python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.cu import cutlass.backend from cutlass.backend.conv2d_operation import * from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class Conv2dDgradImplicitGemmF32nhwcF32nhwcF32nhwcSimtF32SM80(unittest.TestCase): def test_SM80_Device_Conv2d_Fprop_Analytic_ImplicitGemm_f32nhwc_f32nhwc_f32nhwc_simt_f32(self): math_inst = MathInstruction( instruction_shape=[1, 1, 1], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.Simt, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=1) tile_description = TileDescription( threadblock_shape=[128, 128, 8], stages=4, warp_count=[4, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Unity, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Dgrad_Optimized_ImplicitGemm_f32nhwc_f32nhwc_f32nhwc_simt_f32(self): math_inst = MathInstruction( instruction_shape=[1, 1, 1], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.Simt, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=1) tile_description = TileDescription( threadblock_shape=[128, 128, 8], stages=4, warp_count=[2, 4, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.dgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Unity, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.cu import cutlass.backend from cutlass.backend.conv2d_operation import * from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class Conv2dFpropImplicitGemmF32nhwcF32nhwcF32nhwcSimtF32SM80(unittest.TestCase): def test_SM80_Device_Conv2d_Fprop_Analytic_ImplicitGemm_f32nhwc_f32nhwc_f32nhwc_simt_f32(self): math_inst = MathInstruction( instruction_shape=[1, 1, 1], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.Simt, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=1) tile_description = TileDescription( threadblock_shape=[128, 128, 8], stages=4, warp_count=[4, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle2 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Fprop_Optimized_ImplicitGemm_f32nhwc_f32nhwc_f32nhwc_simt_f32(self): math_inst = MathInstruction( instruction_shape=[1, 1, 1], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.Simt, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=1) tile_description = TileDescription( threadblock_shape=[128, 128, 8], stages=4, warp_count=[2, 4, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py
cutlass-main
test/python/backend/conv/__init__.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class Conv2dWgradImplicitGemmF16nhwcF16nhwcF16nhwcTensorOpF16SM80(unittest.TestCase): def test_Device_Conv2d_Wgrad_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float16, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float16 ) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.wgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_Device_Conv2d_Wgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float16, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float16 ) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.wgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") def conv2d_fixed_channel_problemsizes(channels): problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 8, 8, channels), cutlass_bindings.Tensor4DCoord(16, 3, 3, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 224, 224, channels), cutlass_bindings.Tensor4DCoord(32, 7, 7, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 224, 224, channels), cutlass_bindings.Tensor4DCoord(64, 7, 7, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 224, 224, channels), cutlass_bindings.Tensor4DCoord(64, 5, 5, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 224, 224, channels), cutlass_bindings.Tensor4DCoord(64, 5, 5, channels), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] return problem_sizes class Conv2dFpropFixedChannelsF16NHWCF16NHWCF16HNWCTensorOpF32SM80(unittest.TestCase): def test_SM80_Device_Conv2d_Fprop_Fixed_Channels_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_channels_8(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.fixed_channels, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation, conv2d_fixed_channel_problemsizes(8))) def test_SM80_Device_Conv2d_Fprop_Fixed_Channels_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_channels_4(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.fixed_channels, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation, conv2d_fixed_channel_problemsizes(4))) def test_SM80_Device_Conv2d_Fprop_Fixed_Channels_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_channels_2(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=2) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=2) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.fixed_channels, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation, conv2d_fixed_channel_problemsizes(2))) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.cu import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class Conv2dFpropImplicitGemmTF32nhwcTF32nhwcTF32nhwcTensorOpF32SM80(unittest.TestCase): def test_SM80_Device_Conv2d_Fprop_Analytic_ImplicitGemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 16], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Fprop_Optimized_ImplicitGemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_align2(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=2) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=2) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 16], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 12), cutlass_bindings.Tensor4DCoord(8, 3, 3, 12), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ) ] self.assertTrue(test_all_conv2d(operation, problem_sizes)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class Conv2dFpropImplicitGemmF16nhwcF16nhwcF32nhwcTensorOpF32SM80(unittest.TestCase): def test_SM80_Device_Conv2d_Fprop_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.cu import cutlass.backend from cutlass.backend.conv2d_operation import * from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class Conv2dWgradImplicitGemmF32nhwcF32nhwcF32nhwcSimtF32SM80(unittest.TestCase): def test_SM80_Device_Conv2d_Wgrad_Analytic_ImplicitGemm_f32nhwc_f32nhwc_f32nhwc_simt_f32(self): math_inst = MathInstruction( instruction_shape=[1, 1, 1], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.Simt, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=1) tile_description = TileDescription( threadblock_shape=[128, 128, 8], stages=4, warp_count=[2, 4, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.wgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Wgrad_Optimized_ImplicitGemm_f32nhwc_f32nhwc_f32nhwc_simt_f32(self): math_inst = MathInstruction( instruction_shape=[1, 1, 1], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.Simt, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=1) tile_description = TileDescription( threadblock_shape=[128, 128, 8], stages=4, warp_count=[2, 4, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.wgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import cutlass.backend import unittest from cutlass.backend.memory_manager import * if __name__ == '__main__': cutlass.backend.get_memory_pool(2**32, 2**32) loader = unittest.TestLoader() tests = loader.discover('./', 'conv2d_*.py') testRunner = unittest.runner.TextTestRunner() testRunner.run(tests)
cutlass-main
test/python/backend/conv/run_all_tests.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.cu import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class Conv2dWgradImplicitGemmTF32nhwcTF32nhwcTF32nhwcTensorOpF32SM80(unittest.TestCase): def test_SM80_Device_Conv2d_Wgrad_Optimized_ImplicitGemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 16], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.wgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Wgrad_Optimized_ImplicitGemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_align1(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=1) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=1) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.TensorNHWC, alignment=4) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.wgrad, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 8, 8, 1), cutlass_bindings.Tensor4DCoord(1, 3, 3, 1), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] self.assertTrue(test_all_conv2d(operation, problem_sizes)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# # test/unit/conv/device/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * from cutlass.backend.utils.device import device_cc import unittest @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class Conv2dFpropImplicitGemmF16nhwcF16nhwcF16nhwcTensorOpF16SM80(unittest.TestCase): def test_SM80_Device_Conv2d_Fprop_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float16, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float16) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Fprop_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float16, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float16) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) self.assertTrue(test_all_conv2d(operation)) def test_SM80_Device_Conv2d_Fprop_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_align2(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float16, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=2) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=2) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float16) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.analytic, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 12), cutlass_bindings.Tensor4DCoord(8, 3, 3, 12), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 14), cutlass_bindings.Tensor4DCoord(8, 3, 3, 14), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 23, 56, 98), cutlass_bindings.Tensor4DCoord(128, 3, 3, 98), cutlass_bindings.Tensor4DCoord(4, 0, 5, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] self.assertTrue(test_all_conv2d(operation, problem_sizes)) def test_SM80_Device_Conv2d_Fprop_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_align2(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float16, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=2) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=2) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float16) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 12), cutlass_bindings.Tensor4DCoord(8, 3, 3, 12), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 14), cutlass_bindings.Tensor4DCoord(8, 3, 3, 14), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 23, 56, 98), cutlass_bindings.Tensor4DCoord(128, 3, 3, 98), cutlass_bindings.Tensor4DCoord(4, 0, 5, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] self.assertTrue(test_all_conv2d(operation, problem_sizes)) def test_SM80_Device_Conv2d_Fprop_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_align4(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float16, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass_bindings.TensorNHWC, alignment=4) B = TensorDescription( element=math_inst.element_b, layout=cutlass_bindings.TensorNHWC, alignment=4) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float16) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1 ) problem_sizes = [ cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 12), cutlass_bindings.Tensor4DCoord(8, 3, 3, 12), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 28), cutlass_bindings.Tensor4DCoord(8, 3, 3, 28), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 23, 56, 100), cutlass_bindings.Tensor4DCoord(128, 3, 3, 100), cutlass_bindings.Tensor4DCoord(4, 0, 5, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ), ] self.assertTrue(test_all_conv2d(operation, problem_sizes)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**26, 2**26) unittest.main()
cutlass-main
test/python/backend/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py
cutlass-main
test/python/backend/gemm/__init__.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from functools import partial import cutlass.backend from cutlass.backend import * from cutlass.backend import library from cutlass.backend.test import * import unittest from cutlass.backend.test.utils import LayoutCombination, get_name from cutlass.backend.test.gemm_testbed import test_all_gemm from cutlass.backend.utils.device import device_cc # Partial specialziation for naming tests name_fn = partial(get_name, element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, arch=90) def add_test(cls, layouts, alignments, element_output, element_accumulator, element_epilogue, cluster_shape, threadblock_shape, stages, opclass, persistent=False): """ Create a test-running function with the given specification and set it as a method of `cls`. :param cls: class to which the generated method will be added :type cls: type :param layouts: indexable container of layouts of A, B, and C operands :param alignments: indexable container of alignments of A, B, and C operands :param element_output: data type of the output element :param element_accumulator: data type used in accumulation :param element_epilogue: data type used in computing the epilogue :param cluster_shape: indexable container of dimensions of threadblock cluster to be launched :param threadblock_shape: indexable container of dimensions of threadblock tiles :param stages: number of pipeline stages to use in the kernel :type stages: int :param opclass: class of operation being performed (e.g., SIMT, Tensor Core) :type opclass: cutlass_bindings.OpClass :param persistent: whether this is a persistent warp-specialized kernel :type persistent: bool """ def run(self): """ Dynamically-generated function that constructs a GEMM operation and verifies it against multiple test cases. """ element_A = cutlass_bindings.float16 element_B = cutlass_bindings.float16 inst_shape = [1, 1, 1] if opclass == cutlass_bindings.OpClass.Simt else None warp_count = [2, 2, 1] if opclass == cutlass_bindings.OpClass.Simt else None math_inst = MathInstruction( instruction_shape=inst_shape, element_a=element_A, element_b=element_B, element_accumulator=element_accumulator, opcode_class=opclass, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=threadblock_shape, cluster_shape=cluster_shape, stages=stages, warp_count=warp_count, math_instruction=math_inst, persistent=persistent ) A = TensorDescription(element=element_A, layout=layouts[0], alignment=alignments[0]) B = TensorDescription(element=element_B, layout=layouts[1], alignment=alignments[1]) C = TensorDescription(element=element_output, layout=layouts[2], alignment=alignments[2]) epilogue_functor = LinearCombination(C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=90, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor) self.assertTrue(test_all_gemm(operation, "universal")) if persistent: suffix = "_persistent" else: suffix = "" name = name_fn(layouts, alignments, element_output, element_accumulator, element_epilogue, cluster_shape, threadblock_shape, stages, opclass=opclass, suffix=suffix) setattr(cls, name, run) return run @unittest.skipIf(device_cc() < 90, "Device compute capability is insufficient for SM90 tests.") class GemmF16Sm90(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass add_test_tensorop = partial(add_test, opclass=cutlass_bindings.OpClass.TensorOp) add_test_simt = partial(add_test, opclass=cutlass_bindings.OpClass.Simt) # Tests with 1x1x1 clusters add_test_tensorop(GemmF16Sm90, LayoutCombination.NNN, [8, 8, 8], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 32], 3) add_test_tensorop(GemmF16Sm90, LayoutCombination.NNT, [8, 8, 8], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 32], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.NTN, [8, 8, 8], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 32], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.NTT, [8, 8, 8], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 32], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TNN, [8, 8, 8], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 32], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TNT, [8, 8, 8], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 32], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 32], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTT, [8, 8, 8], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 32], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TNT, [8, 8, 8], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [64, 128, 32], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TNT, [8, 8, 8], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 64, 32], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TNT, [8, 8, 8], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [64, 64, 64], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TNT, [4, 4, 8], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 32], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TNT, [4, 4, 8], cutlass_bindings.float16, cutlass_bindings.float16, cutlass_bindings.float16, [1, 1, 1], [128, 128, 32], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TNT, [8, 8, 8], cutlass_bindings.float16, cutlass_bindings.float16, cutlass_bindings.float16, [1, 1, 1], [128, 128, 32], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TNT, [8, 8, 8], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [64, 64, 64], 5) add_test_tensorop(GemmF16Sm90, LayoutCombination.TNT, [2, 2, 2], cutlass_bindings.float16, cutlass_bindings.float16, cutlass_bindings.float16, [1, 1, 1], [128, 128, 32], None) # Tests with different cluster shapes add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [2, 2, 1], [64, 128, 64], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TNN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [2, 2, 1], [64, 128, 64], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.NTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [2, 2, 1], [64, 128, 64], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.NNN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [2, 2, 1], [64, 128, 64], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [1, 4, 1], [64, 128, 64], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [2, 4, 1], [64, 128, 64], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [4, 1, 1], [64, 128, 64], None) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [4, 2, 1], [64, 128, 64], None) # Tests for persistent warp-specialized threadblocks add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [64, 128, 64], None, persistent=True) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [2, 1, 1], [64, 128, 64], None, persistent=True) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 64], None, persistent=True) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [2, 1, 1], [128, 128, 64], None, persistent=True) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [1, 2, 1], [64, 128, 64], None, persistent=True) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [2, 2, 1], [64, 128, 64], None, persistent=True) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [1, 4, 1], [64, 128, 64], None, persistent=True) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [2, 4, 1], [64, 128, 64], None, persistent=True) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [4, 1, 1], [64, 128, 64], None, persistent=True) add_test_tensorop(GemmF16Sm90, LayoutCombination.TTN, [8, 8, 8], cutlass_bindings.float32, cutlass_bindings.float32, cutlass_bindings.float32, [4, 4, 1], [64, 128, 64], None, persistent=True) # Tests using SIMT add_test_simt(GemmF16Sm90, LayoutCombination.NNN, [1, 1, 1], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 8], 2) add_test_simt(GemmF16Sm90, LayoutCombination.TNN, [1, 1, 1], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [64, 128, 8], 2) add_test_simt(GemmF16Sm90, LayoutCombination.NTN, [1, 1, 1], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 64, 8], 2) add_test_simt(GemmF16Sm90, LayoutCombination.TTN, [1, 1, 1], cutlass_bindings.float16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [64, 64, 8], 2) add_test_simt(GemmF16Sm90, LayoutCombination.NNT, [1, 1, 1], cutlass_bindings.float16, cutlass_bindings.float16, cutlass_bindings.float16, [1, 1, 1], [128, 128, 8], 2) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**30, 2**30) unittest.main()
cutlass-main
test/python/backend/gemm/gemm_f16_sm90.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from functools import partial import cutlass.backend from cutlass.backend import * from cutlass.backend import library from cutlass.backend.test import * import unittest from cutlass.backend.test.utils import LayoutCombination, get_name from cutlass.backend.test.gemm_testbed import test_all_gemm from cutlass.backend.utils.device import device_cc name_fn = partial(get_name, element_a=cutlass_bindings.bfloat16, element_b=cutlass_bindings.bfloat16, arch=90) def add_test(cls, layouts, alignments, element_output, element_accumulator, element_epilogue, cluster_shape, threadblock_shape, stages, opclass, persistent=False): """ Create a test-running function with the given specification and set it as a method of `cls`. :param cls: class to which the generated method will be added :type cls: type :param layouts: indexable container of layouts of A, B, and C operands :param alignments: indexable container of alignments of A, B, and C operands :param element_output: data type of the output element :param element_accumulator: data type used in accumulation :param element_epilogue: data type used in computing the epilogue :param cluster_shape: indexable container of dimensions of threadblock cluster to be launched :param threadblock_shape: indexable container of dimensions of threadblock tiles :param stages: number of pipeline stages to use in the kernel :type stages: int :param opclass: class of operation being performed (e.g., SIMT, Tensor Core) :type opclass: cutlass_bindings.OpClass :param persistent: whether this is a persistent warp-specialized kernel :type persistent: bool """ def run(self): """ Dynamically-generated function that constructs a GEMM operation and verifies it against multiple test cases. """ element_A = cutlass_bindings.bfloat16 element_B = cutlass_bindings.bfloat16 inst_shape = [1, 1, 1] if opclass == cutlass_bindings.OpClass.Simt else None warp_count = [2, 2, 1] if opclass == cutlass_bindings.OpClass.Simt else None math_inst = MathInstruction( instruction_shape=inst_shape, element_a=element_A, element_b=element_B, element_accumulator=element_accumulator, opcode_class=opclass, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=threadblock_shape, cluster_shape=cluster_shape, stages=stages, warp_count=warp_count, math_instruction=math_inst, persistent=persistent ) A = TensorDescription(element=element_A, layout=layouts[0], alignment=alignments[0]) B = TensorDescription(element=element_B, layout=layouts[1], alignment=alignments[1]) C = TensorDescription(element=element_output, layout=layouts[2], alignment=alignments[2]) epilogue_functor = LinearCombination(C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=90, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor) self.assertTrue(test_all_gemm(operation, "universal")) if persistent: suffix = "_persistent" else: suffix = "" name = name_fn(layouts, alignments, element_output, element_accumulator, element_epilogue, cluster_shape, threadblock_shape, stages, opclass=opclass, suffix=suffix) setattr(cls, name, run) return run @unittest.skipIf(device_cc() < 90, "Device compute capability is insufficient for SM90 tests.") class GemmBF16Sm90(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass add_test_tensorop = partial(add_test, opclass=cutlass_bindings.OpClass.TensorOp) add_test_simt = partial(add_test, opclass=cutlass_bindings.OpClass.Simt) add_test_tensorop(GemmBF16Sm90, LayoutCombination.NNN, [8, 8, 8], cutlass_bindings.bfloat16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 32], 3) add_test_tensorop(GemmBF16Sm90, LayoutCombination.NNN, [4, 4, 8], cutlass_bindings.bfloat16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 32], 5) add_test_tensorop(GemmBF16Sm90, LayoutCombination.TNN, [8, 8, 8], cutlass_bindings.bfloat16, cutlass_bindings.float32, cutlass_bindings.float32, [2, 1, 1], [128, 128, 32], None) add_test_tensorop(GemmBF16Sm90, LayoutCombination.TNN, [8, 8, 8], cutlass_bindings.bfloat16, cutlass_bindings.float32, cutlass_bindings.float32, [2, 1, 1], [128, 128, 32], None, persistent=True) add_test_simt(GemmBF16Sm90, LayoutCombination.NNN, [1, 1, 1], cutlass_bindings.bfloat16, cutlass_bindings.float32, cutlass_bindings.float32, [1, 1, 1], [128, 128, 8], 2) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**30, 2**30) unittest.main()
cutlass-main
test/python/backend/gemm/gemm_bf16_sm90.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from functools import partial import cutlass.backend from cutlass.backend import * from cutlass.backend import library from cutlass.backend.test import * import unittest from cutlass.backend.test.utils import LayoutCombination, get_name from cutlass.backend.test.gemm_testbed import test_all_gemm from cutlass.backend.utils.device import device_cc name_fn = partial(get_name, element_a=cutlass_bindings.float64, element_b=cutlass_bindings.float64, arch=90) def add_test(cls, layouts, alignments, element_output, element_accumulator, element_epilogue, cluster_shape, threadblock_shape, stages, opclass): """ Create a test-running function with the given specification and set it as a method of `cls`. :param cls: class to which the generated method will be added :type cls: type :param layouts: indexable container of layouts of A, B, and C operands :param alignments: indexable container of alignments of A, B, and C operands :param element_output: data type of the output element :param element_accumulator: data type used in accumulation :param element_epilogue: data type used in computing the epilogue :param cluster_shape: indexable container of dimensions of threadblock cluster to be launched :param threadblock_shape: indexable container of dimensions of threadblock tiles :param stages: number of pipeline stages to use in the kernel :type stages: int :param opclass: class of operation being performed (e.g., SIMT, Tensor Core) :type opclass: cutlass_bindings.OpClass """ def run(self): """ Dynamically-generated function that constructs a GEMM operation and verifies it against multiple test cases. """ element_A = cutlass_bindings.float64 element_B = cutlass_bindings.float64 inst_shape = [1, 1, 1] if opclass == cutlass_bindings.OpClass.Simt else None warp_count = [2, 2, 1] if opclass == cutlass_bindings.OpClass.Simt else None math_inst = MathInstruction( instruction_shape=inst_shape, element_a=element_A, element_b=element_B, element_accumulator=element_accumulator, opcode_class=opclass, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=threadblock_shape, cluster_shape=cluster_shape, stages=stages, warp_count=warp_count, math_instruction=math_inst ) A = TensorDescription(element=element_A, layout=layouts[0], alignment=alignments[0]) B = TensorDescription(element=element_B, layout=layouts[1], alignment=alignments[1]) C = TensorDescription(element=element_output, layout=layouts[2], alignment=alignments[2]) epilogue_functor = LinearCombination(C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=90, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor) self.assertTrue(test_all_gemm(operation, "universal")) name = name_fn(layouts, alignments, element_output, element_accumulator, element_epilogue, cluster_shape, threadblock_shape, stages, opclass=opclass) setattr(cls, name, run) return run @unittest.skipIf(device_cc() < 90, "Device compute capability is insufficient for SM90 tests.") class GemmF64Sm90(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass add_test_simt = partial(add_test, opclass=cutlass_bindings.OpClass.Simt) add_test_simt(GemmF64Sm90, LayoutCombination.NNN, [1, 1, 1], cutlass_bindings.float64, cutlass_bindings.float64, cutlass_bindings.float64, [1, 1, 1], [64, 64, 32], 2) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**30, 2**30) unittest.main()
cutlass-main
test/python/backend/gemm/gemm_f64_sm90.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * import unittest from cutlass.backend.test.gemm_testbed import test_all_gemm from cutlass.backend.utils.device import device_cc @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class GemmF64TensorOpSm80(unittest.TestCase): def test_SM80_Device_Gemm_f64n_f64t_f64t_tensor_op_f64_32x32x16_16x16x16(self): math_inst = MathInstruction( instruction_shape=[8, 8, 4], element_a=cutlass_bindings.float64, element_b=cutlass_bindings.float64, element_accumulator=cutlass_bindings.float64, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[32, 32, 16], stages=4, warp_count=[2, 2, 1], math_instruction=math_inst ) # alignment 1 restricted for double A = TensorDescription( element=cutlass_bindings.float64, layout=cutlass_bindings.ColumnMajor, alignment=1 ) B = TensorDescription( element=cutlass_bindings.float64, layout=cutlass_bindings.RowMajor, alignment=1 ) C = TensorDescription( element=cutlass_bindings.float64, layout=cutlass_bindings.RowMajor, alignment=1 ) element_epilogue = cutlass_bindings.float64 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) def test_SM80_Device_Gemm_f64t_f64n_f64t_tensor_op_f64_64x64x16_32x32x16(self): math_inst = MathInstruction( instruction_shape=[8, 8, 4], element_a=cutlass_bindings.float64, element_b=cutlass_bindings.float64, element_accumulator=cutlass_bindings.float64, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[64, 64, 16], stages=4, warp_count=[2, 2, 1], math_instruction=math_inst ) # alignment 1 restricted for double A = TensorDescription( element=cutlass_bindings.float64, layout=cutlass_bindings.RowMajor, alignment=1 ) B = TensorDescription( element=cutlass_bindings.float64, layout=cutlass_bindings.ColumnMajor, alignment=1 ) C = TensorDescription( element=cutlass_bindings.float64, layout=cutlass_bindings.RowMajor, alignment=1 ) element_epilogue = cutlass_bindings.float64 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**30, 2**30) unittest.main()
cutlass-main
test/python/backend/gemm/gemm_f64_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * import unittest from cutlass.backend.test.gemm_testbed import test_all_gemm from cutlass.backend.utils.device import device_cc @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class GemmBF16TensorOpSm80(unittest.TestCase): def SM80_Device_Gemm_bf16n_bf16n_f32t_tensor_op_f32_64x128x64_32x64x64(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.bfloat16, element_b=cutlass_bindings.bfloat16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[64, 128, 64], stages=4, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.bfloat16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.bfloat16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.RowMajor, alignment=4 ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) def test_SM80_Device_Gemm_bf16t_bf16t_bf16t_tensor_op_f32_128x256x64_64x64x64(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.bfloat16, element_b=cutlass_bindings.bfloat16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[64, 128, 32], stages=6, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.bfloat16, layout=cutlass_bindings.RowMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.bfloat16, layout=cutlass_bindings.RowMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.bfloat16, layout=cutlass_bindings.RowMajor, alignment=8 ) epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, cutlass_bindings.float32) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "multistage")) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**30, 2**30) unittest.main()
cutlass-main
test/python/backend/gemm/gemm_bf16_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * import unittest from cutlass.backend.test.gemm_testbed import test_all_gemm from cutlass.backend.utils.device import device_cc @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class GemmF16Sm80(unittest.TestCase): def test_SM80_Device_Gemm_f32t_f32n_f32t_tensor_op_bf16_f32_128x128x32_64x64x32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.RowMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.ColumnMajor, alignment=4 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.BatchedIdentitySwizzle operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor, direct_store=True ) self.assertTrue(test_all_gemm(operation, "universal")) def test_SM80_Device_Gemm_f16n_f16n_f16t_tensor_op_f32_128x128x64_64x64x64(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.RowMajor, alignment=8 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) def test_SM80_Device_Gemm_f16n_f16n_f32n_tensor_op_f32_128x256x64_64x64x64(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 256, 64], stages=3, warp_count=[2, 4, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.ColumnMajor, alignment=4 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) def test_SM80_Device_Gemm_f16n_f16n_f32t_tensor_op_f32_256x128x64_64x64x64(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[256, 128, 64], stages=3, warp_count=[4, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.RowMajor, alignment=4 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) def test_SM80_Device_Gemm_f16n_f16t_f16t_tensor_op_f16_sliced_k_128x64x64_64x64x32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float16, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 64, 64], stages=3, warp_count=[2, 1, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.RowMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.RowMajor, alignment=4 ) element_epilogue = cutlass_bindings.float16 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) def test_SM80_Device_GemmUniversal_f16n_f16t_f32t_tensor_op_f32_64x64x32_32x32x32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float16, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[64, 64, 32], stages=10, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.RowMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.RowMajor, alignment=4 ) element_epilogue = cutlass_bindings.float16 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) def test_SM80_Device_Gemm_f16n_f16t_f32t_tensor_op_f32_256x128x64_64x64x64(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[256, 128, 64], stages=3, warp_count=[4, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.RowMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.RowMajor, alignment=8 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) def test_test_SM80_Device_Gemm_f16t_f16n_f16t_tensor_op_f16_sliced_k_128x64x64_64x64x32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 64, 64], stages=3, warp_count=[2, 1, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.RowMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.RowMajor, alignment=4 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) def test_SM80_Device_Gemm_f16t_f16t_f32n_tensor_op_f32_128x256x64_64x64x64(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 256, 64], stages=3, warp_count=[2, 4, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.RowMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.RowMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) def test_SM80_Device_Gemm_f16t_f16t_f32t_tensor_op_f32_128x256x64_64x64x64(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 256, 64], stages=3, warp_count=[2, 4, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.ColumnMajor, alignment=4 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**30, 2**30) unittest.main()
cutlass-main
test/python/backend/gemm/gemm_f16_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from functools import partial import cutlass.backend from cutlass.backend import * from cutlass.backend import library from cutlass.backend.test import * import unittest from cutlass.backend.test.utils import LayoutCombination, get_name from cutlass.backend.test.gemm_testbed import test_all_gemm from cutlass.backend.utils.device import device_cc name_fn = partial(get_name, element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, arch=90) def add_test(cls, layouts, alignments, element_output, element_accumulator, element_epilogue, cluster_shape, threadblock_shape, stages, opclass, persistent=False): """ Create a test-running function with the given specification and set it as a method of `cls`. :param cls: class to which the generated method will be added :type cls: type :param layouts: indexable container of layouts of A, B, and C operands :param alignments: indexable container of alignments of A, B, and C operands :param element_output: data type of the output element :param element_accumulator: data type used in accumulation :param element_epilogue: data type used in computing the epilogue :param cluster_shape: indexable container of dimensions of threadblock cluster to be launched :param threadblock_shape: indexable container of dimensions of threadblock tiles :param stages: number of pipeline stages to use in the kernel :type stages: int :param opclass: class of operation being performed (e.g., SIMT, Tensor Core) :type opclass: cutlass_bindings.OpClass :param persistent: whether this is a persistent warp-specialized kernel :type persistent: bool """ def run(self): """ Dynamically-generated function that constructs a GEMM operation and verifies it against multiple test cases. """ element_A = cutlass_bindings.int8 element_B = cutlass_bindings.int8 inst_shape = [1, 1, 1] if opclass == cutlass_bindings.OpClass.Simt else None warp_count = [2, 2, 1] if opclass == cutlass_bindings.OpClass.Simt else None math_inst = MathInstruction( instruction_shape=inst_shape, element_a=element_A, element_b=element_B, element_accumulator=element_accumulator, opcode_class=opclass, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=threadblock_shape, cluster_shape=cluster_shape, stages=stages, warp_count=warp_count, math_instruction=math_inst, persistent=persistent ) A = TensorDescription(element=element_A, layout=layouts[0], alignment=alignments[0]) B = TensorDescription(element=element_B, layout=layouts[1], alignment=alignments[1]) C = TensorDescription(element=element_output, layout=layouts[2], alignment=alignments[2]) if opclass == cutlass_bindings.OpClass.Simt: epilogue_functor_cls = LinearCombinationClamp else: epilogue_functor_cls = LinearCombination epilogue_functor = epilogue_functor_cls(C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=90, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor) self.assertTrue(test_all_gemm(operation, "universal")) if persistent: suffix = "_persistent" else: suffix = "" name = name_fn(layouts, alignments, element_output, element_accumulator, element_epilogue, cluster_shape, threadblock_shape, stages, opclass=opclass, suffix=suffix) setattr(cls, name, run) return run @unittest.skipIf(device_cc() < 90, "Device compute capability is insufficient for SM90 tests.") class GemmS8Sm90(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass add_test_tensorop = partial(add_test, opclass=cutlass_bindings.OpClass.TensorOp) add_test_simt = partial(add_test, opclass=cutlass_bindings.OpClass.Simt) # Tests with 1x1x1 clusters add_test_tensorop(GemmS8Sm90, LayoutCombination.TNN, [16, 16, 16], cutlass_bindings.int8, cutlass_bindings.int32, cutlass_bindings.int32, [1, 1, 1], [128, 128, 128], 3) add_test_tensorop(GemmS8Sm90, LayoutCombination.TNT, [16, 16, 16], cutlass_bindings.int8, cutlass_bindings.int32, cutlass_bindings.int32, [1, 1, 1], [128, 128, 128], None) add_test_tensorop(GemmS8Sm90, LayoutCombination.TNT, [16, 16, 8], cutlass_bindings.int8, cutlass_bindings.int32, cutlass_bindings.int32, [1, 1, 1], [128, 128, 128], None) add_test_tensorop(GemmS8Sm90, LayoutCombination.TNT, [16, 16, 16], cutlass_bindings.int8, cutlass_bindings.int32, cutlass_bindings.int32, [1, 1, 1], [64, 128, 128], None) add_test_tensorop(GemmS8Sm90, LayoutCombination.TNT, [16, 16, 16], cutlass_bindings.int8, cutlass_bindings.int32, cutlass_bindings.int32, [1, 1, 1], [128, 64, 32], None) add_test_tensorop(GemmS8Sm90, LayoutCombination.TNT, [4, 4, 16], cutlass_bindings.int8, cutlass_bindings.int32, cutlass_bindings.int32, [1, 1, 1], [128, 128, 128], None) # Tests with different cluster shapes add_test_tensorop(GemmS8Sm90, LayoutCombination.TNT, [16, 16, 16], cutlass_bindings.int8, cutlass_bindings.int32, cutlass_bindings.int32, [2, 2, 1], [128, 128, 128], None) add_test_tensorop(GemmS8Sm90, LayoutCombination.TNT, [16, 16, 16], cutlass_bindings.int8, cutlass_bindings.int32, cutlass_bindings.int32, [1, 4, 1], [128, 128, 128], None) add_test_tensorop(GemmS8Sm90, LayoutCombination.TNT, [16, 16, 16], cutlass_bindings.int8, cutlass_bindings.int32, cutlass_bindings.int32, [4, 4, 1], [128, 128, 128], None) # Tests with persistent warp-specialized threadblocks add_test_tensorop(GemmS8Sm90, LayoutCombination.TNT, [16, 16, 16], cutlass_bindings.int8, cutlass_bindings.int32, cutlass_bindings.int32, [2, 1, 1], [128, 128, 128], None, persistent=True) # Tests for SIMT add_test_simt(GemmS8Sm90, LayoutCombination.TNN, [1, 1, 1], cutlass_bindings.int8, cutlass_bindings.int32, cutlass_bindings.int32, [1, 1, 1], [64, 32, 8], 2) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**30, 2**30) unittest.main()
cutlass-main
test/python/backend/gemm/gemm_s8_sm90.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import cutlass.backend from cutlass.backend import * from cutlass.backend.memory_manager import get_allocated_size from cutlass.backend.test import * import unittest from cutlass.backend.test.gemm_testbed import test_all_gemm from cutlass.backend.utils.device import device_cc @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class GemmF32nF32nF32nTensorOpF32Sm80(unittest.TestCase): def test_SM80_Device_Gemm_f32t_f32n_f32t_tensor_op_bf16_f32_128x128x32_64x64x32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add_fast_bf16 ) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.RowMajor, alignment=4 ) B = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.ColumnMajor, alignment=4 ) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.RowMajor, alignment=4 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) def test_SM80_Device_Gemm_f32n_f32n_f32t_tensor_op_f32_128x128x32_64x64x32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.ColumnMajor, alignment=4 ) B = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.ColumnMajor, alignment=4 ) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.RowMajor, alignment=4 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) def test_SM80_Device_Gemm_f32n_f32n_f32t_tensor_op_fast_accurate_f32_64x64x32_32x32x32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 8], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add_fast_f32 ) tile_description = TileDescription( threadblock_shape=[64, 64, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.ColumnMajor, alignment=4 ) B = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.ColumnMajor, alignment=4 ) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.RowMajor, alignment=4 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "universal")) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**24, 2**24) cutlass.backend.compiler.load_from_cache() unittest.main()
cutlass-main
test/python/backend/gemm/gemm_f32_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import cutlass.backend from cutlass.backend import * from cutlass.backend.epilogue import LinearCombinationClamp from cutlass.backend.test import * import unittest from cutlass.backend.test.gemm_testbed import test_all_gemm from cutlass.backend.utils.device import device_cc @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class GemmS8TensorOpF32Sm80(unittest.TestCase): def test_SM80_Device_Gemm_s8t_s8n_s8t_tensor_op_s32_64x64x64_32x32x64(self): math_inst = MathInstruction( instruction_shape=[16, 8, 32], element_a=cutlass_bindings.int8, element_b=cutlass_bindings.int8, element_accumulator=cutlass_bindings.int32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add_saturate ) tile_description = TileDescription( threadblock_shape=[64, 64, 64], stages=6, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.int8, layout=cutlass_bindings.ColumnMajorInterleaved32, alignment=16 ) B = TensorDescription( element=cutlass_bindings.int8, layout=cutlass_bindings.RowMajorInterleaved32, alignment=16 ) C = TensorDescription( element=cutlass_bindings.int8, layout=cutlass_bindings.ColumnMajorInterleaved32, alignment=8 ) epilogue_functor = FastLinearCombinationClamp( C.element, C.alignment ) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "interleaved")) def test_SM80_Device_Gemm_s8t_s8n_s8t_tensor_op_s32_256x128x128_64x64x128(self): math_inst = MathInstruction( instruction_shape=[16, 8, 32], element_a=cutlass_bindings.int8, element_b=cutlass_bindings.int8, element_accumulator=cutlass_bindings.int32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 128, 128], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.int8, layout=cutlass_bindings.RowMajor, alignment=16 ) B = TensorDescription( element=cutlass_bindings.int8, layout=cutlass_bindings.ColumnMajor, alignment=16 ) C = TensorDescription( element=cutlass_bindings.int8, layout=cutlass_bindings.RowMajor, alignment=16 ) epilogue_functor = FastLinearCombinationClamp( C.element, C.alignment ) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "multistage")) def test_SM80_Device_Gemm_s8t_s8n_s8n_tensor_op_s32_128x128x128_64x64x128(self): math_inst = MathInstruction( instruction_shape=[16, 8, 32], element_a=cutlass_bindings.int8, element_b=cutlass_bindings.int8, element_accumulator=cutlass_bindings.int32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 128, 128], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.int8, layout=cutlass_bindings.RowMajor, alignment=16 ) B = TensorDescription( element=cutlass_bindings.int8, layout=cutlass_bindings.ColumnMajor, alignment=16 ) C = TensorDescription( element=cutlass_bindings.int8, layout=cutlass_bindings.ColumnMajor, alignment=16 ) epilogue_functor = FastLinearCombinationClamp( C.element, C.alignment ) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "multistage")) def test_SM80_Device_Gemm_s8t_s8n_s32n_tensor_op_s32_128x128x128_64x64x128(self): math_inst = MathInstruction( instruction_shape=[16, 8, 32], element_a=cutlass_bindings.int8, element_b=cutlass_bindings.int8, element_accumulator=cutlass_bindings.int32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 128, 128], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.int8, layout=cutlass_bindings.RowMajor, alignment=16 ) B = TensorDescription( element=cutlass_bindings.int8, layout=cutlass_bindings.ColumnMajor, alignment=16 ) C = TensorDescription( element=cutlass_bindings.int32, layout=cutlass_bindings.ColumnMajor, alignment=4 ) element_epilogue = cutlass_bindings.int32 epilogue_functor = LinearCombinationClamp( C.element, C.alignment, math_inst.element_accumulator, element_epilogue ) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "multistage")) def test_SM80_Device_Gemm_s8t_s8n_s32t_tensor_op_s32_128x128x128_64x64x128(self): math_inst = MathInstruction( instruction_shape=[16, 8, 32], element_a=cutlass_bindings.int8, element_b=cutlass_bindings.int8, element_accumulator=cutlass_bindings.int32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 128, 128], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.int8, layout=cutlass_bindings.RowMajor, alignment=16 ) B = TensorDescription( element=cutlass_bindings.int8, layout=cutlass_bindings.ColumnMajor, alignment=16 ) C = TensorDescription( element=cutlass_bindings.int32, layout=cutlass_bindings.RowMajor, alignment=4 ) element_epilogue = cutlass_bindings.int32 epilogue_functor = LinearCombinationClamp( C.element, C.alignment, math_inst.element_accumulator, element_epilogue ) swizzling_functor = cutlass_bindings.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) self.assertTrue(test_all_gemm(operation, "multistage")) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**30, 2**30) unittest.main()
cutlass-main
test/python/backend/gemm/gemm_s8_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import cutlass.backend from cutlass.backend import * from cutlass.backend.test import * import unittest from cutlass.backend.test.gemm_grouped_testbed import TestbedGrouped from cutlass.backend.utils.device import device_cc @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class GemmGroupedSm80(unittest.TestCase): def test_SM80_Device_GemmGrouped_f16n_f16t_f32n_tensor_op_f32_128x128x32_64x64x32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.ColumnMajor, alignment=4 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.BatchedIdentitySwizzle for precompute_mode in [SchedulerMode.Device, SchedulerMode.Host]: operation = GemmOperationGrouped( 80, tile_description, A, B, C, epilogue_functor, swizzling_functor, precompute_mode=precompute_mode ) testbed = TestbedGrouped(operation=operation) self.assertTrue(testbed.run(24)) def test_SM80_Device_GemmGrouped_f64t_f64t_f64n_tensor_op_f64_64x64x16_32x32x16(self): math_inst = MathInstruction( instruction_shape=[8, 8, 4], element_a=cutlass_bindings.float64, element_b=cutlass_bindings.float64, element_accumulator=cutlass_bindings.float64, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[64, 64, 16], stages=4, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float64, layout=cutlass_bindings.RowMajor, alignment=1 ) B = TensorDescription( element=cutlass_bindings.float64, layout=cutlass_bindings.RowMajor, alignment=1 ) C = TensorDescription( element=cutlass_bindings.float64, layout=cutlass_bindings.ColumnMajor, alignment=1 ) element_epilogue = cutlass_bindings.float64 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.BatchedIdentitySwizzle for precompute_mode in [SchedulerMode.Device, SchedulerMode.Host]: operation = GemmOperationGrouped( 80, tile_description, A, B, C, epilogue_functor, swizzling_functor, precompute_mode=precompute_mode ) testbed = TestbedGrouped(operation=operation) self.assertTrue(testbed.run(24)) def test_SM80_Device_GemmGrouped_f32t_f32t_f32t_simt_f32_128x64x8_64x32x1(self): math_inst = MathInstruction( instruction_shape=[1, 1, 1], element_a=cutlass_bindings.float32, element_b=cutlass_bindings.float32, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.Simt, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 64, 8], stages=4, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.RowMajor, alignment=1 ) B = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.RowMajor, alignment=1 ) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.RowMajor, alignment=1 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.BatchedIdentitySwizzle for precompute_mode in [SchedulerMode.Device, SchedulerMode.Host]: operation = GemmOperationGrouped( 80, tile_description, A, B, C, epilogue_functor, swizzling_functor, precompute_mode=precompute_mode ) testbed = TestbedGrouped(operation=operation) self.assertTrue(testbed.run(27)) def test_SM80_Device_GemmGrouped_f16n_f16t_f32n_tensor_op_f32_128x128x32_64x64x32_cache(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass_bindings.float16, element_b=cutlass_bindings.float16, element_accumulator=cutlass_bindings.float32, opcode_class=cutlass_bindings.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) B = TensorDescription( element=cutlass_bindings.float16, layout=cutlass_bindings.ColumnMajor, alignment=8 ) C = TensorDescription( element=cutlass_bindings.float32, layout=cutlass_bindings.ColumnMajor, alignment=4 ) element_epilogue = cutlass_bindings.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass_bindings.BatchedIdentitySwizzle for precompute_mode in [SchedulerMode.Device, SchedulerMode.Host]: operation = GemmOperationGrouped( 80, tile_description, A, B, C, epilogue_functor, swizzling_functor, precompute_mode=precompute_mode ) testbed = TestbedGrouped(operation=operation) self.assertTrue(testbed.run(5)) if __name__ == '__main__': cutlass.backend.get_memory_pool(2**30, 2**30) unittest.main()
cutlass-main
test/python/backend/gemm/gemm_grouped_sm80.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import cutlass.backend import unittest if __name__ == '__main__': cutlass.backend.get_memory_pool(2**30, 2**30) loader = unittest.TestLoader() tests = loader.discover('./', 'gemm_*.py') testRunner = unittest.runner.TextTestRunner() testRunner.run(tests)
cutlass-main
test/python/backend/gemm/run_all_tests.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ High-level tests for running batched GEMMs """ from functools import partial from math import prod import cutlass import logging import torch import unittest from cutlass.backend.test.utils import LayoutCombination, add_test_gemm from cutlass.backend.utils.device import device_cc cutlass.set_log_level(logging.WARNING) torch.manual_seed(2023) def pytorch_reference(A, B, C, alpha, beta): # Get the batch count. Assume that any of A, B, and C # with a batch dimension ahve matching batch count. Thus, # we break out of the loop once we have found the first # tensor containing a batch dimension. batch_count = (1,) for tensor in [A, B, C]: if len(tensor.shape) > 2: batch_count = tensor.shape[:-2] break int_batch_count = prod(batch_count) def add_batch(tensor): if len(tensor.shape) == 2: return tensor.unsqueeze(0).repeat(int_batch_count, 1, 1) else: return tensor.reshape(-1, tensor.size(-2), tensor.size(-1)) # Reshape tensors to have batch dimension A = add_batch(A) B = add_batch(B) C = add_batch(C) ret = (torch.bmm(A, B) * alpha) + (C * beta) reshape_vals = batch_count + C.shape[-2:] return ret.reshape(*reshape_vals) def initialize(rows, cols, batch): tensor = torch.randint(-3, 3, size=(rows*cols*prod(batch),), device='cuda').half() if len(batch) > 0 and prod(batch) > 1: reshape_vals = batch + (rows, cols) return tensor.reshape(*reshape_vals) else: return tensor.reshape(rows, cols) class GemmF16Batched(unittest.TestCase): def run_batched(self, batch_count: tuple, batch_A: bool, batch_B: bool, batch_C: bool): M = 512 N = 256 K = 128 alpha = 1. beta = 2. A = initialize(M, K, batch_count if batch_A else (1,)) B = initialize(K, N, batch_count if batch_B else (1,)) C = initialize(M, N, batch_count if batch_C else (1,)) D = initialize(M, N, batch_count) plan = cutlass.op.Gemm(A=A, B=B, C=C, D=D, element_accumulator=cutlass.DataType.f32) plan.run(A, B, C, D, alpha, beta) reference = pytorch_reference(A, B, C, alpha, beta) assert reference.equal(D) def test_batched_ABC(self): self.run_batched((3,), True, True, True) self.run_batched((2, 3), True, True, True) def test_batched_AB(self): self.run_batched((3,), True, True, False) self.run_batched((2, 3), True, True, False) def test_batched_AC(self): self.run_batched((3,), True, False, True) self.run_batched((2, 3), True, False, True) def test_batched_BC(self): self.run_batched((3,), False, True, True) self.run_batched((2, 3), False, True, True) def test_batched_A(self): self.run_batched((3,), True, False, False) self.run_batched((2, 3), True, False, False) def test_batched_B(self): self.run_batched((3,), False, True, False) self.run_batched((2, 3), False, True, False) def test_batched_C(self): self.run_batched((3,), False, False, True) self.run_batched((2, 3), False, False, True) if __name__ == '__main__': unittest.main()
cutlass-main
test/python/gemm/gemm_batched.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Low-level functionality tests for GEMM with F16 operands on SM90 """ from functools import partial import cutlass import logging import unittest from cutlass.backend.test.utils import LayoutCombination, add_test_gemm from cutlass.backend.utils.device import device_cc cutlass.set_log_level(logging.WARNING) cc = 90 @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM90 tests.') class GemmF16Sm90(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass add_test_specialized = partial(add_test_gemm, cls=GemmF16Sm90, element=cutlass.DataType.f16, warp_count=None, compilation_modes=['nvcc']) add_test_tensorop = partial(add_test_specialized, opclass=cutlass.OpcodeClass.TensorOp) # Tests with 1x1x1 clusters add_test_unit_cluster = partial(add_test_tensorop, cluster_shape=[1, 1, 1]) add_test_unit_cluster(layouts=LayoutCombination.NNN, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], stages=3) add_test_unit_cluster(layouts=LayoutCombination.NNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.NTN, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.NTT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.TNN, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.TNT, alignments=[4, 4, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.TNT, alignments=[4, 4, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.TNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.TNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 64, 64], stages=5) add_test_unit_cluster(layouts=LayoutCombination.TNT, alignments=[2, 2, 2], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, threadblock_shape=[128, 128, 32], stages=None) # Tests with different cluster shapes add_test_cluster_shape = partial(add_test_tensorop, threadblock_shape=[64, 128, 64], stages=None) add_test_cluster_shape(layouts=LayoutCombination.TTN, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, cluster_shape=[2, 2, 1]) add_test_cluster_shape(layouts=LayoutCombination.TNN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[2, 2, 1]) add_test_cluster_shape(layouts=LayoutCombination.NTN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[2, 2, 1]) add_test_cluster_shape(layouts=LayoutCombination.NNN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[2, 2, 1]) add_test_cluster_shape(layouts=LayoutCombination.TTN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[1, 4, 1]) add_test_cluster_shape(layouts=LayoutCombination.TTN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[2, 4, 1]) add_test_cluster_shape(layouts=LayoutCombination.TTN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[4, 1, 1]) add_test_cluster_shape(layouts=LayoutCombination.TTN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[4, 2, 1]) # Tests for different schedule modes add_test_schedule = partial(add_test_specialized, layouts=LayoutCombination.TTN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, opclass=cutlass.OpcodeClass.TensorOp, threadblock_shape=[128, 128, 64], stages=None) add_test_schedule( cluster_shape=[1, 1, 1], kernel_schedule=cutlass.KernelScheduleType.TmaWarpSpecializedPingpong, epilogue_schedule=cutlass.EpilogueScheduleType.TmaWarpSpecialized ) add_test_schedule( cluster_shape=[1, 1, 1], kernel_schedule=cutlass.KernelScheduleType.TmaWarpSpecializedCooperative, epilogue_schedule=cutlass.EpilogueScheduleType.TmaWarpSpecializedCooperative ) add_test_schedule( cluster_shape=[2, 1, 1], kernel_schedule=cutlass.KernelScheduleType.TmaWarpSpecializedPingpong, epilogue_schedule=cutlass.EpilogueScheduleType.TmaWarpSpecialized ) add_test_schedule( cluster_shape=[2, 1, 1], kernel_schedule=cutlass.KernelScheduleType.TmaWarpSpecializedCooperative, epilogue_schedule=cutlass.EpilogueScheduleType.TmaWarpSpecializedCooperative ) # Tests using SIMT add_test_simt = partial(add_test_specialized, opclass=cutlass.OpcodeClass.Simt, alignments=[1, 1, 1], cluster_shape=[1, 1, 1], stages=2) add_test_simt(layouts=LayoutCombination.NNN, element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 8]) add_test_simt(layouts=LayoutCombination.TNN, element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 128, 8]) add_test_simt(layouts=LayoutCombination.NTN, element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 64, 8]) add_test_simt(layouts=LayoutCombination.TTN, element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 64, 8]) add_test_simt(layouts=LayoutCombination.NNT, element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, threadblock_shape=[128, 128, 8]) if __name__ == '__main__': unittest.main()
cutlass-main
test/python/gemm/gemm_f16_sm90.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Low-level functionality tests for GEMM with F64 operands on SM90 """ from functools import partial import cutlass import logging import unittest from cutlass.backend.test.utils import LayoutCombination, add_test_gemm from cutlass.backend.utils.device import device_cc cutlass.set_log_level(logging.WARNING) cc = 90 @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM90 tests.') class GemmF64Sm90(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass add_test_specialized = partial(add_test_gemm, cls=GemmF64Sm90, alignments=[1, 1, 1], cluster_shape=[1, 1, 1], element=cutlass.DataType.f64, element_output=cutlass.DataType.f64, element_accumulator=cutlass.DataType.f64, compilation_modes=['nvcc']) add_test_specialized(opclass=cutlass.OpcodeClass.TensorOp, layouts=LayoutCombination.NNT, threadblock_shape=[128, 128, 32], stages=3) add_test_specialized(opclass=cutlass.OpcodeClass.TensorOp, layouts=LayoutCombination.TNN, threadblock_shape=[128, 128, 32], stages=3) add_test_specialized( opclass=cutlass.OpcodeClass.Simt, layouts=LayoutCombination.NNN, threadblock_shape=[128, 128, 8], stages=2) add_test_specialized( opclass=cutlass.OpcodeClass.Simt, layouts=LayoutCombination.TTT, threadblock_shape=[ 64, 128, 8], stages=2) if __name__ == '__main__': unittest.main()
cutlass-main
test/python/gemm/gemm_f64_sm90.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Low-level functionality tests for GEMM with F64 operands on SM80 """ from functools import partial import cutlass import logging import unittest from cutlass.backend.test.utils import LayoutCombination, add_test_gemm from cutlass.backend.utils.device import device_cc cutlass.set_log_level(logging.WARNING) cc = 80 @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM80 tests.') class GemmF64Sm80(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM80 tests.') class GemmF64Sm80StreamK(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass add_test_specialized = partial(add_test_gemm, element=cutlass.DataType.f64, cc=cc, cluster_shape=[1, 1, 1]) # Tests using TensorOp add_test_tensorop = partial(add_test_specialized, opclass=cutlass.OpcodeClass.TensorOp) add_test_tensorop(cls=GemmF64Sm80, layouts=LayoutCombination.NNN, alignments=[1, 1, 1], element_output=cutlass.DataType.f64, element_accumulator=cutlass.DataType.f64, threadblock_shape=[128, 128, 16], warp_count=[4, 2, 1], stages=3) add_test_tensorop(cls=GemmF64Sm80, layouts=LayoutCombination.NTN, alignments=[1, 1, 1], element_output=cutlass.DataType.f64, element_accumulator=cutlass.DataType.f64, threadblock_shape=[ 64, 64, 16], warp_count=[2, 2, 1], stages=4) add_test_tensorop(cls=GemmF64Sm80, layouts=LayoutCombination.TTN, alignments=[1, 1, 1], element_output=cutlass.DataType.f64, element_accumulator=cutlass.DataType.f64, threadblock_shape=[ 32, 32, 16], warp_count=[2, 1, 1], stages=5) # Tests using SIMT add_test_simt = partial(add_test_specialized, opclass=cutlass.OpcodeClass.Simt) add_test_simt(cls=GemmF64Sm80, layouts=LayoutCombination.NNN, alignments=[1, 1, 1], element_output=cutlass.DataType.f64, element_accumulator=cutlass.DataType.f64, threadblock_shape=[128, 128, 8], warp_count=[2, 2, 1], stages=2) add_test_simt(cls=GemmF64Sm80, layouts=LayoutCombination.TNN, alignments=[1, 1, 1], element_output=cutlass.DataType.f64, element_accumulator=cutlass.DataType.f64, threadblock_shape=[ 64, 128, 8], warp_count=[1, 2, 1], stages=2) add_test_simt(cls=GemmF64Sm80, layouts=LayoutCombination.NTN, alignments=[1, 1, 1], element_output=cutlass.DataType.f64, element_accumulator=cutlass.DataType.f64, threadblock_shape=[128, 64, 8], warp_count=[2, 1, 1], stages=2) add_test_simt(cls=GemmF64Sm80, layouts=LayoutCombination.TTN, alignments=[1, 1, 1], element_output=cutlass.DataType.f64, element_accumulator=cutlass.DataType.f64, threadblock_shape=[ 64, 64, 8], warp_count=[1, 1, 1], stages=2) add_test_simt(cls=GemmF64Sm80, layouts=LayoutCombination.NNT, alignments=[1, 1, 1], element_output=cutlass.DataType.f64, element_accumulator=cutlass.DataType.f64, threadblock_shape=[128, 128, 8], warp_count=[2, 2, 1], stages=2) # Stream K tests add_test_streamk = partial(add_test_specialized, opclass=cutlass.OpcodeClass.TensorOp, swizzle=cutlass.swizzle.ThreadblockSwizzleStreamK) add_test_streamk(cls=GemmF64Sm80StreamK, layouts=LayoutCombination.NTT, alignments=[1, 1, 1], element_output=cutlass.DataType.f64, element_accumulator=cutlass.DataType.f64, threadblock_shape=[128, 128, 16], warp_count=[4, 2, 1], stages=3) if __name__ == '__main__': unittest.main()
cutlass-main
test/python/gemm/gemm_f64_sm80.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Low-level functionality tests for GEMM with F16 operands on SM80 """ from functools import partial import cutlass import logging import unittest from cutlass.backend.test.utils import LayoutCombination, add_test_gemm from cutlass.backend.utils.device import device_cc cutlass.set_log_level(logging.WARNING) cc = 80 @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM80 tests.') class GemmF16Sm80(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM80 tests.') class GemmF16Sm80StreamK(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass add_test_specialized = partial(add_test_gemm, element=cutlass.DataType.f16, cc=cc, cluster_shape=[1, 1, 1]) # Tests using TensorOp add_test_tensorop = partial(add_test_specialized, opclass=cutlass.OpcodeClass.TensorOp) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.NNN, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.NNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.NTN, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.NTT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.TNN, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.TNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.TTN, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.TTT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.TNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 128, 32], warp_count=[1, 2, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.TNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 64, 32], warp_count=[2, 1, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.TNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 64, 64], warp_count=[1, 1, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.TNT, alignments=[4, 4, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.TNT, alignments=[4, 4, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.TNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.TNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 64, 64], warp_count=[1, 1, 1], stages=5) add_test_tensorop(cls=GemmF16Sm80, layouts=LayoutCombination.TNT, alignments=[2, 2, 2], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) # Tests using SIMT add_test_simt = partial(add_test_specialized, opclass=cutlass.OpcodeClass.Simt) add_test_simt(cls=GemmF16Sm80, layouts=LayoutCombination.NNN, alignments=[1, 1, 1], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 8], warp_count=[2, 2, 1], stages=2) add_test_simt(cls=GemmF16Sm80, layouts=LayoutCombination.TNN, alignments=[1, 1, 1], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 128, 8], warp_count=[1, 2, 1], stages=2) add_test_simt(cls=GemmF16Sm80, layouts=LayoutCombination.NTN, alignments=[1, 1, 1], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 64, 8], warp_count=[2, 1, 1], stages=2) add_test_simt(cls=GemmF16Sm80, layouts=LayoutCombination.TTN, alignments=[1, 1, 1], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 64, 8], warp_count=[1, 1, 1], stages=2) add_test_simt(cls=GemmF16Sm80, layouts=LayoutCombination.NNT, alignments=[1, 1, 1], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, threadblock_shape=[128, 128, 8], warp_count=[2, 2, 1], stages=2) # Stream K tests add_test_streamk = partial(add_test_specialized, opclass=cutlass.OpcodeClass.TensorOp, swizzle=cutlass.swizzle.ThreadblockSwizzleStreamK) add_test_streamk(cls=GemmF16Sm80StreamK, layouts=LayoutCombination.NNN, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_streamk(cls=GemmF16Sm80StreamK, layouts=LayoutCombination.TNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 64, 64], warp_count=[1, 1, 1], stages=5) if __name__ == '__main__': unittest.main()
cutlass-main
test/python/gemm/gemm_f16_sm80.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Low-level functionality tests for GEMM with S8 operands on SM90 """ from functools import partial import cutlass import logging import unittest from cutlass.backend.test.utils import LayoutCombination, add_test_gemm from cutlass.backend.utils.device import device_cc cutlass.set_log_level(logging.WARNING) cc = 90 @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM90 tests.') class GemmS8Sm90(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass add_test_specialized = partial(add_test_gemm, cls=GemmS8Sm90, element=cutlass.DataType.s8, compilation_modes=['nvcc']) add_test_tensorop = partial(add_test_specialized, opclass=cutlass.OpcodeClass.TensorOp) # Tests with 1x1x1 clusters add_test_tensorop(layouts=LayoutCombination.TNN, alignments=[16, 16, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, cluster_shape=[1, 1, 1], threadblock_shape=[128, 128, 128], stages=3) add_test_tensorop(layouts=LayoutCombination.TNT, alignments=[16, 16, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, cluster_shape=[1, 1, 1], threadblock_shape=[128, 128, 128], stages=None) add_test_tensorop(layouts=LayoutCombination.TNT, alignments=[16, 16, 8], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, cluster_shape=[1, 1, 1], threadblock_shape=[128, 128, 128], stages=None) add_test_tensorop(layouts=LayoutCombination.TNT, alignments=[16, 16, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, cluster_shape=[1, 1, 1], threadblock_shape=[64, 128, 128], stages=None) add_test_tensorop(layouts=LayoutCombination.TNT, alignments=[16, 16, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, cluster_shape=[1, 1, 1], threadblock_shape=[128, 64, 32], stages=None) add_test_tensorop(layouts=LayoutCombination.TNT, alignments=[ 4, 4, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, cluster_shape=[1, 1, 1], threadblock_shape=[128, 128, 128], stages=None) # Tests with different cluster shapes add_test_tensorop(layouts=LayoutCombination.TNT, alignments=[16, 16, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, cluster_shape=[2, 2, 1], threadblock_shape=[128, 128, 128], stages=None) add_test_tensorop(layouts=LayoutCombination.TNT, alignments=[16, 16, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, cluster_shape=[1, 4, 1], threadblock_shape=[128, 128, 128], stages=None) # Tests with warp-specialized ping-pong schedule add_test_tensorop(layouts=LayoutCombination.TNT, alignments=[16, 16, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, cluster_shape=[2, 1, 1], threadblock_shape=[128, 128, 128], stages=None, kernel_schedule=cutlass.KernelScheduleType.TmaWarpSpecializedPingpong, epilogue_schedule=cutlass.EpilogueScheduleType.TmaWarpSpecialized) # Tests for SIMT add_test_simt = partial(add_test_specialized, opclass=cutlass.OpcodeClass.Simt) add_test_simt(layouts=LayoutCombination.TNN, alignments=[1, 1, 1], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, cluster_shape=[1, 1, 1], threadblock_shape=[64, 32, 8], stages=2) if __name__ == '__main__': unittest.main()
cutlass-main
test/python/gemm/gemm_s8_sm90.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Low-level functionality tests for GEMM with F32 operands on SM80 """ from functools import partial import cutlass import logging import unittest from cutlass.backend.test.utils import LayoutCombination, add_test_gemm from cutlass.backend.utils.device import device_cc cutlass.set_log_level(logging.WARNING) cc = 80 @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM80 tests.') class GemmF32Sm80(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM80 tests.') class GemmF32Sm80StreamK(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass add_test_specialized = partial(add_test_gemm, element=cutlass.DataType.f32, cc=cc, cluster_shape=[1, 1, 1]) # Tests using TensorOp add_test_tensorop = partial(add_test_specialized, opclass=cutlass.OpcodeClass.TensorOp) add_test_tensorop(cls=GemmF32Sm80, layouts=LayoutCombination.NNN, alignments=[4, 4, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_tensorop(cls=GemmF32Sm80, layouts=LayoutCombination.NNT, alignments=[4, 4, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) add_test_tensorop(cls=GemmF32Sm80, layouts=LayoutCombination.NTN, alignments=[4, 4, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 128, 32], warp_count=[1, 2, 1], stages=3) add_test_tensorop(cls=GemmF32Sm80, layouts=LayoutCombination.NTN, alignments=[4, 4, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 64, 32], warp_count=[1, 1, 1], stages=4) # Tests using SIMT add_test_simt = partial(add_test_specialized, opclass=cutlass.OpcodeClass.Simt) add_test_simt(cls=GemmF32Sm80, layouts=LayoutCombination.NNN, alignments=[1, 1, 1], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 8], warp_count=[2, 2, 1], stages=2) add_test_simt(cls=GemmF32Sm80, layouts=LayoutCombination.TNN, alignments=[1, 1, 1], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 128, 8], warp_count=[1, 2, 1], stages=2) add_test_simt(cls=GemmF32Sm80, layouts=LayoutCombination.NTN, alignments=[1, 1, 1], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 64, 8], warp_count=[2, 1, 1], stages=2) add_test_simt(cls=GemmF32Sm80, layouts=LayoutCombination.TTN, alignments=[1, 1, 1], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 64, 8], warp_count=[1, 1, 1], stages=2) add_test_simt(cls=GemmF32Sm80, layouts=LayoutCombination.NNT, alignments=[1, 1, 1], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 8], warp_count=[2, 2, 1], stages=2) # Stream K tests add_test_streamk = partial(add_test_specialized, opclass=cutlass.OpcodeClass.TensorOp, swizzle=cutlass.swizzle.ThreadblockSwizzleStreamK) add_test_streamk(cls=GemmF32Sm80StreamK, layouts=LayoutCombination.TTN, alignments=[4, 4, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], warp_count=[2, 2, 1], stages=3) if __name__ == '__main__': unittest.main()
cutlass-main
test/python/gemm/gemm_f32_sm80.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Low-level functionality tests for GEMM with S8 operands on SM80 """ from functools import partial import cutlass import logging import unittest from cutlass.backend.test.utils import LayoutCombination, add_test_gemm from cutlass.backend.utils.device import device_cc cutlass.set_log_level(logging.WARNING) cc = 80 @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM80 tests.') class GemmS8Sm80(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM80 tests.') class GemmS8Sm80StreamK(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass add_test_specialized = partial(add_test_gemm, element=cutlass.DataType.s8, cc=cc, cluster_shape=[1, 1, 1]) # Tests using TensorOp add_test_tensorop = partial(add_test_specialized, opclass=cutlass.OpcodeClass.TensorOp) add_test_tensorop(cls=GemmS8Sm80, layouts=LayoutCombination.TNN, alignments=[16, 16, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, threadblock_shape=[256, 128, 64], warp_count=[4, 2, 1], stages=3) add_test_tensorop(cls=GemmS8Sm80, layouts=LayoutCombination.TNT, alignments=[16, 16, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, threadblock_shape=[128, 256, 64], warp_count=[2, 4, 1], stages=3) add_test_tensorop(cls=GemmS8Sm80, layouts=LayoutCombination.TNN, alignments=[16, 16, 4], element_output=cutlass.DataType.s32, element_accumulator=cutlass.DataType.s32, threadblock_shape=[ 64, 64, 64], warp_count=[1, 1, 1], stages=4) # Tests using SIMT add_test_simt = partial(add_test_specialized, opclass=cutlass.OpcodeClass.Simt) add_test_simt(cls=GemmS8Sm80, layouts=LayoutCombination.NNN, alignments=[1, 1, 1], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, threadblock_shape=[128, 128, 8], warp_count=[2, 2, 1], stages=2) add_test_simt(cls=GemmS8Sm80, layouts=LayoutCombination.TNN, alignments=[1, 1, 1], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, threadblock_shape=[ 64, 128, 8], warp_count=[1, 2, 1], stages=2) add_test_simt(cls=GemmS8Sm80, layouts=LayoutCombination.NTN, alignments=[1, 1, 1], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, threadblock_shape=[128, 64, 8], warp_count=[2, 1, 1], stages=2) add_test_simt(cls=GemmS8Sm80, layouts=LayoutCombination.TTN, alignments=[1, 1, 1], element_output=cutlass.DataType.s32, element_accumulator=cutlass.DataType.s32, threadblock_shape=[ 64, 64, 8], warp_count=[1, 1, 1], stages=2) add_test_simt(cls=GemmS8Sm80, layouts=LayoutCombination.NNT, alignments=[1, 1, 1], element_output=cutlass.DataType.s32, element_accumulator=cutlass.DataType.s32, threadblock_shape=[128, 128, 8], warp_count=[2, 2, 1], stages=2) # Stream K tests add_test_streamk = partial(add_test_specialized, opclass=cutlass.OpcodeClass.TensorOp, swizzle=cutlass.swizzle.ThreadblockSwizzleStreamK) add_test_streamk(cls=GemmS8Sm80StreamK, layouts=LayoutCombination.TNT, alignments=[16, 16, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, threadblock_shape=[128, 256, 64], warp_count=[2, 4, 1], stages=3) if __name__ == '__main__': unittest.main()
cutlass-main
test/python/gemm/gemm_s8_sm80.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import unittest if __name__ == '__main__': loader = unittest.TestLoader() tests = loader.discover('./', 'gemm_*.py') testRunner = unittest.runner.TextTestRunner() results = testRunner.run(tests) if not results.wasSuccessful(): raise Exception('Test cases failed')
cutlass-main
test/python/gemm/run_all_tests.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Tests emitting a CUTLASS kernel to a PyTorch CUDA extension """ import random import tempfile import unittest import cutlass import cutlass_bindings if cutlass.utils.datatypes.torch_available: import torch def _initialize(dtype, M: int, N: int, K: int): """ Utility function to initialize A, B, C, and D matrices corresponding to dimensions M, N, and K :param dtype: data type of tensors :param M: M dimension of GEMM problem :type M: int :param N: N dimension of GEMM problem :type N: int :param K: N dimension of GEMM problem :type K: int :return: initialized tensors A, B, C, and D :rtype: list """ sizes = [(M, K), (K, N), (M, N), (M, N)] return [torch.randint(-3, 3, size, device='cuda').to(dtype) for size in sizes] def _generate_problems(dtype, num): """ Utility function to generate `num` GEMMs of random sizes :param dtype: data type of tensors :param num: number of GEMMs to generate :type num: int :return: lists of A, B, C, and D tensors :rtype: list """ valid_sizes = [128, 256, 512, 1024] As, Bs, Cs, Ds = [], [], [], [] for _ in range(num): M, N, K = [random.choice(valid_sizes) for _ in range(3)] A, B, C, D = _initialize(dtype, M, N, K) As.append(A) Bs.append(B) Cs.append(C) Ds.append(D) return As, Bs, Cs, Ds def _generate_conv2d_problem(conv_kind, dtype, ps): """ Utility function to generate conv2d inputs :param conv_kind: kind of convolution :type conv_kind: str :param dtype: data type of tensors :param problem_size: the conv2d problem size :type problem_size: cutlass_bindings.conv.Conv2dProblemSize :return: initialized tensors A, B, C, and D :rtype: list """ if conv_kind == "fprop": tensor_A_size = (ps.N, ps.C, ps.H, ps.W) tensor_B_size = (ps.K, ps.C, ps.R, ps.S) tensor_C_size = (ps.N, ps.K, ps.P, ps.Q) elif conv_kind == "dgrad": tensor_A_size = (ps.N, ps.K, ps.P, ps.Q) tensor_B_size = (ps.K, ps.C, ps.R, ps.S) tensor_C_size = (ps.N, ps.C, ps.H, ps.W) else: tensor_A_size = (ps.N, ps.K, ps.P, ps.Q) tensor_B_size = (ps.N, ps.C, ps.H, ps.W) tensor_C_size = (ps.K, ps.C, ps.R, ps.S) sizes = [tensor_A_size, tensor_B_size, tensor_C_size] return [torch.ceil(torch.empty(size, dtype=dtype, device='cuda').uniform_(-4.5, 3.5)).to(memory_format=torch.channels_last) for size in sizes] @unittest.skipIf(not cutlass.utils.datatypes.torch_available, 'PyTorch must be available to run PyTorch extension tests') class PyTorchExtensionTest(unittest.TestCase): def test_gemm(self): random.seed(2023) dtype = torch.float16 plan = cutlass.op.Gemm(element=dtype, layout=cutlass.LayoutType.RowMajor) plan.activation = cutlass.epilogue.relu op = plan.construct() with tempfile.TemporaryDirectory() as tmpdir: mod = cutlass.emit.pytorch(op, name='gemm_mod', cc=plan.cc, sourcedir=tmpdir, jit=True) A, B, C, _ = _initialize(dtype, 1024, 256, 512) D_ref = torch.nn.functional.relu(A @ B) D = mod.run(A, B) assert torch.allclose(D, D_ref) D = mod.run(A, B, C) assert torch.allclose(D, D_ref) D = mod.run(A, B, C, 1.0) assert torch.allclose(D, D_ref) D = mod.run(A, B, C, 1.0, 0.0) assert torch.allclose(D, D_ref) alpha = 2.0 beta = -1.0 D_ref = torch.nn.functional.relu((A @ B) * alpha + (beta * C)) D = mod.run(A, B, C, alpha, beta) assert torch.allclose(D, D_ref) def test_grouped_gemm(self): random.seed(2023) dtype = torch.float16 plan = cutlass.op.GroupedGemm(element=dtype, layout=cutlass.LayoutType.RowMajor) op = plan.construct() with tempfile.TemporaryDirectory() as tmpdir: mod = cutlass.emit.pytorch(op, name='grouped_gemm_mod', cc=plan.cc, sourcedir=tmpdir, jit=True) As, Bs, Cs, _ = _generate_problems(dtype, 50) def check_all(X, Y): for x, y in zip(X, Y): assert torch.allclose(x, y) Ds_ref = [a @ b for a, b in zip(As, Bs)] Ds = mod.run(As, Bs) check_all(Ds, Ds_ref) Ds = mod.run(As, Bs, Cs) check_all(Ds, Ds_ref) Ds = mod.run(As, Bs, Cs, 1.0) check_all(Ds, Ds_ref) Ds = mod.run(As, Bs, Cs, 1.0, 0.0) check_all(Ds, Ds_ref) alpha = 2.0 beta = -1.0 Ds_ref = [(a @ b) * alpha + (beta * c) for a, b, c in zip(As, Bs, Cs)] Ds = mod.run(As, Bs, Cs, alpha, beta) check_all(Ds, Ds_ref) def test_conv2d_fprop(self): torch.manual_seed(2023) dtype = torch.float16 plan = cutlass.op.Conv2d(kind="fprop", element=dtype, element_accumulator=torch.float32) plan.activation = "relu" op = plan.construct() with tempfile.TemporaryDirectory() as tmpdir: mod = cutlass.emit.pytorch(op, name="conv2d_mod", cc=plan.cc, sourcedir=tmpdir, jit=True) problem_size = cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 16), cutlass_bindings.Tensor4DCoord(8, 3, 3, 16), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ) A, B, C = _generate_conv2d_problem("fprop", dtype, problem_size) stride = (problem_size.stride_h, problem_size.stride_w) padding = (problem_size.pad_h, problem_size.pad_w) alpha = 1.0 beta = 0.5 D_ref = alpha * torch.ops.aten.conv2d( A, B, stride=stride, padding=padding ) + beta * C D_ref = torch.nn.functional.relu(D_ref) D = mod.run(A, B, C, stride, padding, alpha=alpha, beta=beta) assert torch.allclose(D, D_ref) # Test serial split-K D_serial_split_k = mod.run(A, B, C, stride, padding, alpha=alpha, beta=beta, split_k_mode="serial", split_k_slices=3) assert torch.allclose(D, D_serial_split_k) # Test parallel split-K D_parallel_split_k = mod.run(A, B, C, stride, padding, alpha=alpha, beta=beta, split_k_mode="parallel", split_k_slices=7) assert torch.allclose(D, D_parallel_split_k) def test_conv2d_dgrad(self): torch.manual_seed(2023) dtype = torch.float16 plan = cutlass.op.Conv2d(kind="dgrad", element=dtype, element_accumulator=torch.float32) op = plan.construct() with tempfile.TemporaryDirectory() as tmpdir: mod = cutlass.emit.pytorch(op, name="conv2d_dgrad_mod", cc=plan.cc, sourcedir=tmpdir, jit=True) problem_size = cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 16), cutlass_bindings.Tensor4DCoord(8, 3, 3, 16), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ) A, B, C = _generate_conv2d_problem("dgrad", dtype, problem_size) stride = (problem_size.stride_h, problem_size.stride_w) padding = (problem_size.pad_h, problem_size.pad_w) alpha = 1.0 beta = 0.5 input_size = (problem_size.N, problem_size.C, problem_size.H, problem_size.W) D_ref = alpha * torch.nn.grad.conv2d_input( input_size, B, A, stride=stride, padding=padding ) + beta * C D = mod.run(input_size, A, B, C, stride, padding, alpha=alpha, beta=beta, ) assert torch.allclose(D, D_ref) def test_conv2d_wgrad(self): torch.manual_seed(2023) dtype = torch.float16 plan = cutlass.op.Conv2d(kind="wgrad", element=dtype, element_accumulator=torch.float32) op = plan.construct() with tempfile.TemporaryDirectory() as tmpdir: mod = cutlass.emit.pytorch(op, name="conv2d_wgrad_mod", cc=plan.cc, sourcedir=tmpdir, jit=True) problem_size = cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 4, 4, 16), cutlass_bindings.Tensor4DCoord(8, 3, 3, 16), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(3, 3), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ) A, B, C = _generate_conv2d_problem("wgrad", dtype, problem_size) stride = (problem_size.stride_h, problem_size.stride_w) padding = (problem_size.pad_h, problem_size.pad_w) alpha = 1.0 beta = 0.5 weight_size = (problem_size.K, problem_size.C, problem_size.R, problem_size.S) D_ref = alpha * torch.nn.grad.conv2d_weight( B, weight_size, A, stride=stride, padding=padding ) + beta * C D = mod.run(weight_size, A, B, C, stride, padding, alpha=alpha, beta=beta) assert torch.allclose(D, D_ref) # Test serial split-K D_serial_split_k = mod.run(weight_size, A, B, C, stride, padding, alpha=alpha, beta=beta, split_k_mode="serial", split_k_slices=3) assert torch.allclose(D, D_serial_split_k) # Test parallel split-K D_parallel_split_k = mod.run(weight_size, A, B, C, stride, padding, alpha=alpha, beta=beta, split_k_mode="parallel", split_k_slices=7) assert torch.allclose(D, D_parallel_split_k) if __name__ == '__main__': unittest.main()
cutlass-main
test/python/emit/pytorch.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import copy import os from pybind11.setup_helpers import Pybind11Extension import setuptools from setuptools import setup from setuptools.command.build_ext import build_ext def _cutlass_path_from_dir() -> str: cutlass_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../') if not os.path.isdir(cutlass_path): raise Exception(f'Environment variable "CUTLASS_PATH" is not defined, and default path of {cutlass_path} does not exist.') return cutlass_path def _cuda_install_path_from_nvcc() -> str: import subprocess # Attempt to detect CUDA_INSTALL_PATH based on location of NVCC result = subprocess.run(['which', 'nvcc'], capture_output=True) if result.returncode != 0: raise Exception(f'Unable to find nvcc via `which` utility.') cuda_install_path = result.stdout.decode('utf-8').split('/bin/nvcc')[0] if not os.path.isdir(cuda_install_path): raise Exception(f'Environment variable "CUDA_INSTALL_PATH" is not defined, and default path of {cuda_install_path} does not exist.') return cuda_install_path cutlass_path = ( os.getenv('CUTLASS_PATH') if os.getenv('CUTLASS_PATH') is not None else _cutlass_path_from_dir() ) cuda_install_path = ( os.getenv('CUDA_INSTALL_PATH') if os.getenv('CUDA_INSTALL_PATH') is not None else _cuda_install_path_from_nvcc() ) class BuildExtension(build_ext): """ Wrapper around `build_ext` to use NVCC when compiling the CUTLASS Python-C++ bindings. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def build_extensions(self): original_compile = self.compiler._compile def custom_compile(obj, src, ext, cc_args, extra_postargs, pp_opts): """ Wrapper around build_ext.compiler._compile method """ postargs = copy.deepcopy(extra_postargs) postargs = [f for f in postargs if f not in ['-g0', '-fvisibility=hidden']] postargs.extend(["-Xcompiler='-fPIC'", "-Xcompiler='-g0'", "-Xcompiler='-O3'", '-x', 'cu']) try: original_compiler = self.compiler.compiler_so self.compiler.set_executable('compiler_so', [f'{cuda_install_path}/bin/nvcc']) original_compile(obj, src, ext, cc_args, postargs, pp_opts) finally: self.compiler.set_executable('compiler_so', original_compiler) self.compiler._compile = custom_compile super().build_extensions() include_dirs = [ cutlass_path + '/include', cuda_install_path + '/include', cutlass_path + '/tools/util/include', cutlass_path + '/test', ] library_dirs = [ cuda_install_path + '/lib64', ] ext_modules = [ Pybind11Extension('cutlass_bindings', ['cutlass/cpp/cutlass_bindings.cpp'], include_dirs=include_dirs, library_dirs=library_dirs, extra_compile_args=['-Xcompiler="-fpermissive"', '-w', '-std=c++17'], libraries=['cudart']) ] setup( name='cutlass', version='3.1.0', description='CUTLASS Pythonic Interface', package_dir={'': '.'}, packages=['cutlass', 'cutlass.emit', 'cutlass.op', 'cutlass.utils', 'cutlass.backend', 'cutlass.backend.utils'], setup_requires=['pybind11'], install_requires=[ 'bfloat16', 'cuda-python>=11.8.0', 'pybind11', 'scikit-build', 'treelib' ], ext_modules=ext_modules, cmdclass={ 'build_ext': BuildExtension } )
cutlass-main
python/setup.py
# Configuration file for the Sphinx documentation builder. # # For the full list of built-in configuration values, see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) sys.path.insert(0, os.path.abspath('../..')) sys.path.insert(0, os.path.abspath('../../media/docs')) # -- Project information ----------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information project = 'CUTLASS Python interface' copyright = '2023, NVIDIA' author = 'NVIDIA' release = '3.1.0' # -- General configuration --------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'myst_parser', 'nbsphinx', 'nbsphinx_link', 'sphinx_copybutton', 'sphinx.ext.autodoc', 'sphinx.ext.autosectionlabel', 'sphinx.ext.autosummary', 'sphinx.ext.coverage', 'sphinx.ext.extlinks', 'sphinx.ext.ifconfig', 'sphinx.ext.intersphinx', 'sphinx.ext.mathjax', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'sphinx_inline_tabs', ] source_suffix = { '.rst': 'restructuredtext', '.md': 'markdown', } autodoc_typehints = 'description' pygments_style = "sphinx" pygments_dark_style = "monokai" templates_path = ['_templates'] exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # Ignore errors when converting notebooks nbsphinx_allow_errors = True language = 'en' # -- Options for HTML output ------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output html_static_path = ['_static'] html_title = "CUTLASS Python" html_baseurl = 'docs' html_theme = 'furo' html_theme_options = { "light_logo": "cutlass-logo-small.png", "dark_logo": "cutlass-logo-small.png", "light_css_variables": { "color-brand-primary": "#76B900", "color-brand-content": "#76B900", }, "dark_css_variables": { "color-brand-primary": "#76B900", "color-brand-content": "#76B900", }, "footer_icons": [ { "name": "GitHub", "url": "https://github.com/NVIDIA/cutlass", "html": """ <svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M8 0C3.58 0 0 3.58 0 8c0 3.54 2.29 6.53 5.47 7.59.4.07.55-.17.55-.38 0-.19-.01-.82-.01-1.49-2.01.37-2.53-.49-2.69-.94-.09-.23-.48-.94-.82-1.13-.28-.15-.68-.52-.01-.53.63-.01 1.08.58 1.23.82.72 1.21 1.87.87 2.33.66.07-.52.28-.87.51-1.07-1.78-.2-3.64-.89-3.64-3.95 0-.87.31-1.59.82-2.15-.08-.2-.36-1.02.08-2.12 0 0 .67-.21 2.2.82.64-.18 1.32-.27 2-.27.68 0 1.36.09 2 .27 1.53-1.04 2.2-.82 2.2-.82.44 1.1.16 1.92.08 2.12.51.56.82 1.27.82 2.15 0 3.07-1.87 3.75-3.65 3.95.29.25.54.73.54 1.48 0 1.07-.01 1.93-.01 2.2 0 .21.15.46.55.38A8.013 8.013 0 0 0 16 8c0-4.42-3.58-8-8-8z"></path> </svg> """, "class": "", }, ], }
cutlass-main
python/docs_src/source/conf.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import logging import os import sys def _cutlass_path_from_dir() -> str: cutlass_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../') if not os.path.isdir(cutlass_path): raise Exception(f'Environment variable "CUTLASS_PATH" is not defined, ' f'and default path of {cutlass_path} does not exist.') return cutlass_path def _cuda_install_path_from_nvcc() -> str: import subprocess # Attempt to detect CUDA_INSTALL_PATH based on location of NVCC result = subprocess.run(['which', 'nvcc'], capture_output=True) if result.returncode != 0: raise Exception(f'Unable to find nvcc via `which` utility.') cuda_install_path = result.stdout.decode('utf-8').split('/bin/nvcc')[0] if not os.path.isdir(cuda_install_path): raise Exception(f'Environment variable "CUDA_INSTALL_PATH" is not defined, ' f'and default path of {cuda_install_path} does not exist.') return cuda_install_path CUTLASS_PATH = os.getenv("CUTLASS_PATH", _cutlass_path_from_dir()) CUDA_INSTALL_PATH = os.getenv("CUDA_INSTALL_PATH", _cuda_install_path_from_nvcc()) CACHE_FILE = "compiled_cache.db" # Add the path to the CUTLASS profiler generation/manifest scripts to PYTHONPATH sys.path.insert(0, os.path.join(CUTLASS_PATH, "tools/library/scripts/")) # Import types/methods from the CUTLASS utility libraries for profiler generation/emission under from library import ( ArchitectureNames, DataType, DataTypeSize, EpilogueFunctor, EpilogueScheduleSuffixes, EpilogueScheduleTag, EpilogueScheduleType, GemmKind, LayoutTag, LayoutType, KernelScheduleSuffixes, KernelScheduleTag, KernelScheduleType, MathInstruction, MathOperation, OpcodeClass, OperationKind, SharedMemPerCC, SwizzlingFunctor, TensorDescription, TileDescription, TileSchedulerSuffixes, TileSchedulerTag, TileSchedulerType ) this = sys.modules[__name__] this.logger = logging.getLogger(__name__) def set_log_level(level: int): """ Sets the log level :param log_level: severity of logging level to use. See https://docs.python.org/3/library/logging.html#logging-levels for options :type log_level: int """ this.logger.setLevel(level) set_log_level(logging.ERROR) from cutlass.library_defaults import OptionRegistry from cutlass.backend.utils.device import device_cc this.option_registry = OptionRegistry(device_cc()) this.__version__ = '3.2.0' from cutlass.backend import get_memory_pool from cutlass.emit.pytorch import pytorch from cutlass.op.gemm import Gemm from cutlass.op.conv import Conv2d, Conv2dFprop, Conv2dDgrad, Conv2dWgrad from cutlass.op.gemm_grouped import GroupedGemm from cutlass.op.op import OperationBase get_memory_pool(init_pool_size=2 ** 30, max_pool_size=2 ** 32)
cutlass-main
python/cutlass/__init__.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Registry of swizzling functions """ import cutlass_bindings IdentitySwizzle1 = cutlass_bindings.IdentitySwizzle1 IdentitySwizzle2 = cutlass_bindings.IdentitySwizzle2 IdentitySwizzle4 = cutlass_bindings.IdentitySwizzle4 IdentitySwizzle8 = cutlass_bindings.IdentitySwizzle8 HorizontalSwizzle = cutlass_bindings.HorizontalSwizzle BatchedIdentitySwizzle = cutlass_bindings.BatchedIdentitySwizzle ThreadblockSwizzleStreamK = cutlass_bindings.ThreadblockSwizzleStreamK StridedDgradIdentitySwizzle1 = cutlass_bindings.StridedDgradIdentitySwizzle1 StridedDgradIdentitySwizzle4 = cutlass_bindings.StridedDgradIdentitySwizzle4 StridedDgradHorizontalSwizzle = cutlass_bindings.StridedDgradHorizontalSwizzle _swizzling_functors = [ IdentitySwizzle1, IdentitySwizzle2, IdentitySwizzle4, IdentitySwizzle8, HorizontalSwizzle, BatchedIdentitySwizzle, ThreadblockSwizzleStreamK, StridedDgradIdentitySwizzle1, StridedDgradIdentitySwizzle4, StridedDgradHorizontalSwizzle, ] def get_swizzling_functors(): return _swizzling_functors
cutlass-main
python/cutlass/swizzle.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Classes containing valid operations for a given compute capability and data types. """ import logging from cuda import __version__ # Strip any additional information from the CUDA version _cuda_version = __version__.split("rc")[0] # Imports from CUTLASS profiler generator and manifest scripts import generator as prof_generator import manifest as prof_manifest from library import ( ConvKind, IteratorAlgorithm, StrideSupport, GroupMode ) import cutlass from cutlass.utils.check import valid_stage_count from cutlass.utils.datatypes import td_from_profiler_td, td_from_profiler_op, has_binding_type _generator_ccs = [50, 60, 61, 70, 75, 80, 90] class KernelsForDataType: """ Container class for keeping track of kernels that correspond to a particular combination of data types for operands A, B, and accumulator """ def __init__(self, datatype_comb: tuple, layout_comb: tuple): self.datatype_comb = datatype_comb self.layout_comb = layout_comb # Dictionary mapping from alignment (int) to a list of kernels that fit the alignment # constraint for the data type combination self.kernels_by_alignment = {} def add(self, operation): """ Add an operation to the list of supported kernels """ alignment = operation.A.alignment if alignment not in self.kernels_by_alignment: self.kernels_by_alignment[alignment] = [] self.kernels_by_alignment[alignment].append(operation) @property def alignments(self): """ Returns an unsorted list of alignments supported by this data type combination :return: unsorted list of alignments supported by this data type combination :rtype: list """ return list(self.kernels_by_alignment.keys()) @property def all_operations(self): """ Returns a list of all operations supported by this data type combination :return: list of all operations supported by this data type combination :rtype: list """ ops = [] for _, alignment_ops in self.kernels_by_alignment.items(): ops.extend(alignment_ops) return ops def operations(self, alignment: int): """ Returns operations satisfying the alignment constraint indicated by `alignment` :param alignment: alignment constraint of operations to return :type alignment: int :return: list of operations :rtype: list """ if alignment not in self.kernels_by_alignment: raise Exception( f"No operations of alignment {alignment} found for data type and layout " f"combination {self.datatype_comb} {self.layout_comb}" ) return self.kernels_by_alignment[alignment] def find_alignment(self, shape: tuple, layout: cutlass.LayoutType) -> int: """ Returns the most preferable alignment for a given shape and layout :param shape: extent of each dimension of the tensor :type shape: tuple :param layout: layout of the tensor :type layout: cutlass.LayoutType :return: maximum alignment supported by the data type combination and tensor size :rtype: int """ # Determine the leading dimension of the shape if layout == cutlass.LayoutType.ColumnMajor: ld = shape[-2] elif layout == cutlass.LayoutType.RowMajor: ld = shape[-1] elif layout == cutlass.LayoutType.TensorNHWC: ld = shape[-1] else: raise Exception(f"Unexpected or unsupported layout {layout}") for alignment in sorted(list(self.kernels_by_alignment.keys()), reverse=True): if ld % alignment == 0: return alignment # Default to alignment of 1 if no others match return 1 def sort(self): """ Sorts each list of kernels in `kernels_by_alignment` in descending order of threadblock shape """ key = lambda op: ( op.tile_description.threadblock_shape[0] * op.tile_description.threadblock_shape[1] * op.tile_description.threadblock_shape[2] ) for alignment in self.kernels_by_alignment.keys(): self.kernels_by_alignment[alignment].sort(key=key, reverse=True) class ArchOptions: """ Structure for keeping track of kernels available on a given compute capability :param target_cc: compute capability of the device on which kernels will be run :type target_cc: int :param kernel_cc: compute capability of the kernels to generate :type kernel_cc: int :param operation_kind: type of operation to register :type operation_kind: cutlass.OperationKind :param gemm_kinds: types of GEMM operations that can be included :type gemm_kinds: list :param allowed_math_operations: types of primitive math operations allowed :type allowed_math_operations: list """ def __init__( self, target_cc: int, kernel_cc: int, operation_kind: cutlass.OperationKind, gemm_kinds: list, allowed_math_operations: list = [ cutlass.MathOperation.multiply_add, cutlass.MathOperation.multiply_add_saturate, ] ): self.cc = kernel_cc # Dictionary with following structure: # Key: OpcodeClass # Value: Dictionary with the following structure: # Key: tuple of ((DataType, DataType, DataType), (LayoutType, LayoutType, LayoutType), # representing ((element_a, element_b, element_accumulator), (layout_a, layout_b)) # Value: KernelsForDataType self.operations_by_opclass = {} self.op_class = None self.allowed_math_operations = allowed_math_operations # Identify the method within CUTLASS generator script that generates kernel # descriptions for the target CC generate_function_name = "GenerateSM" + str(kernel_cc) if not hasattr(prof_generator, generate_function_name): cutlass.logger.warning(f"No generator found for architecture {kernel_cc}") return generate_function = getattr(prof_generator, generate_function_name) # Initialize a default manifest and populate it with valid kernel descriptions # for the target CC args = [ "--kernels=all", f"--log-level={logging.getLevelName(cutlass.logger.level)}" ] manifest_args = prof_generator.define_parser().parse_args(args) manifest = prof_manifest.Manifest(manifest_args) generate_function(manifest, _cuda_version) if operation_kind not in manifest.operations: # No kernels generated for this architecture, this could be because the CUDA # toolkit is insufficient to support operations in this CC cutlass.logger.warning(f"No operations of type {operation_kind} found for CC {kernel_cc}") return # Iterate through the available operations for this operation kind and # find available opclasses and data types for name, op_list in manifest.operations[operation_kind].items(): for op in op_list: if operation_kind == cutlass.OperationKind.Gemm: if op.gemm_kind not in gemm_kinds: continue mi = op.tile_description.math_instruction if mi.math_operation not in self.allowed_math_operations: continue datatype_comb = (mi.element_a, mi.element_b, mi.element_accumulator) # Skip any data types that do not currently have conversions via cutlass_bindings if False in [has_binding_type(elt) for elt in datatype_comb]: continue # Prune operations that don't fit in shared memory td = td_from_profiler_op(op) if not valid_stage_count(target_cc, td)[0]: continue if mi.opcode_class not in self.operations_by_opclass: self.operations_by_opclass[mi.opcode_class] = {} datatype_comb = (mi.element_a, mi.element_b, mi.element_accumulator) layout_comb = (op.A.layout, op.B.layout) # Register TF32 kernels as F32 to enable F32 -> TF32 conversion + TF32 Tensor Core operations if datatype_comb == (cutlass.DataType.tf32, cutlass.DataType.tf32, cutlass.DataType.f32): # TF32 kernels only supported on SM80 and beyond if self.cc < 80: continue elif self.cc == 90: if (op.A.element != cutlass.DataType.f32 or op.B.element != cutlass.DataType.f32 or op.C.element != cutlass.DataType.f32): continue datatype_comb = (cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32) opclass_dict = self.operations_by_opclass[mi.opcode_class] key = (datatype_comb, layout_comb) if key not in opclass_dict: opclass_dict[key] = KernelsForDataType(datatype_comb, layout_comb) opclass_dict[key].add(op) # Set the default opclass to TensorOp, if available. Otherwise default to SIMT if cutlass.OpcodeClass.TensorOp in self.operations_by_opclass: self.op_class = cutlass.OpcodeClass.TensorOp else: self.op_class = cutlass.OpcodeClass.Simt # The profiler's generator may generate only a limited set of combinations of operands for SIMT kernels. # Here, we generate additional versions via a generic TileDescription. if cutlass.OpcodeClass.Simt not in self.operations_by_opclass: self.operations_by_opclass[cutlass.OpcodeClass.Simt] = {} if operation_kind == cutlass.OperationKind.Gemm: types = [ (cutlass.DataType.s8, cutlass.DataType.s8, cutlass.DataType.s8), (cutlass.DataType.s8, cutlass.DataType.s8, cutlass.DataType.s32), (cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16), (cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f32), (cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32), (cutlass.DataType.f64, cutlass.DataType.f64, cutlass.DataType.f64), ] layouts = [ (cutlass.LayoutType.RowMajor, cutlass.LayoutType.RowMajor), (cutlass.LayoutType.RowMajor, cutlass.LayoutType.ColumnMajor), (cutlass.LayoutType.ColumnMajor, cutlass.LayoutType.RowMajor), (cutlass.LayoutType.ColumnMajor, cutlass.LayoutType.ColumnMajor), ] elif operation_kind == cutlass.OperationKind.Conv2d: types = [ (cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16), (cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f32), (cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32), (cutlass.DataType.f64, cutlass.DataType.f64, cutlass.DataType.f64), ] layouts = [ (cutlass.LayoutType.TensorNHWC, cutlass.LayoutType.TensorNHWC), ] else: raise NotImplementedError(f"Operation kind {operation_kind} is currently unsupported.") alignment = 1 epilogue_functor = cutlass.EpilogueFunctor.LinearCombination swizzling_functor = cutlass.SwizzlingFunctor.Identity8 for type_comb in types: for layout_comb in layouts: comb = (type_comb, layout_comb) if comb in self.operations_by_opclass[cutlass.OpcodeClass.Simt]: continue A = cutlass.TensorDescription(type_comb[0], layout_comb[0], alignment) B = cutlass.TensorDescription(type_comb[1], layout_comb[1], alignment) C = cutlass.TensorDescription(type_comb[2], cutlass.LayoutType.ColumnMajor, alignment) math_inst = cutlass.MathInstruction( [1, 1, 1], type_comb[0], type_comb[1], type_comb[2], cutlass.OpcodeClass.Simt, cutlass.MathOperation.multiply_add ) td = cutlass.TileDescription( [128, 128, 8], 2, [4, 2, 1], math_inst, 50, 1024) # Prune operations that don't fit in shared memory if not valid_stage_count(target_cc, td_from_profiler_td(td))[0]: continue new_kernels = KernelsForDataType(type_comb, layout_comb) if operation_kind == cutlass.OperationKind.Gemm: new_operation = prof_manifest.GemmOperation( cutlass.GemmKind.Universal, td.minimum_compute_capability, td, A, B, C, type_comb[2], epilogue_functor, swizzling_functor) new_kernels.add(new_operation) elif operation_kind == cutlass.OperationKind.Conv2d: for conv_kind in [ConvKind.Fprop, ConvKind.Dgrad, ConvKind.Wgrad]: new_operation = prof_manifest.Conv2dOperation( conv_kind, IteratorAlgorithm.Analytic, td.minimum_compute_capability, td, A, B, C, type_comb[2], StrideSupport.Strided, epilogue_functor, swizzling_functor, group_mode=GroupMode.SingleGroup ) new_kernels.add(new_operation) self.operations_by_opclass[cutlass.OpcodeClass.Simt][comb] = new_kernels # Sort all operations for oc in self.operations_by_opclass.keys(): for comb in self.operations_by_opclass[oc].keys(): self.operations_by_opclass[oc][comb].sort() def opclass_supports_combination( self, op_class: cutlass.OpcodeClass, datatype_comb: tuple, layout_comb: tuple ) -> bool: """ Returns whether the provided operation class supports the provided data type and layout combination :param op_class: operation class to consider :type op_class: cutlass.OpcodeClass :param datatype_comb: tuple of data types for (element_A, element_B, element_accumulator) :type datatype_comb: tuple[cutlass.DataType] :param layout_comb: tuple of data types for (layout_A, layout_B) :type layout_comb: tuple[cutlass.LayoutType] :return: set of operation classes that support the provided data type and layout combination :rtype: set """ if op_class not in self.operations_by_opclass: raise Exception(f"Unexpected or unsupported operation class {op_class}") return (datatype_comb, layout_comb) in self.operations_by_opclass[op_class] def supporting_opclasses( self, element_a: cutlass.DataType, element_b: cutlass.DataType, element_accumulator: cutlass.DataType, layout_a: cutlass.LayoutType, layout_b: cutlass.LayoutType, ) -> set: """ Returns a set of operation classes that support the provided data type combination :param element_a: data type of operand A :type element_a: cutlass.DataType :param element_b: data type of operand B :type element_b: cutlass.DataType :param element_accumulator: data type of accumulator :type element_accumulator: cutlass.DataType :param layout_a: layout of operand A :type layout_a: cutlass.LayoutType :param layout_b: layout of operand B :type layout_b: cutlass.LayoutType :return: set of operation classes that support the provided data type combination :rtype: set """ supporting_op_classes = set() datatype_comb = (element_a, element_b, element_accumulator) layout_comb = (layout_a, layout_b) for op_class in self.operations_by_opclass.keys(): if self.opclass_supports_combination(op_class, datatype_comb, layout_comb): supporting_op_classes.add(op_class) return supporting_op_classes def operations( self, op_class: cutlass.OpcodeClass, element_a: cutlass.DataType, element_b: cutlass.DataType, element_accumulator: cutlass.DataType, layout_a: cutlass.LayoutType, layout_b: cutlass.LayoutType, ) -> KernelsForDataType: """ Returns whether the provided operation class supports the provided data type combination :param op_class: operation class to consider :type op_class: cutlass.OpcodeClass :param element_a: data type of operand A :type element_a: cutlass.DataType :param element_b: data type of operand B :type element_b: cutlass.DataType :param element_accumulator: data type of accumulator :type element_accumulator: cutlass.DataType :param layout_a: layout of operand A :type layout_a: cutlass.LayoutType :param layout_b: layout of operand B :type layout_b: cutlass.LayoutType :return: container of kernels by alignment supported by the provided combination of parameters :rtype: KernelsForDataType """ datatype_comb = (element_a, element_b, element_accumulator) layout_comb = (layout_a, layout_b) if not self.opclass_supports_combination(op_class, datatype_comb, layout_comb): raise Exception( f"Data type layout combination {datatype_comb}, {layout_comb} " f"is not supported by opcode class {op_class} on CC {self.cc}." ) return self.operations_by_opclass[op_class][(datatype_comb, layout_comb)] class OptionRegistry: """ Container of all architecture-specific options :param target_cc: compute capability of the device on which operations will be run :type target_cc: int """ def __init__(self, target_cc: int): self.registry = {} gemm_kinds = [cutlass.GemmKind.Universal, cutlass.GemmKind.Universal3x] operation_kinds = [cutlass.OperationKind.Gemm, cutlass.OperationKind.Conv2d] # Construct options for each CC for kernel_cc in _generator_ccs: self.registry[kernel_cc] = {} for opkind in operation_kinds: self.registry[kernel_cc][opkind] = ArchOptions(target_cc, kernel_cc, opkind, gemm_kinds) def options_for_cc(self, cc: int, op_kind=cutlass.OperationKind.Gemm) -> ArchOptions: return self.registry.get(cc, None)[op_kind]
cutlass-main
python/cutlass/library_defaults.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Registry of elementwise epilogues Elementwise epilogues can be added to many CUTLASS kernels in the CUTLAS Python interface via code like the following for GEMM: .. highlight:: python .. code-block:: python plan = cutlass.op.Gemm(element=cutlass.DataType.f32, layout=cutlass.LayoutType.RowMajor) plan.activation = cutlass.epilogue.relu """ from cutlass.backend import epilogue gelu = epilogue.gelu hardswish = epilogue.hardswish identity = epilogue.identity leaky_relu = epilogue.leaky_relu relu = epilogue.relu sigmoid = epilogue.sigmoid silu = epilogue.silu tanh = epilogue.tanh _activations = [gelu, hardswish, identity, leaky_relu, relu, sigmoid, silu, tanh] def get_activations() -> list: """ Returns a list of available activation functions :return: list of available activation functions :rtype: list """ return _activations def get_activation_epilogue( activation, element_output, elements_per_access, element_accumulator, element_compute, ): """ Return an epilogue corresponding to the activation function, data types, and alignment used in the kernel :param activation: elementwise activation function to use :param element_output: data type of the output :param elements_per_access: alignment of operand C of the kernel :type elements_per_access: int :param element_accumulator: data type of the accumulated output C :param element_compute: data type in which compute operations should be performed :return: epilogue functor """ if activation not in _activations: raise Exception( f"Unsupported activation type {activation}. Available activations are: {_activations}" ) if activation == identity: return epilogue.LinearCombination( element_output, elements_per_access, element_accumulator, element_compute ) else: return epilogue.LinearCombinationGeneric( activation(element_compute), element_output, elements_per_access, element_accumulator, element_compute, )
cutlass-main
python/cutlass/epilogue.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Ease-of-use interface for constructing, compiling, and running GEMMs. The ``Gemm`` interface is meant to allow one to easily instantiate, compile, and run GEMM operations in CUTLASS via Python, without specifying many configuration parameters. Under the hood, the interface will select sensible default parameters for the many template parameters for CUTLASS GEMMs. Note: optimal performance is not to be expected from this interface. To achieve optimal performance, one should specify and tune each configuration parameter. The simplest example of using this interface is the following: .. highlight:: python .. code-block:: python # A, B, C, and D are torch/numpy/cupy tensor objects plan = cutlass.op.Gemm(A, B, C, D) plan.run() One can also use the interface by specifying data types of operands at construction and using different tensor objects with these data types at runtime: .. highlight:: python .. code-block:: python # The following is shorthand for: # cutlass.op.Gemm(element_A=torch.float32, element_B=torch.float32, # element_C=torch.float32, element_D=torch.float32, # element_accumulator=torch.float32, # layout=cutlass.LayoutType.RowMajor) plan = cutlass.op.Gemm(element=torch.float32, layout=cutlass.LayoutType.RowMajor) A0 = torch.rand((128, 256), device='cuda') B0 = torch.rand((256, 64), device='cuda') C0 = torch.zeros((128, 64), device='cuda') D0 = torch.zeros((128, 64), device.'cuda') plan.run(A0, B0, C0, D0) A = torch.rand((32, 128), device='cuda') B = torch.rand((128, 256), device='cuda') C = torch.zeros((32, 256), device='cuda') D = torch.zeros((32, 256), device.'cuda') plan.run(A1, B1, C1, D1) The interface additionally enables one to decouple the compilation of the underlying CUTLASS kernel from its execution: .. highlight:: python .. code-block:: python plan = cutlass.op.Gemm(element=np.float32, layout=cutlass.LayoutType.RowMajor) plan.compile() # Do other work... plan.run(A0, B0, C0, D0) # Do other work... plan.run(A1, B1, C1, D1) Elementwise activation functions are easily fused to the GEMM via the interface: .. highlight:: python .. code-block:: python plan = cutlass.op.Gemm(element=np.float32, layout=cutlass.LayoutType.RowMajor) plan.activation = cutlass.epilogue.relu Operations can also be run asynchronously: .. highlight:: python .. code-block:: python plan = cutlass.op.Gemm(element=np.float32, layout=cutlass.LayoutType.RowMajor) args = plan.run() # Do other work... args.sync() """ from math import prod import cutlass_bindings import cutlass from cutlass import epilogue, swizzle from cutlass.backend import compiler from cutlass.backend.gemm_operation import GemmArguments, GemmOperationUniversal from cutlass.backend.library import TensorDescription, TileDescription from cutlass.op.op import OperationBase from cutlass.utils import check, datatypes class Gemm(OperationBase): """ Constructs a ``Gemm`` object. The data types and layouts of operands A, B, and C, along with the data type of output D and that used for accumulation, are bound to the ``Gemm`` object throughout its lifetime -- these are not to be changed after a ``Gemm`` has been constructed. The constructor has optional parameters for flexibly setting these parameters. The following constructors are equivalent: .. highlight:: python .. code-block:: python # Use F32 for A, B, C, D, and accumulation. All operands are row major. # Use the generic ``element`` and ``layout`` parameters to concisely set all data types and layouts # for operands to the same values. Gemm(element=cutlass.DataType.f32, layout=cutlass.LayoutType.RowMajor) # Explicitly specify the data types to use for A, B, C, and D. Use the generic ``layout``. Gemm(element_A=cutlass.DataType.f32, element_B=cutlass.DataType.f32, element_C=cutlass.DataType.f32, element_D=cutlass.DataType.f32, layout=cutlass.LayoutType.RowMajor) # Set the data types and elements from existing tensors. Note that one can use different tensors when # executing GEMM via the ``run()`` method than passed in here (though those passed in to ``run()`` must # have the same data type and layout as those passed in here). # A, B, C, and D are row-major torch.Tensor objects of type torch.float32 Gemm(A=A, B=B, C=C, D=D) # Use the generic ``element`` and explicitly specify the layouts to use for A, B, and C (layout of D is # the same as that for D, at present) Gemm(element=cutlass.DataType.f32, layout_A=cutlass.LayoutType.RowMajor, layout_B=cutlass.LayoutType.RowMajor, layout_C=cutlass.LayoutType.RowMajor) # Explicitly specify the data type and layout for only some of A, B, C, and D. Unspecified data types # and layouts will inherit those passed in via the generic ``element`` and ``layout`` Gemm(element_A=cutlass.DataType.f32, layout_B=cutlass.LayoutType.RowMajor, element=cutlass.DataType.f32, layout=cutlass.LayoutType.RowMajor) The order of precedence for the setting of the data type and layout for a given operand/output is as follows: 1) If the tensor type is specified (e.g., ``A``), use the data type and layout inferred from this tensor 2) Otherwise, if the data type/layout (e.g., ``element_A``, ``layout_A``) is specified, use those 3) Otherwise, use the generic values (e.g., ``element``, ``layout``) :param cc: compute capability of device for which kernels should be compiled. For example, if running on H100, this should be set to 90 :type cc: int :param kernel_cc: compute capability of kernels to generate. For example, if running on SM90, but desiring to use a CUTLASS 2.x-style Ampere kernel, this should be set to 80 :type kernel_cc: int :param A: tensor representing data type and layout of operand A :param B: tensor representing data type and layout of operand B :param C: tensor representing data type and layout of operand C :param D: tensor representing data type and layout of operand D :param alpha: scalar paramter alpha from GEMM computation that scales the product of operands A and B :param beta: scalar parameter beta from GEMM operation that scales operand C :param element_accumulator: data type to be used in accumulation of the product of operands A and B :type element_accumulator: cutlass.DataType :param element: generic data type to be used for operands A, B, C, D, as well as the accumulation data type :type element: cutlass.DataType :param layout: generic layout type to be used for operands A, B, C, and D :type layout: cutlass.LayoutType :param element_A: data type to be used for operand A :type element_A: cutlass.DataType :param element_B: data type to be used for operand B :type element_B: cutlass.DataType :param element_C: data type to be used for operand C :type element_C: cutlass.DataType :param element_D: data type to be used for operand D :type element_D: cutlass.DataType :type layout_A: layout of operand A :param layout_A: cutlass.LayoutType :type layout_B: layout of operand B :param layout_B: cutlass.LayoutType :type layout_C: layout of operand C :param layout_C: cutlass.LayoutType :type layout_D: layout of operand D :param layout_D: cutlass.LayoutType """ def __init__( self, A=None, B=None, C=None, D=None, alpha=1.0, beta=0.0, element_accumulator=None, element=None, layout=None, element_A=None, element_B=None, element_C=None, element_D=None, layout_A=None, layout_B=None, layout_C=None, cc: int = None, kernel_cc: int = None ): super().__init__(cc=cc, kernel_cc=kernel_cc) self.name = "gemm" self.compiled = False elements = [] layouts = [] # Check that at least one of the following is set for each tensor (illustrated assuming tensor A): # ``A``, ``element_A``, ``element`` and ``A``, ``layout_A``, ``layout`` for elt, lay, tens, name in zip([element_A, element_B, element_C, element_D], [layout_A, layout_B, layout_C, layout_C], [A, B, C, D], ["A", "B", "C", "D"]): if elt is not None and tens is not None: raise Exception(f'Must not specify both element_{name} and tensor {name}') if lay is not None and tens is not None: raise Exception(f'Must not specify both layout_{name} and tensor {name}') if elt is None and tens is None and element is None: raise Exception(f'Must specify one of element_{name}, tensor {name}, or generic element.') if lay is None and tens is None and layout is None: raise Exception(f'Must specify one of layout_{name}, tensor {name}, or generic layout.') elt_to_set = None lay_to_set = None if tens is not None: elt_to_set, lay_to_set = datatypes.get_datatype_and_layout(tens) else: elt_to_set = elt if elt is not None else element lay_to_set = lay if lay is not None else layout elements.append(datatypes.library_type(elt_to_set)) layouts.append(datatypes.library_layout(lay_to_set)) self._element_a, self._element_b, self._element_c, self._element_d = elements self._layout_a, self._layout_b, self._layout_c, self._layout_d = layouts if element_accumulator is None: self._element_accumulator = self._element_c else: self._element_accumulator = datatypes.library_type(element_accumulator) self.A = A self.B = B self.C = C self.D = D self.alpha = alpha self.beta = beta self.epilogue_functor = None self.op_class = None self._reset_operations() self._swizzling_functor = cutlass.swizzle.IdentitySwizzle1 def _reset_operations(self, reset_epilogue: bool = True): # Set the default op class datatype_comb = (self._element_a, self._element_b, self._element_accumulator) layout_comb = (self._layout_a, self._layout_b) self.possible_op_classes = self.options.supporting_opclasses( self._element_a, self._element_b, self._element_accumulator, self._layout_a, self._layout_b) if cutlass.OpcodeClass.TensorOp in self.possible_op_classes: self.opclass = cutlass.OpcodeClass.TensorOp elif cutlass.OpcodeClass.Simt in self.possible_op_classes: self.opclass = cutlass.OpcodeClass.Simt else: raise Exception(f'No kernel configuration found for supported data type and layout ' f'combination {datatype_comb}x{layout_comb}') if reset_epilogue: self._reset_epilogue_functor_activation(epilogue.identity) @property def swizzling_functor(self): """ Returns the type of the swizzling functor currently being used by the GEMM :return: swizzing functor type """ return self._swizzling_functor @swizzling_functor.setter def swizzling_functor(self, swizzling_functor): """ Sets the swizzling functor to the type specified by `swizzling_functor` """ if swizzling_functor == swizzle.ThreadblockSwizzleStreamK: if self.op_class == cutlass.OpcodeClass.Simt: raise Exception('ThreadblockSwizzleStreamK is currently only supported with opcode class TensorOp') if self.current_cc == 90: raise Exception('ThreadblockSwizzleStreamK is currently unsupported on SM90') self._swizzling_functor = swizzling_functor def _valid_tile_description(self, td: TileDescription) -> tuple: """ Checks whether the provided tile description is valid for the given compute capability. At present, this checks the following: - Does the tile description use a number of stages supported by the compute capability in question? - Does the tile size requested fit within shared memory? - Are cluster dimensions outside the valid range requested for a given architecture (e.g., more non-unit cluster dimensions for pre-SM90 architectures)? - Is the kernel schedule being used supported on the architecture in question? :param td: tile description to validate :type td: cutlass.backend.TileDescription :return: tuple in which the first element is a bool indicating that the tile description is valid and the second element is a string providing an optional error message. :rtype: tuple """ # Check stage count based on the CC to which we are compiling (self.cc), rather # than the CC from which we find kernels (self.current_cc) valid, msg = check.valid_stage_count(self.cc, td, self._element_c, self._element_d) if not valid: return (valid, msg) valid, msg = check.valid_cluster_shape(self.current_cc, td.cluster_shape) if not valid: return (valid, msg) valid, msg = check.valid_schedule(self.current_cc, td.kernel_schedule, td.epilogue_schedule, td.tile_scheduler) return valid, msg def tile_descriptions(self) -> list: """ Returns a list of valid tile descriptions for the operations :returns: list of valid tile descriptions for the operations :rtype: list """ return [datatypes.td_from_profiler_op(op) for op in self.possible_operations.all_operations] def construct( self, tile_description: TileDescription = None, alignment_A: int = None, alignment_B: int = None, alignment_C: int = None) -> GemmOperationUniversal: """ Constructs a ``cutlass.backend.GemmUniversalOperation`` based on the input parameters and current kernel specification of the ``Gemm`` object. :param tile_description: tile description specifying shapes and operand types to use in the kernel :type tile_description: cutlass.backend.TileDescription :param alignment_A: alignment of operand A :type alignment_A: int :param alignment_B: alignment of operand B :type alignment_B: int :param alignment_C: alignment of operand C :type alignment_C: int :return: operation that was constructed :rtype: cutlass.backend.GemmOperationUniversal """ alignment_pref_A = min(128 // cutlass.DataTypeSize[self._element_a], max(self.possible_operations.alignments)) alignment_pref_B = min(128 // cutlass.DataTypeSize[self._element_b], max(self.possible_operations.alignments)) alignment_pref_C = min(128 // cutlass.DataTypeSize[self._element_c], max(self.possible_operations.alignments)) alignment_A = check.alignment_or_default(alignment_A, alignment_pref_A) alignment_B = check.alignment_or_default(alignment_B, alignment_pref_B) alignment_C = check.alignment_or_default(alignment_C, alignment_pref_C) self.epilogue_functor = self._reset_epilogue_functor_alignment(alignment_C, self.epilogue_functor) tensor_A = TensorDescription( datatypes.binding_type(self._element_a), datatypes.binding_layout(self._layout_a), alignment_A ) tensor_B = TensorDescription( datatypes.binding_type(self._element_b), datatypes.binding_layout(self._layout_b), alignment_B ) tensor_C = TensorDescription( datatypes.binding_type(self._element_c), datatypes.binding_layout(self._layout_c), alignment_C ) if tile_description is None: op = self.possible_operations.operations(alignment_A)[0] tile_description = datatypes.td_from_profiler_op(op) else: valid, err_str = self._valid_tile_description(tile_description) if not valid: raise Exception(f"Invalid tile description. {err_str}") self.tile_description = tile_description operation = GemmOperationUniversal( arch=self.current_cc, tile_description=tile_description, A=tensor_A, B=tensor_B, C=tensor_C, epilogue_functor=self.epilogue_functor, swizzling_functor=self._swizzling_functor, ) return operation def compile(self, tile_description: TileDescription = None, alignment_A: int = None, alignment_B: int = None, alignment_C: int = None, print_module: bool = False) -> cutlass.backend.GemmOperationUniversal: """ Emits and compiles the kernel currently specified. If ``tile_description`` and any of the ``alignment`` parameters are set, the kernel will be chosen using this tile description and alignments. Otherwise, a default tile description and alignment will be used. :param tile_description: tile description specifying shapes and operand types to use in the kernel :type tile_description: cutlass.backend.TileDescription :param alignment_A: alignment of operand A :type alignment_A: int :param alignment_B: alignment of operand B :type alignment_B: int :param alignment_C: alignment of operand C :type alignment_C: int :param print_module: whether to print the emitted C++ code :type print_module: bool :return: operation that was compiled :rtype: cutlass.backend.GemmOperationUniversal """ self.operation = self.construct(tile_description, alignment_A, alignment_B, alignment_C) if print_module: print(self.operation.rt_module.emit()) compiler.add_module([self.operation,]) return self.operation def _verify_rank(self, tensor): """ Verifies that ``tensor`` has rank greater than 1 :param tensor: object representing a tensor passed in to verify, or ``None`` if no tensor was passed in :type tensor: numpy/cupy/torch array/tensor object """ if len(tensor.shape) < 2: raise Exception(f"Tensors must be of rank greater than 1. Received tensor of shape: {tensor.shape}") def _get_batch_count(self, A, B, C, D) -> int: """ Returns the batch count specified by the tensors A, B, C, and D and verifies that these tensors match in batch size. Presence of a batch dimension is detected by one of the tensors being rank 3. If a batch dimension is present, it must be present in one of operands A, B, or C (but need not be in all), and must be present in D. :param A: tensor A :type A: numpy/cupy/torch array/tensor object :param B: tensor B :type B: numpy/cupy/torch array/tensor object :param C: tensor C :type C: numpy/cupy/torch array/tensor object :param D: tensor D :type D: numpy/cupy/torch array/tensor object :return: tuple of batch count dimensions :rtype: tuple """ A_batch = A.shape[:-2] if len(A.shape) > 2 else tuple() B_batch = B.shape[:-2] if len(B.shape) > 2 else tuple() C_batch = C.shape[:-2] if len(C.shape) > 2 else tuple() D_batch = D.shape[:-2] if len(D.shape) > 2 else tuple() if len(D_batch) > 0 and D_batch not in [A_batch, B_batch, C_batch]: raise Exception(f"Batch count in D must be present in one of operands A, B, and C. " f"Batch counts are: A={A_batch}, B={B_batch}, C={C_batch}, D={D_batch}") for batch_shape in [A_batch, B_batch, C_batch]: if len(batch_shape) > 0 and batch_shape != D_batch: raise Exception(f"Batch count for all other operands must either match that of D or be zero." f"Received batch shape of {batch_shape}, which does not match that of D of {D_batch}.") return D_batch def _get_batch_stride(self, tensor) -> int: """ Returns the batch stride of ``tensor``. If ``tensor`` is only rank-2, batch stride is 0. :param tensor: tensor object to process :type tensor: numpy/cupy/torch array/tensor object :return: stride between each matrix in the batch :rtype: int """ if len(tensor.shape) > 2: return tensor.shape[-2] * tensor.shape[-1] else: return 0 def _get_problem_args(self, A, B, C, D) -> tuple: """ Returns the problem size and GEMM universal mode to use for the given operands. :param A: tensor A :type A: numpy/cupy/torch array/tensor object :param B: tensor B :type B: numpy/cupy/torch array/tensor object :param C: tensor C :type C: numpy/cupy/torch array/tensor object :param D: tensor D :type D: numpy/cupy/torch array/tensor object :return: tuple containing the problem size (cutlass_bindings.gemm.GemmCoord), the GEMM mode (cutlass_bindings.gemm.Mode), and the batch count (int) :rtype: tuple """ M, K = A.shape[-2:] N = B.shape[-1] mode = cutlass_bindings.gemm.Mode.Gemm batch_count = self._get_batch_count(A, B, C, D) returned_batch_count = prod(batch_count) if len(batch_count) > 0 else 1 # If we are running a batched GEMM in which there is a nonzero batch stride # only for A, then we can fold the batched dimension of A into the M dimension # (i.e., (b, m, k) x (k, n) -> (m*b, k) x (k, n)). This works only if both A # and C are row major. A similar operation can be performed if only B has a nonzero # batch dimension if len(batch_count) > 0: A_row = self._layout_a == cutlass.LayoutType.RowMajor B_row = self._layout_b == cutlass.LayoutType.RowMajor C_row = self._layout_c == cutlass.LayoutType.RowMajor batched = lambda x : len(x.shape) == 2 + len(batch_count) if batched(A) and not batched(B) and batched(C) and A_row and C_row: M *= prod(batch_count) returned_batch_count = 1 elif not batched(A) and batched(B) and batched(C) and not B_row and not C_row: N *= prod(batch_count) returned_batch_count = 1 else: mode = cutlass_bindings.gemm.Mode.Batched return cutlass_bindings.gemm.GemmCoord(M, N, K), mode, returned_batch_count def _verify_type_and_layout(self, tensor, ref_type, ref_layout, name): """ Verifies that ``tensor`` has data type ``ref_type`` and layout ``ref_layout``. An exception is raised if it does not. :param tensor: object representing a tensor passed in to verify, or ``None`` if no tensor was passed in :type tensor: numpy/cupy/torch array/tensor object :param ref_dtype: data type for the tensor that this object was initialized to :param ref_layout: layout for the tensor that this object was initialized to :param name: identifier of the tensor to verify. Used in raising exceptions :type name: str """ dtype, layout = datatypes.get_datatype_and_layout(tensor) if dtype != ref_type or layout != ref_layout: raise Exception(f'Tensor {name} with type and layout ({dtype}, {layout}) ' f'does not match the expected type and ' f'layout of ({ref_type}, {ref_layout}).') def run(self, A=None, B=None, C=None, D=None, alpha=None, beta=None, sync: bool = True, print_module: bool = False) -> GemmArguments: """ Runs the kernel currently specified. If it has not already been, the kernel is emitted and compiled. Tensors holding operands and outputs of the kernel are sourced either from the ``A``, ``B``, ``C``, ``D``, ``alpha``, and ``beta`` parameters provided in this call, or from those passed in on the construction of this object -- one of the two must be specified. By default, this call returns only once the kernel has completed. To launch the kernel and immediately return, set ``sync=False``. In this case, it is the responsibility of the caller to syncrhonize the results of the kernel before attempting to access outputs by calling ``sync()`` on the arguments returned from this call. :param A: tensor representing data type and layout of operand A :param B: tensor representing data type and layout of operand B :param C: tensor representing data type and layout of operand C :param D: tensor representing data type and layout of operand D :param alpha: scalar paramter alpha from GEMM computation that scales the product of operands A and B :param beta: scalar parameter beta from GEMM operation that scales operand C :param sync: whether the call should wait for the kernel to complete before returning :type sync: bool :param print_module: whether to print the emitted C++ code :type print_module: bool :return: arguments passed in to the kernel :rtype: cutlass.backend.GemmArguments """ A = self._verify_tensor(A, self.A, self._element_a, self._layout_a, "A") B = self._verify_tensor(B, self.B, self._element_b, self._layout_b, "B") C = self._verify_tensor(C, self.C, self._element_c, self._layout_c, "C") D = self._verify_tensor(D, self.D, self._element_d, self._layout_d, "D") alpha = self._verify_scalar(alpha, self.alpha, self._element_c, "alpha") beta = self._verify_scalar(beta, self.beta, self._element_c, "beta") self._verify_rank(A) self._verify_rank(B) self._verify_rank(C) self._verify_rank(D) alignment_a = self.possible_operations.find_alignment(A.shape, self._layout_a) alignment_b = self.possible_operations.find_alignment(B.shape, self._layout_b) alignment_c = self.possible_operations.find_alignment(C.shape, self._layout_c) self.compile(self.tile_description, alignment_A=alignment_a, alignment_B=alignment_b, alignment_C=alignment_c, print_module=print_module) problem_size, mode, batch_count = self._get_problem_args(A, B, C, D) if mode == cutlass_bindings.gemm.Mode.Gemm or batch_count == 1: kwargs = {'split_k_slices': 1} else: kwargs = { 'batch': batch_count, 'batch_strides': { 'A': self._get_batch_stride(A), 'B': self._get_batch_stride(B), 'C': self._get_batch_stride(C), 'D': self._get_batch_stride(D) } } arguments = GemmArguments( operation=self.operation, problem_size=problem_size, A=A, B=B, C=C, D=D, output_op=self.operation.epilogue_type(alpha, beta), gemm_mode=mode, **kwargs ) self.operation.run(arguments) if sync: arguments.sync() return arguments
cutlass-main
python/cutlass/op/gemm.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from cutlass.op.gemm import Gemm from cutlass.op.conv import Conv2d, Conv2dFprop, Conv2dDgrad, Conv2dWgrad from cutlass.op.gemm_grouped import GroupedGemm from cutlass.op.op import OperationBase
cutlass-main
python/cutlass/op/__init__.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Base operation used for defining high-level CUTLASS operations (e.g., GEMM, Conv2d) """ from bisect import bisect_left import cutlass from cutlass import option_registry, epilogue from cutlass.backend.utils.device import device_cc from cutlass.epilogue import get_activations from cutlass.library_defaults import _generator_ccs from cutlass.swizzle import get_swizzling_functors from cutlass.utils import datatypes class OperationBase: """ Base operation used for defining high-level CUTLASS operations (e.g., GEMM, Conv2d) """ def __init__(self, cc: int = None, kernel_cc: int = None, operation_kind = cutlass.OperationKind.Gemm): """ :param cc: compute capability of device for which kernels should be compiled. For example, if running on H100, this should be set to 90 :type cc: int :param kernel_cc: compute capability of kernels to generate. For example, if running on SM90, but desiring to use a CUTLASS 2.x-style Ampere kernel, this should be set to 80 :type kernel_cc: int """ self.operation_kind = operation_kind self.cc = cc if cc is not None else device_cc() self.specified_kernel_cc = kernel_cc is not None self.current_cc = kernel_cc if kernel_cc is not None else self._find_closest_cc(self.cc) self.tile_description = None self.options = option_registry.options_for_cc(self.current_cc, operation_kind) if self.options is None: raise Exception(f"Invalid or unsupported compute capability: {self.current_cc}") # Default activation function: identity self._activation = epilogue.identity def _find_closest_cc(self, cc: int) -> int: """ Returns the closest CC in _generator_ccs less than or equal to `cc` :param cc: compute capability to query :type cc: int :returns: closest CC in _generator_ccs less than or equal to `cc` :rtype: int """ if cc in _generator_ccs: return cc # Find closest CC lower than this CC idx = bisect_left(_generator_ccs, cc) if idx == 0: raise Exception(f'No valid CC to fall back to for {cc}') return _generator_ccs[idx-1] def activations(self) -> list: """ Returns possible activation functions that can be used :return: list of activation functions that can be used :rtype: list """ return get_activations() def swizzling_functors(self) -> list: """ Returns possible swizzling functions that can be used :return: list of swizzling functions that can be used :rtype: list """ return get_swizzling_functors() def _reset_options(self, cc: int): """ Resets the kernel options based on cc :param cc: compute capability to reset to :type cc: int """ if cc != self.current_cc: if cc not in _generator_ccs: raise Exception(f'Invalid CC for CUTLASS kernels: {cc}.') self.current_cc = cc self.options = option_registry.options_for_cc(self.current_cc, self.operation_kind) def _verify_scalar(self, scalar, ref_scalar, ref_dtype, name): """ Verifies the following properties: 1) Either ``scalar`` or ``ref_scakar`` must be set (i.e., not ``None``) 2) If ``scalar`` is not ``None``, its datatype must match matches the current version set by the plan (i.e., those in ``ref_dtype``) If either of these properties does not hold, an exception is raised. If these properties hold and ``scalar`` is not ``None``, ``scalar`` is returned. Otherwise, ``ref_scalar`` is returned. :param scalar: object representing a tensor passed in to verify, or ``None`` if no tensor was passed in :type scalar: numpy/cupy/torch scalar :param ref_scalar: object representing a tensor passed in on construction of this object, or ``None`` if no tensor was passed in :type ref_scalar: numpy/cupy/torch scalar :param ref_dtype: data type for the scalar that this object was initialized to :param name: identifier of the scalar to verify. Used in raising exceptions :type name: str :return: valid scalar to use :rtype: numpy/cupy/torch scalar """ if scalar is None: if ref_scalar is None: raise Exception(f"Scalar {name} must be set.") return ref_scalar if hasattr(scalar, "dtype"): dtype = datatypes.library_type(scalar.dtype) if dtype != ref_dtype: raise Exception( f"Tensor {name} with type {dtype} does not match expected type {ref_dtype}." ) return scalar def _verify_tensor(self, tensor, ref_tensor, ref_dtype, ref_layout, name): """ Verifies the following properties: 1) Either ``tensor`` or ``ref_tensor`` must be set (i.e., not ``None``) 2) If ``tensor`` is not ``None``, its datatype and layout must match matches the current versions set by the plan (i.e., those in ``ref_dtype`` and ``ref_layout``) If either of these properties does not hold, an exception is raised. If these properties hold and ``tensor`` is not ``None``, ``tensor`` is returned. Otherwise, ``ref_tensor`` is returned. :param tensor: object representing a tensor passed in to verify, or ``None`` if no tensor was passed in :type tensor: numpy/cupy/torch array/tensor object :param ref_tensor: object representing a tensor passed in on construction of this object, or ``None`` if no tensor was passed in :type ref_tensor: numpy/cupy/torch array/tensor object :param ref_dtype: data type for the tensor that this object was initialized to :param ref_layout: layout for the tensor that this object was initialized to :param name: identifier of the tensor to verify. Used in raising exceptions :type name: str :return: valid tensor object to use :rtype: numpy/cupy/torch array/tensor object """ if tensor is None: if ref_tensor is None: raise Exception(f"Tensor {name} must be set.") return ref_tensor self._verify_type_and_layout(tensor, ref_dtype, ref_layout, name) return tensor # # Opcode Related # @property def opclass(self) -> cutlass.OpcodeClass: """ Returns the opcode class currently in use by the GEMM :return: opcode class currently in use :rtype: cutlass.OpcodeClass """ return self.op_class @opclass.setter def opclass(self, oc: cutlass.OpcodeClass): if isinstance(oc, str): oc = datatypes.getattr_enum(cutlass.OpcodeClass, oc) if oc in self.possible_op_classes: self.op_class = oc else: raise Exception( f'Unsupported operation class {oc} for CC {self.cc} and data type combination ' f'({self._element_a}, {self._element_b}, {self._element_accumulator}) and ' f'layout combination ({self._layout_a}, {self._layout_b}).') # Changing the op class changes the elements per access in the epilogue. Reset this. if self.op_class == cutlass.OpcodeClass.Simt: elements_per_access = 1 else: elements_per_access = 128 // cutlass.DataTypeSize[self._element_c] if self.epilogue_functor is not None: self.epilogue_functor = self._reset_epilogue_functor_alignment(elements_per_access, self.epilogue_functor) # Changing the op class also changes the possible operations available. Reset these. self.possible_operations = self.options.operations( self.op_class, self._element_a, self._element_b, self._element_accumulator, self._layout_a, self._layout_b) # # Epilogue # def _create_epilogue_functor_activation(self, activation): """ Returns the epilogue functor with given activation function """ if self.epilogue_functor is None: if self.op_class == cutlass.OpcodeClass.Simt: elements_per_access = 1 else: elements_per_access = 128 // cutlass.DataTypeSize[self._element_c] else: elements_per_access = self.epilogue_functor.epilogue_vector_length if not self.specified_kernel_cc: if self.current_cc == 90 and activation != epilogue.identity: # CUTLASS 3.0 kernels currently only support identity activation. If one requests a non-identity activation, # revert to using a CUTLASS 2.x kernel by using SM80-tagged kernels. cutlass.logger.warning("Reverting to using SM80-tagged kernel. Opclass may change.") self._reset_options(80) self._reset_operations(reset_epilogue=False) elif (self.cc == 90 and self.current_cc != 90 and activation == epilogue.identity): # SM80 fallback kernels are currently used. Since an identity activation is requested, # we can switch back to using SM90 kernels. self._reset_options(90) self._reset_operations(reset_epilogue=False) else: if self.current_cc == 90 and activation != epilogue.identity: raise Exception("Epilogues with elementwise fusion are not currently supported " "in the Python interface for 3.x kernels. To use 2.x kernels " "with fused elementwise epilogues, do not set the `kernel_cc` " "parameter when constructing the Gemm object.") return epilogue.get_activation_epilogue( activation, datatypes.binding_type(self._element_c), elements_per_access, datatypes.binding_type(self._element_accumulator), datatypes.binding_type(self._element_accumulator), ) def _reset_epilogue_functor_activation(self, activation): """ Set the epilogue functor based on the provided activation function """ self.epilogue_functor = self._create_epilogue_functor_activation(activation) def _reset_epilogue_functor_alignment(self, alignment, epilogue_functor): """ Reset the alignment of the current epilogue functor based on alignment C """ if epilogue_functor is None or not hasattr(epilogue_functor, 'activation_functor'): # Identity epilogue does not have 'activation_functor' activation = epilogue.identity else: activation = type(epilogue_functor.activation_functor) epilogue_functor = epilogue.get_activation_epilogue( activation, datatypes.binding_type(self._element_c), alignment, datatypes.binding_type(self._element_accumulator), datatypes.binding_type(self._element_accumulator), ) return epilogue_functor @property def activation(self): """ Returns the type of the current activation function used """ if hasattr(self.epilogue_functor, "activation_functor"): return type(self.epilogue_functor.activation_functor) else: return epilogue.identity @activation.setter def activation(self, act): """ Sets the type of the activation function to use Activation can come with a set of arguments :param act: type of activation function to use :type act: str or tuple. e.g. "relu", ("leaky_relu", 0.01) """ if isinstance(act, tuple): if isinstance(act[0], str): act_fn = getattr(cutlass.backend.epilogue, act[0]) else: act_fn = act[0] self._reset_epilogue_functor_activation(act_fn) self._activation_args = act[1] self._activation = act[0] else: if isinstance(act, str): act = getattr(cutlass.backend.epilogue, act) self._reset_epilogue_functor_activation(act) self._activation = act
cutlass-main
python/cutlass/op/op.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Ease-of-use interface for constructing, compiling, and running GEMMs. The ``GroupedGemm`` interface is meant to allow one to easily instantiate, compile, and run grouped GEMM operations in CUTLASS via Python, without specifying many configuration parameters. Under the hood, the interface will select sensible default parameters for the many template parameters for CUTLASS grouped GEMMs. Note: optimal performance is not to be expected from this interface. To achieve optimal performance, one should specify and tune each configuration parameter. The simplest example of using this interface is the following: .. highlight:: python .. code-block:: python # As, Bs, Cs, and Ds are torch/numpy/cupy tensor objects plan = cutlass.op.GroupedGemm(element=cutlass.DataType.f16, layout=cutlass.LayoutType.RowMajor) plan.run([A0, A1], [B0, B1], [C0, C1], [D0, D1]) """ import cutlass_bindings from cutlass.backend.gemm_operation import ( GemmGroupedArguments, GemmOperationGrouped, ) from cutlass.backend.library import ( DataTypeSize, SchedulerMode, TensorDescription, TileDescription, ) from cutlass.op.gemm import Gemm from cutlass.utils import check, datatypes class GroupedGemm(Gemm): """ Constructs a ``GroupedGemm`` object. The data types and layouts of operands A, B, and C, along with the data type of output D and that used for accumulation, are bound to the ``GroupedGemm`` object throughout its lifetime -- these are not to be changed after a ``GroupedGemm`` has been constructed. The constructor has optional parameters for flexibly setting these parameters. Please see the constructor for ``Gemm`` for examples of these. :param cc: compute capability of device to generate kernels for :type cc: int :param A: tensor representing data type and layout of operands A :param B: tensor representing data type and layout of operands B :param C: tensor representing data type and layout of operands C :param D: tensor representing data type and layout of operands D :param alpha: scalar paramter alpha from GEMM computation that scales the product of operands A and B :param beta: scalar parameter beta from GEMM operation that scales operand C :param element_accumulator: data type to be used in accumulation of the product of operands A and B :type element_accumulator: cutlass.DataType :param element: generic data type to be used for operands A, B, C, D, as well as the accumulation data type :type element: cutlass.DataType :param layout: generic layout type to be used for operands A, B, C, and D :type layout: cutlass.LayoutType :param element_A: data type to be used for operand A :type element_A: cutlass.DataType :param element_B: data type to be used for operand B :type element_B: cutlass.DataType :param element_C: data type to be used for operand C :type element_C: cutlass.DataType :param element_D: data type to be used for operand D :type element_D: cutlass.DataType :type layout_A: layout of operand A :param layout_A: cutlass.LayoutType :type layout_B: layout of operand B :param layout_B: cutlass.LayoutType :type layout_C: layout of operand C :param layout_C: cutlass.LayoutType :type layout_D: layout of operand D :param layout_D: cutlass.LayoutType """ def __init__( self, A=None, B=None, C=None, D=None, alpha=1.0, beta=0.0, element_accumulator=None, element=None, layout=None, element_A=None, element_B=None, element_C=None, element_D=None, layout_A=None, layout_B=None, layout_C=None, cc: int = None, ): super().__init__( A=A, B=B, C=C, D=D, alpha=alpha, beta=beta, element_accumulator=element_accumulator, element=element, layout=layout, element_A=element_A, element_B=element_B, element_C=element_C, element_D=element_D, layout_A=layout_A, layout_B=layout_B, layout_C=layout_C, cc=cc ) # Grouped GEMM specializations for SM90 are currently unavailable. Revert to using SM80 if self.current_cc == 90: self._reset_options(80) self._reset_operations(reset_epilogue=False) self.name = "grouped_gemm" @Gemm.swizzling_functor.setter def swizzling_functor(self, swizzling_functor): """ Sets the swizzling functor to the type specified by `swizzling_functor` """ raise Exception('Grouped GEMM does not currently support different swizzling functors') def construct(self, tile_description: TileDescription = None, alignment_A: int = None, alignment_B: int = None, alignment_C: int = None) -> GemmOperationGrouped: """ Constructs a ``cutlass.backend.GemmOperationGrouped`` based on the input parameters and current kernel specification of the ``Gemm`` object. :param tile_description: tile description specifying shapes and operand types to use in the kernel :type tile_description: cutlass.backend.TileDescription :param alignment_A: alignment of operand A :type alignment_A: int :param alignment_B: alignment of operand B :type alignment_B: int :param alignment_C: alignment of operand C :type alignment_C: int :return: operation that was constructed :rtype: cutlass.backend.GemmOperationGrouped """ alignment_preference = max(self.possible_operations.alignments) alignment_A = check.alignment_or_default(alignment_A, alignment_preference) alignment_B = check.alignment_or_default(alignment_B, alignment_preference) alignment_C = check.alignment_or_default(alignment_C, alignment_preference) self.epilogue_functor = self._reset_epilogue_functor_alignment(alignment_C, self.epilogue_functor) tensor_A = TensorDescription( datatypes.binding_type(self._element_a), datatypes.binding_layout(self._layout_a), alignment_A ) tensor_B = TensorDescription( datatypes.binding_type(self._element_b), datatypes.binding_layout(self._layout_b), alignment_B ) tensor_C = TensorDescription( datatypes.binding_type(self._element_c), datatypes.binding_layout(self._layout_c), alignment_C ) if tile_description is None: op = self.possible_operations.operations(alignment_A)[0] tile_description = datatypes.td_from_profiler_op(op) else: valid, err_str = self._valid_tile_description(tile_description) if not valid: raise Exception(f"Invalid tile description. {err_str}") self.tile_description = tile_description operation = GemmOperationGrouped( arch=self.current_cc, tile_description=tile_description, A=tensor_A, B=tensor_B, C=tensor_C, epilogue_functor=self.epilogue_functor, swizzling_functor=self._swizzling_functor, precompute_mode=SchedulerMode.Device) return operation def run(self, A, B, C, D, alpha=None, beta=None, sync: bool = True, print_module: bool = False) -> GemmGroupedArguments: """ Runs the kernel currently specified. By default, this call returns only once the kernel has completed. To launch the kernel and immediately return, set ``sync=False``. In this case, it is the responsibility of the caller to syncrhonize the results of the kernel before attempting to access outputs by calling ``sync()`` on the arguments returned from this call. :param A: list of tensors representing data type and layout of operand A :type A: list :param B: list of tensors representing data type and layout of operand B :type B: list :param C: list of tensors representing data type and layout of operand C :type C: list :param D: list of tensors representing data type and layout of operand D :type D: list :param alpha: scalar paramter alpha from GEMM computation that scales the product of operands A and B :param beta: scalar parameter beta from GEMM operation that scales operand C :param sync: whether the call should wait for the kernel to complete before returning :type sync: bool :param print_module: whether to print the emitted C++ code :type print_module: bool :return: arguments passed in to the kernel :rtype: cutlass.backend.GemmGroupedArguments """ if len(A) != len(B) or len(A) != len(C) or len(A) != len(D): raise Exception("Lengths of A, B, C, and D lists must be equal") problem_sizes = [] As, Bs, Cs, Ds = ([None] * len(A) for _ in range(4)) for i in range(len(A)): As[i] = self._verify_tensor(A[i], self.A, self._element_a, self._layout_a, "A") Bs[i] = self._verify_tensor(B[i], self.B, self._element_b, self._layout_b, "B") Cs[i] = self._verify_tensor(C[i], self.C, self._element_c, self._layout_c, "C") Ds[i] = self._verify_tensor(D[i], self.D, self._element_d, self._layout_d, "D") problem_sizes.append(cutlass_bindings.gemm.GemmCoord(A[i].shape[0], B[i].shape[1], A[i].shape[1])) alpha = self._verify_scalar(alpha, self.alpha, self._element_c, "alpha") beta = self._verify_scalar(beta, self.beta, self._element_c, "beta") alignment_a = min((self.possible_operations.find_alignment(A.shape, self._layout_a) for A in As)) alignment_b = min((self.possible_operations.find_alignment(B.shape, self._layout_b) for B in Bs)) alignment_c = min((self.possible_operations.find_alignment(C.shape, self._layout_c) for C in Cs)) self.compile(self.tile_description, alignment_A=alignment_a, alignment_B=alignment_b, alignment_C=alignment_c, print_module=print_module) arguments = GemmGroupedArguments( operation=self.operation, problem_sizes=problem_sizes, A=As, B=Bs, C=Cs, D=Ds, output_op=self.operation.epilogue_type(alpha, beta) ) self.operation.run(arguments) if sync: arguments.sync() return arguments
cutlass-main
python/cutlass/op/gemm_grouped.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Ease-of-use interface for constructing, compiling, and running CONVs The ``Conv2d`` interface is meant to allow one to easily instantiate, compile, and run CONV2D operations in CUTLASS via Python, without specifying many configuration parameters. Under the hood, the interface will select sensible default parameters for the many template parameters for CUTLASS CONVs. Note: optimal performance is not to be expected from this interface. To achieve optimal performance, one should specify and tune each configuration parameter. The simplest example of using this interface is the following: .. highlight:: python .. code-block:: python # A, B, C, and D are torch/numpy/cupy tensor objects plan = cutlass.op.Conv(A, B, C, D) plan.run(stride=(1, 1), padding=(0, 0), dilation=(1, 1)) One can also use the interface by specifying data types of operands at construction and using different tensor objects with these data types at runtime: .. highlight:: python .. code-block:: python # The following is shorthand for: # cutlass.op.Conv2d(kind="fprop", # element_A=torch.float32, element_B=torch.float32, # element_C=torch.float32, element_D=torch.float32, # element_accumulator=torch.float32) plan = cutlass.op.Conv2d(kind="fprop", element=torch.float32) A0 = torch.rand((128, 256), dtype=torch.float32, device='cuda') B0 = torch.rand((256, 64), dtype=torch.float32, device='cuda') C0 = torch.zeros((128, 64), dtype=torch.float32, device='cuda') D0 = torch.zeros((128, 64), dtype=torch.float32, device.'cuda') plan.run(A0, B0, C0, D0, stride=(1, 1), padding=(0, 0), dilation=(1, 1)) A = torch.rand((32, 128), dtype=torch.float32, device='cuda') B = torch.rand((128, 256), dtype=torch.float32, device='cuda') C = torch.zeros((32, 256), dtype=torch.float32, device='cuda') D = torch.zeros((32, 256), dtype=torch.float32, device.'cuda') plan.run(A1, B1, C1, D1, stride=(1, 1), padding=(0, 0), dilation=(1, 1)) The interface additionally enables one to decouple the compilation of the underlying CUTLASS kernel from its execution: .. highlight:: python .. code-block:: python plan = cutlass.op.Conv2d(kind="fprop", element=np.float32) # Do other work... plan.run(A0, B0, C0, D0, stride=(1, 1), padding=(0, 0), dilation=(1, 1)) # Do other work... plan.run(A1, B1, C1, D1, stride=(1, 1), padding=(0, 0), dilation=(1, 1)) Elementwise activation functions are easily fused to the GEMM via the interface: .. highlight:: python .. code-block:: python plan = cutlass.op.Conv2d(kind="fprop", element=np.float32) plan.activation = cutlass.epilogue.relu Operations can also be run asynchronously: .. highlight:: python .. code-block:: python plan = cutlass.op.Conv2d(kind="fprop", element=np.float32) args = plan.run() # Do other work... args.sync() """ import cutlass_bindings import cutlass from cutlass import epilogue from cutlass.backend import compiler from cutlass.backend.conv2d_operation import Conv2dArguments, Conv2dOperation from cutlass.backend.reduction_operation import ReductionOperation, ReductionArguments from cutlass.backend.library import TensorDescription, TileDescription from cutlass.op.op import OperationBase from cutlass.utils import check, datatypes class Conv2d(OperationBase): """ Constructs a ``Conv2d`` object. The convolution kind (fprop, wgrad, degrad), the data types of operands A, B, and C, along with the data type of output D and that used for accumulation, are bound to the ``Conv`` object throughout its lifetime -- these are not to be changed after a ``Conv2d`` has been constructed. The constructor has optional parameters for flexibly setting these parameters. The following constructors are equivalent: .. highlight:: python .. code-block:: python # Use F32 for A, B, C, D, and accumulation in fprop # Use the generic ``element`` parameter to concisely set all data types for operands to the same values. Conv2d(kind="fprop", element=cutlass.DataType.f32) # Explicitly specify the data types to use for A, B, C, and D. Conv2d(kind="fprop", element_A=cutlass.DataType.f32, element_B=cutlass.DataType.f32, element_C=cutlass.DataType.f32, element_D=cutlass.DataType.f32) # Set the data types and elements from existing tensors. Note that one can use different tensors when # executing GEMM via the ``run()`` method than passed in here (though those passed in to ``run()`` must # have the same data type as those passed in here). # A, B, C, and D are torch.Tensor objects of type torch.float32 under the channel-last layout Conv2d(kind="fprop", A=A, B=B, C=C, D=D) # Explicitly specify the data type for only some of A, B, C, and D. Unspecified data types will inherit # those passed in via the generic ``element`` Conv2d(kind="fprop", element_A=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, element=cutlass.DataType.f32) The order of precedence for the setting of the data type for a given operand/output is as follows: 1) If the tensor type is specified (e.g., ``A``), use the data type inferred from this tensor 2) Otherwise, if the data type (e.g., ``element_A``) is specified, use those 3) Otherwise, use the generic values (e.g., ``element``) :param kind: the convolution kind (i.e. fprop, wgrad, and dgrad) :type kind: str :param A: tensor representing data type of operand A :param B: tensor representing data type of operand B :param C: tensor representing data type of operand C :param D: tensor representing data type of operand D :param alpha: scalar paramter alpha from GEMM computation that scales the product of operands A and B :param beta: scalar parameter beta from GEMM operation that scales operand C :param element: generic data type to be used for operands A, B, C, D, as well as the accumulation data type :type element: cutlass.DataType :param element_A: data type to be used for operand A :type element_A: cutlass.DataType :param element_B: data type to be used for operand B :type element_B: cutlass.DataType :param element_C: data type to be used for operand C :type element_C: cutlass.DataType :param element_D: data type to be used for operand D :type element_D: cutlass.DataType :param element_accumulator: data type to be used in accumulation of the product of operands A and B :type element_accumulator: cutlass.DataType :param cc: compute capability of device for which kernels should be compiled. For example, if running on H100, this should be set to 90 :type cc: int :param kernel_cc: compute capability of kernels to generate. For example, if running on SM90, but desiring to use a CUTLASS 2.x-style Ampere kernel, this should be set to 80 :type kernel_cc: int """ def __init__( self, kind="fprop", A=None, B=None, C=None, D=None, alpha=1.0, beta=0.0, element=None, element_A=None, element_B=None, element_C=None, element_D=None, element_accumulator=None, cc: int = None, kernel_cc: int = None ): super().__init__(cc=cc, kernel_cc=kernel_cc, operation_kind=cutlass.OperationKind.Conv2d) # Verify the kernel cc if self.current_cc == 90: # The Conv2d kernel on Hopper (SM90) is currently unsupported # Revert to use SM80-tagged kernels cutlass.logger.warning("Reverting to using SM80-tagged kernel. Opclass may change.") self.specified_kernel_cc = 80 self._reset_options(80) # The arch is used in testing self.arch = self.current_cc self.name = "conv2d" + kind # The convolution kind. (concept: cutlass_bindings.conv.Operator) self.conv_kind = getattr(cutlass_bindings.conv.Operator, kind) # The element types (concept: cutlass library types) of A, B, C, and D elements = [] layouts = [] # Complete the data types based on user-provided arguments for elt, tens, name in zip([element_A, element_B, element_C, element_D], [A, B, C, D], ["A", "B", "C", "D"]): if elt is not None and tens is not None: raise Exception(f'Must not specify both element_{name} and tensor {name}') if elt is None and tens is None and element is None: raise Exception(f'Must specify one of element_{name}, tensor {name}, or generic element.') elt_to_set = None lay_to_set = None if tens is not None: elt_to_set, _ = datatypes.get_datatype_and_layout(tens) else: elt_to_set = elt if elt is not None else element assert elt_to_set is not None # Currently we only support layout TensorNHWC lay_to_set = cutlass.LayoutType.TensorNHWC elements.append(datatypes.library_type(elt_to_set)) layouts.append(lay_to_set) self._element_a, self._element_b, self._element_c, self._element_d = elements self._layout_a, self._layout_b, self._layout_c, self._layout_d = layouts self.A, self.B, self.C, self.D, self.alpha, self.beta = A, B, C, D, alpha, beta if element_accumulator is None: self._element_accumulator = self._element_c else: self._element_accumulator = datatypes.library_type(element_accumulator) # Default inputs if none is supplied in run() self.A = A self.B = B self.C = C self.D = D self.alpha = alpha self.beta = beta # We only specify the stride of the swizzling functor here # The actual swizzling functor is determined in run based on conv_kind and stride self._swizzling_stride = 1 # Arguments that will be set to default value in _reset_operations # The default tile_description and op_class are fetched from manifest of cutlass library self._tile_description = None self.op_class = None # The default identity epilogue will be created self.epilogue_functor = None self._reset_operations() # Arguments that will be determined online based on arguments of "run" # based on stride, input/output channels, alignment, and conv_kind self._iterator_algorithm = None self._stride_support = None def _reset_operations(self, reset_epilogue: bool = True): # Set the default op class datatype_comb = (self._element_a, self._element_b, self._element_accumulator) layout_comb = (self._layout_a, self._layout_b) self.possible_op_classes = self.options.supporting_opclasses( self._element_a, self._element_b, self._element_accumulator, self._layout_a, self._layout_b ) if cutlass.OpcodeClass.TensorOp in self.possible_op_classes: self.opclass = cutlass.OpcodeClass.TensorOp elif cutlass.OpcodeClass.Simt in self.possible_op_classes: self.opclass = cutlass.OpcodeClass.Simt else: raise Exception(f'No kernel configuration found for supported data type and layout ' f'combination {datatype_comb}x{layout_comb}') if reset_epilogue: self._reset_epilogue_functor_activation(epilogue.identity) self.alignment_pref_A = min( 128 // cutlass.DataTypeSize[self._element_a], max(self.possible_operations.alignments)) self.alignment_pref_B = min( 128 // cutlass.DataTypeSize[self._element_b], max(self.possible_operations.alignments)) self.alignment_pref_C = min( 128 // cutlass.DataTypeSize[self._element_c], max(self.possible_operations.alignments)) # # Tile description Related # @property def tile_description(self) -> TileDescription: """ Returns the tile description """ return self._tile_description @tile_description.setter def tile_description( self, td=None): """ Set the tile description :param td: tile description :type td: cutlass.backend.TileDescription, or a dict with keys { "threadblock_shape": [int, int, int], "warp_count": [int, int, int], "stages": int, "instruction_shape": [int, int, int] (optional), "cluster_shape": [int, int, int] (optional) } """ if td is None: return if isinstance(td, dict): if self._tile_description is None: alignment = list(self.possible_operations.kernels_by_alignment.keys())[0] op = self.possible_operations.operations(alignment)[0] self._tile_description = datatypes.td_from_profiler_op(op) if "cluster_shape" in td.keys(): if td["cluster_shape"] != [1, 1, 1]: cutlass.logger.warning("Conv2d currently only support 'cluster_shape'=[1, 1, 1]'.") td["cluster_shape"] = [1, 1, 1] td = self._tile_description.clone_and_update(td) valid, msg = self._valid_tile_description(td) if valid: self._tile_description = td else: raise Exception(msg) def _valid_tile_description(self, td: TileDescription) -> tuple: """ Checks whether the provided tile description is valid for the given compute capability. At present, this checks the following: - Does the tile description use a number of stages supported by the compute capability in question? - Does the tile size requested fit within shared memory? - Are cluster dimensions outside the valid range requested for a given architecture (e.g., more non-unit cluster dimensions for pre-SM90 architectures)? - Is the kernel schedule being used supported on the architecture in question? :param td: tile description to validate :type td: cutlass.backend.TileDescription :return: tuple in which the first element is a bool indicating that the tile description is valid and the second element is a string providing an optional error message. :rtype: tuple """ # Check stage count based on the CC to which we are compiling (self.cc), rather # than the CC from which we find kernels (self.current_cc) valid, msg = check.valid_stage_count(self.cc, td) if not valid: return (valid, msg) valid, msg = check.valid_cluster_shape(self.current_cc, td.cluster_shape) if not valid: return (valid, msg) return valid, msg def tile_descriptions(self) -> list: """ Returns a list of valid tile descriptions for the operations :returns: list of valid tile descriptions for the operations :rtype: list """ descriptions = [] description_str = [] for op in self.possible_operations.all_operations: td = datatypes.td_from_profiler_op(op) if str(td) not in description_str: description_str.append(str(td)) descriptions.append(td) return descriptions # # Swizzling functor Related # @property def swizzling_stride(self): """ Returns the stride of swizzling currently being used by the Conv2d :return: swizzing stride """ return self._swizzling_stride @swizzling_stride.setter def swizzling_stride(self, stride: int): """ Sets the swizzling functor to the type specified by `swizzling_functor` """ if not isinstance(stride, int): raise Exception(f"Expect integer (1, 2, 4, 8), got {stride}") self._swizzling_stride = stride def _propose_swizzling_functor(self, stride): """ Automatically propose the swizzling functor based on the stride """ if self.conv_kind == cutlass_bindings.conv.Operator.dgrad: if stride[0] != 1 or stride[1] != 1: return getattr(cutlass.swizzle, f"StridedDgradIdentitySwizzle{self._swizzling_stride}") return getattr(cutlass.swizzle, f"IdentitySwizzle{self._swizzling_stride}") # # Iterator Algorithm Related # @property def iterator_algorithm(self) -> cutlass_bindings.conv.IteratorAlgorithm: """ Returns the iterator algorithm """ return self._iterator_algorithm @iterator_algorithm.setter def iterator_algorithm(self, alg: str): """ Sets the iterator algorithm :param alg: The iterator algorithm :type td: string, options: "analytic", "optimized", "few_channels", and "fixed_channels" """ # Check if the iterator algorithm is valid if alg in ["few_channels", "fixed_channels"] and self.conv_kind != cutlass_bindings.conv.Operator.fprop: raise Exception(f"{self.conv_kind} does not support iterator algorithm {alg}.") self._iterator_algorithm = getattr(cutlass_bindings.conv.IteratorAlgorithm, alg) def _propose_iterator_algorithm(self, problem_size, alignment_a, alignment_b) -> cutlass_bindings.conv.IteratorAlgorithm: """ Propose a valid iterator algorithm based on problem size and alignment """ if self.conv_kind == cutlass_bindings.conv.Operator.fprop: # Check whether the fixed channel is applicable if problem_size.C == alignment_a: return cutlass_bindings.conv.IteratorAlgorithm.fixed_channels elif (problem_size.C % alignment_a == 0 and problem_size.R <= 32 and problem_size.S <= 32): return cutlass_bindings.conv.IteratorAlgorithm.optimized else: return cutlass_bindings.conv.IteratorAlgorithm.analytic elif self.conv_kind == cutlass_bindings.conv.Operator.dgrad: if (problem_size.K % alignment_a == 0 and problem_size.R <= 32 and problem_size.S <= 32 and problem_size.C % alignment_b == 0): return cutlass_bindings.conv.IteratorAlgorithm.optimized else: return cutlass_bindings.conv.IteratorAlgorithm.analytic elif self.conv_kind == cutlass_bindings.conv.Operator.wgrad: if (problem_size.K % alignment_a == 0 and problem_size.C % alignment_b == 0): return cutlass_bindings.conv.IteratorAlgorithm.optimized else: return cutlass_bindings.conv.IteratorAlgorithm.analytic def _validate_iterator_algorithm(self, iterator_algorithm, problem_size, alignment_a, alignment_b) -> bool: """ Validate whether the user provide iterator algorithm works for the given problem size """ if self.conv_kind == cutlass_bindings.conv.Operator.fprop: if iterator_algorithm == cutlass_bindings.conv.IteratorAlgorithm.fixed_channels: return problem_size.C == alignment_a elif iterator_algorithm == cutlass_bindings.conv.IteratorAlgorithm.optimized: return (problem_size.C % alignment_a == 0 and problem_size.R <= 32 and problem_size.S <= 32) elif iterator_algorithm == cutlass_bindings.conv.IteratorAlgorithm.few_channels: return problem_size.C % alignment_a == 0 elif self.conv_kind == cutlass_bindings.conv.Operator.dgrad: if iterator_algorithm == cutlass_bindings.conv.IteratorAlgorithm.optimized: return (problem_size.K % alignment_a == 0 and problem_size.R <= 32 and problem_size.S <= 32 and problem_size.C % alignment_b == 0) elif self.conv_kind == cutlass_bindings.conv.Operator.wgrad: if iterator_algorithm == cutlass_bindings.conv.IteratorAlgorithm.optimized: return (problem_size.K % alignment_a == 0 and problem_size.C % alignment_b == 0) return True # # Stride Support Related # def _propose_stride_support(self, stride): if self.conv_kind == cutlass_bindings.conv.Operator.dgrad: if stride[0] == 1 and stride[1] == 1: return cutlass.backend.library.StrideSupport.Unity return cutlass.backend.library.StrideSupport.Strided # # Construct and Compilation # def construct( self, tile_description: TileDescription = None, alignment_A: int = None, alignment_B: int = None, alignment_C: int = None, iterator_algorithm: cutlass_bindings.conv.IteratorAlgorithm = None, stride_support = None, swizzling_functor: cutlass.swizzle = None, epilogue_functor=None) -> cutlass.backend.Conv2dOperation: """ Constructs a ``cutlass.backend.Conv2dOperation`` based on the input parameters and current kernel specification of the ``Conv2d`` object. :param tile_description: tile description specifying shapes and operand types to use in the kernel :type tile_description: cutlass.backend.TileDescription :param alignment_A: alignment of operand A :type alignment_A: int :param alignment_B: alignment of operand B :type alignment_B: int :param alignment_C: alignment of operand C :type alignment_C: int :param iterator_algorithm: the iterator algorithm used :type iterator_algorithm: cutlass_bindings.conv.IteratorAlgorithm :param stride_support: the stride support of dgrad :type stride_support: cutlass.backend.library.StrideSupport :param swizzling_functor: the swizzling functor :type swizzling_functor: cutlass.swizzle :param epilogue_functor: the epilogue functor :return: operation that was constructed :rtype: cutlass.backend.Conv2dOperation """ # Get alignment alignment_A = check.alignment_or_default(alignment_A, self.alignment_pref_A) alignment_B = check.alignment_or_default(alignment_B, self.alignment_pref_B) alignment_C = check.alignment_or_default(alignment_C, self.alignment_pref_C) tensor_A = TensorDescription( datatypes.binding_type(self._element_a), datatypes.binding_layout(self._layout_b), alignment_A ) tensor_B = TensorDescription( datatypes.binding_type(self._element_b), datatypes.binding_layout(self._layout_b), alignment_B ) tensor_C = TensorDescription( datatypes.binding_type(self._element_c), datatypes.binding_layout(self._layout_c), alignment_C ) if tile_description is None: if self.tile_description is not None: tile_description = self.tile_description else: op = self.possible_operations.operations(alignment_A)[0] tile_description = datatypes.td_from_profiler_op(op) else: valid, err_str = self._valid_tile_description(tile_description) if not valid: raise Exception(f"Invalid tile description. {err_str}") self.tile_description = tile_description if iterator_algorithm is None: # If the iterator algorithm is already set if self.iterator_algorithm is not None: iterator_algorithm = self.iterator_algorithm else: # Otherwise, we conservatively use the analytic iterator for correctness iterator_algorithm = cutlass_bindings.conv.IteratorAlgorithm.analytic if stride_support is None: # If the stride support is already set if self._stride_support is not None: stride_support = self._stride_support else: # Otherwise, we assume strided stride_support = cutlass.backend.library.StrideSupport.Strided if swizzling_functor is None: # If the swizzling functor is already set swizzling_functor = self._propose_swizzling_functor(stride=(2, 2)) if epilogue_functor is None: if self.epilogue_functor is not None: epilogue_functor = self.epilogue_functor else: epilogue_functor = self._create_epilogue_functor_activation(self._activation) # Reset the alignment of the epilogue functor epilogue_functor = self._reset_epilogue_functor_alignment(alignment_C, epilogue_functor) operation = Conv2dOperation( conv_kind=self.conv_kind, iterator_algorithm=iterator_algorithm, arch=self.current_cc, tile_description=tile_description, A=tensor_A, B=tensor_B, C=tensor_C, stride_support=stride_support, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor, ) return operation def compile(self, tile_description: TileDescription = None, alignment_A: int = None, alignment_B: int = None, alignment_C: int = None, iterator_algorithm: cutlass_bindings.conv.IteratorAlgorithm = None, stride_support = None, swizzling_functor: cutlass.swizzle = None, epilogue_functor = None, print_module: bool = False) -> cutlass.backend.Conv2dOperation: """ Emits and compiles the kernel currently specified. If ``tile_description`` and any of the ``alignment`` parameters are set, the kernel will be chosen using this tile description and alignments. Otherwise, a default tile description and alignment will be used. ::param tile_description: tile description specifying shapes and operand types to use in the kernel :type tile_description: cutlass.backend.TileDescription :param alignment_A: alignment of operand A :type alignment_A: int :param alignment_B: alignment of operand B :type alignment_B: int :param alignment_C: alignment of operand C :type alignment_C: int :param iterator_algorithm: the iterator algorithm used :type iterator_algorithm: cutlass_bindings.conv.IteratorAlgorithm :param stride_support: the stride support of dgrad :type stride_support: cutlass.backend.library.StrideSupport :param swizzling_functor: the swizzling functor :type swizzling_functor: cutlass.swizzle :param epilogue_functor: the epilogue functor :return: operation that was compiled :rtype: cutlass.backend.Conv2dOperation """ self.operation = self.construct( tile_description, alignment_A, alignment_B, alignment_C, iterator_algorithm, stride_support, swizzling_functor, epilogue_functor) if print_module: print(self.operation.rt_module.emit()) compiler.add_module([self.operation,]) return self.operation # # Run Related # def _verify_type_and_layout(self, tensor, ref_type, ref_layout, name): """ Verifies that ``tensor`` has data type ``ref_type`` and layout ``ref_layout``. An exception is raised if it does not. :param tensor: object representing a tensor passed in to verify, or ``None`` if no tensor was passed in :type tensor: numpy/cupy/torch array/tensor object :param ref_dtype: data type for the tensor that this object was initialized to :param name: identifier of the tensor to verify. Used in raising exceptions :type name: str """ dtype, _ = datatypes.get_datatype_and_layout(tensor) if dtype != ref_type: raise Exception(f'Tensor {name} with type and layout {dtype} ' f'does not match the expected type of {ref_type}.') def _get_and_verify_conv_problem_size(self, A, B, C, stride, padding, dilation): if self.conv_kind == cutlass_bindings.conv.Operator.fprop: input = A weight = B output = C output_tensor = "C" elif self.conv_kind == cutlass_bindings.conv.Operator.dgrad: output = A weight = B input = C output_tensor = "A" elif self.conv_kind == cutlass_bindings.conv.Operator.wgrad: output = A input = B weight = C output_tensor = "A" else: raise Exception(f"Convolution kind {self.conv_kind} is not supported") N_, H_, W_, C_ = datatypes.get_tensor_shape(input) K_, R_, S_, _ = datatypes.get_tensor_shape(weight) _, P_, Q_, _ = datatypes.get_tensor_shape(output) problem_size = cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(N_, H_, W_, C_), cutlass_bindings.Tensor4DCoord(K_, R_, S_, C_), cutlass_bindings.Tensor4DCoord(padding[0], padding[0], padding[1], padding[1]), cutlass_bindings.MatrixCoord(stride[0], stride[1]), cutlass_bindings.MatrixCoord(dilation[0], dilation[1]), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ) if P_ != problem_size.P or Q_ != problem_size.Q: raise Exception( f"Tensor {output_tensor} size should be ({N_}, {problem_size.P}, {problem_size.Q}, {K_}), got ({N_}, {P_}, {Q_}, {K_})") return problem_size def run(self, A=None, B=None, C=None, D=None, stride=(1, 1), padding=(0, 0), dilation=(1, 1), alpha=None, beta=None, split_k=("serial", 1), sync: bool = True, print_module: bool = False) -> Conv2dArguments: """ Runs the kernel currently specified. If it has not already been, the kernel is emitted and compiled. Tensors holding operands and outputs of the kernel are sourced either from the ``A``, ``B``, ``C``, ``D``, ``alpha``, and ``beta`` parameters provided in the call, or from those passed in on the construction of this object -- one of the two must be specified. By default, this call returns only once the kernel has completed. To launch the kernel and immediately return, set ``sync=False``. In this case, it is the responsibility of the caller to syncrhonize the results of the kernel before attempting to access outputs by calling ``sync()`` on the arguments returned from this call. :param A: tensor representing data type and layout of operand A :param B: tensor representing data type and layout of operand B :param C: tensor representing data type and layout of operand C :param D: tensor representing data type and layout of operand D :param stride: (stride_h, stride_w) describing the convolution stride. Default: (1, 1) :param padding: (pad_h, pad_w) describing the convolution padding. Default: (0, 0) :param dilation: (dilation_h, dilation_w) describing the dilation of convolution. Default: (1, 1) :param alpha: scalar paramter alpha from GEMM computation that scales the product of operands A and B :param beta: scalar parameter beta from GEMM operation that scales operand C :param split_k: a tuple (split_k_mode, split_k_slices) :param sync: whether the call should wait for the kernel to complete before returning :type sync: bool :param print_module: whether to print the emitted C++ code :type print_module: bool :return: arguments passed in to the kernel :rtype: cutlass.backend.Conv2dArguments """ A = self._verify_tensor(A, self.A, self._element_a, self._layout_a, "A") B = self._verify_tensor(B, self.B, self._element_b, self._layout_b, "B") C = self._verify_tensor(C, self.C, self._element_c, self._layout_c, "C") D = self._verify_tensor(D, self.D, self._element_d, self._layout_d, "D") alpha = self._verify_scalar(alpha, self.alpha, self._element_c, "alpha") beta = self._verify_scalar(beta, self.beta, self._element_c, "beta") # handle the case when there is no C if C is None: if beta != 0: raise Exception(f"With beta {beta} != 0, C has to be provided.") else: C = D # Construct problem size based on input # It also verifies whether the A, B, C, D, stride, padding, and dilation are matching problem_size = self._get_and_verify_conv_problem_size(A, B, C, stride, padding, dilation) # Propose stride support based on input stride_support = self._propose_stride_support(stride) # Propose swizzling functor swizzling_functor = self._propose_swizzling_functor(stride) # Get the alignment alignment_a = self.possible_operations.find_alignment(datatypes.get_tensor_shape(A), self._layout_a) alignment_b = self.possible_operations.find_alignment(datatypes.get_tensor_shape(B), self._layout_b) alignment_c = self.possible_operations.find_alignment(datatypes.get_tensor_shape(C), self._layout_c) alignment_a = check.update_alignment(alignment_a, self.alignment_pref_A) alignment_b = check.update_alignment(alignment_b, self.alignment_pref_B) alignment_c = check.update_alignment(alignment_c, self.alignment_pref_C) # Propose iterator algorithm based on input if self._iterator_algorithm is None: # Propose a default itertaor algorithm based on the problem size iterator_algorithm = self._propose_iterator_algorithm(problem_size, alignment_a, alignment_b) else: if (self._validate_iterator_algorithm(self._iterator_algorithm, problem_size, alignment_a, alignment_b)): iterator_algorithm = self._iterator_algorithm else: raise Exception(f"Iterator algorithm {self._iterator_algorithm} is invalid for current problem.") epilogue_args = [alpha, beta] if hasattr(self, "_activation_args"): if isinstance(self._activation_args, list): epilogue_args += self._activation_args else: epilogue_args.append(self._activation_args) if split_k[0] == "parallel" and split_k[1] > 1: epilogue_functor = self._create_epilogue_functor_activation(epilogue.identity) else: epilogue_functor = self.epilogue_functor # The alignment is determined by the iterator function (I believe) self.compile(tile_description=self.tile_description, alignment_A=alignment_a, alignment_B=alignment_b, alignment_C=alignment_c, iterator_algorithm=iterator_algorithm, stride_support=stride_support, swizzling_functor=swizzling_functor, epilogue_functor=epilogue_functor, print_module=print_module) # Create reduction operation for parallel split-k if split_k[0] == "parallel" and split_k[1] > 1: epilogue_functor_reduction = self._reset_epilogue_functor_alignment(alignment_c, self.epilogue_functor) self.reduction_operation = ReductionOperation( shape=cutlass_bindings.MatrixCoord(4, 32 * alignment_c), C=self.operation.C, element_accumulator=datatypes.binding_type(self._element_accumulator), element_compute=datatypes.binding_type(self._element_accumulator), epilogue_functor=epilogue_functor_reduction, count=alignment_c ) if print_module: print(self.reduction_operation.rt_module.emit()) compiler.add_module([self.reduction_operation,]) arguments = Conv2dArguments( operation=self.operation, problem_size=problem_size, A=A, B=B, C=C, D=D, output_op=self.operation.epilogue_type(*epilogue_args), split_k_mode=datatypes.getattr_enum(cutlass_bindings.conv.SplitKMode, split_k[0]), split_k_slices=split_k[1] ) self.operation.run(arguments) if split_k[0] == "parallel" and split_k[1] > 1: implicit_gemm_size = cutlass_bindings.conv.implicit_gemm_problem_size( self.conv_kind, arguments.problem_size ) reduction_arguments = ReductionArguments( self.reduction_operation, problem_size=[implicit_gemm_size.m(), implicit_gemm_size.n()], partitions=split_k[1], workspace=arguments.ptr_D, destination=D, source=C, output_op=self.reduction_operation.epilogue_type(*epilogue_args) ) self.reduction_operation.run(reduction_arguments) if sync: if split_k[0] == "parallel" and split_k[1] > 1: reduction_arguments.sync() else: arguments.sync() return arguments # # Helper functions # @staticmethod def output_size(input_size, weight_size, padding, stride, dilation): problem_size = cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(*input_size), cutlass_bindings.Tensor4DCoord(*weight_size), cutlass_bindings.Tensor4DCoord(padding[0], padding[0], padding[1], padding[1]), cutlass_bindings.MatrixCoord(stride[0], stride[1]), cutlass_bindings.MatrixCoord(dilation[0], dilation[1]), cutlass_bindings.conv.Mode.cross_correlation, 1, 1 ) return (problem_size.N, problem_size.P, problem_size.Q, problem_size.K) # # Easy to use interfaces for fprop, wgrad, and dgrad # class Conv2dFprop(Conv2d): def __init__( self, input=None, weight=None, C=None, output=None, alpha=1, beta=0, element=None, element_input=None, element_weight=None, element_C=None, element_output=None, element_accumulator=None, cc: int = None, kernel_cc: int = None): A, B, D = input, weight, output element_A, element_B, element_D = element_input, element_weight, element_output super().__init__( "fprop", A, B, C, D, alpha, beta, element, element_A, element_B, element_C, element_D, element_accumulator, cc, kernel_cc) def run( self, input=None, weight=None, C=None, output=None, alpha=None, beta=None, stride=(1, 1), padding=(0, 0), dilation=(1, 1), split_k=("serial", 1), sync: bool = True, print_module: bool = False) -> Conv2dArguments: A, B, D = input, weight, output return super().run( A, B, C, D, alpha, beta, stride, padding, dilation, split_k, sync, print_module) class Conv2dDgrad(Conv2d): def __init__( self, grad_output=None, weight=None, C=None, grad_input=None, alpha=1, beta=0, element=None, element_grad_output=None, element_weight=None, element_C=None, element_grad_input=None, element_accumulator=None, cc: int = None, kernel_cc: int = None): A, B, D = grad_output, weight, grad_input element_A, element_B, element_D = element_grad_output, element_weight, element_grad_input super().__init__( "dgrad", A, B, C, D, alpha, beta, element, element_A, element_B, element_C, element_D, element_accumulator, cc, kernel_cc) def run(self, grad_output=None, weight=None, C=None, grad_input=None, alpha=None, beta=None, stride=(1, 1), padding=(0, 0), dilation=(1, 1), split_k=("serial", 1), sync: bool = True, print_module: bool = False) -> Conv2dArguments: # A, B, D = grad_output, weight, grad_input return super().run( A, B, C, D, alpha, beta, stride, padding, dilation, split_k, sync, print_module) class Conv2dWgrad(Conv2d): def __init__( self, grad_output=None, input=None, C=None, grad_weight=None, alpha=1, beta=0, element=None, element_grad_output=None, element_input=None, element_C=None, element_grad_weight=None, element_accumulator=None, cc: int = None, kernel_cc: int = None): A, B, D = grad_output, input, grad_weight element_A, element_B, element_D = element_grad_output, element_input, element_grad_weight super().__init__( "wgrad", A, B, C, D, alpha, beta, element, element_A, element_B, element_C, element_D, element_accumulator, cc, kernel_cc) def run(self, grad_output=None, input=None, C=None, grad_weight=None, alpha=None, beta=None, stride=(1, 1), padding=(0, 0), dilation=(1, 1), split_k=("serial", 1), sync: bool = True, print_module: bool = False) -> Conv2dArguments: # A, B, D = grad_output, input, grad_weight return super().run( A, B, C, D, alpha, beta, stride, padding, dilation, split_k, sync, print_module)
cutlass-main
python/cutlass/op/conv.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Utility functions for checking constraints on kernels and calculating kernel attributes """ import ctypes import cutlass_bindings import cutlass from cutlass.backend.library import DataTypeSize, TileDescription from cutlass.utils.datatypes import binding_type def calculate_smem_usage_per_stage(td: TileDescription, operation_kind: cutlass.OperationKind) -> int: """ Returns the amount of shared memory in bytes consumed in a single stage of a kernel. :param td: tile description to compute shared memory of :type td: TileDescription :param operation_kind: identifier for the type of operation being performed :type operation_kind: cutlass.OperationKind :return: number of bytes of shared memory consumed by a single stage :rtype: int """ m, n, k = td.threadblock_shape if operation_kind == cutlass.OperationKind.Gemm: stage_barrier_bytes = 32 return ( (DataTypeSize[td.math_instruction.element_a] * m * k // 8) + (DataTypeSize[td.math_instruction.element_b] * k * n // 8) + stage_barrier_bytes ) else: raise Exception(f"No available shared memory calculation for operation kind {operation.operation_kind}") def calculate_smem_usage(operation) -> int: """ Returns the amount of shared memory in bytes consumed by a kernel. :return: number of bytes of shared memory consumed by the operation :return: int """ _per_stage = calculate_smem_usage_per_stage(operation.tile_description, operation.operation_kind) return _per_stage * operation.tile_description.stages def valid_stage_count( cc: int, td: TileDescription, element_C: cutlass.DataType = None, element_D: cutlass.DataType = None) -> tuple: """ Checks whether a device with `cc` supports the number of stages within `tile_description`, both based on raw limits on the number of stages and based on shared memory capacity :param cc: compute capability of device in question :type cc: int :param td: tile description to check :type td: TileDescription :param element_C: data type of operand C :type element_C: cutlass.DataType :param element_D: data type of operand D :type element_D: cutlass.DataType :return: tuple with the first element indicating whether the provided tile description is valid for the provided device and the second element being an error message :rtype: tuple """ if cc == 90: if (td.stages is None or td.stages == 0): # Stage count of None or 0 for SM90 indicates that the CollectiveBuilder automatically # determines the stage count to use. Thus, all settings are valid in these scenarios. return (True, "") else: cutlass.logger.warning( "Setting an explicit stage count for SM90 kernels currently may " "result in compilation errors if the combination of tile shape, " "stage count, and shared memory requirement of the epilogue exceeds " "the available shared memory per SM.") if td.stages <= 0: return (False, f"Stage counts must be positive integers. Tile description has stage count of {td.stages}.") if cc < 80 and td.stages != 2: return (False, f"Tile description has stage count of {td.stages}, " f"but only 2 stages are supported on SM{cc}.") # The calculation below does not consider shared memory used by the epilogue and, thus, # only catches cases in which the mainloop exceeds the device's shared memory capacity. # This is not a concern for CUTLASS 2.x kernels, for which the shared memory of the # mainloop and epilogue is shared. smem_per_stage = calculate_smem_usage_per_stage(td, cutlass.OperationKind.Gemm) smem_usage_mainloop = (smem_per_stage * td.stages) smem_arch = cutlass.SharedMemPerCC[cc] << 10 if smem_usage_mainloop > smem_arch: return ( False, "Configuration uses too much shared memory. Consider reducing stage count or tile shape.\n" f"Details:\n" f"Mainloop uses {smem_per_stage} bytes of shared memory per stage, and " f"{td.stages} stages for a total of {smem_usage_mainloop} bytes.\n" f"The maxmium amount of shared memory that can be used per block on CC {cc} is {smem_arch}.") return (True, "") def valid_cluster_shape(cc: int, cluster_shape: list) -> tuple: """ Checks whether a device with `cc` supports a thread block cluster of shape `cluster_shape`. :param cc: compute capability of device in question :type cc: int :param cluster_shape: dimensions of thread block cluster shape to check :type cluster_shape: list :return: tuple with the first element indicating whether the provided cluster shape is valid for the provided device and the second element being an error message :rtype: tuple """ if cc < 90: if cluster_shape != [1, 1, 1]: return (False, f"Cluster shape for pre-SM90 architectures must be [1, 1, 1]. Received cluster shape of " f"{cluster_shape} for SM{cc}.") else: return (True, "") if len(cluster_shape) != 3: return (False, f"Cluster shapes must be rank-3. Received {cluster_shape} (rank {len(cluster_shape)}") if cluster_shape[2] != 1: return (False, "CUTLASS kernels currently require the third dimension of cluster shape to be 1. " f"Received cluster shape of {cluster_shape}.") # The CUDA programming guide currently defines a maximum of 8 thread blocks per cluster # as being portably supported (https://docs.nvidia.com/cuda/cuda-c-programming-guide/#thread-block-clusters). # Current CUTLASS kernels only have non-unit cluster dimensions within the first two dimensions, # so we check that the first two dimensions of the cluster shape do not exceed 8 thread blocks in total. blocks_in_2d = cluster_shape[0] * cluster_shape[1] if blocks_in_2d > 8: return (False, f"Thread block clusters with more than 8 thread blocks are currently unsupported on SM{cc}. " f"Received cluster shape {cluster_shape}, which has {blocks_in_2d} thread blocks.") return (True, "") def valid_schedule( cc: int, kernel_schedule: cutlass.KernelScheduleType, epilogue_schedule: cutlass.EpilogueScheduleType, tile_scheduler: cutlass.TileSchedulerType) -> tuple: """ Checks that the kernel and epilogue schedules passed in are a valid combination for a device of compute capability ``cc``. :param cc: compute capability of device in question :type cc: int :param kernel_schedule: kernel schedule type :type kernel_schedule: cutlass.KernelScheduleType :param epilogue_schedule: epilogue schedule type :type epilogue_schedule: cutlass.EpilogueScheduleType :param tile_scheduler: tile scheduler type :type tile_scheduler: cutlass.TileSchedulerType :return: tuple with the first element indicating whether the provided schedules are valid for the provided device and the second element being an error message :rtype: tuple """ kernel_auto = (kernel_schedule == cutlass.KernelScheduleType.ScheduleAuto) epilogue_auto = (epilogue_schedule == cutlass.EpilogueScheduleType.ScheduleAuto) tile_scheduler_default = (tile_scheduler == cutlass.TileSchedulerType.Default) if cc < 90 and not (kernel_auto and epilogue_auto and tile_scheduler_default): return (False, "Non-default schedules are only supported on SM90 and beyond") if (kernel_auto and not epilogue_auto) or (not kernel_auto and epilogue_auto): return (False, "Kernel and epilogue schedules must either both be auto or neither be auto") if not tile_scheduler_default: if (tile_scheduler == cutlass.TileSchedulerType.StreamK) and (kernel_schedule != cutlass.KernelScheduleType.TmaWarpSpecializedCooperative): return (False, "Stream-K tile scheduler is currently only supported with the cooperative kernel schedule") return (True, "") def alignment_or_default(alignment_provided: int, default_alignment: int) -> int: """ Returns `alignment_provided` if it is set, otherwise `default_alignment` and checks that `alignment_provided` does not exceed `default_alignment`. :param alignment_provided: alignment preference specified. Can be None. :type alignment_provided: int :param default_alignment: alignment to use if `alignment_provided` is None :type default_alignment: int :return: alignment to use :rtype: int """ if alignment_provided is not None: if alignment_provided > default_alignment: raise Exception(f"Alignment {alignment_provided} exceeds the maximum supported of {default_alignment}.") return alignment_provided return default_alignment def update_alignment(alignment_provided:int, default_alignment: int) -> int: """ Returns `alignment_provided` if it is set, otherwise `default_alignment` and checks that `alignment_provided` does not exceed `default_alignment`. :param alignment_provided: alignment preference specified. Can be None. :type alignment_provided: int :param default_alignment: alignment to use if `alignment_provided` is None :type default_alignment: int :return: alignment to use :rtype: int """ if alignment_provided is not None: if alignment_provided > default_alignment: if alignment_provided % default_alignment == 0: return default_alignment raise Exception(f"Alignment {alignment_provided} exceeds the maximum supported of {default_alignment}.") return alignment_provided return default_alignment
cutlass-main
python/cutlass/utils/check.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from cutlass.utils.check import ( alignment_or_default, update_alignment, calculate_smem_usage, calculate_smem_usage_per_stage, valid_cluster_shape, valid_schedule, valid_stage_count, )
cutlass-main
python/cutlass/utils/__init__.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Utility functions for converting between frontend datatypes and CUTLASS datatypes """ import cutlass_bindings import cutlass from cutlass.backend.library import ( DataTypeSize, MathInstruction, MathOperation, ShortLayoutTypeNames, TileDescription, ) try: import numpy as np numpy_available = True _library_to_numpy_dict = { cutlass.DataType.f16: np.float16, cutlass.DataType.f32: np.float32, cutlass.DataType.f64: np.float64, cutlass.DataType.s8: np.int8, cutlass.DataType.s32: np.int32, } except ImportError: numpy_available = False _library_to_numpy_dict = {} def numpy_library_type(inp) -> cutlass.DataType: if numpy_available: if inp == np.float16: return cutlass.DataType.f16 elif inp == np.float32: return cutlass.DataType.f32 elif inp == np.float64: return cutlass.DataType.f64 elif inp == np.int8: return cutlass.DataType.s8 elif inp == np.int32: return cutlass.DataType.s32 return None def numpy_type(inp): return _library_to_numpy_dict.get(inp, None) try: import cupy as cp cupy_available = True _library_to_cupy_dict = { cutlass.DataType.f16: cp.float16, cutlass.DataType.f32: cp.float32, cutlass.DataType.f64: cp.float64, cutlass.DataType.s8: cp.int8, cutlass.DataType.s32: cp.int32, } except ImportError: cupy_available = False _library_to_cupy_dict = {} def cupy_library_type(inp) -> cutlass.DataType: if cupy_available: if inp == cp.float16: return cutlass.DataType.f16 elif inp == cp.float32: return cutlass.DataType.f32 elif inp == cp.float64: return cutlass.DataType.f64 return None def cupy_type(inp): return _library_to_cupy_dict.get(inp, None) try: import torch torch_available = True _torch_to_library_dict = { torch.half: cutlass.DataType.f16, torch.float16: cutlass.DataType.f16, torch.bfloat16: cutlass.DataType.bf16, torch.float: cutlass.DataType.f32, torch.float32: cutlass.DataType.f32, torch.double: cutlass.DataType.f64, torch.float64: cutlass.DataType.f64, } _library_to_torch_dict = { cutlass.DataType.f16: torch.half, cutlass.DataType.f16: torch.float16, cutlass.DataType.bf16: torch.bfloat16, cutlass.DataType.f32: torch.float, cutlass.DataType.f32: torch.float32, cutlass.DataType.f64: torch.double, cutlass.DataType.f64: torch.float64, } except ImportError: torch_available = False _torch_to_library_dict = {} _library_to_torch_dict = {} def torch_library_type(inp) -> cutlass.DataType: return _torch_to_library_dict.get(inp, None) def torch_type(inp): return _library_to_torch_dict.get(inp, None) try: import bfloat16 bfloat16_available = True except ImportError: bfloat16_available = False def bfloat16_library_type(inp) -> cutlass.DataType: if bfloat16_available: if inp == bfloat16.bfloat16: return cutlass.DataType.bf16 def bfloat16_type(inp) -> bfloat16.bfloat16: if bfloat16_available: if inp == cutlass.DataType.bf16: return bfloat16.bfloat16 # Mapping from library data type to Python-bound CUTLASS data type library_to_binding_dict = { cutlass.DataType.s8: cutlass_bindings.int8, cutlass.DataType.s32: cutlass_bindings.int32, cutlass.DataType.f16: cutlass_bindings.float16, cutlass.DataType.bf16: cutlass_bindings.bfloat16, cutlass.DataType.f32: cutlass_bindings.float32, cutlass.DataType.f64: cutlass_bindings.float64, cutlass.DataType.tf32: cutlass_bindings.tfloat32, } # Mapping from Python-bound CUTLASS data type to library data type binding_to_library = { cutlass_bindings.int8: cutlass.DataType.s8, cutlass_bindings.int32: cutlass.DataType.s32, cutlass_bindings.float16: cutlass.DataType.f16, cutlass_bindings.bfloat16: cutlass.DataType.bf16, cutlass_bindings.float32: cutlass.DataType.f32, cutlass_bindings.float64: cutlass.DataType.f64, cutlass_bindings.tfloat32: cutlass.DataType.tf32, } def binding_library_type(inp): if inp in binding_to_library: return binding_to_library[inp] return None def has_binding_type(inp: cutlass.DataType): return inp in library_to_binding_dict def library_to_binding(inp: cutlass.DataType): if not has_binding_type(inp): raise Exception(f"No available conversion from library type {inp} to Python-bound CUTLASS type") return library_to_binding_dict[inp] def library_type(inp): if inp in cutlass.DataTypeSize.keys(): return inp for cvt_fn in [ bfloat16_library_type, cupy_library_type, numpy_library_type, torch_library_type, binding_library_type, ]: out = cvt_fn(inp) if out is not None: return out raise Exception(f"No available conversion from type {inp} to a library type.") def library_layout(layout): if layout in cutlass.LayoutTag.keys(): return layout # Convert Python-bound CUTLASS layout to profiler library layout if layout == cutlass_bindings.RowMajor: return cutlass.LayoutType.RowMajor elif layout == cutlass_bindings.ColumnMajor: return cutlass.LayoutType.ColumnMajor elif layout == cutlass_bindings.TensorNHWC: return cutlass.LayoutType.TensorNHWC else: raise Exception(f"No conversion available for layout {layout} to library layout.") def binding_type(inp): if inp in DataTypeSize.keys(): return inp libtype = library_type(inp) return library_to_binding(libtype) def binding_layout(layout): if layout in ShortLayoutTypeNames.keys(): return layout elif layout == cutlass.LayoutType.RowMajor: return cutlass_bindings.RowMajor elif layout == cutlass.LayoutType.ColumnMajor: return cutlass_bindings.ColumnMajor elif layout == cutlass.LayoutType.TensorNHWC: return cutlass_bindings.TensorNHWC else: raise Exception(f"No conversion available for layout {layout} to Python-bound CUTLASS layout.") def _tensor_from_numpy(np_tensor): dtype = library_type(np_tensor.dtype) if np_tensor.flags.c_contiguous: layout = cutlass.LayoutType.RowMajor elif np_tensor.flags.f_contiguous: layout = cutlass.LayoutType.ColumnMajor return (dtype, layout) def _tensor_from_torch(pt_tensor): dtype = library_type(pt_tensor.dtype) return (dtype, cutlass.LayoutType.RowMajor) def get_datatype_and_layout(tensor): if (numpy_available and isinstance(tensor, np.ndarray)) or ( cupy_available and isinstance(tensor, cp.ndarray) ): return _tensor_from_numpy(tensor) elif torch_available and isinstance(tensor, torch.Tensor): return _tensor_from_torch(tensor) else: raise Exception(f"Unable to convert tensor of type {type(tensor)} to Python-bound CUTLASS datatype and layout.") def get_tensor_shape(tensor): if (numpy_available and isinstance(tensor, np.ndarray)) or ( cupy_available and isinstance(tensor, cp.ndarray) ): return tensor.shape elif torch_available and isinstance(tensor, torch.Tensor): size = tensor.size() return (size[0], size[2], size[3], size[1]) else: raise Exception(f"Unable to convert tensor of type {type(tensor)} to Python-bound CUTLASS datatype and layout.") def binding_opclass(opclass: cutlass.OpcodeClass): if opclass == cutlass.OpcodeClass.TensorOp: return cutlass_bindings.OpClass.TensorOp elif opclass == cutlass.OpcodeClass.Simt: return cutlass_bindings.OpClass.Simt else: raise Exception(f"Unable to convert opcode class of type {opclass} to Python-bound CUTLASS opcode class.") _math_operation_value_map = {x.value: x for x in MathOperation} def backend_math_operation(math_op: cutlass.MathOperation): if math_op.value not in _math_operation_value_map.keys(): raise Exception(f"Unable to convert math operation of type {math_op} to backend math operation.") return _math_operation_value_map[math_op.value] def construct_backend_td(td: cutlass.TileDescription, kernel_schedule: cutlass.KernelScheduleType, epilogue_schedule: cutlass.EpilogueScheduleType, tile_scheduler: cutlass.TileSchedulerType) -> TileDescription: mi = td.math_instruction backend_mi = MathInstruction( mi.instruction_shape, binding_type(mi.element_a), binding_type(mi.element_b), binding_type(mi.element_accumulator), binding_opclass(mi.opcode_class), backend_math_operation(mi.math_operation) ) cluster_shape = td.cluster_shape if hasattr(td, "cluster_shape") else [1, 1, 1] return TileDescription(td.threadblock_shape, td.stages, td.warp_count, backend_mi, cluster_shape, kernel_schedule, epilogue_schedule, tile_scheduler) def td_from_profiler_op(op) -> TileDescription: """ Converts the profiler's TileDescription in ``op`` into the backend TileDescription :param op: profiler Operation :returns: backend TileDescription :rtype: cutlass.backend.TileDescription """ kschedule = op.kernel_schedule if hasattr(op, 'kernel_schedule') else None eschedule = op.epilogue_schedule if hasattr(op, 'epilogue_schedule') else None tschedule = op.tile_scheduler if hasattr(op, 'tile_scheduler') else None return construct_backend_td(op.tile_description, kschedule, eschedule, tschedule) def td_from_profiler_td(td: cutlass.backend.TileDescription) -> TileDescription: """ Converts the profiler's TileDescription into the backend TileDescription :param td: profiler TileDescription :type td: cutlass.TileDescription :returns: backend TileDescription :rtype: cutlass.backend.TileDescription """ return construct_backend_td(td, kernel_schedule=None, epilogue_schedule=None, tile_scheduler=None) def to_camel_case(snake_str): return "".join(x.capitalize() for x in snake_str.lower().split("_")) def getattr_enum(obj, attr_name): # The attr_name is under the snake_case camel_attr = to_camel_case(attr_name) if hasattr(obj, camel_attr): return getattr(obj, camel_attr) else: raise Exception(f"Invalid option: {attr_name}")
cutlass-main
python/cutlass/utils/datatypes.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import ctypes import cutlass_bindings from cutlass import ( DataType, KernelScheduleType ) from cutlass.backend.library import DataTypeSizeBytes class GemmCoord_(ctypes.Structure): _fields_ = [ ("m", ctypes.c_int), ("n", ctypes.c_int), ("k", ctypes.c_int) ] def __init__(self, gemm_coord) -> None: for field_name, _ in self._fields_: setattr(self, field_name, getattr(gemm_coord, field_name)()) class GemmCoordBatched_(ctypes.Structure): """ Wrapper around a GemmCoord that also contains batch count. This is used for encoding batched GEMM inputs to CUTLASS 3 GEMMs. """ _fields_ = [ ("m", ctypes.c_int), ("n", ctypes.c_int), ("k", ctypes.c_int), ("batch_count", ctypes.c_int) ] def __init__(self, gemm_coord, batch_count) -> None: for field_name, _ in self._fields_[:-1]: setattr(self, field_name, getattr(gemm_coord, field_name)()) setattr(self, "batch_count", batch_count) class MatrixCoord_(ctypes.Structure): _fields_ = [ ("row", ctypes.c_int), ("column", ctypes.c_int) ] class dim3_(ctypes.Structure): _fields_ = [ ("x", ctypes.c_int), ("y", ctypes.c_int), ("z", ctypes.c_int) ] class StrideBatched_(ctypes.Structure): """ CUTLASS 3.0 strides for operands contain one static dimension and two variable dimensions. The variable dimensions represent the stride along non-unit-stride dimension of the row/column major layout, and the batch stride. This structure encodes the two variable dimensions. """ _fields_ = [ ("major_stride", ctypes.c_int64), ("batch_stride", ctypes.c_int64) ] dtype2ctype = { cutlass_bindings.float16: ctypes.c_uint16, cutlass_bindings.float32: ctypes.c_float, cutlass_bindings.float64: ctypes.c_double, cutlass_bindings.int32: ctypes.c_int32, } class GenericMainloopArguments3x_(ctypes.Structure): """ Structure representing the superset of possible mainloop arguments. This structure should not be passed to kernels directly, but, rather, be used as an input to one of the more specific schedule arguments, which will each select those arguments relevant to the particular schedule. """ _fields_ = [ ("ptr_A", ctypes.c_void_p), ("stride_A", StrideBatched_), ("ptr_B", ctypes.c_void_p), ("stride_B", StrideBatched_), ("mma_promotion_interval", ctypes.c_int) ] def get_mainloop_arguments_3x( kernel_schedule: KernelScheduleType, element_A, element_B, alignment_A: int, alignment_B: int) -> ctypes.Structure: """ Returns the ctypes structure to be used for the 3.x kernel's mainloop parameters. :param kernel_schedule: type of kernel schedule to be used in the mainloop :type kerel_schedule: cutlass.KernelScheduleType :param element_A: data type of operand A :param element_B: data type of operand B :param alignment_A: alignment of operand A :type alignment_A: int :param alignment_B: alignment of operand B :type alignment_B: int :returns: ctypes structure to be used for the 3.x kernel's mainloop parameters :rtype: ctypes.Structure """ class _MainloopArgumentsTma(ctypes.Structure): _fields_ = [ ("ptr_A", ctypes.c_void_p), ("stride_A", StrideBatched_), ("ptr_B", ctypes.c_void_p), ("stride_B", StrideBatched_), ("mma_promotion_interval", ctypes.c_int) ] @staticmethod def from_generic_mainloop_args(args: GenericMainloopArguments3x_): return _MainloopArgumentsTma( args.ptr_A, args.stride_A, args.ptr_B, args.stride_B, args.mma_promotion_interval ) class _MainloopArgumentsMultistage(ctypes.Structure): _fields_ = [ ("ptr_A", ctypes.c_void_p), ("stride_A", StrideBatched_), ("ptr_B", ctypes.c_void_p), ("stride_B", StrideBatched_), ] @staticmethod def from_generic_mainloop_args(args: GenericMainloopArguments3x_): return _MainloopArgumentsMultistage( args.ptr_A, args.stride_A, args.ptr_B, args.stride_B, ) tma_alignment_bytes = 16 is_tma_aligned_A = ((DataTypeSizeBytes[element_A] * alignment_A) % tma_alignment_bytes) == 0 is_tma_aligned_B = ((DataTypeSizeBytes[element_B] * alignment_B) % tma_alignment_bytes) == 0 is_tma_aligned = is_tma_aligned_A and is_tma_aligned_B if kernel_schedule == KernelScheduleType.Multistage: return _MainloopArgumentsMultistage elif kernel_schedule == KernelScheduleType.ScheduleAuto: if is_tma_aligned: return _MainloopArgumentsTma else: return _MainloopArgumentsMultistage else: if is_tma_aligned: return _MainloopArgumentsTma else: raise Exception(f"Specified a kernel schedule using TMA ({kernel_schedule}), but " "the provided data types and alignments are not properly aligned for " "using TMA.") def get_gemm_arguments_3x(mainloop_arguments, epilogue_functor): _EpilogueOutputOpParams = epilogue_functor.epilogue_type class _EpilogueArguments(ctypes.Structure): _fields_ = [ ("epilogue", _EpilogueOutputOpParams), ("ptr_C", ctypes.c_void_p), ("stride_C", StrideBatched_), ("ptr_D", ctypes.c_void_p), ("stride_D", StrideBatched_), ] class _HardwareInfo(ctypes.Structure): _fields_ = [ ("device_id", ctypes.c_int), ("sm_count", ctypes.c_int) ] class _GemmArguments(ctypes.Structure): _fields_ = [ ("mode", ctypes.c_int), ("problem_size", GemmCoordBatched_), ("mainloop", mainloop_arguments), ("epilogue", _EpilogueArguments), ("hw_info", _HardwareInfo), ("splits", ctypes.c_int) ] return _GemmArguments, _EpilogueArguments, _EpilogueOutputOpParams, _HardwareInfo def get_gemm_arguments(epilogue_functor): _EpilogueOutputOpParams = epilogue_functor.epilogue_type class _GemmArguments(ctypes.Structure): _fields_ = [ # Arguments from UniversalArgumentsBase ("mode", ctypes.c_int), ("problem_size", GemmCoord_), ("batch_count", ctypes.c_int), ("batch_stride_D", ctypes.c_longlong), # Remaining arguments ("epilogue", _EpilogueOutputOpParams), ("ptr_A", ctypes.c_void_p), ("ptr_B", ctypes.c_void_p), ("ptr_C", ctypes.c_void_p), ("ptr_D", ctypes.c_void_p), ("batch_stride_A", ctypes.c_longlong), ("batch_stride_B", ctypes.c_longlong), ("batch_stride_C", ctypes.c_longlong), ("stride_a", ctypes.c_longlong), ("stride_b", ctypes.c_longlong), ("stride_c", ctypes.c_longlong), ("stride_d", ctypes.c_longlong), ("lda", ctypes.c_longlong), ("ldb", ctypes.c_longlong), ("ldc", ctypes.c_longlong), ("ldd", ctypes.c_longlong), ("ptr_gather_A_indices", ctypes.c_void_p), ("ptr_gather_B_indices", ctypes.c_void_p), ("ptr_scatter_D_indices", ctypes.c_void_p) ] return _GemmArguments, _EpilogueOutputOpParams def get_gemm_arguments_streamk(epilogue_functor): _EpilogueOutputOpParams = epilogue_functor.epilogue_type class _GemmArguments(ctypes.Structure): _fields_ = [ ("mode", ctypes.c_int), ("problem_size", GemmCoord_), ("batch_count", ctypes.c_int), ("epilogue", _EpilogueOutputOpParams), ("ptr_A", ctypes.c_void_p), ("ptr_B", ctypes.c_void_p), ("ptr_C", ctypes.c_void_p), ("ptr_D", ctypes.c_void_p), ("batch_stride_A", ctypes.c_longlong), ("batch_stride_B", ctypes.c_longlong), ("batch_stride_C", ctypes.c_longlong), ("batch_stride_D", ctypes.c_longlong), ("stride_a", ctypes.c_longlong), ("stride_b", ctypes.c_longlong), ("stride_c", ctypes.c_longlong), ("stride_d", ctypes.c_longlong), ("lda", ctypes.c_longlong), ("ldb", ctypes.c_longlong), ("ldc", ctypes.c_longlong), ("ldd", ctypes.c_longlong), ("avail_sms", ctypes.c_int) ] return _GemmArguments, _EpilogueOutputOpParams ########################################################################################### # GEMM Grouped ########################################################################################### def get_gemm_grouped_arguments(epilogue_functor): _EpilogueOutputOpParams = epilogue_functor.epilogue_type class _GEMMGroupedArguments(ctypes.Structure): _fields_ = [ ("problem_sizes", ctypes.c_void_p), ("problem_count", ctypes.c_int), ("threadblock_count", ctypes.c_int), ("output_op", _EpilogueOutputOpParams), ("ptr_A", ctypes.c_void_p), ("ptr_B", ctypes.c_void_p), ("ptr_C", ctypes.c_void_p), ("ptr_D", ctypes.c_void_p), ("lda", ctypes.c_void_p), ("ldb", ctypes.c_void_p), ("ldc", ctypes.c_void_p), ("ldd", ctypes.c_void_p), ("host_problem_sizes", ctypes.c_void_p) ] return _GEMMGroupedArguments, _EpilogueOutputOpParams ############################################################################################ # Convolution2D ############################################################################################ class Conv2DProblemSize(ctypes.Structure): _fields_ = [ ("N", ctypes.c_int), ("H", ctypes.c_int), ("W", ctypes.c_int), ("C", ctypes.c_int), ("P", ctypes.c_int), ("Q", ctypes.c_int), ("K", ctypes.c_int), ("R", ctypes.c_int), ("S", ctypes.c_int), ("pad_h", ctypes.c_int), ("pad_w", ctypes.c_int), ("stride_h", ctypes.c_int), ("stride_w", ctypes.c_int), ("dilation_h", ctypes.c_int), ("dilation_w", ctypes.c_int), ("mode", ctypes.c_int), # kCrossCorrelation: 0, kConvolution: 1 ("split_k_slices", ctypes.c_int), ("groups", ctypes.c_int) ] def __init__(self, problem_size) -> None: for field_name, _ in self._fields_: setattr(self, field_name, getattr(problem_size, field_name)) class Layout4D(ctypes.Structure): _fields_ = [("stride", ctypes.c_int * 3)] def __init__(self, tensor_ref): stride = tensor_ref.stride() setattr(self, "stride", (stride.at(0), stride.at(1), stride.at(2))) class TensorRef_(ctypes.Structure): _fields_ = [ ("ptr", ctypes.c_void_p), ("layout", Layout4D) ] def __init__(self, tensor_ref): setattr(self, "ptr", tensor_ref.data()) setattr(self, "layout", Layout4D(tensor_ref.layout())) class TensorRef2D_(ctypes.Structure): _fields_ = [ ("ptr", ctypes.c_void_p), ("stride", ctypes.c_int) ] def get_conv2d_arguments(epilogue_functor): _EpilogueOutputOpParams = epilogue_functor.epilogue_type class _Conv2dArguments(ctypes.Structure): _fields_ = [ ("problem_size", Conv2DProblemSize), ("ref_A", TensorRef_), ("ref_B", TensorRef_), ("ref_C", TensorRef_), ("ref_D", TensorRef_), ("output_op", _EpilogueOutputOpParams), ("split_k_mode", ctypes.c_int) ] return _Conv2dArguments, _EpilogueOutputOpParams ############################################################################################ # Reduction ############################################################################################ def get_reduction_params(epilogue_functor): _EpilogueOutputParams = epilogue_functor.epilogue_type class _ReductionParams(ctypes.Structure): _fields_ = [ ("problem_size", MatrixCoord_), ("partitions", ctypes.c_int), ("partition_stride", ctypes.c_longlong), ("workspace", TensorRef2D_), ("destination", TensorRef2D_), ("source", TensorRef2D_), ("output_op", _EpilogueOutputParams), ] return _ReductionParams, _EpilogueOutputParams
cutlass-main
python/cutlass/backend/c_types.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import numpy as np import rmm class PoolMemoryManager: def __init__(self, init_pool_size: int, max_pool_size: int) -> None: self.pool = rmm.mr.PoolMemoryResource( rmm.mr.CudaMemoryResource(), initial_pool_size=init_pool_size, maximum_pool_size=max_pool_size ) self.mr = rmm.mr.TrackingResourceAdaptor(self.pool) rmm.mr.set_current_device_resource(self.mr) def get_allocated_size(self): return self.mr.get_allocated_bytes() def pool_size(self): return self.pool.pool_size() def todevice(host_data, dtype=np.float32): """ Pass the host_data to device memory """ if isinstance(host_data, list): return rmm.DeviceBuffer.to_device(np.array(host_data, dtype=dtype).tobytes()) elif isinstance(host_data, np.ndarray): return rmm.DeviceBuffer.to_device(host_data.tobytes()) def device_mem_alloc(size): return rmm.DeviceBuffer(size=size) def align_size(size, alignment=256): return ((size + alignment - 1) // alignment) * alignment def get_allocated_size(): device_resource = rmm.mr.get_current_device_resource() return device_resource.get_allocated_bytes()
cutlass-main
python/cutlass/backend/memory_manager.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import ctypes import json import os import sqlite3 import tempfile from cuda import cuda, nvrtc import cutlass_bindings from cutlass import CACHE_FILE, CUDA_INSTALL_PATH, CUTLASS_PATH, logger from cutlass.backend.gemm_operation import GemmOperationUniversal from cutlass.backend.library import ApiVersion from cutlass.backend.utils.device import device_cc from cutlass.backend.utils.software import SubstituteTemplate import subprocess IncludeTemplate = r"""#include "${include}" """ def compile_with_nvcc(cmd, source, error_file): succeed = True try: subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True) except subprocess.CalledProcessError as e: error_message = e.output.decode() with open(error_file, "w") as error_out: error_log = "Compilation error for the following kernel: \n" error_log += source error_log += "\nError Message:\n" error_log += error_message error_out.write(error_log) succeed = False if not succeed: # Print the error log to stdout if log level is set to warning or higher # verbosity. Otherwise, simply point to the error log file. logger.warning(error_log) raise Exception(f"Invalid Kernel. See '{error_file}' for details.") class CompilationOptions: """ Compilation options. """ def __init__(self, flags, arch, include_paths=[]): self.includes = [] self.include_paths = include_paths self.flags = flags self.arch = arch def get_str(self): options = "" for flag in self.flags: options += " " + flag for incl in self.include_paths: options += " --include-path=%s" % incl arch_flag = " -arch=sm_%d" % self.arch if self.arch == 90: arch_flag += "a" options += arch_flag return options def get(self): options = [] for flag in self.flags: options.append(bytes(str.encode(flag))) for incl in self.include_paths: options.append(bytes(str.encode("--include-path=%s" % incl))) arch_flag = " -arch=sm_%d" % self.arch if self.arch == 90: arch_flag += "a" options.append(bytes(str.encode(arch_flag))) return options def convertToBinaryData(filename): with open(filename, "rb") as file: blobData = file.read() return blobData def CDLLBin(host_binary): tempfile.tempdir = "./" temp_so = tempfile.NamedTemporaryFile(prefix="host_func", suffix=".so", delete=True) with open(temp_so.name, "wb") as file: file.write(host_binary) host_lib = ctypes.CDLL(temp_so.name) return host_lib class ArtifactManager: """ Artifact manager """ def __init__(self) -> None: connection = sqlite3.connect(CACHE_FILE) cursor = connection.cursor() # Create the table if it does not already exist sqlite_create_table_query = """ CREATE TABLE IF NOT EXISTS compiled_operations(op_key TEXT NOT NULL UNIQUE, cubin BLOB NOT NULL, hostbin BLOB NOT NULL, op_name TEXT NOT NULL, op_attrs TEXT NOT NULL) """ cursor.execute(sqlite_create_table_query) connection.commit() cursor.close() self._nvrtc_compile_options = ["-std=c++17", "-default-device"] self._nvcc_compile_options = [ "-std=c++17", "--expt-relaxed-constexpr", "-Xcudafe --diag_suppress=esa_on_defaulted_function_ignored", ] self.nvcc() self.compiled_cache_device = cutlass_bindings.CompileCache() self.compiled_cache_host = cutlass_bindings.CompileCache() def nvrtc(self): self.backend = "nvrtc" self.default_compile_options = self._nvrtc_compile_options def nvcc(self): self.backend = "nvcc" self.default_compile_options = self._nvcc_compile_options def insert_operation(self, op_key, cubin, hostfile, op_name, op_attrs): connection = sqlite3.connect(CACHE_FILE) cursor = connection.cursor() sqlite_insert_blob_query = """ INSERT OR IGNORE INTO compiled_operations (op_key, cubin, hostbin, op_name, op_attrs) VALUES (?, ?, ?, ?, ?)""" hostbin = convertToBinaryData(hostfile) data_tuple = (op_key, cubin, hostbin, op_name, json.dumps(op_attrs)) cursor.execute(sqlite_insert_blob_query, data_tuple) connection.commit() cursor.close() def load_operation(self, op_key, extra_funcs): connection = sqlite3.connect(CACHE_FILE) cursor = connection.cursor() sqlite_fetch_blob_query = """SELECT * from compiled_operations where op_key = ?""" cursor.execute(sqlite_fetch_blob_query, (op_key,)) record = cursor.fetchall() if len(record) == 0: return False for row in record: key, cubin_image, host_binary, operation_name, op_attr = row op_attr = json.loads(op_attr) err, module = cuda.cuModuleLoadData(cubin_image) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("Cuda Error: {}".format(err)) err, kernel = cuda.cuModuleGetFunction(module, bytes(str.encode(operation_name))) self.compiled_cache_device.insert(key, kernel) compiled_host_fns = {} host_lib = CDLLBin(host_binary) func_name = operation_name + "_get_params" func = getattr(host_lib, func_name) func.restype = ctypes.POINTER(ctypes.c_char * op_attr[0]) compiled_host_fns["get_args"] = func func_name = operation_name + "_shared_memory_size" func = getattr(host_lib, func_name) compiled_host_fns["shared_memory_capacity"] = func() for attr in op_attr: if isinstance(attr, str): func_name = operation_name + "_" + attr func = getattr(host_lib, func_name) # Set the return type of the function if attr in extra_funcs and extra_funcs[attr] != None: func.restype = extra_funcs[attr] compiled_host_fns[attr] = func self.compiled_cache_host.insert(key, compiled_host_fns) return True def emit_compile_(self, operation_list, compilation_options, host_compilation_options): """ Compile a list of kernels and store them into database """ source_buffer_device = "" source_buffer_host = "" # 1. include includes = [] for operation in operation_list: for incl in operation.emitter.includes: if incl not in includes: includes.append(incl) includes_host = ["builtin_types.h", "device_launch_parameters.h", "stddef.h"] + includes for incl in includes: source_buffer_device += SubstituteTemplate( IncludeTemplate, {"include": incl}, ) for incl in includes_host: if "/device/" not in incl: source_buffer_host += SubstituteTemplate( IncludeTemplate, {"include": incl}, ) # 2. Operations for operation in operation_list: source_buffer_device += operation.emit() source_buffer_host += operation.emit() values = { "operation_name": operation.name(), "operation_suffix": operation.emitter.operation_suffix, } source_buffer_device += SubstituteTemplate( operation.KernelTemplate, values, ) source_buffer_host += SubstituteTemplate(operation.HostTemplate, values) if self.backend == "nvrtc": # 3. compile err, program = nvrtc.nvrtcCreateProgram( str.encode(source_buffer_device), bytes(str.encode("module.cu")), 0, [], []) if err != nvrtc.nvrtcResult.NVRTC_SUCCESS: raise RuntimeError("NVRTC Error: {}".format(err)) # Compile program options = compilation_options.get() err, = nvrtc.nvrtcCompileProgram(program, len(options), options) if err != nvrtc.nvrtcResult.NVRTC_SUCCESS: error_string = "NVRTC Error: {}\n".format(err) # Get log from compilation err, logSize = nvrtc.nvrtcGetProgramLogSize(program) if err != nvrtc.nvrtcResult.NVRTC_SUCCESS: raise RuntimeError("NVRTC Error: {}".format(err)) log = b" " * logSize err, = nvrtc.nvrtcGetProgramLog(program, log) if err != nvrtc.nvrtcResult.NVRTC_SUCCESS: raise RuntimeError("NVRTC Error: {}".format(err)) raise RuntimeError(error_string + log.decode() + source_buffer_device) # Get data from compilation err, dataSize = nvrtc.nvrtcGetCUBINSize(program) if err != nvrtc.nvrtcResult.NVRTC_SUCCESS: raise RuntimeError("NVRTC Error: {}".format(err)) cubin_image = b" " * dataSize (err,) = nvrtc.nvrtcGetCUBIN(program, cubin_image) if err != nvrtc.nvrtcResult.NVRTC_SUCCESS: raise RuntimeError("NVRTC Error: {}".format(err)) else: # with nvcc backend # emit code tempfile.tempdir = "./" temp_cu = tempfile.NamedTemporaryFile( prefix="kernel", suffix=".cu", delete=True) temp_cubin = tempfile.NamedTemporaryFile( prefix="kernel", suffix=".cubin", delete=True) with open(temp_cu.name, "w") as file: file.write(source_buffer_device) # compile with nvcc cmd_template = "${cuda_install_path}/bin/nvcc ${options} -cubin ${srcfile} -o ${tarfile}" values = { "cuda_install_path": CUDA_INSTALL_PATH, "options": compilation_options.get_str(), "srcfile": temp_cu.name, "tarfile": temp_cubin.name, } cmd = SubstituteTemplate(cmd_template, values) compile_with_nvcc(cmd, source_buffer_device, "./cutlass_python_compilation_device_error.txt") # load the cubin image with open(temp_cubin.name, "rb") as file: cubin_image = file.read() # Set up the host-side library code cmd_template = ( "echo '%s'|${cuda_install_path}/bin/nvcc -x cu -Xcompiler=\"-fpermissive -w -fPIC\" ${options}" % source_buffer_host ) cmd = SubstituteTemplate( cmd_template, { "cuda_install_path": CUDA_INSTALL_PATH, "options": host_compilation_options.get_str(), }, ) tempfile.tempdir = "./" temp = tempfile.NamedTemporaryFile( prefix="host_func", suffix=".so", delete=True) cmd += " - -shared -o %s -lcudart -lcuda" % temp.name compile_with_nvcc(cmd, source_buffer_host, error_file="./cutlass_python_compilation_host_error.txt") host_lib = ctypes.CDLL(temp.name) return cubin_image, host_lib, temp def add_module(self, operations, compile_options=None, bypass_cache=False): """ Insert a new compiled device module """ include_paths = [ CUDA_INSTALL_PATH + "/include", CUTLASS_PATH + "/include", CUTLASS_PATH + "/tools/util/include", CUTLASS_PATH + "/python/cutlass/cpp/include", ] if device_cc() is not None: arch = device_cc() else: # Find the maximum arch tag among the provided operations and compile for that target. # Since we are compiling to .cubin files, only one architecture may be specified. arch = max([op.arch for op in operations]) host_compile_options = CompilationOptions( self._nvcc_compile_options, arch, include_paths) if compile_options is None: compile_options = CompilationOptions( self.default_compile_options, arch, include_paths) # save the cubin operation_key = [] operation_list = [] for operation in operations: # step 1: get kernel string as key key = operation.rt_module.emit() + operation.procedural_name() + self.backend # step 1: check if the operation is in cache compiled_kernel = self.compiled_cache_device.at(key) if compiled_kernel is None and not bypass_cache: hit = self.load_operation(key, getattr( operation.rt_module, "extra_funcs", {})) if hit: compiled_kernel = self.compiled_cache_device.at(key) assert compiled_kernel is not None if compiled_kernel is not None: operation.rt_module.kernel = compiled_kernel compiled_host_fns = self.compiled_cache_host.at(key) assert compiled_host_fns is not None for key in compiled_host_fns.keys(): setattr(operation.rt_module, key, compiled_host_fns[key]) operation.rt_module.initialize() else: operation_list.append(operation.rt_module) operation_key.append(key) if len(operation_list) > 0: cubin_image, host_lib, host_file = self.emit_compile_( operation_list, compile_options, host_compile_options) err, module = cuda.cuModuleLoadData(cubin_image) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("Cuda Error: {}".format(err)) operation_name = [] operation_attr = [] for operation, key in zip(operation_list, operation_key): # get device kernels err, operation.kernel = cuda.cuModuleGetFunction( module, bytes(str.encode(operation.name())) ) operation_name.append(operation.name()) self.compiled_cache_device.insert(key, operation.kernel) # get host functions compiled_host_fns = {} op_attr = [] # get param size func_name = operation.name() + "_get_param_size" func = getattr(host_lib, func_name) param_size = func() func_name = operation.name() + "_get_params" func = getattr(host_lib, func_name) func.argtype = operation.argtype func.restype = ctypes.POINTER(ctypes.c_char * param_size) setattr(operation, "get_args", func) compiled_host_fns["get_args"] = func # set shared memory size func_name = operation.name() + "_shared_memory_size" func = getattr(host_lib, func_name) setattr(operation, "shared_memory_capacity", func()) compiled_host_fns["shared_memory_capacity"] = func() # set the maximum dynamic shared size operation.initialize() # get extra functions op_attr.append(param_size) if hasattr(operation, "extra_funcs"): for suffix, ret_type in operation.extra_funcs.items(): func_name = operation.name() + "_" + suffix func = getattr(host_lib, func_name) if ret_type is not None: func.restype = ret_type setattr(operation, suffix, func) compiled_host_fns[suffix] = func op_attr.append(suffix) operation_attr.append(op_attr) self.compiled_cache_host.insert(key, compiled_host_fns) for (key, operation_name, operation_attr,) in zip(operation_key, operation_name, operation_attr): self.insert_operation( key, cubin_image, host_file.name, operation_name, operation_attr)
cutlass-main
python/cutlass/backend/compiler.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import copy import ctypes import enum from cuda import cuda, cudart import cutlass_bindings import numpy as np import rmm from cutlass import ( EpilogueScheduleSuffixes, EpilogueScheduleTag, EpilogueScheduleType, KernelScheduleSuffixes, KernelScheduleTag, KernelScheduleType, TileSchedulerSuffixes, TileSchedulerTag, TileSchedulerType ) from cutlass.backend.arguments import ArgumentBase from cutlass.backend.c_types import ( GemmCoord_, GemmCoordBatched_, GenericMainloopArguments3x_, StrideBatched_, dim3_, get_gemm_arguments, get_gemm_arguments_3x, get_gemm_arguments_streamk, get_gemm_grouped_arguments, get_mainloop_arguments_3x ) from cutlass.backend.library import ( ApiVersion, EmissionType, ComplexTransformTag, DataTypeNames, DataTypeSize, DataTypeTag, GemmKind, GemmKindNames, LayoutTag, MathOperation, MathOperationTag, OpcodeClassNames, OpcodeClassTag, OperationKind, SchedulerMode, SchedulerModeTag, ShortComplexLayoutNames, ShortDataTypeNames, ShortLayoutTypeNames, TensorDescription, TileDescription, api_version, enum_auto, get_complex_from_real, ) from cutlass.backend.memory_manager import device_mem_alloc, todevice from cutlass.backend.operation import ExecutableOperation, LaunchConfiguration from cutlass.backend.tensor_ref import TensorRef from cutlass.backend.type_hint import GemmOperation, Tensor from cutlass.backend.utils.software import ( CheckPackages, SubstituteTemplate, device_sm_count, ) if CheckPackages().check_torch(): import torch ################################################################################ # # Data structure modeling a GEMM operation # ################################################################################ def transpose_layout(layout: cutlass_bindings.layout): if layout == cutlass_bindings.ColumnMajor: return cutlass_bindings.RowMajor elif layout == cutlass_bindings.RowMajor: return cutlass_bindings.ColumnMajor else: raise ValueError("unsupported Layout {}".format(layout)) class GemmArguments2x(ArgumentBase): """ Argument wrapper for GEMM in CUTLASS 2. It encodes problem information and user-provide tensors into the kernel's argument :param operation: the GEMM operation to take the argument :type operation: :class:`cutlass.backend.GemmOperationUniversal` | :class:`cutlass.backend.GemmOperationGrouped` :param problem_size: GEMM problem size gemm(M, N, K) :type operation: :class:`cutlass_bindings.gemm.GemmCoord` :param A: tensor A :type A: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param B: tensor B :type B: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param C: tensor C :type C: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param D: tensor D :type D: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param gemm_mode: GEMM mode :type gemm_mode: :class:`cutlass_bindings.gemm.Mode` :param output_op: output operator, optional :type output_op: :class:`cutlass.backend.LinearCombinationFunctorArguments` """ def __init__( self, operation: "GemmOperation", problem_size: "cutlass_bindings.gemm.GemmCoord", A: "Tensor", B: "Tensor", C: "Tensor", D: "Tensor", gemm_mode: "cutlass_bindings.gemm.Mode" = cutlass_bindings.gemm.Mode.Gemm, **kwargs): self.operation = operation self.layout_A: cutlass_bindings.layout = operation.A.layout self.layout_B: cutlass_bindings.layout = operation.B.layout self.layout_C: cutlass_bindings.layout = operation.C.layout self.element_A = operation.A.element self.element_B = operation.B.element self.element_C = operation.C.element if (operation.C.layout in [cutlass_bindings.RowMajorInterleaved32, cutlass_bindings.ColumnMajorInterleaved32]): # reorder tensor B for interleaved layout output B = self.reorder_tensor_B(B, problem_size) super().__init__(A, B, C, D, **kwargs) if operation.switched: self.problem_size = cutlass_bindings.gemm.GemmCoord( problem_size.n(), problem_size.m(), problem_size.k()) self.ptr_A, self.ptr_B = self.ptr_B, self.ptr_A else: self.problem_size = cutlass_bindings.gemm.GemmCoord( problem_size.m(), problem_size.n(), problem_size.k()) # if the number of elements in C = problem_size.n # C is treated as the bias if hasattr(self, "tensor_c_numel"): if self.tensor_c_numel == self.problem_size.n() and self.problem_size.m() != 1: self.bias = True # get the leading dimension self.lda = operation.A.layout.packed(self.problem_size.mk()).stride() self.ldb = operation.B.layout.packed(self.problem_size.kn()).stride() self.ldc = operation.C.layout.packed(self.problem_size.mn()).stride() self.ldd = self.ldc # stride 0 trick if self.bias: self.ldc = 0 if "output_op" in kwargs.keys() and gemm_mode != cutlass_bindings.gemm.Mode.GemmSplitKParallel: self.output_op = kwargs["output_op"] else: self.output_op = self.operation.epilogue_type(1.0, 0.0) # get number of slices on k dimension self.gemm_mode = gemm_mode if gemm_mode in [cutlass_bindings.gemm.Mode.Gemm, cutlass_bindings.gemm.Mode.GemmSplitKParallel]: if "split_k_slices" in kwargs.keys(): self.batch_count = kwargs["split_k_slices"] else: self.batch_count = 1 self.split_k_slices = self.batch_count if gemm_mode in [cutlass_bindings.gemm.Mode.Batched, cutlass_bindings.gemm.Mode.Array]: if "batch" in kwargs.keys(): self.batch_count = kwargs["batch"] else: self.batch_count = 1 if "batch_strides" in kwargs: self.batched_stride_A = kwargs["batch_strides"]["A"] self.batched_stride_B = kwargs["batch_strides"]["B"] self.batched_stride_C = kwargs["batch_strides"]["C"] self.batched_stride_D = kwargs["batch_strides"]["D"] else: self.batched_stride_A = self.problem_size.m() * self.problem_size.k() self.batched_stride_B = self.problem_size.n() * self.problem_size.k() self.batched_stride_C = self.problem_size.m() * self.problem_size.n() self.batched_stride_D = self.problem_size.m() * self.problem_size.n() if self.bias: self.batched_stride_C = self.problem_size.n() # support GEMM Mode Array if gemm_mode == cutlass_bindings.gemm.Mode.Array: self.ptr_A_array = [] self.ptr_B_array = [] self.ptr_C_array = [] self.ptr_D_array = [] ptr_A_addr = int(self.ptr_A) ptr_B_addr = int(self.ptr_B) ptr_C_addr = int(self.ptr_C) ptr_D_addr = int(self.ptr_D) stride_A = self.batched_stride_A * DataTypeSize[self.element_A] // 8 stride_B = self.batched_stride_B * DataTypeSize[self.element_B] // 8 stride_C = self.batched_stride_C * DataTypeSize[self.element_C] // 8 stride_D = self.batched_stride_D * DataTypeSize[self.element_C] // 8 for _ in range(self.batch_count): self.ptr_A_array.append(ptr_A_addr) self.ptr_B_array.append(ptr_B_addr) self.ptr_C_array.append(ptr_C_addr) self.ptr_D_array.append(ptr_D_addr) ptr_A_addr += stride_A ptr_B_addr += stride_B ptr_C_addr += stride_C ptr_D_addr += stride_D self.ptr_A_array_buffer = todevice(self.ptr_A_array, dtype=np.int64) self.ptr_B_array_buffer = todevice(self.ptr_B_array, dtype=np.int64) self.ptr_C_array_buffer = todevice(self.ptr_C_array, dtype=np.int64) self.ptr_D_array_buffer = todevice(self.ptr_D_array, dtype=np.int64) if isinstance(self.operation, GemmOperationUniversal): self.initialize() def reorder_tensor_B(self, tensor_B: "np.ndarray", problem_size: "cutlass_bindings.gemm.GemmCoord"): """ Reorder tensor_B for interleaved layout :param tensor_B: input tensor B :type tensor_B: numpy.ndarray :param problem_size: GEMM problem size :type problem_size: :class:`cutlass_bindings.gemm.GemmCoord` :return: reordered tensor B :rtype: numpy.ndarray """ reordered_tensor_B = np.empty_like(tensor_B) tensor_ref_B = self.get_tensor_ref( tensor_B, self.element_B, self.layout_B, problem_size, "b" ) reordered_tensor_ref_B = self.get_tensor_ref( reordered_tensor_B, self.element_B, self.layout_B, problem_size, "b" ) cutlass_bindings.gemm.host.reorder_column( tensor_ref_B, reordered_tensor_ref_B, problem_size) return reordered_tensor_B def get_tensor_ref( self, tensor, dtype, tensor_layout, problem_size, operand): if operand == "a": tensor_coord = problem_size.mk() elif operand == "b": tensor_coord = problem_size.kn() elif operand in ["c", "d"]: tensor_coord = problem_size.mn() else: raise ValueError("unknown operand: " + operand) layout = tensor_layout.packed(tensor_coord) return TensorRef(tensor, dtype, layout).tensor_ref def get_arguments(self): problem_size_ = GemmCoord_(self.problem_size) grid_tiled_shape_ = GemmCoord_( cutlass_bindings.gemm.GemmCoord( self.grid_tiled_shape.x, self.grid_tiled_shape.y, self.grid_tiled_shape.z ) ) if self.gemm_mode == cutlass_bindings.gemm.Mode.Array: arguments = self.operation.argument_type( # Arguments from UniversalArgumentsBase self.gemm_mode, problem_size_, self.batch_count, 0, # Remaining arguments self.output_op, int(self.ptr_A_array_buffer.ptr), int(self.ptr_B_array_buffer.ptr), int(self.ptr_C_array_buffer.ptr), int(self.ptr_D_array_buffer.ptr), 0, 0, 0, self.lda, self.ldb, self.ldc, self.ldd, self.lda, self.ldb, self.ldc, self.ldd, 0, 0, 0 ) else: arguments = self.operation.argument_type( # Arguments from UniversalArgumentsBase self.gemm_mode, problem_size_, self.batch_count, self.batched_stride_D, # Remaining arguments self.output_op, int(self.ptr_A), int(self.ptr_B), int(self.ptr_C), int(self.ptr_D), self.batched_stride_A, self.batched_stride_B, self.batched_stride_C, self.lda, self.ldb, self.ldc, self.ldd, self.lda, self.ldb, self.ldc, self.ldd, 0, 0, 0 ) self.arguments = arguments, grid_tiled_shape_, self.gemm_k_size def initialize(self): # get launch configuration launch_config = self.operation.rt_module.plan(self) # get the host and evice workspace device_workspace_size = self.operation.rt_module.get_device_workspace_size(self) if device_workspace_size > 0: self.workspace_buffer = device_mem_alloc(device_workspace_size) workspace_ptr = self.workspace_buffer.ptr err, = cuda.cuMemsetD32( workspace_ptr, 0, device_workspace_size // 4) else: workspace_ptr = None device_workspace = 0 if workspace_ptr is not None and self.gemm_mode == cutlass_bindings.gemm.Mode.GemmSplitKParallel: # in GEMM splik-K parallel, the D pointer is redirected # to the workspace self.ptr_D = cuda.CUdeviceptr(workspace_ptr) elif workspace_ptr is not None and self.gemm_mode == cutlass_bindings.gemm.Mode.Gemm: # in GEMM split-K serial device_workspace = workspace_ptr self.get_arguments() arguments, grid_tiled_shape, gemm_k_size = self.arguments res_arg = self.operation.rt_module.get_args( ctypes.byref(arguments), ctypes.c_void_p(int(device_workspace))) host_workspace = bytearray(res_arg.contents) device_workspace = None self.host_workspace = host_workspace self.device_workspace = device_workspace self.launch_config = launch_config class GemmArguments2xStreamK(GemmArguments2x): """ Argument wrapper for stream-K GEMMs in CUTLASS 2. It encodes problem information and user-provide tensors into the kernel's argument :param operation: the GEMM operation to take the argument :type operation: :class:`cutlass.backend.GemmOperationUniversal` | :class:`cutlass.backend.GemmOperationGrouped` :param problem_size: GEMM problem size gemm(M, N, K) :type operation: :class:`cutlass_bindings.gemm.GemmCoord` :param A: tensor A :type A: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param B: tensor B :type B: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param C: tensor C :type C: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param D: tensor D :type D: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param gemm_mode: GEMM mode :type gemm_mode: :class:`cutlass_bindings.gemm.Mode` :param output_op: output operator, optional :type output_op: :class:`cutlass.backend.LinearCombinationFunctorArguments` """ def __init__( self, operation: "GemmOperation", problem_size: "cutlass_bindings.gemm.GemmCoord", A: "Tensor", B: "Tensor", C: "Tensor", D: "Tensor", gemm_mode: "cutlass_bindings.gemm.Mode" = cutlass_bindings.gemm.Mode.Gemm, **kwargs): if gemm_mode not in [cutlass_bindings.gemm.Mode.Gemm, cutlass_bindings.gemm.Mode.Batched]: raise Exception("Unsupporged GEMM mode {}.".format(gemm_mode)) super().__init__(operation, problem_size, A, B, C, D, gemm_mode, **kwargs) def get_arguments(self): batch_stride_A = self.problem_size.m() * self.problem_size.k() batch_stride_B = self.problem_size.k() * self.problem_size.n() batch_stride_C = self.problem_size.m() * self.problem_size.n() batch_stride_D = self.problem_size.m() * self.problem_size.n() arguments = self.operation.argument_type( self.gemm_mode, GemmCoord_(self.problem_size), self.batch_count, self.output_op, int(self.ptr_A), int(self.ptr_B), int(self.ptr_C), int(self.ptr_D), batch_stride_A, batch_stride_B, batch_stride_C, batch_stride_D, self.lda, self.ldb, self.ldc, self.ldd, # strides self.lda, self.ldb, self.ldc, self.ldd, -1, # avail_sms ) return arguments def initialize(self): # get the host and device workspace device_workspace_size = self.operation.rt_module.get_device_workspace_size(self) device_workspace_size = 10 << 20 if device_workspace_size > 0: self.workspace_buffer = device_mem_alloc(device_workspace_size) workspace_ptr = self.workspace_buffer.ptr err, = cuda.cuMemsetD32( workspace_ptr, 0, device_workspace_size // 4) else: workspace_ptr = None device_workspace = 0 if workspace_ptr is not None and self.gemm_mode == cutlass_bindings.gemm.Mode.GemmSplitKParallel: # in GEMM splik-K parallel, the D pointer is redirected # to the workspace self.ptr_D = cuda.CUdeviceptr(workspace_ptr) elif workspace_ptr is not None and self.gemm_mode == cutlass_bindings.gemm.Mode.Gemm: # in GEMM split-K serial device_workspace = workspace_ptr arguments = self.get_arguments() res_arg = self.operation.rt_module.get_args( ctypes.byref(arguments), ctypes.c_void_p(int(device_workspace)), device_sm_count(), self.operation.rt_module.occupancy ) host_workspace = bytearray(res_arg.contents) grid = self.operation.rt_module.get_grid_shape( ctypes.byref(arguments), device_sm_count(), self.operation.rt_module.occupancy ) device_workspace = None self.host_workspace = host_workspace self.device_workspace = device_workspace self.launch_config = LaunchConfiguration( [grid.m, grid.n, grid.k], [self.operation.rt_module.threads, 1, 1], self.operation.rt_module.shared_memory_capacity ) class GemmArguments3x(GemmArguments2x): """ Argument wrapper for GEMM in CUTLASS 3. It encodes problem information and user-provide tensors into the kernel's argument :param operation: the GEMM operation to take the argument :type operation: :class:`cutlass.backend.GemmOperationUniversal` | :class:`cutlass.backend.GemmOperationGrouped` :param problem_size: GEMM problem size gemm(M, N, K) :type operation: :class:`cutlass_bindings.gemm.GemmCoord` :param A: tensor A :type A: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param B: tensor B :type B: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param C: tensor C :type C: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param D: tensor D :type D: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param gemm_mode: GEMM mode :type gemm_mode: :class:`cutlass_bindings.gemm.Mode` :param output_op: output operator, optional :type output_op: :class:`cutlass.backend.LinearCombinationFunctorArguments` """ def __init__( self, operation: "GemmOperation", problem_size: "cutlass_bindings.gemm.GemmCoord", A: "Tensor", B: "Tensor", C: "Tensor", D: "Tensor", gemm_mode: "cutlass_bindings.gemm.Mode" = cutlass_bindings.gemm.Mode.Gemm, **kwargs): if gemm_mode not in [cutlass_bindings.gemm.Mode.Gemm, cutlass_bindings.gemm.Mode.Batched]: raise Exception("Unsupporged GEMM mode {}.".format(gemm_mode)) super().__init__(operation, problem_size, A, B, C, D, gemm_mode, **kwargs) def get_arguments(self): problem_size_ = GemmCoordBatched_(self.problem_size, self.batch_count) if self.batch_count > 1: bsA = self.batched_stride_A bsB = self.batched_stride_B bsC = self.batched_stride_C bsD = self.batched_stride_D else: bsA = 0 bsB = 0 bsC = 0 bsD = 0 stride_A = StrideBatched_(self.lda, bsA) stride_B = StrideBatched_(self.ldb, bsB) stride_C = StrideBatched_(self.ldc, bsC) stride_D = StrideBatched_(self.ldd, bsD) # Superset of potential mainloop arguments generic_args = GenericMainloopArguments3x_( int(self.ptr_A), stride_A, int(self.ptr_B), stride_B, 4 # mma_promotion_interval ) # Set of mainloop arguments needed for this kernel mainloop = self.operation.rt_module.mainloop_args.from_generic_mainloop_args(generic_args) epilogue = self.operation.rt_module.epilogue_args( self.output_op, int(self.ptr_C), stride_C, int(self.ptr_D), stride_D, ) # Set hardware info hw_info = self.operation.rt_module.hw_info(0, device_sm_count()) self.arguments = self.operation.argument_type( self.gemm_mode, problem_size_, mainloop, epilogue, hw_info, ) return self.arguments def initialize(self): # get the host and evice workspace device_workspace_size = self.operation.rt_module.get_device_workspace_size(self) if device_workspace_size > 0: self.workspace_buffer = device_mem_alloc(device_workspace_size) workspace_ptr = self.workspace_buffer.ptr err, = cuda.cuMemsetD32( workspace_ptr, 0, device_workspace_size // 4) else: workspace_ptr = None device_workspace = 0 if workspace_ptr is not None and self.gemm_mode == cutlass_bindings.gemm.Mode.GemmSplitKParallel: # in GEMM splik-K parallel, the D pointer is redirected # to the workspace self.ptr_D = cuda.CUdeviceptr(workspace_ptr) elif workspace_ptr is not None and self.gemm_mode == cutlass_bindings.gemm.Mode.Gemm: # in GEMM split-K serial device_workspace = workspace_ptr self.get_arguments() res_arg = self.operation.rt_module.get_args( ctypes.byref(self.arguments), ctypes.c_void_p(int(device_workspace)), ) host_workspace = bytearray(res_arg.contents) grid = self.operation.rt_module.get_grid_shape( ctypes.byref(self.arguments), ctypes.c_void_p(int(device_workspace)), ) block = self.operation.rt_module.get_block_shape() device_workspace = None self.host_workspace = host_workspace self.device_workspace = device_workspace self.launch_config = LaunchConfiguration( [grid.x, grid.y, grid.z], [block.x, block.y, block.z], self.operation.rt_module.shared_memory_capacity, ) def GemmArguments( operation: "GemmOperation", problem_size: "cutlass_bindings.gemm.GemmCoord", A: "Tensor", B: "Tensor", C: "Tensor", D: "Tensor", gemm_mode: "cutlass_bindings.gemm.Mode" = cutlass_bindings.gemm.Mode.Gemm, **kwargs): """ Argument wrapper for GEMM in CUTLASS 2 or 3. It returns either 2x arguments or 3x arguments depending on the `arch` field specified in `operation`. :param operation: the GEMM operation to take the argument :type operation: :class:`cutlass.backend.GemmOperationUniversal` | :class:`cutlass.backend.GemmOperationGrouped` :param problem_size: GEMM problem size gemm(M, N, K) :type operation: :class:`cutlass_bindings.gemm.GemmCoord` :param A: tensor A :type A: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param B: tensor B :type B: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param C: tensor C :type C: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param D: tensor D :type D: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param gemm_mode: GEMM mode :type gemm_mode: :class:`cutlass_bindings.gemm.Mode` :param output_op: output operator, optional :type output_op: :class:`cutlass.backend.LinearCombinationFunctorArguments` """ if isinstance(operation.swizzling_functor, cutlass_bindings.ThreadblockSwizzleStreamK): if operation.api == ApiVersion.v3x: raise Exception("Stream K is currently only supported in CUTLASS 2.x") ArgClass = GemmArguments2xStreamK else: ArgClass = GemmArguments3x if operation.api == ApiVersion.v3x else GemmArguments2x return ArgClass(operation, problem_size, A, B, C, D, gemm_mode, **kwargs) class GemmGroupedArguments: """ Argument wrapper for GEMM Grouped. It encodes problem information and user-provide tensors into the kernel's argument :param operation: the GEMM Grouped operation to take the argument :type operation: :class:`cutlass.backend.GemmOperationGrouped` :param problem_size: list of GEMM problem size gemm(M, N, K) :type operation: list[:class:`cutlass_bindings.gemm.GemmCoord`] :param A: list of tensor A :type A: list[cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray] :param B: list of tensor B :type B: list[cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray] :param C: list of tensor C :type C: list[cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray] :param D: list of tensor D :type D: list[cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray] :param output_op: output operator, optional :type output_op: :class:`cutlass.backend.LinearCombinationFunctorArguments` """ def __init__( self, operation: "GemmOperationGrouped", problem_sizes: "list[cutlass_bindings.gemm.GemmCoord]", A: "list[Tensor]", B: "list[Tensor]", C: "list[torch.Tensor]", D: "list[Tensor]", **kwargs): # get number of problems in the group self.problem_count = len(problem_sizes) # check the input arguments assert len(A) == self.problem_count assert len(B) == self.problem_count assert len(C) == self.problem_count assert len(D) == self.problem_count problem_size_host = [] self.ptr_A_host = [] self.ptr_B_host = [] self.ptr_C_host = [] self.ptr_D_host = [] lda_host = [] ldb_host = [] ldc_host = [] ldd_host = [] self.partitions = 1 self.operation = operation # get the threadblock threadblock_shape = operation.tile_description.threadblock_shape self.threadblock_shape = cutlass_bindings.gemm.GemmCoord( threadblock_shape[0], threadblock_shape[1], threadblock_shape[2], ) self.threadblock_swizzle = operation.swizzling_functor self.total_tiles = 0 self.gemm_arguments = [] # process the input arguments for idx, problem_size in enumerate(problem_sizes): M, N, K = problem_size.m(), problem_size.n(), problem_size.k() temp_argument = GemmArguments2x( operation=operation, problem_size=cutlass_bindings.gemm.GemmCoord(M, N, K), A=A[idx], B=B[idx], C=C[idx], D=D[idx]) self.gemm_arguments.append(temp_argument) problem_size_host.append( [temp_argument.problem_size.m(), temp_argument.problem_size.n(), temp_argument.problem_size.k()] ) self.ptr_A_host.append(int(temp_argument.ptr_A)) lda_host.append(temp_argument.lda) self.ptr_B_host.append(int(temp_argument.ptr_B)) ldb_host.append(temp_argument.ldb) self.ptr_C_host.append(int(temp_argument.ptr_C)) ldc_host.append(temp_argument.ldc) self.ptr_D_host.append(int(temp_argument.ptr_D)) ldd_host.append(temp_argument.ldd) # get number of tiles grid = self.threadblock_swizzle.get_grid_shape( self.threadblock_swizzle.get_tiled_shape( temp_argument.problem_size, self.threadblock_shape, temp_argument.batch_count) ) self.total_tiles += grid.x * grid.y * grid.z self.problem_size_buffer = todevice(problem_size_host, np.int32) self.ptr_A_buffer = todevice(self.ptr_A_host, np.int64) self.ptr_B_buffer = todevice(self.ptr_B_host, np.int64) self.ptr_C_buffer = todevice(self.ptr_C_host, np.int64) self.ptr_D_buffer = todevice(self.ptr_D_host, np.int64) self.lda_buffer = todevice(lda_host, np.int64) self.ldb_buffer = todevice(ldb_host, np.int64) self.ldc_buffer = todevice(ldc_host, np.int64) self.ldd_buffer = todevice(ldd_host, np.int64) if "output_op" in kwargs.keys(): self.alpha = kwargs["output_op"].alpha self.beta = kwargs["output_op"].beta else: self.alpha = 1.0 self.beta = 0.0 if "output_op" in kwargs.keys(): self.output_op = kwargs["output_op"] else: self.output_op = self.operation.epilogue_type(1.0, 0.0) # get host problem size self.host_problem_size_ptr = np.array(problem_size_host, dtype=np.int32).__array_interface__["data"][0] self.arguments = self.get_arguments() self.initialize() def get_arguments(self): return self.operation.argument_type( self.problem_size_buffer.ptr, self.problem_count, self.total_tiles, self.output_op, self.ptr_A_buffer.ptr, self.ptr_B_buffer.ptr, self.ptr_C_buffer.ptr, self.ptr_D_buffer.ptr, self.lda_buffer.ptr, self.ldb_buffer.ptr, self.ldc_buffer.ptr, self.ldd_buffer.ptr, ctypes.c_void_p(int(self.host_problem_size_ptr)), ) def initialize(self): # get launch configuration launch_config = self.operation.rt_module.plan(self) # get the host and evice workspace device_workspace_size = self.operation.rt_module.get_device_workspace_size(self) if device_workspace_size > 0: self.workspace_buffer = device_mem_alloc(device_workspace_size) workspace_ptr = self.workspace_buffer.ptr err, = cuda.cuMemsetD32( workspace_ptr, 0, device_workspace_size // 4) else: workspace_ptr = None if self.operation.precompute_mode == SchedulerMode.Host: device_workspace_ptr = self.operation.rt_module.host_precompute( self, self.operation.rt_module.get_workspace_size(self),) else: device_workspace_ptr = 0 result = self.operation.rt_module.get_args( ctypes.byref(self.arguments), self.total_tiles, ctypes.c_void_p(int(device_workspace_ptr)), ) host_workspace = bytearray(result.contents) device_workspace = None self.host_workspace = host_workspace self.device_workspace = device_workspace self.launch_config = launch_config def sync(self): err, = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) for arg in self.gemm_arguments: arg.sync(stream_sync=False) ################################################################################ # Base class for GEMM runtime module ################################################################################ class GemmRTbase(ExecutableOperation): """ GemmRT manages the CUTLASS runtime components """ KernelTemplate = r""" extern "C" __global__ void ${operation_name}(${operation_name}${operation_suffix}::Params params) { // Dynamic shared memory base pointer extern __shared__ int SharedStorageBase[]; // Declare pointer to dynamic shared memory. ${operation_name}${operation_suffix}::SharedStorage *shared_storage = reinterpret_cast<${operation_name}${operation_suffix}::SharedStorage *>(SharedStorageBase); ${operation_name}${operation_suffix}::invoke(params, *shared_storage); } """ def __init__(self, operation: "GemmOperation"): super().__init__(operation) self.operation = operation threadblock_shape = operation.tile_description.threadblock_shape self.threadblock_shape = cutlass_bindings.gemm.GemmCoord( threadblock_shape[0], threadblock_shape[1], threadblock_shape[2]) self.threadblock_swizzle = operation.swizzling_functor # Threads per threadblock self.threads = operation.tile_description.num_threads def emit(self): return self.emitter.emit(self.operation) def can_implement(self, configuration, arguments): raise NotImplementedError() def get_host_workspace_size(self, arguments): raise NotImplementedError() def get_device_workspace_size(self, arguments): return 0 def initialize(self): err, = cuda.cuFuncSetAttribute( self.kernel, attrib=cuda.CUfunction_attribute.CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, value=self.shared_memory_capacity) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError( f"CUDA error on call to cuFuncSetAttribute: {cuda.cuGetErrorString(err)[1]}" ) ################################################################################ # Runtime module for GEMM Universal ################################################################################ class GemmRTUniversal(GemmRTbase): """ GemmRTUniversal manages the CUTLASS runtime components """ HostTemplate = r""" extern "C" { // Get the size of params in bytes int ${operation_name}_get_param_size(){ return sizeof(${operation_name}${operation_suffix}::Params); } // Get the size of dynamic shared memory in bytes int ${operation_name}_shared_memory_size() { return int(sizeof(${operation_name}${operation_suffix}::SharedStorage)); } // Get the params as byte array char* ${operation_name}_get_params(${operation_name}_base::Arguments* argument, int* workspace){ ${operation_name}_base::Params* params; params = new ${operation_name}_base::Params(*argument, -1, // SM count. Only used for stream-K -1 // Occupancy. Only used for stream-K ); // Semaphore holds the pointer to the workspace in the Params struct params->semaphore = workspace; char *bytes = ((char*)(params)); char *output = new char[sizeof(${operation_name}_base::Params)]; for (unsigned int i = 0; i < sizeof(${operation_name}_base::Params); i ++) output[i] = bytes[i]; return output; } } """ def __init__(self, operation: "GemmOperation"): super(GemmRTUniversal, self).__init__(operation) self.emitter = EmitGemmUniversalInstance( "_type", operation.direct_store, operation.visitor) self.argument_type, self.epilogue_type = get_gemm_arguments(operation.epilogue_functor) self.argtype = [ ctypes.POINTER(self.argument_type), ctypes.POINTER(GemmCoord_), ctypes.c_int, ctypes.c_void_p ] def plan(self, arguments): grid = self.threadblock_swizzle.get_tiled_shape( arguments.problem_size, self.threadblock_shape, arguments.batch_count ) gemm_k_size = arguments.problem_size.k() if arguments.gemm_mode in [cutlass_bindings.gemm.Mode.Gemm, cutlass_bindings.gemm.Mode.GemmSplitKParallel]: alignk = max(max(128 // DataTypeSize[self.operation.A.element], 128 // DataTypeSize[self.operation.B.element]), 1) gemm_k_size = (((arguments.problem_size.k() + arguments.batch_count - 1) // arguments.batch_count + alignk - 1) // alignk) * alignk if gemm_k_size: grid_z = (arguments.problem_size.k() + gemm_k_size - 1) // gemm_k_size grid = cutlass_bindings.gemm.GemmCoord(grid.m(), grid.n(), grid_z) arguments.grid_tiled_shape = cutlass_bindings.dim3(grid.m(), grid.n(), grid.k()) grid = self.threadblock_swizzle.get_grid_shape(grid) arguments.gemm_k_size = gemm_k_size return LaunchConfiguration( [grid.x, grid.y, grid.z], [self.threads, 1, 1], self.shared_memory_capacity) def get_device_workspace_size(self, arguments: GemmArguments): workspace_bytes = 0 if arguments.gemm_mode == cutlass_bindings.gemm.Mode.GemmSplitKParallel: workspace_bytes = (DataTypeSize[arguments.operation.C.element] * arguments.batched_stride_D * arguments.grid_tiled_shape.z // 8) elif (arguments.gemm_mode == cutlass_bindings.gemm.Mode.Gemm and arguments.split_k_slices > 1): workspace_bytes = 4 * arguments.grid_tiled_shape.x * arguments.grid_tiled_shape.y return workspace_bytes class GemmRTUniversalStreamK(GemmRTUniversal): """ Manages the CUTLASS runtime components for 2.x stream K kernels """ HostTemplate = r""" extern "C" { // Get the size of params in bytes int ${operation_name}_get_param_size(){ return sizeof(${operation_name}${operation_suffix}::Params); } // Get the size of dynamic shared memory in bytes int ${operation_name}_shared_memory_size() { return int(sizeof(${operation_name}${operation_suffix}::SharedStorage)); } using GemmType = ${operation_name}_base; // Get the params as byte array char* ${operation_name}_get_params(GemmType::Arguments* argument, int* workspace, int sm_count, int occupancy) { GemmType::Params* params; params = new GemmType::Params(*argument, sm_count, occupancy); params->init_workspace(workspace); char *bytes = ((char*)(params)); char *output = new char[sizeof(GemmType::Params)]; for (unsigned int i = 0; i < sizeof(GemmType::Params); i ++) output[i] = bytes[i]; return output; } // Get the grid shape dim3 ${operation_name}_get_grid_shape(GemmType::Arguments* args, int device_sms, int sm_occupancy) { typename GemmType::Params params(*args, device_sms, sm_occupancy); return params.get_grid_dims(); } } """ def __init__(self, operation: "GemmOperation"): super(GemmRTUniversalStreamK, self).__init__(operation) self.extra_funcs = { "get_grid_shape": GemmCoord_, } self._occupancy = None self.argument_type, self.epilogue_type = get_gemm_arguments_streamk(operation.epilogue_functor) @property def occupancy(self): if self._occupancy is None: err, self._occupancy = cuda.cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags( self.kernel, self.threads, self.shared_memory_capacity, cuda.CUoccupancy_flags.CU_OCCUPANCY_DISABLE_CACHING_OVERRIDE) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError( "CUDA error on call to cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags: " f"{cuda.cuGetErrorString(err)[1]}") return self._occupancy ################################################################################ # Runtime module for GEMM Universal within CUTLASS 3 ################################################################################ class GemmRTUniversal3x(GemmRTUniversal): """ Manages the CUTLASS runtime components for 3.x kernels """ KernelTemplate = r""" using Operator = ${operation_name}${operation_suffix}; extern "C" __global__ __launch_bounds__(Operator::MaxThreadsPerBlock, Operator::MinBlocksPerMultiprocessor) void ${operation_name}(__grid_constant__ typename Operator::Params const params) { // Dynamic shared memory base pointer extern __shared__ char smem[]; // Declare pointer to dynamic shared memory. Operator op; op(params, smem); } """ HostTemplate = r""" extern "C" { // Get the size of params in bytes int ${operation_name}_get_param_size(){ return sizeof(${operation_name}${operation_suffix}::Params); } // Get the size of dynamic shared memory in bytes int ${operation_name}_shared_memory_size() { return ${operation_name}${operation_suffix}::SharedStorageSize; } using GemmType = ${operation_name}_base; // Get the workspace size uint64_t ${operation_name}_get_kernel_workspace_size(GemmType::Arguments* argument) { return GemmType::get_workspace_size(*argument); } // Get the params as byte array char* ${operation_name}_get_params(GemmType::Arguments* argument, int* workspace){ GemmType::Params params = GemmType::to_underlying_arguments(*argument, workspace); char *bytes = ((char*)(&params)); char *output = new char[sizeof(GemmType::Params)]; for (unsigned int i = 0; i < sizeof(GemmType::Params); i ++) output[i] = bytes[i]; return output; } // Get the total number of blocks for a persistent kernel uint64_t ${operation_name}_get_persistent_tiled_blk_shape_mnl(GemmType::ProblemShape problem) { auto problem_shape_MNKL = append<4>(problem, Int<1>{}); auto [problem_blocks_m, problem_blocks_n, problem_blocks_l] = cutlass::gemm::kernel::detail::PersistentTileSchedulerSm90::get_tiled_cta_shape_mnl( problem_shape_MNKL, GemmType::TileShape{}, GemmType::DispatchPolicy::ClusterShape{}); return problem_blocks_m * problem_blocks_n * problem_blocks_l; } // Get the grid shape dim3 ${operation_name}_get_grid_shape(GemmType::Arguments* args, int* workspace) { auto tmp_params = GemmType::to_underlying_arguments(*args, workspace); return GemmType::get_grid_shape(tmp_params); } // Get the block shape dim3 ${operation_name}_get_block_shape() { return GemmType::get_block_shape(); } } """ def __init__(self, operation: "GemmOperation"): super(GemmRTUniversal3x, self).__init__(operation) self.extra_funcs = { "get_grid_shape": dim3_, "get_block_shape": dim3_, "get_persistent_tiled_blk_shape_mnl": ctypes.c_uint64, "get_kernel_workspace_size": ctypes.c_uint64 } self.emitter = EmitGemmUniversalInstance3x("_type") self.mainloop_args = get_mainloop_arguments_3x( operation.tile_description.kernel_schedule, operation.A.element, operation.B.element, operation.A.alignment, operation.B.alignment ) self.argument_type, self.epilogue_args, self.epilogue_type, self.hw_info = get_gemm_arguments_3x(self.mainloop_args, operation.epilogue_functor) def get_device_workspace_size(self, arguments: GemmArguments3x): return self.get_kernel_workspace_size(ctypes.byref(arguments.get_arguments())) class EmitGemmUniversalInstance3x: """Responsible for emitting a CUTLASS 3 template definition""" def __init__(self, operation_suffix=""): self.operation_suffix = operation_suffix self.includes = [ "cutlass/cutlass.h", "cute/tensor.hpp", "cute/atom/mma_atom.hpp", "cutlass/numeric_types.h", "cutlass/gemm/collective/collective_builder.hpp", "cutlass/gemm/kernel/sm90_tile_scheduler.hpp", "cutlass/gemm/kernel/gemm_universal.hpp", "cutlass/epilogue/collective/collective_builder.hpp", "cutlass/epilogue/collective/default_epilogue.hpp", "cutlass/epilogue/thread/linear_combination.h" ] self.gemm_template_kernel = """ using namespace cute; using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder< ${arch}, ${opcode_class}, cute::Shape<cute::_${threadblock_shape_m}, cute::_${threadblock_shape_n}, cute::_${threadblock_shape_k}>, cute::Shape<cute::_${cluster_m},cute::_${cluster_n},cute::_${cluster_k}>, cutlass::epilogue::collective::EpilogueTileAuto, ${element_accumulator}, ${element_epilogue}, ${element_c}, ${layout_c}, ${align_c}, ${element_d}, ${layout_d}, ${align_d}, ${epilogue_schedule} >::CollectiveOp; using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder< ${arch}, ${opcode_class}, ${element_a}, ${layout_a}, ${align_a}, ${element_b}, ${layout_b}, ${align_b}, ${element_accumulator}, cute::Shape<cute::_${threadblock_shape_m}, cute::_${threadblock_shape_n}, cute::_${threadblock_shape_k}>, cute::Shape<cute::_${cluster_m},cute::_${cluster_n},cute::_${cluster_k}>, ${stage_count_type}, ${kernel_schedule} >::CollectiveOp; // Gemm operator ${operation_name} using ${operation_name}_base = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveMainloop, CollectiveEpilogue, ${tile_scheduler} >; // Define named type struct ${operation_name}${operation_suffix} : public ${operation_name}_base { }; """ self.gemm_template_device = self.gemm_template_kernel + """ // Define device-level operator using DeviceKernel = cutlass::gemm::device::GemmUniversalAdapter<${operation_name}${operation_suffix}>; """ def emit(self, operation): instance_layout_A, instance_layout_B, instance_layout_C, = \ (operation.A.layout, operation.B.layout, operation.C.layout) # Support built-in epilogue functors or user-defined functions epilogue_functor = operation.epilogue_functor.emit() if operation.tile_description.stages is None or operation.tile_description.stages == 0: stage_count_type = "cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename CollectiveEpilogue::SharedStorage)>" else: stage_count_type = "_" + str(operation.tile_description.stages) if operation.emission_type == EmissionType.Kernel: gemm_template = self.gemm_template_kernel else: gemm_template = self.gemm_template_device kschedule = KernelScheduleType.ScheduleAuto eschedule = EpilogueScheduleType.ScheduleAuto tschedule = TileSchedulerType.Default if operation.tile_description.kernel_schedule is not None: kschedule = operation.tile_description.kernel_schedule if operation.tile_description.epilogue_schedule is not None: eschedule = operation.tile_description.epilogue_schedule if operation.tile_description.tile_scheduler is not None: tschedule = operation.tile_description.tile_scheduler values = { "operation_name": operation.procedural_name(), "operation_suffix": self.operation_suffix, "element_a": DataTypeTag[operation.A.element], "layout_a": LayoutTag[instance_layout_A], "element_b": DataTypeTag[operation.B.element], "layout_b": LayoutTag[instance_layout_B], "element_c": DataTypeTag[operation.C.element], "layout_c": LayoutTag[instance_layout_C], "element_d": DataTypeTag[operation.epilogue_functor.element_output], "layout_d": LayoutTag[instance_layout_C], "element_accumulator": DataTypeTag[operation.accumulator_type()], "element_epilogue": DataTypeTag[operation.epilogue_functor.element_epilogue], "epilogue_vector_length": str(operation.epilogue_functor.epilogue_vector_length), "opcode_class": OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], "arch": "cutlass::arch::Sm%d" % operation.arch, "threadblock_shape_m": str(operation.tile_description.threadblock_shape[0]), "threadblock_shape_n": str(operation.tile_description.threadblock_shape[1]), "threadblock_shape_k": str(operation.tile_description.threadblock_shape[2]), "cluster_m": str(operation.tile_description.cluster_shape[0]), "cluster_n": str(operation.tile_description.cluster_shape[1]), "cluster_k": str(operation.tile_description.cluster_shape[2]), "align_a": str(operation.A.alignment), "align_b": str(operation.B.alignment), "align_c": str(operation.C.alignment), "align_d": str(operation.C.alignment), "stage_count_type": stage_count_type, "kernel_schedule": KernelScheduleTag[kschedule], "epilogue_schedule": EpilogueScheduleTag[eschedule], "tile_scheduler": TileSchedulerTag[tschedule] } values["epilogue_functor"] = operation.epilogue_functor.emit() return SubstituteTemplate(gemm_template, values) ################################################################################################### # Runtime module for GEMM Grouped ################################################################################################### class GemmRTGrouped(GemmRTbase): """ GemmRTGrouped manages the CUTLASS runtime components """ KernelTemplate = r""" extern "C" __global__ void ${operation_name}(${operation_name}${operation_suffix}::Params params) { // Dynamic shared memory base pointer extern __shared__ int SharedStorageBase[]; // Declare pointer to dynamic shared memory. ${operation_name}${operation_suffix}::SharedStorage *shared_storage = reinterpret_cast<${operation_name}${operation_suffix}::SharedStorage *>(SharedStorageBase); ${operation_name}${operation_suffix} op; op(params, *shared_storage); } """ HostTemplate = r""" extern "C" { // precompute scheduling information char * ${operation_name}_precompute(${operation_name}_base::Arguments const &args, int tile_count, size_t workspace_bytes) { char* host_workspace = new char[workspace_bytes]; ${operation_name}_base::ProblemVisitor::host_precompute( args.host_problem_sizes, args.problem_count, args.threadblock_count, (void*)host_workspace ); return host_workspace; } // Get the size of params in bytes int ${operation_name}_get_param_size(){ return sizeof(${operation_name}${operation_suffix}::Params); } // Get the size of dynamic shared memory in bytes int ${operation_name}_shared_memory_size() { return int(sizeof(${operation_name}${operation_suffix}::SharedStorage)); } // Get the params as byte array char* ${operation_name}_get_params(${operation_name}_base::Arguments* argument, int tile_count, void* workspace=nullptr){ ${operation_name}_base::Params* params; params = new ${operation_name}_base::Params(*argument, workspace, tile_count); char *bytes = ((char*)(params)); char *output = new char[sizeof(${operation_name}_base::Params)]; for (unsigned int i = 0; i < sizeof(${operation_name}_base::Params); i ++) output[i] = bytes[i]; return output; } } """ def __init__(self, operation: "GemmOperation"): super(GemmRTGrouped, self).__init__(operation) self.extra_funcs = {"precompute": None} self.emitter = EmitGemmGroupedInstance("_type") self.argument_type, self.epilogue_type = get_gemm_grouped_arguments(operation.epilogue_functor) self.argtype = [ctypes.POINTER(self.argument_type), ctypes.c_int, ctypes.c_void_p] def host_precompute(self, arguments, workspace_bytes): self.precompute.argtype = [ self.argtype[0], ctypes.c_int, ctypes.c_longlong] self.precompute.restype = ctypes.POINTER(ctypes.c_byte * workspace_bytes) problem_info = self.precompute( ctypes.byref(arguments.arguments), arguments.total_tiles, workspace_bytes) problem_info_array = bytearray(problem_info.contents) # copy to device memory return rmm.DeviceBuffer.to_device(problem_info_array).ptr def plan(self, arguments): return LaunchConfiguration( [arguments.total_tiles, 1, 1], [self.threads, 1, 1], self.shared_memory_capacity, ) def get_workspace_size(self, arguments): if self.operation.precompute_mode == SchedulerMode.Device: return 0 elif self.operation.precompute_mode == SchedulerMode.Host: total_tiles = arguments.total_tiles entries_per_block = 1 return 8 * entries_per_block * total_tiles # three int32_t ################################################################################ # Runtime module for GEMM and grouped GEMM ################################################################################ class GemmOperationBase: """ CUTLASS GEMM operation """ def __init__( self, gemm_kind, arch, tile_description: TileDescription, A: TensorDescription, B: TensorDescription, C: TensorDescription, epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1, api=ApiVersion.v2x, emission_type=EmissionType.Kernel, **kwargs): self.operation_kind: OperationKind = OperationKind.Gemm self.arch: int = arch self.tile_description: TileDescription = tile_description self.gemm_kind: GemmKind = gemm_kind self.api = api self.prefix = "3x" if self.api == ApiVersion.v3x else "" self.emission_type = emission_type # Optionally swap the TensorDescriptions for operands A and B and transpose their # layouts. This is needed to mimic the transpose performed by device::GemmUniversal. # The code below uses deep copy to avoid overwritting the original TensorDescription self.switched = (self.api != ApiVersion.v3x and self.emission_type == EmissionType.Kernel and C.layout == cutlass_bindings.ColumnMajor) self.A, self.B, self.C = GemmOperationBase.get_operands(A, B, C, self.switched) self.epilogue_functor = epilogue_functor self.swizzling_functor = swizzling_functor() if "direct_store" in kwargs: self.direct_store = kwargs["direct_store"] else: self.direct_store = False if "visitor" in kwargs: self.visitor = kwargs["visitor"] else: self.visitor = False @staticmethod def get_operands(A: TensorDescription, B: TensorDescription, C: TensorDescription, swap: bool): """ Makes copies of A, B, and C, and possibly transposes their order. If ``swap`` is set, A and B are swapped, and the layout of A, B, and C are transposed. :param A: description of operand A :type A: TensorDescription :param B: description of operand B :type B: TensorDescription :param C: description of operand C :type C: TensorDescription :return: descriptions of operands A, B, and C :rtype: tuple[TileDescription] """ if swap: A_out = copy.deepcopy(B) B_out = copy.deepcopy(A) C_out = copy.deepcopy(C) A_out.layout = transpose_layout(A_out.layout) B_out.layout = transpose_layout(B_out.layout) C_out.layout = transpose_layout(C_out.layout) else: A_out = copy.deepcopy(A) B_out = copy.deepcopy(B) C_out = copy.deepcopy(C) return A_out, B_out, C_out def run(self, arguments: GemmArguments) -> cuda.CUresult: """ Configure and launch the cuda kernel with input arguments """ if self.emission_type == EmissionType.Device: raise Exception('Running a kernel via PyCUTLASS is only enabled with emission type "Kernel"') err = self.rt_module.run( arguments.host_workspace, arguments.device_workspace, arguments.launch_config, ) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) return err def free(self): if hasattr(self, "workspace_buffer"): del self.workspace_buffer def is_complex(self): complex_operators = [ MathOperation.multiply_add_complex, MathOperation.multiply_add_complex_gaussian, MathOperation.multiply_add_complex_fast_f32, ] return self.tile_description.math_instruction.math_operation in complex_operators def is_planar_complex(self): return self.gemm_kind in (GemmKind.PlanarComplex, GemmKind.PlanarComplexArray) def accumulator_type(self): accum = self.tile_description.math_instruction.element_accumulator if self.is_complex(): return get_complex_from_real(accum) return accum def short_math_name(self): if self.tile_description.math_instruction.math_operation == MathOperation.multiply_add_complex_gaussian: return "g%s" % ShortDataTypeNames[self.accumulator_type()] return ShortDataTypeNames[self.accumulator_type()] def core_name(self): """The basic operation kind is prefixed with a letter indicating the accumulation type.""" inst_shape = "" inst_operation = "" intermediate_type = "" math_operations_map = { MathOperation.xor_popc: "xor", } if (self.tile_description.math_instruction.opcode_class == cutlass_bindings.OpClass.TensorOp or self.tile_description.math_instruction.opcode_class == cutlass_bindings.OpClass.WmmaTensorOp): math_op = self.tile_description.math_instruction.math_operation math_op_string = math_operations_map[math_op] if math_op in math_operations_map.keys() else "" if self.tile_description.math_instruction.instruction_shape is not None: inst_shape = "%dx%dx%d" % tuple( self.tile_description.math_instruction.instruction_shape) else: inst_shape = "Default" inst_shape += math_op_string if (self.tile_description.math_instruction.element_a != self.A.element and self.tile_description.math_instruction.element_a != self.tile_description.math_instruction.element_accumulator): intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] return "%s%s%s%s" % (self.short_math_name(), inst_shape, intermediate_type, GemmKindNames[self.gemm_kind]) def extended_name(self): """Append data types if they differ from compute type.""" if self.is_complex(): extended_name = "${core_name}" else: if (self.C.element != self.tile_description.math_instruction.element_accumulator and self.A.element != self.tile_description.math_instruction.element_accumulator): extended_name = "${element_c}_${core_name}_${element_a}" elif (self.C.element == self.tile_description.math_instruction.element_accumulator and self.A.element != self.tile_description.math_instruction.element_accumulator): extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = SubstituteTemplate(extended_name, { "element_a": DataTypeNames[self.A.element], "element_c": DataTypeNames[self.C.element], "core_name": self.core_name(), }) return extended_name def extended_name_3x(self): """Generates a string representing the MMA atom. Assumes accumulator type is C type.""" extended_name = "{core_name}_{element_a}_{element_b}_{element_acc}_{element_c}".format( element_a=DataTypeNames[self.A.element], element_b=DataTypeNames[self.B.element], element_acc=DataTypeNames[self.tile_description.math_instruction.element_accumulator], element_c=DataTypeNames[self.C.element], core_name=self.core_name()) return extended_name def layout_name(self): if self.is_complex() or self.is_planar_complex(): return "%s%s" % ( ShortComplexLayoutNames[(self.A.layout, self.A.complex_transform)], ShortComplexLayoutNames[(self.B.layout, self.B.complex_transform)] ) return "%s%s" % (ShortLayoutTypeNames[self.A.layout], ShortLayoutTypeNames[self.B.layout]) # Generates a short string representing the ABC layout tags (e.g. ntn or tnn) def layout_name_3x(self): if self.is_complex() or self.is_planar_complex(): return "{}{}{}".format( ShortComplexLayoutNames[(self.A.layout, self.A.complex_transform)], ShortComplexLayoutNames[(self.B.layout, self.B.complex_transform)], ShortComplexLayoutNames[(self.C.layout, self.C.complex_transform)]) else: return "{}{}{}".format( ShortLayoutTypeNames[self.A.layout], ShortLayoutTypeNames[self.B.layout], ShortLayoutTypeNames[self.C.layout]) # Generates a short string representing underlying kernel schedule type def kernel_schedule_name_3x(self): if self.tile_description.kernel_schedule is None: return KernelScheduleSuffixes[KernelScheduleType.ScheduleAuto] else: return KernelScheduleSuffixes[self.tile_description.kernel_schedule] # Generates a short string representing underlying epilogue schedule type def epilogue_schedule_name_3x(self): if self.tile_description.epilogue_schedule is None: return EpilogueScheduleSuffixes[EpilogueScheduleType.ScheduleAuto] else: return EpilogueScheduleSuffixes[self.tile_description.epilogue_schedule] def procedural_name(self): """The full procedural name indicates architecture, extended name, tile size, and layout.""" opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] if self.api == ApiVersion.v3x and self.arch >= 90: kernel_name_template = "cutlass{p}_sm{ar}_{op}_{ex}_{tbm}x{tbn}x{tbk}_{cm}x{cn}x{ck}_{l}_{s}_align{al}{k}{e}" return kernel_name_template.format( p=self.prefix, ar=self.arch, op=opcode_class_name, ex=self.extended_name_3x(), tbm=self.tile_description.threadblock_shape[0], tbn=self.tile_description.threadblock_shape[1], tbk=self.tile_description.threadblock_shape[2], cm=self.tile_description.cluster_shape[0], cn=self.tile_description.cluster_shape[1], ck=self.tile_description.cluster_shape[2], l=self.tile_description.stages, s=self.layout_name_3x(), al=str(self.A.alignment), k=self.kernel_schedule_name_3x(), e=self.epilogue_schedule_name_3x() ) else: threadblock = self.tile_description.procedural_name() return "cutlass{p}_sm{ar}_{op}_{ex}_{tb}_{l}_align{a}".format( p=self.prefix, ar=self.arch, op=opcode_class_name, ex=self.extended_name(), tb=threadblock, l=self.layout_name(), a=str(self.A.alignment) ) def configuration_name(self): """The full procedural name indicates architecture, extended name, tile size, and layout.""" return self.procedural_name() class GemmOperationUniversal(GemmOperationBase): def __init__(self, arch, tile_description: TileDescription, A: TensorDescription, B, C, epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1, **kwargs): api = api_version(arch, tile_description.math_instruction.opcode_class, A.element) super(GemmOperationUniversal, self).__init__(GemmKind.Universal, arch, tile_description, A, B, C, epilogue_functor, swizzling_functor, api=api, **kwargs, ) if api == ApiVersion.v3x: if swizzling_functor == cutlass_bindings.ThreadblockSwizzleStreamK: raise Exception("Stream K is currently only supported for CUTLASS 2.x kernels") self.rt_module = GemmRTUniversal3x(self) else: if swizzling_functor == cutlass_bindings.ThreadblockSwizzleStreamK: self.rt_module = GemmRTUniversalStreamK(self) else: self.rt_module = GemmRTUniversal(self) self.argument_type = self.rt_module.argument_type self.epilogue_type = self.rt_module.epilogue_type def device_op(self): """ Returns a new GemmOperationUniversal object that is constructed with emission type ``EmissionType.Device``. Since the device-emitted kernel does not require swapping, any swappng performed by the kernel-emitted operation is reversed. :return: operation ready for device-level code emission :rtype: GemmUniversalOperation """ A, B, C = GemmOperationBase.get_operands(self.A, self.B, self.C, self.switched) return GemmOperationUniversal(self.arch, self.tile_description, A, B, C, self.epilogue_functor, type(self.swizzling_functor), emission_type=EmissionType.Device, direct_store=self.direct_store, visitor=self.visitor) class GemmOperationGrouped(GemmOperationBase): def __init__(self, arch, tile_description: TileDescription, A: TensorDescription, B, C, epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1, **kwargs): super(GemmOperationGrouped, self).__init__(GemmKind.Grouped, arch, tile_description, A, B, C, epilogue_functor, swizzling_functor, **kwargs) assert "precompute_mode" in kwargs.keys(), "missing keyword arguement 'precompute_mode'." self.precompute_mode = kwargs["precompute_mode"] self.rt_module = GemmRTGrouped(self) self.argument_type = self.rt_module.argument_type self.epilogue_type = self.rt_module.epilogue_type def device_op(self): """ Returns a new GemmOperationGrouped object that is constructed with emission type ``EmissionType.Device``. Since the device-emitted kernel does not require swapping, any swappng performed by the kernel-emitted operation is reversed. :return: operation ready for device-level code emission :rtype: GemmOperationGrouped """ A, B, C = GemmOperationBase.get_operands(self.A, self.B, self.C, self.switched) return GemmOperationGrouped( self.arch, self.tile_description, A, B, C, self.epilogue_functor, type(self.swizzling_functor), emission_type=EmissionType.Device, direct_store=self.direct_store, precompute_mode=self.precompute_mode, ) ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### class EmitGemmUniversalInstance: """Responsible for emitting a CUTLASS template definition""" def __init__( self, operation_suffix="", direct_store=False, visitor=False, ): self.operation_suffix = operation_suffix self.direct_store = direct_store self.visitor = visitor self.includes = [ "cutlass/cutlass.h", "cutlass/numeric_types.h", "cutlass/arch/arch.h", "cutlass/arch/mma.h", "cutlass/layout/matrix.h", "cutlass/gemm/device/gemm.h", "cutlass/gemm/device/gemm_universal_adapter.h", "cutlass/gemm/kernel/default_gemm_universal.h", ] if self.visitor: self.includes += [ "gemm/gemm_universal_with_visitor.h", "epilogue/epilogue_visitor_with_layernorm.h", "epilogue/epilogue_visitor_generic.h", ] if self.direct_store: self.includes.append( "cutlass/epilogue/threadblock/default_epilogue_direct_store.h" ) self.gemm_template_kernel = """ // Gemm operator ${operation_name} using ${operation_name}_base = typename cutlass::gemm::kernel::DefaultGemmUniversal< ${element_a}, ${layout_a}, ${transform_a}, ${align_a}, ${element_b}, ${layout_b}, ${transform_b}, ${align_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}, ${swizzling_functor}, ${stages}, ${math_operation} >::GemmKernel; // Define named type struct ${operation_name}${operation_suffix} : public ${operation_name}_base { }; """ self.gemm_template_device = """ // Gemm operator ${operation_name} using DeviceKernel = typename cutlass::gemm::device::GemmUniversal< // Data type and layout of operand A ${element_a}, ${layout_a}, // Data type and layout of operand B ${element_b}, ${layout_b}, // Data type and layout of operand C ${element_c}, ${layout_c}, // Data type of accumulator ${element_accumulator}, // Class of operation ${opcode_class}, // Compute capability of the target kernel ${arch}, // Threadblock tile shape cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, // Warp tile shape cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, // Instruction shape cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, // Epilogue functor ${epilogue_functor}, // Swizzling function ${swizzling_functor}, // Number of pipeline stages ${stages}, // Alignment of operands A and B ${align_a}, ${align_b}, // Type of math operation ${math_operation}, // Complex transform types of operands A and B ${transform_a}, ${transform_b} >; """ self.gemm_template_direct_store = """ // Gemm operator ${operation_name} using ${operation_name}_default = typename cutlass::gemm::kernel::DefaultGemmUniversal< ${element_a}, ${layout_a}, ${transform_a}, ${align_a}, ${element_b}, ${layout_b}, ${transform_b}, ${align_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}, ${swizzling_functor}, ${stages}, ${math_operation} >::GemmKernel; using ${operation_name}_base = cutlass::gemm::kernel::GemmUniversal< ${operation_name}_default::Mma, cutlass::epilogue::threadblock::DefaultEpilogueDirectStore< ${operation_name}_default::Epilogue >::Epilogue, ${operation_name}_default::ThreadblockSwizzle >; // Define named type struct ${operation_name}${operation_suffix} : public ${operation_name}_base { }; """ self.gemm_template_visitor = """ // Gemm operator ${operation_name} using ${operation_name}_default = typename cutlass::gemm::kernel::DefaultGemmUniversal< ${element_a}, ${layout_a}, ${transform_a}, ${align_a}, ${element_b}, ${layout_b}, ${transform_b}, ${align_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${elementwise_epilogue_functor}, ${swizzling_functor}, ${stages}, ${math_operation} >::GemmKernel; ${epilogue_visitor} using ${operation_name}_Epilogue = typename cutlass::epilogue::threadblock::EpilogueWithVisitorFromExistingEpilogue< ${operation_name}_EpilogueVisitor, typename ${operation_name}_default::Epilogue>::Epilogue; using ${operation_name}_base = cutlass::gemm::kernel::GemmUniversalwithEpilogueVisitor< ${operation_name}_default::Mma, ${operation_name}_Epilogue, ${operation_name}_default::ThreadblockSwizzle >; // Define named type struct ${operation_name}${operation_suffix} : public ${operation_name}_base { }; """ def instance_template(self): return """ ${compile_guard_start} manifest.append(new ${gemm_kind}< cutlass::gemm::device::GemmUniversalAdapter<${operation_name}> >("${operation_name}")); ${compile_guard_end} """ def emit(self, operation): threadblock_shape = operation.tile_description.threadblock_shape warp_count = operation.tile_description.warp_count warp_shape = [threadblock_shape[idx] // warp_count[idx] for idx in range(3)] instance_layout_A, instance_layout_B, instance_layout_C = \ (operation.A.layout, operation.B.layout, operation.C.layout) if operation.emission_type == EmissionType.Kernel: if self.direct_store: gemm_template = self.gemm_template_direct_store elif self.visitor: gemm_template = self.gemm_template_visitor else: gemm_template = self.gemm_template_kernel else: gemm_template = self.gemm_template_device values = { "operation_name": operation.procedural_name(), "operation_suffix": self.operation_suffix, "element_a": DataTypeTag[operation.A.element], "layout_a": LayoutTag[instance_layout_A], "element_b": DataTypeTag[operation.B.element], "layout_b": LayoutTag[instance_layout_B], "element_c": DataTypeTag[operation.C.element], "layout_c": LayoutTag[instance_layout_C], "element_accumulator": DataTypeTag[operation.accumulator_type()], "opcode_class": OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], "arch": "cutlass::arch::Sm%d" % operation.arch, "threadblock_shape_m": str(operation.tile_description.threadblock_shape[0]), "threadblock_shape_n": str(operation.tile_description.threadblock_shape[1]), "threadblock_shape_k": str(operation.tile_description.threadblock_shape[2]), "warp_shape_m": str(warp_shape[0]), "warp_shape_n": str(warp_shape[1]), "warp_shape_k": str(warp_shape[2]), "instruction_shape_m": str(operation.tile_description.math_instruction.instruction_shape[0]), "instruction_shape_n": str(operation.tile_description.math_instruction.instruction_shape[1]), "instruction_shape_k": str(operation.tile_description.math_instruction.instruction_shape[2]), "swizzling_functor": operation.swizzling_functor.tag(), "stages": str(operation.tile_description.stages), "align_a": str(operation.A.alignment), "align_b": str(operation.B.alignment), "transform_a": ComplexTransformTag[operation.A.complex_transform], "transform_b": ComplexTransformTag[operation.B.complex_transform], "math_operation": MathOperationTag[operation.tile_description.math_instruction.math_operation], } if self.visitor: values["epilogue_visitor"] = operation.epilogue_functor.emit(operation) values["elementwise_epilogue_functor"] = operation.epilogue_functor.elementwise_functor.emit() else: values["epilogue_functor"] = operation.epilogue_functor.emit() return SubstituteTemplate(gemm_template, values) class EmitGemmGroupedInstance: """Responsible for emitting a CUTLASS template definition""" def __init__(self, operation_suffix=""): self.operation_suffix = operation_suffix self.includes = [ "cutlass/cutlass.h", "cutlass/numeric_types.h", "cutlass/arch/arch.h", "cutlass/arch/mma.h", "cutlass/layout/matrix.h", "cutlass/gemm/kernel/gemm_grouped.h", "cutlass/gemm/kernel/default_gemm_grouped.h", ] self.gemm_template_kernel = """ // Gemm operator ${operation_name} using ${operation_name}_base = typename cutlass::gemm::kernel::DefaultGemmGrouped< ${element_a}, ${layout_a}, ${transform_a}, ${align_a}, ${element_b}, ${layout_b}, ${transform_b}, ${align_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}, ${swizzling_functor}, ${stages}, ${precompute_mode}, ${math_operation} >::GemmKernel; // Define named type struct ${operation_name}${operation_suffix} : public ${operation_name}_base { }; """ self.gemm_template_device = ( self.gemm_template_kernel + """ using DeviceKernel = cutlass::gemm::device::GemmGrouped<${operation_name}_base>; """ ) def instance_template(self): return """ ${compile_guard_start} manifest.append(new ${gemm_kind}< cutlass::gemm::device::GemmGrouped<${operation_name}> >("${operation_name}")); ${compile_guard_end} """ def emit(self, operation): threadblock_shape = operation.tile_description.threadblock_shape warp_count = operation.tile_description.warp_count warp_shape = [threadblock_shape[idx] // warp_count[idx] for idx in range(3)] instance_layout_A, instance_layout_B, instance_layout_C = \ (operation.A.layout, operation.B.layout, operation.C.layout) # Support built-in epilogue functors or user-defined functions epilogue_functor = operation.epilogue_functor.emit() values = { "operation_name": operation.procedural_name(), "operation_suffix": self.operation_suffix, "element_a": DataTypeTag[operation.A.element], "layout_a": LayoutTag[instance_layout_A], "element_b": DataTypeTag[operation.B.element], "layout_b": LayoutTag[instance_layout_B], "element_c": DataTypeTag[operation.C.element], "layout_c": LayoutTag[instance_layout_C], "element_accumulator": DataTypeTag[operation.accumulator_type()], "opcode_class": OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], "arch": "cutlass::arch::Sm%d" % operation.arch, "threadblock_shape_m": str(operation.tile_description.threadblock_shape[0]), "threadblock_shape_n": str(operation.tile_description.threadblock_shape[1]), "threadblock_shape_k": str(operation.tile_description.threadblock_shape[2]), "warp_shape_m": str(warp_shape[0]), "warp_shape_n": str(warp_shape[1]), "warp_shape_k": str(warp_shape[2]), "instruction_shape_m": str(operation.tile_description.math_instruction.instruction_shape[0]), "instruction_shape_n": str(operation.tile_description.math_instruction.instruction_shape[1]), "instruction_shape_k": str(operation.tile_description.math_instruction.instruction_shape[2]), "epilogue_functor": epilogue_functor, "swizzling_functor": operation.swizzling_functor.tag(), "stages": str(operation.tile_description.stages), "align_a": str(operation.A.alignment), "align_b": str(operation.B.alignment), "transform_a": ComplexTransformTag[operation.A.complex_transform], "transform_b": ComplexTransformTag[operation.B.complex_transform], "precompute_mode": SchedulerModeTag[operation.precompute_mode], "math_operation": MathOperationTag[operation.tile_description.math_instruction.math_operation], } if operation.emission_type == EmissionType.Kernel: gemm_template = self.gemm_template_kernel else: gemm_template = self.gemm_template_device return SubstituteTemplate(gemm_template, values)
cutlass-main
python/cutlass/backend/gemm_operation.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Common data types and string names for them. This file is similar to /tools/library/scripts/library.py, but uses the Pybind-bound CUTLASS data types as many keys to the dictionary. """ import enum import cutlass_bindings from cutlass import EpilogueScheduleType, KernelScheduleType, TileSchedulerType # The following block implements enum.auto() for Python 3.5 variants that don't include it such # as the default 3.5.2 on Ubuntu 16.04. # # https://codereview.stackexchange.com/questions/177309/reimplementing-pythons-enum-auto-for-compatibility try: from enum import auto as enum_auto except ImportError: __cutlass_library_auto_enum = 0 def enum_auto() -> int: global __cutlass_library_auto_enum i = __cutlass_library_auto_enum __cutlass_library_auto_enum += 1 return i ShortDataTypeNames = { cutlass_bindings.int32: "i", cutlass_bindings.float16: "h", cutlass_bindings.float32: "s", cutlass_bindings.float64: "d", cutlass_bindings.dtype.cf32: "c", cutlass_bindings.dtype.cf64: "z", } DataTypeNames = { cutlass_bindings.dtype.b1: "b1", cutlass_bindings.dtype.u4: "u4", cutlass_bindings.dtype.u8: "u8", cutlass_bindings.dtype.u16: "u16", cutlass_bindings.dtype.u32: "u32", cutlass_bindings.dtype.u64: "u64", cutlass_bindings.dtype.s4: "s4", cutlass_bindings.int8: "s8", cutlass_bindings.dtype.s16: "s16", cutlass_bindings.int32: "s32", cutlass_bindings.dtype.s64: "s64", cutlass_bindings.float16: "f16", cutlass_bindings.bfloat16: "bf16", cutlass_bindings.float32: "f32", cutlass_bindings.tfloat32: "tf32", cutlass_bindings.float64: "f64", cutlass_bindings.dtype.cf16: "cf16", cutlass_bindings.dtype.cbf16: "cbf16", cutlass_bindings.dtype.cf32: "cf32", cutlass_bindings.dtype.ctf32: "ctf32", cutlass_bindings.dtype.cf64: "cf64", cutlass_bindings.dtype.cu4: "cu4", cutlass_bindings.dtype.cu8: "cu8", cutlass_bindings.dtype.cu16: "cu16", cutlass_bindings.dtype.cu32: "cu32", cutlass_bindings.dtype.cu64: "cu64", cutlass_bindings.dtype.cs4: "cs4", cutlass_bindings.dtype.cs8: "cs8", cutlass_bindings.dtype.cs16: "cs16", cutlass_bindings.dtype.cs32: "cs32", cutlass_bindings.dtype.cs64: "cs64", } DataTypeTag = { cutlass_bindings.dtype.b1: "cutlass::uint1b_t", cutlass_bindings.dtype.u4: "cutlass::uint4b_t", cutlass_bindings.dtype.u8: "uint8_t", cutlass_bindings.dtype.u16: "uint16_t", cutlass_bindings.dtype.u32: "uint32_t", cutlass_bindings.dtype.u64: "uint64_t", cutlass_bindings.dtype.s4: "cutlass::int4b_t", cutlass_bindings.int8: "int8_t", cutlass_bindings.dtype.s16: "int16_t", cutlass_bindings.int32: "int32_t", cutlass_bindings.dtype.s64: "int64_t", cutlass_bindings.float16: "cutlass::half_t", cutlass_bindings.bfloat16: "cutlass::bfloat16_t", cutlass_bindings.float32: "float", cutlass_bindings.tfloat32: "cutlass::tfloat32_t", cutlass_bindings.float64: "double", cutlass_bindings.dtype.cf16: "cutlass::complex<cutlass::half_t>", cutlass_bindings.dtype.cbf16: "cutlass::complex<cutlass::bfloat16_t>", cutlass_bindings.dtype.cf32: "cutlass::complex<float>", cutlass_bindings.dtype.ctf32: "cutlass::complex<cutlass::tfloat32_t>", cutlass_bindings.dtype.cf64: "cutlass::complex<double>", cutlass_bindings.dtype.cu4: "cutlass::complex<cutlass::uint4b_t>", cutlass_bindings.dtype.cu8: "cutlass::complex<cutlass::uint8_t>", cutlass_bindings.dtype.cu16: "cutlass::complex<cutlass::uint16_t>", cutlass_bindings.dtype.cu32: "cutlass::complex<cutlass::uint32_t>", cutlass_bindings.dtype.cu64: "cutlass::complex<cutlass::uint64_t>", cutlass_bindings.dtype.cs4: "cutlass::complex<cutlass::int4b_t>", cutlass_bindings.dtype.cs8: "cutlass::complex<cutlass::int8_t>", cutlass_bindings.dtype.cs16: "cutlass::complex<cutlass::int16_t>", cutlass_bindings.dtype.cs32: "cutlass::complex<cutlass::int32_t>", cutlass_bindings.dtype.cs64: "cutlass::complex<cutlass::int64_t>", } DataTypeSize = { cutlass_bindings.dtype.b1: 1, cutlass_bindings.dtype.u4: 4, cutlass_bindings.dtype.u8: 8, cutlass_bindings.dtype.u16: 16, cutlass_bindings.dtype.u32: 32, cutlass_bindings.dtype.u64: 64, cutlass_bindings.dtype.s4: 4, cutlass_bindings.int8: 8, cutlass_bindings.dtype.s16: 16, cutlass_bindings.int32: 32, cutlass_bindings.dtype.s64: 64, cutlass_bindings.float16: 16, cutlass_bindings.bfloat16: 16, cutlass_bindings.float32: 32, cutlass_bindings.tfloat32: 32, cutlass_bindings.float64: 64, cutlass_bindings.dtype.cf16: 32, cutlass_bindings.dtype.cbf16: 32, cutlass_bindings.dtype.cf32: 64, cutlass_bindings.dtype.ctf32: 32, cutlass_bindings.dtype.cf64: 128, cutlass_bindings.dtype.cu4: 8, cutlass_bindings.dtype.cu8: 16, cutlass_bindings.dtype.cu16: 32, cutlass_bindings.dtype.cu32: 64, cutlass_bindings.dtype.cu64: 128, cutlass_bindings.dtype.cs4: 8, cutlass_bindings.dtype.cs8: 16, cutlass_bindings.dtype.cs16: 32, cutlass_bindings.dtype.cs32: 64, cutlass_bindings.dtype.cs64: 128, } class DataTypeSizeBytes: """ Static class to mimic the `DataTypeSize` dictionary, but with checks for whether the data type key is less than a full byte or a non-integer number of bytes. """ @staticmethod def __class_getitem__(datatype): """ Returns the number of bytes in size the data type is. Raises an exception if the data type is either less than a full byte or a non-integer number of bytes in size. :param datatype: data type to query :return: number of bytes the data type occupies :rtype: int """ bits = DataTypeSize[datatype] if bits < 8: raise Exception( "Data type {} is less than one byte in size.".format(datatype) ) elif bits % 8 != 0: raise Exception( "Data type {} is not an integer number of bytes.".format(datatype) ) return bits // 8 ComplexTransformTag = { cutlass_bindings.complex_transform.none: "cutlass::ComplexTransform::kNone", cutlass_bindings.complex_transform.conj: "cutlass::ComplexTransform::kConjugate", } RealComplexBijection = [ (cutlass_bindings.float16, cutlass_bindings.dtype.cf16), (cutlass_bindings.float32, cutlass_bindings.dtype.cf32), (cutlass_bindings.float64, cutlass_bindings.dtype.cf64), ] def is_complex(data_type): for r, c in RealComplexBijection: if data_type == c: return True return False def get_complex_from_real(real_type): for r, c in RealComplexBijection: if real_type == r: return c return cutlass_bindings.dtype.invalid def get_real_from_complex(complex_type): for r, c in RealComplexBijection: if complex_type == c: return r return cutlass_bindings.dtype.invalid class ComplexMultiplyOp(enum.Enum): multiply_add = enum_auto() gaussian = enum_auto() class MathOperation(enum.Enum): multiply_add = enum_auto() multiply_add_saturate = enum_auto() xor_popc = enum_auto() multiply_add_fast_bf16 = enum_auto() multiply_add_fast_f16 = enum_auto() multiply_add_fast_f32 = enum_auto() multiply_add_complex_fast_f32 = enum_auto() multiply_add_complex = enum_auto() multiply_add_complex_gaussian = enum_auto() MathOperationNames = { MathOperation.multiply_add: "multiply_add", MathOperation.multiply_add_saturate: "multiply_add_saturate", MathOperation.xor_popc: "xor_popc", MathOperation.multiply_add_fast_bf16: "multiply_add_fast_bf16", MathOperation.multiply_add_fast_f16: "multiply_add_fast_f16", MathOperation.multiply_add_fast_f32: "multiply_add_fast_f32", MathOperation.multiply_add_complex_fast_f32: "multiply_add_complex_fast_f32", MathOperation.multiply_add_complex: "multiply_add_complex", MathOperation.multiply_add_complex_gaussian: "multiply_add_complex_gaussian", } MathOperationTag = { MathOperation.multiply_add: "cutlass::arch::OpMultiplyAdd", MathOperation.multiply_add_saturate: "cutlass::arch::OpMultiplyAddSaturate", MathOperation.xor_popc: "cutlass::arch::OpXorPopc", MathOperation.multiply_add_fast_bf16: "cutlass::arch::OpMultiplyAddFastBF16", MathOperation.multiply_add_fast_f16: "cutlass::arch::OpMultiplyAddFastF16", MathOperation.multiply_add_fast_f32: "cutlass::arch::OpMultiplyAddFastF32", MathOperation.multiply_add_complex_fast_f32: "cutlass::arch::OpMultiplyAddComplexFastF32", MathOperation.multiply_add_complex: "cutlass::arch::OpMultiplyAddComplex", MathOperation.multiply_add_complex_gaussian: "cutlass::arch::OpMultiplyAddGaussianComplex", } LayoutTag = { cutlass_bindings.ColumnMajor: "cutlass::layout::ColumnMajor", cutlass_bindings.RowMajor: "cutlass::layout::RowMajor", cutlass_bindings.layout.ColumnMajorInterleaved2: "cutlass::layout::ColumnMajorInterleaved<2>", cutlass_bindings.layout.RowMajorInterleaved2: "cutlass::layout::RowMajorInterleaved<2>", cutlass_bindings.ColumnMajorInterleaved32: "cutlass::layout::ColumnMajorInterleaved<32>", cutlass_bindings.RowMajorInterleaved32: "cutlass::layout::RowMajorInterleaved<32>", cutlass_bindings.layout.ColumnMajorInterleaved64: "cutlass::layout::ColumnMajorInterleaved<64>", cutlass_bindings.layout.RowMajorInterleaved64: "cutlass::layout::RowMajorInterleaved<64>", cutlass_bindings.TensorNHWC: "cutlass::layout::TensorNHWC", cutlass_bindings.layout.TensorNDHWC: "cutlass::layout::TensorNDHWC", cutlass_bindings.layout.TensorNCHW: "cutlass::layout::TensorNCHW", cutlass_bindings.layout.TensorNGHWC: "cutlass::layout::TensorNGHWC", cutlass_bindings.TensorNC32HW32: "cutlass::layout::TensorNCxHWx<32>", cutlass_bindings.TensorC32RSK32: "cutlass::layout::TensorCxRSKx<32>", cutlass_bindings.layout.TensorNC64HW64: "cutlass::layout::TensorNCxHWx<64>", cutlass_bindings.layout.TensorC64RSK64: "cutlass::layout::TensorCxRSKx<64>", } TransposedLayout = { cutlass_bindings.ColumnMajor: cutlass_bindings.RowMajor, cutlass_bindings.RowMajor: cutlass_bindings.ColumnMajor, cutlass_bindings.layout.ColumnMajorInterleaved2: cutlass_bindings.layout.RowMajorInterleaved2, cutlass_bindings.layout.RowMajorInterleaved2: cutlass_bindings.layout.ColumnMajorInterleaved2, cutlass_bindings.ColumnMajorInterleaved32: cutlass_bindings.RowMajorInterleaved32, cutlass_bindings.RowMajorInterleaved32: cutlass_bindings.ColumnMajorInterleaved32, cutlass_bindings.layout.ColumnMajorInterleaved64: cutlass_bindings.layout.RowMajorInterleaved64, cutlass_bindings.layout.RowMajorInterleaved64: cutlass_bindings.layout.ColumnMajorInterleaved64, cutlass_bindings.TensorNHWC: cutlass_bindings.TensorNHWC, } ShortLayoutTypeNames = { cutlass_bindings.ColumnMajor: "n", cutlass_bindings.layout.ColumnMajorInterleaved2: "n2", cutlass_bindings.ColumnMajorInterleaved32: "n32", cutlass_bindings.layout.ColumnMajorInterleaved64: "n64", cutlass_bindings.RowMajor: "t", cutlass_bindings.layout.RowMajorInterleaved2: "t2", cutlass_bindings.RowMajorInterleaved32: "t32", cutlass_bindings.layout.RowMajorInterleaved64: "t64", cutlass_bindings.TensorNHWC: "nhwc", cutlass_bindings.layout.TensorNDHWC: "ndhwc", cutlass_bindings.layout.TensorNCHW: "nchw", cutlass_bindings.layout.TensorNGHWC: "nghwc", cutlass_bindings.TensorNC32HW32: "nc32hw32", cutlass_bindings.layout.TensorNC64HW64: "nc64hw64", cutlass_bindings.TensorC32RSK32: "c32rsk32", cutlass_bindings.layout.TensorC64RSK64: "c64rsk64", } ShortComplexLayoutNames = { (cutlass_bindings.ColumnMajor, cutlass_bindings.complex_transform.none): "n", (cutlass_bindings.ColumnMajor, cutlass_bindings.complex_transform.conj): "c", (cutlass_bindings.RowMajor, cutlass_bindings.complex_transform.none): "t", (cutlass_bindings.RowMajor, cutlass_bindings.complex_transform.conj): "h", } OpcodeClassNames = { cutlass_bindings.OpClass.Simt: "simt", cutlass_bindings.OpClass.TensorOp: "tensorop", cutlass_bindings.OpClass.WmmaTensorOp: "wmma_tensorop", cutlass_bindings.OpClass.SparseTensorOp: "sptensorop", } OpcodeClassTag = { cutlass_bindings.OpClass.Simt: "cutlass::arch::OpClassSimt", cutlass_bindings.OpClass.TensorOp: "cutlass::arch::OpClassTensorOp", cutlass_bindings.OpClass.WmmaTensorOp: "cutlass::arch::OpClassWmmaTensorOp", cutlass_bindings.OpClass.SparseTensorOp: "cutlass::arch::OpClassSparseTensorOp", } class OperationKind(enum.Enum): Gemm = enum_auto() Conv2d = enum_auto() Conv3d = enum_auto() OperationKindNames = { OperationKind.Gemm: "gemm", OperationKind.Conv2d: "conv2d", OperationKind.Conv3d: "conv3d", } ArchitectureNames = { 50: "maxwell", 60: "pascal", 61: "pascal", 70: "volta", 75: "turing", 80: "ampere", 90: "hopper", } SharedMemPerCC = { 70: 96 << 10, # 96KB of SMEM 72: 96 << 10, # 96KB of SMEM 75: 64 << 10, # 64KB of SMEM 80: 160 << 10, # 164KB of SMEM - 4KB reserved for the driver 86: 100 << 10, # 100KB of SMEM 87: 160 << 10, # 164KB of SMEM - 4KB reserved for the driver 89: 100 << 10, # 100KB of SMEM 90: 227 << 10, # 228KB of SMEM - 1KB reserved for the driver } class GemmKind(enum.Enum): Gemm = enum_auto() Sparse = enum_auto() Universal = enum_auto() PlanarComplex = enum_auto() PlanarComplexArray = enum_auto() Grouped = enum_auto() GemmKindNames = { GemmKind.Gemm: "gemm", GemmKind.Sparse: "spgemm", GemmKind.Universal: "gemm", GemmKind.PlanarComplex: "gemm_planar_complex", GemmKind.PlanarComplexArray: "gemm_planar_complex_array", GemmKind.Grouped: "gemm_grouped", } class SwizzlingFunctor(enum.Enum): Identity1 = enum_auto() Identity2 = enum_auto() Identity4 = enum_auto() Identity8 = enum_auto() Horizontal = enum_auto() BatchedIdentity1 = enum_auto() StridedDgradIdentity1 = enum_auto() StridedDgradIdentity4 = enum_auto() StridedDgradHorizontal = enum_auto() SwizzlingFunctorTag = { cutlass_bindings.IdentitySwizzle1: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>", SwizzlingFunctor.Identity2: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<2>", SwizzlingFunctor.Identity4: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<4>", SwizzlingFunctor.Identity8: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<8>", SwizzlingFunctor.Horizontal: "cutlass::gemm::threadblock::GemmHorizontalThreadblockSwizzle", SwizzlingFunctor.BatchedIdentity1: "cutlass::gemm::threadblock::GemmBatchedIdentityThreadblockSwizzle", SwizzlingFunctor.StridedDgradIdentity1: "cutlass::conv::threadblock::StridedDgradIdentityThreadblockSwizzle<1>", SwizzlingFunctor.StridedDgradIdentity4: "cutlass::conv::threadblock::StridedDgradIdentityThreadblockSwizzle<4>", SwizzlingFunctor.StridedDgradHorizontal: "cutlass::conv::threadblock::StridedDgradHorizontalThreadblockSwizzle", } class SchedulerMode(enum.Enum): Device = (enum_auto(),) Host = enum_auto() SchedulerModeTag = { SchedulerMode.Device: "cutlass::gemm::kernel::GroupScheduleMode::kDeviceOnly", SchedulerMode.Host: "cutlass::gemm::kernel::GroupScheduleMode::kHostPrecompute", } ShortSchedulerModeNames = {SchedulerMode.Device: "Device", SchedulerMode.Host: "Host"} ConvKindTag = { cutlass_bindings.conv.Operator.fprop: "cutlass::conv::Operator::kFprop", cutlass_bindings.conv.Operator.dgrad: "cutlass::conv::Operator::kDgrad", cutlass_bindings.conv.Operator.wgrad: "cutlass::conv::Operator::kWgrad", } ConvKindNames = { cutlass_bindings.conv.Operator.fprop: "fprop", cutlass_bindings.conv.Operator.dgrad: "dgrad", cutlass_bindings.conv.Operator.wgrad: "wgrad", } IteratorAlgorithmTag = { cutlass_bindings.conv.IteratorAlgorithm.analytic: "cutlass::conv::IteratorAlgorithm::kAnalytic", cutlass_bindings.conv.IteratorAlgorithm.optimized: "cutlass::conv::IteratorAlgorithm::kOptimized", cutlass_bindings.conv.IteratorAlgorithm.fixed_channels: "cutlass::conv::IteratorAlgorithm::kFixedChannels", cutlass_bindings.conv.IteratorAlgorithm.few_channels: "cutlass::conv::IteratorAlgorithm::kFewChannels", } IteratorAlgorithmNames = { cutlass_bindings.conv.IteratorAlgorithm.analytic: "analytic", cutlass_bindings.conv.IteratorAlgorithm.optimized: "optimized", cutlass_bindings.conv.IteratorAlgorithm.fixed_channels: "fixed_channels", cutlass_bindings.conv.IteratorAlgorithm.few_channels: "few_channels", } class StrideSupport(enum.Enum): Strided = enum_auto() Unity = enum_auto() StrideSupportTag = { StrideSupport.Strided: "cutlass::conv::StrideSupport::kStrided", StrideSupport.Unity: "cutlass::conv::StrideSupport::kUnity", } StrideSupportNames = { StrideSupport.Strided: "", StrideSupport.Unity: "unity_stride", } class ConvMode(enum.Enum): CrossCorrelation = enum_auto() Convolution = enum_auto() ConvModeTag = { ConvMode.CrossCorrelation: "cutlass::conv::Mode::kCrossCorrelation", ConvMode.Convolution: "cutlass::conv::Mode::kConvolution", } class MathInstruction: """ Description of a the lowest-level matrix-multiply-accumulate operation to be used in a kernel """ def __init__( self, instruction_shape, element_a, element_b, element_accumulator, opcode_class=cutlass_bindings.OpClass.Simt, math_operation=MathOperation.multiply_add, ): """ :param instruction_shape: size of the [M, N, K] dimensions of the instruction :type instruction_shape: list or tuple :param element_a: data type of operand A :param element_b: data type of operand B :param element_accumulator: data type used in accumulation :param opcode_class: higher-level class of the instruction (e.g., SIMT or Tensor Core) :type opcode_class: cutlass_bindings.OpClass :param math_operation: the type of low-level operation to be performed (e.g., multiply accumulate) :type math_operation: MathOperation """ self.instruction_shape = instruction_shape self.element_a = element_a self.element_b = element_b self.element_accumulator = element_accumulator self.opcode_class = opcode_class self.math_operation = math_operation class TileDescription: """ Description of a tile of computation to be performed in the kernel, encompassing threadblock, cluster, and warp shapes, stage count, and math instruction specification """ def __init__( self, threadblock_shape, stages, warp_count, math_instruction, cluster_shape=[1, 1, 1], kernel_schedule: KernelScheduleType = None, epilogue_schedule: EpilogueScheduleType = None, tile_scheduler: TileSchedulerType = None, ): """ :param threadblock_shape: shape of a threadblock tyle :type threadblock_shape: list or tuple :param stages: number of pipline stages in the operation. For SM90 kernels, this can be set to `None` and the maximum number of stages that can be supported for an operation on a given architecture will be computed at a later time :type stages: int or None :param warp_count: number of warps in each [M, N, K] dimension of a threadblock tile :type warp_count: list, tuple, or None :param math_instruction: specification of the instruction type and shape to be performed and the types of its operands :type math_instruction: MathInstruction :param cluster_shape: number of threadblocks in the [X, Y, Z] dimensions of a threadblock cluster :param kernel_schedule: type of kernel schedule to use (only available for SM90+) :type kernel_schedule: cutlass.KernelScheduleType :param epilogue_schedule: type of epilogue schedule to use (only available for SM90+) :type epilogue_schedule: cutlass.EpilogueScheduleType :param tile_scheduler: type of tile scheduler to use (only available for SM90+) :type tile_scheduler: cutlass.TileSchedulerType """ if ((kernel_schedule is None and epilogue_schedule is not None) or (kernel_schedule is not None and epilogue_schedule is None)): raise Exception("Kernel and epilogue schedule must either both be Auto or neither be Auto.") self.threadblock_shape = threadblock_shape self.cluster_shape = cluster_shape self.kernel_schedule = kernel_schedule self.epilogue_schedule = epilogue_schedule self.tile_scheduler = tile_scheduler self.stages = stages self.math_instruction = math_instruction self.instruction_shape = math_instruction.instruction_shape # Number of warps along x, y, z directions self.warp_count = warp_count def clone_and_update(self, td: dict): attrs = { "cluster_shape": None, "threadblock_shape": None, "warp_count": None, "stages": None, "instruction_shape": None, "kernel_schedule": None, "epilogue_schedule": None, "tile_scheduler": None } for key in attrs.keys(): if key in td.keys(): attrs[key] = td[key] else: attrs[key] = getattr(self, key) mi = MathInstruction( attrs["instruction_shape"], self.math_instruction.element_a, self.math_instruction.element_b, self.math_instruction.element_accumulator, self.math_instruction.opcode_class, self.math_instruction.math_operation ) return TileDescription( attrs["threadblock_shape"], attrs["stages"], attrs["warp_count"], mi, attrs["cluster_shape"], attrs["kernel_schedule"], attrs["epilogue_schedule"] ) @property def num_threads(self): """ Returns the number of threads in the threadblock :return: number of threads in the threadblock :rtype: int or None (if warp count is None) """ if self.warp_count is not None: threads = 32 for cnt in self.warp_count: threads *= cnt return threads return None def procedural_name(self): """ Returns a name identifying the tile description :return: name identifying the tile description :rtype: int """ emit_stages = 0 if self.stages is None else self.stages name = "%dx%dx%d_%dx%d_%dx%d" % ( self.cluster_shape[0], self.cluster_shape[1], self.cluster_shape[2], self.threadblock_shape[0], self.threadblock_shape[1], self.threadblock_shape[2], emit_stages ) return name def __str__(self): """ Returns a string with containing each of the tile description's values :return: contents of tile description :rtype: str """ if self.kernel_schedule is not None: kschedule = self.kernel_schedule else: kschedule = KernelScheduleType.ScheduleAuto if self.epilogue_schedule is not None: eschedule = self.epilogue_schedule else: eschedule = EpilogueScheduleType.ScheduleAuto if self.tile_scheduler is not None: tschedule = self.tile_scheduler.name else: tschedule = "None" return f""" {{ ClusterShape: {self.cluster_shape} ThreadblockShape: {self.threadblock_shape} WarpCount: {self.warp_count} Stages: {self.stages if self.stages is not None else 'Auto'} InstructionShape: {self.math_instruction.instruction_shape} Kernel schedule: {kschedule.name} Epilogue schedule: {kschedule.name} TileScheduler: {tschedule} }}""" class TensorDescription: def __init__(self, element, layout, alignment=1, complex_transform=cutlass_bindings.complex_transform.none): self.element = element self.layout = layout self.alignment = min(128 // DataTypeSize[self.element], alignment) self.complex_transform = complex_transform def CalculateSmemUsagePerStage(operation): """ Returns the amount of shared memory in bytes consumed in a single stage of a kernel. :param op: operation for which the maximum stages should be computed. If stages are set via the `op.tile_description.stages` parameter, this setting is ignored in the present calculation :type op: cutlass.backend.Operation :return: number of bytes of shared memory consumed by a single stage :rtype: int """ m, n, k = operation.tile_description.threadblock_shape if operation.operation_kind == OperationKind.Gemm: stage_barrier_bytes = 32 return ( (DataTypeSize[operation.A.element] * m * k // 8) + (DataTypeSize[operation.B.element] * k * n // 8) + stage_barrier_bytes ) else: raise Exception("Unsupported operation kind {}.".format(operation.operation_kind)) def CalculateSmemUsage(operation): """ Returns the amount of shared memory in bytes consumed by a kernel. :param op: operation for which the maximum stages should be computed. If stages are set via the `op.tile_description.stages` parameter, this setting is ignored in the present calculation :type op: cutlass.backend.Operation :return: int """ return operation.tile_description.stages * CalculateSmemUsagePerStage(operation) class ApiVersion(enum.Enum): """ Differentiate between CUTLASS 2.x and 3.x API versions """ v2x = enum_auto() v3x = enum_auto() def api_version(arch, opclass, datatype): """ Returns whether the architecture, opcode class, and datatype in question require using CUTLASS 2.x or 3.x for code emission. :param arch: compute capability of device on which to run :type arch: int :param opclass: class of the operation being performed :type opclass: cutlass_bindings.OpClass :param datatype: data type to be used in operation (assumes that ElementA and ElementB are the same) :return: API version to be used in code emission :rtype: ApiVersion """ if (arch >= 90 and opclass == cutlass_bindings.OpClass.TensorOp and (datatype != cutlass_bindings.float64)): return ApiVersion.v3x else: return ApiVersion.v2x class EmissionType(enum.Enum): """ Tags for whether to emit a kernel- or device-level operation """ Kernel = enum_auto() Device = enum_auto()
cutlass-main
python/cutlass/backend/library.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ GemmOperation = "Union[GemmOperationUniversal, GemmOperationGrouped]" Tensor = "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor, cp.ndarray]"
cutlass-main
python/cutlass/backend/type_hint.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ from typing import Union import ctypes from cuda import cuda, cudart import cutlass_bindings import numpy as np from cutlass.backend.c_types import MatrixCoord_, TensorRef2D_, get_reduction_params from cutlass.backend.frontend import NumpyFrontend, TorchFrontend from cutlass.backend.library import ( DataTypeNames, DataTypeSize, DataTypeTag, TensorDescription, ) from cutlass.backend.operation import ExecutableOperation, LaunchConfiguration from cutlass.backend.utils.software import CheckPackages, SubstituteTemplate if CheckPackages().check_torch(): import torch class ReductionOperation: pass class ReductionArguments: """ Arguments of reduction """ def __init__( self, operation: ReductionOperation, problem_size: "list[int]", partitions: int, workspace: cuda.CUdeviceptr, destination: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]", source: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]", **kwargs, ) -> None: # tensor_C can be interpreted as the bias with bias=True in keyword args if "bias" in kwargs.keys(): self.bias = kwargs["bias"] else: # by default, tensor_C is not bias self.bias = False self.operation = operation #: pointer to the workspace self.ptr_workspace = workspace #: number of split-k partitions self.partitions = partitions if isinstance(destination, np.ndarray): self.host_D = destination self.destination_buffer = NumpyFrontend.argument(destination, True) self.source_buffer = NumpyFrontend.argument(source, False) self.ptr_destination = cuda.CUdeviceptr(self.destination_buffer.ptr) self.ptr_source = cuda.CUdeviceptr(self.source_buffer.ptr) elif CheckPackages().check_torch() and isinstance(destination, torch.Tensor): self.ptr_destination = TorchFrontend.argument(destination) self.ptr_source = TorchFrontend.argument(source) elif isinstance(destination, cuda.CUdeviceptr): self.ptr_destination = destination self.ptr_source = source else: raise TypeError("unknown Type") self.problem_size = MatrixCoord_(problem_size[0], problem_size[1]) self.partition_stride = ( problem_size[0] * problem_size[1] * DataTypeSize[operation.C.element] // 8 ) if "output_op" in kwargs.keys(): self.output_op = kwargs["output_op"] else: self.output_op = self.operation.epilogue_type(1.0, 0.0) # get arguments self.get_arguments() @staticmethod def get_tensor_ref( extent: "tuple[int]", device_ptr: cuda.CUdeviceptr, layout: cutlass_bindings.layout, ): if layout == cutlass_bindings.RowMajor: return TensorRef2D_(int(device_ptr), extent[1]) else: raise ValueError("unknown layout type") def get_arguments(self): ref_workspace = ReductionArguments.get_tensor_ref( extent=[ self.problem_size.row, self.problem_size.column, ], device_ptr=self.ptr_workspace, layout=cutlass_bindings.RowMajor, ) if self.bias: ref_source = ReductionArguments.get_tensor_ref( extent=[0, 0], device_ptr=self.ptr_source, layout=cutlass_bindings.RowMajor, ) else: ref_source = ReductionArguments.get_tensor_ref( extent=[ self.problem_size.row, self.problem_size.column, ], device_ptr=self.ptr_source, layout=cutlass_bindings.RowMajor, ) ref_destination = ReductionArguments.get_tensor_ref( extent=[ self.problem_size.row, self.problem_size.column, ], device_ptr=self.ptr_destination, layout=cutlass_bindings.RowMajor, ) self.c_arguments = self.operation.argument_type( self.problem_size, self.partitions, self.partition_stride, ref_workspace, ref_destination, ref_source, self.output_op, ) params_ = self.operation.rt_module.get_args(ctypes.byref(self.c_arguments)) self.host_workspace = bytearray(params_.contents) def sync(self): (err,) = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) if hasattr(self, "host_D"): (err,) = cuda.cuMemcpyDtoH( self.host_D, self.ptr_destination, self.host_D.size * self.host_D.itemsize, ) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) def free(self): if hasattr(self, "destination_buffer"): del self.destination_buffer if hasattr(self, "source_buffer"): del self.source_buffer class ReductionRT(ExecutableOperation): """ ReductionRT manages the CUTLASS runtime components for reduction """ KernelTemplate = r""" extern "C" __global__ void ${operation_name}(${operation_name}${operation_suffix}::Params params) { // Dynamic shared memory base pointer extern __shared__ int SharedStorageBase[]; // Declare pointer to dynamic shared memory. ${operation_name}${operation_suffix}::SharedStorage *shared_storage = reinterpret_cast<${operation_name}${operation_suffix}::SharedStorage *>(SharedStorageBase); ${operation_name}${operation_suffix} op; op(params, *shared_storage); } """ HostTemplate = r""" extern "C" { // Get the size of params in bytes int ${operation_name}_get_param_size(){ return sizeof(${operation_name}${operation_suffix}::Params); } // Get the size of dynamic shared memory in bytes int ${operation_name}_shared_memory_size() { return int(sizeof(${operation_name}${operation_suffix}::SharedStorage)); } // Get the params as byte array char* ${operation_name}_get_params(${operation_name}${operation_suffix}::Params* params){ char *bytes = ((char*)(params)); char *output = new char[sizeof(${operation_name}${operation_suffix}::Params)]; for (unsigned int i = 0; i < sizeof(${operation_name}${operation_suffix}::Params); i ++) output[i] = bytes[i]; return output; } } """ def __init__(self, operation: ReductionOperation): super().__init__(operation) self.operation: ReductionOperation = operation self.emitter = EmitReductionInstance("_type") self.elements_per_access = self.operation.count ( self.argument_type, self.epilogue_type, ) = get_reduction_params(operation.epilogue_functor) self.argtype = [ctypes.POINTER(self.argument_type)] def emit(self): return self.emitter.emit(self.operation) def plan(self, arguments: ReductionArguments): block_shape = [ self.operation.shape.column() // self.elements_per_access, self.operation.shape.row(), 1, ] grid_shape = [ (arguments.problem_size.row + self.operation.shape.row() - 1) // self.operation.shape.row(), (arguments.problem_size.column + self.operation.shape.column() - 1) // self.operation.shape.column(), 1, ] return LaunchConfiguration( grid_shape, block_shape, self.shared_memory_capacity, ) def initialize(self): (err,) = cuda.cuFuncSetAttribute( self.kernel, attrib=cuda.CUfunction_attribute.CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, value=self.shared_memory_capacity, ) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("Cuda Error: {}".format(err)) class ReductionOperation: """ CUTLASS Reduction Operation shape: shape of CTA outputop: output operator r """ def __init__( self, shape: cutlass_bindings.MatrixCoord, C: TensorDescription, element_accumulator, element_workspace=None, element_compute=None, epilogue_functor=None, count: int = 1, partitions_per_stage: int = 4, ) -> None: """Constructor""" self.shape = shape #: epilogue functor (default: LinearCombination) self.epilogue_functor = epilogue_functor #: datatype of accumulator self.element_accumulator = element_accumulator if element_workspace is None: #: datatype of workspace self.element_workspace = element_accumulator else: #: datatype of workspace self.element_workspace = element_workspace if element_compute is None: #: datatype of workspace self.element_compute = element_accumulator else: #: datatype of workspace self.element_compute = element_compute #: datatype of output self.element_output = C.element #: operand C self.C: TensorDescription = C #: reduce op processing size self.count: int = count #: number of partitions to reduce per stage self.partitions_per_stage: int = partitions_per_stage self.rt_module: ReductionRT = ReductionRT(self) self.argument_type = self.rt_module.argument_type self.epilogue_type = self.rt_module.epilogue_type # def extended_name(self): extend_name = "${element_workspace}_${element_accumulator}_${element_compute}_${element_output}" return SubstituteTemplate( extend_name, { "element_workspace": DataTypeNames[self.element_workspace], "element_accumulator": DataTypeNames[self.element_accumulator], "element_compute": DataTypeNames[self.element_compute], "element_output": DataTypeNames[self.element_output], }, ) # def configuration_name(self): """The full procedural name indicates architecture, extended name, tile size""" configuration_name = "cutlass_reduce_split_k_${extended_name}_${threadblock}" threadblock = "%dx%d" % ( self.shape.row(), self.shape.column(), ) return SubstituteTemplate( configuration_name, { "extended_name": self.extended_name(), "threadblock": threadblock, }, ) # def procedural_name(self): """The full procedural name indicates architeture, extended name, tile size""" return self.configuration_name() def run(self, arguments: ReductionArguments) -> cuda.CUresult: """ Configure and launch the cuda kernel with input arguments """ # get launch configuration launch_config = self.rt_module.plan(arguments) # get the host and device workspace host_workspace = arguments.host_workspace device_workspace = None # launch the kernel err = self.rt_module.run( host_workspace, device_workspace, launch_config, ) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) return err class EmitReductionInstance: def __init__(self, operation_suffix="") -> None: self.operation_suffix = operation_suffix self.includes = [ "cutlass/cutlass.h", "cutlass/numeric_types.h", "cutlass/arch/arch.h", "cutlass/arch/mma.h", "cutlass/layout/matrix.h", "cutlass/gemm/device/gemm.h", "cutlass/gemm/device/gemm_universal_adapter.h", "cutlass/gemm/kernel/default_gemm_universal.h", "cutlass/reduction/kernel/reduce_split_k.h", "cutlass/reduction/thread/reduction_operators.h", ] self.template = """ // Reduction kernel instance using ${operation_name}_base = typename cutlass::reduction::kernel::ReduceSplitK< cutlass::MatrixShape<${shape_row}, ${shape_column}>, ${epilogue_functor}, cutlass::reduction::thread::ReduceAdd< ${element_accumulator}, ${element_output}, ${count}>, ${partition_per_stage}>; struct ${operation_name}${operation_suffix}: public ${operation_name}_base { }; """ def emit(self, operation: ReductionOperation): epilogue_vector_length = int( min( operation.C.alignment * DataTypeSize[operation.C.element], 128, ) / DataTypeSize[operation.C.element] ) values = { "operation_name": operation.configuration_name(), "operation_suffix": self.operation_suffix, "shape_row": str(operation.shape.row()), "shape_column": str(operation.shape.column()), "epilogue_functor": operation.epilogue_functor.emit(), "element_output": DataTypeTag[operation.element_output], "epilogue_vector_length": str(epilogue_vector_length), "element_accumulator": DataTypeTag[operation.element_accumulator], "element_compute": DataTypeTag[operation.element_compute], "element_workspace": DataTypeTag[operation.element_workspace], "count": str(operation.count), "partition_per_stage": str(operation.partitions_per_stage), } return SubstituteTemplate(self.template, values)
cutlass-main
python/cutlass/backend/reduction_operation.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from typing import Union from cuda import cuda, cudart import numpy as np from cutlass.backend.frontend import CupyFrontend, NumpyFrontend, TorchFrontend from cutlass.backend.utils.software import CheckPackages torch_available = CheckPackages().check_torch() if torch_available: import torch cupy_available = CheckPackages().check_cupy() if cupy_available: import cupy as cp class ArgumentBase: """ Base class for operation arguments """ def __init__( self, A: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor, cp.ndarray]", B: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor, cp.ndarray]", C: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor, cp.ndarray]", D: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor, cp.ndarray]", **kwargs, ) -> None: # tensor_C can be interpreted as the bias with bias=True in keyword args if "bias" in kwargs.keys(): self.bias = kwargs["bias"] else: # by default, tensor_C is not bias self.bias = False # preprocessing input tensors if isinstance(A, np.ndarray): self.host_D = D self.buffer_A = NumpyFrontend.argument(A, False) self.buffer_B = NumpyFrontend.argument(B, False) self.buffer_C = NumpyFrontend.argument(C, False) self.buffer_D = NumpyFrontend.argument(D, True) self.ptr_A = self.buffer_A.ptr self.ptr_B = self.buffer_B.ptr self.ptr_C = self.buffer_C.ptr self.ptr_D = self.buffer_D.ptr # number of elements in C self.tensor_c_numel = C.size elif torch_available and isinstance(A, torch.Tensor): self.ptr_A = TorchFrontend.argument(A) self.ptr_B = TorchFrontend.argument(B) self.ptr_C = TorchFrontend.argument(C) self.ptr_D = TorchFrontend.argument(D) # number of elements in C self.tensor_c_numel = C.numel() elif isinstance(A, cuda.CUdeviceptr): self.ptr_A = A self.ptr_B = B self.ptr_C = C self.ptr_D = D elif cupy_available and isinstance(A, cp.ndarray): self.ptr_A = CupyFrontend.argument(A) self.ptr_B = CupyFrontend.argument(B) self.ptr_C = CupyFrontend.argument(C) self.ptr_D = CupyFrontend.argument(D) # number of elements in C self.tensor_c_numel = C.size else: raise TypeError("Unsupported Frontend. Only support numpy and torch") def sync(self, stream_sync=True): if stream_sync: (err,) = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) if hasattr(self, "host_D"): (err,) = cuda.cuMemcpyDtoH( self.host_D, self.ptr_D, self.host_D.size * self.host_D.itemsize, ) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err))
cutlass-main
python/cutlass/backend/arguments.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ from cuda import cuda import numpy as np from cutlass.backend.memory_manager import device_mem_alloc, todevice from cutlass.backend.utils.software import CheckPackages if CheckPackages().check_torch(): import torch if CheckPackages().check_cupy(): import cupy as cp class NumpyFrontend: """ Frontend node for numpy """ @staticmethod def argument(np_tensor: "np.ndarray", is_output: "bool") -> cuda.CUdeviceptr: """Convert the input numpy tensor to CUDA device pointer :param np_tensor: input numpy nd array :param is_output: whether the tensor is output :return: CUDA device pointer """ # copy the data to device if is_output: return device_mem_alloc(np_tensor.size * np_tensor.itemsize) else: return todevice(np_tensor) class TorchFrontend: """ Frontend node for torch """ @staticmethod def argument(torch_tensor: "torch.Tensor") -> cuda.CUdeviceptr: """Convert the input torch tensor to CUDA device pointer :param torch_tensor: input torch tensor :param is_output: whether the tensor is output :return: CUDA device pointer """ # check the device of torch_tensor if not torch_tensor.is_cuda: torch_tensor = torch_tensor.to("cuda") return cuda.CUdeviceptr(torch_tensor.data_ptr()) class CupyFrontend: """ Frontend node for cupy """ @staticmethod def argument(cupy_ndarray: "cp.ndarray"): return cuda.CUdeviceptr(int(cupy_ndarray.data.ptr))
cutlass-main
python/cutlass/backend/frontend.py
# module-wide variables import os from cutlass.backend.arguments import * from cutlass.backend.c_types import * from cutlass.backend.compiler import ArtifactManager from cutlass.backend.conv2d_operation import * from cutlass.backend.epilogue import * from cutlass.backend.frontend import * from cutlass.backend.gemm_operation import * from cutlass.backend.library import * from cutlass.backend.memory_manager import PoolMemoryManager from cutlass.backend.operation import * from cutlass.backend.parser import * from cutlass.backend.reduction_operation import * from cutlass.backend.tensor_ref import * from cutlass.backend.type_hint import * from cutlass.backend.utils import * from cutlass.backend.utils.device import device_cc from cutlass.backend.utils.software import ( CheckPackages, SubstituteTemplate, device_sm_count, get_memory_pool, ) compiler = ArtifactManager()
cutlass-main
python/cutlass/backend/__init__.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ # from typeguard import typechecked import ctypes from typing import Union from cuda import cuda import cutlass_bindings import numpy as np from cutlass.backend.arguments import ArgumentBase from cutlass.backend.c_types import Conv2DProblemSize, TensorRef_, get_conv2d_arguments from cutlass.backend.library import ( EmissionType, ConvKindNames, ConvKindTag, DataTypeNames, DataTypeSize, DataTypeTag, IteratorAlgorithmNames, IteratorAlgorithmTag, LayoutTag, MathOperation, MathOperationTag, OpcodeClassNames, OpcodeClassTag, OperationKind, ShortDataTypeNames, ShortLayoutTypeNames, StrideSupport, StrideSupportTag, TensorDescription, TileDescription, get_complex_from_real, ) from cutlass.backend.memory_manager import device_mem_alloc from cutlass.backend.operation import ExecutableOperation, LaunchConfiguration from cutlass.backend.tensor_ref import TensorRef from cutlass.backend.utils.software import CheckPackages, SubstituteTemplate if CheckPackages().check_torch(): import torch # @typechecked class Conv2dArguments(ArgumentBase): """ Argument wrapper for Conv2d. It encodes problem information and user-provide tensors into the kernel's argument. :param operation: the Conv2d operation to take the argument :type operation: :class:`cutlass.backend.Conv2dOperation` :param problem_size: the Conv2d problem size :type problem_size: :class:`cutlass_bindings.conv.Conv2dProblemSize` :param A: tensor A :type A: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param B: tensor B :type B: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param C: tensor C :type C: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param D: tensor D :type D: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param split_k_mode: conv2d split K mode, defaults to cutlass_bindings.conv.SplitKMode.Serial :type split_k_mode: cutlass_bindings.conv.SplitKMode, optional :param output_op: output operator, optional :type output_op: :class:`cutlass.backend.LinearCombinationFunctorArguments` """ def __init__( self, operation: "Conv2dOperation", problem_size: "cutlass_bindings.conv.Conv2dProblemSize", A: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]", B: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]", C: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]", D: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]", split_k_mode: "cutlass_bindings.conv.SplitKMode" = cutlass_bindings.conv.SplitKMode.Serial, **kwargs, ) -> None: self.operation = operation #: convolution kind self.conv_kind: cutlass_bindings.conv.Operator = operation.conv_kind self.layout_A: cutlass_bindings.layout = operation.A.layout self.layout_B: cutlass_bindings.layout = operation.B.layout self.layout_C: cutlass_bindings.layout = operation.C.layout self.element_A = operation.A.element self.element_B = operation.B.element self.element_C = operation.C.element if self.layout_C == cutlass_bindings.TensorNC32HW32: B = self.reorder_tensor_B(B, problem_size) super().__init__(A, B, C, D, **kwargs) # preprocessing output ops if "split_k_slices" in kwargs.keys() and kwargs["split_k_slices"] > 1: self.split_k_mode = split_k_mode self.split_k_slices = kwargs["split_k_slices"] else: self.split_k_mode = cutlass_bindings.conv.SplitKMode.Serial self.split_k_slices = 1 if "output_op" in kwargs.keys() and self.split_k_mode != cutlass_bindings.conv.SplitKMode.Parallel: self.output_op = kwargs["output_op"] else: self.output_op = self.operation.epilogue_type(1.0, 0.0) #: problem_size self.problem_size: cutlass_bindings.conv.Conv2dProblemSize = problem_size self.problem_size.split_k_slices = self.split_k_slices if hasattr(self, "tensor_c_numel"): c_coord = cutlass_bindings.conv.implicit_gemm_tensor_c_extent( self.conv_kind, problem_size) if self.tensor_c_numel == c_coord.at(3) and self.tensor_c_numel < c_coord.size(): self.bias = True # # initialize the argument # self.initialize() # @typechecked def reorder_tensor_B(self, tensor_B: "np.ndarray", problem_size: "cutlass_bindings.conv.Conv2dProblemSize"): """ Reorder tensor_B for interleaved layout :param tensor_B: input tensor B :type tensor_B: numpy.ndarray :param problem_size: Conv2d problem size :type problem_size: :class:`cutlass_bindings.conv.Conv2dProblemSize` :return: reordered tensor B :rtype: numpy.ndarray """ reordered_tensor_B = np.empty_like(tensor_B) tensor_ref_B = self.get_tensor_ref( tensor_B, self.element_B, self.layout_B, problem_size, "b") reordered_tensor_ref_B = self.get_tensor_ref( reordered_tensor_B, self.element_B, self.layout_B, problem_size, "b") cutlass_bindings.conv.host.reorder_convK( reordered_tensor_ref_B, tensor_ref_B, self.conv_kind, problem_size) return reordered_tensor_B def get_tensor_ref( self, tensor, dtype, tensor_layout, problem_size, operand): if operand == "a": tensor_coord = cutlass_bindings.conv.implicit_gemm_tensor_a_extent( self.conv_kind, problem_size) elif operand == "b": tensor_coord = cutlass_bindings.conv.implicit_gemm_tensor_b_extent( self.conv_kind, problem_size) elif operand in ["c", "d"]: tensor_coord = cutlass_bindings.conv.implicit_gemm_tensor_c_extent( self.conv_kind, problem_size) else: raise ValueError("unknown operand: " + operand) # Zero stride trick if operand == "c" and self.bias: tensor_coord = cutlass_bindings.Tensor4DCoord(0, 0, 0, 0) layout = tensor_layout.packed(tensor_coord) return TensorRef(tensor, dtype, layout).tensor_ref def get_arguments(self, semaphore): ref_A = TensorRef_(self.get_tensor_ref( self.ptr_A, self.element_A, self.layout_A, self.problem_size, "a")) ref_B = TensorRef_(self.get_tensor_ref( self.ptr_B, self.element_B, self.layout_B, self.problem_size, "b")) ref_C = TensorRef_(self.get_tensor_ref( self.ptr_C, self.element_C, self.layout_C, self.problem_size, "c")) ref_D = TensorRef_(self.get_tensor_ref( self.ptr_D, self.element_C, self.layout_C, self.problem_size, "d")) self.c_arguments = self.operation.argument_type( Conv2DProblemSize(self.problem_size), ref_A, ref_B, ref_C, ref_D, self.output_op, self.split_k_mode) self.semaphore = semaphore def initialize(self): # Get launch configuration self.launch_config = self.operation.rt_module.plan(self) # Allocate and initialize device workspace device_workspace_size = self.operation.rt_module.get_device_workspace_size(self) if device_workspace_size > 0: self.workspace_buffer = device_mem_alloc(device_workspace_size) workspace_ptr = self.workspace_buffer.ptr err, = cuda.cuMemsetD32( workspace_ptr, 0, device_workspace_size // 4) else: workspace_ptr = None # Get kernel params as a bytearray semaphore = 0 if (workspace_ptr is not None and self.split_k_mode == cutlass_bindings.conv.SplitKMode.Parallel): self.ptr_D = workspace_ptr elif (workspace_ptr is not None and self.split_k_mode == cutlass_bindings.conv.SplitKMode.Serial): semaphore = workspace_ptr self.get_arguments(semaphore) params_ = self.operation.rt_module.get_args( ctypes.byref(self.c_arguments), ctypes.c_void_p(int(self.semaphore))) self.host_workspace = bytearray(params_.contents) self.device_workspace = None def sync(self): """ Synchronize the arguments. If the input tensor is in host, copy it from device to host. """ return super().sync() # @typechecked class Conv2dRT(ExecutableOperation): """ Conv2dRT manages the CUTLASS runtime components """ KernelTemplate = r""" extern "C" __global__ void ${operation_name}(${operation_name}${operation_suffix}::Params params) { // Dynamic shared memory base pointer extern __shared__ int SharedStorageBase[]; // Declare pointer to dynamic shared memory. ${operation_name}${operation_suffix}::SharedStorage *shared_storage = reinterpret_cast<${operation_name}${operation_suffix}::SharedStorage *>(SharedStorageBase); ${operation_name}${operation_suffix} op; op(params, *shared_storage); } """ HostTemplate = r""" extern "C" { // Get the size of params in bytes int ${operation_name}_get_param_size(){ return sizeof(${operation_name}${operation_suffix}::Params); } // Get the size of dynamic shared memory in bytes int ${operation_name}_shared_memory_size() { return int(sizeof(${operation_name}${operation_suffix}::SharedStorage)); } // Get the params as byte array char* ${operation_name}_get_params(${operation_name}${operation_suffix}::Arguments* arguments, int *semaphore=nullptr){ typename ${operation_name}${operation_suffix}::Params* params; params = new ${operation_name}${operation_suffix}::Params(*arguments, semaphore); char *bytes = ((char*)(params)); char *output = new char[sizeof(${operation_name}${operation_suffix}::Params)]; for (unsigned int i = 0; i < sizeof(${operation_name}${operation_suffix}::Params); i ++) output[i] = bytes[i]; return output; } } """ def __init__(self, operation: "Conv2dOperation"): super().__init__(operation) self.argument_type, self.epilogue_type = get_conv2d_arguments(operation.epilogue_functor) self.argtype = [ctypes.POINTER(self.argument_type), ctypes.c_void_p] self.conv_kind = operation.conv_kind self.operation: Conv2dOperation = operation self.emitter = EmitConv2dInstance("_type") self.threads: int = operation.tile_description.num_threads self.swizzle_functor = operation.swizzling_functor def emit(self): return self.emitter.emit(self.operation) def get_device_workspace_size(self, arguments: Conv2dArguments): workspace_bytes = 0 launch_config = arguments.launch_config self.conv_kind = self.operation.conv_kind if arguments.split_k_mode == cutlass_bindings.conv.SplitKMode.Parallel: problem_size = arguments.problem_size workspace_bytes = DataTypeSize[self.operation.C.element] \ * launch_config.grid[2] * cutlass_bindings.conv.implicit_gemm_tensor_c_size( self.conv_kind, problem_size ) // 8 elif arguments.split_k_mode == cutlass_bindings.conv.SplitKMode.Serial and \ arguments.split_k_slices > 1: workspace_bytes = launch_config.grid[0] * launch_config.grid[1] * 4 return workspace_bytes # @typechecked def plan(self, arguments: Conv2dArguments): tile_size = cutlass_bindings.gemm.GemmCoord( self.operation.tile_description.threadblock_shape[0], self.operation.tile_description.threadblock_shape[1], self.operation.tile_description.threadblock_shape[2], ) grid = self.swizzle_functor.get_grid_shape( self.swizzle_functor.get_tiled_shape( self.conv_kind, arguments.problem_size, tile_size, arguments.split_k_slices ) ) return LaunchConfiguration( [grid.x, grid.y, grid.z], [self.threads, 1, 1], self.shared_memory_capacity) def initialize(self): err, = cuda.cuFuncSetAttribute( self.kernel, attrib=cuda.CUfunction_attribute.CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, value=self.shared_memory_capacity) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("Cuda Error: {}".format(err)) class Conv2dOperation: """ CUTLASS Conv2d operation description. :param conv_kind: convolution operator :type conv_kind: :class:`cutlass_bindings.conv.Operator` :param iterator_algorithm: Selects among several implementation variants trading off performance with simplicity :type iterator_algorithm: :class:`cutlass_bindings.conv.IteratorAlgorithm` :param arch: GPU compute capability (sm_xx) :type arch: int :param tile_description: tile description :type tile_description: :class:`cutlass.backend.TileDescription` :param A: tensor A description :type A: :class:`cutlass.backend.TensorDescription` :param B: tensor B description :type B: :class:`cutlass.backend.TensorDescription` :param C: tensor C description :type C: :class:`cutlass.backend.TensorDescription` :param D: tensor D description :type D: :class:`cutlass.backend.TensorDescription` :param element_epilogue: element type for computation in epilogue \ :type element_epilogue: cutlass_bindings.int8 | cutlass_bindings.int32 | cutlass_bindings.float16 | \ cutlass_bindings.bfloat16 | cutlass_bindings.float32 | cutlass_bindings.float64 :param stride_support: distinguish among partial specializations that \ accelerate certain problems where convolution stride is unit \ :type stride_support: :class:`cutlass_bindings.conv.StrideSupport` :param epilogue_functor: convolution epilogue functor :type epilogue_functor: :class:`EpilogueFunctor` :param swizzling_functor: threadblock swizzling functor """ def __init__( self, conv_kind: cutlass_bindings.conv.Operator, iterator_algorithm: cutlass_bindings.conv.IteratorAlgorithm, arch: int, tile_description: TileDescription, A: TensorDescription, B: TensorDescription, C: TensorDescription, stride_support, epilogue_functor, swizzling_functor=cutlass_bindings.IdentitySwizzle1, emission_type=EmissionType.Kernel, **kwargs ): self.operation_kind: OperationKind = OperationKind.Conv2d self.arch: int = arch self.tile_description: TileDescription = tile_description self.conv_kind = conv_kind self.A: TensorDescription = A self.B: TensorDescription = B self.C: TensorDescription = C self.epilogue_functor = epilogue_functor self.iterator_algorithm = iterator_algorithm self.stride_support = stride_support self.swizzling_functor = swizzling_functor() self.emission_type = emission_type self.rt_module: Conv2dRT = Conv2dRT(self) self.argument_type = self.rt_module.argument_type self.epilogue_type = self.rt_module.epilogue_type def run(self, arguments: Conv2dArguments) -> cuda.CUresult: """ Launch the cuda kernel with input arguments :param arguments: conv2d arguments :type arguments: :class:`cutlass.backend.Conv2dArguments` """ # launch the kernel err = self.rt_module.run( arguments.host_workspace, arguments.device_workspace, arguments.launch_config, ) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) return err # # Get function name # def procedural_name(self): """The full procedural name indicates architecture, extended name, tile size, and layout.""" return self.configuration_name() # def configuration_name(self): """The full procedural name indicates architecture, extended name, tile size, and layout.""" opcode_class_name = OpcodeClassNames[ self.tile_description.math_instruction.opcode_class ] threadblock = "%dx%d_%dx%d" % ( self.tile_description.threadblock_shape[0], self.tile_description.threadblock_shape[1], self.tile_description.threadblock_shape[2], self.tile_description.stages, ) if self.stride_support == StrideSupport.Unity: configuration_name = "cutlass_sm${arch}_${opcode_class}_${extended_name}_${threadblock}_${layout}_unity_stride_align${alignment}" else: configuration_name = "cutlass_sm${arch}_${opcode_class}_${extended_name}_${threadblock}_${layout}_align${alignment}" return SubstituteTemplate( configuration_name, { "arch": str(self.arch), "opcode_class": opcode_class_name, "extended_name": self.extended_name(), "threadblock": threadblock, "layout": self.layout_name(), "alignment": "%d" % self.A.alignment }, ) # def extended_name(self): """Append data types if they differ from compute type.""" if self.C.element != self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${element_c}_${core_name}_${element_a}" elif self.C.element == self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = SubstituteTemplate(extended_name, { "element_a": DataTypeNames[self.A.element], "element_c": DataTypeNames[self.C.element], "core_name": self.core_name(), }) return extended_name # def layout_name(self): return "%s" % (ShortLayoutTypeNames[self.A.layout]) # def core_name(self): """The basic operation kind is prefixed with a letter indicating the accumulation type.""" intermediate_type = "" if self.tile_description.math_instruction.opcode_class == cutlass_bindings.OpClass.TensorOp: inst_shape = "%dx%dx%d" % tuple( self.tile_description.math_instruction.instruction_shape) if self.tile_description.math_instruction.element_a != self.A.element and \ self.tile_description.math_instruction.element_a != self.accumulator_type(): intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] else: inst_shape = "" return "%s%s%s%s_%s" % ( ShortDataTypeNames[self.accumulator_type()], inst_shape, intermediate_type, ConvKindNames[self.conv_kind], IteratorAlgorithmNames[self.iterator_algorithm] ) # def is_complex(self): complex_operators = [ MathOperation.multiply_add_complex, MathOperation.multiply_add_complex_gaussian, ] return self.tile_description.math_instruction.math_operation in complex_operators # def accumulator_type(self): accum = self.tile_description.math_instruction.element_accumulator if self.is_complex(): return get_complex_from_real(accum) return accum def device_op(self): """ Returns a new Conv2dOperation object that is constructed with emission type ``EmissionType.Device``. :return: operation ready for device-level code emission :rtype: Conv2dOperation """ return Conv2dOperation( self.conv_kind, self.iterator_algorithm, self.arch, self.tile_description, self.A, self.B, self.C, self.stride_support, self.epilogue_functor, type(self.swizzling_functor), emission_type=EmissionType.Device) ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### class EmitConv2dInstance: def __init__(self, operation_suffix=""): self.operation_suffix = operation_suffix self.includes = [ "cutlass/cutlass.h", "cutlass/conv/kernel/default_conv2d_fprop.h", "cutlass/conv/kernel/default_conv2d_dgrad.h", "cutlass/conv/kernel/default_conv2d_wgrad.h" ] self.template = """ // Conv2d${conv_kind_name} ${iterator_algorithm_name} kernel instance "${operation_name}" using ${operation_name}_base = typename cutlass::conv::kernel::DefaultConv2d${conv_kind_name}< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k} >, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}, ${swizzling_functor}, ${stages}, ${math_operator}, ${iterator_algorithm}, ${stride_support}, ${align_a}, ${align_b} >::Kernel; struct ${operation_name}${operation_suffix}: public ${operation_name}_base { }; """ self.template_device = """ // Conv2d operation ${operation_name} using Conv2d${conv_kind_name}Kernel = typename cutlass::conv::kernel::DefaultConv2d${conv_kind_name}< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k} >, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}, ${swizzling_functor}, ${stages}, ${math_operator}, ${iterator_algorithm}, ${stride_support}, ${align_a}, ${align_b} >::Kernel; using DeviceKernel = typename cutlass::conv::device::ImplicitGemmConvolution<Conv2d${conv_kind_name}Kernel>; """ def emit(self, operation): warp_shape = [int(operation.tile_description.threadblock_shape[idx] / operation.tile_description.warp_count[idx]) for idx in range(3)] epilogue_vector_length = int(min( operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element]) values = { "operation_name": operation.procedural_name(), "operation_suffix": self.operation_suffix, "conv_kind": ConvKindTag[operation.conv_kind], "conv_kind_name": ConvKindNames[operation.conv_kind].capitalize(), "element_a": DataTypeTag[operation.A.element], "layout_a": LayoutTag[operation.A.layout], "element_b": DataTypeTag[operation.B.element], "layout_b": LayoutTag[operation.B.layout], "element_c": DataTypeTag[operation.C.element], "layout_c": LayoutTag[operation.C.layout], "element_accumulator": DataTypeTag[operation.accumulator_type()], "opcode_class": OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], "arch": "cutlass::arch::Sm%d" % operation.arch, "threadblock_shape_m": str(operation.tile_description.threadblock_shape[0]), "threadblock_shape_n": str(operation.tile_description.threadblock_shape[1]), "threadblock_shape_k": str(operation.tile_description.threadblock_shape[2]), "warp_shape_m": str(warp_shape[0]), "warp_shape_n": str(warp_shape[1]), "warp_shape_k": str(warp_shape[2]), "instruction_shape_m": str(operation.tile_description.math_instruction.instruction_shape[0]), "instruction_shape_n": str(operation.tile_description.math_instruction.instruction_shape[1]), "instruction_shape_k": str(operation.tile_description.math_instruction.instruction_shape[2]), "epilogue_vector_length": str(epilogue_vector_length), "epilogue_functor": operation.epilogue_functor.emit(), "swizzling_functor": operation.swizzling_functor.tag(), "stages": str(operation.tile_description.stages), "iterator_algorithm": IteratorAlgorithmTag[operation.iterator_algorithm], "iterator_algorithm_name": IteratorAlgorithmNames[operation.iterator_algorithm].capitalize(), "stride_support": StrideSupportTag[operation.stride_support], "math_operator": "cutlass::arch::OpMultiplyAddComplex" if operation.is_complex() else MathOperationTag[operation.tile_description.math_instruction.math_operation], "align_a": str(operation.A.alignment), "align_b": str(operation.B.alignment), } if operation.emission_type == EmissionType.Kernel: conv2d_template = self.template else: conv2d_template = self.template_device return SubstituteTemplate(conv2d_template, values)
cutlass-main
python/cutlass/backend/conv2d_operation.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ from cuda import cuda import cutlass_bindings import numpy as np from cutlass.backend.utils.software import CheckPackages cupy_available = CheckPackages().check_cupy() if cupy_available: import cupy as cp torch_available = CheckPackages().check_torch() if torch_available: import torch class TensorRef: """ Python Wrapper for cutlass_bindings.TensorRef """ def __init__(self, tensor, dtype, layout) -> None: if isinstance(tensor, np.ndarray): ptr = cuda.CUdeviceptr(tensor.__array_interface__["data"][0]) elif torch_available and isinstance(tensor, torch.Tensor): ptr = cuda.CUdeviceptr(tensor.data_ptr()) elif torch_available and isinstance(tensor, cp.ndarray): ptr = cuda.CUdeviceptr(int(tensor.data.ptr)) elif isinstance(tensor, cuda.CUdeviceptr): ptr = tensor elif isinstance(tensor, int): ptr = cuda.CUdeviceptr(tensor) else: raise NotImplementedError(tensor) # the dtype(0) is used to overload between different data types # with the same layout self.tensor_ref = cutlass_bindings.get_tensor_ref(int(ptr), dtype(0), layout)
cutlass-main
python/cutlass/backend/tensor_ref.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import ctypes from cuda import __version__, cuda from cutlass.backend.utils.device import device_cc _version_splits = [int(x) for x in __version__.split("rc")[0].split(".")] supports_cluster_launch = device_cc() >= 90 and ( _version_splits[0] > 11 or (_version_splits[0] == 11 and _version_splits[1] >= 8) ) class LaunchConfiguration: def __init__(self, grid=[1, 1, 1], block=[1, 1, 1], smem=0): self.grid = grid self.block = block self.shared_memory_capacity = smem class ExecutableOperation: def __init__(self, operation): self.operation = operation self.module = None self.kernel = None def name(self): return self.operation.procedural_name() def emit(self): return "" def can_implement(self, configuration, arguments): raise NotImplementedError() def get_host_workspace_size(self, arguments): raise NotImplementedError() def get_device_workspace_size(self, arguments): raise NotImplementedError() def plan(self, arguments): raise NotImplementedError() def initialize(self, host_workspace, device_workspace, launch_config, arguments, stream=cuda.CUstream(0)): raise NotImplementedError() def run_with_clusters(self, launch_config, kernel_params, stream=cuda.CUstream(0)): if hasattr(self.operation, "tile_description") and hasattr(self.operation.tile_description, "cluster_shape"): attr = cuda.CUlaunchAttribute() attr.value.clusterDim.x, attr.value.clusterDim.y, attr.value.clusterDim.z = self.operation.tile_description.cluster_shape attr.id = cuda.CUstreamAttrID.CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION attrs = [attr] # Allow for non-portable cluster sizes err, = cuda.cuFuncSetAttribute( self.kernel, cuda.CUfunction_attribute.CU_FUNC_ATTRIBUTE_NON_PORTABLE_CLUSTER_SIZE_ALLOWED, 1) if err != cuda.CUresult.CUDA_SUCCESS: return err else: attrs = [] config = cuda.CUlaunchConfig() config.gridDimX, config.gridDimY, config.gridDimZ = launch_config.grid config.blockDimX, config.blockDimY, config.blockDimZ = launch_config.block config.blockDimZ = launch_config.block[2] config.sharedMemBytes = launch_config.shared_memory_capacity config.hStream = stream config.attrs = attrs config.numAttrs = len(attrs) err, = cuda.cuLaunchKernelEx( config, f=self.kernel, kernelParams=kernel_params, extra=0) return err def run_without_clusters(self, launch_config, kernel_params, stream=cuda.CUstream(0)): err, = cuda.cuLaunchKernel( self.kernel, launch_config.grid[0], launch_config.grid[1], launch_config.grid[2], launch_config.block[0], launch_config.block[1], launch_config.block[2], launch_config.shared_memory_capacity, stream, kernel_params, 0) return err def run(self, host_workspace, device_workspace, launch_config, stream=cuda.CUstream(0)): cArg = (ctypes.c_char * len(host_workspace)).from_buffer(host_workspace) packed = (ctypes.c_void_p * 1)() packed[0] = ctypes.addressof(cArg) if supports_cluster_launch: return self.run_with_clusters(launch_config, packed, stream) else: return self.run_without_clusters(launch_config, packed, stream)
cutlass-main
python/cutlass/backend/operation.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import ast import ctypes import inspect import textwrap from typing import Generic, TypeVar from cuda import cuda, cudart import numpy as np from treelib import Tree from cutlass.backend.epilogue import ( AccumulatorOp, BinaryOp, ColumnBroadcastOp, ColumnReductionOp, RowBroadcastOp, RowReductionOp, TensorInputOp, TensorOutputOp, UnaryOp, ) from cutlass.backend.frontend import NumpyFrontend from cutlass.backend.utils.software import SubstituteTemplate import cutlass.backend as backend ################################################################################ # Type annotation for input arguments ################################################################################ Ttype = TypeVar("Ttype") Dtype = TypeVar("Dtype") class NDArray(np.ndarray, Generic[Ttype, Dtype]): pass ################################################################################ # Operations ################################################################################ operators = { ast.Add: "Add", ast.Div: "Div", ast.Eq: "Equal", ast.Mult: "Mult", } ################################################################################ # AST Node abstractions ################################################################################ class UnaryNode: cnt = 0 # Concept: this is created by the BinOp Node in python ast def __init__( self, element_accumulator, element_compute, elements_per_access, node, args, ) -> None: if isinstance(node, BinOpNode): self.op = node.op elif isinstance(node, ast.Call): if isinstance(node.func, ast.Name): self.op = node.func.id elif isinstance(node.func, ast.Attribute): self.op = node.func.value.id else: raise TypeError else: raise TypeError self.tag = "Unary" + self.op + str(UnaryNode.cnt) self.id = self.op + str(UnaryNode.cnt) self.args = args UnaryNode.cnt += 1 self.type = "tensor" self.epilogue_op = getattr(backend, self.op)(element_compute) # data types self.element_accumulator = element_accumulator self.element_compute = element_compute self.elements_per_access = elements_per_access def get_epilogue_node(self, visitors): self.epilogue_node = UnaryOp( self.element_accumulator, self.element_compute, self.elements_per_access, *visitors, self.epilogue_op, ) def get_argument(self, visitor_args, kwargs): epilogue_ops = [] for arg in self.args: try: epilogue_ops.append(kwargs[arg]) except: epilogue_ops.append(arg) # direct arguments like constant self.argument = self.epilogue_node.argument_type( self.epilogue_op.argument_type(*epilogue_ops), *visitor_args, ) class BinOpNode: cnt = 0 # Concept: this is created by the BinOp Node in python ast def __init__( self, element_accumulator, element_compute, elements_per_access, node, ) -> None: self.op = operators[type(node.op)] self.tag = "Binary" + self.op + str(BinOpNode.cnt) self.id = self.op + str(BinOpNode.cnt) self.args = None BinOpNode.cnt += 1 self.type = "tensor" self.epilogue_op = getattr(backend, "Vector" + self.op)(element_compute) # data types self.element_accumulator = element_accumulator self.element_compute = element_compute self.elements_per_access = elements_per_access def get_epilogue_node(self, visitors): self.epilogue_node = BinaryOp( self.element_accumulator, self.element_compute, self.elements_per_access, *visitors, self.epilogue_op, ) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type( self.epilogue_op.argument_type(self.args), *visitor_args, ) class NameNode: # Concept: this is created by the Name Node in python ast def __init__(self, node) -> None: try: self.id = node.id except: self.id = node.targets[0].id self.tag = self.id class ScalarInputNode(NameNode): # Concept: scalar def __init__(self, node) -> None: super().__init__(node) self.tag = "Scalar:" + self.tag self.type = "scalar" class AccumulatorNode(NameNode): # Concept: VisitorOpAccumulator def __init__( self, element_accumulator, elements_per_access, node, ) -> None: super().__init__(node) self.tag = "Accum:" + self.tag self.type = "tensor" self.element_accumulator = element_accumulator self.elements_per_access = elements_per_access def get_epilogue_node(self, visitors): self.epilogue_node = AccumulatorOp( self.element_accumulator, self.elements_per_access, ) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type() class TensorInputNode(NameNode): # Concept: VisitorOpTensorInput def __init__(self, element_accumulator, node) -> None: super().__init__(node) self.tag = "TensorInput:" + self.tag self.type = "tensor" self.element_accumulator = element_accumulator def get_epilogue_node(self, *args): self.epilogue_node = TensorInputOp(self.element_accumulator) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type( kwargs[self.id + "_ptr"], kwargs["problem_size"][1], kwargs["problem_size"][0] * kwargs["problem_size"][1], ) class RowBroadcastNode(NameNode): # Concept: VisitorOpRowBroadcast def __init__( self, element_accumulator, element_fragment, node, ) -> None: super().__init__(node) # self.tag = "RowBroadcast:" + self.tag self.type = "tensor" self.element_accumulator = element_accumulator self.element_fragment = element_fragment def get_epilogue_node(self, *args): self.epilogue_node = RowBroadcastOp( self.element_accumulator, self.element_fragment, ) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type( kwargs[self.id + "_ptr"], kwargs["problem_size"][1], ) class ColumnBroadcastNode(NameNode): # Concept: VisitorOpColumnBroadcast def __init__( self, element_accumulator, element_fragment, node, ) -> None: super().__init__(node) self.tag = "ColumnBroadcast:" + self.tag self.type = "tensor" self.element_accumulator = element_accumulator self.element_fragment = element_fragment def get_epilogue_node(self, *args): self.epilogue_node = ColumnBroadcastOp( self.element_accumulator, self.element_fragment, ) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type( kwargs[self.id + "_ptr"], kwargs["problem_size"][0], ) class TensorOutputNode(NameNode): # Concept: VisitorOpTensorOutput def __init__(self, element_accumulator, node) -> None: super().__init__(node) self.tag = "TensorOutput:" + self.tag self.type = "tensor" self.element_accumulator = element_accumulator def get_epilogue_node(self, visitors): self.epilogue_node = TensorOutputOp(self.element_accumulator, *visitors) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type( kwargs[self.id + "_ptr"], kwargs["problem_size"][1], *visitor_args, kwargs["problem_size"][0] * kwargs["problem_size"][1], ) class RowReductionNode: # Concept: RowReductionOp def __init__( self, element_accumulator, element_reduction, element_reduction_accumulator, id, factor, ) -> None: # self.id = id self.tag = "RowReduction:" + self.id self.type = "tensor" self.element_accumulator = element_accumulator self.element_reduction = element_reduction self.element_reduction_accumulator = element_reduction_accumulator self.factor = factor def get_epilogue_node(self, visitors): self.epilogue_node = RowReductionOp( self.element_accumulator, self.element_reduction, self.element_reduction_accumulator, *visitors, ) def get_batch_stride(self, problem_size): return problem_size[0] * ((problem_size[1] + self.factor - 1) // self.factor) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type( kwargs[self.id + "_ptr"], *visitor_args, self.get_batch_stride(kwargs["problem_size"]), ) class ColumnReductionNode: # Concept: ColumnReductionOp def __init__( self, element_accumulator, element_reduction, element_reduction_accumulator, id, factor, ) -> None: # self.id = id self.tag = "ColumnReduction:" + self.id self.type = "tensor" self.element_accumulator = element_accumulator self.element_reduction = element_reduction self.element_reduction_accumulator = element_reduction_accumulator self.factor = factor def get_epilogue_node(self, visitors): self.epilogue_node = ColumnReductionOp( self.element_accumulator, self.element_reduction, self.element_reduction_accumulator, *visitors, ) def get_batch_stride(self, problem_size): return problem_size[1] * ((problem_size[0] + self.factor - 1) // self.factor) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type( kwargs[self.id + "_ptr"], *visitor_args, self.get_batch_stride(kwargs["problem_size"]), ) ################################################################################ # Epilogue parser function ################################################################################ class EpilogueAST(ast.NodeVisitor): def __init__( self, epilogue, tile_description, element_accumulator, elements_per_access, element_compute, element_output, ) -> None: # self.tile_description = tile_description self.element_accumulator = element_accumulator self.elements_per_access = elements_per_access self.element_compute = element_compute self.element_output = element_output self.epilogue = epilogue self.source = textwrap.dedent(inspect.getsource(epilogue.__call__)) self.ast_tree = ast.parse(self.source) self.epilogue_tree = Tree() # print(ast.dump(self.ast_tree, indent=4)) # For Debug purpose # input arguments self.input_args = {} # return nodes self.returns = [] # reduction source nodes self.reduction_source = {} # stack used to keep the parent node id self.stack = [] # visit the AST self.visit(self.ast_tree) # visit the name node def visit_Name(self, node): # append the return ids into self.returns if self.stack[-1] == "return": self.returns.append(node.id) else: # accum is produced from accumulator node if node.id == "accum": name_node = AccumulatorNode( self.element_accumulator, self.elements_per_access, node, ) else: # for input nodes if node.id in self.input_args.keys(): type = self.input_args[node.id][0] if type == "tensor": name_node = TensorInputNode( self.element_accumulator, node, ) elif type == "row": name_node = RowBroadcastNode( self.element_accumulator, self.element_compute, node, ) elif type == "column": name_node = ColumnBroadcastNode( self.element_accumulator, self.element_compute, node, ) elif type == "scalar": name_node = ScalarInputNode(node) else: raise ValueError(type) # for output nodes else: name_node = TensorOutputNode( self.element_accumulator, node, ) self.epilogue_tree.create_node( name_node.tag, name_node.id, data=name_node, parent=self.stack[-1], ) def visit_Assign(self, node): pre_assign_node = self.epilogue_tree.get_node(node.targets[0].id) if pre_assign_node is None: # The assign is to a root node # skip the reduction nodes if isinstance(node.value, ast.Call): if isinstance(node.value.func, ast.Name): func_type = node.value.func.id elif isinstance(node.value.func, ast.Attribute): func_type = node.value.func.value.id else: raise TypeError if func_type == "reduction_op": self.reduction_source[node.value.args[0].id] = [ node.value.args[1].value, node.value.args[2].value, node.targets[0].id, ] return name_node = TensorOutputNode(self.element_accumulator, node) self.epilogue_tree.create_node( name_node.tag, name_node.id, data=name_node, ) self.stack.append(name_node.id) else: if ( node.targets[0].id in self.returns or node.targets[0].id in self.reduction_source.keys() ): self.stack.append(node.targets[0].id) else: self.stack.append( pre_assign_node.predecessor(self.epilogue_tree.identifier) ) self.epilogue_tree.remove_node(node.targets[0].id) # get child tag self.visit(node.value) self.stack.pop() def visit_Call(self, node): if isinstance(node.func, ast.Name): func_type = node.func.id elif isinstance(node.func, ast.Attribute): func_type = node.func.value.id else: raise TypeError if func_type == "reduction_op": self.visit(node.args[0]) else: arg_list = [] for idx, arg in enumerate(node.args): if idx == 0: continue if isinstance(arg, ast.Constant): arg_list.append(arg.value) elif isinstance(arg, ast.Name): arg_list.append(arg.id) else: raise TypeError unary_node = UnaryNode( self.element_accumulator, self.element_compute, self.elements_per_access, node, arg_list, ) self.epilogue_tree.create_node( unary_node.tag, unary_node.id, parent=self.stack[-1], data=unary_node, ) self.stack.append(unary_node.id) self.visit(node.args[0]) self.stack.pop() def visit_BinOp(self, node): binop = BinOpNode( self.element_accumulator, self.element_compute, self.elements_per_access, node, ) self.epilogue_tree.create_node( binop.tag, binop.id, data=binop, parent=self.stack[-1], ) self.stack.append(binop.id) self.visit(node.left) self.visit(node.right) self.stack.pop() def visit_Return(self, node): self.stack.append("return") self.visit(node.value) self.stack.pop() # # A function definition def visit_FunctionDef(self, node: ast.FunctionDef): # visit args for arg in node.args.args: if arg.arg == "self": continue if isinstance(arg.annotation, ast.Constant): self.input_args[arg.arg] = [ arg.annotation.value, ] # visit the assign in the reverse order for idx in range(len(node.body)): self.visit(node.body[-1 - idx]) # # Tree optimization pass # # pass 1: lower Binary to Unary def pass_binary_2_unary(self, tree, nid): node = tree.get_node(nid) if isinstance(node.data, BinOpNode): lhs_node = tree.get_node(node.successors(tree.identifier)[0]) left_type = lhs_node.data.type rhs_node = tree.get_node(node.successors(tree.identifier)[1]) right_type = rhs_node.data.type if left_type == "scalar" and right_type == "tensor": node.data = UnaryNode( self.element_accumulator, self.element_compute, self.elements_per_access, node.data, [ lhs_node.data.id, ], ) node.tag = node.data.tag tree.remove_node(lhs_node.data.id) self.pass_binary_2_unary(tree, rhs_node.data.id) elif left_type == "tensor" and right_type == "scalar": node.data = UnaryNode( self.element_accumulator, self.element_compute, self.elements_per_access, node.data, [ rhs_node.id, ], ) node.tag = node.data.tag tree.remove_node(rhs_node.data.id) self.pass_binary_2_unary(tree, lhs_node.data.id) else: self.pass_binary_2_unary(tree, lhs_node.data.id) self.pass_binary_2_unary(tree, rhs_node.data.id) else: for child in node.successors(tree.identifier): self.pass_binary_2_unary(tree, child) # pass 2: inject reduction nodes def pass_inject_reduction(self, tree, nid): node = tree.get_node(nid) if isinstance(node.data, TensorOutputNode): if node.data.id in self.reduction_source.keys(): direction = self.reduction_source[node.data.id][0] target = self.reduction_source[node.data.id][-1] if direction == "row": reduction_node = RowReductionNode( self.element_accumulator, self.element_output, self.element_accumulator, target, self.tile_description.threadblock_shape[1], ) elif direction == "column": reduction_node = ColumnReductionNode( self.element_accumulator, self.element_output, self.element_accumulator, target, self.tile_description.threadblock_shape[0], ) else: raise ValueError(direction) child_nid = node.successors(tree.identifier)[0] # if this output node is injected only for reduction if node.data.id not in self.returns: # get reduction config from disc node.data = reduction_node node.tag = reduction_node.tag self.pass_inject_reduction(tree, child_nid) # if this output node is also a tensor output, inject reduction as its children else: # get child node tree.create_node( reduction_node.tag, reduction_node.id, data=reduction_node, parent=node.data.id, ) tree.move_node( child_nid, reduction_node.id, ) child = tree.get_node(child_nid) for grand_child in child.successors(tree.identifier): self.pass_inject_reduction(tree, grand_child) else: for child in node.successors(tree.identifier): self.pass_inject_reduction(tree, child) else: for child in node.successors(tree.identifier): self.pass_inject_reduction(tree, child) def pass_inject_epilogue_op(self, tree, nid): node = tree.get_node(nid) visitors = [] for child in node.successors(tree.identifier): visitors.append(self.pass_inject_epilogue_op(tree, child)) node.data.get_epilogue_node(visitors) return node.data.epilogue_node def get_arguments(self, tree, nid, kwargs): node = tree.get_node(nid) visitor_args = [] for child in node.successors(tree.identifier): visitor_args.append(self.get_arguments(tree, child, kwargs)) node.data.get_argument(visitor_args, kwargs) return node.data.argument class EpilogueVisitTree: KernelTemplate = """ ${visitor} using ${operation_name}_EpilogueVisitor = cutlass::epilogue::threadblock::EpilogueVisitorGeneric<${visitor_name}>; """ def __init__( self, elementwise_functor, tile_description, element_accumulator, elements_per_access, element_compute, element_output, ) -> None: # # data types self.tile_description = tile_description self.element_accumulator = element_accumulator self.elements_per_access = elements_per_access self.element_compute = element_compute self.element_output = element_output self.elementwise_functor = elementwise_functor pass def initialize(self): function = EpilogueAST( self, self.tile_description, self.element_accumulator, self.elements_per_access, self.element_compute, self.element_output, ) # tree = function.epilogue_tree self.tree = tree function.pass_binary_2_unary(self.tree, self.tree.root) function.pass_inject_reduction(self.tree, self.tree.root) function.pass_inject_epilogue_op(self.tree, self.tree.root) visitor = self.tree.get_node(self.tree.root).data.epilogue_node self.visitor = visitor class _Argument(ctypes.Structure): _fields_ = [ ( "visitor_arg", visitor.argument_type, ) ] def __init__(self, **kwargs) -> None: # process input args _kwargs = {} for input_key in function.input_args.keys(): if input_key == "accum": continue if function.input_args[input_key][0] == "scalar": continue # tensor input else: setattr( self, "buffer_tensor_" + input_key, NumpyFrontend.argument( kwargs[input_key], False, ), ) setattr( self, input_key + "_ptr", int( getattr( self, "buffer_tensor_" + input_key, ).ptr ), ) _kwargs[input_key + "_ptr"] = getattr( self, input_key + "_ptr", ) # process the return args for ret in function.returns: setattr( self, "buffer_tensor_" + ret, NumpyFrontend.argument(kwargs[ret], True), ) setattr( self, ret + "_ptr", int( getattr( self, "buffer_tensor_" + ret, ).ptr ), ) _kwargs[ret + "_ptr"] = getattr(self, ret + "_ptr") setattr( self, "host_tensor_" + ret, kwargs[ret], ) _kwargs.update(kwargs) function.get_arguments(tree, tree.root, _kwargs) self.visitor_arg = tree.get_node(tree.root).data.argument def sync(self, stream_sync=True): if stream_sync: (err,) = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) for ret in function.returns: (err,) = cuda.cuMemcpyDtoH( getattr( self, "host_tensor_" + ret, ), cuda.CUdeviceptr(getattr(self, ret + "_ptr")), getattr( self, "host_tensor_" + ret, ).size * getattr( self, "host_tensor_" + ret, ).itemsize, ) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) pass self.epilogue_type = _Argument def emit(self, operation): values = { "visitor": self.visitor.emit(operation), "operation_name": operation.procedural_name(), "visitor_name": self.visitor.instance_name, } return SubstituteTemplate(self.KernelTemplate, values)
cutlass-main
python/cutlass/backend/parser.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import ctypes from cuda import cuda, cudart import cutlass_bindings import numpy as np from scipy.special import erf from cutlass.backend.c_types import MatrixCoord_ from cutlass.backend.frontend import NumpyFrontend from cutlass.backend.library import DataTypeTag from cutlass.backend.utils.software import CheckPackages, SubstituteTemplate dtype2ctype = { cutlass_bindings.int8: ctypes.c_int8, cutlass_bindings.float16: ctypes.c_uint16, cutlass_bindings.float32: ctypes.c_float, cutlass_bindings.float64: ctypes.c_double, cutlass_bindings.int32: ctypes.c_int32 } ################################################################################################# # # Epilogue Functors # ################################################################################################# class EpilogueFunctorBase: """ Base class for thread-level epilogue functors """ def __init__(self) -> None: pass def emit(self, tag, template_argument): template = """${tag}<${arguments}>""" arguments = "" for idx, arg in enumerate(template_argument): arguments += arg if idx < len(template_argument) - 1: arguments += ", " values = { "tag": tag, "arguments": arguments, } return SubstituteTemplate(template, values) class LinearCombination(EpilogueFunctorBase): """ Apply a linear combination operator to an array of elements D = alpha * accumulator + beta * source :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store :param element_accumulator: Accumulator data type :param element_epilogue: data type used to compute linear combination """ tag = "cutlass::epilogue::thread::LinearCombination" def __init__( self, element_output, epilogue_vector_length, element_accumulator=None, element_epilogue=None) -> None: super().__init__() if element_accumulator is None: element_accumulator = element_output if element_epilogue is None: element_epilogue = element_output self.element_output = element_output self.element_accumulator = element_accumulator self.element_epilogue = element_epilogue self.epilogue_vector_length = epilogue_vector_length self.template_arguments = [ DataTypeTag[element_output], str(epilogue_vector_length), DataTypeTag[element_accumulator], DataTypeTag[element_epilogue], ] # get epilogue output op type c_element_epilogue = dtype2ctype[self.element_epilogue] element_epilogue = self.element_epilogue class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p) ] def __init__(self, alpha, beta, *args) -> None: self.alpha = element_epilogue(alpha).storage self.beta = element_epilogue(beta).storage self.epilogue_type = _EpilogueOutputOpParams def emit(self): return super().emit(self.tag, self.template_arguments) class LinearCombinationClamp(LinearCombination): """ Applies a linear combination operator to an array of elements then clamps the output before converting to the output element type. D = alpha * accumulator + beta * source + uniform :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store :param element_accumulator: Accumulator data type :param element_epilogue: data type used to compute linear combination """ tag = "cutlass::epilogue::thread::LinearCombinationClamp" def __init__( self, element_output, epilogue_vector_length, element_accumulator=None, element_epilogue=None) -> None: # Base constructor super().__init__( element_output, epilogue_vector_length, element_accumulator, element_epilogue, ) c_element_epilogue = dtype2ctype[self.element_epilogue] element_epilogue = self.element_epilogue class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ] def __init__(self, alpha, beta, *args) -> None: self.alpha = element_epilogue(alpha).storage self.beta = element_epilogue(beta).storage self.epilogue_type = _EpilogueOutputOpParams class FastLinearCombinationClamp(EpilogueFunctorBase): """ Applies a linear combination operator to an array of elements then clamps the output before converting to the output element type. D = alpha * accumulator + beta * source Note: The below method only when problem_size_K <= 256 for signed int8 gemm or problem_size_K <= 128 for unsigned int8 gemm. The default approach is above. :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store """ tag = "cutlass::epilogue::thread::FastLinearCombinationClamp" def __init__(self, element_output, epilogue_vector_length, *args) -> None: super().__init__() self.template_arguments = [ DataTypeTag[element_output], str(epilogue_vector_length) ] self.element_accumulator = cutlass_bindings.int32 self.element_epilogue = cutlass_bindings.float32 # get epilogue output op c_element_epilogue = dtype2ctype[self.element_epilogue] element_epilogue = self.element_epilogue class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ] def __init__(self, alpha, beta, *args) -> None: self.alpha = element_epilogue(alpha).storage self.beta = element_epilogue(beta).storage self.epilogue_type = _EpilogueOutputOpParams def emit(self): return super().emit(self.tag, self.template_arguments) class LinearCombinationGeneric(LinearCombination): """ Applies a linear combination operator followed by an activation function to an array of elements. D = activation(alpha * accumulator + beta * source) :param activation_functor: input activation functor :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store :param element_accumulator: Accumulator data type :param element_epilogue: data type used to compute linear combination """ tag = "cutlass::epilogue::thread::LinearCombinationGeneric" def __init__( self, activation_functor, element_output, epilogue_vector_length, element_accumulator=None, element_epilogue=None) -> None: super().__init__( element_output, epilogue_vector_length, element_accumulator, element_epilogue, ) self.template_arguments = [ activation_functor.emit()] + self.template_arguments self.activation_functor = activation_functor self.element_epilogue = element_epilogue # get epilogue output op self.epilogue_type = self.activation_functor.epilogue_output_op(self.element_epilogue) class ActivationFunctor: """ Base class for frequently used activation functions """ def __init__(self, element_compute) -> None: pass @staticmethod def numpy(x: np.ndarray): raise NotImplementedError() def emit(self): return self.tag @staticmethod def epilogue_output_op(element_epilogue): c_element_epilogue = dtype2ctype[element_epilogue] class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ] def __init__(self, alpha, beta, *args) -> None: self.alpha = element_epilogue(alpha).storage self.beta = element_epilogue(beta).storage return _EpilogueOutputOpParams # identity operator class identity(ActivationFunctor): tag = "cutlass::epilogue::thread::Identity" def numpy(x: np.ndarray): return x # ReLu operator, class relu(ActivationFunctor): tag = "cutlass::epilogue::thread::ReLu" def __init__(self, element_compute): super().__init__(element_compute) class _Arguments(ctypes.Structure): _fields_ = [ ("threshold", dtype2ctype[element_compute]) ] def __init__(self, threshold=0.0) -> None: self.threshold = element_compute(threshold).storage self.argument_type = _Arguments def emit_visitor(self): return "cutlass::ReLUVisitor" @staticmethod def numpy(x: np.ndarray): return np.maximum(x, 0) # Leaky ReLu operator class leaky_relu(ActivationFunctor): tag = "cutlass::epilogue::thread::LeakyReLU" def __init__(self, element_compute) -> None: super().__init__(element_compute) class _Arguments(ctypes.Structure): _fields_ = [ ("leaky_alpha", dtype2ctype[element_compute]) ] def __init__(self, leaky_alpha) -> None: self.leaky_alpha = element_compute(leaky_alpha).storage self.argument_type = _Arguments def emit_visitor(self): return "cutlass::LeakyReLUVisitor" @staticmethod def numpy(x: np.ndarray, leaky_alpha): return np.maximum(x, 0) + np.minimum(x, 0) * leaky_alpha def epilogue_output_op(self, element_epilogue): c_element_epilogue = dtype2ctype[element_epilogue] class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ("leaky_alpha", c_element_epilogue) ] def __init__(self, alpha, beta, leaky_alpha=0.2, *args) -> None: self.alpha = element_epilogue(alpha).storage self.beta = element_epilogue(beta).storage self.alpha_ptr = 0 self.beta_ptr = 0 self.leaky_alpha = element_epilogue(leaky_alpha).storage return _EpilogueOutputOpParams # Tanh operator class tanh(ActivationFunctor): tag = "cutlass::epilogue::thread::Tanh" def __init__(self, element_compute) -> None: super().__init__(element_compute) class _Arguments(ctypes.Structure): _fields_ = [("tmp", ctypes.c_int)] def __init__(self, *args) -> None: self.tmp = 0 self.argument_type = _Arguments def emit_visitor(self): return "cutlass::TanhVisitor" @staticmethod def numpy(x: np.ndarray): return np.tanh(x) def sigmoid_op(x: np.ndarray): return 1.0 / (1.0 + np.exp(-x)) # Sigmoid operator class sigmoid(ActivationFunctor): tag = "cutlass::epilogue::thread::Sigmoid" @staticmethod def numpy(x: np.ndarray): return sigmoid_op(x) # SiLu operator class silu(ActivationFunctor): tag = "cutlass::epilogue::thread::SiLu" @staticmethod def numpy(x: np.ndarray): return x * sigmoid_op(x) # Hardswish operator class hardswish(ActivationFunctor): tag = "cutlass::epilogue::thread::HardSwish" @staticmethod def numpy(x: np.ndarray): relu6 = np.minimum(np.maximum(x + 3.0, 0), 6.0) return x * relu6 / 6.0 # GELU operator class gelu(ActivationFunctor): tag = "cutlass::epilogue::thread::GELU" @staticmethod def numpy(x: np.ndarray): return 0.5 * x * (1 + erf(x / np.sqrt(2.0))) # reduction operator def reduction_op(tensor, direction, math, factor): batch, m, n = tensor.shape if math == "Add": if direction == "row": num_cta_n = (n + factor - 1) // factor reduction = np.transpose( np.sum(tensor.reshape(batch, m, num_cta_n, factor), axis=-1), axes=[0, 2, 1]).flatten() elif direction == "column": num_cta_m = (m + factor - 1) // factor reduction = np.sum( tensor.reshape(batch, num_cta_m, factor, n), axis=-2).flatten() else: raise NotImplementedError return reduction else: raise NotImplementedError ################################################################################ # Epilogue Visitor ################################################################################ class LayerNorm(EpilogueFunctorBase): """ Apply a linear combination operator to an array of elements D = alpha * accumulator + beta * source :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store :param element_accumulator: Accumulator data type :param element_epilogue: data type used to compute linear combination """ KernelTemplate = """ cutlass::epilogue::threadblock::EpilogueVisitorLayerNorm< cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, ${operation_name}_default::kThreadCount, ${operation_name}_default::Epilogue::OutputTileIterator, ${operation_name}_default::Epilogue::AccumulatorFragmentIterator::AccumulatorTile, ${element_compute}, // element_compute ${element_variance}, // element_variance ${element_mean}, // element_mean ${element_layer_norm_compute}, // element_layer_norm_compute ${epilogue_functor}, ${shifted_k}>; """ headers = [ "gemm/gemm_universal_with_visitor.h", "epilogue/epilogue_visitor_with_layernorm.h" ] def __init__( self, elementwise_functor, element_variance=None, element_mean=None, element_layer_norm_compute=None, shifted_k=True, ) -> None: super().__init__() self.elementwise_functor = elementwise_functor self.element_compute = elementwise_functor.element_epilogue self.element_output = elementwise_functor.element_output if element_variance is None: self.element_variance = self.element_output if element_mean is None: self.element_mean = self.element_output if element_layer_norm_compute is None: self.element_layer_norm_compute = self.element_compute if shifted_k: self.shifted_k = "true" else: self.shifted_k = "false" # get epilogue output op elementwise_params_type = self.elementwise_functor.epilogue_type class _EpilogueVisitorParams(ctypes.Structure): _fields_ = [ ("element_wise", elementwise_params_type), ("ptr_Variance", ctypes.c_void_p), ("ptr_Mean_", ctypes.c_void_p), ("ptr_Shifted_K_", ctypes.c_void_p), ("extent", MatrixCoord_), ] def __init__(self, elementwise_params, variance, mean, shift_k, extent) -> None: self.element_wise = elementwise_params if isinstance(variance, np.ndarray): self.buffer_variance = NumpyFrontend.argument(variance, False) self.buffer_mean = NumpyFrontend.argument(mean, False) self.buffer_shift_k = NumpyFrontend.argument(shift_k, False) self.ptr_Variance = int(self.buffer_variance.ptr) self.ptr_Mean_ = int(self.buffer_mean.ptr) self.ptr_Shifted_K_ = int(self.buffer_shift_k.ptr) self.extent = MatrixCoord_(extent[0], extent[1]) self.host_variance = variance self.host_mean = mean self.host_shift_k = shift_k def sync(self, stream_sync=True): if stream_sync: err, = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) err, = cuda.cuMemcpyDtoH( self.host_variance, cuda.CUdeviceptr(self.ptr_Variance), self.host_variance.size * self.host_variance.itemsize) err, = cuda.cuMemcpyDtoH( self.host_mean, cuda.CUdeviceptr(self.ptr_Mean_), self.host_mean.size * self.host_mean.itemsize) err, = cuda.cuMemcpyDtoH( self.host_shift_k, cuda.CUdeviceptr(self.ptr_Shifted_K_), self.host_shift_k.size * self.host_shift_k.itemsize) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) self.epilogue_type = _EpilogueVisitorParams def emit(self, operation): values = { "threadblock_shape_m": str(operation.tile_description.threadblock_shape[0]), "threadblock_shape_n": str(operation.tile_description.threadblock_shape[1]), "threadblock_shape_k": str(operation.tile_description.threadblock_shape[2]), "operation_name": operation.procedural_name(), "element_compute": DataTypeTag[self.element_compute], "element_variance": DataTypeTag[self.element_variance], "element_mean": DataTypeTag[self.element_mean], "element_layer_norm_compute": DataTypeTag[self.element_layer_norm_compute], "epilogue_functor": self.elementwise_functor.emit(), "shifted_k": self.shifted_k, } return SubstituteTemplate(self.KernelTemplate, values) class AccumulatorOp: Template = """ using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpAccumulator<${element_accumulator}, ${elements_per_access}>; """ counter = 0 def __init__(self, element_accumulator, elements_per_access) -> None: self.element_accumulator = element_accumulator self.elements_per_access = elements_per_access self.instance_name = "AccumulatorOp%d" % AccumulatorOp.counter AccumulatorOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [("tmp", ctypes.c_int)] def __init__(self): self.tmp = 0 self.argument_type = _Arguments def emit(self, *args): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "elements_per_access": str(self.elements_per_access), } return SubstituteTemplate(self.Template, values) class LinearCombinationOp: Template = """ ${visitor_a} ${visitor_b} using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpLinearCombination< ${element_accumulator}, ${element_compute}, ${elements_per_access}, ${visitor_a_name}, ${visitor_b_name}>; """ counter = 0 def __init__(self, element_accumulator, element_compute, elements_per_access, visitor_a, visitor_b) -> None: self.element_accumulator = element_accumulator self.element_compute = element_compute self.elements_per_access = elements_per_access self.visitor_a = visitor_a self.visitor_b = visitor_b self.instance_name = "LinearCombinationOp%d" % LinearCombinationOp.counter LinearCombinationOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("alpha", dtype2ctype[self.element_compute]), ("beta", dtype2ctype[self.element_compute]), ("visitor_a", self.visitor_a.argument_type), ("visitor_b", self.visitor_b.argument_type) ] def __init__(self, alpha, beta, visitor_a_arg, visitor_b_arg) -> None: self.alpha = element_compute(alpha).storage self.beta = element_compute(beta).storage self.visitor_a = visitor_a_arg self.visitor_b = visitor_b_arg self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "element_compute": DataTypeTag[self.element_compute], "elements_per_access": str(self.elements_per_access), "visitor_a_name": self.visitor_a.instance_name, "visitor_b_name": self.visitor_b.instance_name, "visitor_a": self.visitor_a.emit(operation), "visitor_b": self.visitor_b.emit(operation) } return SubstituteTemplate(self.Template, values) class VectorAdd: def __init__(self, *args) -> None: class _Arguments(ctypes.Structure): _fields_ = [("tmp", ctypes.c_int)] def __init__(self, *args) -> None: self.tmp = 0 self.argument_type = _Arguments def emit(self): return "cutlass::VectorAdd" class VectorMult: def __init__(self, *args) -> None: class _Arguments(ctypes.Structure): _fields_ = [("tmp", ctypes.c_int)] def __init__(self, *args) -> None: self.tmp = 0 self.argument_type = _Arguments def emit(self): return "cutlass::VectorMult" class BinaryOp: Template = """ ${visitor_a} ${visitor_b} using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpBinary< ${element_accumulator}, ${element_compute}, ${elements_per_access}, ${visitor_a_name}, ${visitor_b_name}, ${binary_op}>; """ counter = 0 def __init__(self, element_accumulator, element_compute, elements_per_access, visitor_a, visitor_b, binary_op) -> None: self.element_accumulator = element_accumulator self.element_compute = element_compute self.elements_per_access = elements_per_access self.visitor_a = visitor_a self.visitor_b = visitor_b self.binary_op = binary_op self.instance_name = "BinaryOp%d" % BinaryOp.counter BinaryOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("binary_param", binary_op.argument_type), ("visitor_a", self.visitor_a.argument_type), ("visitor_b", self.visitor_b.argument_type) ] def __init__(self, binary_param, visitor_a_arg, visitor_b_arg) -> None: self.binary_param = binary_param self.visitor_a = visitor_a_arg self.visitor_b = visitor_b_arg self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "element_compute": DataTypeTag[self.element_compute], "elements_per_access": str(self.elements_per_access), "visitor_a_name": self.visitor_a.instance_name, "visitor_b_name": self.visitor_b.instance_name, "visitor_a": self.visitor_a.emit(operation), "visitor_b": self.visitor_b.emit(operation), "binary_op": self.binary_op.emit() } return SubstituteTemplate(self.Template, values) class Mult: def __init__(self, element_compute) -> None: class _Arguments(ctypes.Structure): _fields_ = [ ("alpha", dtype2ctype[element_compute]) ] def __init__(self, alpha) -> None: self.alpha = element_compute(alpha).storage self.argument_type = _Arguments def emit_visitor(self): return "cutlass::Mult" class UnaryOp: Template = """ ${visitor} using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpUnary< ${element_accumulator}, ${element_compute}, ${elements_per_access}, ${visitor_name}, ${unary_op}>; """ counter = 0 def __init__(self, element_accumulator, element_compute, elements_per_access, visitor, unary_op) -> None: self.element_accumulator = element_accumulator self.element_compute = element_compute self.elements_per_access = elements_per_access self.visitor = visitor self.unary_op = unary_op self.instance_name = "UnaryOp%d" % UnaryOp.counter UnaryOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("unary_param", unary_op.argument_type), ("visitor_arg", self.visitor.argument_type), ] def __init__(self, unary_param, visitor_arg) -> None: self.unary_param = unary_param self.visitor_arg = visitor_arg self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "element_compute": DataTypeTag[self.element_compute], "elements_per_access": str(self.elements_per_access), "visitor_name": self.visitor.instance_name, "unary_op": self.unary_op.emit_visitor(), "visitor": self.visitor.emit(operation), } return SubstituteTemplate(self.Template, values) class RowBroadcastOp: Template = """ using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpRowBroadcast< ${element_accumulator}, ${element_fragment}, ${input_tile_iterator}>; """ counter = 0 def __init__(self, element_accumulator, element_fragment) -> None: self.element_accumulator = element_accumulator self.element_fragment = element_fragment self.instance_name = "RowBroadcastOp%d" % RowBroadcastOp.counter RowBroadcastOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("broadcast_ptr", ctypes.c_void_p), ("batch_stride", ctypes.c_longlong) ] def __init__(self, broadcast_ptr, batch_stride=0): self.broadcast_ptr = int(broadcast_ptr) self.batch_stride = batch_stride self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "element_fragment": DataTypeTag[self.element_fragment], "input_tile_iterator": operation.procedural_name() + "_default::Epilogue::OutputTileIterator" } return SubstituteTemplate(self.Template, values) class ColumnBroadcastOp: Template = """ using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpColumnBroadcast< ${element_accumulator}, ${element_fragment}, ${input_tile_iterator}>; """ counter = 0 def __init__(self, element_accumulator, element_fragment) -> None: self.element_accumulator = element_accumulator self.element_fragment = element_fragment self.instance_name = "ColumnBroadcastOp%d" % ColumnBroadcastOp.counter ColumnBroadcastOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("broadcast_ptr", ctypes.c_void_p), ("batch_stride", ctypes.c_longlong) ] def __init__(self, broadcast_ptr, batch_stride=0): self.broadcast_ptr = int(broadcast_ptr) self.batch_stride = batch_stride self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "element_fragment": DataTypeTag[self.element_fragment], "input_tile_iterator": operation.procedural_name() + "_default::Epilogue::OutputTileIterator" } return SubstituteTemplate(self.Template, values) class TensorInputOp: Template = """ using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpTensorInput< ${element_accumulator}, ${input_tile_iterator}>; """ counter = 0 def __init__(self, element_accumulator) -> None: self.element_accumulator = element_accumulator self.instance_name = "TensorInputOp%d" % TensorInputOp.counter TensorInputOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("input_ptr", ctypes.c_void_p), ("ldt", ctypes.c_int), ("batch_stride", ctypes.c_longlong) ] def __init__(self, input_ptr, ldt, batch_stride=0) -> None: self.input_ptr = int(input_ptr) self.ldt = ldt self.batch_stride = batch_stride self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "input_tile_iterator": operation.procedural_name() + "_default::Epilogue::OutputTileIterator" } return SubstituteTemplate(self.Template, values) class TensorOutputOp: Template = """ ${visitor} using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpTensorOutput< ${element_accumulator}, ${output_tile_iterator}, ${visitor_name}>; """ counter = 0 def __init__(self, element_accumulator, visitor) -> None: self.element_accumulator = element_accumulator self.visitor = visitor self.instance_name = "TensorOutputOp%d" % TensorOutputOp.counter TensorOutputOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("output_ptr", ctypes.c_void_p), ("ldt", ctypes.c_int), ("batch_stride", ctypes.c_longlong), ("visitor_arg", self.visitor.argument_type) ] def __init__(self, output_ptr, ldt, visitor_arg, batch_stride=0) -> None: self.output_ptr = int(output_ptr) self.ldt = int(ldt) self.visitor_arg = visitor_arg self.batch_stride = batch_stride self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "output_tile_iterator": operation.procedural_name() + "_default::Epilogue::OutputTileIterator", "visitor_name": self.visitor.instance_name, "visitor": self.visitor.emit(operation), } return SubstituteTemplate(self.Template, values) class ColumnReductionOp: Template = """ ${visitor} using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpColumnReduction< cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, ${element_accumulator}, ${element_reduction}, ${element_reduction_accumulator}, ${output_tile_iterator}, ${visitor_name}>; """ counter = 0 def __init__(self, element_accumulator, element_reduction, element_reduction_accumulator, visitor) -> None: self.element_accumulator = element_accumulator self.element_reduction = element_reduction self.element_reduction_accumulator = element_reduction_accumulator self.visitor = visitor self.instance_name = "ColumnReductionOp%d" % ColumnReductionOp.counter ColumnReductionOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("reduction_ptr", ctypes.c_void_p), ("batch_stride", ctypes.c_longlong), ("visitor_arg", self.visitor.argument_type) ] def __init__(self, reduction_ptr, visitor_arg, batch_stride=0) -> None: self.reduction_ptr = reduction_ptr self.batch_stride = batch_stride self.visitor_arg = visitor_arg self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "threadblock_shape_m": str(operation.tile_description.threadblock_shape[0]), "threadblock_shape_n": str(operation.tile_description.threadblock_shape[1]), "threadblock_shape_k": str(operation.tile_description.threadblock_shape[2]), "element_accumulator": DataTypeTag[self.element_accumulator], "element_reduction": DataTypeTag[self.element_reduction], "element_reduction_accumulator": DataTypeTag[self.element_reduction_accumulator], "output_tile_iterator": operation.procedural_name() + "_default::Epilogue::OutputTileIterator", "visitor_name": self.visitor.instance_name, "visitor": self.visitor.emit(operation), } return SubstituteTemplate(self.Template, values) class RowReductionOp: Template = """ ${visitor} using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpRowReduction< cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, ${element_accumulator}, ${element_reduction}, ${element_reduction_accumulator}, ${output_tile_iterator}, ${visitor_name}>; """ counter = 0 def __init__(self, element_accumulator, element_reduction, element_reduction_accumulator, visitor) -> None: self.element_accumulator = element_accumulator self.element_reduction = element_reduction self.element_reduction_accumulator = element_reduction_accumulator self.visitor = visitor self.instance_name = "RowReductionOp%d" % RowReductionOp.counter RowReductionOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("reduction_ptr", ctypes.c_void_p), ("batch_stride", ctypes.c_longlong), ("visitor_arg", self.visitor.argument_type) ] def __init__(self, reduction_ptr, visitor_arg, batch_stride=0) -> None: self.reduction_ptr = reduction_ptr self.visitor_arg = visitor_arg self.batch_stride = batch_stride self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "threadblock_shape_m": str(operation.tile_description.threadblock_shape[0]), "threadblock_shape_n": str(operation.tile_description.threadblock_shape[1]), "threadblock_shape_k": str(operation.tile_description.threadblock_shape[2]), "element_accumulator": DataTypeTag[self.element_accumulator], "element_reduction": DataTypeTag[self.element_reduction], "element_reduction_accumulator": DataTypeTag[self.element_reduction_accumulator], "output_tile_iterator": operation.procedural_name() + "_default::Epilogue::OutputTileIterator", "visitor_name": self.visitor.instance_name, "visitor": self.visitor.emit(operation), } return SubstituteTemplate(self.Template, values)
cutlass-main
python/cutlass/backend/epilogue.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from bfloat16 import bfloat16 import cutlass_bindings import numpy as np from cutlass.backend import compiler from cutlass.backend.gemm_operation import GemmGroupedArguments, GemmOperationGrouped from cutlass.backend.library import DataTypeSize, ShortDataTypeNames from cutlass.backend.memory_manager import get_allocated_size from cutlass.backend.test.gemm_testbed import getTensorRef, getTensorView, transpose class TestbedGrouped: def __init__(self, operation: GemmOperationGrouped, seed: int = 2080) -> None: compiler.add_module([operation]) self.seed = seed self.operation = operation element_size = DataTypeSize[operation.A.element] self.dtype_A = self.numpy_type(operation.A.element) self.dtype_B = self.numpy_type(operation.B.element) self.dtype_C = self.numpy_type(operation.C.element) self.dtype_D = self.numpy_type(operation.C.element) if element_size == 1: self.scope_max = 1 self.scope_min = 0 elif element_size <= 8: self.scope_max = 1 self.scope_min = -1 elif element_size == 16: self.scope_max = 4 self.scope_min = -4 else: self.scope_max = 8 self.scope_min = -8 #: compute type self.compute_type = operation.epilogue_functor.element_epilogue self.accumulator_type = ( operation.tile_description.math_instruction.element_accumulator ) @staticmethod def numpy_type(type): if type == cutlass_bindings.float64: return np.float64 elif type == cutlass_bindings.float32: return np.float32 elif type == cutlass_bindings.float16: return np.float16 elif type == cutlass_bindings.bfloat16: return bfloat16 elif type == cutlass_bindings.int32: return np.int32 elif type == cutlass_bindings.int8: return np.int8 else: raise ValueError("unsupported type: %s" % ShortDataTypeNames[type]) def uniform_init(self, size, dtype): if dtype in [np.float32, np.float16, bfloat16, np.float64]: return np.ceil( np.random.uniform( low=self.scope_min - 0.5, high=self.scope_max - 0.5, size=size ).astype(dtype) ) else: return np.random.uniform( low=self.scope_min - 1, high=self.scope_max + 1, size=size ).astype(dtype) def print_problem_size(self, p): problem_size = "problem: %d, %d, %d\n" % (p.m(), p.n(), p.k()) print(problem_size) def run(self, problem_count: int, alpha: float = 1.0, beta: float = 0.0) -> bool: assert get_allocated_size() == 0, ( "%d byte of pool memory is not released in previous run" % get_allocated_size() ) # initialize passed = False np.random.seed(self.seed) # generate the problem sizes problem_sizes = [] tensor_As = [] tensor_Bs = [] tensor_Cs = [] tensor_Ds = [] tensor_D_refs = [] for i in range(problem_count): if self.dtype_A == np.int8: if i == 0: problem_size = cutlass_bindings.gemm.GemmCoord(48, 16, 32) else: problem_size = cutlass_bindings.gemm.GemmCoord( 16 * np.random.randint(0, 64) + 48, 16 * np.random.randint(0, 64) + 48, 16 * np.random.randint(0, 64) + 48, ) else: if i == 0: problem_size = cutlass_bindings.gemm.GemmCoord(48, 16, 8) else: problem_size = cutlass_bindings.gemm.GemmCoord( 8 * np.random.randint(0, 64) + 24, 8 * np.random.randint(0, 64) + 24, 8 * np.random.randint(0, 64) + 24, ) tensor_As.append( self.uniform_init( size=(problem_size.m() * problem_size.k(),), dtype=self.dtype_A ) ) tensor_Bs.append( self.uniform_init( size=(problem_size.n() * problem_size.k(),), dtype=self.dtype_B ) ) tensor_Cs.append( self.uniform_init( size=(problem_size.m() * problem_size.n(),), dtype=self.dtype_C ) ) tensor_Ds.append( np.zeros( shape=(problem_size.m() * problem_size.n(),), dtype=self.dtype_D ) ) tensor_D_refs.append( np.ones( shape=(problem_size.m() * problem_size.n(),), dtype=self.dtype_D ) ) problem_sizes.append(problem_size) arguments = GemmGroupedArguments( operation=self.operation, problem_sizes=problem_sizes, A=tensor_As, B=tensor_Bs, C=tensor_Cs, D=tensor_Ds, output_op=self.operation.epilogue_type(alpha, beta), ) self.operation.run(arguments) arguments.sync() # # Reference check # alpha = self.compute_type(alpha).value() beta = self.compute_type(beta).value() init_acc = self.accumulator_type(0).value() for idx, problem_size in enumerate(problem_sizes): if self.operation.switched: tensor_ref_A = getTensorRef( tensor_As[idx], problem_size, "a", transpose(self.operation.B.layout), ) tensor_ref_B = getTensorRef( tensor_Bs[idx], problem_size, "b", transpose(self.operation.A.layout), ) tensor_ref_C = getTensorRef( tensor_Cs[idx], problem_size, "c", transpose(self.operation.C.layout), ) tensor_ref_D_ref = getTensorRef( tensor_D_refs[idx], problem_size, "d", transpose(self.operation.C.layout), ) else: tensor_ref_A = getTensorRef( tensor_As[idx], problem_size, "a", self.operation.A.layout ) tensor_ref_B = getTensorRef( tensor_Bs[idx], problem_size, "b", self.operation.B.layout ) tensor_ref_C = getTensorRef( tensor_Cs[idx], problem_size, "c", self.operation.C.layout ) tensor_ref_D_ref = getTensorRef( tensor_D_refs[idx], problem_size, "d", self.operation.C.layout ) tensor_view_D_ref = getTensorView( tensor_D_refs[idx], problem_size, "d", self.operation.C.layout ) cutlass_bindings.test.gemm.host.gemm( problem_size, alpha, tensor_ref_A, tensor_ref_B, beta, tensor_ref_C, tensor_ref_D_ref, init_acc, ) tensor_view_D = getTensorView( tensor_Ds[idx], problem_size, "d", self.operation.C.layout ) passed = cutlass_bindings.test.gemm.host.equals( tensor_view_D, tensor_view_D_ref ) try: assert passed except AssertionError: self.print_problem_size(problem_size) del arguments assert get_allocated_size() == 0, ( "%d byte of pool memory is not released after current run" % get_allocated_size() ) return passed
cutlass-main
python/cutlass/backend/test/gemm_grouped_testbed.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import re import subprocess from time import sleep from bfloat16 import bfloat16 import cutlass_bindings import numpy as np from cutlass.backend import compiler from cutlass.backend.conv2d_operation import Conv2dArguments, Conv2dOperation from cutlass.backend.library import DataTypeSize, ShortDataTypeNames, StrideSupport from cutlass.backend.memory_manager import get_allocated_size from cutlass.backend.reduction_operation import ReductionArguments, ReductionOperation from cutlass.backend.test.profiler import GpuTimer from cutlass.backend.utils.software import SubstituteTemplate def getTensorRef(tensor, tensor_layout, conv_kind, problem_size, operand): ptr = tensor.__array_interface__["data"][0] if operand == "a": tensor_coord = cutlass_bindings.conv.implicit_gemm_tensor_a_extent( conv_kind, problem_size ) elif operand == "b": tensor_coord = cutlass_bindings.conv.implicit_gemm_tensor_b_extent( conv_kind, problem_size ) elif operand in ["c", "d"]: tensor_coord = cutlass_bindings.conv.implicit_gemm_tensor_c_extent( conv_kind, problem_size ) else: raise ValueError("unknown operand: " + operand) layout = tensor_layout.packed(tensor_coord) if tensor.dtype == np.float64: return cutlass_bindings.TensorRefF64NHWC(ptr, layout) elif tensor.dtype == np.float32: return cutlass_bindings.TensorRefF32NHWC(ptr, layout) elif tensor.dtype == np.float16: return cutlass_bindings.TensorRefF16NHWC(ptr, layout) if tensor.dtype == bfloat16: return cutlass_bindings.TensorRefBF16NHWC(ptr, layout) elif tensor.dtype == np.int32: return cutlass_bindings.TensorRefS32NHWC(ptr, layout) elif tensor.dtype == np.int8: if tensor_layout == cutlass_bindings.TensorNC32HW32: return cutlass_bindings.TensorRefS8NC32HW32(ptr, layout) elif tensor_layout == cutlass_bindings.TensorC32RSK32: return cutlass_bindings.TensorRefS8C32RSK32(ptr, layout) else: return cutlass_bindings.TensorRefS8NHWC(ptr, layout) else: raise ValueError("unsupported data type") def getTensorView(tensor, tensor_layout, conv_kind, problem_size, operand): tensor_ref = getTensorRef(tensor, tensor_layout, conv_kind, problem_size, operand) if operand == "a": tensor_coord = cutlass_bindings.conv.implicit_gemm_tensor_a_extent( conv_kind, problem_size ) elif operand == "b": tensor_coord = cutlass_bindings.conv.implicit_gemm_tensor_b_extent( conv_kind, problem_size ) elif operand in ["c", "d"]: tensor_coord = cutlass_bindings.conv.implicit_gemm_tensor_c_extent( conv_kind, problem_size ) else: raise ValueError("unknown operand: " + operand) if tensor.dtype == np.float64: return cutlass_bindings.TensorViewF64NHWC(tensor_ref, tensor_coord) elif tensor.dtype == np.float32: return cutlass_bindings.TensorViewF32NHWC(tensor_ref, tensor_coord) elif tensor.dtype == np.float16: return cutlass_bindings.TensorViewF16NHWC(tensor_ref, tensor_coord) elif tensor.dtype == bfloat16: return cutlass_bindings.TensorViewBF16NHWC(tensor_ref, tensor_coord) elif tensor.dtype == np.int32: return cutlass_bindings.TensorViewS32NHWC(tensor_ref, tensor_coord) elif tensor.dtype == np.int8: if tensor_layout == cutlass_bindings.TensorNC32HW32: return cutlass_bindings.TensorViewS8NC32HW32(tensor_ref, tensor_coord) elif tensor_layout == cutlass_bindings.TensorC32RSK32: return cutlass_bindings.TensorViewS8C32RSK32(tensor_ref, tensor_coord) else: return cutlass_bindings.TensorViewS8NHWC(tensor_ref, tensor_coord) else: raise ValueError("unsupported data type") class Conv2dLauncher: """ Launcher that runs the operation on given problem size """ def __init__( self, operation: "Conv2dOperation", seed: int = 2080, interleaved=False, verification=True, profiling=False, warmup_iterations=500, iterations=500, compilation_mode="nvcc", **kwargs, ) -> None: self.enable_cached_results = True self.interleaved = interleaved # create the reduction kernel self.reduction_operation = ReductionOperation( shape=cutlass_bindings.MatrixCoord(4, 32 * operation.C.alignment), C=operation.C, element_accumulator=operation.tile_description.math_instruction.element_accumulator, element_compute=operation.epilogue_functor.element_epilogue, epilogue_functor=operation.epilogue_functor, count=operation.C.alignment, ) #: verify the output result self.verification = verification #: profile the kernel's runtime self.profiling = profiling self.timer = GpuTimer() self.warmup_iterations = warmup_iterations self.iterations = iterations if "sleep" in kwargs.keys(): self.sleep_time = kwargs["sleep"] else: self.sleep_time = 0 # # Compile the operator # if compilation_mode == "nvcc": compiler.nvcc() elif compilation_mode == "nvrtc": compiler.nvrtc() else: raise Exception(f"Unexpected compilation mode {compilation_mode}") compiler.add_module([operation, self.reduction_operation]) self.operation = operation self.dtype_A = Conv2dLauncher.numpy_type(operation.A.element) self.layout_A = operation.A.layout self.dtype_B = Conv2dLauncher.numpy_type(operation.B.element) self.layout_B = operation.B.layout self.dtype_C = Conv2dLauncher.numpy_type(operation.C.element) self.layout_C = operation.C.layout self.dtype_D = Conv2dLauncher.numpy_type(operation.C.element) self.layout_D = operation.C.layout accumulator_size = DataTypeSize[ operation.tile_description.math_instruction.element_accumulator ] element_size = DataTypeSize[operation.A.element] if element_size <= 8: self.randomization_max = 1 elif element_size == 16: if accumulator_size <= 16: self.randomization_max = 2 else: self.randomization_max = 4 else: self.randomization_max = 7 # Seed self.seed = seed self.conv_kind = operation.conv_kind # # Get the host reference function # self.element_compute = operation.epilogue_functor.element_epilogue self.host_conv2d = cutlass_bindings.test.conv.host.conv2d self.timer = GpuTimer() @staticmethod def numpy_type(type): if type == cutlass_bindings.float64: return np.float64 elif type == cutlass_bindings.float32: return np.float32 elif type == cutlass_bindings.float16: return np.float16 elif type == cutlass_bindings.bfloat16: return bfloat16 elif type == cutlass_bindings.int32: return np.int32 elif type == cutlass_bindings.int8: return np.int8 else: raise ValueError("unsupported type: %s" % ShortDataTypeNames[type]) def print_problem_size(self, p, split_k_mode=1): print( "nhwc_%dx%dx%dx%d_krsc_%dx%dx%dx%d_padding_%dx%d_stride_%dx%d_dilation_%dx%d_splitkslices_%d_splitkmode_%d" % ( p.N, p.H, p.W, p.C, p.K, p.R, p.S, p.C, p.pad_h, p.pad_w, p.stride_h, p.stride_w, p.dilation_h, p.dilation_w, p.split_k_slices, split_k_mode, ) ) def uniform_init(self, size, dtype): if dtype in [np.float32, np.float16, bfloat16, np.float64]: return np.ceil( np.random.uniform( low=-self.randomization_max - 0.5, high=self.randomization_max - 0.5, size=size ).astype(dtype) ) else: return np.random.uniform( low=-self.randomization_max - 1, high=self.randomization_max + 1, size=size ).astype(dtype) def eq_gemm_size(self, problem_size): n = problem_size.N p = problem_size.P q = problem_size.Q k = problem_size.K r = problem_size.R s = problem_size.S c = problem_size.C h = problem_size.H w = problem_size.W if self.conv_kind == cutlass_bindings.conv.Operator.fprop: return cutlass_bindings.gemm.GemmCoord(n * p * q, k, r * s * c) elif self.conv_kind == cutlass_bindings.conv.Operator.dgrad: return cutlass_bindings.gemm.GemmCoord(n * h * w, c, k * r * s) else: return cutlass_bindings.gemm.GemmCoord(k, r * s * c, n * p * q) def bytes(self, problem_size, alpha, beta): mnk = self.eq_gemm_size(problem_size) bytes_ = ( (DataTypeSize[self.operation.A.element] * mnk.m() // 8) * mnk.k() + (DataTypeSize[self.operation.B.element] * mnk.n() // 8) * mnk.k() + (DataTypeSize[self.operation.C.element] * mnk.m() // 8) * mnk.n() ) if beta != 0: bytes_ += (DataTypeSize[self.operation.C.element] * mnk.m() // 8) * mnk.n() return bytes_ def flops(self, problem_size): mnk = self.eq_gemm_size(problem_size) flops_mainloop_ = mnk.m() * mnk.n() * mnk.k() * 2 flops_epilogue_ = mnk.m() * mnk.n() * 2 # Adjust mainloop flop for dgrad stride if self.conv_kind == cutlass_bindings.conv.Operator.dgrad: flops_mainloop_ = flops_mainloop_ // ( problem_size.stride_h * problem_size.stride_w ) flops_total_ = flops_mainloop_ + flops_epilogue_ return flops_total_ def host_reference(self, problem_size, tensor_A, tensor_B, tensor_C, alpha, beta): if self.element_compute == cutlass_bindings.float16: alpha = cutlass_bindings.float16(alpha) beta = cutlass_bindings.float16(beta) elif self.element_compute == cutlass_bindings.int32: alpha = int(alpha) beta = int(beta) else: alpha = alpha beta = beta # if cached result is loaded cached_result_loaded = False if self.enable_cached_results: # get problem key cached_test_key = cutlass_bindings.test.conv.host.CreateCachedConv2dTestKey( self.conv_kind, problem_size, alpha, beta, getTensorView( tensor_A, self.layout_A, self.conv_kind, problem_size, "a" ), getTensorView( tensor_B, self.layout_B, self.conv_kind, problem_size, "b" ), getTensorView( tensor_C, self.layout_C, self.conv_kind, problem_size, "c" ), ) cached_test_result = cutlass_bindings.test.conv.host.CachedTestResult() conv2d_result_cache_name = "cached_results_SM%d_%d.txt" % ( self.operation.arch, self.seed, ) cached_results = cutlass_bindings.test.conv.host.CachedTestResultListing( conv2d_result_cache_name ) # CachedTestResultListing cached_results(conv2d_result_cache_name); cached = cached_results.find(cached_test_key) cached_result_loaded = cached[0] if cached_result_loaded: cached_test_result = cached[1] if not cached_result_loaded: # compute the conv2d on host tensor_D_ref = np.ones_like(tensor_C) tensor_ref_A = getTensorRef( tensor_A, self.layout_A, self.conv_kind, problem_size, "a" ) tensor_ref_B = getTensorRef( tensor_B, self.layout_B, self.conv_kind, problem_size, "b" ) tensor_ref_C = getTensorRef( tensor_C, self.layout_C, self.conv_kind, problem_size, "c" ) tensor_ref_D_ref = getTensorRef( tensor_D_ref, self.layout_D, self.conv_kind, problem_size, "d" ) self.host_conv2d( self.conv_kind, problem_size, tensor_ref_A, tensor_ref_B, tensor_ref_C, tensor_ref_D_ref, alpha, beta, ) tensor_view_D_ref = getTensorView( tensor_D_ref, self.layout_D, self.conv_kind, problem_size, "d" ) if self.enable_cached_results: cached_test_result.D = cutlass_bindings.test.conv.host.TensorHash( tensor_view_D_ref ) cached_results = ( cutlass_bindings.test.conv.host.CachedTestResultListing( conv2d_result_cache_name ) ) cached_results.append(cached_test_key, cached_test_result) cached_results.write(conv2d_result_cache_name) else: return tensor_D_ref return cached_test_result.D def equal(self, tensor_D, tensor_D_ref, problem_size): if self.enable_cached_results: tensor_view_D = getTensorView( tensor_D, self.layout_D, self.conv_kind, problem_size, "d" ) tensor_D_hash = cutlass_bindings.test.conv.host.TensorHash(tensor_view_D) return tensor_D_hash == tensor_D_ref else: tensor_view_D = getTensorView( tensor_D, self.layout_D, self.conv_kind, problem_size, "d" ) tensor_view_D_ref = getTensorView( tensor_D_ref, self.layout_D, self.conv_kind, problem_size, "d" ) return cutlass_bindings.test.conv.host.equals( tensor_view_D, tensor_view_D_ref ) def run_cutlass_profiler( self, problem_size, split_k_mode=cutlass_bindings.conv.SplitKMode.Serial, alpha=1.0, beta=0.0, ): if split_k_mode == cutlass_bindings.conv.SplitKMode.Serial: split_k_mode_ = "serial" else: split_k_mode_ = "parallel" cutlass_path = os.getenv("CUTLASS_PATH") assert ( cutlass_path is not None ), "Environment variable 'CUTLASS_PATH' is not defined." values = { "profiler_path": cutlass_path + "/build/tools/profiler/cutlass_profiler", "kernel_name": self.operation.procedural_name(), "verification_providers": "device", "provider": "cutlass", "n": str(problem_size.N), "h": str(problem_size.H), "w": str(problem_size.W), "c": str(problem_size.C), "k": str(problem_size.K), "r": str(problem_size.R), "s": str(problem_size.S), "p": str(problem_size.P), "q": str(problem_size.Q), "pad_h": str(problem_size.pad_h), "pad_w": str(problem_size.pad_w), "stride_h": str(problem_size.stride_h), "stride_w": str(problem_size.stride_w), "dilation_h": str(problem_size.dilation_h), "dilation_w": str(problem_size.dilation_w), "split_k_slices": str(problem_size.split_k_slices), "split_k_mode": split_k_mode_, "alpha": str(alpha), "beta": str(beta), "warmup": str(self.warmup_iterations), "profile": str(self.iterations), } cmd_template = ( "${profiler_path} --kernels=${kernel_name} --verification-providers=${verification_providers}" " --providers=${provider} --n=${n} --h=${h} --w=${w} --c=${c} --k=${k} --r=${r} --s=${s} --p=${p}" " --q=${q} --pad_h=${pad_h} --pad_w=${pad_w} --stride_h={stride_h} --stride_w=${stride_w}" " --dilation_h=${dilation_h} --dilation_w=${dilation_w} --warmup-iterations=${warmup} --profiling-iterations=${profile}" " --split_k_slices=${split_k_slices} --alpha=${alpha} --beta=${beta} --split_k_mode=${split_k_mode}" ) cmd = SubstituteTemplate(cmd_template, values) result = subprocess.getoutput(cmd) m = re.search(r"Runtime:\s+(?P<runtime>\d+.\d+)", result) runtime = float(m.group("runtime")) m = re.search(r"Bytes:\s+(?P<bytes>\d+)", result) bytes = int(m.group("bytes")) m = re.search(r"FLOPs:\s+(?P<flops>\d+)", result) flops = int(m.group("flops")) # check if the problem size matches assert bytes == self.bytes(problem_size, alpha, beta) assert flops == self.flops(problem_size) return runtime def run( self, problem_size, split_k_mode=cutlass_bindings.conv.SplitKMode.Serial, alpha=1.0, beta=0.0, ): assert get_allocated_size() == 0, ( "%d byte of pool memory is not released in previous run" % get_allocated_size() ) # # Initialize input and output tensors # tensor_A_size = cutlass_bindings.conv.implicit_gemm_tensor_a_size( self.conv_kind, problem_size ) tensor_B_size = cutlass_bindings.conv.implicit_gemm_tensor_b_size( self.conv_kind, problem_size ) tensor_C_size = cutlass_bindings.conv.implicit_gemm_tensor_c_size( self.conv_kind, problem_size ) np.random.seed(self.seed) tensor_A = self.uniform_init(size=(tensor_A_size,), dtype=self.dtype_A) tensor_B = self.uniform_init(size=(tensor_B_size,), dtype=self.dtype_B) tensor_C = self.uniform_init(size=(tensor_C_size,), dtype=self.dtype_C) tensor_D = np.zeros(shape=(tensor_C_size,), dtype=self.dtype_D) # # Launch kernel # arguments = Conv2dArguments( operation=self.operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=self.operation.epilogue_type(alpha, beta), split_k_slices=problem_size.split_k_slices, split_k_mode=split_k_mode, ) if split_k_mode == cutlass_bindings.conv.SplitKMode.Parallel: implicit_gemm_size = cutlass_bindings.conv.implicit_gemm_problem_size( self.operation.conv_kind, arguments.problem_size ) reduction_arguments = ReductionArguments( self.reduction_operation, problem_size=[implicit_gemm_size.m(), implicit_gemm_size.n()], partitions=problem_size.split_k_slices, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op=self.reduction_operation.epilogue_type(alpha, beta), ) self.operation.run(arguments) if split_k_mode == cutlass_bindings.conv.SplitKMode.Parallel: self.reduction_operation.run(reduction_arguments) passed = True if self.verification: if split_k_mode == cutlass_bindings.conv.SplitKMode.Parallel: reduction_arguments.sync() else: arguments.sync() tensor_D_ref = self.host_reference( problem_size, tensor_A, tensor_B, tensor_C, alpha, beta ) passed = self.equal(tensor_D, tensor_D_ref, problem_size) try: assert passed except AssertionError: self.print_problem_size(problem_size, split_k_mode) if self.profiling: sleep(self.sleep_time) for _ in range(self.warmup_iterations): self.operation.run(arguments) if split_k_mode == cutlass_bindings.conv.SplitKMode.Parallel: self.reduction_operation.run(reduction_arguments) self.timer.start() for _ in range(self.warmup_iterations): self.operation.run(arguments) if split_k_mode == cutlass_bindings.conv.SplitKMode.Parallel: self.reduction_operation.run(reduction_arguments) self.timer.stop_and_wait() runtime = self.timer.duration(self.iterations) # free memory del arguments if split_k_mode == cutlass_bindings.conv.SplitKMode.Parallel: del reduction_arguments assert get_allocated_size() == 0, ( "%d byte of pool memory is not released after current run" % get_allocated_size() ) if self.profiling: return runtime return passed ######################################################################################################## # TestAllConv: Runs cutlass::conv::device::ImplicitGemmConvolution operator and compares it with reference # TestAllConv runs conv operator on default conv problem sizes from test::conv::device::TestbedConv2dProblemSizes # Additionaly, each conv2d test can provide conv problem sizes (conv_test_sizes) and blacklist of sizes # (conv_blacklist_sizes) ############################################################################################################ def test_all_conv2d_from_compilation_mode( operation: Conv2dOperation, conv_test_sizes, interleaved, compilation_mode): passed = True testbed = Conv2dLauncher(operation, interleaved=interleaved, compilation_mode=compilation_mode) # # Get conv problem sizes to run conv operator # conv_problems = cutlass_bindings.test.conv.TestbedConv2dProblemSizes(64) # Vector of conv2d problem sizes to avoid duplicate runs conv_tested_sizes = [] # Flatten 2D problem_vectors into a 1D problem sizes problem_sizes = conv_problems.conv2d_default_sizes problem_sizes = [conv_problem for conv_problem in problem_sizes] + conv_test_sizes # Sweep conv2d problem sizes (split-k-mode=kSerial, split-k-slices=1, alpha=1.0, beta=0.0) for conv_problem in problem_sizes: if conv_problem in conv_tested_sizes: continue # skip channel dimension % 32 != 0 for interleaved case if interleaved: if conv_problem.K % 32 != 0 or conv_problem.C % 32 != 0: continue # # Procedurally disable certain cases # # CUTLASS DGRAD's *unity* stride specialization only support stride {1, 1} if ( operation.conv_kind == cutlass_bindings.conv.Operator.dgrad and operation.stride_support == StrideSupport.Unity ): if not ((conv_problem.stride_h == 1) and (conv_problem.stride_w == 1)): continue if not interleaved: # Fixed channels algorithm requires channel count to match access size if ( operation.iterator_algorithm == cutlass_bindings.conv.IteratorAlgorithm.fixed_channels ): if conv_problem.C != operation.A.alignment: continue # Few channels algorithm requires channel count to match access size if ( operation.iterator_algorithm == cutlass_bindings.conv.IteratorAlgorithm.few_channels ): if conv_problem.C % operation.A.alignment: continue # CUTLASS DGRAD's *strided* stride specialization supports all stride {stride_h, stride_w} # Although strided dgrad works for all stride combinations, we are only going # to run strided dgrad for non-unity strides if ( operation.conv_kind == cutlass_bindings.conv.Operator.dgrad and operation.stride_support == StrideSupport.Strided ): if (conv_problem.stride_h == 1) and (conv_problem.stride_w == 1): continue # # Test # # push back tested problem size to avoid re-running duplicates conv_tested_sizes.append(conv_problem) passed = testbed.run(conv_problem) if not passed: return False if interleaved: return True # # filter the cases for split K # # Small-channels convolution can't run here. if operation.iterator_algorithm in [ cutlass_bindings.conv.IteratorAlgorithm.fixed_channels, cutlass_bindings.conv.IteratorAlgorithm.few_channels, ]: return True # CUTLASS DGRAD's *stride* specialization does not support split-k mode if ( operation.conv_kind == cutlass_bindings.conv.Operator.dgrad and operation.stride_support == StrideSupport.Strided ): conv_problem = cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 56, 56, 8), cutlass_bindings.Tensor4DCoord(8, 1, 1, 8), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), cutlass_bindings.MatrixCoord(2, 2), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1, ) passed = testbed.run(conv_problem) return passed # Sweep split-k-slice using serial and prallel reduction with non-unity alpha and non-zero beta for # a single conv2d problem size. Convolution unit tests take a long time to run so only sweep parameters # which are abolutely neccessary to catch functional bugs. The below code does provide option to sweep # alpha and beta for local testing, but only runs one value for alpha and beta. conv2d_split_k_test_size = cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(1, 17, 11, 288), cutlass_bindings.Tensor4DCoord(160, 3, 3, 288), cutlass_bindings.Tensor4DCoord(1, 1, 1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.MatrixCoord(1, 1), cutlass_bindings.conv.Mode.cross_correlation, 1, 1, ) split_k_modes = [ cutlass_bindings.conv.SplitKMode.Parallel, cutlass_bindings.conv.SplitKMode.Serial, ] split_k_slices = [1, 2, 3, 4, 201] problem_alpha = [ 2.0, ] problem_beta = [ 2.0, ] for split_k_mode in split_k_modes: for split_k_slice in split_k_slices: for alpha in problem_alpha: for beta in problem_beta: passed = testbed.run( conv2d_split_k_test_size.reset_split_k_slices(split_k_slice), split_k_mode, alpha, beta, ) return passed def test_all_conv2d( operation: Conv2dOperation, conv_test_sizes=[], interleaved=False, compilation_modes=["nvcc", "nvrtc"]): for compilation_mode in compilation_modes: passed = test_all_conv2d_from_compilation_mode(operation, conv_test_sizes, interleaved, compilation_mode) if not passed: return False return True
cutlass-main
python/cutlass/backend/test/conv2d_testbed.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ from cutlass.backend.test.conv2d_testbed import * from cutlass.backend.test.gemm_grouped_testbed import * from cutlass.backend.test.gemm_testbed import * from cutlass.backend.test.profiler import *
cutlass-main
python/cutlass/backend/test/__init__.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import cutlass import cutlass_bindings from cutlass import EpilogueScheduleSuffixes, KernelScheduleSuffixes from cutlass.utils.datatypes import binding_opclass, binding_type from cutlass.backend import library from cutlass.backend.test.gemm_testbed import test_all_gemm from cutlass.backend.utils.software import SubstituteTemplate class Layout: """ Utility class to map transpose and non-transpose terminology to row- and column-major terminology """ T = cutlass_bindings.RowMajor N = cutlass_bindings.ColumnMajor class LayoutCombination: """ Utility class defining all combinations of row- and column-major layouts for operands to a GEMMs """ NNN = (Layout.N, Layout.N, Layout.N) NNT = (Layout.N, Layout.N, Layout.T) NTN = (Layout.N, Layout.T, Layout.N) NTT = (Layout.N, Layout.T, Layout.T) TNN = (Layout.T, Layout.N, Layout.N) TNT = (Layout.T, Layout.N, Layout.T) TTN = (Layout.T, Layout.T, Layout.N) TTT = (Layout.T, Layout.T, Layout.T) def get_name( layouts, alignments, element_output, element_accumulator, element_epilogue, cluster_shape, threadblock_shape, stages, element_a, element_b, arch, opclass, kernel_schedule=None, epilogue_schedule=None, suffix="", ): """ Generates a procedural name for a test case. :param layouts: indexable container of layouts of A, B, and C operands :param alignments: indexable container of alignments of A, B, and C operands :param element_output: data type of the output element :param element_accumulator: data type used in accumulation :param element_epilogue: data type used in computing the epilogue :param cluster_shape: indexable container of dimensions of threadblock cluster to be launched :param threadblock_shape: indexable container of dimensions of threadblock tiles :param stages: number of pipeline stages to use in the kernel :type stages: int :param element_a: data type of operand A :param element_b: data type of operand B :param arch: compute capability of kernel being generated :type arch: int :param opclass: class of operation being performed (e.g., SIMT, Tensor Core) :type opclass: cutlass_bindings.OpClass :param kernel_schedule: kernel_schedule type :type kernel_schedule: cutlass.KernelScheduleType :param epilogue_schedule: epilogue_schedule type :type epilogue_schedule: cutlass.EpilogueScheduleType :param suffix: additional string to add to the suffix of the name :type suffix: str :return: str """ name_format = "test_SM${arch}_Device_Gemm_${eA}${lA}_${eB}${lB}_${eC}${lC}_${opclass}_${acc}_${tbM}x${tbN}x${tbK}_${cM}x${cN}x${cK}_${stages}_align${aA}-${aB}-${aC}${k}${e}${suffix}" return SubstituteTemplate( name_format, { "arch": str(arch), "eA": library.DataTypeNames[binding_type(element_a)], "eB": library.DataTypeNames[binding_type(element_b)], "eC": library.DataTypeNames[binding_type(element_output)], "lA": library.ShortLayoutTypeNames[layouts[0]], "lB": library.ShortLayoutTypeNames[layouts[1]], "lC": library.ShortLayoutTypeNames[layouts[2]], "opclass": library.OpcodeClassNames[binding_opclass(opclass)], "acc": library.DataTypeNames[binding_type(element_accumulator)], "cM": str(cluster_shape[0]), "cN": str(cluster_shape[1]), "cK": str(cluster_shape[2]), "tbM": str(threadblock_shape[0]), "tbN": str(threadblock_shape[1]), "tbK": str(threadblock_shape[2]), "stages": str(stages) if stages is not None else "auto", "aA": str(alignments[0]), "aB": str(alignments[1]), "aC": str(alignments[2]), "k": "" if kernel_schedule is None else KernelScheduleSuffixes[kernel_schedule], "e": "" if epilogue_schedule is None else EpilogueScheduleSuffixes[epilogue_schedule], "suffix": "" if suffix is None else suffix, }, ) def get_name_conv2d( arch, conv_kind, element, element_accumulator, element_output, opclass, threadblock_shape, warp_count, instruction_shape, stages, iterator_algorithm, swizzle, split_k_mode, split_k_slices, activation ): """ Generates a procedural name for a test case for conv2d :param arch: compute capability of kernel being generated :type arch: int :param conv_kind: the convolution type (i.e. fprop, dgrad, wgrad) :type conv_kind: str :param iterator_algorithm: the iterator algorithm applied :type iterator_algorithm: cutlass_bindings.conv.IteratorAlgorithm :param element_a: data type of operand A :param element_b: data type of operand B :param element_c: data type of operand C :param element_accumulator: data type used in accumulation :param opclass: class of operation being performed (e.g., SIMT, Tensor Core) :type opclass: cutlass_bindings.OpClass :param threadblock_shape: indexable container of dimensions of threadblock tiles :param stages: number of pipeline stages to use in the kernel :type stages: int :param stride_support: stride support of dgrad :param alignment: int :type alignment: int :return: str """ if iterator_algorithm is None: iterator_algorithm = "AUTO" if swizzle is None: swizzle = 1 name_format = "test_SM${arch}_Device_Conv2d_${conv_kind}_${iter_alg}_ImplicitGemm_${eA}nhwc_${eB}nhwc_${eC}nhwc_${opclass}_${acc}_${tbM}x${tbN}x${tbK}_${wM}x${wN}x${wK}_${IM}${IN}${IK}_stage${stages}_swizzle${swizzle}_${split_k_mode}${split_k_slices}_${activation}" return SubstituteTemplate( name_format, { "arch": str(arch), "conv_kind": conv_kind, "iter_alg": iterator_algorithm, "eA": library.DataTypeNames[binding_type(element)], "eB": library.DataTypeNames[binding_type(element)], "eC": library.DataTypeNames[binding_type(element_output)], "opclass": opclass, "acc": library.DataTypeNames[binding_type(element_accumulator)], "tbM": str(threadblock_shape[0]), "tbN": str(threadblock_shape[1]), "tbK": str(threadblock_shape[2]), "wM": str(threadblock_shape[0] // warp_count[0]), "wN": str(threadblock_shape[1] // warp_count[1]), "wK": str(threadblock_shape[2] // warp_count[2]), "IM": str(instruction_shape[0]), "IN": str(instruction_shape[1]), "IK": str(instruction_shape[2]), "stages": str(stages), "swizzle": str(swizzle), "split_k_mode": split_k_mode, "split_k_slices": str(split_k_slices), "activation": activation } ) def add_test_gemm( cls=None, cc=None, element=None, layouts=None, alignments=None, element_output=None, element_accumulator=None, cluster_shape=None, threadblock_shape=None, warp_count=None, stages=None, opclass=None, swizzle=None, kernel_schedule=None, epilogue_schedule=None, compilation_modes=['nvcc', 'nvrtc']): """ Create test-running functions with the given specification and set it as a method of ``cls``. :param cls: class to which the generated method will be added :type cls: type :param cc: compute capability to compile for :type cc: int :param element: data type of A and B operands :type element: cutlass.DataType.f16 :param layouts: layouts of A, B, and C operands :type layouts: list or tuple :param alignments: alingments of A, B, and C operands :type alignments: list or tuple :param element_output: data type of the output element :type element_output: cutlass.DataType :param element_accumulator: data type used in accumulation :type element_accumulator: cutlass.DataType :param cluster_shape: dimensions of clusters :type cluster_shape: list or tuple :param threadblock_shape: dimensions of threadblock tiles :type threadblock_shape: list or tuple :param warp_count: warps to be launched per threadblock dimension :type warp_count: list or tuple :param stages: number of pipeline stages to use in the kernel :type stages: int :param opclass: class of operation being performed (e.g., SIMT, Tensor Core) :type opclass: cutlass.OpClass :param swizzle: threadblock swizzling functor :param kernel_schedule: kernel schedule to use :type kernel_schedule: cutlass.KernelScheduleType :param epilogue_schedule: epilogue schedule to use :type epilogue_schedule: cutlass.EpilogueScheduleType :param compilation_modes: list of compilers to used in testing the kernel (options: 'nvrtc', 'nvcc') :type compilation_modes: list """ for compilation_mode in compilation_modes: def run(self): """ Dynamically-generated function that constructs a GEMM operation and verifies it against multiple test cases. """ element_A = element element_B = element layout_A, layout_B, layout_C = layouts alignment_A, alignment_B, alignment_C = alignments plan = cutlass.op.Gemm(element_A=element_A, element_B=element_B, element_C=element_output, element_D=element_output, layout_A=layout_A, layout_B=layout_B, layout_C=layout_C, element_accumulator=element_accumulator, kernel_cc=cc) plan.opclass = opclass if swizzle is not None: plan.swizzling_functor = swizzle td = plan.tile_descriptions()[0] td.threadblock_shape = threadblock_shape td.stages = stages if warp_count is not None: td.warp_count = warp_count td.cluster_shape = cluster_shape op = plan.construct(tile_description=td, alignment_A=alignment_A, alignment_B=alignment_B, alignment_C=alignment_C) self.assertTrue(test_all_gemm(op, 'universal', compilation_mode=compilation_mode)) element_epilogue = element_accumulator name = get_name( layouts=layouts, alignments=alignments, element_output=element_output, element_accumulator=element_accumulator, element_epilogue=element_epilogue, cluster_shape=cluster_shape, threadblock_shape=threadblock_shape, stages=stages, element_a=element, element_b=element, arch=cc, opclass=opclass, kernel_schedule=kernel_schedule, epilogue_schedule=epilogue_schedule, suffix=f'_{compilation_mode}') setattr(cls, name, run)
cutlass-main
python/cutlass/backend/test/utils.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import os import re import subprocess from time import sleep from bfloat16 import bfloat16 from cuda import cuda, cudart import cutlass_bindings import numpy as np from cutlass.backend import compiler from cutlass.backend.gemm_operation import GemmArguments, GemmOperationUniversal from cutlass.backend.library import ( DataTypeSize, DataTypeSizeBytes, MathOperation, ShortDataTypeNames, ) from cutlass.backend.memory_manager import get_allocated_size from cutlass.backend.reduction_operation import ReductionArguments, ReductionOperation from cutlass.backend.test.profiler import GpuTimer from cutlass.backend.utils.datatypes import to_cutlass from cutlass.backend.utils.software import SubstituteTemplate def transpose(layout): if layout == cutlass_bindings.RowMajor: return cutlass_bindings.ColumnMajor elif layout == cutlass_bindings.ColumnMajor: return cutlass_bindings.RowMajor elif layout == cutlass_bindings.ColumnMajorInterleaved32: return cutlass_bindings.RowMajorInterleaved32 elif layout == cutlass_bindings.RowMajorInterleaved32: return cutlass_bindings.ColumnMajorInterleaved32 def getTensorRef( tensor: np.ndarray, problem_size: cutlass_bindings.gemm.GemmCoord, operand: str, layout: cutlass_bindings.layout, batch_offset: int = 0, ): ptr = tensor.__array_interface__["data"][0] if operand == "a": tensor_coord = problem_size.mk() batch_stride = problem_size.m() * problem_size.k() elif operand == "b": tensor_coord = problem_size.kn() batch_stride = problem_size.k() * problem_size.n() elif operand in ["c", "d"]: tensor_coord = problem_size.mn() batch_stride = problem_size.m() * problem_size.n() else: raise ValueError("Unknown operand: " + operand) elt_size = DataTypeSizeBytes[to_cutlass(tensor.dtype)] ptr += batch_offset * batch_stride * elt_size if layout == cutlass_bindings.RowMajor: layout = cutlass_bindings.RowMajor.packed(tensor_coord) layout_tag = "RowMajor" elif layout == cutlass_bindings.ColumnMajor: layout = cutlass_bindings.ColumnMajor.packed(tensor_coord) layout_tag = "ColumnMajor" elif layout == cutlass_bindings.ColumnMajorInterleaved32: layout = cutlass_bindings.ColumnMajorInterleaved32.packed(tensor_coord) layout_tag = "ColumnMajorInterleaved32" elif layout == cutlass_bindings.RowMajorInterleaved32: layout = cutlass_bindings.RowMajorInterleaved32.packed(tensor_coord) layout_tag = "RowMajorInterleaved32" else: raise ValueError("unsupported layout") if tensor.dtype == np.float32: ref_name = "TensorRefF32" + layout_tag elif tensor.dtype == np.float64: ref_name = "TensorRefF64" + layout_tag elif tensor.dtype == np.float16: ref_name = "TensorRefF16" + layout_tag elif tensor.dtype == bfloat16: ref_name = "TensorRefBF16" + layout_tag elif tensor.dtype == np.int8: ref_name = "TensorRefS8" + layout_tag elif tensor.dtype == np.int32: ref_name = "TensorRefS32" + layout_tag else: raise ValueError("unsupported datatype %s" % ShortDataTypeNames[tensor.dtype]) return getattr(cutlass_bindings, ref_name)(ptr, layout) def getTensorView( tensor: np.ndarray, problem_size: cutlass_bindings.gemm.GemmCoord, operand: str, layout: str, batch_offset: int = 0, ): tensor_ref = getTensorRef(tensor, problem_size, operand, layout, batch_offset) if operand == "a": tensor_coord = problem_size.mk() elif operand == "b": tensor_coord = problem_size.kn() elif operand in ["c", "d"]: tensor_coord = problem_size.mn() else: raise ValueError("Unknown operand: " + operand) if layout == cutlass_bindings.RowMajor: layout_tag = "RowMajor" elif layout == cutlass_bindings.ColumnMajor: layout_tag = "ColumnMajor" elif layout == cutlass_bindings.ColumnMajorInterleaved32: layout_tag = "ColumnMajorInterleaved32" elif layout == cutlass_bindings.RowMajorInterleaved32: layout_tag = "RowMajorInterleaved32" else: raise ValueError("unsupported layout") if tensor.dtype == np.float32: ref_name = "TensorViewF32" + layout_tag elif tensor.dtype == np.float64: ref_name = "TensorViewF64" + layout_tag elif tensor.dtype == np.float16: ref_name = "TensorViewF16" + layout_tag elif tensor.dtype == bfloat16: ref_name = "TensorViewBF16" + layout_tag elif tensor.dtype == np.int32: ref_name = "TensorViewS32" + layout_tag elif tensor.dtype == np.int8: ref_name = "TensorViewS8" + layout_tag else: raise ValueError("unsupported datatype") return getattr(cutlass_bindings, ref_name)(tensor_ref, tensor_coord) class GemmUniversalLauncher: def __init__( self, operation: "GemmOperationUniversal", seed: int = 2080, interleaved=False, verification=True, profiling=False, warmup_iterations=500, iterations=500, compiler_mode: str = "nvcc", **kwargs, ) -> None: # create the reduction kernel self.reduction_operation: ReductionOperation = ReductionOperation( shape=cutlass_bindings.MatrixCoord(4, 32 * operation.C.alignment), C=operation.C, element_accumulator=operation.tile_description.math_instruction.element_accumulator, element_compute=operation.epilogue_functor.element_epilogue, epilogue_functor=operation.epilogue_functor, count=operation.C.alignment, ) self.math_operation = operation.tile_description.math_instruction.math_operation #: verify the output result self.verification = verification #: profile the kernel's runtime self.profiling = profiling self.timer = GpuTimer() self.warmup_iterations = warmup_iterations self.iterations = iterations if "sleep" in kwargs.keys(): self.sleep_time = kwargs["sleep"] else: self.sleep_time = 0 # # Compile the operator # if compiler_mode == "nvcc": compiler.nvcc() elif compiler_mode == "nvrtc": compiler.nvrtc() else: raise Exception(f"Unexpected compiler string {compiler_mode}") op_list = [operation] if operation.arch < 90: # Split K via Python is currently only supported for pre-SM90 kernels op_list.append(self.reduction_operation) compiler.add_module(op_list, bypass_cache=True) self.operation = operation self.dtype_A = GemmUniversalLauncher.numpy_type(operation.A.element) self.dtype_B = GemmUniversalLauncher.numpy_type(operation.B.element) self.dtype_C = GemmUniversalLauncher.numpy_type(operation.C.element) self.dtype_D = GemmUniversalLauncher.numpy_type(operation.C.element) accumulator_size = DataTypeSize[ operation.tile_description.math_instruction.element_accumulator ] element_size = DataTypeSize[operation.A.element] if element_size == 1: self.scope_max = 1 self.scope_min = 0 elif element_size <= 8: self.scope_max = 1 self.scope_min = -1 elif element_size == 16: self.scope_max = 4 self.scope_min = -4 else: self.scope_max = 8 self.scope_min = -8 #: seed self.seed: int = seed #: whether the layout is interleaved self.interleaved = interleaved #: compute type self.compute_type = operation.epilogue_functor.element_epilogue self.accumulator_type = ( operation.tile_description.math_instruction.element_accumulator ) def print_problem_size(self, p, mode, batch_count): if mode == cutlass_bindings.gemm.Mode.Gemm: mode = "Gemm" elif mode == cutlass_bindings.gemm.Mode.Batched: mode = "GemmBatched" elif mode == cutlass_bindings.gemm.Mode.GemmSplitKParallel: mode = "GemmSplitKParallel" problem_size = "problem: %d, %d, %d\n batch_count: %d\n mode: %s" % ( p.m(), p.n(), p.k(), batch_count, mode, ) print(problem_size) @staticmethod def numpy_type(type): if type == cutlass_bindings.float64: return np.float64 elif type == cutlass_bindings.float32: return np.float32 elif type == cutlass_bindings.float16: return np.float16 elif type == cutlass_bindings.bfloat16: return bfloat16 elif type == cutlass_bindings.int32: return np.int32 elif type == cutlass_bindings.int8: return np.int8 else: raise ValueError("unsupported type: %s" % ShortDataTypeNames[type]) def uniform_init(self, size, dtype): if dtype in [np.float32, np.float16, bfloat16, np.float64]: return np.ceil( np.random.uniform( low=self.scope_min - 0.5, high=self.scope_max - 0.5, size=size ).astype(dtype) ) else: return np.random.uniform( low=self.scope_min - 1, high=self.scope_max + 1, size=size ).astype(dtype) def reorder_tensor_B(self, tensor_B, problem_size): reordered_tensor_B = np.empty_like(tensor_B) tensor_ref_B = getTensorRef( tensor_B, problem_size, "b", self.operation.B.layout ) reordered_tensor_ref_B = getTensorRef( reordered_tensor_B, problem_size, "b", self.operation.B.layout ) cutlass_bindings.gemm.host.reorder_column( tensor_ref_B, reordered_tensor_ref_B, problem_size ) return reordered_tensor_B def host_reference(self, problem_size, batch_count, tensor_A, tensor_B, tensor_C, alpha, beta): tensor_D_ref = np.ones_like(tensor_C) alpha = self.numpy_type(self.compute_type)(alpha) beta = self.numpy_type(self.compute_type)(beta) init_acc = 0 alpha = self.compute_type(alpha).value() beta = self.compute_type(beta).value() init_acc = self.accumulator_type(init_acc).value() for i in range(batch_count): if self.operation.switched: tensor_ref_A = getTensorRef( tensor_A, problem_size, "a", transpose(self.operation.B.layout), batch_offset=i, ) tensor_ref_B = getTensorRef( tensor_B, problem_size, "b", transpose(self.operation.A.layout), batch_offset=i, ) tensor_ref_C = getTensorRef( tensor_C, problem_size, "c", transpose(self.operation.C.layout), batch_offset=i, ) tensor_ref_D_ref = getTensorRef( tensor_D_ref, problem_size, "d", transpose(self.operation.C.layout), batch_offset=i, ) else: tensor_ref_A = getTensorRef( tensor_A, problem_size, "a", self.operation.A.layout, batch_offset=i ) tensor_ref_B = getTensorRef( tensor_B, problem_size, "b", self.operation.B.layout, batch_offset=i ) tensor_ref_C = getTensorRef( tensor_C, problem_size, "c", self.operation.C.layout, batch_offset=i ) tensor_ref_D_ref = getTensorRef( tensor_D_ref, problem_size, "d", self.operation.C.layout, batch_offset=i, ) if self.math_operation in [MathOperation.multiply_add_saturate]: cutlass_bindings.test.gemm.host.gemm_saturate( problem_size, alpha, tensor_ref_A, tensor_ref_B, beta, tensor_ref_C, tensor_ref_D_ref, init_acc, ) else: cutlass_bindings.test.gemm.host.gemm( problem_size, alpha, tensor_ref_A, tensor_ref_B, beta, tensor_ref_C, tensor_ref_D_ref, init_acc, ) return tensor_D_ref def equal(self, tensor_D, tensor_D_ref, problem_size, batch_count): for i in range(batch_count): tensor_view_D = getTensorView( tensor_D, problem_size, "d", self.operation.C.layout, batch_offset=i ) tensor_view_D_ref = getTensorView( tensor_D_ref, problem_size, "d", self.operation.C.layout, batch_offset=i ) if not cutlass_bindings.test.gemm.host.equals( tensor_view_D, tensor_view_D_ref ): return False return True def bytes(self, problem_size, batch_count=1, alpha=1.0, beta=0.0): m = problem_size.m() n = problem_size.n() k = problem_size.k() bytes = ( (DataTypeSize[self.operation.A.element] * m // 8) * k + (DataTypeSize[self.operation.B.element] * n // 8) * k + (DataTypeSize[self.operation.C.element] * m // 8) * n ) if beta != 0: bytes += (DataTypeSize[self.operation.C.element] * m // 8) * n bytes *= batch_count return bytes def flops(self, problem_size, batch_count=1): m = problem_size.m() n = problem_size.n() k = problem_size.k() flops_ = (m * n * k) * 2 * batch_count return flops_ def run_cutlass_profiler( self, mode, problem_size, batch_count=1, alpha=1.0, beta=0.0 ): cutlass_path = os.getenv("CUTLASS_PATH") assert ( cutlass_path is not None ), "Environment variable 'CUTLASS_PATH' is not defined." values = { "profiler_path": cutlass_path + "/build/tools/profiler/cutlass_profiler", "kernel_name": self.operation.procedural_name(), "verification_providers": "device", "provider": "cutlass", "m": str(problem_size.m()), "n": str(problem_size.n()), "k": str(problem_size.k()), "split_k_slices": str(batch_count), "alpha": str(alpha), "beta": str(beta), "warmup": str(self.warmup_iterations), "profile": str(self.iterations), } cmd_template = ( "${profiler_path} --kernels=${kernel_name} --verification-providers=${verification_providers}" " --providers=${provider} --m=${m} --n=${n} --k=${k}" ) cmd = SubstituteTemplate(cmd_template, values) result = subprocess.getoutput(cmd) m = re.search(r"Runtime:\s+(?P<runtime>\d+.\d+)", result) runtime = float(m.group("runtime")) m = re.search(r"Bytes:\s+(?P<bytes>\d+)", result) bytes = int(m.group("bytes")) m = re.search(r"FLOPs:\s+(?P<flops>\d+)", result) flops = int(m.group("flops")) # check if the problem size matches assert bytes == self.bytes(problem_size, alpha, beta) assert flops == self.flops(problem_size) return runtime def run(self, mode, problem_size, batch_count=1, split_k_slices=1, alpha=1.0, beta=0.0): assert get_allocated_size() == 0, ( "%d byte of pool memory is not released in previous run" % get_allocated_size() ) np.random.seed(self.seed) # Assign an actual batch count in cases where we are not running in batched mode. # This is to differentiate between the number of split K slices and the batch count, # which are overloaded within the single `batch_count` variable. true_batch_count = ( batch_count if mode == cutlass_bindings.gemm.Mode.Batched else 1 ) tensor_A = self.uniform_init( size=(problem_size.m() * problem_size.k() * true_batch_count,), dtype=self.dtype_A, ) tensor_B = self.uniform_init( size=(problem_size.n() * problem_size.k() * true_batch_count,), dtype=self.dtype_B, ) tensor_C = self.uniform_init( size=(problem_size.m() * problem_size.n() * true_batch_count,), dtype=self.dtype_C, ) tensor_D = np.zeros( shape=(problem_size.m() * problem_size.n() * true_batch_count,), dtype=self.dtype_D, ) # # Launch kernel # arguments = GemmArguments( operation=self.operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=self.operation.epilogue_type(alpha, beta), gemm_mode=mode, split_k_slices=split_k_slices, batch=batch_count, ) if mode == cutlass_bindings.gemm.Mode.GemmSplitKParallel: reduction_arguments = ReductionArguments( self.reduction_operation, problem_size=[problem_size.m(), problem_size.n()], partitions=split_k_slices, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op=self.reduction_operation.epilogue_type(alpha, beta), ) self.operation.run(arguments) if mode == cutlass_bindings.gemm.Mode.GemmSplitKParallel: self.reduction_operation.run(reduction_arguments) passed = True if self.verification: if mode == cutlass_bindings.gemm.Mode.GemmSplitKParallel: reduction_arguments.sync() else: arguments.sync() tensor_D_ref = self.host_reference( problem_size, true_batch_count, tensor_A, tensor_B, tensor_C, alpha, beta, ) passed = self.equal(tensor_D, tensor_D_ref, problem_size, true_batch_count) try: assert passed except AssertionError: self.print_problem_size(problem_size, mode, batch_count) if self.profiling: sleep(self.sleep_time) for _ in range(self.warmup_iterations): self.operation.run(arguments) if mode == cutlass_bindings.gemm.Mode.GemmSplitKParallel: self.reduction_operation.run(reduction_arguments) self.timer.start() for _ in range(self.iterations): self.operation.run(arguments) if mode == cutlass_bindings.gemm.Mode.GemmSplitKParallel: self.reduction_operation.run(reduction_arguments) self.timer.stop_and_wait() runtime = self.timer.duration(self.iterations) # free memory and clear buffers del arguments if mode == cutlass_bindings.gemm.Mode.GemmSplitKParallel: del reduction_arguments assert get_allocated_size() == 0, ( "%d byte of pool memory is not released after current run" % get_allocated_size() ) if self.profiling: return runtime return passed def test_all_gemm(operation: "GemmOperationUniversal", testcase="universal", compilation_mode="nvcc"): passed = True minimum_operand_element_size = min( DataTypeSize[operation.A.element], DataTypeSize[operation.B.element] ) opcode_class = operation.tile_description.math_instruction.opcode_class if opcode_class == cutlass_bindings.OpClass.Simt: alignment = 1 else: alignment = 128 // minimum_operand_element_size # int8_t gemm alignment constraints if opcode_class == cutlass_bindings.OpClass.Simt and operation.A.element == cutlass_bindings.int8 and operation.A.layout == cutlass_bindings.ColumnMajor: alignment_m = 4 else: alignment_m = alignment if ( opcode_class == cutlass_bindings.OpClass.Simt and operation.B.element == cutlass_bindings.int8 and operation.A.layout == cutlass_bindings.RowMajor ): alignment_n = 4 else: alignment_n = alignment if ( opcode_class == cutlass_bindings.OpClass.Simt and operation.A.element == cutlass_bindings.int8 and operation.B.element == cutlass_bindings.int8 and ( operation.A.layout == cutlass_bindings.RowMajor or operation.B.layout == cutlass_bindings.ColumnMajor ) ): alignment_k = 4 else: alignment_k = alignment threadblock_k = operation.tile_description.threadblock_shape[2] if testcase == "interleaved": if operation.A.layout in [ cutlass_bindings.ColumnMajorInterleaved32, cutlass_bindings.RowMajorInterleaved32, ]: interleavedk = 32 else: raise ValueError("Unknown layout") # Split K mode via Python is currently only supported pre-SM90, and when stream K is not used. # Stream K enables split-k functionality with mode `Gemm` and a non-unit batch count. supports_split_k = operation.arch < 90 and not isinstance( operation.swizzling_functor, cutlass_bindings.ThreadblockSwizzleStreamK ) if testcase == "interleaved": modes = [ cutlass_bindings.gemm.Mode.Gemm, ] problem_size_m = [interleavedk, 512 + interleavedk] problem_size_n = [interleavedk, 512 + interleavedk] problem_size_k = [ interleavedk, threadblock_k * operation.tile_description.stages + interleavedk, ] problem_alpha = [1.0] problem_beta = [0.0] batch_counts = [ 1, ] elif testcase == "multistage": modes = [ cutlass_bindings.gemm.Mode.Gemm, ] problem_size_m = [16, 528] problem_size_n = [16, 528] problem_size_k = [ threadblock_k, threadblock_k * operation.tile_description.stages + operation.tile_description.math_instruction.instruction_shape[2], ] problem_alpha = [1.0] problem_beta = [0.0] batch_counts = [ 1, ] else: # universal modes = [cutlass_bindings.gemm.Mode.Gemm] batch_counts = [1, 2, 3, 5, 7] if supports_split_k: modes.append(cutlass_bindings.gemm.Mode.GemmSplitKParallel) problem_size_m = [alignment_m, 512 - 3 * alignment_m] problem_size_n = [alignment_n, 512 - 2 * alignment_n] if operation.tile_description.stages is None: stages_for_k_calc = 7 else: stages_for_k_calc = operation.tile_description.stages problem_size_k = [ alignment_k, threadblock_k * stages_for_k_calc - alignment_k, threadblock_k * stages_for_k_calc * 3 - alignment_k, ] problem_alpha = [1.0] problem_beta = [2.0] testbed = GemmUniversalLauncher(operation, interleaved=(testcase == "interleaved"), compiler_mode=compilation_mode) for mode in modes: for m in problem_size_m: for n in problem_size_n: for k in problem_size_k: for batch_count in batch_counts: for alpha in problem_alpha: for beta in problem_beta: # skip very small K problems if testcase == "universal": if k // batch_count < 2 * threadblock_k: continue problem_size = cutlass_bindings.gemm.GemmCoord(m, n, k) if supports_split_k: split_k_slices = batch_count else: split_k_slices = 1 overridden_mode = mode if ( mode == cutlass_bindings.gemm.Mode.Gemm and batch_count > 1 ): overridden_mode = cutlass_bindings.gemm.Mode.Batched passed = testbed.run( overridden_mode, problem_size, batch_count, split_k_slices, alpha, beta, ) (err,) = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) if not passed: return False return passed
cutlass-main
python/cutlass/backend/test/gemm_testbed.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from cuda import cuda, cudart class GpuTimer: def __init__(self) -> None: self.events = [ cuda.cuEventCreate(cuda.CUevent_flags.CU_EVENT_DEFAULT)[1], cuda.cuEventCreate(cuda.CUevent_flags.CU_EVENT_DEFAULT)[1], ] def start(self, stream=cuda.CUstream(0)): (err,) = cuda.cuEventRecord(self.events[0], stream) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) def stop(self, stream=cuda.CUstream(0)): (err,) = cuda.cuEventRecord(self.events[1], stream) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) pass def stop_and_wait(self, stream=cuda.CUstream(0)): self.stop(stream) if stream: (err,) = cuda.cuStreamSynchronize(stream) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) else: (err,) = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) def duration(self, iterations=1): err, duration = cuda.cuEventElapsedTime(self.events[0], self.events[1]) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) return duration / float(iterations)
cutlass-main
python/cutlass/backend/test/profiler.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Utility functions for interacting with the device """ from cuda import cudart def check_cuda_errors(result: list): """ Checks whether `result` contains a CUDA error raises the error as an exception, if so. Otherwise, returns the result contained in the remaining fields of `result`. :param result: the results of the `cudart` method, consisting of an error code and any method results :type result: list :return: non-error-code results from the `results` parameter """ # `result` is of the format : (cudaError_t, result...) err = result[0] if err.value: raise RuntimeError("CUDA error: {}".format(cudart.cudaGetErrorName(err))) if len(result) == 1: return None elif len(result) == 2: return result[1] else: return result[1:] def device_cc(device: int = 0) -> int: """ Returns the compute capability of the device with ID `device`. :param device: ID of the device to query :type device: int :return: compute capability of the queried device (e.g., 80 for SM80) :rtype: int """ deviceProp = check_cuda_errors(cudart.cudaGetDeviceProperties(device)) major = str(deviceProp.major) minor = str(deviceProp.minor) return int(major + minor)
cutlass-main
python/cutlass/backend/utils/device.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from typing import Union from bfloat16 import bfloat16 import cutlass_bindings import numpy as np from cutlass.backend.library import TensorDescription from cutlass.backend.utils.software import CheckPackages torch_available = CheckPackages().check_torch() if torch_available: import torch class ReferenceModule: def __init__( self, A: TensorDescription, B: TensorDescription, C: TensorDescription ) -> None: self.layout_A = A.layout self.layout_B = B.layout self.layout_C = C.layout def run( self, A: np.ndarray, B: np.ndarray, C: np.ndarray, problem_size: cutlass_bindings.gemm.GemmCoord, alpha: float = 1.0, beta: float = 0.0, bias=False, batch=1, ): """ Compute the reference result on CPU Args: A: dense operator with shape (M, K) in row-major and (K, M) in column-major B: dense operator with shape (K, N) in row-major and (N, K) in column-major C: dense operator with shape (M, N) in row-major and (N, M) in column-major """ M, N, K = problem_size.m(), problem_size.n(), problem_size.k() if isinstance(A, np.ndarray): if self.layout_A == cutlass_bindings.RowMajor: A_row = np.reshape(A, newshape=(batch, M, K)) else: A_col = np.reshape(A, newshape=(batch, K, M)) A_row = np.transpose(A_col, axes=(0, 2, 1)) if self.layout_B == cutlass_bindings.RowMajor: B_row = np.reshape(B, newshape=(batch, K, N)) else: B_col = np.reshape(B, newshape=(batch, N, K)) B_row = np.transpose(B_col, axes=(0, 2, 1)) if self.layout_C == cutlass_bindings.RowMajor: if bias: C_row = np.reshape(C, newshape=(batch, 1, N)) else: C_row = np.reshape(C, newshape=(batch, M, N)) else: if bias: C_row = np.reshape(C, newshape=(batch, M, 1)) else: C_col = np.reshape(C, newshape=(batch, N, M)) C_row = np.transpose(C_col, axes=(0, 2, 1)) if A_row.dtype == bfloat16: # numpy's einsum doesn't support bfloat16 out_row = ( np.einsum( "bik,bkj->bij", A_row.astype(np.float32), B_row.astype(np.float32), ) * alpha + C_row * beta ) out_row = out_row.astype(C_row.dtype) else: out_row = np.einsum("bik,bkj->bij", A_row, B_row) * alpha + C_row * beta if self.layout_C == cutlass_bindings.ColumnMajor: out = np.transpose(out_row, axes=(0, 2, 1)) else: out = out_row return out.ravel() elif isinstance(A, torch.Tensor): if self.layout_A == cutlass_bindings.RowMajor: A_row = A.view((M, K)) else: A_col = A.view((K, M)) A_row = torch.permute(A_col, (1, 0)) if self.layout_B == cutlass_bindings.RowMajor: B_row = B.view((K, N)) else: B_col = B.view((N, K)) B_row = torch.permute(B_col, (1, 0)) if self.layout_C == cutlass_bindings.RowMajor: C_row = C.view((M, N)) else: C_col = C.view((N, M)) C_row = torch.permute(C_col, (1, 0)) out_row = torch.matmul(A_row, B_row) * alpha + C_row * beta if self.layout_C == cutlass_bindings.ColumnMajor: out = torch.permute(out_row, (1, 0)) else: out = out_row return torch.flatten(out) ##################################################################################################### # Conv2d ##################################################################################################### if torch_available: import torch class Conv2dReferenceModule: def __init__( self, A: TensorDescription, B: TensorDescription, C: TensorDescription, kind: cutlass_bindings.conv.Operator.fprop, ) -> None: self.layout_A = A.layout self.layout_B = B.layout self.layout_C = C.layout self.kind = kind def run( self, A: Union[np.ndarray, torch.Tensor], B: Union[np.ndarray, torch.Tensor], C: Union[np.ndarray, torch.Tensor], problem_size, alpha=1.0, beta=0.0, bias=False, ) -> np.ndarray: """ Compute the reference result on CPU """ n = problem_size.N h = problem_size.H w = problem_size.W c = problem_size.C k = problem_size.K r = problem_size.R s = problem_size.S p = problem_size.P q = problem_size.Q stride_h = problem_size.stride_h stride_w = problem_size.stride_w pad_h = problem_size.pad_h pad_w = problem_size.pad_w dilation_h = problem_size.dilation_h dilation_w = problem_size.dilation_w groups = problem_size.groups if isinstance(A, np.ndarray): # the pytorch activation layout is NCHW # weight layout is Cout Cin Kh Kw (also NCHW) if self.layout_A == cutlass_bindings.TensorNHWC: A_nhwc = np.reshape(A, newshape=(n, h, w, c)) A_torch_nhwc = torch.from_numpy(A_nhwc).to("cuda") A_torch_nchw = torch.permute(A_torch_nhwc, (0, 3, 1, 2)) if self.layout_B == cutlass_bindings.TensorNHWC: B_nhwc = np.reshape(B, newshape=(k, r, s, c)) B_torch_nhwc = torch.from_numpy(B_nhwc).to("cuda") B_torch_nchw = torch.permute(B_torch_nhwc, (0, 3, 1, 2)) if self.layout_C == cutlass_bindings.TensorNHWC: C_nhwc = np.reshape(C, newshape=(n, p, q, k)) C_torch_nhwc = torch.from_numpy(C_nhwc).to("cuda") C_torch_nchw = torch.permute(C_torch_nhwc, (0, 3, 1, 2)) elif isinstance(A, torch.Tensor): if self.kind == cutlass_bindings.conv.Operator.wgrad: if self.layout_A == cutlass_bindings.TensorNHWC: A_nhwc = A.view((n, p, q, k)) A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2)) if self.layout_B == cutlass_bindings.TensorNHWC: B_nhwc = B.view((n, h, w, c)) B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2)) if self.layout_C == cutlass_bindings.TensorNHWC: if bias: C_nhwc = C.view((1, 1, 1, c)) else: C_nhwc = C.view((k, r, s, c)) C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2)) elif self.kind == cutlass_bindings.conv.Operator.dgrad: if self.layout_A == cutlass_bindings.TensorNHWC: A_nhwc = A.view((n, p, q, k)) A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2)) if self.layout_B == cutlass_bindings.TensorNHWC: B_nhwc = B.view((k, r, s, c)) B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2)) if self.layout_C == cutlass_bindings.TensorNHWC: if bias: C_nhwc = C.view((1, 1, 1, c)) else: C_nhwc = C.view((n, h, w, c)) C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2)) else: if self.layout_A == cutlass_bindings.TensorNHWC: A_nhwc = A.view((n, h, w, c)) A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2)) if self.layout_B == cutlass_bindings.TensorNHWC: B_nhwc = B.view((k, r, s, c)) B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2)) if self.layout_C == cutlass_bindings.TensorNHWC: if bias: C_nhwc = C.view((1, 1, 1, k)) else: C_nhwc = C.view((n, p, q, k)) C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2)) if self.kind == cutlass_bindings.conv.Operator.fprop: D_torch_nchw = ( alpha * torch.nn.functional.conv2d( A_torch_nchw, B_torch_nchw, stride=(stride_h, stride_w), padding=(pad_h, pad_w), dilation=(dilation_h, dilation_w), groups=groups, ) + beta * C_torch_nchw ) elif self.kind == cutlass_bindings.conv.Operator.dgrad: D_torch_nchw = ( alpha * torch.nn.grad.conv2d_input( (n, c, h, w), B_torch_nchw, A_torch_nchw, padding=(pad_h, pad_w), stride=(stride_h, stride_w), ).to(torch.float32) + beta * C_torch_nchw ) elif self.kind == cutlass_bindings.conv.Operator.wgrad: D_torch_nchw = ( alpha * torch.nn.grad.conv2d_weight( B_torch_nchw, (k, c, r, s), A_torch_nchw, padding=(pad_h, pad_w), stride=(stride_h, stride_w), ).to(torch.float32) + beta * C_torch_nchw ) if self.layout_C == cutlass_bindings.TensorNHWC: if isinstance(A, np.ndarray): D_torch_out = ( torch.permute(D_torch_nchw, (0, 2, 3, 1)).detach().cpu().numpy() ) elif isinstance(A, torch.Tensor): D_torch_out = torch.permute(D_torch_nchw, (0, 2, 3, 1)) return D_torch_out.flatten()
cutlass-main
python/cutlass/backend/utils/reference_model.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ from cutlass.backend.utils.datatypes import * from cutlass.backend.utils.device import check_cuda_errors, device_cc from cutlass.backend.utils.reference_model import ReferenceModule from cutlass.backend.utils.software import ( CheckPackages, SubstituteTemplate, device_sm_count, get_memory_pool, )
cutlass-main
python/cutlass/backend/utils/__init__.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Utility functions for converting between frontend datatypes and CUTLASS datatypes """ import cutlass_bindings from cutlass.backend.utils.software import CheckPackages numpy_available = CheckPackages().check_numpy() if numpy_available: import numpy as np numpy_to_cutlass_dict = { np.float16: cutlass_bindings.float16, np.float32: cutlass_bindings.float32, np.float64: cutlass_bindings.float64, np.int8: cutlass_bindings.int8, np.int32: cutlass_bindings.int32, np.dtype('float16'): cutlass_bindings.float16, np.dtype('float32'): cutlass_bindings.float32, np.dtype('float64'): cutlass_bindings.float64, np.dtype('int8'): cutlass_bindings.int8, np.dtype('int32'): cutlass_bindings.int32, } def numpy_to_cutlass(inp): numpy_available = CheckPackages().check_numpy() if numpy_available: return numpy_to_cutlass_dict.get(inp, None) cupy_available = CheckPackages().check_cupy() if cupy_available: import cupy as cp cupy_to_cutlass_dict = { cp.float16: cutlass_bindings.float16, cp.float32: cutlass_bindings.float32, cp.float64: cutlass_bindings.float64, } def cupy_to_cutlass(inp): cupy_available = CheckPackages().check_cupy() if cupy_available: return cupy_to_cutlass_dict.get(inp, None) torch_available = CheckPackages().check_torch() if torch_available: import torch torch_to_cutlass_dict = { torch.half: cutlass_bindings.float16, torch.float16: cutlass_bindings.float16, torch.float: cutlass_bindings.float32, torch.float32: cutlass_bindings.float32, torch.double: cutlass_bindings.float64, torch.float64: cutlass_bindings.float64, } def torch_to_cutlass(inp): if torch_available: return torch_to_cutlass_dict.get(inp, None) try: import bfloat16 bfloat16_available = True numpy_to_cutlass_dict[np.dtype(bfloat16.bfloat16)] = cutlass_bindings.bfloat16 except ImportError: bfloat16_available = False def bfloat16_to_cutlass(inp): if bfloat16_available: if inp == bfloat16.bfloat16: return cutlass_bindings.bfloat16 def to_cutlass(inp): for cvt_fn in [ bfloat16_to_cutlass, cupy_to_cutlass, numpy_to_cutlass, torch_to_cutlass, ]: out = cvt_fn(inp) if out is not None: return out raise Exception( "No available conversion from type {} to a CUTLASS type.".format(inp) )
cutlass-main
python/cutlass/backend/utils/datatypes.py
# SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import re import sys from cutlass.backend.memory_manager import PoolMemoryManager class CheckPackages: def __init__(self) -> None: pass def check_cupy(self): if "cupy" in sys.modules: return True else: try: import cupy cupy_available = True except ImportError: print("cupy is not loaded.") def check_numpy(self): if "numpy" in sys.modules: return True else: try: import numpy numpy_available = True except ImportError: print("numpy is not loaded.") def check_torch(self): if "torch" in sys.modules: return True else: try: import torch torch_available = True except ImportError: print("torch is not loaded.") def SubstituteTemplate(template, values): text = template changed = True while changed: changed = False for key, value in values.items(): regex = "\\$\\{%s\\}" % key newtext = re.sub(regex, value, text) if newtext != text: changed = True text = newtext return text # this._device_sm_count = None def device_sm_count(): # Query the number of SMs, if needed # if this._device_sm_count is None: from cuda import cuda _device = 0 err, _device_sm_count = cuda.cuDeviceGetAttribute( cuda.CUdevice_attribute.CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, _device ) if err != cuda.CUresult.CUDA_SUCCESS: raise Exception( "Failed to retireve SM count. " f"cuDeviceGetAttribute() failed with error: {cuda.cuGetErrorString(err)[1]}" ) return _device_sm_count def get_memory_pool(init_pool_size=0, max_pool_size=2 ** 34): memory_pool = PoolMemoryManager( init_pool_size=init_pool_size, max_pool_size=max_pool_size ) return memory_pool
cutlass-main
python/cutlass/backend/utils/software.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from cutlass.emit.pytorch import pytorch
cutlass-main
python/cutlass/emit/__init__.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Utilities for generating source for building a PyTorch CUDA extension that using a CUTLASS kernel. If specified, the extension can be JIT compiled via PyTorch's ``cpp_extension.load`` method. Example usage with JIT compilation: .. highlight:: python .. code-block:: python plan = cutlass.op.Gemm(element=torch.float32, layout=cutlass.LayoutType.RowMajor) op = plan.construct() mod = cutlass.emit.pytorch(op, 'cutlass_gemm', 80, jit=True) # Generate inputs for the GEMM A, B, C = [torch.ones((512, 512)).to('cuda') for _ in range(3)] # Run the module D = mod.run(A, B, C) Example usage without JIT compilation: .. highlight:: python .. code-block:: python plan = cutlass.op.Gemm(element=torch.float32, layout=cutlass.LayoutType.RowMajor) op = plan.construct() cutlass.emit.pytorch(op, 'cutlass_gemm', 80, jit=False, sourcedir='output') After this call, the directory ``output`` contains ``setup.py``, ``cutlass_gemm.cpp``, and ``cutlass_gemm_kernel.cu``. The module can be built from within ``output`` by running: ``TORCH_CUDA_ARCH_LIST="8.0" python setup.py develop --user``. The module can later be used in Python via: .. highlight:: python .. code-block:: python import torch import cutlass_gemm # Generate inputs for the GEMM A, B, C = [torch.ones((512, 512)).to('cuda') for _ in range(3)] # Run the module D = cutlass_gemm.run(A, B, C) """ import logging import os import cutlass_bindings from cutlass import CUTLASS_PATH, logger, swizzle from cutlass.backend.gemm_operation import GemmOperationGrouped, GemmOperationUniversal from cutlass.backend.conv2d_operation import Conv2dOperation from cutlass.backend.library import ApiVersion, ConvKindNames from cutlass.backend.utils.software import CheckPackages, SubstituteTemplate from cutlass.emit import common torch_available = CheckPackages().check_torch() if torch_available: import torch _PYTORCH_CUDA_TEMPLATE = common._CSTYLE_AUTOGEN_COMMENT + """ #include <cuda_runtime.h> #include <torch/extension.h> #include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include "cutlass/cutlass.h" #include "cutlass/util/device_memory.h" // helper function allocating the memory void* device_memory_allocation(size_t size, int device_id=0) { if (size > 0) { torch::Device device(torch::kCUDA, device_id); cudaStream_t stream = at::cuda::getCurrentCUDAStream(); torch::TensorOptions options = torch::TensorOptions().dtype(torch::kI8).device(device); at::Tensor device_tensor = torch::empty({(long)size,}, options); return reinterpret_cast<void*>(device_tensor.data_ptr()); } else { return nullptr; } } ${includes} ${declaration} ${impl} """ _PYTORCH_GEMM_CPP_TEMPLATE = common._CSTYLE_AUTOGEN_COMMENT + """ #include <torch/extension.h> #include <ATen/ATen.h> #include <pybind11/stl.h> // CUDA forward declarations at::Tensor ${name}_kernel(const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt, float alpha=1.f, float beta=0.f); // C++ interface at::Tensor ${name}(const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt, float alpha=1.f, float beta=0.f) { return ${name}_kernel(A, B, C, alpha, beta); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("run", py::overload_cast<const at::Tensor&, const at::Tensor&, at::optional<const at::Tensor>, float, float>(&${name}), py::arg("A"), py::arg("B"), py::arg("C") = nullptr, py::arg("alpha") = 1.f, py::arg("beta") = 0.f); } """ _PYTORCH_GROUPED_GEMM_CPP_TEMPLATE = common._CSTYLE_AUTOGEN_COMMENT + """ #include <torch/extension.h> #include <ATen/ATen.h> #include <pybind11/stl.h> // CUDA forward declarations std::vector<at::Tensor> ${name}_kernel(const std::vector<at::Tensor>& A, const std::vector<at::Tensor>& B, at::optional<const std::vector<at::Tensor>> C=at::nullopt, float alpha=1.f, float beta=0.f); // C++ interface std::vector<at::Tensor> ${name}(const std::vector<at::Tensor>& A, const std::vector<at::Tensor>& B, at::optional<const std::vector<at::Tensor>> C=at::nullopt, float alpha=1.f, float beta=0.f) { return ${name}_kernel(A, B, C, alpha, beta); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("run", py::overload_cast<const std::vector<at::Tensor>&, const std::vector<at::Tensor>&, at::optional<const std::vector<at::Tensor>>, float, float>(&${name}), py::arg("A"), py::arg("B"), py::arg("C") = nullptr, py::arg("alpha") = 1.f, py::arg("beta") = 0.f); } """ _PYTORCH_CONV2D_FPROP_CPP_TEMPLATE = common._CSTYLE_AUTOGEN_COMMENT + """ #include <torch/extension.h> #include <ATen/ATen.h> #include <pybind11/stl.h> // CUDA forward declarations at::Tensor ${name}_kernel( const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt, std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1}, float alpha=1.f, float beta=0.f, std::string split_k_mode="serial", int split_k_slices=1); // C++ interface at::Tensor ${name}( const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt, std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1}, float alpha=1.f, float beta=0.f, std::string split_k_mode="serial", int split_k_slices=1) { return ${name}_kernel(A, B, C, stride, padding, dilation, alpha, beta, split_k_mode, split_k_slices); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("run", py::overload_cast< const at::Tensor&, const at::Tensor&, at::optional<const at::Tensor>, std::tuple<int, int>, std::tuple<int, int>, std::tuple<int, int>, float, float, std::string, int>( &${name}), py::arg("A"), py::arg("B"), py::arg("C") = nullptr, py::arg("stride") = std::make_tuple(1, 1), py::arg("padding") = std::make_tuple(1, 1), py::arg("dilation") = std::make_tuple(1, 1), py::arg("alpha") = 1.f, py::arg("beta") = 0.f, py::arg("split_k_mode") = "serial", py::arg("split_k_slices") = 1); } """ _PYTORCH_CONV2D_GRAD_CPP_TEMPLATE = common._CSTYLE_AUTOGEN_COMMENT + """ #include <torch/extension.h> #include <ATen/ATen.h> #include <pybind11/stl.h> // CUDA forward declarations at::Tensor ${name}_kernel( std::tuple<int, int, int, int> result_size, const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt, std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1}, float alpha=1.f, float beta=0.f, std::string split_k_mode="serial", int split_k_slices=1); // C++ interface at::Tensor ${name}( std::tuple<int, int, int, int> result_size, const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt, std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1}, float alpha=1.f, float beta=0.f, std::string split_k_mode="serial", int split_k_slices=1) { return ${name}_kernel(result_size, A, B, C, stride, padding, dilation, alpha, beta, split_k_mode, split_k_slices); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("run", py::overload_cast< std::tuple<int, int, int, int>, const at::Tensor&, const at::Tensor&, at::optional<const at::Tensor>, std::tuple<int, int>, std::tuple<int, int>, std::tuple<int, int>, float, float, std::string, int>( &${name}), py::arg("result_size"), py::arg("A"), py::arg("B"), py::arg("C") = nullptr, py::arg("stride") = std::make_tuple(1, 1), py::arg("padding") = std::make_tuple(1, 1), py::arg("dilation") = std::make_tuple(1, 1), py::arg("alpha") = 1.f, py::arg("beta") = 0.f, py::arg("split_k_mode") = "serial", py::arg("split_k_slices") = 1); } """ _PYTORCH_GEMM_INCLUDES = { ApiVersion.v2x: """ #include "cutlass/gemm/device/gemm_universal.h" """, ApiVersion.v3x: """ #include "cutlass/gemm/device/gemm_universal_adapter.h" #include "cutlass/gemm/collective/collective_builder.hpp" #include "cutlass/gemm/device/gemm_universal_adapter.h" #include "cutlass/gemm/kernel/gemm_universal.hpp" #include "cutlass/epilogue/collective/default_epilogue.hpp" #include "cutlass/util/packed_stride.hpp" """, } _PYTORCH_GROUPED_GEMM_INCLUDES = """ #include "cutlass/gemm/kernel/default_gemm_grouped.h" #include "cutlass/gemm/device/gemm_grouped.h" """ _PYTORCH_CONV2D_INCLUDES = """ #include "cutlass/conv/kernel/default_conv2d_fprop.h" #include "cutlass/conv/kernel/default_conv2d_dgrad.h" #include "cutlass/conv/kernel/default_conv2d_wgrad.h" #include "cutlass/conv/device/implicit_gemm_convolution.h" """ _CUTLASS_TYPE_TO_TORCH_TYPE = { cutlass_bindings.float16: "torch::kF16", cutlass_bindings.float32: "torch::kF32", cutlass_bindings.float64: "torch::kF64", cutlass_bindings.int8: "torch::I8", cutlass_bindings.int32: "torch::I32", } _PYTORCH_GEMM_IMPL_TEMPLATE_2x = ( common._CUTLASS_KERNEL_RUN_GEMM_2x + """ at::Tensor ${name}_kernel(const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C, float alpha, float beta) { int M = A.size(0); int N = B.size(1); int K = A.size(1); typename DeviceKernel::ElementC* ptrC = (C == at::nullopt) ? nullptr : reinterpret_cast<typename DeviceKernel::ElementC*>(C->contiguous().data_ptr()); at::Tensor D = B.new_empty({M, N}, ${torch_type_C}); cutlass::Status status = ${name}_kernel_run(M, N, K, reinterpret_cast<typename DeviceKernel::ElementA*>(A.contiguous().data_ptr()), reinterpret_cast<typename DeviceKernel::ElementB*>(B.contiguous().data_ptr()), ptrC, reinterpret_cast<typename DeviceKernel::ElementC*>(D.contiguous().data_ptr()), ElementCompute(alpha), ElementCompute(beta)); TORCH_CHECK(status == cutlass::Status::kSuccess, "CUTLASS kernel failed"); return D; } """ ) _PYTORCH_GEMM_IMPL_TEMPLATE_3x = ( common._CUTLASS_KERNEL_RUN_GEMM_3x + """ bool hw_info_queried = false; cutlass::KernelHardwareInfo hw_info; at::Tensor ${name}_kernel(const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C, float alpha, float beta) { int M = A.size(0); int N = B.size(1); int K = A.size(1); int L = 1; // Query hardware info if we haven't already if (!hw_info_queried) { hw_info.device_id = 0; hw_info.sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id); } typename DeviceKernel::ElementC* ptrC = (C == at::nullopt) ? nullptr : reinterpret_cast<typename DeviceKernel::ElementC*>(C->contiguous().data_ptr()); at::Tensor D = B.new_empty({M, N}, ${torch_type_C}); cutlass::Status status = ${name}_kernel_run(M, N, K, L, reinterpret_cast<typename DeviceKernel::ElementA*>(A.contiguous().data_ptr()), reinterpret_cast<typename DeviceKernel::ElementB*>(B.contiguous().data_ptr()), ptrC, reinterpret_cast<typename DeviceKernel::ElementC*>(D.contiguous().data_ptr()), ElementCompute(alpha), ElementCompute(beta), hw_info); TORCH_CHECK(status == cutlass::Status::kSuccess, "CUTLASS kernel failed"); return D; } """ ) _PYTORCH_GROUPED_GEMM_IMPL_TEMPLATE = ( common._CUTLASS_KERNEL_RUN_GROUPED_GEMM_2x + """ std::vector<at::Tensor> ${name}_kernel(const std::vector<at::Tensor>& A, const std::vector<at::Tensor>& B, at::optional<const std::vector<at::Tensor>> C, float alpha, float beta) { size_t num = A.size(); // To avoid performing many small cudaMallocs and host-to-device copies, // we serialize the grouped GEMM arguments on the host, allocate one // large chunk of device memory, and perform a single cudaMemcpy to // copy the host data to the device. Allocation overheads could be // avoided by using a memory pool. // Calculate the total size of the data to be copied from host to device size_t total_size = sizeof(cutlass::gemm::GemmCoord) + sizeof(DeviceKernel::ElementA*) + sizeof(DeviceKernel::ElementB*) + sizeof(DeviceKernel::ElementC*) + sizeof(DeviceKernel::ElementC*) + sizeof(int64_t) + sizeof(int64_t) + sizeof(int64_t); total_size *= num; // num * sizeof(cutlass::gemm::GemmCoord) may leave one at a non-multiple // of sizeof(DeviceKernel::ElementA*) (which will be 64 on a 64-bit system). // To ensure that we don't end up having misaligned loads in the kernel, // we pad to the nearest multiple of 8. // // Note that, even on a 32-bit system (for which sizeof(X*) will not equal // sizeof(int64_t)), only padding between the list of GemmCoords and the // list of ptr_As is sufficient because the set of four equal-length lists of pointers // (A*, B*, C*, D*) will ensure that the first list of int64_ts will always // start on a multiple of 8. int64_t padding = 8 - (total_size % 8); total_size += padding; uint8_t* host_data = new uint8_t[total_size]; cutlass::DeviceAllocation<uint8_t> device_data(total_size); uint8_t* start = host_data; cutlass::gemm::GemmCoord* problem_sizes_host = reinterpret_cast<cutlass::gemm::GemmCoord*>(start); // Apply the padding after the list of GemmCoords start += num * sizeof(cutlass::gemm::GemmCoord) + padding; int64_t ptr_A_offset = start - host_data; DeviceKernel::ElementA** ptr_A_host = reinterpret_cast<DeviceKernel::ElementA**>(start); start += num * sizeof(DeviceKernel::ElementA*); int64_t ptr_B_offset = start - host_data; DeviceKernel::ElementB** ptr_B_host = reinterpret_cast<DeviceKernel::ElementB**>(start); start += num * sizeof(DeviceKernel::ElementB*); int64_t ptr_C_offset = start - host_data; DeviceKernel::ElementC** ptr_C_host = reinterpret_cast<DeviceKernel::ElementC**>(start); start += num * sizeof(DeviceKernel::ElementC*); int64_t ptr_D_offset = start - host_data; DeviceKernel::ElementC** ptr_D_host = reinterpret_cast<DeviceKernel::ElementC**>(start); start += num * sizeof(DeviceKernel::ElementC*); int64_t lda_offset = start - host_data; int64_t* lda_host = reinterpret_cast<int64_t*>(start); start += num * sizeof(int64_t); int64_t ldb_offset = start - host_data; int64_t* ldb_host = reinterpret_cast<int64_t*>(start); start += num * sizeof(int64_t); int64_t ldc_offset = start - host_data; int64_t* ldc_host = reinterpret_cast<int64_t*>(start); start += num * sizeof(int64_t); std::vector<at::Tensor> D(num); bool need_C = (C != at::nullopt) && (beta != 0.f); for (size_t i = 0; i < num; ++i) { int M = A[i].size(0); int N = B[i].size(1); int K = A[i].size(1); *(problem_sizes_host + i) = {M, N, K}; *(ptr_A_host + i) = reinterpret_cast<typename DeviceKernel::ElementA*>(A[i].contiguous().data_ptr()); *(ptr_B_host + i) = reinterpret_cast<typename DeviceKernel::ElementB*>(B[i].contiguous().data_ptr()); if (need_C) { *(ptr_C_host + i) = reinterpret_cast<typename DeviceKernel::ElementC*>(C->at(i).contiguous().data_ptr()); } else { *(ptr_C_host + i) = nullptr; } D[i] = B[i].new_empty({M, N}, ${torch_type_C}); *(ptr_D_host + i) = reinterpret_cast<typename DeviceKernel::ElementC*>(D[i].contiguous().data_ptr()); *(lda_host + i) = DeviceKernel::LayoutA::packed({M, K}).stride(0); *(ldb_host + i) = DeviceKernel::LayoutB::packed({K, N}).stride(0); *(ldc_host + i) = DeviceKernel::LayoutC::packed({M, N}).stride(0); } device_data.copy_from_host(host_data); cutlass::Status status = ${name}_kernel_run( num, reinterpret_cast<cutlass::gemm::GemmCoord*>(device_data.get()), reinterpret_cast<DeviceKernel::ElementA**>(device_data.get() + ptr_A_offset), reinterpret_cast<DeviceKernel::ElementB**>(device_data.get() + ptr_B_offset), reinterpret_cast<DeviceKernel::ElementC**>(device_data.get() + ptr_C_offset), reinterpret_cast<DeviceKernel::ElementC**>(device_data.get() + ptr_D_offset), reinterpret_cast<int64_t*>(device_data.get() + lda_offset), reinterpret_cast<int64_t*>(device_data.get() + ldb_offset), reinterpret_cast<int64_t*>(device_data.get() + ldc_offset), reinterpret_cast<int64_t*>(device_data.get() + ldc_offset), ElementCompute(alpha), ElementCompute(beta)); delete[] host_data; TORCH_CHECK(status == cutlass::Status::kSuccess, "CUTLASS kernel failed"); return D; } """ ) _PYTORCH_CONV2D_IMPL_TEMPLATE_2x = """ cudaStream_t stream = at::cuda::getCurrentCUDAStream(); cutlass::Status status = ${name}_kernel_run( &problem_size, reinterpret_cast<typename UnderlyingKernel::ElementA*>(A.data_ptr()), reinterpret_cast<typename UnderlyingKernel::ElementB*>(B.data_ptr()), ptrC, reinterpret_cast<typename UnderlyingKernel::ElementC*>(D.data_ptr()), alpha, beta, split_k_mode, stream, B.device().index()); TORCH_CHECK(status == cutlass::Status::kSuccess, "CUTLASS kernel failed"); return D; } """ _PYTORCH_CONV2D_FPROP_IMPL_TEMPLATE_2x = ( common._CUTLASS_KERNEL_RUN_CONV2D_2x + """ at::Tensor ${name}_kernel(const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt, std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1}, float alpha=1.f, float beta=0.f, std::string split_k_mode="serial", int split_k_slices=1) { int N, H, W, C_, K, R, S, P, Q; N = A.size(0); C_ = A.size(1); H = A.size(2); W = A.size(3); K = B.size(0); R = B.size(2); S = B.size(3); cutlass::conv::Conv2dProblemSize problem_size( cutlass::Tensor4DCoord(N, H, W, C_), cutlass::Tensor4DCoord(K, R, S, C_), cutlass::Tensor4DCoord(std::get<0>(padding), std::get<0>(padding), std::get<1>(padding), std::get<1>(padding)), cutlass::MatrixCoord(std::get<0>(stride), std::get<1>(stride)), cutlass::MatrixCoord(std::get<0>(dilation), std::get<1>(dilation)), cutlass::conv::Mode::kCrossCorrelation, split_k_slices ); P = problem_size.P; Q = problem_size.Q; typename UnderlyingKernel::ElementC* ptrC = (C == at::nullopt) ? nullptr : reinterpret_cast<typename UnderlyingKernel::ElementC*>(C->data_ptr()); torch::TensorOptions options = torch::TensorOptions().dtype(${torch_type_C}).device(B.device()).memory_format(at::MemoryFormat::ChannelsLast); at::Tensor D = torch::zeros({N, K, P, Q}, options); """ + _PYTORCH_CONV2D_IMPL_TEMPLATE_2x ) _PYTORCH_CONV2D_DGRAD_IMPL_TEMPLATE_2x = ( common._CUTLASS_KERNEL_RUN_CONV2D_2x + """ at::Tensor ${name}_kernel(std::tuple<int, int, int, int> input_size, const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt, std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1}, float alpha=1.f, float beta=0.f, std::string split_k_mode="serial", int split_k_slices=1) { int N, H, W, C_, K, R, S; N = std::get<0>(input_size); C_ = std::get<1>(input_size); H = std::get<2>(input_size); W = std::get<3>(input_size); K = B.size(0); R = B.size(2); S = B.size(3); cutlass::conv::Conv2dProblemSize problem_size( cutlass::Tensor4DCoord(N, H, W, C_), cutlass::Tensor4DCoord(K, R, S, C_), cutlass::Tensor4DCoord(std::get<0>(padding), std::get<0>(padding), std::get<1>(padding), std::get<1>(padding)), cutlass::MatrixCoord(std::get<0>(stride), std::get<1>(stride)), cutlass::MatrixCoord(std::get<0>(dilation), std::get<1>(dilation)), cutlass::conv::Mode::kCrossCorrelation, split_k_slices ); typename UnderlyingKernel::ElementC* ptrC = (C == at::nullopt) ? nullptr : reinterpret_cast<typename UnderlyingKernel::ElementC*>(C->data_ptr()); torch::TensorOptions options = torch::TensorOptions().dtype(${torch_type_C}).device(B.device()).memory_format(at::MemoryFormat::ChannelsLast); at::Tensor D = torch::empty({N, C_, H, W}, options); """ + _PYTORCH_CONV2D_IMPL_TEMPLATE_2x ) _PYTORCH_CONV2D_WGRAD_IMPL_TEMPLATE_2x = ( common._CUTLASS_KERNEL_RUN_CONV2D_2x + """ at::Tensor ${name}_kernel(std::tuple<int, int, int, int> weight_size, const at::Tensor& A, const at::Tensor& B, at::optional<const at::Tensor> C=at::nullopt, std::tuple<int, int> stride={1, 1}, std::tuple<int, int> padding={0, 0}, std::tuple<int, int> dilation={1, 1}, float alpha=1.f, float beta=0.f, std::string split_k_mode="serial", int split_k_slices=1) { int N, H, W, C_, K, R, S; K = std::get<0>(weight_size); C_ = std::get<1>(weight_size); R = std::get<2>(weight_size); S = std::get<3>(weight_size); N = B.size(0); H = B.size(2); W = B.size(3); cutlass::conv::Conv2dProblemSize problem_size( cutlass::Tensor4DCoord(N, H, W, C_), cutlass::Tensor4DCoord(K, R, S, C_), cutlass::Tensor4DCoord(std::get<0>(padding), std::get<0>(padding), std::get<1>(padding), std::get<1>(padding)), cutlass::MatrixCoord(std::get<0>(stride), std::get<1>(stride)), cutlass::MatrixCoord(std::get<0>(dilation), std::get<1>(dilation)), cutlass::conv::Mode::kCrossCorrelation, split_k_slices ); typename UnderlyingKernel::ElementC* ptrC = (C == at::nullopt) ? nullptr : reinterpret_cast<typename UnderlyingKernel::ElementC*>(C->data_ptr()); torch::TensorOptions options = torch::TensorOptions().dtype(${torch_type_C}).device(B.device()).memory_format(at::MemoryFormat::ChannelsLast); at::Tensor D = torch::empty({K, C_, R, S}, options); """ + _PYTORCH_CONV2D_IMPL_TEMPLATE_2x ) _PYTORCH_SETUP_PY = common._PYSTYLE_AUTOGEN_COMMENT + """ from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup( name='${name}', ext_modules=[ CUDAExtension('${name}', [ '${name}.cpp', '${name}_kernel.cu', ], include_dirs=['${cutlass_path}/include', '${cutlass_path}/tools/util/include'], extra_compile_args=['-std=c++17'] ), ], cmdclass={ 'build_ext': BuildExtension }) """ def _generate_setup(name: str, sourcedir: str): """ Generates a setup.py file for the extension :param name: name of the module to generate :type name: str :param sourcedir: directory to which generated source files should be written :type sourcedir: str """ setup_py_file = os.path.join(sourcedir, "setup.py") setup_source = SubstituteTemplate( _PYTORCH_SETUP_PY, {"name": name, "cutlass_path": CUTLASS_PATH} ) with open(setup_py_file, "w") as outfile: outfile.write(setup_source) class _ArchListSetter: """ Utility context manager for temporarily setting the value of the ``TORCH_CUDA_ARCH_LIST`` environment variable when building a PyTorch CUDA module. ``TORCH_CUDA_ARCH_LIST`` is a space-delmited list of compute capabilites for which a PyTorch CUDA module should be compiled. For example, ``TORCH_CUDA_ARCH_LIST="7.0 8.0"`` would result in the inclusion of ``-gencode=arch=compute_70,code=sm_70`` and ``-gencode=arch=compute_80,code=sm_80`` in the compilation of the module. This utility wraps the building of a PyTorch CUDA module with a setting of this environment variable according to the current compute capability being targetted. Example usage: .. highlight:: python .. code-block:: python # Temporarily set TORCH_CUDA_ARCH_LIST="8.0" with _ArchListSetter(80): # Perform JIT compilation and loading of the module mod = torch.utils.cpp_extension.load(...) :param cc: compute capability :type cc: int """ _TORCH_CUDA_ARCH_LIST = "TORCH_CUDA_ARCH_LIST" def __init__(self, cc: int): self.cc_str = ".".join(list(str(cc))) def __enter__(self): """ Saves the old value of TORCH_CUDA_ARCH_LIST and reset it to the new value based on ``cc`` """ self.old_arch_list = os.getenv(_ArchListSetter._TORCH_CUDA_ARCH_LIST) os.environ[_ArchListSetter._TORCH_CUDA_ARCH_LIST] = self.cc_str return self def __exit__(self, exc_type, exc_val, traceback): """ Restores the old value of TORCH_CUDA_ARCH_LIST """ os.environ[_ArchListSetter._TORCH_CUDA_ARCH_LIST] = self.old_arch_list def _jit(name: str, cc: int, cpp_file: str, cuda_file: str): """ JIT compiles and loads a PyTorch CUDA extension. :param name: name of the module to generate :type name: str :param cc: compute capability of the device the module should target :type cc: int :param cpp_file: path to file containing extension's C++ interface :type cpp_file: str :param cuda_file: path to file containing extension's CUDA interface :type cuda_file: str :return: loaded PyTorch module """ from torch.utils.cpp_extension import load extra_cuda_cflags = ["-std=c++17"] if cc == 90: # PyTorch does not currently add the sm_90a target when compute capability # 9.0 is set within TORCH_CUDA_ARCH_LIST. Thus, we manually add the sm_90a target. extra_cuda_cflags.append("-gencode=arch=compute_90a,code=sm_90a") with _ArchListSetter(cc): jitmodule = load( name, [cpp_file, cuda_file], extra_cuda_cflags=extra_cuda_cflags, extra_include_paths=[ os.path.join(CUTLASS_PATH, "include"), os.path.join(CUTLASS_PATH, "tools/util/include"), ], verbose=(logger.level == logging.DEBUG) ) return jitmodule def _pytorch_gemm(op, name: str, cc: int, jit: bool = False, sourcedir: str = ""): """ Generates source for building a PyTorch CUDA module that leverages the CUTLASS GEMM specified by ``op``. If the ``jit`` parameter is set to true, the module is just-in-time compiled, loaded, and returned. :param op: operation to emit in the module :param name: name of the module to generate :type name: str :param cc: compute capability of the device the module should target :type cc: int :param jit: whether the module should be just-in-time compiled :type jit: bool :param sourcedir: directory to which generated source files should be written :type sourcedir: str :return: loaded PyTorch module if ``jit=True`` or ``None`` otherwise """ if sourcedir != "" and not os.path.isdir(sourcedir): os.makedirs(sourcedir) cuda_file = os.path.join(sourcedir, name + "_kernel.cu") extra_kw = {} if op.api == ApiVersion.v3x: impl_template = _PYTORCH_GEMM_IMPL_TEMPLATE_3x else: impl_template = _PYTORCH_GEMM_IMPL_TEMPLATE_2x if isinstance(op.swizzling_functor, swizzle.ThreadblockSwizzleStreamK): extra_kw["args"] = common._CUTLASS_KERNEL_ARGS_2x_STREAM_K else: extra_kw["args"] = common._CUTLASS_KERNEL_ARGS_2x impl_template = ( _PYTORCH_GEMM_IMPL_TEMPLATE_3x if op.api == ApiVersion.v3x else _PYTORCH_GEMM_IMPL_TEMPLATE_2x ) cuda_impl = SubstituteTemplate(impl_template, {"name": name, **extra_kw}) cuda_source = SubstituteTemplate( _PYTORCH_CUDA_TEMPLATE, { "includes": _PYTORCH_GEMM_INCLUDES[op.api], "declaration": op.rt_module.emit(), "procedural_name": op.procedural_name(), "impl": cuda_impl, "torch_type_C": _CUTLASS_TYPE_TO_TORCH_TYPE[op.C.element], }, ) with open(cuda_file, "w") as outfile: outfile.write(cuda_source) cpp_file = os.path.join(sourcedir, name + ".cpp") cpp_source = SubstituteTemplate( _PYTORCH_GEMM_CPP_TEMPLATE, {"name": name, "description": f"CUTLASS {op.procedural_name()} GEMM"}, ) with open(cpp_file, "w") as outfile: outfile.write(cpp_source) _generate_setup(name, sourcedir) if jit: return _jit(name, cc, cpp_file, cuda_file) return None def _pytorch_grouped_gemm( op, name: str, cc: int, jit: bool = False, sourcedir: str = "" ): """ Generates source for building a PyTorch CUDA module that leverages the CUTLASS grouped GEMM specified by ``op``. If the ``jit`` parameter is set to true, the module is just-in-time compiled, loaded, and returned. :param op: operation to emit in the module :param name: name of the module to generate :type name: str :param cc: compute capability of the device the module should target :type cc: int :param jit: whether the module should be just-in-time compiled :type jit: bool :param sourcedir: directory to which generated source files should be written :type sourcedir: str :return: loaded PyTorch module if ``jit=True`` or ``None`` otherwise """ if op.api != ApiVersion.v2x: raise Exception("Grouped GEMM is currently only supported for CUTLASS 2.x") if sourcedir != "" and not os.path.isdir(sourcedir): os.makedirs(sourcedir) cuda_file = os.path.join(sourcedir, name + "_kernel.cu") cuda_impl = SubstituteTemplate(_PYTORCH_GROUPED_GEMM_IMPL_TEMPLATE, {"name": name}) cuda_source = SubstituteTemplate( _PYTORCH_CUDA_TEMPLATE, { "includes": _PYTORCH_GROUPED_GEMM_INCLUDES, "declaration": op.rt_module.emit(), "procedural_name": op.procedural_name(), "impl": cuda_impl, "torch_type_C": _CUTLASS_TYPE_TO_TORCH_TYPE[op.C.element], }, ) with open(cuda_file, "w") as outfile: outfile.write(cuda_source) cpp_file = os.path.join(sourcedir, name + ".cpp") cpp_source = SubstituteTemplate( _PYTORCH_GROUPED_GEMM_CPP_TEMPLATE, {"name": name, "description": f"CUTLASS {op.procedural_name()} grouped GEMM"}, ) with open(cpp_file, "w") as outfile: outfile.write(cpp_source) _generate_setup(name, sourcedir) if jit: return _jit(name, cc, cpp_file, cuda_file) return None def _pytorch_conv2d(op, name: str, cc: int, jit: bool = False, sourcedir: str = ""): """ Generates source for building a PyTorch CUDA module that leverages the CUTLASS Conv2d specified by ``op``. If the ``jit`` parameter is set to true, the module is just-in-time compiled, loaded, and returned. :param op: operation to emit in the module :param name: name of the module to generate :type name: str :param cc: compute capability of the device the module should target :type cc: int :param jit: whether the module should be just-in-time compiled :type jit: bool :param sourcedir: directory to which generated source files should be written :type sourcedir: str Note that the when conv kind is `dgrad` or `wgrad`, the size of the input `(N, C, H, W)` or weight `(K, C, R, S)` should be provided. This is because there are multiple valid solutions for H/W/R/S given the same P/Q. :return: loaded PyTorch module if ``jit=True`` or ``None`` otherwise """ if sourcedir != "" and not os.path.isdir(sourcedir): os.makedirs(sourcedir) cuda_file = os.path.join(sourcedir, name + "_kernel.cu") extra_kw = {} if op.conv_kind == cutlass_bindings.conv.Operator.fprop: impl_template = _PYTORCH_CONV2D_FPROP_IMPL_TEMPLATE_2x cpp_template = _PYTORCH_CONV2D_FPROP_CPP_TEMPLATE elif op.conv_kind == cutlass_bindings.conv.Operator.dgrad: impl_template = _PYTORCH_CONV2D_DGRAD_IMPL_TEMPLATE_2x cpp_template = _PYTORCH_CONV2D_GRAD_CPP_TEMPLATE elif op.conv_kind == cutlass_bindings.conv.Operator.wgrad: impl_template = _PYTORCH_CONV2D_WGRAD_IMPL_TEMPLATE_2x cpp_template = _PYTORCH_CONV2D_GRAD_CPP_TEMPLATE extra_kw["conv_kind_name"] = ConvKindNames[op.conv_kind].capitalize() extra_kw["torch_type_C"] = _CUTLASS_TYPE_TO_TORCH_TYPE[op.C.element] cuda_impl = SubstituteTemplate(impl_template, {"name": name, **extra_kw}) cuda_source = SubstituteTemplate( _PYTORCH_CUDA_TEMPLATE, { "includes": _PYTORCH_CONV2D_INCLUDES, "declaration": op.rt_module.emit(), "procedural_name": op.procedural_name(), "impl": cuda_impl, "torch_type_C": _CUTLASS_TYPE_TO_TORCH_TYPE[op.C.element], }, ) with open(cuda_file, "w") as outfile: outfile.write(cuda_source) cpp_file = os.path.join(sourcedir, name + ".cpp") cpp_source = SubstituteTemplate( cpp_template, {"name": name, "description": f"CUTLASS {op.procedural_name()} Conv2d"}, ) with open(cpp_file, "w") as outfile: outfile.write(cpp_source) _generate_setup(name, sourcedir) if jit: return _jit(name, cc, cpp_file, cuda_file) return None def pytorch(op, name: str, cc: int, jit: bool = False, sourcedir: str = ""): """ Generates source for building a PyTorch CUDA module that leverages the CUTLASS kernel specified by ``op``. If the ``jit`` parameter is set to true, the module is just-in-time compiled, loaded, and returned. The result of this method is files within ``sourcedir`` that can be used for building a PyTorch module. :param op: operation to emit in the module :param name: name of the module to generate :type name: str :param cc: compute capability of the device the module should target :type cc: int :param jit: whether the module should be just-in-time compiled :type jit: bool :param sourcedir: directory to which generated source files should be written :type sourcedir: str :return: loaded PyTorch module (if ``jit=True``) or None """ device_op = op.device_op() if isinstance(op, GemmOperationUniversal): return _pytorch_gemm(device_op, name, cc, jit, sourcedir) elif isinstance(op, GemmOperationGrouped): return _pytorch_grouped_gemm(device_op, name, cc, jit, sourcedir) elif isinstance(op, Conv2dOperation): return _pytorch_conv2d(device_op, name, cc, jit, sourcedir) else: raise Exception( f"Operation type {type(op)} is not currently supported for PyTorch emission." )
cutlass-main
python/cutlass/emit/pytorch.py
################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Common utilities for emitting CUTLASS kernels """ import cutlass # Strings used for printing information about the generation of emitted scripts _AUTOGEN_STR = f"This file was automatically generated by the CUTLASS {cutlass.__version__} Python interface (https://github.com/nvidia/cutlass/python)" _CSTYLE_AUTOGEN_COMMENT = f"""// {_AUTOGEN_STR} """ _PYSTYLE_AUTOGEN_COMMENT = f"""# {_AUTOGEN_STR} """ _CUTLASS_KERNEL_ARGS_2x = """ typename DeviceKernel::Arguments arguments { cutlass::gemm::GemmUniversalMode::kGemm, {M, N, K}, // problem size 1, {alpha, beta}, A, B, C, D, 0, 0, 0, 0, // batch strides DeviceKernel::LayoutA::packed({M, K}).stride(0), // lda DeviceKernel::LayoutB::packed({K, N}).stride(0), // ldb DeviceKernel::LayoutC::packed({M, N}).stride(0), // ldc DeviceKernel::LayoutC::packed({M, N}).stride(0) // ldd }; """ _CUTLASS_KERNEL_ARGS_2x_STREAM_K = """ typename DeviceKernel::Arguments arguments { cutlass::gemm::GemmUniversalMode::kGemm, {M, N, K}, // problem size 1, {alpha, beta}, A, B, C, D, 0, 0, 0, 0, // batch strides DeviceKernel::LayoutA::packed({M, K}).stride(0), // lda DeviceKernel::LayoutB::packed({K, N}).stride(0), // ldb DeviceKernel::LayoutC::packed({M, N}).stride(0), // ldc DeviceKernel::LayoutC::packed({M, N}).stride(0), // ldd -1 // avail_sms }; """ _CUTLASS_KERNEL_RUN_GEMM_2x = """ using ElementCompute = typename DeviceKernel::EpilogueOutputOp::ElementCompute; cutlass::Status ${name}_kernel_run(int M, int N, int K, const DeviceKernel::ElementA* A, const DeviceKernel::ElementB* B, const DeviceKernel::ElementC* C, DeviceKernel::ElementC* D, ElementCompute alpha, ElementCompute beta) { ${args} size_t workspace_size = DeviceKernel::get_workspace_size(arguments); cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); DeviceKernel gemm_op; cutlass::Status status = gemm_op.initialize(arguments, workspace.get(), nullptr); // CUDA stream if (status != cutlass::Status::kSuccess) { return status; } status = gemm_op(); return status; } """ _CUTLASS_KERNEL_RUN_GEMM_3x = """ using StrideA = typename DeviceKernel::GemmKernel::StrideA; using StrideB = typename DeviceKernel::GemmKernel::StrideB; using StrideC = typename DeviceKernel::GemmKernel::StrideC; using StrideD = typename DeviceKernel::GemmKernel::StrideD; using ElementCompute = typename DeviceKernel::EpilogueOutputOp::ElementCompute; cutlass::Status ${name}_kernel_run( int M, int N, int K, int L, const DeviceKernel::ElementA* A, const DeviceKernel::ElementB* B, const DeviceKernel::ElementC* C, DeviceKernel::ElementC* D, ElementCompute alpha, ElementCompute beta, const cutlass::KernelHardwareInfo& hw_info) { typename DeviceKernel::Arguments arguments{ cutlass::gemm::GemmUniversalMode::kGemm, {M, N, K, L}, // problem size A, // ptrA cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, L)), // stride A B, // ptrB cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(N, K, L)), // stride B { C, // ptrC cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(M, N, L)), // stride C D, // ptrD cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(M, N, L)), // stride D {alpha, beta}, }, hw_info }; size_t workspace_size = DeviceKernel::get_workspace_size(arguments); cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); DeviceKernel gemm_op; cutlass::Status status = gemm_op.run(arguments, workspace.get(), nullptr); // CUDA stream return status; } """ _CUTLASS_KERNEL_RUN_GROUPED_GEMM_2x = """ using ElementCompute = typename DeviceKernel::EpilogueOutputOp::ElementCompute; int threadblock_count = DeviceKernel::sufficient(); cutlass::Status ${name}_kernel_run(int problem_count, cutlass::gemm::GemmCoord* problem_sizes, DeviceKernel::ElementA** A, DeviceKernel::ElementB** B, DeviceKernel::ElementC** C, DeviceKernel::ElementC** D, int64_t* lda, int64_t* ldb, int64_t* ldc, int64_t* ldd, ElementCompute alpha, ElementCompute beta) { typename DeviceKernel::Arguments arguments { problem_sizes, problem_count, threadblock_count, {alpha, beta}, A, B, C, D, lda, ldb, ldc, ldd }; size_t workspace_size = DeviceKernel::get_workspace_size(arguments); cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); DeviceKernel gemm_op; cutlass::Status status = gemm_op.initialize(arguments, workspace.get(), nullptr); // CUDA stream if (status != cutlass::Status::kSuccess) { return status; } status = gemm_op(); return status; } """ _CUTLASS_KERNEL_RUN_CONV2D_2x = """ using UnderlyingKernel = typename DeviceKernel::UnderlyingKernel; namespace { using TensorRefA = typename UnderlyingKernel::TensorRefA; using TensorRefB = typename UnderlyingKernel::TensorRefB; using TensorRefC = typename UnderlyingKernel::TensorRefC; using ElementCompute = typename UnderlyingKernel::EpilogueOutputOp::ElementCompute; } template<typename TensorRef, typename Element> TensorRef get_tensor_ref(cutlass::Tensor4DCoord tensor_coord, Element* ptr){ cutlass::layout::TensorNHWC layout = cutlass::layout::TensorNHWC::packed(tensor_coord); TensorRef tensor_ref(ptr, layout); return tensor_ref; } cutlass::Status ${name}_kernel_run(cutlass::conv::Conv2dProblemSize* problem_size, UnderlyingKernel::ElementA* A, UnderlyingKernel::ElementB* B, UnderlyingKernel::ElementC* C, UnderlyingKernel::ElementC* D, ElementCompute alpha, ElementCompute beta, std::string split_k_mode, cudaStream_t stream, int device_id=0) { // create the tensor references cutlass::Tensor4DCoord tensor_coord_A = cutlass::conv::implicit_gemm_tensor_a_extent( cutlass::conv::Operator::k${conv_kind_name}, *problem_size ); cutlass::Tensor4DCoord tensor_coord_B = cutlass::conv::implicit_gemm_tensor_b_extent( cutlass::conv::Operator::k${conv_kind_name}, *problem_size ); cutlass::Tensor4DCoord tensor_coord_C = cutlass::conv::implicit_gemm_tensor_c_extent( cutlass::conv::Operator::k${conv_kind_name}, *problem_size ); TensorRefA tensor_ref_A = get_tensor_ref<TensorRefA, UnderlyingKernel::ElementA>(tensor_coord_A, A); TensorRefB tensor_ref_B = get_tensor_ref<TensorRefB, UnderlyingKernel::ElementB>(tensor_coord_B, B); TensorRefC tensor_ref_C = get_tensor_ref<TensorRefC, UnderlyingKernel::ElementC>(tensor_coord_C, C); TensorRefC tensor_ref_D = get_tensor_ref<TensorRefC, UnderlyingKernel::ElementC>(tensor_coord_C, D); cutlass::conv::SplitKMode mode; if (split_k_mode == "serial") { mode = cutlass::conv::SplitKMode::kSerial; } else if (split_k_mode == "parallel") { mode = cutlass::conv::SplitKMode::kParallel; } else { throw std::runtime_error("Invalid split_k_mode: " + split_k_mode); } typename DeviceKernel::Arguments arguments{ *problem_size, tensor_ref_A, tensor_ref_B, tensor_ref_C, tensor_ref_D, {alpha, beta}, mode }; DeviceKernel implicit_gemm_op; size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments); void* workspace_ptr = device_memory_allocation(workspace_size, device_id); cutlass::Status status = implicit_gemm_op.can_implement(arguments); if (status != cutlass::Status::kSuccess) { return status; } status = implicit_gemm_op.initialize(arguments, workspace_ptr, stream); if (status != cutlass::Status::kSuccess) { return status; } // // Launch initialized CUTLASS kernel // status = implicit_gemm_op(stream); return status; } """
cutlass-main
python/cutlass/emit/common.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import gen_turing_and_volta as api_generator import gen_sample as sample_creater import gen_cmake as cmake_creater import gen_verify as verify_creater import gen_device as b2b_fused_generator import replace_fix_impl_header import argparse import os import json parser = argparse.ArgumentParser(description="Generates Fused Multi-GEMM CUTLASS Kernels") parser.add_argument("--config-file", default="config.json", help="JSON file containing configuration to generate") parser.add_argument("--gen-name", default="FusedMultiGemmForward", help="Specific the output name") parser.add_argument("--output-dir", default="", help="Specifies the output dir") parser.add_argument("--cutlass-dir", default="", help="Specifies the dependent CUTLASS repo dir") parser.add_argument("--gen-include-cutlass-dir", default="", help="Specifies the generated CUTLASS code include dir, if needed.") args = parser.parse_args() gen_name = args.gen_name cutlass_deps_dir = args.cutlass_dir output_dir = args.output_dir output_dir += "/" cutlass_deps_root = args.gen_include_cutlass_dir if cutlass_deps_root == '': cutlass_deps_root = cutlass_deps_dir + "/include/" cutlass_deps_root +='/' if not os.path.exists(output_dir): os.makedirs(output_dir) if not os.path.exists(output_dir + "/" + "auto_gen"): os.mkdir(output_dir + "/" + "auto_gen") if not os.path.exists(output_dir + "/" + "fixed_impl"): os.mkdir(output_dir + "/" + "fixed_impl" ) if not os.path.exists(output_dir + "/" + "sample"): os.mkdir(output_dir + "/" + "sample" ) if not os.path.exists(output_dir + "/" + "auto_gen" + "/" + "device"): os.mkdir(output_dir + "/" + "auto_gen" + "/" + "device") if not os.path.exists(output_dir + "/" + "auto_gen" + "/" + "kernel"): os.mkdir(output_dir + "/" + "auto_gen" + "/" + "kernel") if not os.path.exists(output_dir + "/" + "auto_gen" + "/" + "threadblock"): os.mkdir(output_dir + "/" + "auto_gen" + "/" + "threadblock") with open(args.config_file, 'r') as infile: gemm_info_dict = json.load(infile) keys = sorted(gemm_info_dict.keys()) fuse_gemm_info = [gemm_info_dict[k] for k in keys] for_cutlass_gen_user_include_header_file = [ cutlass_deps_root + "cutlass/epilogue/thread/linear_combination_leaky_relu.h", cutlass_deps_root + "cutlass/epilogue/thread/linear_combination.h", ] for_fused_wrapper = [ cutlass_deps_root + "cutlass/epilogue/thread/linear_combination_leaky_relu.h", cutlass_deps_root + "cutlass/epilogue/thread/linear_combination.h", "auto_gen/device/" + gen_name + ".h", cutlass_deps_root + "cutlass/gemm/device/gemm_batched.h", cutlass_deps_root + "cutlass/cutlass.h", ] # Copy fixed implementation to the output directory fix_impl = replace_fix_impl_header.replace_fix_impl("../fixed_impl/", output_dir +"/fixed_impl/", cutlass_deps_root) fix_impl.gen_code() auto_gen_output_dir = output_dir + "/auto_gen/" project_root = "" turing_plus = b2b_fused_generator.gen_device(fuse_gemm_info, gen_name, for_cutlass_gen_user_include_header_file, cutlass_deps_root, project_root, auto_gen_output_dir) turing_plus.gen_code(75, 'hmma1688', False) api = api_generator.gen_one_API(fuse_gemm_info, gen_name, for_fused_wrapper, output_dir) api.gen_code() # Generate C++ sample os.system("cp ../leaky_bias.h " + output_dir + "/sample/") os.system("cp ../utils.h " + output_dir + "/sample/") sample_dir = output_dir + "/sample/" sample = sample_creater.gen_test(fuse_gemm_info, gen_name, for_cutlass_gen_user_include_header_file, sample_dir) sample.gen_cpp_sample() cmake_gen = cmake_creater.gen_build_sys(cutlass_deps_dir, output_dir) cmake_gen.gen_code() verify = verify_creater.gen_verify(fuse_gemm_info, gen_name, for_fused_wrapper, output_dir) verify.gen_code()
cutlass-main
examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_all_code.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from typing import * import helper import gen_ir import gen_kernel as gen_ker class gen_device: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, cutlass_deps_root, project_root, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.raw_gemm_info = fuse_gemm_info self.b2b_num = len(fuse_gemm_info) self.user_header_file = user_header_file self.args = {} # device arg struct memebr self.arg_member = [] self.gen_class_name = gen_class_name self.gen_kernel_name = gen_class_name + "Kernel" self.tempalte_args = [] self.__tempalate_arg_list = {'Stages': int, 'SplitKSerial': bool, 'IsBetaZero': bool, 'AlignmentA': int, 'AlignmentB': int} self.file_name = output_dir + "/device/" +gen_class_name +".h" self.sample_dir = output_dir self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root self.this_file_root = output_dir + "/device/" self.first_use_1stage = False ## gen kernel self.gen_kernel = gen_ker.gen_kernel(self.tempalte_args, self.gen_class_name, self.b2b_num, output_dir, cutlass_deps_root, project_root) def __check_arg_type(self, temp_arg): if temp_arg in self.__tempalate_arg_list.keys(): return self.__tempalate_arg_list[temp_arg] find_sub = False for candidate_arg in self.__tempalate_arg_list.keys(): if (temp_arg.find(candidate_arg) != -1): return self.__tempalate_arg_list[candidate_arg] return 'typename' # def gen_B2b2bGemm_class(): def set_arch(self, sm_cap, mma_tp): if sm_cap == 75 or sm_cap == 80 or sm_cap == 86: self.arch = "cutlass::arch::Sm" + str(sm_cap) if mma_tp is 'hmma1688': self.mma_shape = [16, 8, 8] self.mma_tp = 'hmma' elif mma_tp is 'imma8816': self.mma_tp = 'imma' self.mma_shape = [8, 8, 16] else: return 0 def gen_include_header(self): code = '''\ /* Auto Generated code - Do not edit.*/ #pragma once #include \"{cutlass_root}cutlass/cutlass.h\" #include \"{cutlass_root}cutlass/numeric_types.h\" #include \"{cutlass_root}cutlass/arch/arch.h\" #include \"{cutlass_root}cutlass/device_kernel.h\" #include \"{cutlass_root}cutlass/gemm/threadblock/threadblock_swizzle.h\" #include \"{cutlass_root}cutlass/gemm/device/default_gemm_configuration.h\" #include \"{cutlass_root}cutlass/epilogue/thread/linear_combination_relu.h\" #include \"{cutlass_root}cutlass/epilogue/thread/linear_combination.h\" #include \"{project_root}../kernel/b2b_gemm.h\" #include \"{project_root}../kernel/default_b2b_gemm.h\" '''.format(cutlass_root=self.cutlass_deps_root, project_root=self.project_root, this_file_root=self.this_file_root) include_user_header = "" for header in self.user_header_file: include_user_header += "#include \"" + header + "\"\n" return code + include_user_header def gen_code(self, sm_cap, mma_tp, ifprint = True): self.set_arch(sm_cap, mma_tp) self.update_b2b_args() print(self.fuse_gemm_info) self.update_b2b_class_template_args() func_code = self.gen_all_func() member_var_code = "private:\n typename B2bGemmKernel::Params params_;\n" gen_code = gen_ir.gen_template_class(self.gen_class_name, self.tempalte_args, func_code + member_var_code) code = self.gen_include_header() + gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("device", gen_code))) if ifprint: print(code) print("[INFO]: Gen device code output Dir: is ", self.file_name) with open(self.file_name, 'w+') as f: f.write(code) gen_kernel = self.gen_kernel.gen_code(self.first_use_1stage) print(gen_kernel) def update_b2b_class_template_args(self): for arg in self.args.keys(): self.tempalte_args.append([self.__check_arg_type(arg), arg, self.args[arg]]) def update_b2b_args(self): self.args['ElementA'] = helper.type_2_cutlass_type(self.fuse_gemm_info[0]['A_tp']) self.args['LayoutA'] = helper.type_2_cutlass_type(self.fuse_gemm_info[0]['A_format']) cnt = 0 warp_M_tile = 32 # Determine maxmimum N_tile Max_Ntile = 0 for layer in self.fuse_gemm_info: n_tile = layer['mnk'][1] if n_tile > Max_Ntile: Max_Ntile = n_tile if Max_Ntile >= 256: warp_M_tile = 16 stages_temp = [] for layer in self.fuse_gemm_info: cnt_str = str(cnt) B_tp_str= 'ElementB' + cnt_str B_format_str = 'LayoutB' + cnt_str C_tp_str= 'ElementC' + cnt_str C_format_str = 'LayoutC' + cnt_str Acc_str = 'ElementAccumulator' + cnt_str self.args[B_tp_str] = helper.type_2_cutlass_type(layer['B_tp']) self.args[B_format_str] = helper.type_2_cutlass_type(layer['B_format']) self.args[C_tp_str] = helper.type_2_cutlass_type(layer['C_tp']) self.args[C_format_str] = helper.type_2_cutlass_type(layer['C_format']) self.args[Acc_str] = helper.type_2_cutlass_type(layer['Acc_tp']) mnk = layer['mnk'][:] tile_mnk = mnk[:] tile_mnk[2] = 32 # force the ktile is 32 #N tile gen if mnk[1] > 1024: assert(0) elif mnk[1] > 512: tile_mnk[1] = 1024 elif mnk[1] > 256: tile_mnk[1] = 512 elif mnk[1] > 128: tile_mnk[1] = 256 elif mnk[1] > 64: tile_mnk[1] = 128 elif mnk[1] > 32: tile_mnk[1] = 64 else : tile_mnk[1] = 32 if tile_mnk[1] == 512: stages_temp.append(1) else: stages_temp.append(2) tile_mnk[0] = 4 * warp_M_tile epilogue_setted_type = helper.get_epilogue_tp(layer) cutlass_epilogue_name = "LinearCombinationRelu" if epilogue_setted_type.lower() == 'leakyrelu': cutlass_epilogue_name = "LinearCombinationLeakyRelu" elif epilogue_setted_type.lower() == 'identity': cutlass_epilogue_name = "LinearCombination" epilogue_str = 'EpilogueOutputOp' + cnt_str if cnt != len(self.fuse_gemm_info) - 1: n = layer['mnk'][1] Fragments = tile_mnk[1] // 8 * 2 self.args[epilogue_str] = "cutlass::epilogue::thread::" + cutlass_epilogue_name + "<ElementC0_, " + str(Fragments) +", ElementAccumulator0_, ElementAccumulator0_>" else: n = layer['mnk'][1] n_mod_8 = n % 4 N_align_elements = 1 if n_mod_8 == 0: N_align_elements = 8 elif n_mod_8 == 4: N_align_elements = 4 elif n_mod_8 == 2 or n_mod_8 == 6: N_align_elements = 2 self.args[epilogue_str] = "cutlass::epilogue::thread::" + cutlass_epilogue_name+ "<ElementC0_, " + str(N_align_elements) + ", ElementAccumulator0_, ElementAccumulator0_>" ThreadBlockShape_str = 'ThreadblockShape' + cnt_str self.args[ThreadBlockShape_str] = helper.cvt_2_cutlass_shape(tile_mnk) WarpShape_str = 'WarpShape' + cnt_str tile_mnk[0] = warp_M_tile self.args[WarpShape_str] = helper.cvt_2_cutlass_shape(tile_mnk) cnt += 1 self.args['ElementD'] = helper.type_2_cutlass_type(self.fuse_gemm_info[self.b2b_num - 1]['C_tp']) self.args['LayoutD'] = helper.type_2_cutlass_type(self.fuse_gemm_info[self.b2b_num - 1]['C_format']) self.args['InstructionShape'] = helper.cvt_2_cutlass_shape(self.mma_shape) self.args['OperatorClass'] = 'arch::OpClassTensorOp' self.args['ArchTag'] = self.arch self.args['ThreadblockSwizzle'] = 'threadblock::GemmBatchedIdentityThreadblockSwizzle' for i in range(self.b2b_num): self.args[helper.var_idx('Stages', i)] = "2" self.args['AlignmentA'] = str(8) self.args['AlignmentB'] = str(8) self.args['SplitKSerial'] = 'false' self.args['Operator'] = 'typename DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB0_, ElementC0_, ElementAccumulator0_>::Operator' self.args['IsBetaZero'] = 'false' def gen_using_kernel(self): code = "using B2bGemmKernel = typename kernel::DefaultB2bGemm<\n" code += " " + "ElementA,\n" code += " " + "LayoutA,\n" for i in range(self.b2b_num): code += " " + helper.var_idx("ElementB", i) + ",\n" code += " " + helper.var_idx("LayoutB", i) + ",\n" code += " " + helper.var_idx("ElementC", i) + ",\n" code += " " + helper.var_idx("LayoutC", i) + ",\n" code += " " + helper.var_idx("ElementAccumulator", i) + ",\n" code += " " + helper.var_idx("EpilogueOutputOp", i) + ",\n" code += " " + helper.var_idx("ThreadblockShape", i) + ",\n" code += " " + helper.var_idx("WarpShape", i) + ",\n" code += " " + "ElementD,\n" code += " " + "LayoutD,\n" code += " " + "InstructionShape,\n" code += " " + "OperatorClass,\n" code += " " + "ArchTag,\n" code += " " + "ThreadblockSwizzle,\n" for i in range(self.b2b_num): code += " " + helper.var_idx("Stages", i) + ",\n" code += " " + "AlignmentA,\n" code += " " + "AlignmentB,\n" code += " " + "SplitKSerial,\n" code += " " + "Operator,\n" code += " " + "IsBetaZero_\n" code += ">::B2bGemmKernel;\n\n" return code def gen_args(self): def gen_arg_member(b2b_num): data_members = [] for i in range(b2b_num): member_type = "GemmCoord" member_name = "problem_size_" + str(i) data_members.append((member_type, member_name)) member_type = "TensorRef<ElementA const, LayoutA>" member_name = "ref_A0" data_members.append((member_type, member_name)) for i in range(b2b_num): member_type = "TensorRef<ElementB" + str(i) + " const, LayoutB" + str(i) +">" member_name = "ref_B" + str(i) data_members.append((member_type, member_name)) member_type = "TensorRef<ElementC" + str(i) + " const, LayoutC" + str(i) +">" member_name = "ref_C" + str(i) data_members.append((member_type, member_name)) member_type = "TensorRef<ElementD, LayoutD>" member_name = helper.var_idx("ref_D", b2b_num - 1) data_members.append((member_type, member_name)) for i in range(b2b_num): member_type = "typename EpilogueOutputOp" + str(i) + "::Params" member_name = "epilogue" + str(i) data_members.append((member_type, member_name)) data_members.append(('int', 'batch_count')) return data_members def gen_arg_struct_default_ctor(struct_name, data_members, inital_param_num, inital_value): constructs_code = gen_ir.indentation + "CUTLASS_HOST_DEVICE\n" + \ gen_ir.indentation + struct_name + " (): " for i in range(inital_param_num): final_param = ',' if i == inital_param_num - 1: final_param = '{ }' constructs_code += data_members[i][1] + inital_value + final_param constructs_code += "\n" return constructs_code def gen_arg_struct_ctor(struct_name, data_members): constructs_code = gen_ir.indentation + "CUTLASS_HOST_DEVICE\n" + \ gen_ir.indentation + struct_name + " (\n" cnt = 0 param_num = len(data_members) for param in data_members: final = ',\n' if cnt == param_num - 1: final = '\n):\n' constructs_code += gen_ir.indentation + param[0] + " " + param[1] + "_" + final cnt += 1 cnt = 0 for param in data_members: final = '),\n' if cnt == param_num - 1: final = ") { }\n" constructs_code += gen_ir.indentation + param[1] + "(" + param[1] + "_" + final cnt += 1 constructs_code += "\n" return constructs_code # (variable type, variable name) struct_member = gen_arg_member(self.b2b_num) self.arg_member = struct_member codeBody = "" for each_member in struct_member: codeBody += gen_ir.indentation + each_member[0] + " " + each_member[1] + ";\n" codeBody += gen_arg_struct_default_ctor("Arguments", struct_member, self.b2b_num, "(0,0,0)") + "\n" codeBody += gen_arg_struct_ctor("Arguments", struct_member) + "\n" struct_code = gen_ir.gen_struct("Arguments", codeBody) return struct_code def gen_func_constructs(self): code = self.gen_class_name +"() {}" return code def gen_func_initialize(self): code = "Status initialize(Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) {\n" + \ "// Determine grid shape\n" + \ "ThreadblockSwizzle threadblock_swizzle;\n" + \ "cutlass::gemm::GemmCoord grid_shape = threadblock_swizzle.get_tiled_shape(\n" + \ " args.problem_size_0, \n" + \ " { ThreadblockShape0::kM, ThreadblockShape0::kN, ThreadblockShape0::kK },\n" + \ " args.batch_count);\n" + \ "// Initialize the Params structure\n" + \ "params_ = typename B2bGemmKernel::Params{\n" for i in range(self.b2b_num): code += helper.var_idx(" args.problem_size_", i) + ",\n" code += " grid_shape,\n" + \ " args.ref_A0.non_const_ref(),\n" for i in range(self.b2b_num): code += helper.var_idx(" args.ref_B", i) + ".non_const_ref(),\n" code += helper.var_idx(" args.ref_C", i) + ".non_const_ref(),\n" code += helper.var_idx(" args.ref_D", self.b2b_num - 1) + ",\n" for i in range(self.b2b_num): code += helper.var_idx(" args.epilogue", i) + ",\n" code += " args.batch_count\n" code += "};\n" + \ "return Status::kSuccess;\n" + \ "}\n" return code def gen_func_run(self): code = "Status run(cudaStream_t stream = nullptr) {\n" + \ "\n" + \ " ThreadblockSwizzle threadblock_swizzle;\n" + \ "\n" + \ " dim3 grid = threadblock_swizzle.get_grid_shape(params_.grid_tiled_shape);\n" + \ " dim3 block(B2bGemmKernel::kThreadCount, 1, 1);\n" + \ "\n" + \ " cudaError_t result;\n" + \ "\n" + \ " int smem_size = int(sizeof(typename B2bGemmKernel::SharedStorage));\n" + \ " if (smem_size >= (48 << 10)) {\n" + \ " result = cudaFuncSetAttribute(Kernel<B2bGemmKernel>, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size);\n" + \ "\n" + \ " if (result != cudaSuccess) {\n" + \ " return Status::kErrorInternal;\n" + \ " }\n" + \ "\n" + \ " result = cudaFuncSetAttribute(\n" + \ " Kernel<B2bGemmKernel>,\n" + \ " cudaFuncAttributePreferredSharedMemoryCarveout, 100);\n" + \ "\n" + \ " if (result != cudaSuccess) {\n" + \ " return Status::kErrorInternal;\n" + \ " }\n" + \ " }\n" + \ " cutlass::Kernel<B2bGemmKernel><<<grid, block, smem_size, stream>>>(params_);\n" + \ " result = cudaGetLastError();\n" + \ " return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal;\n" + \ " }\n" return code def gen_func_operator(self): opeartor_with_arg_code = "Status operator()(\n" + \ " Arguments const &args,\n" + \ " void *workspace = nullptr,\n" + \ " cudaStream_t stream = nullptr) {\n" + \ " Status status = initialize(args, workspace);\n" + \ " \n" + \ " if (status == Status::kSuccess) {\n" + \ " status = run(stream);\n" + \ " }\n" + \ " return status;\n" + \ "}\n" operator_code = "Status operator()(\n" + \ " cudaStream_t stream = nullptr) {\n" + \ " Status status = run(stream);\n" + \ " return status;\n" + \ "}\n" return opeartor_with_arg_code + "\n" + operator_code def gen_all_func(self): return self.gen_using_kernel() + "\n" + \ self.gen_args() + "\n" + \ self.gen_func_constructs() + "\n" + \ self.gen_func_initialize() + "\n" + \ self.gen_func_run() + "\n" + \ self.gen_func_operator()
cutlass-main
examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_device.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import gen_ir import helper import gen_threadblock as gen_tb class gen_default_Gemm: def __init__(self, template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root): self.gen_class_name = "B2bGemm" self.template_param = template_param self.b2b_num = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_B2bMma(self, specialized_template_args): code = "using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma<\n" code += specialized_template_args code += ">::ThreadblockB2bMma;\n" # print(code) return code def gen_epilogue(self): epilogue_code = "" epilogue_code += helper.var_idx("static const int kPartitionsK", self.b2b_num - 1) + helper.var_idx(" = ThreadblockShape", self.b2b_num - 1) + helper.var_idx("::kK / WarpShape", self.b2b_num - 1) + "::kK;\n" epilogue_code += "using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<\n" epilogue_code += " " + helper.var_idx("ThreadblockShape", self.b2b_num - 1) + ",\n" epilogue_code += " " + helper.var_idx("typename B2bMma::Operator", self.b2b_num - 1) + ",\n" epilogue_code += " " + helper.var_idx("kPartitionsK", self.b2b_num - 1) + ",\n" epilogue_code += " " + helper.var_idx("EpilogueOutputOp", self.b2b_num - 1) + ",\n" epilogue_code += " " + helper.var_idx("EpilogueOutputOp", self.b2b_num - 1) + "::kCount\n" epilogue_code += ">::Epilogue;\n" epilogue_code += "using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle, SplitKSerial>;\n\n" return epilogue_code def gen_include_header(self): code = ''' /* Auto Generated code - Do not edit.*/ #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/layout/matrix.h\" #include \"{cutlass_dir}cutlass/numeric_types.h\" #include \"{cutlass_dir}cutlass/epilogue/threadblock/epilogue.h\" #include \"{cutlass_dir}cutlass/epilogue/thread/linear_combination.h\" #include \"{cutlass_dir}cutlass/gemm/gemm.h\" #include \"{cutlass_dir}cutlass/gemm/kernel/gemm_pipelined.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm75.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm70.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm80.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_simt.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/threadblock_swizzle.h\" #include \"{cutlass_dir}cutlass/epilogue/threadblock/default_epilogue_tensor_op.h\" #include \"{cutlass_dir}cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h\" #include \"{cutlass_dir}cutlass/epilogue/threadblock/default_epilogue_simt.h\" #include \"{cutlass_dir}cutlass/transform/threadblock/predicated_tile_iterator.h\" #include \"../kernel/b2b_gemm.h\" #include \"../threadblock/default_b2b_mma.h\" '''.format(cutlass_dir=self.cutlass_deps_root) return code def gen_code(self): gen_using = '' # Generate default template struct gen_code = gen_ir.gen_template_struct("Default" + self.gen_class_name, self.template_param,"", speicalized = None, set_default=False) filter_list = [] filter_list.append(('Stages', 2)) filter_list.append(("OperatorClass", "arch::OpClassTensorOp")) filter_list.append(("ArchTag", "arch::Sm75")) for i in range(self.b2b_num): filter_list.append((helper.var_idx("LayoutC", i), "layout::RowMajor")) rtn_template_args, speicalized_template_args = gen_ir.filtered_param(self.template_param, filter_list, keep_= True) B2bMma_code = self.gen_B2bMma(speicalized_template_args) epilogue_and_rest_code = self.gen_epilogue() gen_special_code = gen_ir.gen_template_struct("Default" + self.gen_class_name, rtn_template_args, B2bMma_code + epilogue_and_rest_code, speicalized = speicalized_template_args, set_default=False) code = gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("kernel", gen_code + gen_special_code))) return self.gen_include_header() + code class gen_Kernel: def __init__(self, template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root): self.gen_class_name = "B2bGemm" self.template_param = template_param self.b2bnum = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_include_header(self): code = ''' #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/gemm/gemm.h\" #include \"{cutlass_dir}cutlass/matrix_coord.h\"\n'''.format(cutlass_dir=self.cutlass_deps_root) return code def gen_Params(self): gen_param = "" for i in range(self.b2bnum): gen_param += " " + helper.var_idx("cutlass::gemm::GemmCoord problem_size_", i) + ";\n" gen_param += " " + "cutlass::gemm::GemmCoord grid_tiled_shape;\n" gen_param += " " + "typename B2bMma::IteratorA0::Params params_A0;\n" gen_param += " " + "typename B2bMma::IteratorA0::TensorRef ref_A0;\n" for i in range(self.b2bnum): gen_param += " " + helper.var_idx("typename B2bMma::IteratorB", i) + helper.var_idx("::Params params_B", i) + ";\n" gen_param += " " + helper.var_idx("typename B2bMma::IteratorB", i) + helper.var_idx("::TensorRef ref_B", i) + ";\n" if i == self.b2bnum - 1: gen_param += " " + helper.var_idx("typename Epilogue::OutputTileIterator::Params params_C", i) + ";\n" gen_param += " " + helper.var_idx("typename Epilogue::OutputTileIterator::TensorRef ref_C", i) + ";\n" else: gen_param += " " + helper.var_idx("typename FusedAddBiasEpilogue", i) + helper.var_idx("::OutputTileIterator::Params params_C", i) + ";\n" gen_param += " " + helper.var_idx("typename FusedAddBiasEpilogue", i) + helper.var_idx("::OutputTileIterator::TensorRef ref_C", i) + ";\n" gen_param += " " + helper.var_idx("typename Epilogue::OutputTileIterator::Params params_D", self.b2bnum - 1) + ";\n" gen_param += " " + helper.var_idx("typename Epilogue::OutputTileIterator::TensorRef ref_D", self.b2bnum - 1) + ";\n" for i in range(self.b2bnum): gen_param += " " + helper.var_idx("typename OutputOp", i) + helper.var_idx("::Params output_op_", i) + ";\n" gen_param += " " + 'int batch_count' + ";\n" gen_param += " " + 'int gemm_k_iterations_0' + ";\n" return gen_param def gen_Memberfunc(self): code_default = "\nCUTLASS_HOST_DEVICE\n" code_default += "Params()" code_default += " { } \n\n" code_construct = "\nCUTLASS_HOST_DEVICE\n" code_construct += "Params(\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("cutlass::gemm::GemmCoord const & problem_size_", i) + ",\n" code_construct += " " + "cutlass::gemm::GemmCoord const & grid_tiled_shape,\n" code_construct += " " + "typename B2bMma::IteratorA0::TensorRef ref_A0,\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("typename B2bMma::IteratorB", i) + helper.var_idx("::TensorRef ref_B", i) + ",\n" if i == self.b2bnum - 1: code_construct += " " + helper.var_idx("typename Epilogue::OutputTileIterator::TensorRef ref_C", i) + ",\n" else: code_construct += " " + helper.var_idx("typename FusedAddBiasEpilogue", i) + helper.var_idx("::OutputTileIterator::TensorRef ref_C", i) + ",\n" code_construct += " " + helper.var_idx("typename Epilogue::OutputTileIterator::TensorRef ref_D", self.b2bnum - 1) + ",\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("typename OutputOp", i) + helper.var_idx("::Params output_op_", i) + helper.var_idx(" = typename OutputOp", i) + "::Params(),\n" code_construct += " " + "int batch_count = 1\n" code_construct += "):\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("problem_size_", i) + helper.var_idx("(problem_size_", i) + "),\n" code_construct += " " + "grid_tiled_shape(grid_tiled_shape),\n" code_construct += " " + "params_A0(ref_A0.layout()),\n" code_construct += " " + "ref_A0(ref_A0),\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("params_B", i) + helper.var_idx("(ref_B", i) + ".layout()),\n" code_construct += " " + helper.var_idx("ref_B", i) + helper.var_idx("(ref_B", i) + "),\n" code_construct += " " + helper.var_idx("params_C", i) + helper.var_idx("(ref_C", i) + ".layout()),\n" code_construct += " " + helper.var_idx("ref_C", i) + helper.var_idx("(ref_C", i) + "),\n" code_construct += " " + helper.var_idx("params_D", self.b2bnum - 1) + helper.var_idx("(ref_D", self.b2bnum - 1) + ".layout()),\n" code_construct += " " + helper.var_idx("ref_D", self.b2bnum - 1) + helper.var_idx("(ref_D", self.b2bnum - 1) + "),\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("output_op_", i) + helper.var_idx("(output_op_", i) + "), \n" code_construct += " " + "batch_count(batch_count) {\n" code_construct += " " + helper.var_idx("gemm_k_iterations_", 0) + helper.var_idx(" = (problem_size_", 0) + helper.var_idx(".k() + B2bMma::Shape", 0) + helper.var_idx("::kK - 1) / B2bMma::Shape", 0) + "::kK;\n" code_construct += "}\n" return code_default + code_construct def gen_using(self): code_using = "" for i in range(self.b2bnum - 1): code_using += " " + helper.var_idx("using OutputOp", i) + helper.var_idx(" = typename B2bMma::OutputOp", i) + ";\n" code_using += " " + helper.var_idx("using OutputOp", self.b2bnum - 1) + " = typename Epilogue::OutputOp;\n" for i in range(self.b2bnum - 1): code_using += " " + helper.var_idx("using FusedAddBiasEpilogue", i) + helper.var_idx(" = typename B2bMma::FusedAddBiasEpilogue", i) +";\n" code_using += " " + "using WarpCount0 = typename B2bMma::WarpCount0;\n" code_using += " " + "static int const kThreadCount = 32 * WarpCount0::kCount;\n" code_using += gen_ir.gen_struct("Params", self.gen_Params() + self.gen_Memberfunc()) code_using += "union SharedStorage {\n" code_using += " " + "typename B2bMma::B2bMmaSharedStorage main_loop;\n" code_using += " " + "typename Epilogue::SharedStorage epilogue;\n" code_using += "};\n" return code_using def gen_can_implement(self): gen_code = "" return gen_code def gen_operator_and_constr(self): ctr_code = "CUTLASS_HOST_DEVICE\n" ctr_code += self.gen_class_name + "() { } \n\n" operator_code = "CUTLASS_DEVICE\n" operator_code += "void operator()(Params const &params, SharedStorage &shared_storage) {\n" operator_code += " " + "ThreadblockSwizzle threadblock_swizzle;\n" operator_code += " " + "cutlass::gemm::GemmCoord threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.grid_tiled_shape);\n" operator_code += " " + "int batch_idx = threadblock_tile_offset.k();\n" operator_code += " " + "if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() ||\n" operator_code += " " + "params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) {\n" operator_code += " " + " " + "return;\n" operator_code += " " + "}\n" operator_code += " " + "cutlass::MatrixCoord tb_offset_A0{\n" operator_code += " " + " " + "threadblock_tile_offset.m() * B2bMma::Shape0::kM,\n" operator_code += " " + " " + "0\n" operator_code += " " + "};\n" for i in range(self.b2bnum): operator_code += " " + helper.var_idx("cutlass::MatrixCoord tb_offset_B", i) + "{\n" operator_code += " " + " " + "0,\n" operator_code += " " + " " + helper.var_idx("threadblock_tile_offset.n() * B2bMma::Shape", i) + "::kN\n" operator_code += " " + "};\n" operator_code += " " + "int thread_idx = threadIdx.x;\n\n" operator_code += " " + "MatrixCoord threadblock_offset(\n" operator_code += " " + " " + helper.var_idx("threadblock_tile_offset.m() * B2bMma::Shape", self.b2bnum - 1) + "::kM,\n" operator_code += " " + " " + helper.var_idx("threadblock_tile_offset.n() * B2bMma::Shape", self.b2bnum - 1) + "::kN\n" operator_code += " " + ");\n" operator_code += " " + "typename B2bMma::IteratorA0 iterator_A0(\n" operator_code += " " + " " + "params.params_A0,\n" operator_code += " " + " " + "params.ref_A0.data(),\n" operator_code += " " + " " + "params.problem_size_0.mk(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "tb_offset_A0);\n" operator_code += " " + "iterator_A0.add_pointer_offset(batch_idx * params.problem_size_0.m() * params.problem_size_0.k());\n\n" for i in range (self.b2bnum): operator_code += " " + helper.var_idx("typename B2bMma::IteratorB", i ) + helper.var_idx(" iterator_B", i) + "(\n" operator_code += " " + " " + helper.var_idx("params.params_B", i) + ",\n" operator_code += " " + " " + helper.var_idx("params.ref_B", i) + ".data(),\n" operator_code += " " + " " + helper.var_idx("params.problem_size_", i) + ".kn(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + helper.var_idx("tb_offset_B", i) + ");\n" operator_code += " " + helper.var_idx("iterator_B", i) + helper.var_idx(".add_pointer_offset(batch_idx * params.problem_size_", i) + helper.var_idx(".n() * params.problem_size_", i) + ".k());\n\n" for i in range (self.b2bnum - 1): operator_code += " " + helper.var_idx("typename FusedAddBiasEpilogue", i ) + helper.var_idx("::OutputTileIterator iterator_C", i) + "(\n" operator_code += " " + " " + helper.var_idx("params.params_C", i) + ",\n" operator_code += " " + " " + helper.var_idx("params.ref_C", i) + ".data(),\n" operator_code += " " + " " + helper.var_idx("params.problem_size_" , i) + ".mn(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "threadblock_offset" + ");\n" operator_code += " " + helper.var_idx("int ref_C", i) + helper.var_idx("_stride = params.ref_C", i) + ".stride()[0];\n" operator_code += " " + helper.var_idx("iterator_C", i) + helper.var_idx(".add_pointer_offset(batch_idx * params.problem_size_", i) + helper.var_idx(".n() * (ref_C", i) + helper.var_idx("_stride == 0 ? 1 : params.problem_size_", i) + ".m()));\n\n" for i in range (self.b2bnum - 1): operator_code += " " + helper.var_idx("FusedAddBiasEpilogue", i ) + helper.var_idx(" epilogue_", i ) + ";\n" operator_code += " " + "int warp_idx = __shfl_sync(0x1f, threadIdx.x / 32, 0);\n" operator_code += " " + "int lane_idx = threadIdx.x % 32;\n" for i in range (self.b2bnum - 1): operator_code += " " + helper.var_idx("OutputOp", i) + helper.var_idx(" output_op_", i) + helper.var_idx("(params.output_op_", i) + ");\n" operator_code += " " + "B2bMma b2bMma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx);\n" operator_code += " " + "typename B2bMma::FragmentC0 src_accum;\n" operator_code += " " + helper.var_idx("typename B2bMma::FragmentC", self.b2bnum - 1)+ " accumulators;\n" operator_code += " " + "src_accum.clear();\n" operator_code += " " + "accumulators.clear();\n" operator_code += " " + "b2bMma(params.gemm_k_iterations_0, accumulators, iterator_A0, " for i in range(self.b2bnum): operator_code += helper.var_idx("iterator_B", i) + ", " operator_code += "src_accum" if self.b2bnum != 1: operator_code += ", " for i in range(self.b2bnum - 1): operator_code += helper.var_idx("output_op_", i) + ", " for i in range(self.b2bnum - 1): operator_code += helper.var_idx("epilogue_", i) + ", " for i in range(self.b2bnum - 1): final = ", " if i == self.b2bnum - 2: final ="" operator_code += helper.var_idx("iterator_C", i) + final operator_code += ");\n" operator_code += " " + helper.var_idx("OutputOp", self.b2bnum - 1) + helper.var_idx(" output_op_", self.b2bnum - 1) + helper.var_idx("(params.output_op_", self.b2bnum - 1) + ");\n" operator_code += " " + "threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.grid_tiled_shape);\n" operator_code += " " + helper.var_idx("typename Epilogue::OutputTileIterator iterator_C", self.b2bnum - 1) + "(\n" operator_code += " " + " " + helper.var_idx("params.params_C", self.b2bnum - 1) + ",\n" operator_code += " " + " " + helper.var_idx("params.ref_C", self.b2bnum - 1) + ".data(),\n" operator_code += " " + " " + helper.var_idx("params.problem_size_", self.b2bnum - 1) + ".mn(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "threadblock_offset\n" operator_code += " " + ");\n" operator_code += " " + helper.var_idx("int ref_C", self.b2bnum - 1) + helper.var_idx("_stride = params.ref_C", self.b2bnum - 1) + ".stride()[0];\n" operator_code += " " + helper.var_idx("iterator_C", self.b2bnum - 1) + helper.var_idx(".add_pointer_offset(batch_idx * params.problem_size_", self.b2bnum - 1) + helper.var_idx(".n() * (ref_C", self.b2bnum - 1) + helper.var_idx("_stride == 0 ? 1 : params.problem_size_", self.b2bnum - 1) + ".m()));\n\n" operator_code += " " + helper.var_idx("typename Epilogue::OutputTileIterator iterator_D", self.b2bnum - 1) + "(\n" operator_code += " " + " " + helper.var_idx("params.params_D", self.b2bnum - 1) + ",\n" operator_code += " " + " " + helper.var_idx("params.ref_D", self.b2bnum - 1) + ".data(),\n" operator_code += " " + " " + helper.var_idx("params.problem_size_", self.b2bnum - 1) + ".mn(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "threadblock_offset\n" operator_code += " " + ");\n" operator_code += " " + helper.var_idx("iterator_D", self.b2bnum - 1) + helper.var_idx(".add_pointer_offset(batch_idx * params.problem_size_", self.b2bnum - 1) + helper.var_idx(".n() * params.problem_size_", self.b2bnum - 1) + ".m());\n\n" operator_code += " " + "Epilogue epilogue(\n" operator_code += " " + " " + "shared_storage.epilogue,\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "warp_idx,\n" operator_code += " " + " " + "lane_idx\n" operator_code += " " + ");\n" operator_code += " " + "epilogue(" operator_code += helper.var_idx("output_op_", self.b2bnum - 1) + ", " operator_code += helper.var_idx("iterator_D", self.b2bnum - 1) + ", " operator_code += "accumulators, " operator_code += helper.var_idx("iterator_C", self.b2bnum - 1) + ");\n" operator_code += "}\n" return ctr_code + operator_code def gen_include_header(self): code = ''' #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/gemm/gemm.h\" #include \"{cutlass_dir}cutlass/matrix_coord.h\" #include \"{cutlass_dir}cutlass/semaphore.h\" '''.format(cutlass_dir=self.cutlass_deps_root) return code def gen_code(self): template_param = [] template_param.append(("typename", "B2bMma")) template_param.append(("typename", "Epilogue")) template_param.append(("typename", "ThreadblockSwizzle")) template_param.append((bool, "SplitKSerial")) code_body = "" code_body += self.gen_using() code_body += self.gen_operator_and_constr() struct_code = gen_ir.gen_template_struct(self.gen_class_name, template_param, code_body) code = self.gen_include_header() code += gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("kernel", struct_code))) return self.gen_include_header() + code class gen_kernel: def __init__(self, template_param, gen_class_name, b2b_num, output_dir, cutlass_deps_root, project_root): self.template_param = template_param self.gen_class_name = "B2bGemm" self.gen_kernel_name = gen_class_name + "Kernel" self.tempalte_args = [] self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root self.gen_default_b2b_gemm = gen_default_Gemm(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) self.gen_Kerenl = gen_Kernel(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) # Include gen_threadBlock self.gen_threadBlock = gen_tb.gen_threadblock(template_param, gen_class_name, b2b_num, output_dir, cutlass_deps_root, project_root) self.file_dir = output_dir + "/kernel/" def gen_code(self, first_use_1stage): default_b2b_gemm = self.gen_default_b2b_gemm.gen_code() print("[INFO]: Gen kernel code [default_b2b_gemm.h]output Dir: is ", self.file_dir) with open(self.file_dir + "default_b2b_gemm.h", "w+") as f: f.write(default_b2b_gemm) kernel = self.gen_Kerenl.gen_code() print("[INFO]: Gen kernel code [b2b_gemm.h]output Dir: is ", self.file_dir) with open(self.file_dir + "b2b_gemm.h", "w+") as f: f.write(kernel) # Call code to gen threadblock self.gen_threadBlock.gen_code(first_use_1stage)
cutlass-main
examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_kernel.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import gen_ir import helper class gen_default_b2b_mma: def __init__(self, template_param, gen_class_name, b2b_num,cutlass_deps_root, project_root): self.gen_class_name = "DefaultB2bMma" self.template_param = template_param self.b2b_num = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_include_header(self): code = ''' /* Auto Generated code - Do not edit.*/ #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/numeric_types.h\" #include \"{cutlass_dir}cutlass/arch/arch.h\" #include \"{cutlass_dir}cutlass/transform/threadblock/predicated_tile_iterator.h\" #include \"{cutlass_dir}cutlass/transform/threadblock/predicated_tile_iterator_2dthreadtile.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm70.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm75.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm80.h\" #include \"../threadblock/b2b_mma_pipelined.h\" #include \"../../fixed_impl/epilogue/threadblock/fused_bias_act_epilogue.h\" #include \"../../fixed_impl/epilogue/threadblock/default_bias_act_epilogue_tensor_op.h\" #include \"../../fixed_impl/gemm/warp/mma_tensor_op_fragment_iterator_without_output_op.h\" '''.format(cutlass_dir=self.cutlass_deps_root) return code def gen_using_MmaCore(self, stage): threadBlockShape = "ThreadblockShape" warpShape = "WarpShape" instrunctionShape = "InstructionShape" Mma_typename = "typename cutlass::gemm::threadblock::DefaultMmaCore" gen_code = "" for i in range(self.b2b_num): code_using = "using MmaCore" + str(i) gen_code += code_using + " = " + gen_ir.gen_declare_template_struct(Mma_typename, \ helper.var_idx(threadBlockShape, i), helper.var_idx(warpShape, i), instrunctionShape, \ "ElementA", "LayoutA", \ helper.var_idx("ElementB", i), helper.var_idx("LayoutB", i), \ helper.var_idx("ElementAccumulator", i), "layout::RowMajor", \ "OperatorClass", str(stage), "Operator") return gen_code def gen_using_FusedAddBiasEpilogue(self): gen_code = "" for i in range(self.b2b_num - 1): code_using = helper.var_idx("using FusedAddBiasEpilogue", i) epilogue_name = "typename cutlass::epilogue::threadblock::DefaultFusedBiasActEpilogueTensorOp" template_args = helper.var_idx("<ThreadblockShape", i) + helper.var_idx(",typename MmaCore", i) + helper.var_idx("::MmaPolicy::Operator, 1, EpilogueOutputOp", i) + ", 2>::Epilogue" gen_code += code_using + " = " + epilogue_name + template_args + ";\n" return gen_code def gen_using_Iterator(self): code_using = "using IteratorA0" iterator_typename = "cutlass::transform::threadblock::PredicatedTileIterator" MmaCore = "MmaCore0" matrix_shape = "cutlass::MatrixShape<" + MmaCore + "::Shape::kM, " + MmaCore + "::Shape::kK>" iterator_map = "typename " + MmaCore + "::IteratorThreadMapA" gen_code = code_using + " = " + gen_ir.gen_declare_template_struct(iterator_typename, \ matrix_shape, "ElementA", "LayoutA", "1", iterator_map, "AlignmentA_") for i in range(self.b2b_num): code_using = "using IteratorB" + str(i) iterator_typename = "cutlass::transform::threadblock::PredicatedTileIterator" MmaCore = "MmaCore" + str(i) matrix_shape = "cutlass::MatrixShape<" + MmaCore + "::Shape::kK, " + MmaCore + "::Shape::kN>" iterator_map = "typename " + MmaCore + "::IteratorThreadMapB" gen_code += code_using + " = " + gen_ir.gen_declare_template_struct(iterator_typename, \ matrix_shape, helper.var_idx("ElementB", i), helper.var_idx("LayoutB", i), "0", iterator_map, "AlignmentB_") return gen_code def gen_fragment_iterator(self): gen_code = "using AccumulatorLayout = cutlass::layout::ColumnMajor;\n" for i in range(1, self.b2b_num): code_using = "using FragmentIteratorA" + str(i) iterator_typename = "cutlass::gemm::warp::MmaTensorOpPureFragmentIterator" curr_MmaCore = "MmaCore" + str(i) prev_MmaCore = "MmaCore" + str(i - 1) Matrix_shape_curr = "cutlass::MatrixShape<" + curr_MmaCore + "::WarpShape::kM, " + curr_MmaCore + "::InstructionShape::kK>" Matrix_shape_prev = "cutlass::MatrixShape<" + prev_MmaCore + "::WarpShape::kM, " + prev_MmaCore + "::WarpShape::kN>" Curr_shape_kK = curr_MmaCore + "::Shape::kK" gen_code += code_using + " = " + gen_ir.gen_declare_template_struct(iterator_typename, \ Matrix_shape_curr, Matrix_shape_prev, Curr_shape_kK, \ helper.var_idx("ElementAccumulator", i-1), "ElementA", \ "AccumulatorLayout", "InstructionShape_", "true") return gen_code def gen_threadblockmma(self): code_using = "using ThreadblockB2bMma" iterator_typename = "cutlass::gemm::threadblock::B2bMmaPipelined" MmaPipelined_param_Mma0_shape = "typename MmaCore0::Shape" MmaPipelined_param_Mma0_iteratorA = "IteratorA0" MmaPipelined_param_Mma0_smemIteratorA = "typename MmaCore0::SmemIteratorA" MmaPipelined_param_Mma0_iteratorB = "IteratorB0" MmaPipelined_param_Mma0_smemIteratorB = "typename MmaCore0::SmemIteratorB" MmaPipelined_param_list = MmaPipelined_param_Mma0_shape + ", " + MmaPipelined_param_Mma0_iteratorA + ", " + MmaPipelined_param_Mma0_smemIteratorA + ", " + MmaPipelined_param_Mma0_iteratorB + ", " + MmaPipelined_param_Mma0_smemIteratorB + ", " for i in range(1, self.b2b_num): MmaPipelined_param_Mma_shape = "typename MmaCore" + str(i) + "::Shape" MmaPipelined_param_Mma_iteratorA = "FragmentIteratorA" + str(i) MmaPipelined_param_Mma_iteratorB = "IteratorB" + str(i) MmaPipelined_param_Mma_smemIteratorB = "typename MmaCore" + str(i) + "::SmemIteratorB" MmaPipelined_param_list += MmaPipelined_param_Mma_shape + ", " + MmaPipelined_param_Mma_iteratorA + ", " + MmaPipelined_param_Mma_iteratorB + ", " + MmaPipelined_param_Mma_smemIteratorB + ", " MmaPipelined_param_list += "ElementAccumulator0, layout::RowMajor, " for i in range(self.b2b_num - 1): epilogue_name = "EpilogueOutputOp" + str(i) MmaPipelined_param_list += epilogue_name + ", " for i in range(self.b2b_num - 1): epilogue_name = "FusedAddBiasEpilogue" + str(i) MmaPipelined_param_list += epilogue_name + ", " for i in range(self.b2b_num): MmaPolicy = "typename MmaCore" + str(i) + "::MmaPolicy" MmaPipelined_param_list += MmaPolicy + ", " cnt = 0 for i in range(self.b2b_num): MmaStage = helper.var_idx("Stages", i) final = ", " if cnt == self.b2b_num - 1: final = "" MmaPipelined_param_list += MmaStage + final cnt += 1 gen_code = code_using + " = " + gen_ir.gen_declare_template_struct(iterator_typename, MmaPipelined_param_list) return gen_code def gen_code(self): gen_using = '' # Generate default template struct gen_code = gen_ir.gen_template_struct(self.gen_class_name, self.template_param, "", speicalized = None, set_default=False) # Generate specialized template struct mmacore_codebody = self.gen_using_MmaCore(2) iterator_codebody = self.gen_using_Iterator() fragment_iterator_codebody = self.gen_fragment_iterator() epilogue_iterator_codebody = self.gen_using_FusedAddBiasEpilogue() threadBlockMma = self.gen_threadblockmma() specialized_code = mmacore_codebody + iterator_codebody + fragment_iterator_codebody + epilogue_iterator_codebody + threadBlockMma # Specialize layout C -> cutlass::layout::RowMajor rtn_template_args, speicalized_template_args = gen_ir.filtered_param(self.template_param, [ ('LayoutD', "cutlass::layout::RowMajor")], keep_= True) gen_speical_code = gen_ir.gen_template_struct(self.gen_class_name, rtn_template_args, specialized_code, speicalized = speicalized_template_args, set_default=False) code = gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("threadblock", gen_code + gen_speical_code))) return self.gen_include_header() + code class gen_b2b_mme_pipelined: def __init__(self, template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root): self.gen_class_name = "B2bMmaPipelined" self.template_param = template_param self.b2b_num = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_include_header(self): code = ''' #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/array.h\" #include \"{cutlass_dir}cutlass/aligned_buffer.h\" #include \"{cutlass_dir}cutlass/numeric_conversion.h\" #include \"{cutlass_dir}cutlass/numeric_types.h\" #include \"{cutlass_dir}cutlass/matrix_shape.h\" #include \"{cutlass_dir}cutlass/gemm/gemm.h\" #include \"{cutlass_dir}cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h\" #include \"../threadblock/b2b_mma_base.h\"\n'''.format(cutlass_dir = self.cutlass_deps_root) return code def gen_using(self): code_using = "using FragmentA0 = typename IteratorA0::Fragment;\n" code_using += "using Base = B2bMmaBase<" for i in range(self.b2b_num): code_using += helper.var_idx("Shape", i) + "_, " for i in range(self.b2b_num): code_using += helper.var_idx("Policy", i) + "_, " for i in range(self.b2b_num): code_using += helper.var_idx("Stage", i) + "_, " code_using = code_using[: -2] + ">;\n" for i in range(self.b2b_num): code_using += helper.var_idx("using FragmentB", i) + helper.var_idx(" = typename IteratorB", i) + "::Fragment;\n" code_using += helper.var_idx("using FragmentC", i) + helper.var_idx(" = typename Policy", i) + "::Operator::FragmentC;\n" code_using += helper.var_idx("using Operator", i) + helper.var_idx(" = typename Policy", i) + "::Operator;\n" for i in range(self.b2b_num - 1): code_using += helper.var_idx("using IteratorC", i) + helper.var_idx(" = typename FusedAddBiasEpilogue", i) + "::OutputTileIterator;\n" code_using += "using ArchTag = typename Policy0::Operator::ArchTag;\n" code_using += "static ComplexTransform const kTransformA0 = Operator0::kTransformA;\n" for i in range(self.b2b_num): code_using += helper.var_idx("static ComplexTransform const kTransformB", i) + helper.var_idx(" = Operator", i) + "::kTransformB;\n" code_using += "private:\n" code_using += "using WarpFragmentA0 = typename Operator0::FragmentA;\n" code_using += "using WarpFragmentB0 = typename Operator0::FragmentB;\n" for i in range(1, self.b2b_num): code_using += helper.var_idx("using WarpFragmentA", i) + helper.var_idx(" = typename FragmentIteratorA", i) + "::Fragment;\n" code_using += helper.var_idx("using WarpFragmentB", i) + helper.var_idx(" = typename Operator", i) + "::FragmentB;\n" code_using += "protected:\n" code_using += "SmemIteratorA0 smem_iterator_A_;\n" for i in range(self.b2b_num): code_using += helper.var_idx("SmemIteratorB", i) + helper.var_idx(" smem_iterator_B", i) + "_;\n" return code_using def gen_operator(self, first_use_1stage = False): code = "" def gen_operator_param(b2b_num): param_code = "" param_code += "int gemm_k_iterations_0,\n" param_code += helper.var_idx("FragmentC", b2b_num-1) + helper.var_idx(" &accum", b2b_num-1) + ",\n" param_code += "IteratorA0 iterator_A,\n" for i in range(b2b_num): param_code += helper.var_idx("IteratorB", i) + " " + helper.var_idx("iterator_B", i) + ",\n" param_code += "FragmentC0 const &src_accum, \n" for i in range(b2b_num - 1): param_code += helper.var_idx("OutputOp", i) + " " + helper.var_idx("output_op_", i) + ",\n" for i in range(b2b_num - 1): param_code += helper.var_idx("FusedAddBiasEpilogue", i) + " " + helper.var_idx("epilogue_", i) + ",\n" for i in range(b2b_num - 1): param_code += helper.var_idx("IteratorC", i) + " " + helper.var_idx("iterator_C", i) + ",\n" param_code += "TransformA0 transform_A0 = TransformA0(), \n" for i in range(b2b_num): final = "(),\n" if i == b2b_num - 1: final = "()\n" param_code += helper.var_idx("TransformB", i) + " " + helper.var_idx("transform_B", i) + " = " +helper.var_idx("TransformB", i) + final return param_code def gen_first_gemm_1stage(b2b_num): accu_code = " FragmentC0 accum0 = src_accum;\n" if b2b_num == 1: accu_code = " accum0 = src_accum;\n" code ="\ \n\ FragmentA0 tb_frag_A;\n\ FragmentB0 tb_frag_B0;\n\ \n\ int smem_write_stage_idx = 1;\n\ \n\ tb_frag_A.clear();\n\ tb_frag_B0.clear();\n\ \n\ // The last kblock is loaded in the prolog\n\ iterator_A.load(tb_frag_A);\n\ iterator_B0.load(tb_frag_B0);\n\ \n\ ++iterator_A;\n\ ++iterator_B0;\n\ \n\ WarpFragmentA0 warp_frag_A0;\n\ WarpFragmentB0 warp_frag_B0;\n\ \n\ Operator0 warp_mma0;\n\ \n\ // Avoid reading out of bounds\n\ if (gemm_k_iterations_0 <= 1) {\n\ iterator_A.clear_mask();\n\ iterator_B0.clear_mask();\n\ }\n\ \n\ // Issue loads during the first warp-level matrix multiply-add *AFTER* issuing \n\ // shared memory loads (which have the tightest latency requirement).\n\ \n\ //\n\ // Mainloop\n\ //\n\ \n\ // Note: The main loop does not support Base::WarpGemmIterations == 2.\n\ CUTLASS_GEMM_LOOP\n\ for (; gemm_k_iterations_0 > 0; --gemm_k_iterations_0) {\n\ \n\ this->smem_iterator_A_.store(tb_frag_A);\n\ this->smem_iterator_B0_.store(tb_frag_B0);\n\ \n\ __syncthreads();\n\ //\n\ // Loop over GEMM K dimension\n\ //\n\ \n\ CUTLASS_PRAGMA_UNROLL\n\ for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations0; ++warp_mma_k) {\n\ \n\ // Load warp-level tiles from shared memory, wrapping to k offset if this is the last group\n\ // as the case may be.\n\ \n\ this->warp_tile_iterator_A0_.set_kgroup_index(warp_mma_k % Base::kWarpGemmIterations0);\n\ this->warp_tile_iterator_B0_.set_kgroup_index(warp_mma_k % Base::kWarpGemmIterations0);\n\ \n\ this->warp_tile_iterator_A0_.load(warp_frag_A0);\n\ this->warp_tile_iterator_B0_.load(warp_frag_B0);\n\ \n\ ++this->warp_tile_iterator_A0_;\n\ ++this->warp_tile_iterator_B0_;\n\ \n\ warp_mma0(accum0, warp_frag_A0, warp_frag_B0, accum0);\n\ }\n\ this->warp_tile_iterator_A0_.add_tile_offset({0, -Policy0::kPartitionsK * Base::kWarpGemmIterations0});\n\ this->warp_tile_iterator_B0_.add_tile_offset({-Policy0::kPartitionsK * Base::kWarpGemmIterations0, 0});\n\ \n\ __syncthreads();\n\ iterator_A.load(tb_frag_A);\n\ iterator_B0.load(tb_frag_B0);\n\ \n\ ++iterator_A;\n\ ++iterator_B0;\n\ \n\ if(gemm_k_iterations_0 <= 2) {\n\ iterator_A.clear_mask();\n\ iterator_B0.clear_mask();\n\ }\n\ }\n" return accu_code + code def gen_first_gemm_2stage(b2b_num): accu_code = " FragmentC0 accum0 = src_accum;\n" if b2b_num == 1: accu_code = " accum0 = src_accum;\n" code ="\ \n\ FragmentA0 tb_frag_A;\n\ FragmentB0 tb_frag_B0;\n\ \n\ tb_frag_A.clear();\n\ tb_frag_B0.clear();\n\ \n\ // The last kblock is loaded in the prolog\n\ iterator_A.load(tb_frag_A);\n\ iterator_B0.load(tb_frag_B0);\n\ \n\ ++iterator_A;\n\ ++iterator_B0;\n\ \n\ this->smem_iterator_A_.store(tb_frag_A);\n\ this->smem_iterator_B0_.store(tb_frag_B0);\n\ \n\ ++this->smem_iterator_A_;\n\ ++this->smem_iterator_B0_;\n\ \n\ __syncthreads();\n\ \n\ // Pair of fragments used to overlap shared memory loads and math instructions\n\ WarpFragmentA0 warp_frag_A0[2];\n\ WarpFragmentB0 warp_frag_B0[2];\n\ \n\ this->warp_tile_iterator_A0_.set_kgroup_index(0);\n\ this->warp_tile_iterator_B0_.set_kgroup_index(0);\n\ \n\ this->warp_tile_iterator_A0_.load(warp_frag_A0[0]);\n\ this->warp_tile_iterator_B0_.load(warp_frag_B0[0]);\n\ \n\ ++this->warp_tile_iterator_A0_;\n\ ++this->warp_tile_iterator_B0_;\n\ \n\ Operator0 warp_mma0;\n\ \n\ int smem_write_stage_idx = 1;\n\ \n\ // Avoid reading out of bounds\n\ if (gemm_k_iterations_0 <= 1) {\n\ iterator_A.clear_mask();\n\ iterator_B0.clear_mask();\n\ }\n\ \n\ // Issue loads during the first warp-level matrix multiply-add *AFTER* issuing \n\ // shared memory loads (which have the tightest latency requirement).\n\ iterator_A.load(tb_frag_A);\n\ \n\ //\n\ // Mainloop\n\ //\n\ \n\ // Note: The main loop does not support Base::WarpGemmIterations == 2.\n\ CUTLASS_GEMM_LOOP\n\ for (; gemm_k_iterations_0 > 0; --gemm_k_iterations_0) {\n\ \n\ //\n\ // Loop over GEMM K dimension\n\ //\n\ \n\ CUTLASS_PRAGMA_UNROLL\n\ for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations0; ++warp_mma_k) {\n\ \n\ // Load warp-level tiles from shared memory, wrapping to k offset if this is the last group\n\ // as the case may be.\n\ \n\ if (warp_mma_k == Base::kWarpGemmIterations0 - 1) {\n\ \n\ // Write fragments to shared memory\n\ this->smem_iterator_A_.store(tb_frag_A);\n\ \n\ this->smem_iterator_B0_.store(tb_frag_B0);\n\ \n\ __syncthreads();\n\ \n\ // Issue loads during the first warp-level matrix multiply-add *AFTER* issuing \n\ // shared memory loads (which have the tightest latency requirement).\n\ iterator_A.load(tb_frag_A);\n\ \n\ ++this->smem_iterator_B0_;\n\ ++this->smem_iterator_A_;\n\ \n\ \n\ // Add negative offsets to return iterators to the 'start' of the circular buffer in shared memory\n\ if (smem_write_stage_idx == 1) {\n\ this->smem_iterator_A_.add_tile_offset({0, -Base::Stage0});\n\ this->smem_iterator_B0_.add_tile_offset({-Base::Stage0, 0});\n\ }\n\ else {\n\ this->warp_tile_iterator_A0_.add_tile_offset(\n\ {0, -Base::Stage0 * Policy0::kPartitionsK * Base::kWarpGemmIterations0});\n\ this->warp_tile_iterator_B0_.add_tile_offset(\n\ {-Base::Stage0 * Policy0::kPartitionsK * Base::kWarpGemmIterations0,\n\ 0});\n\ }\n\ \n\ smem_write_stage_idx ^= 1;\n\ }\n\ \n\ this->warp_tile_iterator_A0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);\n\ this->warp_tile_iterator_B0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);\n\ \n\ this->warp_tile_iterator_A0_.load(warp_frag_A0[(warp_mma_k + 1) % 2]);\n\ this->warp_tile_iterator_B0_.load(warp_frag_B0[(warp_mma_k + 1) % 2]);\n\ \n\ ++this->warp_tile_iterator_A0_;\n\ ++this->warp_tile_iterator_B0_;\n\ \n\ if (warp_mma_k == 0) {\n\ \n\ iterator_B0.load(tb_frag_B0);\n\ \n\ ++iterator_A;\n\ ++iterator_B0;\n\ \n\ // Avoid reading out of bounds if this was the last loop iteration\n\ if (gemm_k_iterations_0 <= 2) {\n\ iterator_A.clear_mask();\n\ iterator_B0.clear_mask();\n\ }\n\ }\n\ \n\ warp_mma0(accum0, warp_frag_A0[warp_mma_k % 2], warp_frag_B0[warp_mma_k % 2], accum0);\n\ }\n\ }\n" return accu_code + code def gen_other_gemms_2stage(b2b_num): code = "" def gemm_teamplate(id): code = "// " + str(id + 1) + " Gemm" code += " /// Iterator to load a warp-scoped tile of A1 operand from intermediate accumulator tile\n" code += " " + helper.var_idx("FragmentC", id - 1) + helper.var_idx(" after_epilogue_accu", id - 1) + ";\n" code += " " + helper.var_idx("epilogue_", id - 1) + helper.var_idx("(output_op_", id - 1) + helper.var_idx(", accum", id - 1) \ + helper.var_idx(", after_epilogue_accu", id - 1) + helper.var_idx(", iterator_C", id - 1) +");\n" # FragmentIteratorA1 warp_tile_iterator_A1_(accum0); code += " " + helper.var_idx("FragmentIteratorA", id) + helper.var_idx(" warp_tile_iterator_A", id) +"_(" + helper.var_idx("after_epilogue_accu", id - 1) + ");\n" # FragmentB1 tb_frag_B1; code += " " + helper.var_idx("FragmentB", id) + " " + helper.var_idx("tb_frag_B", id) + ";\n" # tb_frag_B1.clear(); code += " " + helper.var_idx("tb_frag_B", id) + ".clear();\n" # iterator_B1.load(tb_frag_B1); code += " " + helper.var_idx("iterator_B", id) + ".load(" + helper.var_idx("tb_frag_B", id) + ");\n" # ++iterator_B1; code += " " + "++" + helper.var_idx("iterator_B", id) + ";\n" # this->smem_iterator_B1_.store(tb_frag_B1); code += " " + helper.var_idx("this->smem_iterator_B", id) + "_.store(" + helper.var_idx("tb_frag_B", id) + ");\n" # ++this->smem_iterator_B1_; code += " " + helper.var_idx("++this->smem_iterator_B", id) + "_;\n" # __syncthreads(); code += " " + "__syncthreads();\n" # WarpFragmentA1 warp_frag_A1[2]; code += " " + helper.var_idx("WarpFragmentA", id) + helper.var_idx(" warp_frag_A", id) + "[2];\n" # WarpFragmentB1 warp_frag_B1[2]; code += " " + helper.var_idx("WarpFragmentB", id) + helper.var_idx(" warp_frag_B", id) + "[2];\n" # this->warp_tile_iterator_B1_.set_kgroup_index(0); code += " " + helper.var_idx("this->warp_tile_iterator_B", id) + "_.set_kgroup_index(0);\n" # warp_tile_iterator_A1_.load(warp_frag_A1[0], output_op_0); code += " " + helper.var_idx("warp_tile_iterator_A", id) + helper.var_idx("_.load(warp_frag_A", id) + "[0]);\n" # this->warp_tile_iterator_B1_.load(warp_frag_B1[0]); code += " " + helper.var_idx("this->warp_tile_iterator_B", id) + helper.var_idx("_.load(warp_frag_B", id) + "[0]);\n" # ++warp_tile_iterator_A1_; code += " " + helper.var_idx("++warp_tile_iterator_A", id) + "_;\n" # ++this->warp_tile_iterator_B1_; code += " " + helper.var_idx("++this->warp_tile_iterator_B", id) + "_;\n" # Operator1 warp_mma1; code += " " + helper.var_idx("Operator", id) + " " + helper.var_idx("warp_mma", id) + ";\n" # smem_write_stage_idx = 1; code += " " + "smem_write_stage_idx = 1;\n" # int gemm_k_iterations_1 = FragmentIteratorA1::Policy::kIterations / Base::kWarpGemmIterations1; code += " " + helper.var_idx("int gemm_k_iterations_", id) + " = " + helper.var_idx("FragmentIteratorA", id) + helper.var_idx("::Policy::kIterations / Base::kWarpGemmIterations", id) +";\n" # if (gemm_k_iterations_1 <= 1) { # iterator_B1.clear_mask(); # } code += " " + "if (" + helper.var_idx("gemm_k_iterations_", id) + " <= 1 ){\n" \ + " " + " " + helper.var_idx("iterator_B", id) + ".clear_mask();\n" \ + " " +"}\n" # CUTLASS_PRAGMA_UNROLL code += " " + "CUTLASS_PRAGMA_UNROLL\n" # for (; gemm_k_iterations_1 > 0; --gemm_k_iterations_1) { code += " " + helper.var_idx("for (; gemm_k_iterations_", id) + helper.var_idx(" > 0; --gemm_k_iterations_", id) + ") {\n" # CUTLASS_PRAGMA_UNROLL code += " " + " " + "CUTLASS_PRAGMA_UNROLL\n" # for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations1; ++warp_mma_k) { code += " " + " " + helper.var_idx("for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations", id) + "; ++warp_mma_k) {\n" # if (warp_mma_k == Base::kWarpGemmIterations1 - 1) { code += " " + " " + " " + helper.var_idx("if (warp_mma_k == Base::kWarpGemmIterations", id) + " - 1) {\n" # this->smem_iterator_B1_.store(tb_frag_B1); code += " " + " " + " " + " " + helper.var_idx(" this->smem_iterator_B", id) + helper.var_idx("_.store(tb_frag_B", id) + ");\n" # __syncthreads(); code += " " + " " + " " + " " + "__syncthreads();\n" # ++smem_iterator_B1_; code += " " + " " + " " + " " + helper.var_idx(" ++smem_iterator_B", id) + "_;\n" # if (smem_write_stage_idx == 1) { # smem_iterator_B1_.add_tile_offset({-Base::Stage, 0}); # } code += " " + " " + " " + " " + "if ( smem_write_stage_idx == 1 ) {\n" \ + " " + " " + " " + " " + " " + helper.var_idx("smem_iterator_B", id) + helper.var_idx("_.add_tile_offset({-Base::Stage", i) + ", 0});\n" \ + " " + " " + " " + " " +"}\n" # else { # this->warp_tile_iterator_B1_.add_tile_offset( # {-Base::Stage * Policy1::kPartitionsK * # Base::kWarpGemmIterations1, # 0}); # } code += " " + " " + " " + " " + "else {\n" \ + " " + " " + " " + " " + " " + helper.var_idx("this->warp_tile_iterator_B", id) + "_.add_tile_offset(\n" \ + " " + " " + " " + " " + " " + helper.var_idx("{-Base::Stage", id) + helper.var_idx(" * Policy", id) + "::kPartitionsK *\n" \ + " " + " " + " " + " " + " " + helper.var_idx("Base::kWarpGemmIterations", id) + ",\n" \ + " " + " " + " " + " " + " " + "0});\n" \ + " " + " " + " " + " " + "}\n" # smem_write_stage_idx ^= 1; # } code += " " + " " + " " + " " + "smem_write_stage_idx ^= 1;\n" \ + " " + " " + " " + "}\n" # this->warp_tile_iterator_B1_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations1); code += " " + " " + " " + helper.var_idx("this->warp_tile_iterator_B", id) + helper.var_idx("_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations", id) + ");\n" # warp_tile_iterator_A1_.load(warp_frag_A1[(warp_mma_k + 1) % 2], output_op_0); code += " " + " " + " " + helper.var_idx("warp_tile_iterator_A", id) + helper.var_idx("_.load(warp_frag_A", id) + "[(warp_mma_k + 1) % 2]);\n" # this->warp_tile_iterator_B1_.load(warp_frag_B1[(warp_mma_k + 1) % 2]); code += " " + " " + " " + helper.var_idx("this->warp_tile_iterator_B", id) + helper.var_idx("_.load(warp_frag_B", id) + "[(warp_mma_k + 1) % 2]);\n" # ++warp_tile_iterator_A1_; code += " " + " " + " " + helper.var_idx("++warp_tile_iterator_A", id) + "_;\n" # ++this->warp_tile_iterator_B1_; code += " " + " " + " " + helper.var_idx("++this->warp_tile_iterator_B", id) + "_;\n" # if (warp_mma_k == 0) { # iterator_B1.load(tb_frag_B1); # ++iterator_B1; # if (gemm_k_iterations_1 <= 2) { # iterator_B1.clear_mask(); # } # } code += " " + " " + " " + " if (warp_mma_k == 0) {\n" \ + " " + " " + " " + " " + helper.var_idx("iterator_B", id) + helper.var_idx(".load(tb_frag_B", id) + ");\n" \ + " " + " " + " " + " " + helper.var_idx("++iterator_B", id) +";\n" \ + " " + " " + " " + " " + helper.var_idx("if (gemm_k_iterations_", id) +" <= 2) {\n" \ + " " + " " + " " + " " + " " + helper.var_idx("iterator_B", id) + ".clear_mask();\n" \ + " " + " " + " " + " " + "}\n" \ + " " + " " + " " + "}\n" # warp_mma1(accum, warp_frag_A1[warp_mma_k % 2], warp_frag_B1[warp_mma_k % 2], accum); # } # } code += " " + " " + " " + helper.var_idx("warp_mma", id) + helper.var_idx("(accum", id) + helper.var_idx(", warp_frag_A", id) + helper.var_idx("[warp_mma_k % 2], warp_frag_B", id) + helper.var_idx("[warp_mma_k % 2], accum", id) + ");\n" \ + " " + " " + "}\n" \ + " " + "}\n\n\n" return code for i in range (1, b2b_num): clear_accu = "" if i != b2b_num - 1: clear_accu = " " + helper.var_idx("FragmentC", i) + helper.var_idx(" accum", i) +";\n" clear_accu += " " + helper.var_idx("accum", i) +".clear();\n" code += clear_accu + gemm_teamplate(i) return code operator_code = " CUTLASS_DEVICE\n\ void operator()(\n " + gen_operator_param(self.b2b_num) + ") {\n" if first_use_1stage: operator_code += gen_first_gemm_1stage(self.b2b_num) else: operator_code += gen_first_gemm_2stage(self.b2b_num) operator_code += gen_other_gemms_2stage(self.b2b_num) + "}\n" return operator_code def gen_construct_func(self): name = self.gen_class_name func_code = "CUTLASS_DEVICE\n" func_code += name + "(\n" \ + " " + "typename Base::B2bMmaSharedStorage &shared_storage,\n" \ + " " + "int thread_idx,\n" \ + " " + "int warp_idx,\n" \ + " " + "int lane_idx\n" \ + "):\n" func_code += " " + "Base(shared_storage, thread_idx, warp_idx, lane_idx),\n" \ + " " + "smem_iterator_A_(shared_storage.sharedStorage0.operand_A_ref(), thread_idx),\n" for i in range(self.b2b_num): final = ",\n" if i == self.b2b_num - 1: final = " {\n" func_code += helper.var_idx("smem_iterator_B", i) + helper.var_idx("_(shared_storage.sharedStorage", i) +".operand_B_ref(), thread_idx)" + final func_code += " " + "int warp_idx_mn = warp_idx % (Base::WarpCount0::kM * Base::WarpCount0::kN);\n" func_code += " " + "int warp_idx_k = warp_idx / (Base::WarpCount0::kM * Base::WarpCount0::kN);\n" func_code += " " + "int warp_idx_m = warp_idx_mn % Base::WarpCount0::kM;\n" func_code += " " + "int warp_idx_n = warp_idx_mn / Base::WarpCount0::kM;\n" for i in range(self.b2b_num): func_code += " " + helper.var_idx("int tile_offset_k", i) + helper.var_idx(" = Base::kWarpGemmIterations", i) + " * warp_idx_k;\n" func_code += " " + "this->warp_tile_iterator_A0_.add_tile_offset({warp_idx_m, tile_offset_k0});\n" for i in range(self.b2b_num): func_code += " " + helper.var_idx("this->warp_tile_iterator_B", i) + helper.var_idx("_.add_tile_offset({tile_offset_k", i) + ", warp_idx_n});\n" func_code += "}\n" return func_code def gen_member_func(self, first_use_1stage): code = "public:\n" code += self.gen_operator(first_use_1stage) code += self.gen_construct_func() return code def gen_code(self, first_use_1stage): def gen_template_args(b2b_num): template_param = [] template_param.append(("typename", "Shape0")) template_param.append(("typename", "IteratorA0")) template_param.append(("typename", "SmemIteratorA0")) template_param.append(("typename", "IteratorB0")) template_param.append(("typename", "SmemIteratorB0")) for i in range(1, b2b_num): template_param.append(("typename", helper.var_idx("Shape", i))) template_param.append(("typename", helper.var_idx("FragmentIteratorA", i))) template_param.append(("typename", helper.var_idx("IteratorB", i))) template_param.append(("typename", helper.var_idx("SmemIteratorB", i))) template_param.append(("typename", "ElementC")) template_param.append(("typename", "LayoutC")) for i in range(0, b2b_num - 1): template_param.append(("typename", helper.var_idx("OutputOp", i))) for i in range(0, b2b_num - 1): template_param.append(("typename", helper.var_idx("FusedAddBiasEpilogue", i))) for i in range(0, b2b_num): template_param.append(("typename", helper.var_idx("Policy", i))) for i in range(0, b2b_num): template_param.append((int, helper.var_idx("Stage", i))) template_param.append(("typename","TransformA0", "NumericArrayConverter<typename SmemIteratorA0_::Element, typename IteratorA0_::Element, IteratorA0_::Fragment::kElements>")) for i in range(0, b2b_num): cvtr = helper.var_idx("NumericArrayConverter<typename SmemIteratorB", i) + helper.var_idx("_::Element, typename IteratorB", i) + helper.var_idx("_::Element, IteratorB", i) + "_::Fragment::kElements>" template_param.append(("typename", helper.var_idx("TransformB", i), cvtr)) template_param.append(("typename", "Enable", "bool")) return template_param template_param = gen_template_args(self.b2b_num) inheritance_code = "public B2bMmaBase<" for i in range(self.b2b_num): inheritance_code += helper.var_idx("Shape", i) + "_, " for i in range(self.b2b_num): inheritance_code += helper.var_idx("Policy", i) + "_, " for i in range(self.b2b_num - 1): inheritance_code += helper.var_idx("Stage", i) + "_, " inheritance_code += helper.var_idx("Stage", self.b2b_num - 1) + "_" inheritance_code += ">" code_body = "" using_code= self.gen_using() func_code = self.gen_member_func(first_use_1stage) code_body = using_code + func_code class_code = gen_ir.gen_template_class(self.gen_class_name, template_param, code_body, inheritance_code = inheritance_code) code = self.gen_include_header() code += gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("threadblock", class_code))) # print(code) return code class gen_b2b_mma_base: def __init__(self, template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root): self.gen_class_name = gen_class_name self.template_param = template_param self.b2b_num = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_include_header(self): code = ''' #pragma once #include \"{cutlass_dirs}cutlass/aligned_buffer.h\" #include \"{cutlass_dirs}cutlass/arch/memory.h\" #include \"{cutlass_dirs}cutlass/array.h\" #include \"{cutlass_dirs}cutlass/cutlass.h\" #include \"{cutlass_dirs}cutlass/gemm/gemm.h\" #include \"{cutlass_dirs}cutlass/matrix_shape.h\" #include \"{cutlass_dirs}cutlass/numeric_types.h\"\n'''.format(cutlass_dirs=self.cutlass_deps_root) return code def gen_shared_storage(self): code = \ " template< \n\ typename Shape_,\n\ typename Policy_,\n\ int ThisStage_\n\ >\n\ class SharedStorage {\n\ public:\n\ using Shape = Shape_;\n\ using Policy = Policy_;\n\ static int const ThisStage = ThisStage_;\n\ using Operator = typename Policy::Operator;\n\ \ using TensorRefA = TensorRef<typename Operator::ElementA, typename Operator::LayoutA>;\n\ \ /// Tensor reference to the B operand \n\ using TensorRefB = TensorRef<typename Operator::ElementB, typename Operator::LayoutB>;\n\ \n\ /// Shape of the A matrix operand in shared memory \n\ using ShapeA = MatrixShape<Shape::kM + Policy::SmemPaddingA::kRow,\n\ Shape::kK * ThisStage +\n\ Policy::SmemPaddingA::kColumn>;\n\ \n\ /// Shape of the B matrix operand in shared memory\n\ using ShapeB =\n\ MatrixShape<Shape::kK * ThisStage + Policy::SmemPaddingB::kRow,\n\ Shape::kN + Policy::SmemPaddingB::kColumn>;\n\ \n\ public:\n\ \n\ /// Buffer for A operand\n\ AlignedBuffer<typename Operator::ElementA, ShapeA::kCount> operand_A;\n\ \n\ /// Buffer for B operand\n\ AlignedBuffer<typename Operator::ElementB, ShapeB::kCount> operand_B;\n\ \n\ public:\n\ \n\ /// Returns a layout object for the A matrix\n\ CUTLASS_DEVICE\n\ static typename Operator::LayoutA LayoutA() {\n\ return Operator::LayoutA::packed({ShapeA::kRow, ShapeA::kColumn});\n\ }\n\ \n\ /// Returns a layout object for the B matrix\n\ CUTLASS_HOST_DEVICE\n\ static typename Operator::LayoutB LayoutB() {\n\ return Operator::LayoutB::packed({ShapeB::kRow, ShapeB::kColumn});\n\ }\n\ \n\ /// Returns a TensorRef to the A operand\n\ CUTLASS_HOST_DEVICE\n\ TensorRefA operand_A_ref() {\n\ return TensorRefA{operand_A.data(), LayoutA()};\n\ }\n\ \n\ /// Returns a TensorRef to the B operand\n\ CUTLASS_HOST_DEVICE\n\ TensorRefB operand_B_ref() {\n\ return TensorRefB{operand_B.data(), LayoutB()};\n\ }\n\ CUTLASS_HOST_DEVICE\n\ void * get_B_Shared_ptr() {\n\ return operand_B.data();\n\ }\n\ };\n" return code def gen_using_and_misc(self, b2b_num): code_using = "" for i in range(b2b_num): code_using += "using Operator" +str(i) + " = typename Policy" + str(i) +"::Operator;\n" for i in range(b2b_num): code_using += "using WarpGemm" +str(i) + " = typename Policy" + str(i) +"::Operator::Shape;\n" for i in range(b2b_num): code_using += "using WarpCount" +str(i) + " = GemmShape<" + helper.var_idx("Shape", i) +"::kM / " + helper.var_idx("WarpGemm", i) +"::kM, "\ + helper.var_idx("Shape", i) +"::kN / " + helper.var_idx("WarpGemm", i) +"::kN, "\ + helper.var_idx("Shape", i) +"::kK / " + helper.var_idx("WarpGemm", i) +"::kK>;\n" code_misc = "" for i in range(b2b_num): code_misc += "static int const " + helper.var_idx("kWarpGemmIterations", i) + " = (" + helper.var_idx("WarpGemm", i) + "::kK / " + helper.var_idx("Operator", i) +"::Policy::MmaShape::kK);\n" code = code_using + code_misc + self.gen_shared_storage() for i in range(b2b_num): code += "using " + helper.var_idx("SharedStorage", i) + " = SharedStorage<" + helper.var_idx("Shape", i) + ", " + helper.var_idx("Policy", i) +", " + helper.var_idx("Stage", i) + ">;\n" def gen_union_shared_storage(b2b_num): code = "" for i in range(b2b_num): code += " " +helper.var_idx("SharedStorage", i) + " " + helper.var_idx("sharedStorage", i) +";\n" return code code += "union B2bMmaSharedStorage {\n" + gen_union_shared_storage(self.b2b_num) + "};\n" for i in range(b2b_num - 1): code += helper.var_idx("void * C", i) + "_smm_ptr;\n" return code def gen_protected(self): code = "\nprotected:\n" code += "typename Operator0::IteratorA warp_tile_iterator_A0_;\n" for i in range(self.b2b_num): code += "typename Operator" +str(i) + "::IteratorB" +" warp_tile_iterator_B" + str(i) + "_;\n" return code def gen_public_member(self): code = "\npublic:\n" code += "CUTLASS_DEVICE\n" code += \ "B2bMmaBase(\n" + \ " B2bMmaSharedStorage & shared_storage,\n" + \ " int thread_idx,\n" + \ " int warp_idx,\n" + \ " int lane_idx\n" + \ "):\n" + \ " warp_tile_iterator_A0_(shared_storage.sharedStorage0.operand_A_ref(), lane_idx),\n" for i in range(self.b2b_num): final = ",\n" if i == self.b2b_num-1: final = "\n" iterator = " warp_tile_iterator_B" + str(i) + "_" shared_storage = "shared_storage.sharedStorage" + str(i) + ".operand_B_ref()" code += iterator + "(" + shared_storage + ", lane_idx)" + final code += "{\n" for i in range(self.b2b_num - 1): code += helper.var_idx(" C", i) + helper.var_idx("_smm_ptr = shared_storage.sharedStorage", i) + ".get_B_Shared_ptr();\n" code += "}\n" return code def gen_code(self): tempalte_arg = [] for i in range(self.b2b_num): tempalte_arg.append(("typename", helper.var_idx("Shape", i))) for i in range(self.b2b_num): tempalte_arg.append(("typename", helper.var_idx("Policy", i))) for i in range(self.b2b_num): tempalte_arg.append((int, helper.var_idx("Stage", i))) code_body = self.gen_using_and_misc(self.b2b_num) code_body += self.gen_protected() code_body += self.gen_public_member() class_code = gen_ir.gen_template_class("B2bMmaBase", tempalte_arg, code_body) code = self.gen_include_header() + gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("threadblock", class_code))) return code class gen_threadblock: def __init__(self, template_param, gen_class_name, b2b_num, output_dir, cutlass_deps_root, project_root): self.gen_class_name = gen_class_name self.template_param = template_param self.b2b_num = b2b_num self.file_dir = output_dir + "/threadblock/" self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root self.gen_b2b_mma_base = gen_b2b_mma_base(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) self.gen_b2b_mma_pipelined = gen_b2b_mme_pipelined(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) self.gen_default_b2b_mma = gen_default_b2b_mma(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) def gen_code(self, first_use_1stage): base_code = self.gen_b2b_mma_base.gen_code() print("[INFO]: Gen kernel code [b2b_mma_base.h]output Dir: is ", self.file_dir) with open(self.file_dir + "b2b_mma_base.h", "w+") as f: f.write(base_code) pipeline_code = self.gen_b2b_mma_pipelined.gen_code(first_use_1stage = first_use_1stage) print("[INFO]: Gen kernel code [b2b_mma_pipelined.h]output Dir: is ", self.file_dir) with open(self.file_dir + "b2b_mma_pipelined.h", "w+") as f: f.write(pipeline_code) default_code = self.gen_default_b2b_mma.gen_code() print("[INFO]: Gen kernel code [default_b2b_mma.h]output Dir: is ", self.file_dir) with open(self.file_dir + "default_b2b_mma.h", "w+") as f: f.write(default_code)
cutlass-main
examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_threadblock.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import ast fuse_gemm_info = [ { 'epilogue': { 'tp': 'LeakyRelu', #'CustomizedLeaky_RELU' 'bias': {'addbias': False, 'bias_tp': 'mat'}, 'args': [('float', 'leaky_alpha', 1.3), ], 'func': ''' y = max(leaky_alpha * x, x) y = y * x ''' } }, ] class AnalysisNodeVisitor(ast.NodeVisitor): def visit_Import(self,node): ast.NodeVisitor.generic_visit(self, node) def visit_ImportFrom(self,node): ast.NodeVisitor.generic_visit(self, node) def visit_Assign(self,node): print('Node type: Assign and fields: ', node._fields) # print('Node type: Assign and targets value: ', node.targets, node.value) ast.NodeVisitor.generic_visit(self, node) def visit_BinOp(self, node): print('Node type: BinOp and fields: ', node._fields) print('node op: ', type(node.op).__name__) ast.NodeVisitor.generic_visit(self, node) def visit_Expr(self, node): print('Node type: Expr and fields: ', node._fields) ast.NodeVisitor.generic_visit(self, node) def visit_Num(self,node): print('Node type: Num and fields: ', node._fields) print('Node type: Num: ', node.n) def visit_Name(self,node): print('Node type: Name and fields: ', node._fields) print('Node type: Name and fields: ', type(node.ctx).__name__, node.id) ast.NodeVisitor.generic_visit(self, node) def visit_Str(self, node): print('Node type: Str and fields: ', node._fields) class CodeVisitor(ast.NodeVisitor): def visit_BinOp(self, node): if isinstance(node.op, ast.Add): node.op = ast.Sub() self.generic_visit(node) def visit_Assign(self, node): print('Assign %s' % node.value) self.generic_visit(node) def visit_Name(self, node): print("Name:", node.id) self.generic_visit(node) def visit_FunctionDef(self, node): print('Function Name:%s'% node.name.op) self.generic_visit(node) func_log_stmt = ast.Print( dest = None, values = [ast.Str(s = 'calling func: %s' % node.name, lineno = 0, col_offset = 0)], nl = True, lineno = 0, col_offset = 0, ) node.body.insert(0, func_log_stmt) visitor = AnalysisNodeVisitor() code = \ ''' a=max(leaky_alpha * x, x +1) ''' visitor.visit(ast.parse(code))
cutlass-main
examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_customized_epilogue.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# class gen_build_sys: def __init__(self, cutlass_deps_dir, output_dir = "../"): self.output_dir = output_dir self.cutlass_deps_dir = cutlass_deps_dir def gen_top(self): code = "" code += '''\ # Auto Generated code - Do not edit. cmake_minimum_required(VERSION 3.8) project(CUTLASS_MULTI_GEMMS LANGUAGES CXX CUDA) find_package(CUDAToolkit) set(CUDA_PATH ${{CUDA_TOOLKIT_ROOT_DIR}}) set(CUTLASS_PATH \"{cutlass_deps_dir}/include\") set(CUTLASS_UTIL_PATH \"{cutlass_deps_dir}/tools/util/include\") list(APPEND CMAKE_MODULE_PATH ${{CUDAToolkit_LIBRARY_DIR}}) '''.format(cutlass_deps_dir=self.cutlass_deps_dir) code += '''\ set(GPU_ARCHS \"\" CACHE STRING \"List of GPU architectures (semicolon-separated) to be compiled for.\") if(\"${GPU_ARCHS}\" STREQUAL \"\") set(GPU_ARCHS \"70\") endif() foreach(arch ${GPU_ARCHS}) set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -gencode arch=compute_${arch},code=sm_${arch}\") if(SM STREQUAL 70 OR SM STREQUAL 75) set(CMAKE_C_FLAGS \"${CMAKE_C_FLAGS} -DWMMA\") set(CMAKE_CXX_FLAGS \"${CMAKE_CXX_FLAGS} -DWMMA\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -DWMMA\") endif() endforeach() set(CMAKE_C_FLAGS \"${CMAKE_C_FLAGS}\") set(CMAKE_CXX_FLAGS \"${CMAKE_CXX_FLAGS}\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -Xcompiler -Wall\") set(CMAKE_C_FLAGS_DEBUG \"${CMAKE_C_FLAGS_DEBUG} -Wall -O0\") set(CMAKE_CXX_FLAGS_DEBUG \"${CMAKE_CXX_FLAGS_DEBUG} -Wall -O0\") set(CMAKE_CUDA_FLAGS_DEBUG \"${CMAKE_CUDA_FLAGS_DEBUG} -O0 -G -Xcompiler -Wall\") set(CMAKE_CXX_STANDARD 11) set(CMAKE_CXX_STANDARD_REQUIRED ON) if(CMAKE_CXX_STANDARD STREQUAL \"11\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} --expt-extended-lambda\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr\") endif() set(CMAKE_CXX_FLAGS \"${CMAKE_CXX_FLAGS} -g -O3\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -Xcompiler -O3\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -Xcompiler=-fno-strict-aliasing\") set(COMMON_HEADER_DIRS ${PROJECT_SOURCE_DIR} ${CUDAToolkit_INCLUDE_DIRS} ) set(COMMON_LIB_DIRS ${CUDAToolkit_LIBRARY_DIR} ) list(APPEND COMMON_HEADER_DIRS ${CUTLASS_PATH}) list(APPEND COMMON_HEADER_DIRS ${CUTLASS_UTIL_PATH}) ''' code += '''\ include_directories( ${COMMON_HEADER_DIRS} ) link_directories( ${COMMON_LIB_DIRS} ) add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0) add_definitions(-DGOOGLE_CUDA=1) add_executable(sample sample/sample.cu one_api.cu ) target_link_libraries(sample PRIVATE -lcudart -lnvToolsExt ${CMAKE_THREAD_LIBS_INIT} ) if(NOT DEFINED LIB_INSTALL_PATH) set(LIB_INSTALL_PATH ${CMAKE_CURRENT_BINARY_DIR}) endif() ''' return code def gen_code(self): top_code = self.gen_top() with open(self.output_dir + "CMakeLists.txt", "w") as f: f.write(top_code)
cutlass-main
examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_cmake.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import helper import gen_ir as ir import gen_turing_and_volta as gen_basic class gen_verify: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.name = gen_class_name + "_verify" self.b2b_num = len(fuse_gemm_info) self.params = [] self.user_header_file = "" for header in user_header_file: self.user_header_file += "#include \"" + header + "\"\n" self.separate_cutlass = gen_basic.gen_volta_turing_fuse_act_impl(fuse_gemm_info, gen_class_name, user_header_file, output_dir) self.gen_params() self.output_dir = output_dir def gen_code(self): code = "" code += self.user_header_file code += self.separate_cutlass.gen_using(False) #False -> Turing, True -> Volta code_body = "" for i in range(self.b2b_num): code_body += " " + helper.var_idx("Gemm", i) + helper.var_idx(" gemm_op_", i) + ";\n" code_body += " " + helper.var_idx("gemm_op_", i) + helper.var_idx(".initialize(Arguments_", i) + ", nullptr);\n" code_body += self.separate_cutlass.gen_run() code += ir.gen_func(self.name, self.params, code_body) helper.write_2_headfile("cutlass_verify.h", self.output_dir, code) def gen_params(self): for i in range(self.b2b_num): self.params.append( ( helper.var_idx("typename Gemm", i)+ "::Arguments", helper.var_idx("Arguments_", i) ) ) def get_params(self, declartion = True): code = "" if declartion: for param in self.params: code += param[0] + " " + param[1] + ";\n" return code def gen_initialize(): code = "" initialize_code = self.separate_cutlass.gen_initialize() code = ir.gen_func("initialize", [[]])
cutlass-main
examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_verify.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# def type_2_cutlass_type(input_type = "fp16"): # float point type if input_type == "fp32": return "float" if input_type == "bf16": return "cutlass::bfloat16_t" if input_type == "fp16": return "cutlass::half_t" # integer type if(input_type == "int32"): return "int32_t" if(input_type == "int8"): return "int8_t" if input_type == 'Row': return 'cutlass::layout::RowMajor' if input_type == 'Col': return 'cutlass::layout::ColumnMajor' def cvt_2_cutlass_shape(gemm_shape): # gemm shape if len(gemm_shape) == 3: val = "cutlass::gemm::GemmShape<" \ + str(gemm_shape[0]) + ", " \ + str(gemm_shape[1]) + ", " \ + str(gemm_shape[2]) + ">" return val def write_2_headfile(filename, file_dir, string): with open(file_dir + filename, 'w') as f: f.write("/* Auto Generated code - Do not edit.*/\n\n\n#pragma once\n" + string) def var_idx(varaiable, index): return varaiable + str(index) def list_2_string(input_list, ): rtn_string = "" cnt = 0 for element in input_list: final = ", \n" if cnt == len(input_list) - 1: final = "\n" cnt += 1 rtn_string += str(element) + final return rtn_string def get_epilogue_info(layer_info): return layer_info['epilogue'] def get_epilogue_tp(layer_info): epilogue_info = get_epilogue_info(layer_info) return epilogue_info['tp'] def get_epilogue_add_bias_or_not(layer_info): epilogue_info = get_epilogue_info(layer_info) return epilogue_info['bias']['addbias'] def get_epilogue_add_bias_tp(layer_info): epilogue_info = get_epilogue_info(layer_info) return epilogue_info['bias']['bias_tp'] def get_epilogue_args(layer_info): epilogue_info = get_epilogue_info(layer_info) return epilogue_info['args'] def get_epilogue_bias_shape(layer_info): bias_tp = get_epilogue_add_bias_tp(layer_info).lower() mn_shape = layer_info['mnk'][:-1] if bias_tp == 'mat': mn_shape[0] = 'M' return mn_shape elif bias_tp == 'vec': mn_shape[0] = 1 return mn_shape else: assert(0) def get_epilogue_bias_ldm(layer_info): bias_tp = get_epilogue_add_bias_tp(layer_info).lower() mn_shape = layer_info['mnk'][:-1] c_layout = layer_info['C_format'].lower() if c_layout != 'row': assert(0) if bias_tp == 'mat': return mn_shape[1] elif bias_tp == 'vec': return 0 else: assert(0) def get_epilogue_compute_tp(layer_info): return layer_info['Acc_tp']
cutlass-main
examples/44_multi_gemm_ir_and_codegen/ir_gen/helper.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import helper import gen_ir as ir class gen_turing_impl: def __init__(self,fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.class_name = gen_class_name self.gen_class_name = gen_class_name + "_turing_impl" self.user_header_file = "" for header in user_header_file: self.user_header_file += "#include \"" + header + "\"\n" self.output_dir = output_dir self.b2b_num = len(fuse_gemm_info) self.gen_turing_unfused = gen_volta_turing_fuse_act_impl(fuse_gemm_info, gen_class_name, user_header_file, output_dir) def gen_using(self): code_using = "using b2b_gemm = typename cutlass::gemm::device::" + self.class_name + "<cutlass::half_t>;" return code_using + "\n" def gen_initialize(self): code = "" for i in range(self.b2b_num): code_this = "" code_this += helper.var_idx(helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + " alpha", i) + " = " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(1);\n" beta = "(1)" if helper.get_epilogue_add_bias_or_not(self.fuse_gemm_info[i]) is False: beta = "(0)" code_this += helper.var_idx(helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + " beta", i) + " = " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + beta + ";\n" k_str = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: k_str = "K0" code_this += helper.var_idx("cutlass::gemm::GemmCoord problem_size_", i) + "(M, " + str(self.fuse_gemm_info[i]['mnk'][1]) + ", " + k_str + ");\n" code += code_this code += "typename b2b_gemm::Arguments arguments{\n" for i in range(self.b2b_num): code += " " + helper.var_idx("problem_size_", i) + ",\n" code += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("A", 0) + "), " + helper.var_idx("problem_size_", 0) + ".k()},\n" for i in range(self.b2b_num): ldmB = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: ldmB = "K0" if self.fuse_gemm_info[i]['B_format'] is 'Row': ldmB = str(self.fuse_gemm_info[i]['mnk'][1]) ldmC = str(helper.get_epilogue_bias_ldm(self.fuse_gemm_info[i])) code += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_tp']) + "*>(" + helper.var_idx("B", i) + "), " + ldmB + "},\n" code += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("C", i) + "), " + ldmC + "},\n" code += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("D", self.b2b_num -1) + "), " + helper.var_idx("problem_size_", self.b2b_num - 1) + ".n()},\n" for i in range(self.b2b_num): code += " " + "{ " + helper.var_idx("alpha", i) + ", " + helper.var_idx("beta", i) for epilogue_arg in helper.get_epilogue_args(self.fuse_gemm_info[i]): arg_name = helper.var_idx("Epilogue", i) + "_" + epilogue_arg[1] code += ", " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(" + str(arg_name) + ")" code += "},\n" code += " " + "Batch};\n\n" code += " " "b2b_gemm gemm_op;\n" code += " " + "gemm_op.initialize(arguments);\n" return code + "\n" def gen_run(self): code = " " + "gemm_op(stream);\n" return code def gen_wrapper(self): code_body = "" arg_lists = [] arg_lists.append(["int", "M"]) arg_lists.append(["int", "K0"]) arg_lists.append(["int", "Batch"]) arg_lists.append(["void*", helper.var_idx("A", 0)]) for i in range(self.b2b_num): arg_lists.append(["void*", helper.var_idx("B", i)]) arg_lists.append(["void*", helper.var_idx("C", i)]) arg_lists.append(["void*", helper.var_idx("D", i)]) epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) acc_tp = helper.get_epilogue_compute_tp(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_tp = arg[0] arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] arg_lists.append([arg_tp, arg_name]) if self.b2b_num == 1: code_body += self.gen_turing_unfused.gen_using(False) #False -> Turing, True -> Volta code_body += self.gen_turing_unfused.gen_initialize() code_body += self.gen_turing_unfused.gen_run() else: code_body += self.gen_using() code_body += self.gen_initialize() code_body += self.gen_run() code = ir.gen_func(self.gen_class_name, arg_lists, code_body) return code def gen_code(self): code = self.gen_wrapper() helper.write_2_headfile("turing_impl.h", self.output_dir, self.user_header_file + "\n" + code) class gen_volta_turing_fuse_act_impl: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.gen_class_name = gen_class_name + "_volta_impl" self.user_header_file = "" for header in user_header_file: self.user_header_file += "#include \"" + header + "\"\n" self.output_dir = output_dir self.b2b_num = len(fuse_gemm_info) def perf_tiling(self, layer_mnk): mnk = layer_mnk[:] block_tile = mnk[:] block_tile[2] = 32 # force the K tile to be 32 # M tile gen block_tile[0] = 32 # N tile gen if mnk[1] > 128: block_tile[1] = 256 elif mnk[1] > 64: block_tile[1] = 128 elif mnk[1] > 32: block_tile[1] = 64 else : block_tile[1] = 32 warp_tile = block_tile[:] if block_tile[1] == 256: warp_tile[1] = 64 elif block_tile[1] == 128: warp_tile[1] = 32 elif block_tile[1] == 64: warp_tile[1] = 32 else : warp_tile[1] = 32 warp_tile[0] = 32 return block_tile, warp_tile def process_epilogue(self, epilogue_tp, n, C_tp, Acc_tp): epilogue_setted_type = epilogue_tp cutlass_epilogue_name = "LinearCombinationRelu" if epilogue_setted_type.lower() == 'leakyrelu': cutlass_epilogue_name = "LinearCombinationLeakyRelu" elif epilogue_setted_type.lower() == 'identity': cutlass_epilogue_name = "LinearCombination" n_mod_8 = n % 4 N_align_elements = 1 if n_mod_8 == 0: N_align_elements = 8 elif n_mod_8 == 4: N_align_elements = 4 elif n_mod_8 == 2 or n_mod_8 == 6: N_align_elements = 2 epilogue_str = "cutlass::epilogue::thread::" + cutlass_epilogue_name+ "<" + C_tp + ", " + str(N_align_elements) + ", " + Acc_tp + ", " + Acc_tp + ">" return epilogue_str def gen_using(self, volta = True): code_using = "" volta_arch = "cutlass::arch::Sm70" volta_tc = "cutlass::gemm::GemmShape<8, 8, 4>" turing_arch = "cutlass::arch::Sm75" turing_tc = "cutlass::gemm::GemmShape<16, 8, 8>" arch = "" tc = "" if volta: arch = volta_arch tc = volta_tc else: arch = turing_arch tc = turing_tc for i in range(self.b2b_num): k = self.fuse_gemm_info[i]['mnk'][2] k_mod_8 = k % 4 ab_ldm = 1 if k_mod_8 == 0: ab_ldm = 8 elif k_mod_8 == 4: ab_ldm = 4 elif k_mod_8 == 2 or k_mod_8 == 6: ab_ldm = 2 block_tile, warp_tile = self.perf_tiling(self.fuse_gemm_info[i]['mnk']) this_gemm_config = helper.var_idx("using Gemm", i) + " = cutlass::gemm::device::GemmBatched<\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_format']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_tp']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_format']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_format']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + ",\n" this_gemm_config += " " + "cutlass::arch::OpClassTensorOp,\n" this_gemm_config += " " + arch + ",\n" this_gemm_config += " " + "cutlass::gemm::GemmShape<" + str(block_tile[0]) + ", " + str(block_tile[1]) + ", " + str(block_tile[2]) + ">,\n" this_gemm_config += " " + "cutlass::gemm::GemmShape<" + str(warp_tile[0]) + ", " + str(warp_tile[1]) + ", " + str(warp_tile[2]) + ">,\n" this_gemm_config += " " + tc + ",\n" this_gemm_config += " " + self.process_epilogue(helper.get_epilogue_tp(self.fuse_gemm_info[i]), self.fuse_gemm_info[i]['mnk'][1], helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']), helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp'])) + ",\n" this_gemm_config += " " + "cutlass::gemm::threadblock::GemmBatchedIdentityThreadblockSwizzle,\n" this_gemm_config += " " + "2,\n" this_gemm_config += " " + str(ab_ldm) + ",\n" this_gemm_config += " " + str(ab_ldm) + ">;\n" code_using += this_gemm_config + "\n" return code_using + "\n" def gen_initialize(self): code = "" for i in range(self.b2b_num): code_this = "" N_str = str(self.fuse_gemm_info[i]['mnk'][1]) code_this += helper.var_idx(helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + " alpha", i) + " = " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(1);\n" beta = "(1)" if helper.get_epilogue_add_bias_or_not( self.fuse_gemm_info[i]) is False: beta = "(0)" code_this += helper.var_idx(helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + " beta", i) + " = " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + beta + ";\n" k_str = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: k_str = "K0" code_this += helper.var_idx("cutlass::gemm::GemmCoord problem_size_", i) + "(M, " + str(self.fuse_gemm_info[i]['mnk'][1]) + ", " + k_str + ");\n" code_this += helper.var_idx("typename Gemm", i) + helper.var_idx("::Arguments arguments_", i) + "{\n" code_this += " " + helper.var_idx("problem_size_", i) + ",\n" ldmA = k_str ldmB = k_str ldmC = str(self.fuse_gemm_info[i]['mnk'][1]) ldmBias = str(helper.get_epilogue_bias_ldm(self.fuse_gemm_info[i])) if self.fuse_gemm_info[i]['A_format'] is 'Col': ldmA = "M" if self.fuse_gemm_info[i]['B_format'] is 'Row': ldmB = str(self.fuse_gemm_info[i]['mnk'][1]) if self.fuse_gemm_info[i]['C_format'] is 'Col': ldmC = "M" if i == 0: code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("A", i) + "), " + ldmA + "}, " + "M * " + ldmA + ",\n" else: code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("D", i - 1) + "), " + ldmA + "}, " + "M * " + ldmA + ",\n" code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_tp']) + "*>(" + helper.var_idx("B", i) + "), " + ldmB + "}, " + N_str + " * " + ldmB + ",\n" M_bias = str(helper.get_epilogue_bias_shape(self.fuse_gemm_info[i])[0]) code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("C", i) + "), " + ldmBias + "}, " + M_bias + " * " + N_str + ",\n" code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("D", i) + "), " + ldmC + "}, " + "M * " + ldmC + ",\n" code_this += " " + "{ " + helper.var_idx("alpha", i) + ", " + helper.var_idx("beta", i) for epilogue_arg in helper.get_epilogue_args(self.fuse_gemm_info[i]): arg_name = helper.var_idx("Epilogue", i) + "_" + epilogue_arg[1] code_this += ", " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(" + str(arg_name) + ")" code_this += " },\n" code_this += " " + "Batch};\n" code_this += " " + helper.var_idx("Gemm", i) + helper.var_idx(" gemm_op_", i) + ";\n" code_this += " " + helper.var_idx("gemm_op_", i) + helper.var_idx(".initialize(arguments_", i) + ", nullptr);\n" code += code_this + "\n" return code + "\n" def gen_run(self): code = "" for i in range(self.b2b_num): code_this = "" code_this += " " + helper.var_idx("gemm_op_", i) + "(stream);\n" code += code_this return code def gen_wrapper(self): code_body = "" arg_lists = [] arg_lists.append(["int", "M"]) arg_lists.append(["int", "K0"]) arg_lists.append(["int", "Batch"]) arg_lists.append(["void*", helper.var_idx("A", 0)]) for i in range(self.b2b_num): arg_lists.append(["void*", helper.var_idx("B", i)]) arg_lists.append(["void*", helper.var_idx("C", i)]) arg_lists.append(["void*", helper.var_idx("D", i)]) epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) acc_tp = helper.get_epilogue_compute_tp(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_tp = arg[0] arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] arg_lists.append([arg_tp, arg_name]) code_body += self.gen_using() code_body += self.gen_initialize() code_body += self.gen_run() code = ir.gen_func(self.gen_class_name, arg_lists, code_body) return code def gen_code(self): code = self.gen_wrapper() helper.write_2_headfile("volta_impl.h", self.output_dir, self.user_header_file + "\n" + code) class gen_one_API: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.gen_class_name = gen_class_name self.user_header_file = "" for header in user_header_file: self.user_header_file += "#include \"" + header + "\"\n" self.output_dir = output_dir self.b2b_num = len(fuse_gemm_info) self.gen_volta = gen_volta_turing_fuse_act_impl(fuse_gemm_info, gen_class_name, user_header_file, output_dir) self.gen_turing = gen_turing_impl(fuse_gemm_info, gen_class_name, user_header_file, output_dir) def gen_CUTLASS_irrelevant_API(self): code = "" code += "#include <cuda_runtime.h>\n" code += "#include <assert.h>\n" param_name = "Fused" + str(self.b2b_num) + "xGemm_" for i in range(self.b2b_num): param_name += str(self.fuse_gemm_info[i]['mnk'][1]) + "_" param_name += "Params" params = "" params += " " + "int M;\n" params += " " + "int K0;\n" params += " " + "int Batch;\n" params += " " + "const void* A0;\n" for i in range(self.b2b_num): params += " " + "const void* " + helper.var_idx("B", i) + ";\n" params += " " + "const void* " + helper.var_idx("C", i) + ";\n" epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) acc_tp = helper.get_epilogue_compute_tp(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_tp = arg[0] arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] params += " " + arg_tp + " " + arg_name + ";\n" params += " " + "void* " + helper.var_idx("D", i) + ";\n" code += ir.gen_struct(param_name, params) code += "using Param = " + param_name + ";\n" code += "void one_api( const Param & param, int sm, cudaStream_t stream);\n" return code def gen_one_api(self): code = "" code += "/* Auto Generated code - Do not edit.*/\n" code += "#include \"cutlass_irrelevant.h\"\n" code += "#include \"api.h\"\n" code += "void one_api( const Param & param, int sm, cudaStream_t stream) {\n" code += " " + "if (sm == 70) \n" code += " " + " " + self.gen_class_name + "_volta_impl(param.M, param.K0, param.Batch, const_cast<void*>(param.A0), " for i in range(self.b2b_num): code += helper.var_idx("const_cast<void*>(param.B", i) + "), " code += helper.var_idx("const_cast<void*>(param.C", i) + "), " code += helper.var_idx("param.D", i) + ", " epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] code += "param." + arg_name + ", " code += "stream);\n" code += " " + "else if(sm >= 75) \n" code += " " + " " + self.gen_class_name + "_turing_impl(param.M, param.K0, param.Batch, const_cast<void*>(param.A0), " for i in range(self.b2b_num): code += helper.var_idx("const_cast<void*>(param.B", i) + "), " code += helper.var_idx("const_cast<void*>(param.C", i) + "), " code += helper.var_idx("param.D", i) + ", " epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] code += "param." + arg_name + ", " code += "stream);\n" code += " " + "else assert(0);\n" code += "}\n" return code def gen_code(self): turing_code = self.gen_turing.gen_wrapper() volta_code = self.gen_volta.gen_wrapper() cutlass_irrelevant_code = self.gen_CUTLASS_irrelevant_API() one_api_code = self.gen_one_api() with open(self.output_dir + "one_api.cu", "w+") as f: f.write(one_api_code) helper.write_2_headfile("cutlass_irrelevant.h", self.output_dir, cutlass_irrelevant_code) helper.write_2_headfile("api.h", self.output_dir, self.user_header_file + "\n" + turing_code + volta_code)
cutlass-main
examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_turing_and_volta.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import helper import gen_ir as ir class gen_test: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.gen_class_name = gen_class_name self.user_header_file = user_header_file self.sample_dir = output_dir self.b2b_num = len(fuse_gemm_info) def gen_cpp_sample(self): code = "/* Auto Generated code - Do not edit.*/\n" code += "#include <stdio.h> \n" code += "#include \"cutlass/gemm/device/gemm_batched.h\" \n" code += "#include \"cutlass/cutlass.h\" \n" code += "#include \"../cutlass_irrelevant.h\" \n" code += "#include \"../cutlass_verify.h\" \n" code += "#include \"leaky_bias.h\" \n" code += "#include \"utils.h\" \n" code += "int main(int args, char * argv[]) {\n" code += " " + "int M = atoi(argv[1]);\n" code += " " + "int K0 = " + str(self.fuse_gemm_info[0]['mnk'][0]) + ";\n" code += " " + "if(args == 3);\n" code += " " + " " + "K0 = atoi(argv[2]);\n" code += " " + "int B = 1;\n" code += " " + "if(args == 4);\n" code += " " + " " + "B = atoi(argv[3]);\n" code += " " + "srand(1234UL);\n" code += " " + "int device_id = 0;\n" code += " " + "cudaGetDevice(&device_id);\n" code += " " + "cudaDeviceProp prop;\n" code += " " + "cudaGetDeviceProperties(&prop, device_id);\n" code += " " + "int sm = prop.major *10 + prop.minor;\n" code += "using ElementCompute = cutlass::half_t;\n" for i in range(self.b2b_num): code += " " + helper.var_idx("ElementCompute alpha", i) + " = ElementCompute(1);\n" addbias = helper.get_epilogue_add_bias_or_not( self.fuse_gemm_info[i]) if addbias: code += " " + helper.var_idx("ElementCompute beta", i) + " = ElementCompute(1);\n" else: code += " " + helper.var_idx("ElementCompute beta", i) + " = ElementCompute(0);\n" code += " " + "size_t flops = 0;\n" for i in range(self.b2b_num): m = self.fuse_gemm_info[i]['mnk'][0] n = self.fuse_gemm_info[i]['mnk'][1] k = self.fuse_gemm_info[i]['mnk'][2] bias_shape = helper.get_epilogue_bias_shape(self.fuse_gemm_info[i]) this_k = "K0" if (i > 0): this_k = str(k) code += " " + "flops += size_t(2) * size_t(M) * size_t(B) * " + "size_t(" + str(n) + ") * size_t(" + this_k + ");\n" code += " " + helper.var_idx("cutlass::gemm::GemmCoord problem_size_", i) + "(" + "M" + ", " + str(n) + ", " + this_k + ");\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_A", i) + helper.var_idx("(B * problem_size_", i) + helper.var_idx(".m() * problem_size_", i) + ".k());\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_B", i) + helper.var_idx("(B * problem_size_", i) + helper.var_idx(".n() * problem_size_", i) + ".k());\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_C", i) + "(B * " + str(bias_shape[0]) + " * " + str(bias_shape[1]) + ");\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_D_cutlass_ref", i) + helper.var_idx("(B * problem_size_", i) + helper.var_idx(".m() * problem_size_", i) + ".n());\n" code += " " + helper.var_idx("Mat_A", i) + ".init();\n" code += " " + helper.var_idx("Mat_B", i) + ".init();\n" code += " " + helper.var_idx("Mat_C", i) + ".init();\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_D", self.b2b_num - 1) + helper.var_idx("(B * problem_size_", i) + helper.var_idx(".m() * problem_size_",self.b2b_num - 1) + ".n());\n" params = [] params.append("M") params.append("B") params.append("Mat_A0.device_ptr") for i in range(self.b2b_num): params.append(helper.var_idx("Mat_B", i) + ".device_ptr") params.append(helper.var_idx("Mat_C", i) + ".device_ptr") if i != self.b2b_num-1: params.append(helper.var_idx("Mat_D_cutlass_ref", i) + ".device_ptr") params.append(helper.var_idx("Mat_D", self.b2b_num - 1) + ".device_ptr") code += " " + "Param arguments = {\n" code += " " + " " + "M,\n" code += " " + " " + "K0,\n" code += " " + " " + "B,\n" code += " " + " " + "reinterpret_cast<const void*>(Mat_A0.device_ptr),\n" cnt = 1 for i in range(self.b2b_num): bias_flag = helper.get_epilogue_add_bias_or_not( self.fuse_gemm_info[i]) code += " " + " " + "reinterpret_cast<const void*>(" + helper.var_idx("Mat_B", i) + ".device_ptr" + "),\n" cnt += 1 if bias_flag: code += " " + " " + "reinterpret_cast<const void*>(" + helper.var_idx("Mat_C", i) + ".device_ptr" + "),\n" cnt += 1 else: code += " " + " " + "reinterpret_cast<const void*>(NULL),\n" epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) acc_tp = helper.get_epilogue_compute_tp(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_value = str(arg[2]) code += " " + " " + helper.type_2_cutlass_type(acc_tp) + "(" + arg_value + "),\n" if i != self.b2b_num - 1: code += " " + " " + "reinterpret_cast<void*>(" + helper.var_idx("Mat_D_cutlass_ref", i) + ".device_ptr" + "),\n" else: code += " " + " " + "reinterpret_cast<void*>(" + helper.var_idx("Mat_D", i) + ".device_ptr" + ")};\n" code += " " + "TI(FUSED_CUTLASS);\n" code += " " + "for(int i = 0; i < 100; i++){\n" code += " " + " " + "one_api(arguments, sm, NULL);\n" code += " " + "}\n" code += " " + "TO(FUSED_CUTLASS, \"FUSED_CUTLASS\", 100);\n" code += "\n" for i in range(self.b2b_num): code_this = "" N_str = str(self.fuse_gemm_info[i]['mnk'][1]) code_this += " " + helper.var_idx("typename Gemm", i) + helper.var_idx("::Arguments arguments_", i) + "{\n" code_this += " " + " " + helper.var_idx("problem_size_", i) + ",\n" ldmA = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: ldmA = "K0" ldmB = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: ldmB = "K0" ldmC = str(self.fuse_gemm_info[i]['mnk'][1]) ldmBias = str(helper.get_epilogue_bias_ldm(self.fuse_gemm_info[i])) if self.fuse_gemm_info[i]['A_format'] is 'Col': ldmA = "M" if self.fuse_gemm_info[i]['B_format'] is 'Row': ldmB = str(self.fuse_gemm_info[i]['mnk'][1]) if self.fuse_gemm_info[i]['C_format'] is 'Col': ldmC = "M" if i == 0: code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("Mat_A", i) + ".device_ptr), " + ldmA + "}, " + "M * " + ldmA + ",\n" else: code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("Mat_D_cutlass_ref", i - 1) + ".device_ptr), " + ldmA + "}, " + "M * " + ldmA + ",\n" code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_tp']) + "*>(" + helper.var_idx("Mat_B", i) + ".device_ptr), " + ldmB + "}, " + N_str + " * " + ldmB + ",\n" M_bias = str(helper.get_epilogue_bias_shape(self.fuse_gemm_info[i])[0]) code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("Mat_C", i) + ".device_ptr), " + ldmBias + "}, " + M_bias + " * " + N_str + ",\n" code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("Mat_D_cutlass_ref", i) + ".device_ptr), " + ldmC + "}, " + "M * " + ldmC + ",\n" code_this += " " + " " + "{ " + helper.var_idx("alpha", i) + ", " + helper.var_idx("beta", i) for epilogue_arg in helper.get_epilogue_args(self.fuse_gemm_info[i]): arg_value = str(epilogue_arg[2]) code_this += ", " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(" + str(arg_value) + ")" code_this += " " + " },\n" code_this += " " + " " + "B};\n" code += code_this code += " " + "TI(UNFUSED_CUTLASS);\n" code += " " + "for(int i = 0; i < 100; i++){\n" code += " " + " " + self.gen_class_name + "_verify(\n" for i in range(self.b2b_num): code += " " + " " + " " + helper.var_idx("arguments_", i) + ",\n" code += " " + " " + " " + "NULL);\n" code += " " + "}\n" code += " " + "TO(UNFUSED_CUTLASS, \"UNFUSED_CUTLASS\", 100);\n" code += " " + helper.var_idx("Mat_D_cutlass_ref", self.b2b_num - 1) + ".d2h();\n" code += " " + helper.var_idx("Mat_D", self.b2b_num - 1) + ".d2h();\n" code += " " + helper.var_idx("check_result(Mat_D_cutlass_ref", self.b2b_num - 1) + helper.var_idx(".host_ptr, Mat_D", self.b2b_num - 1) \ + helper.var_idx(".host_ptr, Mat_D", self.b2b_num - 1) + ".elements);\n" code += "\n\n}\n" with open(self.sample_dir + "sample.cu", "w+") as f: f.write(code)
cutlass-main
examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_sample.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import os class replace_fix_impl: def __init__(self, src_dir, dst_dir, cutlass_deps_root): self.src_dir = src_dir self.dst_dir = dst_dir self.cutlass_deps_root = cutlass_deps_root def gen_code(self): for sub_dir in os.walk(self.src_dir): files_in_sub_dir = sub_dir[2] src_dirs = sub_dir[0] output_dirs = self.dst_dir + sub_dir[0][len(self.src_dir):] if not os.path.exists(output_dirs): os.mkdir(output_dirs) for f in files_in_sub_dir: with open(src_dirs +"/" + f, 'r') as current_file: output_lines = [] lines = current_file.readlines() for line in lines: if(len(line) >= len("#include \"cutlass") and line[:len("#include \"cutlass")] == "#include \"cutlass"): new_line = "#include \"" + self.cutlass_deps_root + line[len("#include \""):] # print(new_line) output_lines.append(new_line) else: output_lines.append(line) with open(output_dirs + "/" + f, "w+") as dest_file: dest_file.writelines(output_lines)
cutlass-main
examples/44_multi_gemm_ir_and_codegen/ir_gen/replace_fix_impl_header.py
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import helper indentation = " " def append_word(word): code = "" code += word code += " " return code def gen_namespace(namespace, codeBody): code_gen = "namespace " + namespace + " {\n" code_gen += codeBody code_gen += "} // namespace " + namespace + "\n" return code_gen def gen_expression(type, lval, rval = None): code_gen = "" code_gen += append_word(type) code_gen += append_word(lval) if rval is not None: code_gen += append_word("=") code_gen += append_word(rval) return code_gen def gen_class(name, codeBody, inheritance_code = None): code_gen = "" if inheritance_code is None: code_gen = "class " + name + "{\n" else: code_gen = "class " + name + " : "+ inheritance_code + "{\n" code_gen += codeBody code_gen += "}; // class " + name + "\n" return code_gen def gen_struct(name, codeBody, specialized = None): specialized_code = "" if specialized is not None: specialized_code = "<" + specialized + ">" code_gen = "struct " + name + specialized_code + "{\n" code_gen += codeBody code_gen += "}; // struct " + name + "\n" return code_gen def gen_template_arg(arg_type, arg_name, default_val = None): rval = None if default_val is not None: rval = str(default_val) arg_typename = "" if arg_type is int: arg_typename = "int" elif arg_type is bool: arg_typename = "bool" else: arg_typename = "typename" internal_arg_name = arg_name + "_" code_gen = indentation code_gen += gen_expression(arg_typename, internal_arg_name, rval) return code_gen def gen_template_args(args, set_default = True): arg_len = len(args) cnt = 1 code_gen = "" for arg_tuple in args: arg_type = arg_tuple[0] arg_name = arg_tuple[1] arg_default_val = None if len(arg_tuple) == 3 and set_default: arg_default_val = arg_tuple[2] code_gen += gen_template_arg(arg_type, arg_name, arg_default_val) if cnt != arg_len: code_gen += ",\n" cnt += 1 return code_gen def gen_template_head(args, set_default = True): code_gen = "template <\n" code_gen += gen_template_args(args, set_default) code_gen += ">\n" return code_gen def export_template_args(args): code_gen = "public:\n" for arg_tuple in args: code_gen += indentation arg_type = arg_tuple[0] arg_name = arg_tuple[1] internal_arg_name = arg_name + "_" typename = "" if arg_type is int: typename = "static int const" elif arg_type is bool: typename = "static bool const" else: typename = "using" code_gen += gen_expression(typename, arg_name, internal_arg_name) code_gen += ";\n" return code_gen def gen_template_class(class_name, args, codeBody, set_default = True, inheritance_code = None): code_gen = "" code_gen += gen_template_head(args, set_default) code_gen += gen_class(class_name, export_template_args(args) + codeBody, inheritance_code) return code_gen def gen_template_struct(struct_name, args, codeBody, speicalized = None, set_default = True, export_args = True): code_gen = "" code_gen += gen_template_head(args, set_default) code = export_template_args(args) + codeBody if export_args is False: code = codeBody code_gen += gen_struct(struct_name, code , speicalized) return code_gen def gen_declare_template_struct(name, *params): code = name + "<" cnt = 0 param_num = len(params) for param in params: final = ", " if cnt == param_num - 1: final = "" code += param + final cnt += 1 code += ">;\n" return code def filtered_param(params, name_and_value_pair, keep_ = False): rtn_template_args = [] speicalized_template_args = [] for param in params: param_name = "" if len(param) >= 1: param_name = param[1] else: param_name = param[0] hit_flag = False set_value = "" for n_v_pair in name_and_value_pair: filter_name = n_v_pair[0] set_value = n_v_pair[1] if param_name == (filter_name + "_") or param_name == filter_name : hit_flag = True break if hit_flag is False: rtn_template_args.append(param) if hit_flag is True: speicalized_template_args.append(set_value) else: if keep_ is True: speicalized_template_args.append(param_name + "_") else: speicalized_template_args.append(param_name) specialized_template_arg_str = helper.list_2_string(speicalized_template_args) return rtn_template_args, specialized_template_arg_str def gen_func(func_name, arg_lists, code_body, only_declare = False, with_cudaStream = True): code = "void " + func_name + "(\n" for arg in arg_lists: arg_tp = arg[0] arg_nm = arg[1] code += " " + arg_tp + " " + arg_nm + ",\n" code += "cudaStream_t stream)" if only_declare : return code code += "{\n" code += code_body + "\n" code += "}\n" return code def indent_level(code, level = 0): rtn_code = "" for i in range(level): rtn_code += " " rtn_code += code return rtn_code
cutlass-main
examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_ir.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ """ Basic example of using the CUTLASS Python interface to run a GEMM """ import argparse import numpy as np import sys import cutlass_bindings import cutlass.backend as pycutlass from cutlass.backend import * from cutlass.backend.utils.device import device_cc parser = argparse.ArgumentParser(description="Launch a GEMM kernel from Python: 'D = alpha * A * B + beta * C'") parser.add_argument("--m", default=128, type=int, help="M dimension of the GEMM") parser.add_argument("--n", default=128, type=int, help="N dimension of the GEMM") parser.add_argument("--k", default=128, type=int, help="K dimension of the GEMM") parser.add_argument('--print_cuda', action="store_true", help="Print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) # Check that the device is of a sufficient compute capability cc = device_cc() assert cc >= 70, "The CUTLASS Python GEMM example requires compute capability greater than or equal to 70." alignment = 8 assert args.m % alignment == 0, "M dimension of size {} is not divisible by alignment of {}".format(args.m, alignment) assert args.n % alignment == 0, "N dimension of size {} is not divisible by alignment of {}".format(args.n, alignment) assert args.k % alignment == 0, "K dimension of size {} is not divisible by alignment of {}".format(args.k, alignment) np.random.seed(0) # Allocate a pool of device memory to be used by the kernel pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) # Set the compiler to use to NVCC pycutlass.compiler.nvcc() # Set up A, B, C and accumulator A = TensorDescription(cutlass_bindings.float16, cutlass_bindings.ColumnMajor, alignment) B = TensorDescription(cutlass_bindings.float16, cutlass_bindings.RowMajor, alignment) C = TensorDescription(cutlass_bindings.float32, cutlass_bindings.ColumnMajor, alignment) element_acc = cutlass_bindings.float32 element_epilogue = cutlass_bindings.float32 # Select instruction shape based on the Tensor Core instructions supported # by the device on which we are running if cc == 70: instruction_shape = [8, 8, 4] elif cc == 75: instruction_shape = [16, 8, 8] else: # Use CUTLASS kernels for CC 80 by default (e.g., for cases in which SM86 is used) cc = 80 instruction_shape = [16, 8, 16] math_inst = MathInstruction( instruction_shape, A.element, B.element, element_acc, cutlass_bindings.OpClass.TensorOp, MathOperation.multiply_add ) tile_description = TileDescription( [128, 128, 32], # Threadblock shape 2, # Number of stages [2, 2, 1], # Number of warps within each dimension of the threadblock shape math_inst ) epilogue_functor = pycutlass.LinearCombination(C.element, C.alignment, element_acc, element_epilogue) operation = GemmOperationUniversal( arch=cc, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] # Compile the operation pycutlass.compiler.add_module(operations) # Randomly initialize tensors tensor_A = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(args.m * args.k,))).astype(np.float16) tensor_B = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(args.k * args.n,))).astype(np.float16) tensor_C = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(args.m * args.n,))).astype(np.float32) tensor_D = np.zeros(shape=(args.m * args.n,)).astype(np.float32) problem_size = cutlass_bindings.gemm.GemmCoord(args.m, args.n, args.k) alpha = 1. beta = 0. arguments = GemmArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=operation.epilogue_type(alpha, beta)) # Run the operation operation.run(arguments) arguments.sync() # Run the host reference module and compare to the CUTLASS result reference = ReferenceModule(A, B, C) tensor_D_ref = reference.run(tensor_A, tensor_B, tensor_C, problem_size, alpha, beta) try: assert np.array_equal(tensor_D, tensor_D_ref) except: assert np.allclose(tensor_D, tensor_D_ref, atol=1e-5) print("Passed.")
cutlass-main
examples/40_cutlass_py/gemm.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ """ Basic example of using the CUTLASS Python interface to run a 2d convolution """ import argparse import torch import numpy as np import sys import cutlass_bindings import cutlass.backend as pycutlass from cutlass.backend import * from cutlass.backend.utils.reference_model import Conv2dReferenceModule from cutlass.backend.utils.device import device_cc parser = argparse.ArgumentParser( description=("Launch a 2d convolution kernel from Python. " "See https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#convo-intro for notation.")) parser.add_argument("--n", default=1, type=int, help="N dimension of the convolution") parser.add_argument("--c", default=64, type=int, help="C dimension of the convolution") parser.add_argument("--h", default=32, type=int, help="H dimension of the convolution") parser.add_argument("--w", default=32, type=int, help="W dimension of the convolution") parser.add_argument("--k", default=32, type=int, help="N dimension of the convolution") parser.add_argument("--r", default=3, type=int, help="R dimension of the convolution") parser.add_argument("--s", default=3, type=int, help="S dimension of the convolution") parser.add_argument('--print_cuda', action="store_true", help="Print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) # Check that the device is of a sufficient compute capability cc = device_cc() assert cc >= 70, "The CUTLASS Python Conv2d example requires compute capability greater than or equal to 70." alignment = 1 np.random.seed(0) # Allocate a pool of device memory to be used by the kernel pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) # Set the compiler to use to NVCC pycutlass.compiler.nvcc() # Set up A, B, C and accumulator A = TensorDescription(cutlass_bindings.float16, cutlass_bindings.TensorNHWC, alignment) B = TensorDescription(cutlass_bindings.float16, cutlass_bindings.TensorNHWC, alignment) C = TensorDescription(cutlass_bindings.float32, cutlass_bindings.TensorNHWC, alignment) element_acc = cutlass_bindings.float32 element_epilogue = cutlass_bindings.float32 # Select instruction shape based on the Tensor Core instructions supported # by the device on which we are running if cc == 70: instruction_shape = [8, 8, 4] elif cc == 75: instruction_shape = [16, 8, 8] else: # Use CUTLASS kernels for CC 80 by default (e.g., for cases in which SM86 is used) cc = 80 instruction_shape = [16, 8, 16] math_inst = MathInstruction( instruction_shape, A.element, B.element, element_acc, cutlass_bindings.OpClass.TensorOp, MathOperation.multiply_add ) tile_description = TileDescription( [128, 128, 32], # Threadblock shape 2, # Number of stages [2, 2, 1], # Number of warps within each dimension of the threadblock shape math_inst ) epilogue_functor = pycutlass.LinearCombination(C.element, C.alignment, element_acc, element_epilogue) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=cc, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor ) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] # Compile the operation pycutlass.compiler.add_module(operations) # Randomly initialize tensors problem_size = cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(args.n, args.h, args.c, args.w), cutlass_bindings.Tensor4DCoord(args.k, args.r, args.s, args.c), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), # Padding cutlass_bindings.MatrixCoord(1, 1), # Strides cutlass_bindings.MatrixCoord(1, 1), # Dilation cutlass_bindings.conv.Mode.cross_correlation, 1, # Split k slices 1 # Groups ) tensor_A_size = cutlass_bindings.conv.implicit_gemm_tensor_a_size(operation.conv_kind, problem_size) tensor_B_size = cutlass_bindings.conv.implicit_gemm_tensor_b_size(operation.conv_kind, problem_size) tensor_C_size = cutlass_bindings.conv.implicit_gemm_tensor_c_size(operation.conv_kind, problem_size) tensor_A = torch.ceil(torch.empty(size=(tensor_A_size,), dtype=torch.float16, device="cuda").uniform_(-8.5, 7.5)) tensor_B = torch.ceil(torch.empty(size=(tensor_B_size,), dtype=torch.float16, device="cuda").uniform_(-8.5, 7.5)) tensor_C = torch.ceil(torch.empty(size=(tensor_C_size,), dtype=torch.float32, device="cuda").uniform_(-8.5, 7.5)) tensor_D = torch.ones(size=(tensor_C_size,), dtype=torch.float32, device="cuda") alpha = 1. beta = 0. arguments = Conv2dArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=operation.epilogue_type(alpha, beta) ) # Run the operation operation.run(arguments) arguments.sync() # Run the host reference module and compare to the CUTLASS result reference = Conv2dReferenceModule(A, B, C, operation.conv_kind) tensor_D_ref = reference.run(tensor_A, tensor_B, tensor_C, problem_size, alpha, beta) try: assert torch.equal(tensor_D, tensor_D_ref) except: assert torch.allclose(tensor_D, tensor_D_ref, rtol=1e-2) print("Passed.")
cutlass-main
examples/40_cutlass_py/conv2d.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ """ Basic example of using the CUTLASS Python interface to run a grouped GEMM """ import argparse import numpy as np import sys import cutlass_bindings import cutlass.backend as pycutlass from cutlass.backend import * from cutlass.backend.utils.device import device_cc parser = argparse.ArgumentParser(description="Launch a grouped GEMM kernel from Python") parser.add_argument('--print_cuda', action="store_true", help="Print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) # Check that the device is of a sufficient compute capability cc = device_cc() assert cc >= 70, "The CUTLASS Python grouped GEMM example requires compute capability greater than or equal to 70." np.random.seed(0) # Allocate a pool of device memory to be used by the kernel pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) # Set the compiler to use to NVCC pycutlass.compiler.nvcc() # Set up A, B, C and accumulator alignment = 1 A = TensorDescription(cutlass_bindings.float16, cutlass_bindings.ColumnMajor, alignment) B = TensorDescription(cutlass_bindings.float16, cutlass_bindings.RowMajor, alignment) C = TensorDescription(cutlass_bindings.float32, cutlass_bindings.ColumnMajor, alignment) element_acc = cutlass_bindings.float32 element_epilogue = cutlass_bindings.float32 # Select instruction shape based on the Tensor Core instructions supported # by the device on which we are running if cc == 70: instruction_shape = [8, 8, 4] elif cc == 75: instruction_shape = [16, 8, 8] else: # Use CUTLASS kernels for CC 80 by default (e.g., for cases in which SM86 is used) cc = 80 instruction_shape = [16, 8, 16] math_inst = MathInstruction( instruction_shape, A.element, B.element, element_acc, cutlass_bindings.OpClass.TensorOp, MathOperation.multiply_add ) tile_description = TileDescription( [128, 128, 32], # Threadblock shape 2, # Number of stages [2, 2, 1], # Number of warps within each dimension of the threadblock shape math_inst ) epilogue_functor = pycutlass.LinearCombination(C.element, C.alignment, element_acc, element_epilogue) operation = GemmOperationGrouped( arch=cc, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, precompute_mode=SchedulerMode.Device) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] # Compile the operation pycutlass.compiler.add_module(operations) # Initialize tensors for each problem in the group problem_sizes = [ cutlass_bindings.gemm.GemmCoord(128, 128, 64), cutlass_bindings.gemm.GemmCoord(512, 256, 128) ] problem_count = len(problem_sizes) alpha = 1. beta = 0. tensor_As = [] tensor_Bs = [] tensor_Cs = [] tensor_Ds = [] tensor_D_refs = [] reference = ReferenceModule(A, B, C) for problem_size in problem_sizes: # Randomly initialize tensors m = problem_size.m() n = problem_size.n() k = problem_size.k() tensor_A = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(m * k,))).astype(np.float16) tensor_B = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(k * n,))).astype(np.float16) tensor_C = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(m * n,))).astype(np.float32) tensor_D = np.zeros(shape=(m * n,)).astype(np.float32) tensor_As.append(tensor_A) tensor_Bs.append(tensor_B) tensor_Cs.append(tensor_C) tensor_Ds.append(tensor_D) # Run the reference GEMM tensor_D_ref = reference.run(tensor_A, tensor_B, tensor_C, problem_size, alpha, beta) tensor_D_refs.append(tensor_D_ref) arguments = GemmGroupedArguments( operation, problem_sizes, tensor_As, tensor_Bs, tensor_Cs, tensor_Ds, output_op=operation.epilogue_type(alpha, beta) ) # Run the operation operation.run(arguments) arguments.sync() # Compare the CUTLASS result to the host reference result for tensor_d, tensor_d_ref in zip(tensor_Ds, tensor_D_refs): try: assert np.array_equal(tensor_d, tensor_d_ref) except: assert np.allclose(tensor_d, tensor_d_ref, rtol=1e-5) print("Passed.")
cutlass-main
examples/40_cutlass_py/gemm_grouped.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import numpy as np import cutlass.backend as pycutlass from cutlass.backend import * from cutlass.backend.utils.device import device_cc import cutlass_bindings from bfloat16 import bfloat16 import sys import argparse # parse the arguments parser = argparse.ArgumentParser(description="Launch CUTLASS GEMM kernels from Python: 'D = alpha * A * B + beta * C'") # Operation description # math instruction description parser.add_argument("-i", "--instruction_shape", default=[1, 1, 1], nargs=3, type=int, help="This option describes the size of MMA op") parser.add_argument("-ta", "--element_a", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor A') parser.add_argument("-tb", "--element_b", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor B') parser.add_argument("-tc", "--element_c", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor C and output tensor D') parser.add_argument("-tacc", "--element_acc", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of accumulator') parser.add_argument('-m', "--math", default="multiply_add", type=str, choices=["multiply_add", "multiply_add_fast_bf16", "multiply_add_fast_f32"], help="math instruction") parser.add_argument('-op', "--opcode", default="Simt", type=str, choices=["Simt", 'TensorOp'], help="This option describes whether you want to use tensor \ cores (TensorOp) or regular SIMT cores (Simt) on GPU SM") # tile description parser.add_argument("-b", "--threadblock_shape", default=[128, 128, 8], nargs=3, type=int, help="This option describes the tile size a thread block with compute") parser.add_argument("-s", "--stages", default=4, type=int, help="Number of pipelines you want to use") parser.add_argument("-w", "--warp_count", default=[4, 2, 1], nargs=3, type=int, help="This option describes the number of warps along M, N, and K of the threadblock") parser.add_argument("-cc", "--compute_capability", default=80, type=int, help="This option describes CUDA SM architecture number") # A parser.add_argument('-la', "--layout_a", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor A") parser.add_argument('-aa', '--alignment_a', default=1, type=int, help="Memory alignement of input tensor A") # B parser.add_argument('-lb', "--layout_b", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor B") parser.add_argument('-ab', '--alignment_b', default=1, type=int, help="Memory alignment of input tensor B") # C parser.add_argument('-lc', "--layout_c", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor C and output tensor D") parser.add_argument('-ac', '--alignment_c', default=1, type=int, help="Memory alignment of input tensor C and output tensor D") # epilogue parser.add_argument("-te", "--element_epilogue", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16'], help='Epilogue datatype') parser.add_argument("-ep", "--epilogue_functor", default="LinearCombination", type=str, choices=['LinearCombination', 'FastLinearCombinationClamp', 'LinearCombinationClamp'], help="This option describes the epilogue part of the kernel") parser.add_argument("-epv", "--epilogue_visitor", default=None, type=str, choices=['RowReduction', 'ColumnReduction', 'RowBroadcast', 'ColumnBroadcast'], help="epilogue visitor for more complex epilogues") # swizzling parser.add_argument("-sw", "--swizzling_functor", default="IdentitySwizzle1", type=str, choices=[ "IdentitySwizzle1", "IdentitySwizzle2", "IdentitySwizzle4", "IdentitySwizzle8", "HorizontalSwizzle", "BatchedIdentitySwizzle"], help="This option describes how thread blocks are scheduled on GPU") # Argument parser.add_argument("-p", "--problem_size", default=[128, 128, 128], nargs=3, type=int, help="GEMM problem size M, N, K") parser.add_argument("-alpha", "--alpha", default=1.0, type=float, help="Scaling factor of A * B") parser.add_argument("-beta", "--beta", default=0.0, type=float, help="Scaling factor of C") parser.add_argument("-gm", "--gemm_mode", default="Gemm", type=str, choices=["Gemm", "GemmSplitKParallel", "Batched", "Array"], help="GEMM mode. Gemm is used for non-splitK or serial-splitK. \ GemmSplitKParallel is used for parallel splitK") parser.add_argument('-k', '--split_k_slices', default=1, type=int, help="Number of split-k partitions. (default 1)") parser.add_argument('-bias', '--bias', action='store_true', help="C is bias vector") parser.add_argument('-batch', '--batch', default=1, type=int, help="batch size for batched GEMM") # Activation function parser.add_argument("-activ", "--activation_function", default="identity", choices=["identity", "relu", "leaky_relu", "tanh", "sigmoid", "silu", "hardswish", "gelu"], help="activation function") parser.add_argument("-activ_arg", "--activation_args", default=[], nargs="+", type=float, help="addition arguments for activation") parser.add_argument('--print_cuda', action="store_true", help="print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) cc = device_cc() if args.compute_capability != cc: raise Exception(("Parameter --compute-capability of {} " "does not match that of the device of {}.").format(args.compute_capability, cc)) pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) pycutlass.compiler.nvcc() np.random.seed(0) element_a = getattr(cutlass_bindings, args.element_a) element_b = getattr(cutlass_bindings, args.element_b) element_c = getattr(cutlass_bindings, args.element_c) element_acc = getattr(cutlass_bindings, args.element_acc) math_operation = getattr(MathOperation, args.math) opclass = getattr(cutlass_bindings.OpClass, args.opcode) math_inst = MathInstruction( args.instruction_shape, element_a, element_b, element_acc, opclass, math_operation ) tile_description = TileDescription( args.threadblock_shape, args.stages, args.warp_count, math_inst ) layout_a = getattr(cutlass_bindings, args.layout_a) layout_b = getattr(cutlass_bindings, args.layout_b) layout_c = getattr(cutlass_bindings, args.layout_c) A = TensorDescription( element_a, layout_a, args.alignment_a ) B = TensorDescription( element_b, layout_b, args.alignment_b ) C = TensorDescription( element_c, layout_c, args.alignment_c ) element_epilogue = getattr(cutlass_bindings, args.element_epilogue) if (args.activation_function == "identity" or (args.gemm_mode == "GemmSplitKParallel" and args.split_k_slices > 1)): # epilogue_functor = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = getattr(cutlass_bindings, args.swizzling_functor) visitor = args.epilogue_visitor is not None if args.epilogue_visitor == "ColumnReduction": class ColumnReduction_(EpilogueVisitTree): def __call__( self, accum: 'tensor', c: 'tensor', alpha: 'scalar', beta: 'scalar'): # D = alpha * accum + beta * c reduction = reduction_op(D, "column", "Add", args.threadblock_shape[0]) return D, reduction epilogue_functor = ColumnReduction_( epilogue_functor, tile_description, math_inst.element_accumulator, C.alignment, element_epilogue, C.element) epilogue_functor.initialize() elif args.epilogue_visitor == "RowReduction": class RowReduction_(EpilogueVisitTree): def __call__( self, accum: 'tensor', c: 'tensor', alpha: 'scalar', beta: 'scalar'): # D = alpha * accum + tanh.numpy(beta * c) reduction = reduction_op(D, "row", "Add", args.threadblock_shape[1]) return D, reduction epilogue_functor = RowReduction_( epilogue_functor, tile_description, math_inst.element_accumulator, C.alignment, element_epilogue, C.element) epilogue_functor.initialize() elif args.epilogue_visitor == "RowBroadcast": class RowBroadcast_(EpilogueVisitTree): def __call__( self, accum: 'tensor', c: 'tensor', vector: 'row', alpha: 'scalar', beta: 'scalar'): # T = accum + vector scale_T = alpha * T Z = relu.numpy(scale_T + beta * c) return Z, T epilogue_functor = RowBroadcast_( epilogue_functor, tile_description, math_inst.element_accumulator, C.alignment, element_epilogue, C.element) epilogue_functor.initialize() elif args.epilogue_visitor == "ColumnBroadcast": class ColumnBroadcast_(EpilogueVisitTree): def __call__( self, accum: 'tensor', c: 'tensor', vector: 'column', alpha: 'scalar', beta: 'scalar'): # T = accum + vector scale_T = leaky_relu.numpy(alpha * T, 0.2) Z = scale_T + beta * c return Z, T epilogue_functor = ColumnBroadcast_( epilogue_functor, tile_description, math_inst.element_accumulator, C.alignment, element_epilogue, C.element) epilogue_functor.initialize() else: epilogue_functor = epilogue_functor operation = GemmOperationUniversal( arch=args.compute_capability, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor, visitor=visitor ) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] if args.gemm_mode == "GemmSplitKParallel": if (args.activation_function == "identity"): epilogue_functor_reduction = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor_reduction = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) reduction_operation = ReductionOperation( shape=cutlass_bindings.MatrixCoord(4, 32 * C.alignment), C=C, element_accumulator=element_acc, element_compute=element_epilogue, epilogue_functor=epilogue_functor_reduction, count=C.alignment ) operations.append(reduction_operation) pycutlass.compiler.add_module(operations) # User-provide inputs problem_size = cutlass_bindings.gemm.GemmCoord( args.problem_size[0], args.problem_size[1], args.problem_size[2]) tensor_a_size = args.batch * problem_size.m() * problem_size.k() if args.element_a != "int8": if args.element_a == "bfloat16": tensor_A = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_a_size,)) ).astype(bfloat16) else: tensor_A = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_a_size,)) ).astype(getattr(np, args.element_a)) else: tensor_A = np.random.uniform( low=-2, high=2,size=(tensor_a_size,) ).astype(getattr(np, args.element_a)) tensor_b_size = args.batch * problem_size.k() * problem_size.n() if args.element_b != "int8": if args.element_b == "bfloat16": tensor_B = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_b_size,)) ).astype(bfloat16) else: tensor_B = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_b_size,)) ).astype(getattr(np, args.element_b)) else: tensor_B = np.random.uniform( low=-2, high=2, size=(tensor_b_size,) ).astype(getattr(np, args.element_b)) if args.element_c != "int8": if args.bias: if args.layout_c == "RowMajor": tensor_c_size = args.batch * problem_size.n() elif args.layout_c == "ColumnMajor": tensor_c_size = args.batch * problem_size.m() else: raise ValueError(args.layout_c) else: tensor_c_size = args.batch * problem_size.m() * problem_size.n() if args.element_c == "bfloat16": tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_c_size,)) ).astype(bfloat16) else: tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_c_size,)) ).astype(getattr(np, args.element_c)) else: tensor_C = np.random.uniform( low=-2, high=2, size=(args.batch * problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) tensor_D = np.zeros( shape=(args.batch * problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) if args.epilogue_visitor == "RowReduction": cta_n = args.threadblock_shape[1] num_cta_n = (problem_size.n() + cta_n - 1) // cta_n reduction = np.zeros(shape=(args.batch * problem_size.m() * num_cta_n,), dtype=getattr(np, args.element_c)) output_op = operation.epilogue_type( D=tensor_D, alpha=args.alpha, beta=args.beta, c=tensor_C, reduction=reduction, problem_size=[problem_size.m(), problem_size.n()] ) elif args.epilogue_visitor == "ColumnReduction": cta_m = args.threadblock_shape[0] num_cta_m = (problem_size.m() + cta_m - 1) // cta_m reduction = np.zeros(shape=(args.batch * problem_size.n() * num_cta_m,), dtype=getattr(np, args.element_c)) output_op = operation.epilogue_type( D=tensor_D, alpha=args.alpha, beta=args.beta, c=tensor_C, reduction=reduction, problem_size=[problem_size.m(), problem_size.n()] ) elif args.epilogue_visitor == "RowBroadcast": vector = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(args.batch, 1, problem_size.n())) ).astype(getattr(np, args.element_c)) tensor_t = np.empty_like(tensor_D) output_op = operation.epilogue_type( c=tensor_C, vector=vector, alpha=args.alpha, beta=args.beta, Z=tensor_D, T=tensor_t, problem_size=[problem_size.m(), problem_size.n()] ) elif args.epilogue_visitor == "ColumnBroadcast": vector = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(args.batch, problem_size.m(), 1)) ).astype(getattr(np, args.element_c)) tensor_t = np.empty_like(tensor_D) output_op = operation.epilogue_type( c=tensor_C, vector=vector, alpha=args.alpha, beta=args.beta, Z=tensor_D, T=tensor_t, problem_size=[problem_size.m(), problem_size.n()] ) else: output_op = operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)) arguments = GemmArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=output_op, gemm_mode=getattr(cutlass_bindings.gemm.Mode, args.gemm_mode), split_k_slices=args.split_k_slices, batch=args.batch ) if args.gemm_mode == "GemmSplitKParallel": reduction_arguments = ReductionArguments( operation=reduction_operation, problem_size=[problem_size.m(), problem_size.n()], partitions=args.split_k_slices, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op=reduction_operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)), bias = arguments.bias ) operation.run(arguments) if args.gemm_mode == "GemmSplitKParallel": reduction_operation.run(reduction_arguments) reduction_arguments.sync() else: arguments.sync() # run the host reference module reference = ReferenceModule(A, B, C) tensor_D_ref = reference.run( tensor_A, tensor_B, tensor_C, problem_size, args.alpha, args.beta, args.bias, args.batch) if args.epilogue_visitor in ["RowBroadcast", "ColumnBroadcast"]: tensor_D_ref = (tensor_D_ref.reshape((args.batch, problem_size.m(), problem_size.n())) + vector).flatten() tensor_D_ref = getattr(pycutlass, args.activation_function).numpy(*([tensor_D_ref,] + args.activation_args)) if args.epilogue_visitor in ["RowReduction", "ColumnReduction"]: output_op.sync() accum_ref = reference.run( tensor_A, tensor_B, tensor_C, problem_size, 1.0, 0.0, args.bias, args.batch) tensor_D_ref, reduction_ref = epilogue_functor( accum_ref.reshape((args.batch, problem_size.m(), problem_size.n())), tensor_C.reshape((args.batch, problem_size.m(), problem_size.n())), args.alpha, args.beta ) tensor_D_ref = tensor_D_ref.flatten() reduction_ref = reduction_ref.flatten() assert np.allclose(reduction_ref, reduction, atol=1e-2) elif args.epilogue_visitor in ["RowBroadcast", "ColumnBroadcast"]: output_op.sync() accum_ref = reference.run( tensor_A, tensor_B, tensor_C, problem_size, 1.0, 0.0, args.bias, args.batch) tensor_D_ref, tensor_T_ref = epilogue_functor( accum_ref.reshape((args.batch, problem_size.m(), problem_size.n())), tensor_C.reshape((args.batch, problem_size.m(), problem_size.n())), vector, args.alpha, args.beta) tensor_D_ref = tensor_D_ref.flatten() tensor_T_ref = tensor_T_ref.flatten() assert np.array_equal(tensor_t, tensor_T_ref) try: assert np.array_equal(tensor_D, tensor_D_ref) except: assert np.allclose(tensor_D, tensor_D_ref, atol=1e-5) print("Passed.")
cutlass-main
examples/40_cutlass_py/customizable/gemm.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import numpy as np import cutlass.backend as pycutlass from cutlass.backend import * from cutlass.backend.utils.device import device_cc from cutlass.backend.conv2d_operation import * from cutlass.backend.utils.reference_model import Conv2dReferenceModule import sys import torch.nn.functional as F import argparse # parse the arguments parser = argparse.ArgumentParser(description="Launch CUTLASS convolution 2d kernels from Python") # Operation description # math instruction description parser.add_argument("-i", "--instruction_shape", default=[1, 1, 1], nargs=3, type=int, help="This option describes the size of MMA op") parser.add_argument("-ta", "--element_a", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor A') parser.add_argument("-tb", "--element_b", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor B') parser.add_argument("-tc", "--element_c", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor C and output tensor D') parser.add_argument("-tacc", "--element_acc", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of accumulator') parser.add_argument('-m', "--math", default="multiply_add", type=str, choices=["multiply_add", "multiply_add_fast_bf16", "multiply_add_fast_f32"], help="math instruction") parser.add_argument('-op', "--opcode", default="Simt", type=str, choices=["Simt", 'TensorOp'], help='This option describes whether you want to use tensor \ cores (TensorOp) or regular SIMT cores (Simt) on GPU SM') # tile description parser.add_argument("-b", "--threadblock_shape", default=[128, 128, 8], nargs=3, type=int, help="This option describes the tile size a thread block with compute") parser.add_argument("-s", "--stages", default=4, type=int, help="Number of pipelines you want to use") parser.add_argument("-w", "--warp_count", default=[ 4, 2, 1], nargs=3, type=int, help="This option describes the number of warps along M, N, and K of the threadblock") parser.add_argument("-cc", "--compute_capability", default=80, type=int, help="This option describes CUDA SM architecture number") # A parser.add_argument('-la', "--layout_a", default="TensorNHWC", type=str, choices=[ "TensorNHWC", "TensorNC32HW32"], help="Memory layout of input tensor A") parser.add_argument('-aa', '--alignment_a', default=1, type=int, help="Memory alignement of input tensor A") # B parser.add_argument('-lb', "--layout_b", default="TensorNHWC", type=str, choices=[ "TensorNHWC", "TensorC32RSK32"], help="Memory layout of input tensor B") parser.add_argument('-ab', '--alignment_b', default=1, type=int, help="Memory alignment of input tensor B") # C parser.add_argument('-lc', "--layout_c", default="TensorNHWC", type=str, choices=[ "TensorNHWC", "TensorNC32HW32"], help="Memory layout of input tensor C and output tensor D") parser.add_argument('-ac', '--alignment_c', default=1, type=int, help="Memory alignment of input tensor C and output tensor D") # epilogue parser.add_argument("-te", "--element_epilogue", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16'], help='Data type of computation in the epilogue') parser.add_argument("-ep", "--epilogue_functor", default="LinearCombination", type=str, choices=['LinearCombination', 'FastLinearCombinationClamp', 'LinearCombinationClamp'], help="This option describes the epilogue part of the kernel") # swizzling parser.add_argument("-sw", "--swizzling_functor", default="IdentitySwizzle1", type=str, choices=[ "IdentitySwizzle1", "IdentitySwizzle2", "IdentitySwizzle4", "IdentitySwizzle8", "HorizontalSwizzle", "StridedDgradIdentitySwizzle1", "StridedDgradIdentitySwizzle4", "StridedDgradHorizontalSwizzle"], help="This option describes how thread blocks are scheduled on GPU") # conv related parser.add_argument("-co", "--conv_kind", default="fprop", type=str, choices=['fprop', 'dgrad', 'wgrad'], help="The type of convolution: forward propagation (fprop), \ gradient of activation (dgrad), gradient of weight (wgrad)") parser.add_argument("-st", "--stride_support", default="Strided", type=str, choices=["Strided", "Unity"], ) parser.add_argument("-ia", "--iterator_algorithm", default="analytic", type=str, choices=["analytic", "optimized", "fixed_channels", "few_channels"], help="This option describes iterator algorithm") # arguments parser.add_argument("-sm", "--split_k_mode", default="Serial", type=str, choices=["Serial", "Parallel"], help="Split K Mode. Serial is used for non-splitK or serial-splitK.\ Parallel is used for parallel splitK.") parser.add_argument('-k', '--split_k_slices', default=1, type=int, help="Number of split-k partitions. (default 1)") parser.add_argument("-nhwc", "--nhwc", nargs=4, type=int, help="input size (NHWC)") parser.add_argument("-krsc", "--krsc", nargs=4, type=int, help="filter size (KRSC)") parser.add_argument("-pad", "--pad", nargs=4, type=int, help="padding (pad_h, _, pad_w, _)") parser.add_argument("-stride", "--stride", nargs=2, type=int, help="stride (stride_h, stride_w)") parser.add_argument("-dilation", "--dilation", nargs=2, type=int, help="dilation (dilation_h, dilation_w)") parser.add_argument("-alpha", "--alpha", default=1.0, type=float, help="alpha") parser.add_argument("-beta", "--beta", default=0.0, type=float, help="beta") parser.add_argument('-bias', '--bias', action='store_true', help="C is bias vector") # Activation function parser.add_argument("-activ", "--activation_function", default="identity", choices=["identity", "relu", "leaky_relu", "tanh", "sigmoid", "silu", "hardswish", "gelu"], help="activation function") parser.add_argument("-activ_arg", "--activation_args", default=[], nargs="+", type=float, help="addition arguments for activation") parser.add_argument('--print_cuda', action="store_true", help="print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) cc = device_cc() if args.compute_capability != cc: raise Exception(("Parameter --compute-capability of {} " "does not match that of the device of {}.").format(args.compute_capability, cc)) pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) np.random.seed(0) element_a = getattr(cutlass_bindings, args.element_a) element_b = getattr(cutlass_bindings, args.element_b) element_c = getattr(cutlass_bindings, args.element_c) element_acc = getattr(cutlass_bindings, args.element_acc) math_operation = getattr(MathOperation, args.math) opclass = getattr(cutlass_bindings.OpClass, args.opcode) math_inst = MathInstruction( args.instruction_shape, element_a, element_b, element_acc, opclass, math_operation ) tile_description = TileDescription( args.threadblock_shape, args.stages, args.warp_count, math_inst ) layout_a = getattr(cutlass_bindings, args.layout_a) layout_b = getattr(cutlass_bindings, args.layout_b) layout_c = getattr(cutlass_bindings, args.layout_c) A = TensorDescription( element_a, layout_a, args.alignment_a ) B = TensorDescription( element_b, layout_b, args.alignment_b ) C = TensorDescription( element_c, layout_c, args.alignment_c ) element_epilogue = getattr(cutlass_bindings, args.element_epilogue) if (args.activation_function == "identity" or (args.split_k_mode == "Parallel" and args.split_k_slices > 1)): # epilogue_functor = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) iterator_algorithm = getattr(cutlass_bindings.conv.IteratorAlgorithm, args.iterator_algorithm) swizzling_functor = getattr(cutlass_bindings, args.swizzling_functor) stride_support = getattr(StrideSupport, args.stride_support) conv_kind = getattr(cutlass_bindings.conv.Operator, args.conv_kind) operation = Conv2dOperation( conv_kind=conv_kind, iterator_algorithm=iterator_algorithm, arch=args.compute_capability, tile_description=tile_description, A=A, B=B, C=C, stride_support=stride_support, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation,] if args.split_k_mode == "Parallel" and args.split_k_slices > 1: if (args.activation_function == "identity"): epilogue_functor_reduction = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor_reduction = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) reduction_operation = ReductionOperation( shape=cutlass_bindings.MatrixCoord(4, 32 * C.alignment), C=C, element_accumulator=element_acc, element_compute=element_epilogue, epilogue_functor=epilogue_functor_reduction, count=C.alignment ) operations.append(reduction_operation) pycutlass.compiler.add_module(operations) problem_size = cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(args.nhwc[0], args.nhwc[1], args.nhwc[2], args.nhwc[3]), cutlass_bindings.Tensor4DCoord(args.krsc[0], args.krsc[1], args.krsc[2], args.krsc[3]), cutlass_bindings.Tensor4DCoord(args.pad[0], args.pad[1], args.pad[2], args.pad[3]), cutlass_bindings.MatrixCoord(args.stride[0], args.stride[1]), cutlass_bindings.MatrixCoord(args.dilation[0], args.dilation[1]), cutlass_bindings.conv.Mode.cross_correlation, args.split_k_slices, 1 ) # User-provide inputs tensor_A_size = cutlass_bindings.conv.implicit_gemm_tensor_a_size( conv_kind, problem_size ) tensor_B_size = cutlass_bindings.conv.implicit_gemm_tensor_b_size( conv_kind, problem_size ) if args.bias: tensor_C_size = cutlass_bindings.conv.implicit_gemm_tensor_c_extent( conv_kind, problem_size ).at(3) else: tensor_C_size = cutlass_bindings.conv.implicit_gemm_tensor_c_size( conv_kind, problem_size ) tensor_D_size = cutlass_bindings.conv.implicit_gemm_tensor_c_size( conv_kind, problem_size ) if args.element_a != "int8": tensor_A = torch.ceil(torch.empty(size=(tensor_A_size,), dtype=getattr(torch, args.element_a), device="cuda").uniform_(-8.5, 7.5)) else: tensor_A = torch.empty(size=(tensor_A_size,), dtype=getattr(torch, args.element_a), device="cuda").uniform_(-2, 2) if args.element_b != "int8": tensor_B = torch.ceil(torch.empty(size=(tensor_B_size,), dtype=getattr(torch, args.element_b), device="cuda").uniform_(-8.5, 7.5)) else: tensor_B = torch.empty(size=(tensor_B_size,), dtype=getattr(torch, args.element_b), device="cuda").uniform_(-2, 2) if args.element_c != "int8": tensor_C = torch.ceil(torch.empty(size=(tensor_C_size,), dtype=getattr(torch, args.element_c), device="cuda").uniform_(-8.5, 7.5)) else: tensor_C = torch.empty(size=(tensor_C_size,), dtype=getattr(torch, args.element_c), device="cuda").uniform_(-2, 2) tensor_D = torch.ones(size=(tensor_D_size,), dtype=getattr(torch, args.element_c), device="cuda") arguments = Conv2dArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op = operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)), split_k_mode=getattr(cutlass_bindings.conv.SplitKMode, args.split_k_mode), split_k_slices=problem_size.split_k_slices ) if args.split_k_mode == "Parallel" and args.split_k_slices > 1: implicit_gemm_size = cutlass_bindings.conv.implicit_gemm_problem_size(conv_kind, arguments.problem_size) reduction_arguments = ReductionArguments( reduction_operation, problem_size=[implicit_gemm_size.m(), implicit_gemm_size.n()], partitions=problem_size.split_k_slices, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op = reduction_operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)), bias = arguments.bias ) operation.run(arguments) if args.split_k_mode == "Parallel" and args.split_k_slices > 1: reduction_operation.run(reduction_arguments) reduction_arguments.sync() else: arguments.sync() reference_model = Conv2dReferenceModule(A, B, C, conv_kind) tensor_D_ref = reference_model.run(tensor_A, tensor_B, tensor_C, arguments.problem_size, args.alpha, args.beta, args.bias) if (args.activation_function != "identity"): tensor_D_ref = getattr(F, args.activation_function)(*([tensor_D_ref,] + args.activation_args)) try: assert torch.equal(tensor_D, tensor_D_ref) except: assert torch.allclose(tensor_D, tensor_D_ref, rtol=1e-2) print("Passed.")
cutlass-main
examples/40_cutlass_py/customizable/conv2d.py
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import numpy as np import cutlass.backend as pycutlass from cutlass.backend import * from cutlass.backend.utils.device import device_cc import csv import sys import argparse # parse the arguments parser = argparse.ArgumentParser( description="Launch CUTLASS GEMM Grouped kernels from Python") # Operation description # math instruction description parser.add_argument("-i", "--instruction_shape", default=[1, 1, 1], nargs=3, type=int, help="This option describes the size of MMA op") parser.add_argument("-ta", "--element_a", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor A') parser.add_argument("-tb", "--element_b", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor B') parser.add_argument("-tc", "--element_c", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor C and output tensor D') parser.add_argument("-tacc", "--element_acc", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of accumulator') parser.add_argument('-m', "--math", default="multiply_add", type=str, choices=["multiply_add", "multiply_add_fast_bf16", "multiply_add_fast_f32"], help="math instruction") parser.add_argument('-op', "--opcode", default="Simt", type=str, choices=["Simt", 'TensorOp'], help='This option describes whether you want to use tensor \ cores (TensorOp) or regular SIMT cores (Simt) on GPU SM') # tile description parser.add_argument("-b", "--threadblock_shape", default=[128, 128, 8], nargs=3, type=int, help="This option describes the tile size a thread block with compute") parser.add_argument("-s", "--stages", default=4, type=int, help="Number of pipelines you want to use") parser.add_argument("-w", "--warp_count", default=[ 4, 2, 1], nargs=3, type=int, help="This option describes the number of warps along M, N, and K of the threadblock") parser.add_argument("-cc", "--compute_capability", default=80, type=int, help="This option describes CUDA SM architecture number") # A parser.add_argument('-la', "--layout_a", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor A") parser.add_argument('-aa', '--alignment_a', default=1, type=int, help="Memory alignment of input tensor A") # B parser.add_argument('-lb', "--layout_b", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor B") parser.add_argument('-ab', '--alignment_b', default=1, type=int, help="Memory alignment of input tensor B") # C parser.add_argument('-lc', "--layout_c", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor C and output tensor D") parser.add_argument('-ac', '--alignment_c', default=1, type=int, help="Memory alignment of input tensor C and output tensor D") # epilogue parser.add_argument("-te", "--element_epilogue", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16'], help='Epilogue datatype') parser.add_argument("-ep", "--epilogue_functor", default="LinearCombination", type=str, choices=['LinearCombination', 'FastLinearCombinationClamp', 'LinearCombinationClamp'], help="This option describes the epilogue part of the kernel") # swizzling parser.add_argument("-sw", "--swizzling_functor", default="IdentitySwizzle1", type=str, choices=[ "IdentitySwizzle1", "IdentitySwizzle2", "IdentitySwizzle4", "IdentitySwizzle8", "HorizontalSwizzle"], help="This option describes how thread blocks are scheduled on GPU. \ NOTE: Threadblock swizzling is currently not supported by CUTLASS's grouped kernels. \ This parameter is passed in at present to match the APIs of other kernels. The parameter \ is unused within the kernel") # precompute mode parser.add_argument("-pm", "--precompute_mode", default="Device", type=str, choices=["Host", "Device"], help="Grouped Gemm Scheduing on device only (Device) or using host precompute (Host)") # arguments parser.add_argument("-p", "--problem_size_dir", type=str, default="grouped_gemm_problem_size.csv", help="path to the csv file contains the problem sizes") parser.add_argument("-alpha", "--alpha", default=1.0, type=float, help="alpha") parser.add_argument("-beta", "--beta", default=0.0, type=float, help="beta") parser.add_argument('-bias', '--bias', action='store_true', help="C is bias vector") # Activation function parser.add_argument("-activ", "--activation_function", default="identity", choices=["identity", "relu", "leaky_relu", "tanh", "sigmoid", "silu", "hardswish", "gelu"], help="activation function") parser.add_argument("-activ_arg", "--activation_args", default=[], nargs="+", type=float, help="addition arguments for activation") parser.add_argument('--print_cuda', action="store_true", help="print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) cc = device_cc() if args.compute_capability != cc: raise Exception(("Parameter --compute-capability of {} " "does not match that of the device of {}.").format(args.compute_capability, cc)) pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) np.random.seed(0) element_a = getattr(cutlass_bindings, args.element_a) element_b = getattr(cutlass_bindings, args.element_b) element_c = getattr(cutlass_bindings, args.element_c) element_acc = getattr(cutlass_bindings, args.element_acc) math_operation = getattr(MathOperation, args.math) opclass = getattr(cutlass_bindings.OpClass, args.opcode) math_inst = MathInstruction( args.instruction_shape, element_a, element_b, element_acc, opclass, math_operation ) tile_description = TileDescription( args.threadblock_shape, args.stages, args.warp_count, math_inst ) layout_a = getattr(cutlass_bindings, args.layout_a) layout_b = getattr(cutlass_bindings, args.layout_b) layout_c = getattr(cutlass_bindings, args.layout_c) A = TensorDescription( element_a, layout_a, args.alignment_a ) B = TensorDescription( element_b, layout_b, args.alignment_b ) C = TensorDescription( element_c, layout_c, args.alignment_c ) element_epilogue = getattr(cutlass_bindings, args.element_epilogue) if args.activation_function == "identity": epilogue_functor = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = getattr(cutlass_bindings, args.swizzling_functor) precompute_mode = getattr(SchedulerMode, args.precompute_mode) operation = GemmOperationGrouped( arch=args.compute_capability, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor, precompute_mode=precompute_mode ) if args.print_cuda: print(operation.rt_module.emit()) pycutlass.compiler.add_module([operation, ]) reference_module = ReferenceModule(A, B, C) # get problems problem_sizes = [] with open(args.problem_size_dir) as csv_file: reader = csv.reader(csv_file) for row in reader: problem_sizes.append( cutlass_bindings.gemm.GemmCoord(int(row[0]), int(row[1]), int(row[2])) ) problem_count = len(problem_sizes) tensor_As = [] tensor_Bs = [] tensor_Cs = [] tensor_Ds = [] problem_sizes_coord = [] tensor_D_refs = [] for problem_size in problem_sizes: if args.element_a != "int8": if args.element_a == "bfloat16": tensor_A = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(problem_size.m() * problem_size.k(),))).astype(bfloat16) else: tensor_A = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(problem_size.m() * problem_size.k(),))).astype(getattr(np, args.element_a)) else: tensor_A = np.random.uniform(low=-2, high=2, size=(problem_size.m() * problem_size.k(),)).astype(getattr(np, args.element_a)) if args.element_b != "int8": if args.element_b == "bfloat16": tensor_B = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(problem_size.k() * problem_size.n(),))).astype(bfloat16) else: tensor_B = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(problem_size.k() * problem_size.n(),))).astype(getattr(np, args.element_b)) else: tensor_B = np.random.uniform(low=-2, high=2, size=(problem_size.k() * problem_size.n(),)).astype(getattr(np, args.element_b)) if args.element_c != "int8": if args.bias: if args.layout_c == "RowMajor": c_size = problem_size.n() elif args.layout_c == "ColumnMajor": c_size = problem_size.m() else: raise ValueError(args.layout_c) else: c_size = problem_size.m() * problem_size.n() if args.element_c == "bfloat16": tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(c_size,)) ).astype(bfloat16) else: tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(c_size,)) ).astype(getattr(np, args.element_c)) else: tensor_C = np.random.uniform( low=-2, high=2, size=(problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) tensor_D = np.zeros( shape=(problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) tensor_As.append(tensor_A) tensor_Bs.append(tensor_B) tensor_Cs.append(tensor_C) tensor_Ds.append(tensor_D) tensor_D_ref = reference_module.run( tensor_A, tensor_B, tensor_C, problem_size, args.alpha, args.beta, args.bias) tensor_D_ref = getattr(pycutlass, args.activation_function).numpy(*([tensor_D_ref,] + args.activation_args)) tensor_D_refs.append(tensor_D_ref) problem_sizes_coord.append(problem_size) arguments = GemmGroupedArguments( operation, problem_sizes_coord, tensor_As, tensor_Bs, tensor_Cs, tensor_Ds, output_op=operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)) ) operation.run(arguments) arguments.sync() for tensor_d, tensor_d_ref in zip(tensor_Ds, tensor_D_refs): try: assert np.array_equal(tensor_d, tensor_d_ref) except: assert np.allclose(tensor_d, tensor_d_ref, rtol=1e-5) print("Passed.")
cutlass-main
examples/40_cutlass_py/customizable/gemm_grouped.py
from typing import List import torch import subprocess import sys import tempfile import os import numpy as np TORCH_DTYPE_NAME = { torch.float32: "f32", torch.float16: "f16", torch.bfloat16: "b16" } NAME_TORCH_DTYPE = {v: k for k, v in TORCH_DTYPE_NAME.items()} def _tensor_from_storage(tensor: torch.Tensor, dtype) -> torch.Tensor: # PyTorch >= 2.0 if hasattr(tensor, 'untyped_storage'): return torch.tensor([], dtype=dtype).set_(tensor.untyped_storage()) return torch.tensor([], dtype=dtype).set_(tensor.storage().untyped()) class PipedSubprocess: def __init__(self, binary: str) -> None: self.binary = binary self.tempdir_ctx = tempfile.TemporaryDirectory() def __enter__(self) -> "PipedSubprocess": self.subp = subprocess.Popen(self.binary, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=sys.stderr, text=True, bufsize=0) self.tempdir = self.tempdir_ctx.__enter__() self.file_counter = 0 return self def __exit__(self, exc_type, exc_val, exc_tb) -> None: self.tempdir_ctx.__exit__(exc_type, exc_val, exc_tb) def temp_filename(self, suffix: str) -> str: self.file_counter += 1 return os.path.join(self.tempdir, f"{self.file_counter}{suffix}") def write(self, *args) -> None: for a in args: self.subp.stdin.write(str(a) + " ") def writeTensor(self, tensor: torch.Tensor, name: str, stride_names: List[str]) -> None: print(f"Py ->C++: {TORCH_DTYPE_NAME[tensor.dtype]}:{name}") tensor_u8 = _tensor_from_storage(tensor, torch.uint8) self.write("tensor_begin", f"{TORCH_DTYPE_NAME[tensor.dtype]}:{name}", tensor_u8.shape[0]) filename = self.temp_filename(f"{name}.tensor") assert tensor.storage_offset() == 0 with open(filename, "wb+") as fd: fd.write(bytes(tensor_u8.numpy())) self.write("file", filename) self.write("tensor_end") for stride_name, stride_value in zip(stride_names, tensor.stride()): self.write(stride_name, stride_value) def readTensor(self, name, stride_name, shape) -> torch.Tensor: tmpfile = self.temp_filename(f"{name}.tensor") self.write("tmpfile", tmpfile) self.readExpect("tensor_begin") dtype_str, name = self.read().split(":") print(f"C++->Py : {dtype_str}:{name}") u8len = int(self.read()) dtype = NAME_TORCH_DTYPE[dtype_str] self.readExpect("file") self.readExpect(tmpfile) with open(tmpfile, "rb") as fd: data = fd.read(u8len) # `np.array` is not strictly needed, but avoids a torch warning tensor_u8 = torch.frombuffer(np.array(data), dtype=torch.uint8, count=u8len) self.readExpect("tensor_end") tensor = _tensor_from_storage(tensor_u8, dtype) strides = [] for sn in stride_name: self.readExpect(sn) strides.append(int(self.read())) if len(strides) != shape: strides.append(1) assert len(strides) == len(shape), name return torch.as_strided(tensor, shape, strides) def readNamed(self, name: str): self.readExpect(name) return self.read() def readExpect(self, what: str) -> None: r = self.read() if r != what: raise ValueError(f"Read {r} but expected {what}") def read(self): read_all = [] # Skip initial whitespace while True: r = self.subp.stdout.read(1) if r not in [' ', "\n"]: read_all.append(r) break # Read data while True: r = self.subp.stdout.read(1) if r in [' ', "\n"]: break read_all.append(r) return ''.join(read_all)
cutlass-main
examples/41_fused_multi_head_attention/piped_subprocess.py
import argparse import torch import sys import os from piped_subprocess import PipedSubprocess, TORCH_DTYPE_NAME import math parser = argparse.ArgumentParser() parser.add_argument("example_exe", type=str, help="Path to the 41_fused_multi_head_attention_backward executable") args = parser.parse_args() torch.manual_seed(0) dtype = torch.float16 B, Mq, Mkv, H, K, Kv = 2, 1024, 1024, 5, 128, 128 causal = True repeat_count = 100 ATOL = { torch.float: 5e-4, torch.half: 9.5e-2, torch.bfloat16: 7e-1, }[dtype] RTOL = { torch.float: 1e-4, torch.half: 2e-2, torch.bfloat16: 1e-1, }[dtype] assert not (causal and Mq < Mkv), "causal only supports seqlenK <= seqlenQ" fmha_bw_binary = args.example_exe if not os.path.isfile(fmha_bw_binary): print(f"""No such file: `{fmha_bw_binary}`\nDid you forget to run "make 41_fused_multi_head_attention"?""") sys.exit(1) def create_lower_triangular_mask(): return torch.triu(torch.full( # type: ignore [1, Mq, Mkv], dtype=dtype, fill_value=float("-inf"), ), diagonal=1) def ref_mha_bmk(q, k, v, mask): # Multi-head attention with inputs/outputs in BMK format q = q.float() k = k.float() v = v.float() q = q * (1 / q.shape[-1] ** 0.5) attn = q @ k.transpose(-2, -1) if mask is not None: attn += mask attn_max = attn.max(-1, True).values attn_norm = (attn - attn_max).exp().sum(-1, True) attn = attn.softmax(-1) lse = attn_max + attn_norm.log() lse = lse.squeeze(2) return attn @ v, lse def bmhk2bmk(t): return t.permute((0, 2, 1, 3)).reshape( [t.shape[0] * t.shape[2], t.shape[1], t.shape[3]] ) def ref_mha_bmhk(q, k, v, mask): # Multi-head attention with inputs/outputs in BMHK format assert q.ndim == 4 out, lse = ref_mha_bmk(bmhk2bmk(q), bmhk2bmk(k), bmhk2bmk(v), mask=mask) out = out.reshape([q.shape[0], q.shape[2], q.shape[1], v.shape[3]]) return out.permute((0, 2, 1, 3)), lse.reshape([q.shape[0], q.shape[2], q.shape[1]]) def ref_mha_bw_bmhk(q, k, v, mask, lse, out, grad_out, delta): lse = lse[:, :, :q.shape[1]] #BMH, unpad Q dimension delta = delta.reshape([-1, delta.shape[-1], 1]) # bmhk -> bmk q, k, v, out, grad_out = [bmhk2bmk(x).float() for x in (q, k, v, out, grad_out)] attn_T = k @ q.transpose(-2, -1) if mask is not None: attn_T += mask.transpose(-2, -1) attn_T = attn_T * (1 / q.shape[-1] ** 0.5) attn_T = attn_T - lse.reshape([-1, 1, lse.shape[-1]]) attn_T = attn_T.exp() grad_v = attn_T @ grad_out dov = grad_out @ v.transpose(-2, -1) tmp = (dov - delta) * attn_T.transpose(-2, -1) tmp = tmp / (q.shape[-1] ** 0.5) grad_q = tmp @ k grad_k = tmp.transpose(-2, -1) @ q return [x.reshape([B, H, x.shape[1], x.shape[-1]]).permute([0, 2, 1, 3]) for x in [grad_q, grad_k, grad_v]] print("initializing tensors...") query = torch.randn([B, Mq, H, K], dtype=dtype) key = 3 * torch.randn([B, Mkv, H, K], dtype=dtype) value = 3 * torch.randn([B, Mkv, H, Kv], dtype=dtype) mask = create_lower_triangular_mask() if causal else None # let PyTorch compute gradients query.requires_grad_(True) key.requires_grad_(True) value.requires_grad_(True) print("computing fw...") out, lse = ref_mha_bmhk(query, key, value, mask=mask) out = out.to(dtype).contiguous() grad_out = 3 * torch.randn([B, Mq, H, Kv], dtype=dtype) print("computing bw with autograd...") out.backward(grad_out) scale = (1 / query.shape[-1] ** 0.5) # Additional data needed by the kernel delta = (grad_out.float() * out.float()).sum(-1).transpose(-2, -1).contiguous() pad_amount = (32 - (lse.shape[2] % 32)) % 32 lse = torch.nn.functional.pad(lse, [0, pad_amount], value=math.inf) print("computing bw with reference implem...") gQr, gKr, gVr = ref_mha_bw_bmhk(query, key, value, mask, lse, out, grad_out, delta) with PipedSubprocess(fmha_bw_binary) as bw_kernel: # Send kernel arguments bw_kernel.write( TORCH_DTYPE_NAME[query.dtype], "scale", scale, "head_dim", K, "head_dim_value", Kv, "num_queries", Mq, "num_keys", Mkv, "num_heads", H, "custom_mask_type", (1 if causal else 0), "num_batches", B, "repeat_count", repeat_count, "num_splits_key", (Mkv // 128), ) bw_kernel.writeTensor(query, "query", ["q_strideB", "q_strideM", "q_strideH"]) bw_kernel.writeTensor(key, "key", ["k_strideB", "k_strideM", "k_strideH"]) bw_kernel.writeTensor(value, "value", ["v_strideB", "v_strideM", "v_strideH"]) bw_kernel.writeTensor(lse, "logsumexp", ["lse_strideB", "lse_strideH"]) bw_kernel.writeTensor(out, "output", ["o_strideB", "o_strideM", "o_strideH"]) bw_kernel.writeTensor(grad_out, "grad_output", ["gO_strideB", "gO_strideM", "gO_strideH"]) bw_kernel.writeTensor(delta, "delta", ["delta_strideB", "delta_strideH"]) if bw_kernel.read() != "OK": print("Got unexpected output") print(bw_kernel.subp.communicate()[0]) sys.exit(0) # Read kernel output gQ = bw_kernel.readTensor("grad_query", ["gQ_strideB", "gQ_strideM", "gQ_strideH"], query.shape).float() gK = bw_kernel.readTensor("grad_key", ["gK_strideB", "gK_strideM", "gK_strideH"], key.shape).float() gV = bw_kernel.readTensor("grad_value", ["gV_strideB", "gV_strideM", "gV_strideH"], value.shape).float() runtime_ms = float(bw_kernel.readNamed("runtime_ms")) float_ops = B * H * sum([ # att = Q @ K.transpose Mq * Mkv * K * 2, # att @ dO Mkv * Mq * Kv * 2, # dov = dO @ V Mq * Kv * Mkv * 2, # dov @ K Mq * K * Mkv * 2, # dov @ Q Mq * K * Mkv * 2, ]) if causal: float_ops //= 2 print(f""" Fused multi-head attention - backward batch_size={B} num_queries={Mq} num_keys={Mkv} num_heads={H} head_dim={K} head_dim_value={Kv} Correctness: grad_query: {"PASS" if torch.allclose(gQ, gQr, rtol=RTOL, atol=ATOL) else "FAIL"} (delta: {(gQ - gQr).abs().max()}) grad_key: {"PASS" if torch.allclose(gK, gKr, rtol=RTOL, atol=ATOL) else "FAIL"} (delta: {(gK - gKr).abs().max()}) grad_value: {"PASS" if torch.allclose(gV, gVr, rtol=RTOL, atol=ATOL) else "FAIL"} (delta: {(gV - gVr).abs().max()}) (atol={ATOL} / rtol={RTOL}) Runtime: {runtime_ms}ms ({(float_ops / (1024 ** 4)) / (runtime_ms / 1000):.4f} TFlops) """) assert torch.allclose(query.grad.float(), gQr, rtol=RTOL, atol=ATOL), "Reference implementation does not match PyTorch autograd!" assert torch.allclose(key.grad.float(), gKr, rtol=RTOL, atol=ATOL), "Reference implementation does not match PyTorch autograd!" assert torch.allclose(value.grad.float(), gVr, rtol=RTOL, atol=ATOL), "Reference implementation does not match PyTorch autograd!"
cutlass-main
examples/41_fused_multi_head_attention/fmha_backward_test.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Generated by the protocol buffer compiler. DO NOT EDIT! # source: riva_nlp.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='riva_nlp.proto', package='nvidia.riva.nlp', syntax='proto3', serialized_options=_b('\370\001\001'), serialized_pb=_b('\n\x10riva_nlp.proto\x12\x11nvidia.riva.nlp\"D\n\x13NaturalQueryRequest\x12\r\n\x05query\x18\x01 \x01(\t\x12\r\n\x05top_n\x18\x02 \x01(\r\x12\x0f\n\x07\x63ontext\x18\x03 \x01(\t\"3\n\x12NaturalQueryResult\x12\x0e\n\x06\x61nswer\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\"N\n\x14NaturalQueryResponse\x12\x36\n\x07results\x18\x01 \x03(\x0b\x32%.nvidia.riva.nlp.NaturalQueryResult2n\n\tRivaNLP\x12\x61\n\x0cNaturalQuery\x12&.nvidia.riva.nlp.NaturalQueryRequest\x1a\'.nvidia.riva.nlp.NaturalQueryResponse\"\x00\x42\x03\xf8\x01\x01\x62\x06proto3') ) _NATURALQUERYREQUEST = _descriptor.Descriptor( name='NaturalQueryRequest', full_name='nvidia.riva.nlp.NaturalQueryRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='query', full_name='nvidia.riva.nlp.NaturalQueryRequest.query', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='top_n', full_name='nvidia.riva.nlp.NaturalQueryRequest.top_n', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='context', full_name='nvidia.riva.nlp.NaturalQueryRequest.context', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=39, serialized_end=107, ) _NATURALQUERYRESULT = _descriptor.Descriptor( name='NaturalQueryResult', full_name='nvidia.riva.nlp.NaturalQueryResult', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='answer', full_name='nvidia.riva.nlp.NaturalQueryResult.answer', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='score', full_name='nvidia.riva.nlp.NaturalQueryResult.score', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=109, serialized_end=160, ) _NATURALQUERYRESPONSE = _descriptor.Descriptor( name='NaturalQueryResponse', full_name='nvidia.riva.nlp.NaturalQueryResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='results', full_name='nvidia.riva.nlp.NaturalQueryResponse.results', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=162, serialized_end=240, ) _NATURALQUERYRESPONSE.fields_by_name['results'].message_type = _NATURALQUERYRESULT DESCRIPTOR.message_types_by_name['NaturalQueryRequest'] = _NATURALQUERYREQUEST DESCRIPTOR.message_types_by_name['NaturalQueryResult'] = _NATURALQUERYRESULT DESCRIPTOR.message_types_by_name['NaturalQueryResponse'] = _NATURALQUERYRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) NaturalQueryRequest = _reflection.GeneratedProtocolMessageType('NaturalQueryRequest', (_message.Message,), dict( DESCRIPTOR = _NATURALQUERYREQUEST, __module__ = 'riva_nlp_pb2' # @@protoc_insertion_point(class_scope:nvidia.riva.nlp.NaturalQueryRequest) )) _sym_db.RegisterMessage(NaturalQueryRequest) NaturalQueryResult = _reflection.GeneratedProtocolMessageType('NaturalQueryResult', (_message.Message,), dict( DESCRIPTOR = _NATURALQUERYRESULT, __module__ = 'riva_nlp_pb2' # @@protoc_insertion_point(class_scope:nvidia.riva.nlp.NaturalQueryResult) )) _sym_db.RegisterMessage(NaturalQueryResult) NaturalQueryResponse = _reflection.GeneratedProtocolMessageType('NaturalQueryResponse', (_message.Message,), dict( DESCRIPTOR = _NATURALQUERYRESPONSE, __module__ = 'riva_nlp_pb2' # @@protoc_insertion_point(class_scope:nvidia.riva.nlp.NaturalQueryResponse) )) _sym_db.RegisterMessage(NaturalQueryResponse) DESCRIPTOR._options = None _RIVANLP = _descriptor.ServiceDescriptor( name='RivaNLP', full_name='nvidia.riva.nlp.RivaNLP', file=DESCRIPTOR, index=0, serialized_options=None, serialized_start=242, serialized_end=352, methods=[ _descriptor.MethodDescriptor( name='NaturalQuery', full_name='nvidia.riva.nlp.RivaNLP.NaturalQuery', index=0, containing_service=None, input_type=_NATURALQUERYREQUEST, output_type=_NATURALQUERYRESPONSE, serialized_options=None, ), ]) _sym_db.RegisterServiceDescriptor(_RIVANLP) DESCRIPTOR.services_by_name['RivaNLP'] = _RIVANLP # @@protoc_insertion_point(module_scope)
speechsquad-master
reference/qa/jarvis_nlp_pb2.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from concurrent import futures from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer import multiprocessing import time import math import logging import argparse import grpc import riva_nlp_pb2 import riva_nlp_pb2_grpc def get_args(): parser = argparse.ArgumentParser(description="Riva Question Answering client sample") parser.add_argument("--listen", default="[::]:50052", type=str, help="Address to listen to") parser.add_argument("--model-name", default="twmkn9/bert-base-uncased-squad2", type=str, help="pretrained HF model to use") parser.add_argument("--model-cache", default="/data/models", type=str, help="path to location to store downloaded checkpoints") return parser.parse_args() class RivaNLPServicer(riva_nlp_pb2_grpc.RivaNLPServicer): def __init__(self, model_name, cache=None): tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache) model = AutoModelForQuestionAnswering.from_pretrained(model_name, cache_dir=cache) self.model = pipeline('question-answering', model=model, tokenizer=tokenizer) print(f"Model loaded, serving: {model_name}") def NaturalQuery(self, request, context): """NaturalQuery is a search function that enables querying one or more documents or contexts with a query that is written in natural language. """ result = self.model({ 'question': str(request.query), 'context': str(request.context) }, handle_impossible_answer=True) response = riva_nlp_pb2.NaturalQueryResponse() response.results.append(riva_nlp_pb2.NaturalQueryResult(answer=result['answer'], score=result['score'])) return response def serve(uri="[::]:50051", model="twmkn9/distilbert-base-uncased-squad2", model_cache=None): server = grpc.server(futures.ThreadPoolExecutor(max_workers=multiprocessing.cpu_count())) riva_nlp_pb2_grpc.add_RivaNLPServicer_to_server( RivaNLPServicer(model, cache=model_cache), server) server.add_insecure_port(uri,) server.start() server.wait_for_termination() if __name__ == '__main__': args = get_args() logging.basicConfig() serve(uri=args.listen, model=args.model_name, model_cache=args.model_cache)
speechsquad-master
reference/qa/serve.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc import riva_nlp_pb2 as riva__nlp__pb2 class RivaNLPStub(object): """Riva NLP Services implement task-specific APIs for popular NLP tasks including intent recognition (as well as slot filling), and entity extraction. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.NaturalQuery = channel.unary_unary( '/nvidia.riva.nlp.RivaNLP/NaturalQuery', request_serializer=riva__nlp__pb2.NaturalQueryRequest.SerializeToString, response_deserializer=riva__nlp__pb2.NaturalQueryResponse.FromString, ) class RivaNLPServicer(object): """Riva NLP Services implement task-specific APIs for popular NLP tasks including intent recognition (as well as slot filling), and entity extraction. """ def NaturalQuery(self, request, context): """NaturalQuery is a search function that enables querying one or more documents or contexts with a query that is written in natural language. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_RivaNLPServicer_to_server(servicer, server): rpc_method_handlers = { 'NaturalQuery': grpc.unary_unary_rpc_method_handler( servicer.NaturalQuery, request_deserializer=riva__nlp__pb2.NaturalQueryRequest.FromString, response_serializer=riva__nlp__pb2.NaturalQueryResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'nvidia.riva.nlp.RivaNLP', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
speechsquad-master
reference/qa/jarvis_nlp_pb2_grpc.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import grpc import time import argparse import fastcounter import riva_nlp_pb2 as jnlp import riva_nlp_pb2_grpc as jnlp_srv def get_args(): parser = argparse.ArgumentParser(description="Riva Question Answering client sample") parser.add_argument("--riva-uri", default="localhost:50052", type=str, help="URI to access Riva server") parser.add_argument("--iterations", default=10, type=int, help="number of queries to make") return parser.parse_args() parser = get_args() grpc_server = parser.riva_uri channel = grpc.insecure_channel(grpc_server) riva_nlp = jnlp_srv.RivaNLPStub(channel) ok_counter = fastcounter.Counter() bad_counter = fastcounter.Counter() def process_response(call_future): # print(call_future.exception()) # print(call_future.result()) if call_future.exception(): bad_counter.increment() else: ok_counter.increment() def run(iterations): req = jnlp.NaturalQueryRequest() req.query = "who discovered coronavirus?" test_context = """ Coronaviruses were first discovered in the 1930s when an acute respiratory infection of domesticated chickens was shown to be caused by infectious bronchitis virus (IBV).[14] Arthur Schalk and M.C. Hawn described in 1931 a new respiratory infection of chickens in North Dakota. The infection of new-born chicks was characterized by gasping and listlessness. The chicks' mortality rate was 40–90%.[15] Fred Beaudette and Charles Hudson six years later successfully isolated and cultivated the infectious bronchitis virus which caused the disease.[16] In the 1940s, two more animal coronaviruses,  mouse hepatitis virus (MHV) and transmissible gastroenteritis virus (TGEV), were isolated.[17] It was not realized at the time that these three different viruses were related.[18] Human coronaviruses were discovered in the 1960s.[19][20] They were isolated using two different methods in the United Kingdom and the United States.[21] E.C. Kendall, Malcom Byone, and David Tyrrell working at the Common Cold Unit of the  British Medical Research Council in 1960 isolated from a boy a novel common cold virus B814.[22][23][24] The virus was not able to be cultivated using standard techniques which had successfully cultivated rhinoviruses, adenoviruses and other known common cold viruses. In 1965, Tyrrell and Byone successfully cultivated the novel virus by serially passing  it through organ culture of human embryonic trachea.[25] The new cultivating method was introduced to the lab by Bertil Hoorn.[26] The isolated virus when intranasally inoculated into volunteers caused a cold and was inactivated by ether  which indicated it had a lipid envelope.[22][27] Around the same time, Dorothy Hamre[28] and John Procknow at the  University of Chicago isolated a novel cold virus 229E from medical students, which they grew in kidney tissue culture. The novel virus 229E, like the virus strain B814, when inoculated into volunteers caused a cold and was inactivated by ether.[29] """ req.context = test_context for x in range(iterations): resp_future = riva_nlp.NaturalQuery.future(req) resp_future.add_done_callback(process_response) if __name__ == '__main__': start_time = time.time() run(parser.iterations) while (ok_counter.value + bad_counter.value) != parser.iterations: time.sleep(0.01) print(f"total time: {time.time()-start_time}, ok: {ok_counter.value}, fail: {bad_counter.value}")
speechsquad-master
reference/qa/test_qa.py