5, :3].astype(np.float32) - mean[2]) / stddev[2] np.save(f"./output2_pn.npy", out2) def generate(): gen_crop() gen_crop_mirror() gen_crop_mirror_normalize() gen_crop_mirror_normalize_transpose() gen_pad_normalize() generate()
DALI_extra-main
db/test_data/crop_mirror_normalize/make.py
#!/bin/python3 # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from PIL import Image import numpy as np import cv2 # https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion def rgb_to_ycbcr(rgb): ycbcr_weights = np.asarray([[ 0.257, 0.504, 0.098], [-0.148, -0.291, 0.439], [ 0.439, -0.368, -0.071]]).T ycbcr = np.matmul(rgb, ycbcr_weights) + np.asarray([0.0625, 0.5, 0.5]) return ycbcr def to_uint8(float_image): return np.round((float_image * 255) + 1).astype('uint8') def hwc_to_chw(image): return np.transpose(image, (2, 0, 1)) def save(path, arr): np.save(path, arr) np.save(path + "_chw", hwc_to_chw(arr)) def gen_reference(name): img = Image.open('../../jpeg2k/' + name + '.jp2') save(name, np.asarray(img)) def gen_reference_roi(name, roi): img = Image.open('../../jpeg2k/' + name + '.jp2') img = img.crop(roi) save(name + '_roi', np.asarray(img)) def gen_reference_ycbcr(name): img = Image.open('../../jpeg2k/' + name + '.jp2') rgb = np.asarray(img).astype('float32') / 255 ycbcr = rgb_to_ycbcr(rgb) save(name + '_ycbcr', to_uint8(ycbcr)) def gen_reference_gray(name): img_gray = cv2.imread('../../jpeg2k/' + name + '.jp2', cv2.IMREAD_GRAYSCALE) gray = np.expand_dims(img_gray, -1) save(name + '_gray', gray) gen_reference('0/cat-1245673_640') gen_reference_roi('0/cat-1245673_640', (33, 17, 489, 276)) gen_reference_ycbcr('0/cat-1245673_640') gen_reference_gray('0/cat-1245673_640') gen_reference('0/cat-2184682_640') gen_reference_ycbcr('0/cat-2184682_640') gen_reference_gray('0/cat-2184682_640') gen_reference('0/cat-300572_640') gen_reference_ycbcr('0/cat-300572_640') gen_reference_gray('0/cat-300572_640') gen_reference('0/cat-3113513_640') gen_reference_ycbcr('0/cat-3113513_640') gen_reference_gray('0/cat-3113513_640') gen_reference_roi('2/tiled-cat-1046544_640', (220, 178, 290, 456)) gen_reference_roi('2/tiled-cat-111793_640', (317, 9, 325, 58)) gen_reference_roi('2/tiled-cat-3113513_640', (1, 2, 600, 200))
DALI_extra-main
db/single/reference/jpeg2k/generating.py
#!/bin/python3 # Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import cv2 import tempfile def tool(tool_name): # JPEG_TOOL_PREFIX='' # cjpeg from libjpeg-turbo (use dev branch until Lossless is supported (release 2.2?) JPEG_TOOL_PREFIX='LD_LIBRARY_PATH=~/git/lossless_libjpeg-turbo/install/lib ~/git/lossless_libjpeg-turbo/install/bin/' return f'{JPEG_TOOL_PREFIX}{tool_name}' def convert_to_jpeg_lossless(output_path, image_path, precision=16, psv=1): cjpeg = tool('cjpeg') os.system(f'{cjpeg} -grayscale -precision {precision} -lossless {psv} {image_path} > {output_path}') def convert_jpeg_lossless_to_pnm(output_path, image_path): djpeg = tool('djpeg') os.system(f'{djpeg} -pnm {image_path} > {output_path}') def generate_reference_grayscale(ref_path, img_path, precision=16, dtype=np.uint16): with tempfile.NamedTemporaryFile() as tmp: convert_jpeg_lossless_to_pnm(tmp.name, img_path) gray = np.asarray(cv2.imread(tmp.name, cv2.IMREAD_GRAYSCALE | cv2.IMREAD_ANYDEPTH)) gray = np.expand_dims(gray, axis=-1) print(f"Saving {ref_path} : {gray.shape}") np.save(ref_path, gray) def generate_sample(img_source, jpeg_target, npy_target, precision=16, dtype=np.uint16): convert_to_jpeg_lossless(jpeg_target, img_source, precision=precision) generate_reference_grayscale(npy_target, jpeg_target, precision=precision, dtype=dtype) def generate(): generate_sample( img_source='../../pnm/0/cat-1245673_640.pgm', jpeg_target='../../jpeg_lossless/0/cat-1245673_640_grayscale_16bit.jpg', npy_target='cat-1245673_640_grayscale_16bit', precision=16, dtype=np.uint16) for (precision, dtype) in [(16, np.uint16), (12, np.uint16), (8, np.uint8)]: generate_sample( img_source='../../pnm/0/cat-3449999_640.pgm', jpeg_target=f'../../jpeg_lossless/0/cat-3449999_640_grayscale_{precision}bit.jpg', npy_target=f'cat-3449999_640_grayscale_{precision}bit', precision=precision, dtype=dtype) generate()
DALI_extra-main
db/single/reference/jpeg_lossless/generating.py
#!/bin/python3 # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from PIL import Image import numpy as np import cv2 # https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion def rgb_to_ycbcr(rgb): ycbcr_weights = np.asarray([[ 0.257, 0.504, 0.098], [-0.148, -0.291, 0.439], [ 0.439, -0.368, -0.071]]).T ycbcr = np.matmul(rgb, ycbcr_weights) + np.asarray([0.0625, 0.5, 0.5]) return ycbcr def to_uint8(float_image): return np.round((float_image * 255) + 1).astype('uint8') def get_ycbcr(image): rgb = np.asarray(image).astype('float32') / 255 ycbcr = rgb_to_ycbcr(rgb) return to_uint8(ycbcr) img0_path = '../../webp/lossless/cat-3449999_640.webp' img0 = Image.open(img0_path) img0_gray = cv2.imread(img0_path, cv2.IMREAD_GRAYSCALE) cropped = img0.crop((20, 5, 1000, 800)) np.save('cat-3449999_640', np.asarray(img0)) np.save('cat-3449999_640_roi', np.asarray(cropped)) np.save('cat-3449999_640_gray', np.expand_dims(img0_gray, -1)) np.save('cat-3449999_640_ycbcr', get_ycbcr(img0)) # Few more images img1_path = '../../webp/lossy/cat-1046544_640.webp' img1 = Image.open(img1_path) img1_gray = cv2.imread(img1_path, cv2.IMREAD_GRAYSCALE) np.save('cat-1046544_640', np.asarray(img1)) np.save('cat-1046544_640_gray', np.expand_dims(img1_gray, -1)) np.save('cat-1046544_640_ycbcr', get_ycbcr(img1)) img2_path = '../../webp/lossless/cat-1245673_640.webp' img2 = Image.open(img2_path) img2_gray = cv2.imread(img2_path, cv2.IMREAD_GRAYSCALE) np.save('cat-1245673_640', np.asarray(img2)) np.save('cat-1245673_640_gray', np.expand_dims(img2_gray, -1)) np.save('cat-1245673_640_ycbcr', get_ycbcr(img2))
DALI_extra-main
db/single/reference/webp/generating.py
#!/bin/python3 # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from PIL import Image import numpy as np import cv2 # https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion def rgb_to_ycbcr(rgb): ycbcr_weights = np.asarray([[ 0.257, 0.504, 0.098], [-0.148, -0.291, 0.439], [ 0.439, -0.368, -0.071]]).T ycbcr = np.matmul(rgb, ycbcr_weights) + np.asarray([0.0625, 0.5, 0.5]) return ycbcr def to_uint8(float_image): return np.round((float_image * 255) + 1).astype('uint8') def get_ycbcr(image): rgb = np.asarray(image).astype('float32') / 255 ycbcr = rgb_to_ycbcr(rgb) return to_uint8(ycbcr) img0_path = '../../png/0/cat-3449999_640.png' img0 = Image.open(img0_path) img0_gray = cv2.imread(img0_path, cv2.IMREAD_GRAYSCALE) cropped = img0.crop((20, 5, 1000, 800)) np.save('cat-3449999_640', np.asarray(img0)) np.save('cat-3449999_640_gray', np.expand_dims(img0_gray, -1)) np.save('cat-3449999_640_roi', np.asarray(cropped)) np.save('cat-3449999_640_ycbcr', get_ycbcr(img0)) # Few more images img1_path = '../../png/0/cat-1046544_640.png' img1 = Image.open(img1_path) img1_gray = cv2.imread(img1_path, cv2.IMREAD_GRAYSCALE) np.save('cat-1046544_640', np.asarray(img1)) np.save('cat-1046544_640_gray', np.expand_dims(img1_gray, -1)) np.save('cat-1046544_640_ycbcr', get_ycbcr(img1)) img2_path = '../../png/0/cat-1245673_640.png' img2 = Image.open(img2_path) img2_gray = cv2.imread(img2_path, cv2.IMREAD_GRAYSCALE) np.save('cat-1245673_640', np.asarray(img2)) np.save('cat-1245673_640_gray', np.expand_dims(img2_gray, -1)) np.save('cat-1245673_640_ycbcr', get_ycbcr(img2))
DALI_extra-main
db/single/reference/png/generating.py
#!/bin/python3 # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from PIL import Image import numpy as np import cv2 # https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion def rgb_to_ycbcr(rgb): ycbcr_weights = np.asarray([[ 0.257, 0.504, 0.098], [-0.148, -0.291, 0.439], [ 0.439, -0.368, -0.071]]).T ycbcr = np.matmul(rgb, ycbcr_weights) + np.asarray([0.0625, 0.5, 0.5]) return ycbcr def to_uint8(float_image): return np.round((float_image * 255) + 1).astype('uint8') def get_ycbcr(image): rgb = np.asarray(image).astype('float32') / 255 ycbcr = rgb_to_ycbcr(rgb) return to_uint8(ycbcr) def hwc_to_chw(image): return np.transpose(image, (2, 0, 1)) def save(path, arr): np.save(path, arr) np.save(path + "_chw", hwc_to_chw(arr)) img0_path = '../../jpeg/134/site-1534685_1280.jpg' img0 = Image.open(img0_path) img0_gray = cv2.imread(img0_path, cv2.IMREAD_GRAYSCALE) cropped = img0.crop((20, 5, 1000, 800)) save('site-1534685_1280', np.asarray(img0)) save('site-1534685_1280_gray', np.expand_dims(img0_gray, -1)) save('site-1534685_1280_roi', np.asarray(cropped)) save('site-1534685_1280_ycbcr', get_ycbcr(img0)) # Few more images img1_path = '../../jpeg/100/swan-3584559_640.jpg' img1 = Image.open(img1_path) img1_gray = cv2.imread(img1_path, cv2.IMREAD_GRAYSCALE) save('swan-3584559_640', np.asarray(img1)) save('swan-3584559_640_gray', np.expand_dims(img1_gray, -1)) save('swan-3584559_640_ycbcr', get_ycbcr(img1)) img2_path = '../../jpeg/113/snail-4291306_1280.jpg' img2 = Image.open(img2_path) img2_gray = cv2.imread(img2_path, cv2.IMREAD_GRAYSCALE) save('snail-4291306_1280', np.asarray(img2)) save('snail-4291306_1280_gray', np.expand_dims(img2_gray, -1)) save('snail-4291306_1280_ycbcr', get_ycbcr(img2))
DALI_extra-main
db/single/reference/jpeg/generating.py
#!/bin/python3 # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from PIL import Image import numpy as np import cv2 # https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion def rgb_to_ycbcr(rgb): ycbcr_weights = np.asarray([[ 0.257, 0.504, 0.098], [-0.148, -0.291, 0.439], [ 0.439, -0.368, -0.071]]).T ycbcr = np.matmul(rgb, ycbcr_weights) + np.asarray([0.0625, 0.5, 0.5]) return ycbcr def to_uint8(float_image): return np.round((float_image * 255) + 1).astype('uint8') def get_ycbcr(image): rgb = np.asarray(image).astype('float32') / 255 ycbcr = rgb_to_ycbcr(rgb) return to_uint8(ycbcr) img0_path = '../../bmp/0/cat-3449999_640.bmp' img0 = Image.open(img0_path) img0_gray = cv2.imread(img0_path, cv2.IMREAD_GRAYSCALE) cropped = img0.crop((20, 5, 1000, 800)) np.save('cat-3449999_640', np.asarray(img0)) np.save('cat-3449999_640_gray', np.expand_dims(img0_gray, -1)) np.save('cat-3449999_640_roi', np.asarray(cropped)) np.save('cat-3449999_640_ycbcr', get_ycbcr(img0)) # Few more images img1_path = '../../bmp/0/cat-1046544_640.bmp' img1 = Image.open(img1_path) img1_gray = cv2.imread(img1_path, cv2.IMREAD_GRAYSCALE) np.save('cat-1046544_640', np.asarray(img1)) np.save('cat-1046544_640_gray', np.expand_dims(img1_gray, -1)) np.save('cat-1046544_640_ycbcr', get_ycbcr(img1)) img2_path = '../../bmp/0/cat-1245673_640.bmp' img2 = Image.open(img2_path) img2_gray = cv2.imread(img2_path, cv2.IMREAD_GRAYSCALE) np.save('cat-1245673_640', np.asarray(img2)) np.save('cat-1245673_640_gray', np.expand_dims(img2_gray, -1)) np.save('cat-1245673_640_ycbcr', get_ycbcr(img2))
DALI_extra-main
db/single/reference/bmp/generating.py
#!/bin/python3 # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from PIL import Image import numpy as np import cv2 # https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion def rgb_to_ycbcr(rgb): ycbcr_weights = np.asarray([[ 0.257, 0.504, 0.098], [-0.148, -0.291, 0.439], [ 0.439, -0.368, -0.071]]).T ycbcr = np.matmul(rgb, ycbcr_weights) + np.asarray([0.0625, 0.5, 0.5]) return ycbcr def to_uint8(float_image): return np.round((float_image * 255) + 1).astype('uint8') def get_ycbcr(image): rgb = np.asarray(image).astype('float32') / 255 ycbcr = rgb_to_ycbcr(rgb) return to_uint8(ycbcr) img0_path = '../../pnm/0/cat-1046544_640.pnm' img0 = Image.open(img0_path) img0_gray = cv2.imread(img0_path, cv2.IMREAD_GRAYSCALE) cropped = img0.crop((20, 5, 1000, 800)) np.save('cat-1046544_640', np.asarray(img0)) np.save('cat-1046544_640_gray', np.expand_dims(img0_gray, -1)) np.save('cat-1046544_640_roi', np.asarray(cropped)) np.save('cat-1046544_640_ycbcr', get_ycbcr(img0)) # Few more images img1_path = '../../pnm/0/cat-111793_640.ppm' img1 = Image.open(img1_path) img1_gray = cv2.imread(img1_path, cv2.IMREAD_GRAYSCALE) np.save('cat-111793_640', np.asarray(img1)) np.save('cat-111793_640_gray', np.expand_dims(img1_gray, -1)) np.save('cat-111793_640_ycbcr', get_ycbcr(img1)) img2_path = '../../pnm/0/domestic-cat-726989_640.pnm' img2 = Image.open(img2_path) img2_gray = cv2.imread(img2_path, cv2.IMREAD_GRAYSCALE) np.save('domestic-cat-726989_640', np.asarray(img2)) np.save('domestic-cat-726989_640_gray', np.expand_dims(img2_gray, -1)) np.save('domestic-cat-726989_640_ycbcr', get_ycbcr(img2))
DALI_extra-main
db/single/reference/pnm/generating.py
import os import tifffile import matplotlib.pyplot as plt import numpy as np import cv2 # https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion def rgb_to_ycbcr(rgb): ycbcr_weights = np.asarray([[ 0.257, 0.504, 0.098], [-0.148, -0.291, 0.439], [ 0.439, -0.368, -0.071]]).T ycbcr = np.matmul(rgb, ycbcr_weights) + np.asarray([0.0625, 0.5, 0.5]) return ycbcr def rgb_to_gray(rgb): gray_weights = np.asarray([0.299, 0.587, 0.114]) gray = np.dot(rgb, gray_weights) return np.expand_dims(gray, axis=-1) def to_uint8(float_image): return np.round((float_image * 255) + 1).astype('uint8') def get_ycbcr(image): rgb = np.asarray(image).astype('float32') / 255 ycbcr = rgb_to_ycbcr(rgb) return to_uint8(ycbcr) def read_rgb(path): return plt.imread(path).astype('uint8') def read_gray(path): arr = cv2.imread(path, cv2.IMREAD_GRAYSCALE) return np.expand_dims(arr, -1) dali_extra_path = os.environ['DALI_EXTRA_PATH'] tiff_path = os.path.join(dali_extra_path, 'db/single/tiff') tiff_ref_path = os.path.join(dali_extra_path, 'db/single/reference/tiff') path0 = os.path.join(tiff_path, '0/cat-111793_640.tiff') img0 = read_rgb(path0).astype('uint8') np.save(os.path.join(tiff_ref_path, '0/cat-111793_640.tiff.npy'), img0) gray0 = read_gray(path0) tifffile.imwrite(os.path.join(tiff_path, '0/cat-111793_640_gray.tiff'), gray0) np.save(os.path.join(tiff_ref_path, '0/cat-111793_640_gray.tiff.npy'), gray0) ycbcr0 = get_ycbcr(img0) np.save(os.path.join(tiff_ref_path, '0/cat-111793_640_ycbcr.tiff.npy'), ycbcr0) path1 = os.path.join(tiff_path, '0/cat-3449999_640.tiff') img1 = read_rgb(path1).astype('uint8') np.save(os.path.join(tiff_ref_path, '0/cat-3449999_640.tiff.npy'), img1) gray1 = read_gray(path1) tifffile.imwrite(os.path.join(tiff_path, '0/cat-3449999_640_gray.tiff'), gray1) np.save(os.path.join(tiff_ref_path, '0/cat-3449999_640_gray.tiff.npy'), gray1) ycbcr1 = get_ycbcr(img1) np.save(os.path.join(tiff_ref_path, '0/cat-3449999_640_ycbcr.tiff.npy'), ycbcr1) path2 = os.path.join(tiff_path, '0/cat-3504008_640.tiff') img2 = plt.imread(path2).astype('uint8') np.save(os.path.join(tiff_ref_path, '0/cat-3504008_640.tiff.npy'), img2) gray2 = read_gray(path2) tifffile.imwrite(os.path.join(tiff_path, '0/cat-3504008_640_gray.tiff'), gray2) np.save(os.path.join(tiff_ref_path, '0/cat-3504008_640_gray.tiff.npy'), gray2) ycbcr2 = get_ycbcr(img2) np.save(os.path.join(tiff_ref_path, '0/cat-3504008_640_ycbcr.tiff.npy'), ycbcr2) palette = plt.imread(os.path.join(tiff_path, '0/cat-300572_640_palette.tiff')).astype('uint8')[:,:,:3] np.save(os.path.join(tiff_ref_path, '0/cat-300572_640_palette.tiff.npy'), palette)
DALI_extra-main
db/single/reference/tiff/make.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import os from setuptools import find_packages, setup import versioneer # read the contents of your README file versions = versioneer.get_versions() if versions["error"]: today = datetime.date.today().timetuple() year = today[0] % 1000 month = today[1] day = today[2] version = f"2.3.0.dev{year:02d}{month:02d}{day:02d}" else: version = versions["version"] release = os.environ.get("NVFL_RELEASE") if release == "1": package_name = "nvflare" else: package_name = "nvflare-nightly" setup( name=package_name, version=version, cmdclass=versioneer.get_cmdclass(), package_dir={"nvflare": "nvflare"}, packages=find_packages( where=".", include=[ "*", ], exclude=["tests", "tests.*"], ), package_data={"": ["*.yml", "*.html", "poc.zip", "*.config", "*.conf"]}, )
NVFlare-main
setup.py
# Version: 0.21 """The Versioneer - like a rocketeer, but for versions. The Versioneer ============== * like a rocketeer, but for versions! * https://github.com/python-versioneer/python-versioneer * Brian Warner * License: Public Domain * Compatible with: Python 3.6, 3.7, 3.8, 3.9 and pypy3 * [![Latest Version][pypi-image]][pypi-url] * [![Build Status][travis-image]][travis-url] This is a tool for managing a recorded version number in distutils-based python projects. The goal is to remove the tedious and error-prone "update the embedded version string" step from your release process. Making a new release should be as easy as recording a new tag in your version-control system, and maybe making new tarballs. ## Quick Install * `pip install versioneer` to somewhere in your $PATH * add a `[versioneer]` section to your setup.cfg (see [Install](INSTALL.md)) * run `versioneer install` in your source tree, commit the results * Verify version information with `python setup.py version` ## Version Identifiers Source trees come from a variety of places: * a version-control system checkout (mostly used by developers) * a nightly tarball, produced by build automation * a snapshot tarball, produced by a web-based VCS browser, like github's "tarball from tag" feature * a release tarball, produced by "setup.py sdist", distributed through PyPI Within each source tree, the version identifier (either a string or a number, this tool is format-agnostic) can come from a variety of places: * ask the VCS tool itself, e.g. "git describe" (for checkouts), which knows about recent "tags" and an absolute revision-id * the name of the directory into which the tarball was unpacked * an expanded VCS keyword ($Id$, etc) * a `_version.py` created by some earlier build step For released software, the version identifier is closely related to a VCS tag. Some projects use tag names that include more than just the version string (e.g. "myproject-1.2" instead of just "1.2"), in which case the tool needs to strip the tag prefix to extract the version identifier. For unreleased software (between tags), the version identifier should provide enough information to help developers recreate the same tree, while also giving them an idea of roughly how old the tree is (after version 1.2, before version 1.3). Many VCS systems can report a description that captures this, for example `git describe --tags --dirty --always` reports things like "0.7-1-g574ab98-dirty" to indicate that the checkout is one revision past the 0.7 tag, has a unique revision id of "574ab98", and is "dirty" (it has uncommitted changes). The version identifier is used for multiple purposes: * to allow the module to self-identify its version: `myproject.__version__` * to choose a name and prefix for a 'setup.py sdist' tarball ## Theory of Operation Versioneer works by adding a special `_version.py` file into your source tree, where your `__init__.py` can import it. This `_version.py` knows how to dynamically ask the VCS tool for version information at import time. `_version.py` also contains `$Revision$` markers, and the installation process marks `_version.py` to have this marker rewritten with a tag name during the `git archive` command. As a result, generated tarballs will contain enough information to get the proper version. To allow `setup.py` to compute a version too, a `versioneer.py` is added to the top level of your source tree, next to `setup.py` and the `setup.cfg` that configures it. This overrides several distutils/setuptools commands to compute the version when invoked, and changes `setup.py build` and `setup.py sdist` to replace `_version.py` with a small static file that contains just the generated version data. ## Installation See [INSTALL.md](./INSTALL.md) for detailed installation instructions. ## Version-String Flavors Code which uses Versioneer can learn about its version string at runtime by importing `_version` from your main `__init__.py` file and running the `get_versions()` function. From the "outside" (e.g. in `setup.py`), you can import the top-level `versioneer.py` and run `get_versions()`. Both functions return a dictionary with different flavors of version information: * `['version']`: A condensed version string, rendered using the selected style. This is the most commonly used value for the project's version string. The default "pep440" style yields strings like `0.11`, `0.11+2.g1076c97`, or `0.11+2.g1076c97.dirty`. See the "Styles" section below for alternative styles. * `['full-revisionid']`: detailed revision identifier. For Git, this is the full SHA1 commit id, e.g. "1076c978a8d3cfc70f408fe5974aa6c092c949ac". * `['date']`: Date and time of the latest `HEAD` commit. For Git, it is the commit date in ISO 8601 format. This will be None if the date is not available. * `['dirty']`: a boolean, True if the tree has uncommitted changes. Note that this is only accurate if run in a VCS checkout, otherwise it is likely to be False or None * `['error']`: if the version string could not be computed, this will be set to a string describing the problem, otherwise it will be None. It may be useful to throw an exception in setup.py if this is set, to avoid e.g. creating tarballs with a version string of "unknown". Some variants are more useful than others. Including `full-revisionid` in a bug report should allow developers to reconstruct the exact code being tested (or indicate the presence of local changes that should be shared with the developers). `version` is suitable for display in an "about" box or a CLI `--version` output: it can be easily compared against release notes and lists of bugs fixed in various releases. The installer adds the following text to your `__init__.py` to place a basic version in `YOURPROJECT.__version__`: from ._version import get_versions __version__ = get_versions()['version'] del get_versions ## Styles The setup.cfg `style=` configuration controls how the VCS information is rendered into a version string. The default style, "pep440", produces a PEP440-compliant string, equal to the un-prefixed tag name for actual releases, and containing an additional "local version" section with more detail for in-between builds. For Git, this is TAG[+DISTANCE.gHEX[.dirty]] , using information from `git describe --tags --dirty --always`. For example "0.11+2.g1076c97.dirty" indicates that the tree is like the "1076c97" commit but has uncommitted changes (".dirty"), and that this commit is two revisions ("+2") beyond the "0.11" tag. For released software (exactly equal to a known tag), the identifier will only contain the stripped tag, e.g. "0.11". Other styles are available. See [details.md](details.md) in the Versioneer source tree for descriptions. ## Debugging Versioneer tries to avoid fatal errors: if something goes wrong, it will tend to return a version of "0+unknown". To investigate the problem, run `setup.py version`, which will run the version-lookup code in a verbose mode, and will display the full contents of `get_versions()` (including the `error` string, which may help identify what went wrong). ## Known Limitations Some situations are known to cause problems for Versioneer. This details the most significant ones. More can be found on Github [issues page](https://github.com/python-versioneer/python-versioneer/issues). ### Subprojects Versioneer has limited support for source trees in which `setup.py` is not in the root directory (e.g. `setup.py` and `.git/` are *not* siblings). The are two common reasons why `setup.py` might not be in the root: * Source trees which contain multiple subprojects, such as [Buildbot](https://github.com/buildbot/buildbot), which contains both "master" and "slave" subprojects, each with their own `setup.py`, `setup.cfg`, and `tox.ini`. Projects like these produce multiple PyPI distributions (and upload multiple independently-installable tarballs). * Source trees whose main purpose is to contain a C library, but which also provide bindings to Python (and perhaps other languages) in subdirectories. Versioneer will look for `.git` in parent directories, and most operations should get the right version string. However `pip` and `setuptools` have bugs and implementation details which frequently cause `pip install .` from a subproject directory to fail to find a correct version string (so it usually defaults to `0+unknown`). `pip install --editable .` should work correctly. `setup.py install` might work too. Pip-8.1.1 is known to have this problem, but hopefully it will get fixed in some later version. [Bug #38](https://github.com/python-versioneer/python-versioneer/issues/38) is tracking this issue. The discussion in [PR #61](https://github.com/python-versioneer/python-versioneer/pull/61) describes the issue from the Versioneer side in more detail. [pip PR#3176](https://github.com/pypa/pip/pull/3176) and [pip PR#3615](https://github.com/pypa/pip/pull/3615) contain work to improve pip to let Versioneer work correctly. Versioneer-0.16 and earlier only looked for a `.git` directory next to the `setup.cfg`, so subprojects were completely unsupported with those releases. ### Editable installs with setuptools <= 18.5 `setup.py develop` and `pip install --editable .` allow you to install a project into a virtualenv once, then continue editing the source code (and test) without re-installing after every change. "Entry-point scripts" (`setup(entry_points={"console_scripts": ..})`) are a convenient way to specify executable scripts that should be installed along with the python package. These both work as expected when using modern setuptools. When using setuptools-18.5 or earlier, however, certain operations will cause `pkg_resources.DistributionNotFound` errors when running the entrypoint script, which must be resolved by re-installing the package. This happens when the install happens with one version, then the egg_info data is regenerated while a different version is checked out. Many setup.py commands cause egg_info to be rebuilt (including `sdist`, `wheel`, and installing into a different virtualenv), so this can be surprising. [Bug #83](https://github.com/python-versioneer/python-versioneer/issues/83) describes this one, but upgrading to a newer version of setuptools should probably resolve it. ## Updating Versioneer To upgrade your project to a new release of Versioneer, do the following: * install the new Versioneer (`pip install -U versioneer` or equivalent) * edit `setup.cfg`, if necessary, to include any new configuration settings indicated by the release notes. See [UPGRADING](./UPGRADING.md) for details. * re-run `versioneer install` in your source tree, to replace `SRC/_version.py` * commit any changed files ## Future Directions This tool is designed to make it easily extended to other version-control systems: all VCS-specific components are in separate directories like src/git/ . The top-level `versioneer.py` script is assembled from these components by running make-versioneer.py . In the future, make-versioneer.py will take a VCS name as an argument, and will construct a version of `versioneer.py` that is specific to the given VCS. It might also take the configuration arguments that are currently provided manually during installation by editing setup.py . Alternatively, it might go the other direction and include code from all supported VCS systems, reducing the number of intermediate scripts. ## Similar projects * [setuptools_scm](https://github.com/pypa/setuptools_scm/) - a non-vendored build-time dependency * [minver](https://github.com/jbweston/miniver) - a lightweight reimplementation of versioneer * [versioningit](https://github.com/jwodder/versioningit) - a PEP 518-based setuptools plugin ## License To make Versioneer easier to embed, all its code is dedicated to the public domain. The `_version.py` that it creates is also in the public domain. Specifically, both are released under the Creative Commons "Public Domain Dedication" license (CC0-1.0), as described in https://creativecommons.org/publicdomain/zero/1.0/ . [pypi-image]: https://img.shields.io/pypi/v/versioneer.svg [pypi-url]: https://pypi.python.org/pypi/versioneer/ [travis-image]: https://img.shields.io/travis/com/python-versioneer/python-versioneer.svg [travis-url]: https://travis-ci.com/github/python-versioneer/python-versioneer """ # pylint:disable=invalid-name,import-outside-toplevel,missing-function-docstring # pylint:disable=missing-class-docstring,too-many-branches,too-many-statements # pylint:disable=raise-missing-from,too-many-lines,too-many-locals,import-error # pylint:disable=too-few-public-methods,redefined-outer-name,consider-using-with # pylint:disable=attribute-defined-outside-init,too-many-arguments import configparser import errno import json import os import re import subprocess import sys from typing import Callable, Dict class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_root(): """Get the project root directory. We require that all commands are run from the project root, i.e. the directory that contains setup.py, setup.cfg, and versioneer.py . """ root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): # allow 'python path/to/setup.py COMMAND' root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = ("Versioneer was unable to run the project root directory. " "Versioneer requires setup.py to be executed from " "its immediate directory (like 'python setup.py COMMAND'), " "or in a way that lets it use sys.argv[0] to find the root " "(like 'python path/to/setup.py COMMAND').") raise VersioneerBadRootError(err) try: # Certain runtime workflows (setup.py install/develop in a setuptools # tree) execute all dependencies in a single python process, so # "versioneer" may be imported multiple times, and python's shared # module-import table will cache the first one. So we can't use # os.path.dirname(__file__), as that will find whichever # versioneer.py was first imported, even in later projects. my_path = os.path.realpath(os.path.abspath(__file__)) me_dir = os.path.normcase(os.path.splitext(my_path)[0]) vsr_dir = os.path.normcase(os.path.splitext(versioneer_py)[0]) if me_dir != vsr_dir: print("Warning: build in %s is using versioneer.py from %s" % (os.path.dirname(my_path), versioneer_py)) except NameError: pass return root def get_config_from_root(root): """Read the project setup.cfg file to determine Versioneer config.""" # This might raise OSError (if setup.cfg is missing), or # configparser.NoSectionError (if it lacks a [versioneer] section), or # configparser.NoOptionError (if it lacks "VCS="). See the docstring at # the top of versioneer.py for instructions on writing your setup.cfg . setup_cfg = os.path.join(root, "setup.cfg") parser = configparser.ConfigParser() with open(setup_cfg, "r") as cfg_file: parser.read_file(cfg_file) VCS = parser.get("versioneer", "VCS") # mandatory # Dict-like interface for non-mandatory entries section = parser["versioneer"] cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = section.get("style", "") cfg.versionfile_source = section.get("versionfile_source") cfg.versionfile_build = section.get("versionfile_build") cfg.tag_prefix = section.get("tag_prefix") if cfg.tag_prefix in ("''", '""'): cfg.tag_prefix = "" cfg.parentdir_prefix = section.get("parentdir_prefix") cfg.verbose = section.get("verbose") return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" # these dictionaries contain VCS-specific tools LONG_VERSION_PY: Dict[str, str] = {} HANDLERS: Dict[str, Dict[str, Callable]] = {} def register_vcs_handler(vcs, method): # decorator """Create decorator to mark a method as the handler of a VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" HANDLERS.setdefault(vcs, {})[method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None): """Call the given command(s).""" assert isinstance(commands, list) process = None for command in commands: try: dispcmd = str([command] + args) # remember shell=False, so use git.cmd on windows, not just git process = subprocess.Popen([command] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except OSError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None, None stdout = process.communicate()[0].strip().decode() if process.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) print("stdout was %s" % stdout) return None, process.returncode return stdout, process.returncode LONG_VERSION_PY['git'] = r''' # This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.21 (https://github.com/python-versioneer/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys from typing import Callable, Dict def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "%(DOLLAR)sFormat:%%d%(DOLLAR)s" git_full = "%(DOLLAR)sFormat:%%H%(DOLLAR)s" git_date = "%(DOLLAR)sFormat:%%ci%(DOLLAR)s" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "%(STYLE)s" cfg.tag_prefix = "%(TAG_PREFIX)s" cfg.parentdir_prefix = "%(PARENTDIR_PREFIX)s" cfg.versionfile_source = "%(VERSIONFILE_SOURCE)s" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY: Dict[str, str] = {} HANDLERS: Dict[str, Dict[str, Callable]] = {} def register_vcs_handler(vcs, method): # decorator """Create decorator to mark a method as the handler of a VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None): """Call the given command(s).""" assert isinstance(commands, list) process = None for command in commands: try: dispcmd = str([command] + args) # remember shell=False, so use git.cmd on windows, not just git process = subprocess.Popen([command] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except OSError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %%s" %% dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried %%s" %% (commands,)) return None, None stdout = process.communicate()[0].strip().decode() if process.returncode != 0: if verbose: print("unable to run %%s (error)" %% dispcmd) print("stdout was %%s" %% stdout) return None, process.returncode return stdout, process.returncode def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for _ in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None, "date": None} rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print("Tried directories %%s but none started with prefix %%s" %% (str(rootdirs), parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: with open(versionfile_abs, "r") as fobj: for line in fobj: if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) except OSError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if "refnames" not in keywords: raise NotThisMethod("Short version file found") date = keywords.get("date") if date is not None: # Use only the last line. Previous lines may contain GPG signature # information. date = date.splitlines()[-1] # git-2.2.0 added "%%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = {r.strip() for r in refnames.strip("()").split(",")} # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = {r[len(TAG):] for r in refs if r.startswith(TAG)} if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %%d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = {r for r in refs if re.search(r'\d', r)} if verbose: print("discarding '%%s', no digits" %% ",".join(refs - tags)) if verbose: print("likely tags: %%s" %% ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] # Filter out refs that exactly match prefix or that don't start # with a number once the prefix is stripped (mostly a concern # when prefix is '') if not re.match(r'\d', r): continue if verbose: print("picking %%s" %% r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date} # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, runner=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] TAG_PREFIX_REGEX = "*" if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] TAG_PREFIX_REGEX = r"\*" _, rc = runner(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %%s not under git control" %% root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = runner(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%%s%%s" %% (tag_prefix, TAG_PREFIX_REGEX)], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = runner(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None branch_name, rc = runner(GITS, ["rev-parse", "--abbrev-ref", "HEAD"], cwd=root) # --abbrev-ref was added in git-1.6.3 if rc != 0 or branch_name is None: raise NotThisMethod("'git rev-parse --abbrev-ref' returned error") branch_name = branch_name.strip() if branch_name == "HEAD": # If we aren't exactly on a branch, pick a branch which represents # the current commit. If all else fails, we are on a branchless # commit. branches, rc = runner(GITS, ["branch", "--contains"], cwd=root) # --contains was added in git-1.5.4 if rc != 0 or branches is None: raise NotThisMethod("'git branch --contains' returned error") branches = branches.split("\n") # Remove the first line if we're running detached if "(" in branches[0]: branches.pop(0) # Strip off the leading "* " from the list of branches. branches = [branch[2:] for branch in branches] if "master" in branches: branch_name = "master" elif not branches: branch_name = None else: # Pick the first branch that is returned. Good or bad. branch_name = branches[0] pieces["branch"] = branch_name # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparsable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%%s'" %% describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%%s' doesn't start with prefix '%%s'" print(fmt %% (full_tag, tag_prefix)) pieces["error"] = ("tag '%%s' doesn't start with prefix '%%s'" %% (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = runner(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = runner(GITS, ["show", "-s", "--format=%%ci", "HEAD"], cwd=root)[0].strip() # Use only the last line. Previous lines may contain GPG signature # information. date = date.splitlines()[-1] pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_branch(pieces): """TAG[[.dev0]+DISTANCE.gHEX[.dirty]] . The ".dev0" means not master branch. Note that .dev0 sorts backwards (a feature branch will appear "older" than the master branch). Exceptions: 1: no tags. 0[.dev0]+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: if pieces["branch"] != "master": rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0" if pieces["branch"] != "master": rendered += ".dev0" rendered += "+untagged.%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def pep440_split_post(ver): """Split pep440 version string at the post-release segment. Returns the release segments before the post-release and the post-release version number (or -1 if no post-release segment is present). """ vc = str.split(ver, ".post") return vc[0], int(vc[1] or 0) if len(vc) == 2 else None def render_pep440_pre(pieces): """TAG[.postN.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post0.devDISTANCE """ if pieces["closest-tag"]: if pieces["distance"]: # update the post release segment tag_version, post_version = pep440_split_post(pieces["closest-tag"]) rendered = tag_version if post_version is not None: rendered += ".post%%d.dev%%d" %% (post_version+1, pieces["distance"]) else: rendered += ".post0.dev%%d" %% (pieces["distance"]) else: # no commits, use the tag as the version rendered = pieces["closest-tag"] else: # exception #1 rendered = "0.post0.dev%%d" %% pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%%s" %% pieces["short"] else: # exception #1 rendered = "0.post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%%s" %% pieces["short"] return rendered def render_pep440_post_branch(pieces): """TAG[.postDISTANCE[.dev0]+gHEX[.dirty]] . The ".dev0" means not master branch. Exceptions: 1: no tags. 0.postDISTANCE[.dev0]+gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%%d" %% pieces["distance"] if pieces["branch"] != "master": rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%%s" %% pieces["short"] if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0.post%%d" %% pieces["distance"] if pieces["branch"] != "master": rendered += ".dev0" rendered += "+g%%s" %% pieces["short"] if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%%d-g%%s" %% (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%%d-g%%s" %% (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-branch": rendered = render_pep440_branch(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-post-branch": rendered = render_pep440_post_branch(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%%s'" %% style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date")} def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for _ in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree", "date": None} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None} ''' @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: with open(versionfile_abs, "r") as fobj: for line in fobj: if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) except OSError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if "refnames" not in keywords: raise NotThisMethod("Short version file found") date = keywords.get("date") if date is not None: # Use only the last line. Previous lines may contain GPG signature # information. date = date.splitlines()[-1] # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = {r.strip() for r in refnames.strip("()").split(",")} # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = {r[len(TAG):] for r in refs if r.startswith(TAG)} if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = {r for r in refs if re.search(r'\d', r)} if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] # Filter out refs that exactly match prefix or that don't start # with a number once the prefix is stripped (mostly a concern # when prefix is '') if not re.match(r'\d', r): continue if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date} # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, runner=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] TAG_PREFIX_REGEX = "*" if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] TAG_PREFIX_REGEX = r"\*" _, rc = runner(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = runner(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%s%s" % (tag_prefix, TAG_PREFIX_REGEX)], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = runner(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None branch_name, rc = runner(GITS, ["rev-parse", "--abbrev-ref", "HEAD"], cwd=root) # --abbrev-ref was added in git-1.6.3 if rc != 0 or branch_name is None: raise NotThisMethod("'git rev-parse --abbrev-ref' returned error") branch_name = branch_name.strip() if branch_name == "HEAD": # If we aren't exactly on a branch, pick a branch which represents # the current commit. If all else fails, we are on a branchless # commit. branches, rc = runner(GITS, ["branch", "--contains"], cwd=root) # --contains was added in git-1.5.4 if rc != 0 or branches is None: raise NotThisMethod("'git branch --contains' returned error") branches = branches.split("\n") # Remove the first line if we're running detached if "(" in branches[0]: branches.pop(0) # Strip off the leading "* " from the list of branches. branches = [branch[2:] for branch in branches] if "master" in branches: branch_name = "master" elif not branches: branch_name = None else: # Pick the first branch that is returned. Good or bad. branch_name = branches[0] pieces["branch"] = branch_name # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparsable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = runner(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = runner(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip() # Use only the last line. Previous lines may contain GPG signature # information. date = date.splitlines()[-1] pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def do_vcs_install(manifest_in, versionfile_source, ipy): """Git-specific installation logic for Versioneer. For Git, this means creating/changing .gitattributes to mark _version.py for export-subst keyword substitution. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] files = [manifest_in, versionfile_source] if ipy: files.append(ipy) try: my_path = __file__ if my_path.endswith(".pyc") or my_path.endswith(".pyo"): my_path = os.path.splitext(my_path)[0] + ".py" versioneer_file = os.path.relpath(my_path) except NameError: versioneer_file = "versioneer.py" files.append(versioneer_file) present = False try: with open(".gitattributes", "r") as fobj: for line in fobj: if line.strip().startswith(versionfile_source): if "export-subst" in line.strip().split()[1:]: present = True break except OSError: pass if not present: with open(".gitattributes", "a+") as fobj: fobj.write(f"{versionfile_source} export-subst\n") files.append(".gitattributes") run_command(GITS, ["add", "--"] + files) def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for _ in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None, "date": None} rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print("Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") SHORT_VERSION_PY = """ # This file was generated by 'versioneer.py' (0.21) from # revision-control system data, or from the parent directory name of an # unpacked source archive. Distribution tarballs contain a pre-generated copy # of this file. import json version_json = ''' %s ''' # END VERSION_JSON def get_versions(): return json.loads(version_json) """ def versions_from_file(filename): """Try to determine the version from _version.py if present.""" try: with open(filename) as f: contents = f.read() except OSError: raise NotThisMethod("unable to read _version.py") mo = re.search(r"version_json = '''\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: mo = re.search(r"version_json = '''\r\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: raise NotThisMethod("no version_json in _version.py") return json.loads(mo.group(1)) def write_to_version_file(filename, versions): """Write the given version number to the given _version.py file.""" os.unlink(filename) contents = json.dumps(versions, sort_keys=True, indent=1, separators=(",", ": ")) with open(filename, "w") as f: f.write(SHORT_VERSION_PY % contents) print("set %s to '%s'" % (filename, versions["version"])) def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_branch(pieces): """TAG[[.dev0]+DISTANCE.gHEX[.dirty]] . The ".dev0" means not master branch. Note that .dev0 sorts backwards (a feature branch will appear "older" than the master branch). Exceptions: 1: no tags. 0[.dev0]+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: if pieces["branch"] != "master": rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0" if pieces["branch"] != "master": rendered += ".dev0" rendered += "+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def pep440_split_post(ver): """Split pep440 version string at the post-release segment. Returns the release segments before the post-release and the post-release version number (or -1 if no post-release segment is present). """ vc = str.split(ver, ".post") return vc[0], int(vc[1] or 0) if len(vc) == 2 else None def render_pep440_pre(pieces): """TAG[.postN.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post0.devDISTANCE """ if pieces["closest-tag"]: if pieces["distance"]: # update the post release segment tag_version, post_version = pep440_split_post(pieces["closest-tag"]) rendered = tag_version if post_version is not None: rendered += ".post%d.dev%d" % (post_version+1, pieces["distance"]) else: rendered += ".post0.dev%d" % (pieces["distance"]) else: # no commits, use the tag as the version rendered = pieces["closest-tag"] else: # exception #1 rendered = "0.post0.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_post_branch(pieces): """TAG[.postDISTANCE[.dev0]+gHEX[.dirty]] . The ".dev0" means not master branch. Exceptions: 1: no tags. 0.postDISTANCE[.dev0]+gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["branch"] != "master": rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["branch"] != "master": rendered += ".dev0" rendered += "+g%s" % pieces["short"] if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-branch": rendered = render_pep440_branch(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-post-branch": rendered = render_pep440_post_branch(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date")} class VersioneerBadRootError(Exception): """The project root directory is unknown or missing key files.""" def get_versions(verbose=False): """Get the project version from whatever source is available. Returns dict with two keys: 'version' and 'full'. """ if "versioneer" in sys.modules: # see the discussion in cmdclass.py:get_cmdclass() del sys.modules["versioneer"] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, "please set [versioneer]VCS= in setup.cfg" handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, \ "please set versioneer.versionfile_source" assert cfg.tag_prefix is not None, "please set versioneer.tag_prefix" versionfile_abs = os.path.join(root, cfg.versionfile_source) # extract version from first of: _version.py, VCS command (e.g. 'git # describe'), parentdir. This is meant to work for developers using a # source checkout, for users of a tarball created by 'setup.py sdist', # and for users of a tarball/zipball created by 'git archive' or github's # download-from-tag feature or the equivalent in other VCSes. get_keywords_f = handlers.get("get_keywords") from_keywords_f = handlers.get("keywords") if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print("got version from expanded keyword %s" % ver) return ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print("got version from file %s %s" % (versionfile_abs, ver)) return ver except NotThisMethod: pass from_vcs_f = handlers.get("pieces_from_vcs") if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print("got version from VCS %s" % ver) return ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print("got version from parentdir %s" % ver) return ver except NotThisMethod: pass if verbose: print("unable to compute version") return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None} def get_version(): """Get the short version string for this project.""" return get_versions()["version"] def get_cmdclass(cmdclass=None): """Get the custom setuptools/distutils subclasses used by Versioneer. If the package uses a different cmdclass (e.g. one from numpy), it should be provide as an argument. """ if "versioneer" in sys.modules: del sys.modules["versioneer"] # this fixes the "python setup.py develop" case (also 'install' and # 'easy_install .'), in which subdependencies of the main project are # built (using setup.py bdist_egg) in the same python process. Assume # a main project A and a dependency B, which use different versions # of Versioneer. A's setup.py imports A's Versioneer, leaving it in # sys.modules by the time B's setup.py is executed, causing B to run # with the wrong versioneer. Setuptools wraps the sub-dep builds in a # sandbox that restores sys.modules to it's pre-build state, so the # parent is protected against the child's "import versioneer". By # removing ourselves from sys.modules here, before the child build # happens, we protect the child from the parent's versioneer too. # Also see https://github.com/python-versioneer/python-versioneer/issues/52 cmds = {} if cmdclass is None else cmdclass.copy() # we add "version" to both distutils and setuptools from distutils.core import Command class cmd_version(Command): description = "report generated version string" user_options = [] boolean_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): vers = get_versions(verbose=True) print("Version: %s" % vers["version"]) print(" full-revisionid: %s" % vers.get("full-revisionid")) print(" dirty: %s" % vers.get("dirty")) print(" date: %s" % vers.get("date")) if vers["error"]: print(" error: %s" % vers["error"]) cmds["version"] = cmd_version # we override "build_py" in both distutils and setuptools # # most invocation pathways end up running build_py: # distutils/build -> build_py # distutils/install -> distutils/build ->.. # setuptools/bdist_wheel -> distutils/install ->.. # setuptools/bdist_egg -> distutils/install_lib -> build_py # setuptools/install -> bdist_egg ->.. # setuptools/develop -> ? # pip install: # copies source tree to a tempdir before running egg_info/etc # if .git isn't copied too, 'git describe' will fail # then does setup.py bdist_wheel, or sometimes setup.py install # setup.py egg_info -> ? # we override different "build_py" commands for both environments if 'build_py' in cmds: _build_py = cmds['build_py'] elif "setuptools" in sys.modules: from setuptools.command.build_py import build_py as _build_py else: from distutils.command.build_py import build_py as _build_py class cmd_build_py(_build_py): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() _build_py.run(self) # now locate _version.py in the new build/ directory and replace # it with an updated value if cfg.versionfile_build: target_versionfile = os.path.join(self.build_lib, cfg.versionfile_build) print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) cmds["build_py"] = cmd_build_py if 'build_ext' in cmds: _build_ext = cmds['build_ext'] elif "setuptools" in sys.modules: from setuptools.command.build_ext import build_ext as _build_ext else: from distutils.command.build_ext import build_ext as _build_ext class cmd_build_ext(_build_ext): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() _build_ext.run(self) if self.inplace: # build_ext --inplace will only build extensions in # build/lib<..> dir with no _version.py to write to. # As in place builds will already have a _version.py # in the module dir, we do not need to write one. return # now locate _version.py in the new build/ directory and replace # it with an updated value target_versionfile = os.path.join(self.build_lib, cfg.versionfile_build) print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) cmds["build_ext"] = cmd_build_ext if "cx_Freeze" in sys.modules: # cx_freeze enabled? from cx_Freeze.dist import build_exe as _build_exe # nczeczulin reports that py2exe won't like the pep440-style string # as FILEVERSION, but it can be used for PRODUCTVERSION, e.g. # setup(console=[{ # "version": versioneer.get_version().split("+", 1)[0], # FILEVERSION # "product_version": versioneer.get_version(), # ... class cmd_build_exe(_build_exe): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() target_versionfile = cfg.versionfile_source print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) _build_exe.run(self) os.unlink(target_versionfile) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) cmds["build_exe"] = cmd_build_exe del cmds["build_py"] if 'py2exe' in sys.modules: # py2exe enabled? from py2exe.distutils_buildexe import py2exe as _py2exe class cmd_py2exe(_py2exe): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() target_versionfile = cfg.versionfile_source print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) _py2exe.run(self) os.unlink(target_versionfile) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) cmds["py2exe"] = cmd_py2exe # we override different "sdist" commands for both environments if 'sdist' in cmds: _sdist = cmds['sdist'] elif "setuptools" in sys.modules: from setuptools.command.sdist import sdist as _sdist else: from distutils.command.sdist import sdist as _sdist class cmd_sdist(_sdist): def run(self): versions = get_versions() self._versioneer_generated_versions = versions # unless we update this, the command will keep using the old # version self.distribution.metadata.version = versions["version"] return _sdist.run(self) def make_release_tree(self, base_dir, files): root = get_root() cfg = get_config_from_root(root) _sdist.make_release_tree(self, base_dir, files) # now locate _version.py in the new base_dir directory # (remembering that it may be a hardlink) and replace it with an # updated value target_versionfile = os.path.join(base_dir, cfg.versionfile_source) print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, self._versioneer_generated_versions) cmds["sdist"] = cmd_sdist return cmds CONFIG_ERROR = """ setup.cfg is missing the necessary Versioneer configuration. You need a section like: [versioneer] VCS = git style = pep440 versionfile_source = src/myproject/_version.py versionfile_build = myproject/_version.py tag_prefix = parentdir_prefix = myproject- You will also need to edit your setup.py to use the results: import versioneer setup(version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), ...) Please read the docstring in ./versioneer.py for configuration instructions, edit setup.cfg, and re-run the installer or 'python versioneer.py setup'. """ SAMPLE_CONFIG = """ # See the docstring in versioneer.py for instructions. Note that you must # re-run 'versioneer.py setup' after changing this section, and commit the # resulting files. [versioneer] #VCS = git #style = pep440 #versionfile_source = #versionfile_build = #tag_prefix = #parentdir_prefix = """ OLD_SNIPPET = """ from ._version import get_versions __version__ = get_versions()['version'] del get_versions """ INIT_PY_SNIPPET = """ from . import {0} __version__ = {0}.get_versions()['version'] """ def do_setup(): """Do main VCS-independent setup function for installing Versioneer.""" root = get_root() try: cfg = get_config_from_root(root) except (OSError, configparser.NoSectionError, configparser.NoOptionError) as e: if isinstance(e, (OSError, configparser.NoSectionError)): print("Adding sample versioneer config to setup.cfg", file=sys.stderr) with open(os.path.join(root, "setup.cfg"), "a") as f: f.write(SAMPLE_CONFIG) print(CONFIG_ERROR, file=sys.stderr) return 1 print(" creating %s" % cfg.versionfile_source) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) ipy = os.path.join(os.path.dirname(cfg.versionfile_source), "__init__.py") if os.path.exists(ipy): try: with open(ipy, "r") as f: old = f.read() except OSError: old = "" module = os.path.splitext(os.path.basename(cfg.versionfile_source))[0] snippet = INIT_PY_SNIPPET.format(module) if OLD_SNIPPET in old: print(" replacing boilerplate in %s" % ipy) with open(ipy, "w") as f: f.write(old.replace(OLD_SNIPPET, snippet)) elif snippet not in old: print(" appending to %s" % ipy) with open(ipy, "a") as f: f.write(snippet) else: print(" %s unmodified" % ipy) else: print(" %s doesn't exist, ok" % ipy) ipy = None # Make sure both the top-level "versioneer.py" and versionfile_source # (PKG/_version.py, used by runtime code) are in MANIFEST.in, so # they'll be copied into source distributions. Pip won't be able to # install the package without this. manifest_in = os.path.join(root, "MANIFEST.in") simple_includes = set() try: with open(manifest_in, "r") as f: for line in f: if line.startswith("include "): for include in line.split()[1:]: simple_includes.add(include) except OSError: pass # That doesn't cover everything MANIFEST.in can do # (http://docs.python.org/2/distutils/sourcedist.html#commands), so # it might give some false negatives. Appending redundant 'include' # lines is safe, though. if "versioneer.py" not in simple_includes: print(" appending 'versioneer.py' to MANIFEST.in") with open(manifest_in, "a") as f: f.write("include versioneer.py\n") else: print(" 'versioneer.py' already in MANIFEST.in") if cfg.versionfile_source not in simple_includes: print(" appending versionfile_source ('%s') to MANIFEST.in" % cfg.versionfile_source) with open(manifest_in, "a") as f: f.write("include %s\n" % cfg.versionfile_source) else: print(" versionfile_source already in MANIFEST.in") # Make VCS-specific changes. For git, this means creating/changing # .gitattributes to mark _version.py for export-subst keyword # substitution. do_vcs_install(manifest_in, cfg.versionfile_source, ipy) return 0 def scan_setup_py(): """Validate the contents of setup.py against Versioneer's expectations.""" found = set() setters = False errors = 0 with open("setup.py", "r") as f: for line in f.readlines(): if "import versioneer" in line: found.add("import") if "versioneer.get_cmdclass()" in line: found.add("cmdclass") if "versioneer.get_version()" in line: found.add("get_version") if "versioneer.VCS" in line: setters = True if "versioneer.versionfile_source" in line: setters = True if len(found) != 3: print("") print("Your setup.py appears to be missing some important items") print("(but I might be wrong). Please make sure it has something") print("roughly like the following:") print("") print(" import versioneer") print(" setup( version=versioneer.get_version(),") print(" cmdclass=versioneer.get_cmdclass(), ...)") print("") errors += 1 if setters: print("You should remove lines like 'versioneer.VCS = ' and") print("'versioneer.versionfile_source = ' . This configuration") print("now lives in setup.cfg, and should be removed from setup.py") print("") errors += 1 return errors if __name__ == "__main__": cmd = sys.argv[1] if cmd == "setup": errors = do_setup() errors += scan_setup_py() if errors: sys.exit(1)
NVFlare-main
versioneer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import matplotlib.pyplot as plt def plot_acc(path): log_path = os.path.join(path, "simulate_job", "app_site-1", "log.txt") acc = [] with open(log_path, encoding="utf-8") as f: for line in f.readlines(): str_split = line.split(" ") if len(str_split) > 5: if str_split[-2] == "train_accuracy:": acc.append(float(str_split[-1])) print(acc) ep = [i * 10 for i in range(len(acc))] plt.plot(ep, acc) plt.xlabel("Local training epoch") plt.ylabel("Training accuracy") plt.title("One-shot VFL") plt.savefig("figs/oneshotVFL_results1.png")
NVFlare-main
research/one-shot-vfl/plt_valid.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json def main(): parser = argparse.ArgumentParser() parser.add_argument( "--config_file", type=str, default="./config_fed_client.json", help="config file in JSON format", ) parser.add_argument( "--intersection_file", type=str, help="Intersection file with overlapping data indices", ) args = parser.parse_args() with open(args.config_file, "r") as f: config = json.load(f) config["INTERSECTION_FILE"] = args.intersection_file with open(args.config_file, "w") as f: json.dump(config, f, indent=4) f.write("\n") print(f"Modified {args.config_file} to use INTERSECTION_FILE={config['INTERSECTION_FILE']}") if __name__ == "__main__": main()
NVFlare-main
research/one-shot-vfl/set_intersection_file.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pt.networks.cifar10_nets import ModerateCNN class SplitNN(ModerateCNN): def __init__(self, split_id): super().__init__() if split_id not in [0, 1]: raise ValueError(f"Only supports split_id '0' or '1' but was {self.split_id}") self.split_id = split_id if self.split_id == 0: self.split_forward = self.conv_layer elif self.split_id == 1: self.split_forward = self.fc_layer else: raise ValueError(f"Expected split_id to be '0' or '1' but was {self.split_id}") def forward(self, x): x = self.split_forward(x) return x def forward_complt(self, x): x = self.conv_layer(x) x = x.view(x.size(0), -1) x = self.fc_layer(x) return x def get_split_id(self): return self.split_id
NVFlare-main
research/one-shot-vfl/src/oneshotVFL/split_nn.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from oneshotVFL.cifar10_learner_oneshotVFL import CIFAR10LearnerOneshotVFL from oneshotVFL.split_nn import SplitNN from splitnn.cifar10_splitnn_dataset import CIFAR10SplitNN from splitnn.cifar10_vertical_data_splitter import Cifar10VerticalDataSplitter
NVFlare-main
research/one-shot-vfl/src/oneshotVFL/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from timeit import default_timer as timer import numpy as np import torch import torch.optim as optim from oneshotVFL.vfl_oneshot_workflow import OSVFLDataKind, OSVFLNNConstants from sklearn.cluster import KMeans # from oneshotVFL.cifar10_splitnn_dataset import CIFAR10SplitNN from splitnn.cifar10_splitnn_dataset import CIFAR10SplitNN from torch.utils.tensorboard import SummaryWriter from torchvision import transforms from nvflare.apis.dxo import DXO, from_shareable from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.app_constant import AppConstants from nvflare.app_opt.pt.decomposers import TensorDecomposer from nvflare.fuel.f3.stats_pool import StatsPoolManager from nvflare.fuel.utils import fobs class CIFAR10LearnerOneshotVFL(Learner): def __init__( self, dataset_root: str = "./dataset", intersection_file: str = None, lr: float = 1e-2, model: dict = None, analytic_sender_id: str = "analytic_sender", fp16: bool = True, val_freq: int = 1000, ): """Simple CIFAR-10 Trainer for split learning. Args: dataset_root: directory with CIFAR-10 data. intersection_file: Optional. intersection file specifying overlapping indices between both clients. Defaults to `None`, i.e. the whole training dataset is used. lr: learning rate. model: Split learning model. analytic_sender_id: id of `AnalyticsSender` if configured as a client component. If configured, TensorBoard events will be fired. Defaults to "analytic_sender". fp16: If `True`, convert activations and gradients send between clients to `torch.float16`. Reduces bandwidth needed for communication but might impact model accuracy. val_freq: how often to perform validation in rounds. Defaults to 1000. No validation if <= 0. """ super().__init__() self.dataset_root = dataset_root self.intersection_file = intersection_file self.lr = lr self.model = model self.analytic_sender_id = analytic_sender_id self.fp16 = fp16 self.val_freq = val_freq self.target_names = None self.app_root = None self.current_round = None self.num_rounds = None self.batch_size = None self.writer = None self.client_name = None self.other_client = None self.device = None self.optimizer = None self.criterion = None self.transform_train = None self.transform_valid = None self.train_dataset = None self.valid_dataset = None self.split_id = None self.train_activations = None self.train_batch_indices = None self.train_size = 0 self.val_loss = [] self.val_labels = [] self.val_pred_labels = [] self.compute_stats_pool = None self.encoder_epoch = 0 self.clf_epoch = 0 # use FOBS serializing/deserializing PyTorch tensors fobs.register(TensorDecomposer) def initialize(self, parts: dict, fl_ctx: FLContext): t_start = timer() self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model = self.model.to(self.device) self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.9) self.criterion = torch.nn.CrossEntropyLoss() self.encoder_epoch = 200 self.clf_epoch = 50 self.transform_train = transforms.Compose( [ transforms.ToTensor(), transforms.ToPILImage(), transforms.Pad(4, padding_mode="reflect"), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize( mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]], ), ] ) self.transform_valid = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize( mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]], ), ] ) self.app_root = fl_ctx.get_prop(FLContextKey.APP_ROOT) self.client_name = fl_ctx.get_identity_name() self.split_id = self.model.get_split_id() self.log_info(fl_ctx, f"Running `split_id` {self.split_id} on site `{self.client_name}`") if self.split_id == 0: # data side data_returns = "image" elif self.split_id == 1: # label side data_returns = "label" else: raise ValueError(f"Expected split_id to be '0' or '1' but was {self.split_id}") if self.intersection_file is not None: _intersect_indices = np.loadtxt(self.intersection_file) else: _intersect_indices = None self.train_dataset = CIFAR10SplitNN( root=self.dataset_root, train=True, download=True, transform=self.transform_train, returns=data_returns, intersect_idx=_intersect_indices, ) self.valid_dataset = CIFAR10SplitNN( root=self.dataset_root, train=False, download=False, transform=self.transform_valid, returns=data_returns, intersect_idx=None, # TODO: support validation intersect indices ) self.train_size = len(self.train_dataset) if self.train_size <= 0: raise ValueError(f"Expected train dataset size to be larger zero but got {self.train_size}") self.log_info(fl_ctx, f"Training with {self.train_size} overlapping indices of {self.train_dataset.orig_size}.") # Select local TensorBoard writer or event-based writer for streaming if self.split_id == 1: # metrics can only be computed for client with labels self.writer = parts.get(self.analytic_sender_id) # user configured config_fed_client.json for streaming if not self.writer: # use local TensorBoard writer only self.writer = SummaryWriter(self.app_root) # register aux message handlers engine = fl_ctx.get_engine() if self.split_id == 1: engine.register_aux_message_handler( topic=OSVFLNNConstants.TASK_CALCULATE_GRADIENTS, message_handle_func=self._osvfl_calculate_gradients ) engine.register_aux_message_handler( topic=OSVFLNNConstants.TASK_TRAIN_LABEL_SIDE, message_handle_func=self._classifier_train_label_side ) engine.register_aux_message_handler( topic=OSVFLNNConstants.TASK_VALID, message_handle_func=self._valid_label_side ) self.log_debug(fl_ctx, f"Registered aux message handlers for split_id {self.split_id}") self.compute_stats_pool = StatsPoolManager.add_time_hist_pool( "Compute_Time", "Compute time in secs", scope=self.client_name ) self.compute_stats_pool.record_value(category="initialize", value=timer() - t_start) """ training steps """ def _extract_features(self): self.model.train() features = [] for _, (inputs, _) in enumerate(self.train_dataloader_no_shuffle): inputs = inputs.to(self.device) features.append(self.model(inputs)) features = torch.cat(features, dim=0) features = features.view(features.size(0), -1) return features.detach().requires_grad_() def _osvfl_calculate_gradients(self, topic: str, request: Shareable, fl_ctx: FLContext) -> Shareable: """train aux message handler""" t_start = timer() if self.split_id != 1: raise ValueError( f"Expected `split_id` 1. It doesn't make sense to run `_aux_train_label_side` with `split_id` {self.split_id}" ) self.current_round = request.get_header(AppConstants.CURRENT_ROUND) self.num_rounds = request.get_header(AppConstants.NUM_ROUNDS) self.log_debug(fl_ctx, f"Calculate gradients in round {self.current_round} of {self.num_rounds} rounds.") dxo = from_shareable(request) if dxo.data_kind != OSVFLDataKind.FEATURES: raise ValueError(f"Expected data kind {OSVFLDataKind.FEATURES} but received {dxo.data_kind}") features = dxo.data.get(OSVFLNNConstants.DATA) if features is None: raise ValueError("No features in DXO!") features = fobs.loads(features) print(features.shape) feature_dataset = copy.deepcopy(self.train_dataset) if self.fp16: features = features.type(torch.float32) # return to default pytorch precision feature_dataset.data = features feature_dataset.transform = None feature_dataloader = torch.utils.data.DataLoader(feature_dataset, batch_size=self.batch_size, shuffle=False) gradient = [] self.model.eval() for _, (activations, labels) in enumerate(feature_dataloader): activations, labels = activations.to(self.device), labels.to(self.device) activations.requires_grad_(True) self.optimizer.zero_grad() pred = self.model.forward(activations) loss = self.criterion(pred, labels) loss.backward() if not isinstance(activations.grad, torch.Tensor): raise ValueError("No valid gradients available!") # gradient to be returned to other client if self.fp16: gradient.append(activations.grad.type(torch.float16)) else: gradient.append(activations.grad) gradient = torch.cat(gradient).cpu().numpy() self.log_debug(fl_ctx, "_osvfl_calculate_gradients finished.") return_shareable = DXO( data={OSVFLNNConstants.DATA: fobs.dumps(gradient)}, data_kind=OSVFLDataKind.GRADIENTS ).to_shareable() self.compute_stats_pool.record_value(category="_osvfl_calculate_gradients", value=timer() - t_start) self.log_debug(fl_ctx, f"Sending partial gradients return_shareable: {type(return_shareable)}") return return_shareable def _cluster_gradients(self, gradients, fl_ctx): num_clusters = 10 kmeans = KMeans(n_clusters=num_clusters, random_state=0, n_init=1).fit(gradients) cluster_labels = kmeans.labels_ self.log_info(fl_ctx, "_cluster_gradients finished.") return cluster_labels def _local_train(self, cluster_labels, fl_ctx): l_labels = torch.LongTensor(cluster_labels) local_train_dataset = copy.deepcopy(self.train_dataset) local_train_dataset.target = l_labels local_train_datloader = torch.utils.data.DataLoader( local_train_dataset, batch_size=self.batch_size, shuffle=True ) self.model.train() for e in range(self.encoder_epoch): loss_ep = [] for _, (inputs, labels) in enumerate(local_train_datloader): inputs, labels = inputs.to(self.device), labels.to(self.device) self.optimizer.zero_grad() pred = self.model.forward_complt(inputs) loss = self.criterion(pred, labels) loss.backward() self.optimizer.step() loss_ep.append(loss.item()) loss_epoch = sum(loss_ep) / len(loss_ep) if e % 10 == 0: self.model.eval() correct = 0 for _, (inputs, labels) in enumerate(local_train_datloader): inputs, labels = inputs.to(self.device), labels.to(self.device) pred = self.model.forward_complt(inputs) _, pred_labels = torch.max(pred, 1) correct += (pred_labels == labels).sum() acc = correct / len(cluster_labels) self.log_info( fl_ctx, f"Epoch {e}/{self.encoder_epoch} train_loss: {loss_epoch:.4f}, train_accuracy: {acc:.4f}", ) def _classifier_train_label_side(self, topic: str, request: Shareable, fl_ctx: FLContext): t_start = timer() if self.split_id != 1: raise ValueError( f"Expected `split_id` 1. It doesn't make sense to run `_aux_train_label_side` with `split_id` {self.split_id}" ) self.current_round = request.get_header(AppConstants.CURRENT_ROUND) self.num_rounds = request.get_header(AppConstants.NUM_ROUNDS) self.log_debug(fl_ctx, f"Calculate gradients in round {self.current_round} of {self.num_rounds} rounds.") dxo = from_shareable(request) if dxo.data_kind != OSVFLDataKind.FEATURES: raise ValueError(f"Expected data kind {OSVFLDataKind.FEATURES} but received {dxo.data_kind}") features = dxo.data.get(OSVFLNNConstants.DATA) if features is None: raise ValueError("No features in DXO!") features = fobs.loads(features) feature_dataset = copy.deepcopy(self.train_dataset) if self.fp16: features = features.type(torch.float32) # return to default pytorch precision feature_dataset.data = features feature_dataset.transform = None feature_dataloader = torch.utils.data.DataLoader(feature_dataset, batch_size=self.batch_size, shuffle=False) self.model.train() for e in range(self.encoder_epoch): loss_ep = [] for _, (inputs, labels) in enumerate(feature_dataloader): inputs, labels = inputs.to(self.device), labels.to(self.device) self.optimizer.zero_grad() pred = self.model.forward(inputs) loss = self.criterion(pred, labels) loss.backward() self.optimizer.step() loss_ep.append(loss.item()) loss_epoch = sum(loss_ep) / len(loss_ep) if e % 10 == 0: self.model.eval() correct = 0 for _, (inputs, labels) in enumerate(feature_dataloader): inputs, labels = inputs.to(self.device), labels.to(self.device) pred = self.model.forward(inputs) _, pred_labels = torch.max(pred, 1) correct += (pred_labels == labels).sum() acc = correct / features.shape[0] self.log_info( fl_ctx, f"Label Side Epoch {e}/{self.encoder_epoch} train_loss: {loss_epoch:.4f}, train_accuracy: {acc:.4f}", ) return make_reply(ReturnCode.OK) def _valid_label_side(self, topic: str, request: Shareable, fl_ctx: FLContext): t_start = timer() if self.split_id != 1: raise ValueError( f"Expected `split_id` 1. It doesn't make sense to run `_aux_train_label_side` with `split_id` {self.split_id}" ) dxo = from_shareable(request) if dxo.data_kind != OSVFLDataKind.FEATURES: raise ValueError(f"Expected data kind {OSVFLDataKind.FEATURES} but received {dxo.data_kind}") features = dxo.data.get(OSVFLNNConstants.DATA) if features is None: raise ValueError("No features in DXO!") features = fobs.loads(features) feature_dataset = copy.deepcopy(self.valid_dataset) if self.fp16: features = features.type(torch.float32) # return to default pytorch precision feature_dataset.data = features feature_dataset.transform = None feature_dataloader = torch.utils.data.DataLoader(feature_dataset, batch_size=self.batch_size, shuffle=False) self.model.eval() correct = 0 for _, (inputs, labels) in enumerate(feature_dataloader): inputs, labels = inputs.to(self.device), labels.to(self.device) pred = self.model.forward(inputs) _, pred_labels = torch.max(pred, 1) correct += (pred_labels == labels).sum() acc = correct / features.shape[0] self.log_info( fl_ctx, f"Label Side test_accuracy: {acc:.4f}", ) return make_reply(ReturnCode.OK) # Model initialization task (one time only in beginning) def init_model(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: t_start = timer() # Check abort signal if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() n_loaded = 0 for var_name in local_var_dict: if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) n_loaded += 1 except Exception as e: raise ValueError(f"Convert weight from {var_name} failed.") from e self.model.load_state_dict(local_var_dict) if n_loaded == 0: raise ValueError("No global weights loaded!") self.compute_stats_pool.record_value(category="init_model", value=timer() - t_start) self.log_info(fl_ctx, "init_model finished.") return make_reply(ReturnCode.OK) def train(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: t_start = timer() """main training logic""" engine = fl_ctx.get_engine() self.num_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) if not self.num_rounds: raise ValueError("No number of rounds available.") self.batch_size = shareable.get_header(OSVFLNNConstants.BATCH_SIZE) self.target_names = np.asarray( shareable.get_header(OSVFLNNConstants.TARGET_NAMES) ) # convert to array for string matching below self.other_client = self.target_names[self.target_names != self.client_name][0] self.log_info(fl_ctx, f"Starting training of {self.num_rounds} rounds with batch size {self.batch_size}") gradients = None # initial gradients if self.split_id != 0: self.compute_stats_pool.record_value(category="train", value=timer() - t_start) return make_reply(ReturnCode.OK) # only run this logic on first site self.train_dataloader_shuffle = torch.utils.data.DataLoader( self.train_dataset, batch_size=self.batch_size, shuffle=True ) self.train_dataloader_no_shuffle = torch.utils.data.DataLoader( self.train_dataset, batch_size=self.batch_size, shuffle=False ) self.valid_dataloader = torch.utils.data.DataLoader( self.valid_dataset, batch_size=self.batch_size, shuffle=False ) for _curr_round in range(self.num_rounds): self.current_round = _curr_round if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_debug(fl_ctx, f"Starting current round={self.current_round} of {self.num_rounds}.") # self.train_batch_indices = np.random.randint(0, self.train_size - 1, self.batch_size) # first round: site-1 extracts features and send to site-2; site-2 return gradients back to site-1 if _curr_round == 0: fl_ctx.set_prop(AppConstants.CURRENT_ROUND, self.current_round, private=True, sticky=False) # site-1 extract features features = self._extract_features() # package features dxo = DXO(data={OSVFLNNConstants.DATA: fobs.dumps(features)}, data_kind=OSVFLDataKind.FEATURES) data_shareable = dxo.to_shareable() # add meta data for transmission data_shareable.set_header(AppConstants.CURRENT_ROUND, self.current_round) data_shareable.set_header(AppConstants.NUM_ROUNDS, self.num_rounds) data_shareable.add_cookie(AppConstants.CONTRIBUTION_ROUND, self.current_round) # send clustering request to site-2 result = engine.send_aux_request( targets=self.other_client, topic=OSVFLNNConstants.TASK_CALCULATE_GRADIENTS, request=data_shareable, timeout=OSVFLNNConstants.TIMEOUT, fl_ctx=fl_ctx, ) # check returned results (gradients) shareable = result.get(self.other_client) if shareable is not None: dxo = from_shareable(shareable) if dxo.data_kind != OSVFLDataKind.GRADIENTS: raise ValueError(f"Expected data kind {OSVFLDataKind.GRADIENTS} but received {dxo.data_kind}") gradients = dxo.data.get(OSVFLNNConstants.DATA) gradients = fobs.loads(gradients) else: raise ValueError(f"No message returned from {self.other_client}!") # second round: site-1 conducts clustering, local training, and sending features to site-2; # site-2 trains the classifier elif _curr_round == 1: # site-1 conducts clustering and local training cluster_labels = self._cluster_gradients(gradients, fl_ctx) self._local_train(cluster_labels, fl_ctx) features = self._extract_features() # site-1 packages features dxo = DXO(data={OSVFLNNConstants.DATA: fobs.dumps(features)}, data_kind=OSVFLDataKind.FEATURES) data_shareable = dxo.to_shareable() data_shareable.set_header(AppConstants.CURRENT_ROUND, self.current_round) data_shareable.set_header(AppConstants.NUM_ROUNDS, self.num_rounds) data_shareable.add_cookie(AppConstants.CONTRIBUTION_ROUND, self.current_round) # site-1 sends features to site-2; site-2 trains the classifier engine.send_aux_request( targets=self.other_client, topic=OSVFLNNConstants.TASK_TRAIN_LABEL_SIDE, request=data_shareable, timeout=OSVFLNNConstants.TIMEOUT, fl_ctx=fl_ctx, ) try: self._validate(fl_ctx) except Exception as e: self.log_info(fl_ctx, "Valiate exit with exception {}".format(e)) return make_reply(ReturnCode.EXECUTION_EXCEPTION) self.log_debug(fl_ctx, f"Ending current round={self.current_round}.") # if self.val_freq > 0: # if _curr_round % self.val_freq == 0: # self._validate(fl_ctx) self.compute_stats_pool.record_value(category="train", value=timer() - t_start) return make_reply(ReturnCode.OK) def _validate(self, fl_ctx: FLContext): t_start = timer() engine = fl_ctx.get_engine() self.model.eval() features = [] for _, (inputs, _) in enumerate(self.valid_dataloader): inputs = inputs.to(self.device) features.append(self.model(inputs)) features = torch.cat(features, dim=0) features = features.view(features.size(0), -1) dxo = DXO(data={OSVFLNNConstants.DATA: fobs.dumps(features)}, data_kind=OSVFLDataKind.FEATURES) data_shareable = dxo.to_shareable() # send to other side to validate engine.send_aux_request( targets=self.other_client, topic=OSVFLNNConstants.TASK_VALID, request=data_shareable, timeout=OSVFLNNConstants.TIMEOUT, fl_ctx=fl_ctx, ) self.compute_stats_pool.record_value(category="_validate", value=timer() - t_start) self.log_debug(fl_ctx, "finished validation.")
NVFlare-main
research/one-shot-vfl/src/oneshotVFL/cifar10_learner_oneshotVFL.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.client import Client from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import ClientTask, Controller, Task from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learnable_persistor import LearnablePersistor from nvflare.app_common.abstract.shareable_generator import ShareableGenerator from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.security.logging import secure_format_exception from nvflare.widgets.info_collector import GroupInfoCollector, InfoCollector class OSVFLDataKind(object): FEATURES = "_osvfl_features_" GRADIENTS = "_osvfl_gradients_" CLUSTERS = "_osvfl_clusters_" class OSVFLNNConstants(object): BATCH_INDICES = "_osvfl_batch_indices_" DATA = "_osvfl_data_" BATCH_SIZE = "_osvfl_batch_size_" TARGET_NAMES = "_osvfl_target_names_" TASK_INIT_MODEL = "_osvfl_task_init_model_" TASK_VALID = "_osvfl_task_valid_" TASK_TRAIN_LABEL_SIDE = "_osvfl_task_train_label_side_" TASK_CLUSTER = "_osvfl_cluster_features_" TASK_CALCULATE_GRADIENTS = "_osvfl_calculate_gradients_" TASK_TRAIN = "_osvfl_task_train_" TASK_RESULT = "_splitnn_task_result_" TIMEOUT = 60.0 # timeout for waiting for reply from aux message request class OSVFLController(Controller): def __init__( self, num_rounds: int = 5000, start_round: int = 0, persistor_id=AppConstants.DEFAULT_PERSISTOR_ID, # used to init the models on both clients shareable_generator_id=AppConstants.DEFAULT_SHAREABLE_GENERATOR_ID, init_model_task_name=OSVFLNNConstants.TASK_INIT_MODEL, train_task_name=OSVFLNNConstants.TASK_TRAIN, task_timeout: int = 10, ignore_result_error: bool = True, batch_size: int = 256, ): """The controller for Split Learning Workflow. The SplitNNController workflow defines Federated training on all clients. The model persistor (persistor_id) is used to load the initial global model which is sent to all clients. Each clients sends it's updated weights after local training which is aggregated (aggregator_id). The shareable generator is used to convert the aggregated weights to shareable and shareable back to weights. The model_persistor also saves the model after training. Args: num_rounds (int, optional): The total number of training rounds. Defaults to 5. start_round (int, optional): Start round for training. Defaults to 0. persistor_id (str, optional): ID of the persistor component. Defaults to "persistor". shareable_generator_id (str, optional): ID of the shareable generator. Defaults to "shareable_generator". init_model_task_name: Task name used to initialize the local models. train_task_name: Task name used for split learning. task_timeout (int, optional): timeout (in sec) to determine if one client fails to request the task which it is assigned to. Defaults to 10. ignore_result_error (bool, optional): whether this controller can proceed if result has errors. Defaults to True. Raises: TypeError: when any of input arguments does not have correct type ValueError: when any of input arguments is out of range """ Controller.__init__(self) # Check arguments if not isinstance(num_rounds, int): raise TypeError("`num_rounds` must be int but got {}".format(type(num_rounds))) if not isinstance(start_round, int): raise TypeError("`start_round` must be int but got {}".format(type(start_round))) if not isinstance(task_timeout, int): raise TypeError("`train_timeout` must be int but got {}".format(type(task_timeout))) if not isinstance(persistor_id, str): raise TypeError("`persistor_id` must be a string but got {}".format(type(persistor_id))) if not isinstance(shareable_generator_id, str): raise TypeError("`shareable_generator_id` must be a string but got {}".format(type(shareable_generator_id))) if not isinstance(init_model_task_name, str): raise TypeError("`init_model_task_name` must be a string but got {}".format(type(init_model_task_name))) if not isinstance(train_task_name, str): raise TypeError("`train_task_name` must be a string but got {}".format(type(train_task_name))) if num_rounds < 0: raise ValueError("num_rounds must be greater than or equal to 0.") if start_round < 0: raise ValueError("start_round must be greater than or equal to 0.") self.persistor_id = persistor_id self.shareable_generator_id = shareable_generator_id self.persistor = None self.shareable_generator = None # config data self._num_rounds = num_rounds self._start_round = start_round self._task_timeout = task_timeout self.ignore_result_error = ignore_result_error # workflow phases: init, train, validate self._phase = AppConstants.PHASE_INIT self._global_weights = None self._current_round = None # task names self.init_model_task_name = init_model_task_name self.train_task_name = train_task_name self.targets_names = ["site-1", "site-2"] self.nr_supported_clients = 2 self.batch_size = batch_size def start_controller(self, fl_ctx: FLContext): self.log_debug(fl_ctx, "starting controller") self.persistor = fl_ctx.get_engine().get_component(self.persistor_id) self.shareable_generator = fl_ctx.get_engine().get_component(self.shareable_generator_id) if not isinstance(self.persistor, LearnablePersistor): self.system_panic( f"Persistor {self.persistor_id} must be a Persistor instance, but got {type(self.persistor)}", fl_ctx ) if not isinstance(self.shareable_generator, ShareableGenerator): self.system_panic( f"Shareable generator {self.shareable_generator_id} must be a Shareable Generator instance, " f"but got {type(self.shareable_generator)}", fl_ctx, ) # initialize global model fl_ctx.set_prop(AppConstants.START_ROUND, self._start_round, private=True, sticky=True) fl_ctx.set_prop(AppConstants.NUM_ROUNDS, self._num_rounds, private=True, sticky=False) self._global_weights = self.persistor.load(fl_ctx) fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, self._global_weights, private=True, sticky=True) self.fire_event(AppEventType.INITIAL_MODEL_LOADED, fl_ctx) def _process_result(self, client_task: ClientTask, fl_ctx: FLContext) -> bool: # submitted shareable is stored in client_task.result # we need to update task.data with that shareable so the next target # will get the updated shareable task = client_task.task result = client_task.result rc = result.get_return_code() if rc and rc != ReturnCode.OK: if self.ignore_result_error: self.log_error(fl_ctx, f"Ignore the task {task} result. Train result error code: {rc}") return False else: if rc in [ReturnCode.MISSING_PEER_CONTEXT, ReturnCode.BAD_PEER_CONTEXT]: self.system_panic( f"Peer context for task {task} is bad or missing. SplitNNController exiting.", fl_ctx=fl_ctx ) return False elif rc in [ReturnCode.EXECUTION_EXCEPTION, ReturnCode.TASK_UNKNOWN]: self.system_panic( f"Execution Exception in client task {task}. SplitNNController exiting.", fl_ctx=fl_ctx ) return False elif rc in [ ReturnCode.EXECUTION_RESULT_ERROR, ReturnCode.TASK_DATA_FILTER_ERROR, ReturnCode.TASK_RESULT_FILTER_ERROR, ]: self.system_panic( f"Execution result for task {task} is not a shareable. SplitNNController exiting.", fl_ctx=fl_ctx, ) return False # assign result to current task if result: task.set_prop(OSVFLNNConstants.TASK_RESULT, result) return True def _check_targets(self, fl_ctx: FLContext): engine = fl_ctx.get_engine() targets = engine.get_clients() for t in targets: if t.name not in self.targets_names: self.system_panic(f"Client {t.name} not in expected target names: {self.targets_names}", fl_ctx) def _init_models(self, abort_signal: Signal, fl_ctx: FLContext): self._check_targets(fl_ctx) self.log_debug(fl_ctx, f"OneshotVFL initializing model {self.targets_names}.") # Create init_model_task_name data_shareable: Shareable = self.shareable_generator.learnable_to_shareable(self._global_weights, fl_ctx) task = Task( name=self.init_model_task_name, data=data_shareable, result_received_cb=self._process_result, ) self.broadcast_and_wait( task=task, min_responses=self.nr_supported_clients, wait_time_after_min_received=0, fl_ctx=fl_ctx, abort_signal=abort_signal, ) def _train(self, abort_signal: Signal, fl_ctx: FLContext): self._check_targets(fl_ctx) self.log_debug(fl_ctx, f"SplitNN training starting with {self.targets_names}.") # Create train_task data_shareable: Shareable = Shareable() data_shareable.set_header(AppConstants.NUM_ROUNDS, self._num_rounds) data_shareable.set_header(OSVFLNNConstants.BATCH_SIZE, self.batch_size) data_shareable.set_header(OSVFLNNConstants.TARGET_NAMES, self.targets_names) task = Task( name=self.train_task_name, data=data_shareable, result_received_cb=self._process_result, ) # By default the request is broadcast to all the clients... self.broadcast_and_wait( task=task, min_responses=self.nr_supported_clients, wait_time_after_min_received=0, fl_ctx=fl_ctx, abort_signal=abort_signal, ) def control_flow(self, abort_signal: Signal, fl_ctx: FLContext): try: self._check_targets(fl_ctx) self.log_debug(fl_ctx, f"Train with on {self.targets_names}") # 1. initialize models on clients self._init_models(abort_signal=abort_signal, fl_ctx=fl_ctx) # 2. Start split learning self._phase = AppConstants.PHASE_TRAIN self._train(abort_signal=abort_signal, fl_ctx=fl_ctx) self._phase = AppConstants.PHASE_FINISHED self.log_debug(fl_ctx, "SplitNN training ended.") except BaseException as e: error_msg = f"SplitNN control_flow exception {secure_format_exception(e)}" self.log_error(fl_ctx, error_msg) self.system_panic(error_msg, fl_ctx) def stop_controller(self, fl_ctx: FLContext): self._phase = AppConstants.PHASE_FINISHED self.log_debug(fl_ctx, "controller stopped") def process_result_of_unknown_task( self, client: Client, task_name: str, client_task_id: str, result: Shareable, fl_ctx: FLContext, ): self.log_warning(fl_ctx, f"Dropped result of unknown task: {task_name} from client {client.name}.") def handle_event(self, event_type: str, fl_ctx: FLContext): super().handle_event(event_type, fl_ctx) if event_type == InfoCollector.EVENT_TYPE_GET_STATS: collector = fl_ctx.get_prop(InfoCollector.CTX_KEY_STATS_COLLECTOR, None) if collector: if not isinstance(collector, GroupInfoCollector): raise TypeError("collector must be GroupInfoCollector but got {}".format(type(collector))) collector.add_info( group_name=self._name, info={"phase": self._phase, "current_round": self._current_round, "num_rounds": self._num_rounds}, )
NVFlare-main
research/one-shot-vfl/src/oneshotVFL/vfl_oneshot_workflow.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from oneshotVFL.vfl_oneshot_workflow import OSVFLNNConstants from nvflare.apis.event_type import EventType from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.security.logging import secure_format_exception class OSVFLLearnerExecutor(Executor): def __init__( self, learner_id, init_model_task_name=OSVFLNNConstants.TASK_INIT_MODEL, train_task_name=OSVFLNNConstants.TASK_TRAIN, ): """Key component to run learner on clients. Args: learner_id (str): id pointing to the learner object train_task_name (str, optional): label to dispatch train task. Defaults to AppConstants.TASK_TRAIN. submit_model_task_name (str, optional): label to dispatch submit model task. Defaults to AppConstants.TASK_SUBMIT_MODEL. validate_task_name (str, optional): label to dispatch validation task. Defaults to AppConstants.TASK_VALIDATION. """ super().__init__() self.learner_id = learner_id self.learner = None self.init_model_task_name = init_model_task_name self.train_task_name = train_task_name def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.initialize(fl_ctx) elif event_type == EventType.ABORT_TASK: try: if self.learner: self.learner.abort(fl_ctx) except Exception as e: self.log_exception(fl_ctx, f"learner abort exception: {secure_format_exception(e)}") elif event_type == EventType.END_RUN: self.finalize(fl_ctx) def initialize(self, fl_ctx: FLContext): try: self.log_info(fl_ctx, f"Task:{self.init_model_task_name, self.train_task_name}") engine = fl_ctx.get_engine() self.learner = engine.get_component(self.learner_id) if not isinstance(self.learner, Learner): raise TypeError(f"learner must be Learner type. Got: {type(self.learner)}") self.learner.initialize(engine.get_all_components(), fl_ctx) except Exception as e: self.log_exception(fl_ctx, f"learner initialize exception: {secure_format_exception(e)}") def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self.log_info(fl_ctx, f"Client trainer got task: {task_name}") self.log_info(fl_ctx, f"Executing task {task_name}...") try: if task_name == self.init_model_task_name: self.log_info(fl_ctx, "Initializing model...") return self.learner.init_model(shareable=shareable, fl_ctx=fl_ctx, abort_signal=abort_signal) elif task_name == self.train_task_name: self.log_info(fl_ctx, "Running training...") return self.learner.train(shareable=shareable, fl_ctx=fl_ctx, abort_signal=abort_signal) else: self.log_error(fl_ctx, f"Could not handle task: {task_name}") return make_reply(ReturnCode.TASK_UNKNOWN) except Exception as e: # Task execution error, return EXECUTION_EXCEPTION Shareable self.log_exception(fl_ctx, f"learner execute exception: {secure_format_exception(e)}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def finalize(self, fl_ctx: FLContext): try: if self.learner: self.learner.finalize(fl_ctx) except Exception as e: self.log_exception(fl_ctx, f"learner finalize exception: {secure_format_exception(e)}")
NVFlare-main
research/one-shot-vfl/src/oneshotVFL/vfl_oneshot_learner_executor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import numpy as np import torch from monai.data import CacheDataset, DataLoader, load_decathlon_datalist from monai.inferers import SimpleInferer from monai.metrics import DiceMetric from monai.networks.nets import UNet from monai.transforms import ( Activations, AsDiscrete, AsDiscreted, Compose, EnsureChannelFirstd, EnsureType, EnsureTyped, LoadImaged, Resized, ScaleIntensityRanged, ) from vgg import vgg11 model_postfix = "_best_FL_global_model.pt" client_id_labels = ["client_I2CVB", "client_MSD", "client_NCI_ISBI_3T"] def main(): parser = argparse.ArgumentParser(description="Model Testing") parser.add_argument("--models_dir", type=str) parser.add_argument("--cache_rate", default=0.0, type=float) parser.add_argument("--select_threshold", default=0.9, type=float) parser.add_argument("--dataset_base_dir", default="DATASET_ROOT/dataset_2D", type=str) parser.add_argument( "--datalist_json_path", default="DATASET_ROOT/datalist_2D/client_All.json", type=str, ) args = parser.parse_args() # Set basic settings and paths dataset_base_dir = args.dataset_base_dir datalist_json_path = args.datalist_json_path models_dir = args.models_dir cache_rate = args.cache_rate select_threshold = args.select_threshold device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Set datalists test_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="testing", base_dir=dataset_base_dir, ) print(f"Testing Size: {len(test_list)}") # Network, optimizer, and loss num_site = len(client_id_labels) model_select = vgg11(num_classes=num_site).to(device) model_global = UNet( spatial_dims=2, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) model_person = [] for site in range(num_site): model_person.append( UNet( spatial_dims=2, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) ) model_path = models_dir + "global_weights" + model_postfix model_stat_dict = torch.load(model_path) for var_name in model_stat_dict: model_stat_dict[var_name] = torch.as_tensor(model_stat_dict[var_name]) model_global.load_state_dict(model_stat_dict) model_global.eval() model_path = models_dir + "select_weights" + model_postfix model_stat_dict = torch.load(model_path) for var_name in model_stat_dict: model_stat_dict[var_name] = torch.as_tensor(model_stat_dict[var_name]) model_select.load_state_dict(model_stat_dict) model_select.eval() for site in range(num_site): model_path = models_dir + client_id_labels[site] + model_postfix model_stat_dict = torch.load(model_path) for var_name in model_stat_dict: model_stat_dict[var_name] = torch.as_tensor(model_stat_dict[var_name]) model_person[site].load_state_dict(model_stat_dict) model_person[site].eval() # Inferer, evaluation metric inferer_select = SimpleInferer() inferer_segment = SimpleInferer() valid_metric = DiceMetric(include_background=False, reduction="mean", get_not_nans=False) transform = Compose( [ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), ScaleIntensityRanged(keys=["image", "label"], a_min=0, a_max=255, b_min=0.0, b_max=1.0), Resized( keys=["image", "label"], spatial_size=(256, 256), mode=("bilinear"), align_corners=True, ), AsDiscreted(keys=["label"], threshold=0.5), EnsureTyped(keys=["image", "label"]), ] ) transform_post = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) # Set dataset test_dataset = CacheDataset( data=test_list, transform=transform, cache_rate=cache_rate, num_workers=4, ) test_loader = DataLoader( test_dataset, batch_size=1, shuffle=False, num_workers=1, ) model_select.eval() with torch.no_grad(): metric = 0 for i, batch_data in enumerate(test_loader): images = batch_data["image"].to(device) labels = batch_data["label"].to(device) # Inference # get the selector result outputs_select = inferer_select(images, model_select) score = torch.nn.functional.softmax(outputs_select).cpu().numpy() score = np.squeeze(score) max_index = np.argmax(score) max_score = score[max_index] # get max score and determine which model to use if max_score > select_threshold: model_segment = model_person[max_index] else: model_segment = model_global # segmentation inference outputs_segment = inferer_segment(images, model_segment) outputs_segment = transform_post(outputs_segment) # Compute metric metric_score = valid_metric(y_pred=outputs_segment, y=labels) metric += metric_score.item() # compute mean dice over whole validation set metric /= len(test_loader) print(f"Test Dice: {metric:.4f}") if __name__ == "__main__": main()
NVFlare-main
research/fed-sm/result_stat/prostate_2d_test_only.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Union, cast import torch import torch.nn as nn from torch.hub import load_state_dict_from_url __all__ = [ "VGG", "vgg11", ] model_urls = { "vgg11": "https://download.pytorch.org/models/vgg11-8a719046.pth", } class VGG(nn.Module): def __init__(self, features: nn.Module, num_classes: int = 1000, init_weights: bool = True) -> None: super(VGG, self).__init__() self.features = features self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), ) if init_weights: self._initialize_weights() def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) feature = torch.flatten(x, 1) x = self.classifier(feature) return x def _initialize_weights(self) -> None: for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential: layers: List[nn.Module] = [] in_channels = 1 for v in cfg: if v == "M": layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: v = cast(int, v) conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfgs: Dict[str, List[Union[str, int]]] = {"A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"]} def _vgg(arch: str, cfg: str, batch_norm: bool, pretrained: bool, progress: bool, **kwargs: Any) -> VGG: if pretrained: kwargs["init_weights"] = False model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict) return model def vgg11(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: r"""VGG 11-layer model (configuration "A") from `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg("vgg11", "A", False, pretrained, progress, **kwargs)
NVFlare-main
research/fed-sm/result_stat/vgg.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf # simulator workspace client_results_root = "../workspaces/fedsm_prostate/" client_pre = "app_client_" # 3 sites sites_fl = ["I2CVB", "MSD", "NCI_ISBI_3T"] metrics = { "global_model": "val_metric_global_model", "personal_model": "val_metric_person_model", "selector_model": "val_metric_select_model", } weight = 0.8 def smooth(scalars, weight): # Weight between 0 and 1 last = scalars[0] # First value in the plot (first timestep) smoothed = list() for point in scalars: smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value smoothed.append(smoothed_val) # Save it last = smoothed_val # Anchor the last smoothed value return smoothed def read_eventfile(filepath, tags=["val_metric_global_model"]): data = {} for summary in tf.compat.v1.train.summary_iterator(filepath): for v in summary.summary.value: if v.tag in tags: if v.tag in data.keys(): data[v.tag].append([summary.step, v.simple_value]) else: data[v.tag] = [[summary.step, v.simple_value]] return data def add_eventdata(data, site, filepath, tag="val_metric_global_model"): event_data = read_eventfile(filepath, tags=[tag]) assert len(event_data[tag]) > 0, f"No data for key {tag}" metric = [] for e in event_data[tag]: # print(e) data["Site"].append(site) data["Epoch"].append(e[0]) metric.append(e[1]) metric = smooth(metric, weight) for entry in metric: data["Metric"].append(entry) print(f"added {len(event_data[tag])} entries for {tag}") def main(): plt.figure() num_metric = len(metrics) i = 1 for metric in metrics.keys(): # clear data for each metric data = {"Site": [], "Epoch": [], "Metric": []} for site in sites_fl: record_path = os.path.join(client_results_root, "simulate_job", client_pre + site, "events.*") eventfile = glob.glob(record_path, recursive=True) assert len(eventfile) == 1, "No unique event file found!" eventfile = eventfile[0] print("adding", eventfile) add_eventdata(data, site, eventfile, tag=metrics[metric]) ax = plt.subplot(1, int(num_metric), i) ax.set_title(metric) sns.lineplot(x="Epoch", y="Metric", hue="Site", data=data) if metric == "selector_model": plt.ylabel("Accuracy (%)") else: plt.ylabel("Dice") i = i + 1 plt.subplots_adjust(hspace=0.3) plt.show() if __name__ == "__main__": main()
NVFlare-main
research/fed-sm/result_stat/plot_tensorboard_events.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import numpy as np from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import ReservedKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.abstract.aggregator import Aggregator from nvflare.app_common.app_constant import AppConstants class _AccuItem(object): def __init__(self, client, data, steps): self.client = client self.data = data self.steps = steps class AccumulateWeightedAggregatorFedSM(Aggregator): def __init__( self, soft_pull_lambda=0.7, exclude_vars_global=None, exclude_vars_person=None, exclude_vars_select=None, aggregation_weights=None, ): """FedSM aggregator. This aggregator performs two types of aggregation among received shareables from clients: weighted arithmetic average for model_global and model_select SoftPull aggregation for model_person Args: soft_pull_lambda: the control weight for generating person models via soft pull mechanism. Defaults to 0.3. exclude_vars (list, optional) for three models (_global/person/select): if not specified (None), all layers are included; if list of variable/layer names, only specified variables are excluded; if string containing regular expression (e.g. "conv"), only matched variables are being excluded. Defaults to None. aggregation_weights (dict, optional): a mapping from client names to weights. Defaults to None. Raises: ValueError: if data_kind is neither WEIGHT_DIFF nor WEIGHTS """ super().__init__() self.soft_pull_lambda = soft_pull_lambda self.exclude_vars_global = re.compile(exclude_vars_global) if exclude_vars_global else None self.exclude_vars_person = re.compile(exclude_vars_person) if exclude_vars_person else None self.exclude_vars_select = re.compile(exclude_vars_select) if exclude_vars_select else None self.aggregation_weights = aggregation_weights or {} self.logger.debug(f"aggregation weights control: {aggregation_weights}") # FedSM aggregator expects "COLLECTION" DXO containing all three models. self.expected_data_kind = DataKind.COLLECTION self.accumulator = [] self.warning_count = dict() self.warning_limit = 10 def accept(self, shareable: Shareable, fl_ctx: FLContext) -> bool: try: dxo = from_shareable(shareable) except: self.log_exception(fl_ctx, "shareable data is not a valid DXO") return False if dxo.data_kind != self.expected_data_kind: self.log_error( fl_ctx, f"FedSM aggregator expect {self.expected_data_kind} but got {dxo.data_kind}", ) return False processed_algorithm = dxo.get_meta_prop(MetaKey.PROCESSED_ALGORITHM) if processed_algorithm is not None: self.log_error(fl_ctx, f"unable to accept shareable processed by {processed_algorithm}") return False current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) self.log_debug(fl_ctx, f"current_round: {current_round}") client_name = shareable.get_peer_prop(key=ReservedKey.IDENTITY_NAME, default="?") contribution_round = shareable.get_cookie(AppConstants.CONTRIBUTION_ROUND) rc = shareable.get_return_code() if rc and rc != ReturnCode.OK: self.log_info( fl_ctx, f"Client {client_name} returned rc: {rc}. Disregarding contribution.", ) return False data = dxo.data if data is None: self.log_error(fl_ctx, "no data to aggregate") return False n_iter = dxo.get_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND) if contribution_round == current_round: if not self._client_in_accumulator(client_name): self.accumulator.append(_AccuItem(client_name, data, n_iter)) accepted = True else: self.log_info( fl_ctx, f"Discarded: Current round: {current_round} contributions already include client: {client_name}", ) accepted = False else: self.log_info( fl_ctx, f"Discarded the contribution from {client_name} for round: {contribution_round}. Current round is: {current_round}", ), accepted = False return accepted def _client_in_accumulator(self, client_name): return any(client_name == item.client for item in self.accumulator) def aggregate(self, fl_ctx: FLContext) -> Shareable: """Aggregate model variables. This function is not thread-safe. Args: fl_ctx (FLContext): System-wide FL Context Returns: Shareable: Return True to indicates the current model is the best model so far. """ current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) self.log_info( fl_ctx, f"aggregating {len(self.accumulator)} updates at round {current_round}", ) aggregated_model_dict = {} # regular weighted average aggregation for global and selector models and parameters model_ids = [ "global_weights", "select_weights", "select_exp_avg", "select_exp_avg_sq", ] select_models = {} for model_id in model_ids: acc_vars = [set(acc.data[model_id].data.keys()) for acc in self.accumulator] acc_vars = set.union(*acc_vars) if acc_vars else acc_vars # update vars that are not in exclude pattern if model_id == "global_weights": exclude_vars = self.exclude_vars_global elif model_id == "select_weights": exclude_vars = self.exclude_vars_select vars_to_aggregate = ( [g_var for g_var in acc_vars if not exclude_vars.search(g_var)] if exclude_vars else acc_vars ) aggregated_model = {} for v_name in vars_to_aggregate: n_local_iters, np_vars = [], [] for item in self.accumulator: client_name = item.client data = item.data[model_id].data n_iter = item.steps if n_iter is None: if self.warning_count.get(client_name, 0) <= self.warning_limit: self.log_warning( fl_ctx, f"NUM_STEPS_CURRENT_ROUND missing in meta of shareable" f" from {client_name} and set to default value, 1.0. " f" This kind of message will show {self.warning_limit} times at most.", ) if client_name in self.warning_count: self.warning_count[client_name] = self.warning_count[client_name] + 1 else: self.warning_count[client_name] = 0 n_iter = 1.0 if v_name not in data.keys(): continue # this acc doesn't have the variable from client float_n_iter = float(n_iter) n_local_iters.append(float_n_iter) weighted_value = data[v_name] * float_n_iter np_vars.append(weighted_value) if not n_local_iters: continue # all acc didn't receive the variable from clients new_val = np.sum(np_vars, axis=0) / np.sum(n_local_iters) aggregated_model[v_name] = new_val # make aggregated weights a DXO and add to dict if model_id == "global_weights": dxo_weights = DXO(data_kind=DataKind.WEIGHT_DIFF, data=aggregated_model) aggregated_model_dict[model_id] = dxo_weights elif model_id == "select_weights": dxo_weights = DXO(data_kind=DataKind.WEIGHT_DIFF, data=aggregated_model) select_models[model_id] = dxo_weights else: dxo_weights = DXO(data_kind=DataKind.WEIGHTS, data=aggregated_model) select_models[model_id] = dxo_weights aggregated_model_dict["select_weights"] = select_models # SoftPull for personalized models # initialize the personalized model set dict aggregated_model = {} model_id = "person_weights" for item in self.accumulator: client_name = item.client aggregated_model[client_name] = {} # exclude specified vars acc_vars = [set(acc.data[model_id].data.keys()) for acc in self.accumulator] acc_vars = set.union(*acc_vars) if acc_vars else acc_vars exclude_vars = self.exclude_vars_select vars_to_aggregate = ( [g_var for g_var in acc_vars if not exclude_vars.search(g_var)] if exclude_vars else acc_vars ) # SoftPull aggregation, weighted with soft pull lambda for v_name in vars_to_aggregate: # np_vars for personalized model set is a dict for each client # initialize np_vars = {} for item in self.accumulator: client_name = item.client np_vars[client_name] = [] # go over the accumulator for aggregation for item in self.accumulator: client_name = item.client data = item.data[model_id].data if v_name not in data.keys(): continue # this acc doesn't have the variable from client for aggr_item in self.accumulator: aggr_client_name = aggr_item.client if aggr_client_name == client_name: weighted_value = data[v_name] * self.soft_pull_lambda else: weighted_value = data[v_name] * (1 - self.soft_pull_lambda) / (len(self.accumulator) - 1) np_vars[aggr_client_name].append(weighted_value) for item in self.accumulator: client_name = item.client new_val = np.sum(np_vars[client_name], axis=0) aggregated_model[client_name][v_name] = new_val # make aggregated weights a DXO and add to dict person_models = {} for client_name in aggregated_model.keys(): dxo_weights = DXO(data_kind=DataKind.WEIGHTS, data=aggregated_model[client_name]) person_models[client_name] = dxo_weights aggregated_model_dict["person_weights"] = person_models self.accumulator.clear() self.log_debug(fl_ctx, f"Model after aggregation: {aggregated_model_dict}") dxo = DXO(data_kind=self.expected_data_kind, data=aggregated_model_dict) return dxo.to_shareable()
NVFlare-main
research/fed-sm/jobs/fedsm_prostate/app/custom/aggregators/accumulate_model_aggregator_fedsm.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import traceback from nvflare.apis.controller_spec import Task, TaskCompletionStatus from nvflare.apis.dxo import DXO, DataKind, from_shareable from nvflare.apis.fl_context import FLContext from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.app_common.workflows.scatter_and_gather import ScatterAndGather _TASK_KEY_DONE = "___done" class ScatterAndGatherFedSM(ScatterAndGather): def __init__( self, client_id_label_mapping, parallel_task: int = 1, min_clients: int = 1, num_rounds: int = 5, start_round: int = 0, wait_time_after_min_received: int = 10, aggregator_id=AppConstants.DEFAULT_AGGREGATOR_ID, persistor_id="persistor_fedsm", shareable_generator_id=AppConstants.DEFAULT_SHAREABLE_GENERATOR_ID, train_task_name=AppConstants.TASK_TRAIN, train_timeout: int = 0, ignore_result_error: bool = True, ): """FedSM Workflow. The ScatterAndGatherFedSM workflow defines federated training on all clients. FedSM involves training, aggregating, and persisting three types of models: - selector model: FL the same as regular FedAvg - global model: FL the same as regular FedAvg - personalized models: one for each candidate site, FL aggregation with SoftPull client_id_label_mapping is needed for training selector model All models are combined to be persisted by a single persistor (as required by NVFlare framework) in order to load/save the initial models sent to clients according to the model and client IDs. - persistor_fedsm is customized for persisting FedSM model set (a dict of models) for all clients Each client sends it's updated three weights after local training, to be aggregated accordingly by aggregator, we use one customized aggregator to handle all three models, global and selector models following standard weighted average, while personalized models following SoftPull The shareable generator is used to convert the aggregated weights to shareable, and shareable back to weights. Args: client_id_label_mapping: needed for training selector model, no Default. parallel_task (int, optional): sequential or parallel task. Defaults to 1 (parallel). min_clients (int, optional): Min number of clients in training. Defaults to 1. num_rounds (int, optional): The total number of training rounds. Defaults to 5. start_round (int, optional): Start round for training. Defaults to 0. wait_time_after_min_received (int, optional): Time to wait before beginning aggregation after contributions received. Defaults to 10. train_timeout (int, optional): Time to wait for clients to do local training. aggregator_id (str, optional): ID of the aggregator component for FedSM models. Defaults to "aggregator". persistor_id_fedsm (str, optional): ID of the persistor component for FedSM models. Defaults to "persistor_fedsm". shareable_generator_id (str, optional): ID of the shareable generator. Defaults to "shareable_generator". train_task_name (str, optional): Name of the train task. Defaults to "train". """ super().__init__( min_clients=min_clients, num_rounds=num_rounds, start_round=start_round, wait_time_after_min_received=wait_time_after_min_received, aggregator_id=aggregator_id, persistor_id=persistor_id, shareable_generator_id=shareable_generator_id, train_task_name=train_task_name, train_timeout=train_timeout, ignore_result_error=ignore_result_error, ) # extras for FedSM # client_id to label mapping for selector self.parallel_task = parallel_task self.client_id_label_mapping = client_id_label_mapping self.participating_clients = None def start_controller(self, fl_ctx: FLContext) -> None: super().start_controller(fl_ctx=fl_ctx) self.log_info(fl_ctx, "Initializing FedSM-specific workflow components.") self.log_info( fl_ctx, f"Client_ID to selector label mapping: {self.client_id_label_mapping}", ) # get engine engine = fl_ctx.get_engine() if not engine: self.system_panic("Engine not found. ScatterAndGather exiting.", fl_ctx) return # Get all clients clients = engine.get_clients() self.participating_clients = [c.name for c in clients] self.log_info(fl_ctx, f"Participating clients: {self.participating_clients}") # Validate client info for client_id in self.participating_clients: if client_id not in self.client_id_label_mapping.keys(): self.system_panic( f"Client {client_id} not found in the id_label mapping. Please double check. ScatterAndGatherFedSM exiting.", fl_ctx, ) return def _wait_for_task(self, task: Task, abort_signal: Signal): task.props[_TASK_KEY_DONE] = False task.task_done_cb = self._process_finished_task(task=task, func=task.task_done_cb) while True: if task.completion_status is not None: break if abort_signal and abort_signal.triggered: self.cancel_task(task, fl_ctx=None, completion_status=TaskCompletionStatus.ABORTED) break task_done = task.props[_TASK_KEY_DONE] if task_done: break time.sleep(self._task_check_period) def control_flow(self, abort_signal: Signal, fl_ctx: FLContext) -> None: try: self.log_info(fl_ctx, "Beginning ScatterAndGatherFedSM training phase.") self._phase = AppConstants.PHASE_TRAIN fl_ctx.set_prop(AppConstants.PHASE, self._phase, private=True, sticky=False) fl_ctx.set_prop(AppConstants.NUM_ROUNDS, self._num_rounds, private=True, sticky=False) self.fire_event(AppEventType.TRAINING_STARTED, fl_ctx) for self._current_round in range(self._start_round, self._start_round + self._num_rounds): if self._check_abort_signal(fl_ctx, abort_signal): return self.log_info(fl_ctx, f"Round {self._current_round} started.") self.log_info(fl_ctx, f"Models in fl_ctx: {self._global_weights['weights'].keys()}") fl_ctx.set_prop( AppConstants.GLOBAL_MODEL, self._global_weights, private=True, sticky=True, ) fl_ctx.set_prop( AppConstants.CURRENT_ROUND, self._current_round, private=True, sticky=False, ) self.fire_event(AppEventType.ROUND_STARTED, fl_ctx) # Create train_task for each participating clients, 3 models for each tasks_each_round = [] for client_id in self.participating_clients: # get the models for a client select_weight = self._global_weights["weights"]["select_weights"] global_weight = self._global_weights["weights"]["global_weights"] client_weight = self._global_weights["weights"][client_id] client_label = self.client_id_label_mapping[client_id] # add all three models using a DXO collection dxo_select_weights = DXO(data_kind=DataKind.WEIGHT_DIFF, data=select_weight) dxo_global_weights = DXO(data_kind=DataKind.WEIGHT_DIFF, data=global_weight) dxo_person_weights = DXO(data_kind=DataKind.WEIGHTS, data=client_weight) # add Adam parameter sets if self._current_round > 0: select_exp_avg = self._global_weights["weights"]["select_exp_avg"] select_exp_avg_sq = self._global_weights["weights"]["select_exp_avg_sq"] dxo_select_exp_avg = DXO(data_kind=DataKind.WEIGHTS, data=select_exp_avg) dxo_select_exp_avg_sq = DXO(data_kind=DataKind.WEIGHTS, data=select_exp_avg_sq) else: dxo_select_exp_avg = None dxo_select_exp_avg_sq = None # create dxo for client dxo_dict = { # add selector model weights and Adam parameters "select_weights": dxo_select_weights, "select_exp_avg": dxo_select_exp_avg, "select_exp_avg_sq": dxo_select_exp_avg_sq, # add global and personalized model weights "global_weights": dxo_global_weights, "person_weights": dxo_person_weights, # add target id info for checking at client end "target_id": client_id, # add target label for client end selector training "select_label": client_label, } dxo_collection = DXO(data_kind=DataKind.COLLECTION, data=dxo_dict) data_shareable = dxo_collection.to_shareable() # add meta information data_shareable.set_header(AppConstants.CURRENT_ROUND, self._current_round) data_shareable.set_header(AppConstants.NUM_ROUNDS, self._num_rounds) data_shareable.add_cookie(AppConstants.CONTRIBUTION_ROUND, self._current_round) # create task train_task = Task( name=self.train_task_name, data=data_shareable, props={}, timeout=self._train_timeout, before_task_sent_cb=self._prepare_train_task_data, result_received_cb=self._process_train_result, ) # send only to the target client if self.parallel_task: # tasks send in parallel self.send( task=train_task, targets=[client_id], fl_ctx=fl_ctx, ) tasks_each_round.append(train_task) else: # tasks will be executed sequentially self.send_and_wait( task=train_task, targets=[client_id], fl_ctx=fl_ctx, ) if self._check_abort_signal(fl_ctx, abort_signal): return # wait for all tasks in this round to finish if self.parallel_task: for task in tasks_each_round: self._wait_for_task(task, abort_signal) # aggregate the returned results in shareable self.fire_event(AppEventType.BEFORE_AGGREGATION, fl_ctx) aggr_result = self.aggregator.aggregate(fl_ctx) collection_dxo = from_shareable(aggr_result) fl_ctx.set_prop( AppConstants.AGGREGATION_RESULT, aggr_result, private=True, sticky=False, ) self.fire_event(AppEventType.AFTER_AGGREGATION, fl_ctx) if self._check_abort_signal(fl_ctx, abort_signal): return # update all models using shareable generator for FedSM self.fire_event(AppEventType.BEFORE_SHAREABLE_TO_LEARNABLE, fl_ctx) self._global_weights = self.shareable_gen.shareable_to_learnable( shareable=collection_dxo.to_shareable(), client_ids=self.participating_clients, fl_ctx=fl_ctx, ) # update models fl_ctx.set_prop( AppConstants.GLOBAL_MODEL, self._global_weights, private=True, sticky=True, ) fl_ctx.sync_sticky() self.fire_event(AppEventType.AFTER_SHAREABLE_TO_LEARNABLE, fl_ctx) if self._check_abort_signal(fl_ctx, abort_signal): return self.fire_event(AppEventType.BEFORE_LEARNABLE_PERSIST, fl_ctx) self.persistor.save(self._global_weights["weights"], fl_ctx) self.fire_event(AppEventType.AFTER_LEARNABLE_PERSIST, fl_ctx) self.fire_event(AppEventType.ROUND_DONE, fl_ctx) self.log_info(fl_ctx, f"Round {self._current_round} finished.") self._phase = AppConstants.PHASE_FINISHED self.log_info(fl_ctx, "Finished ScatterAndGatherFedSM Training.") except Exception as e: traceback.print_exc() error_msg = f"Exception in ScatterAndGatherFedSM control_flow: {e}" self.log_exception(fl_ctx, error_msg) self.system_panic(str(e), fl_ctx)
NVFlare-main
research/fed-sm/jobs/fedsm_prostate/app/custom/workflows/scatter_and_gather_fedsm.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os def custom_client_datalist_json_path(datalist_json_path: str, client_id: str) -> str: """ Customize datalist_json_path for each client Args: datalist_json_path: root path containing all jsons client_id: e.g., site-2 """ # Customize datalist_json_path for each client datalist_json_path_client = os.path.join( datalist_json_path, client_id + ".json", ) return datalist_json_path_client
NVFlare-main
research/fed-sm/jobs/fedsm_prostate/app/custom/utils/custom_client_datalist_json_path.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from nvflare.apis.dxo import MetaKey from nvflare.app_common.abstract.model import ModelLearnableKey, make_model_learnable from nvflare.app_common.app_constant import ModelFormat class PTModelPersistenceFormatManagerFedSM(object): PERSISTENCE_KEY_FEDSM_MODELS = "model_set_fedsm" PERSISTENCE_KEY_TRAIN_CONF = "train_conf" PERSISTENCE_KEY_META_PROPS = "meta_props" def __init__(self, data: dict, default_train_conf=None): """Manage the format for model persistence. Args: data (dict): a dict of dict. default_train_conf (dict, optional): configuration for train. Defaults to None. Raises: TypeError: when data is not a dictionary """ if not isinstance(data, dict): raise TypeError(f"data must be a dict but got {type(data)}") self.meta = None self.train_conf = None self.other_props = {} # other props from the original data that need to be kept # dict of dicts self.model_set = data[self.PERSISTENCE_KEY_FEDSM_MODELS] self.meta = data.get(self.PERSISTENCE_KEY_META_PROPS, None) self.train_conf = data.get(self.PERSISTENCE_KEY_TRAIN_CONF, None) # we need to keep other props, if any, so they can be kept when persisted for k, v in data.items(): if k not in [ self.PERSISTENCE_KEY_FEDSM_MODELS, self.PERSISTENCE_KEY_META_PROPS, self.PERSISTENCE_KEY_TRAIN_CONF, ]: self.other_props[k] = v if not self.train_conf: self.train_conf = default_train_conf def _get_processed_vars(self) -> dict: if self.meta: return self.meta.get(MetaKey.PROCESSED_KEYS, {}) else: return {} def to_model_learnable(self, exclude_vars) -> dict: processed_vars = self._get_processed_vars() # learnable of learnables model_set = {} for model_id in self.model_set.keys(): weights = {} var_dict = self.model_set[model_id] for k, v in var_dict.items(): if exclude_vars and exclude_vars.search(k): continue is_processed = processed_vars.get(k, False) if is_processed: weights[k] = v else: weights[k] = v.cpu().numpy() model_set[model_id] = make_model_learnable(weights, self.meta) model_set = make_model_learnable(model_set, self.meta) return model_set def get_single_model(self, model_id) -> dict: processed_vars = self._get_processed_vars() weights = OrderedDict() var_dict = self.model_set[model_id] for k, v in var_dict.items(): is_processed = processed_vars.get(k, False) if is_processed: weights[k] = v else: # weights[k] = v.cpu().numpy() weights[k] = v return weights def to_persistence_dict(self) -> dict: # processed_vars = self._get_processed_vars() model_set = {} for model_id in self.model_set.keys(): weights = OrderedDict() var_dict = self.model_set[model_id] for k, v in var_dict.items(): # is_processed = processed_vars.get(k, False) # if is_processed: weights[k] = v # else: # weights[k] = v.cpu().numpy() model_set[model_id] = weights # always use complex format for saving persistence_dict = OrderedDict() persistence_dict[self.PERSISTENCE_KEY_FEDSM_MODELS] = model_set if self.meta: persistence_dict[self.PERSISTENCE_KEY_META_PROPS] = self.meta if self.train_conf: persistence_dict[self.PERSISTENCE_KEY_TRAIN_CONF] = self.train_conf if self.other_props: for k, v in self.other_props.items(): persistence_dict[k] = v return persistence_dict def update(self, ml_dict: dict): """Update the persistence data with the learned values. Args: ml_dict (Dict of ModelLearnable): updated information to be merged into existing Dict of ModelLearnable """ for model_id in ml_dict.keys(): if model_id != "meta": ml = ml_dict[model_id] # update with value of the model learnable # note that the original weights that are not learned are still kept! learned_weights = ml[ModelLearnableKey.WEIGHTS] for k, v in learned_weights.items(): self.model_set[model_id][k] = v def get_persist_model_format(self): return ModelFormat.PT_CHECKPOINT
NVFlare-main
research/fed-sm/jobs/fedsm_prostate/app/custom/persistors/pt_fed_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os from collections import OrderedDict import torch from persistors.pt_fed_utils import PTModelPersistenceFormatManagerFedSM from nvflare.apis.event_type import EventType from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.model import ModelLearnable from nvflare.app_common.app_constant import DefaultCheckpointFileName from nvflare.app_opt.pt.file_model_persistor import PTFileModelPersistor class PTFileFedSMModelPersistor(PTFileModelPersistor): def __init__( self, client_ids, exclude_vars=None, model=None, model_selector=None, model_file_name=DefaultCheckpointFileName.GLOBAL_MODEL, best_model_file_name=DefaultCheckpointFileName.BEST_GLOBAL_MODEL, source_ckpt_file_full_name=None, ): """Persist a dict of personalized pytorch-based models to/from file system. Single model behavior is the same as PTFileModelPersistor, Instead of a single model, it creates a set of models with the same structure corresponding to each client Args: client_ids (list): the list of client ids exclude_vars (str, optional): regex expression specifying weight vars to be excluded from training. Defaults to None. model (str, optional): torch model object or component id of the model object. Defaults to None. model_selector (str, optional): torch model object or component id of the model_selector object. Defaults to None. global_model_file_name (str, optional): file name for saving global model. Defaults to DefaultCheckpointFileName.GLOBAL_MODEL. best_global_model_file_name (str, optional): file name for saving best global model. Defaults to DefaultCheckpointFileName.BEST_GLOBAL_MODEL. source_ckpt_file_full_name (str, optional): full file name for source model checkpoint file. Defaults to None. Raises: ValueError: when source_ckpt_file_full_name does not exist """ super().__init__( exclude_vars=exclude_vars, model=model, global_model_file_name=model_file_name, best_global_model_file_name=best_model_file_name, source_ckpt_file_full_name=source_ckpt_file_full_name, ) self.client_ids = client_ids self.model_selector = model_selector def _initialize(self, fl_ctx: FLContext): self.log_info(fl_ctx, "FedSM model persistor initialized") super()._initialize(fl_ctx=fl_ctx) # First convert str model description to model if isinstance(self.model_selector, str): # treat it as model component ID model_component_id = self.model_selector engine = fl_ctx.get_engine() self.model_selector = engine.get_component(model_component_id) if not self.model_selector: self.system_panic( reason=f"cannot find model component '{model_component_id}'", fl_ctx=fl_ctx, ) return if not isinstance(self.model_selector, torch.nn.Module): self.system_panic( reason=f"expect model component '{model_component_id}' to be torch.nn.Module but got {type(self.model_selector)}", fl_ctx=fl_ctx, ) return elif self.model_selector and not isinstance(self.model_selector, torch.nn.Module): self.system_panic( reason=f"expect model to be torch.nn.Module but got {type(self.model)}", fl_ctx=fl_ctx, ) return # self.model and self.model_selector is only for getting the model structure from config_3 # operations will be performed on a set of models, self.model_set_fedsm # consisting: # selector: selector model # global: global model # {client_id}: personalized models with same structure as global model self.model_set_fedsm = {} # initialize all models self.model_set_fedsm["select_weights"] = copy.deepcopy(self.model_selector) self.model_set_fedsm["select_exp_avg"] = OrderedDict() self.model_set_fedsm["select_exp_avg_sq"] = OrderedDict() self.model_set_fedsm["select_weights"] = copy.deepcopy(self.model_selector) self.model_set_fedsm["global_weights"] = copy.deepcopy(self.model) for id in self.client_ids: self.model_set_fedsm[id] = copy.deepcopy(self.model) fl_ctx.sync_sticky() def load_model(self, fl_ctx: FLContext) -> dict: """Convert initialised models into a dict of Learnable/Model format. Args: fl_ctx (FLContext): FL Context delivered by workflow Returns: Dict of models: a Dict of Learnable/Model object """ src_file_name = None if self.source_ckpt_file_full_name: src_file_name = self.source_ckpt_file_full_name elif self.ckpt_preload_path: src_file_name = self.ckpt_preload_path # data is a dict of FedSM model set with other training-related items, # FedSM model set under a dict "model_set_fedsm" # containing select_weights, global_weights, and personal models under each client_id data = {"model_set_fedsm": {}} if src_file_name: try: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data = torch.load(src_file_name, map_location=device) # checkpoint may contain a dict "model_set_fedsm" of models indexed with model ids # 'optimizer', 'lr_scheduler', etc. except: self.log_exception(fl_ctx, f"error loading checkpoint from {src_file_name}") self.system_panic(reason="cannot load model checkpoint", fl_ctx=fl_ctx) return None else: # if no pretrained model provided, use the generated network weights from APP config_3 # note that, if set "determinism" in the config_3, the init model weights will always be the same try: data["model_set_fedsm"]["select_weights"] = ( self.model_set_fedsm["select_weights"].state_dict() if self.model_set_fedsm["select_weights"] is not None else OrderedDict() ) data["model_set_fedsm"]["select_exp_avg"] = OrderedDict() data["model_set_fedsm"]["select_exp_avg_sq"] = OrderedDict() data["model_set_fedsm"]["global_weights"] = ( self.model_set_fedsm["global_weights"].state_dict() if self.model_set_fedsm["global_weights"] is not None else OrderedDict() ) for id in self.client_ids: data["model_set_fedsm"][id] = ( self.model_set_fedsm[id].state_dict() if self.model_set_fedsm[id] is not None else OrderedDict() ) except: self.log_exception(fl_ctx, "error getting state_dict from model object") self.system_panic(reason="cannot create state_dict from model object", fl_ctx=fl_ctx) return None if self.model and self.model_selector: self.default_train_conf = { "train": { "model": type(self.model).__name__, "model_selector": type(self.model_selector).__name__, } } self.persistence_manager = PTModelPersistenceFormatManagerFedSM( data, default_train_conf=self.default_train_conf ) learnable = self.persistence_manager.to_model_learnable(self.exclude_vars) return learnable def handle_event(self, event: str, fl_ctx: FLContext): if event == EventType.START_RUN: self._initialize(fl_ctx) model_list = ["global_weights", "select_weights"] + self.client_ids for model_id in model_list: if event == "fedsm_best_model_available_" + model_id: # save the current model as the best model best_ckpt_save_path = os.path.join(self.log_dir, model_id + "_" + self.best_global_model_file_name) self.save_best_model(model_id, best_ckpt_save_path) self.log_info(fl_ctx, f"new best model for {model_id} saved.") def save_best_model(self, model_id: str, save_path: str): save_dict = self.persistence_manager.get_single_model(model_id) torch.save(save_dict, save_path) def save_model(self, ml_dict: dict, fl_ctx: FLContext): self.persistence_manager.update(ml_dict) self.save_model_file(self._ckpt_save_path) def get_model(self, model_file, fl_ctx: FLContext) -> ModelLearnable: try: # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Use the "cpu" to load the global model weights, avoid GPU out of memory device = "cpu" location = os.path.join(self.log_dir, model_file) data = torch.load(location, map_location=device) persistence_manager = PTModelPersistenceFormatManagerFedSM(data, default_train_conf=self.default_train_conf) return persistence_manager.to_model_learnable(self.exclude_vars) except Exception: self.log_exception(fl_ctx, f"error loading checkpoint from {model_file}") return {}
NVFlare-main
research/fed-sm/jobs/fedsm_prostate/app/custom/persistors/pt_file_fedsm_model_persistor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch import torch.optim as optim from helpers.supervised_pt_fedsm import SupervisedPTFedSMHelper from learners.supervised_monai_prostate_learner import SupervisedMonaiProstateLearner from monai.losses import DiceLoss from monai.networks.nets.unet import UNet from networks.vgg import vgg11 from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AppConstants, ValidateType class SupervisedMonaiProstateFedSMLearner(SupervisedMonaiProstateLearner): def __init__( self, train_config_filename, aggregation_epochs: int = 1, fedsm_select_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """Trainer for prostate segmentation task. It inherits from MONAI trainer. Args: train_config_filename: directory of config_3 file. fedsm_select_epochs: the number of training epochs of selector model. Defaults to 1. aggregation_epochs: the number of training epochs of both global and personalized models for a round. Defaults to 1. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ SupervisedMonaiProstateLearner.__init__( self, train_config_filename=train_config_filename, aggregation_epochs=aggregation_epochs, train_task_name=train_task_name, ) self.fedsm_person_model_epochs = aggregation_epochs self.fedsm_select_model_epochs = fedsm_select_epochs self.fedsm_helper = None def train_config(self, fl_ctx: FLContext): # Initialize superclass SupervisedMonaiProstateLearner.train_config(self, fl_ctx) engine = fl_ctx.get_engine() ws = engine.get_workspace() app_dir = ws.get_app_dir(fl_ctx.get_job_id()) # Initialize PTFedSMHelper # personalized and selector model training epoch # personalized model same as global model # selector model can be different from the other two task models fedsm_person_model = UNet( spatial_dims=2, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(self.device) fedsm_select_model = vgg11( num_classes=self.config_info["select_num_classes"], ).to(self.device) fedsm_person_criterion = DiceLoss(sigmoid=True) fedsm_select_criterion = torch.nn.CrossEntropyLoss() fedsm_person_optimizer = optim.Adam(fedsm_person_model.parameters(), lr=self.lr) fedsm_select_optimizer = optim.Adam( fedsm_select_model.parameters(), lr=self.config_info["learning_rate_select"] ) self.fedsm_helper = SupervisedPTFedSMHelper( person_model=fedsm_person_model, select_model=fedsm_select_model, person_criterion=fedsm_person_criterion, select_criterion=fedsm_select_criterion, person_optimizer=fedsm_person_optimizer, select_optimizer=fedsm_select_optimizer, device=self.device, app_dir=app_dir, person_model_epochs=self.fedsm_person_model_epochs, select_model_epochs=self.fedsm_select_model_epochs, ) def reshape_global_weights(self, local_var_dict: dict, global_weights: dict): model_keys = global_weights.keys() n_loaded = 0 # tensors might need to be reshaped to support HE for secure aggregation. for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) n_loaded += 1 except Exception as e: raise ValueError(f"Convert weight from {var_name} failed with error: {str(e)}") if n_loaded == 0: raise ValueError(f"No global weights loaded! Received weight dict is {global_weights}") return local_var_dict def compute_model_diff(self, initial_model: dict, end_model: dict, fl_ctx: FLContext): model_diff = {} for name in initial_model: if name not in end_model: continue model_diff[name] = np.subtract(end_model[name].cpu().numpy(), initial_model[name], dtype=np.float32) if np.any(np.isnan(model_diff[name])): self.system_panic(f"{name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) return model_diff def train( self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: """Training task pipeline for FedSM Get global/client/selector model weights (potentially with HE) Local training all three models Return updated weights of all three models (model_diff) together with the optimizer parameters of selector (model) """ # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) self.log_info(fl_ctx, f"Current/Total Round: {current_round + 1}/{total_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # update local model parameters with received dxo dxo = from_shareable(shareable) # load global model weights global_weights = dxo.data["global_weights"].data["weights"] local_var_dict = self.model.state_dict() local_var_dict = self.reshape_global_weights(local_var_dict, global_weights) self.model.load_state_dict(local_var_dict) # load personalized model weights person_weights = dxo.data["person_weights"].data["weights"] local_var_dict = self.fedsm_helper.person_model.state_dict() local_var_dict = self.reshape_global_weights(local_var_dict, person_weights) self.fedsm_helper.person_model.load_state_dict(local_var_dict) # load selector model weights select_weights = dxo.data["select_weights"].data["weights"] local_var_dict = self.fedsm_helper.select_model.state_dict() local_var_dict = self.reshape_global_weights(local_var_dict, select_weights) self.fedsm_helper.select_model.load_state_dict(local_var_dict) # get selector label select_label = dxo.data["select_label"] # update Adam parameters if current_round > 0: # get weights from dxo collection global_exp_avg = dxo.data.get("select_exp_avg").data["weights"] global_exp_avg_sq = dxo.data.get("select_exp_avg_sq").data["weights"] # load parameters to optimizer local_optim_state_dict = self.fedsm_helper.select_optimizer.state_dict() for name in local_optim_state_dict["state"]: local_optim_state_dict["state"][name]["exp_avg"] = torch.as_tensor(global_exp_avg[str(name)]) local_optim_state_dict["state"][name]["exp_avg_sq"] = torch.as_tensor(global_exp_avg_sq[str(name)]) self.fedsm_helper.select_optimizer.load_state_dict(local_optim_state_dict) # local trainings for three models epoch_len = len(self.train_loader) self.log_info(fl_ctx, f"Local steps per epoch: {epoch_len}") # local train global model self.local_train( fl_ctx=fl_ctx, train_loader=self.train_loader, abort_signal=abort_signal, current_round=current_round, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # local train personalized model self.fedsm_helper.local_train_person( train_loader=self.train_loader, abort_signal=abort_signal, writer=self.writer, current_round=current_round, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # local train selector self.fedsm_helper.local_train_select( train_loader=self.train_loader, select_label=select_label, abort_signal=abort_signal, writer=self.writer, current_round=current_round, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # compute delta models, initial models has the primary key set local_weights = self.model.state_dict() model_diff_global = self.compute_model_diff(global_weights, local_weights, fl_ctx) local_weights = self.fedsm_helper.person_model.state_dict() model_person = local_weights for name in model_person: model_person[name] = model_person[name].cpu().numpy() local_weights = self.fedsm_helper.select_model.state_dict() model_diff_select = self.compute_model_diff(select_weights, local_weights, fl_ctx) # directly return the optimizer parameters optim_weights = self.fedsm_helper.select_optimizer.state_dict().get("state") exp_avg = {} exp_avg_sq = {} for name in optim_weights: exp_avg[str(name)] = optim_weights[name]["exp_avg"].cpu().numpy() exp_avg_sq[str(name)] = optim_weights[name]["exp_avg_sq"].cpu().numpy() # build the shareable dxo_dict = { "global_weights": DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff_global), "person_weights": DXO(data_kind=DataKind.WEIGHTS, data=model_person), "select_weights": DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff_select), "select_exp_avg": DXO(data_kind=DataKind.WEIGHTS, data=exp_avg), "select_exp_avg_sq": DXO(data_kind=DataKind.WEIGHTS, data=exp_avg_sq), } dxo_collection = DXO(data_kind=DataKind.COLLECTION, data=dxo_dict) dxo_collection.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, epoch_len) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") return dxo_collection.to_shareable() def validate(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: """Validation task pipeline for FedSM Validate all three models: global/personal/selector Return validation score for server-end best model selection and record """ # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) # validation on models from server # renamed to "models_from_server" to avoid confusion with "global_model" model_owner = "models_from_server" # update local model weights with received dxo dxo = from_shareable(shareable) # load global model weights global_weights = dxo.data["global_weights"].data["weights"] local_var_dict = self.model.state_dict() local_var_dict = self.reshape_global_weights(local_var_dict, global_weights) self.model.load_state_dict(local_var_dict) # load personalized model weights person_weights = dxo.data["person_weights"].data["weights"] local_var_dict = self.fedsm_helper.person_model.state_dict() local_var_dict = self.reshape_global_weights(local_var_dict, person_weights) self.fedsm_helper.person_model.load_state_dict(local_var_dict) # load selector model weights select_weights = dxo.data["select_weights"].data["weights"] local_var_dict = self.fedsm_helper.select_model.state_dict() local_var_dict = self.reshape_global_weights(local_var_dict, select_weights) self.fedsm_helper.select_model.load_state_dict(local_var_dict) # get selector label select_label = dxo.data["select_label"] # before_train_validate only, can extend to other validate types validate_type = shareable.get_header(AppConstants.VALIDATE_TYPE) if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE: # perform valid before local train global_metric = self.local_valid( self.model, self.valid_loader, abort_signal, tb_id="val_metric_global_model", current_round=current_round, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_metric_global_model ({model_owner}): {global_metric:.4f}") person_metric = self.local_valid( self.fedsm_helper.person_model, self.valid_loader, abort_signal, tb_id="val_metric_person_model", current_round=current_round, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_metric_person_model ({model_owner}): {person_metric:.4f}") # save personalized model locally person_best = self.fedsm_helper.update_metric_save_person_model( current_round=current_round, metric=person_metric ) if person_best: self.log_info(fl_ctx, "best personalized model available") select_metric = self.fedsm_helper.local_valid_select( self.valid_loader, select_label, abort_signal, tb_id="val_metric_select_model", writer=self.writer, current_round=current_round, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_metric_select_model ({model_owner}): {select_metric:.4f}") # validation metrics will be averaged with weights at server end for best model record # on the two models: global and selector # personalized metrics will not be averaged, send a flag to state the best model availability metric_dxo = DXO( data_kind=DataKind.METRICS, data={MetaKey.INITIAL_METRICS: [global_metric, select_metric, person_best]}, meta={}, ) metric_dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, len(self.valid_loader)) return metric_dxo.to_shareable() else: return make_reply(ReturnCode.VALIDATE_TYPE_UNKNOWN)
NVFlare-main
research/fed-sm/jobs/fedsm_prostate/app/custom/learners/supervised_monai_prostate_fedsm_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import abstractmethod import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.app_constant import AppConstants, ValidateType class SupervisedLearner(Learner): def __init__( self, aggregation_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """Simple Supervised Trainer. This provides the basic functionality of a local learner: perform before-train validation on global model at the beginning of each round, perform local training, and send the updated weights. No model will be saved locally, tensorboard record for local loss and global model validation score. Enabled FedAvg Args: train_config_filename: directory of config_3 file. aggregation_epochs: the number of training epochs for a round. Defaults to 1. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ super().__init__() # trainer init happens at the very beginning, only the basic info regarding the trainer is set here # the actual run has not started at this point self.aggregation_epochs = aggregation_epochs self.train_task_name = train_task_name self.best_metric = 0.0 self.client_id = None self.writer = None def initialize(self, parts: dict, fl_ctx: FLContext): # when a run starts, this is where the actual settings get initialized for trainer # set the paths according to fl_ctx engine = fl_ctx.get_engine() ws = engine.get_workspace() app_dir = ws.get_app_dir(fl_ctx.get_job_id()) # get and print the args fl_args = fl_ctx.get_prop(FLContextKey.ARGS) self.client_id = fl_ctx.get_identity_name() self.log_info( fl_ctx, f"Client {self.client_id} initialized with args: \n {fl_args}", ) # set local tensorboard writer for local validation score of global model self.writer = SummaryWriter(app_dir) # set the training-related contexts, this is task-specific self.train_config(fl_ctx) @abstractmethod def train_config(self, fl_ctx: FLContext): """Traning configurations customized to individual tasks This can be specified / loaded in any ways as long as they are made available for further training and validation some potential items include but not limited to: self.lr self.model self.device self.optimizer self.criterion self.transform_train self.transform_valid self.transform_post self.train_loader self.valid_loader self.inferer self.valid_metric """ raise NotImplementedError @abstractmethod def finalize(self, fl_ctx: FLContext): # collect threads, close files here pass def local_train( self, fl_ctx, train_loader, abort_signal: Signal, current_round, ): """Typical training logic Total local epochs: self.aggregation_epochs Load data pairs from train_loader: image / label Compute outputs with self.model Compute loss with self.criterion Update model """ for epoch in range(self.aggregation_epochs): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.model.train() epoch_len = len(train_loader) epoch_global = current_round * self.aggregation_epochs + epoch self.log_info( fl_ctx, f"Local epoch {self.client_id}: {epoch + 1}/{self.aggregation_epochs} (lr={self.lr})", ) for i, batch_data in enumerate(train_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) inputs = batch_data["image"].to(self.device) labels = batch_data["label"].to(self.device) # forward + backward + optimize outputs = self.model(inputs) loss = self.criterion(outputs, labels) self.optimizer.zero_grad() loss.backward() self.optimizer.step() current_step = epoch_len * epoch_global + i self.writer.add_scalar("train_loss", loss.item(), current_step) def local_valid( self, model, valid_loader, abort_signal: Signal, tb_id=None, current_round=None, ): """Typical validation logic Load data pairs from train_loader: image / label Compute outputs with self.model Perform post transform (binarization, etc.) Compute evaluation metric with self.valid_metric Add score to tensorboard record with specified id """ model.eval() with torch.no_grad(): metric = 0 for i, batch_data in enumerate(valid_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) val_images = batch_data["image"].to(self.device) val_labels = batch_data["label"].to(self.device) # Inference val_outputs = self.inferer(val_images, model) val_outputs = self.transform_post(val_outputs) # Compute metric metric_score = self.valid_metric(y_pred=val_outputs, y=val_labels) metric += metric_score.item() # compute mean dice over whole validation set metric /= len(valid_loader) # tensorboard record id, add to record if provided if tb_id: self.writer.add_scalar(tb_id, metric, current_round) return metric def train( self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: """Typical training task pipeline with potential HE functionality Get global model weights (potentially with HE) Local training Return updated weights (model_diff) """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) self.log_info(fl_ctx, f"Current/Total Round: {current_round + 1}/{total_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) except Exception as e: raise ValueError(f"Convert weight from {var_name} failed with error: {str(e)}") self.model.load_state_dict(local_var_dict) # local steps epoch_len = len(self.train_loader) self.log_info(fl_ctx, f"Local steps per epoch: {epoch_len}") # local train self.local_train( fl_ctx=fl_ctx, train_loader=self.train_loader, abort_signal=abort_signal, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # compute delta model, global model has the primary key set local_weights = self.model.state_dict() model_diff = {} for name in global_weights: if name not in local_weights: continue model_diff[name] = np.subtract(local_weights[name].cpu().numpy(), global_weights[name], dtype=np.float32) if np.any(np.isnan(model_diff[name])): self.system_panic(f"{name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) # build the shareable dxo = DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff) dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, epoch_len) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") return dxo.to_shareable() def validate(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: """Typical validation task pipeline with potential HE functionality Get global model weights (potentially with HE) Validation on local data Return validation score """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) # validation on global model model_owner = "global_model" # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() n_loaded = 0 for var_name in local_var_dict: if var_name in model_keys: weights = torch.as_tensor(global_weights[var_name], device=self.device) try: # update the local dict local_var_dict[var_name] = torch.as_tensor(torch.reshape(weights, local_var_dict[var_name].shape)) n_loaded += 1 except Exception as e: raise ValueError(f"Convert weight from {var_name} failed with error: {str(e)}") self.model.load_state_dict(local_var_dict) if n_loaded == 0: raise ValueError(f"No weights loaded for validation! Received weight dict is {global_weights}") # before_train_validate only, can extend to other validate types validate_type = shareable.get_header(AppConstants.VALIDATE_TYPE) if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE: # perform valid before local train global_metric = self.local_valid( self.model, self.valid_loader, abort_signal, tb_id="val_metric_global_model", current_round=current_round, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_metric_global_model ({model_owner}): {global_metric:.4f}") # validation metrics will be averaged with weights at server end for best model record metric_dxo = DXO( data_kind=DataKind.METRICS, data={MetaKey.INITIAL_METRICS: global_metric}, meta={}, ) metric_dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, len(self.valid_loader)) return metric_dxo.to_shareable() else: return make_reply(ReturnCode.VALIDATE_TYPE_UNKNOWN)
NVFlare-main
research/fed-sm/jobs/fedsm_prostate/app/custom/learners/supervised_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import torch import torch.optim as optim from learners.supervised_learner import SupervisedLearner from monai.data import CacheDataset, DataLoader, Dataset, load_decathlon_datalist from monai.inferers import SimpleInferer from monai.losses import DiceLoss from monai.metrics import DiceMetric from monai.networks.nets.unet import UNet from monai.transforms import ( Activations, AsDiscrete, AsDiscreted, Compose, EnsureChannelFirstd, EnsureType, EnsureTyped, LoadImaged, Resized, ScaleIntensityRanged, ) from utils.custom_client_datalist_json_path import custom_client_datalist_json_path from nvflare.apis.fl_context import FLContext from nvflare.app_common.app_constant import AppConstants class SupervisedMonaiProstateLearner(SupervisedLearner): def __init__( self, train_config_filename, aggregation_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """MONAI Learner for prostate segmentation task. It inherits from SupervisedLearner. Args: train_config_filename: path for config_3 file, this is an addition term for config_3 loading aggregation_epochs: the number of training epochs for a round. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ super().__init__( aggregation_epochs=aggregation_epochs, train_task_name=train_task_name, ) self.train_config_filename = train_config_filename self.config_info = None self.lr = None self.model = None self.device = None self.optimizer = None self.criterion = None self.transform = None self.transform_post = None self.train_loader = None self.valid_loader = None self.inferer = None self.valid_metric = None def train_config(self, fl_ctx: FLContext): """MONAI traning configuration Here, we use a json to specify the needed parameters """ # Load training configurations json engine = fl_ctx.get_engine() ws = engine.get_workspace() app_config_dir = ws.get_app_config_dir(fl_ctx.get_job_id()) train_config_file_path = os.path.join(app_config_dir, self.train_config_filename) if not os.path.isfile(train_config_file_path): self.log_error( fl_ctx, f"Training configuration file does not exist at {train_config_file_path}", ) with open(train_config_file_path) as file: self.config_info = json.load(file) # Get the config_info self.lr = self.config_info["learning_rate"] cache_rate = self.config_info["cache_dataset"] dataset_base_dir = self.config_info["dataset_base_dir"] datalist_json_path = self.config_info["datalist_json_path"] # Get datalist json datalist_json_path = custom_client_datalist_json_path(datalist_json_path, self.client_id) # Set datalist train_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="training", base_dir=dataset_base_dir, ) valid_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="validation", base_dir=dataset_base_dir, ) self.log_info( fl_ctx, f"Training Size: {len(train_list)}, Validation Size: {len(valid_list)}", ) # Set the training-related context self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model = UNet( spatial_dims=2, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(self.device) self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr) self.criterion = DiceLoss(sigmoid=True) self.transform = Compose( [ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), ScaleIntensityRanged(keys=["image", "label"], a_min=0, a_max=255, b_min=0.0, b_max=1.0), Resized( keys=["image", "label"], spatial_size=(256, 256), mode=("bilinear"), align_corners=True, ), AsDiscreted(keys=["label"], threshold=0.5), EnsureTyped(keys=["image", "label"]), ] ) self.transform_post = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) # Set dataset if cache_rate > 0.0: train_dataset = CacheDataset( data=train_list, transform=self.transform, cache_rate=cache_rate, num_workers=0, ) valid_dataset = CacheDataset( data=valid_list, transform=self.transform, cache_rate=cache_rate, num_workers=0, ) else: train_dataset = Dataset( data=train_list, transform=self.transform, ) valid_dataset = Dataset( data=valid_list, transform=self.transform, ) self.train_loader = DataLoader( train_dataset, batch_size=1, shuffle=True, num_workers=0, ) self.valid_loader = DataLoader( valid_dataset, batch_size=1, shuffle=False, num_workers=0, ) # Set inferer and evaluation metric self.inferer = SimpleInferer() self.valid_metric = DiceMetric(include_background=False, reduction="mean", get_not_nans=False)
NVFlare-main
research/fed-sm/jobs/fedsm_prostate/app/custom/learners/supervised_monai_prostate_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Union, cast import torch import torch.nn as nn from torch.hub import load_state_dict_from_url __all__ = [ "VGG", "vgg11", ] model_urls = { "vgg11": "https://download.pytorch.org/models/vgg11-8a719046.pth", } class VGG(nn.Module): def __init__(self, features: nn.Module, num_classes: int = 1000, init_weights: bool = True) -> None: super(VGG, self).__init__() self.features = features self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), ) if init_weights: self._initialize_weights() def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) feature = torch.flatten(x, 1) x = self.classifier(feature) return x def _initialize_weights(self) -> None: for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential: layers: List[nn.Module] = [] # single channel input in_channels = 1 for v in cfg: if v == "M": layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: v = cast(int, v) conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfgs: Dict[str, List[Union[str, int]]] = {"A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"]} def _vgg(arch: str, cfg: str, batch_norm: bool, pretrained: bool, progress: bool, **kwargs: Any) -> VGG: if pretrained: kwargs["init_weights"] = False model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict) return model def vgg11(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: r"""VGG 11-layer model (configuration "A") from `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg("vgg11", "A", False, pretrained, progress, **kwargs)
NVFlare-main
research/fed-sm/jobs/fedsm_prostate/app/custom/networks/vgg.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.dxo import DataKind, from_shareable from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.abstract.model import ( ModelLearnable, ModelLearnableKey, make_model_learnable, model_learnable_to_dxo, ) from nvflare.app_common.abstract.shareable_generator import ShareableGenerator from nvflare.app_common.app_constant import AppConstants class FullModelShareableFedSMGenerator(ShareableGenerator): def learnable_to_shareable(self, model_learnable: ModelLearnable, fl_ctx: FLContext) -> Shareable: """Convert ModelLearnable to Shareable. Args: model_learnable (ModelLearnable): model to be converted fl_ctx (FLContext): FL context Returns: Shareable: a shareable containing a DXO object. """ dxo = model_learnable_to_dxo(model_learnable) return dxo.to_shareable() def update_single_model(self, dxo_single_model, base_model_set, model_id, fl_ctx: FLContext): if not dxo_single_model: self.log_error(fl_ctx, f"Aggregated model weights for {model_id} are missing!") return # get base_model from the base_model_set base_model = base_model_set[model_id] if not base_model: self.system_panic( reason=f"No base personalized model for {model_id}!", fl_ctx=fl_ctx, ) return base_model weights = base_model[ModelLearnableKey.WEIGHTS] # update with aggregated dxo if dxo_single_model.data_kind == DataKind.WEIGHT_DIFF: # add aggregated weight_diff from aggregator record to the base model weights if dxo_single_model is not None: model_diff = dxo_single_model.data for v_name in model_diff.keys(): weights[v_name] = weights[v_name] + model_diff[v_name] elif dxo_single_model.data_kind == DataKind.WEIGHTS: # update weights directly weights_new = dxo_single_model.data if not weights_new: self.log_info( fl_ctx, f"No model weights for {model_id} found. Model will not be updated.", ) else: base_model[ModelLearnableKey.WEIGHTS] = weights_new else: raise ValueError( f"data_kind should be either DataKind.WEIGHTS or DataKind.WEIGHT_DIFF, but got {dxo_single_model.data_kind}" ) # set meta and set base_model_set base_model[ModelLearnableKey.META] = dxo_single_model.get_meta_props() base_model_set[model_id] = base_model def shareable_to_learnable(self, shareable: Shareable, client_ids: list, fl_ctx: FLContext) -> ModelLearnable: """Convert Shareable to ModelLearnable. Supporting TYPE == TYPE_WEIGHT_DIFF or TYPE_WEIGHTS Args: shareable (Shareable): Shareable that contains a DXO object client_ids: client id list for getting the personalized models fl_ctx (FLContext): FL context Returns: A ModelLearnable object Raises: TypeError: if shareable is not of type shareable ValueError: if data_kind is not `DataKind.WEIGHTS` and is not `DataKind.WEIGHT_DIFF` """ if not isinstance(shareable, Shareable): raise TypeError(f"shareable must be Shareable, but got {type(shareable)}.") # base_model_set is a "flattened set", containing all models with ids # "select_weights", "select_exp_avg", "select_exp_avg_sq", "global_weights", and client_ids base_model_set = fl_ctx.get_prop(AppConstants.GLOBAL_MODEL)["weights"] meta = fl_ctx.get_prop(AppConstants.GLOBAL_MODEL)["meta"] if not base_model_set: self.system_panic(reason="No FedSM base model set!", fl_ctx=fl_ctx) return base_model_set # dxo from aggregator is hierarchically organized as ["select_weights", "global_weights", "person_weights"] # "global_weights" is a dxo for global model # "person_weights" is a dxo collection containing dxo for each client_id # "select_weights" is a dxo collection containing dxo for ["select_weights", "exp_avg", "exp_avg_sq"] dxo = from_shareable(shareable) dxo_global = dxo.data.get("global_weights") self.update_single_model(dxo_global, base_model_set, "global_weights", fl_ctx) dxo_person = dxo.data.get("person_weights") for model_id in client_ids: dxo_single = dxo_person.get(model_id) self.update_single_model(dxo_single, base_model_set, model_id, fl_ctx) dxo_select = dxo.data.get("select_weights") for model_id in ["select_weights", "select_exp_avg", "select_exp_avg_sq"]: dxo_single = dxo_select.get(model_id) self.update_single_model(dxo_single, base_model_set, model_id, fl_ctx) model_set = make_model_learnable(base_model_set, meta) return model_set
NVFlare-main
research/fed-sm/jobs/fedsm_prostate/app/custom/shareablegenerators/full_model_shareable_fedsm_generator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from helpers.pt_fedsm import PTFedSMHelper from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.shareable import make_reply from nvflare.apis.signal import Signal class SupervisedPTFedSMHelper(PTFedSMHelper): """Helper to be used with FedSM components under supervised training specs""" def __init__( self, person_model, select_model, person_criterion, select_criterion, person_optimizer, select_optimizer, device, app_dir, person_model_epochs, select_model_epochs, ): super().__init__( person_model, select_model, person_criterion, select_criterion, person_optimizer, select_optimizer, device, app_dir, person_model_epochs, select_model_epochs, ) def local_train_person(self, train_loader, abort_signal: Signal, writer, current_round): # Train personalized model, and keep track of curves for epoch in range(self.person_model_epochs): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.person_model.train() epoch_len = len(train_loader) epoch_global = current_round * self.person_model_epochs + epoch for i, batch_data in enumerate(train_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) inputs = batch_data["image"].to(self.device) labels = batch_data["label"].to(self.device) # forward + backward + optimize outputs = self.person_model(inputs) loss = self.person_criterion(outputs, labels) self.person_optimizer.zero_grad() loss.backward() self.person_optimizer.step() current_step = epoch_len * epoch_global + i writer.add_scalar("train_loss_personalized", loss.item(), current_step)
NVFlare-main
research/fed-sm/jobs/fedsm_prostate/app/custom/helpers/supervised_pt_fedsm.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from abc import abstractmethod import numpy as np import torch from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.shareable import make_reply from nvflare.apis.signal import Signal def AccuracyTopK(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res class PTFedSMHelper(object): def __init__( self, person_model, select_model, person_criterion, select_criterion, person_optimizer, select_optimizer, device, app_dir, person_model_epochs: int = 1, select_model_epochs: int = 1, ): """Helper to be used with FedSM components. Implements the functions used for the algorithm proposed in Xu et al. "Closing the Generalization Gap of Cross-silo Federated Medical Image Segmentation" (https://arxiv.org/abs/2203.10144) using PyTorch. Args: person/select_model: the personalized and selector models person/select_criterion: loss criterion person/select_optimizer: training optimizer the two models device: device for model training app_dir: needed for local personalized model saving person/select_model_epochs: total training epochs each round Returns: None """ self.person_model = person_model self.select_model = select_model self.person_criterion = person_criterion self.select_criterion = select_criterion self.person_optimizer = person_optimizer self.select_optimizer = select_optimizer if device is None: self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") else: self.device = device self.person_model_epochs = person_model_epochs self.select_model_epochs = select_model_epochs # check criterion, model, and optimizer type if not isinstance(self.person_model, torch.nn.Module): raise ValueError(f"person_model component must be torch model. But got: {type(self.person_model)}") if not isinstance(self.select_model, torch.nn.Module): raise ValueError(f"select_model component must be torch model. But got: {type(self.select_model)}") if not isinstance(self.person_criterion, torch.nn.modules.loss._Loss): raise ValueError(f"person_criterion component must be torch loss. But got: {type(self.person_criterion)}") if not isinstance(self.select_criterion, torch.nn.modules.loss._Loss): raise ValueError(f"select_criterion component must be torch loss. But got: {type(self.select_criterion)}") if not isinstance(self.person_optimizer, torch.optim.Optimizer): raise ValueError( f"person_optimizer component must be torch optimizer. But got: {type(self.person_optimizer)}" ) if not isinstance(self.select_optimizer, torch.optim.Optimizer): raise ValueError( f"select_optimizer component must be torch optimizer. But got: {type(self.select_optimizer)}" ) if not isinstance(self.device, torch.device): raise ValueError(f"device component must be torch device. But got: {type(self.device)}") # initialize other recording related parameters # save personalized model to local file # note: global and selector model saved on server self.person_best_metric = 0 self.person_model_file_path = os.path.join(app_dir, "personalized_model.pt") self.best_person_model_file_path = os.path.join(app_dir, "best_personalized_model.pt") def save_person_model(self, current_round, is_best=False): # save personalized model locally model_weights = self.person_model.state_dict() save_dict = {"model": model_weights, "epoch": current_round} if is_best: save_dict.update({"best_metric": self.person_best_metric}) torch.save(save_dict, self.best_person_model_file_path) else: torch.save(save_dict, self.person_model_file_path) def local_train_select(self, train_loader, select_label, abort_signal: Signal, writer, current_round): # Train selector model in full batch manner, and keep track of curves for epoch in range(self.select_model_epochs): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.select_model.train() epoch_len = len(train_loader) epoch_global = current_round * self.select_model_epochs + epoch for i, batch_data in enumerate(train_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) inputs = batch_data["image"].to(self.device) # construct vector of selector label labels = np.ones(inputs.size()[0], dtype=np.int64) * select_label labels = torch.tensor(labels).to(self.device) # forward + backward outputs = self.select_model(inputs) loss = self.select_criterion(outputs, labels) loss.backward() current_step = epoch_len * epoch_global + i writer.add_scalar("train_loss_selector", loss.item(), current_step) # Full batch training, 1 step per epoch self.select_optimizer.step() self.select_optimizer.zero_grad() def local_valid_select( self, valid_loader, select_label, abort_signal: Signal, tb_id=None, writer=None, current_round=None, ): # Validate selector model self.select_model.eval() with torch.no_grad(): metric = 0 for i, batch_data in enumerate(valid_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # input and expected output images = batch_data["image"].to(self.device) # generate label vector: image batch_size, same label select = np.ones(images.size()[0], dtype=np.int64) * select_label select = torch.tensor(select).to(self.device) # inference outputs = self.select_model(images) # compute metric metric_score = AccuracyTopK(outputs, select, topk=(1,)) metric += metric_score[0].item() # compute mean acc over whole validation set metric /= len(valid_loader) # tensorboard record id, add to record if provided if tb_id: writer.add_scalar(tb_id, metric, current_round) return metric def update_metric_save_person_model(self, current_round, metric): self.save_person_model(current_round, is_best=False) if metric > self.person_best_metric: self.person_best_metric = metric self.save_person_model(current_round, is_best=True) return 1 else: return 0 @abstractmethod def local_train_person(self, train_loader, abort_signal: Signal, writer): # Train personal model for self.model_epochs, and keep track of curves # This part is task dependent, need customization raise NotImplementedError
NVFlare-main
research/fed-sm/jobs/fedsm_prostate/app/custom/helpers/pt_fedsm.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from nvflare.apis.dxo import DataKind, MetaKey, from_shareable from nvflare.apis.event_type import EventType from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import FLContextKey, ReservedKey from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType class IntimeModelFedSMSelector(FLComponent): def __init__(self, weigh_by_local_iter=False, aggregation_weights=None): """Handler to determine if the model is globally best. Note that only model_global and model_select participate in the metric averaging process, while personalized models directly record the availability status Args: weigh_by_local_iter (bool, optional): whether the metrics should be weighted by trainer's iteration number. Defaults to False. aggregation_weights (dict, optional): a mapping of client name to float for aggregation. Defaults to None. """ super().__init__() self.val_metric_global = self.best_val_metric_global = -np.inf self.val_metric_select = self.best_val_metric_select = -np.inf self.weigh_by_local_iter = weigh_by_local_iter self.validation_metric_name = MetaKey.INITIAL_METRICS self.aggregation_weights = aggregation_weights or {} self.person_best_status = {} self.logger.debug(f"model selection weights control: {aggregation_weights}") self._reset_stats() def handle_event(self, event_type: str, fl_ctx: FLContext): """Perform the handler process based on the event_type. Args: event_type (str): event type delivered from workflow fl_ctx (FLContext): FL context, including peer context and other information """ if event_type == EventType.START_RUN: self._startup() elif event_type == EventType.BEFORE_PROCESS_SUBMISSION: self._before_accept(fl_ctx) elif event_type == AppEventType.BEFORE_AGGREGATION: self._before_aggregate(fl_ctx) def _startup(self): self._reset_stats() def _reset_stats(self): self.validation_mertic_global_weighted_sum = 0 self.global_sum_of_weights = 0 self.validation_mertic_select_weighted_sum = 0 self.select_sum_of_weights = 0 self.person_best_status = {} def _before_accept(self, fl_ctx: FLContext): peer_ctx = fl_ctx.get_peer_context() shareable: Shareable = peer_ctx.get_prop(FLContextKey.SHAREABLE) try: dxo = from_shareable(shareable) except: self.log_exception(fl_ctx, "shareable data is not a valid DXO") return False # check data_kind if dxo.data_kind not in ( DataKind.WEIGHT_DIFF, DataKind.WEIGHTS, DataKind.COLLECTION, ): self.log_debug(fl_ctx, f"I cannot handle {dxo.data_kind}") return False if dxo.data is None: self.log_debug(fl_ctx, "no data to filter") return False # DXO for FedSM is in "collection" format, containing three dxo objects (global_weights, person_weights, select_weights) # together with the meta information contribution_round = shareable.get_header(AppConstants.CONTRIBUTION_ROUND) client_name = shareable.get_peer_prop(ReservedKey.IDENTITY_NAME, default="?") current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) if current_round == 0: self.log_debug(fl_ctx, "skipping round 0") return False # There is no aggregated model at round 0 if contribution_round != current_round: self.log_debug( fl_ctx, f"discarding shareable from {client_name} for round: {contribution_round}. Current round is: {current_round}", ) return False # validation metric is a list of two numbers, corresponding to the two models, # note that personalized model do not need to be averaged, just record the status of best model availability # [global_metric, select_metric, person_best] validation_metric = dxo.get_meta_prop(self.validation_metric_name) if validation_metric is None: self.log_debug(fl_ctx, f"validation metric not existing in {client_name}") return False else: self.log_info( fl_ctx, f"validation metric {validation_metric} from client {client_name}", ) if self.weigh_by_local_iter: n_iter = dxo.get_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, 1.0) else: n_iter = 1.0 aggregation_weights = self.aggregation_weights.get(client_name, 1.0) self.log_debug(fl_ctx, f"aggregation weight: {aggregation_weights}") self.validation_mertic_global_weighted_sum += validation_metric[0] * n_iter * aggregation_weights self.global_sum_of_weights += n_iter self.validation_mertic_select_weighted_sum += validation_metric[1] * n_iter * aggregation_weights self.select_sum_of_weights += n_iter self.person_best_status[client_name] = validation_metric[2] return True def _before_aggregate(self, fl_ctx): if self.global_sum_of_weights == 0: self.log_debug(fl_ctx, "nothing accumulated for model_global") return False if self.select_sum_of_weights == 0: self.log_debug(fl_ctx, "nothing accumulated for model_selector") return False self.val_metric_global = self.validation_mertic_global_weighted_sum / self.global_sum_of_weights self.val_metric_select = self.validation_mertic_select_weighted_sum / self.select_sum_of_weights self.logger.debug(f"weighted validation metric for global model {self.val_metric_global}") self.logger.debug(f"weighted validation metric for selector model{self.val_metric_select}") self.logger.debug(f"best personalized model availability {self.person_best_status}") if self.val_metric_global > self.best_val_metric_global: self.best_val_metric_global = self.val_metric_global current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) self.log_info( fl_ctx, f"new best validation metric for global model at round {current_round}: {self.best_val_metric_global}", ) # Fire event to notify a new best global model self.fire_event("fedsm_best_model_available_global_weights", fl_ctx) if self.val_metric_select > self.best_val_metric_select: self.best_val_metric_select = self.val_metric_select current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) self.log_info( fl_ctx, f"new best validation metric for selector model at round {current_round}: {self.best_val_metric_select}", ) # Fire event to notify a new best selector model self.fire_event("fedsm_best_model_available_select_weights", fl_ctx) for client_id in self.person_best_status.keys(): if self.person_best_status[client_id] == 1: # Fire event to notify a new best personalized model self.fire_event("fedsm_best_model_available_" + client_id, fl_ctx) self._reset_stats() return True
NVFlare-main
research/fed-sm/jobs/fedsm_prostate/app/custom/widgets/intime_model_fedsm_selector.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .filters.gaussian_privacy import GaussianPrivacy from .filters.gradinv import GradInversionInverter, Inverter from .filters.image_sim import ImageSimMetric, SimMetric from .filters.rdlv_filter import RelativeDataLeakageValueFilter from .learners.cxr_learner import CXRLearner
NVFlare-main
research/quantifying-data-leakage/src/nvflare_gradinv/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union import numpy as np from nvflare.apis.dxo import DXO, DataKind from nvflare.apis.dxo_filter import DXOFilter from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable class GaussianPrivacy(DXOFilter): def __init__(self, sigma0=0.1, max_percentile=95, data_kinds: [str] = None): """Add Gaussian noise to shared model updates Args: sigma0: must be in >= 0, fraction of max value to compute noise max_percentile: must be in 0..100, only update nonzero abs diff greater than percentile data_kinds: kinds of DXO data to filter. If None, `[DataKind.WEIGHT_DIFF, DataKind.WEIGHTS]` is used. """ if not data_kinds: data_kinds = [DataKind.WEIGHT_DIFF, DataKind.WEIGHTS] super().__init__( supported_data_kinds=[DataKind.WEIGHTS, DataKind.WEIGHT_DIFF], data_kinds_to_filter=data_kinds, ) if not np.isscalar(sigma0): raise ValueError(f"Expected a positive scalar for `sigma0` but received type {type(sigma0)}") if sigma0 < 0.0: raise ValueError(f"Expected a positive float for `sigma0` but received {sigma0}.") if not np.isscalar(max_percentile): raise ValueError( f"Expected a positive scalar for `max_percentile` but received type {type(max_percentile)}" ) if max_percentile < 0.0 or max_percentile > 100.0: raise ValueError(f"Expected a float for `sigma0` between 0 and 100 but received {max_percentile}.") self.sigma0 = sigma0 self.max_percentile = max_percentile def process_dxo(self, dxo: DXO, shareable: Shareable, fl_ctx: FLContext) -> Union[None, DXO]: """Add Gaussian noise to data in dxo. Args: dxo: information from client shareable: that the dxo belongs to fl_ctx: context provided by workflow Returns: filtered result. """ if self.sigma0 > 0.0: weights = dxo.data # abs delta all_abs_values = np.concatenate([np.abs(weights[name].ravel()) for name in weights]) all_abs_nonzero = all_abs_values[all_abs_values > 0.0] max_value = np.percentile(a=all_abs_nonzero, q=self.max_percentile, overwrite_input=False) noise_sigma = self.sigma0 * max_value n_vars = len(weights) for var_name in weights: weights[var_name] = weights[var_name] + np.random.normal(0.0, noise_sigma, np.shape(weights[var_name])) self.log_info( fl_ctx, f"Added Gaussian noise to {n_vars} vars with sigma" f" {noise_sigma}, " f"sigma fraction: {self.sigma0}, " f"{self.max_percentile:.4f}th percentile of nonzero values: {max_value:.4f}", ) dxo.data = weights else: self.log_warning(fl_ctx, "Sigma fraction is zero. No noise is being applied...") return dxo
NVFlare-main
research/quantifying-data-leakage/src/nvflare_gradinv/filters/gaussian_privacy.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import skimage.metrics import torch from scipy import spatial from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext class SimMetric(FLComponent): def __init__(self): """Abstract class used to compute a similarity metric between the source data and reconstruction. Returns: similarity metric """ super().__init__() def __call__(self, source, reference): """Subclass must implement this method to filter the provided DXO Args: source: source image reference: reference image the source image should be compared to Returns: similarity metric """ raise NotImplementedError(f"Subclass of {self.__class__.__name__} must implement this method.") class ImageSimMetric(SimMetric): def __init__(self, metrics=None): """Implementation of `SimMetric` for imaging applications. Args: metrics: String or list of similarity metrics. Support "ssim", "cosine", and "norm". Returns: similarity metric """ super().__init__() if not metrics: self.metrics = ["ssim"] else: if isinstance(metrics, str): self.metrics = [metrics] elif isinstance(metrics, list): self.metrics = metrics else: raise ValueError("Expected `metrics` to be string or list of strings.") @staticmethod def check_shape(img): if len(np.shape(img)) > 2: if np.shape(img)[2] > 3: img = img[:, :, 0:3] # sim metrics assume images to scaled 0...255 if np.max(img) <= 1.0: img = img * 255.0 assert np.shape(img)[2] == 3, "Assuming RGB image here" return img def __call__(self, source, reference, fl_ctx: FLContext, is_channel_first=False): # check type if isinstance(source, torch.Tensor): source = source.detach().cpu().numpy() if isinstance(reference, torch.Tensor): reference = reference.detach().cpu().numpy() source = source.astype(np.float32) reference = reference.astype(np.float32) if is_channel_first: source = np.swapaxes(source, -1, 0) reference = np.swapaxes(reference, -1, 0) source = self.check_shape(source) reference = self.check_shape(reference) if not source.shape == reference.shape: raise ValueError( f"`source` and `reference` must have the same dimensions but they were {source.shape} vs. {reference.shape}." ) # TODO: convert these to warnings assert np.min(source) >= 0, f"img min is {np.min(source)}" assert np.min(reference) >= 0, f"img_recon min is {np.min(reference)}" assert 1 < np.max(source) <= 255 assert 1 < np.max(reference) <= 255 # assert np.mean(img) > 1 # assert np.mean(img_recon) > 1 if np.mean(source) < 1: self.log_warning( fl_ctx, f"[WARNING] image mean is very low {np.mean(source)} (min={np.min(source)}, max={np.max(source)})", ) if np.mean(reference) < 1: self.log_warning( fl_ctx, f"[WARNING] image mean is very low {np.mean(reference)} (min={np.min(reference)}, max={np.max(reference)})", ) # compute metrics outputs = {} for metric in self.metrics: if not isinstance(metric, str): raise ValueError(f"Expect metric to be of type string but got type {type(metric)}") if metric == "ssim": out_value = skimage.metrics.structural_similarity( reference, source, channel_axis=-1, data_range=256.0 ) # , # gaussian_weights=True, sigma=1.5, # Wang et al. # use_sample_covariance=False) elif metric == "cosine": out_value = 1 - spatial.distance.cosine(reference, source) assert 0.0 <= out_value <= 1.0, f"cosine similarity is out of range {out_value}" elif metric == "norm": out_value = np.sqrt(np.sum((reference - source) ** 2)) else: raise ValueError(f"Metric {metric} not supported! Choose from `ssim`, `cosine` or `norm`") outputs[metric] = out_value return outputs
NVFlare-main
research/quantifying-data-leakage/src/nvflare_gradinv/filters/image_sim.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from copy import deepcopy import numpy as np import torch from fl_gradient_inversion import FLGradientInversion from monai.networks.nets.torchvision_fc import TorchVisionFCModel from monai.transforms import ( Compose, EnsureChannelFirst, LoadImage, NormalizeIntensity, Resize, SaveImage, ScaleIntensity, Transform, ) from monai.utils import ImageMetaKey from nvflare.apis.dxo import DXO, DataKind from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.abstract.learner_spec import Learner class Inverter(FLComponent): def __init__(self): super().__init__() def __call__(self, dxo: DXO, shareable: Shareable, fl_ctx: FLContext): """Subclass must implement this method to filter the provided DXO Args: dxo: the DXO to containing the data to be inverted shareable: the shareable that the dxo belongs to fl_ctx: the FL context Returns: Inversions """ raise NotImplementedError(f"Subclass of {self.__class__.__name__} must implement this method.") class AddName(Transform): def __init__(self, num_images=1): self.num_images = num_images self.idx = 0 def __call__(self, img): if self.idx == self.num_images: self.idx = 0 img.meta[ImageMetaKey.FILENAME_OR_OBJ] = f"recon_b{self.idx}" self.idx += 1 return img class GradInversionInverter(Inverter): def __init__( self, learner_name: str = "learner", cfg_file: str = "config/config_inversion.json", bn_momentum: float = 0.1, compute_update_sums: bool = True, print_names: bool = True, use_determinism: bool = True, prior_transforms=None, save_transforms=None, save_fmt=".png", ): """Wrapper class calling gradient inversion. Assumes being used with `CXRLearner` or Learners that have the same member variables to be accessed in `__call__()`. Args: learner_name: ID of the `Learner` component used to get training hyperparameters. cfg_file: Configuration file used by `FLGradientInversion` class. bn_momentum: Batch norm momentum used by the local trainer code in `Learner`. Defaults to 0.1. compute_update_sums: Whether to print the absolute sum of the model updates. Defaults to `True`. print_names: Whether to print the layer variable names of the model. Defaults to `True`. use_determinism: Whether to use deterministic functions for the reconstruction. Defaults to `True`. prior_transforms: Optional custom transforms to read prior images. Defaults to `None`. save_transforms: Optional custom transforms to save the reconstructed images. Defaults to `None`. save_fmt: Output format to save individual reconstructions. Defaults to ".png". Returns: Reconstructions """ super().__init__() if not isinstance(learner_name, str): raise ValueError(f"Expected `learner_name` of type `str` but received type {type(learner_name)}") if not isinstance(cfg_file, str): raise ValueError(f"Expected `cfg_file` of type `str` but received type {type(cfg_file)}") if not isinstance(bn_momentum, float): raise ValueError(f"Expected `bn_momentum` of type `float` but received type {type(bn_momentum)}") self.learner_name = learner_name self.cfg_file = cfg_file self.bn_momentum = bn_momentum self.compute_update_sums = compute_update_sums self.print_names = print_names self.prior_transforms = prior_transforms self.save_transforms = save_transforms self.save_fmt = save_fmt self.cfg = None self.save_path = None self.use_determinism = use_determinism if self.use_determinism: torch.backends.cudnn.deterministic = True @staticmethod def run_inversion( cfg, updates, global_weights, bn_momentum=0.1, prior_transforms=None, save_transforms=None, save_fmt=".png" ): """Wrapper function calling `FLGradientInversion`. Args: cfg: Configuration dictionary used by `FLGradientInversion` class. updates: The model updates sent by the client. global_weights: The current state dict of global model the `updates` are with respect to. bn_momentum: Batch norm momentum used by the local trainer code in `Learner`. Defaults to 0.1. prior_transforms: Optional custom transforms to read prior images. Defaults to `None`. save_transforms: Optional custom transforms to save the reconstructed images. Defaults to `None`. save_fmt: Output format to save individual reconstructions. Defaults to ".png". Returns: Reconstructions """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net = TorchVisionFCModel( model_name=cfg["model_name"], num_classes=cfg["num_classes"], pretrained=False, ) # get global weights if "model" in global_weights: net.load_state_dict(global_weights["model"]) else: net.load_state_dict(global_weights) # compute weight changes update_sum = 0.0 for name, _ in net.named_parameters(): update_sum += np.sum(np.abs(updates[name])) assert update_sum > 0.0, "All updates are zero!" model_bn = deepcopy(net).cuda() update_sum = 0.0 new_state_dict = model_bn.state_dict() for n in updates.keys(): val = updates[n] update_sum += np.sum(np.abs(val)) new_state_dict[n] += torch.tensor( val, dtype=new_state_dict[n].dtype, device=new_state_dict[n].device, ) model_bn.load_state_dict(new_state_dict) assert update_sum > 0.0, "All updates are zero!" n_bn_updated = 0 global_state_dict = net.state_dict() # Compute full BN stats bn_stats = {} for param_name in updates: if "bn" in param_name or "batch" in param_name or "running" in param_name: bn_stats[param_name] = global_weights[param_name] + updates[param_name] for n in bn_stats.keys(): if "running" in n: xt = (bn_stats[n] - (1 - bn_momentum) * global_state_dict[n].numpy()) / bn_momentum n_bn_updated += 1 bn_stats[n] = xt # move weight updates and model to gpu net = net.to(device) grad_lst = [] for name, _ in net.named_parameters(): val = torch.from_numpy(updates[name]).cuda() grad_lst.append([name, val]) # Use same transforms to load prior as used in training routine # TODO: make configurable if prior_transforms is None: prior_transforms = Compose( [ LoadImage(image_only=True), EnsureChannelFirst(), NormalizeIntensity(subtrahend=0, divisor=255, dtype="float32"), Resize(spatial_size=[224, 224]), ] ) if save_transforms is None: save_transforms = Compose( [ ScaleIntensity(minv=0, maxv=255), AddName(num_images=cfg["local_num_images"]), SaveImage( output_dir=cfg["save_path"], output_ext=save_fmt, separate_folder=False, output_postfix="", ), ] ) # Compute inversion grad_inversion_engine = FLGradientInversion( network=net, grad_lst=grad_lst, bn_stats=bn_stats, model_bn=model_bn, prior_transforms=prior_transforms, save_transforms=save_transforms, ) best_inputs, targets = grad_inversion_engine(cfg) return best_inputs, targets def __call__(self, dxo: DXO, shareable: Shareable, fl_ctx: FLContext): app_root = fl_ctx.get_prop(FLContextKey.APP_ROOT) if not self.cfg: self.cfg_file = os.path.join(app_root, self.cfg_file) if os.path.isfile(self.cfg_file): with open(self.cfg_file, "r") as f: self.cfg = json.load(f) else: raise ValueError(f"`cfg_file` file does not exist at {self.cfg_file}") self.save_path = os.path.join(app_root, self.cfg["save_path"]) self.logger.info(f"Using full BN stats with momentum {self.bn_momentum} ! \n") # get current learner & global model engine = fl_ctx.get_engine() _learner = engine.get_component(self.learner_name) if not _learner: raise ValueError(f"No Learner available with name {self.learner_name}") elif not isinstance(_learner, Learner): raise ValueError(f"Expected `learner` to be of type `Learner` but got type {type(_learner)}") if _learner: global_model = _learner.global_weights if "weights" in global_model: global_model = global_model["weights"] if global_model is None: raise ValueError("No global model exists!") # get updates weight_updates = dxo.data if weight_updates is None or len(weight_updates) == 0: raise ValueError(f"No weight_updates available or empty: {weight_updates}") if dxo.data_kind != DataKind.WEIGHT_DIFF: raise ValueError(f"Expected weight updates to be of data_kind `WEIGHT_DIFF` but got {dxo.data_kind}") if self.compute_update_sums: sum_updates, sum_bn_updates = 0.0, 0.0 for k in weight_updates.keys(): if self.print_names: print(f"Inverting {k}") if "bn" in k or "batch" in k or "running" in k: sum_bn_updates += np.sum(np.abs(weight_updates[k])) else: sum_updates += np.sum(np.abs(weight_updates[k])) self.log_info( fl_ctx, f"weight update sum {sum_updates}, bn update sum {sum_bn_updates}", ) if sum_updates == 0.0: self.log_warning(fl_ctx, "Gradient update sum is zero!") if sum_bn_updates == 0.0: self.log_warning(fl_ctx, "BN sum is zero!") # run inversion self.cfg["save_path"] = os.path.join( self.save_path, f"{fl_ctx.get_identity_name()}_rnd{_learner.current_round}", ) self.cfg["batch_size"] = _learner.batch_size self.cfg["local_bs"] = _learner.batch_size self.cfg["num_classes"] = _learner.num_class self.cfg["lr_local"] = _learner.get_lr()[0] # use learning rate from first layer self.cfg["local_epoch"] = _learner.aggregation_epochs self.cfg["local_num_images"] = int(len(_learner.train_loader) * _learner.batch_size) self.log_info(fl_ctx, f"Run inversion with config {self.cfg}") best_images, _ = self.run_inversion( cfg=self.cfg, updates=weight_updates, global_weights=global_model, bn_momentum=self.bn_momentum, prior_transforms=self.prior_transforms, save_transforms=self.save_transforms, save_fmt=self.save_fmt, ) return best_images
NVFlare-main
research/quantifying-data-leakage/src/nvflare_gradinv/filters/gradinv.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Union import numpy as np import torch from monai.data import CacheDataset, load_decathlon_datalist from monai.transforms import ( Compose, EnsureChannelFirst, EnsureChannelFirstd, LoadImage, LoadImaged, RepeatChannel, RepeatChanneld, Resize, Resized, ScaleIntensity, ) from nvflare.apis.dxo import DXO, DataKind from nvflare.apis.dxo_filter import DXOFilter from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.app_constant import AppConstants from .gradinv import Inverter from .image_sim import SimMetric class RelativeDataLeakageValueFilter(DXOFilter): def __init__( self, data_root: str, dataset_json: str, frequency: int = 1, start_round: int = 0, inverter_name: str = "grad_inverter", sim_metric_name: str = "sim_metric", prior_filename: str = None, image_key: str = "image", rdlv_reduce: str = "max", rdlv_threshold: float = 1.0, data_kinds: [str] = None, save_best_matches: bool = False, ): """Filter calling gradient inversion and computing the "Relative Data Leakage Value" (RDLV). Data inside the DXO will be removed if any RDLV is above the `rdlv_threshold`. See https://arxiv.org/abs/2202.06924 for details. Args: data_root: Data root for local training set. dataset_json: Data list of local training set. frequency: Frequency in FL rounds for which to run inversion code and the filter. Defaults to 1. start_round: FL round to start inversion. Defaults to 0. inverter_name: ID of inverter component. sim_metric_name: ID of the similarity metric component. prior_filename: Prior image used to initialize the attack and to compute RDLV. image_key: Dictionary key used by the data loader. rdlv_reduce: Which operation to use to reduce the RDLV values. Defaults to "max". rdlv_threshold: Threshold on RDLV to determine whether dxo.data will be passed on or filtered out. data_kinds: kinds of DXO data to filter. If None, `[DataKind.WEIGHT_DIFF, DataKind.WEIGHTS]` is used. save_best_matches: Whether to save the best reconstruction. Returns: Filtered DXO data. Empty DXO if any of the RDLV values is above `rdlv_threshold`. The computed RDLV values and hyperparameters will be saved as NumPy-file (*.npy) in the app_root. """ if not data_kinds: data_kinds = [DataKind.WEIGHT_DIFF, DataKind.WEIGHTS] super().__init__( supported_data_kinds=[DataKind.WEIGHTS, DataKind.WEIGHT_DIFF], data_kinds_to_filter=data_kinds, ) self.frequency = frequency self.start_round = start_round self.inverter_name = inverter_name self.sim_metric_name = sim_metric_name self.inverter = None self.sim_metric = None self.image_key = image_key self.rdlv_reduce = rdlv_reduce self.rdlv_threshold = rdlv_threshold self.prior_filename = prior_filename self.save_best_matches = save_best_matches # TODO: make configurable self.data_root = data_root self.dataset_json = dataset_json self.train_set = "training" self.cache_rate = 1.0 self.num_workers = 2 # some input checks if isinstance(data_root, str): if not os.path.isdir(data_root): raise ValueError(f"`data_root` directory does not exist at {data_root}") else: raise ValueError(f"Expected `data_root` of type `str` but received type {type(data_root)}") if isinstance(dataset_json, str): if not os.path.isfile(dataset_json): raise ValueError(f"`dataset_json` file does not exist at {dataset_json}") else: raise ValueError(f"Expected `dataset_json` of type `str` but received type {type(dataset_json)}") self.transform_train = None self.train_dataset = None self.train_loader = None self.prior = None self.app_root = None self.recon_transforms = Compose([ScaleIntensity(minv=0, maxv=255)]) def _create_train_loader(self, fl_ctx: FLContext): if self.train_loader is None: # create data loader for computing RDLV self.transform_train = Compose( [ LoadImaged(keys=[self.image_key]), EnsureChannelFirstd(keys=[self.image_key]), Resized(keys=[self.image_key], spatial_size=[224, 224]), RepeatChanneld(keys=[self.image_key], repeats=3), ] ) train_list = load_decathlon_datalist( data_list_file_path=self.dataset_json, is_segmentation=False, data_list_key=self.train_set, base_dir=self.data_root, ) self.train_dataset = CacheDataset( data=train_list, transform=self.transform_train, cache_rate=self.cache_rate, num_workers=self.num_workers, ) self.train_loader = torch.utils.data.DataLoader( self.train_dataset, batch_size=1, shuffle=False, ) self.log_info(fl_ctx, f"Training Size ({self.train_set}): {len(train_list)}") def _setup(self, fl_ctx: FLContext): self.app_root = fl_ctx.get_prop(FLContextKey.APP_ROOT) self._create_train_loader(fl_ctx) # get inverter during first process if self.inverter is None: engine = fl_ctx.get_engine() self.inverter = engine.get_component(self.inverter_name) if not self.inverter: raise ValueError(f"No Inverter available with name {self.inverter_name}") elif not isinstance(self.inverter, Inverter): raise ValueError(f"Expected `inverter` to be of type `Inverter` but got type {type(self.inverter)}") # get sim_metric during first process if self.sim_metric is None: engine = fl_ctx.get_engine() self.sim_metric = engine.get_component(self.sim_metric_name) if not self.sim_metric: raise ValueError(f"No SimMetric available with name {self.sim_metric_name}") elif not isinstance(self.sim_metric, SimMetric): raise ValueError( f"Expected `sim_metric` to be of type `SimMetric` but got type {type(self.sim_metric)}" ) # get prior if self.prior_filename and self.prior is None: prior_transforms = Compose( [ LoadImage(image_only=True), EnsureChannelFirst(), Resize(spatial_size=[224, 224]), RepeatChannel(repeats=3), ] ) self.prior = prior_transforms(self.prior_filename) def process_dxo(self, dxo: DXO, shareable: Shareable, fl_ctx: FLContext) -> Union[None, DXO]: """Compute gradient inversions and compute relative data leakage value (RDLV). Filter result based on the given threshold. Args: dxo: information from client shareable: that the dxo belongs to fl_ctx: context provided by workflow Returns: filtered result. """ self._setup(fl_ctx) # Compute inversions current_round = dxo.get_meta_prop(AppConstants.CURRENT_ROUND) if current_round is None: raise ValueError("No current round available!") if current_round % self.frequency == 0 and current_round >= self.start_round: recons = self.inverter(dxo=dxo, shareable=shareable, fl_ctx=fl_ctx) self.log_info(fl_ctx, f"Created reconstructions of shape {np.shape(recons)}") # compute (relative) data leakage value try: self.log_info( fl_ctx, f"Computing sim metrics for {len(self.train_loader)}x{len(recons)} pairs of images", ) (img_recon_sim_reduced, img_recon_sim, best_matches, closest_idx,) = self.compute_rdlv( train_loader=self.train_loader, recons=recons, sim_metric=self.sim_metric, reduce=self.rdlv_reduce, recon_transforms=self.recon_transforms, image_key=self.image_key, prior=self.prior, ) if self.rdlv_reduce == "max": rdlv = np.max(img_recon_sim_reduced, axis=0) elif self.rdlv_reduce == "min": rdlv = np.min(img_recon_sim_reduced, axis=0) else: raise ValueError(f"No such `rdlv_reduce` supported {self.rdlv_reduce}") except Exception as e: raise RuntimeError("Computing RDLV failed!") from e self.log_info(fl_ctx, f"RDLV: {rdlv}") results = { "img_recon_sim_reduced": img_recon_sim_reduced, "img_recon_sim": img_recon_sim, "closest_idx": closest_idx, "site": fl_ctx.get_identity_name(), "round": current_round, } if self.save_best_matches: results["best_matches"] = best_matches save_path = os.path.join(self.app_root, f"rdvl_round{current_round}.npy") np.save(save_path, results) # Remove data if above threshold if np.any(rdlv > self.rdlv_threshold): self.log_warning( fl_ctx, f"At least one RDLV of {rdlv} is over the threshold {self.rdlv_threshold}! Remove data.", ) dxo.data = {} return dxo @staticmethod def compute_rdlv( train_loader, recons, sim_metric, reduce="max", recon_transforms=None, image_key="image", prior=None, fl_ctx: FLContext = None, ): # TODO: Enforce using only one metric # TODO: use recon/reference terminology img_recon_sim = np.nan * np.ones((len(train_loader), len(recons), len(sim_metric.metrics))) if prior is not None: img_prior_sim = np.nan * np.ones((len(train_loader), len(sim_metric.metrics))) pairs = [] imgs = [] for i, batch_data in enumerate(train_loader): img = batch_data[image_key] if img.shape[0] != 1: raise ValueError(f"Assume batch dimension to be 1 but received {image_key} batch of shape {img.shape}") img = img[0, ...] # assume batch size 1 imgs.append(img) # compute similarity to prior if prior is not None: _outputs = sim_metric( source=prior, reference=img, fl_ctx=fl_ctx, is_channel_first=True, ) if isinstance(_outputs, dict): for m_idx, m_name in enumerate(sim_metric.metrics): # TODO: make metrics part of the SimMetrics API img_prior_sim[i, m_idx] = _outputs[m_name] else: img_prior_sim[i, ...] = _outputs # compute similarity to reconstructions for r, recon in enumerate(recons): if recon_transforms: recon = recon_transforms(recon) _outputs = sim_metric( source=recon, reference=img, fl_ctx=fl_ctx, is_channel_first=True, ) if isinstance(_outputs, dict): for m_idx, m_name in enumerate(sim_metric.metrics): # TODO: make metrics part of the SimMetrics API img_recon_sim[i, r, m_idx] = _outputs[m_name] else: img_recon_sim[i, r, ...] = _outputs pairs.append([i, r]) # Compute relative value if prior is not None: for m_idx in range(len(sim_metric.metrics)): img_recon_sim[i, r, m_idx] = ( img_recon_sim[i, r, m_idx] - img_prior_sim[i, m_idx] ) / img_prior_sim[i, m_idx] if (i + 1) % 32 == 0: print(f"processing original image {i + 1} of {len(train_loader)}...") if reduce == "max": closest_idx = np.argmax(img_recon_sim, axis=1) elif reduce == "min": closest_idx = np.argmin(img_recon_sim, axis=1) elif reduce is None: closest_idx = None else: raise NotImplementedError(f"No such reduce function implemented `{reduce}`") if closest_idx is not None: img_recon_sim_reduced = [] best_matches = [] for i, idx in enumerate(closest_idx): # record best value for each image using first metric img_recon_sim_reduced.append(img_recon_sim[i, idx[0], ...]) best_matches.append([imgs[i], recons[idx[0]]]) else: img_recon_sim_reduced = img_recon_sim best_matches = [] return ( np.array(img_recon_sim_reduced), img_recon_sim, best_matches, closest_idx, )
NVFlare-main
research/quantifying-data-leakage/src/nvflare_gradinv/filters/rdlv_filter.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import glob import json import os import matplotlib.pyplot as plt import numpy as np import seaborn as sns def main(): parser = argparse.ArgumentParser() parser.add_argument( "--workspaces", type=str, default="./workspaces", help="Workdir containing rdvl_*.npy files.", ) args = parser.parse_args() rdvl_files = glob.glob(os.path.join(args.workspaces, "**", "rdvl_*.npy"), recursive=True) assert len(rdvl_files) > 0, f"No RDVL files found in {args.workspace}" results = {"RDVL": [], "Site": [], "Round": [], "sigma0": [], "test_accuracy": []} for rdvl_file in rdvl_files: _result = np.load(rdvl_file, allow_pickle=True).item() img_recon_sim_reduced = _result["img_recon_sim_reduced"] # read sigma0 from client config client_config_file = os.path.join(os.path.dirname(rdvl_file), "config", "config_fed_client.json") with open(client_config_file, "r") as f: client_config = json.load(f) gaussian_filter = client_config["task_result_filters"][0]["filters"][0] assert ( "GaussianPrivacy" in gaussian_filter["path"] ), f"Expected filter to GaussianPrivacy but got {gaussian_filter['path']}" sigma0 = gaussian_filter["args"]["sigma0"] # read best global model accuracy from cross-site validation cross_val_file = os.path.join( os.path.dirname(os.path.dirname(rdvl_file)), "cross_site_val", "cross_val_results.json" ) with open(cross_val_file, "r") as f: cross_val = json.load(f) best_model_perfrom = cross_val["site-1"]["SRV_best_FL_global_model.pt"] for rdvl in img_recon_sim_reduced: results["RDVL"].append(float(rdvl)) results["Site"].append(_result["site"]) results["Round"].append(_result["round"]) results["sigma0"].append(float(sigma0)) results["test_accuracy"].append(best_model_perfrom["test_accuracy"]) # plot RDVL sns.lineplot(x="sigma0", y="RDVL", hue="Site", data=results) plt.grid(True) plt.xlabel("Gaussian Privacy ($\sigma_0$)") plt.plot([np.min(results["sigma0"]), np.max(results["sigma0"])], [0, 0], "k", linewidth=1.0) # plot accuracy ax2 = plt.twinx() sns.lineplot(x="sigma0", y="test_accuracy", data=results, color="tab:gray", ax=ax2) ax2.lines[0].set_linestyle("--") plt.grid(False) plt.ylim([0.0, 1.0]) plt.ylabel("Testing Accuracy") plt.legend(["Testing Accuracy"], loc="lower left") plt.show() if __name__ == "__main__": main()
NVFlare-main
research/quantifying-data-leakage/src/nvflare_gradinv/utils/plot_rdlv_vs_gauss.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import shutil def load_config(config_file): with open(config_file, "r") as f: return json.load(f) def save_config(config_file, config): with open(config_file, "w") as f: json.dump(config, f, indent=4) def create_server_config(server_config_file, args): server_config = load_config(server_config_file) server_config["min_clients"] = args.n_clients server_config["num_rounds"] = args.num_rounds out_server_config_file = os.path.join(args.output, "server", "config", "config_fed_server.json") if not os.path.isdir(os.path.dirname(out_server_config_file)): os.makedirs(os.path.dirname(out_server_config_file)) save_config(out_server_config_file, server_config) print( f"Created {out_server_config_file} to use min_clients={server_config['min_clients']} and num_rounds={server_config['num_rounds']}" ) def create_client_config(client_config_file, args, client, bs): client_config = load_config(client_config_file) client_config["DATA_ROOT"] = args.data_root client_config["DATASET_JSON"] = args.dataset_json_prefix + f"{client}.json" client_config["BATCH_SIZE"] = bs client_config["SIGMA0"] = args.sigma0 if args.prior_file and "PRIOR_FILE" in client_config: client_config["PRIOR_FILE"] = args.prior_file out_client_config_file = os.path.join(args.output, f"site-{client}", "config", "config_fed_client.json") if not os.path.isdir(os.path.dirname(out_client_config_file)): os.makedirs(os.path.dirname(out_client_config_file)) save_config(out_client_config_file, client_config) print( f"Created {out_client_config_file} to use DATA_ROOT={client_config['DATA_ROOT']}, DATASET_JSON={client_config['DATASET_JSON']}, and SIGMA0={client_config['SIGMA0']}" ) if "PRIOR_FILE" in client_config: print(f"Used prior_file {client_config['PRIOR_FILE']}") def create_gradinv_config(inv_config_file, args, client): inv_config = load_config(inv_config_file) inv_config["img_prior"] = args.prior_file out_inv_config_file = os.path.join(args.output, f"site-{client}", "config", "config_inversion.json") if not os.path.isdir(os.path.dirname(out_inv_config_file)): os.makedirs(os.path.dirname(out_inv_config_file)) save_config(out_inv_config_file, inv_config) print(f"Created {out_inv_config_file} to use prior_file {inv_config['img_prior']}") def create_meta_config(clients, meta_config_file, args): meta_config = load_config(meta_config_file) deploy_map = {"server": ["server"]} for client in clients: deploy_map.update({f"site-{client}": [f"site-{client}"]}) meta_config["deploy_map"] = deploy_map out_meta_config_file = os.path.join(args.output, "meta.json") if not os.path.isdir(os.path.dirname(out_meta_config_file)): os.makedirs(os.path.dirname(out_meta_config_file)) save_config(out_meta_config_file, meta_config) print(f"Created {out_meta_config_file}") def main(): parser = argparse.ArgumentParser() parser.add_argument( "--app_folder", type=str, help="Folder containing app config files in JSON format.", ) parser.add_argument( "--output", type=str, help="Output folder containing the job config.", ) parser.add_argument( "--data_root", type=str, help="Data root.", ) parser.add_argument("--prior_file", type=str, help="Prior image filename") parser.add_argument( "--dataset_json_prefix", type=str, default="data_200val+rest_client", help="Prefix name for dataset JSON file.", ) parser.add_argument( "--n_clients", type=int, default=1, help="Number of clients to generate.", ) parser.add_argument( "--num_rounds", type=int, default=100, help="Number of federated learning rounds.", ) parser.add_argument( "--invert_clients", type=str, default="9", help="Comma-separated list of client numbers to invert. Defaults to `high-risk` client 9.", ) parser.add_argument( "--batch_sizes", type=str, default="1", help="Comma-separated list of batches for each client.", ) parser.add_argument( "--sigma0", type=float, default=0.0, help="Noise level for `GaussianPrivacy` filter.", ) args = parser.parse_args() if os.path.isdir(args.output): print(f"Deleting previous job_config at {args.output}") shutil.rmtree(args.output) invert_clients = [int(x) for x in args.invert_clients.split(",")] batch_sizes = [int(x) for x in args.batch_sizes.split(",")] # Check template app folder assert os.path.isdir(args.app_folder), f"app_folder does not exist at {args.app_folder}" # create server config server_config_file = os.path.join(args.app_folder, "server", "config", "config_fed_server.json") create_server_config(server_config_file, args) # if n_clients is 1, we use the "high-risk" client 9's dataset if args.n_clients == 1: clients = [9] else: clients = list(range(1, args.n_clients + 1)) # create meta.json meta_config_file = os.path.join(args.app_folder, "meta.json") create_meta_config(clients, meta_config_file, args) # create client configs for client, bs in zip(clients, batch_sizes): # if n_clients is 1, we use the "high-risk" client 9's dataset if args.n_clients == 1: client = 9 if client in invert_clients: print(f"Inverting site-{client} ...") client_config_file = os.path.join(args.app_folder, "client", "config", "config_fed_client_inv.json") inv_config_file = os.path.join(args.app_folder, "client", "config", "config_inversion.json") # create gradient inversion config create_gradinv_config(inv_config_file, args, client) else: client_config_file = os.path.join(args.app_folder, "client", "config", "config_fed_client_noinv.json") # create client config file create_client_config(client_config_file, args, client, bs) if __name__ == "__main__": main()
NVFlare-main
research/quantifying-data-leakage/src/nvflare_gradinv/utils/create_job_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import glob import os import matplotlib.pyplot as plt import numpy as np import seaborn as sns def main(): parser = argparse.ArgumentParser() parser.add_argument( "--workspace", type=str, default="./workspace", help="Workdir containing rdvl_*.npy files.", ) args = parser.parse_args() rdvl_files = glob.glob(os.path.join(args.workspace, "**", "rdvl_*.npy"), recursive=True) assert len(rdvl_files) > 0, f"No RDVL files found in {args.workspace}" results = { "RDVL": [], "Site": [], "Round": [], } for rdvl_file in rdvl_files: _result = np.load(rdvl_file, allow_pickle=True).item() img_recon_sim_reduced = _result["img_recon_sim_reduced"] for rdvl in img_recon_sim_reduced: results["RDVL"].append(float(rdvl)) results["Site"].append(_result["site"]) results["Round"].append(_result["round"]) # plot sns.lineplot(x="Round", y="RDVL", hue="Site", data=results) plt.plot([np.min(results["Round"]), np.max(results["Round"])], [0, 0], "k", linewidth=1.0) plt.grid() plt.show() if __name__ == "__main__": main()
NVFlare-main
research/quantifying-data-leakage/src/nvflare_gradinv/utils/plot_rdlv_per_round.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import monai import numpy as np import torch from monai.data import CacheDataset, load_decathlon_datalist from monai.networks.nets.torchvision_fc import TorchVisionFCModel from monai.transforms import ( CastToTyped, Compose, EnsureChannelFirstd, EnsureTyped, LoadImaged, NormalizeIntensityd, RepeatChanneld, Resized, ToNumpyd, ) from sklearn.metrics import roc_auc_score from torch.utils.tensorboard import SummaryWriter from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import ReservedHeaderKey, Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.app_constant import AppConstants, ModelName, ValidateType from nvflare.app_opt.pt.fedproxloss import PTFedProxLoss class CXRLearner(Learner): def __init__( self, data_root: str = "./dataset", dataset_json: str = "./dataset.json", aggregation_epochs: int = 1, lr: float = 1e-2, fedproxloss_mu: float = 0.0, analytic_sender_id: str = "analytic_sender", batch_size: int = 64, num_workers: int = 0, train_set: str = "training", valid_set: str = "validation", test_set: str = "testing", model_name: str = "resnet18", num_class: int = 2, cache_rate: float = 1.0, seed: int = 0, ): """Simple CXR Trainer Args: data_root: root directory for data dataset_json: JSON data list specifying the train, validation, and test sets. aggregation_epochs: the number of training epochs for a round. Defaults to 1. lr: local learning rate. Float number. Defaults to 1e-2. fedproxloss_mu: weight for FedProx loss. Float number. Defaults to 0.0 (no FedProx). analytic_sender_id: id of `AnalyticsSender` if configured as a client component. If configured, TensorBoard events will be fired. Defaults to "analytic_sender". batch_size: batch size for training and validation. num_workers: number of workers for data loaders. train_set: name of train data list. Defaults to "training". valid_set: name of train data list. Defaults to "validation". test_set: name of train data list. Defaults to "testing". model_name: name of torchvision model compatible with MONAI's TorchVisionFCModel class. Defaults to "resnet18". num_class: Number of prediction classes. Defaults to 2. cache_rate: Cache rate used in CacheDataset. seed: Seed used for deterministic training. Returns: a Shareable with the model updates, validation scores, or the best local model depending on the specified task. """ super().__init__() # trainer init happens at the very beginning, only the basic info regarding the trainer is set here # the actual run has not started at this point # some input checks if isinstance(data_root, str): if not os.path.isdir(data_root): raise ValueError(f"`data_root` directory does not exist at {data_root}") else: raise ValueError(f"Expected `data_root` of type `str` but received type {type(data_root)}") if isinstance(dataset_json, str): if not os.path.isfile(dataset_json): raise ValueError(f"`dataset_json` file does not exist at {dataset_json}") else: raise ValueError(f"Expected `dataset_json` of type `str` but received type {type(dataset_json)}") self.seed = seed self.data_root = data_root self.dataset_json = dataset_json self.aggregation_epochs = aggregation_epochs self.lr = lr self.fedproxloss_mu = fedproxloss_mu self.best_acc = 0.0 self.batch_size = batch_size self.num_workers = num_workers self.train_set = train_set self.valid_set = valid_set self.test_set = test_set self.model_name = model_name self.num_class = num_class self.cache_rate = cache_rate self.writer = None self.analytic_sender_id = analytic_sender_id # Epoch counter self.epoch_of_start_time = 0 self.epoch_global = 0 # following will be created in initialize() or later self.app_root = None self.client_id = None self.local_model_file = None self.best_local_model_file = None self.writer = None self.device = None self.model = None self.optimizer = None self.scheduler = None self.criterion = None self.criterion_prox = None self.transform_train = None self.transform_valid = None self.train_dataset = None self.valid_dataset = None self.test_dataset = None self.train_loader = None self.valid_loader = None self.test_loader = None self.global_weights = None self.current_round = None def initialize(self, parts: dict, fl_ctx: FLContext): # when the run starts, this is where the actual settings get initialized for trainer if self.seed is not None: self.logger.info(f"Use deterministic training with seed={self.seed}") monai.utils.misc.set_determinism(seed=self.seed, use_deterministic_algorithms=True) # Set the paths according to fl_ctx self.app_root = fl_ctx.get_prop(FLContextKey.APP_ROOT) fl_args = fl_ctx.get_prop(FLContextKey.ARGS) self.client_id = fl_ctx.get_identity_name() self.log_info( fl_ctx, f"Client {self.client_id} initialized at \n {self.app_root} \n with args: {fl_args}", ) self.local_model_file = os.path.join(self.app_root, "local_model.pt") self.best_local_model_file = os.path.join(self.app_root, "best_local_model.pt") # Select local TensorBoard writer or event-based writer for streaming self.writer = parts.get(self.analytic_sender_id) # user configured config_fed_client.json for streaming if not self.writer: # use local TensorBoard writer only self.writer = SummaryWriter(self.app_root) # set the training-related parameters # can be replaced by a config-style block self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = TorchVisionFCModel( model_name=self.model_name, num_classes=self.num_class, bias=True, pretrained=False, # server uses pretrained weights and initializes clients ) self.model = self.model.to(self.device) self.criterion = torch.nn.CrossEntropyLoss() if self.fedproxloss_mu > 0: self.log_info(fl_ctx, f"using FedProx loss with mu {self.fedproxloss_mu}") self.criterion_prox = PTFedProxLoss(mu=self.fedproxloss_mu) """ Data """ # Set datalists train_list = load_decathlon_datalist( data_list_file_path=self.dataset_json, is_segmentation=False, data_list_key=self.train_set, base_dir=self.data_root, ) val_list = load_decathlon_datalist( data_list_file_path=self.dataset_json, is_segmentation=False, data_list_key=self.valid_set, base_dir=self.data_root, ) # test set is optional try: test_list = load_decathlon_datalist( data_list_file_path=self.dataset_json, is_segmentation=False, data_list_key=self.test_set, base_dir=self.data_root, ) except Exception as e: test_list = [] self.log_warning(fl_ctx, f"Could not create test_list: {e}") self.log_info( fl_ctx, f"{self.client_id}: Training Size ({self.train_set}): {len(train_list)}, " f"Validation Size ({self.valid_set}): {len(val_list)}, " f"Testing Size ({self.test_set}): {len(test_list)}", ) if self.batch_size > len(train_list): self.batch_size = len(train_list) self.transform_train = Compose( [ LoadImaged(keys=["image"]), EnsureChannelFirstd(keys=["image"]), NormalizeIntensityd(keys=["image"], subtrahend=0, divisor=255, dtype="float32"), RepeatChanneld(keys=["image"], repeats=3), NormalizeIntensityd( keys=["image"], subtrahend=[0.485, 0.456, 0.406], divisor=[0.229, 0.224, 0.225], dtype="float32", channel_wise=True, ), Resized(keys=["image"], spatial_size=[224, 224]), ToNumpyd(keys=["label"]), CastToTyped(keys=["label"], dtype="long"), EnsureTyped(keys=["image", "label"]), ] ) self.transform_valid = self.transform_train self.train_dataset = CacheDataset( data=train_list, transform=self.transform_train, cache_rate=self.cache_rate, num_workers=self.num_workers, ) self.valid_dataset = CacheDataset( data=val_list, transform=self.transform_valid, cache_rate=self.cache_rate, num_workers=self.num_workers, ) self.train_loader = torch.utils.data.DataLoader( self.train_dataset, batch_size=self.batch_size, shuffle=True, ) self.valid_loader = torch.utils.data.DataLoader( self.valid_dataset, batch_size=self.batch_size, shuffle=False, ) if test_list: # optional self.test_dataset = CacheDataset( data=test_list, transform=self.transform_valid, cache_rate=self.cache_rate, num_workers=self.num_workers, ) self.test_loader = torch.utils.data.DataLoader( self.test_dataset, batch_size=self.batch_size, shuffle=False, ) self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.0) self.log_info(fl_ctx, "No-private training") self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=40, gamma=0.1) def finalize(self, fl_ctx: FLContext): # collect threads, close files here pass def local_train( self, fl_ctx, train_loader, model_global, abort_signal: Signal, val_freq: int = 0, ): for epoch in range(self.aggregation_epochs): if abort_signal.triggered: return self.model.train() epoch_len = len(train_loader) self.epoch_global = self.epoch_of_start_time + epoch avg_loss = 0.0 for i, batch_data in enumerate(train_loader): if abort_signal.triggered: return inputs = batch_data["image"].to(self.device) labels = batch_data["label"].to(self.device) # zero the parameter gradients self.optimizer.zero_grad() # forward + backward + optimize outputs = self.model(inputs) loss = self.criterion(outputs, torch.squeeze(labels, axis=1)) # FedProx loss term if self.fedproxloss_mu > 0: fed_prox_loss = self.criterion_prox(self.model, model_global) loss += fed_prox_loss loss.backward() self.optimizer.step() current_step = epoch_len * self.epoch_global + i avg_loss += loss.item() avg_loss = avg_loss / len(train_loader) self.writer.add_scalar("train_loss", avg_loss, current_step) self.log_info( fl_ctx, f"Local epoch {self.client_id}: {epoch + 1}/{self.aggregation_epochs} " f"(lr={self.get_lr()[0]}) avg_loss: {avg_loss:.4f}", ) if val_freq > 0 and epoch % val_freq == 0: acc, _ = self.local_valid( self.valid_loader, abort_signal, tb_id="val_local_model", fl_ctx=fl_ctx, ) if acc > self.best_acc: self.best_acc = acc self.save_model(is_best=True) # update lr scheduler at end of epoch self.scheduler.step() def save_model(self, is_best=False): # save model model_weights = self.model.state_dict() save_model_weights = {} for k in model_weights.keys(): save_model_weights[k.replace("_module.", "")] = model_weights[k] # remove the prefix added by opacus save_dict = { "model_weights": save_model_weights, "epoch": self.epoch_global, } if is_best: save_dict.update({"best_acc": self.best_acc}) torch.save(save_dict, self.best_local_model_file) else: torch.save(save_dict, self.local_model_file) def train(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: # Check abort signal if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get round information self.current_round = shareable.get_header(AppConstants.CURRENT_ROUND) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) self.log_info( fl_ctx, f"Current/Total Round: {self.current_round + 1}/{total_rounds}", ) self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() n_loaded = 0 for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) n_loaded += 1 except Exception as e: raise ValueError(f"Convert weight from {var_name} failed") from e if n_loaded == 0: raise ValueError(f"No weights loaded for training! Received weight dict is {global_weights}") self.log_info( fl_ctx, f"Loaded global weights from {n_loaded} of {len(local_var_dict)} local layers.", ) self.model.load_state_dict(local_var_dict) self.global_weights = local_var_dict # update global weights so they can be accessed by inversion filter # local steps epoch_len = len(self.train_loader) self.log_info(fl_ctx, f"Local steps per epoch: {epoch_len}") # make a copy of model_global as reference for potential FedProx loss or SCAFFOLD model_global = copy.deepcopy(self.model) for param in model_global.parameters(): param.requires_grad = False # local train self.local_train( fl_ctx=fl_ctx, train_loader=self.train_loader, model_global=model_global, abort_signal=abort_signal, val_freq=1, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.epoch_of_start_time += self.aggregation_epochs # perform valid after local train acc, auc = self.local_valid( self.valid_loader, abort_signal, tb_id="val_local_model", fl_ctx=fl_ctx, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_local_model: accuracy: {acc:.4f}, auc: {auc:.4f}") # save model self.save_model(is_best=False) if acc > self.best_acc: self.best_acc = acc self.save_model(is_best=True) # compute delta model, global model has the primary key set local_weights = self.model.state_dict() model_diff = {} diff_norm = 0.0 n_global, n_local = 0, 0 for var_name in local_weights: n_local += 1 if var_name not in global_weights: continue model_diff[var_name] = np.subtract( local_weights[var_name].cpu().numpy(), global_weights[var_name], dtype=np.float32 ) if np.any(np.isnan(model_diff[var_name])): self.system_panic(f"{var_name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) n_global += 1 diff_norm += np.linalg.norm(model_diff[var_name]) if n_global != n_local: raise ValueError( f"Could not compute delta for all layers! Only {n_local} local of {n_global} global layers computed..." ) self.log_info( fl_ctx, f"diff norm for {n_local} local of {n_global} global layers: {diff_norm}", ) # build the shareable dxo = DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff) dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, epoch_len) dxo.set_meta_prop( AppConstants.CURRENT_ROUND, self.current_round ) # TODO: check this is already available on server self.log_info(fl_ctx, "Local epochs finished. Returning shareable.") return dxo.to_shareable() def get_model_for_validation(self, model_name: str, fl_ctx: FLContext) -> Shareable: # Retrieve the best local model saved during training. if model_name == ModelName.BEST_MODEL: model_data = None try: # load model to cpu as server might or might not have a GPU model_data = torch.load(self.best_local_model_file, map_location="cpu") except Exception as e: raise ValueError("Unable to load best model") from e # Create DXO and shareable from model data. if model_data: # convert weights to numpy to support FOBS model_weights = model_data["model_weights"] for k, v in model_weights.items(): model_weights[k] = v.numpy() dxo = DXO(data_kind=DataKind.WEIGHTS, data=model_weights) return dxo.to_shareable() else: # Set return code. self.log_error( fl_ctx, f"best local model not found at {self.best_local_model_file}.", ) return make_reply(ReturnCode.EXECUTION_RESULT_ERROR) else: raise ValueError(f"Unknown model_type: {model_name}") # Raised errors are caught in LearnerExecutor class. def local_valid(self, valid_loader, abort_signal: Signal, tb_id=None, fl_ctx=None): self.model.eval() with torch.no_grad(): correct, total = 0, 0 _all_pred_labels = [] _all_labels = [] for _i, batch_data in enumerate(valid_loader): if abort_signal.triggered: return None inputs = batch_data["image"].to(self.device) labels = batch_data["label"].to(self.device) outputs = self.model(inputs) _, pred_label = torch.max(outputs.data, 1) total += inputs.data.size()[0] correct += (pred_label == torch.squeeze(labels.data, axis=1)).sum().item() _all_pred_labels.extend(pred_label.cpu().numpy()) _all_labels.extend(labels.data.cpu().numpy()) acc_metric = correct / float(total) if len(np.unique(_all_labels)) == 2: auc_metric = roc_auc_score(_all_labels, _all_pred_labels) else: auc_metric = None if tb_id: self.writer.add_scalar(tb_id + "_acc", acc_metric, self.epoch_global) self.writer.add_scalar(tb_id + "_auc", auc_metric, self.epoch_global) return acc_metric, auc_metric def validate(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: # Check abort signal if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get validation information validate_type = shareable.get_header(AppConstants.VALIDATE_TYPE) self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") model_owner = shareable.get(ReservedHeaderKey.HEADERS).get(AppConstants.MODEL_OWNER) if model_owner: self.log_info( fl_ctx, f"Evaluating model from {model_owner} on {fl_ctx.get_identity_name()}", ) else: model_owner = "global_model" # evaluating global model during training # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() n_loaded = 0 for var_name in local_var_dict: if var_name in model_keys: weights = torch.as_tensor(global_weights[var_name], device=self.device) try: # update the local dict local_var_dict[var_name] = torch.as_tensor(torch.reshape(weights, local_var_dict[var_name].shape)) n_loaded += 1 except Exception as e: raise ValueError(f"Convert weight from {var_name} failed for {validate_type}") from e self.model.load_state_dict(local_var_dict) if n_loaded == 0: raise ValueError( f"No weights loaded for validation for {validate_type}! Received weight dict is {global_weights}" ) if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE: # perform valid before local train global_acc, global_auc = self.local_valid( self.valid_loader, abort_signal, tb_id="val_global_model", fl_ctx=fl_ctx, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info( fl_ctx, f"global_model ({model_owner}): accuracy: {global_acc:.4f}, auc: {global_auc:.4f}", ) return DXO( data_kind=DataKind.METRICS, data={MetaKey.INITIAL_METRICS: global_acc}, meta={}, ).to_shareable() elif validate_type == ValidateType.MODEL_VALIDATE: if self.test_loader is None: self.log_warning(fl_ctx, "No test data available. Skipping validation.") val_results = {} else: # perform valid train_acc, train_auc = self.local_valid(self.train_loader, abort_signal) self.log_info( fl_ctx, f"training acc ({model_owner}): {train_acc:.4f}, auc: {train_auc:.4f}", ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) val_acc, val_auc = self.local_valid(self.valid_loader, abort_signal) self.log_info( fl_ctx, f"validation acc ({model_owner}): {val_acc:.4f}, auc: {val_auc:.4f}", ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) test_acc, test_auc = self.local_valid(self.test_loader, abort_signal) self.log_info( fl_ctx, f"testing acc ({model_owner}): {test_acc:.4f}, auc: {test_auc:.4f}", ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, "Evaluation finished. Returning shareable.") val_results = { "train_accuracy": train_acc, "val_accuracy": val_acc, "test_accuracy": test_acc, "train_auc": train_auc, "val_auc": val_auc, "test_auc": test_auc, } metric_dxo = DXO(data_kind=DataKind.METRICS, data=val_results) return metric_dxo.to_shareable() else: return make_reply(ReturnCode.VALIDATE_TYPE_UNKNOWN) def get_lr(self): """ This function is used to get the learning rates of the optimizer. """ return [group["lr"] for group in self.optimizer.state_dict()["param_groups"]]
NVFlare-main
research/quantifying-data-leakage/src/nvflare_gradinv/learners/cxr_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import numpy as np import torch from nvflare.apis.dxo import DXO, DataKind from nvflare.apis.event_type import EventType from nvflare.apis.fl_context import FLContext from nvflare.app_common.aggregators.assembler import Assembler from nvflare.app_common.app_constant import AppConstants class FedCEAssembler(Assembler): def __init__(self, fedce_mode, model): super().__init__(data_kind=DataKind.WEIGHT_DIFF) # mode, plus or times self.fedce_mode = fedce_mode self.model = model self.fedce_cos_param_list = [] # Aggregator needs to keep record of historical # cosine similarity for FedCM coefficients self.fedce_cos_sim = {} self.fedce_coef = {} def _initialize(self, fl_ctx: FLContext): # convert str model description to model if isinstance(self.model, str): # treat it as model component ID model_component_id = self.model engine = fl_ctx.get_engine() self.model = engine.get_component(model_component_id) if not self.model: self.system_panic( reason=f"cannot find model component '{model_component_id}'", fl_ctx=fl_ctx, ) return if not isinstance(self.model, torch.nn.Module): self.system_panic( reason=f"expect model component '{model_component_id}' to be torch.nn.Module but got {type(self.model_selector)}", fl_ctx=fl_ctx, ) return elif self.model and not isinstance(self.model, torch.nn.Module): self.system_panic( reason=f"expect model to be torch.nn.Module but got {type(self.model)}", fl_ctx=fl_ctx, ) return # only include params requires_grad for cosine similarity computation for name, param in self.model.named_parameters(): if param.requires_grad: self.fedce_cos_param_list.append(name) self.log_info(fl_ctx, "FedCE model assembler initialized") def get_model_params(self, dxo: DXO): data = dxo.data meta = dxo.meta return {"model": data, "fedce_minus_val": meta["fedce_minus_val"]} def handle_event(self, event: str, fl_ctx: FLContext): if event == EventType.START_RUN: self._initialize(fl_ctx) def assemble(self, data: Dict[str, dict], fl_ctx: FLContext) -> DXO: current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) site_list = data.keys() fedce_minus_vals = [] self.fedce_cos_sim[current_round] = {} for site in site_list: if current_round == 0: # round 0, initialize uniform fedce_coef self.fedce_coef[site] = 1 / len(site_list) # get minus_val from submissions fedce_minus_vals.append(data[site]["fedce_minus_val"]) # generate consensus gradient with current FedCE coefficients consensus_grad = [] global_weights = self.model.state_dict() for idx, name in enumerate(global_weights): if name in self.fedce_cos_param_list: temp = torch.zeros_like(global_weights[name]) for site in site_list: temp += self.fedce_coef[site] * torch.as_tensor(data[site]["model"][name]) consensus_grad.append(temp.data.view(-1)) # flatten for cosine similarity computation consensus_grads_vec = torch.cat(consensus_grad).to("cpu") # generate minus gradients and compute cosine similarity for site in site_list: site_grad = [] for name in self.fedce_cos_param_list: site_grad.append(torch.as_tensor(data[site]["model"][name]).data.view(-1)) site_grads_vec = torch.cat(site_grad).to("cpu") # minus gradient minus_grads_vec = consensus_grads_vec - self.fedce_coef[site] * site_grads_vec # compute cosine similarity fedce_cos_sim_site = ( torch.cosine_similarity(site_grads_vec, minus_grads_vec, dim=0).detach().cpu().numpy().item() ) # append to record dict self.fedce_cos_sim[current_round][site] = fedce_cos_sim_site # compute cos_weights and minus_vals based on the record for each site fedce_cos_weights = [] for site in site_list: # cosine similarity cos_accu_avg = np.mean([self.fedce_cos_sim[i][site] for i in range(current_round + 1)]) fedce_cos_weights.append(1.0 - cos_accu_avg) # normalize fedce_cos_weights /= np.sum(fedce_cos_weights) fedce_cos_weights = np.clip(fedce_cos_weights, a_min=1e-3, a_max=None) fedce_minus_vals /= np.sum(fedce_minus_vals) fedce_minus_vals = np.clip(fedce_minus_vals, a_min=1e-3, a_max=None) # two aggregation strategies if self.fedce_mode == "times": new_fedce_coef = [c_w * mv_w for c_w, mv_w in zip(fedce_cos_weights, fedce_minus_vals)] elif self.fedce_mode == "plus": new_fedce_coef = [c_w + mv_w for c_w, mv_w in zip(fedce_cos_weights, fedce_minus_vals)] else: raise NotImplementedError # normalize again new_fedce_coef /= np.sum(new_fedce_coef) new_fedce_coef = np.clip(new_fedce_coef, a_min=1e-3, a_max=None) # update fedce_coef fedce_coef = {} idx = 0 for site in site_list: fedce_coef[site] = new_fedce_coef[idx] idx += 1 # compute global model update with the new fedce weights global_updates = {} for idx, name in enumerate(global_weights): temp = torch.zeros_like(global_weights[name], dtype=torch.float32) for site in site_list: weight = fedce_coef[site] temp += weight * data[site]["model"][name] global_updates[name] = temp.detach().cpu().numpy() meta = {"fedce_coef": fedce_coef} dxo = DXO(data_kind=self.expected_data_kind, data=global_updates, meta=meta) return dxo
NVFlare-main
research/fed-ce/jobs/fedce_prostate/app/custom/aggregators/fedce_assembler.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os def custom_client_datalist_json_path(datalist_json_path: str, client_id: str) -> str: """ Customize datalist_json_path for each client Args: datalist_json_path: root path containing all jsons client_id: e.g., site-2 """ # Customize datalist_json_path for each client datalist_json_path_client = os.path.join( datalist_json_path, client_id + ".json", ) return datalist_json_path_client
NVFlare-main
research/fed-ce/jobs/fedce_prostate/app/custom/utils/custom_client_datalist_json_path.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import numpy as np import torch from learners.supervised_monai_prostate_learner import SupervisedMonaiProstateLearner from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AppConstants, ValidateType class SupervisedMonaiProstateFedCELearner(SupervisedMonaiProstateLearner): def __init__( self, train_config_filename, aggregation_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """Trainer for prostate segmentation task. It inherits from MONAI trainer. Args: train_config_filename: directory of config_3 file. fedsm_select_epochs: the number of training epochs of selector model. Defaults to 1. aggregation_epochs: the number of training epochs of both global and personalized models for a round. Defaults to 1. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ SupervisedMonaiProstateLearner.__init__( self, train_config_filename=train_config_filename, aggregation_epochs=aggregation_epochs, train_task_name=train_task_name, ) self.fedce_cos_sim = {} self.fedce_minus_val = {} self.model_last_round = None def train_config(self, fl_ctx: FLContext): # initialize superclass SupervisedMonaiProstateLearner.train_config(self, fl_ctx) # initialize last round model record self.model_last_round = copy.deepcopy(self.model) def get_minus_model(self, global_model, last_round_model, fedce_weight): minus_model = copy.deepcopy(global_model) for key in minus_model.state_dict().keys(): temp = (global_model.state_dict()[key] - fedce_weight * last_round_model.state_dict()[key]) / ( 1 - fedce_weight ) minus_model.state_dict()[key].data.copy_(temp) return minus_model def reshape_global_weights(self, local_var_dict: dict, global_weights: dict): model_keys = global_weights.keys() n_loaded = 0 # tensors might need to be reshaped to support HE for secure aggregation. for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) n_loaded += 1 except Exception as e: raise ValueError(f"Convert weight from {var_name} failed with error: {str(e)}") if n_loaded == 0: raise ValueError(f"No global weights loaded! Received weight dict is {global_weights}") return local_var_dict def compute_model_diff(self, initial_model: dict, end_model: dict, fl_ctx: FLContext): model_diff = {} for name in initial_model: if name not in end_model: continue model_diff[name] = np.subtract(end_model[name].cpu().numpy(), initial_model[name]) if np.any(np.isnan(model_diff[name])): self.system_panic(f"{name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) return model_diff def train( self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: """Training task pipeline for FedSM Get global/client/selector model weights (potentially with HE) Local training all three models Return updated weights of all three models (model_diff) together with the optimizer parameters of selector (model) """ # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) client_id = fl_ctx.get_identity_name() self.log_info(fl_ctx, f"Current/Total Round: {current_round + 1}/{total_rounds}") self.log_info(fl_ctx, f"Client identity: {client_id}") # get global model and FedCE coefficients from received dxo dxo = from_shareable(shareable) # global model weights global_weights = dxo.data local_var_dict = self.model.state_dict() local_var_dict = self.reshape_global_weights(local_var_dict, global_weights) # load global model weights to local model self.model.load_state_dict(local_var_dict) # as part of FedCE training, minus model validation is needed # before local training from global model # from second round if current_round > 0: # get FedCE coefficient fedce_coef = dxo.meta["fedce_coef"][client_id] # get fedce_minus model fedce_minus_model = self.get_minus_model( self.model, self.model_last_round, fedce_coef, ) # validate minus model minus_metric = self.local_valid( fedce_minus_model, self.valid_loader, abort_signal, tb_id="val_metric_minus_model", current_round=current_round, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_metric_minus_model: {minus_metric:.4f}") # add to the record dict self.fedce_minus_val[current_round] = minus_metric else: fedce_coef = 0.0 self.fedce_minus_val[0] = 0.0 self.writer.add_scalar("FedCE_Coef", fedce_coef, current_round) # local training from global weights epoch_len = len(self.train_loader) self.log_info(fl_ctx, f"Local steps per epoch: {epoch_len}") self.local_train( fl_ctx=fl_ctx, train_loader=self.train_loader, abort_signal=abort_signal, current_round=current_round, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # compute delta models, initial models has the primary key set local_weights = self.model.state_dict() model_diff_global = self.compute_model_diff(global_weights, local_weights, fl_ctx) # update model_last_round self.model_last_round.load_state_dict(local_weights) # build the shareable dxo = DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff_global) # use the historical mean of minus_val for FedCE minus_val = 1.0 - np.mean([self.fedce_minus_val[i] for i in range(current_round + 1)]) dxo.set_meta_prop("fedce_minus_val", minus_val) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") return dxo.to_shareable() def validate(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: """Validation task pipeline for FedSM Validate all three models: global/personal/selector Return validation score for server-end best model selection and record """ # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) # validation on models from server # renamed to "models_from_server" to avoid confusion with "global_model" model_owner = "models_from_server" # update local model weights with received dxo dxo = from_shareable(shareable) # load global model weights global_weights = dxo.data local_var_dict = self.model.state_dict() local_var_dict = self.reshape_global_weights(local_var_dict, global_weights) self.model.load_state_dict(local_var_dict) # before_train_validate only, can extend to other validate types validate_type = shareable.get_header(AppConstants.VALIDATE_TYPE) if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE: # perform valid before local train global_metric = self.local_valid( self.model, self.valid_loader, abort_signal, tb_id="val_metric_global_model", current_round=current_round, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_metric_global_model ({model_owner}): {global_metric:.4f}") # validation metrics will be averaged with weights at server end for best model record metric_dxo = DXO( data_kind=DataKind.METRICS, data={MetaKey.INITIAL_METRICS: global_metric}, ) metric_dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, len(self.valid_loader)) return metric_dxo.to_shareable() else: return make_reply(ReturnCode.VALIDATE_TYPE_UNKNOWN)
NVFlare-main
research/fed-ce/jobs/fedce_prostate/app/custom/learners/supervised_monai_prostate_fedce_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import abstractmethod import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.app_constant import AppConstants, ValidateType class SupervisedLearner(Learner): def __init__( self, aggregation_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """Simple Supervised Trainer. This provides the basic functionality of a local learner: perform before-train validation on global model at the beginning of each round, perform local training, and send the updated weights. No model will be saved locally, tensorboard record for local loss and global model validation score. Enabled FedAvg Args: train_config_filename: directory of config_3 file. aggregation_epochs: the number of training epochs for a round. Defaults to 1. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ super().__init__() # trainer init happens at the very beginning, only the basic info regarding the trainer is set here # the actual run has not started at this point self.aggregation_epochs = aggregation_epochs self.train_task_name = train_task_name self.best_metric = 0.0 self.client_id = None self.writer = None def initialize(self, parts: dict, fl_ctx: FLContext): # when a run starts, this is where the actual settings get initialized for trainer # set the paths according to fl_ctx engine = fl_ctx.get_engine() ws = engine.get_workspace() app_dir = ws.get_app_dir(fl_ctx.get_job_id()) # get and print the args fl_args = fl_ctx.get_prop(FLContextKey.ARGS) self.client_id = fl_ctx.get_identity_name() self.log_info( fl_ctx, f"Client {self.client_id} initialized with args: \n {fl_args}", ) # set local tensorboard writer for local validation score of global model self.writer = SummaryWriter(app_dir) # set the training-related contexts, this is task-specific self.train_config(fl_ctx) @abstractmethod def train_config(self, fl_ctx: FLContext): """Traning configurations customized to individual tasks This can be specified / loaded in any ways as long as they are made available for further training and validation some potential items include but not limited to: self.lr self.model self.device self.optimizer self.criterion self.transform_train self.transform_valid self.transform_post self.train_loader self.valid_loader self.inferer self.valid_metric """ raise NotImplementedError @abstractmethod def finalize(self, fl_ctx: FLContext): # collect threads, close files here pass def local_train( self, fl_ctx, train_loader, abort_signal: Signal, current_round, ): """Typical training logic Total local epochs: self.aggregation_epochs Load data pairs from train_loader: image / label Compute outputs with self.model Compute loss with self.criterion Update model """ for epoch in range(self.aggregation_epochs): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.model.train() epoch_len = len(train_loader) epoch_global = current_round * self.aggregation_epochs + epoch self.log_info( fl_ctx, f"Local epoch {self.client_id}: {epoch + 1}/{self.aggregation_epochs} (lr={self.lr})", ) for i, batch_data in enumerate(train_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) inputs = batch_data["image"].to(self.device) labels = batch_data["label"].to(self.device) # forward + backward + optimize outputs = self.model(inputs) loss = self.criterion(outputs, labels) self.optimizer.zero_grad() loss.backward() self.optimizer.step() current_step = epoch_len * epoch_global + i self.writer.add_scalar("train_loss", loss.item(), current_step) def local_valid( self, model, valid_loader, abort_signal: Signal, tb_id=None, current_round=None, ): """Typical validation logic Load data pairs from train_loader: image / label Compute outputs with self.model Perform post transform (binarization, etc.) Compute evaluation metric with self.valid_metric Add score to tensorboard record with specified id """ model.eval() with torch.no_grad(): metric = 0 for i, batch_data in enumerate(valid_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) val_images = batch_data["image"].to(self.device) val_labels = batch_data["label"].to(self.device) # Inference val_outputs = self.inferer(val_images, model) val_outputs = self.transform_post(val_outputs) # Compute metric metric_score = self.valid_metric(y_pred=val_outputs, y=val_labels) metric += metric_score.item() # compute mean dice over whole validation set metric /= len(valid_loader) # tensorboard record id, add to record if provided if tb_id: self.writer.add_scalar(tb_id, metric, current_round) return metric def train( self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: """Typical training task pipeline with potential HE functionality Get global model weights (potentially with HE) Local training Return updated weights (model_diff) """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) self.log_info(fl_ctx, f"Current/Total Round: {current_round + 1}/{total_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) except Exception as e: raise ValueError(f"Convert weight from {var_name} failed with error: {str(e)}") self.model.load_state_dict(local_var_dict) # local steps epoch_len = len(self.train_loader) self.log_info(fl_ctx, f"Local steps per epoch: {epoch_len}") # local train self.local_train( fl_ctx=fl_ctx, train_loader=self.train_loader, abort_signal=abort_signal, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # compute delta model, global model has the primary key set local_weights = self.model.state_dict() model_diff = {} for name in global_weights: if name not in local_weights: continue model_diff[name] = np.subtract(local_weights[name].cpu().numpy(), global_weights[name], dtype=np.float32) if np.any(np.isnan(model_diff[name])): self.system_panic(f"{name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) # build the shareable dxo = DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff) dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, epoch_len) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") return dxo.to_shareable() def validate(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: """Typical validation task pipeline with potential HE functionality Get global model weights (potentially with HE) Validation on local data Return validation score """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) # validation on global model model_owner = "global_model" # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() n_loaded = 0 for var_name in local_var_dict: if var_name in model_keys: weights = torch.as_tensor(global_weights[var_name], device=self.device) try: # update the local dict local_var_dict[var_name] = torch.as_tensor(torch.reshape(weights, local_var_dict[var_name].shape)) n_loaded += 1 except Exception as e: raise ValueError(f"Convert weight from {var_name} failed with error: {str(e)}") self.model.load_state_dict(local_var_dict) if n_loaded == 0: raise ValueError(f"No weights loaded for validation! Received weight dict is {global_weights}") # before_train_validate only, can extend to other validate types validate_type = shareable.get_header(AppConstants.VALIDATE_TYPE) if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE: # perform valid before local train global_metric = self.local_valid( self.model, self.valid_loader, abort_signal, tb_id="val_metric_global_model", current_round=current_round, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_metric_global_model ({model_owner}): {global_metric:.4f}") # validation metrics will be averaged with weights at server end for best model record metric_dxo = DXO( data_kind=DataKind.METRICS, data={MetaKey.INITIAL_METRICS: global_metric}, meta={}, ) metric_dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, len(self.valid_loader)) return metric_dxo.to_shareable() else: return make_reply(ReturnCode.VALIDATE_TYPE_UNKNOWN)
NVFlare-main
research/fed-ce/jobs/fedce_prostate/app/custom/learners/supervised_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import torch import torch.optim as optim from learners.supervised_learner import SupervisedLearner from monai.data import CacheDataset, DataLoader, Dataset, load_decathlon_datalist from monai.inferers import SimpleInferer from monai.losses import DiceLoss from monai.metrics import DiceMetric from monai.transforms import ( Activations, AsDiscrete, AsDiscreted, Compose, EnsureChannelFirstd, EnsureType, EnsureTyped, LoadImaged, Resized, ScaleIntensityRanged, ) from networks.unet import UNet from utils.custom_client_datalist_json_path import custom_client_datalist_json_path from nvflare.apis.fl_context import FLContext from nvflare.app_common.app_constant import AppConstants class SupervisedMonaiProstateLearner(SupervisedLearner): def __init__( self, train_config_filename, aggregation_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """MONAI Learner for prostate segmentation task. It inherits from SupervisedLearner. Args: train_config_filename: path for config_3 file, this is an addition term for config_3 loading aggregation_epochs: the number of training epochs for a round. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ super().__init__( aggregation_epochs=aggregation_epochs, train_task_name=train_task_name, ) self.train_config_filename = train_config_filename self.config_info = None self.lr = None self.model = None self.device = None self.optimizer = None self.criterion = None self.transform = None self.transform_post = None self.train_loader = None self.valid_loader = None self.inferer = None self.valid_metric = None def train_config(self, fl_ctx: FLContext): """MONAI traning configuration Here, we use a json to specify the needed parameters """ # Load training configurations json engine = fl_ctx.get_engine() ws = engine.get_workspace() app_config_dir = ws.get_app_config_dir(fl_ctx.get_job_id()) train_config_file_path = os.path.join(app_config_dir, self.train_config_filename) if not os.path.isfile(train_config_file_path): self.log_error( fl_ctx, f"Training configuration file does not exist at {train_config_file_path}", ) with open(train_config_file_path) as file: self.config_info = json.load(file) # Get the config_info self.lr = self.config_info["learning_rate"] batch_size = self.config_info["batch_size"] cache_rate = self.config_info["cache_dataset"] dataset_base_dir = self.config_info["dataset_base_dir"] datalist_json_path = self.config_info["datalist_json_path"] # Get datalist json datalist_json_path = custom_client_datalist_json_path(datalist_json_path, self.client_id) # Set datalist train_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="training", base_dir=dataset_base_dir, ) valid_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="validation", base_dir=dataset_base_dir, ) self.log_info( fl_ctx, f"Training Size: {len(train_list)}, Validation Size: {len(valid_list)}", ) # Set the training-related context self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model = UNet( in_channels=1, out_channels=1, ).to(self.device) self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr) self.criterion = DiceLoss(sigmoid=True) self.transform = Compose( [ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), ScaleIntensityRanged(keys=["image", "label"], a_min=0, a_max=255, b_min=0.0, b_max=1.0), Resized( keys=["image", "label"], spatial_size=(256, 256), mode=("bilinear"), align_corners=True, ), AsDiscreted(keys=["label"], threshold=0.5), EnsureTyped(keys=["image", "label"]), ] ) self.transform_post = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) # Set dataset if cache_rate > 0.0: train_dataset = CacheDataset( data=train_list, transform=self.transform, cache_rate=cache_rate, num_workers=0, ) valid_dataset = CacheDataset( data=valid_list, transform=self.transform, cache_rate=cache_rate, num_workers=0, ) else: train_dataset = Dataset( data=train_list, transform=self.transform, ) valid_dataset = Dataset( data=valid_list, transform=self.transform, ) self.train_loader = DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=0, ) self.valid_loader = DataLoader( valid_dataset, batch_size=1, shuffle=False, num_workers=0, ) # Set inferer and evaluation metric self.inferer = SimpleInferer() self.valid_metric = DiceMetric(include_background=False, reduction="mean", get_not_nans=False)
NVFlare-main
research/fed-ce/jobs/fedce_prostate/app/custom/learners/supervised_monai_prostate_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict import torch import torch.nn as nn class UNet(nn.Module): def __init__(self, in_channels=3, out_channels=1, init_features=32): super(UNet, self).__init__() features = init_features self.encoder1 = UNet._block(in_channels, features, name="enc1") self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.encoder2 = UNet._block(features, features * 2, name="enc2") self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.encoder3 = UNet._block(features * 2, features * 4, name="enc3") self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.encoder4 = UNet._block(features * 4, features * 8, name="enc4") self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.bottleneck = UNet._block(features * 8, features * 16, name="bottleneck") self.upconv4 = nn.ConvTranspose2d(features * 16, features * 8, kernel_size=2, stride=2) self.decoder4 = UNet._block((features * 8) * 2, features * 8, name="dec4") self.upconv3 = nn.ConvTranspose2d(features * 8, features * 4, kernel_size=2, stride=2) self.decoder3 = UNet._block((features * 4) * 2, features * 4, name="dec3") self.upconv2 = nn.ConvTranspose2d(features * 4, features * 2, kernel_size=2, stride=2) self.decoder2 = UNet._block((features * 2) * 2, features * 2, name="dec2") self.upconv1 = nn.ConvTranspose2d(features * 2, features, kernel_size=2, stride=2) self.decoder1 = UNet._block(features * 2, features, name="dec1") self.conv = nn.Conv2d(in_channels=features, out_channels=out_channels, kernel_size=1) def forward(self, x): enc1 = self.encoder1(x) enc2 = self.encoder2(self.pool1(enc1)) enc3 = self.encoder3(self.pool2(enc2)) enc4 = self.encoder4(self.pool3(enc3)) bottleneck = self.bottleneck(self.pool4(enc4)) dec4 = self.upconv4(bottleneck) dec4 = torch.cat((dec4, enc4), dim=1) dec4 = self.decoder4(dec4) dec3 = self.upconv3(dec4) dec3 = torch.cat((dec3, enc3), dim=1) dec3 = self.decoder3(dec3) dec2 = self.upconv2(dec3) dec2 = torch.cat((dec2, enc2), dim=1) dec2 = self.decoder2(dec2) dec1 = self.upconv1(dec2) dec1 = torch.cat((dec1, enc1), dim=1) dec1 = self.decoder1(dec1) return self.conv(dec1) @staticmethod def _block(in_channels, features, name): return nn.Sequential( OrderedDict( [ ( name + "_conv1", nn.Conv2d( in_channels=in_channels, out_channels=features, kernel_size=3, padding=1, bias=False, ), ), (name + "_bn1", nn.BatchNorm2d(num_features=features)), (name + "_relu1", nn.ReLU(inplace=True)), ( name + "_conv2", nn.Conv2d( in_channels=features, out_channels=features, kernel_size=3, padding=1, bias=False, ), ), (name + "_bn2", nn.BatchNorm2d(num_features=features)), (name + "_relu2", nn.ReLU(inplace=True)), ] ) )
NVFlare-main
research/fed-ce/jobs/fedce_prostate/app/custom/networks/unet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil from argparse import ArgumentParser from pathlib import Path import nibabel as nib import numpy as np from tqdm.contrib import tzip TASK_FILE_ID = {"liver": "LVR", "spleen": "SPL", "pancreas": "PAN", "kidney": "KITS"} TASK_LABEL_MAP = { "liver": {0: 0, 1: 1, 2: 2}, "spleen": {0: 0, 1: 3}, "pancreas": {0: 0, 1: 4, 2: 5}, "kidney": {0: 0, 1: 6, 2: 7}, } DEFAULT_DATA_LIST = { "liver": "data/Liver/datalist.json", "spleen": "data/Spleen/datalist.json", "pancreas": "data/Pancreas/datalist.json", "kidney": "data/KiTS19/datalist.json", } def map_values(data: np.ndarray, task: str) -> np.ndarray: data = data.astype(np.uint8) m = TASK_LABEL_MAP[task] f = np.vectorize(lambda x: m[x]) return f(data).astype(np.uint8) def convert_msd_dataset(src: str, dst: str, task: str) -> None: if not Path(src).is_dir(): raise ValueError(f"source path {src} must be a directory.") images = [str(f) for f in Path(src).glob("imagesTr/*.gz")] assert len(images) > 0 labels = [img.replace("imagesTr", "labelsTr") for img in images] Path(dst).mkdir(parents=True, exist_ok=True) for src_img, src_seg in tzip(images, labels): # Generate image file name dst_img = "IM_" + TASK_FILE_ID[task] + "_" + src_img.split("_")[-1] dst_img = str(Path(dst) / dst_img) # Just copy image shutil.copy(src_img, dst_img) # Generate label file name dst_seg = "LB_" + TASK_FILE_ID[task] + "_" + src_seg.split("_")[-1] dst_seg = str(Path(dst) / dst_seg) # Remap labels seg = nib.load(src_seg) seg_data = np.asanyarray(seg.dataobj) seg_data = map_values(seg_data, task=task) seg = nib.Nifti1Image(seg_data, seg.affine) # Save new label nib.save(seg, dst_seg) # Copy datalist.json to dst if necessary dst_list_path = str(Path(dst) / "datalist.json") try: shutil.copy(DEFAULT_DATA_LIST[task], dst_list_path) except shutil.SameFileError: pass def convert_kits_dataset(src: str, dst: str, task: str) -> None: if not Path(src).is_dir(): raise ValueError(f"source path {src} must be a directory.") labels = [str(f) for f in Path(src).glob("*/segmentation.nii.gz")] assert len(labels) > 0 images = [f.replace("segmentation.nii", "imaging.nii") for f in labels] Path(dst).mkdir(parents=True, exist_ok=True) for src_img, src_seg in tzip(images, labels): case_id = Path(src_img).parent.name.replace("case_00", "") # Generate new file name and copy image to dst dst_img = str(Path(dst) / f"IM_KITS_{case_id}.nii.gz") shutil.copy(src_img, dst_img) # Generate label file name dst_seg = str(Path(dst) / f"LB_KITS_{case_id}.nii.gz") # Remap labels seg = nib.load(src_seg) seg_data = np.asanyarray(seg.dataobj) seg_data = map_values(seg_data, task=task) seg = nib.Nifti1Image(seg_data, seg.affine) # Save new label nib.save(seg, dst_seg) # Copy datalist.json to dst if necessary dst_list_path = str(Path(dst) / "datalist.json") try: shutil.copy(DEFAULT_DATA_LIST[task], dst_list_path) except shutil.SameFileError: pass def main(args) -> None: if args.task in ["liver", "pancreas", "spleen"]: convert_msd_dataset(args.src, args.dst, args.task) else: convert_kits_dataset(args.src, args.dst, args.task) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument( "--task", "-t", type=str, choices=["kidney", "liver", "pancreas", "spleen"], help="Choose which dataset to process.", ) parser.add_argument("--src", "-s", type=str, help="Path to the dataset root directory.") parser.add_argument("--dst", "-d", type=str, help="Path to the output dataset directory.") args = parser.parse_args() main(args)
NVFlare-main
research/condist-fl/prepare_data.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from argparse import ArgumentParser from pathlib import Path import torch from src.utils.get_model import get_model def run_convert(args): if not Path(args.config).exists(): raise ValueError(f"Config file {args.config} does not exists.") if not Path(args.weights).exists(): raise ValueError(f"Checkpoint file {args.weights} does not exists.") app = "app_" + args.app if app == "app_server": with open(args.config) as f: config = json.load(f) config = [c for c in config["components"] if c["id"] == "model"][0] config["name"] = config["path"].split(".")[-1] config["path"] = ".".join(config["path"].split(".")[:-1]) else: with open(args.config) as f: config = json.load(f) config = config["model"] ckpt = torch.load(args.weights) state_dict = ckpt["model"] model = get_model(config) model.load_state_dict(state_dict) model = model.cuda().eval() sample_data = torch.rand([1, 1, 224, 224, 64]).cuda() traced_module = torch.jit.trace(model, sample_data) torch.jit.save(traced_module, args.output) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--config", "-c", type=str, help="Path to the config file.") parser.add_argument("--weights", "-w", type=str, help="Path to the saved model checkpoint.") parser.add_argument( "--app", "-a", type=str, choices=["server", "kidney", "liver", "pancreas", "spleen"], help="Select app to convert checkpoint.", ) parser.add_argument("--output", "-o", type=str, help="Output result JSON.") args = parser.parse_args() run_convert(args)
NVFlare-main
research/condist-fl/convert_to_torchscript.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from argparse import ArgumentParser import numpy as np import torch from monai.inferers import SlidingWindowInferer from monai.transforms import AsDiscrete, EnsureChannelFirst, LoadImage, SaveImage, Spacing class ImageDataset(object): def __init__(self, data_root: str, data_list: str, data_list_key: str): with open(data_list) as f: data = json.load(f).get(data_list_key, []) self.data = [os.path.join(data_root, d["image"]) for d in data] self.index = 0 def __len__(self): return len(self.data) def __iter__(self): return iter(self.data) class DataProcessor(object): def __init__(self, i_min: float, i_max: float, mean: float, std: float, output_dir: str) -> None: self.i_min = i_min self.i_max = i_max self.mean = mean self.std = std self.reader = LoadImage(image_only=True) self.channel = EnsureChannelFirst() self.spacing = Spacing(pixdim=[1.44, 1.44, 2.87]) self.post = AsDiscrete(argmax=True) self.writer = SaveImage( output_dir=output_dir, output_postfix="seg", output_dtype=np.uint8, separate_folder=False, resample=True ) def preprocess(self, input_file_name: str) -> torch.Tensor: image = self.reader(input_file_name) image = self.channel(image) image = image.cuda() image = self.spacing(image) # Use inplace operations to avoid Tensor creation image = image.clip_(self.i_min, self.i_max) image.add_(-self.mean) image.div_(self.std) return image def postprocess(self, seg: torch.Tensor) -> None: seg = self.post(seg) self.writer(seg) def main(args): data = ImageDataset(args.data_root, args.data_list, args.data_list_key) dp = DataProcessor(i_min=-54.0, i_max=258.0, mean=100.0, std=50.0, output_dir=args.output) inferer = SlidingWindowInferer(roi_size=[224, 224, 64], mode="gaussian", sw_batch_size=1, overlap=0.50) model = torch.jit.load(args.model) model = model.eval().cuda() with torch.cuda.amp.autocast(): with torch.no_grad(): for image in iter(data): image = dp.preprocess(input_file_name=image) image = image.view(1, *image.shape) output = inferer(image, model) output = torch.squeeze(output, dim=0) dp.postprocess(output) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--data_root", "-r", type=str, help="Path to data root directory.") parser.add_argument("--data_list", "-l", type=str, help="Path to data list file.") parser.add_argument("--data_list_key", "-k", type=str, help="Target data split key in data list.") parser.add_argument("--model", "-m", type=str, help="Path to model torchscript file.") parser.add_argument("--output", "-o", type=str, help="Output directory.") args = parser.parse_args() main(args)
NVFlare-main
research/condist-fl/run_infer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from argparse import ArgumentParser from pathlib import Path import numpy as np import torch from src.data import DataManager from src.utils.get_model import get_model from src.validator import Validator def load_ckpt(app: str, model: torch.nn.Module, ckpt_path: str): ckpt = torch.load(ckpt_path) state_dict = ckpt["model"] model.load_state_dict(state_dict) return model def run_validation(args): ws = Path(args.workspace) if not ws.exists(): raise ValueError(f"Workspace path {ws} does not exists.") prefix = ws / "simulate_job" server = "app_server" clients = [p.name for p in prefix.glob("app_*") if "server" not in p.name] # Collect all checkpoints to evaluate checkpoints = {"app_server": str(prefix / "app_server/best_FL_global_model.pt")} checkpoints.update({c: str(prefix / c / "models/best_model.pt") for c in clients}) # Collect configs from clients config = { c: {"data": str(prefix / c / "config/config_data.json"), "task": str(prefix / c / "config/config_task.json")} for c in clients } metrics = {app: {} for app in [server] + clients} for client in clients: with open(config[client]["data"]) as f: data_config = json.load(f) with open(config[client]["task"]) as f: task_config = json.load(f) print(f"Loading test cases from {client}'s dataset.") dm = DataManager(str(prefix), data_config) dm.setup("test") # Create model & validator from task config model = get_model(task_config["model"]) validator = Validator(task_config) # Run server validation model = load_ckpt("app_server", model, checkpoints["app_server"]) model = model.eval().cuda() print("Start validation using global best model.") raw_metrics = validator.run(model, dm.get_data_loader("test")) raw_metrics.pop("val_meandice") metrics["app_server"].update(raw_metrics) # Run client validation for c in clients: model = load_ckpt(c, model, checkpoints[c]) model = model.eval().cuda() print(f"Start validation using {c}'s best model.") raw_metrics = validator.run(model, dm.get_data_loader("test")) raw_metrics.pop("val_meandice") metrics[c].update(raw_metrics) # Calculate correct val_meandice for site in metrics: metrics[site]["val_meandice"] = np.mean([val for _, val in metrics[site].items()]) with open(args.output, "w") as f: json.dump(metrics, f, indent=4, sort_keys=True) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--workspace", "-w", type=str, help="Workspace path.") parser.add_argument("--output", "-o", type=str, help="Output result JSON.") args = parser.parse_args() run_validation(args)
NVFlare-main
research/condist-fl/run_validate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict, Optional from torch.utils.tensorboard import SummaryWriter from nvflare.apis.dxo import DataKind, MetaKey, from_shareable from nvflare.apis.event_type import EventType from nvflare.apis.fl_constant import FLContextKey, ReservedKey from nvflare.apis.fl_context import FLContext from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.widgets.widget import Widget class GlobalMetricLogger(Widget): def __init__( self, log_dir: str = "logs", log_name: str = "key_metric", val_metric_name: str = MetaKey.INITIAL_METRICS, aggregation_weights: Optional[Dict] = None, ): super().__init__() self.log_dir = log_dir self.log_name = log_name self.val_metric_name = val_metric_name self.aggregation_weights = aggregation_weights self.writer = None self.logger.info(f"metric logger weights control: {aggregation_weights}") def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self._startup(fl_ctx) elif event_type == AppEventType.ROUND_STARTED: self._reset_metrics() elif event_type == AppEventType.BEFORE_CONTRIBUTION_ACCEPT: self._before_accept(fl_ctx) elif event_type == AppEventType.BEFORE_AGGREGATION: self._before_aggregate(fl_ctx) elif event_type == EventType.END_RUN: self._shutdown(fl_ctx) def _reset_metrics(self): self.val_metric_sum = 0 self.val_metric_weights = 0 def _startup(self, fl_ctx: FLContext): app_root = fl_ctx.get_prop(FLContextKey.APP_ROOT) log_path = os.path.join(app_root, self.log_dir) if not os.path.exists(log_path): os.makedirs(log_path, exist_ok=True) self._reset_metrics() self.writer = SummaryWriter(log_dir=log_path) def _before_accept(self, fl_ctx: FLContext): peer_ctx = fl_ctx.get_peer_context() shareable = peer_ctx.get_prop(FLContextKey.SHAREABLE) try: dxo = from_shareable(shareable) except: self.log_exception(fl_ctx, "shareable data is not a valid DXO") return if dxo.data_kind not in (DataKind.WEIGHT_DIFF, DataKind.WEIGHTS, DataKind.COLLECTION): self.log_debug(fl_ctx, "DXO kind is not valid for logging") return if dxo.data is None: self.log_debug(fl_ctx, "No data in DXO") return current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) contribution_round = shareable.get_header(AppConstants.CONTRIBUTION_ROUND) client_name = shareable.get_peer_prop(ReservedKey.IDENTITY_NAME, default="?") if current_round == 0: self.log_debug(fl_ctx, "Skip the first round.") return if contribution_round != current_round: self.log_warning( fl_ctx, f"Discard round {contribution_round} metrics from {client_name} at round {current_round}" ) return val_metric = dxo.get_meta_prop(self.val_metric_name) if val_metric is None: self.log_debug(fl_ctx, f"Metric {self.val_metric_name} does not exists.") return else: self.log_info(fl_ctx, f"Received validation metric {val_metric} from {client_name}.") client_weight = self.aggregation_weights.get(client_name, 1.0) self.val_metric_sum += val_metric * client_weight self.val_metric_weights += client_weight def _before_aggregate(self, fl_ctx: FLContext): if self.val_metric_weights == 0: self.log_debug(fl_ctx, "nothing accumulated") return current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) self.writer.add_scalar(self.log_name, self.val_metric_sum / self.val_metric_weights, current_round) self.log_info(fl_ctx, f"Write metric summary for round {current_round}.") self._reset_metrics() def _shutdown(self, fl_ctx: FLContext): self.writer.close()
NVFlare-main
research/condist-fl/jobs/condist/server/custom/metric_logger.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import traceback from typing import Any, Dict import numpy as np import torch from nvflare.apis.dxo import DataKind, from_bytes from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.formatter import Formatter from nvflare.app_common.app_constant import AppConstants def array_to_list(data: Any) -> Any: if isinstance(data, torch.Tensor) or isinstance(data, np.ndarray): return data.tolist() return data def simplify_metrics(metrics: Dict[str, Any]) -> Dict[str, Any]: return {k: array_to_list(v) for k, v in metrics} class SimpleFormatter(Formatter): def __init__(self) -> None: super().__init__() self.results = {} def format(self, fl_ctx: FLContext) -> str: # Get validation result validation_shareables_dict = fl_ctx.get_prop(AppConstants.VALIDATION_RESULT, {}) result = {} try: # Extract results from all clients for data_client in validation_shareables_dict.keys(): validation_dict = validation_shareables_dict[data_client] if validation_dict: res[data_client] = {} for model_name in validation_dict.keys(): dxo_path = validation_dict[model_name] # Load the shareable with open(dxo_path, "rb") as f: metric_dxo = from_bytes(f.read()) # Get metrics from shareable if metric_dxo and metric_dxo.data_kind == DataKind.METRICS: metrics = simplify_metrics(metric_dxo.data) res[data_client][model_name] = metrics # add any results self.results.update(res) except Exception as e: traceback.print_exc() return repr(result)
NVFlare-main
research/condist-fl/jobs/condist/server/custom/simple_formatter.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from pathlib import Path from typing import Union from ruamel.yaml import YAML from nvflare.apis.dxo import DataKind, from_shareable from nvflare.apis.event_type import EventType from nvflare.apis.fl_context import FLContext from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.widgets.widget import Widget class ReportGenerator(Widget): ALLOWED_FILE_EXTENSIONS = [".yaml", ".yml", ".json"] def __init__( self, results_dir: Union[str, Path] = AppConstants.CROSS_VAL_DIR, report_path: Union[str, Path] = "cross_val_results.yaml", ): super(ReportGenerator, self).__init__() self.results_dir = Path(results_dir) self.report_path = Path(report_path) if self.report_path.suffix not in ReportGenerator.ALLOWED_FILE_EXTENSIONS: raise ValueError(f"Report file extension must be be .yaml, .yml, or .json, got {self.report_path.suffix}") self.val_results = [] def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.val_results.clear() elif event_type == AppEventType.VALIDATION_RESULT_RECEIVED: model_owner = fl_ctx.get_prop(AppConstants.MODEL_OWNER, None) data_client = fl_ctx.get_prop(AppConstants.DATA_CLIENT, None) val_results = fl_ctx.get_prop(AppConstants.VALIDATION_RESULT, None) if not model_owner: self.log_error(fl_ctx, "Unknown model owner, validation result will not be saved", fire_event=False) if not data_client: self.log_error(fl_ctx, "Unknown data client, validation result will not be saved", fire_event=False) if val_results: try: dxo = from_shareable(val_results) dxo.validate() if dxo.data_kind == DataKind.METRICS: self.val_results.append( {"data_client": data_client, "model_owner": model_owner, "metrics": dxo.data} ) else: self.log_error( fl_ctx, f"Expected dxo of kind METRICS but got {dxo.data_kind}", fire_event=False ) except: self.log_exception(fl_ctx, "Exception in handling validation result", fire_event=False) elif event_type == EventType.END_RUN: ws = fl_ctx.get_engine().get_workspace() run_dir = Path(ws.get_run_dir(fl_ctx.get_job_id())) output_dir = run_dir / self.results_dir if not output_dir.exists(): output_dir.mkdir(parents=True) results = {"val_results": self.val_results} output_file_path = output_dir / self.report_path if self.report_path.suffix == ".json": with open(output_file_path, "w") as f: json.dump(results, f) else: # ".yaml" or ".yml" yaml = YAML() with open(output_file_path, "w") as f: yaml.dump(results, f)
NVFlare-main
research/condist-fl/jobs/condist/server/custom/report_generator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import traceback from typing import List import torch from nvflare.apis.dxo import DXO, DataKind from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.model_locator import ModelLocator from nvflare.app_common.app_constant import DefaultCheckpointFileName from nvflare.app_common.pt.pt_fed_utils import PTModelPersistenceFormatManager class SimpleModelLocator(ModelLocator): SERVER_MODEL_NAME = "server" SERVER_BEST_MODEL_NAME = "server_best" def __init__( self, model_dir="app_server", model_name=DefaultCheckpointFileName.GLOBAL_MODEL, best_model_name=DefaultCheckpointFileName.BEST_GLOBAL_MODEL, ): super().__init__() self.model_dir = model_dir self.model_file_name = model_name self.best_model_file_name = best_model_name def get_model_names(self, fl_ctx: FLContext) -> List[str]: return [SimpleModelLocator.SERVER_MODEL_NAME, SimpleModelLocator.SERVER_BEST_MODEL_NAME] def locate_model(self, model_name, fl_ctx: FLContext) -> DXO: dxo = None engine = fl_ctx.get_engine() app_root = fl_ctx.get_prop(FLContextKey.APP_ROOT) if model_name in self.get_model_names(fl_ctx): # Get run information run_number = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) run_dir = engine.get_workspace().get_run_dir(run_number) model_path = os.path.join(run_dir, self.model_dir) # Generate model path if model_name == SimpleModelLocator.SERVER_BEST_MODEL_NAME: model_load_path = os.path.join(model_path, self.best_model_file_name) else: model_load_path = os.path.join(model_path, self.model_file_name) # Load checkpoint model_data = None try: checkpoint = torch.load(model_load_path, map_location="cpu") model_data = checkpoint["model"] for var_name in model_data: w = model_data[var_name] if isinstance(w, torch.Tensor): model_data[var_name] = w.numpy() except: self.log_error(fl_ctx, traceback.format_exc()) if model_data is not None: mgr = PTModelPersistenceFormatManager(model_data) dxo = DXO(data_kind=DataKind.WEIGHTS, data=mgr.var_dict, meta=mgr.meta) return dxo
NVFlare-main
research/condist-fl/jobs/condist/server/custom/model_locator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict import torch from monai.inferers import SlidingWindowInferer from monai.metrics import DiceMetric from monai.transforms import AsDiscreted from torch.utils.data import DataLoader from tqdm import tqdm def get_fg_classes(fg_idx, classes): out = {} for idx in fg_idx: out[classes[idx]] = idx return out class Validator(object): def __init__(self, task_config: Dict): roi_size = task_config["inferer"]["roi_size"] sw_batch_size = task_config["inferer"]["sw_batch_size"] self.num_classes = len(task_config["classes"]) self.fg_classes = get_fg_classes(task_config["condist_config"]["foreground"], task_config["classes"]) self.inferer = SlidingWindowInferer( roi_size=roi_size, sw_batch_size=sw_batch_size, mode="gaussian", overlap=0.5 ) self.post = AsDiscreted( keys=["preds", "label"], argmax=[True, False], to_onehot=[self.num_classes, self.num_classes], dim=1 ) self.metric = DiceMetric(reduction="mean_batch") def validate_step(self, model: torch.nn.Module, batch: Dict[str, Any]) -> None: batch["image"] = batch["image"].to("cuda:0") batch["label"] = batch["label"].to("cuda:0") # Run inference batch["preds"] = self.inferer(batch["image"], model) # Post processing batch = self.post(batch) # calculate metrics self.metric(batch["preds"], batch["label"]) def validate_loop(self, model, data_loader) -> Dict[str, Any]: # Run inference over whole validation set with torch.no_grad(): with torch.cuda.amp.autocast(): for batch in tqdm(data_loader, desc="Validation DataLoader", dynamic_ncols=True): self.validate_step(model, batch) # Collect metrics raw_metrics = self.metric.aggregate() self.metric.reset() mean = 0.0 metrics = {} for organ, idx in self.fg_classes.items(): mean += raw_metrics[idx] metrics["val_meandice_" + organ] = raw_metrics[idx] metrics["val_meandice"] = mean / len(self.fg_classes) for k, v in metrics.items(): if isinstance(v, torch.Tensor): metrics[k] = v.tolist() return metrics def run(self, model: torch.nn.Module, data_loader: DataLoader) -> Dict[str, Any]: model.eval() return self.validate_loop(model, data_loader)
NVFlare-main
research/condist-fl/src/validator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import traceback from pathlib import Path from typing import Dict, Literal, Optional import numpy as np from data import DataManager from prettytable import PrettyTable from torch.utils.tensorboard import SummaryWriter from trainer import ConDistTrainer from utils.get_model import get_model from utils.model_weights import extract_weights, load_weights from validator import Validator from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import ReturnCode, Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.app_constant import AppConstants, ModelName, ValidateType class ConDistLearner(Learner): def __init__( self, task_config: str, data_config: str, aggregation_steps: int, method: Literal["ConDist"] = "ConDist", seed: Optional[int] = None, max_retry: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, submit_model_task_name: str = AppConstants.TASK_SUBMIT_MODEL, ): super().__init__() self.task_config = task_config self.data_config = data_config self.aggregation_steps = aggregation_steps self._method = method self._seed = seed self._max_retry = max_retry self.train_task_name = train_task_name self.submit_model_task_name = submit_model_task_name def initialize(self, parts: Dict, fl_ctx: FLContext) -> None: self.app_root = fl_ctx.get_prop(FLContextKey.APP_ROOT) # Load configurations prefix = Path(self.app_root) with open(prefix / self.task_config) as f: task_config = json.load(f) with open(prefix / self.data_config) as f: data_config = json.load(f) # Initialize variables self.key_metric = "val_meandice" self.best_metric = -np.inf self.best_model_path = "models/best_model.pt" self.last_model_path = "models/last.pt" # Create data manager self.dm = DataManager(self.app_root, data_config) # Create model self.model = get_model(task_config["model"]) # Configure trainer & validator if self._method == "ConDist": self.trainer = ConDistTrainer(task_config) self.validator = Validator(task_config) # Create logger self.tb_logger = SummaryWriter(log_dir=prefix / "logs") def train(self, data: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: # Log training info num_rounds = data.get_header(AppConstants.NUM_ROUNDS) current_round = data.get_header(AppConstants.CURRENT_ROUND) self.log_info(fl_ctx, f"Current/Total Round: {current_round + 1}/{num_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # Make a copy of model weight for weight diff calculation dxo = from_shareable(data) global_weights = dxo.data # Create dataset & data loader (if necessary) if self.dm.get_data_loader("train") is None: self.dm.setup("train") if self.dm.get_data_loader("validate") is None: self.dm.setup("validate") # Run training for i in range(self._max_retry + 1): try: self.trainer.run( self.model, self.dm.get_data_loader("train"), num_steps=self.aggregation_steps, logger=self.tb_logger, ) break except Exception as e: if i < self._max_retry: self.log_warning(fl_ctx, f"Someting wrong in training, retrying ({i+1}/{self._max_retry}).") # Restore trainer states to the beginning of the round if os.path.exists(self.last_model_path): self.trainer.load_checkpoint(self.last_model_path, self.model) load_weights(self.model, global_weights) self.model = self.model.to("cuda:0") # Reset dataset & dataloader self.dm._data_loader["train"] = None self.dm._dataset["train"] = None self.dm.setup("train") else: raise RuntimeError(traceback.format_exc()) # Run validation for i in range(self._max_retry + 1): try: metrics = self.validator.run(self.model, self.dm.get_data_loader("validate")) break except Exception as e: if i < self._max_retry: self.log_warning(fl_ctx, f"Someting wrong in training, retrying ({i+1}/{self._max_retry}).") # Reset dataset & dataloader self.dm._data_loader["validate"] = None self.dm._dataset["validate"] = None self.dm.setup("validate") else: raise RuntimeError(traceback.format_exc()) # Log validation results table = PrettyTable() table.field_names = ["Metric", "Value"] for m, v in metrics.items(): table.add_row([m, v]) self.tb_logger.add_scalar(m, v, current_round) self.log_info(fl_ctx, str(table)) # Save checkpoint if necessary if self.best_metric < metrics[self.key_metric]: self.best_metric = metrics[self.key_metric] self.trainer.save_checkpoint(self.best_model_path, self.model) self.trainer.save_checkpoint(self.last_model_path, self.model) # Calculate weight diff local_weights = extract_weights(self.model) weight_diff = {} for var_name in local_weights: weight_diff[var_name] = local_weights[var_name] - global_weights[var_name] if np.any(np.isnan(weight_diff[var_name])): self.system_panic(f"{var_name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) # Create DXO and return dxo = DXO( data_kind=DataKind.WEIGHT_DIFF, data=weight_diff, meta={MetaKey.NUM_STEPS_CURRENT_ROUND: self.aggregation_steps}, ) return dxo.to_shareable() def get_model_for_validation(self, model_name: str, fl_ctx: FLContext) -> Shareable: if model_name == ModelName.BEST_MODEL: model_data = None try: model_data = torch.load(self.best_model_path, map_location="cpu") self.log_info(fl_ctx, f"Load best model from {self.best_model_path}") except Exception as e: self.log_error(fl_ctx, f"Unable to load best model: {e}") if model_data: data = {} for var_name in model_data["model"]: data[var_name] = model_data[var_name].numpy() dxo = DXO(data_kind=DataKind.WEIGHTS, data=data) return dxo.to_shareable() else: self.log_error(fl_ctx, f"best local model not available at {self.best_model_path}") return make_reply(ReturnCode.EXECUTION_RESULT_ERROR) else: self.log_error(fl_ctx, f"Unknown model_type {model_name}") return make_reply(ReturnCode.BAD_TASK_DATA) def validate(self, data: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: # 1. Extract data from shareable model_owner = data.get_header(AppConstants.MODEL_OWNER, "global_model") validate_type = data.get_header(AppConstants.VALIDATE_TYPE) # 2. Prepare dataset phase = None if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE: phase = "validate" elif validate_type == ValidateType.MODEL_VALIDATE: phase = "test" if self.dm.get_data_loader(phase) is None: self.dm.setup(phase) data_loader = self.dm.get_data_loader(phase) # 3. Update model weight try: dxo = from_shareable(data) except: self.log_error(fl_ctx, "Error when extracting DXO from shareable") return make_reply(ReturnCode.BAD_TASK_DATA) if not dxo.data_kind == DataKind.WEIGHTS: self.log_exception(fl_ctx, f"DXO is of type {dxo.data_kind} but expected type WEIGHTS") return make_reply(ReturnCode.BAD_TASK_DATA) load_weights(self.model, dxo.data) # 4. Run validation self.model = self.model.to("cuda:0") for i in range(self._max_retry + 1): try: data_loader = self.dm.get_data_loader(phase) raw_metrics = self.validator.run(self.model, data_loader) break except Exception as e: if i < self._max_retry: self.log_warning(fl_ctx, f"Error encountered in validation, retrying ({i+1}/{self._max_retry}).") # Cleanup previous dataset & dataloader data_loader = None self.dm._data_loader[phase] = None self.dm._dataset[phase] = None # Recreate dataset & dataloader self.dm.setup(phase) # Assume both the model & validator are correct else: raise RuntimeError(traceback.format_exc()) self.log_info( fl_ctx, f"Validation metrics of {model_owner}'s model on" f" {fl_ctx.get_identity_name()}'s data: {raw_metrics}", ) # For validation before training, only key metric is needed if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE: metrics = {MetaKey.INITIAL_METRICS: raw_metrics[self.key_metric]} # Save as best model if self.best_metric < raw_metrics[self.key_metric]: self.best_metric = raw_metrics[self.key_metric] self.trainer.save_checkpoint(self.best_model_path, self.model) else: metrics = raw_metrics # 5. Return results dxo = DXO(data_kind=DataKind.METRICS, data=metrics) return dxo.to_shareable() def finalize(self, fl_ctx: FLContext): self.dm.teardown() self.tb_logger.close()
NVFlare-main
research/condist-fl/src/condist_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
research/condist-fl/src/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Optional, Sequence, Tuple, Union import torch from monai.losses import DiceCELoss, MaskedDiceLoss from monai.networks import one_hot from monai.utils import LossReduction from torch import Tensor from torch.nn import functional as F from torch.nn.modules.loss import _Loss class ConDistTransform(object): def __init__( self, num_classes: int, foreground: Sequence[int], background: Sequence[Union[int, Sequence[int]]], temperature: float = 2.0, ): self.num_classes = num_classes self.foreground = foreground self.background = background if temperature < 0.0: raise ValueError("Softmax temperature must be a postive number!") self.temperature = temperature def softmax(self, data: Tensor): return torch.softmax(data / self.temperature, dim=1) def reduce_channels(self, data: Tensor, eps: float = 1e-5): batch, channels, *shape = data.shape if channels != self.num_classes: raise ValueError(f"Expect input with {self.num_classes} channels, get {channels}") fg_shape = [batch] + [1] + shape bg_shape = [batch] + [len(self.background)] + shape # Compute the probability for the union of local foreground fg = torch.zeros(fg_shape, dtype=torch.float32, device=data.device) for c in self.foreground: fg += data[:, c, ::].view(*fg_shape) # Compute the raw probabilities for each background group bg = torch.zeros(bg_shape, dtype=torch.float32, device=data.device) for i, g in enumerate(self.background): if isinstance(g, int): bg[:, i, ::] = data[:, g, ::] else: for c in g: bg[:, i, ::] += data[:, c, ::] # Compute condistional probability for background groups return bg / (1.0 - fg + eps) def generate_mask(self, targets: Tensor, ground_truth: Tensor): targets = torch.argmax(targets, dim=1, keepdim=True) # The mask covers the background but excludes false positive areas condition = torch.zeros_like(targets, device=targets.device) for c in self.foreground: condition = torch.where(torch.logical_or(targets == c, ground_truth == c), 1, condition) mask = 1 - condition return mask.astype(torch.float32) def __call__(self, preds: Tensor, targets: Tensor, ground_truth: Tensor) -> Tuple[Tensor]: mask = self.generate_mask(targets, ground_truth) preds = self.softmax(preds) preds = self.reduce_channels(preds) targets = self.softmax(targets) targets = self.reduce_channels(targets) return preds, targets, mask class MarginalTransform(object): def __init__(self, foreground: Sequence[int], softmax: bool = False): self.foreground = foreground self.softmax = softmax def reduce_background_channels(self, tensor: Tensor) -> Tensor: n_chs = tensor.shape[1] slices = torch.split(tensor, 1, dim=1) fg = [slices[i] for i in self.foreground] bg = sum([slices[i] for i in range(n_chs) if i not in self.foreground]) output = torch.cat([bg] + fg, dim=1) return output def __call__(self, preds: Tensor, target: Tensor) -> Tuple[Tensor]: n_pred_ch = preds.shape[1] if n_pred_ch == 1: # Marginal loss is not intended for single channel output return preds, target if self.softmax: preds = torch.softmax(preds, 1) if target.shape[1] == 1: target = one_hot(target, num_classes=n_pred_ch) elif target.shape != n_pred_ch: raise ValueError(f"Number of channels of label must be 1 or {n_pred_ch}.") preds = self.reduce_background_channels(preds) target = self.reduce_background_channels(target) return preds, target class ConDistDiceLoss(_Loss): def __init__( self, num_classes: int, foreground: Sequence[int], background: Sequence[Union[int, Sequence[int]]], temperature: float = 2.0, include_background: bool = True, other_act: Optional[Callable] = None, squared_pred: bool = False, jaccard: bool = False, reduction: Union[LossReduction, str] = LossReduction.MEAN, smooth_nr: float = 1e-5, smooth_dr: float = 1e-5, batch: bool = False, ) -> None: super().__init__() self.transform = ConDistTransform(num_classes, foreground, background, temperature=temperature) self.dice = MaskedDiceLoss( include_background=include_background, to_onehot_y=False, sigmoid=False, softmax=False, other_act=other_act, squared_pred=squared_pred, jaccard=jaccard, reduction=reduction, smooth_nr=smooth_nr, smooth_dr=smooth_dr, batch=batch, ) def forward(self, preds: Tensor, targets: Tensor, ground_truth: Tensor): n_chs = preds.shape[1] if (ground_truth.shape[1] > 1) and (ground_truth.shape[1] == n_chs): ground_truth = torch.argmax(ground_truth, dim=1, keepdim=True) preds, targets, mask = self.transform(preds, targets, ground_truth) return self.dice(preds, targets, mask=mask) class MarginalDiceCELoss(_Loss): def __init__( self, foreground: Sequence[int], include_background: bool = True, softmax: bool = False, other_act: Optional[Callable] = None, squared_pred: bool = False, jaccard: bool = False, reduction: str = "mean", smooth_nr: float = 1e-5, smooth_dr: float = 1e-5, batch: bool = False, ce_weight: Optional[Tensor] = None, lambda_dice: float = 1.0, lambda_ce: float = 1.0, ): super().__init__() self.transform = MarginalTransform(foreground, softmax=softmax) self.dice_ce = DiceCELoss( include_background=include_background, to_onehot_y=False, sigmoid=False, softmax=False, other_act=other_act, squared_pred=squared_pred, jaccard=jaccard, reduction=reduction, smooth_nr=smooth_nr, smooth_dr=smooth_dr, batch=batch, ce_weight=ce_weight, lambda_dice=lambda_dice, lambda_ce=lambda_ce, ) def forward(self, preds: Tensor, targets: Tensor): preds, targets = self.transform(preds, targets) return self.dice_ce(preds, targets) class MoonContrasiveLoss(torch.nn.Module): def __init__(self, tau: float = 1.0): super().__init__() if tau <= 0.0: raise ValueError("tau must be positive") self.tau = tau def forward(self, z: Tensor, z_prev: Tensor, z_glob: Tensor): sim_prev = F.cosine_similarity(z, z_prev, dim=1) sim_glob = F.cosine_similarity(z, z_glob, dim=1) exp_prev = torch.exp(sim_prev / self.tau) exp_glob = torch.exp(sim_glob / self.tau) loss = -torch.log(exp_glob / (exp_glob + exp_prev)) return loss.mean()
NVFlare-main
research/condist-fl/src/losses.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import numpy as np import torch def load_weights(model: torch.nn.Module, weights: Dict[str, np.ndarray]) -> torch.nn.Module: local_var_dict = model.state_dict() model_keys = weights.keys() for var_name in local_var_dict: if var_name in model_keys: w = weights[var_name] try: local_var_dict[var_name] = torch.as_tensor(np.reshape(w, local_var_dict[var_name].shape)) except Exception as e: raise ValueError(f"Convert weight from {var_name} failed with error {str(e)}") model.load_state_dict(local_var_dict) return model def extract_weights(model: torch.nn.Module) -> Dict[str, np.ndarray]: local_state_dict = model.state_dict() local_model_dict = {} for var_name in local_state_dict: try: local_model_dict[var_name] = local_state_dict[var_name].cpu().numpy() except Exception as e: raise ValueError(f"Convert weight from {var_name} failed with error: {str(e)}") return local_model_dict
NVFlare-main
research/condist-fl/src/utils/model_weights.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from importlib import import_module from typing import Dict def get_model(config: Dict): module = import_module(config["path"]) if hasattr(module, config["name"]): C = getattr(module, config["name"]) return C(**config["args"]) else: raise ValueError(f'Unable to find {config["name"]} from module {config["path"]}')
NVFlare-main
research/condist-fl/src/utils/get_model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Literal from monai.transforms import ( Compose, EnsureChannelFirstd, EnsureTyped, LoadImaged, Orientationd, RandAdjustContrastd, RandCropByPosNegLabeld, RandGaussianNoised, RandGaussianSmoothd, RandRotated, RandZoomd, Spacingd, SpatialPadd, ) from .augmentations import ( RandAdjustBrightnessAndContrastd, RandFlipAxes3Dd, RandInverseIntensityGammad, SimulateLowResolutiond, ) from .normalize import NormalizeIntensityRanged def get_train_transforms(num_samples: int = 1): transforms = Compose( [ LoadImaged(keys=["image", "label"], image_only=True), EnsureChannelFirstd(keys=["image", "label"]), Orientationd(keys=["image", "label"], as_closest_canonical=True), Spacingd( keys=["image", "label"], pixdim=[1.44423774, 1.44423774, 2.87368553], mode=["bilinear", "nearest"] ), RandRotated( keys=["image", "label"], range_x=0.5236, range_y=0.5236, range_z=0.5236, prob=0.2, mode=["bilinear", "nearest"], keep_size=False, ), RandZoomd( keys=["image", "label"], prob=0.2, min_zoom=0.7, max_zoom=1.4, mode=["trilinear", "nearest"], keep_size=False, ), NormalizeIntensityRanged(keys=["image"], a_min=-54.0, a_max=258.0, subtrahend=100.0, divisor=50.0), SpatialPadd(keys=["image", "label"], spatial_size=[224, 224, 64]), RandCropByPosNegLabeld( keys=["image", "label"], label_key="label", spatial_size=[224, 224, 64], pos=2.0, neg=1.0, num_samples=num_samples, image_key="image", ), RandGaussianNoised(keys=["image"], prob=0.15, mean=0.0, std=0.1), RandGaussianSmoothd(keys=["image"], sigma_x=[0.5, 1.5], sigma_y=[0.5, 1.5], sigma_z=[0.5, 1.5], prob=0.15), RandAdjustBrightnessAndContrastd( keys=["image"], probs=[0.15, 0.15], brightness_range=[0.7, 1.3], contrast_range=[0.65, 1.5] ), SimulateLowResolutiond(keys=["image"], prob=0.25, zoom_range=[0.5, 1.0]), RandAdjustContrastd(keys=["image"], prob=0.15, gamma=[0.8, 1.2]), RandInverseIntensityGammad(keys=["image"], prob=0.15, gamma=[0.8, 1.2]), RandFlipAxes3Dd(keys=["image", "label"], prob_x=0.50, prob_y=0.50, prob_z=0.50), EnsureTyped(keys=["image", "label"]), ] ) return transforms def get_validate_transforms(): transforms = Compose( [ LoadImaged(keys=["image", "label"], image_only=True), EnsureChannelFirstd(keys=["image", "label"]), Orientationd(keys=["image", "label"], as_closest_canonical=True), Spacingd( keys=["image", "label"], pixdim=[1.44423774, 1.44423774, 2.87368553], mode=["bilinear", "nearest"] ), NormalizeIntensityRanged(keys=["image"], a_min=-54.0, a_max=258.0, subtrahend=100.0, divisor=50.0), EnsureTyped(keys=["image", "label"]), ] ) return transforms def get_infer_transforms(): transforms = Compose( [ LoadImaged(keys=["image", "label"], image_only=True), EnsureChannelFirstd(keys=["image", "label"]), Orientationd(keys=["image", "label"], as_closest_canonical=True), Spacingd( keys=["image", "label"], pixdim=[1.44423774, 1.44423774, 2.87368553], mode=["bilinear", "nearest"] ), NormalizeIntensityRanged(keys=["image"], a_min=-54.0, a_max=258.0, subtrahend=100.0, divisor=50.0), EnsureTyped(keys=["image", "label"]), ] ) return transforms def get_transforms(mode: Literal["train", "validate", "infer"], num_samples: int = 1): if mode == "train": return get_train_transforms(num_samples=num_samples) if mode == "validate": return get_validate_transforms() if mode == "infer": return get_infer_transforms() raise ValueError(f"Unsupported transform mode {mode}.")
NVFlare-main
research/condist-fl/src/data/transforms.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Hashable, Mapping, Optional import numpy as np from monai.config import DtypeLike, KeysCollection from monai.config.type_definitions import NdarrayOrTensor from monai.data.meta_obj import get_track_meta from monai.transforms import MapTransform, Transform from monai.transforms.utils_pytorch_numpy_unification import clip from monai.utils.enums import TransformBackends from monai.utils.type_conversion import convert_data_type, convert_to_tensor class NormalizeIntensityRange(Transform): backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, a_min: float, a_max: float, subtrahend: float, divisor: float, dtype: DtypeLike = np.float32): if a_min > a_max: raise ValueError("a_min must be lesser than a_max.") self.a_min = a_min self.a_max = a_max self.subtrahend = subtrahend self.divisor = divisor self.dtype = dtype def __call__( self, img: NdarrayOrTensor, subtrahend: Optional[float] = None, divisor: Optional[float] = None, dtype: Optional[DtypeLike] = None, ) -> NdarrayOrTensor: if subtrahend is None: subtrahend = self.subtrahend if divisor is None: divisor = self.divisor if dtype is None: dtype = self.dtype img = convert_to_tensor(img, track_meta=get_track_meta()) img = clip(img, self.a_min, self.a_max) img = (img - subtrahend) / divisor ret: NdarrayOrTensor = convert_data_type(img, dtype=dtype)[0] return ret class NormalizeIntensityRanged(MapTransform): backend = NormalizeIntensityRange.backend def __init__( self, keys: KeysCollection, a_min: float, a_max: float, subtrahend: float, divisor: float, dtype: Optional[DtypeLike] = np.float32, allow_missing_keys: bool = False, ): super().__init__(keys, allow_missing_keys) self.t = NormalizeIntensityRange(a_min, a_max, subtrahend, divisor, dtype=dtype) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.keys: d[key] = self.t(d[key]) return d
NVFlare-main
research/condist-fl/src/data/normalize.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from monai.data import DataLoader from torch.utils.data import Dataset as _Dataset def create_data_loader(dataset: _Dataset, batch_size: int = 1, num_workers: int = 0, shuffle: bool = False): return DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=shuffle)
NVFlare-main
research/condist-fl/src/data/data_loader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ["DataManager"] from .data_manager import DataManager
NVFlare-main
research/condist-fl/src/data/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from typing import Dict, Literal from monai.data import CacheDataset, Dataset from monai.data.decathlon_datalist import load_decathlon_datalist from .transforms import get_transforms def create_dataset(app_root: str, config: Dict, split: str, mode: Literal["train", "validate", "infer"]): data_root = config["data_root"] data_list = config["data_list"] num_samples = config.get("num_samples", 1) ds_config = config.get("dataset", {}) use_cache_dataset = ds_config.get("use_cache_dataset", False) if use_cache_dataset: cache_num = ds_config.get("cache_num", sys.maxsize) cache_rate = ds_config.get("cache_rate", 1.0) num_workers = ds_config.get("num_workers", 1) data = load_decathlon_datalist(data_list, is_segmentation=True, data_list_key=split, base_dir=data_root) transforms = get_transforms(mode=mode, num_samples=num_samples) if use_cache_dataset: ds = CacheDataset(data, transforms, cache_num=cache_num, cache_rate=cache_rate, num_workers=num_workers) else: ds = Dataset(data, transforms) return ds
NVFlare-main
research/condist-fl/src/data/dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional from .data_loader import create_data_loader from .dataset import create_dataset class DataManager(object): def __init__(self, app_root: str, config: Dict): self.app_root = app_root self.config = config self._dataset = {} self._data_loader = {} def _build_dataset(self, stage: str): if stage == "train": mode = "train" split = "training" elif stage == "validate": mode = "validate" split = "validation" elif stage == "test": mode = "validate" split = "testing" else: raise ValueError(f"Unknown stage {stage} for dataset") return create_dataset(self.app_root, self.config, split, mode) def _build_data_loader(self, stage: str): ds = self._dataset.get(stage) if stage == "train": dl = create_data_loader( ds, batch_size=self.config["data_loader"].get("batch_size", 1), num_workers=self.config["data_loader"].get("num_workers", 0), shuffle=True, ) else: dl = create_data_loader(ds, batch_size=1, num_workers=self.config["data_loader"].get("num_workers", 0)) return dl def setup(self, stage: Optional[str] = None): if stage is None: for s in ["train", "validate", "test"]: self._dataset[s] = self._build_dataset(s) self._data_loader[s] = _build_data_loader(s) elif stage in ["train", "validate", "test"]: self._dataset[stage] = self._build_dataset(stage) self._data_loader[stage] = self._build_data_loader(stage) def get_dataset(self, stage: str): return self._dataset.get(stage, None) def get_data_loader(self, stage: str): return self._data_loader.get(stage, None) def teardown(self): self._dataset = {} self._data_loader = {}
NVFlare-main
research/condist-fl/src/data/data_manager.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Hashable, List, Mapping, Optional, Sequence, Union import numpy as np from monai.config import DtypeLike, KeysCollection from monai.config.type_definitions import NdarrayOrTensor from monai.data.meta_obj import get_track_meta from monai.transforms import MapTransform, RandomizableTransform from monai.transforms.utils_pytorch_numpy_unification import clip, max, min from monai.utils.enums import TransformBackends from monai.utils.misc import ensure_tuple_rep from monai.utils.type_conversion import convert_data_type, convert_to_tensor class RandAdjustBrightnessAndContrast(RandomizableTransform): backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__( self, probs: Union[float, List[float]] = [0.15, 0.15], brightness_range: Optional[List[float]] = None, contrast_range: Optional[List[float]] = None, dtype: DtypeLike = np.float32, ): probs = ensure_tuple_rep(probs, 2) if brightness_range is None: p = 0.0 else: p = probs[0] if len(brightness_range) == 2: self.brightness = sorted(brightness_range) else: raise ValueError("Brightness range must be None or a list with length 2.") if contrast_range is None: q = 0.0 else: q = probs[1] if len(contrast_range) == 2: self.contrast = sorted(contrast_range) else: raise ValueError("Contrast range must be None or a list with length 2.") prob = (p + q) - p * q RandomizableTransform.__init__(self, prob) self.prob_b = p self.prob_c = q self._brightness = None self._contrast = None self.dtype = dtype def clear(self): self._brightness = None self._contrast = None self._do_transform = False def randomize(self, data: Any = None) -> None: self.clear() p, q = self.R.rand(2) if p < self.prob_b: self._brightness = self.R.uniform(low=self.brightness[0], high=self.brightness[1]) self._do_transform = True if q < self.prob_c: self._contrast = self.R.uniform(low=self.contrast[0], high=self.contrast[1]) self._do_transform = True def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor: if randomize: self.randomize() if not self._do_transform: return img img = convert_to_tensor(img, track_meta=get_track_meta()) min_intensity = min(img) max_intensity = max(img) scale = 1.0 if self._brightness: scale *= self._brightness min_intensity *= self._brightness max_intensity *= self._brightness if self._contrast: scale *= self._contrast img *= scale img = clip(img, min_intensity, max_intensity) ret: NdarrayOrTensor = convert_data_type(img, dtype=self.dtype)[0] return ret class RandAdjustBrightnessAndContrastd(MapTransform, RandomizableTransform): backend = RandAdjustBrightnessAndContrast.backend def __init__( self, keys: KeysCollection, probs: Union[float, List[float]] = [0.15, 0.15], brightness_range: Optional[List[float]] = None, contrast_range: Optional[List[float]] = None, dtype: DtypeLike = np.float32, ): MapTransform.__init__(self, keys) RandomizableTransform.__init__(self, 1.0) self.t = RandAdjustBrightnessAndContrast(probs, brightness_range, contrast_range, dtype) def randomize(self) -> None: self.t.randomize() def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) self.randomize() if not self.t._do_transform: for key in self.keys: d[key] = convert_to_tensor(d[key], track_meta=get_track_meta()) return d for key in self.keys: d[key] = self.t(d[key], randomize=False) return d class RandInverseIntensityGamma(RandomizableTransform): backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, prob: float = 0.15, gamma: Union[Sequence[float], float] = (0.7, 1.5)): RandomizableTransform.__init__(self, prob) if isinstance(gamma, (int, float)): if gamma <= 0.5: raise ValueError("If gamma is single number, gamma must >= 0.5.") self.gamma = (0.5, gamma) elif len(gamma) != 2: raise ValueError("Gamma must a pair of numbers.") else: self.gamma = (min(gamma), max(gamma)) self.gamma_value: Optional[float] = None def randomize(self, data: Optional[Any] = None) -> None: super().randomize(None) if not self._do_transform: return None self.gamma_value = self.R.uniform(low=self.gamma[0], high=self.gamma[1]) def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor: img = convert_to_tensor(img, track_meta=get_track_meta()) if randomize: self.randomize() if not self._do_transform: return img if self.gamma_value is None: raise RuntimeError("`gamma_value` is None, call randomize first.") eps = 1e-7 min_intensity = min(img) max_intensity = max(img) y = 1.0 - (img - min_intensity) / (max_intensity - min_intensity + eps) y = y**self.gamma_value y = (1.0 - y) * (max_intensity - min_intensity) + min_intensity return y class RandInverseIntensityGammad(MapTransform, RandomizableTransform): backend = RandInverseIntensityGamma.backend def __init__(self, keys: KeysCollection, prob: float = 0.15, gamma: Union[Sequence[float], float] = (0.7, 1.5)): MapTransform.__init__(self, keys) RandomizableTransform.__init__(self, 1.0) self.t = RandInverseIntensityGamma(prob, gamma) def randomize(self, data: Optional[Any] = None) -> None: self.t.randomize() def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) self.randomize() if not self.t._do_transform: for key in self.keys: d[key] = convert_to_tensor(d[key], track_meta=get_track_meta()) return d for key in self.keys: d[key] = self.t(d[key], randomize=False) return d
NVFlare-main
research/condist-fl/src/data/augmentations/intensity.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [ "RandAdjustBrightnessAndContrast", "RandAdjustBrightnessAndContrastd", "RandInverseIntensityGamma", "RandInverseIntensityGammad", "RandFlipAxes3D", "RandFlipAxes3Dd", "SimulateLowResolution", "SimulateLowResolutiond", ] from .intensity import ( RandAdjustBrightnessAndContrast, RandAdjustBrightnessAndContrastd, RandInverseIntensityGamma, RandInverseIntensityGammad, ) from .spatial import RandFlipAxes3D, RandFlipAxes3Dd, SimulateLowResolution, SimulateLowResolutiond
NVFlare-main
research/condist-fl/src/data/augmentations/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Hashable, List, Mapping import numpy as np import torch import torch.nn.functional as F from monai.config import DtypeLike, KeysCollection from monai.config.type_definitions import NdarrayOrTensor from monai.data.meta_obj import get_track_meta from monai.transforms import MapTransform, RandomizableTransform from monai.utils.enums import TransformBackends from monai.utils.type_conversion import convert_data_type, convert_to_tensor class RandFlipAxes3D(RandomizableTransform): backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, prob_x: float = 0.5, prob_y: float = 0.5, prob_z: float = 0.5, dtype: DtypeLike = np.float32): def ensure_probability(p, name): if 0.0 <= p <= 1.0: return p raise ValueError(f"Probability {name} must between 0 and 1.") p = ensure_probability(prob_x, "prob_x") q = ensure_probability(prob_y, "prob_y") r = ensure_probability(prob_z, "prob_z") prob = 1.0 - (1.0 - p) * (1.0 - q) * (1.0 - r) RandomizableTransform.__init__(self, prob) # This is useless self.p = p self.q = q self.r = r self._flip_x = False self._flip_y = False self._flip_z = False self.dtype = dtype def randomize(self) -> None: p, q, r = self.R.rand(3) self._flip_x = p < self.p self._flip_y = q < self.q self._flip_z = r < self.r if self._flip_x or self._flip_y or self._flip_z: self._do_transform = True else: self._do_transform = False def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor: if randomize: self.randomize() if not self._do_transform: return img img = convert_to_tensor(img, track_meta=get_track_meta()) dim = len(img.shape) axes = [] if self._flip_x: axes.append(dim - 3) if self._flip_y: axes.append(dim - 2) if self._flip_z: axes.append(dim - 1) if len(axes) > 0: img = torch.flip(img, axes) ret: NdarrayOrTensor = convert_data_type(img, dtype=self.dtype)[0] return ret class RandFlipAxes3Dd(RandomizableTransform, MapTransform): def __init__( self, keys: KeysCollection, prob_x: float = 0.5, prob_y: float = 0.5, prob_z: float = 0.5, dtype: DtypeLike = np.float32, ): MapTransform.__init__(self, keys) RandomizableTransform.__init__(self, 1.0) self.t = RandFlipAxes3D(prob_x, prob_y, prob_z, dtype) def randomize(self) -> None: self.t.randomize() def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) self.randomize() if not self.t._do_transform: for key in self.keys: d[key] = convert_to_tensor(d[key], track_meta=get_track_meta()) return d for key in self.keys: d[key] = self.t(d[key], randomize=False) return d class SimulateLowResolution(RandomizableTransform): backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, prob: float = 0.125, zoom_range: List[float] = [0.5, 1.0], dtype: DtypeLike = np.float32): RandomizableTransform.__init__(self, prob) self.zoom_range = zoom_range self._zoom_scale = 1.0 self.dtype = dtype def randomize(self) -> None: super().randomize(None) if not self._do_transform: return self._zoom_scale = self.R.uniform(self.zoom_range[0], self.zoom_range[1]) def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor: if randomize: self.randomize() if not self._do_transform: return img img = convert_to_tensor(img, track_meta=get_track_meta()) img = img.unsqueeze(0) # Add batch dimension # Compute target shape target_shape = [int(round(s * self._zoom_scale)) for s in img.shape[2:]] tmp = F.interpolate(img, size=target_shape, mode="nearest-exact") img = F.interpolate(tmp, size=img.shape[2:], mode="trilinear") img = img.squeeze(0) # Remove batch dimension ret: NdarrayOrTensor = convert_data_type(img, dtype=self.dtype)[0] return ret class SimulateLowResolutiond(RandomizableTransform, MapTransform): backend = SimulateLowResolution.backend def __init__( self, keys: KeysCollection, prob: float = 0.125, zoom_range: List[float] = [0.5, 1.0], dtype: DtypeLike = np.float32, ): MapTransform.__init__(self, keys) RandomizableTransform.__init__(self, 1.0) self.t = SimulateLowResolution(prob, zoom_range, dtype) def randomize(self) -> None: self.t.randomize() def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) self.randomize() if not self.t._do_transform: for key in self.keys: d[key] = convert_to_tensor(d[key], track_meta=get_track_meta()) return d for key in self.keys: d[key] = self.t(d[key], randomize=False) return d
NVFlare-main
research/condist-fl/src/data/augmentations/spatial.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ["Trainer", "ConDistTrainer"] from .condist import ConDistTrainer from .trainer import Trainer
NVFlare-main
research/condist-fl/src/trainer/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy from pathlib import Path, PurePath from typing import Any, Dict, Optional import torch import torch.nn as nn from losses import MarginalDiceCELoss from monai.losses import DeepSupervisionLoss from torch.optim import SGD from torch.optim.lr_scheduler import CosineAnnealingLR from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm class Trainer(object): def __init__(self, task_config: Dict): self.init_lr = task_config["training"].get("lr", 1e-2) self.max_steps = task_config["training"]["max_steps"] self.max_rounds = task_config["training"]["max_rounds"] self.use_half_precision = task_config["training"].get("use_half_precision", False) self.scaler = torch.cuda.amp.GradScaler(enabled=self.use_half_precision) num_classes = len(task_config["classes"]) foreground = task_config["condist_config"]["foreground"] background = task_config["condist_config"]["background"] self.model_config = task_config["model"] self.marginal_loss_fn = MarginalDiceCELoss(foreground, softmax=True, smooth_nr=0.0, batch=True) self.ds_loss_fn = DeepSupervisionLoss(self.marginal_loss_fn, weights=[0.5333, 0.2667, 0.1333, 0.0667]) self.current_step = 0 self.current_round = 0 self.opt = None self.opt_state = None self.sch = None self.sch_state = None def update_condist_weight(self): left = min(self.weight_range) right = max(self.weight_range) intv = (right - left) / (self.max_rounds - 1) self.weight = left + intv * self.current_round def configure_optimizer(self): self.opt = SGD(self.model.parameters(), lr=self.init_lr, momentum=0.99, nesterov=True, weight_decay=1e-5) if self.opt_state is not None: self.opt.load_state_dict(self.opt_state) self.sch = CosineAnnealingLR(self.opt, T_max=self.max_steps, eta_min=1e-7) if self.sch_state is not None: self.sch.load_state_dict(self.sch_state) def training_step(self, model: nn.Module, batch: Dict, device: str = "cuda:0"): image = batch["image"].to(device) label = batch["label"].to(device) preds = model(image) if preds.dim() == 6: preds = [preds[:, i, ::] for i in range(preds.shape[1])] loss = self.ds_loss_fn(preds, label) # Log training information if self.logger is not None: step = self.current_step self.logger.add_scalar("loss", loss, step) self.logger.add_scalar("lr", self.sch.get_last_lr()[-1], step) return loss def get_batch(self, data_loader: DataLoader, num_steps: int): it = iter(data_loader) for i in range(num_steps): try: batch = next(it) except StopIteration: it = iter(data_loader) batch = next(it) yield batch def training_loop(self, data_loader: DataLoader, num_steps: int, device: str = "cuda:0"): target_step = self.current_step + num_steps with tqdm(total=num_steps, dynamic_ncols=True) as pbar: # Configure progress bar pbar.set_description(f"Round {self.current_round}") for batch in self.get_batch(data_loader, num_steps): # Forward with torch.cuda.amp.autocast(enabled=self.use_half_precision): loss = self.training_step(self.model, batch) # Backward self.opt.zero_grad() self.scaler.scale(loss).backward() # Gradient clipping self.scaler.unscale_(self.opt) torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0, norm_type=2.0) # Apply gradient self.scaler.step(self.opt) self.sch.step() self.scaler.update() # Update progress bar pbar.set_postfix(loss=f"{loss.item():.2f}") pbar.update(1) self.current_step += 1 if self.current_step >= target_step: break if self.abort is not None and self.abort.triggered: break def setup(self, model: nn.Module, logger: SummaryWriter, abort_signal: Any): self.model = model self.logger = logger if abort_signal is not None: self.abort = abort_signal else: self.abort = None self.configure_optimizer() def cleanup(self): # Save opt & sch states self.opt_state = deepcopy(self.opt.state_dict()) self.sch_state = deepcopy(self.sch.state_dict()) # Cleanup opt, sch & models self.sch = None self.opt = None self.model = None self.logger = None self.abort_signal = None # Cleanup GPU cache torch.cuda.empty_cache() def save_checkpoint(self, path: str, model: nn.Module) -> None: path = PurePath(path) Path(path.parent).mkdir(parents=True, exist_ok=True) ckpt = { "round": self.current_round, "global_steps": self.current_step, "model": model.state_dict(), "optimizer": self.opt_state, "scheduler": self.sch_state, } torch.save(ckpt, str(path)) def load_checkpoint(self, path: str, model: nn.Module) -> nn.Module: ckpt = torch.load(path) self.current_step = ckpt.get("global_steps", 0) self.current_round = ckpt.get("round", 0) self.opt_state = ckpt.get("optimizer", None) self.sch_state = ckpt.get("scheduler", None) model.load_state_dict(ckpt["model"]) return model def run( self, model: nn.Module, data_loader: DataLoader, num_steps: int, device: str = "cuda:0", logger: Optional[SummaryWriter] = None, abort_signal: Optional[Any] = None, ): self.setup(model, logger, abort_signal) # Run training self.model.train() self.training_loop(data_loader, num_steps) self.current_round += 1 self.cleanup()
NVFlare-main
research/condist-fl/src/trainer/trainer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy from pathlib import Path, PurePath from typing import Any, Dict, Optional import torch import torch.nn as nn from losses import ConDistDiceLoss, MarginalDiceCELoss from monai.losses import DeepSupervisionLoss from torch.optim import SGD from torch.optim.lr_scheduler import CosineAnnealingLR from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from utils.get_model import get_model class ConDistTrainer(object): def __init__(self, task_config: Dict): self.init_lr = task_config["training"].get("lr", 1e-2) self.max_steps = task_config["training"]["max_steps"] self.max_rounds = task_config["training"]["max_rounds"] self.use_half_precision = task_config["training"].get("use_half_precision", False) self.scaler = torch.cuda.amp.GradScaler(enabled=self.use_half_precision) num_classes = len(task_config["classes"]) foreground = task_config["condist_config"]["foreground"] background = task_config["condist_config"]["background"] temperature = task_config["condist_config"].get("temperature", 2.0) self.model_config = task_config["model"] self.weight_range = task_config["condist_config"]["weight_schedule_range"] self.condist_loss_fn = ConDistDiceLoss( num_classes, foreground, background, temperature=temperature, smooth_nr=0.0, batch=True ) self.marginal_loss_fn = MarginalDiceCELoss(foreground, softmax=True, smooth_nr=0.0, batch=True) self.ds_loss_fn = DeepSupervisionLoss(self.marginal_loss_fn, weights=[0.5333, 0.2667, 0.1333, 0.0667]) self.current_step = 0 self.current_round = 0 self.opt = None self.opt_state = None self.sch = None self.sch_state = None def update_condist_weight(self): left = min(self.weight_range) right = max(self.weight_range) intv = (right - left) / (self.max_rounds - 1) self.weight = left + intv * self.current_round def configure_optimizer(self): self.opt = SGD(self.model.parameters(), lr=self.init_lr, momentum=0.99, nesterov=True, weight_decay=1e-5) if self.opt_state is not None: self.opt.load_state_dict(self.opt_state) self.sch = CosineAnnealingLR(self.opt, T_max=self.max_steps, eta_min=1e-7) if self.sch_state is not None: self.sch.load_state_dict(self.sch_state) def training_step(self, model: nn.Module, batch: Dict, device: str = "cuda:0"): image = batch["image"].to(device) label = batch["label"].to(device) preds = model(image) if preds.dim() == 6: preds = [preds[:, i, ::] for i in range(preds.shape[1])] ds_loss = self.ds_loss_fn(preds, label) with torch.no_grad(): targets = self.global_model(image) if targets.dim() == 6: targets = targets[:, 0, ::] condist_loss = self.condist_loss_fn(preds[0], targets, label) loss = ds_loss + self.weight * condist_loss # Log training information if self.logger is not None: step = self.current_step self.logger.add_scalar("loss", loss, step) self.logger.add_scalar("loss_sup", ds_loss, step) self.logger.add_scalar("loss_condist", condist_loss, step) self.logger.add_scalar("lr", self.sch.get_last_lr()[-1], step) self.logger.add_scalar("condist_weight", self.weight, step) return loss def get_batch(self, data_loader: DataLoader, num_steps: int): it = iter(data_loader) for i in range(num_steps): try: batch = next(it) except StopIteration: it = iter(data_loader) batch = next(it) yield batch def training_loop(self, data_loader: DataLoader, num_steps: int, device: str = "cuda:0"): self.global_model = self.global_model.to(device) target_step = self.current_step + num_steps with tqdm(total=num_steps, dynamic_ncols=True) as pbar: # Configure progress bar pbar.set_description(f"Round {self.current_round}") for batch in self.get_batch(data_loader, num_steps): # Forward with torch.cuda.amp.autocast(enabled=self.use_half_precision): loss = self.training_step(self.model, batch) # Backward self.opt.zero_grad() self.scaler.scale(loss).backward() # Gradient clipping self.scaler.unscale_(self.opt) torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0, norm_type=2.0) # Apply gradient self.scaler.step(self.opt) self.sch.step() self.scaler.update() # Update progress bar pbar.set_postfix(loss=f"{loss.item():.2f}") pbar.update(1) self.current_step += 1 if self.current_step >= target_step: break if self.abort is not None and self.abort.triggered: break def setup(self, model: nn.Module, logger: SummaryWriter, abort_signal: Any): self.model = model # self.global_model = deepcopy(model).eval() self.global_model = get_model(self.model_config) self.global_model.load_state_dict(deepcopy(model.state_dict())) self.global_model.eval() self.logger = logger if abort_signal is not None: self.abort = abort_signal else: self.abort = None self.configure_optimizer() self.update_condist_weight() def cleanup(self): # Save opt & sch states self.opt_state = deepcopy(self.opt.state_dict()) self.sch_state = deepcopy(self.sch.state_dict()) # Cleanup opt, sch & models self.sch = None self.opt = None self.model = None self.global_model = None self.logger = None self.abort_signal = None # Cleanup GPU cache torch.cuda.empty_cache() def save_checkpoint(self, path: str, model: nn.Module) -> None: path = PurePath(path) Path(path.parent).mkdir(parents=True, exist_ok=True) ckpt = { "round": self.current_round, "global_steps": self.current_step, "model": model.state_dict(), "optimizer": self.opt_state, "scheduler": self.sch_state, } torch.save(ckpt, str(path)) def load_checkpoint(self, path: str, model: nn.Module) -> nn.Module: ckpt = torch.load(path) self.current_step = ckpt.get("global_steps", 0) self.current_round = ckpt.get("round", 0) self.opt_state = ckpt.get("optimizer", None) self.sch_state = ckpt.get("scheduler", None) model.load_state_dict(ckpt["model"]) return model def run( self, model: nn.Module, data_loader: DataLoader, num_steps: int, device: str = "cuda:0", logger: Optional[SummaryWriter] = None, abort_signal: Optional[Any] = None, ): self.setup(model, logger, abort_signal) # Run training self.model.train() self.training_loop(data_loader, num_steps) self.current_round += 1 self.cleanup()
NVFlare-main
research/condist-fl/src/trainer/condist.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import uuid def read_json(filename): assert os.path.isfile(filename), f"{filename} does not exist!" with open(filename, "r") as f: return json.load(f) def write_json(data, filename): with open(filename, "w") as f: json.dump(data, f, indent=4) def main(): parser = argparse.ArgumentParser() parser.add_argument("--job", type=str, default="cifar10_fedavg", help="Path to job config.") parser.add_argument("--poc", action="store_true", help="Whether admin uses POC mode.") parser.add_argument( "--train_split_root", type=str, default="/tmp/cifar10_splits", help="Location where to save data splits." ) parser.add_argument( "--alpha", type=float, default=0.0, help="Value controls the degree of heterogeneity. " "Lower values of alpha means higher heterogeneity." "Values of <= 0. means no data sampling. " "Assumes central training.", ) args = parser.parse_args() # update alpha and split data dir job_name = os.path.basename(args.job) client_config_filename = os.path.join(args.job, job_name, "config", "config_fed_client.json") server_config_filename = os.path.join(args.job, job_name, "config", "config_fed_server.json") meta_config_filename = os.path.join(args.job, "meta.json") if args.alpha > 0.0: client_config = read_json(client_config_filename) server_config = read_json(server_config_filename) meta_config = read_json(meta_config_filename) print(f"Set alpha to {args.alpha}") token = str(uuid.uuid4()) job_name = f"{job_name}_alpha{args.alpha}" server_config["alpha"] = args.alpha meta_config["name"] = job_name split_dir = os.path.join(args.train_split_root, f"{job_name}_{token}") print(f"Set train split root to {split_dir}") server_config["TRAIN_SPLIT_ROOT"] = split_dir client_config["TRAIN_SPLIT_ROOT"] = split_dir write_json(client_config, client_config_filename) write_json(server_config, server_config_filename) write_json(meta_config, meta_config_filename) print(f"Updated {meta_config_filename} to alpha={args.alpha}") else: print("Assuming centralized training.") if __name__ == "__main__": main()
NVFlare-main
research/auto-fed-rl/set_alpha.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import torch from nvflare.apis.dxo import DataKind, MetaKey, from_shareable from nvflare.apis.event_type import EventType from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.abstract.learnable import Learnable from nvflare.app_common.abstract.model import make_model_learnable from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.shareablegenerators.full_model_shareable_generator import FullModelShareableGenerator from nvflare.security.logging import secure_format_exception from .autofedrl_constants import AutoFedRLConstants class AutoFedRLFedOptModelShareableGenerator(FullModelShareableGenerator): def __init__( self, optimizer_args: dict = None, lr_scheduler_args: dict = None, source_model="model", device=None, ): """Implement the FedOpt algorithm. The algorithm is proposed in Reddi, Sashank, et al. "Adaptive federated optimization." arXiv preprint arXiv:2003.00295 (2020). This SharableGenerator will update the global model using the specified PyTorch optimizer and learning rate scheduler. Args: optimizer_args: dictionary of optimizer arguments, e.g. {'path': 'torch.optim.SGD', 'args': {'lr': 1.0}} (default). lr_scheduler_args: dictionary of server-side learning rate scheduler arguments, e.g. {'path': 'torch.optim.lr_scheduler.CosineAnnealingLR', 'args': {'T_max': 100}} (default: None). source_model: either a valid torch model object or a component ID of a torch model object device: specify the device to run server-side optimization, e.g. "cpu" or "cuda:0" (will default to cuda if available and no device is specified). Raises: TypeError: when any of input arguments does not have correct type """ super().__init__() if not optimizer_args: self.logger("No optimizer_args provided. Using FedOpt with SGD and lr 1.0") optimizer_args = {"name": "SGD", "args": {"lr": 1.0}} if not isinstance(optimizer_args, dict): raise TypeError( "optimizer_args must be a dict of format, e.g. {'path': 'torch.optim.SGD', 'args': {'lr': 1.0}}." ) if lr_scheduler_args is not None: if not isinstance(lr_scheduler_args, dict): raise TypeError( "optimizer_args must be a dict of format, e.g. " "{'path': 'torch.optim.lr_scheduler.CosineAnnealingLR', 'args': {'T_max': 100}}." ) self.source_model = source_model self.optimizer_args = optimizer_args self.lr_scheduler_args = lr_scheduler_args self.model = None self.optimizer = None self.lr_scheduler = None if device is None: self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") else: self.device = torch.device(device) self.optimizer_name = None self.lr_scheduler_name = None def _get_component_name(self, component_args): if component_args is not None: name = component_args.get("path", None) if name is None: name = component_args.get("name", None) return name else: return None def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: # initialize the optimizer with current global model params engine = fl_ctx.get_engine() if isinstance(self.source_model, str): self.model = engine.get_component(self.source_model) else: self.model = self.source_model if self.model is None: self.system_panic( "Model is not available", fl_ctx, ) return elif not isinstance(self.model, torch.nn.Module): self.system_panic( f"Expected model to be a torch.nn.Module but got {type(self.model)}", fl_ctx, ) return else: print("server model", self.model) self.model.to(self.device) # set up optimizer try: # use provided or default optimizer arguments and add the model parameters if "args" not in self.optimizer_args: self.optimizer_args["args"] = {} self.optimizer_args["args"]["params"] = self.model.parameters() self.optimizer = engine.build_component(self.optimizer_args) # get optimizer name for log self.optimizer_name = self._get_component_name(self.optimizer_args) except Exception as e: self.system_panic( f"Exception while parsing `optimizer_args`({self.optimizer_args}): {secure_format_exception(e)}", fl_ctx, ) return # set up lr scheduler if self.lr_scheduler_args is not None: try: self.lr_scheduler_name = self._get_component_name(self.lr_scheduler_args) # use provided or default lr scheduler argument and add the optimizer if "args" not in self.lr_scheduler_args: self.lr_scheduler_args["args"] = {} self.lr_scheduler_args["args"]["optimizer"] = self.optimizer self.lr_scheduler = engine.build_component(self.lr_scheduler_args) except Exception as e: self.system_panic( f"Exception while parsing `lr_scheduler_args`({self.lr_scheduler_args}): {secure_format_exception(e)}", fl_ctx, ) return def server_update(self, model_diff, server_lr=None): """Updates the global model using the specified optimizer. Args: model_diff: the aggregated model differences from clients. server_lr: server learning rate from search space Returns: The updated PyTorch model state dictionary. """ self.model.train() if server_lr is not None: for param_group in self.optimizer.param_groups: param_group["lr"] = server_lr self.optimizer.zero_grad() # Apply the update to the model. We must multiply weights_delta by -1.0 to # view it as a gradient that should be applied to the server_optimizer. for name, param in self.model.named_parameters(): param.grad = torch.tensor(-1.0 * model_diff[name]).to(self.device) self.optimizer.step() if self.lr_scheduler is not None: self.lr_scheduler.step() return self.model.state_dict() def shareable_to_learnable(self, shareable: Shareable, fl_ctx: FLContext) -> Learnable: """Convert Shareable to Learnable while doing a FedOpt update step. Supporting data_kind == DataKind.WEIGHT_DIFF Args: shareable (Shareable): Shareable to be converted fl_ctx (FLContext): FL context Returns: Model: Updated global ModelLearnable. """ # check types dxo = from_shareable(shareable) if dxo.data_kind != DataKind.WEIGHT_DIFF: self.system_panic( "FedOpt is only implemented for " "data_kind == DataKind.WEIGHT_DIFF", fl_ctx, ) return Learnable() processed_algorithm = dxo.get_meta_prop(MetaKey.PROCESSED_ALGORITHM) if processed_algorithm is not None: self.system_panic( f"FedOpt is not implemented for shareable processed by {processed_algorithm}", fl_ctx, ) return Learnable() model_diff = dxo.data server_lr = fl_ctx.get_prop(AutoFedRLConstants.HYPERPARAMTER_COLLECTION, {}).get("slr") if server_lr is not None: self.log_info(fl_ctx, f"Received and override current server learning rate as: {server_lr}") start = time.time() weights = self.server_update(model_diff, server_lr) secs = time.time() - start # convert to numpy dict of weights start = time.time() for key in weights: weights[key] = weights[key].detach().cpu().numpy() secs_detach = time.time() - start self.log_info( fl_ctx, f"FedOpt ({self.optimizer_name}, {self.device}) server model update " f"round {fl_ctx.get_prop(AppConstants.CURRENT_ROUND)}, " f"{self.lr_scheduler_name if self.lr_scheduler_name else ''} " f"lr: {self.optimizer.param_groups[-1]['lr']}, " f"update: {secs} secs., detach: {secs_detach} secs.", ) # TODO: write server-side lr to tensorboard return make_model_learnable(weights, dxo.get_meta_props())
NVFlare-main
research/auto-fed-rl/src/autofedrl/autofedrl_fedopt.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import numpy as np import torch import torch.nn.functional as F from torch import nn from torch.distributions.multivariate_normal import MultivariateNormal from torch.nn.parameter import Parameter from nvflare.apis.dxo import DataKind, from_shareable from nvflare.apis.event_type import EventType from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.app_constant import AppConstants from .autofedrl_constants import AutoFedRLConstants class PTAutoFedRLSearchSpace(FLComponent): def __init__( self, optimizer_args: dict = None, lr_scheduler_args: dict = None, device=None, search_lr=False, lr_range=None, search_ne=False, ne_range=None, search_aw=False, aw_range=None, search_slr=False, slr_range=None, cutoff_interval=5, n_clients=8, initial_precision=85.0, search_type="cs", ): """Implement the Auto-FedRL algorithm (https://arxiv.org/abs/2203.06338). The algorithm is proposed in Reddi, Sashank, et al. "Adaptive federated optimization." arXiv preprint arXiv:2003.00295 (2020). This SharableGenerator will update the global model using the specified PyTorch optimizer and learning rate scheduler. Args: optimizer_args: dictionary of optimizer arguments, e.g. {'path': 'torch.optim.SGD', 'args': {'lr': 1.0}} (default). lr_scheduler_args: dictionary of server-side learning rate scheduler arguments, e.g. {'path': 'torch.optim.lr_scheduler.CosineAnnealingLR', 'args': {'T_max': 100}} (default: None). device: specify the device to run server-side optimization, e.g. "cpu" or "cuda:0" (will default to cuda if available and no device is specified). Raises: TypeError: when any of input arguments does not have correct type """ super().__init__() if not optimizer_args: self.logger("No optimizer_args provided. Using FedOpt with SGD and lr 0.01") optimizer_args = {"name": "Adam", "args": {"lr": 0.01, "betas": (0.7, 0.7)}} if not isinstance(optimizer_args, dict): raise TypeError( "optimizer_args must be a dict of format, e.g. {'path': 'torch.optim.SGD', 'args': {'lr': 1.0}}." ) if lr_scheduler_args is not None: if not isinstance(lr_scheduler_args, dict): raise TypeError( "optimizer_args must be a dict of format, e.g. " "{'path': 'torch.optim.lr_scheduler.CosineAnnealingLR', 'args': {'T_max': 100}}." ) if search_type not in ["cs", "drl"]: raise NotImplementedError("Currently, we only implemented continuous search space") self.optimizer_args = optimizer_args self.lr_scheduler_args = lr_scheduler_args self.optimizer = None self.lr_scheduler = None self.search_lr = search_lr self.lr_range = lr_range self.search_ne = search_ne self.ne_range = ne_range self.search_aw = search_aw self.aw_range = aw_range self.search_slr = search_slr self.slr_range = slr_range self.n_clients = n_clients self.initial_precision = initial_precision self.search_type = search_type self.cutoff_interval = cutoff_interval # Set default search ranges if self.lr_range is None: self.lr_range = [0.0005, 0.05] if self.ne_range is None: self.ne_range = [2, 40] if self.aw_range is None: self.aw_range = [0.1, 1.0] if self.slr_range is None: self.slr_range = [0.5, 1.5] # TODO: add checks for valid parameter ranges if device is None: self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") else: self.device = torch.device(device) self.optimizer_name = None self.lr_scheduler_name = None def _get_component_name(self, component_args): if component_args is not None: name = component_args.get("path", None) if name is None: name = component_args.get("name", None) return name else: return None def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: # Initialize the optimizer with current global model params engine = fl_ctx.get_engine() # Define RL search space hyperparams_points = [] if self.search_lr: hyperparams_points += [self.lr_range] if self.search_ne: hyperparams_points += [self.ne_range] if self.search_aw: hyperparams_points += [self.aw_range for _ in range(self.n_clients)] if self.search_slr: hyperparams_points += [self.slr_range] if self.search_type == "cs": self.hp_dist = LearnableGaussianContinuousSearch( hyperparams_points, self.initial_precision, self.device ) self.hp_dist.to(self.device) self.log_info(fl_ctx, "Initialized Continuous Search Space") elif self.search_type == "drl": # TODO: Deep RL agent requires torch==1.4.0 self.hp_dist = LearnableGaussianContinuousSearchDRL( hyperparams_points, self.initial_precision, self.device ) self.hp_dist.to(self.device) self.log_info(fl_ctx, "Initialized DRL Continuous Search space") else: raise NotImplementedError # Set up optimizer try: # Use provided or default optimizer arguments and add the model parameters if "args" not in self.optimizer_args: self.optimizer_args["args"] = {} self.optimizer_args["args"]["params"] = self.hp_dist.parameters() self.optimizer = engine.build_component(self.optimizer_args) # Get optimizer name for log self.optimizer_name = self._get_component_name(self.optimizer_args) except Exception as e: self.system_panic( f"Exception while parsing `optimizer_args`: " f"{self.optimizer_args} with Exception {e}", fl_ctx, ) return # Initialize self.logprob_history = [] self.val_losses = [-np.inf] self.log_info(fl_ctx, "Initialized validation loss fpr Search space") def sample_hyperparamters(self, fl_ctx: FLContext) -> None: """Convert Shareable to Learnable while doing a FedOpt update step. Args: shareable (Shareable): Shareable to be converted fl_ctx (FLContext): FL context Returns: Model: Updated global ModelLearnable. """ hparam, logprob = self.hp_dist.forward() hparam_list = list(hparam) if self.search_lr: lrate = hparam_list.pop(0) if self.search_ne: train_iters_per_round = hparam_list.pop(0) train_iters_per_round = int(train_iters_per_round + 0.5) if self.search_aw: aw = [hparam_list.pop(0) for _ in range(self.n_clients)] aw_tensor = torch.tensor([aw]) aw_tensor = F.softmax(aw_tensor, dim=1) weight = [aw_tensor[:, i].item() for i in range(self.n_clients)] if self.search_slr: slr = hparam_list.pop(0) # Add constrains to prevent negative value if self.search_lr: lrate = lrate if lrate > 0.0001 else 0.0001 if self.search_ne: train_iters_per_round = int(train_iters_per_round + 0.5) if train_iters_per_round >= 1 else 1 if self.search_slr: slr = slr if slr > 0.0001 else 0.0001 self.logprob_history.append(logprob) self.log_info(fl_ctx, f"Hyperparameter Search at round {fl_ctx.get_prop(AppConstants.CURRENT_ROUND)}") if self.search_lr: self.log_info(fl_ctx, f"Learning rate: {lrate}") if self.search_ne: self.log_info(fl_ctx, f"Number of local epochs: {train_iters_per_round}") if self.search_aw: self.log_info(fl_ctx, f"Aggregation weights: {weight}") if self.search_lr: self.log_info(fl_ctx, f"Server learning rate {slr}") if self.search_lr: self.log_info(fl_ctx, f"dist mean: {self.hp_dist.mean}") if self.search_lr: self.log_info(fl_ctx, f"precision component: {self.hp_dist.precision_component}") hps = { "lr": lrate if self.search_lr else None, "ne": train_iters_per_round if self.search_ne else None, "aw": weight if self.search_aw else None, "slr": slr if self.search_slr else None, } fl_ctx.set_prop(AutoFedRLConstants.HYPERPARAMTER_COLLECTION, hps, private=True, sticky=False) def update_search_space(self, shareable, fl_ctx: FLContext) -> None: if not isinstance(shareable, Shareable): raise TypeError("shareable must be Shareable, but got {}.".format(type(shareable))) dxo = from_shareable(shareable) if dxo.data_kind == DataKind.METRICS: val_loss = dxo.data["val_loss"] else: raise ValueError("data_kind should be DataKind.METRICS, but got {}".format(dxo.data_kind)) self.val_losses.append(torch.tensor(val_loss, dtype=torch.float32, device=self.device)) start = time.time() current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) # Get cutoff val losses for windowed updates cutoff_round = max(0, current_round - self.cutoff_interval) # Ignore initial loss val_losses_torch = torch.tensor(list(self.val_losses[1:]), dtype=torch.float32, device=self.device) val_losses_cut = val_losses_torch[cutoff_round:] current_loss = 0 current_improvements = [0] # Compute hp search loss if len(val_losses_cut) > 1: current_improvements = -((val_losses_cut[1:] / val_losses_cut[:-1]) - 1) current_mean_improvements = current_improvements.mean() updates_limit = len(current_improvements) + 1 for j in range(1, updates_limit): current_loss = self.logprob_history[-j - 1] * (current_improvements[-j] - current_mean_improvements) # Update search space if not (type(current_loss) == int): # TODO: Is this needed? self.optimizer.zero_grad() (-current_loss).backward(retain_graph=True) self.optimizer.step() # We need release the memory based on cutoff interval if len(self.logprob_history) > self.cutoff_interval: self.log_info(fl_ctx, (f"Release Memory......at round {current_round}")) release_list = self.logprob_history[: -self.cutoff_interval] keep_list = self.logprob_history[-self.cutoff_interval :] tmp_list = [logpro.detach() for logpro in release_list] self.logprob_history = tmp_list + keep_list secs = time.time() - start self.log_info( fl_ctx, f"Finished Auto-FedRL search space update ({self.optimizer_name}, {self.device}) " f"round {current_round}, HP loss {current_loss} " f"lr: {self.optimizer.param_groups[-1]['lr']}, " f"update: {secs} secs.", ) self.log_debug(fl_ctx, f"val loss: {self.val_losses}) ") self.log_debug(fl_ctx, f"logprob_history: {self.logprob_history}) ") class LearnableGaussianContinuousSearch(torch.nn.Module): def __init__(self, hyperparams_points, initial_precision=None, device="cpu"): super(LearnableGaussianContinuousSearch, self).__init__() self.dim = len(hyperparams_points) self.hps = [np.array(x) for x in hyperparams_points] self.hps_center = torch.tensor([(x[0] + x[-1]) / 2 for x in self.hps]).to(device) self.hps_scale = torch.tensor([x[-1] - x[0] for x in self.hps]).to(device) self.mean = Parameter(torch.zeros(self.dim)) precision_val = 5.0 if initial_precision is None else initial_precision precision_component = torch.sqrt(torch.eye(self.dim) * precision_val) self.precision_component = Parameter(precision_component) def forward(self): self.mean.data.copy_(torch.clamp(self.mean.data, -0.5, 0.5)) self.dist = MultivariateNormal(loc=self.mean, precision_matrix=self.precision_component) sample = self.dist.sample() logprob = self.dist.log_prob(sample) sample = sample * self.hps_scale + self.hps_center return sample, logprob class LearnableGaussianContinuousSearchDRL(torch.nn.Module): def __init__(self, hyperparams_points, initial_precision=None, device="cpu", rl_nettype="mlp"): super(LearnableGaussianContinuousSearchDRL, self).__init__() self.dim = len(hyperparams_points) if rl_nettype == "mlp": self.PolicyNet = PolicyNet(self.dim).to(device) else: raise NotImplementedError self.hps = [np.array(x) for x in hyperparams_points] self.hps_center = torch.tensor([(x[0] + x[-1]) / 2 for x in self.hps]).to(device) self.hps_scale = torch.tensor([x[-1] - x[0] for x in self.hps]).to(device) self.mean = torch.zeros(self.dim) + 10e-8 precision_val = 5.0 if initial_precision is None else initial_precision precision_component = torch.sqrt(torch.eye(self.dim) * precision_val) + 10e-8 self.precision_component = precision_component def forward(self): mean_update, precision_component_update = self.PolicyNet(self.mean, self.precision_component) self.mean = self.mean + mean_update self.precision_component = self.precision_component + precision_component_update self.mean.data.copy_(torch.clamp(self.mean.data, -1.0, 1.0)) dist = MultivariateNormal( loc=self.mean, precision_matrix=torch.mm(self.precision_component, self.precision_component.t()) ) sample = dist.sample() logprob = dist.log_prob(sample) sample = sample * self.hps_scale + self.hps_center return sample, logprob class PolicyNet(torch.nn.Module): def __init__(self, input_dim): super(PolicyNet, self).__init__() self.input_dim = input_dim in_chanel = input_dim * input_dim + input_dim self.fc_layer = nn.Sequential( nn.Linear(in_chanel, 256), nn.ReLU(), nn.Linear(256, 256), nn.ReLU(), nn.Linear(256, in_chanel), nn.Tanh(), ) def forward(self, mean, precision_component): tmp = torch.cat([mean, precision_component.reshape((-1,))]) input = torch.unsqueeze(tmp, 0) x = torch.squeeze(self.fc_layer(input)) / 100.0 mean_update = x[: self.input_dim] precision_component_update = x[self.input_dim :].reshape((self.input_dim, self.input_dim)) return mean_update, precision_component_update
NVFlare-main
research/auto-fed-rl/src/autofedrl/pt_autofedrl.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .autofedrl_cifar10_learner import CIFAR10AutoFedRLearner from .autofedrl_fedopt import AutoFedRLFedOptModelShareableGenerator from .autofedrl_learner_executor import AutoFedRLLearnerExecutor from .autofedrl_model_aggregator import AutoFedRLWeightedAggregator from .autofedrl_scatter_and_gather import ScatterAndGatherAutoFedRL from .pt_autofedrl import PTAutoFedRLSearchSpace
NVFlare-main
research/auto-fed-rl/src/autofedrl/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import traceback from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import ClientTask, Task from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.app_common.abstract.aggregator import Aggregator from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.app_common.workflows.scatter_and_gather import ScatterAndGather from nvflare.fuel.utils import fobs from nvflare.fuel.utils.import_utils import optional_import from nvflare.widgets.info_collector import GroupInfoCollector, InfoCollector from .autofedrl_constants import AutoFedRLConstants class ScatterAndGatherAutoFedRL(ScatterAndGather): def __init__( self, min_clients: int = 1, num_rounds: int = 5, start_round: int = 0, wait_time_after_min_received: int = 10, aggregator_id=AppConstants.DEFAULT_AGGREGATOR_ID, aggregator_search_val_id=AppConstants.DEFAULT_AGGREGATOR_ID, persistor_id=AppConstants.DEFAULT_PERSISTOR_ID, shareable_generator_id=AppConstants.DEFAULT_SHAREABLE_GENERATOR_ID, search_space_id=AppConstants.DEFAULT_SHAREABLE_GENERATOR_ID, train_task_name=AppConstants.TASK_TRAIN, train_timeout: int = 0, ignore_result_error: bool = False, ): """The controller for ScatterAndGather Workflow used to implement Auto-FedRL algorithm (https://arxiv.org/abs/2203.06338). The ScatterAndGather workflow defines FederatedAveraging on all clients. The model persistor (persistor_id) is used to load the initial global model which is sent to all clients. Each client sends it's updated weights after local training which is aggregated (aggregator_id). The shareable generator is used to convert the aggregated weights to shareable and shareable back to weight. The model_persistor also saves the model after training. Args: min_clients (int, optional): Min number of clients in training. Defaults to 1. num_rounds (int, optional): The total number of training rounds. Defaults to 5. start_round (int, optional): Start round for training. Defaults to 0. wait_time_after_min_received (int, optional): Time to wait before beginning aggregation after contributions received. Defaults to 10. aggregator_id (str, optional): ID of the aggregator component. Defaults to "aggregator". persistor_id (str, optional): ID of the persistor component. Defaults to "persistor". shareable_generator_id (str, optional): ID of the shareable generator. Defaults to "shareable_generator". train_task_name (str, optional): Name of the train task. Defaults to "train". train_timeout (int, optional): Time to wait for clients to do local training. ignore_result_error (bool, optional): whether this controller can proceed if client result has errors. Defaults to False. Raises: TypeError: when any of input arguments does not have correct type ValueError: when any of input arguments is out of range """ super().__init__( min_clients=min_clients, num_rounds=num_rounds, start_round=start_round, wait_time_after_min_received=wait_time_after_min_received, aggregator_id=aggregator_id, persistor_id=persistor_id, shareable_generator_id=shareable_generator_id, train_task_name=train_task_name, train_timeout=train_timeout, ignore_result_error=ignore_result_error, ) # Check arguments if not isinstance(aggregator_search_val_id, str): raise TypeError( "aggregator_search_val_id must be a string but got {}".format(type(aggregator_search_val_id)) ) if not isinstance(search_space_id, str): raise TypeError("search_space_id must be a string but got {}".format(type(search_space_id))) self.aggregator_search_val_id = aggregator_search_val_id self.search_space_id = search_space_id self.aggregator_search_val = None self.search_space = None # use FOBS serializing/deserializing PyTorch tensors (if torch is available) torch, torch_available = optional_import(module="torch") if torch_available: from nvflare.app_opt.pt.decomposers import TensorDecomposer fobs.register(TensorDecomposer) def start_controller(self, fl_ctx: FLContext) -> None: super().start_controller(fl_ctx=fl_ctx) self.log_info(fl_ctx, "Initializing ScatterAndGatherAutoFedRL workflow.") # used for collecting hp val loss from clients self.aggregator_search_val = self._engine.get_component(self.aggregator_search_val_id) if not isinstance(self.aggregator_search_val, Aggregator): self.system_panic( f"aggregator {self.aggregator_search_val_id} must be an Aggregator type object but got {type(self.aggregator)}", fl_ctx, ) return # define the search space self.search_space = self._engine.get_component(self.search_space_id) if not isinstance(self.search_space, FLComponent): self.system_panic( f"Shareable generator {self.search_space_id} must be a ShareableGenerator type object, " f"but got {type(self.search_space)}", fl_ctx, ) return def control_flow(self, abort_signal: Signal, fl_ctx: FLContext) -> None: try: self.log_info(fl_ctx, "Beginning ScatterAndGather training phase.") self._phase = AppConstants.PHASE_TRAIN fl_ctx.set_prop(AppConstants.PHASE, self._phase, private=True, sticky=False) fl_ctx.set_prop(AppConstants.NUM_ROUNDS, self._num_rounds, private=True, sticky=False) self.fire_event(AppEventType.TRAINING_STARTED, fl_ctx) if self._current_round is None: self._current_round = self._start_round while self._current_round < self._start_round + self._num_rounds: if self._check_abort_signal(fl_ctx, abort_signal): return self.log_info(fl_ctx, f"Round {self._current_round} started.") fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, self._global_weights, private=True, sticky=True) fl_ctx.set_prop(AppConstants.CURRENT_ROUND, self._current_round, private=True, sticky=False) self.fire_event(AppEventType.ROUND_STARTED, fl_ctx) # Search hyperparameters self.search_space.sample_hyperparamters(fl_ctx) # Create val_task for hp search data_shareable_val: Shareable = self.shareable_gen.learnable_to_shareable(self._global_weights, fl_ctx) data_shareable_val.set_header(AppConstants.CURRENT_ROUND, self._current_round) data_shareable_val.set_header(AppConstants.NUM_ROUNDS, self._num_rounds) data_shareable_val.add_cookie(AppConstants.CONTRIBUTION_ROUND, self._current_round) val_task = Task( name=AutoFedRLConstants.MODEL_VALIDATE_FOR_SEARCH, data=data_shareable_val, props={}, timeout=self._train_timeout, before_task_sent_cb=self._prepare_train_task_data, result_received_cb=self._process_val_result, ) self.broadcast_and_wait( task=val_task, min_responses=self._min_clients, wait_time_after_min_received=self._wait_time_after_min_received, fl_ctx=fl_ctx, abort_signal=abort_signal, ) # aggregate val loss for hp search self.fire_event(AppEventType.BEFORE_AGGREGATION, fl_ctx) aggr_val_result = self.aggregator_search_val.aggregate(fl_ctx) self.fire_event(AppEventType.AFTER_AGGREGATION, fl_ctx) # Create train_task data_shareable: Shareable = self.shareable_gen.learnable_to_shareable(self._global_weights, fl_ctx) data_shareable.set_header(AppConstants.CURRENT_ROUND, self._current_round) data_shareable.set_header(AppConstants.NUM_ROUNDS, self._num_rounds) data_shareable.add_cookie(AppConstants.CONTRIBUTION_ROUND, self._current_round) # Send sampled hp to clients hp = fl_ctx.get_prop(AutoFedRLConstants.HYPERPARAMTER_COLLECTION) data_shareable.set_header(AutoFedRLConstants.HYPERPARAMTER_COLLECTION, fobs.dumps(hp)) # Assign aggregation weights before task starts, since aw is used # when the server accepts task results self.aggregator.update_aggregation_weights(fl_ctx) train_task = Task( name=self.train_task_name, data=data_shareable, props={}, timeout=self._train_timeout, before_task_sent_cb=self._prepare_train_task_data, result_received_cb=self._process_train_result, ) self.broadcast_and_wait( task=train_task, min_responses=self._min_clients, wait_time_after_min_received=self._wait_time_after_min_received, fl_ctx=fl_ctx, abort_signal=abort_signal, ) if self._check_abort_signal(fl_ctx, abort_signal): return self.fire_event(AppEventType.BEFORE_AGGREGATION, fl_ctx) aggr_result = self.aggregator.aggregate(fl_ctx) fl_ctx.set_prop(AppConstants.AGGREGATION_RESULT, aggr_result, private=True, sticky=False) self.fire_event(AppEventType.AFTER_AGGREGATION, fl_ctx) if self._check_abort_signal(fl_ctx, abort_signal): return self.fire_event(AppEventType.BEFORE_SHAREABLE_TO_LEARNABLE, fl_ctx) self._global_weights = self.shareable_gen.shareable_to_learnable(aggr_result, fl_ctx) fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, self._global_weights, private=True, sticky=True) fl_ctx.sync_sticky() self.fire_event(AppEventType.AFTER_SHAREABLE_TO_LEARNABLE, fl_ctx) # update search space based on aggregated val loss self.search_space.update_search_space(aggr_val_result, fl_ctx) if self._check_abort_signal(fl_ctx, abort_signal): return self.fire_event(AppEventType.BEFORE_LEARNABLE_PERSIST, fl_ctx) self.persistor.save(self._global_weights, fl_ctx) self.fire_event(AppEventType.AFTER_LEARNABLE_PERSIST, fl_ctx) self.fire_event(AppEventType.ROUND_DONE, fl_ctx) self.log_info(fl_ctx, f"Round {self._current_round} finished.") self._current_round += 1 # Call the self._engine to persist the snapshot of all the FLComponents self._engine.persist_components(fl_ctx, completed=False) self._phase = AppConstants.PHASE_FINISHED self.log_info(fl_ctx, "Finished ScatterAndGather Training.") except Exception as e: traceback.print_exc() error_msg = f"Exception in ScatterAndGather control_flow: {e}" self.log_exception(fl_ctx, error_msg) self.system_panic(str(e), fl_ctx) def stop_controller(self, fl_ctx: FLContext): self._phase = AppConstants.PHASE_FINISHED def handle_event(self, event_type: str, fl_ctx: FLContext): super().handle_event(event_type, fl_ctx) if event_type == InfoCollector.EVENT_TYPE_GET_STATS: collector = fl_ctx.get_prop(InfoCollector.CTX_KEY_STATS_COLLECTOR, None) if collector: if not isinstance(collector, GroupInfoCollector): raise TypeError("collector must be GroupInfoCollector but got {}".format(type(collector))) collector.add_info( group_name=self._name, info={"phase": self._phase, "current_round": self._current_round, "num_rounds": self._num_rounds}, ) def _prepare_train_task_data(self, client_task: ClientTask, fl_ctx: FLContext) -> None: fl_ctx.set_prop(AppConstants.TRAIN_SHAREABLE, client_task.task.data, private=True, sticky=False) self.fire_event(AppEventType.BEFORE_TRAIN_TASK, fl_ctx) def _process_train_result(self, client_task: ClientTask, fl_ctx: FLContext) -> None: result = client_task.result client_name = client_task.client.name self._accept_train_result(client_name=client_name, result=result, fl_ctx=fl_ctx) # Cleanup task result client_task.result = None def _process_val_result(self, client_task: ClientTask, fl_ctx: FLContext) -> None: result = client_task.result client_name = client_task.client.name self._accept_val_result(client_name=client_name, result=result, fl_ctx=fl_ctx) # Cleanup task result client_task.result = None def _accept_val_result(self, client_name: str, result: Shareable, fl_ctx: FLContext) -> bool: rc = result.get_return_code() contribution_round = result.get_cookie(AppConstants.CONTRIBUTION_ROUND) result.set_header(AppConstants.CONTRIBUTION_ROUND, contribution_round) # Raise errors if bad peer context or execution exception. if rc and rc != ReturnCode.OK: if self.ignore_result_error: self.log_error(fl_ctx, f"Ignore the client train result. Train result error code: {rc}") return False else: if rc in [ReturnCode.MISSING_PEER_CONTEXT, ReturnCode.BAD_PEER_CONTEXT]: self.system_panic("Peer context is bad or missing. ScatterAndGather exiting.", fl_ctx=fl_ctx) return False elif rc in [ReturnCode.EXECUTION_EXCEPTION, ReturnCode.TASK_UNKNOWN]: self.system_panic( "Execution Exception in client training. ScatterAndGather exiting.", fl_ctx=fl_ctx ) return False elif rc in [ ReturnCode.EXECUTION_RESULT_ERROR, ReturnCode.TASK_DATA_FILTER_ERROR, ReturnCode.TASK_RESULT_FILTER_ERROR, ]: self.system_panic("Execution result is not a shareable. ScatterAndGather exiting.", fl_ctx=fl_ctx) return False fl_ctx.set_prop(AppConstants.CURRENT_ROUND, self._current_round, private=True, sticky=False) fl_ctx.set_prop(AppConstants.TRAINING_RESULT, result, private=True, sticky=False) fl_ctx.set_prop(AppConstants.CONTRIBUTION_ROUND, contribution_round, private=True, sticky=False) self.fire_event(AppEventType.BEFORE_CONTRIBUTION_ACCEPT, fl_ctx) accepted = self.aggregator_search_val.accept(result, fl_ctx) accepted_msg = "ACCEPTED" if accepted else "REJECTED" self.log_info(fl_ctx, f"Contribution from {client_name} {accepted_msg} by the aggregator.") fl_ctx.set_prop(AppConstants.AGGREGATION_ACCEPTED, accepted, private=True, sticky=False) self.fire_event(AppEventType.AFTER_CONTRIBUTION_ACCEPT, fl_ctx) return accepted def _accept_train_result(self, client_name: str, result: Shareable, fl_ctx: FLContext) -> bool: rc = result.get_return_code() contribution_round = result.get_cookie(AppConstants.CONTRIBUTION_ROUND) result.set_header(AppConstants.CONTRIBUTION_ROUND, contribution_round) # Raise errors if bad peer context or execution exception. if rc and rc != ReturnCode.OK: if self.ignore_result_error: self.log_error(fl_ctx, f"Ignore the client train result. Train result error code: {rc}") return False else: if rc in [ReturnCode.MISSING_PEER_CONTEXT, ReturnCode.BAD_PEER_CONTEXT]: self.system_panic("Peer context is bad or missing. ScatterAndGather exiting.", fl_ctx=fl_ctx) return False elif rc in [ReturnCode.EXECUTION_EXCEPTION, ReturnCode.TASK_UNKNOWN]: self.system_panic( "Execution Exception in client training. ScatterAndGather exiting.", fl_ctx=fl_ctx ) return False elif rc in [ ReturnCode.EXECUTION_RESULT_ERROR, ReturnCode.TASK_DATA_FILTER_ERROR, ReturnCode.TASK_RESULT_FILTER_ERROR, ]: self.system_panic("Execution result is not a shareable. ScatterAndGather exiting.", fl_ctx=fl_ctx) return False fl_ctx.set_prop(AppConstants.CURRENT_ROUND, self._current_round, private=True, sticky=False) fl_ctx.set_prop(AppConstants.TRAINING_RESULT, result, private=True, sticky=False) fl_ctx.set_prop(AppConstants.CONTRIBUTION_ROUND, contribution_round, private=True, sticky=False) self.fire_event(AppEventType.BEFORE_CONTRIBUTION_ACCEPT, fl_ctx) accepted = self.aggregator.accept(result, fl_ctx) accepted_msg = "ACCEPTED" if accepted else "REJECTED" self.log_info(fl_ctx, f"Contribution from {client_name} {accepted_msg} by the aggregator.") fl_ctx.set_prop(AppConstants.AGGREGATION_ACCEPTED, accepted, private=True, sticky=False) self.fire_event(AppEventType.AFTER_CONTRIBUTION_ACCEPT, fl_ctx) return accepted
NVFlare-main
research/auto-fed-rl/src/autofedrl/autofedrl_scatter_and_gather.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.executors.learner_executor import LearnerExecutor from nvflare.security.logging import secure_format_exception from .autofedrl_constants import AutoFedRLConstants class AutoFedRLLearnerExecutor(LearnerExecutor): def __init__( self, learner_id, train_task=AppConstants.TASK_TRAIN, submit_model_task=AppConstants.TASK_SUBMIT_MODEL, validate_task=AppConstants.TASK_VALIDATION, validate_for_search_task=AutoFedRLConstants.MODEL_VALIDATE_FOR_SEARCH, ): """Key component to run learner on clients for Auto-FedRL algorithm (https://arxiv.org/abs/2203.06338). Args: learner_id (str): id pointing to the learner object train_task (str, optional): label to dispatch train task. Defaults to AppConstants.TASK_TRAIN. submit_model_task (str, optional): label to dispatch submit model task. Defaults to AppConstants.TASK_SUBMIT_MODEL. validate_task (str, optional): label to dispatch validation task. Defaults to AppConstants.TASK_VALIDATION. validate_for_search_task (str, optional): label to dispatch validate model for hyperparameter search. """ super().__init__( learner_id=learner_id, train_task=train_task, submit_model_task=submit_model_task, validate_task=validate_task, ) self.validate_for_search_task = validate_for_search_task def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: """Same as LearnerExecutor.execute() apart for additional support for an `validate_for_search_task`.""" self.log_info(fl_ctx, f"Client trainer got task: {task_name}") try: if task_name == self.train_task: return self.train(shareable, fl_ctx, abort_signal) elif task_name == self.submit_model_task: return self.submit_model(shareable, fl_ctx) elif task_name == self.validate_task: return self.validate(shareable, fl_ctx, abort_signal) elif task_name == self.validate_for_search_task: return self.validate_for_search(shareable, fl_ctx, abort_signal) else: self.log_error(fl_ctx, f"Could not handle task: {task_name}") return make_reply(ReturnCode.TASK_UNKNOWN) except Exception as e: # Task execution error, return EXECUTION_EXCEPTION Shareable self.log_exception(fl_ctx, f"learner execute exception: {secure_format_exception(e)}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def validate_for_search(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self.log_debug(fl_ctx, f"validate for search abort_signal {abort_signal.triggered}") shareable.set_header(AppConstants.VALIDATE_TYPE, AutoFedRLConstants.MODEL_VALIDATE_FOR_SEARCH) validate_result: Shareable = self.learner.validate(shareable, fl_ctx, abort_signal) if validate_result and isinstance(validate_result, Shareable): return validate_result else: return make_reply(ReturnCode.EMPTY_RESULT)
NVFlare-main
research/auto-fed-rl/src/autofedrl/autofedrl_learner_executor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import numpy as np import torch import torch.nn.functional as F import torch.optim as optim from pt.learners.cifar10_learner import CIFAR10Learner from pt.utils.cifar10_data_utils import CIFAR10_ROOT from pt.utils.cifar10_dataset import CIFAR10_Idx from torchvision import datasets from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import ReservedHeaderKey, Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AppConstants, ValidateType from nvflare.app_opt.pt.decomposers import TensorDecomposer from nvflare.fuel.utils import fobs from .autofedrl_constants import AutoFedRLConstants class CIFAR10AutoFedRLearner(CIFAR10Learner): # TODO: also support CIFAR10ScaffoldLearner def __init__( self, train_idx_root: str = "./dataset", aggregation_epochs: int = 1, # TODO: Is this still being used? lr: float = 1e-2, fedproxloss_mu: float = 0.0, central: bool = False, analytic_sender_id: str = "analytic_sender", batch_size: int = 64, num_workers: int = 0, entropy_coeff: float = 1.0, entropy_threshold: float = 2.0, ): """Simple CIFAR-10 Trainer utilizing Auto-FedRL. Args: train_idx_root: directory with site training indices for CIFAR-10 data. aggregation_epochs: the number of training epochs for a round. Defaults to 1. lr: local learning rate. Float number. Defaults to 1e-2. fedproxloss_mu: weight for FedProx loss. Float number. Defaults to 0.0 (no FedProx). central: Bool. Whether to simulate central training. Default False. analytic_sender_id: id of `AnalyticsSender` if configured as a client component. If configured, TensorBoard events will be fired. Defaults to "analytic_sender". batch_size: batch size for training and validation. num_workers: number of workers for data loaders. entropy_coeff: entropy cut-off. entropy_threshold: entropy threshold. Returns: a Shareable with the updated local model after running `train()`, or validation metrics after calling `validate()`, or the best local model when calling `get_model_for_validation()` """ CIFAR10Learner.__init__( self, train_idx_root=train_idx_root, aggregation_epochs=aggregation_epochs, lr=lr, fedproxloss_mu=fedproxloss_mu, central=central, analytic_sender_id=analytic_sender_id, batch_size=batch_size, num_workers=num_workers, ) self.entropy_coeff = entropy_coeff self.entropy_threshold = entropy_threshold self.current_round = 0 self.best_global_acc = 0 # Use FOBS serializing/deserializing PyTorch tensors fobs.register(TensorDecomposer) def initialize(self, parts: dict, fl_ctx: FLContext): # Initialize super class CIFAR10Learner.initialize(self, parts=parts, fl_ctx=fl_ctx) # Enabling the Nesterov momentum can stabilize the training. self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.9, weight_decay=0.0, nesterov=True) def _create_datasets(self, fl_ctx: FLContext): """To be called only after Cifar10DataSplitter downloaded the data and computed splits""" if self.train_dataset is None or self.train_loader is None: if not self.central: # Set datalist, here the path and filename are hard-coded, can also be fed as an argument site_idx_file_name = os.path.join(self.train_idx_root, self.client_id + ".npy") self.log_info(fl_ctx, f"IndexList Path: {site_idx_file_name}") if os.path.exists(site_idx_file_name): self.log_info(fl_ctx, "Loading subset index") site_idx = np.load(site_idx_file_name).tolist() # TODO: get from fl_ctx/shareable? else: self.system_panic(f"No subset index found! File {site_idx_file_name} does not exist!", fl_ctx) return self.log_info(fl_ctx, f"Client subset size: {len(site_idx)}") else: site_idx = None # use whole training dataset if self.central=True self.log_debug(fl_ctx, msg)(fl_ctx, f"site_idx: {site_idx}") # Train set n_img_for_search = self.batch_size * 10 self.train_dataset = CIFAR10_Idx( root=CIFAR10_ROOT, data_idx=site_idx[:], train=True, download=False, transform=self.transform_train, ) self.train_loader = torch.utils.data.DataLoader( self.train_dataset, batch_size=self.batch_size, shuffle=True ) # Val set for search self.val_dataset_for_search = CIFAR10_Idx( root=CIFAR10_ROOT, data_idx=site_idx[-n_img_for_search:], train=True, download=False, transform=self.transform_valid, ) self.val_loader_search = torch.utils.data.DataLoader( self.val_dataset_for_search, batch_size=self.batch_size, shuffle=False ) self.log_info( fl_ctx, f"Split ({n_img_for_search}) images from {len(site_idx)} training images for Hyerparamters Search", ) if self.valid_dataset is None or self.valid_loader is None: self.valid_dataset = datasets.CIFAR10( root=CIFAR10_ROOT, train=False, download=False, transform=self.transform_valid, ) self.valid_loader = torch.utils.data.DataLoader( self.valid_dataset, batch_size=self.batch_size, shuffle=False ) def local_train(self, fl_ctx, train_loader, model_global, abort_signal: Signal, val_freq: int = 0): for epoch in range(self.aggregation_epochs): if abort_signal.triggered: return self.model.train() epoch_len = len(train_loader) self.epoch_global = self.epoch_of_start_time + epoch self.log_info(fl_ctx, f"Local epoch {self.client_id}: {epoch + 1}/{self.aggregation_epochs} (lr={self.lr})") avg_loss = 0.0 for i, (inputs, labels) in enumerate(train_loader): if abort_signal.triggered: return inputs, labels = inputs.to(self.device), labels.to(self.device) # Forward outputs = self.model(inputs) loss = self.criterion(outputs, labels) # FedProx loss term if self.fedproxloss_mu > 0: fed_prox_loss = self.criterion_prox(self.model, model_global) loss += fed_prox_loss # entropy_cost if self.entropy_coeff > 0: probs_output = torch.exp(outputs) / (torch.exp(outputs).sum(1).view(-1, 1)) entropy = -(probs_output * torch.log(probs_output)).sum(1).mean() entropy_cost = self.entropy_coeff * F.relu(self.entropy_threshold - entropy) loss += entropy_cost # Zero the parameter gradients self.optimizer.zero_grad() # Backward + Optimize loss.backward() self.optimizer.step() current_step = epoch_len * self.epoch_global + i avg_loss += loss.item() self.writer.add_scalar("train_loss", avg_loss / len(train_loader), current_step) if val_freq > 0 and epoch % val_freq == 0: acc = self.local_valid(self.valid_loader, abort_signal, tb_id="val_acc_local_model", fl_ctx=fl_ctx) if acc > self.best_acc: self.best_acc = acc self.save_model(is_best=True) def train(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self._create_datasets(fl_ctx) # Check abort signal if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) self.log_info(fl_ctx, f"Current/Total Round: {current_round + 1}/{total_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") self.current_round = current_round # Get lr and ne from server current_lr, current_ne = None, None hps = fobs.loads(shareable.get_header(AutoFedRLConstants.HYPERPARAMTER_COLLECTION)) if hps is not None: current_lr = hps.get("lr") self.lr = current_lr current_ne = hps.get("ne") if current_lr is not None: for param_group in self.optimizer.param_groups: param_group["lr"] = current_lr self.log_info(fl_ctx, f"Received and override current learning rate as: {current_lr}") if current_ne is not None: self.aggregation_epochs = current_ne self.log_info(fl_ctx, f"Received and override current number of local epochs: {current_ne}") # Update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # Reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # Update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) except Exception as e: raise ValueError(f"Convert weight from {var_name} failed!") from e self.model.load_state_dict(local_var_dict) # Local steps epoch_len = len(self.train_loader) self.log_info(fl_ctx, f"Local steps per epoch: {epoch_len}") # Make a copy of model_global as reference for potential FedProx loss or SCAFFOLD model_global = copy.deepcopy(self.model) for param in model_global.parameters(): param.requires_grad = False # Local train self.local_train( fl_ctx=fl_ctx, train_loader=self.train_loader, model_global=model_global, abort_signal=abort_signal, val_freq=1 if self.central else 0, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.epoch_of_start_time += self.aggregation_epochs # Perform valid after local train acc = self.local_valid(self.valid_loader, abort_signal, tb_id="val_acc_local_model", fl_ctx=fl_ctx) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_acc_local_model: {acc:.4f}") # Save model self.save_model(is_best=False) if acc > self.best_acc: self.best_acc = acc self.save_model(is_best=True) # Compute delta model, global model has the primary key set local_weights = self.model.state_dict() model_diff = {} for name in global_weights: if name not in local_weights: continue model_diff[name] = np.subtract(local_weights[name].cpu().numpy(), global_weights[name], dtype=np.float32) if np.any(np.isnan(model_diff[name])): self.system_panic(f"{name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) # Build the shareable dxo = DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff) if hps.get("aw") is not None: # When search aggregation weights, we have to override it # to 1, since we will manually assign weights to aggregator. # Search space will discover which client is more informative. # It might not be related to the number of data in a client. dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, 1) else: dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, epoch_len) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") return dxo.to_shareable() def local_valid(self, valid_loader, abort_signal: Signal, tb_id=None, fl_ctx=None, get_loss=False): self.model.eval() with torch.no_grad(): correct, total = 0, 0 for _, (inputs, labels) in enumerate(valid_loader): if abort_signal.triggered: return None inputs, labels = inputs.to(self.device), labels.to(self.device) outputs = self.model(inputs) loss = self.criterion(outputs, labels) _, pred_label = torch.max(outputs.data, 1) if get_loss: # Return val loss instead of accuracy over the number batches total += inputs.data.size()[0] correct += loss.item() else: total += inputs.data.size()[0] correct += (pred_label == labels.data).sum().item() metric = correct / float(total) if get_loss: self.log_info(fl_ctx, f"HP Search loss: {metric} of {total} batches on {fl_ctx.get_identity_name()}") if tb_id: self.writer.add_scalar(tb_id, metric, self.current_round) return metric def validate(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self._create_datasets(fl_ctx) # Check abort signal if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Get validation information self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") model_owner = shareable.get(ReservedHeaderKey.HEADERS).get(AppConstants.MODEL_OWNER) if model_owner: self.log_info(fl_ctx, f"Evaluating model from {model_owner} on {fl_ctx.get_identity_name()}") else: # Evaluating global model during training model_owner = "global_model" # Update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() n_loaded = 0 for var_name in local_var_dict: if var_name in model_keys: weights = torch.as_tensor(global_weights[var_name], device=self.device) try: # Update the local dict local_var_dict[var_name] = torch.as_tensor(torch.reshape(weights, local_var_dict[var_name].shape)) n_loaded += 1 except Exception as e: raise ValueError(f"Convert weight from {var_name} failed!") from e self.model.load_state_dict(local_var_dict) if n_loaded == 0: raise ValueError(f"No weights loaded for validation! Received weight dict is {global_weights}") validate_type = shareable.get_header(AppConstants.VALIDATE_TYPE) if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE: # Perform valid before local train global_acc = self.local_valid(self.valid_loader, abort_signal, tb_id="val_acc_global_model", fl_ctx=fl_ctx) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_acc_global_model ({model_owner}): {global_acc}") if global_acc > self.best_global_acc: self.best_global_acc = global_acc # Log the best global model_accuracy self.writer.add_scalar("best_val_acc_global_model", self.best_global_acc, self.current_round) return DXO(data_kind=DataKind.METRICS, data={MetaKey.INITIAL_METRICS: global_acc}, meta={}).to_shareable() elif validate_type == ValidateType.MODEL_VALIDATE: # Perform valid train_acc = self.local_valid(self.train_loader, abort_signal) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"training acc ({model_owner}): {train_acc}") val_acc = self.local_valid(self.valid_loader, abort_signal) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"validation acc ({model_owner}): {val_acc}") self.log_info(fl_ctx, "Evaluation finished. Returning shareable") val_results = {"train_accuracy": train_acc, "val_accuracy": val_acc} metric_dxo = DXO(data_kind=DataKind.METRICS, data=val_results) return metric_dxo.to_shareable() elif validate_type == AutoFedRLConstants.MODEL_VALIDATE_FOR_SEARCH: self.log_info(fl_ctx, f"Evaluating model from {model_owner} on {fl_ctx.get_identity_name()} for HP Search") val_loss_hp = self.local_valid(self.val_loader_search, abort_signal, fl_ctx=fl_ctx, get_loss=True) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) val_results = {"val_loss": val_loss_hp} metric_dxo = DXO(data_kind=DataKind.METRICS, data=val_results) return metric_dxo.to_shareable() else: return make_reply(ReturnCode.VALIDATE_TYPE_UNKNOWN)
NVFlare-main
research/auto-fed-rl/src/autofedrl/autofedrl_cifar10_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.fl_context import FLContext from nvflare.app_common.aggregators.intime_accumulate_model_aggregator import InTimeAccumulateWeightedAggregator from .autofedrl_constants import AutoFedRLConstants class AutoFedRLWeightedAggregator(InTimeAccumulateWeightedAggregator): """Perform accumulated weighted aggregation with support for updating aggregation weights. Used for Auto-FedRL implementation (https://arxiv.org/abs/2203.06338). Shares arguments with base class """ def update_aggregation_weights(self, fl_ctx: FLContext): """Called when workflow determines to update aggregation weights Args: fl_ctx (FLContext): context provided by workflow Returns: None """ received_aggregation_weights = None hps = fl_ctx.get_prop(AutoFedRLConstants.HYPERPARAMTER_COLLECTION) if hps is not None: received_aggregation_weights = hps.get("aw") # assign current aggregation weights to aggregator if received_aggregation_weights is not None: # TODO: Here, we assume contributor_name is "site-*". # this will be wrong if contributor_name is not in this pattern. aggregation_weights_dict = { f"site-{i+1}": received_aggregation_weights[i] for i in range(len(received_aggregation_weights)) } for key in self.expected_data_kind.keys(): self.dxo_aggregators[key].aggregation_weights = aggregation_weights_dict self.log_info(fl_ctx, f"Assign current aggregation weights to aggregator: {key}") else: self.log_warning(fl_ctx, "Received aggregation weights are None.")
NVFlare-main
research/auto-fed-rl/src/autofedrl/autofedrl_model_aggregator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class AutoFedRLConstants(object): HYPERPARAMTER_COLLECTION = "hyperparamter_collection" MODEL_VALIDATE_FOR_SEARCH = "model_validate_for_hp_search"
NVFlare-main
research/auto-fed-rl/src/autofedrl/autofedrl_constants.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import os from setuptools import find_packages, setup # read the contents of your README file this_directory = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(this_directory, "README.md"), encoding="utf-8") as f: long_description = f.read() release = os.environ.get("MONAI_NVFL_RELEASE") if release == "1": package_name = "monai-nvflare" version = "0.2.3" else: package_name = "monai-nvflare-nightly" today = datetime.date.today().timetuple() year = today[0] % 1000 month = today[1] day = today[2] version = f"0.2.3.{year:02d}{month:02d}{day:02d}" setup( name=package_name, version=version, description="MONAI NVIDIA FLARE integration", url="https://github.com/NVIDIA/NVFlare", package_dir={"monai_nvflare": "monai_nvflare"}, packages=find_packages( where=".", include=[ "*", ], exclude=["tests", "tests.*"], ), license_files=("LICENSE",), classifiers=[ "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "License :: OSI Approved :: Apache Software License", "Operating System :: POSIX :: Linux", ], long_description=long_description, long_description_content_type="text/markdown", python_requires=">=3.8,<3.11", install_requires=["monai>=1.2.0rc5", "nvflare>=2.3.0"], )
NVFlare-main
integration/monai/setup.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from monai.apps.utils import download_and_extract def download_spleen_dataset(filepath, output_dir): url = "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task09_Spleen.tar" download_and_extract(url=url, filepath=filepath, output_dir=output_dir) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--filepath", "-f", type=str, help="the file path of the downloaded compressed file.", default="./data/Task09_Spleen.tar", ) parser.add_argument( "--output_dir", "-o", type=str, help="target directory to save extracted files.", default="./data" ) args = parser.parse_args() download_spleen_dataset(args.filepath, args.output_dir)
NVFlare-main
integration/monai/examples/spleen_ct_segmentation_sim/download_spleen_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from monai.apps.utils import download_and_extract def download_spleen_dataset(filepath, output_dir): url = "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task09_Spleen.tar" download_and_extract(url=url, filepath=filepath, output_dir=output_dir) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--filepath", "-f", type=str, help="the file path of the downloaded compressed file.", default="./data/Task09_Spleen.tar", ) parser.add_argument( "--output_dir", "-o", type=str, help="target directory to save extracted files.", default="./data" ) args = parser.parse_args() download_spleen_dataset(args.filepath, args.output_dir)
NVFlare-main
integration/monai/examples/spleen_ct_segmentation_local/download_spleen_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os from nvflare.fuel.hci.client.fl_admin_api_runner import FLAdminAPIRunner, api_command_wrapper def read_json(filename): assert os.path.isfile(filename), f"{filename} does not exist!" with open(filename, "r") as f: return json.load(f) def write_json(data, filename): with open(filename, "w") as f: json.dump(data, f, indent=4) def main(): parser = argparse.ArgumentParser() parser.add_argument("--admin_dir", type=str, default="./admin/", help="Path to admin directory.") parser.add_argument("--username", type=str, default="[email protected]", help="Admin username.") parser.add_argument("--job", type=str, default="cifar10_fedavg", help="Path to job config.") parser.add_argument("--poc", action="store_true", help="Whether admin does not use SSL.") args = parser.parse_args() assert os.path.isdir(args.admin_dir), f"admin directory does not exist at {args.admin_dir}" # Initialize the runner runner = FLAdminAPIRunner( username=args.username, admin_dir=args.admin_dir, poc=args.poc, debug=False, ) # Submit job api_command_wrapper(runner.api.submit_job(args.job)) # finish runner.api.logout() if __name__ == "__main__": main()
NVFlare-main
integration/monai/examples/spleen_ct_segmentation_local/submit_job.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from monai.bundle.config_parser import ConfigParser from nvflare.apis.event_type import EventType from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.app_common.app_constant import StatisticsConstants as StC class MonaiDataStatsPersistor(FLComponent): def __init__(self, fmt="yaml"): """Persist pytorch-based from MONAI bundle configuration. Args: fmt: format used to save the analysis results using MONAI's `ConfigParser`. Supported suffixes are "json", "yaml", "yml". Defaults to "yaml". Raises: ValueError: when source_ckpt_filename does not exist """ super().__init__() self.fmt = fmt def handle_event(self, event: str, fl_ctx: FLContext): if event == EventType.PRE_RUN_RESULT_AVAILABLE: result = fl_ctx.get_prop(StC.PRE_RUN_RESULT) if result: for client_name, _result in result.items(): app_root = fl_ctx.get_prop(FLContextKey.APP_ROOT) output_path = os.path.join(app_root, f"{client_name}_data_stats.{self.fmt}") ConfigParser.export_config_file(_result.data, output_path, fmt=self.fmt, default_flow_style=None) self.log_info(fl_ctx, f"Saved data stats of client {client_name} at {output_path}") else: self.log_debug(fl_ctx, "Empty pre-task results.")
NVFlare-main
integration/monai/monai_nvflare/monai_data_stats_persistor.py