python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
################################################################################ # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import numpy as np from cuda import cuda from pycutlass.memory_manager import * from typing import TYPE_CHECKING try: import torch torch_available = True except ImportError: torch_available = False if TYPE_CHECKING: import torch try: import cupy as cp cupy_available = True except ImportError: cupy_available = False if TYPE_CHECKING: import cupy as cp class NumpyFrontend: """ Frontend node for numpy """ @staticmethod def argument(np_tensor: 'np.ndarray', is_output: 'bool') -> cuda.CUdeviceptr: """Convert the input numpy tensor to CUDA device pointer :param np_tensor: input numpy nd array :param is_output: whether the tensor is output :return: CUDA device pointer """ # copy the data to device if is_output: return device_mem_alloc(np_tensor.size * np_tensor.itemsize) else: return todevice(np_tensor) class TorchFrontend: """ Frontend node for torch """ @staticmethod def argument(torch_tensor: 'torch.Tensor') -> cuda.CUdeviceptr: """Convert the input torch tensor to CUDA device pointer :param torch_tensor: input torch tensor :param is_output: whether the tensor is output :return: CUDA device pointer """ # check the device of torch_tensor if not torch_tensor.is_cuda: torch_tensor = torch_tensor.to("cuda") return cuda.CUdeviceptr(torch_tensor.data_ptr()) class CupyFrontend: """ Frontend node for cupy """ @staticmethod def argument(cupy_ndarray: 'cp.ndarray'): return cuda.CUdeviceptr(int(cupy_ndarray.data.ptr))
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py
import re def SubstituteTemplate(template, values): text = template changed = True while changed: changed = False for key, value in values.items(): regex = "\\$\\{%s\\}" % key newtext = re.sub(regex, value, text) if newtext != text: changed = True text = newtext return text from pycutlass.type_hint import * from pycutlass.tensor_ref import * from pycutlass.operation import * from pycutlass.epilogue import * from pycutlass.parser import * from pycutlass.compiler import ArtifactManager from pycutlass.memory_manager import * from pycutlass.arguments import * from pycutlass.library import * from pycutlass.c_types import * from pycutlass.gemm_operation import * from pycutlass.conv2d_operation import * from pycutlass.compiler import * from pycutlass.utils import * from pycutlass.frontend import * from pycutlass.reduction_operation import * from pycutlass.compiler import * # module-wide variables import sys this = sys.modules[__name__] # artifact manager this.compiler = ArtifactManager() def get_memory_pool(init_pool_size=0, max_pool_size=2**34): this.memory_pool = PoolMemoryManager( init_pool_size=init_pool_size, max_pool_size=max_pool_size ) return this.memory_pool
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py
################################################################################ # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ from typeguard import typechecked from cuda import cuda from typing import Union import numpy as np from typeguard import typechecked from pycutlass import * # @typechecked class Conv2dArguments(ArgumentBase): """ Argument wrapper for Conv2d. It encodes problem information and user-provide tensors into the kernel's argument. :param operation: the Conv2d operation to take the argument :type operation: :class:`pycutlass.Conv2dOperation` :param problem_size: the Conv2d problem size :type problem_size: :class:`cutlass.conv.Conv2dProblemSize` :param A: tensor A :type A: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param B: tensor B :type B: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param C: tensor C :type C: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param D: tensor D :type D: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray :param split_k_mode: conv2d split K mode, defaults to cutlass.conv.SplitKMode.Serial :type split_k_mode: cutlass.conv.SplitKMode, optional :param output_op: output operator, optional :type output_op: :class:`pycutlass.LinearCombinationFunctorArguments` """ def __init__(self, operation: 'Conv2dOperation', problem_size: 'cutlass.conv.Conv2dProblemSize', A: 'Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]', B: 'Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]', C: 'Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]', D: 'Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]', split_k_mode: 'cutlass.conv.SplitKMode' = cutlass.conv.SplitKMode.Serial, **kwargs) -> None: self.operation = operation #: convolution kind self.conv_kind: cutlass.conv.Operator = operation.conv_kind self.layout_A: cutlass.layout = operation.A.layout self.layout_B: cutlass.layout = operation.B.layout self.layout_C: cutlass.layout = operation.C.layout self.element_A = operation.A.element self.element_B = operation.B.element self.element_C = operation.C.element if self.layout_C == cutlass.TensorNC32HW32: B = self.reorder_tensor_B(B, problem_size) super().__init__(A, B, C, D, **kwargs) # preprocessing output ops if 'output_op' in kwargs.keys() and \ split_k_mode != cutlass.conv.SplitKMode.Parallel: self.output_op = kwargs['output_op'] else: self.output_op = self.operation.epilogue_type(1.0, 0.0) if "split_k_slices" in kwargs.keys(): self.split_k_mode = split_k_mode self.split_k_slices = kwargs["split_k_slices"] else: self.split_k_mode = cutlass.conv.SplitKMode.Serial self.split_k_slices = 1 #: problem_size self.problem_size: cutlass.conv.Conv2dProblemSize = problem_size self.problem_size.split_k_slices = self.split_k_slices if hasattr(self, "tensor_c_numel"): c_coord = cutlass.conv.implicit_gemm_tensor_c_extent( self.conv_kind, problem_size) if (self.tensor_c_numel == c_coord.at(3) and self.tensor_c_numel < c_coord.size()): self.bias = True # # initialize the argument # self.initialize() # @typechecked def reorder_tensor_B(self, tensor_B: 'np.ndarray', problem_size: 'cutlass.conv.Conv2dProblemSize'): """ Reorder tensor_B for interleaved layout :param tensor_B: input tensor B :type tensor_B: numpy.ndarray :param problem_size: Conv2d problem size :type problem_size: :class:`cutlass.conv.Conv2dProblemSize` :return: reordered tensor B :rtype: numpy.ndarray """ reordered_tensor_B = np.empty_like(tensor_B) tensor_ref_B = self.get_tensor_ref( tensor_B, self.element_B, self.layout_B, problem_size, "b") reordered_tensor_ref_B = self.get_tensor_ref( reordered_tensor_B, self.element_B, self.layout_B, problem_size, "b") cutlass.conv.host.reorder_convK( reordered_tensor_ref_B, tensor_ref_B, self.conv_kind, problem_size) return reordered_tensor_B def get_tensor_ref( self, tensor, dtype, tensor_layout, problem_size, operand): if operand == "a": tensor_coord = cutlass.conv.implicit_gemm_tensor_a_extent( self.conv_kind, problem_size) elif operand == "b": tensor_coord = cutlass.conv.implicit_gemm_tensor_b_extent( self.conv_kind, problem_size) elif operand in ["c", "d"]: tensor_coord = cutlass.conv.implicit_gemm_tensor_c_extent( self.conv_kind, problem_size) else: raise ValueError("unknown operand: " + operand) # Zero stride trick if operand == "c" and self.bias: tensor_coord = cutlass.Tensor4DCoord(0, 0, 0, 0) layout = tensor_layout.packed(tensor_coord) return TensorRef(tensor, dtype, layout).tensor_ref def get_arguments(self, semaphore): ref_A = TensorRef_(self.get_tensor_ref( self.ptr_A, self.element_A, self.layout_A, self.problem_size, "a")) ref_B = TensorRef_(self.get_tensor_ref( self.ptr_B, self.element_B, self.layout_B, self.problem_size, "b")) ref_C = TensorRef_(self.get_tensor_ref( self.ptr_C, self.element_C, self.layout_C, self.problem_size, "c")) ref_D = TensorRef_(self.get_tensor_ref( self.ptr_D, self.element_C, self.layout_C, self.problem_size, "d")) self.c_arguments = self.operation.argument_type( Conv2DProblemSize(self.problem_size), ref_A, ref_B, ref_C, ref_D, self.output_op, self.split_k_mode ) self.semaphore = semaphore def initialize(self): """ Initialize the kernel arguments handling following stuffs 1. get kernel launch configuration including grid, cta size, and dynamic shared memory capacity 2. allocate and initialize device workspace 3. get kernel params as bytearray for NVRTC input """ # get launch configuration self.launch_config = self.operation.rt_module.plan(self) # allocate and initialize device workspace device_workspace_size = \ self.operation.rt_module.get_device_workspace_size(self) if device_workspace_size > 0: self.workspace_buffer = device_mem_alloc(device_workspace_size) workspace_ptr = self.workspace_buffer.ptr err, = cuda.cuMemsetD32( workspace_ptr, 0, device_workspace_size // 4) else: workspace_ptr = None # get kernel params as bytearray semaphore = 0 if workspace_ptr is not None and \ self.split_k_mode == cutlass.conv.SplitKMode.Parallel: self.ptr_D = workspace_ptr elif workspace_ptr is not None and \ self.split_k_mode == cutlass.conv.SplitKMode.Serial: semaphore = workspace_ptr self.get_arguments(semaphore) params_ = self.operation.rt_module.get_args(ctypes.byref( self.c_arguments), ctypes.c_void_p(int(self.semaphore))) self.host_workspace = bytearray(params_.contents) self.device_workspace = None def sync(self): """ Synchronize the arguments. If the input tensor is in host, copy it from device to host. """ return super().sync() # @typechecked class Conv2dRT(ExecutableOperation): """ Conv2dRT manages the CUTLASS runtime components """ KernelTemplate = r''' extern "C" __global__ void ${operation_name}(${operation_name}${operation_suffix}::Params params) { // Dynamic shared memory base pointer extern __shared__ int SharedStorageBase[]; // Declare pointer to dynamic shared memory. ${operation_name}${operation_suffix}::SharedStorage *shared_storage = reinterpret_cast<${operation_name}${operation_suffix}::SharedStorage *>(SharedStorageBase); ${operation_name}${operation_suffix} op; op(params, *shared_storage); } ''' HostTemplate = r''' extern "C" { // Get the size of params in bytes int ${operation_name}_get_param_size(){ return sizeof(${operation_name}${operation_suffix}::Params); } // Get the size of dynamic shared memory in bytes int ${operation_name}_shared_memory_size() { return int(sizeof(${operation_name}${operation_suffix}::SharedStorage)); } // Get the params as byte array char* ${operation_name}_get_params(${operation_name}${operation_suffix}::Arguments* arguments, int *semaphore=nullptr){ typename ${operation_name}${operation_suffix}::Params* params; params = new ${operation_name}${operation_suffix}::Params(*arguments, semaphore); char *bytes = ((char*)(params)); char *output = new char[sizeof(${operation_name}${operation_suffix}::Params)]; for (unsigned int i = 0; i < sizeof(${operation_name}${operation_suffix}::Params); i ++) output[i] = bytes[i]; return output; } } ''' def __init__(self, operation: 'Conv2dOperation'): super().__init__(operation) self.argument_type, self.epilogue_type = get_conv2d_arguments(operation.epilogue_functor) self.argtype = [ctypes.POINTER(self.argument_type), ctypes.c_void_p] self.conv_kind = operation.conv_kind self.operation: Conv2dOperation = operation self.emitter = EmitConv2dInstance('_type') self.threads: int = operation.tile_description.num_threads self.swizzle_functor = operation.swizzling_functor def emit(self): return self.emitter.emit(self.operation) # @typechecked def get_device_workspace_size(self, arguments: Conv2dArguments): workspace_bytes = 0 launch_config = arguments.launch_config self.conv_kind = self.operation.conv_kind if arguments.split_k_mode == cutlass.conv.SplitKMode.Parallel: problem_size = arguments.problem_size workspace_bytes = DataTypeSize[self.operation.C.element] \ * launch_config.grid[2] * cutlass.conv.implicit_gemm_tensor_c_size( self.conv_kind, problem_size ) // 8 elif arguments.split_k_mode == cutlass.conv.SplitKMode.Serial and \ arguments.split_k_slices > 1: workspace_bytes = launch_config.grid[0] * launch_config.grid[1] * 4 return workspace_bytes # @typechecked def plan(self, arguments: Conv2dArguments): tile_size = cutlass.gemm.GemmCoord( self.operation.tile_description.threadblock_shape[0], self.operation.tile_description.threadblock_shape[1], self.operation.tile_description.threadblock_shape[2] ) grid = self.swizzle_functor.get_grid_shape( self.swizzle_functor.get_tiled_shape( self.conv_kind, arguments.problem_size, tile_size, arguments.split_k_slices ) ) return LaunchConfiguration( [grid.x, grid.y, grid.z], [self.threads, 1, 1], self.shared_memory_capacity) def initialize(self): err, = cuda.cuFuncSetAttribute( self.kernel, attrib=cuda.CUfunction_attribute.CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, value=self.shared_memory_capacity) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError('Cuda Error: {}'.format(err)) # class Conv2dOperation: """ CUTLASS Conv2d operation description. :param conv_kind: convolution operator :type conv_kind: :class:`cutlass.conv.Operator` :param iterator_algorithm: Selects among several implementation variants trading off performance with simplicity :type iterator_algorithm: :class:`cutlass.conv.IteratorAlgorithm` :param arch: GPU compute capability (sm_xx) :type arch: int :param tile_description: tile description :type tile_description: :class:`pycutlass.TileDescription` :param A: tensor A description :type A: :class:`pycutlass.TensorDescription` :param B: tensor B description :type B: :class:`pycutlass.TensorDescription` :param C: tensor C description :type C: :class:`pycutlass.TensorDescription` :param D: tensor D description :type D: :class:`pycutlass.TensorDescription` :param element_epilogue: element type for computation in epilogue \ :type element_epilogue: cutlass.int8 | cutlass.int32 | cutlass.float16 | \ cutlass.bfloat16 | cutlass.float32 | cutlass.float64 :param stride_support: distinguish among partial specializations that \ accelerate certain problems where convolution stride is unit \ :type stride_support: :class:`cutlass.conv.StrideSupport` :param epilogue_functor: convolution epilogue functor :type epilogue_functor: :class:`EpilogueFunctor` :param swizzling_functor: threadblock swizzling functor """ # def __init__(self, conv_kind: cutlass.conv.Operator, iterator_algorithm: cutlass.conv.IteratorAlgorithm, arch: int, tile_description: TileDescription, A: TensorDescription, B: TensorDescription, C: TensorDescription, stride_support, epilogue_functor, swizzling_functor=cutlass.IdentitySwizzle1): self.operation_kind: OperationKind = OperationKind.Conv2d self.arch: int = arch self.tile_description: TileDescription = tile_description self.conv_kind = conv_kind self.A: TensorDescription = A self.B: TensorDescription = B self.C: TensorDescription = C self.epilogue_functor = epilogue_functor self.iterator_algorithm = iterator_algorithm self.stride_support = stride_support self.swizzling_functor = swizzling_functor() self.rt_module: Conv2dRT = Conv2dRT(self) self.argument_type = self.rt_module.argument_type self.epilogue_type = self.rt_module.epilogue_type def run(self, arguments: Conv2dArguments) -> cuda.CUresult: """ Launch the cuda kernel with input arguments :param arguments: conv2d arguments :type arguments: :class:`pycutlass.Conv2dArguments` """ # launch the kernel err = self.rt_module.run( arguments.host_workspace, arguments.device_workspace, arguments.launch_config) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError('CUDA Error %s' % str(err)) return err # # Get function name # def procedural_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' return self.configuration_name() # def configuration_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] threadblock = "%dx%d_%dx%d" % ( self.tile_description.threadblock_shape[0], self.tile_description.threadblock_shape[1], self.tile_description.threadblock_shape[2], self.tile_description.stages ) if self.stride_support == StrideSupport.Unity: configuration_name = "cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}_unity_stride_align${alignment}" else: configuration_name = "cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}_align${alignment}" return SubstituteTemplate( configuration_name, { 'opcode_class': opcode_class_name, 'extended_name': self.extended_name(), 'threadblock': threadblock, 'layout': self.layout_name(), 'alignment': "%d" % self.A.alignment, } ) # def extended_name(self): ''' Append data types if they differ from compute type. ''' if self.C.element != self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${element_c}_${core_name}_${element_a}" elif self.C.element == self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = SubstituteTemplate(extended_name, { 'element_a': DataTypeNames[self.A.element], 'element_c': DataTypeNames[self.C.element], 'core_name': self.core_name() }) return extended_name # def layout_name(self): return "%s" % (ShortLayoutTypeNames[self.A.layout]) # def core_name(self): ''' The basic operation kind is prefixed with a letter indicating the accumulation type. ''' intermediate_type = '' if self.tile_description.math_instruction.opcode_class == cutlass.OpClass.TensorOp: inst_shape = "%d%d%d" % tuple( self.tile_description.math_instruction.instruction_shape) if self.tile_description.math_instruction.element_a != self.A.element and \ self.tile_description.math_instruction.element_a != self.accumulator_type(): intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] else: inst_shape = '' return "%s%s%s%s_%s" % (ShortDataTypeNames[self.accumulator_type()], inst_shape, intermediate_type, ConvKindNames[self.conv_kind], IteratorAlgorithmNames[self.iterator_algorithm]) # def is_complex(self): complex_operators = [ MathOperation.multiply_add_complex, MathOperation.multiply_add_complex_gaussian ] return self.tile_description.math_instruction.math_operation in complex_operators # def accumulator_type(self): accum = self.tile_description.math_instruction.element_accumulator if self.is_complex(): return get_complex_from_real(accum) return accum ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### class EmitConv2dInstance: def __init__(self, operation_suffix=''): self.operation_suffix = operation_suffix self.includes = [ "cutlass/cutlass.h", "cutlass/conv/kernel/default_conv2d_fprop.h", "cutlass/conv/kernel/default_conv2d_dgrad.h", "cutlass/conv/kernel/default_conv2d_wgrad.h" ] self.template = """ // Conv2d${conv_kind_name} ${iterator_algorithm_name} kernel instance "${operation_name}" using ${operation_name}_base = typename cutlass::conv::kernel::DefaultConv2d${conv_kind_name}< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k} >, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}, ${swizzling_functor}, // cutlass::gemm::threadblock::GemmSplitKIdentityThreadblockSwizzle<>, ${stages}, ${math_operator}, ${iterator_algorithm}, ${stride_support}, ${align_a}, ${align_b} >::Kernel; struct ${operation_name}${operation_suffix}: public ${operation_name}_base { }; """ def emit(self, operation): warp_shape = [int(operation.tile_description.threadblock_shape[idx] / operation.tile_description.warp_count[idx]) for idx in range(3)] epilogue_vector_length = int(min( operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element]) values = { 'operation_name': operation.procedural_name(), 'operation_suffix': self.operation_suffix, 'conv_kind': ConvKindTag[operation.conv_kind], 'conv_kind_name': ConvKindNames[operation.conv_kind].capitalize(), 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[operation.A.layout], 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[operation.B.layout], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_vector_length': str(epilogue_vector_length), 'epilogue_functor': operation.epilogue_functor.emit(), 'swizzling_functor': operation.swizzling_functor.tag(), 'stages': str(operation.tile_description.stages), 'iterator_algorithm': IteratorAlgorithmTag[operation.iterator_algorithm], 'iterator_algorithm_name': IteratorAlgorithmNames[operation.iterator_algorithm].capitalize(), 'stride_support': StrideSupportTag[operation.stride_support], 'math_operator': 'cutlass::arch::OpMultiplyAddComplex' if operation.is_complex() else MathOperationTag[operation.tile_description.math_instruction.math_operation], 'align_a': str(operation.A.alignment), 'align_b': str(operation.B.alignment), } return SubstituteTemplate(self.template, values)
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py
################################################################################ # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ from typeguard import typechecked import numpy as np try: import torch torch_available = True except ImportError: torch_available = False from cuda import cuda try: import cupy as cp cupy_available = True except ImportError: cupy_available = False import cutlass # @typechecked class TensorRef: """ Python Wrapper for cutlass.TensorRef """ def __init__(self, tensor, dtype, layout) -> None: if isinstance(tensor, np.ndarray): ptr = cuda.CUdeviceptr(tensor.__array_interface__['data'][0]) elif torch_available and isinstance(tensor, torch.Tensor): ptr = cuda.CUdeviceptr(tensor.data_ptr()) elif cupy_available and isinstance(tensor, cp.ndarray): ptr = cuda.CUdeviceptr(int(tensor.data.ptr)) elif isinstance(tensor, cuda.CUdeviceptr): ptr = tensor elif isinstance(tensor, int): ptr = cuda.CUdeviceptr(tensor) else: raise NotImplementedError(tensor) # the dtype(0) is used to overload between different data types # with the same layout self.tensor_ref = cutlass.get_tensor_ref(int(ptr), dtype(0), layout)
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py
################################################################################ # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import ctypes from cuda import cuda ################################################################################ # # Launch configuration # ################################################################################ class LaunchConfiguration: def __init__(self, grid=[1, 1, 1], block=[1, 1, 1], smem=0): self.grid = grid self.block = block self.shared_memory_capacity = smem ################################################################################ # # Base class for an executable operation # # ############################################################################## class ExecutableOperation: ''' ''' def __init__(self, operation): self.operation = operation self.module = None self.kernel = None # def name(self): return self.operation.procedural_name() # def emit(self): return '' # def can_implement(self, configuration, arguments): raise NotImplementedError() # def get_host_workspace_size(self, arguments): raise NotImplementedError() # def get_device_workspace_size(self, arguments): raise NotImplementedError() # def plan(self, arguments): raise NotImplementedError() # def initialize(self, host_workspace, device_workspace, launch_config, arguments, stream=cuda.CUstream(0)): raise NotImplementedError() # def run(self, host_workspace, device_workspace, launch_config, stream=cuda.CUstream(0)): cArg = (ctypes.c_char * len(host_workspace) ).from_buffer(host_workspace) packed = (ctypes.c_void_p * 1)() packed[0] = ctypes.addressof(cArg) err, = cuda.cuLaunchKernel( self.kernel, launch_config.grid[0], launch_config.grid[1], launch_config.grid[2], launch_config.block[0], launch_config.block[1], launch_config.block[2], launch_config.shared_memory_capacity, stream, packed, 0) return err
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py
################################################################################ # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ from typing import Generic, TypeVar from treelib import Tree import numpy as np from pycutlass import * import pycutlass import ast import textwrap import inspect ################################################################################ # Type annotation for input arguments ################################################################################ Ttype = TypeVar("Ttype") Dtype = TypeVar("Dtype") class NDArray(np.ndarray, Generic[Ttype, Dtype]): pass ################################################################################ # Operations ################################################################################ operators = { ast.Add: "Add", ast.Div: "Div", ast.Eq: "Equal", ast.Mult: "Mult" } ################################################################################ # AST Node abstractions ################################################################################ class UnaryNode: cnt = 0 # Concept: this is created by the BinOp Node in python ast def __init__(self, element_accumulator, element_compute, elements_per_access, node, args) -> None: if isinstance(node, BinOpNode): self.op = node.op elif isinstance(node, ast.Call): if isinstance(node.func, ast.Name): self.op = node.func.id elif isinstance(node.func, ast.Attribute): self.op = node.func.value.id else: raise TypeError else: raise TypeError self.tag = "Unary" + self.op + str(UnaryNode.cnt) self.id = self.op + str(UnaryNode.cnt) self.args = args UnaryNode.cnt += 1 self.type = "tensor" self.epilogue_op = getattr(pycutlass, self.op)(element_compute) # data types self.element_accumulator = element_accumulator self.element_compute = element_compute self.elements_per_access = elements_per_access def get_epilogue_node(self, visitors): self.epilogue_node = UnaryOp( self.element_accumulator, self.element_compute, self.elements_per_access, *visitors, self.epilogue_op) def get_argument(self, visitor_args, kwargs): epilogue_ops = [] for arg in self.args: try: epilogue_ops.append(kwargs[arg]) except: epilogue_ops.append(arg) # direct arguments like constant self.argument = self.epilogue_node.argument_type(self.epilogue_op.argument_type(*epilogue_ops), *visitor_args) class BinOpNode: cnt = 0 # Concept: this is created by the BinOp Node in python ast def __init__(self, element_accumulator, element_compute, elements_per_access, node) -> None: self.op = operators[type(node.op)] self.tag = "Binary" + self.op + str(BinOpNode.cnt) self.id = self.op + str(BinOpNode.cnt) self.args = None BinOpNode.cnt += 1 self.type = "tensor" self.epilogue_op = getattr(pycutlass, "Vector"+self.op)(element_compute) # data types self.element_accumulator = element_accumulator self.element_compute = element_compute self.elements_per_access = elements_per_access def get_epilogue_node(self, visitors): self.epilogue_node = BinaryOp( self.element_accumulator, self.element_compute, self.elements_per_access, *visitors, self.epilogue_op) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type(self.epilogue_op.argument_type(self.args), *visitor_args) class NameNode: # Concept: this is created by the Name Node in python ast def __init__(self, node) -> None: try: self.id = node.id except: self.id = node.targets[0].id self.tag = self.id class ScalarInputNode(NameNode): # Concept: scalar def __init__(self, node) -> None: super().__init__(node) self.tag = "Scalar:" + self.tag self.type = "scalar" class AccumulatorNode(NameNode): # Concept: VisitorOpAccumulator def __init__(self, element_accumulator, elements_per_access, node) -> None: super().__init__(node) self.tag = "Accum:" + self.tag self.type = "tensor" self.element_accumulator = element_accumulator self.elements_per_access = elements_per_access def get_epilogue_node(self, visitors): self.epilogue_node = AccumulatorOp( self.element_accumulator, self.elements_per_access) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type() class TensorInputNode(NameNode): # Concept: VisitorOpTensorInput def __init__(self, element_accumulator, node) -> None: super().__init__(node) self.tag = "TensorInput:" + self.tag self.type = "tensor" self.element_accumulator = element_accumulator def get_epilogue_node(self, *args): self.epilogue_node = TensorInputOp(self.element_accumulator) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type( kwargs[self.id + "_ptr"], kwargs["problem_size"][1], kwargs["problem_size"][0] * kwargs["problem_size"][1]) class RowBroadcastNode(NameNode): # Concept: VisitorOpRowBroadcast def __init__(self, element_accumulator, element_fragment, node) -> None: super().__init__(node) # self.tag = "RowBroadcast:" + self.tag self.type = "tensor" self.element_accumulator = element_accumulator self.element_fragment = element_fragment def get_epilogue_node(self, *args): self.epilogue_node = RowBroadcastOp( self.element_accumulator, self.element_fragment) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type(kwargs[self.id + "_ptr"], kwargs["problem_size"][1]) class ColumnBroadcastNode(NameNode): # Concept: VisitorOpColumnBroadcast def __init__(self, element_accumulator, element_fragment, node) -> None: super().__init__(node) self.tag = "ColumnBroadcast:" + self.tag self.type = "tensor" self.element_accumulator = element_accumulator self.element_fragment = element_fragment def get_epilogue_node(self, *args): self.epilogue_node = ColumnBroadcastOp( self.element_accumulator, self.element_fragment) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type(kwargs[self.id + "_ptr"], kwargs["problem_size"][0]) class TensorOutputNode(NameNode): # Concept: VisitorOpTensorOutput def __init__(self, element_accumulator, node) -> None: super().__init__(node) self.tag = "TensorOutput:" + self.tag self.type = "tensor" self.element_accumulator = element_accumulator def get_epilogue_node(self, visitors): self.epilogue_node = TensorOutputOp(self.element_accumulator, *visitors) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type(kwargs[self.id + "_ptr"], kwargs["problem_size"][1], *visitor_args, kwargs["problem_size"][0] * kwargs["problem_size"][1]) class RowReductionNode: # Concept: RowReductionOp def __init__(self, element_accumulator, element_reduction, element_reduction_accumulator, id, factor) -> None: # self.id = id self.tag = "RowReduction:" + self.id self.type = "tensor" self.element_accumulator = element_accumulator self.element_reduction = element_reduction self.element_reduction_accumulator = element_reduction_accumulator self.factor = factor def get_epilogue_node(self, visitors): self.epilogue_node = RowReductionOp( self.element_accumulator, self.element_reduction, self.element_reduction_accumulator, *visitors) def get_batch_stride(self, problem_size): return problem_size[0] * ((problem_size[1] + self.factor - 1) // self.factor) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type(kwargs[self.id + "_ptr"], *visitor_args, self.get_batch_stride(kwargs["problem_size"])) class ColumnReductionNode: # Concept: ColumnReductionOp def __init__(self, element_accumulator, element_reduction, element_reduction_accumulator, id, factor) -> None: # self.id = id self.tag = "ColumnReduction:" + self.id self.type = "tensor" self.element_accumulator = element_accumulator self.element_reduction = element_reduction self.element_reduction_accumulator = element_reduction_accumulator self.factor = factor def get_epilogue_node(self, visitors): self.epilogue_node = ColumnReductionOp( self.element_accumulator, self.element_reduction, self.element_reduction_accumulator, *visitors) def get_batch_stride(self, problem_size): return problem_size[1] * ((problem_size[0] + self.factor - 1) // self.factor) def get_argument(self, visitor_args, kwargs): self.argument = self.epilogue_node.argument_type(kwargs[self.id + '_ptr'], *visitor_args, self.get_batch_stride(kwargs["problem_size"])) ################################################################################ # Epilogue parser function ################################################################################ class EpilogueAST(ast.NodeVisitor): def __init__(self, epilogue, tile_description, element_accumulator, elements_per_access, element_compute, element_output) -> None: # self.tile_description = tile_description self.element_accumulator = element_accumulator self.elements_per_access = elements_per_access self.element_compute = element_compute self.element_output = element_output self.epilogue = epilogue self.source = textwrap.dedent(inspect.getsource(epilogue.__call__)) self.ast_tree = ast.parse(self.source) self.epilogue_tree = Tree() # print(ast.dump(self.ast_tree, indent=4)) # For Debug purpose # input arguments self.input_args = {} # return nodes self.returns = [] # reduction source nodes self.reduction_source = {} # stack used to keep the parent node id self.stack = [] # visit the AST self.visit(self.ast_tree) # visit the name node def visit_Name(self, node): # append the return ids into self.returns if self.stack[-1] == "return": self.returns.append(node.id) else: # accum is produced from accumulator node if node.id == "accum": name_node = AccumulatorNode( self.element_accumulator, self.elements_per_access, node) else: # for input nodes if node.id in self.input_args.keys(): type = self.input_args[node.id][0] if type == "tensor": name_node = TensorInputNode(self.element_accumulator, node) elif type == "row": name_node = RowBroadcastNode(self.element_accumulator, self.element_compute, node) elif type == "column": name_node = ColumnBroadcastNode(self.element_accumulator, self.element_compute, node) elif type == "scalar": name_node = ScalarInputNode(node) else: raise ValueError(type) # for output nodes else: name_node = TensorOutputNode(self.element_accumulator, node) self.epilogue_tree.create_node(name_node.tag, name_node.id, data=name_node, parent=self.stack[-1]) def visit_Assign(self, node): pre_assign_node = self.epilogue_tree.get_node(node.targets[0].id) if pre_assign_node is None: # The assign is to a root node # skip the reduction nodes if isinstance(node.value, ast.Call): if isinstance(node.value.func, ast.Name): func_type = node.value.func.id elif isinstance(node.value.func, ast.Attribute): func_type = node.value.func.value.id else: raise TypeError if func_type == 'reduction_op': self.reduction_source[node.value.args[0].id] = [node.value.args[1].value, node.value.args[2].value, node.targets[0].id] return name_node = TensorOutputNode(self.element_accumulator, node) self.epilogue_tree.create_node(name_node.tag, name_node.id, data=name_node) self.stack.append(name_node.id) else: if node.targets[0].id in self.returns or node.targets[0].id in self.reduction_source.keys(): self.stack.append(node.targets[0].id) else: self.stack.append(pre_assign_node.predecessor(self.epilogue_tree.identifier)) self.epilogue_tree.remove_node(node.targets[0].id) # get child tag self.visit(node.value) self.stack.pop() def visit_Call(self, node): if isinstance(node.func, ast.Name): func_type = node.func.id elif isinstance(node.func, ast.Attribute): func_type = node.func.value.id else: raise TypeError if func_type == "reduction_op": self.visit(node.args[0]) else: arg_list = [] for idx, arg in enumerate(node.args): if idx == 0: continue if isinstance(arg, ast.Constant): arg_list.append(arg.value) elif isinstance(arg, ast.Name): arg_list.append(arg.id) else: raise TypeError unary_node = UnaryNode(self.element_accumulator, self.element_compute, self.elements_per_access, node, arg_list) self.epilogue_tree.create_node(unary_node.tag, unary_node.id, parent=self.stack[-1], data=unary_node) self.stack.append(unary_node.id) self.visit(node.args[0]) self.stack.pop() def visit_BinOp(self, node): binop = BinOpNode(self.element_accumulator, self.element_compute, self.elements_per_access, node) self.epilogue_tree.create_node(binop.tag, binop.id, data=binop, parent=self.stack[-1]) self.stack.append(binop.id) self.visit(node.left) self.visit(node.right) self.stack.pop() def visit_Return(self, node): self.stack.append("return") self.visit(node.value) self.stack.pop() # # A function definition def visit_FunctionDef(self, node: ast.FunctionDef): # visit args for arg in node.args.args: if arg.arg == "self": continue if isinstance(arg.annotation, ast.Constant): self.input_args[arg.arg] = [arg.annotation.value, ] # visit the assign in the reverse order for idx in range(len(node.body)): self.visit(node.body[-1-idx]) # # Tree optimization pass # # pass 1: lower Binary to Unary def pass_binary_2_unary(self, tree, nid): node = tree.get_node(nid) if isinstance(node.data, BinOpNode): lhs_node = tree.get_node(node.successors(tree.identifier)[0]) left_type = lhs_node.data.type rhs_node = tree.get_node(node.successors(tree.identifier)[1]) right_type = rhs_node.data.type if left_type == "scalar" and right_type == "tensor": node.data = UnaryNode( self.element_accumulator, self.element_compute, self.elements_per_access, node.data, [lhs_node.data.id,]) node.tag = node.data.tag tree.remove_node(lhs_node.data.id) self.pass_binary_2_unary(tree, rhs_node.data.id) elif left_type == "tensor" and right_type == "scalar": node.data = UnaryNode( self.element_accumulator, self.element_compute, self.elements_per_access, node.data, [rhs_node.id,]) node.tag = node.data.tag tree.remove_node(rhs_node.data.id) self.pass_binary_2_unary(tree, lhs_node.data.id) else: self.pass_binary_2_unary(tree, lhs_node.data.id) self.pass_binary_2_unary(tree, rhs_node.data.id) else: for child in node.successors(tree.identifier): self.pass_binary_2_unary(tree, child) # pass 2: inject reduction nodes def pass_inject_reduction(self, tree, nid): node = tree.get_node(nid) if isinstance(node.data, TensorOutputNode): if node.data.id in self.reduction_source.keys(): direction = self.reduction_source[node.data.id][0] target = self.reduction_source[node.data.id][-1] if direction == 'row': reduction_node = RowReductionNode( self.element_accumulator, self.element_output, self.element_accumulator, target, self.tile_description.threadblock_shape[1]) elif direction == "column": reduction_node = ColumnReductionNode( self.element_accumulator, self.element_output, self.element_accumulator, target, self.tile_description.threadblock_shape[0]) else: raise ValueError(direction) child_nid = node.successors(tree.identifier)[0] # if this output node is injected only for reduction if node.data.id not in self.returns: # get reduction config from disc node.data = reduction_node node.tag = reduction_node.tag self.pass_inject_reduction(tree, child_nid) # if this output node is also a tensor output, inject reduction as its children else: # get child node tree.create_node(reduction_node.tag, reduction_node.id, data=reduction_node, parent=node.data.id) tree.move_node(child_nid, reduction_node.id) child = tree.get_node(child_nid) for grand_child in child.successors(tree.identifier): self.pass_inject_reduction(tree, grand_child) else: for child in node.successors(tree.identifier): self.pass_inject_reduction(tree, child) else: for child in node.successors(tree.identifier): self.pass_inject_reduction(tree, child) def pass_inject_epilogue_op(self, tree, nid): node = tree.get_node(nid) visitors = [] for child in node.successors(tree.identifier): visitors.append(self.pass_inject_epilogue_op(tree, child)) node.data.get_epilogue_node(visitors) return node.data.epilogue_node def get_arguments(self, tree, nid, kwargs): node = tree.get_node(nid) visitor_args = [] for child in node.successors(tree.identifier): visitor_args.append(self.get_arguments(tree, child, kwargs)) node.data.get_argument(visitor_args, kwargs) return node.data.argument class EpilogueVisitTree: KernelTemplate = """ ${visitor} using ${operation_name}_EpilogueVisitor = cutlass::epilogue::threadblock::EpilogueVisitorGeneric<${visitor_name}>; """ def __init__(self, elementwise_functor, tile_description, element_accumulator, elements_per_access, element_compute, element_output) -> None: # # data types self.tile_description = tile_description self.element_accumulator = element_accumulator self.elements_per_access = elements_per_access self.element_compute = element_compute self.element_output = element_output # TODO: deprecate this self.elementwise_functor = elementwise_functor pass def initialize(self): function = EpilogueAST(self, self.tile_description, self.element_accumulator, self.elements_per_access, self.element_compute, self.element_output) # tree = function.epilogue_tree self.tree = tree # self.tree.show() # for debug function.pass_binary_2_unary(self.tree, self.tree.root) # self.tree.show() # for debug function.pass_inject_reduction(self.tree, self.tree.root) # self.tree.show() # for debug function.pass_inject_epilogue_op(self.tree,self.tree.root) visitor = self.tree.get_node(self.tree.root).data.epilogue_node self.visitor = visitor class _Argument(ctypes.Structure): _fields_ = [ ("visitor_arg", visitor.argument_type) ] def __init__(self, **kwargs) -> None: # process input args _kwargs = {} for input_key in function.input_args.keys(): if input_key == "accum": continue if function.input_args[input_key][0] == "scalar": # _kwargs[input_key] = kwargs[input_key] continue # tensor input else: setattr(self, "buffer_tensor_" + input_key, NumpyFrontend.argument(kwargs[input_key], False)) setattr(self, input_key + "_ptr", int(getattr(self, "buffer_tensor_" + input_key).ptr)) _kwargs[input_key+"_ptr"] = getattr(self, input_key + "_ptr") # process the return args for ret in function.returns: setattr(self, "buffer_tensor_" + ret, NumpyFrontend.argument(kwargs[ret], True)) setattr(self, ret + "_ptr", int(getattr(self, "buffer_tensor_" + ret).ptr)) _kwargs[ret+"_ptr"] = getattr(self, ret + "_ptr") setattr(self, "host_tensor_" + ret, kwargs[ret]) _kwargs.update(kwargs) function.get_arguments(tree, tree.root, _kwargs) self.visitor_arg = tree.get_node(tree.root).data.argument def sync(self, stream_sync=True): if stream_sync: err, = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) for ret in function.returns: err, = cuda.cuMemcpyDtoH( getattr(self, "host_tensor_" + ret), cuda.CUdeviceptr(getattr(self, ret + "_ptr")), getattr(self, "host_tensor_" + ret).size * getattr(self, "host_tensor_" + ret).itemsize ) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) pass self.epilogue_type = _Argument def emit(self, operation): values = { 'visitor': self.visitor.emit(operation), 'operation_name': operation.procedural_name(), 'visitor_name': self.visitor.instance_name } return SubstituteTemplate(self.KernelTemplate, values)
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py
################################################################################ # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ from ast import Num from audioop import mul from pipes import Template import struct from pycutlass.library import DataTypeTag from pycutlass import * import cutlass from scipy.special import erf from pycutlass.c_types import MatrixCoord_ from pycutlass.frontend import NumpyFrontend from cuda import cuda from cuda import cudart dtype2ctype = { cutlass.float16: ctypes.c_uint16, cutlass.float32: ctypes.c_float, cutlass.float64: ctypes.c_double, cutlass.int32: ctypes.c_int32 } ################################################################################################# # # Epilogue Functors # ################################################################################################# class EpilogueFunctorBase: """ Base class for thread-level epilogue functors """ def __init__(self) -> None: pass def emit(self, tag, template_argument): template = """${tag}<${arguments}>""" arguments = "" for idx, arg in enumerate(template_argument): arguments += arg if idx < len(template_argument) - 1: arguments += ", " values = { "tag": tag, "arguments": arguments } return SubstituteTemplate(template, values) class LinearCombination(EpilogueFunctorBase): """ Apply a linear combination operator to an array of elements D = alpha * accumulator + beta * source :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store :param element_accumulator: Accumulator data type :param element_epilogue: data type used to compute linear combination """ tag = "cutlass::epilogue::thread::LinearCombination" def __init__( self, element_output, epilogue_vector_length, element_accumulator=None, element_epilogue=None) -> None: # TODO bind ScaleType super().__init__() if element_accumulator is None: element_accumulator = element_output if element_epilogue is None: element_epilogue = element_output self.element_output = element_output self.element_accumulator = element_accumulator self.element_epilogue = element_epilogue self.template_arguments = [ DataTypeTag[element_output], str(epilogue_vector_length), DataTypeTag[element_accumulator], DataTypeTag[element_epilogue] ] # get epilogue output op type c_element_epilogue = dtype2ctype[self.element_epilogue] element_epilogue = self.element_epilogue class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha_data", ctypes.c_longlong*2), ("beta_data", ctypes.c_longlong*2), ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ] def __init__(self, alpha, beta, *args) -> None: self.alpha = element_epilogue(alpha).storage self.beta = element_epilogue(beta).storage self.epilogue_type = _EpilogueOutputOpParams def emit(self): return super().emit(self.tag, self.template_arguments) class LinearCombinationClamp(LinearCombination): """ Applies a linear combination operator to an array of elements then clamps the output before converting to the output element type. D = alpha * accumulator + beta * source + uniform :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store :param element_accumulator: Accumulator data type :param element_epilogue: data type used to compute linear combination """ tag = "cutlass::epilogue::thread::LinearCombinationClamp" def __init__( self, element_output, epilogue_vector_length, element_accumulator=None, element_epilogue=None) -> None: # Base constructor super().__init__( element_output, epilogue_vector_length, element_accumulator, element_epilogue) c_element_epilogue = dtype2ctype[self.element_epilogue] element_epilogue = self.element_epilogue class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ] def __init__(self, alpha, beta, *args) -> None: self.alpha = element_epilogue(alpha).storage self.beta = element_epilogue(beta).storage self.epilogue_type = _EpilogueOutputOpParams class FastLinearCombinationClamp(EpilogueFunctorBase): """ Applies a linear combination operator to an array of elements then clamps the output before converting to the output element type. D = alpha * accumulator + beta * source Note: The below method only when problem_size_K <= 256 for signed int8 gemm or problem_size_K <= 128 for unsigned int8 gemm. The default approach is above. :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store """ tag = "cutlass::epilogue::thread::FastLinearCombinationClamp" def __init__(self, element_output, epilogue_vector_length, *args) -> None: super().__init__() self.template_arguments = [ DataTypeTag[element_output], str(epilogue_vector_length) ] self.element_accumulator = cutlass.int32 self.element_epilogue = cutlass.float32 # get epilogue output op c_element_epilogue = dtype2ctype[self.element_epilogue] element_epilogue = self.element_epilogue class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ] def __init__(self, alpha, beta, *args) -> None: self.alpha = element_epilogue(alpha).storage self.beta = element_epilogue(beta).storage self.epilogue_type = _EpilogueOutputOpParams def emit(self): return super().emit(self.tag, self.template_arguments) class LinearCombinationGeneric(LinearCombination): """ Applies a linear combination operator followed by an activation function to an array of elements. D = activation(alpha * accumulator + beta * source) :param activation_functor: input activation functor :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store :param element_accumulator: Accumulator data type :param element_epilogue: data type used to compute linear combination """ tag = "cutlass::epilogue::thread::LinearCombinationGeneric" def __init__( self, activation_functor, element_output, epilogue_vector_length, element_accumulator=None, element_epilogue=None) -> None: super().__init__( element_output, epilogue_vector_length, element_accumulator, element_epilogue) self.template_arguments = [ activation_functor.emit(),] + self.template_arguments self.activation_functor = activation_functor self.element_epilogue = element_epilogue # get epilogue output op self.epilogue_type = self.activation_functor.epilogue_output_op(self.element_epilogue) class ActivationFunctor: """ Base class for frequently used activation functions """ def __init__(self, element_compute) -> None: pass @staticmethod def numpy(x: np.ndarray): raise NotImplementedError() def emit(self): return self.tag @staticmethod def epilogue_output_op(element_epilogue): c_element_epilogue = dtype2ctype[element_epilogue] class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ] def __init__(self, alpha, beta, *args) -> None: self.alpha = element_epilogue(alpha).storage self.beta = element_epilogue(beta).storage return _EpilogueOutputOpParams # identity operator class identity(ActivationFunctor): def numpy(x: np.ndarray): return x # ReLu operator, class relu(ActivationFunctor): tag = "cutlass::epilogue::thread::ReLu" def __init__(self, element_compute): super().__init__(element_compute) class _Arguments(ctypes.Structure): _fields_ = [ ("threshold", dtype2ctype[element_compute]) ] def __init__(self, threshold=0.) -> None: self.threshold = element_compute(threshold).storage self.argument_type = _Arguments def emit_visitor(self): return "cutlass::ReLUVisitor" @staticmethod def numpy(x: np.ndarray): return np.maximum(x, 0) # Leaky ReLu operator class leaky_relu(ActivationFunctor): tag = "cutlass::epilogue::thread::LeakyReLU" def __init__(self, element_compute) -> None: super().__init__(element_compute) class _Arguments(ctypes.Structure): _fields_ = [ ("leaky_alpha", dtype2ctype[element_compute]) ] def __init__(self, leaky_alpha) -> None: self.leaky_alpha = element_compute(leaky_alpha).storage self.argument_type = _Arguments def emit_visitor(self): return "cutlass::LeakyReLUVisitor" @staticmethod def numpy(x: np.ndarray, leaky_alpha): return np.maximum(x, 0) + np.minimum(x, 0) * leaky_alpha def epilogue_output_op(self, element_epilogue): c_element_epilogue = dtype2ctype[element_epilogue] class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ("leaky_alpha", c_element_epilogue) ] def __init__(self, alpha, beta, leaky_alpha=0.2, *args) -> None: self.alpha = element_epilogue(alpha).storage self.beta = element_epilogue(beta).storage self.alpha_ptr = 0 self.beta_ptr = 0 self.leaky_alpha = element_epilogue(leaky_alpha).storage return _EpilogueOutputOpParams # Tanh operator class tanh(ActivationFunctor): tag = "cutlass::epilogue::thread::Tanh" def __init__(self, element_compute) -> None: super().__init__(element_compute) class _Arguments(ctypes.Structure): _fields_ = [ ("tmp", ctypes.c_int) ] def __init__(self, *args) -> None: self.tmp = 0 self.argument_type = _Arguments def emit_visitor(self): return "cutlass::TanhVisitor" @staticmethod def numpy(x: np.ndarray): return np.tanh(x) def sigmoid_op(x: np.ndarray): return 1. / (1. + np.exp(-x)) # Sigmoid operator class sigmoid(ActivationFunctor): tag = "cutlass::epilogue::thread::Sigmoid" @staticmethod def numpy(x: np.ndarray): return sigmoid_op(x) # SiLu operator class silu(ActivationFunctor): tag = "cutlass::epilogue::thread::SiLu" @staticmethod def numpy(x: np.ndarray): return x * sigmoid_op(x) # Hardswish operator class hardswish(ActivationFunctor): tag = "cutlass::epilogue::thread::HardSwish" @staticmethod def numpy(x: np.ndarray): relu6 = np.minimum(np.maximum(x + 3., 0), 6.) return x * relu6 / 6. # GELU operator class gelu(ActivationFunctor): tag = "cutlass::epilogue::thread::GELU" @staticmethod def numpy(x: np.ndarray): return 0.5 * x * (1 + erf(x / np.sqrt(2.))) # reduction operator def reduction_op(tensor, direction, math, factor): batch, m, n = tensor.shape if math == "Add": if direction == "row": num_cta_n = (n + factor - 1) // factor reduction = np.transpose( np.sum(tensor.reshape(batch, m, num_cta_n, factor), axis=-1), axes=[0, 2, 1]).flatten() elif direction == "column": num_cta_m = (m + factor - 1) // factor reduction = np.sum( tensor.reshape(batch, num_cta_m, factor, n), axis=-2).flatten() else: raise NotImplementedError return reduction else: raise NotImplementedError # # GELU operator implemented using the taylor series approximation # class GELU_taylor(ActivationFunctor): # tag = "cutlass::epilogue::thread::GELU_taylor" # # Computes backwards pass for GELU operator # class dGELU(ActivationFunctor): # tag = "cutlass::epilogue::thread::dGELU" ################################################################################ # Epilogue Visitor ################################################################################ class LayerNorm(EpilogueFunctorBase): """ Apply a linear combination operator to an array of elements D = alpha * accumulator + beta * source :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store :param element_accumulator: Accumulator data type :param element_epilogue: data type used to compute linear combination """ KernelTemplate = """ cutlass::epilogue::threadblock::EpilogueVisitorLayerNorm< cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, ${operation_name}_default::kThreadCount, ${operation_name}_default::Epilogue::OutputTileIterator, ${operation_name}_default::Epilogue::AccumulatorFragmentIterator::AccumulatorTile, ${element_compute}, // element_compute ${element_variance}, // element_variance ${element_mean}, // element_mean ${element_layer_norm_compute}, // element_layer_norm_compute ${epilogue_functor}, ${shifted_k}>; """ headers = ["gemm/gemm_universal_with_visitor.h", "epilogue/epilogue_visitor_with_layernorm.h"] def __init__( self, elementwise_functor, element_variance=None, element_mean=None, element_layer_norm_compute=None, shifted_k=True) -> None: # TODO bind ScaleType super().__init__() self.elementwise_functor = elementwise_functor self.element_compute = elementwise_functor.element_epilogue self.element_output = elementwise_functor.element_output if element_variance is None: self.element_variance = self.element_output if element_mean is None: self.element_mean = self.element_output if element_layer_norm_compute is None: self.element_layer_norm_compute = self.element_compute if shifted_k: self.shifted_k = "true" else: self.shifted_k = "false" # get epilogue output op elementwise_params_type = self.elementwise_functor.epilogue_type class _EpilogueVisitorParams(ctypes.Structure): _fields_ = [ ("element_wise", elementwise_params_type), ("ptr_Variance", ctypes.c_void_p), ("ptr_Mean_", ctypes.c_void_p), ("ptr_Shifted_K_", ctypes.c_void_p), ("extent", MatrixCoord_) ] def __init__(self, elementwise_params, variance, mean, shift_k, extent) -> None: self.element_wise = elementwise_params if isinstance(variance, np.ndarray): self.buffer_variance = NumpyFrontend.argument(variance, False) self.buffer_mean = NumpyFrontend.argument(mean, False) self.buffer_shift_k = NumpyFrontend.argument(shift_k, False) self.ptr_Variance = int(self.buffer_variance.ptr) self.ptr_Mean_ = int(self.buffer_mean.ptr) self.ptr_Shifted_K_ = int(self.buffer_shift_k.ptr) self.extent = MatrixCoord_(extent[0], extent[1]) self.host_variance = variance self.host_mean = mean self.host_shift_k = shift_k def sync(self, stream_sync=True): if stream_sync: err, = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) # if hasattr(self, "host_variance"): err, = cuda.cuMemcpyDtoH( self.host_variance, cuda.CUdeviceptr(self.ptr_Variance), self.host_variance.size * self.host_variance.itemsize) err, = cuda.cuMemcpyDtoH( self.host_mean, cuda.CUdeviceptr(self.ptr_Mean_), self.host_mean.size * self.host_mean.itemsize) err, = cuda.cuMemcpyDtoH( self.host_shift_k, cuda.CUdeviceptr(self.ptr_Shifted_K_), self.host_shift_k.size * self.host_shift_k.itemsize) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) self.epilogue_type = _EpilogueVisitorParams def emit(self, operation): values = { 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'operation_name': operation.procedural_name(), 'element_compute': DataTypeTag[self.element_compute], 'element_variance': DataTypeTag[self.element_variance], 'element_mean': DataTypeTag[self.element_mean], 'element_layer_norm_compute': DataTypeTag[self.element_layer_norm_compute], 'epilogue_functor': self.elementwise_functor.emit(), 'shifted_k': self.shifted_k } return SubstituteTemplate(self.KernelTemplate, values) class AccumulatorOp: Template = """ using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpAccumulator<${element_accumulator}, ${elements_per_access}>; """ counter = 0 def __init__(self, element_accumulator, elements_per_access) -> None: self.element_accumulator = element_accumulator self.elements_per_access = elements_per_access self.instance_name = "AccumulatorOp%d" % AccumulatorOp.counter AccumulatorOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("tmp", ctypes.c_int) ] def __init__(self): self.tmp = 0 self.argument_type = _Arguments def emit(self, *args): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "elements_per_access": str(self.elements_per_access) } return SubstituteTemplate(self.Template, values) class LinearCombinationOp: Template = """ ${visitor_a} ${visitor_b} using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpLinearCombination< ${element_accumulator}, ${element_compute}, ${elements_per_access}, ${visitor_a_name}, ${visitor_b_name}>; """ counter = 0 def __init__(self, element_accumulator, element_compute, elements_per_access, visitor_a, visitor_b) -> None: # self.element_accumulator = element_accumulator self.element_compute = element_compute self.elements_per_access = elements_per_access self.visitor_a = visitor_a self.visitor_b = visitor_b self.instance_name = "LinearCombinationOp%d" % LinearCombinationOp.counter LinearCombinationOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("alpha", dtype2ctype[self.element_compute]), ("beta", dtype2ctype[self.element_compute]), ("visitor_a", self.visitor_a.argument_type), ("visitor_b", self.visitor_b.argument_type) ] def __init__(self, alpha, beta, visitor_a_arg, visitor_b_arg) -> None: self.alpha = element_compute(alpha).storage self.beta = element_compute(beta).storage self.visitor_a = visitor_a_arg self.visitor_b = visitor_b_arg self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "element_compute": DataTypeTag[self.element_compute], "elements_per_access": str(self.elements_per_access), "visitor_a_name": self.visitor_a.instance_name, "visitor_b_name": self.visitor_b.instance_name, "visitor_a": self.visitor_a.emit(operation), "visitor_b": self.visitor_b.emit(operation) } return SubstituteTemplate(self.Template, values) class VectorAdd: def __init__(self, *args) -> None: class _Arguments(ctypes.Structure): _fields_ = [ ("tmp", ctypes.c_int) ] def __init__(self, *args) -> None: self.tmp = 0 self.argument_type = _Arguments def emit(self): return "cutlass::VectorAdd" class VectorMult: def __init__(self, *args) -> None: class _Arguments(ctypes.Structure): _fields_ = [ ("tmp", ctypes.c_int) ] def __init__(self, *args) -> None: self.tmp = 0 self.argument_type = _Arguments def emit(self): return "cutlass::VectorMult" class BinaryOp: Template = """ ${visitor_a} ${visitor_b} using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpBinary< ${element_accumulator}, ${element_compute}, ${elements_per_access}, ${visitor_a_name}, ${visitor_b_name}, ${binary_op}>; """ counter = 0 def __init__(self, element_accumulator, element_compute, elements_per_access, visitor_a, visitor_b, binary_op) -> None: # self.element_accumulator = element_accumulator self.element_compute = element_compute self.elements_per_access = elements_per_access self.visitor_a = visitor_a self.visitor_b = visitor_b self.binary_op = binary_op self.instance_name = "BinaryOp%d" % BinaryOp.counter BinaryOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("binary_param", binary_op.argument_type), ("visitor_a", self.visitor_a.argument_type), ("visitor_b", self.visitor_b.argument_type) ] def __init__(self, binary_param, visitor_a_arg, visitor_b_arg) -> None: self.binary_param = binary_param self.visitor_a = visitor_a_arg self.visitor_b = visitor_b_arg self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "element_compute": DataTypeTag[self.element_compute], "elements_per_access": str(self.elements_per_access), "visitor_a_name": self.visitor_a.instance_name, "visitor_b_name": self.visitor_b.instance_name, "visitor_a": self.visitor_a.emit(operation), "visitor_b": self.visitor_b.emit(operation), "binary_op": self.binary_op.emit() } return SubstituteTemplate(self.Template, values) class Mult: def __init__(self, element_compute) -> None: class _Arguments(ctypes.Structure): _fields_ = [ ("alpha", dtype2ctype[element_compute]) ] def __init__(self, alpha) -> None: self.alpha = element_compute(alpha).storage self.argument_type = _Arguments def emit_visitor(self): return "cutlass::Mult" class UnaryOp: Template = """ ${visitor} using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpUnary< ${element_accumulator}, ${element_compute}, ${elements_per_access}, ${visitor_name}, ${unary_op}>; """ counter = 0 def __init__(self, element_accumulator, element_compute, elements_per_access, visitor, unary_op) -> None: # self.element_accumulator = element_accumulator self.element_compute = element_compute self.elements_per_access = elements_per_access self.visitor = visitor self.unary_op = unary_op self.instance_name = "UnaryOp%d" % UnaryOp.counter UnaryOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("unary_param", unary_op.argument_type), ("visitor_arg", self.visitor.argument_type) ] def __init__(self, unary_param, visitor_arg) -> None: self.unary_param = unary_param self.visitor_arg = visitor_arg self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "element_compute": DataTypeTag[self.element_compute], "elements_per_access": str(self.elements_per_access), "visitor_name": self.visitor.instance_name, "unary_op": self.unary_op.emit_visitor(), "visitor": self.visitor.emit(operation) } return SubstituteTemplate(self.Template, values) class RowBroadcastOp: Template = """ using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpRowBroadcast< ${element_accumulator}, ${element_fragment}, ${input_tile_iterator}>; """ counter = 0 def __init__(self, element_accumulator, element_fragment) -> None: self.element_accumulator = element_accumulator self.element_fragment = element_fragment self.instance_name = "RowBroadcastOp%d" % RowBroadcastOp.counter RowBroadcastOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("broadcast_ptr", ctypes.c_void_p), ("batch_stride", ctypes.c_longlong) ] def __init__(self, broadcast_ptr, batch_stride=0): self.broadcast_ptr = int(broadcast_ptr) self.batch_stride = batch_stride self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "element_fragment": DataTypeTag[self.element_fragment], "input_tile_iterator": operation.procedural_name() + "_default::Epilogue::OutputTileIterator" } return SubstituteTemplate(self.Template, values) class ColumnBroadcastOp: Template = """ using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpColumnBroadcast< ${element_accumulator}, ${element_fragment}, ${input_tile_iterator}>; """ counter = 0 def __init__(self, element_accumulator, element_fragment) -> None: self.element_accumulator = element_accumulator self.element_fragment = element_fragment self.instance_name = "ColumnBroadcastOp%d" % ColumnBroadcastOp.counter ColumnBroadcastOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("broadcast_ptr", ctypes.c_void_p), ("batch_stride", ctypes.c_longlong) ] def __init__(self, broadcast_ptr, batch_stride=0): self.broadcast_ptr = int(broadcast_ptr) self.batch_stride = batch_stride self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "element_fragment": DataTypeTag[self.element_fragment], "input_tile_iterator": operation.procedural_name() + "_default::Epilogue::OutputTileIterator" } return SubstituteTemplate(self.Template, values) class TensorInputOp: Template = """ using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpTensorInput< ${element_accumulator}, ${input_tile_iterator}>; """ counter = 0 def __init__(self, element_accumulator) -> None: self.element_accumulator = element_accumulator self.instance_name = "TensorInputOp%d" % TensorInputOp.counter TensorInputOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("input_ptr", ctypes.c_void_p), ("ldt", ctypes.c_int), ("batch_stride", ctypes.c_longlong) ] def __init__(self, input_ptr, ldt, batch_stride=0) -> None: self.input_ptr = int(input_ptr) self.ldt = ldt self.batch_stride = batch_stride self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "input_tile_iterator": operation.procedural_name() + "_default::Epilogue::OutputTileIterator" } return SubstituteTemplate(self.Template, values) class TensorOutputOp: Template = """ ${visitor} using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpTensorOutput< ${element_accumulator}, ${output_tile_iterator}, ${visitor_name}>; """ counter = 0 def __init__(self, element_accumulator, visitor) -> None: self.element_accumulator = element_accumulator self.visitor = visitor self.instance_name = "TensorOutputOp%d" % TensorOutputOp.counter TensorOutputOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("output_ptr", ctypes.c_void_p), ("ldt", ctypes.c_int), ("batch_stride", ctypes.c_longlong), ("visitor_arg", self.visitor.argument_type) ] def __init__(self, output_ptr, ldt, visitor_arg, batch_stride=0) -> None: self.output_ptr = int(output_ptr) self.ldt = int(ldt) self.visitor_arg = visitor_arg self.batch_stride = batch_stride self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, "element_accumulator": DataTypeTag[self.element_accumulator], "output_tile_iterator": operation.procedural_name() + "_default::Epilogue::OutputTileIterator", "visitor_name": self.visitor.instance_name, "visitor": self.visitor.emit(operation) } return SubstituteTemplate(self.Template, values) class ColumnReductionOp: Template = """ ${visitor} using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpColumnReduction< cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, ${element_accumulator}, ${element_reduction}, ${element_reduction_accumulator}, ${output_tile_iterator}, ${visitor_name}>; """ counter = 0 def __init__(self, element_accumulator, element_reduction, element_reduction_accumulator, visitor) -> None: self.element_accumulator = element_accumulator self.element_reduction = element_reduction self.element_reduction_accumulator = element_reduction_accumulator self.visitor = visitor self.instance_name = "ColumnReductionOp%d" % ColumnReductionOp.counter ColumnReductionOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("reduction_ptr", ctypes.c_void_p), ("batch_stride", ctypes.c_longlong), ("visitor_arg", self.visitor.argument_type) ] def __init__(self, reduction_ptr, visitor_arg, batch_stride=0) -> None: self.reduction_ptr = reduction_ptr self.batch_stride = batch_stride self.visitor_arg = visitor_arg self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), "element_accumulator": DataTypeTag[self.element_accumulator], "element_reduction": DataTypeTag[self.element_reduction], "element_reduction_accumulator": DataTypeTag[self.element_reduction_accumulator], "output_tile_iterator": operation.procedural_name() + "_default::Epilogue::OutputTileIterator", "visitor_name": self.visitor.instance_name, "visitor": self.visitor.emit(operation) } return SubstituteTemplate(self.Template, values) class RowReductionOp: Template = """ ${visitor} using ${instance_name} = cutlass::epilogue::threadblock::VisitorOpRowReduction< cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, ${element_accumulator}, ${element_reduction}, ${element_reduction_accumulator}, ${output_tile_iterator}, ${visitor_name}>; """ counter = 0 def __init__(self, element_accumulator, element_reduction, element_reduction_accumulator, visitor) -> None: self.element_accumulator = element_accumulator self.element_reduction = element_reduction self.element_reduction_accumulator = element_reduction_accumulator self.visitor = visitor self.instance_name = "RowReductionOp%d" % RowReductionOp.counter RowReductionOp.counter += 1 class _Arguments(ctypes.Structure): _fields_ = [ ("reduction_ptr", ctypes.c_void_p), ("batch_stride", ctypes.c_longlong), ("visitor_arg", self.visitor.argument_type) ] def __init__(self, reduction_ptr, visitor_arg, batch_stride=0) -> None: self.reduction_ptr = reduction_ptr self.visitor_arg = visitor_arg self.batch_stride = batch_stride self.argument_type = _Arguments def emit(self, operation): values = { "instance_name": self.instance_name, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), "element_accumulator": DataTypeTag[self.element_accumulator], "element_reduction": DataTypeTag[self.element_reduction], "element_reduction_accumulator": DataTypeTag[self.element_reduction_accumulator], "output_tile_iterator": operation.procedural_name() + "_default::Epilogue::OutputTileIterator", "visitor_name": self.visitor.instance_name, "visitor": self.visitor.emit(operation) } return SubstituteTemplate(self.Template, values)
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import pycutlass from pycutlass.test.gemm_testbed import getTensorRef, getTensorView, transpose from pycutlass import * import numpy as np import cutlass from bfloat16 import bfloat16 class TestbedGrouped: def __init__(self, operation: GemmOperationGrouped, seed: int = 2080) -> None: pycutlass.compiler.add_module([operation]) self.seed = seed self.operation = operation element_size = DataTypeSize[operation.A.element] self.dtype_A = self.numpy_type(operation.A.element) self.dtype_B = self.numpy_type(operation.B.element) self.dtype_C = self.numpy_type(operation.C.element) self.dtype_D = self.numpy_type(operation.C.element) if element_size == 1: self.scope_max = 1 self.scope_min = 0 elif element_size <= 8: self.scope_max = 1 self.scope_min = -1 elif element_size == 16: self.scope_max = 4 self.scope_min = -4 else: self.scope_max = 8 self.scope_min = -8 #: compute type self.compute_type = operation.epilogue_functor.element_epilogue self.accumulator_type = operation.tile_description.math_instruction.element_accumulator @staticmethod def numpy_type(type): if type == cutlass.float64: return np.float64 elif type == cutlass.float32: return np.float32 elif type == cutlass.float16: return np.float16 elif type == cutlass.bfloat16: return bfloat16 elif type == cutlass.int32: return np.int32 elif type == cutlass.int8: return np.int8 else: raise ValueError("unsupported type: %s" % ShortDataTypeNames[type]) def uniform_init(self, size, dtype): if dtype in [np.float32, np.float16, bfloat16, np.float64]: return np.ceil( np.random.uniform( low=self.scope_min - 0.5, high=self.scope_max - 0.5, size=size).astype(dtype) ) else: return np.random.uniform( low=self.scope_min - 1, high=self.scope_max + 1, size=size).astype(dtype) def print_problem_size(self, p): problem_size = "problem: %d, %d, %d\n" % (p.m(), p.n(), p.k()) print(problem_size) def run(self, problem_count: int, alpha: float = 1.0, beta: float = 0.0) -> bool: assert get_allocated_size( ) == 0, "%d byte of pool memory is not released in previous run" % get_allocated_size() # initialize np.random.seed(self.seed) # generate the problem sizes problem_sizes = [] tensor_As = [] tensor_Bs = [] tensor_Cs = [] tensor_Ds = [] tensor_D_refs = [] for i in range(problem_count): if self.dtype_A == np.int8: if i == 0: problem_size = cutlass.gemm.GemmCoord(48, 16, 32) else: problem_size = cutlass.gemm.GemmCoord( 16 * np.random.randint(0, 64) + 48, 16 * np.random.randint(0, 64) + 48, 16 * np.random.randint(0, 64) + 48 ) else: if i == 0: problem_size = cutlass.gemm.GemmCoord(48, 16, 8) else: problem_size = cutlass.gemm.GemmCoord( 8 * np.random.randint(0, 64) + 24, 8 * np.random.randint(0, 64) + 24, 8 * np.random.randint(0, 64) + 24 ) tensor_As.append( self.uniform_init( size=(problem_size.m() * problem_size.k(),), dtype=self.dtype_A) ) tensor_Bs.append( self.uniform_init( size=(problem_size.n() * problem_size.k(),), dtype=self.dtype_B) ) tensor_Cs.append( self.uniform_init( size=(problem_size.m() * problem_size.n(),), dtype=self.dtype_C) ) tensor_Ds.append( np.zeros( shape=(problem_size.m() * problem_size.n(),), dtype=self.dtype_D ) ) tensor_D_refs.append( np.ones( shape=(problem_size.m() * problem_size.n(),), dtype=self.dtype_D ) ) problem_sizes.append(problem_size) arguments = GemmGroupedArguments( operation=self.operation, problem_sizes=problem_sizes, A=tensor_As, B=tensor_Bs, C=tensor_Cs, D=tensor_Ds, output_op=self.operation.epilogue_type(alpha, beta) ) self.operation.run(arguments) arguments.sync() # # Reference check - TODO: support caching results # alpha = self.compute_type(alpha).value() beta = self.compute_type(beta).value() init_acc = self.accumulator_type(0).value() for idx, problem_size in enumerate(problem_sizes): if self.operation.switched: tensor_ref_A = getTensorRef( tensor_As[idx], problem_size, "a", transpose(self.operation.B.layout)) tensor_ref_B = getTensorRef( tensor_Bs[idx], problem_size, "b", transpose(self.operation.A.layout)) tensor_ref_C = getTensorRef( tensor_Cs[idx], problem_size, "c", transpose(self.operation.C.layout)) tensor_ref_D_ref = getTensorRef( tensor_D_refs[idx], problem_size, "d", transpose(self.operation.C.layout)) else: tensor_ref_A = getTensorRef( tensor_As[idx], problem_size, "a", self.operation.A.layout) tensor_ref_B = getTensorRef( tensor_Bs[idx], problem_size, "b", self.operation.B.layout) tensor_ref_C = getTensorRef( tensor_Cs[idx], problem_size, "c", self.operation.C.layout) tensor_ref_D_ref = getTensorRef( tensor_D_refs[idx], problem_size, "d", self.operation.C.layout) tensor_view_D_ref = getTensorView( tensor_D_refs[idx], problem_size, "d", self.operation.C.layout) cutlass.test.gemm.host.gemm(problem_size, alpha, tensor_ref_A, tensor_ref_B, beta, tensor_ref_C, tensor_ref_D_ref, init_acc) tensor_view_D = getTensorView( tensor_Ds[idx], problem_size, "d", self.operation.C.layout) passed = cutlass.test.gemm.host.equals( tensor_view_D, tensor_view_D_ref) try: assert passed except AssertionError: self.print_problem_size(problem_size) del arguments assert get_allocated_size( ) == 0, "%d byte of pool memory is not released after current run" % get_allocated_size() return passed
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import pycutlass from pycutlass import * from pycutlass.test import * from time import sleep from bfloat16 import bfloat16 import subprocess from typeguard import typechecked import re def getTensorRef(tensor, tensor_layout, conv_kind, problem_size, operand): ptr = tensor.__array_interface__['data'][0] if operand == "a": tensor_coord = cutlass.conv.implicit_gemm_tensor_a_extent(conv_kind, problem_size) elif operand == "b": tensor_coord = cutlass.conv.implicit_gemm_tensor_b_extent(conv_kind, problem_size) elif operand in ["c", "d"]: tensor_coord = cutlass.conv.implicit_gemm_tensor_c_extent(conv_kind, problem_size) else: raise ValueError("unknown operand: " + operand) layout = tensor_layout.packed(tensor_coord) if tensor.dtype == np.float64: return cutlass.TensorRefF64NHWC(ptr, layout) elif tensor.dtype == np.float32: return cutlass.TensorRefF32NHWC(ptr, layout) elif tensor.dtype == np.float16: return cutlass.TensorRefF16NHWC(ptr, layout) if tensor.dtype == bfloat16: return cutlass.TensorRefBF16NHWC(ptr, layout) elif tensor.dtype == np.int32: return cutlass.TensorRefS32NHWC(ptr, layout) elif tensor.dtype == np.int8: if tensor_layout == cutlass.TensorNC32HW32: return cutlass.TensorRefS8NC32HW32(ptr, layout) elif tensor_layout == cutlass.TensorC32RSK32: return cutlass.TensorRefS8C32RSK32(ptr, layout) else: return cutlass.TensorRefS8NHWC(ptr, layout) else: raise ValueError("unsupported data type") def getTensorView(tensor, tensor_layout, conv_kind, problem_size, operand): tensor_ref = getTensorRef(tensor, tensor_layout, conv_kind, problem_size, operand) if operand == "a": tensor_coord = cutlass.conv.implicit_gemm_tensor_a_extent(conv_kind, problem_size) elif operand == "b": tensor_coord = cutlass.conv.implicit_gemm_tensor_b_extent(conv_kind, problem_size) elif operand in ["c", "d"]: tensor_coord = cutlass.conv.implicit_gemm_tensor_c_extent(conv_kind, problem_size) else: raise ValueError("unknown operand: " + operand) if tensor.dtype == np.float64: return cutlass.TensorViewF64NHWC(tensor_ref, tensor_coord) elif tensor.dtype == np.float32: return cutlass.TensorViewF32NHWC(tensor_ref, tensor_coord) elif tensor.dtype == np.float16: return cutlass.TensorViewF16NHWC(tensor_ref, tensor_coord) elif tensor.dtype == bfloat16: return cutlass.TensorViewBF16NHWC(tensor_ref, tensor_coord) elif tensor.dtype == np.int32: return cutlass.TensorViewS32NHWC(tensor_ref, tensor_coord) elif tensor.dtype == np.int8: if tensor_layout == cutlass.TensorNC32HW32: return cutlass.TensorViewS8NC32HW32(tensor_ref, tensor_coord) elif tensor_layout == cutlass.TensorC32RSK32: return cutlass.TensorViewS8C32RSK32(tensor_ref, tensor_coord) else: return cutlass.TensorViewS8NHWC(tensor_ref, tensor_coord) else: raise ValueError("unsupported data type") # @typechecked class Conv2dLauncher: """ Launcher that runs the operation on given problem size """ def __init__(self, operation: 'Conv2dOperation', seed: int=2080, interleaved=False, verification=True, profiling=False, warmup_iterations=500, iterations=500, **kwargs) -> None: self.enable_cached_results = True self.interleaved = interleaved # create the reduction kernel self.reduction_operation = ReductionOperation( shape=cutlass.MatrixCoord(4, 32 * operation.C.alignment), C=operation.C, element_accumulator=operation.tile_description.math_instruction.element_accumulator, element_compute=operation.epilogue_functor.element_epilogue, epilogue_functor=operation.epilogue_functor, count=operation.C.alignment ) #: verify the output result self.verification = verification #: profile the kernel's runtime self.profiling = profiling self.timer = GpuTimer() self.warmup_iterations = warmup_iterations self.iterations = iterations if "sleep" in kwargs.keys(): self.sleep_time = kwargs["sleep"] else: self.sleep_time = 0 # # Compile the operator # pycutlass.compiler.add_module([operation, self.reduction_operation]) self.operation = operation self.dtype_A = Conv2dLauncher.numpy_type(operation.A.element) self.layout_A = operation.A.layout self.dtype_B = Conv2dLauncher.numpy_type(operation.B.element) self.layout_B = operation.B.layout self.dtype_C = Conv2dLauncher.numpy_type(operation.C.element) self.layout_C = operation.C.layout self.dtype_D = Conv2dLauncher.numpy_type(operation.C.element) self.layout_D = operation.C.layout accumulator_size = DataTypeSize[operation.tile_description.math_instruction.element_accumulator] element_size = DataTypeSize[operation.A.element] if element_size <= 8: self.scope = 1 elif element_size == 16: if accumulator_size <= 16: self.scope = 2 else: self.scope = 4 else: self.scope = 7 # Seed self.seed = seed self.conv_kind = operation.conv_kind # # Get the host reference function # self.element_compute = operation.epilogue_functor.element_epilogue self.host_conv2d = cutlass.test.conv.host.conv2d self.timer = GpuTimer() @staticmethod def numpy_type(type): if type == cutlass.float64: return np.float64 elif type == cutlass.float32: return np.float32 elif type == cutlass.float16: return np.float16 elif type == cutlass.bfloat16: return bfloat16 elif type == cutlass.int32: return np.int32 elif type == cutlass.int8: return np.int8 else: raise ValueError("unsupported type: %s" % ShortDataTypeNames[type]) def print_problem_size(self, p, split_k_mode=1): print("nhwc_%dx%dx%dx%d_krsc_%dx%dx%dx%d_padding_%dx%d_stride_%dx%d_dilation_%dx%d_splitkslices_%d_splitkmode_%d" % (p.N, p.H, p.W, p.C, p.K, p.R, p.S, p.C, p.pad_h, p.pad_w, p.stride_h, p.stride_w, p.dilation_h, p.dilation_w, p.split_k_slices, split_k_mode)) def uniform_init(self, size, dtype): if dtype in [np.float32, np.float16, bfloat16, np.float64]: return np.ceil( np.random.uniform( low=-self.scope - 0.5, high=self.scope - 0.5, size=size).astype(dtype) ) else: return np.random.uniform( low=-self.scope - 1, high=self.scope + 1, size=size).astype(dtype) def eq_gemm_size(self, problem_size): n = problem_size.N p = problem_size.P q = problem_size.Q k = problem_size.K r = problem_size.R s = problem_size.S c = problem_size.C h = problem_size.H w = problem_size.W if self.conv_kind == cutlass.conv.Operator.fprop: return cutlass.gemm.GemmCoord(n * p * q, k, r * s * c) elif self.conv_kind == cutlass.conv.Operator.dgrad: return cutlass.gemm.GemmCoord(n * h * w, c, k * r * s) else: return cutlass.gemm.GemmCoord(k, r * s * c, n * p * q) def bytes(self, problem_size, alpha, beta): mnk = self.eq_gemm_size(problem_size) bytes_ = \ (DataTypeSize[self.operation.A.element] * mnk.m() // 8) * mnk.k() + \ (DataTypeSize[self.operation.B.element] * mnk.n() // 8) * mnk.k() + \ (DataTypeSize[self.operation.C.element] * mnk.m() // 8) * mnk.n() if beta != 0: bytes_ += (DataTypeSize[self.operation.C.element] * mnk.m() // 8) * mnk.n() return bytes_ def flops(self, problem_size): mnk = self.eq_gemm_size(problem_size) flops_mainloop_ = mnk.m() * mnk.n() * mnk.k() * 2 flops_epilogue_ = mnk.m() * mnk.n() * 2 # Adjust mainloop flop for dgrad stride if self.conv_kind == cutlass.conv.Operator.dgrad: flops_mainloop_ = flops_mainloop_ // (problem_size.stride_h * problem_size.stride_w) flops_total_ = flops_mainloop_ + flops_epilogue_ # TODO complex-value support # switch (operation_desc.tile_description.math_instruction.math_operation) { # case library::MathOperationID::kMultiplyAddComplex: # flops_total_ *=4; # break; # default: break; # } return flops_total_ def host_reference(self, problem_size, tensor_A, tensor_B, tensor_C, alpha, beta): if self.element_compute == cutlass.float16: alpha = cutlass.float16(alpha) beta = cutlass.float16(beta) elif self.element_compute == cutlass.int32: alpha = int(alpha) beta = int(beta) else: alpha = alpha beta = beta # if cached result is loaded cached_result_loaded = False if self.enable_cached_results: # get problem key cached_test_key = cutlass.test.conv.host.CreateCachedConv2dTestKey( self.conv_kind, problem_size, alpha, beta, getTensorView(tensor_A, self.layout_A, self.conv_kind, problem_size, "a"), getTensorView(tensor_B, self.layout_B, self.conv_kind, problem_size, "b"), getTensorView(tensor_C, self.layout_C, self.conv_kind, problem_size, "c"), ) cached_test_result = cutlass.test.conv.host.CachedTestResult() conv2d_result_cache_name = "cached_results_SM%d_%d.txt" % (self.operation.arch, self.seed) cached_results = cutlass.test.conv.host.CachedTestResultListing(conv2d_result_cache_name) # CachedTestResultListing cached_results(conv2d_result_cache_name); cached = cached_results.find(cached_test_key) cached_result_loaded = cached[0] if cached_result_loaded : cached_test_result = cached[1] if not cached_result_loaded: # compute the conv2d on host tensor_D_ref = np.ones_like(tensor_C) tensor_ref_A = getTensorRef(tensor_A, self.layout_A, self.conv_kind, problem_size, "a") tensor_ref_B = getTensorRef(tensor_B, self.layout_B, self.conv_kind, problem_size, "b") tensor_ref_C = getTensorRef(tensor_C, self.layout_C, self.conv_kind, problem_size, "c") tensor_ref_D_ref = getTensorRef(tensor_D_ref, self.layout_D, self.conv_kind, problem_size, "d") self.host_conv2d( self.conv_kind, problem_size, tensor_ref_A, tensor_ref_B, tensor_ref_C, tensor_ref_D_ref, alpha, beta ) tensor_view_D_ref = getTensorView(tensor_D_ref, self.layout_D, self.conv_kind, problem_size, "d") if self.enable_cached_results: cached_test_result.D = cutlass.test.conv.host.TensorHash(tensor_view_D_ref) cached_results = cutlass.test.conv.host.CachedTestResultListing(conv2d_result_cache_name) cached_results.append(cached_test_key, cached_test_result) cached_results.write(conv2d_result_cache_name) else: return tensor_D_ref return cached_test_result.D def equal(self, tensor_D, tensor_D_ref, problem_size): if self.enable_cached_results: tensor_view_D = getTensorView(tensor_D, self.layout_D, self.conv_kind, problem_size, "d") tensor_D_hash = cutlass.test.conv.host.TensorHash(tensor_view_D) return tensor_D_hash == tensor_D_ref else: tensor_view_D = getTensorView(tensor_D, self.layout_D, self.conv_kind, problem_size, "d") tensor_view_D_ref = getTensorView(tensor_D_ref, self.layout_D, self.conv_kind, problem_size, "d") return cutlass.test.conv.host.equals(tensor_view_D, tensor_view_D_ref) def run_cutlass_profiler(self, problem_size, split_k_mode=cutlass.conv.SplitKMode.Serial, alpha=1.0, beta=0.0): if split_k_mode == cutlass.conv.SplitKMode.Serial: split_k_mode_ = "serial" else: split_k_mode_ = "parallel" cutlass_path = os.getenv('CUTLASS_PATH') assert cutlass_path is not None, "Environment variable 'CUTLASS_PATH' is not defined." values = { "profiler_path": cutlass_path + "/build/tools/profiler/cutlass_profiler", "kernel_name": self.operation.procedural_name(), "verification_providers": "device", "provider": "cutlass", 'n': str(problem_size.N), 'h': str(problem_size.H), 'w': str(problem_size.W), 'c': str(problem_size.C), 'k': str(problem_size.K), 'r': str(problem_size.R), 's': str(problem_size.S), 'p': str(problem_size.P), 'q': str(problem_size.Q), 'pad_h': str(problem_size.pad_h), 'pad_w': str(problem_size.pad_w), 'stride_h': str(problem_size.stride_h), 'stride_w': str(problem_size.stride_w), 'dilation_h': str(problem_size.dilation_h), 'dilation_w': str(problem_size.dilation_w), 'split_k_slices': str(problem_size.split_k_slices), 'split_k_mode': split_k_mode_, 'alpha': str(alpha), 'beta': str(beta), 'warmup': str(self.warmup_iterations), 'profile': str(self.iterations) } cmd_template = \ "${profiler_path} --kernels=${kernel_name} --verification-providers=${verification_providers}" \ " --providers=${provider} --n=${n} --h=${h} --w=${w} --c=${c} --k=${k} --r=${r} --s=${s} --p=${p}" \ " --q=${q} --pad_h=${pad_h} --pad_w=${pad_w} --stride_h={stride_h} --stride_w=${stride_w}" \ " --dilation_h=${dilation_h} --dilation_w=${dilation_w} --warmup-iterations=${warmup} --profiling-iterations=${profile}" \ " --split_k_slices=${split_k_slices} --alpha=${alpha} --beta=${beta} --split_k_mode=${split_k_mode}" cmd = SubstituteTemplate(cmd_template, values) result = subprocess.getoutput(cmd) m = re.search(r"Runtime:\s+(?P<runtime>\d+.\d+)", result) runtime = float(m.group('runtime')) m = re.search(r"Bytes:\s+(?P<bytes>\d+)", result) bytes = int(m.group('bytes')) m = re.search(r"FLOPs:\s+(?P<flops>\d+)", result) flops = int(m.group('flops')) # check if the problem size matches assert bytes == self.bytes(problem_size, alpha, beta) assert flops == self.flops(problem_size) return runtime def run(self, problem_size, split_k_mode=cutlass.conv.SplitKMode.Serial, alpha=1.0, beta=0.0): assert get_allocated_size() == 0, "%d byte of pool memory is not released in previous run" % get_allocated_size() # # Initialize input and output tensors # tensor_A_size = cutlass.conv.implicit_gemm_tensor_a_size(self.conv_kind, problem_size) tensor_B_size = cutlass.conv.implicit_gemm_tensor_b_size(self.conv_kind, problem_size) tensor_C_size = cutlass.conv.implicit_gemm_tensor_c_size(self.conv_kind, problem_size) np.random.seed(self.seed) tensor_A = self.uniform_init(size=(tensor_A_size,), dtype=self.dtype_A) tensor_B = self.uniform_init(size=(tensor_B_size,), dtype=self.dtype_B) tensor_C = self.uniform_init(size=(tensor_C_size,), dtype=self.dtype_C) tensor_D = np.zeros(shape=(tensor_C_size,), dtype=self.dtype_D) # # Launch kernel # arguments = Conv2dArguments( operation=self.operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op = self.operation.epilogue_type(alpha, beta), split_k_slices=problem_size.split_k_slices, split_k_mode=split_k_mode ) if split_k_mode == cutlass.conv.SplitKMode.Parallel: implicit_gemm_size = cutlass.conv.implicit_gemm_problem_size(self.operation.conv_kind, arguments.problem_size) reduction_arguments = ReductionArguments( self.reduction_operation, problem_size=[implicit_gemm_size.m(), implicit_gemm_size.n()], partitions=problem_size.split_k_slices, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op = self.reduction_operation.epilogue_type(alpha, beta) ) self.operation.run(arguments) if split_k_mode == cutlass.conv.SplitKMode.Parallel: self.reduction_operation.run(reduction_arguments) passed = True if self.verification: if split_k_mode == cutlass.conv.SplitKMode.Parallel: reduction_arguments.sync() else: arguments.sync() tensor_D_ref = self.host_reference(problem_size, tensor_A, tensor_B, tensor_C, alpha, beta) passed = self.equal(tensor_D, tensor_D_ref, problem_size) try: assert passed except AssertionError: self.print_problem_size(problem_size, split_k_mode) if self.profiling: sleep(self.sleep_time) for _ in range(self.warmup_iterations): self.operation.run(arguments) if split_k_mode == cutlass.conv.SplitKMode.Parallel: self.reduction_operation.run(reduction_arguments) self.timer.start() for _ in range(self.warmup_iterations): self.operation.run(arguments) if split_k_mode == cutlass.conv.SplitKMode.Parallel: self.reduction_operation.run(reduction_arguments) self.timer.stop_and_wait() runtime = self.timer.duration(self.iterations) # free memory del arguments if split_k_mode == cutlass.conv.SplitKMode.Parallel: del reduction_arguments assert get_allocated_size() == 0, "%d byte of pool memory is not released after current run" % get_allocated_size() if self.profiling: return runtime return passed ######################################################################################################## # TestAllConv: Runs cutlass::conv::device::ImplicitGemmConvolution operator and compares it with reference # TestAllConv runs conv operator on default conv problem sizes from test::conv::device::TestbedConv2dProblemSizes # Additionaly, each conv2d test can provide conv problem sizes (conv_test_sizes) and blacklist of sizes # (conv_blacklist_sizes) ############################################################################################################ def test_all_conv2d(operation: Conv2dOperation, conv_test_sizes = [], interleaved=False): # TODO: conv_test_sizes and conv_blacklist_sizes passed = True # # Testbed object # testbed = Conv2dLauncher(operation, interleaved=interleaved) # # Get conv problem sizes to run conv operator # conv_problems = cutlass.test.conv.TestbedConv2dProblemSizes(64) # Vector of conv2d problem sizes to avoid duplicate runs conv_tested_sizes = [] # TODO: include resnet 50 sizes, user sepecified sizes, and rigorous sizes # Flatten 2D problem_vectors into a 1D problem sizes problem_sizes = conv_problems.conv2d_default_sizes problem_sizes = [conv_problem for conv_problem in problem_sizes] + conv_test_sizes # Sweep conv2d problem sizes (split-k-mode=kSerial, split-k-slices=1, alpha=1.0, beta=0.0) for conv_problem in problem_sizes: # TODO: skip blacklist problem sizes if conv_problem in conv_tested_sizes: continue # skip channel dimension % 32 != 0 for interleaved case if interleaved: if conv_problem.K % 32 != 0 or conv_problem.C % 32 != 0: continue # # Procedurally disable certain cases # # CUTLASS DGRAD's *unity* stride specialization only support stride {1, 1} if operation.conv_kind == cutlass.conv.Operator.dgrad and operation.stride_support == StrideSupport.Unity: if not ((conv_problem.stride_h == 1) and (conv_problem.stride_w == 1)): continue if not interleaved: # Fixed channels algorithm requires channel count to match access size if operation.iterator_algorithm == cutlass.conv.IteratorAlgorithm.fixed_channels: if conv_problem.C != operation.A.alignment: continue # Few channels algorithm requires channel count to match access size if operation.iterator_algorithm == cutlass.conv.IteratorAlgorithm.few_channels: if conv_problem.C % operation.A.alignment: continue # CUTLASS DGRAD's *strided* stride specialization supports all stride {stride_h, stride_w} # Although strided dgrad works for all stride combinations, we are only going # to run strided dgrad for non-unity strides if operation.conv_kind == cutlass.conv.Operator.dgrad and operation.stride_support == StrideSupport.Strided: if (conv_problem.stride_h == 1) and (conv_problem.stride_w == 1): continue # # Test # # push back tested problem size to avoid re-running duplicates conv_tested_sizes.append(conv_problem) passed = testbed.run(conv_problem) # if not passed: return False # TODO: If CUTLASS_UNIT_TEST_PROBLEM_COUNT is set reduce the the number of tested problem counts if interleaved: return True # # filter the cases for split K # # Small-channels convolution can't run here. if operation.iterator_algorithm in [cutlass.conv.IteratorAlgorithm.fixed_channels, cutlass.conv.IteratorAlgorithm.few_channels]: return True # CUTLASS DGRAD's *stride* specialization does not support split-k mode if operation.conv_kind == cutlass.conv.Operator.dgrad and operation.stride_support == StrideSupport.Strided: conv_problem = cutlass.conv.Conv2dProblemSize( cutlass.Tensor4DCoord(1, 56, 56, 8), cutlass.Tensor4DCoord(8, 1, 1, 8), cutlass.Tensor4DCoord(0, 0, 0, 0), cutlass.MatrixCoord(2, 2), cutlass.MatrixCoord(1, 1), cutlass.conv.Mode.cross_correlation, 1, 1 ) passed = testbed.run(conv_problem) return passed # Sweep split-k-slice using serial and prallel reduction with non-unity alpha and non-zero beta for # a single conv2d problem size. Convolution unit tests take a long time to run so only sweep parameters # which are abolutely neccessary to catch functional bugs. The below code does provide option to sweep # alpha and beta for local testing, but only runs one value for alpha and beta. conv2d_split_k_test_size = cutlass.conv.Conv2dProblemSize( cutlass.Tensor4DCoord(1, 17, 11, 288), cutlass.Tensor4DCoord(160, 3, 3, 288), cutlass.Tensor4DCoord(1, 1, 1, 1), cutlass.MatrixCoord(1, 1), cutlass.MatrixCoord(1, 1), cutlass.conv.Mode.cross_correlation, 1, 1 ) split_k_modes = [cutlass.conv.SplitKMode.Parallel, cutlass.conv.SplitKMode.Serial] split_k_slices = [1, 2, 3, 4, 201] problem_alpha = [2.0,] problem_beta = [2.0,] for split_k_mode in split_k_modes: for split_k_slice in split_k_slices: for alpha in problem_alpha: for beta in problem_beta: passed = testbed.run(conv2d_split_k_test_size.reset_split_k_slices(split_k_slice), split_k_mode, alpha, beta) return passed
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py
from pycutlass.test.profiler import * from pycutlass.test.conv2d_testbed import * from pycutlass.test.gemm_testbed import * from pycutlass.test.gemm_grouped_testbed import *
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from time import sleep import pycutlass from pycutlass import * import cutlass from cuda import cudart from cuda import cuda from bfloat16 import bfloat16 from .profiler import GpuTimer import subprocess def transpose(layout): if layout == cutlass.RowMajor: return cutlass.ColumnMajor elif layout == cutlass.ColumnMajor: return cutlass.RowMajor elif layout == cutlass.ColumnMajorInterleaved32: return cutlass.RowMajorInterleaved32 elif layout == cutlass.RowMajorInterleaved32: return cutlass.ColumnMajorInterleaved32 def getTensorRef(tensor: np.ndarray, problem_size: cutlass.gemm.GemmCoord, operand: str, layout: cutlass.layout): ptr = tensor.__array_interface__['data'][0] if operand == "a": tensor_coord = problem_size.mk() elif operand == "b": tensor_coord = problem_size.kn() elif operand in ["c", "d"]: tensor_coord = problem_size.mn() else: raise ValueError("unknonw operand: " + operand) if layout == cutlass.RowMajor: layout = cutlass.RowMajor.packed(tensor_coord) layout_tag = "RowMajor" elif layout == cutlass.ColumnMajor: layout = cutlass.ColumnMajor.packed(tensor_coord) layout_tag = "ColumnMajor" elif layout == cutlass.ColumnMajorInterleaved32: layout = cutlass.ColumnMajorInterleaved32.packed(tensor_coord) layout_tag = "ColumnMajorInterleaved32" elif layout == cutlass.RowMajorInterleaved32: layout = cutlass.RowMajorInterleaved32.packed(tensor_coord) layout_tag = "RowMajorInterleaved32" else: raise ValueError("unsupported layout") if tensor.dtype == np.float32: ref_name = "TensorRefF32" + layout_tag elif tensor.dtype == np.float64: ref_name = "TensorRefF64" + layout_tag elif tensor.dtype == np.float16: ref_name = "TensorRefF16" + layout_tag elif tensor.dtype == bfloat16: ref_name = "TensorRefBF16" + layout_tag elif tensor.dtype == np.int8: ref_name = "TensorRefS8" + layout_tag elif tensor.dtype == np.int32: ref_name = "TensorRefS32" + layout_tag else: raise ValueError("unsupported datatype %s" % ShortDataTypeNames[tensor.dtype]) return getattr(cutlass, ref_name)(ptr, layout) def getTensorView(tensor: np.ndarray, problem_size: cutlass.gemm.GemmCoord, operand: str, layout: str): tensor_ref = getTensorRef(tensor, problem_size, operand, layout) if operand == "a": tensor_coord = problem_size.mk() elif operand == "b": tensor_coord = problem_size.kn() elif operand in ["c", "d"]: tensor_coord = problem_size.mn() else: raise ValueError("unknonw operand: " + operand) if layout == cutlass.RowMajor: layout_tag = "RowMajor" elif layout == cutlass.ColumnMajor: layout_tag = "ColumnMajor" elif layout == cutlass.ColumnMajorInterleaved32: layout_tag = "ColumnMajorInterleaved32" elif layout == cutlass.RowMajorInterleaved32: layout_tag = "RowMajorInterleaved32" else: raise ValueError("unsupported layout") if tensor.dtype == np.float32: ref_name = "TensorViewF32" + layout_tag elif tensor.dtype == np.float64: ref_name = "TensorViewF64" + layout_tag elif tensor.dtype == np.float16: ref_name = "TensorViewF16" + layout_tag elif tensor.dtype == bfloat16: ref_name = "TensorViewBF16" + layout_tag elif tensor.dtype == np.int32: ref_name = "TensorViewS32" + layout_tag elif tensor.dtype == np.int8: ref_name = "TensorViewS8" + layout_tag else: raise ValueError("unsupported datatype") return getattr(cutlass, ref_name)(tensor_ref, tensor_coord) class GemmUniversalLauncher: def __init__(self, operation: 'GemmOperationUniversal', seed: int = 2080, interleaved=False, verification=True, profiling=False, warmup_iterations=500, iterations=500, **kwargs) -> None: # create the reduction kernel self.reduction_operation: ReductionOperation = ReductionOperation( shape=cutlass.MatrixCoord(4, 32 * operation.C.alignment), C=operation.C, element_accumulator=operation.tile_description.math_instruction.element_accumulator, element_compute=operation.epilogue_functor.element_epilogue, epilogue_functor=operation.epilogue_functor, count=operation.C.alignment ) self.math_operation = operation.tile_description.math_instruction.math_operation #: verify the output result self.verification = verification #: profile the kernel's runtime self.profiling = profiling self.timer = GpuTimer() self.warmup_iterations = warmup_iterations self.iterations = iterations if "sleep" in kwargs.keys(): self.sleep_time = kwargs["sleep"] else: self.sleep_time = 0 # # Compile the operator # pycutlass.compiler.add_module([operation, self.reduction_operation]) self.operation = operation self.dtype_A = GemmUniversalLauncher.numpy_type(operation.A.element) self.dtype_B = GemmUniversalLauncher.numpy_type(operation.B.element) self.dtype_C = GemmUniversalLauncher.numpy_type(operation.C.element) self.dtype_D = GemmUniversalLauncher.numpy_type(operation.C.element) accumulator_size = DataTypeSize[operation.tile_description.math_instruction.element_accumulator] element_size = DataTypeSize[operation.A.element] if element_size == 1: self.scope_max = 1 self.scope_min = 0 elif element_size <= 8: self.scope_max = 1 self.scope_min = -1 elif element_size == 16: self.scope_max = 4 self.scope_min = -4 else: self.scope_max = 8 self.scope_min = -8 #: seed self.seed: int = seed #: whether the layout is interleaved self.interleaved = interleaved #: compute type self.compute_type = operation.epilogue_functor.element_epilogue self.accumulator_type = operation.tile_description.math_instruction.element_accumulator def print_problem_size(self, p, mode, batch_count): if mode == cutlass.gemm.Mode.Gemm: mode = "Gemm" elif mode == cutlass.gemm.Mode.GemmSplitKParallel: mode = "GemmSplitKParalel" problem_size = "problem: %d, %d, %d\n batch_count: %d\n mode: %s" % ( p.m(), p.n(), p.k(), batch_count, mode) print(problem_size) @staticmethod def numpy_type(type): if type == cutlass.float64: return np.float64 elif type == cutlass.float32: return np.float32 elif type == cutlass.float16: return np.float16 elif type == cutlass.bfloat16: return bfloat16 elif type == cutlass.int32: return np.int32 elif type == cutlass.int8: return np.int8 else: raise ValueError("unsupported type: %s" % ShortDataTypeNames[type]) def uniform_init(self, size, dtype): if dtype in [np.float32, np.float16, bfloat16, np.float64]: return np.ceil( np.random.uniform( low=self.scope_min - 0.5, high=self.scope_max - 0.5, size=size).astype(dtype) ) else: return np.random.uniform( low=self.scope_min - 1, high=self.scope_max + 1, size=size).astype(dtype) def reorder_tensor_B(self, tensor_B, problem_size): reordered_tensor_B = np.empty_like(tensor_B) tensor_ref_B = getTensorRef( tensor_B, problem_size, "b", self.operation.B.layout) reordered_tensor_ref_B = getTensorRef( reordered_tensor_B, problem_size, "b", self.operation.B.layout) cutlass.gemm.host.reorder_column( tensor_ref_B, reordered_tensor_ref_B, problem_size) return reordered_tensor_B def host_reference(self, problem_size, tensor_A, tensor_B, tensor_C, alpha, beta): # TODO tensor_D_ref = np.ones_like(tensor_C) alpha = self.numpy_type(self.compute_type)(alpha) beta = self.numpy_type(self.compute_type)(beta) init_acc = 0 alpha = self.compute_type(alpha).value() beta = self.compute_type(beta).value() init_acc = self.accumulator_type(init_acc).value() if self.operation.switched: tensor_ref_A = getTensorRef( tensor_A, problem_size, "a", transpose(self.operation.B.layout)) tensor_ref_B = getTensorRef( tensor_B, problem_size, "b", transpose(self.operation.A.layout)) tensor_ref_C = getTensorRef( tensor_C, problem_size, "c", transpose(self.operation.C.layout)) tensor_ref_D_ref = getTensorRef( tensor_D_ref, problem_size, "d", transpose(self.operation.C.layout)) else: tensor_ref_A = getTensorRef( tensor_A, problem_size, "a", self.operation.A.layout) tensor_ref_B = getTensorRef( tensor_B, problem_size, "b", self.operation.B.layout) tensor_ref_C = getTensorRef( tensor_C, problem_size, "c", self.operation.C.layout) tensor_ref_D_ref = getTensorRef( tensor_D_ref, problem_size, "d", self.operation.C.layout) if self.math_operation in [MathOperation.multiply_add_saturate]: cutlass.test.gemm.host.gemm_saturate( problem_size, alpha, tensor_ref_A, tensor_ref_B, beta, tensor_ref_C, tensor_ref_D_ref, init_acc) else: cutlass.test.gemm.host.gemm(problem_size, alpha, tensor_ref_A, tensor_ref_B, beta, tensor_ref_C, tensor_ref_D_ref, init_acc) return tensor_D_ref def equal(self, tensor_D, tensor_D_ref, problem_size): tensor_view_D = getTensorView( tensor_D, problem_size, "d", self.operation.C.layout) tensor_view_D_ref = getTensorView( tensor_D_ref, problem_size, "d", self.operation.C.layout) return cutlass.test.gemm.host.equals(tensor_view_D, tensor_view_D_ref) def bytes(self, problem_size, batch_count=1, alpha=1.0, beta=0.0): m = problem_size.m() n = problem_size.n() k = problem_size.k() bytes = \ (DataTypeSize[self.operation.A.element] * m // 8) * k + \ (DataTypeSize[self.operation.B.element] * n // 8) * k + \ (DataTypeSize[self.operation.C.element] * m // 8) * n if beta != 0: bytes += (DataTypeSize[self.operation.C.element] * m // 8) * n bytes *= batch_count return bytes def flops(self, problem_size, batch_count=1): m = problem_size.m() n = problem_size.n() k = problem_size.k() flops_ = (m * n * k + m * n) * 2 * batch_count # TODO: complex return flops_ def run_cutlass_profiler(self, mode, problem_size, batch_count=1, alpha=1.0, beta=0.0): cutlass_path = os.getenv('CUTLASS_PATH') assert cutlass_path is not None, "Environment variable 'CUTLASS_PATH' is not defined." values = { "profiler_path": cutlass_path + "/build/tools/profiler/cutlass_profiler", "kernel_name": self.operation.procedural_name(), "verification_providers": "device", "provider": "cutlass", "m": str(problem_size.m()), "n": str(problem_size.n()), "k": str(problem_size.k()), 'split_k_slices': str(batch_count), 'alpha': str(alpha), 'beta': str(beta), 'warmup': str(self.warmup_iterations), 'profile': str(self.iterations) } cmd_template = \ "${profiler_path} --kernels=${kernel_name} --verification-providers=${verification_providers}" \ " --providers=${provider} --m=${m} --n=${n} --k=${k}" cmd = SubstituteTemplate(cmd_template, values) result = subprocess.getoutput(cmd) m = re.search(r"Runtime:\s+(?P<runtime>\d+.\d+)", result) runtime = float(m.group('runtime')) m = re.search(r"Bytes:\s+(?P<bytes>\d+)", result) bytes = int(m.group('bytes')) m = re.search(r"FLOPs:\s+(?P<flops>\d+)", result) flops = int(m.group('flops')) # check if the problem size matches assert bytes == self.bytes(problem_size, alpha, beta) assert flops == self.flops(problem_size) return runtime def run(self, mode, problem_size, batch_count=1, alpha=1.0, beta=0.0): assert get_allocated_size( ) == 0, "%d byte of pool memory is not released in previous run" % get_allocated_size() np.random.seed(self.seed) tensor_A = self.uniform_init( size=(problem_size.m() * problem_size.k(),), dtype=self.dtype_A) tensor_B = self.uniform_init( size=(problem_size.n() * problem_size.k(),), dtype=self.dtype_B) tensor_C = self.uniform_init( size=(problem_size.m() * problem_size.n(),), dtype=self.dtype_C) tensor_D = np.zeros( shape=(problem_size.m() * problem_size.n(),), dtype=self.dtype_D) # # Launch kernel # arguments = GemmArguments( operation=self.operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=self.operation.epilogue_type(alpha, beta), gemm_mode=mode, split_k_slices=batch_count ) if mode == cutlass.gemm.Mode.GemmSplitKParallel: reduction_arguments = ReductionArguments( self.reduction_operation, problem_size=[ problem_size.m(), problem_size.n()], partitions=batch_count, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op=self.reduction_operation.epilogue_type(alpha, beta) ) self.operation.run(arguments) if mode == cutlass.gemm.Mode.GemmSplitKParallel: self.reduction_operation.run(reduction_arguments) passed = True if self.verification: if mode == cutlass.gemm.Mode.GemmSplitKParallel: reduction_arguments.sync() else: arguments.sync() tensor_D_ref = self.host_reference( problem_size, tensor_A, tensor_B, tensor_C, alpha, beta) passed = self.equal(tensor_D, tensor_D_ref, problem_size) try: assert passed except AssertionError: self.print_problem_size(problem_size, mode, batch_count) if self.profiling: sleep(self.sleep_time) for _ in range(self.warmup_iterations): self.operation.run(arguments) if mode == cutlass.gemm.Mode.GemmSplitKParallel: self.reduction_operation.run(reduction_arguments) self.timer.start() for _ in range(self.iterations): self.operation.run(arguments) if mode == cutlass.gemm.Mode.GemmSplitKParallel: self.reduction_operation.run(reduction_arguments) self.timer.stop_and_wait() runtime = self.timer.duration(self.iterations) # free memory and clear buffers del arguments if mode == cutlass.gemm.Mode.GemmSplitKParallel: del reduction_arguments assert get_allocated_size( ) == 0, "%d byte of pool memory is not released after current run" % get_allocated_size() if self.profiling: return runtime return passed def test_all_gemm(operation: 'GemmOperationUniversal', testcase="universal"): passed = True minimum_operand_element_size = min( DataTypeSize[operation.A.element], DataTypeSize[operation.B.element]) opcode_class = operation.tile_description.math_instruction.opcode_class if opcode_class == cutlass.OpClass.Simt: alignment = 1 else: alignment = 128 // minimum_operand_element_size # int8_t gemm alignment constrainst if opcode_class == cutlass.OpClass.Simt and operation.A.element == cutlass.int8 and operation.A.layout == cutlass.ColumnMajor: alignment_m = 4 else: alignment_m = alignment if opcode_class == cutlass.OpClass.Simt and operation.B.element == cutlass.int8 and operation.A.layout == cutlass.RowMajor: alignment_n = 4 else: alignment_n = alignment if opcode_class == cutlass.OpClass.Simt and operation.A.element == cutlass.int8 \ and operation.B.element == cutlass.int8 \ and (operation.A.layout == cutlass.RowMajor or operation.B.layout == cutlass.ColumnMajor): alignment_k = 4 else: alignment_k = alignment threadblock_k = operation.tile_description.threadblock_shape[2] if testcase == "interleaved": if operation.A.layout in [cutlass.ColumnMajorInterleaved32, cutlass.RowMajorInterleaved32]: interleavedk = 32 else: raise ValueError("unknonw layout") if testcase == "interleaved": modes = [cutlass.gemm.Mode.Gemm, ] problem_size_m = [interleavedk, 512+interleavedk] problem_size_n = [interleavedk, 512+interleavedk] problem_size_k = [interleavedk, threadblock_k * operation.tile_description.stages + interleavedk] problem_alpha = [1.0] problem_beta = [0.0] batch_counts = [1, ] elif testcase == "multistage": modes = [cutlass.gemm.Mode.Gemm, ] problem_size_m = [16, 528] problem_size_n = [16, 528] problem_size_k = [threadblock_k, threadblock_k * operation.tile_description.stages + operation.tile_description.math_instruction.instruction_shape[2]] problem_alpha = [1.0] problem_beta = [0.0] batch_counts = [1, ] else: # universal modes = [cutlass.gemm.Mode.Gemm, cutlass.gemm.Mode.GemmSplitKParallel] problem_size_m = [alignment_m, 512 - 3 * alignment_m] problem_size_n = [alignment_n, 512 - 2 * alignment_n] problem_size_k = [ alignment_k, threadblock_k * operation.tile_description.stages - alignment_k, threadblock_k * operation.tile_description.stages * 3 - alignment_k] batch_counts = [1, 2, 3, 5, 7] problem_alpha = [1.0] problem_beta = [2.0] testbed = GemmUniversalLauncher( operation, interleaved=(testcase == "interleaved")) for mode in modes: for m in problem_size_m: for n in problem_size_n: for k in problem_size_k: for batch_count in batch_counts: for alpha in problem_alpha: for beta in problem_beta: # skip very small K problems if testcase == "universal": if (k // batch_count < 2 * threadblock_k): continue problem_size = cutlass.gemm.GemmCoord(m, n, k) passed = testbed.run( mode, problem_size, batch_count, alpha, beta) err, = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError( "CUDA Error %s" % str(err)) if not passed: return False return passed
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from cuda import cuda from cuda import cudart class GpuTimer: def __init__(self) -> None: self.events = [ cuda.cuEventCreate(cuda.CUevent_flags.CU_EVENT_DEFAULT)[1], cuda.cuEventCreate(cuda.CUevent_flags.CU_EVENT_DEFAULT)[1] ] def start(self, stream=cuda.CUstream(0)): err, = cuda.cuEventRecord(self.events[0], stream) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) def stop(self, stream=cuda.CUstream(0)): err, = cuda.cuEventRecord(self.events[1], stream) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) pass def stop_and_wait(self, stream=cuda.CUstream(0)): self.stop(stream) if stream: err, = cuda.cuStreamSynchronize(stream) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) else: err, = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) def duration(self, iterations=1): err, duration = cuda.cuEventElapsedTime(self.events[0], self.events[1]) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) return duration / float(iterations)
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Utility functions for interacting with the device """ from cuda import cudart def check_cuda_errors(result: list): """ Checks whether `result` contains a CUDA error raises the error as an exception, if so. Otherwise, returns the result contained in the remaining fields of `result`. :param result: the results of the `cudart` method, consisting of an error code and any method results :type result: list :return: non-error-code results from the `results` parameter """ # `result` is of the format : (cudaError_t, result...) err = result[0] if err.value: raise RuntimeError("CUDA error: {}".format(cudart.cudaGetErrorName(err))) if len(result) == 1: return None elif len(result) == 2: return result[1] else: return result[1:] def device_cc(device: int = 0) -> int: """ Returns the compute capability of the device with ID `device`. :param device: ID of the device to query :type device: int :return: compute capability of the queried device (e.g., 80 for SM80) :rtype: int """ deviceProp = check_cuda_errors(cudart.cudaGetDeviceProperties(device)) major = str(deviceProp.major) minor = str(deviceProp.minor) return int(major + minor)
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import numpy as np import cutlass from pycutlass.library import TensorDescription from typing import Union from bfloat16 import bfloat16 try: import torch torch_available = True except ImportError: torch_available = False class ReferenceModule: def __init__(self, A: TensorDescription, B: TensorDescription, C: TensorDescription) -> None: self.layout_A = A.layout self.layout_B = B.layout self.layout_C = C.layout def run(self, A: np.ndarray, B: np.ndarray, C: np.ndarray, problem_size: cutlass.gemm.GemmCoord, alpha: float=1.0, beta: float=0.0, bias=False, batch=1): """ Compute the reference result on CPU Args: A: dense operator with shape (M, K) in row-major and (K, M) in column-major B: dense operator with shape (K, N) in row-major and (N, K) in column-major C: dense operator with shape (M, N) in row-major and (N, M) in column-major """ M, N, K = problem_size.m(), problem_size.n(), problem_size.k() if isinstance(A, np.ndarray): if self.layout_A == cutlass.RowMajor: A_row = np.reshape(A, newshape=(batch, M, K)) else: A_col = np.reshape(A, newshape=(batch, K, M)) A_row = np.transpose(A_col, axes=(0, 2, 1)) if self.layout_B == cutlass.RowMajor: B_row = np.reshape(B, newshape=(batch, K, N)) else: B_col = np.reshape(B, newshape=(batch, N, K)) B_row = np.transpose(B_col, axes=(0, 2, 1)) if self.layout_C == cutlass.RowMajor: if bias: C_row = np.reshape(C, newshape=(batch, 1, N)) else: C_row = np.reshape(C, newshape=(batch, M, N)) else: if bias: C_row = np.reshape(C, newshape=(batch, M, 1)) else: C_col = np.reshape(C, newshape=(batch, N, M)) C_row = np.transpose(C_col, axes=(0, 2, 1)) if A_row.dtype == bfloat16: # numpy's einsum doesn't support bfloat16 out_row = np.einsum("bik,bkj->bij", A_row.astype(np.float32), B_row.astype(np.float32)) * alpha + C_row * beta out_row = out_row.astype(C_row.dtype) else: out_row = np.einsum("bik,bkj->bij", A_row, B_row) * alpha + C_row * beta if self.layout_C == cutlass.ColumnMajor: out = np.transpose(out_row, axes=(0, 2, 1)) else: out = out_row return out.ravel() elif isinstance(A, torch.Tensor): if self.layout_A == cutlass.RowMajor: A_row = A.view((M, K)) else: A_col = A.view((K, M)) A_row = torch.permute(A_col, (1, 0)) if self.layout_B == cutlass.RowMajor: B_row = B.view((K, N)) else: B_col = B.view((N, K)) B_row = torch.permute(B_col, (1, 0)) if self.layout_C == cutlass.RowMajor: C_row = C.view((M, N)) else: C_col = C.view((N, M)) C_row = torch.permute(C_col, (1, 0)) out_row = torch.matmul(A_row, B_row) * alpha + C_row * beta if self.layout_C == cutlass.ColumnMajor: out = torch.permute(out_row, (1, 0)) else: out = out_row return torch.flatten(out) ##################################################################################################### # Conv2d ##################################################################################################### if torch_available: class Conv2dReferenceModule: def __init__(self, A: TensorDescription, B: TensorDescription, C: TensorDescription, kind: cutlass.conv.Operator.fprop) -> None: self.layout_A = A.layout self.layout_B = B.layout self.layout_C = C.layout self.kind = kind def run(self, A: Union[np.ndarray, torch.Tensor], B: Union[np.ndarray, torch.Tensor], C: Union[np.ndarray, torch.Tensor], problem_size, alpha=1.0, beta=0.0, bias=False) -> np.ndarray: """ Compute the reference result on CPU """ n = problem_size.N h = problem_size.H w = problem_size.W c = problem_size.C k = problem_size.K r = problem_size.R s = problem_size.S p = problem_size.P q = problem_size.Q stride_h = problem_size.stride_h stride_w = problem_size.stride_w pad_h = problem_size.pad_h pad_w = problem_size.pad_w dilation_h = problem_size.dilation_h dilation_w = problem_size.dilation_w groups = problem_size.groups if isinstance(A, np.ndarray): # the pytorch activation layout is NCHW # weight layout is Cout Cin Kh Kw (also NCHW) if self.layout_A == cutlass.TensorNHWC: A_nhwc = np.reshape(A, newshape=(n, h, w, c)) A_torch_nhwc = torch.from_numpy(A_nhwc).to("cuda") A_torch_nchw = torch.permute(A_torch_nhwc, (0, 3, 1, 2)) if self.layout_B == cutlass.TensorNHWC: B_nhwc = np.reshape(B, newshape=(k, r, s, c)) B_torch_nhwc = torch.from_numpy(B_nhwc).to("cuda") B_torch_nchw = torch.permute(B_torch_nhwc, (0, 3, 1, 2)) if self.layout_C == cutlass.TensorNHWC: C_nhwc = np.reshape(C, newshape=(n, p, q, k)) C_torch_nhwc = torch.from_numpy(C_nhwc).to("cuda") C_torch_nchw = torch.permute(C_torch_nhwc, (0, 3, 1, 2)) elif isinstance(A, torch.Tensor): if self.kind == cutlass.conv.Operator.wgrad: if self.layout_A == cutlass.TensorNHWC: A_nhwc = A.view((n, p, q, k)) A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2)) if self.layout_B == cutlass.TensorNHWC: B_nhwc = B.view((n, h, w, c)) B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2)) if self.layout_C == cutlass.TensorNHWC: if bias: C_nhwc = C.view((1, 1, 1, c)) else: C_nhwc = C.view((k, r, s, c)) C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2)) elif self.kind == cutlass.conv.Operator.dgrad: if self.layout_A == cutlass.TensorNHWC: A_nhwc = A.view((n, p, q, k)) A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2)) if self.layout_B == cutlass.TensorNHWC: B_nhwc = B.view((k, r, s, c)) B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2)) if self.layout_C == cutlass.TensorNHWC: if bias: C_nhwc = C.view((1, 1, 1, c)) else: C_nhwc = C.view((n, h, w, c)) C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2)) else: if self.layout_A == cutlass.TensorNHWC: A_nhwc = A.view((n, h, w, c)) A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2)) if self.layout_B == cutlass.TensorNHWC: B_nhwc = B.view((k, r, s, c)) B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2)) if self.layout_C == cutlass.TensorNHWC: if bias: C_nhwc = C.view((1, 1, 1, k)) else: C_nhwc = C.view((n, p, q, k)) C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2)) if self.kind == cutlass.conv.Operator.fprop: D_torch_nchw = alpha * torch.nn.functional.conv2d( A_torch_nchw, B_torch_nchw, stride=(stride_h, stride_w), padding=(pad_h, pad_w), dilation=(dilation_h, dilation_w), groups=groups) + beta * C_torch_nchw elif self.kind == cutlass.conv.Operator.dgrad: D_torch_nchw = alpha * torch.nn.grad.conv2d_input( (n, c, h, w), B_torch_nchw, A_torch_nchw, padding=(pad_h, pad_w), stride=(stride_h, stride_w) ).to(torch.float32) + beta * C_torch_nchw elif self.kind == cutlass.conv.Operator.wgrad: D_torch_nchw = alpha * torch.nn.grad.conv2d_weight( B_torch_nchw, (k, c, r, s), A_torch_nchw, padding=(pad_h, pad_w), stride=(stride_h, stride_w) ).to(torch.float32) + beta * C_torch_nchw if self.layout_C == cutlass.TensorNHWC: if isinstance(A, np.ndarray): D_torch_out = torch.permute(D_torch_nchw, (0, 2, 3, 1)).detach().cpu().numpy() elif isinstance(A, torch.Tensor): D_torch_out = torch.permute(D_torch_nchw, (0, 2, 3, 1)) return D_torch_out.flatten()
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py
from pycutlass.utils.reference_model import *
warp-main
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # this file creates the test/unit/gemm/device simt tests outputDir = "" ################################################################################ # parameters # Edge - for tiles, the edges represent the length of one side # Ratio - the maximum ratio between 2 edges, limits the skinnyness of tiles # MaxEdge - maximum length of each edge # Min/Max - minimum/maximum of the product of edge lengths ################################################################################ warpsPerThreadblockEdge = [1, 2, 4, 8, 16] warpsPerThreadblockRatio = 2 warpsPerThreadblockMax = 16 # NOTE 1x32 and 2x16 warp tile shapes fail validation for ~10% of cases warpShapeEdges = [8, 16, 32, 64, 128, 256] warpShapeRatio = 4 warpShapeMax = 64*64 warpShapeMin = 8*8 threadblockEdgeMax = 256 # char, type bits/elem, max tile, L0 threadblock tiles precisions = [ ["c", "cutlass::complex<float>", 64, 64*128, [ [ 64, 128], [ 64, 32] ] ], ["q", "cutlass::Quaternion<float>", 64, 64*128, [ [ 64, 128], [ 64, 32] ] ], ["d", "double", 64, 64*64, [ [ 64, 64], [ 32, 32] ] ], ["h", "cutlass::half_t", 16, 128*256, [ [256, 128], [ 64, 128], [ 64, 32] ] ], ["i", "int", 32, 128*128, [ [128, 64], [ 16, 32] ] ], ["s", "float", 32, 128*128, [ [128, 256], [128, 128], [ 64, 64] ] ], ["z", "cutlass::complex<double>", 128, 64*64, [ [ 32, 64], [ 16, 32] ] ], ] # L1 will have a single kernel for every unique shape # L2 will have everything else transposes = [ [False, False], [False, True], [True, False], [True, True] ] ################################################################################ # warps per threadblock ################################################################################ warpsPerThreadblocks = [] for warpsPerThreadblock0 in warpsPerThreadblockEdge: for warpsPerThreadblock1 in warpsPerThreadblockEdge: if warpsPerThreadblock0 / warpsPerThreadblock1 <= warpsPerThreadblockRatio and warpsPerThreadblock1 / warpsPerThreadblock0 <= warpsPerThreadblockRatio and warpsPerThreadblock0 * warpsPerThreadblock1 <= warpsPerThreadblockMax: warpsPerThreadblocks.append([warpsPerThreadblock0, warpsPerThreadblock1]) print("WarpsPerThreadblocks",warpsPerThreadblocks) ################################################################################ # warp shapes ################################################################################ warpNumThreads = 32 warpShapes = [] for warp0 in warpShapeEdges: for warp1 in warpShapeEdges: if warp0 / warp1 <= warpShapeRatio and warp1 / warp0 <= warpShapeRatio and warp0*warp1 <= warpShapeMax and warp0*warp1 > warpShapeMin: warpShapes.append([warp0, warp1]) print("WarpShapes", warpShapes) numL0 = 0 numL1 = 0 numL2 = 0 ################################################################################ # create kernels # create a file for each precision/transpose # each file contains many tile sizes ################################################################################ # precisions for precision in precisions: # get precision char precisionChar = precision[0] precisionType = precision[1] precisionBits = precision[2] threadblockMaxElements = precision[3] threadblockTilesL0 = precision[4] # transposes for transpose in transposes: # get transpose char columnMajorA = transpose[0] columnMajorB = transpose[1] transCharA = "n" if columnMajorA else "t" transCharB = "n" if columnMajorB else "t" # open file fileName="simt_%sgemm_%s%s_sm50.cu" % (precisionChar, transCharA, transCharB) print("\n", fileName) filePath = "%s%s" % (outputDir, fileName) out = open(filePath, "w+") # write file header out.write("/***************************************************************************************************\n" " * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. \n" " * SPDX-License-Identifier: BSD-3-Clause \n" " * \n" " * Redistribution and use in source and binary forms, with or without \n" " * modification, are permitted provided that the following conditions are met: \n" " * \n" " * 1. Redistributions of source code must retain the above copyright notice, this \n" " * list of conditions and the following disclaimer. \n" " * \n" " * 2. Redistributions in binary form must reproduce the above copyright notice, \n" " * this list of conditions and the following disclaimer in the documentation \n" " * and/or other materials provided with the distribution. \n" " * \n" " * 3. Neither the name of the copyright holder nor the names of its \n" " * contributors may be used to endorse or promote products derived from \n" " * this software without specific prior written permission. \n" " * \n" " * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" \n" " * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE \n" " * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE \n" " * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE \n" " * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL \n" " * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR \n" " * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER \n" " * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, \n" " * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE \n" " * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. \n" " *\n" " **************************************************************************************************/\n" "/*! \\file\n" " \\brief Tests for device-wide GEMM interface\n" "*/\n" "\n" "#include <iostream>\n" "\n" "#include \"cutlass/cutlass.h\"\n" "#include \"cutlass/gemm/device/gemm.h\"\n" "#include \"cutlass/numeric_types.h\"\n" "\n" "#include \"../../common/cutlass_unit_test.h\"\n" "\n" "#include \"cutlass/util/host_tensor.h\"\n" "#include \"cutlass/util/tensor_view_io.h\"\n" "#include \"cutlass/util/reference/host/tensor_fill.h\"\n" "#include \"cutlass/util/reference/host/tensor_copy.h\"\n" "#include \"cutlass/util/reference/host/tensor_compare.h\"\n" "#include \"cutlass/util/reference/host/gemm.h\"\n" "\n" "#include \"testbed.h\"\n" "\n") foundThreadblockTilesL0 = {} foundThreadblockTilesL1 = {} ######################################################################## # for each combination of tile sizes ######################################################################## for warpsPerThreadblock in warpsPerThreadblocks: for warpShape in warpShapes: warpThreadsM = 0 if warpShape[0] > warpShape[1]: warpThreadsM = 8 else: warpThreadsM = 4 warpThreadsN = warpNumThreads / warpThreadsM # skip shapes with conflicting rectangularity # they are unlikely to be fastest blockG = warpsPerThreadblock[0] > warpsPerThreadblock[1] blockL = warpsPerThreadblock[0] < warpsPerThreadblock[1] warpG = warpShape[0] > warpShape[1] warpL = warpShape[0] < warpShape[1] blockG2 = warpsPerThreadblock[0] > warpsPerThreadblock[1]*2 blockL2 = warpsPerThreadblock[0]*2 < warpsPerThreadblock[1] warpG2 = warpShape[0] > warpShape[1]*2 warpL2 = warpShape[0]*2 < warpShape[1] if blockG2 and warpL: continue if blockL2 and warpG: continue if warpG2 and blockL: continue if warpL2 and blockG: continue # check threadblock ratios and max threadblockTile = [warpShape[0]*warpsPerThreadblock[0], warpShape[1]*warpsPerThreadblock[1]] if threadblockTile[0] * threadblockTile[1] > threadblockMaxElements: continue if threadblockTile[0] > threadblockEdgeMax: continue if threadblockTile[1] > threadblockEdgeMax: continue totalThreads = warpNumThreads*warpsPerThreadblock[0]*warpsPerThreadblock[1] # calculate unroll # ensure that every iteration at least a full load of A,B are done unrollMin = 8 unrollMin0 = totalThreads / threadblockTile[0] unrollMin1 = totalThreads / threadblockTile[1] unroll = max(unrollMin, unrollMin0, unrollMin1) threadTileM = warpShape[0] / warpThreadsM threadTileN = warpShape[1] / warpThreadsN if threadTileM < 2 or threadTileN < 2: continue if threadTileM*threadTileN*precisionBits > 8*8*32: continue # epilogue currently only supports N < WarpNumThreads if threadblockTile[1] < warpNumThreads: continue # limit smem smemBitsA = threadblockTile[0]*unroll*2*precisionBits smemBitsB = threadblockTile[1]*unroll*2*precisionBits smemKBytes = (smemBitsA+smemBitsB)/8/1024 if (smemKBytes > 48): continue # test level 0 testLevel = -1 for tileId in range(0, len(threadblockTilesL0)): tbTile = threadblockTilesL0[tileId] if tbTile[0] == threadblockTile[0] and tbTile[1] == threadblockTile[1]: if tuple(tbTile) not in foundThreadblockTilesL0: testLevel = 0 numL0 += 1 foundThreadblockTilesL0[tuple(tbTile)] = True # test level 1 if testLevel < 0: threadblockTileAlreadyUsed = False if tuple(threadblockTile) not in foundThreadblockTilesL1: testLevel = 1 numL1 += 1 foundThreadblockTilesL1[tuple(threadblockTile)] = True # test level 2 if testLevel < 0: testLevel = 2 numL2 += 1 ################################################################ # write this tile to file ################################################################ print("%ix%ix%i__%ix%i_%ix%i_%ix%i L%i" % ( threadblockTile[0], threadblockTile[1], unroll, threadTileM, threadTileN, warpThreadsM, warpThreadsN, warpsPerThreadblock[0], warpsPerThreadblock[1], testLevel)) out.write("////////////////////////////////////////////////////////////////////////////////\n" "// Elements / Thread: %3i x %3i\n" "// Threads / Warp: %3i x %3i\n" "// Warps / Block: %3i x %3i\n" "// Threadblock: %3i x %3i x %2i\n" % ( threadTileM, threadTileN, warpThreadsM, warpThreadsN, warpsPerThreadblock[0], warpsPerThreadblock[1], threadblockTile[0], threadblockTile[1], unroll ) ) out.write("CUTLASS_TEST_L%i(SM50_device_%sgemm_%s%s, %ix%ix%i_%ix%ix1_%ix%i_%ix%i_%ix%i, {\n" % ( testLevel, precisionChar, transCharA, transCharB, threadblockTile[0], threadblockTile[1], unroll, warpShape[0], warpShape[1], threadTileM, threadTileN, warpThreadsM, warpThreadsN, warpsPerThreadblock[0], warpsPerThreadblock[1] )) out.write(" using precision = %s;\n" % precisionType) out.write(" using ThreadblockShape = cutlass::gemm::GemmShape<%i, %i, %i>;\n" % ( threadblockTile[0], threadblockTile[1], unroll)) out.write(" using WarpShape = cutlass::gemm::GemmShape<%i, %i, %i>;\n\n" % ( warpShape[0], warpShape[1], unroll)) out.write(" static int const kEpilogueElementsPerAccess = 1;\n" " using InstructionShape = cutlass::gemm::GemmShape<1, 1, 1>;\n" " using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombination<\n" " precision, kEpilogueElementsPerAccess, precision, precision>;\n\n") out.write(" using Gemm = cutlass::gemm::device::Gemm<\n" " precision, cutlass::layout::%sMajor,\n" " precision, cutlass::layout::%sMajor,\n" " precision, cutlass::layout::RowMajor,\n" " precision,\n" " cutlass::arch::OpClassSimt,\n" " cutlass::arch::Sm50,\n" " ThreadblockShape, WarpShape, InstructionShape,\n" " EpilogueOutputOp,\n" " cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,\n" " 2 // Stages\n" " >;\n" % ( "Column" if columnMajorA else "Row", "Column" if columnMajorB else "Row", )) out.write(" EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());\n" "} )\n\n") out.close() print("NumKernels:", numL0, numL1, numL2)
warp-main
warp/native/cutlass/test/unit/gemm/device/simt_sm50.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import gen_turing_and_volta as api_generator import gen_sample as sample_creater import gen_cmake as cmake_creater import gen_verify as verify_creater import gen_device as b2b_fused_generator import replace_fix_impl_header import argparse import os import json parser = argparse.ArgumentParser(description="Generates Fused Multi-GEMM CUTLASS Kernels") parser.add_argument("--config-file", default="config.json", help="JSON file containing configuration to generate") parser.add_argument("--gen-name", default="FusedMultiGemmForward", help="Specific the output name") parser.add_argument("--output-dir", default="", help="Specifies the output dir") parser.add_argument("--cutlass-dir", default="", help="Specifies the dependent CUTLASS repo dir") parser.add_argument("--gen-include-cutlass-dir", default="", help="Specifies the generated CUTLASS code include dir, if needed.") args = parser.parse_args() gen_name = args.gen_name cutlass_deps_dir = args.cutlass_dir output_dir = args.output_dir output_dir += "/" cutlass_deps_root = args.gen_include_cutlass_dir if cutlass_deps_root == '': cutlass_deps_root = cutlass_deps_dir + "/include/" cutlass_deps_root +='/' if not os.path.exists(output_dir): os.makedirs(output_dir) if not os.path.exists(output_dir + "/" + "auto_gen"): os.mkdir(output_dir + "/" + "auto_gen") if not os.path.exists(output_dir + "/" + "fixed_impl"): os.mkdir(output_dir + "/" + "fixed_impl" ) if not os.path.exists(output_dir + "/" + "sample"): os.mkdir(output_dir + "/" + "sample" ) if not os.path.exists(output_dir + "/" + "auto_gen" + "/" + "device"): os.mkdir(output_dir + "/" + "auto_gen" + "/" + "device") if not os.path.exists(output_dir + "/" + "auto_gen" + "/" + "kernel"): os.mkdir(output_dir + "/" + "auto_gen" + "/" + "kernel") if not os.path.exists(output_dir + "/" + "auto_gen" + "/" + "threadblock"): os.mkdir(output_dir + "/" + "auto_gen" + "/" + "threadblock") with open(args.config_file, 'r') as infile: gemm_info_dict = json.load(infile) keys = sorted(gemm_info_dict.keys()) fuse_gemm_info = [gemm_info_dict[k] for k in keys] for_cutlass_gen_user_include_header_file = [ cutlass_deps_root + "cutlass/epilogue/thread/linear_combination_leaky_relu.h", cutlass_deps_root + "cutlass/epilogue/thread/linear_combination.h", ] for_fused_wrapper = [ cutlass_deps_root + "cutlass/epilogue/thread/linear_combination_leaky_relu.h", cutlass_deps_root + "cutlass/epilogue/thread/linear_combination.h", "auto_gen/device/" + gen_name + ".h", cutlass_deps_root + "cutlass/gemm/device/gemm_batched.h", cutlass_deps_root + "cutlass/cutlass.h", ] # Copy fixed implementation to the output directory fix_impl = replace_fix_impl_header.replace_fix_impl("../fixed_impl/", output_dir +"/fixed_impl/", cutlass_deps_root) fix_impl.gen_code() auto_gen_output_dir = output_dir + "/auto_gen/" project_root = "" turing_plus = b2b_fused_generator.gen_device(fuse_gemm_info, gen_name, for_cutlass_gen_user_include_header_file, cutlass_deps_root, project_root, auto_gen_output_dir) turing_plus.gen_code(75, 'hmma1688', False) api = api_generator.gen_one_API(fuse_gemm_info, gen_name, for_fused_wrapper, output_dir) api.gen_code() # Generate C++ sample os.system("cp ../leaky_bias.h " + output_dir + "/sample/") os.system("cp ../utils.h " + output_dir + "/sample/") sample_dir = output_dir + "/sample/" sample = sample_creater.gen_test(fuse_gemm_info, gen_name, for_cutlass_gen_user_include_header_file, sample_dir) sample.gen_cpp_sample() cmake_gen = cmake_creater.gen_build_sys(cutlass_deps_dir, output_dir) cmake_gen.gen_code() verify = verify_creater.gen_verify(fuse_gemm_info, gen_name, for_fused_wrapper, output_dir) verify.gen_code()
warp-main
warp/native/cutlass/examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_all_code.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from typing import * import helper import gen_ir import gen_kernel as gen_ker class gen_device: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, cutlass_deps_root, project_root, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.raw_gemm_info = fuse_gemm_info self.b2b_num = len(fuse_gemm_info) self.user_header_file = user_header_file self.args = {} # device arg struct memebr self.arg_member = [] self.gen_class_name = gen_class_name self.gen_kernel_name = gen_class_name + "Kernel" self.tempalte_args = [] self.__tempalate_arg_list = {'Stages': int, 'SplitKSerial': bool, 'IsBetaZero': bool, 'AlignmentA': int, 'AlignmentB': int} self.file_name = output_dir + "/device/" +gen_class_name +".h" self.sample_dir = output_dir self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root self.this_file_root = output_dir + "/device/" self.first_use_1stage = False ## gen kernel self.gen_kernel = gen_ker.gen_kernel(self.tempalte_args, self.gen_class_name, self.b2b_num, output_dir, cutlass_deps_root, project_root) def __check_arg_type(self, temp_arg): if temp_arg in self.__tempalate_arg_list.keys(): return self.__tempalate_arg_list[temp_arg] find_sub = False for candidate_arg in self.__tempalate_arg_list.keys(): if (temp_arg.find(candidate_arg) != -1): return self.__tempalate_arg_list[candidate_arg] return 'typename' # def gen_B2b2bGemm_class(): def set_arch(self, sm_cap, mma_tp): if sm_cap == 75 or sm_cap == 80 or sm_cap == 86: self.arch = "cutlass::arch::Sm" + str(sm_cap) if mma_tp is 'hmma1688': self.mma_shape = [16, 8, 8] self.mma_tp = 'hmma' elif mma_tp is 'imma8816': self.mma_tp = 'imma' self.mma_shape = [8, 8, 16] else: return 0 def gen_include_header(self): code = '''\ /* Auto Generated code - Do not edit.*/ #pragma once #include \"{cutlass_root}cutlass/cutlass.h\" #include \"{cutlass_root}cutlass/numeric_types.h\" #include \"{cutlass_root}cutlass/arch/arch.h\" #include \"{cutlass_root}cutlass/device_kernel.h\" #include \"{cutlass_root}cutlass/gemm/threadblock/threadblock_swizzle.h\" #include \"{cutlass_root}cutlass/gemm/device/default_gemm_configuration.h\" #include \"{cutlass_root}cutlass/epilogue/thread/linear_combination_relu.h\" #include \"{cutlass_root}cutlass/epilogue/thread/linear_combination.h\" #include \"{project_root}../kernel/b2b_gemm.h\" #include \"{project_root}../kernel/default_b2b_gemm.h\" '''.format(cutlass_root=self.cutlass_deps_root, project_root=self.project_root, this_file_root=self.this_file_root) include_user_header = "" for header in self.user_header_file: include_user_header += "#include \"" + header + "\"\n" return code + include_user_header def gen_code(self, sm_cap, mma_tp, ifprint = True): self.set_arch(sm_cap, mma_tp) self.update_b2b_args() print(self.fuse_gemm_info) self.update_b2b_class_template_args() func_code = self.gen_all_func() member_var_code = "private:\n typename B2bGemmKernel::Params params_;\n" gen_code = gen_ir.gen_template_class(self.gen_class_name, self.tempalte_args, func_code + member_var_code) code = self.gen_include_header() + gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("device", gen_code))) if ifprint: print(code) print("[INFO]: Gen device code output Dir: is ", self.file_name) with open(self.file_name, 'w+') as f: f.write(code) gen_kernel = self.gen_kernel.gen_code(self.first_use_1stage) print(gen_kernel) def update_b2b_class_template_args(self): for arg in self.args.keys(): self.tempalte_args.append([self.__check_arg_type(arg), arg, self.args[arg]]) def update_b2b_args(self): self.args['ElementA'] = helper.type_2_cutlass_type(self.fuse_gemm_info[0]['A_tp']) self.args['LayoutA'] = helper.type_2_cutlass_type(self.fuse_gemm_info[0]['A_format']) cnt = 0 warp_M_tile = 32 # Determine maxmimum N_tile Max_Ntile = 0 for layer in self.fuse_gemm_info: n_tile = layer['mnk'][1] if n_tile > Max_Ntile: Max_Ntile = n_tile if Max_Ntile >= 256: warp_M_tile = 16 stages_temp = [] for layer in self.fuse_gemm_info: cnt_str = str(cnt) B_tp_str= 'ElementB' + cnt_str B_format_str = 'LayoutB' + cnt_str C_tp_str= 'ElementC' + cnt_str C_format_str = 'LayoutC' + cnt_str Acc_str = 'ElementAccumulator' + cnt_str self.args[B_tp_str] = helper.type_2_cutlass_type(layer['B_tp']) self.args[B_format_str] = helper.type_2_cutlass_type(layer['B_format']) self.args[C_tp_str] = helper.type_2_cutlass_type(layer['C_tp']) self.args[C_format_str] = helper.type_2_cutlass_type(layer['C_format']) self.args[Acc_str] = helper.type_2_cutlass_type(layer['Acc_tp']) mnk = layer['mnk'][:] tile_mnk = mnk[:] tile_mnk[2] = 32 # force the ktile is 32 #N tile gen if mnk[1] > 1024: assert(0) elif mnk[1] > 512: tile_mnk[1] = 1024 elif mnk[1] > 256: tile_mnk[1] = 512 elif mnk[1] > 128: tile_mnk[1] = 256 elif mnk[1] > 64: tile_mnk[1] = 128 elif mnk[1] > 32: tile_mnk[1] = 64 else : tile_mnk[1] = 32 if tile_mnk[1] == 512: stages_temp.append(1) else: stages_temp.append(2) tile_mnk[0] = 4 * warp_M_tile epilogue_setted_type = helper.get_epilogue_tp(layer) cutlass_epilogue_name = "LinearCombinationRelu" if epilogue_setted_type.lower() == 'leakyrelu': cutlass_epilogue_name = "LinearCombinationLeakyRelu" elif epilogue_setted_type.lower() == 'identity': cutlass_epilogue_name = "LinearCombination" epilogue_str = 'EpilogueOutputOp' + cnt_str if cnt != len(self.fuse_gemm_info) - 1: n = layer['mnk'][1] Fragments = tile_mnk[1] // 8 * 2 self.args[epilogue_str] = "cutlass::epilogue::thread::" + cutlass_epilogue_name + "<ElementC0_, " + str(Fragments) +", ElementAccumulator0_, ElementAccumulator0_>" else: n = layer['mnk'][1] n_mod_8 = n % 4 N_align_elements = 1 if n_mod_8 == 0: N_align_elements = 8 elif n_mod_8 == 4: N_align_elements = 4 elif n_mod_8 == 2 or n_mod_8 == 6: N_align_elements = 2 self.args[epilogue_str] = "cutlass::epilogue::thread::" + cutlass_epilogue_name+ "<ElementC0_, " + str(N_align_elements) + ", ElementAccumulator0_, ElementAccumulator0_>" ThreadBlockShape_str = 'ThreadblockShape' + cnt_str self.args[ThreadBlockShape_str] = helper.cvt_2_cutlass_shape(tile_mnk) WarpShape_str = 'WarpShape' + cnt_str tile_mnk[0] = warp_M_tile self.args[WarpShape_str] = helper.cvt_2_cutlass_shape(tile_mnk) cnt += 1 self.args['ElementD'] = helper.type_2_cutlass_type(self.fuse_gemm_info[self.b2b_num - 1]['C_tp']) self.args['LayoutD'] = helper.type_2_cutlass_type(self.fuse_gemm_info[self.b2b_num - 1]['C_format']) self.args['InstructionShape'] = helper.cvt_2_cutlass_shape(self.mma_shape) self.args['OperatorClass'] = 'arch::OpClassTensorOp' self.args['ArchTag'] = self.arch self.args['ThreadblockSwizzle'] = 'threadblock::GemmBatchedIdentityThreadblockSwizzle' for i in range(self.b2b_num): self.args[helper.var_idx('Stages', i)] = "2" self.args['AlignmentA'] = str(8) self.args['AlignmentB'] = str(8) self.args['SplitKSerial'] = 'false' self.args['Operator'] = 'typename DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB0_, ElementC0_, ElementAccumulator0_>::Operator' self.args['IsBetaZero'] = 'false' def gen_using_kernel(self): code = "using B2bGemmKernel = typename kernel::DefaultB2bGemm<\n" code += " " + "ElementA,\n" code += " " + "LayoutA,\n" for i in range(self.b2b_num): code += " " + helper.var_idx("ElementB", i) + ",\n" code += " " + helper.var_idx("LayoutB", i) + ",\n" code += " " + helper.var_idx("ElementC", i) + ",\n" code += " " + helper.var_idx("LayoutC", i) + ",\n" code += " " + helper.var_idx("ElementAccumulator", i) + ",\n" code += " " + helper.var_idx("EpilogueOutputOp", i) + ",\n" code += " " + helper.var_idx("ThreadblockShape", i) + ",\n" code += " " + helper.var_idx("WarpShape", i) + ",\n" code += " " + "ElementD,\n" code += " " + "LayoutD,\n" code += " " + "InstructionShape,\n" code += " " + "OperatorClass,\n" code += " " + "ArchTag,\n" code += " " + "ThreadblockSwizzle,\n" for i in range(self.b2b_num): code += " " + helper.var_idx("Stages", i) + ",\n" code += " " + "AlignmentA,\n" code += " " + "AlignmentB,\n" code += " " + "SplitKSerial,\n" code += " " + "Operator,\n" code += " " + "IsBetaZero_\n" code += ">::B2bGemmKernel;\n\n" return code def gen_args(self): def gen_arg_member(b2b_num): data_members = [] for i in range(b2b_num): member_type = "GemmCoord" member_name = "problem_size_" + str(i) data_members.append((member_type, member_name)) member_type = "TensorRef<ElementA const, LayoutA>" member_name = "ref_A0" data_members.append((member_type, member_name)) for i in range(b2b_num): member_type = "TensorRef<ElementB" + str(i) + " const, LayoutB" + str(i) +">" member_name = "ref_B" + str(i) data_members.append((member_type, member_name)) member_type = "TensorRef<ElementC" + str(i) + " const, LayoutC" + str(i) +">" member_name = "ref_C" + str(i) data_members.append((member_type, member_name)) member_type = "TensorRef<ElementD, LayoutD>" member_name = helper.var_idx("ref_D", b2b_num - 1) data_members.append((member_type, member_name)) for i in range(b2b_num): member_type = "typename EpilogueOutputOp" + str(i) + "::Params" member_name = "epilogue" + str(i) data_members.append((member_type, member_name)) data_members.append(('int', 'batch_count')) return data_members def gen_arg_struct_default_ctor(struct_name, data_members, inital_param_num, inital_value): constructs_code = gen_ir.indentation + "CUTLASS_HOST_DEVICE\n" + \ gen_ir.indentation + struct_name + " (): " for i in range(inital_param_num): final_param = ',' if i == inital_param_num - 1: final_param = '{ }' constructs_code += data_members[i][1] + inital_value + final_param constructs_code += "\n" return constructs_code def gen_arg_struct_ctor(struct_name, data_members): constructs_code = gen_ir.indentation + "CUTLASS_HOST_DEVICE\n" + \ gen_ir.indentation + struct_name + " (\n" cnt = 0 param_num = len(data_members) for param in data_members: final = ',\n' if cnt == param_num - 1: final = '\n):\n' constructs_code += gen_ir.indentation + param[0] + " " + param[1] + "_" + final cnt += 1 cnt = 0 for param in data_members: final = '),\n' if cnt == param_num - 1: final = ") { }\n" constructs_code += gen_ir.indentation + param[1] + "(" + param[1] + "_" + final cnt += 1 constructs_code += "\n" return constructs_code # (variable type, variable name) struct_member = gen_arg_member(self.b2b_num) self.arg_member = struct_member codeBody = "" for each_member in struct_member: codeBody += gen_ir.indentation + each_member[0] + " " + each_member[1] + ";\n" codeBody += gen_arg_struct_default_ctor("Arguments", struct_member, self.b2b_num, "(0,0,0)") + "\n" codeBody += gen_arg_struct_ctor("Arguments", struct_member) + "\n" struct_code = gen_ir.gen_struct("Arguments", codeBody) return struct_code def gen_func_constructs(self): code = self.gen_class_name +"() {}" return code def gen_func_initialize(self): code = "Status initialize(Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) {\n" + \ "// Determine grid shape\n" + \ "ThreadblockSwizzle threadblock_swizzle;\n" + \ "cutlass::gemm::GemmCoord grid_shape = threadblock_swizzle.get_tiled_shape(\n" + \ " args.problem_size_0, \n" + \ " { ThreadblockShape0::kM, ThreadblockShape0::kN, ThreadblockShape0::kK },\n" + \ " args.batch_count);\n" + \ "// Initialize the Params structure\n" + \ "params_ = typename B2bGemmKernel::Params{\n" for i in range(self.b2b_num): code += helper.var_idx(" args.problem_size_", i) + ",\n" code += " grid_shape,\n" + \ " args.ref_A0.non_const_ref(),\n" for i in range(self.b2b_num): code += helper.var_idx(" args.ref_B", i) + ".non_const_ref(),\n" code += helper.var_idx(" args.ref_C", i) + ".non_const_ref(),\n" code += helper.var_idx(" args.ref_D", self.b2b_num - 1) + ",\n" for i in range(self.b2b_num): code += helper.var_idx(" args.epilogue", i) + ",\n" code += " args.batch_count\n" code += "};\n" + \ "return Status::kSuccess;\n" + \ "}\n" return code def gen_func_run(self): code = "Status run(cudaStream_t stream = nullptr) {\n" + \ "\n" + \ " ThreadblockSwizzle threadblock_swizzle;\n" + \ "\n" + \ " dim3 grid = threadblock_swizzle.get_grid_shape(params_.grid_tiled_shape);\n" + \ " dim3 block(B2bGemmKernel::kThreadCount, 1, 1);\n" + \ "\n" + \ " cudaError_t result;\n" + \ "\n" + \ " int smem_size = int(sizeof(typename B2bGemmKernel::SharedStorage));\n" + \ " if (smem_size >= (48 << 10)) {\n" + \ " result = cudaFuncSetAttribute(Kernel<B2bGemmKernel>, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size);\n" + \ "\n" + \ " if (result != cudaSuccess) {\n" + \ " return Status::kErrorInternal;\n" + \ " }\n" + \ "\n" + \ " result = cudaFuncSetAttribute(\n" + \ " Kernel<B2bGemmKernel>,\n" + \ " cudaFuncAttributePreferredSharedMemoryCarveout, 100);\n" + \ "\n" + \ " if (result != cudaSuccess) {\n" + \ " return Status::kErrorInternal;\n" + \ " }\n" + \ " }\n" + \ " cutlass::Kernel<B2bGemmKernel><<<grid, block, smem_size, stream>>>(params_);\n" + \ " result = cudaGetLastError();\n" + \ " return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal;\n" + \ " }\n" return code def gen_func_operator(self): opeartor_with_arg_code = "Status operator()(\n" + \ " Arguments const &args,\n" + \ " void *workspace = nullptr,\n" + \ " cudaStream_t stream = nullptr) {\n" + \ " Status status = initialize(args, workspace);\n" + \ " \n" + \ " if (status == Status::kSuccess) {\n" + \ " status = run(stream);\n" + \ " }\n" + \ " return status;\n" + \ "}\n" operator_code = "Status operator()(\n" + \ " cudaStream_t stream = nullptr) {\n" + \ " Status status = run(stream);\n" + \ " return status;\n" + \ "}\n" return opeartor_with_arg_code + "\n" + operator_code def gen_all_func(self): return self.gen_using_kernel() + "\n" + \ self.gen_args() + "\n" + \ self.gen_func_constructs() + "\n" + \ self.gen_func_initialize() + "\n" + \ self.gen_func_run() + "\n" + \ self.gen_func_operator()
warp-main
warp/native/cutlass/examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_device.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import gen_ir import helper import gen_threadblock as gen_tb class gen_default_Gemm: def __init__(self, template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root): self.gen_class_name = "B2bGemm" self.template_param = template_param self.b2b_num = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_B2bMma(self, specialized_template_args): code = "using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma<\n" code += specialized_template_args code += ">::ThreadblockB2bMma;\n" # print(code) return code def gen_epilogue(self): epilogue_code = "" epilogue_code += helper.var_idx("static const int kPartitionsK", self.b2b_num - 1) + helper.var_idx(" = ThreadblockShape", self.b2b_num - 1) + helper.var_idx("::kK / WarpShape", self.b2b_num - 1) + "::kK;\n" epilogue_code += "using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<\n" epilogue_code += " " + helper.var_idx("ThreadblockShape", self.b2b_num - 1) + ",\n" epilogue_code += " " + helper.var_idx("typename B2bMma::Operator", self.b2b_num - 1) + ",\n" epilogue_code += " " + helper.var_idx("kPartitionsK", self.b2b_num - 1) + ",\n" epilogue_code += " " + helper.var_idx("EpilogueOutputOp", self.b2b_num - 1) + ",\n" epilogue_code += " " + helper.var_idx("EpilogueOutputOp", self.b2b_num - 1) + "::kCount\n" epilogue_code += ">::Epilogue;\n" epilogue_code += "using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle, SplitKSerial>;\n\n" return epilogue_code def gen_include_header(self): code = ''' /* Auto Generated code - Do not edit.*/ #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/layout/matrix.h\" #include \"{cutlass_dir}cutlass/numeric_types.h\" #include \"{cutlass_dir}cutlass/epilogue/threadblock/epilogue.h\" #include \"{cutlass_dir}cutlass/epilogue/thread/linear_combination.h\" #include \"{cutlass_dir}cutlass/gemm/gemm.h\" #include \"{cutlass_dir}cutlass/gemm/kernel/gemm_pipelined.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm75.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm70.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm80.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_simt.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/threadblock_swizzle.h\" #include \"{cutlass_dir}cutlass/epilogue/threadblock/default_epilogue_tensor_op.h\" #include \"{cutlass_dir}cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h\" #include \"{cutlass_dir}cutlass/epilogue/threadblock/default_epilogue_simt.h\" #include \"{cutlass_dir}cutlass/transform/threadblock/predicated_tile_iterator.h\" #include \"../kernel/b2b_gemm.h\" #include \"../threadblock/default_b2b_mma.h\" '''.format(cutlass_dir=self.cutlass_deps_root) return code def gen_code(self): gen_using = '' # Generate default template struct gen_code = gen_ir.gen_template_struct("Default" + self.gen_class_name, self.template_param,"", speicalized = None, set_default=False) filter_list = [] filter_list.append(('Stages', 2)) filter_list.append(("OperatorClass", "arch::OpClassTensorOp")) filter_list.append(("ArchTag", "arch::Sm75")) for i in range(self.b2b_num): filter_list.append((helper.var_idx("LayoutC", i), "layout::RowMajor")) rtn_template_args, speicalized_template_args = gen_ir.filtered_param(self.template_param, filter_list, keep_= True) B2bMma_code = self.gen_B2bMma(speicalized_template_args) epilogue_and_rest_code = self.gen_epilogue() gen_special_code = gen_ir.gen_template_struct("Default" + self.gen_class_name, rtn_template_args, B2bMma_code + epilogue_and_rest_code, speicalized = speicalized_template_args, set_default=False) code = gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("kernel", gen_code + gen_special_code))) return self.gen_include_header() + code class gen_Kernel: def __init__(self, template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root): self.gen_class_name = "B2bGemm" self.template_param = template_param self.b2bnum = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_include_header(self): code = ''' #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/gemm/gemm.h\" #include \"{cutlass_dir}cutlass/matrix_coord.h\"\n'''.format(cutlass_dir=self.cutlass_deps_root) return code def gen_Params(self): gen_param = "" for i in range(self.b2bnum): gen_param += " " + helper.var_idx("cutlass::gemm::GemmCoord problem_size_", i) + ";\n" gen_param += " " + "cutlass::gemm::GemmCoord grid_tiled_shape;\n" gen_param += " " + "typename B2bMma::IteratorA0::Params params_A0;\n" gen_param += " " + "typename B2bMma::IteratorA0::TensorRef ref_A0;\n" for i in range(self.b2bnum): gen_param += " " + helper.var_idx("typename B2bMma::IteratorB", i) + helper.var_idx("::Params params_B", i) + ";\n" gen_param += " " + helper.var_idx("typename B2bMma::IteratorB", i) + helper.var_idx("::TensorRef ref_B", i) + ";\n" if i == self.b2bnum - 1: gen_param += " " + helper.var_idx("typename Epilogue::OutputTileIterator::Params params_C", i) + ";\n" gen_param += " " + helper.var_idx("typename Epilogue::OutputTileIterator::TensorRef ref_C", i) + ";\n" else: gen_param += " " + helper.var_idx("typename FusedAddBiasEpilogue", i) + helper.var_idx("::OutputTileIterator::Params params_C", i) + ";\n" gen_param += " " + helper.var_idx("typename FusedAddBiasEpilogue", i) + helper.var_idx("::OutputTileIterator::TensorRef ref_C", i) + ";\n" gen_param += " " + helper.var_idx("typename Epilogue::OutputTileIterator::Params params_D", self.b2bnum - 1) + ";\n" gen_param += " " + helper.var_idx("typename Epilogue::OutputTileIterator::TensorRef ref_D", self.b2bnum - 1) + ";\n" for i in range(self.b2bnum): gen_param += " " + helper.var_idx("typename OutputOp", i) + helper.var_idx("::Params output_op_", i) + ";\n" gen_param += " " + 'int batch_count' + ";\n" gen_param += " " + 'int gemm_k_iterations_0' + ";\n" return gen_param def gen_Memberfunc(self): code_default = "\nCUTLASS_HOST_DEVICE\n" code_default += "Params()" code_default += " { } \n\n" code_construct = "\nCUTLASS_HOST_DEVICE\n" code_construct += "Params(\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("cutlass::gemm::GemmCoord const & problem_size_", i) + ",\n" code_construct += " " + "cutlass::gemm::GemmCoord const & grid_tiled_shape,\n" code_construct += " " + "typename B2bMma::IteratorA0::TensorRef ref_A0,\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("typename B2bMma::IteratorB", i) + helper.var_idx("::TensorRef ref_B", i) + ",\n" if i == self.b2bnum - 1: code_construct += " " + helper.var_idx("typename Epilogue::OutputTileIterator::TensorRef ref_C", i) + ",\n" else: code_construct += " " + helper.var_idx("typename FusedAddBiasEpilogue", i) + helper.var_idx("::OutputTileIterator::TensorRef ref_C", i) + ",\n" code_construct += " " + helper.var_idx("typename Epilogue::OutputTileIterator::TensorRef ref_D", self.b2bnum - 1) + ",\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("typename OutputOp", i) + helper.var_idx("::Params output_op_", i) + helper.var_idx(" = typename OutputOp", i) + "::Params(),\n" code_construct += " " + "int batch_count = 1\n" code_construct += "):\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("problem_size_", i) + helper.var_idx("(problem_size_", i) + "),\n" code_construct += " " + "grid_tiled_shape(grid_tiled_shape),\n" code_construct += " " + "params_A0(ref_A0.layout()),\n" code_construct += " " + "ref_A0(ref_A0),\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("params_B", i) + helper.var_idx("(ref_B", i) + ".layout()),\n" code_construct += " " + helper.var_idx("ref_B", i) + helper.var_idx("(ref_B", i) + "),\n" code_construct += " " + helper.var_idx("params_C", i) + helper.var_idx("(ref_C", i) + ".layout()),\n" code_construct += " " + helper.var_idx("ref_C", i) + helper.var_idx("(ref_C", i) + "),\n" code_construct += " " + helper.var_idx("params_D", self.b2bnum - 1) + helper.var_idx("(ref_D", self.b2bnum - 1) + ".layout()),\n" code_construct += " " + helper.var_idx("ref_D", self.b2bnum - 1) + helper.var_idx("(ref_D", self.b2bnum - 1) + "),\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("output_op_", i) + helper.var_idx("(output_op_", i) + "), \n" code_construct += " " + "batch_count(batch_count) {\n" code_construct += " " + helper.var_idx("gemm_k_iterations_", 0) + helper.var_idx(" = (problem_size_", 0) + helper.var_idx(".k() + B2bMma::Shape", 0) + helper.var_idx("::kK - 1) / B2bMma::Shape", 0) + "::kK;\n" code_construct += "}\n" return code_default + code_construct def gen_using(self): code_using = "" for i in range(self.b2bnum - 1): code_using += " " + helper.var_idx("using OutputOp", i) + helper.var_idx(" = typename B2bMma::OutputOp", i) + ";\n" code_using += " " + helper.var_idx("using OutputOp", self.b2bnum - 1) + " = typename Epilogue::OutputOp;\n" for i in range(self.b2bnum - 1): code_using += " " + helper.var_idx("using FusedAddBiasEpilogue", i) + helper.var_idx(" = typename B2bMma::FusedAddBiasEpilogue", i) +";\n" code_using += " " + "using WarpCount0 = typename B2bMma::WarpCount0;\n" code_using += " " + "static int const kThreadCount = 32 * WarpCount0::kCount;\n" code_using += gen_ir.gen_struct("Params", self.gen_Params() + self.gen_Memberfunc()) code_using += "union SharedStorage {\n" code_using += " " + "typename B2bMma::B2bMmaSharedStorage main_loop;\n" code_using += " " + "typename Epilogue::SharedStorage epilogue;\n" code_using += "};\n" return code_using def gen_can_implement(self): gen_code = "" return gen_code def gen_operator_and_constr(self): ctr_code = "CUTLASS_HOST_DEVICE\n" ctr_code += self.gen_class_name + "() { } \n\n" operator_code = "CUTLASS_DEVICE\n" operator_code += "void operator()(Params const &params, SharedStorage &shared_storage) {\n" operator_code += " " + "ThreadblockSwizzle threadblock_swizzle;\n" operator_code += " " + "cutlass::gemm::GemmCoord threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.grid_tiled_shape);\n" operator_code += " " + "int batch_idx = threadblock_tile_offset.k();\n" operator_code += " " + "if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() ||\n" operator_code += " " + "params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) {\n" operator_code += " " + " " + "return;\n" operator_code += " " + "}\n" operator_code += " " + "cutlass::MatrixCoord tb_offset_A0{\n" operator_code += " " + " " + "threadblock_tile_offset.m() * B2bMma::Shape0::kM,\n" operator_code += " " + " " + "0\n" operator_code += " " + "};\n" for i in range(self.b2bnum): operator_code += " " + helper.var_idx("cutlass::MatrixCoord tb_offset_B", i) + "{\n" operator_code += " " + " " + "0,\n" operator_code += " " + " " + helper.var_idx("threadblock_tile_offset.n() * B2bMma::Shape", i) + "::kN\n" operator_code += " " + "};\n" operator_code += " " + "int thread_idx = threadIdx.x;\n\n" operator_code += " " + "MatrixCoord threadblock_offset(\n" operator_code += " " + " " + helper.var_idx("threadblock_tile_offset.m() * B2bMma::Shape", self.b2bnum - 1) + "::kM,\n" operator_code += " " + " " + helper.var_idx("threadblock_tile_offset.n() * B2bMma::Shape", self.b2bnum - 1) + "::kN\n" operator_code += " " + ");\n" operator_code += " " + "typename B2bMma::IteratorA0 iterator_A0(\n" operator_code += " " + " " + "params.params_A0,\n" operator_code += " " + " " + "params.ref_A0.data(),\n" operator_code += " " + " " + "params.problem_size_0.mk(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "tb_offset_A0);\n" operator_code += " " + "iterator_A0.add_pointer_offset(batch_idx * params.problem_size_0.m() * params.problem_size_0.k());\n\n" for i in range (self.b2bnum): operator_code += " " + helper.var_idx("typename B2bMma::IteratorB", i ) + helper.var_idx(" iterator_B", i) + "(\n" operator_code += " " + " " + helper.var_idx("params.params_B", i) + ",\n" operator_code += " " + " " + helper.var_idx("params.ref_B", i) + ".data(),\n" operator_code += " " + " " + helper.var_idx("params.problem_size_", i) + ".kn(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + helper.var_idx("tb_offset_B", i) + ");\n" operator_code += " " + helper.var_idx("iterator_B", i) + helper.var_idx(".add_pointer_offset(batch_idx * params.problem_size_", i) + helper.var_idx(".n() * params.problem_size_", i) + ".k());\n\n" for i in range (self.b2bnum - 1): operator_code += " " + helper.var_idx("typename FusedAddBiasEpilogue", i ) + helper.var_idx("::OutputTileIterator iterator_C", i) + "(\n" operator_code += " " + " " + helper.var_idx("params.params_C", i) + ",\n" operator_code += " " + " " + helper.var_idx("params.ref_C", i) + ".data(),\n" operator_code += " " + " " + helper.var_idx("params.problem_size_" , i) + ".mn(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "threadblock_offset" + ");\n" operator_code += " " + helper.var_idx("int ref_C", i) + helper.var_idx("_stride = params.ref_C", i) + ".stride()[0];\n" operator_code += " " + helper.var_idx("iterator_C", i) + helper.var_idx(".add_pointer_offset(batch_idx * params.problem_size_", i) + helper.var_idx(".n() * (ref_C", i) + helper.var_idx("_stride == 0 ? 1 : params.problem_size_", i) + ".m()));\n\n" for i in range (self.b2bnum - 1): operator_code += " " + helper.var_idx("FusedAddBiasEpilogue", i ) + helper.var_idx(" epilogue_", i ) + ";\n" operator_code += " " + "int warp_idx = __shfl_sync(0x1f, threadIdx.x / 32, 0);\n" operator_code += " " + "int lane_idx = threadIdx.x % 32;\n" for i in range (self.b2bnum - 1): operator_code += " " + helper.var_idx("OutputOp", i) + helper.var_idx(" output_op_", i) + helper.var_idx("(params.output_op_", i) + ");\n" operator_code += " " + "B2bMma b2bMma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx);\n" operator_code += " " + "typename B2bMma::FragmentC0 src_accum;\n" operator_code += " " + helper.var_idx("typename B2bMma::FragmentC", self.b2bnum - 1)+ " accumulators;\n" operator_code += " " + "src_accum.clear();\n" operator_code += " " + "accumulators.clear();\n" operator_code += " " + "b2bMma(params.gemm_k_iterations_0, accumulators, iterator_A0, " for i in range(self.b2bnum): operator_code += helper.var_idx("iterator_B", i) + ", " operator_code += "src_accum" if self.b2bnum != 1: operator_code += ", " for i in range(self.b2bnum - 1): operator_code += helper.var_idx("output_op_", i) + ", " for i in range(self.b2bnum - 1): operator_code += helper.var_idx("epilogue_", i) + ", " for i in range(self.b2bnum - 1): final = ", " if i == self.b2bnum - 2: final ="" operator_code += helper.var_idx("iterator_C", i) + final operator_code += ");\n" operator_code += " " + helper.var_idx("OutputOp", self.b2bnum - 1) + helper.var_idx(" output_op_", self.b2bnum - 1) + helper.var_idx("(params.output_op_", self.b2bnum - 1) + ");\n" operator_code += " " + "threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.grid_tiled_shape);\n" operator_code += " " + helper.var_idx("typename Epilogue::OutputTileIterator iterator_C", self.b2bnum - 1) + "(\n" operator_code += " " + " " + helper.var_idx("params.params_C", self.b2bnum - 1) + ",\n" operator_code += " " + " " + helper.var_idx("params.ref_C", self.b2bnum - 1) + ".data(),\n" operator_code += " " + " " + helper.var_idx("params.problem_size_", self.b2bnum - 1) + ".mn(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "threadblock_offset\n" operator_code += " " + ");\n" operator_code += " " + helper.var_idx("int ref_C", self.b2bnum - 1) + helper.var_idx("_stride = params.ref_C", self.b2bnum - 1) + ".stride()[0];\n" operator_code += " " + helper.var_idx("iterator_C", self.b2bnum - 1) + helper.var_idx(".add_pointer_offset(batch_idx * params.problem_size_", self.b2bnum - 1) + helper.var_idx(".n() * (ref_C", self.b2bnum - 1) + helper.var_idx("_stride == 0 ? 1 : params.problem_size_", self.b2bnum - 1) + ".m()));\n\n" operator_code += " " + helper.var_idx("typename Epilogue::OutputTileIterator iterator_D", self.b2bnum - 1) + "(\n" operator_code += " " + " " + helper.var_idx("params.params_D", self.b2bnum - 1) + ",\n" operator_code += " " + " " + helper.var_idx("params.ref_D", self.b2bnum - 1) + ".data(),\n" operator_code += " " + " " + helper.var_idx("params.problem_size_", self.b2bnum - 1) + ".mn(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "threadblock_offset\n" operator_code += " " + ");\n" operator_code += " " + helper.var_idx("iterator_D", self.b2bnum - 1) + helper.var_idx(".add_pointer_offset(batch_idx * params.problem_size_", self.b2bnum - 1) + helper.var_idx(".n() * params.problem_size_", self.b2bnum - 1) + ".m());\n\n" operator_code += " " + "Epilogue epilogue(\n" operator_code += " " + " " + "shared_storage.epilogue,\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "warp_idx,\n" operator_code += " " + " " + "lane_idx\n" operator_code += " " + ");\n" operator_code += " " + "epilogue(" operator_code += helper.var_idx("output_op_", self.b2bnum - 1) + ", " operator_code += helper.var_idx("iterator_D", self.b2bnum - 1) + ", " operator_code += "accumulators, " operator_code += helper.var_idx("iterator_C", self.b2bnum - 1) + ");\n" operator_code += "}\n" return ctr_code + operator_code def gen_include_header(self): code = ''' #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/gemm/gemm.h\" #include \"{cutlass_dir}cutlass/matrix_coord.h\" #include \"{cutlass_dir}cutlass/semaphore.h\" '''.format(cutlass_dir=self.cutlass_deps_root) return code def gen_code(self): template_param = [] template_param.append(("typename", "B2bMma")) template_param.append(("typename", "Epilogue")) template_param.append(("typename", "ThreadblockSwizzle")) template_param.append((bool, "SplitKSerial")) code_body = "" code_body += self.gen_using() code_body += self.gen_operator_and_constr() struct_code = gen_ir.gen_template_struct(self.gen_class_name, template_param, code_body) code = self.gen_include_header() code += gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("kernel", struct_code))) return self.gen_include_header() + code class gen_kernel: def __init__(self, template_param, gen_class_name, b2b_num, output_dir, cutlass_deps_root, project_root): self.template_param = template_param self.gen_class_name = "B2bGemm" self.gen_kernel_name = gen_class_name + "Kernel" self.tempalte_args = [] self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root self.gen_default_b2b_gemm = gen_default_Gemm(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) self.gen_Kerenl = gen_Kernel(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) # Include gen_threadBlock self.gen_threadBlock = gen_tb.gen_threadblock(template_param, gen_class_name, b2b_num, output_dir, cutlass_deps_root, project_root) self.file_dir = output_dir + "/kernel/" def gen_code(self, first_use_1stage): default_b2b_gemm = self.gen_default_b2b_gemm.gen_code() print("[INFO]: Gen kernel code [default_b2b_gemm.h]output Dir: is ", self.file_dir) with open(self.file_dir + "default_b2b_gemm.h", "w+") as f: f.write(default_b2b_gemm) kernel = self.gen_Kerenl.gen_code() print("[INFO]: Gen kernel code [b2b_gemm.h]output Dir: is ", self.file_dir) with open(self.file_dir + "b2b_gemm.h", "w+") as f: f.write(kernel) # Call code to gen threadblock self.gen_threadBlock.gen_code(first_use_1stage)
warp-main
warp/native/cutlass/examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_kernel.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import gen_ir import helper class gen_default_b2b_mma: def __init__(self, template_param, gen_class_name, b2b_num,cutlass_deps_root, project_root): self.gen_class_name = "DefaultB2bMma" self.template_param = template_param self.b2b_num = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_include_header(self): code = ''' /* Auto Generated code - Do not edit.*/ #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/numeric_types.h\" #include \"{cutlass_dir}cutlass/arch/arch.h\" #include \"{cutlass_dir}cutlass/transform/threadblock/predicated_tile_iterator.h\" #include \"{cutlass_dir}cutlass/transform/threadblock/predicated_tile_iterator_2dthreadtile.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm70.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm75.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm80.h\" #include \"../threadblock/b2b_mma_pipelined.h\" #include \"../../fixed_impl/epilogue/threadblock/fused_bias_act_epilogue.h\" #include \"../../fixed_impl/epilogue/threadblock/default_bias_act_epilogue_tensor_op.h\" #include \"../../fixed_impl/gemm/warp/mma_tensor_op_fragment_iterator_without_output_op.h\" '''.format(cutlass_dir=self.cutlass_deps_root) return code def gen_using_MmaCore(self, stage): threadBlockShape = "ThreadblockShape" warpShape = "WarpShape" instrunctionShape = "InstructionShape" Mma_typename = "typename cutlass::gemm::threadblock::DefaultMmaCore" gen_code = "" for i in range(self.b2b_num): code_using = "using MmaCore" + str(i) gen_code += code_using + " = " + gen_ir.gen_declare_template_struct(Mma_typename, \ helper.var_idx(threadBlockShape, i), helper.var_idx(warpShape, i), instrunctionShape, \ "ElementA", "LayoutA", \ helper.var_idx("ElementB", i), helper.var_idx("LayoutB", i), \ helper.var_idx("ElementAccumulator", i), "layout::RowMajor", \ "OperatorClass", str(stage), "Operator") return gen_code def gen_using_FusedAddBiasEpilouge(self): gen_code = "" for i in range(self.b2b_num - 1): code_using = helper.var_idx("using FusedAddBiasEpilouge", i) epilouge_name = "typename cutlass::epilogue::threadblock::DefaultFusedBiasActEpilogueTensorOp" template_args = helper.var_idx("<ThreadblockShape", i) + helper.var_idx(",typename MmaCore", i) + helper.var_idx("::MmaPolicy::Operator, 1, EpilogueOutputOp", i) + ", 2>::Epilogue" gen_code += code_using + " = " + epilouge_name + template_args + ";\n" return gen_code def gen_using_Iterator(self): code_using = "using IteratorA0" iterator_typename = "cutlass::transform::threadblock::PredicatedTileIterator" MmaCore = "MmaCore0" matrix_shape = "cutlass::MatrixShape<" + MmaCore + "::Shape::kM, " + MmaCore + "::Shape::kK>" iterator_map = "typename " + MmaCore + "::IteratorThreadMapA" gen_code = code_using + " = " + gen_ir.gen_declare_template_struct(iterator_typename, \ matrix_shape, "ElementA", "LayoutA", "1", iterator_map, "AlignmentA_") for i in range(self.b2b_num): code_using = "using IteratorB" + str(i) iterator_typename = "cutlass::transform::threadblock::PredicatedTileIterator" MmaCore = "MmaCore" + str(i) matrix_shape = "cutlass::MatrixShape<" + MmaCore + "::Shape::kK, " + MmaCore + "::Shape::kN>" iterator_map = "typename " + MmaCore + "::IteratorThreadMapB" gen_code += code_using + " = " + gen_ir.gen_declare_template_struct(iterator_typename, \ matrix_shape, helper.var_idx("ElementB", i), helper.var_idx("LayoutB", i), "0", iterator_map, "AlignmentB_") return gen_code def gen_fragment_iterator(self): gen_code = "using AccumulatorLayout = cutlass::layout::ColumnMajor;\n" for i in range(1, self.b2b_num): code_using = "using FragmentIteratorA" + str(i) iterator_typename = "cutlass::gemm::warp::MmaTensorOpPureFragmentIterator" curr_MmaCore = "MmaCore" + str(i) prev_MmaCore = "MmaCore" + str(i - 1) Matrix_shape_curr = "cutlass::MatrixShape<" + curr_MmaCore + "::WarpShape::kM, " + curr_MmaCore + "::InstructionShape::kK>" Matrix_shape_prev = "cutlass::MatrixShape<" + prev_MmaCore + "::WarpShape::kM, " + prev_MmaCore + "::WarpShape::kN>" Curr_shape_kK = curr_MmaCore + "::Shape::kK" gen_code += code_using + " = " + gen_ir.gen_declare_template_struct(iterator_typename, \ Matrix_shape_curr, Matrix_shape_prev, Curr_shape_kK, \ helper.var_idx("ElementAccumulator", i-1), "ElementA", \ "AccumulatorLayout", "InstructionShape_", "true") return gen_code def gen_threadblockmma(self): code_using = "using ThreadblockB2bMma" iterator_typename = "cutlass::gemm::threadblock::B2bMmaPipelined" MmaPipelined_param_Mma0_shape = "typename MmaCore0::Shape" MmaPipelined_param_Mma0_iteratorA = "IteratorA0" MmaPipelined_param_Mma0_smemIteratorA = "typename MmaCore0::SmemIteratorA" MmaPipelined_param_Mma0_iteratorB = "IteratorB0" MmaPipelined_param_Mma0_smemIteratorB = "typename MmaCore0::SmemIteratorB" MmaPipelined_param_list = MmaPipelined_param_Mma0_shape + ", " + MmaPipelined_param_Mma0_iteratorA + ", " + MmaPipelined_param_Mma0_smemIteratorA + ", " + MmaPipelined_param_Mma0_iteratorB + ", " + MmaPipelined_param_Mma0_smemIteratorB + ", " for i in range(1, self.b2b_num): MmaPipelined_param_Mma_shape = "typename MmaCore" + str(i) + "::Shape" MmaPipelined_param_Mma_iteratorA = "FragmentIteratorA" + str(i) MmaPipelined_param_Mma_iteratorB = "IteratorB" + str(i) MmaPipelined_param_Mma_smemIteratorB = "typename MmaCore" + str(i) + "::SmemIteratorB" MmaPipelined_param_list += MmaPipelined_param_Mma_shape + ", " + MmaPipelined_param_Mma_iteratorA + ", " + MmaPipelined_param_Mma_iteratorB + ", " + MmaPipelined_param_Mma_smemIteratorB + ", " MmaPipelined_param_list += "ElementAccumulator0, layout::RowMajor, " for i in range(self.b2b_num - 1): epilouge_name = "EpilogueOutputOp" + str(i) MmaPipelined_param_list += epilouge_name + ", " for i in range(self.b2b_num - 1): epilouge_name = "FusedAddBiasEpilouge" + str(i) MmaPipelined_param_list += epilouge_name + ", " for i in range(self.b2b_num): MmaPolicy = "typename MmaCore" + str(i) + "::MmaPolicy" MmaPipelined_param_list += MmaPolicy + ", " cnt = 0 for i in range(self.b2b_num): MmaStage = helper.var_idx("Stages", i) final = ", " if cnt == self.b2b_num - 1: final = "" MmaPipelined_param_list += MmaStage + final cnt += 1 gen_code = code_using + " = " + gen_ir.gen_declare_template_struct(iterator_typename, MmaPipelined_param_list) return gen_code def gen_code(self): gen_using = '' # Generate default template struct gen_code = gen_ir.gen_template_struct(self.gen_class_name, self.template_param, "", speicalized = None, set_default=False) # Generate specialized template struct mmacore_codebody = self.gen_using_MmaCore(2) iterator_codebody = self.gen_using_Iterator() fragment_iterator_codebody = self.gen_fragment_iterator() epilogue_iterator_codebody = self.gen_using_FusedAddBiasEpilouge() threadBlockMma = self.gen_threadblockmma() specialized_code = mmacore_codebody + iterator_codebody + fragment_iterator_codebody + epilogue_iterator_codebody + threadBlockMma # Specialize layout C -> cutlass::layout::RowMajor rtn_template_args, speicalized_template_args = gen_ir.filtered_param(self.template_param, [ ('LayoutD', "cutlass::layout::RowMajor")], keep_= True) gen_speical_code = gen_ir.gen_template_struct(self.gen_class_name, rtn_template_args, specialized_code, speicalized = speicalized_template_args, set_default=False) code = gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("threadblock", gen_code + gen_speical_code))) return self.gen_include_header() + code class gen_b2b_mme_pipelined: def __init__(self, template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root): self.gen_class_name = "B2bMmaPipelined" self.template_param = template_param self.b2b_num = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_include_header(self): code = ''' #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/array.h\" #include \"{cutlass_dir}cutlass/aligned_buffer.h\" #include \"{cutlass_dir}cutlass/numeric_conversion.h\" #include \"{cutlass_dir}cutlass/numeric_types.h\" #include \"{cutlass_dir}cutlass/matrix_shape.h\" #include \"{cutlass_dir}cutlass/gemm/gemm.h\" #include \"{cutlass_dir}cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h\" #include \"../threadblock/b2b_mma_base.h\"\n'''.format(cutlass_dir = self.cutlass_deps_root) return code def gen_using(self): code_using = "using FragmentA0 = typename IteratorA0::Fragment;\n" code_using += "using Base = B2bMmaBase<" for i in range(self.b2b_num): code_using += helper.var_idx("Shape", i) + "_, " for i in range(self.b2b_num): code_using += helper.var_idx("Policy", i) + "_, " for i in range(self.b2b_num): code_using += helper.var_idx("Stage", i) + "_, " code_using = code_using[: -2] + ">;\n" for i in range(self.b2b_num): code_using += helper.var_idx("using FragmentB", i) + helper.var_idx(" = typename IteratorB", i) + "::Fragment;\n" code_using += helper.var_idx("using FragmentC", i) + helper.var_idx(" = typename Policy", i) + "::Operator::FragmentC;\n" code_using += helper.var_idx("using Operator", i) + helper.var_idx(" = typename Policy", i) + "::Operator;\n" for i in range(self.b2b_num - 1): code_using += helper.var_idx("using IteratorC", i) + helper.var_idx(" = typename FusedAddBiasEpilogue", i) + "::OutputTileIterator;\n" code_using += "using ArchTag = typename Policy0::Operator::ArchTag;\n" code_using += "static ComplexTransform const kTransformA0 = Operator0::kTransformA;\n" for i in range(self.b2b_num): code_using += helper.var_idx("static ComplexTransform const kTransformB", i) + helper.var_idx(" = Operator", i) + "::kTransformB;\n" code_using += "private:\n" code_using += "using WarpFragmentA0 = typename Operator0::FragmentA;\n" code_using += "using WarpFragmentB0 = typename Operator0::FragmentB;\n" for i in range(1, self.b2b_num): code_using += helper.var_idx("using WarpFragmentA", i) + helper.var_idx(" = typename FragmentIteratorA", i) + "::Fragment;\n" code_using += helper.var_idx("using WarpFragmentB", i) + helper.var_idx(" = typename Operator", i) + "::FragmentB;\n" code_using += "protected:\n" code_using += "SmemIteratorA0 smem_iterator_A_;\n" for i in range(self.b2b_num): code_using += helper.var_idx("SmemIteratorB", i) + helper.var_idx(" smem_iterator_B", i) + "_;\n" return code_using def gen_operator(self, first_use_1stage = False): code = "" def gen_operator_param(b2b_num): param_code = "" param_code += "int gemm_k_iterations_0,\n" param_code += helper.var_idx("FragmentC", b2b_num-1) + helper.var_idx(" &accum", b2b_num-1) + ",\n" param_code += "IteratorA0 iterator_A,\n" for i in range(b2b_num): param_code += helper.var_idx("IteratorB", i) + " " + helper.var_idx("iterator_B", i) + ",\n" param_code += "FragmentC0 const &src_accum, \n" for i in range(b2b_num - 1): param_code += helper.var_idx("OutputOp", i) + " " + helper.var_idx("output_op_", i) + ",\n" for i in range(b2b_num - 1): param_code += helper.var_idx("FusedAddBiasEpilogue", i) + " " + helper.var_idx("epilogue_", i) + ",\n" for i in range(b2b_num - 1): param_code += helper.var_idx("IteratorC", i) + " " + helper.var_idx("iterator_C", i) + ",\n" param_code += "TransformA0 transform_A0 = TransformA0(), \n" for i in range(b2b_num): final = "(),\n" if i == b2b_num - 1: final = "()\n" param_code += helper.var_idx("TransformB", i) + " " + helper.var_idx("transform_B", i) + " = " +helper.var_idx("TransformB", i) + final return param_code def gen_first_gemm_1stage(b2b_num): accu_code = " FragmentC0 accum0 = src_accum;\n" if b2b_num == 1: accu_code = " accum0 = src_accum;\n" code ="\ \n\ FragmentA0 tb_frag_A;\n\ FragmentB0 tb_frag_B0;\n\ \n\ int smem_write_stage_idx = 1;\n\ \n\ tb_frag_A.clear();\n\ tb_frag_B0.clear();\n\ \n\ // The last kblock is loaded in the prolog\n\ iterator_A.load(tb_frag_A);\n\ iterator_B0.load(tb_frag_B0);\n\ \n\ ++iterator_A;\n\ ++iterator_B0;\n\ \n\ WarpFragmentA0 warp_frag_A0;\n\ WarpFragmentB0 warp_frag_B0;\n\ \n\ Operator0 warp_mma0;\n\ \n\ // Avoid reading out of bounds\n\ if (gemm_k_iterations_0 <= 1) {\n\ iterator_A.clear_mask();\n\ iterator_B0.clear_mask();\n\ }\n\ \n\ // Issue loads during the first warp-level matrix multiply-add *AFTER* issuing \n\ // shared memory loads (which have the tighest latency requirement).\n\ \n\ //\n\ // Mainloop\n\ //\n\ \n\ // Note: The main loop does not support Base::WarpGemmIterations == 2.\n\ CUTLASS_GEMM_LOOP\n\ for (; gemm_k_iterations_0 > 0; --gemm_k_iterations_0) {\n\ \n\ this->smem_iterator_A_.store(tb_frag_A);\n\ this->smem_iterator_B0_.store(tb_frag_B0);\n\ \n\ __syncthreads();\n\ //\n\ // Loop over GEMM K dimension\n\ //\n\ \n\ CUTLASS_PRAGMA_UNROLL\n\ for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations0; ++warp_mma_k) {\n\ \n\ // Load warp-level tiles from shared memory, wrapping to k offset if this is the last group\n\ // as the case may be.\n\ \n\ this->warp_tile_iterator_A0_.set_kgroup_index(warp_mma_k % Base::kWarpGemmIterations0);\n\ this->warp_tile_iterator_B0_.set_kgroup_index(warp_mma_k % Base::kWarpGemmIterations0);\n\ \n\ this->warp_tile_iterator_A0_.load(warp_frag_A0);\n\ this->warp_tile_iterator_B0_.load(warp_frag_B0);\n\ \n\ ++this->warp_tile_iterator_A0_;\n\ ++this->warp_tile_iterator_B0_;\n\ \n\ warp_mma0(accum0, warp_frag_A0, warp_frag_B0, accum0);\n\ }\n\ this->warp_tile_iterator_A0_.add_tile_offset({0, -Policy0::kPartitionsK * Base::kWarpGemmIterations0});\n\ this->warp_tile_iterator_B0_.add_tile_offset({-Policy0::kPartitionsK * Base::kWarpGemmIterations0, 0});\n\ \n\ __syncthreads();\n\ iterator_A.load(tb_frag_A);\n\ iterator_B0.load(tb_frag_B0);\n\ \n\ ++iterator_A;\n\ ++iterator_B0;\n\ \n\ if(gemm_k_iterations_0 <= 2) {\n\ iterator_A.clear_mask();\n\ iterator_B0.clear_mask();\n\ }\n\ }\n" return accu_code + code def gen_first_gemm_2stage(b2b_num): accu_code = " FragmentC0 accum0 = src_accum;\n" if b2b_num == 1: accu_code = " accum0 = src_accum;\n" code ="\ \n\ FragmentA0 tb_frag_A;\n\ FragmentB0 tb_frag_B0;\n\ \n\ tb_frag_A.clear();\n\ tb_frag_B0.clear();\n\ \n\ // The last kblock is loaded in the prolog\n\ iterator_A.load(tb_frag_A);\n\ iterator_B0.load(tb_frag_B0);\n\ \n\ ++iterator_A;\n\ ++iterator_B0;\n\ \n\ this->smem_iterator_A_.store(tb_frag_A);\n\ this->smem_iterator_B0_.store(tb_frag_B0);\n\ \n\ ++this->smem_iterator_A_;\n\ ++this->smem_iterator_B0_;\n\ \n\ __syncthreads();\n\ \n\ // Pair of fragments used to overlap shared memory loads and math instructions\n\ WarpFragmentA0 warp_frag_A0[2];\n\ WarpFragmentB0 warp_frag_B0[2];\n\ \n\ this->warp_tile_iterator_A0_.set_kgroup_index(0);\n\ this->warp_tile_iterator_B0_.set_kgroup_index(0);\n\ \n\ this->warp_tile_iterator_A0_.load(warp_frag_A0[0]);\n\ this->warp_tile_iterator_B0_.load(warp_frag_B0[0]);\n\ \n\ ++this->warp_tile_iterator_A0_;\n\ ++this->warp_tile_iterator_B0_;\n\ \n\ Operator0 warp_mma0;\n\ \n\ int smem_write_stage_idx = 1;\n\ \n\ // Avoid reading out of bounds\n\ if (gemm_k_iterations_0 <= 1) {\n\ iterator_A.clear_mask();\n\ iterator_B0.clear_mask();\n\ }\n\ \n\ // Issue loads during the first warp-level matrix multiply-add *AFTER* issuing \n\ // shared memory loads (which have the tighest latency requirement).\n\ iterator_A.load(tb_frag_A);\n\ \n\ //\n\ // Mainloop\n\ //\n\ \n\ // Note: The main loop does not support Base::WarpGemmIterations == 2.\n\ CUTLASS_GEMM_LOOP\n\ for (; gemm_k_iterations_0 > 0; --gemm_k_iterations_0) {\n\ \n\ //\n\ // Loop over GEMM K dimension\n\ //\n\ \n\ CUTLASS_PRAGMA_UNROLL\n\ for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations0; ++warp_mma_k) {\n\ \n\ // Load warp-level tiles from shared memory, wrapping to k offset if this is the last group\n\ // as the case may be.\n\ \n\ if (warp_mma_k == Base::kWarpGemmIterations0 - 1) {\n\ \n\ // Write fragments to shared memory\n\ this->smem_iterator_A_.store(tb_frag_A);\n\ \n\ this->smem_iterator_B0_.store(tb_frag_B0);\n\ \n\ __syncthreads();\n\ \n\ // Issue loads during the first warp-level matrix multiply-add *AFTER* issuing \n\ // shared memory loads (which have the tighest latency requirement).\n\ iterator_A.load(tb_frag_A);\n\ \n\ ++this->smem_iterator_B0_;\n\ ++this->smem_iterator_A_;\n\ \n\ \n\ // Add negative offsets to return iterators to the 'start' of the circular buffer in shared memory\n\ if (smem_write_stage_idx == 1) {\n\ this->smem_iterator_A_.add_tile_offset({0, -Base::Stage0});\n\ this->smem_iterator_B0_.add_tile_offset({-Base::Stage0, 0});\n\ }\n\ else {\n\ this->warp_tile_iterator_A0_.add_tile_offset(\n\ {0, -Base::Stage0 * Policy0::kPartitionsK * Base::kWarpGemmIterations0});\n\ this->warp_tile_iterator_B0_.add_tile_offset(\n\ {-Base::Stage0 * Policy0::kPartitionsK * Base::kWarpGemmIterations0,\n\ 0});\n\ }\n\ \n\ smem_write_stage_idx ^= 1;\n\ }\n\ \n\ this->warp_tile_iterator_A0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);\n\ this->warp_tile_iterator_B0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);\n\ \n\ this->warp_tile_iterator_A0_.load(warp_frag_A0[(warp_mma_k + 1) % 2]);\n\ this->warp_tile_iterator_B0_.load(warp_frag_B0[(warp_mma_k + 1) % 2]);\n\ \n\ ++this->warp_tile_iterator_A0_;\n\ ++this->warp_tile_iterator_B0_;\n\ \n\ if (warp_mma_k == 0) {\n\ \n\ iterator_B0.load(tb_frag_B0);\n\ \n\ ++iterator_A;\n\ ++iterator_B0;\n\ \n\ // Avoid reading out of bounds if this was the last loop iteration\n\ if (gemm_k_iterations_0 <= 2) {\n\ iterator_A.clear_mask();\n\ iterator_B0.clear_mask();\n\ }\n\ }\n\ \n\ warp_mma0(accum0, warp_frag_A0[warp_mma_k % 2], warp_frag_B0[warp_mma_k % 2], accum0);\n\ }\n\ }\n" return accu_code + code def gen_other_gemms_2stage(b2b_num): code = "" def gemm_teamplate(id): code = "// " + str(id + 1) + " Gemm" code += " /// Iterator to load a warp-scoped tile of A1 operand from intermediate accumulator tile\n" code += " " + helper.var_idx("FragmentC", id - 1) + helper.var_idx(" after_epilouge_accu", id - 1) + ";\n" code += " " + helper.var_idx("epilogue_", id - 1) + helper.var_idx("(output_op_", id - 1) + helper.var_idx(", accum", id - 1) \ + helper.var_idx(", after_epilouge_accu", id - 1) + helper.var_idx(", iterator_C", id - 1) +");\n" # FragmentIteratorA1 warp_tile_iterator_A1_(accum0); code += " " + helper.var_idx("FragmentIteratorA", id) + helper.var_idx(" warp_tile_iterator_A", id) +"_(" + helper.var_idx("after_epilouge_accu", id - 1) + ");\n" # FragmentB1 tb_frag_B1; code += " " + helper.var_idx("FragmentB", id) + " " + helper.var_idx("tb_frag_B", id) + ";\n" # tb_frag_B1.clear(); code += " " + helper.var_idx("tb_frag_B", id) + ".clear();\n" # iterator_B1.load(tb_frag_B1); code += " " + helper.var_idx("iterator_B", id) + ".load(" + helper.var_idx("tb_frag_B", id) + ");\n" # ++iterator_B1; code += " " + "++" + helper.var_idx("iterator_B", id) + ";\n" # this->smem_iterator_B1_.store(tb_frag_B1); code += " " + helper.var_idx("this->smem_iterator_B", id) + "_.store(" + helper.var_idx("tb_frag_B", id) + ");\n" # ++this->smem_iterator_B1_; code += " " + helper.var_idx("++this->smem_iterator_B", id) + "_;\n" # __syncthreads(); code += " " + "__syncthreads();\n" # WarpFragmentA1 warp_frag_A1[2]; code += " " + helper.var_idx("WarpFragmentA", id) + helper.var_idx(" warp_frag_A", id) + "[2];\n" # WarpFragmentB1 warp_frag_B1[2]; code += " " + helper.var_idx("WarpFragmentB", id) + helper.var_idx(" warp_frag_B", id) + "[2];\n" # this->warp_tile_iterator_B1_.set_kgroup_index(0); code += " " + helper.var_idx("this->warp_tile_iterator_B", id) + "_.set_kgroup_index(0);\n" # warp_tile_iterator_A1_.load(warp_frag_A1[0], output_op_0); code += " " + helper.var_idx("warp_tile_iterator_A", id) + helper.var_idx("_.load(warp_frag_A", id) + "[0]);\n" # this->warp_tile_iterator_B1_.load(warp_frag_B1[0]); code += " " + helper.var_idx("this->warp_tile_iterator_B", id) + helper.var_idx("_.load(warp_frag_B", id) + "[0]);\n" # ++warp_tile_iterator_A1_; code += " " + helper.var_idx("++warp_tile_iterator_A", id) + "_;\n" # ++this->warp_tile_iterator_B1_; code += " " + helper.var_idx("++this->warp_tile_iterator_B", id) + "_;\n" # Operator1 warp_mma1; code += " " + helper.var_idx("Operator", id) + " " + helper.var_idx("warp_mma", id) + ";\n" # smem_write_stage_idx = 1; code += " " + "smem_write_stage_idx = 1;\n" # int gemm_k_iterations_1 = FragmentIteratorA1::Policy::kIterations / Base::kWarpGemmIterations1; code += " " + helper.var_idx("int gemm_k_iterations_", id) + " = " + helper.var_idx("FragmentIteratorA", id) + helper.var_idx("::Policy::kIterations / Base::kWarpGemmIterations", id) +";\n" # if (gemm_k_iterations_1 <= 1) { # iterator_B1.clear_mask(); # } code += " " + "if (" + helper.var_idx("gemm_k_iterations_", id) + " <= 1 ){\n" \ + " " + " " + helper.var_idx("iterator_B", id) + ".clear_mask();\n" \ + " " +"}\n" # CUTLASS_PRAGMA_UNROLL code += " " + "CUTLASS_PRAGMA_UNROLL\n" # for (; gemm_k_iterations_1 > 0; --gemm_k_iterations_1) { code += " " + helper.var_idx("for (; gemm_k_iterations_", id) + helper.var_idx(" > 0; --gemm_k_iterations_", id) + ") {\n" # CUTLASS_PRAGMA_UNROLL code += " " + " " + "CUTLASS_PRAGMA_UNROLL\n" # for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations1; ++warp_mma_k) { code += " " + " " + helper.var_idx("for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations", id) + "; ++warp_mma_k) {\n" # if (warp_mma_k == Base::kWarpGemmIterations1 - 1) { code += " " + " " + " " + helper.var_idx("if (warp_mma_k == Base::kWarpGemmIterations", id) + " - 1) {\n" # this->smem_iterator_B1_.store(tb_frag_B1); code += " " + " " + " " + " " + helper.var_idx(" this->smem_iterator_B", id) + helper.var_idx("_.store(tb_frag_B", id) + ");\n" # __syncthreads(); code += " " + " " + " " + " " + "__syncthreads();\n" # ++smem_iterator_B1_; code += " " + " " + " " + " " + helper.var_idx(" ++smem_iterator_B", id) + "_;\n" # if (smem_write_stage_idx == 1) { # smem_iterator_B1_.add_tile_offset({-Base::Stage, 0}); # } code += " " + " " + " " + " " + "if ( smem_write_stage_idx == 1 ) {\n" \ + " " + " " + " " + " " + " " + helper.var_idx("smem_iterator_B", id) + helper.var_idx("_.add_tile_offset({-Base::Stage", i) + ", 0});\n" \ + " " + " " + " " + " " +"}\n" # else { # this->warp_tile_iterator_B1_.add_tile_offset( # {-Base::Stage * Policy1::kPartitionsK * # Base::kWarpGemmIterations1, # 0}); # } code += " " + " " + " " + " " + "else {\n" \ + " " + " " + " " + " " + " " + helper.var_idx("this->warp_tile_iterator_B", id) + "_.add_tile_offset(\n" \ + " " + " " + " " + " " + " " + helper.var_idx("{-Base::Stage", id) + helper.var_idx(" * Policy", id) + "::kPartitionsK *\n" \ + " " + " " + " " + " " + " " + helper.var_idx("Base::kWarpGemmIterations", id) + ",\n" \ + " " + " " + " " + " " + " " + "0});\n" \ + " " + " " + " " + " " + "}\n" # smem_write_stage_idx ^= 1; # } code += " " + " " + " " + " " + "smem_write_stage_idx ^= 1;\n" \ + " " + " " + " " + "}\n" # this->warp_tile_iterator_B1_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations1); code += " " + " " + " " + helper.var_idx("this->warp_tile_iterator_B", id) + helper.var_idx("_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations", id) + ");\n" # warp_tile_iterator_A1_.load(warp_frag_A1[(warp_mma_k + 1) % 2], output_op_0); code += " " + " " + " " + helper.var_idx("warp_tile_iterator_A", id) + helper.var_idx("_.load(warp_frag_A", id) + "[(warp_mma_k + 1) % 2]);\n" # this->warp_tile_iterator_B1_.load(warp_frag_B1[(warp_mma_k + 1) % 2]); code += " " + " " + " " + helper.var_idx("this->warp_tile_iterator_B", id) + helper.var_idx("_.load(warp_frag_B", id) + "[(warp_mma_k + 1) % 2]);\n" # ++warp_tile_iterator_A1_; code += " " + " " + " " + helper.var_idx("++warp_tile_iterator_A", id) + "_;\n" # ++this->warp_tile_iterator_B1_; code += " " + " " + " " + helper.var_idx("++this->warp_tile_iterator_B", id) + "_;\n" # if (warp_mma_k == 0) { # iterator_B1.load(tb_frag_B1); # ++iterator_B1; # if (gemm_k_iterations_1 <= 2) { # iterator_B1.clear_mask(); # } # } code += " " + " " + " " + " if (warp_mma_k == 0) {\n" \ + " " + " " + " " + " " + helper.var_idx("iterator_B", id) + helper.var_idx(".load(tb_frag_B", id) + ");\n" \ + " " + " " + " " + " " + helper.var_idx("++iterator_B", id) +";\n" \ + " " + " " + " " + " " + helper.var_idx("if (gemm_k_iterations_", id) +" <= 2) {\n" \ + " " + " " + " " + " " + " " + helper.var_idx("iterator_B", id) + ".clear_mask();\n" \ + " " + " " + " " + " " + "}\n" \ + " " + " " + " " + "}\n" # warp_mma1(accum, warp_frag_A1[warp_mma_k % 2], warp_frag_B1[warp_mma_k % 2], accum); # } # } code += " " + " " + " " + helper.var_idx("warp_mma", id) + helper.var_idx("(accum", id) + helper.var_idx(", warp_frag_A", id) + helper.var_idx("[warp_mma_k % 2], warp_frag_B", id) + helper.var_idx("[warp_mma_k % 2], accum", id) + ");\n" \ + " " + " " + "}\n" \ + " " + "}\n\n\n" return code for i in range (1, b2b_num): clear_accu = "" if i != b2b_num - 1: clear_accu = " " + helper.var_idx("FragmentC", i) + helper.var_idx(" accum", i) +";\n" clear_accu += " " + helper.var_idx("accum", i) +".clear();\n" code += clear_accu + gemm_teamplate(i) return code operator_code = " CUTLASS_DEVICE\n\ void operator()(\n " + gen_operator_param(self.b2b_num) + ") {\n" if first_use_1stage: operator_code += gen_first_gemm_1stage(self.b2b_num) else: operator_code += gen_first_gemm_2stage(self.b2b_num) operator_code += gen_other_gemms_2stage(self.b2b_num) + "}\n" return operator_code def gen_construct_func(self): name = self.gen_class_name func_code = "CUTLASS_DEVICE\n" func_code += name + "(\n" \ + " " + "typename Base::B2bMmaSharedStorage &shared_storage,\n" \ + " " + "int thread_idx,\n" \ + " " + "int warp_idx,\n" \ + " " + "int lane_idx\n" \ + "):\n" func_code += " " + "Base(shared_storage, thread_idx, warp_idx, lane_idx),\n" \ + " " + "smem_iterator_A_(shared_storage.sharedStorage0.operand_A_ref(), thread_idx),\n" for i in range(self.b2b_num): final = ",\n" if i == self.b2b_num - 1: final = " {\n" func_code += helper.var_idx("smem_iterator_B", i) + helper.var_idx("_(shared_storage.sharedStorage", i) +".operand_B_ref(), thread_idx)" + final func_code += " " + "int warp_idx_mn = warp_idx % (Base::WarpCount0::kM * Base::WarpCount0::kN);\n" func_code += " " + "int warp_idx_k = warp_idx / (Base::WarpCount0::kM * Base::WarpCount0::kN);\n" func_code += " " + "int warp_idx_m = warp_idx_mn % Base::WarpCount0::kM;\n" func_code += " " + "int warp_idx_n = warp_idx_mn / Base::WarpCount0::kM;\n" for i in range(self.b2b_num): func_code += " " + helper.var_idx("int tile_offset_k", i) + helper.var_idx(" = Base::kWarpGemmIterations", i) + " * warp_idx_k;\n" func_code += " " + "this->warp_tile_iterator_A0_.add_tile_offset({warp_idx_m, tile_offset_k0});\n" for i in range(self.b2b_num): func_code += " " + helper.var_idx("this->warp_tile_iterator_B", i) + helper.var_idx("_.add_tile_offset({tile_offset_k", i) + ", warp_idx_n});\n" func_code += "}\n" return func_code def gen_member_func(self, first_use_1stage): code = "public:\n" code += self.gen_operator(first_use_1stage) code += self.gen_construct_func() return code def gen_code(self, first_use_1stage): def gen_template_args(b2b_num): template_param = [] template_param.append(("typename", "Shape0")) template_param.append(("typename", "IteratorA0")) template_param.append(("typename", "SmemIteratorA0")) template_param.append(("typename", "IteratorB0")) template_param.append(("typename", "SmemIteratorB0")) for i in range(1, b2b_num): template_param.append(("typename", helper.var_idx("Shape", i))) template_param.append(("typename", helper.var_idx("FragmentIteratorA", i))) template_param.append(("typename", helper.var_idx("IteratorB", i))) template_param.append(("typename", helper.var_idx("SmemIteratorB", i))) template_param.append(("typename", "ElementC")) template_param.append(("typename", "LayoutC")) for i in range(0, b2b_num - 1): template_param.append(("typename", helper.var_idx("OutputOp", i))) for i in range(0, b2b_num - 1): template_param.append(("typename", helper.var_idx("FusedAddBiasEpilogue", i))) for i in range(0, b2b_num): template_param.append(("typename", helper.var_idx("Policy", i))) for i in range(0, b2b_num): template_param.append((int, helper.var_idx("Stage", i))) template_param.append(("typename","TransformA0", "NumericArrayConverter<typename SmemIteratorA0_::Element, typename IteratorA0_::Element, IteratorA0_::Fragment::kElements>")) for i in range(0, b2b_num): cvtr = helper.var_idx("NumericArrayConverter<typename SmemIteratorB", i) + helper.var_idx("_::Element, typename IteratorB", i) + helper.var_idx("_::Element, IteratorB", i) + "_::Fragment::kElements>" template_param.append(("typename", helper.var_idx("TransformB", i), cvtr)) template_param.append(("typename", "Enable", "bool")) return template_param template_param = gen_template_args(self.b2b_num) inheritance_code = "public B2bMmaBase<" for i in range(self.b2b_num): inheritance_code += helper.var_idx("Shape", i) + "_, " for i in range(self.b2b_num): inheritance_code += helper.var_idx("Policy", i) + "_, " for i in range(self.b2b_num - 1): inheritance_code += helper.var_idx("Stage", i) + "_, " inheritance_code += helper.var_idx("Stage", self.b2b_num - 1) + "_" inheritance_code += ">" code_body = "" using_code= self.gen_using() func_code = self.gen_member_func(first_use_1stage) code_body = using_code + func_code class_code = gen_ir.gen_template_class(self.gen_class_name, template_param, code_body, inheritance_code = inheritance_code) code = self.gen_include_header() code += gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("threadblock", class_code))) # print(code) return code class gen_b2b_mma_base: def __init__(self, template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root): self.gen_class_name = gen_class_name self.template_param = template_param self.b2b_num = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_include_header(self): code = ''' #pragma once #include \"{cutlass_dirs}cutlass/aligned_buffer.h\" #include \"{cutlass_dirs}cutlass/arch/memory.h\" #include \"{cutlass_dirs}cutlass/array.h\" #include \"{cutlass_dirs}cutlass/cutlass.h\" #include \"{cutlass_dirs}cutlass/gemm/gemm.h\" #include \"{cutlass_dirs}cutlass/matrix_shape.h\" #include \"{cutlass_dirs}cutlass/numeric_types.h\"\n'''.format(cutlass_dirs=self.cutlass_deps_root) return code def gen_shared_storage(self): code = \ " template< \n\ typename Shape_,\n\ typename Policy_,\n\ int ThisStage_\n\ >\n\ class SharedStorage {\n\ public:\n\ using Shape = Shape_;\n\ using Policy = Policy_;\n\ static int const ThisStage = ThisStage_;\n\ using Operator = typename Policy::Operator;\n\ \ using TensorRefA = TensorRef<typename Operator::ElementA, typename Operator::LayoutA>;\n\ \ /// Tensor reference to the B operand \n\ using TensorRefB = TensorRef<typename Operator::ElementB, typename Operator::LayoutB>;\n\ \n\ /// Shape of the A matrix operand in shared memory \n\ using ShapeA = MatrixShape<Shape::kM + Policy::SmemPaddingA::kRow,\n\ Shape::kK * ThisStage +\n\ Policy::SmemPaddingA::kColumn>;\n\ \n\ /// Shape of the B matrix operand in shared memory\n\ using ShapeB =\n\ MatrixShape<Shape::kK * ThisStage + Policy::SmemPaddingB::kRow,\n\ Shape::kN + Policy::SmemPaddingB::kColumn>;\n\ \n\ public:\n\ \n\ /// Buffer for A operand\n\ AlignedBuffer<typename Operator::ElementA, ShapeA::kCount> operand_A;\n\ \n\ /// Buffer for B operand\n\ AlignedBuffer<typename Operator::ElementB, ShapeB::kCount> operand_B;\n\ \n\ public:\n\ \n\ /// Returns a layout object for the A matrix\n\ CUTLASS_DEVICE\n\ static typename Operator::LayoutA LayoutA() {\n\ return Operator::LayoutA::packed({ShapeA::kRow, ShapeA::kColumn});\n\ }\n\ \n\ /// Returns a layout object for the B matrix\n\ CUTLASS_HOST_DEVICE\n\ static typename Operator::LayoutB LayoutB() {\n\ return Operator::LayoutB::packed({ShapeB::kRow, ShapeB::kColumn});\n\ }\n\ \n\ /// Returns a TensorRef to the A operand\n\ CUTLASS_HOST_DEVICE\n\ TensorRefA operand_A_ref() {\n\ return TensorRefA{operand_A.data(), LayoutA()};\n\ }\n\ \n\ /// Returns a TensorRef to the B operand\n\ CUTLASS_HOST_DEVICE\n\ TensorRefB operand_B_ref() {\n\ return TensorRefB{operand_B.data(), LayoutB()};\n\ }\n\ CUTLASS_HOST_DEVICE\n\ void * get_B_Shared_ptr() {\n\ return operand_B.data();\n\ }\n\ };\n" return code def gen_using_and_misc(self, b2b_num): code_using = "" for i in range(b2b_num): code_using += "using Operator" +str(i) + " = typename Policy" + str(i) +"::Operator;\n" for i in range(b2b_num): code_using += "using WarpGemm" +str(i) + " = typename Policy" + str(i) +"::Operator::Shape;\n" for i in range(b2b_num): code_using += "using WarpCount" +str(i) + " = GemmShape<" + helper.var_idx("Shape", i) +"::kM / " + helper.var_idx("WarpGemm", i) +"::kM, "\ + helper.var_idx("Shape", i) +"::kN / " + helper.var_idx("WarpGemm", i) +"::kN, "\ + helper.var_idx("Shape", i) +"::kK / " + helper.var_idx("WarpGemm", i) +"::kK>;\n" code_misc = "" for i in range(b2b_num): code_misc += "static int const " + helper.var_idx("kWarpGemmIterations", i) + " = (" + helper.var_idx("WarpGemm", i) + "::kK / " + helper.var_idx("Operator", i) +"::Policy::MmaShape::kK);\n" code = code_using + code_misc + self.gen_shared_storage() for i in range(b2b_num): code += "using " + helper.var_idx("SharedStorage", i) + " = SharedStorage<" + helper.var_idx("Shape", i) + ", " + helper.var_idx("Policy", i) +", " + helper.var_idx("Stage", i) + ">;\n" def gen_union_shared_storage(b2b_num): code = "" for i in range(b2b_num): code += " " +helper.var_idx("SharedStorage", i) + " " + helper.var_idx("sharedStorage", i) +";\n" return code code += "union B2bMmaSharedStorage {\n" + gen_union_shared_storage(self.b2b_num) + "};\n" for i in range(b2b_num - 1): code += helper.var_idx("void * C", i) + "_smm_ptr;\n" return code def gen_protected(self): code = "\nprotected:\n" code += "typename Operator0::IteratorA warp_tile_iterator_A0_;\n" for i in range(self.b2b_num): code += "typename Operator" +str(i) + "::IteratorB" +" warp_tile_iterator_B" + str(i) + "_;\n" return code def gen_public_member(self): code = "\npublic:\n" code += "CUTLASS_DEVICE\n" code += \ "B2bMmaBase(\n" + \ " B2bMmaSharedStorage & shared_storage,\n" + \ " int thread_idx,\n" + \ " int warp_idx,\n" + \ " int lane_idx\n" + \ "):\n" + \ " warp_tile_iterator_A0_(shared_storage.sharedStorage0.operand_A_ref(), lane_idx),\n" for i in range(self.b2b_num): final = ",\n" if i == self.b2b_num-1: final = "\n" iterator = " warp_tile_iterator_B" + str(i) + "_" shared_storage = "shared_storage.sharedStorage" + str(i) + ".operand_B_ref()" code += iterator + "(" + shared_storage + ", lane_idx)" + final code += "{\n" for i in range(self.b2b_num - 1): code += helper.var_idx(" C", i) + helper.var_idx("_smm_ptr = shared_storage.sharedStorage", i) + ".get_B_Shared_ptr();\n" code += "}\n" return code def gen_code(self): tempalte_arg = [] for i in range(self.b2b_num): tempalte_arg.append(("typename", helper.var_idx("Shape", i))) for i in range(self.b2b_num): tempalte_arg.append(("typename", helper.var_idx("Policy", i))) for i in range(self.b2b_num): tempalte_arg.append((int, helper.var_idx("Stage", i))) code_body = self.gen_using_and_misc(self.b2b_num) code_body += self.gen_protected() code_body += self.gen_public_member() class_code = gen_ir.gen_template_class("B2bMmaBase", tempalte_arg, code_body) code = self.gen_include_header() + gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("threadblock", class_code))) return code class gen_threadblock: def __init__(self, template_param, gen_class_name, b2b_num, output_dir, cutlass_deps_root, project_root): self.gen_class_name = gen_class_name self.template_param = template_param self.b2b_num = b2b_num self.file_dir = output_dir + "/threadblock/" self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root self.gen_b2b_mma_base = gen_b2b_mma_base(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) self.gen_b2b_mma_piplined = gen_b2b_mme_pipelined(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) self.gen_default_b2b_mma = gen_default_b2b_mma(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) def gen_code(self, first_use_1stage): base_code = self.gen_b2b_mma_base.gen_code() print("[INFO]: Gen kernel code [b2b_mma_base.h]output Dir: is ", self.file_dir) with open(self.file_dir + "b2b_mma_base.h", "w+") as f: f.write(base_code) pipeline_code = self.gen_b2b_mma_piplined.gen_code(first_use_1stage = first_use_1stage) print("[INFO]: Gen kernel code [b2b_mma_pipelined.h]output Dir: is ", self.file_dir) with open(self.file_dir + "b2b_mma_pipelined.h", "w+") as f: f.write(pipeline_code) default_code = self.gen_default_b2b_mma.gen_code() print("[INFO]: Gen kernel code [default_b2b_mma.h]output Dir: is ", self.file_dir) with open(self.file_dir + "default_b2b_mma.h", "w+") as f: f.write(default_code)
warp-main
warp/native/cutlass/examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_threadblock.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import ast fuse_gemm_info = [ { 'epilogue': { 'tp': 'LeakyRelu', #'CustomizedLeaky_RELU' 'bias': {'addbias': False, 'bias_tp': 'mat'}, 'args': [('float', 'leaky_alpha', 1.3), ], 'func': ''' y = max(leaky_alpha * x, x) y = y * x ''' } }, ] class AnalysisNodeVisitor(ast.NodeVisitor): def visit_Import(self,node): ast.NodeVisitor.generic_visit(self, node) def visit_ImportFrom(self,node): ast.NodeVisitor.generic_visit(self, node) def visit_Assign(self,node): print('Node type: Assign and fields: ', node._fields) # print('Node type: Assign and targets value: ', node.targets, node.value) ast.NodeVisitor.generic_visit(self, node) def visit_BinOp(self, node): print('Node type: BinOp and fields: ', node._fields) print('node op: ', type(node.op).__name__) ast.NodeVisitor.generic_visit(self, node) def visit_Expr(self, node): print('Node type: Expr and fields: ', node._fields) ast.NodeVisitor.generic_visit(self, node) def visit_Num(self,node): print('Node type: Num and fields: ', node._fields) print('Node type: Num: ', node.n) def visit_Name(self,node): print('Node type: Name and fields: ', node._fields) print('Node type: Name and fields: ', type(node.ctx).__name__, node.id) ast.NodeVisitor.generic_visit(self, node) def visit_Str(self, node): print('Node type: Str and fields: ', node._fields) class CodeVisitor(ast.NodeVisitor): def visit_BinOp(self, node): if isinstance(node.op, ast.Add): node.op = ast.Sub() self.generic_visit(node) def visit_Assign(self, node): print('Assign %s' % node.value) self.generic_visit(node) def visit_Name(self, node): print("Name:", node.id) self.generic_visit(node) def visit_FunctionDef(self, node): print('Function Name:%s'% node.name.op) self.generic_visit(node) func_log_stmt = ast.Print( dest = None, values = [ast.Str(s = 'calling func: %s' % node.name, lineno = 0, col_offset = 0)], nl = True, lineno = 0, col_offset = 0, ) node.body.insert(0, func_log_stmt) visitor = AnalysisNodeVisitor() code = \ ''' a=max(leaky_alpha * x, x +1) ''' visitor.visit(ast.parse(code))
warp-main
warp/native/cutlass/examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_customized_epilogue.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# class gen_build_sys: def __init__(self, cutlass_deps_dir, output_dir = "../"): self.output_dir = output_dir self.cutlass_deps_dir = cutlass_deps_dir def gen_top(self): code = "" code += '''\ # Auto Generated code - Do not edit. cmake_minimum_required(VERSION 3.8) project(CUTLASS_MULTI_GEMMS LANGUAGES CXX CUDA) find_package(CUDAToolkit) set(CUDA_PATH ${{CUDA_TOOLKIT_ROOT_DIR}}) set(CUTLASS_PATH \"{cutlass_deps_dir}/include\") set(CUTLASS_UTIL_PATH \"{cutlass_deps_dir}/tools/util/include\") list(APPEND CMAKE_MODULE_PATH ${{CUDAToolkit_LIBRARY_DIR}}) '''.format(cutlass_deps_dir=self.cutlass_deps_dir) code += '''\ set(GPU_ARCHS \"\" CACHE STRING \"List of GPU architectures (semicolon-separated) to be compiled for.\") if(\"${GPU_ARCHS}\" STREQUAL \"\") set(GPU_ARCHS \"70\") endif() foreach(arch ${GPU_ARCHS}) set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -gencode arch=compute_${arch},code=sm_${arch}\") if(SM STREQUAL 70 OR SM STREQUAL 75) set(CMAKE_C_FLAGS \"${CMAKE_C_FLAGS} -DWMMA\") set(CMAKE_CXX_FLAGS \"${CMAKE_CXX_FLAGS} -DWMMA\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -DWMMA\") endif() endforeach() set(CMAKE_C_FLAGS \"${CMAKE_C_FLAGS}\") set(CMAKE_CXX_FLAGS \"${CMAKE_CXX_FLAGS}\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -Xcompiler -Wall\") set(CMAKE_C_FLAGS_DEBUG \"${CMAKE_C_FLAGS_DEBUG} -Wall -O0\") set(CMAKE_CXX_FLAGS_DEBUG \"${CMAKE_CXX_FLAGS_DEBUG} -Wall -O0\") set(CMAKE_CUDA_FLAGS_DEBUG \"${CMAKE_CUDA_FLAGS_DEBUG} -O0 -G -Xcompiler -Wall\") set(CMAKE_CXX_STANDARD 11) set(CMAKE_CXX_STANDARD_REQUIRED ON) if(CMAKE_CXX_STANDARD STREQUAL \"11\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} --expt-extended-lambda\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr\") endif() set(CMAKE_CXX_FLAGS \"${CMAKE_CXX_FLAGS} -g -O3\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -Xcompiler -O3\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -Xcompiler=-fno-strict-aliasing\") set(COMMON_HEADER_DIRS ${PROJECT_SOURCE_DIR} ${CUDAToolkit_INCLUDE_DIRS} ) set(COMMON_LIB_DIRS ${CUDAToolkit_LIBRARY_DIR} ) list(APPEND COMMON_HEADER_DIRS ${CUTLASS_PATH}) list(APPEND COMMON_HEADER_DIRS ${CUTLASS_UTIL_PATH}) ''' code += '''\ include_directories( ${COMMON_HEADER_DIRS} ) link_directories( ${COMMON_LIB_DIRS} ) add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0) add_definitions(-DGOOGLE_CUDA=1) add_executable(sample sample/sample.cu one_api.cu ) target_link_libraries(sample PRIVATE -lcudart -lnvToolsExt ${CMAKE_THREAD_LIBS_INIT} ) if(NOT DEFINED LIB_INSTALL_PATH) set(LIB_INSTALL_PATH ${CMAKE_CURRENT_BINARY_DIR}) endif() ''' return code def gen_code(self): top_code = self.gen_top() with open(self.output_dir + "CMakeLists.txt", "w") as f: f.write(top_code)
warp-main
warp/native/cutlass/examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_cmake.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import helper import gen_ir as ir import gen_turing_and_volta as gen_basic class gen_verify: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.name = gen_class_name + "_verify" self.b2b_num = len(fuse_gemm_info) self.params = [] self.user_header_file = "" for header in user_header_file: self.user_header_file += "#include \"" + header + "\"\n" self.seperate_cutlass = gen_basic.gen_volta_turing_fuse_act_impl(fuse_gemm_info, gen_class_name, user_header_file, output_dir) self.gen_params() self.output_dir = output_dir def gen_code(self): code = "" code += self.user_header_file code += self.seperate_cutlass.gen_using(False) #False -> Turing, True -> Volta code_body = "" for i in range(self.b2b_num): code_body += " " + helper.var_idx("Gemm", i) + helper.var_idx(" gemm_op_", i) + ";\n" code_body += " " + helper.var_idx("gemm_op_", i) + helper.var_idx(".initialize(Arguments_", i) + ", nullptr);\n" code_body += self.seperate_cutlass.gen_run() code += ir.gen_func(self.name, self.params, code_body) helper.write_2_headfile("cutlass_verify.h", self.output_dir, code) def gen_params(self): for i in range(self.b2b_num): self.params.append( ( helper.var_idx("typename Gemm", i)+ "::Arguments", helper.var_idx("Arguments_", i) ) ) def get_params(self, declartion = True): code = "" if declartion: for param in self.params: code += param[0] + " " + param[1] + ";\n" return code def gen_initialize(): code = "" initialize_code = self.seperate_cutlass.gen_initialize() code = ir.gen_func("initialize", [[]])
warp-main
warp/native/cutlass/examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_verify.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# def type_2_cutlass_type(input_type = "fp16"): # float point type if input_type == "fp32": return "float" if input_type == "bf16": return "cutlass::bfloat16_t" if input_type == "fp16": return "cutlass::half_t" # integer type if(input_type == "int32"): return "int32_t" if(input_type == "int8"): return "int8_t" if input_type == 'Row': return 'cutlass::layout::RowMajor' if input_type == 'Col': return 'cutlass::layout::ColumnMajor' def cvt_2_cutlass_shape(gemm_shape): # gemm shape if len(gemm_shape) == 3: val = "cutlass::gemm::GemmShape<" \ + str(gemm_shape[0]) + ", " \ + str(gemm_shape[1]) + ", " \ + str(gemm_shape[2]) + ">" return val def write_2_headfile(filename, file_dir, string): with open(file_dir + filename, 'w') as f: f.write("/* Auto Generated code - Do not edit.*/\n\n\n#pragma once\n" + string) def var_idx(varaiable, index): return varaiable + str(index) def list_2_string(input_list, ): rtn_string = "" cnt = 0 for element in input_list: final = ", \n" if cnt == len(input_list) - 1: final = "\n" cnt += 1 rtn_string += str(element) + final return rtn_string def get_epilouge_info(layer_info): return layer_info['epilogue'] def get_epilogue_tp(layer_info): epilogue_info = get_epilouge_info(layer_info) return epilogue_info['tp'] def get_epilogue_add_bias_or_not(layer_info): epilogue_info = get_epilouge_info(layer_info) return epilogue_info['bias']['addbias'] def get_epilogue_add_bias_tp(layer_info): epilogue_info = get_epilouge_info(layer_info) return epilogue_info['bias']['bias_tp'] def get_epilogue_args(layer_info): epilogue_info = get_epilouge_info(layer_info) return epilogue_info['args'] def get_epilogue_bias_shape(layer_info): bias_tp = get_epilogue_add_bias_tp(layer_info).lower() mn_shape = layer_info['mnk'][:-1] if bias_tp == 'mat': mn_shape[0] = 'M' return mn_shape elif bias_tp == 'vec': mn_shape[0] = 1 return mn_shape else: assert(0) def get_epilogue_bias_ldm(layer_info): bias_tp = get_epilogue_add_bias_tp(layer_info).lower() mn_shape = layer_info['mnk'][:-1] c_layout = layer_info['C_format'].lower() if c_layout != 'row': assert(0) if bias_tp == 'mat': return mn_shape[1] elif bias_tp == 'vec': return 0 else: assert(0) def get_epilogue_compute_tp(layer_info): return layer_info['Acc_tp']
warp-main
warp/native/cutlass/examples/44_multi_gemm_ir_and_codegen/ir_gen/helper.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import helper import gen_ir as ir class gen_turing_impl: def __init__(self,fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.class_name = gen_class_name self.gen_class_name = gen_class_name + "_turing_impl" self.user_header_file = "" for header in user_header_file: self.user_header_file += "#include \"" + header + "\"\n" self.output_dir = output_dir self.b2b_num = len(fuse_gemm_info) self.gen_turing_unfused = gen_volta_turing_fuse_act_impl(fuse_gemm_info, gen_class_name, user_header_file, output_dir) def gen_using(self): code_using = "using b2b_gemm = typename cutlass::gemm::device::" + self.class_name + "<cutlass::half_t>;" return code_using + "\n" def gen_initialize(self): code = "" for i in range(self.b2b_num): code_this = "" code_this += helper.var_idx(helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + " alpha", i) + " = " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(1);\n" beta = "(1)" if helper.get_epilogue_add_bias_or_not(self.fuse_gemm_info[i]) is False: beta = "(0)" code_this += helper.var_idx(helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + " beta", i) + " = " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + beta + ";\n" k_str = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: k_str = "K0" code_this += helper.var_idx("cutlass::gemm::GemmCoord problem_size_", i) + "(M, " + str(self.fuse_gemm_info[i]['mnk'][1]) + ", " + k_str + ");\n" code += code_this code += "typename b2b_gemm::Arguments arguments{\n" for i in range(self.b2b_num): code += " " + helper.var_idx("problem_size_", i) + ",\n" code += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("A", 0) + "), " + helper.var_idx("problem_size_", 0) + ".k()},\n" for i in range(self.b2b_num): ldmB = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: ldmB = "K0" if self.fuse_gemm_info[i]['B_format'] is 'Row': ldmB = str(self.fuse_gemm_info[i]['mnk'][1]) ldmC = str(helper.get_epilogue_bias_ldm(self.fuse_gemm_info[i])) code += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_tp']) + "*>(" + helper.var_idx("B", i) + "), " + ldmB + "},\n" code += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("C", i) + "), " + ldmC + "},\n" code += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("D", self.b2b_num -1) + "), " + helper.var_idx("problem_size_", self.b2b_num - 1) + ".n()},\n" for i in range(self.b2b_num): code += " " + "{ " + helper.var_idx("alpha", i) + ", " + helper.var_idx("beta", i) for epilogue_arg in helper.get_epilogue_args(self.fuse_gemm_info[i]): arg_name = helper.var_idx("Epilogue", i) + "_" + epilogue_arg[1] code += ", " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(" + str(arg_name) + ")" code += "},\n" code += " " + "Batch};\n\n" code += " " "b2b_gemm gemm_op;\n" code += " " + "gemm_op.initialize(arguments);\n" return code + "\n" def gen_run(self): code = " " + "gemm_op(stream);\n" return code def gen_wrapper(self): code_body = "" arg_lists = [] arg_lists.append(["int", "M"]) arg_lists.append(["int", "K0"]) arg_lists.append(["int", "Batch"]) arg_lists.append(["void*", helper.var_idx("A", 0)]) for i in range(self.b2b_num): arg_lists.append(["void*", helper.var_idx("B", i)]) arg_lists.append(["void*", helper.var_idx("C", i)]) arg_lists.append(["void*", helper.var_idx("D", i)]) epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) acc_tp = helper.get_epilogue_compute_tp(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_tp = arg[0] arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] arg_lists.append([arg_tp, arg_name]) if self.b2b_num == 1: code_body += self.gen_turing_unfused.gen_using(False) #False -> Turing, True -> Volta code_body += self.gen_turing_unfused.gen_initialize() code_body += self.gen_turing_unfused.gen_run() else: code_body += self.gen_using() code_body += self.gen_initialize() code_body += self.gen_run() code = ir.gen_func(self.gen_class_name, arg_lists, code_body) return code def gen_code(self): code = self.gen_wrapper() helper.write_2_headfile("turing_impl.h", self.output_dir, self.user_header_file + "\n" + code) class gen_volta_turing_fuse_act_impl: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.gen_class_name = gen_class_name + "_volta_impl" self.user_header_file = "" for header in user_header_file: self.user_header_file += "#include \"" + header + "\"\n" self.output_dir = output_dir self.b2b_num = len(fuse_gemm_info) def perf_tiling(self, layer_mnk): mnk = layer_mnk[:] block_tile = mnk[:] block_tile[2] = 32 # force the K tile to be 32 # M tile gen block_tile[0] = 32 # N tile gen if mnk[1] > 128: block_tile[1] = 256 elif mnk[1] > 64: block_tile[1] = 128 elif mnk[1] > 32: block_tile[1] = 64 else : block_tile[1] = 32 warp_tile = block_tile[:] if block_tile[1] == 256: warp_tile[1] = 64 elif block_tile[1] == 128: warp_tile[1] = 32 elif block_tile[1] == 64: warp_tile[1] = 32 else : warp_tile[1] = 32 warp_tile[0] = 32 return block_tile, warp_tile def process_epilogue(self, epilogue_tp, n, C_tp, Acc_tp): epilogue_setted_type = epilogue_tp cutlass_epilogue_name = "LinearCombinationRelu" if epilogue_setted_type.lower() == 'leakyrelu': cutlass_epilogue_name = "LinearCombinationLeakyRelu" elif epilogue_setted_type.lower() == 'identity': cutlass_epilogue_name = "LinearCombination" n_mod_8 = n % 4 N_align_elements = 1 if n_mod_8 == 0: N_align_elements = 8 elif n_mod_8 == 4: N_align_elements = 4 elif n_mod_8 == 2 or n_mod_8 == 6: N_align_elements = 2 epilogue_str = "cutlass::epilogue::thread::" + cutlass_epilogue_name+ "<" + C_tp + ", " + str(N_align_elements) + ", " + Acc_tp + ", " + Acc_tp + ">" return epilogue_str def gen_using(self, volta = True): code_using = "" volta_arch = "cutlass::arch::Sm70" volta_tc = "cutlass::gemm::GemmShape<8, 8, 4>" turing_arch = "cutlass::arch::Sm75" turing_tc = "cutlass::gemm::GemmShape<16, 8, 8>" arch = "" tc = "" if volta: arch = volta_arch tc = volta_tc else: arch = turing_arch tc = turing_tc for i in range(self.b2b_num): k = self.fuse_gemm_info[i]['mnk'][2] k_mod_8 = k % 4 ab_ldm = 1 if k_mod_8 == 0: ab_ldm = 8 elif k_mod_8 == 4: ab_ldm = 4 elif k_mod_8 == 2 or k_mod_8 == 6: ab_ldm = 2 block_tile, warp_tile = self.perf_tiling(self.fuse_gemm_info[i]['mnk']) this_gemm_config = helper.var_idx("using Gemm", i) + " = cutlass::gemm::device::GemmBatched<\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_format']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_tp']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_format']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_format']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + ",\n" this_gemm_config += " " + "cutlass::arch::OpClassTensorOp,\n" this_gemm_config += " " + arch + ",\n" this_gemm_config += " " + "cutlass::gemm::GemmShape<" + str(block_tile[0]) + ", " + str(block_tile[1]) + ", " + str(block_tile[2]) + ">,\n" this_gemm_config += " " + "cutlass::gemm::GemmShape<" + str(warp_tile[0]) + ", " + str(warp_tile[1]) + ", " + str(warp_tile[2]) + ">,\n" this_gemm_config += " " + tc + ",\n" this_gemm_config += " " + self.process_epilogue(helper.get_epilogue_tp(self.fuse_gemm_info[i]), self.fuse_gemm_info[i]['mnk'][1], helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']), helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp'])) + ",\n" this_gemm_config += " " + "cutlass::gemm::threadblock::GemmBatchedIdentityThreadblockSwizzle,\n" this_gemm_config += " " + "2,\n" this_gemm_config += " " + str(ab_ldm) + ",\n" this_gemm_config += " " + str(ab_ldm) + ">;\n" code_using += this_gemm_config + "\n" return code_using + "\n" def gen_initialize(self): code = "" for i in range(self.b2b_num): code_this = "" N_str = str(self.fuse_gemm_info[i]['mnk'][1]) code_this += helper.var_idx(helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + " alpha", i) + " = " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(1);\n" beta = "(1)" if helper.get_epilogue_add_bias_or_not( self.fuse_gemm_info[i]) is False: beta = "(0)" code_this += helper.var_idx(helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + " beta", i) + " = " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + beta + ";\n" k_str = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: k_str = "K0" code_this += helper.var_idx("cutlass::gemm::GemmCoord problem_size_", i) + "(M, " + str(self.fuse_gemm_info[i]['mnk'][1]) + ", " + k_str + ");\n" code_this += helper.var_idx("typename Gemm", i) + helper.var_idx("::Arguments arguments_", i) + "{\n" code_this += " " + helper.var_idx("problem_size_", i) + ",\n" ldmA = k_str ldmB = k_str ldmC = str(self.fuse_gemm_info[i]['mnk'][1]) ldmBias = str(helper.get_epilogue_bias_ldm(self.fuse_gemm_info[i])) if self.fuse_gemm_info[i]['A_format'] is 'Col': ldmA = "M" if self.fuse_gemm_info[i]['B_format'] is 'Row': ldmB = str(self.fuse_gemm_info[i]['mnk'][1]) if self.fuse_gemm_info[i]['C_format'] is 'Col': ldmC = "M" if i == 0: code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("A", i) + "), " + ldmA + "}, " + "M * " + ldmA + ",\n" else: code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("D", i - 1) + "), " + ldmA + "}, " + "M * " + ldmA + ",\n" code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_tp']) + "*>(" + helper.var_idx("B", i) + "), " + ldmB + "}, " + N_str + " * " + ldmB + ",\n" M_bias = str(helper.get_epilogue_bias_shape(self.fuse_gemm_info[i])[0]) code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("C", i) + "), " + ldmBias + "}, " + M_bias + " * " + N_str + ",\n" code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("D", i) + "), " + ldmC + "}, " + "M * " + ldmC + ",\n" code_this += " " + "{ " + helper.var_idx("alpha", i) + ", " + helper.var_idx("beta", i) for epilogue_arg in helper.get_epilogue_args(self.fuse_gemm_info[i]): arg_name = helper.var_idx("Epilogue", i) + "_" + epilogue_arg[1] code_this += ", " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(" + str(arg_name) + ")" code_this += " },\n" code_this += " " + "Batch};\n" code_this += " " + helper.var_idx("Gemm", i) + helper.var_idx(" gemm_op_", i) + ";\n" code_this += " " + helper.var_idx("gemm_op_", i) + helper.var_idx(".initialize(arguments_", i) + ", nullptr);\n" code += code_this + "\n" return code + "\n" def gen_run(self): code = "" for i in range(self.b2b_num): code_this = "" code_this += " " + helper.var_idx("gemm_op_", i) + "(stream);\n" code += code_this return code def gen_wrapper(self): code_body = "" arg_lists = [] arg_lists.append(["int", "M"]) arg_lists.append(["int", "K0"]) arg_lists.append(["int", "Batch"]) arg_lists.append(["void*", helper.var_idx("A", 0)]) for i in range(self.b2b_num): arg_lists.append(["void*", helper.var_idx("B", i)]) arg_lists.append(["void*", helper.var_idx("C", i)]) arg_lists.append(["void*", helper.var_idx("D", i)]) epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) acc_tp = helper.get_epilogue_compute_tp(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_tp = arg[0] arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] arg_lists.append([arg_tp, arg_name]) code_body += self.gen_using() code_body += self.gen_initialize() code_body += self.gen_run() code = ir.gen_func(self.gen_class_name, arg_lists, code_body) return code def gen_code(self): code = self.gen_wrapper() helper.write_2_headfile("volta_impl.h", self.output_dir, self.user_header_file + "\n" + code) class gen_one_API: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.gen_class_name = gen_class_name self.user_header_file = "" for header in user_header_file: self.user_header_file += "#include \"" + header + "\"\n" self.output_dir = output_dir self.b2b_num = len(fuse_gemm_info) self.gen_volta = gen_volta_turing_fuse_act_impl(fuse_gemm_info, gen_class_name, user_header_file, output_dir) self.gen_turing = gen_turing_impl(fuse_gemm_info, gen_class_name, user_header_file, output_dir) def gen_CUTLASS_irrelevant_API(self): code = "" code += "#include <cuda_runtime.h>\n" code += "#include <assert.h>\n" param_name = "Fused" + str(self.b2b_num) + "xGemm_" for i in range(self.b2b_num): param_name += str(self.fuse_gemm_info[i]['mnk'][1]) + "_" param_name += "Params" params = "" params += " " + "int M;\n" params += " " + "int K0;\n" params += " " + "int Batch;\n" params += " " + "const void* A0;\n" for i in range(self.b2b_num): params += " " + "const void* " + helper.var_idx("B", i) + ";\n" params += " " + "const void* " + helper.var_idx("C", i) + ";\n" epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) acc_tp = helper.get_epilogue_compute_tp(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_tp = arg[0] arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] params += " " + arg_tp + " " + arg_name + ";\n" params += " " + "void* " + helper.var_idx("D", i) + ";\n" code += ir.gen_struct(param_name, params) code += "using Param = " + param_name + ";\n" code += "void one_api( const Param & param, int sm, cudaStream_t stream);\n" return code def gen_one_api(self): code = "" code += "/* Auto Generated code - Do not edit.*/\n" code += "#include \"cutlass_irrelevant.h\"\n" code += "#include \"api.h\"\n" code += "void one_api( const Param & param, int sm, cudaStream_t stream) {\n" code += " " + "if (sm == 70) \n" code += " " + " " + self.gen_class_name + "_volta_impl(param.M, param.K0, param.Batch, const_cast<void*>(param.A0), " for i in range(self.b2b_num): code += helper.var_idx("const_cast<void*>(param.B", i) + "), " code += helper.var_idx("const_cast<void*>(param.C", i) + "), " code += helper.var_idx("param.D", i) + ", " epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] code += "param." + arg_name + ", " code += "stream);\n" code += " " + "else if(sm >= 75) \n" code += " " + " " + self.gen_class_name + "_turing_impl(param.M, param.K0, param.Batch, const_cast<void*>(param.A0), " for i in range(self.b2b_num): code += helper.var_idx("const_cast<void*>(param.B", i) + "), " code += helper.var_idx("const_cast<void*>(param.C", i) + "), " code += helper.var_idx("param.D", i) + ", " epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] code += "param." + arg_name + ", " code += "stream);\n" code += " " + "else assert(0);\n" code += "}\n" return code def gen_code(self): turing_code = self.gen_turing.gen_wrapper() volta_code = self.gen_volta.gen_wrapper() cutlass_irrelevant_code = self.gen_CUTLASS_irrelevant_API() one_api_code = self.gen_one_api() with open(self.output_dir + "one_api.cu", "w+") as f: f.write(one_api_code) helper.write_2_headfile("cutlass_irrelevant.h", self.output_dir, cutlass_irrelevant_code) helper.write_2_headfile("api.h", self.output_dir, self.user_header_file + "\n" + turing_code + volta_code)
warp-main
warp/native/cutlass/examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_turing_and_volta.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import helper import gen_ir as ir class gen_test: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.gen_class_name = gen_class_name self.user_header_file = user_header_file self.sample_dir = output_dir self.b2b_num = len(fuse_gemm_info) def gen_cpp_sample(self): code = "/* Auto Generated code - Do not edit.*/\n" code += "#include <stdio.h> \n" code += "#include \"cutlass/gemm/device/gemm_batched.h\" \n" code += "#include \"cutlass/cutlass.h\" \n" code += "#include \"../cutlass_irrelevant.h\" \n" code += "#include \"../cutlass_verify.h\" \n" code += "#include \"leaky_bias.h\" \n" code += "#include \"utils.h\" \n" code += "int main(int args, char * argv[]) {\n" code += " " + "int M = atoi(argv[1]);\n" code += " " + "int K0 = " + str(self.fuse_gemm_info[0]['mnk'][0]) + ";\n" code += " " + "if(args == 3);\n" code += " " + " " + "K0 = atoi(argv[2]);\n" code += " " + "int B = 1;\n" code += " " + "if(args == 4);\n" code += " " + " " + "B = atoi(argv[3]);\n" code += " " + "srand(1234UL);\n" code += " " + "int device_id = 0;\n" code += " " + "cudaGetDevice(&device_id);\n" code += " " + "cudaDeviceProp prop;\n" code += " " + "cudaGetDeviceProperties(&prop, device_id);\n" code += " " + "int sm = prop.major *10 + prop.minor;\n" code += "using ElementCompute = cutlass::half_t;\n" for i in range(self.b2b_num): code += " " + helper.var_idx("ElementCompute alpha", i) + " = ElementCompute(1);\n" addbias = helper.get_epilogue_add_bias_or_not( self.fuse_gemm_info[i]) if addbias: code += " " + helper.var_idx("ElementCompute beta", i) + " = ElementCompute(1);\n" else: code += " " + helper.var_idx("ElementCompute beta", i) + " = ElementCompute(0);\n" code += " " + "size_t flops = 0;\n" for i in range(self.b2b_num): m = self.fuse_gemm_info[i]['mnk'][0] n = self.fuse_gemm_info[i]['mnk'][1] k = self.fuse_gemm_info[i]['mnk'][2] bias_shape = helper.get_epilogue_bias_shape(self.fuse_gemm_info[i]) this_k = "K0" if (i > 0): this_k = str(k) code += " " + "flops += size_t(2) * size_t(M) * size_t(B) * " + "size_t(" + str(n) + ") * size_t(" + this_k + ");\n" code += " " + helper.var_idx("cutlass::gemm::GemmCoord problem_size_", i) + "(" + "M" + ", " + str(n) + ", " + this_k + ");\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_A", i) + helper.var_idx("(B * problem_size_", i) + helper.var_idx(".m() * problem_size_", i) + ".k());\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_B", i) + helper.var_idx("(B * problem_size_", i) + helper.var_idx(".n() * problem_size_", i) + ".k());\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_C", i) + "(B * " + str(bias_shape[0]) + " * " + str(bias_shape[1]) + ");\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_D_cutlass_ref", i) + helper.var_idx("(B * problem_size_", i) + helper.var_idx(".m() * problem_size_", i) + ".n());\n" code += " " + helper.var_idx("Mat_A", i) + ".init();\n" code += " " + helper.var_idx("Mat_B", i) + ".init();\n" code += " " + helper.var_idx("Mat_C", i) + ".init();\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_D", self.b2b_num - 1) + helper.var_idx("(B * problem_size_", i) + helper.var_idx(".m() * problem_size_",self.b2b_num - 1) + ".n());\n" params = [] params.append("M") params.append("B") params.append("Mat_A0.device_ptr") for i in range(self.b2b_num): params.append(helper.var_idx("Mat_B", i) + ".device_ptr") params.append(helper.var_idx("Mat_C", i) + ".device_ptr") if i != self.b2b_num-1: params.append(helper.var_idx("Mat_D_cutlass_ref", i) + ".device_ptr") params.append(helper.var_idx("Mat_D", self.b2b_num - 1) + ".device_ptr") code += " " + "Param arguments = {\n" code += " " + " " + "M,\n" code += " " + " " + "K0,\n" code += " " + " " + "B,\n" code += " " + " " + "reinterpret_cast<const void*>(Mat_A0.device_ptr),\n" cnt = 1 for i in range(self.b2b_num): bias_flag = helper.get_epilogue_add_bias_or_not( self.fuse_gemm_info[i]) code += " " + " " + "reinterpret_cast<const void*>(" + helper.var_idx("Mat_B", i) + ".device_ptr" + "),\n" cnt += 1 if bias_flag: code += " " + " " + "reinterpret_cast<const void*>(" + helper.var_idx("Mat_C", i) + ".device_ptr" + "),\n" cnt += 1 else: code += " " + " " + "reinterpret_cast<const void*>(NULL),\n" epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) acc_tp = helper.get_epilogue_compute_tp(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_value = str(arg[2]) code += " " + " " + helper.type_2_cutlass_type(acc_tp) + "(" + arg_value + "),\n" if i != self.b2b_num - 1: code += " " + " " + "reinterpret_cast<void*>(" + helper.var_idx("Mat_D_cutlass_ref", i) + ".device_ptr" + "),\n" else: code += " " + " " + "reinterpret_cast<void*>(" + helper.var_idx("Mat_D", i) + ".device_ptr" + ")};\n" code += " " + "TI(FUSED_CUTLASS);\n" code += " " + "for(int i = 0; i < 100; i++){\n" code += " " + " " + "one_api(arguments, sm, NULL);\n" code += " " + "}\n" code += " " + "TO(FUSED_CUTLASS, \"FUSED_CUTLASS\", 100);\n" code += "\n" for i in range(self.b2b_num): code_this = "" N_str = str(self.fuse_gemm_info[i]['mnk'][1]) code_this += " " + helper.var_idx("typename Gemm", i) + helper.var_idx("::Arguments arguments_", i) + "{\n" code_this += " " + " " + helper.var_idx("problem_size_", i) + ",\n" ldmA = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: ldmA = "K0" ldmB = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: ldmB = "K0" ldmC = str(self.fuse_gemm_info[i]['mnk'][1]) ldmBias = str(helper.get_epilogue_bias_ldm(self.fuse_gemm_info[i])) if self.fuse_gemm_info[i]['A_format'] is 'Col': ldmA = "M" if self.fuse_gemm_info[i]['B_format'] is 'Row': ldmB = str(self.fuse_gemm_info[i]['mnk'][1]) if self.fuse_gemm_info[i]['C_format'] is 'Col': ldmC = "M" if i == 0: code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("Mat_A", i) + ".device_ptr), " + ldmA + "}, " + "M * " + ldmA + ",\n" else: code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("Mat_D_cutlass_ref", i - 1) + ".device_ptr), " + ldmA + "}, " + "M * " + ldmA + ",\n" code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_tp']) + "*>(" + helper.var_idx("Mat_B", i) + ".device_ptr), " + ldmB + "}, " + N_str + " * " + ldmB + ",\n" M_bias = str(helper.get_epilogue_bias_shape(self.fuse_gemm_info[i])[0]) code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("Mat_C", i) + ".device_ptr), " + ldmBias + "}, " + M_bias + " * " + N_str + ",\n" code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("Mat_D_cutlass_ref", i) + ".device_ptr), " + ldmC + "}, " + "M * " + ldmC + ",\n" code_this += " " + " " + "{ " + helper.var_idx("alpha", i) + ", " + helper.var_idx("beta", i) for epilogue_arg in helper.get_epilogue_args(self.fuse_gemm_info[i]): arg_value = str(epilogue_arg[2]) code_this += ", " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(" + str(arg_value) + ")" code_this += " " + " },\n" code_this += " " + " " + "B};\n" code += code_this code += " " + "TI(UNFUSED_CUTLASS);\n" code += " " + "for(int i = 0; i < 100; i++){\n" code += " " + " " + self.gen_class_name + "_verify(\n" for i in range(self.b2b_num): code += " " + " " + " " + helper.var_idx("arguments_", i) + ",\n" code += " " + " " + " " + "NULL);\n" code += " " + "}\n" code += " " + "TO(UNFUSED_CUTLASS, \"UNFUSED_CUTLASS\", 100);\n" code += " " + helper.var_idx("Mat_D_cutlass_ref", self.b2b_num - 1) + ".d2h();\n" code += " " + helper.var_idx("Mat_D", self.b2b_num - 1) + ".d2h();\n" code += " " + helper.var_idx("check_result(Mat_D_cutlass_ref", self.b2b_num - 1) + helper.var_idx(".host_ptr, Mat_D", self.b2b_num - 1) \ + helper.var_idx(".host_ptr, Mat_D", self.b2b_num - 1) + ".elements);\n" code += "\n\n}\n" with open(self.sample_dir + "sample.cu", "w+") as f: f.write(code)
warp-main
warp/native/cutlass/examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_sample.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import os class replace_fix_impl: def __init__(self, src_dir, dst_dir, cutlass_deps_root): self.src_dir = src_dir self.dst_dir = dst_dir self.cutlass_deps_root = cutlass_deps_root def gen_code(self): for sub_dir in os.walk(self.src_dir): files_in_sub_dir = sub_dir[2] src_dirs = sub_dir[0] output_dirs = self.dst_dir + sub_dir[0][len(self.src_dir):] if not os.path.exists(output_dirs): os.mkdir(output_dirs) for f in files_in_sub_dir: with open(src_dirs +"/" + f, 'r') as current_file: output_lines = [] lines = current_file.readlines() for line in lines: if(len(line) >= len("#include \"cutlass") and line[:len("#include \"cutlass")] == "#include \"cutlass"): new_line = "#include \"" + self.cutlass_deps_root + line[len("#include \""):] # print(new_line) output_lines.append(new_line) else: output_lines.append(line) with open(output_dirs + "/" + f, "w+") as dest_file: dest_file.writelines(output_lines)
warp-main
warp/native/cutlass/examples/44_multi_gemm_ir_and_codegen/ir_gen/replace_fix_impl_header.py
################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import helper indentation = " " def append_word(word): code = "" code += word code += " " return code def gen_namespace(namespace, codeBody): code_gen = "namespace " + namespace + " {\n" code_gen += codeBody code_gen += "} // namespace " + namespace + "\n" return code_gen def gen_expression(type, lval, rval = None): code_gen = "" code_gen += append_word(type) code_gen += append_word(lval) if rval is not None: code_gen += append_word("=") code_gen += append_word(rval) return code_gen def gen_class(name, codeBody, inheritance_code = None): code_gen = "" if inheritance_code is None: code_gen = "class " + name + "{\n" else: code_gen = "class " + name + " : "+ inheritance_code + "{\n" code_gen += codeBody code_gen += "}; // class " + name + "\n" return code_gen def gen_struct(name, codeBody, specialized = None): specialized_code = "" if specialized is not None: specialized_code = "<" + specialized + ">" code_gen = "struct " + name + specialized_code + "{\n" code_gen += codeBody code_gen += "}; // struct " + name + "\n" return code_gen def gen_template_arg(arg_type, arg_name, default_val = None): rval = None if default_val is not None: rval = str(default_val) arg_typename = "" if arg_type is int: arg_typename = "int" elif arg_type is bool: arg_typename = "bool" else: arg_typename = "typename" internal_arg_name = arg_name + "_" code_gen = indentation code_gen += gen_expression(arg_typename, internal_arg_name, rval) return code_gen def gen_template_args(args, set_default = True): arg_len = len(args) cnt = 1 code_gen = "" for arg_tuple in args: arg_type = arg_tuple[0] arg_name = arg_tuple[1] arg_default_val = None if len(arg_tuple) == 3 and set_default: arg_default_val = arg_tuple[2] code_gen += gen_template_arg(arg_type, arg_name, arg_default_val) if cnt != arg_len: code_gen += ",\n" cnt += 1 return code_gen def gen_template_head(args, set_default = True): code_gen = "template <\n" code_gen += gen_template_args(args, set_default) code_gen += ">\n" return code_gen def export_template_args(args): code_gen = "public:\n" for arg_tuple in args: code_gen += indentation arg_type = arg_tuple[0] arg_name = arg_tuple[1] internal_arg_name = arg_name + "_" typename = "" if arg_type is int: typename = "static int const" elif arg_type is bool: typename = "static bool const" else: typename = "using" code_gen += gen_expression(typename, arg_name, internal_arg_name) code_gen += ";\n" return code_gen def gen_template_class(class_name, args, codeBody, set_default = True, inheritance_code = None): code_gen = "" code_gen += gen_template_head(args, set_default) code_gen += gen_class(class_name, export_template_args(args) + codeBody, inheritance_code) return code_gen def gen_template_struct(struct_name, args, codeBody, speicalized = None, set_default = True, export_args = True): code_gen = "" code_gen += gen_template_head(args, set_default) code = export_template_args(args) + codeBody if export_args is False: code = codeBody code_gen += gen_struct(struct_name, code , speicalized) return code_gen def gen_declare_template_struct(name, *params): code = name + "<" cnt = 0 param_num = len(params) for param in params: final = ", " if cnt == param_num - 1: final = "" code += param + final cnt += 1 code += ">;\n" return code def filtered_param(params, name_and_value_pair, keep_ = False): rtn_template_args = [] speicalized_template_args = [] for param in params: param_name = "" if len(param) >= 1: param_name = param[1] else: param_name = param[0] hit_flag = False set_value = "" for n_v_pair in name_and_value_pair: filter_name = n_v_pair[0] set_value = n_v_pair[1] if param_name == (filter_name + "_") or param_name == filter_name : hit_flag = True break if hit_flag is False: rtn_template_args.append(param) if hit_flag is True: speicalized_template_args.append(set_value) else: if keep_ is True: speicalized_template_args.append(param_name + "_") else: speicalized_template_args.append(param_name) specialized_template_arg_str = helper.list_2_string(speicalized_template_args) return rtn_template_args, specialized_template_arg_str def gen_func(func_name, arg_lists, code_body, only_declare = False, with_cudaStream = True): code = "void " + func_name + "(\n" for arg in arg_lists: arg_tp = arg[0] arg_nm = arg[1] code += " " + arg_tp + " " + arg_nm + ",\n" code += "cudaStream_t stream)" if only_declare : return code code += "{\n" code += code_body + "\n" code += "}\n" return code def indent_level(code, level = 0): rtn_code = "" for i in range(level): rtn_code += " " rtn_code += code return rtn_code
warp-main
warp/native/cutlass/examples/44_multi_gemm_ir_and_codegen/ir_gen/gen_ir.py
################################################################################ # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ """ Basic example of using the CUTLASS Python interface to run a GEMM """ import argparse import numpy as np import sys import cutlass import pycutlass from pycutlass import * from pycutlass.utils.device import device_cc parser = argparse.ArgumentParser(description="Launch a GEMM kernel from Python: 'D = alpha * A * B + beta * C'") parser.add_argument("--m", default=128, type=int, help="M dimension of the GEMM") parser.add_argument("--n", default=128, type=int, help="N dimension of the GEMM") parser.add_argument("--k", default=128, type=int, help="K dimension of the GEMM") parser.add_argument('--print_cuda', action="store_true", help="Print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) # Check that the device is of a sufficient compute capability cc = device_cc() assert cc >= 70, "The CUTLASS Python GEMM example requires compute capability greater than or equal to 70." alignment = 8 assert args.m % alignment == 0, "M dimension of size {} is not divisible by alignment of {}".format(args.m, alignment) assert args.n % alignment == 0, "N dimension of size {} is not divisible by alignment of {}".format(args.n, alignment) assert args.k % alignment == 0, "K dimension of size {} is not divisible by alignment of {}".format(args.k, alignment) np.random.seed(0) # Allocate a pool of device memory to be used by the kernel pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) # Set the compiler to use to NVCC pycutlass.compiler.nvcc() # Set up A, B, C and accumulator A = TensorDescription(cutlass.float16, cutlass.ColumnMajor, alignment) B = TensorDescription(cutlass.float16, cutlass.RowMajor, alignment) C = TensorDescription(cutlass.float32, cutlass.ColumnMajor, alignment) element_acc = cutlass.float32 element_epilogue = cutlass.float32 # Select instruction shape based on the Tensor Core instructions supported # by the device on which we are running if cc == 70: instruction_shape = [8, 8, 4] elif cc == 75: instruction_shape = [16, 8, 8] else: instruction_shape = [16, 8, 16] math_inst = MathInstruction( instruction_shape, A.element, B.element, element_acc, cutlass.OpClass.TensorOp, MathOperation.multiply_add ) tile_description = TileDescription( [128, 128, 32], # Threadblock shape 2, # Number of stages [2, 2, 1], # Number of warps within each dimension of the threadblock shape math_inst ) epilogue_functor = pycutlass.LinearCombination(C.element, C.alignment, element_acc, element_epilogue) operation = GemmOperationUniversal( arch=cc, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] # Compile the operation pycutlass.compiler.add_module(operations) # Randomly initialize tensors tensor_A = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(args.m * args.k,))).astype(np.float16) tensor_B = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(args.k * args.n,))).astype(np.float16) tensor_C = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(args.m * args.n,))).astype(np.float32) tensor_D = np.zeros(shape=(args.m * args.n,)).astype(np.float32) problem_size = cutlass.gemm.GemmCoord(args.m, args.n, args.k) alpha = 1. beta = 0. arguments = GemmArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=operation.epilogue_type(alpha, beta)) # Run the operation operation.run(arguments) arguments.sync() # Run the host reference module and compare to the CUTLASS result reference = ReferenceModule(A, B, C) tensor_D_ref = reference.run(tensor_A, tensor_B, tensor_C, problem_size, alpha, beta) try: assert np.array_equal(tensor_D, tensor_D_ref) except: assert np.allclose(tensor_D, tensor_D_ref, atol=1e-5) print("Passed.")
warp-main
warp/native/cutlass/examples/40_cutlass_py/gemm.py
################################################################################ # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ """ Basic example of using the CUTLASS Python interface to run a 2d convolution """ import argparse import torch import numpy as np import sys import cutlass import pycutlass from pycutlass import * from pycutlass.utils.device import device_cc parser = argparse.ArgumentParser( description=("Launch a 2d convolution kernel from Python. " "See https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#convo-intro for notation.")) parser.add_argument("--n", default=1, type=int, help="N dimension of the convolution") parser.add_argument("--c", default=64, type=int, help="C dimension of the convolution") parser.add_argument("--h", default=32, type=int, help="H dimension of the convolution") parser.add_argument("--w", default=32, type=int, help="W dimension of the convolution") parser.add_argument("--k", default=32, type=int, help="N dimension of the convolution") parser.add_argument("--r", default=3, type=int, help="R dimension of the convolution") parser.add_argument("--s", default=3, type=int, help="S dimension of the convolution") parser.add_argument('--print_cuda', action="store_true", help="Print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) # Check that the device is of a sufficient compute capability cc = device_cc() assert cc >= 70, "The CUTLASS Python Conv2d example requires compute capability greater than or equal to 70." alignment = 1 np.random.seed(0) # Allocate a pool of device memory to be used by the kernel pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) # Set the compiler to use to NVCC pycutlass.compiler.nvcc() # Set up A, B, C and accumulator A = TensorDescription(cutlass.float16, cutlass.TensorNHWC, alignment) B = TensorDescription(cutlass.float16, cutlass.TensorNHWC, alignment) C = TensorDescription(cutlass.float32, cutlass.TensorNHWC, alignment) element_acc = cutlass.float32 element_epilogue = cutlass.float32 # Select instruction shape based on the Tensor Core instructions supported # by the device on which we are running if cc == 70: instruction_shape = [8, 8, 4] elif cc == 75: instruction_shape = [16, 8, 8] else: instruction_shape = [16, 8, 16] math_inst = MathInstruction( instruction_shape, A.element, B.element, element_acc, cutlass.OpClass.TensorOp, MathOperation.multiply_add ) tile_description = TileDescription( [128, 128, 32], # Threadblock shape 2, # Number of stages [2, 2, 1], # Number of warps within each dimension of the threadblock shape math_inst ) epilogue_functor = pycutlass.LinearCombination(C.element, C.alignment, element_acc, element_epilogue) operation = Conv2dOperation( conv_kind=cutlass.conv.Operator.fprop, iterator_algorithm=cutlass.conv.IteratorAlgorithm.optimized, arch=cc, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor ) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] # Compile the operation pycutlass.compiler.add_module(operations) # Randomly initialize tensors problem_size = cutlass.conv.Conv2dProblemSize( cutlass.Tensor4DCoord(args.n, args.h, args.c, args.w), cutlass.Tensor4DCoord(args.k, args.r, args.s, args.c), cutlass.Tensor4DCoord(0, 0, 0, 0), # Padding cutlass.MatrixCoord(1, 1), # Strides cutlass.MatrixCoord(1, 1), # Dilation cutlass.conv.Mode.cross_correlation, 1, # Split k slices 1 # Groups ) tensor_A_size = cutlass.conv.implicit_gemm_tensor_a_size(operation.conv_kind, problem_size) tensor_B_size = cutlass.conv.implicit_gemm_tensor_b_size(operation.conv_kind, problem_size) tensor_C_size = cutlass.conv.implicit_gemm_tensor_c_size(operation.conv_kind, problem_size) tensor_A = torch.ceil(torch.empty(size=(tensor_A_size,), dtype=torch.float16, device="cuda").uniform_(-8.5, 7.5)) tensor_B = torch.ceil(torch.empty(size=(tensor_B_size,), dtype=torch.float16, device="cuda").uniform_(-8.5, 7.5)) tensor_C = torch.ceil(torch.empty(size=(tensor_C_size,), dtype=torch.float32, device="cuda").uniform_(-8.5, 7.5)) tensor_D = torch.ones(size=(tensor_C_size,), dtype=torch.float32, device="cuda") alpha = 1. beta = 0. arguments = Conv2dArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=operation.epilogue_type(alpha, beta) ) # Run the operation operation.run(arguments) arguments.sync() # Run the host reference module and compare to the CUTLASS result reference = Conv2dReferenceModule(A, B, C, operation.conv_kind) tensor_D_ref = reference.run(tensor_A, tensor_B, tensor_C, problem_size, alpha, beta) try: assert torch.equal(tensor_D, tensor_D_ref) except: assert torch.allclose(tensor_D, tensor_D_ref, rtol=1e-2) print("Passed.")
warp-main
warp/native/cutlass/examples/40_cutlass_py/conv2d.py
################################################################################ # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ """ Basic example of using the CUTLASS Python interface to run a grouped GEMM """ import argparse import numpy as np import sys import cutlass import pycutlass from pycutlass import * from pycutlass.utils.device import device_cc parser = argparse.ArgumentParser(description="Launch a grouped GEMM kernel from Python") parser.add_argument('--print_cuda', action="store_true", help="Print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) # Check that the device is of a sufficient compute capability cc = device_cc() assert cc >= 70, "The CUTLASS Python grouped GEMM example requires compute capability greater than or equal to 70." np.random.seed(0) # Allocate a pool of device memory to be used by the kernel pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) # Set the compiler to use to NVCC pycutlass.compiler.nvcc() # Set up A, B, C and accumulator alignment = 1 A = TensorDescription(cutlass.float16, cutlass.ColumnMajor, alignment) B = TensorDescription(cutlass.float16, cutlass.RowMajor, alignment) C = TensorDescription(cutlass.float32, cutlass.ColumnMajor, alignment) element_acc = cutlass.float32 element_epilogue = cutlass.float32 # Select instruction shape based on the Tensor Core instructions supported # by the device on which we are running if cc == 70: instruction_shape = [8, 8, 4] elif cc == 75: instruction_shape = [16, 8, 8] else: instruction_shape = [16, 8, 16] math_inst = MathInstruction( instruction_shape, A.element, B.element, element_acc, cutlass.OpClass.TensorOp, MathOperation.multiply_add ) tile_description = TileDescription( [128, 128, 32], # Threadblock shape 2, # Number of stages [2, 2, 1], # Number of warps within each dimension of the threadblock shape math_inst ) epilogue_functor = pycutlass.LinearCombination(C.element, C.alignment, element_acc, element_epilogue) operation = GemmOperationGrouped( arch=cc, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, precompute_mode=SchedulerMode.Device) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] # Compile the operation pycutlass.compiler.add_module(operations) # Initialize tensors for each problem in the group problem_sizes = [ cutlass.gemm.GemmCoord(128, 128, 64), cutlass.gemm.GemmCoord(512, 256, 128) ] problem_count = len(problem_sizes) alpha = 1. beta = 0. tensor_As = [] tensor_Bs = [] tensor_Cs = [] tensor_Ds = [] tensor_D_refs = [] reference = ReferenceModule(A, B, C) for problem_size in problem_sizes: # Randomly initialize tensors m = problem_size.m() n = problem_size.n() k = problem_size.k() tensor_A = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(m * k,))).astype(np.float16) tensor_B = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(k * n,))).astype(np.float16) tensor_C = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(m * n,))).astype(np.float32) tensor_D = np.zeros(shape=(m * n,)).astype(np.float32) tensor_As.append(tensor_A) tensor_Bs.append(tensor_B) tensor_Cs.append(tensor_C) tensor_Ds.append(tensor_D) # Run the reference GEMM tensor_D_ref = reference.run(tensor_A, tensor_B, tensor_C, problem_size, alpha, beta) tensor_D_refs.append(tensor_D_ref) arguments = GemmGroupedArguments( operation, problem_sizes, tensor_As, tensor_Bs, tensor_Cs, tensor_Ds, output_op=operation.epilogue_type(alpha, beta) ) # Run the operation operation.run(arguments) arguments.sync() # Compare the CUTLASS result to the host reference result for tensor_d, tensor_d_ref in zip(tensor_Ds, tensor_D_refs): try: assert np.array_equal(tensor_d, tensor_d_ref) except: assert np.allclose(tensor_d, tensor_d_ref, rtol=1e-5) print("Passed.")
warp-main
warp/native/cutlass/examples/40_cutlass_py/gemm_grouped.py
################################################################################ # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import numpy as np import pycutlass from pycutlass import * import cutlass from bfloat16 import bfloat16 from pycutlass.utils.device import device_cc import sys import argparse # parse the arguments parser = argparse.ArgumentParser(description="Launch CUTLASS GEMM kernels from Python: 'D = alpha * A * B + beta * C'") # Operation description # math instruction description parser.add_argument("-i", "--instruction_shape", default=[1, 1, 1], nargs=3, type=int, help="This option describes the size of MMA op") parser.add_argument("-ta", "--element_a", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor A') parser.add_argument("-tb", "--element_b", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor B') parser.add_argument("-tc", "--element_c", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor C and output tensor D') parser.add_argument("-tacc", "--element_acc", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of accumulator') parser.add_argument('-m', "--math", default="multiply_add", type=str, choices=["multiply_add", "multiply_add_fast_bf16", "multiply_add_fast_f32"], help="math instruction") parser.add_argument('-op', "--opcode", default="simt", type=str, choices=["Simt", 'TensorOp'], help="This option describes whether you want to use tensor \ cores (TensorOp) or regular SIMT cores (Simt) on GPU SM") # tile description parser.add_argument("-b", "--threadblock_shape", default=[128, 128, 8], nargs=3, type=int, help="This option describes the tile size a thread block with compute") parser.add_argument("-s", "--stages", default=4, type=int, help="Number of pipelines you want to use") parser.add_argument("-w", "--warp_count", default=[4, 2, 1], nargs=3, type=int, help="This option describes the number of warps along M, N, and K of the threadblock") parser.add_argument("-cc", "--compute_capability", default=80, type=int, help="This option describes CUDA SM architecture number") # A parser.add_argument('-la', "--layout_a", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor A") parser.add_argument('-aa', '--alignment_a', default=1, type=int, help="Memory alignement of input tensor A") # B parser.add_argument('-lb', "--layout_b", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor B") parser.add_argument('-ab', '--alignment_b', default=1, type=int, help="Memory alignment of input tensor B") # C parser.add_argument('-lc', "--layout_c", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor C and output tensor D") parser.add_argument('-ac', '--alignment_c', default=1, type=int, help="Memory alignment of input tensor C and output tensor D") # epilogue parser.add_argument("-te", "--element_epilogue", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16'], help='Epilogue datatype') parser.add_argument("-ep", "--epilogue_functor", default="LinearCombination", type=str, choices=['LinearCombination', 'FastLinearCombinationClamp', 'LinearCombinationClamp'], help="This option describes the epilogue part of the kernel") parser.add_argument("-epv", "--epilogue_visitor", default=None, type=str, choices=['RowReduction', 'ColumnReduction', 'RowBroadcast', 'ColumnBroadcast'], help="epilogue visitor for more complex epilogues") # swizzling parser.add_argument("-sw", "--swizzling_functor", default="IdentitySwizzle1", type=str, choices=[ "IdentitySwizzle1", "IdentitySwizzle2", "IdentitySwizzle4", "IdentitySwizzle8", "HorizontalSwizzle", "BatchedIdentitySwizzle"], help="This option describes how thread blocks are scheduled on GPU") # Argument parser.add_argument("-p", "--problem_size", default=[128, 128, 128], nargs=3, type=int, help="GEMM problem size M, N, K") parser.add_argument("-alpha", "--alpha", default=1.0, type=float, help="Scaling factor of A * B") parser.add_argument("-beta", "--beta", default=0.0, type=float, help="Scaling factor of C") parser.add_argument("-gm", "--gemm_mode", default="Gemm", type=str, choices=["Gemm", "GemmSplitKParallel", "Batched", "Array"], help="GEMM mode. Gemm is used for non-splitK or serial-splitK. \ GemmSplitKParallel is used for parallel splitK") parser.add_argument('-k', '--split_k_slices', default=1, type=int, help="Number of split-k partitions. (default 1)") parser.add_argument('-bias', '--bias', action='store_true', help="C is bias vector") parser.add_argument('-batch', '--batch', default=1, type=int, help="batch size for batched GEMM") # Activation function parser.add_argument("-activ", "--activation_function", default="identity", choices=["identity", "relu", "leaky_relu", "tanh", "sigmoid", "silu", "hardswish", "gelu"], help="activation function") parser.add_argument("-activ_arg", "--activation_args", default=[], nargs="+", type=float, help="addition arguments for activation") parser.add_argument('--print_cuda', action="store_true", help="print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) cc = device_cc() if args.compute_capability != cc: raise Exception(("Parameter --compute-capability of {} " "does not match that of the device of {}.").format(args.compute_capability, cc)) pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) pycutlass.compiler.nvcc() np.random.seed(0) element_a = getattr(cutlass, args.element_a) element_b = getattr(cutlass, args.element_b) element_c = getattr(cutlass, args.element_c) element_acc = getattr(cutlass, args.element_acc) math_operation = getattr(MathOperation, args.math) opclass = getattr(cutlass.OpClass, args.opcode) math_inst = MathInstruction( args.instruction_shape, element_a, element_b, element_acc, opclass, math_operation ) tile_description = TileDescription( args.threadblock_shape, args.stages, args.warp_count, math_inst ) layout_a = getattr(cutlass, args.layout_a) layout_b = getattr(cutlass, args.layout_b) layout_c = getattr(cutlass, args.layout_c) A = TensorDescription( element_a, layout_a, args.alignment_a ) B = TensorDescription( element_b, layout_b, args.alignment_b ) C = TensorDescription( element_c, layout_c, args.alignment_c ) element_epilogue = getattr(cutlass, args.element_epilogue) if (args.activation_function == "identity" or (args.gemm_mode == "GemmSplitKParallel" and args.split_k_slices > 1)): # epilogue_functor = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = getattr(cutlass, args.swizzling_functor) visitor = args.epilogue_visitor is not None if args.epilogue_visitor == "ColumnReduction": class ColumnReduction_(EpilogueVisitTree): def __call__( self, accum: 'tensor', c: 'tensor', alpha: 'scalar', beta: 'scalar'): # D = alpha * accum + beta * c reduction = reduction_op(D, "column", "Add", args.threadblock_shape[0]) return D, reduction epilogue_functor = ColumnReduction_( epilogue_functor, tile_description, math_inst.element_accumulator, C.alignment, element_epilogue, C.element) epilogue_functor.initialize() elif args.epilogue_visitor == "RowReduction": class RowReduction_(EpilogueVisitTree): def __call__( self, accum: 'tensor', c: 'tensor', alpha: 'scalar', beta: 'scalar'): # D = alpha * accum + tanh.numpy(beta * c) reduction = reduction_op(D, "row", "Add", args.threadblock_shape[1]) return D, reduction epilogue_functor = RowReduction_( epilogue_functor, tile_description, math_inst.element_accumulator, C.alignment, element_epilogue, C.element) epilogue_functor.initialize() elif args.epilogue_visitor == "RowBroadcast": class RowBroadcast_(EpilogueVisitTree): def __call__( self, accum: 'tensor', c: 'tensor', vector: 'row', alpha: 'scalar', beta: 'scalar'): # T = accum + vector scale_T = alpha * T Z = relu.numpy(scale_T + beta * c) return Z, T epilogue_functor = RowBroadcast_( epilogue_functor, tile_description, math_inst.element_accumulator, C.alignment, element_epilogue, C.element) epilogue_functor.initialize() elif args.epilogue_visitor == "ColumnBroadcast": class ColumnBroadcast_(EpilogueVisitTree): def __call__( self, accum: 'tensor', c: 'tensor', vector: 'column', alpha: 'scalar', beta: 'scalar'): # T = accum + vector scale_T = leaky_relu.numpy(alpha * T, 0.2) Z = scale_T + beta * c return Z, T epilogue_functor = ColumnBroadcast_( epilogue_functor, tile_description, math_inst.element_accumulator, C.alignment, element_epilogue, C.element) epilogue_functor.initialize() else: epilogue_functor = epilogue_functor operation = GemmOperationUniversal( arch=args.compute_capability, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor, visitor=visitor ) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] if args.gemm_mode == "GemmSplitKParallel": if (args.activation_function == "identity"): epilogue_functor_reduction = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor_reduction = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) reduction_operation = ReductionOperation( shape=cutlass.MatrixCoord(4, 32 * C.alignment), C=C, element_accumulator=element_acc, element_compute=element_epilogue, epilogue_functor=epilogue_functor_reduction, count=C.alignment ) operations.append(reduction_operation) pycutlass.compiler.add_module(operations) # User-provide inputs problem_size = cutlass.gemm.GemmCoord( args.problem_size[0], args.problem_size[1], args.problem_size[2]) tensor_a_size = args.batch * problem_size.m() * problem_size.k() if args.element_a != "int8": if args.element_a == "bfloat16": tensor_A = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_a_size,)) ).astype(bfloat16) else: tensor_A = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_a_size,)) ).astype(getattr(np, args.element_a)) else: tensor_A = np.random.uniform( low=-2, high=2,size=(tensor_a_size,) ).astype(getattr(np, args.element_a)) tensor_b_size = args.batch * problem_size.k() * problem_size.n() if args.element_b != "int8": if args.element_b == "bfloat16": tensor_B = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_b_size,)) ).astype(bfloat16) else: tensor_B = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_b_size,)) ).astype(getattr(np, args.element_b)) else: tensor_B = np.random.uniform( low=-2, high=2, size=(tensor_b_size,) ).astype(getattr(np, args.element_b)) if args.element_c != "int8": if args.bias: if args.layout_c == "RowMajor": tensor_c_size = args.batch * problem_size.n() elif args.layout_c == "ColumnMajor": tensor_c_size = args.batch * problem_size.m() else: raise ValueError(args.layout_c) else: tensor_c_size = args.batch * problem_size.m() * problem_size.n() if args.element_c == "bfloat16": tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_c_size,)) ).astype(bfloat16) else: tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_c_size,)) ).astype(getattr(np, args.element_c)) else: tensor_C = np.random.uniform( low=-2, high=2, size=(args.batch * problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) tensor_D = np.zeros( shape=(args.batch * problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) if args.epilogue_visitor == "RowReduction": cta_n = args.threadblock_shape[1] num_cta_n = (problem_size.n() + cta_n - 1) // cta_n reduction = np.zeros(shape=(args.batch * problem_size.m() * num_cta_n,), dtype=getattr(np, args.element_c)) output_op = operation.epilogue_type( D=tensor_D, alpha=args.alpha, beta=args.beta, c=tensor_C, reduction=reduction, problem_size=[problem_size.m(), problem_size.n()] ) elif args.epilogue_visitor == "ColumnReduction": cta_m = args.threadblock_shape[0] num_cta_m = (problem_size.m() + cta_m - 1) // cta_m reduction = np.zeros(shape=(args.batch * problem_size.n() * num_cta_m,), dtype=getattr(np, args.element_c)) output_op = operation.epilogue_type( D=tensor_D, alpha=args.alpha, beta=args.beta, c=tensor_C, reduction=reduction, problem_size=[problem_size.m(), problem_size.n()] ) elif args.epilogue_visitor == "RowBroadcast": vector = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(args.batch, 1, problem_size.n())) ).astype(getattr(np, args.element_c)) tensor_t = np.empty_like(tensor_D) output_op = operation.epilogue_type( c=tensor_C, vector=vector, alpha=args.alpha, beta=args.beta, Z=tensor_D, T=tensor_t, problem_size=[problem_size.m(), problem_size.n()] ) elif args.epilogue_visitor == "ColumnBroadcast": vector = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(args.batch, problem_size.m(), 1)) ).astype(getattr(np, args.element_c)) tensor_t = np.empty_like(tensor_D) output_op = operation.epilogue_type( c=tensor_C, vector=vector, alpha=args.alpha, beta=args.beta, Z=tensor_D, T=tensor_t, problem_size=[problem_size.m(), problem_size.n()] ) else: output_op = operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)) arguments = GemmArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=output_op, gemm_mode=getattr(cutlass.gemm.Mode, args.gemm_mode), split_k_slices=args.split_k_slices, batch=args.batch ) if args.gemm_mode == "GemmSplitKParallel": reduction_arguments = ReductionArguments( operation=reduction_operation, problem_size=[problem_size.m(), problem_size.n()], partitions=args.split_k_slices, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op=reduction_operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)), bias = arguments.bias ) operation.run(arguments) if args.gemm_mode == "GemmSplitKParallel": reduction_operation.run(reduction_arguments) reduction_arguments.sync() else: arguments.sync() # run the host reference module reference = ReferenceModule(A, B, C) tensor_D_ref = reference.run( tensor_A, tensor_B, tensor_C, problem_size, args.alpha, args.beta, args.bias, args.batch) if args.epilogue_visitor in ["RowBroadcast", "ColumnBroadcast"]: tensor_D_ref = (tensor_D_ref.reshape((args.batch, problem_size.m(), problem_size.n())) + vector).flatten() tensor_D_ref = getattr(pycutlass, args.activation_function).numpy(*([tensor_D_ref,] + args.activation_args)) if args.epilogue_visitor in ["RowReduction", "ColumnReduction"]: output_op.sync() accum_ref = reference.run( tensor_A, tensor_B, tensor_C, problem_size, 1.0, 0.0, args.bias, args.batch) tensor_D_ref, reduction_ref = epilogue_functor( accum_ref.reshape((args.batch, problem_size.m(), problem_size.n())), tensor_C.reshape((args.batch, problem_size.m(), problem_size.n())), args.alpha, args.beta ) tensor_D_ref = tensor_D_ref.flatten() reduction_ref = reduction_ref.flatten() assert np.allclose(reduction_ref, reduction, atol=1e-2) elif args.epilogue_visitor in ["RowBroadcast", "ColumnBroadcast"]: output_op.sync() accum_ref = reference.run( tensor_A, tensor_B, tensor_C, problem_size, 1.0, 0.0, args.bias, args.batch) tensor_D_ref, tensor_T_ref = epilogue_functor( accum_ref.reshape((args.batch, problem_size.m(), problem_size.n())), tensor_C.reshape((args.batch, problem_size.m(), problem_size.n())), vector, args.alpha, args.beta) tensor_D_ref = tensor_D_ref.flatten() tensor_T_ref = tensor_T_ref.flatten() assert np.array_equal(tensor_t, tensor_T_ref) try: assert np.array_equal(tensor_D, tensor_D_ref) except: assert np.allclose(tensor_D, tensor_D_ref, atol=1e-5) print("Passed.")
warp-main
warp/native/cutlass/examples/40_cutlass_py/customizable/gemm.py
################################################################################ # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import numpy as np import pycutlass from pycutlass import * from pycutlass.conv2d_operation import * from pycutlass.utils import reference_model from pycutlass.utils.device import device_cc import sys import torch.nn.functional as F import argparse # parse the arguments parser = argparse.ArgumentParser(description="Launch CUTLASS convolution 2d kernels from Python") # Operation description # math instruction description parser.add_argument("-i", "--instruction_shape", default=[1, 1, 1], nargs=3, type=int, help="This option describes the size of MMA op") parser.add_argument("-ta", "--element_a", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor A') parser.add_argument("-tb", "--element_b", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor B') parser.add_argument("-tc", "--element_c", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor C and output tensor D') parser.add_argument("-tacc", "--element_acc", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of accumulator') parser.add_argument('-m', "--math", default="multiply_add", type=str, choices=["multiply_add", "multiply_add_fast_bf16", "multiply_add_fast_f32"], help="math instruction") parser.add_argument('-op', "--opcode", default="simt", type=str, choices=["Simt", 'TensorOp'], help='This option describes whether you want to use tensor \ cores (TensorOp) or regular SIMT cores (Simt) on GPU SM') # tile description parser.add_argument("-b", "--threadblock_shape", default=[128, 128, 8], nargs=3, type=int, help="This option describes the tile size a thread block with compute") parser.add_argument("-s", "--stages", default=4, type=int, help="Number of pipelines you want to use") parser.add_argument("-w", "--warp_count", default=[ 4, 2, 1], nargs=3, type=int, help="This option describes the number of warps along M, N, and K of the threadblock") parser.add_argument("-cc", "--compute_capability", default=80, type=int, help="This option describes CUDA SM architecture number") # A parser.add_argument('-la', "--layout_a", default="TensorNHWC", type=str, choices=[ "TensorNHWC", "TensorNC32HW32"], help="Memory layout of input tensor A") parser.add_argument('-aa', '--alignment_a', default=1, type=int, help="Memory alignement of input tensor A") # B parser.add_argument('-lb', "--layout_b", default="TensorNHWC", type=str, choices=[ "TensorNHWC", "TensorC32RSK32"], help="Memory layout of input tensor B") parser.add_argument('-ab', '--alignment_b', default=1, type=int, help="Memory alignment of input tensor B") # C parser.add_argument('-lc', "--layout_c", default="TensorNHWC", type=str, choices=[ "TensorNHWC", "TensorNC32HW32"], help="Memory layout of input tensor C and output tensor D") parser.add_argument('-ac', '--alignment_c', default=1, type=int, help="Memory alignment of input tensor C and output tensor D") # epilogue parser.add_argument("-te", "--element_epilogue", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16'], help='Data type of computation in the epilogue') parser.add_argument("-ep", "--epilogue_functor", default="LinearCombination", type=str, choices=['LinearCombination', 'FastLinearCombinationClamp', 'LinearCombinationClamp'], help="This option describes the epilogue part of the kernel") # swizzling parser.add_argument("-sw", "--swizzling_functor", default="IdentitySwizzle1", type=str, choices=[ "IdentitySwizzle1", "IdentitySwizzle2", "IdentitySwizzle4", "IdentitySwizzle8", "HorizontalSwizzle", "StridedDgradIdentitySwizzle1", "StridedDgradIdentitySwizzle4", "StridedDgradHorizontalSwizzle"], help="This option describes how thread blocks are scheduled on GPU") # conv related parser.add_argument("-co", "--conv_kind", default="fprop", type=str, choices=['fprop', 'dgrad', 'wgrad'], help="The type of convolution: forward propagation (fprop), \ gradient of activation (dgrad), gradient of weight (wgrad)") parser.add_argument("-st", "--stride_support", default="Strided", type=str, choices=["Strided", "Unity"], ) parser.add_argument("-ia", "--iterator_algorithm", default="analytic", type=str, choices=["analytic", "optimized", "fixed_channels", "few_channels"], help="This option describes iterator algorithm") # arguments parser.add_argument("-sm", "--split_k_mode", default="Serial", type=str, choices=["Serial", "Parallel"], help="Split K Mode. Serial is used for non-splitK or serial-splitK.\ Parallel is used for parallel splitK.") parser.add_argument('-k', '--split_k_slices', default=1, type=int, help="Number of split-k partitions. (default 1)") parser.add_argument("-nhwc", "--nhwc", nargs=4, type=int, help="input size (NHWC)") parser.add_argument("-krsc", "--krsc", nargs=4, type=int, help="filter size (KRSC)") parser.add_argument("-pad", "--pad", nargs=4, type=int, help="padding (pad_h, _, pad_w, _)") parser.add_argument("-stride", "--stride", nargs=2, type=int, help="stride (stride_h, stride_w)") parser.add_argument("-dilation", "--dilation", nargs=2, type=int, help="dilation (dilation_h, dilation_w)") parser.add_argument("-alpha", "--alpha", default=1.0, type=float, help="alpha") parser.add_argument("-beta", "--beta", default=0.0, type=float, help="beta") parser.add_argument('-bias', '--bias', action='store_true', help="C is bias vector") # Activation function parser.add_argument("-activ", "--activation_function", default="identity", choices=["identity", "relu", "leaky_relu", "tanh", "sigmoid", "silu", "hardswish", "gelu"], help="activation function") parser.add_argument("-activ_arg", "--activation_args", default=[], nargs="+", type=float, help="addition arguments for activation") parser.add_argument('--print_cuda', action="store_true", help="print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) cc = device_cc() if args.compute_capability != cc: raise Exception(("Parameter --compute-capability of {} " "does not match that of the device of {}.").format(args.compute_capability, cc)) pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) np.random.seed(0) element_a = getattr(cutlass, args.element_a) element_b = getattr(cutlass, args.element_b) element_c = getattr(cutlass, args.element_c) element_acc = getattr(cutlass, args.element_acc) math_operation = getattr(MathOperation, args.math) opclass = getattr(cutlass.OpClass, args.opcode) math_inst = MathInstruction( args.instruction_shape, element_a, element_b, element_acc, opclass, math_operation ) tile_description = TileDescription( args.threadblock_shape, args.stages, args.warp_count, math_inst ) layout_a = getattr(cutlass, args.layout_a) layout_b = getattr(cutlass, args.layout_b) layout_c = getattr(cutlass, args.layout_c) A = TensorDescription( element_a, layout_a, args.alignment_a ) B = TensorDescription( element_b, layout_b, args.alignment_b ) C = TensorDescription( element_c, layout_c, args.alignment_c ) element_epilogue = getattr(cutlass, args.element_epilogue) if (args.activation_function == "identity" or (args.split_k_mode == "Parallel" and args.split_k_slices > 1)): # epilogue_functor = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) iterator_algorithm = getattr(cutlass.conv.IteratorAlgorithm, args.iterator_algorithm) swizzling_functor = getattr(cutlass, args.swizzling_functor) stride_support = getattr(StrideSupport, args.stride_support) conv_kind = getattr(cutlass.conv.Operator, args.conv_kind) operation = Conv2dOperation( conv_kind=conv_kind, iterator_algorithm=iterator_algorithm, arch=args.compute_capability, tile_description=tile_description, A=A, B=B, C=C, stride_support=stride_support, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation,] if args.split_k_mode == "Parallel" and args.split_k_slices > 1: if (args.activation_function == "identity"): epilogue_functor_reduction = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor_reduction = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) reduction_operation = ReductionOperation( shape=cutlass.MatrixCoord(4, 32 * C.alignment), C=C, element_accumulator=element_acc, element_compute=element_epilogue, epilogue_functor=epilogue_functor_reduction, count=C.alignment ) operations.append(reduction_operation) pycutlass.compiler.add_module(operations) problem_size = cutlass.conv.Conv2dProblemSize( cutlass.Tensor4DCoord(args.nhwc[0], args.nhwc[1], args.nhwc[2], args.nhwc[3]), cutlass.Tensor4DCoord(args.krsc[0], args.krsc[1], args.krsc[2], args.krsc[3]), cutlass.Tensor4DCoord(args.pad[0], args.pad[1], args.pad[2], args.pad[3]), cutlass.MatrixCoord(args.stride[0], args.stride[1]), cutlass.MatrixCoord(args.dilation[0], args.dilation[1]), cutlass.conv.Mode.cross_correlation, args.split_k_slices, 1 ) # User-provide inputs tensor_A_size = cutlass.conv.implicit_gemm_tensor_a_size( conv_kind, problem_size ) tensor_B_size = cutlass.conv.implicit_gemm_tensor_b_size( conv_kind, problem_size ) if args.bias: tensor_C_size = cutlass.conv.implicit_gemm_tensor_c_extent( conv_kind, problem_size ).at(3) else: tensor_C_size = cutlass.conv.implicit_gemm_tensor_c_size( conv_kind, problem_size ) tensor_D_size = cutlass.conv.implicit_gemm_tensor_c_size( conv_kind, problem_size ) if args.element_a != "int8": tensor_A = torch.ceil(torch.empty(size=(tensor_A_size,), dtype=getattr(torch, args.element_a), device="cuda").uniform_(-8.5, 7.5)) else: tensor_A = torch.empty(size=(tensor_A_size,), dtype=getattr(torch, args.element_a), device="cuda").uniform_(-2, 2) if args.element_b != "int8": tensor_B = torch.ceil(torch.empty(size=(tensor_B_size,), dtype=getattr(torch, args.element_b), device="cuda").uniform_(-8.5, 7.5)) else: tensor_B = torch.empty(size=(tensor_B_size,), dtype=getattr(torch, args.element_b), device="cuda").uniform_(-2, 2) if args.element_c != "int8": tensor_C = torch.ceil(torch.empty(size=(tensor_C_size,), dtype=getattr(torch, args.element_c), device="cuda").uniform_(-8.5, 7.5)) else: tensor_C = torch.empty(size=(tensor_C_size,), dtype=getattr(torch, args.element_c), device="cuda").uniform_(-2, 2) tensor_D = torch.ones(size=(tensor_D_size,), dtype=getattr(torch, args.element_c), device="cuda") arguments = Conv2dArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op = operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)), split_k_mode=getattr(cutlass.conv.SplitKMode, args.split_k_mode), split_k_slices=problem_size.split_k_slices ) if args.split_k_mode == "Parallel" and args.split_k_slices > 1: implicit_gemm_size = cutlass.conv.implicit_gemm_problem_size(conv_kind, arguments.problem_size) reduction_arguments = ReductionArguments( reduction_operation, problem_size=[implicit_gemm_size.m(), implicit_gemm_size.n()], partitions=problem_size.split_k_slices, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op = reduction_operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)), bias = arguments.bias ) operation.run(arguments) if args.split_k_mode == "Parallel" and args.split_k_slices > 1: reduction_operation.run(reduction_arguments) reduction_arguments.sync() else: arguments.sync() reference_model = Conv2dReferenceModule(A, B, C, conv_kind) tensor_D_ref = reference_model.run(tensor_A, tensor_B, tensor_C, arguments.problem_size, args.alpha, args.beta, args.bias) if (args.activation_function != "identity"): tensor_D_ref = getattr(F, args.activation_function)(*([tensor_D_ref,] + args.activation_args)) try: assert torch.equal(tensor_D, tensor_D_ref) except: assert torch.allclose(tensor_D, tensor_D_ref, rtol=1e-2) print("Passed.")
warp-main
warp/native/cutlass/examples/40_cutlass_py/customizable/conv2d.py
################################################################################ # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import numpy as np import pycutlass from pycutlass import * from pycutlass.utils.device import device_cc import csv import sys import argparse # parse the arguments parser = argparse.ArgumentParser( description="Launch CUTLASS GEMM Grouped kernels from Python") # Operation description # math instruction description parser.add_argument("-i", "--instruction_shape", default=[1, 1, 1], nargs=3, type=int, help="This option describes the size of MMA op") parser.add_argument("-ta", "--element_a", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor A') parser.add_argument("-tb", "--element_b", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor B') parser.add_argument("-tc", "--element_c", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor C and output tensor D') parser.add_argument("-tacc", "--element_acc", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of accumulator') parser.add_argument('-m', "--math", default="multiply_add", type=str, choices=["multiply_add", "multiply_add_fast_bf16", "multiply_add_fast_f32"], help="math instruction") parser.add_argument('-op', "--opcode", default="simt", type=str, choices=["Simt", 'TensorOp'], help='This option describes whether you want to use tensor \ cores (TensorOp) or regular SIMT cores (Simt) on GPU SM') # tile description parser.add_argument("-b", "--threadblock_shape", default=[128, 128, 8], nargs=3, type=int, help="This option describes the tile size a thread block with compute") parser.add_argument("-s", "--stages", default=4, type=int, help="Number of pipelines you want to use") parser.add_argument("-w", "--warp_count", default=[ 4, 2, 1], nargs=3, type=int, help="This option describes the number of warps along M, N, and K of the threadblock") parser.add_argument("-cc", "--compute_capability", default=80, type=int, help="This option describes CUDA SM architecture number") # A parser.add_argument('-la', "--layout_a", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor A") parser.add_argument('-aa', '--alignment_a', default=1, type=int, help="Memory alignment of input tensor A") # B parser.add_argument('-lb', "--layout_b", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor B") parser.add_argument('-ab', '--alignment_b', default=1, type=int, help="Memory alignment of input tensor B") # C parser.add_argument('-lc', "--layout_c", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor C and output tensor D") parser.add_argument('-ac', '--alignment_c', default=1, type=int, help="Memory alignment of input tensor C and output tensor D") # epilogue parser.add_argument("-te", "--element_epilogue", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16'], help='Epilogue datatype') parser.add_argument("-ep", "--epilogue_functor", default="LinearCombination", type=str, choices=['LinearCombination', 'FastLinearCombinationClamp', 'LinearCombinationClamp'], help="This option describes the epilogue part of the kernel") # swizzling parser.add_argument("-sw", "--swizzling_functor", default="IdentitySwizzle1", type=str, choices=[ "IdentitySwizzle1", "IdentitySwizzle2", "IdentitySwizzle4", "IdentitySwizzle8", "HorizontalSwizzle"], help="This option describes how thread blocks are scheduled on GPU. \ NOTE: Threadblock swizzling is currently not supported by CUTLASS's grouped kernels. \ This parameter is passed in at present to match the APIs of other kernels. The parameter \ is unused within the kernel") # precompute mode parser.add_argument("-pm", "--precompute_mode", default="Device", type=str, choices=["Host", "Device"], help="Grouped Gemm Scheduing on device only (Device) or using host precompute (Host)") # arguments parser.add_argument("-p", "--problem_size_dir", type=str, help="path to the csv file contains the problem sizes") parser.add_argument("-alpha", "--alpha", default=1.0, type=float, help="alpha") parser.add_argument("-beta", "--beta", default=0.0, type=float, help="beta") parser.add_argument('-bias', '--bias', action='store_true', help="C is bias vector") # Activation function parser.add_argument("-activ", "--activation_function", default="identity", choices=["identity", "relu", "leaky_relu", "tanh", "sigmoid", "silu", "hardswish", "gelu"], help="activation function") parser.add_argument("-activ_arg", "--activation_args", default=[], nargs="+", type=float, help="addition arguments for activation") parser.add_argument('--print_cuda', action="store_true", help="print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) cc = device_cc() if args.compute_capability != cc: raise Exception(("Parameter --compute-capability of {} " "does not match that of the device of {}.").format(args.compute_capability, cc)) pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) np.random.seed(0) element_a = getattr(cutlass, args.element_a) element_b = getattr(cutlass, args.element_b) element_c = getattr(cutlass, args.element_c) element_acc = getattr(cutlass, args.element_acc) math_operation = getattr(MathOperation, args.math) opclass = getattr(cutlass.OpClass, args.opcode) math_inst = MathInstruction( args.instruction_shape, element_a, element_b, element_acc, opclass, math_operation ) tile_description = TileDescription( args.threadblock_shape, args.stages, args.warp_count, math_inst ) layout_a = getattr(cutlass, args.layout_a) layout_b = getattr(cutlass, args.layout_b) layout_c = getattr(cutlass, args.layout_c) A = TensorDescription( element_a, layout_a, args.alignment_a ) B = TensorDescription( element_b, layout_b, args.alignment_b ) C = TensorDescription( element_c, layout_c, args.alignment_c ) element_epilogue = getattr(cutlass, args.element_epilogue) if args.activation_function == "identity": epilogue_functor = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = getattr(cutlass, args.swizzling_functor) precompute_mode = getattr(SchedulerMode, args.precompute_mode) operation = GemmOperationGrouped( arch=args.compute_capability, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor, precompute_mode=precompute_mode ) if args.print_cuda: print(operation.rt_module.emit()) pycutlass.compiler.add_module([operation, ]) reference_module = ReferenceModule(A, B, C) # get problems problem_sizes = [] with open(args.problem_size_dir) as csv_file: reader = csv.reader(csv_file) for row in reader: problem_sizes.append( cutlass.gemm.GemmCoord(int(row[0]), int(row[1]), int(row[2])) ) problem_count = len(problem_sizes) tensor_As = [] tensor_Bs = [] tensor_Cs = [] tensor_Ds = [] problem_sizes_coord = [] tensor_D_refs = [] for problem_size in problem_sizes: if args.element_a != "int8": if args.element_a == "bfloat16": tensor_A = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(problem_size.m() * problem_size.k(),))).astype(bfloat16) else: tensor_A = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(problem_size.m() * problem_size.k(),))).astype(getattr(np, args.element_a)) else: tensor_A = np.random.uniform(low=-2, high=2, size=(problem_size.m() * problem_size.k(),)).astype(getattr(np, args.element_a)) if args.element_b != "int8": if args.element_b == "bfloat16": tensor_B = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(problem_size.k() * problem_size.n(),))).astype(bfloat16) else: tensor_B = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(problem_size.k() * problem_size.n(),))).astype(getattr(np, args.element_b)) else: tensor_B = np.random.uniform(low=-2, high=2, size=(problem_size.k() * problem_size.n(),)).astype(getattr(np, args.element_b)) if args.element_c != "int8": if args.bias: if args.layout_c == "RowMajor": c_size = problem_size.n() elif args.layout_c == "ColumnMajor": c_size = problem_size.m() else: raise ValueError(args.layout_c) else: c_size = problem_size.m() * problem_size.n() if args.element_c == "bfloat16": tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(c_size,)) ).astype(bfloat16) else: tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(c_size,)) ).astype(getattr(np, args.element_c)) else: tensor_C = np.random.uniform( low=-2, high=2, size=(problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) tensor_D = np.zeros( shape=(problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) tensor_As.append(tensor_A) tensor_Bs.append(tensor_B) tensor_Cs.append(tensor_C) tensor_Ds.append(tensor_D) tensor_D_ref = reference_module.run( tensor_A, tensor_B, tensor_C, problem_size, args.alpha, args.beta, args.bias) tensor_D_ref = getattr(pycutlass, args.activation_function).numpy(*([tensor_D_ref,] + args.activation_args)) tensor_D_refs.append(tensor_D_ref) problem_sizes_coord.append(problem_size) arguments = GemmGroupedArguments( operation, problem_sizes_coord, tensor_As, tensor_Bs, tensor_Cs, tensor_Ds, output_op=operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)) ) operation.run(arguments) arguments.sync() for tensor_d, tensor_d_ref in zip(tensor_Ds, tensor_D_refs): try: assert np.array_equal(tensor_d, tensor_d_ref) except: assert np.allclose(tensor_d, tensor_d_ref, rtol=1e-5) print("Passed.")
warp-main
warp/native/cutlass/examples/40_cutlass_py/customizable/gemm_grouped.py
from typing import Any, Optional import warp as wp from warp.types import type_length, type_is_matrix from warp.sparse import BsrMatrix, bsr_copy, bsr_mv, bsr_mm, bsr_assign, bsr_axpy from .utils import array_axpy def normalize_dirichlet_projector(projector_matrix: BsrMatrix, fixed_value: Optional[wp.array] = None): """ Scale projector so that it becomes idempotent, and apply the same scaling to fixed_value if provided """ if projector_matrix.nrow < projector_matrix.nnz or projector_matrix.ncol != projector_matrix.nrow: raise ValueError("Projector must be a square diagonal matrix, with at most one non-zero block per row") # Cast blocks to matrix type if necessary projector_values = projector_matrix.values if not type_is_matrix(projector_values.dtype): projector_values = wp.array( data=None, ptr=projector_values.ptr, capacity=projector_values.capacity, owner=False, device=projector_values.device, dtype=wp.mat(shape=projector_matrix.block_shape, dtype=projector_matrix.scalar_type), shape=projector_values.shape[0], ) if fixed_value is None: wp.launch( kernel=_normalize_dirichlet_projector_kernel, dim=projector_matrix.nrow, device=projector_values.device, inputs=[projector_matrix.offsets, projector_matrix.columns, projector_values], ) else: if fixed_value.shape[0] != projector_matrix.nrow: raise ValueError("Fixed value array must be of length equal to the number of rows of blocks") if type_length(fixed_value.dtype) == 1: # array of scalars, convert to 1d array of vectors fixed_value = wp.array( data=None, ptr=fixed_value.ptr, capacity=fixed_value.capacity, owner=False, device=fixed_value.device, dtype=wp.vec(length=projector_matrix.block_shape[0], dtype=projector_matrix.scalar_type), shape=fixed_value.shape[0], ) wp.launch( kernel=_normalize_dirichlet_projector_and_values_kernel, dim=projector_matrix.nrow, device=projector_values.device, inputs=[projector_matrix.offsets, projector_matrix.columns, projector_values, fixed_value], ) def project_system_rhs( system_matrix: BsrMatrix, system_rhs: wp.array, projector_matrix: BsrMatrix, fixed_value: wp.array ): """Projects the right-hand-side of a linear system to enforce Dirichlet boundary conditions ``rhs = (I - projector) * ( rhs - system * projector * fixed_value) + projector * fixed_value`` """ rhs_tmp = wp.empty_like(system_rhs) rhs_tmp.assign(system_rhs) bsr_mv(A=projector_matrix, x=fixed_value, y=system_rhs, alpha=1.0, beta=0.0) bsr_mv(A=system_matrix, x=system_rhs, y=rhs_tmp, alpha=-1.0, beta=1.0) # here rhs_tmp = system_rhs - system_matrix * projector * fixed_value # system_rhs = projector * fixed_value array_axpy(x=rhs_tmp, y=system_rhs, alpha=1.0, beta=1.0) bsr_mv(A=projector_matrix, x=rhs_tmp, y=system_rhs, alpha=-1.0, beta=1.0) def project_system_matrix(system_matrix: BsrMatrix, projector_matrix: BsrMatrix): """Projects the right-hand-side of a linear system to enforce Dirichlet boundary conditions ``system = (I - projector) * system * (I - projector) + projector`` """ complement_system = bsr_copy(system_matrix) bsr_mm(x=projector_matrix, y=system_matrix, z=complement_system, alpha=-1.0, beta=1.0) bsr_assign(dest=system_matrix, src=complement_system) bsr_axpy(x=projector_matrix, y=system_matrix) bsr_mm(x=complement_system, y=projector_matrix, z=system_matrix, alpha=-1.0, beta=1.0) def project_linear_system( system_matrix: BsrMatrix, system_rhs: wp.array, projector_matrix: BsrMatrix, fixed_value: wp.array, normalize_projector=True, ): """ Projects both the left-hand-side and right-hand-side of a linear system to enforce Dirichlet boundary conditions If normalize_projector is True, first apply scaling so that the projector_matrix is idempotent """ if normalize_projector: normalize_dirichlet_projector(projector_matrix, fixed_value) project_system_rhs(system_matrix, system_rhs, projector_matrix, fixed_value) project_system_matrix(system_matrix, projector_matrix) @wp.kernel def _normalize_dirichlet_projector_kernel( offsets: wp.array(dtype=int), columns: wp.array(dtype=int), block_values: wp.array(dtype=Any), ): row = wp.tid() beg = offsets[row] end = offsets[row + 1] if beg == end: return diag = wp.lower_bound(columns, beg, end, row) if diag < end and columns[diag] == row: P = block_values[diag] P_sq = P * P trace_P = wp.trace(P) trace_P_sq = wp.trace(P_sq) if wp.nonzero(trace_P_sq): scale = trace_P / trace_P_sq block_values[diag] = scale * P else: block_values[diag] = P - P @wp.kernel def _normalize_dirichlet_projector_and_values_kernel( offsets: wp.array(dtype=int), columns: wp.array(dtype=int), block_values: wp.array(dtype=Any), fixed_values: wp.array(dtype=Any), ): row = wp.tid() beg = offsets[row] end = offsets[row + 1] if beg == end: return diag = wp.lower_bound(columns, beg, end, row) if diag < end and columns[diag] == row: P = block_values[diag] P_sq = P * P trace_P = wp.trace(P) trace_P_sq = wp.trace(P_sq) if wp.nonzero(trace_P_sq): scale = trace_P / trace_P_sq block_values[diag] = scale * P fixed_values[row] = scale * fixed_values[row] else: block_values[diag] = P - P fixed_values[row] = fixed_values[row] - fixed_values[row]
warp-main
warp/fem/dirichlet.py
from typing import Union from enum import Enum import warp as wp import warp.codegen import warp.context from warp.fem.geometry import ( Element, Geometry, GeometryPartition, WholeGeometryPartition, ) GeometryOrPartition = Union[Geometry, GeometryPartition] class GeometryDomain: """Interface class for domains, i.e. (partial) views of elements in a Geometry""" class ElementKind(Enum): """Possible kinds of elements contained in a domain""" CELL = 0 SIDE = 1 def __init__(self, geometry: GeometryOrPartition): if isinstance(geometry, GeometryPartition): self.geometry_partition = geometry else: self.geometry_partition = WholeGeometryPartition(geometry) self.geometry = self.geometry_partition.geometry @property def name(self) -> str: return f"{self.geometry_partition.name}_{self.__class__.__name__}" def __str__(self) -> str: return self.name def __eq__(self, other) -> bool: return self.__class__ == other.__class__ and self.geometry_partition == other.geometry_partition @property def element_kind(self) -> ElementKind: """Kind of elements that this domain contains (cells or sides)""" raise NotImplementedError def dimension(self) -> int: """Dimension of the elements of the domain""" raise NotImplementedError def element_count(self) -> int: """Number of elements in the domain""" raise NotImplementedError def geometry_element_count(self) -> int: """Number of elements in the underlying geometry""" return self.geometry.cell_count() def reference_element(self) -> Element: """Protypical element""" raise NotImplementedError def element_index_arg_value(self, device: warp.context.Devicelike) -> warp.codegen.StructInstance: """Value of the argument to be passed to device functions""" raise NotImplementedError def element_arg_value(self, device: warp.context.Devicelike) -> warp.codegen.StructInstance: """Value of the argument to be passed to device functions""" raise NotImplementedError ElementIndexArg: warp.codegen.Struct """Structure containing arguments to be passed to device functions computing element indices""" element_index: wp.Function """Device function for retrieving an ElementIndex from a linearized index""" ElementArg: warp.codegen.Struct """Structure containing arguments to be passed to device functions computing element geometry""" element_measure: wp.Function """Device function returning the measure determinant (e.g. volume, area) at a given point""" element_measure_ratio: wp.Function """Device function returning the ratio of the measure of a side to that of its neighbour cells""" element_position: wp.Function """Device function returning the element position at a sample point""" element_normal: wp.Function """Device function returning the element normal at a sample point""" element_lookup: wp.Function """Device function returning the sample point corresponding to a world position""" class Cells(GeometryDomain): """A Domain containing all cells of the geometry or geometry partition""" def __init__(self, geometry: GeometryOrPartition): super().__init__(geometry) @property def element_kind(self) -> GeometryDomain.ElementKind: return GeometryDomain.ElementKind.CELL def dimension(self) -> int: return self.geometry.dimension def reference_element(self) -> Element: return self.geometry.reference_cell() def element_count(self) -> int: return self.geometry_partition.cell_count() def geometry_element_count(self) -> int: return self.geometry.cell_count() @property def ElementIndexArg(self) -> warp.codegen.Struct: return self.geometry_partition.CellArg def element_index_arg_value(self, device: warp.context.Devicelike) -> warp.codegen.StructInstance: return self.geometry_partition.cell_arg_value(device) @property def element_index(self) -> wp.Function: return self.geometry_partition.cell_index def element_arg_value(self, device: warp.context.Devicelike) -> warp.codegen.StructInstance: return self.geometry.cell_arg_value(device) @property def ElementArg(self) -> warp.codegen.Struct: return self.geometry.CellArg @property def element_position(self) -> wp.Function: return self.geometry.cell_position @property def element_measure(self) -> wp.Function: return self.geometry.cell_measure @property def element_measure_ratio(self) -> wp.Function: return self.geometry.cell_measure_ratio @property def eval_normal(self) -> wp.Function: return self.geometry.cell_normal @property def element_lookup(self) -> wp.Function: return self.geometry.cell_lookup class Sides(GeometryDomain): """A Domain containing all (interior and boundary) sides of the geometry or geometry partition""" def __init__(self, geometry: GeometryOrPartition): self.geometry = geometry super().__init__(geometry) @property def element_kind(self) -> GeometryDomain.ElementKind: return GeometryDomain.ElementKind.SIDE def dimension(self) -> int: return self.geometry.dimension - 1 def reference_element(self) -> Element: return self.geometry.reference_side() def element_count(self) -> int: return self.geometry_partition.side_count() def geometry_element_count(self) -> int: return self.geometry.side_count() @property def ElementIndexArg(self) -> warp.codegen.Struct: return self.geometry_partition.SideArg def element_index_arg_value(self, device: warp.context.Devicelike) -> warp.codegen.StructInstance: return self.geometry_partition.side_arg_value(device) @property def element_index(self) -> wp.Function: return self.geometry_partition.side_index @property def ElementArg(self) -> warp.codegen.Struct: return self.geometry.SideArg def element_arg_value(self, device: warp.context.Devicelike) -> warp.codegen.StructInstance: return self.geometry.side_arg_value(device) @property def element_position(self) -> wp.Function: return self.geometry.side_position @property def element_measure(self) -> wp.Function: return self.geometry.side_measure @property def element_measure_ratio(self) -> wp.Function: return self.geometry.side_measure_ratio @property def eval_normal(self) -> wp.Function: return self.geometry.side_normal class BoundarySides(Sides): """A Domain containing boundary sides of the geometry or geometry partition""" def __init__(self, geometry: GeometryOrPartition): super().__init__(geometry) def element_count(self) -> int: return self.geometry_partition.boundary_side_count() def geometry_element_count(self) -> int: return self.geometry.boundary_side_count() @property def element_index(self) -> wp.Function: return self.geometry_partition.boundary_side_index class FrontierSides(Sides): """A Domain containing frontier sides of the geometry partition (sides shared with at least another partition)""" def __init__(self, geometry: GeometryOrPartition): super().__init__(geometry) def element_count(self) -> int: return self.geometry_partition.frontier_side_count() def geometry_element_count(self) -> int: raise RuntimeError("Frontier sides not defined at the geometry level") @property def element_index(self) -> wp.Function: return self.geometry_partition.frontier_side_index
warp-main
warp/fem/domain.py
import inspect from typing import Callable, Any import warp as wp from warp.fem.types import Domain, Field, Sample from warp.fem import utils class Integrand: """An integrand is a device function containing arbitrary expressions over Field and Domain variables. It will get transformed to a proper warp.Function by resolving concrete Field types at call time. """ def __init__(self, func: Callable): self.func = func self.name = wp.codegen.make_full_qualified_name(self.func) self.module = wp.get_module(self.func.__module__) self.argspec = inspect.getfullargspec(self.func) class Operator: """ Operators provide syntaxic sugar over Field and Domain evaluation functions and arguments """ def __init__(self, func: Callable, resolver: Callable): self.func = func self.resolver = resolver def integrand(func: Callable): """Decorator for functions to be integrated (or interpolated) using warp.fem""" itg = Integrand(func) itg.__doc__ = func.__doc__ return itg def operator(resolver: Callable): """Decorator for functions operating on Field-like or Domain-like data inside warp.fem integrands""" def wrap_operator(func: Callable): op = Operator(func, resolver) op.__doc__ = func.__doc__ return op return wrap_operator # Domain operators @operator(resolver=lambda dmn: dmn.element_position) def position(domain: Domain, x: Sample): """Evaluates the world position of the sample point x""" pass @operator(resolver=lambda dmn: dmn.eval_normal) def normal(domain: Domain, x: Sample): """Evaluates the element normal at the sample point x. Null for interior points.""" pass @operator(resolver=lambda dmn: dmn.element_lookup) def lookup(domain: Domain, x: Any): """Look-ups a sample point from a world position, projecting to the closest point on the domain""" pass @operator(resolver=lambda dmn: dmn.element_measure) def measure(domain: Domain, sample: Sample): """Returns the measure (volume, area, or length) of an element""" pass @operator(resolver=lambda dmn: dmn.element_measure_ratio) def measure_ratio(domain: Domain, sample: Sample): """Returns the maximum ratio between the measure of this element and that of higher-dimensional neighbours.""" pass # Field operators # On a side, inner and outer are such that normal goes from inner to outer @operator(resolver=lambda f: f.eval_inner) def inner(f: Field, x: Sample): """Evaluates the field at a sample point x. On oriented sides, use the inner element""" pass @operator(resolver=lambda f: f.eval_grad_inner) def grad(f: Field, x: Sample): """Evaluates the field gradient at a sample point x. On oriented sides, use the inner element""" pass @operator(resolver=lambda f: f.eval_outer) def outer(f: Field, x: Sample): """Evaluates the field at a sample point x. On oriented sides, use the outer element. On interior points and on domain boundaries, this is equivalent to inner.""" pass @operator(resolver=lambda f: f.eval_grad_outer) def grad_outer(f: Field, x: Sample): """Evaluates the field gradient at a sample point x. On oriented sides, use the outer element. On interior points and on domain boundaries, this is equivalent to grad.""" pass @operator(resolver=lambda f: f.eval_degree) def degree(f: Field): """Polynomial degree of a field""" pass @operator(resolver=lambda f: f.at_node) def at_node(f: Field, s: Sample): """For a Test or Trial field, returns a copy of the Sample `s` moved to the coordinates of the node being evaluated""" pass # Common derived operators, for convenience @integrand def D(f: Field, x: Sample): """Symmetric part of the (inner) gradient of the field at x""" return utils.symmetric_part(grad(f, x)) @integrand def div(f: Field, x: Sample): """(Inner) divergence of the field at x""" return wp.trace(grad(f, x)) @integrand def jump(f: Field, x: Sample): """Jump between inner and outer element values on an interior side. Zero for interior points or domain boundaries""" return inner(f, x) - outer(f, x) @integrand def average(f: Field, x: Sample): """Average between inner and outer element values""" return 0.5 * (inner(f, x) + outer(f, x)) @integrand def grad_jump(f: Field, x: Sample): """Jump between inner and outer element gradients on an interior side. Zero for interior points or domain boundaries""" return grad(f, x) - grad_outer(f, x) @integrand def grad_average(f: Field, x: Sample): """Average between inner and outer element gradients""" return 0.5 * (grad(f, x) + grad_outer(f, x)) # Set default call operators for argument types, so that field(s) = inner(field, s) and domain(s) = position(domain, s) Field.call_operator = inner Domain.call_operator = position
warp-main
warp/fem/operator.py
from typing import Callable, Optional import warp as wp from warp.fem.operator import Integrand import re _kernel_cache = dict() _struct_cache = dict() _func_cache = dict() _key_re = re.compile("[^0-9a-zA-Z_]+") def get_func(func, suffix=""): key = f"{func.__name__}_{suffix}" key = _key_re.sub("", key) if key not in _func_cache: _func_cache[key] = wp.Function( func=func, key=key, namespace="", module=wp.get_module( func.__module__, ), ) return _func_cache[key] def get_kernel(func, suffix=""): module = wp.get_module(func.__module__) key = func.__name__ + "_" + suffix key = _key_re.sub("", key) if key not in _kernel_cache: _kernel_cache[key] = wp.Kernel(func=func, key=key, module=module) return _kernel_cache[key] def get_struct(Fields): module = wp.get_module(Fields.__module__) key = _key_re.sub("", Fields.__qualname__) if key not in _struct_cache: _struct_cache[key] = wp.codegen.Struct( cls=Fields, key=key, module=module, ) return _struct_cache[key] def get_integrand_function( integrand: Integrand, suffix: str, annotations=None, code_transformers=[], ): key = integrand.name + suffix key = _key_re.sub("", key) if key not in _func_cache: _func_cache[key] = wp.Function( func=integrand.func, key=key, namespace="", module=integrand.module, overloaded_annotations=annotations, code_transformers=code_transformers, ) return _func_cache[key] def get_integrand_kernel( integrand: Integrand, suffix: str, kernel_fn: Optional[Callable] = None, code_transformers=[], ): module = wp.get_module(f"{integrand.module.name}.{integrand.name}") module.options = integrand.module.options key = integrand.name + "_" + suffix key = _key_re.sub("", key) if key not in _kernel_cache: if kernel_fn is None: return None _kernel_cache[key] = wp.Kernel(func=kernel_fn, key=key, module=module, code_transformers=code_transformers) return _kernel_cache[key]
warp-main
warp/fem/cache.py
# Shared DOFs : vertices or edges (sides in 3D) # DG: Interior DOFs only # Unique identifier -> vertex or edge, side # Element -> DOF id
warp-main
warp/fem/__init__.py
import warp as wp vec1i = wp.types.vector(length=1, dtype=wp.int32) vec2i = wp.types.vector(length=2, dtype=wp.int32) vec3i = wp.types.vector(length=3, dtype=wp.int32) vec4i = wp.types.vector(length=4, dtype=wp.int32) vec8i = wp.types.vector(length=8, dtype=wp.int32) vec6 = wp.types.vector(length=6, dtype=wp.float32) Coords = wp.vec3 OUTSIDE = wp.constant(-1.0e8) ElementIndex = int QuadraturePointIndex = int NodeIndex = int NULL_ELEMENT_INDEX = wp.constant(-1) NULL_QP_INDEX = wp.constant(-1) NULL_NODE_INDEX = wp.constant(-1) DofIndex = vec2i """Opaque descriptor for indexing degrees of freedom within elements""" NULL_DOF_INDEX = wp.constant(DofIndex(-1, -1)) @wp.func def get_node_index_in_element(dof_idx: DofIndex): return dof_idx[0] @wp.func def get_node_coord(dof_idx: DofIndex): return dof_idx[1] @wp.struct class NodeElementIndex: domain_element_index: ElementIndex node_index_in_element: int @wp.struct class Sample: """Per-sample point context for evaluating fields and related operators in integrands""" element_index: ElementIndex """Index of the geometry element the sample point is in""" element_coords: Coords """Coordinates of the sample point inside the element""" qp_index: QuadraturePointIndex = NULL_QP_INDEX """If the sample corresponds to a quadrature point, its global index""" qp_weight: float = 0.0 """If the sample corresponds to a quadrature point, its weight""" test_dof: DofIndex = NULL_DOF_INDEX """For linear of bilinear form assembly, index of the test degree-of-freedom currently being considered""" trial_dof: DofIndex = NULL_DOF_INDEX """For bilinear form assembly, index of the trial degree-of-freedom currently being considered""" class Field: """ Tag for field-like integrand arguments """ call_operator: "wp.fem.Operator" = None # Set in operator.py class Domain: """ Tag for domain-like integrand arguments """ call_operator: "wp.fem.Operator" = None # Set in operator.py
warp-main
warp/fem/types.py
from typing import List, Dict, Set, Optional, Any, Union import warp as wp import re import ast from warp.sparse import BsrMatrix, bsr_zeros, bsr_set_from_triplets, bsr_copy, bsr_diag from warp.types import type_length from warp.utils import array_cast from warp.codegen import get_annotations from warp.fem.domain import GeometryDomain from warp.fem.space import SpaceRestriction from warp.fem.field import ( TestField, TrialField, FieldLike, DiscreteField, FieldRestriction, make_restriction, ) from warp.fem.quadrature import Quadrature, RegularQuadrature from warp.fem.operator import Operator, Integrand from warp.fem import cache from warp.fem.types import Domain, Field, Sample, DofIndex, NULL_DOF_INDEX, OUTSIDE def _resolve_path(func, node): """ Resolves variable and path from ast node/attribute (adapted from warp.codegen) """ modules = [] while isinstance(node, ast.Attribute): modules.append(node.attr) node = node.value if isinstance(node, ast.Name): modules.append(node.id) # reverse list since ast presents it backward order path = [*reversed(modules)] if len(path) == 0: return None, path # try and evaluate object path try: # Look up the closure info and append it to adj.func.__globals__ # in case you want to define a kernel inside a function and refer # to varibles you've declared inside that function: capturedvars = dict( zip( func.__code__.co_freevars, [c.cell_contents for c in (func.__closure__ or [])], ) ) vars_dict = {**func.__globals__, **capturedvars} func = eval(".".join(path), vars_dict) return func, path except (NameError, AttributeError): pass return None, path def _path_to_ast_attribute(name: str) -> ast.Attribute: path = name.split(".") path.reverse() node = ast.Name(id=path.pop(), ctx=ast.Load()) while len(path): node = ast.Attribute( value=node, attr=path.pop(), ctx=ast.Load(), ) return node class IntegrandTransformer(ast.NodeTransformer): def __init__(self, integrand: Integrand, field_args: Dict[str, FieldLike]): self._integrand = integrand self._field_args = field_args def visit_Call(self, call: ast.Call): call = self.generic_visit(call) callee = getattr(call.func, "id", None) if callee in self._field_args: # Shortcut for evaluating fields as f(x...) field = self._field_args[callee] arg_type = self._integrand.argspec.annotations[callee] operator = arg_type.call_operator call.func = ast.Attribute( value=_path_to_ast_attribute(arg_type.__qualname__), attr="call_operator", ctx=ast.Load(), ) call.args = [ast.Name(id=callee, ctx=ast.Load())] + call.args self._replace_call_func(call, operator, field) return call func, _ = _resolve_path(self._integrand.func, call.func) if isinstance(func, Operator) and len(call.args) > 0: # Evaluating operators as op(field, x, ...) callee = getattr(call.args[0], "id", None) if callee in self._field_args: field = self._field_args[callee] self._replace_call_func(call, func, field) if isinstance(func, Integrand): key = self._translate_callee(func, call.args) call.func = ast.Attribute( value=call.func, attr=key, ctx=ast.Load(), ) # print(ast.dump(call, indent=4)) return call def _replace_call_func(self, call: ast.Call, operator: Operator, field: FieldLike): try: pointer = operator.resolver(field) setattr(operator, pointer.key, pointer) except AttributeError: raise ValueError(f"Operator {operator.func.__name__} is not defined for field {field.name}") call.func = ast.Attribute(value=call.func, attr=pointer.key, ctx=ast.Load()) def _translate_callee(self, callee: Integrand, args: List[ast.AST]): # Get field types for call site arguments call_site_field_args = [] for arg in args: name = getattr(arg, "id", None) if name in self._field_args: call_site_field_args.append(self._field_args[name]) call_site_field_args.reverse() # Pass to callee in same order callee_field_args = {} for arg in callee.argspec.args: arg_type = callee.argspec.annotations[arg] if arg_type in (Field, Domain): callee_field_args[arg] = call_site_field_args.pop() return _translate_integrand(callee, callee_field_args).key def _translate_integrand(integrand: Integrand, field_args: Dict[str, FieldLike]) -> wp.Function: # Specialize field argument types argspec = integrand.argspec annotations = {} for arg in argspec.args: arg_type = argspec.annotations[arg] if arg_type == Field: annotations[arg] = field_args[arg].EvalArg elif arg_type == Domain: annotations[arg] = field_args[arg].ElementArg else: annotations[arg] = arg_type # Transform field evaluation calls transformer = IntegrandTransformer(integrand, field_args) def is_field_like(f): # WAR for isinstance not supporting Union in Python < 3.10 return any(isinstance(f, field_class) for field_class in FieldLike.__args__) suffix = "_".join([f.name for f in field_args.values() if is_field_like(f)]) key = integrand.name + suffix func = cache.get_integrand_function( integrand=integrand, suffix=suffix, annotations=annotations, code_transformers=[transformer], ) key = func.key setattr(integrand, key, integrand.module.functions[key]) return getattr(integrand, key) def _get_integrand_field_arguments( integrand: Integrand, fields: Dict[str, FieldLike], domain: GeometryDomain = None, ): # parse argument types field_args = {} value_args = {} domain_name = None sample_name = None argspec = integrand.argspec for arg in argspec.args: arg_type = argspec.annotations[arg] if arg_type == Field: if arg not in fields: raise ValueError(f"Missing field for argument '{arg}'") field_args[arg] = fields[arg] elif arg_type == Domain: domain_name = arg field_args[arg] = domain elif arg_type == Sample: sample_name = arg else: value_args[arg] = arg_type return field_args, value_args, domain_name, sample_name def _get_test_and_trial_fields( fields: Dict[str, FieldLike], ): test = None trial = None test_name = None trial_name = None for name, field in fields.items(): if isinstance(field, TestField): if test is not None: raise ValueError("Duplicate test field argument") test = field test_name = name elif isinstance(field, TrialField): if trial is not None: raise ValueError("Duplicate test field argument") trial = field trial_name = name if trial is not None: if test is None: raise ValueError("A trial field cannot be provided without a test field") if test.domain != trial.domain: raise ValueError("Incompatible test and trial domains") return test, test_name, trial, trial_name def _gen_field_struct(field_args: Dict[str, FieldLike]): class Fields: pass annotations = get_annotations(Fields) for name, arg in field_args.items(): if isinstance(arg, GeometryDomain): continue setattr(Fields, name, arg.EvalArg()) annotations[name] = arg.EvalArg Fields.__qualname__ = ( Fields.__name__ + "_" + "_".join([f"{name}_{arg_struct.cls.__qualname__}" for name, arg_struct in annotations.items()]) ) try: Fields.__annotations__ = annotations except AttributeError: setattr(Fields.__dict__, "__annotations__", annotations) return cache.get_struct(Fields) def _gen_value_struct(value_args: Dict[str, type]): class Values: pass annotations = get_annotations(Values) for name, arg_type in value_args.items(): setattr(Values, name, None) annotations[name] = arg_type def arg_type_name(arg_type): if isinstance(arg_type, wp.codegen.Struct): return arg_type_name(arg_type.cls) return getattr(arg_type, "__name__", str(arg_type)) def arg_type_name(arg_type): if isinstance(arg_type, wp.codegen.Struct): return arg_type_name(arg_type.cls) return getattr(arg_type, "__name__", str(arg_type)) Values.__qualname__ = ( Values.__name__ + "_" + "_".join([f"{name}_{arg_type_name(arg_type)}" for name, arg_type in annotations.items()]) ) try: Values.__annotations__ = annotations except AttributeError: setattr(Values.__dict__, "__annotations__", annotations) return cache.get_struct(Values) def _get_trial_arg(): pass def _get_test_arg(): pass class PassFieldArgsToIntegrand(ast.NodeTransformer): def __init__( self, arg_names: List[str], field_args: Set[str], value_args: Set[str], sample_name: str, domain_name: str, test_name: str = None, trial_name: str = None, func_name: str = "integrand_func", fields_var_name: str = "fields", values_var_name: str = "values", domain_var_name: str = "domain_arg", sample_var_name: str = "sample", ): self._arg_names = arg_names self._field_args = field_args self._value_args = value_args self._domain_name = domain_name self._sample_name = sample_name self._func_name = func_name self._test_name = test_name self._trial_name = trial_name self._fields_var_name = fields_var_name self._values_var_name = values_var_name self._domain_var_name = domain_var_name self._sample_var_name = sample_var_name def visit_Call(self, call: ast.Call): call = self.generic_visit(call) callee = getattr(call.func, "id", None) if callee == self._func_name: # Replace function arguments with ours generated structs call.args.clear() for arg in self._arg_names: if arg == self._domain_name: call.args.append( ast.Name(id=self._domain_var_name, ctx=ast.Load()), ) elif arg == self._sample_name: call.args.append( ast.Name(id=self._sample_var_name, ctx=ast.Load()), ) elif arg in self._field_args: call.args.append( ast.Attribute( value=ast.Name(id=self._fields_var_name, ctx=ast.Load()), attr=arg, ctx=ast.Load(), ) ) elif arg in self._value_args: call.args.append( ast.Attribute( value=ast.Name(id=self._values_var_name, ctx=ast.Load()), attr=arg, ctx=ast.Load(), ) ) else: raise RuntimeError(f"Unhandled argument {arg}") # print(ast.dump(call, indent=4)) elif callee == _get_test_arg.__name__: # print(ast.dump(call, indent=4)) call = ast.Attribute( value=ast.Name(id=self._fields_var_name, ctx=ast.Load()), attr=self._test_name, ctx=ast.Load(), ) elif callee == _get_trial_arg.__name__: # print(ast.dump(call, indent=4)) call = ast.Attribute( value=ast.Name(id=self._fields_var_name, ctx=ast.Load()), attr=self._trial_name, ctx=ast.Load(), ) return call def get_integrate_null_kernel( integrand_func: wp.Function, domain: GeometryDomain, quadrature: Quadrature, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, ): def integrate_kernel_fn( qp_arg: quadrature.Arg, domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, fields: FieldStruct, values: ValueStruct, ): element_index = domain.element_index(domain_index_arg, wp.tid()) test_dof_index = NULL_DOF_INDEX trial_dof_index = NULL_DOF_INDEX qp_point_count = quadrature.point_count(qp_arg, element_index) for k in range(qp_point_count): qp_index = quadrature.point_index(qp_arg, element_index, k) qp_coords = quadrature.point_coords(qp_arg, element_index, k) qp_weight = quadrature.point_weight(qp_arg, element_index, k) sample = Sample(element_index, qp_coords, qp_index, qp_weight, test_dof_index, trial_dof_index) integrand_func(sample, fields, values) return integrate_kernel_fn def get_integrate_constant_kernel( integrand_func: wp.Function, domain: GeometryDomain, quadrature: Quadrature, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, accumulate_dtype, ): def integrate_kernel_fn( qp_arg: quadrature.Arg, domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, fields: FieldStruct, values: ValueStruct, result: wp.array(dtype=accumulate_dtype), ): element_index = domain.element_index(domain_index_arg, wp.tid()) elem_sum = accumulate_dtype(0.0) test_dof_index = NULL_DOF_INDEX trial_dof_index = NULL_DOF_INDEX qp_point_count = quadrature.point_count(qp_arg, element_index) for k in range(qp_point_count): qp_index = quadrature.point_index(qp_arg, element_index, k) coords = quadrature.point_coords(qp_arg, element_index, k) qp_weight = quadrature.point_weight(qp_arg, element_index, k) vol = domain.element_measure(domain_arg, element_index, coords) sample = Sample(element_index, coords, qp_index, qp_weight, test_dof_index, trial_dof_index) val = integrand_func(sample, fields, values) elem_sum += accumulate_dtype(qp_weight * vol * val) wp.atomic_add(result, 0, elem_sum) return integrate_kernel_fn def get_integrate_linear_kernel( integrand_func: wp.Function, domain: GeometryDomain, quadrature: Quadrature, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, test_space: SpaceRestriction, accumulate_dtype, ): def integrate_kernel_fn( qp_arg: quadrature.Arg, domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, test_arg: test_space.NodeArg, fields: FieldStruct, values: ValueStruct, result: wp.array2d(dtype=accumulate_dtype), ): local_node_index = wp.tid() node_index = test_space.node_partition_index(test_arg, local_node_index) element_count = test_space.node_element_count(test_arg, local_node_index) trial_dof_index = NULL_DOF_INDEX for n in range(element_count): node_element_index = test_space.node_element_index(test_arg, local_node_index, n) element_index = domain.element_index(domain_index_arg, node_element_index.domain_element_index) qp_point_count = quadrature.point_count(qp_arg, element_index) for k in range(qp_point_count): qp_index = quadrature.point_index(qp_arg, element_index, k) coords = quadrature.point_coords(qp_arg, element_index, k) qp_weight = quadrature.point_weight(qp_arg, element_index, k) vol = domain.element_measure(domain_arg, element_index, coords) for i in range(test_space.space.VALUE_DOF_COUNT): test_dof_index = DofIndex(node_element_index.node_index_in_element, i) sample = Sample(element_index, coords, qp_index, qp_weight, test_dof_index, trial_dof_index) val = integrand_func(sample, fields, values) result[node_index, i] = result[node_index, i] + accumulate_dtype(qp_weight * vol * val) return integrate_kernel_fn def get_integrate_linear_nodal_kernel( integrand_func: wp.Function, domain: GeometryDomain, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, test: TestField, accumulate_dtype, ): def integrate_kernel_fn( domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, test_restriction_arg: test.space_restriction.NodeArg, fields: FieldStruct, values: ValueStruct, result: wp.array2d(dtype=accumulate_dtype), ): local_node_index, dof = wp.tid() node_index = test.space_restriction.node_partition_index(test_restriction_arg, local_node_index) element_count = test.space_restriction.node_element_count(test_restriction_arg, local_node_index) trial_dof_index = NULL_DOF_INDEX val_sum = accumulate_dtype(0.0) for n in range(element_count): node_element_index = test.space_restriction.node_element_index(test_restriction_arg, local_node_index, n) element_index = domain.element_index(domain_index_arg, node_element_index.domain_element_index) coords = test.space.node_coords_in_element( _get_test_arg(), element_index, node_element_index.node_index_in_element, ) if coords[0] != OUTSIDE: node_weight = test.space.node_quadrature_weight( _get_test_arg(), element_index, node_element_index.node_index_in_element, ) vol = domain.element_measure(domain_arg, element_index, coords) test_dof_index = DofIndex(node_element_index.node_index_in_element, dof) sample = Sample( element_index, coords, node_index, node_weight, test_dof_index, trial_dof_index, ) val = integrand_func(sample, fields, values) val_sum += accumulate_dtype(node_weight * vol * val) result[node_index, dof] = val_sum return integrate_kernel_fn def get_integrate_bilinear_kernel( integrand_func: wp.Function, domain: GeometryDomain, quadrature: Quadrature, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, test_space: SpaceRestriction, trial: TrialField, accumulate_dtype, ): NODES_PER_ELEMENT = trial.space.NODES_PER_ELEMENT def integrate_kernel_fn( qp_arg: quadrature.Arg, domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, test_arg: test_space.NodeArg, trial_partition_arg: trial.space_partition.PartitionArg, fields: FieldStruct, values: ValueStruct, row_offsets: wp.array(dtype=int), triplet_rows: wp.array(dtype=int), triplet_cols: wp.array(dtype=int), triplet_values: wp.array3d(dtype=accumulate_dtype), ): test_local_node_index = wp.tid() element_count = test_space.node_element_count(test_arg, test_local_node_index) test_node_index = test_space.node_partition_index(test_arg, test_local_node_index) for element in range(element_count): test_element_index = test_space.node_element_index(test_arg, test_local_node_index, element) element_index = domain.element_index(domain_index_arg, test_element_index.domain_element_index) qp_point_count = quadrature.point_count(qp_arg, element_index) start_offset = (row_offsets[test_node_index] + element) * NODES_PER_ELEMENT for k in range(qp_point_count): qp_index = quadrature.point_index(qp_arg, element_index, k) coords = quadrature.point_coords(qp_arg, element_index, k) qp_weight = quadrature.point_weight(qp_arg, element_index, k) vol = domain.element_measure(domain_arg, element_index, coords) offset_cur = start_offset for trial_n in range(NODES_PER_ELEMENT): for i in range(test_space.space.VALUE_DOF_COUNT): for j in range(trial.space.VALUE_DOF_COUNT): test_dof_index = DofIndex( test_element_index.node_index_in_element, i, ) trial_dof_index = DofIndex(trial_n, j) sample = Sample( element_index, coords, qp_index, qp_weight, test_dof_index, trial_dof_index, ) val = integrand_func(sample, fields, values) triplet_values[offset_cur, i, j] = triplet_values[offset_cur, i, j] + accumulate_dtype( qp_weight * vol * val ) offset_cur += 1 # Set column indices offset_cur = start_offset for trial_n in range(NODES_PER_ELEMENT): trial_node_index = trial.space_partition.partition_node_index( trial_partition_arg, trial.space.element_node_index(_get_trial_arg(), element_index, trial_n), ) triplet_rows[offset_cur] = test_node_index triplet_cols[offset_cur] = trial_node_index offset_cur += 1 return integrate_kernel_fn def get_integrate_bilinear_nodal_kernel( integrand_func: wp.Function, domain: GeometryDomain, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, test: TestField, accumulate_dtype, ): def integrate_kernel_fn( domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, test_restriction_arg: test.space_restriction.NodeArg, fields: FieldStruct, values: ValueStruct, triplet_rows: wp.array(dtype=int), triplet_cols: wp.array(dtype=int), triplet_values: wp.array3d(dtype=accumulate_dtype), ): local_node_index, test_dof, trial_dof = wp.tid() element_count = test.space_restriction.node_element_count(test_restriction_arg, local_node_index) node_index = test.space_restriction.node_partition_index(test_restriction_arg, local_node_index) val_sum = accumulate_dtype(0.0) for n in range(element_count): node_element_index = test.space_restriction.node_element_index(test_restriction_arg, local_node_index, n) element_index = domain.element_index(domain_index_arg, node_element_index.domain_element_index) coords = test.space.node_coords_in_element( _get_test_arg(), element_index, node_element_index.node_index_in_element, ) if coords[0] != OUTSIDE: node_weight = test.space.node_quadrature_weight( _get_test_arg(), element_index, node_element_index.node_index_in_element, ) vol = domain.element_measure(domain_arg, element_index, coords) test_dof_index = DofIndex(node_element_index.node_index_in_element, test_dof) trial_dof_index = DofIndex(node_element_index.node_index_in_element, trial_dof) sample = Sample( element_index, coords, node_index, node_weight, test_dof_index, trial_dof_index, ) val = integrand_func(sample, fields, values) val_sum += accumulate_dtype(node_weight * vol * val) triplet_values[local_node_index, test_dof, trial_dof] = val_sum triplet_rows[local_node_index] = node_index triplet_cols[local_node_index] = node_index return integrate_kernel_fn def _generate_integrate_kernel( integrand: Integrand, domain: GeometryDomain, nodal: bool, quadrature: Quadrature, test: Optional[TestField], test_name: str, trial: Optional[TrialField], trial_name: str, fields: Dict[str, FieldLike], accumulate_dtype: type, ) -> wp.Kernel: # Extract field arguments from integrand field_args, value_args, domain_name, sample_name = _get_integrand_field_arguments( integrand, fields=fields, domain=domain ) FieldStruct = _gen_field_struct(field_args) ValueStruct = _gen_value_struct(value_args) # Check if kernel exist in cache kernel_suffix = f"_itg_{domain.name}_{FieldStruct.key}" if nodal: kernel_suffix += "_nodal" else: kernel_suffix += quadrature.name if test: kernel_suffix += f"_test_{test.space_partition.name}_{test.space.name}" if trial: kernel_suffix += f"_trial_{trial.space_partition.name}_{trial.space.name}" kernel = cache.get_integrand_kernel( integrand=integrand, suffix=kernel_suffix, ) if kernel is not None: return kernel, FieldStruct, ValueStruct # Not found in cache, trasnform integrand and generate kernel integrand_func = _translate_integrand( integrand, field_args, ) if test is None and trial is None: integrate_kernel_fn = get_integrate_constant_kernel( integrand_func, domain, quadrature, FieldStruct, ValueStruct, accumulate_dtype=accumulate_dtype, ) elif trial is None: if nodal: integrate_kernel_fn = get_integrate_linear_nodal_kernel( integrand_func, domain, FieldStruct, ValueStruct, test=test, accumulate_dtype=accumulate_dtype, ) else: integrate_kernel_fn = get_integrate_linear_kernel( integrand_func, domain, quadrature, FieldStruct, ValueStruct, test_space=test.space_restriction, accumulate_dtype=accumulate_dtype, ) else: if nodal: integrate_kernel_fn = get_integrate_bilinear_nodal_kernel( integrand_func, domain, FieldStruct, ValueStruct, test=test, accumulate_dtype=accumulate_dtype, ) else: integrate_kernel_fn = get_integrate_bilinear_kernel( integrand_func, domain, quadrature, FieldStruct, ValueStruct, test_space=test.space_restriction, trial=trial, accumulate_dtype=accumulate_dtype, ) kernel = cache.get_integrand_kernel( integrand=integrand, kernel_fn=integrate_kernel_fn, suffix=kernel_suffix, code_transformers=[ PassFieldArgsToIntegrand( arg_names=integrand.argspec.args, field_args=field_args.keys(), value_args=value_args.keys(), sample_name=sample_name, domain_name=domain_name, test_name=test_name, trial_name=trial_name ) ], ) return kernel, FieldStruct, ValueStruct def _launch_integrate_kernel( kernel: wp.kernel, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, domain: GeometryDomain, nodal: bool, quadrature: Quadrature, test: Optional[TestField], trial: Optional[TrialField], fields: Dict[str, FieldLike], values: Dict[str, Any], accumulate_dtype: type, output_dtype: type, output: Optional[Union[wp.array, BsrMatrix]], device, ) -> wp.Kernel: if output_dtype is None: if output is not None: output_dtype = output.dtype else: output_dtype = accumulate_dtype # Set-up launch arguments domain_elt_arg = domain.element_arg_value(device=device) domain_elt_index_arg = domain.element_index_arg_value(device=device) if quadrature is not None: qp_arg = quadrature.arg_value(device=device) field_arg_values = FieldStruct() for k, v in fields.items(): setattr(field_arg_values, k, v.eval_arg_value(device=device)) value_struct_values = ValueStruct() for k, v in values.items(): setattr(value_struct_values, k, v) # Constant if test is None and trial is None: if output is None or output.dtype != accumulate_dtype: result = wp.zeros(shape=(1), device=device, dtype=output_dtype) else: result = output result.zero_() wp.launch( kernel=kernel, dim=domain.element_count(), inputs=[ qp_arg, domain_elt_arg, domain_elt_index_arg, field_arg_values, value_struct_values, result, ], device=device, ) if output is None: return output_dtype(result.numpy()[0]) else: if output != result: array_cast(in_array=result, out_array=output) return output test_arg = test.space_restriction.node_arg(device=device) # Linear form if trial is None: if test.space.VALUE_DOF_COUNT == 1: result_dtype = accumulate_dtype else: result_dtype = wp.vec(length=test.space.VALUE_DOF_COUNT, dtype=accumulate_dtype) result_array = wp.zeros( shape=test.space_partition.node_count(), dtype=result_dtype, device=device, ) # Launch the integration on the kernel on a 2d scalar view of the actual array result_2d_view = wp.array( data=None, ptr=result_array.ptr, capacity=result_array.capacity, owner=False, device=result_array.device, shape=(test.space_partition.node_count(), test.space.VALUE_DOF_COUNT), dtype=accumulate_dtype, ) if nodal: wp.launch( kernel=kernel, dim=(test.space_restriction.node_count(), test.space.VALUE_DOF_COUNT), inputs=[ domain_elt_arg, domain_elt_index_arg, test_arg, field_arg_values, value_struct_values, result_2d_view, ], device=device, ) else: wp.launch( kernel=kernel, dim=test.space_restriction.node_count(), inputs=[ qp_arg, domain_elt_arg, domain_elt_index_arg, test_arg, field_arg_values, value_struct_values, result_2d_view, ], device=device, ) if output_dtype == result_array.dtype: return result_array output_type_length = type_length(output_dtype) if output_type_length == test.space.VALUE_DOF_COUNT: cast_result = wp.empty(dtype=output_dtype, shape=result_array.shape) else: cast_result = wp.empty(dtype=output_dtype, shape=result_2d_view.shape) array_cast(in_array=result_array, out_array=cast_result) return cast_result # Bilinear form if test.space.VALUE_DOF_COUNT == 1 and trial.space.VALUE_DOF_COUNT == 1: block_type = accumulate_dtype else: block_type = wp.types.matrix( shape=(test.space.VALUE_DOF_COUNT, trial.space.VALUE_DOF_COUNT), dtype=accumulate_dtype ) bsr_matrix = bsr_zeros( rows_of_blocks=test.space_partition.node_count(), cols_of_blocks=trial.space_partition.node_count(), block_type=block_type, device=device, ) if nodal: nnz = test.space_restriction.node_count() else: nnz = test.space_restriction.total_node_element_count() * trial.space.NODES_PER_ELEMENT triplet_rows = wp.empty(n=nnz, dtype=int, device=device) triplet_cols = wp.empty(n=nnz, dtype=int, device=device) triplet_values = wp.zeros( shape=( nnz, test.space.VALUE_DOF_COUNT, trial.space.VALUE_DOF_COUNT, ), dtype=accumulate_dtype, device=device, ) if nodal: wp.launch( kernel=kernel, dim=triplet_values.shape, inputs=[ domain_elt_arg, domain_elt_index_arg, test_arg, field_arg_values, value_struct_values, triplet_rows, triplet_cols, triplet_values, ], device=device, ) else: offsets = test.space_restriction.partition_element_offsets() trial_partition_arg = trial.space_partition.partition_arg_value(device) wp.launch( kernel=kernel, dim=test.space_restriction.node_count(), inputs=[ qp_arg, domain_elt_arg, domain_elt_index_arg, test_arg, trial_partition_arg, field_arg_values, value_struct_values, offsets, triplet_rows, triplet_cols, triplet_values, ], device=device, ) bsr_set_from_triplets(bsr_matrix, triplet_rows, triplet_cols, triplet_values) return bsr_matrix if output_dtype == accumulate_dtype else bsr_copy(bsr_matrix, scalar_type=output_dtype) def integrate( integrand: Integrand, domain: GeometryDomain = None, quadrature: Quadrature = None, nodal: bool = False, fields={}, values={}, device=None, accumulate_dtype=wp.float64, output_dtype=None, output=None, ): """ Integrates a constant, linear or bilinear form, and returns a scalar, array, or sparse matrix, respectively. Args: integrand: Form to be integrated, must have `wp.integrand` decorator domain: Integration domain. If None, deduced from fields quadrature: Quadrature formula. If None, deduced from domain and fields degree. nodal: For linear or bilinear form only, use the test function nodes as the quadrature points. Assumes Lagrange interpolation functions are used, and no differential or DG operator is evaluated on the test or trial functions. fields: Discrete, test, and trial fields to be passed to the integrand. Keys in the dictionary must match integrand parameter names. values: Additional variable values to be passed to the integrand, can by of any type accepted by warp kernel launchs. Keys in the dictionary must match integrand parameter names. device: Device on which to perform the integration accumulate_dtype: Scalar type to be used for accumulating integration samples output_dtype: Scalar type for returned results. If None, defaults to accumulate_dtype """ if not isinstance(integrand, Integrand): raise ValueError("integrand must be tagged with @integrand decorator") test, test_name, trial, trial_name = _get_test_and_trial_fields(fields) if domain is None: if quadrature is not None: domain = quadrature.domain elif test is not None: domain = test.domain if domain is None: raise ValueError("Must provide at least one of domain, quadrature, or test field") if test is not None and domain != test.domain: raise NotImplementedError("Mixing integration and test domain is not supported yet") if nodal: if quadrature is not None: raise ValueError("Cannot specify quadrature for nodal integration") if test is None: raise ValueError("Nodal integration requires specifying a test function") if trial is not None and test.space_partition != trial.space_partition: raise ValueError( "Bilinear nodal integration requires test and trial to be defined on the same function space" ) else: if quadrature is None: order = 0 if test is not None: order += test.space.degree if trial is not None: order += trial.space.degree quadrature = RegularQuadrature(domain=domain, order=order) elif domain != quadrature.domain: raise ValueError("Incompatible integration and quadrature domain") kernel, FieldStruct, ValueStruct = _generate_integrate_kernel( integrand=integrand, domain=domain, nodal=nodal, quadrature=quadrature, test=test, test_name=test_name, trial=trial, trial_name=trial_name, fields=fields, accumulate_dtype=accumulate_dtype, ) return _launch_integrate_kernel( kernel=kernel, FieldStruct=FieldStruct, ValueStruct=ValueStruct, domain=domain, nodal=nodal, quadrature=quadrature, test=test, trial=trial, fields=fields, values=values, accumulate_dtype=accumulate_dtype, output_dtype=output_dtype, output=output, device=device, ) def get_interpolate_kernel( integrand_func: wp.Function, domain: GeometryDomain, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, dest: FieldRestriction, ): value_type = dest.space.dtype def interpolate_kernel_fn( domain_arg: domain.ElementArg, domain_index_arg: domain.ElementIndexArg, dest_node_arg: dest.space_restriction.NodeArg, dest_eval_arg: dest.field.EvalArg, fields: FieldStruct, values: ValueStruct, ): local_node_index = wp.tid() node_index = dest.space_restriction.node_partition_index(dest_node_arg, local_node_index) element_count = dest.space_restriction.node_element_count(dest_node_arg, local_node_index) if element_count == 0: return test_dof_index = NULL_DOF_INDEX trial_dof_index = NULL_DOF_INDEX node_weight = 1.0 # Volume-weighted average accross elements # Superfluous if the function is continuous, but we might as well val_sum = value_type(0.0) vol_sum = float(0.0) for n in range(element_count): node_element_index = dest.space_restriction.node_element_index(dest_node_arg, local_node_index, n) element_index = domain.element_index(domain_index_arg, node_element_index.domain_element_index) coords = dest.space.node_coords_in_element( dest_eval_arg.space_arg, element_index, node_element_index.node_index_in_element, ) if coords[0] != OUTSIDE: vol = domain.element_measure(domain_arg, element_index, coords) sample = Sample( element_index, coords, node_index, node_weight, test_dof_index, trial_dof_index, ) val = integrand_func(sample, fields, values) vol_sum += vol val_sum += vol * val if vol_sum > 0.0: dest.field.set_node_value(dest_eval_arg, node_index, val_sum / vol_sum) return interpolate_kernel_fn def _generate_interpolate_kernel(integrand: Integrand, dest: FieldLike, fields: Dict[str, FieldLike]) -> wp.Kernel: domain = dest.domain # Extract field arguments from integrand field_args, value_args, domain_name, sample_name = _get_integrand_field_arguments( integrand, fields=fields, domain=domain ) # Generate field struct integrand_func = _translate_integrand( integrand, field_args, ) FieldStruct = _gen_field_struct(field_args) ValueStruct = _gen_value_struct(value_args) # Check if kernel exist in cache kernel_suffix = f"_itp_{FieldStruct.key}_{dest.domain.name}_{dest.space_restriction.space_partition.name}_{dest.space.name}" kernel = cache.get_integrand_kernel( integrand=integrand, suffix=kernel_suffix, ) if kernel is not None: return kernel, FieldStruct, ValueStruct # Generate interpolation kernel interpolate_kernel_fn = get_interpolate_kernel( integrand_func, domain, dest=dest, FieldStruct=FieldStruct, ValueStruct=ValueStruct, ) kernel = cache.get_integrand_kernel( integrand=integrand, kernel_fn=interpolate_kernel_fn, suffix=kernel_suffix, code_transformers=[ PassFieldArgsToIntegrand( arg_names=integrand.argspec.args, field_args=field_args.keys(), value_args=value_args.keys(), sample_name=sample_name, domain_name=domain_name, ) ], ) return kernel, FieldStruct, ValueStruct def _launch_interpolate_kernel( kernel: wp.kernel, FieldStruct: wp.codegen.Struct, ValueStruct: wp.codegen.Struct, dest: FieldLike, fields: Dict[str, FieldLike], values: Dict[str, Any], device, ) -> wp.Kernel: # Set-up launch arguments elt_arg = dest.domain.element_arg_value(device=device) elt_index_arg = dest.domain.element_index_arg_value(device=device) dest_node_arg = dest.space_restriction.node_arg(device=device) dest_eval_arg = dest.field.eval_arg_value(device=device) field_arg_values = FieldStruct() for k, v in fields.items(): setattr(field_arg_values, k, v.eval_arg_value(device=device)) value_struct_values = ValueStruct() for k, v in values.items(): setattr(value_struct_values, k, v) wp.launch( kernel=kernel, dim=dest.space_restriction.node_count(), inputs=[ elt_arg, elt_index_arg, dest_node_arg, dest_eval_arg, field_arg_values, value_struct_values, ], device=device, ) def interpolate( integrand: Integrand, dest: Union[DiscreteField, FieldRestriction], fields={}, values={}, device=None, ): """ Interpolates a function and assigns the result to a discrete field. Args: integrand: Function to be interpolated, must have `wp.integrand` decorator dest: Discrete field, or restriction of a discrete field to a domain, to which the interpolation result will be assigned fields: Discrete fields to be passed to the integrand. Keys in the dictionary must match integrand parameters names. values: Additional variable values to be passed to the integrand, can by of any type accepted by warp kernel launchs. Keys in the dictionary must match integrand parameter names. device: Device on which to perform the interpolation """ if not isinstance(integrand, Integrand): raise ValueError("integrand must be tagged with @integrand decorator") test, _, trial, __ = _get_test_and_trial_fields(fields) if test is not None or trial is not None: raise ValueError("Test or Trial fields should not be used for interpolation") if not isinstance(dest, FieldRestriction): dest = make_restriction(dest) kernel, FieldStruct, ValueStruct = _generate_interpolate_kernel( integrand=integrand, dest=dest, fields=fields, ) return _launch_interpolate_kernel( kernel=kernel, FieldStruct=FieldStruct, ValueStruct=ValueStruct, dest=dest, fields=fields, values=values, device=device, )
warp-main
warp/fem/integrate.py
from typing import Any, Tuple import warp as wp from warp.utils import radix_sort_pairs, runlength_encode, array_scan from .types import vec6 @wp.func def generalized_outer(x: Any, y: wp.vec2): return wp.outer(x, y) @wp.func def generalized_outer(x: Any, y: wp.vec3): return wp.outer(x, y) @wp.func def generalized_outer(x: Any, y: wp.float32): return x * y @wp.func def unit_element(template_type: wp.float32, coord: int): return 1.0 @wp.func def unit_element(template_type: wp.vec2, coord: int): t = wp.vec2(0.0) t[coord] = 1.0 return t @wp.func def unit_element(template_type: wp.vec3, coord: int): t = wp.vec3(0.0) t[coord] = 1.0 return t @wp.func def unit_element(template_type: vec6, coord: int): t = vec6(0.0) t[coord] = 1.0 return t @wp.func def unit_element(template_type: wp.mat22, coord: int): t = wp.mat22(0.0) t[coord // 2, coord % 2] = 1.0 return t @wp.func def unit_element(template_type: wp.mat33, coord: int): t = wp.mat22(0.0) t[coord // 3, coord % 3] = 1.0 return t @wp.func def symmetric_part(x: wp.mat22): off_diag = 0.5 * (x[0, 1] + x[1, 0]) return wp.mat22(x[0, 0], off_diag, off_diag, x[1, 1]) @wp.func def symmetric_part(x: wp.mat33): d = 0.5 * (x[1, 2] + x[2, 1]) e = 0.5 * (x[2, 0] + x[0, 2]) f = 0.5 * (x[0, 1] + x[1, 0]) return wp.mat33(x[0, 0], f, e, f, x[1, 1], d, e, d, x[2, 2]) def compress_node_indices( node_count: int, node_indices: wp.array(dtype=int) ) -> Tuple[wp.array, wp.array, int, wp.array]: """ Compress an unsorted list of node indices into: - a node_offsets array, giving for each node the start offset of corresponding indices in sorted_array_indices - a sorted_array_indices array, listing the indices in the input array corresponding to each node - the number of unique node indices - a unique_node_indices array containg the sorted list of unique node indices (i.e. the list of indices i for which node_offsets[i] < node_offsets[i+1]) """ index_count = node_indices.size sorted_node_indices = wp.empty(2 * index_count, dtype=int, device=node_indices.device) sorted_array_indices = wp.empty_like(sorted_node_indices) wp.copy(dest=sorted_node_indices, src=node_indices, count=index_count) indices_per_element = 1 if node_indices.ndim == 1 else node_indices.shape[-1] wp.launch( kernel=_iota_kernel, dim=index_count, inputs=[sorted_array_indices, indices_per_element], device=sorted_array_indices.device, ) # Sort indices radix_sort_pairs(sorted_node_indices, sorted_array_indices, count=index_count) # Build prefix sum of number of elements per node unique_node_indices = wp.empty(n=index_count, dtype=int, device=node_indices.device) node_element_counts = wp.empty(n=index_count, dtype=int, device=node_indices.device) unique_node_count = runlength_encode( sorted_node_indices, unique_node_indices, node_element_counts, value_count=index_count ) # Scatter seen run counts to global array of element count per node node_offsets = wp.zeros(shape=(node_count + 1), device=node_element_counts.device, dtype=int) wp.launch( kernel=_scatter_node_counts, dim=unique_node_count, inputs=[node_element_counts, unique_node_indices, node_offsets], device=node_offsets.device, ) # Prefix sum of number of elements per node array_scan(node_offsets, node_offsets, inclusive=True) return node_offsets, sorted_array_indices, unique_node_count, unique_node_indices _pinned_temp_count_buffer = {} def _get_pinned_temp_count_buffer(device): device = str(device) if device not in _pinned_temp_count_buffer: _pinned_temp_count_buffer[device] = wp.empty(shape=(1,), dtype=int, pinned=True, device="cpu") return _pinned_temp_count_buffer[device] def masked_indices(mask: wp.array(dtype=int), missing_index=-1) -> Tuple[wp.array, wp.array]: """ From an array of boolean masks (must be either 0 or 1), returns: - The list of indices for which the mask is 1 - A map associating to each element of the input mask array its local index if non-zero, or missing_index if zero. """ offsets = wp.empty_like(mask) wp.utils.array_scan(mask, offsets, inclusive=True) # Get back total counts on host if offsets.device.is_cuda: masked_count = _get_pinned_temp_count_buffer(offsets.device) wp.copy(dest=masked_count, src=offsets, src_offset=offsets.shape[0] - 1, count=1) wp.synchronize_stream(wp.get_stream()) masked_count = int(masked_count.numpy()[0]) else: masked_count = int(offsets.numpy()[-1]) # Convert counts to indices indices = wp.empty(n=masked_count, device=mask.device, dtype=int) wp.launch( kernel=_masked_indices_kernel, dim=offsets.shape, inputs=[missing_index, mask, offsets, indices, offsets], device=mask.device, ) return indices, offsets def array_axpy(x: wp.array, y: wp.array, alpha: float = 1.0, beta: float = 1.0): """Performs y = alpha*x + beta*y""" dtype = wp.types.type_scalar_type(x.dtype) alpha = dtype(alpha) beta = dtype(beta) if x.dtype != y.dtype or x.shape != y.shape or x.device != y.device: raise ValueError("x and y arrays must have same dat atype, shape and device") wp.launch(kernel=_array_axpy_kernel, dim=x.shape, device=x.device, inputs=[x, y, alpha, beta]) @wp.kernel def _iota_kernel(indices: wp.array(dtype=int), divisor: int): indices[wp.tid()] = wp.tid() // divisor @wp.kernel def _scatter_node_counts( unique_counts: wp.array(dtype=int), unique_node_indices: wp.array(dtype=int), node_counts: wp.array(dtype=int) ): i = wp.tid() node_counts[1 + unique_node_indices[i]] = unique_counts[i] @wp.kernel def _masked_indices_kernel( missing_index: int, mask: wp.array(dtype=int), offsets: wp.array(dtype=int), masked_to_global: wp.array(dtype=int), global_to_masked: wp.array(dtype=int), ): i = wp.tid() if mask[i] == 0: global_to_masked[i] = missing_index else: masked_idx = offsets[i] - 1 global_to_masked[i] = masked_idx masked_to_global[masked_idx] = i @wp.kernel def _array_axpy_kernel(x: wp.array(dtype=Any), y: wp.array(dtype=Any), alpha: Any, beta: Any): i = wp.tid() y[i] = beta * y[i] + alpha * x[i]
warp-main
warp/fem/utils.py
import math from enum import Enum import numpy as np class Polynomial(Enum): GAUSS_LEGENDRE = 0 LOBATTO_GAUSS_LEGENDRE = 1 EQUISPACED_CLOSED = 2 EQUISPACED_OPEN = 3 def is_closed(family: Polynomial): """Whether the polynomial roots include interval endpoints""" return family == Polynomial.LOBATTO_GAUSS_LEGENDRE or family == Polynomial.EQUISPACED_CLOSED def _gauss_legendre_quadrature_1d(n: int): if n == 1: coords = [0.0] weights = [2.0] elif n == 2: coords = [-math.sqrt(1.0 / 3), math.sqrt(1.0 / 3)] weights = [1.0, 1.0] elif n == 3: coords = [0.0, -math.sqrt(3.0 / 5.0), math.sqrt(3.0 / 5.0)] weights = [8.0 / 9.0, 5.0 / 9.0, 5.0 / 9.0] elif n == 4: c_a = math.sqrt(3.0 / 7.0 - 2.0 / 7.0 * math.sqrt(6.0 / 5.0)) c_b = math.sqrt(3.0 / 7.0 + 2.0 / 7.0 * math.sqrt(6.0 / 5.0)) w_a = (18.0 + math.sqrt(30.0)) / 36.0 w_b = (18.0 - math.sqrt(30.0)) / 36.0 coords = [c_a, -c_a, c_b, -c_b] weights = [w_a, w_a, w_b, w_b] elif n == 5: c_a = 1.0 / 3.0 * math.sqrt(5.0 - 2.0 * math.sqrt(10.0 / 7.0)) c_b = 1.0 / 3.0 * math.sqrt(5.0 + 2.0 * math.sqrt(10.0 / 7.0)) w_a = (322.0 + 13.0 * math.sqrt(70.0)) / 900.0 w_b = (322.0 - 13.0 * math.sqrt(70.0)) / 900.0 coords = [0.0, c_a, -c_a, c_b, -c_b] weights = [128.0 / 225.0, w_a, w_a, w_b, w_b] else: raise NotImplementedError # Shift from [-1, 1] to [0, 1] weights = 0.5 * np.array(weights) coords = 0.5 * np.array(coords) + 0.5 return coords, weights def _lobatto_gauss_legendre_quadrature_1d(n: int): if n == 2: coords = [-1.0, 1.0] weights = [1.0, 1.0] elif n == 3: coords = [-1.0, 0.0, 1.0] weights = [1.0 / 3.0, 4.0 / 3.0, 1.0 / 3.0] elif n == 4: coords = [-1.0, -1.0 / math.sqrt(5.0), 1.0 / math.sqrt(5.0), 1.0] weights = [1.0 / 6.0, 5.0 / 6.0, 5.0 / 6.0, 1.0 / 6.0] elif n == 5: coords = [-1.0, -math.sqrt(3.0 / 7.0), 0.0, math.sqrt(3.0 / 7.0), 1.0] weights = [1.0 / 10.0, 49.0 / 90.0, 32.0 / 45.0, 49.0 / 90.0, 1.0 / 10.0] else: raise NotImplementedError # Shift from [-1, 1] to [0, 1] weights = 0.5 * np.array(weights) coords = 0.5 * np.array(coords) + 0.5 return coords, weights def _uniform_open_quadrature_1d(n: int): step = 1.0 / (n + 1) coords = np.linspace(step, 1.0 - step, n) weights = np.full(n, 1.0 / (n + 1)) # Boundaries have 3/2 the weight weights[0] = 1.5 / (n + 1) weights[-1] = 1.5 / (n + 1) return coords, weights def _uniform_closed_quadrature_1d(n: int): coords = np.linspace(0.0, 1.0, n) weights = np.full(n, 1.0 / (n - 1)) # Boundaries have half the weight weights[0] = 0.5 / (n - 1) weights[-1] = 0.5 / (n - 1) return coords, weights def _open_newton_cotes_quadrature_1d(n: int): step = 1.0 / (n + 1) coords = np.linspace(step, 1.0 - step, n) # Weisstein, Eric W. "Newton-Cotes Formulas." From MathWorld--A Wolfram Web Resource. # https://mathworld.wolfram.com/Newton-CotesFormulas.html if n == 1: weights = np.array([1.0]) elif n == 2: weights = np.array([0.5, 0.5]) elif n == 3: weights = np.array([2.0, -1.0, 2.0]) / 3.0 elif n == 4: weights = np.array([11.0, 1.0, 1.0, 11.0]) / 24.0 elif n == 5: weights = np.array([11.0, -14.0, 26.0, -14.0, 11.0]) / 20.0 elif n == 6: weights = np.array([611.0, -453.0, 562.0, 562.0, -453.0, 611.0]) / 1440.0 elif n == 7: weights = np.array([460.0, -954.0, 2196.0, -2459.0, 2196.0, -954.0, 460.0]) / 945.0 else: raise NotImplementedError return coords, weights def _closed_newton_cotes_quadrature_1d(n: int): coords = np.linspace(0.0, 1.0, n) # OEIS: A093735, A093736 if n == 2: weights = np.array([1.0, 1.0]) / 2.0 elif n == 3: weights = np.array([1.0, 4.0, 1.0]) / 3.0 elif n == 4: weights = np.array([3.0, 9.0, 9.0, 3.0]) / 8.0 elif n == 5: weights = np.array([14.0, 64.0, 24.0, 64.0, 14.0]) / 45.0 elif n == 6: weights = np.array([95.0 / 288.0, 125.0 / 96.0, 125.0 / 144.0, 125.0 / 144.0, 125.0 / 96.0, 95.0 / 288.0]) elif n == 7: weights = np.array([41, 54, 27, 68, 27, 54, 41], dtype=float) / np.array( [140, 35, 140, 35, 140, 35, 140], dtype=float ) elif n == 8: weights = np.array( [ 5257, 25039, 343, 20923, 20923, 343, 25039, 5257, ] ) / np.array( [ 17280, 17280, 640, 17280, 17280, 640, 17280, 17280, ], dtype=float, ) else: raise NotImplementedError # Normalize with interval length weights = weights / (n - 1) return coords, weights def quadrature_1d(point_count: int, family: Polynomial): """Return quadrature points and weights for the given family and point count""" if family == Polynomial.GAUSS_LEGENDRE: return _gauss_legendre_quadrature_1d(point_count) if family == Polynomial.LOBATTO_GAUSS_LEGENDRE: return _lobatto_gauss_legendre_quadrature_1d(point_count) if family == Polynomial.EQUISPACED_CLOSED: return _closed_newton_cotes_quadrature_1d(point_count) if family == Polynomial.EQUISPACED_OPEN: return _open_newton_cotes_quadrature_1d(point_count) raise NotImplementedError def lagrange_scales(coords: np.array): """Return the scaling factors for Lagrange polynomials with roots at coords""" lagrange_scale = np.empty_like(coords) for i in range(len(coords)): deltas = coords[i] - coords deltas[i] = 1.0 lagrange_scale[i] = 1.0 / np.prod(deltas) return lagrange_scale
warp-main
warp/fem/polynomial.py
from typing import Any import warp as wp from warp.fem import domain from warp.fem.types import ElementIndex, Coords from ..polynomial import Polynomial class Quadrature: """Interface class for quadrature rules""" Arg: wp.codegen.Struct """Structure containing arguments to be passed to device functions""" def __init__(self, domain: domain.GeometryDomain): self._domain = domain @property def domain(self): """Domain over which this quadrature is defined""" return self._domain def eval_arg_value(self, device) -> wp.codegen.StructInstance: """ Value of the argument to be passed to device """ pass def total_point_count(self): """Total number of quadrature points over the domain""" pass def point_count(arg: Any, element_index: ElementIndex): """Number of quadrature points for a given element""" pass def point_coords(arg: Any, element_index: ElementIndex, qp_index: int): """Coordinates in element of the qp_index'th quadrature point""" pass def point_weight(arg: Any, element_index: ElementIndex, qp_index: int): """Weight of the qp_index'th quadrature point""" pass def __str__(self) -> str: return self.name class RegularQuadrature(Quadrature): """Regular quadrature formula, using a constant set of quadrature points per element""" def __init__( self, domain: domain.GeometryDomain, order: int, family: Polynomial = None, ): super().__init__(domain) self.family = family self.order = order self._element_quadrature = domain.reference_element().instantiate_quadrature(order, family) N = wp.constant(len(self.points)) WeightVec = wp.vec(length=N, dtype=wp.float32) CoordMat = wp.mat(shape=(N, 3), dtype=wp.float32) POINTS = wp.constant(CoordMat(self.points)) WEIGHTS = wp.constant(WeightVec(self.weights)) self.point_count = self._make_point_count(N) self.point_index = self._make_point_index(N) self.point_coords = self._make_point_coords(POINTS, self.name) self.point_weight = self._make_point_weight(WEIGHTS, self.name) @property def name(self): return ( f"{self.__class__.__name__}_{self.domain.reference_element().__class__.__name__}_{self.family}_{self.order}" ) def __str__(self) -> str: return self.name def total_point_count(self): return len(self.points) * self.domain.geometry_element_count() @property def points(self): return self._element_quadrature[0] @property def weights(self): return self._element_quadrature[1] @wp.struct class Arg: pass def arg_value(self, device) -> Arg: arg = RegularQuadrature.Arg() return arg @staticmethod def _make_point_count(N): def point_count(arg: RegularQuadrature.Arg, element_index: ElementIndex): return N from warp.fem.cache import get_func return get_func(point_count, str(N)) @staticmethod def _make_point_coords(POINTS, name): def point_coords(arg: RegularQuadrature.Arg, element_index: ElementIndex, index: int): return Coords(POINTS[index, 0], POINTS[index, 1], POINTS[index, 2]) from warp.fem.cache import get_func return get_func(point_coords, name) @staticmethod def _make_point_weight(WEIGHTS, name): def point_weight(arg: RegularQuadrature.Arg, element_index: ElementIndex, index: int): return WEIGHTS[index] from warp.fem.cache import get_func return get_func(point_weight, name) @staticmethod def _make_point_index(N): def point_index(arg: RegularQuadrature.Arg, element_index: ElementIndex, index: int): return N * element_index + index from warp.fem.cache import get_func return get_func(point_index, str(N))
warp-main
warp/fem/quadrature/quadrature.py
from .quadrature import Quadrature, RegularQuadrature from .pic_quadrature import PicQuadrature
warp-main
warp/fem/quadrature/__init__.py
import warp as wp from warp.fem.domain import GeometryDomain from warp.fem.types import ElementIndex, Coords from warp.fem.utils import compress_node_indices from .quadrature import Quadrature wp.set_module_options({"enable_backward": False}) class PicQuadrature(Quadrature): """Particle-based quadrature formula, using a global set of points irregularely spread out over geometry elements. Useful for Particle-In-Cell and derived methods. """ def __init__( self, domain: GeometryDomain, positions: "wp.array()", measures: "wp.array(dtype=float)", ): super().__init__(domain) self.positions = positions self.measures = measures self._bin_particles() @property def name(self): return f"{self.__class__.__name__}" @Quadrature.domain.setter def domain(self, domain: GeometryDomain): # Allow changing the quadrature domain as long as underlying geometry and element kind are the same if self.domain is not None and ( domain.geometry != self.domain.geometry or domain.element_kind != self.domain.element_kind ): raise RuntimeError( "Cannot change the domain to that of a different Geometry and/or using different element kinds." ) self._domain = domain @wp.struct class Arg: cell_particle_offsets: wp.array(dtype=int) cell_particle_indices: wp.array(dtype=int) particle_fraction: wp.array(dtype=float) particle_coords: wp.array(dtype=Coords) def arg_value(self, device) -> Arg: arg = PicQuadrature.Arg() arg.cell_particle_offsets = self._cell_particle_offsets.to(device) arg.cell_particle_indices = self._cell_particle_indices.to(device) arg.particle_fraction = self._particle_fraction.to(device) arg.particle_coords = self._particle_coords.to(device) return arg def total_point_count(self): return self.positions.shape[0] @wp.func def point_count(arg: Arg, element_index: ElementIndex): return arg.cell_particle_offsets[element_index + 1] - arg.cell_particle_offsets[element_index] @wp.func def point_coords(arg: Arg, element_index: ElementIndex, index: int): particle_index = arg.cell_particle_indices[arg.cell_particle_offsets[element_index] + index] return arg.particle_coords[particle_index] @wp.func def point_weight(arg: Arg, element_index: ElementIndex, index: int): particle_index = arg.cell_particle_indices[arg.cell_particle_offsets[element_index] + index] return arg.particle_fraction[particle_index] @wp.func def point_index(arg: Arg, element_index: ElementIndex, index: int): particle_index = arg.cell_particle_indices[arg.cell_particle_offsets[element_index] + index] return particle_index def fill_element_mask(self, mask: "wp.array(dtype=int)"): """Fills a mask array such that all non-empty elements are set to 1, all empty elements to zero. Args: mask: Int warp array with size at least equal to `self.domain.geometry_element_count()` """ wp.launch( kernel=PicQuadrature._fill_mask_kernel, dim=self.domain.geometry_element_count(), device=mask.device, inputs=[self._cell_particle_offsets, mask], ) @wp.kernel def _fill_mask_kernel( element_particle_offsets: wp.array(dtype=int), element_mask: wp.array(dtype=int), ): i = wp.tid() element_mask[i] = wp.select(element_particle_offsets[i] == element_particle_offsets[i + 1], 1, 0) def _bin_particles(self): from warp.fem import cache def bin_particles_fn( cell_arg_value: self.domain.ElementArg, positions: wp.array(dtype=self.positions.dtype), measures: wp.array(dtype=float), cell_index: wp.array(dtype=ElementIndex), cell_coords: wp.array(dtype=Coords), cell_fraction: wp.array(dtype=float), ): p = wp.tid() sample = self.domain.element_lookup(cell_arg_value, positions[p]) cell_index[p] = sample.element_index cell_coords[p] = sample.element_coords cell_fraction[p] = measures[p] / self.domain.element_measure(cell_arg_value, sample) bin_particles = cache.get_kernel( bin_particles_fn, suffix=f"{self.domain.name}", ) device = self.positions.device cell_index = wp.empty(shape=self.positions.shape, dtype=int, device=device) self._particle_coords = wp.empty(shape=self.positions.shape, dtype=Coords, device=device) self._particle_fraction = wp.empty(shape=self.positions.shape, dtype=float, device=device) wp.launch( dim=self.positions.shape[0], kernel=bin_particles, inputs=[ self.domain.element_arg_value(device), self.positions, self.measures, cell_index, self._particle_coords, self._particle_fraction, ], device=device, ) self._cell_particle_offsets, self._cell_particle_indices, self._cell_count, _ = compress_node_indices( self.domain.geometry_element_count(), cell_index )
warp-main
warp/fem/quadrature/pic_quadrature.py
import warp as wp from warp.fem.domain import GeometryDomain from warp.fem.space import FunctionSpace, SpacePartition from warp.fem.types import Sample, get_node_index_in_element from warp.fem import utils, cache class TrialField: """Field defined over a domain that can be used as a trial function""" def __init__( self, space: FunctionSpace, space_partition: SpacePartition, domain: GeometryDomain, ): if domain.dimension() == space.DIMENSION - 1: space = space.trace() if domain.dimension() != space.DIMENSION: raise ValueError("Incompatible space and domain dimensions") self.space = space self.domain = domain self.space_partition = space_partition self.name = self.space.name + "Trial" self.eval_degree = TrialField._make_eval_degree(self.space) self.eval_inner = TrialField._make_eval_inner(self.space) self.eval_grad_inner = TrialField._make_eval_grad_inner(self.space) self.eval_outer = TrialField._make_eval_outer(self.space) self.eval_grad_outer = TrialField._make_eval_grad_outer(self.space) self.at_node = TrialField._make_at_node(self.space) def partition_node_count(self) -> int: return self.space_partition.node_count() @property def EvalArg(self) -> wp.codegen.Struct: return self.space.SpaceArg def eval_arg_value(self, device) -> wp.codegen.StructInstance: return self.space.space_arg_value(device) @staticmethod def _make_eval_degree(space: FunctionSpace): ORDER = space.ORDER def degree(args: space.SpaceArg): return ORDER return cache.get_func(degree, space) @staticmethod def _make_eval_inner(space: FunctionSpace): def eval_trial(args: space.SpaceArg, s: Sample): weight = space.element_inner_weight( args, s.element_index, s.element_coords, get_node_index_in_element(s.trial_dof), ) return weight * space.unit_dof_value(args, s.trial_dof) return cache.get_func(eval_trial, space.name) @staticmethod def _make_eval_grad_inner(space: FunctionSpace): if wp.types.type_is_matrix(space.dtype): # There is no Warp high-order tensor type to represent matrix gradients return None def eval_nabla_trial(args: space.SpaceArg, s: Sample): nabla_weight = space.element_inner_weight_gradient( args, s.element_index, s.element_coords, get_node_index_in_element(s.trial_dof), ) return utils.generalized_outer( nabla_weight, space.unit_dof_value(args, s.trial_dof), ) return cache.get_func(eval_nabla_trial, space.name) @staticmethod def _make_eval_outer(space: FunctionSpace): def eval_trial_outer(args: space.SpaceArg, s: Sample): weight = space.element_outer_weight( args, s.element_index, s.element_coords, get_node_index_in_element(s.trial_dof), ) return weight * space.unit_dof_value(args, s.trial_dof) return cache.get_func(eval_trial_outer, space.name) @staticmethod def _make_eval_grad_outer(space: FunctionSpace): if wp.types.type_is_matrix(space.dtype): # There is no Warp high-order tensor type to represent matrix gradients return None def eval_nabla_trial_outer(args: space.SpaceArg, s: Sample): nabla_weight = space.element_outer_weight_gradient( args, s.element_index, s.element_coords, get_node_index_in_element(s.trial_dof), ) return utils.generalized_outer( nabla_weight, space.unit_dof_value(args, s.trial_dof), ) return cache.get_func(eval_nabla_trial_outer, space.name) @staticmethod def _make_at_node(space: FunctionSpace): def at_node(args: space.SpaceArg, s: Sample): node_coords = space.node_coords_in_element(args, s.element_index, get_node_index_in_element(s.trial_dof)) return Sample(s.element_index, node_coords, s.qp_index, s.qp_weight, s.test_dof, s.trial_dof) return cache.get_func(at_node, space.name)
warp-main
warp/fem/field/trial.py
from typing import Union, Optional from warp.fem.domain import GeometryDomain, Cells from warp.fem.space import FunctionSpace, SpaceRestriction, SpacePartition, make_space_partition, make_space_restriction from .discrete_field import DiscreteField from .restriction import FieldRestriction from .test import TestField from .trial import TrialField from .nodal_field import NodalField FieldLike = Union[DiscreteField, FieldRestriction, TestField, TrialField] def make_restriction( field: DiscreteField, space_restriction: Optional[SpaceRestriction] = None, domain: Optional[GeometryDomain] = None, device=None, ) -> FieldRestriction: """ Restricts a discrete field to a subset of elements. Args: field: the discrete field to restrict space_restriction: the function space restriction defining the subset of elements to consider domain: if ``space_restriction`` is not provided, the :py:class:`Domain` defining the subset of elements to consider device: Warp device on which to perform and store computations Returns: the field restriction """ if space_restriction is None: space_restriction = make_space_restriction( space=field.space, space_partition=field.space_partition, domain=domain, device=device ) return FieldRestriction(field=field, space_restriction=space_restriction) def make_test( space: Union[FunctionSpace, SpaceRestriction] = None, space_partition: SpacePartition = None, domain: GeometryDomain = None, device=None, ) -> TestField: """ Constructs a test field over a function space or its restriction Args: space: the function space or function space restriction space_partition: if ``space`` is a whole function space, the optional subset of node indices to consider domain: if ``space`` is a whole function space, the optional subset of elements to consider device: Warp device on which to perform and store computations Returns: the test field """ if not isinstance(space, SpaceRestriction): if space is None: space = space_partition.space if domain is None: domain = Cells(geometry=space.geometry) if space_partition is None: space_partition = make_space_partition(space, domain.geometry_partition) space = make_space_restriction(space=space, space_partition=space_partition, domain=domain, device=device) return TestField(space) def make_trial( space: Union[FunctionSpace, SpaceRestriction] = None, space_partition: SpacePartition = None, domain: GeometryDomain = None, ) -> TrialField: """ Constructs a trial field over a function space or partition Args: space: the function space or function space restriction space_partition: if ``space`` is a whole function space, the optional subset of node indices to consider domain: if ``space`` is a whole function space, the optional subset of elements to consider device: Warp device on which to perform and store computations Returns: the trial field """ if isinstance(space, SpaceRestriction): domain = space.domain space = space.space space_partition = space.space_partition if space is None: space = space_partition.space if domain is None: domain = Cells(geometry=space.geometry) if space_partition is None: space_partition = make_space_partition(space, domain.geometry_partition) return TrialField(space, space_partition, domain)
warp-main
warp/fem/field/__init__.py
import warp as wp from warp.fem.space import SpaceRestriction, FunctionSpace from warp.fem.types import Sample, get_node_index_in_element from warp.fem import utils, cache class TestField: """Field defined over a space restriction that can be used as a test function""" def __init__(self, space_restriction: SpaceRestriction): self.space_restriction = space_restriction self.space_partition = self.space_restriction.space_partition self.space = self.space_restriction.space self.domain = self.space_restriction.domain self.name = self.space.name + "Test" self.eval_degree = TestField._make_eval_degree(self.space) self.eval_inner = TestField._make_eval_inner(self.space) self.eval_grad_inner = TestField._make_eval_grad_inner(self.space) self.eval_outer = TestField._make_eval_outer(self.space) self.eval_grad_outer = TestField._make_eval_grad_outer(self.space) self.at_node = TestField._make_at_node(self.space) @property def EvalArg(self) -> wp.codegen.Struct: return self.space.SpaceArg def eval_arg_value(self, device) -> wp.codegen.StructInstance: return self.space.space_arg_value(device) @staticmethod def _make_eval_degree(space: FunctionSpace): ORDER = space.ORDER def degree(args: space.SpaceArg): return ORDER return cache.get_func(degree, space) @staticmethod def _make_eval_inner(space: FunctionSpace): def eval_test(args: space.SpaceArg, s: Sample): weight = space.element_inner_weight( args, s.element_index, s.element_coords, get_node_index_in_element(s.test_dof), ) return weight * space.unit_dof_value(args, s.test_dof) return cache.get_func(eval_test, space.name) @staticmethod def _make_eval_grad_inner(space: FunctionSpace): if wp.types.type_is_matrix(space.dtype): # There is no Warp high-order tensor type to represent matrix gradients return None def eval_nabla_test_inner(args: space.SpaceArg, s: Sample): nabla_weight = space.element_inner_weight_gradient( args, s.element_index, s.element_coords, get_node_index_in_element(s.test_dof), ) return utils.generalized_outer( nabla_weight, space.unit_dof_value(args, s.test_dof), ) return cache.get_func(eval_nabla_test_inner, space.name) @staticmethod def _make_eval_outer(space: FunctionSpace): def eval_test_outer(args: space.SpaceArg, s: Sample): weight = space.element_outer_weight( args, s.element_index, s.element_coords, get_node_index_in_element(s.test_dof), ) return weight * space.unit_dof_value(args, s.test_dof) return cache.get_func(eval_test_outer, space.name) @staticmethod def _make_eval_grad_outer(space: FunctionSpace): if wp.types.type_is_matrix(space.dtype): # There is no Warp high-order tensor type to represent matrix gradients return None def eval_nabla_test(args: space.SpaceArg, s: Sample): nabla_weight = space.element_outer_weight_gradient( args, s.element_index, s.element_coords, get_node_index_in_element(s.test_dof), ) return utils.generalized_outer( nabla_weight, space.unit_dof_value(args, s.test_dof), ) return cache.get_func(eval_nabla_test, space.name) @staticmethod def _make_at_node(space: FunctionSpace): def at_node(args: space.SpaceArg, s: Sample): node_coords = space.node_coords_in_element(args, s.element_index, get_node_index_in_element(s.test_dof)) return Sample(s.element_index, node_coords, s.qp_index, s.qp_weight, s.test_dof, s.trial_dof) return cache.get_func(at_node, space.name)
warp-main
warp/fem/field/test.py
from typing import Any import warp as wp from warp.fem.types import Sample from warp.fem.space import FunctionSpace, SpacePartition class DiscreteField: """Field defined over a partition of a discrete function space""" EvalArg: wp.codegen.Struct """Structure containing arguments passed to device functions for field evaluation""" def __init__(self, space: FunctionSpace, space_partition: SpacePartition): self.space = space self.space_partition = space_partition self.dtype = self.space.dtype self.dof_dtype = self.space.dof_dtype def eval_arg_value(self, device) -> wp.codegen.StructInstance: raise NotImplementedError @property def dof_values(self) -> wp.array: """Array of degrees of freedom values""" raise NotImplementedError @dof_values.setter def dof_values(self, values: wp.array): """Sets degrees of freedom values from an array""" raise NotImplementedError @property def name(self) -> str: return f"{self.__class__.__qualname__}_{self.space.name}_{self.space_partition.name}" @property def __str__(self) -> str: return self.name def trace(self) -> FunctionSpace: """Trace of this field over a lower-dimensional function space""" raise NotImplementedError def eval_arg_value(self, device): """Value of arguments to be passed to device functions""" raise NotImplementedError def set_node_value(args: Any, node_index: int, value: Any): """Device function setting the value at given node""" raise NotImplementedError def eval_inner(args: Any, s: "Sample"): """Device function evaluating the inner field value at a sample point""" raise NotImplementedError def eval_grad_inner(args: Any, s: "Sample"): """Device function evaluating the inner field gradient at a sample point""" raise NotImplementedError def eval_outer(args: Any, s: "Sample"): """Device function evaluating the outer field value at a sample point""" raise NotImplementedError def eval_grad_outer(args: Any, s: "Sample"): """Device function evaluating the outer field gradient at a sample point""" raise NotImplementedError @staticmethod def _make_eval_degree(EvalArg, space: FunctionSpace): ORDER = space.ORDER def degree(args: EvalArg): return ORDER from warp.fem import cache return cache.get_func(degree, space)
warp-main
warp/fem/field/discrete_field.py
from warp.fem.space import SpaceRestriction from .discrete_field import DiscreteField class FieldRestriction: """Restriction of a space to a given GeometryDomain""" def __init__(self, space_restriction: SpaceRestriction, field: DiscreteField): if field.space.DIMENSION - 1 == space_restriction.space.DIMENSION: field = field.trace() if field.space.DIMENSION != space_restriction.space.DIMENSION: raise ValueError("Incompatible space and field dimensions") self.space_restriction = space_restriction self.space = self.space_restriction.space self.domain = self.space_restriction.domain self.field = field
warp-main
warp/fem/field/restriction.py
import warp as wp from warp.fem.space import NodalFunctionSpace, SpacePartition from warp.fem import cache, utils from warp.fem.types import Sample, ElementIndex, NULL_NODE_INDEX from .discrete_field import DiscreteField class NodalField(DiscreteField): def __init__(self, space_partition: SpacePartition, space: NodalFunctionSpace = None): if space is None: space = space_partition.space super().__init__(space, space_partition) self._dof_values = wp.zeros(n=self.space_partition.node_count(), dtype=self.dof_dtype) self.EvalArg = NodalField._make_eval_arg(self.space, self.space_partition) self.eval_degree = DiscreteField._make_eval_degree(self.EvalArg, self.space) self.set_node_value = NodalField._make_set_node_value(self.EvalArg, self.space) read_node_value = NodalField._make_read_node_value(self.EvalArg, self.space, self.space_partition) self.eval_inner = NodalField._make_eval_inner(self.EvalArg, self.space, read_node_value) self.eval_outer = NodalField._make_eval_outer(self.EvalArg, self.space, read_node_value) self.eval_grad_inner = NodalField._make_eval_grad_inner(self.EvalArg, self.space, read_node_value) self.eval_grad_outer = NodalField._make_eval_grad_outer(self.EvalArg, self.space, read_node_value) def eval_arg_value(self, device): arg = self.EvalArg() arg.space_arg = self.space.space_arg_value(device) arg.partition_arg = self.space_partition.partition_arg_value(device) arg.dof_values = self._dof_values.to(device) return arg @property def dof_values(self): return self._dof_values @dof_values.setter def dof_values(self, values): if isinstance(values, wp.array): self._dof_values = values else: self._dof_values = wp.array(values, dtype=self.dof_dtype) class Trace(DiscreteField): def __init__(self, field): self._field = field super().__init__(field.space.trace(), field.space_partition) self.EvalArg = field.EvalArg self.eval_degree = DiscreteField._make_eval_degree(self.EvalArg, self.space) self.eval_arg_value = field.eval_arg_value self.set_node_value = field.set_node_value read_node_value = NodalField._make_read_node_value(self.EvalArg, self.space, self.space_partition) self.eval_inner = NodalField._make_eval_inner(self.EvalArg, self.space, read_node_value) self.eval_outer = NodalField._make_eval_outer(self.EvalArg, self.space, read_node_value) self.eval_grad_inner = NodalField._make_eval_grad_inner(self.EvalArg, self.space, read_node_value) self.eval_grad_outer = NodalField._make_eval_grad_outer(self.EvalArg, self.space, read_node_value) def trace(self) -> Trace: trace_field = NodalField.Trace(self) return trace_field @staticmethod def _make_eval_arg(space: NodalFunctionSpace, space_partition: SpacePartition): from warp.fem import cache class EvalArg: space_arg: space.SpaceArg partition_arg: space_partition.PartitionArg dof_values: wp.array(dtype=space.dof_dtype) EvalArg.__qualname__ = f"{space.name}_{space_partition.name}_FieldEvalArg" return cache.get_struct(EvalArg) @staticmethod def _make_set_node_value(EvalArg, space: NodalFunctionSpace): def set_node_value(args: EvalArg, partition_node_index: int, value: space.dtype): args.dof_values[partition_node_index] = space.dof_mapper.value_to_dof(value) return cache.get_func(set_node_value, space) @staticmethod def _make_read_node_value(EvalArg, space: NodalFunctionSpace, space_partition: SpacePartition): def read_node_value(args: EvalArg, geo_element_index: ElementIndex, node_index_in_elt: int): nidx = space.element_node_index(args.space_arg, geo_element_index, node_index_in_elt) pidx = space_partition.partition_node_index(args.partition_arg, nidx) if pidx == NULL_NODE_INDEX: return space.dtype(0.0) return space.dof_mapper.dof_to_value(args.dof_values[pidx]) return cache.get_func(read_node_value, f"{space}_{space_partition}") @staticmethod def _make_eval_inner( EvalArg, space: NodalFunctionSpace, read_node_value: wp.Function, ): NODES_PER_ELEMENT = space.NODES_PER_ELEMENT def eval_inner(args: EvalArg, s: Sample): res = space.element_inner_weight(args.space_arg, s.element_index, s.element_coords, 0) * read_node_value( args, s.element_index, 0 ) for k in range(1, NODES_PER_ELEMENT): res += space.element_inner_weight( args.space_arg, s.element_index, s.element_coords, k ) * read_node_value(args, s.element_index, k) return res return cache.get_func(eval_inner, read_node_value.key) @staticmethod def _make_eval_grad_inner( EvalArg, space: NodalFunctionSpace, read_node_value: wp.Function, ): NODES_PER_ELEMENT = space.NODES_PER_ELEMENT if wp.types.type_is_matrix(space.dtype): # There is no Warp high-order tensor type to represent matrix gradients return None def eval_grad_inner(args: EvalArg, s: Sample): res = utils.generalized_outer( space.element_inner_weight_gradient(args.space_arg, s.element_index, s.element_coords, 0), read_node_value(args, s.element_index, 0), ) for k in range(1, NODES_PER_ELEMENT): res += utils.generalized_outer( space.element_inner_weight_gradient(args.space_arg, s.element_index, s.element_coords, k), read_node_value(args, s.element_index, k), ) return res return cache.get_func(eval_grad_inner, read_node_value.key) @staticmethod def _make_eval_outer( EvalArg, space: NodalFunctionSpace, read_node_value: wp.Function, ): NODES_PER_ELEMENT = space.NODES_PER_ELEMENT def eval_outer(args: EvalArg, s: Sample): res = space.element_outer_weight(args.space_arg, s.element_index, s.element_coords, 0) * read_node_value( args, s.element_index, 0 ) for k in range(1, NODES_PER_ELEMENT): res += space.element_outer_weight( args.space_arg, s.element_index, s.element_coords, k ) * read_node_value(args, s.element_index, k) return res return cache.get_func(eval_outer, read_node_value.key) @staticmethod def _make_eval_grad_outer( EvalArg, space: NodalFunctionSpace, read_node_value: wp.Function, ): NODES_PER_ELEMENT = space.NODES_PER_ELEMENT if wp.types.type_is_matrix(space.dtype): # There is no Warp high-order tensor type to represent matrix gradients return None def eval_grad_outer(args: EvalArg, s: Sample): res = utils.generalized_outer( space.element_outer_weight_gradient(args.space_arg, s.element_index, s.element_coords, 0), read_node_value(args, s.element_index, 0), ) for k in range(1, NODES_PER_ELEMENT): res += utils.generalized_outer( space.element_outer_weight_gradient(args.space_arg, s.element_index, s.element_coords, k), read_node_value(args, s.element_index, k), ) return res return cache.get_func(eval_grad_outer, read_node_value.key)
warp-main
warp/fem/field/nodal_field.py
from typing import Any import warp as wp from warp.fem.types import ElementIndex, NULL_ELEMENT_INDEX from warp.fem.utils import masked_indices from .geometry import Geometry wp.set_module_options({"enable_backward": False}) class GeometryPartition: """Base class for geometry partitions, i.e. subset of cells and sides""" def __init__(self, geometry: Geometry): self.geometry = geometry def cell_count(self) -> int: """Number of cells that are 'owned' by this partition""" raise NotImplementedError() def side_count(self) -> int: """Number of sides that are 'owned' by this partition""" raise NotImplementedError() def boundary_side_count(self) -> int: """Number of geo-boundary sides that are 'owned' by this partition""" raise NotImplementedError() def frontier_side_count(self) -> int: """Number of sides with neighbors owned by this and another partition""" raise NotImplementedError() @property def name(self) -> str: return f"{self.geometry.name}_{self.__class__.__name__}" def __str__(self) -> str: return self.name class WholeGeometryPartition(GeometryPartition): """Trivial (NOP) partition""" def __init__( self, geometry: Geometry, ): super().__init__(geometry) self.SideArg = geometry.SideIndexArg self.side_arg_value = geometry.side_index_arg_value self.cell_index = WholeGeometryPartition._identity_element_index self.partition_cell_index = WholeGeometryPartition._identity_element_index self.side_index = WholeGeometryPartition._identity_element_index self.boundary_side_index = geometry.boundary_side_index self.frontier_side_index = WholeGeometryPartition._identity_element_index def __eq__(self, other: GeometryPartition) -> bool: # Ensures that two whole partition instances of the same geometry are considered equal return isinstance(other, WholeGeometryPartition) and self.geometry == other.geometry def cell_count(self) -> int: return self.geometry.cell_count() def side_count(self) -> int: return self.geometry.side_count() def boundary_side_count(self) -> int: return self.geometry.boundary_side_count() def frontier_side_count(self) -> int: return 0 @wp.struct class CellArg: pass def cell_arg_value(self, device): arg = WholeGeometryPartition.CellArg() return arg @wp.func def _identity_element_index(args: Any, idx: ElementIndex): return idx class CellBasedGeometryPartition(GeometryPartition): """Geometry partition based on a subset of cells. Interior, boundary and frontier sides are automatically categorized.""" def __init__( self, geometry: Geometry, device=None, ): super().__init__(geometry) @wp.struct class SideArg: partition_side_indices: wp.array(dtype=int) boundary_side_indices: wp.array(dtype=int) frontier_side_indices: wp.array(dtype=int) def side_count(self) -> int: return self._partition_side_indices.shape[0] def boundary_side_count(self) -> int: return self._boundary_side_indices.shape[0] def frontier_side_count(self) -> int: return self._frontier_side_indices.shape[0] def side_arg_value(self, device): arg = LinearGeometryPartition.SideArg() arg.partition_side_indices = self._partition_side_indices.to(device) arg.boundary_side_indices = self._boundary_side_indices.to(device) arg.frontier_side_indices = self._frontier_side_indices.to(device) return arg @wp.func def side_index(args: SideArg, partition_side_index: int): """partition side to side index""" return args.partition_side_indices[partition_side_index] @wp.func def boundary_side_index(args: SideArg, boundary_side_index: int): """Boundary side to side index""" return args.boundary_side_indices[boundary_side_index] @wp.func def frontier_side_index(args: SideArg, frontier_side_index: int): """Frontier side to side index""" return args.frontier_side_indices[frontier_side_index] def compute_side_indices_from_cells( self, cell_arg_value: Any, cell_inclusion_test_func: wp.Function, device, ): from warp.fem import cache def count_side_fn( geo_arg: self.geometry.SideArg, cell_arg_value: Any, partition_side_mask: wp.array(dtype=int), boundary_side_mask: wp.array(dtype=int), frontier_side_mask: wp.array(dtype=int), ): side_index = wp.tid() inner_cell_index = self.geometry.side_inner_cell_index(geo_arg, side_index) outer_cell_index = self.geometry.side_outer_cell_index(geo_arg, side_index) inner_in = cell_inclusion_test_func(cell_arg_value, inner_cell_index) outer_in = cell_inclusion_test_func(cell_arg_value, outer_cell_index) if inner_in: # Inner neighbor in partition; count as partition side partition_side_mask[side_index] = 1 # Inner and outer element as the same -- this is a boundary side if inner_cell_index == outer_cell_index: boundary_side_mask[side_index] = 1 if inner_in != outer_in: # Exactly one neighbor in partition; count as frontier side frontier_side_mask[side_index] = 1 count_sides = cache.get_kernel( count_side_fn, suffix=f"{self.geometry.name}_{cell_inclusion_test_func.key}", ) partition_side_mask = wp.zeros( shape=(self.geometry.side_count(),), dtype=int, device=device, ) boundary_side_mask = wp.zeros( shape=(self.geometry.side_count(),), dtype=int, device=device, ) frontier_side_mask = wp.zeros( shape=(self.geometry.side_count(),), dtype=int, device=device, ) wp.launch( dim=partition_side_mask.shape[0], kernel=count_sides, inputs=[ self.geometry.side_arg_value(device), cell_arg_value, partition_side_mask, boundary_side_mask, frontier_side_mask, ], device=device, ) # Convert counts to indices self._partition_side_indices, _ = masked_indices(partition_side_mask) self._boundary_side_indices, _ = masked_indices(boundary_side_mask) self._frontier_side_indices, _ = masked_indices(frontier_side_mask) class LinearGeometryPartition(CellBasedGeometryPartition): def __init__( self, geometry: Geometry, partition_rank: int, partition_count: int, device=None, ): """Creates a geometry partition by uniformly partionning cell indices Args: geometry: the geometry to partition partition_rank: the index of the partition being created partition_count: the number of partitions that will be created over the geometry device: Warp device on which to perform and store computations """ super().__init__(geometry) total_cell_count = geometry.cell_count() cells_per_partition = (total_cell_count + partition_count - 1) // partition_count self.cell_begin = cells_per_partition * partition_rank self.cell_end = min(self.cell_begin + cells_per_partition, total_cell_count) super().compute_side_indices_from_cells( self.cell_arg_value(device), LinearGeometryPartition._cell_inclusion_test, device, ) def cell_count(self) -> int: return self.cell_end - self.cell_begin @wp.struct class CellArg: cell_begin: int cell_end: int def cell_arg_value(self, device): arg = LinearGeometryPartition.CellArg() arg.cell_begin = self.cell_begin arg.cell_end = self.cell_end return arg @wp.func def cell_index(args: CellArg, partition_cell_index: int): """Partition cell to cell index""" return args.cell_begin + partition_cell_index @wp.func def partition_cell_index(args: CellArg, cell_index: int): """Partition cell to cell index""" if cell_index > args.cell_end: return NULL_ELEMENT_INDEX partition_cell_index = cell_index - args.cell_begin if partition_cell_index < 0: return NULL_ELEMENT_INDEX return partition_cell_index @wp.func def _cell_inclusion_test(arg: CellArg, cell_index: int): return cell_index >= arg.cell_begin and cell_index < arg.cell_end class ExplicitGeometryPartition(CellBasedGeometryPartition): def __init__(self, geometry: Geometry, cell_mask: "wp.array(dtype=int)"): """Creates a geometry partition by uniformly partionning cell indices Args: geometry: the geometry to partition cell_mask: warp array of length ``geometry.cell_count()`` indicating which cells are selected. Array values must be either ``1`` (selected) or ``0`` (not selected). """ super().__init__(geometry) self._cell_mask = cell_mask self._cells, self._partition_cells = masked_indices(self._cell_mask) super().compute_side_indices_from_cells( self._cell_mask, ExplicitGeometryPartition._cell_inclusion_test, self._cell_mask.device, ) def cell_count(self) -> int: return self._cells.shape[0] @wp.struct class CellArg: cell_index: wp.array(dtype=int) partition_cell_index: wp.array(dtype=int) def cell_arg_value(self, device): arg = ExplicitGeometryPartition.CellArg() arg.cell_index = self._cells.to(device) arg.partition_cell_index = self._partition_cells.to(device) return arg @wp.func def cell_index(args: CellArg, partition_cell_index: int): return args.cell_index[partition_cell_index] @wp.func def partition_cell_index(args: CellArg, cell_index: int): return args.partition_cell_index[cell_index] @wp.func def _cell_inclusion_test(mask: wp.array(dtype=int), cell_index: int): return mask[cell_index] > 0
warp-main
warp/fem/geometry/partition.py
import warp as wp from warp.fem.types import ElementIndex, Coords, vec2i, Sample, NULL_QP_INDEX, NULL_DOF_INDEX from .geometry import Geometry from .element import Square, LinearEdge @wp.struct class Grid2DCellArg: res: vec2i cell_size: wp.vec2 origin: wp.vec2 class Grid2D(Geometry): """Two-dimensional regular grid geometry""" Permutation = wp.types.matrix(shape=(2, 2), dtype=int) ROTATION = wp.constant(Permutation(0, 1, 1, 0)) def __init__(self, res: vec2i, bounds_lo: wp.vec2 = wp.vec2(0.0), bounds_hi: wp.vec2 = wp.vec2(1.0)): """Constructs a dense 2D grid Args: res: Resolution of the grid along each dimension bounds_lo: Position of the lower bound of the axis-aligned grid bounds_up: Position of the upper bound of the axis-aligned grid """ self.dimension = 2 self.bounds_lo = bounds_lo self.bounds_hi = bounds_hi self._res = res @property def extents(self) -> wp.vec2: return self.bounds_hi - self.bounds_lo @property def cell_size(self) -> wp.vec2: ex = self.extents return wp.vec2( ex[0] / self.res[0], ex[1] / self.res[1], ) def cell_count(self): return self.res[0] * self.res[1] def vertex_count(self): return (self.res[0] + 1) * (self.res[1] + 1) def side_count(self): return 2 * self.cell_count() + self.res[0] + self.res[1] def boundary_side_count(self): return 2 * (self.res[0] + self.res[1]) def reference_cell(self) -> Square: return Square() def reference_side(self) -> LinearEdge: return LinearEdge() @property def res(self): return self._res @property def origin(self): return self.bounds_lo @property def strides(self): return vec2i(self.res[1], 1) # Utility device functions CellArg = Grid2DCellArg Cell = vec2i @wp.func def _to_2d_index(x_stride: int, index: int): x = index // x_stride y = index - x_stride * x return vec2i(x, y) @wp.func def _from_2d_index(x_stride: int, index: vec2i): return x_stride * index[0] + index[1] @wp.func def cell_index(res: vec2i, cell: Cell): return Grid2D._from_2d_index(res[1], cell) @wp.func def get_cell(res: vec2i, cell_index: ElementIndex): return Grid2D._to_2d_index(res[1], cell_index) @wp.struct class Side: axis: int # normal; 0: horizontal, 1: vertical origin: vec2i # index of vertex at corner (0,0) @wp.struct class SideArg: cell_count: int axis_offsets: vec2i cell_arg: Grid2DCellArg SideIndexArg = SideArg @wp.func def _rotate(axis: int, vec: vec2i): return vec2i( vec[Grid2D.ROTATION[axis, 0]], vec[Grid2D.ROTATION[axis, 1]], ) @wp.func def _rotate(axis: int, vec: wp.vec2): return wp.vec2( vec[Grid2D.ROTATION[axis, 0]], vec[Grid2D.ROTATION[axis, 1]], ) @wp.func def side_index(arg: SideArg, side: Side): alt_axis = Grid2D.ROTATION[side.axis, 0] if side.origin[0] == arg.cell_arg.res[alt_axis]: # Upper-boundary side longitude = side.origin[1] return 2 * arg.cell_count + arg.axis_offsets[side.axis] + longitude cell_index = Grid2D.cell_index(arg.cell_arg.res, Grid2D._rotate(side.axis, side.origin)) return side.axis * arg.cell_count + cell_index @wp.func def get_side(arg: SideArg, side_index: ElementIndex): if side_index < 2 * arg.cell_count: axis = side_index // arg.cell_count cell_index = side_index - axis * arg.cell_count origin = Grid2D._rotate(axis, Grid2D.get_cell(arg.cell_arg.res, cell_index)) return Grid2D.Side(axis, origin) axis_side_index = side_index - 2 * arg.cell_count if axis_side_index < arg.axis_offsets[1]: axis = 0 else: axis = 1 altitude = arg.cell_arg.res[Grid2D.ROTATION[axis, 0]] longitude = axis_side_index - arg.axis_offsets[axis] origin_loc = vec2i(altitude, longitude) return Grid2D.Side(axis, origin_loc) # Geometry device interface def cell_arg_value(self, device) -> CellArg: args = self.CellArg() args.res = self.res args.cell_size = self.cell_size args.origin = self.bounds_lo return args @wp.func def cell_position(args: CellArg, s: Sample): cell = Grid2D.get_cell(args.res, s.element_index) return ( wp.vec2( (float(cell[0]) + s.element_coords[0]) * args.cell_size[0], (float(cell[1]) + s.element_coords[1]) * args.cell_size[1], ) + args.origin ) @wp.func def cell_lookup(args: CellArg, pos: wp.vec2): loc_pos = wp.cw_div(pos - args.origin, args.cell_size) x = wp.clamp(loc_pos[0], 0.0, float(args.res[0])) y = wp.clamp(loc_pos[1], 0.0, float(args.res[1])) x_cell = wp.min(wp.floor(x), float(args.res[0]) - 1.0) y_cell = wp.min(wp.floor(y), float(args.res[1]) - 1.0) coords = Coords(x - x_cell, y - y_cell, 0.0) cell_index = Grid2D.cell_index(args.res, Grid2D.Cell(int(x_cell), int(y_cell))) return Sample(cell_index, coords, NULL_QP_INDEX, 0.0, NULL_DOF_INDEX, NULL_DOF_INDEX) @wp.func def cell_lookup(args: CellArg, pos: wp.vec2, guess: Sample): return Grid2D.cell_lookup(args, pos) @wp.func def cell_measure(args: CellArg, cell_index: ElementIndex, coords: Coords): return args.cell_size[0] * args.cell_size[1] @wp.func def cell_measure(args: CellArg, s: Sample): return Grid2D.cell_measure(args, s.element_index, s.element_coords) @wp.func def cell_measure_ratio(args: CellArg, s: Sample): return 1.0 @wp.func def cell_normal(args: CellArg, s: Sample): return wp.vec2(0.0) def side_arg_value(self, device) -> SideArg: args = self.SideArg() args.axis_offsets = vec2i( 0, self.res[0], ) args.cell_count = self.cell_count() args.cell_arg = self.cell_arg_value(device) return args def side_index_arg_value(self, device) -> SideIndexArg: return self.side_arg_value(device) @wp.func def boundary_side_index(args: SideArg, boundary_side_index: int): """Boundary side to side index""" axis_side_index = boundary_side_index // 2 border = boundary_side_index - 2 * axis_side_index if axis_side_index < args.axis_offsets[1]: axis = 0 else: axis = 1 longitude = axis_side_index - args.axis_offsets[axis] altitude = border * args.cell_arg.res[axis] side = Grid2D.Side(axis, vec2i(altitude, longitude)) return Grid2D.side_index(args, side) @wp.func def side_position(args: SideArg, s: Sample): side = Grid2D.get_side(args, s.element_index) local_pos = wp.vec2( float(side.origin[0]), float(side.origin[1]) + s.element_coords[0], ) pos = args.cell_arg.origin + wp.cw_mul(Grid2D._rotate(side.axis, local_pos), args.cell_arg.cell_size) return pos @wp.func def side_measure(args: SideArg, side_index: ElementIndex, coords: Coords): side = Grid2D.get_side(args, side_index) long_axis = Grid2D.ROTATION[side.axis, 1] return args.cell_arg.cell_size[long_axis] @wp.func def side_measure(args: SideArg, s: Sample): return args.cell_arg.cell_size @wp.func def side_measure_ratio(args: SideArg, s: Sample): side = Grid2D.get_side(args, s.element_index) alt_axis = Grid2D.ROTATION[side.axis, 0] return 1.0 / args.cell_arg.cell_size[alt_axis] @wp.func def side_normal(args: SideArg, s: Sample): side = Grid2D.get_side(args, s.element_index) if side.origin[0] == 0: sign = -1.0 else: sign = 1.0 local_n = wp.vec2(sign, 0.0) return Grid2D._rotate(side.axis, local_n) @wp.func def side_inner_cell_index(arg: SideArg, side_index: ElementIndex): side = Grid2D.get_side(arg, side_index) if side.origin[0] == 0: inner_alt = 0 else: inner_alt = side.origin[0] - 1 inner_origin = vec2i(inner_alt, side.origin[1]) cell = Grid2D._rotate(side.axis, inner_origin) return Grid2D.cell_index(arg.cell_arg.res, cell) @wp.func def side_outer_cell_index(arg: SideArg, side_index: ElementIndex): side = Grid2D.get_side(arg, side_index) alt_axis = Grid2D.ROTATION[side.axis, 0] if side.origin[0] == arg.cell_arg.res[alt_axis]: outer_alt = arg.cell_arg.res[alt_axis] - 1 else: outer_alt = side.origin[0] outer_origin = vec2i(outer_alt, side.origin[1]) cell = Grid2D._rotate(side.axis, outer_origin) return Grid2D.cell_index(arg.cell_arg.res, cell)
warp-main
warp/fem/geometry/grid_2d.py
from .element import Element from .geometry import Geometry from .partition import ( GeometryPartition, WholeGeometryPartition, LinearGeometryPartition, ExplicitGeometryPartition, ) from .grid_2d import Grid2D from .grid_3d import Grid3D from .trimesh_2d import Trimesh2D from .tetmesh import Tetmesh
warp-main
warp/fem/geometry/__init__.py
import warp as wp from warp.fem.types import ElementIndex, Coords, Sample, NULL_QP_INDEX, NULL_DOF_INDEX from warp.fem.types import vec2i, vec3i from .geometry import Geometry from .element import Square, Cube @wp.struct class Grid3DCellArg: res: vec3i cell_size: wp.vec3 origin: wp.vec3 class Grid3D(Geometry): """Three-dimensional regular grid geometry""" Permutation = wp.types.matrix(shape=(3, 3), dtype=int) LOC_TO_WORLD = wp.constant(Permutation(0, 1, 2, 1, 2, 0, 2, 0, 1)) WORLD_TO_LOC = wp.constant(Permutation(0, 1, 2, 2, 0, 1, 1, 2, 0)) def __init__(self, res: vec3i, bounds_lo: wp.vec3 = wp.vec3(0.0), bounds_hi: wp.vec3 = wp.vec3(1.0)): """Constructs a dense 3D grid Args: res: Resolution of the grid along each dimension bounds_lo: Position of the lower bound of the axis-aligned grid bounds_up: Position of the upper bound of the axis-aligned grid """ self.dimension = 3 self.bounds_lo = bounds_lo self.bounds_hi = bounds_hi self._res = res @property def extents(self) -> wp.vec3: return self.bounds_hi - self.bounds_lo @property def cell_size(self) -> wp.vec3: ex = self.extents return wp.vec3( ex[0] / self.res[0], ex[1] / self.res[1], ex[2] / self.res[2], ) def cell_count(self): return self.res[0] * self.res[1] * self.res[2] def vertex_count(self): return (self.res[0] + 1) * (self.res[1] + 1) * (self.res[2] + 1) def side_count(self): return ( (self.res[0] + 1) * (self.res[1]) * (self.res[2]) + (self.res[0]) * (self.res[1] + 1) * (self.res[2]) + (self.res[0]) * (self.res[1]) * (self.res[2] + 1) ) def boundary_side_count(self): return 2 * (self.res[1]) * (self.res[2]) + (self.res[0]) * 2 * (self.res[2]) + (self.res[0]) * (self.res[1]) * 2 def reference_cell(self) -> Cube: return Cube() def reference_side(self) -> Square: return Square() @property def res(self): return self._res @property def origin(self): return self.bounds_lo @property def strides(self): return vec3i(self.res[1] * self.res[2], self.res[2], 1) # Utility device functions CellArg = Grid3DCellArg Cell = vec3i @wp.func def _to_3d_index(strides: vec2i, index: int): x = index // strides[0] y = (index - strides[0] * x) // strides[1] z = index - strides[0] * x - strides[1] * y return vec3i(x, y, z) @wp.func def _from_3d_index(strides: vec2i, index: vec3i): return strides[0] * index[0] + strides[1] * index[1] + index[2] @wp.func def cell_index(res: vec3i, cell: Cell): strides = vec2i(res[1] * res[2], res[2]) return Grid3D._from_3d_index(strides, cell) @wp.func def get_cell(res: vec3i, cell_index: ElementIndex): strides = vec2i(res[1] * res[2], res[2]) return Grid3D._to_3d_index(strides, cell_index) @wp.struct class Side: axis: int # normal origin: vec3i # index of vertex at corner (0,0,0) @wp.struct class SideArg: cell_count: int axis_offsets: vec3i cell_arg: Grid3DCellArg SideIndexArg = SideArg @wp.func def _world_to_local(axis: int, vec: vec3i): return vec3i( vec[Grid3D.LOC_TO_WORLD[axis, 0]], vec[Grid3D.LOC_TO_WORLD[axis, 1]], vec[Grid3D.LOC_TO_WORLD[axis, 2]], ) @wp.func def _local_to_world(axis: int, vec: vec3i): return vec3i( vec[Grid3D.WORLD_TO_LOC[axis, 0]], vec[Grid3D.WORLD_TO_LOC[axis, 1]], vec[Grid3D.WORLD_TO_LOC[axis, 2]], ) @wp.func def _local_to_world(axis: int, vec: wp.vec3): return wp.vec3( vec[Grid3D.WORLD_TO_LOC[axis, 0]], vec[Grid3D.WORLD_TO_LOC[axis, 1]], vec[Grid3D.WORLD_TO_LOC[axis, 2]], ) @wp.func def side_index(arg: SideArg, side: Side): alt_axis = Grid3D.LOC_TO_WORLD[side.axis, 0] if side.origin[0] == arg.cell_arg.res[alt_axis]: # Upper-boundary side longitude = side.origin[1] latitude = side.origin[2] latitude_res = arg.cell_arg.res[Grid3D.LOC_TO_WORLD[side.axis, 2]] lat_long = latitude_res * longitude + latitude return 3 * arg.cell_count + arg.axis_offsets[side.axis] + lat_long cell_index = Grid3D.cell_index(arg.cell_arg.res, Grid3D._local_to_world(side.axis, side.origin)) return side.axis * arg.cell_count + cell_index @wp.func def get_side(arg: SideArg, side_index: ElementIndex): if side_index < 3 * arg.cell_count: axis = side_index // arg.cell_count cell_index = side_index - axis * arg.cell_count origin = Grid3D._world_to_local(axis, Grid3D.get_cell(arg.cell_arg.res, cell_index)) return Grid3D.Side(axis, origin) axis_side_index = side_index - 3 * arg.cell_count if axis_side_index < arg.axis_offsets[1]: axis = 0 elif axis_side_index < arg.axis_offsets[2]: axis = 1 else: axis = 2 altitude = arg.cell_arg.res[Grid3D.LOC_TO_WORLD[axis, 0]] lat_long = axis_side_index - arg.axis_offsets[axis] latitude_res = arg.cell_arg.res[Grid3D.LOC_TO_WORLD[axis, 2]] longitude = lat_long // latitude_res latitude = lat_long - longitude * latitude_res origin_loc = vec3i(altitude, longitude, latitude) return Grid3D.Side(axis, origin_loc) # Geometry device interface def cell_arg_value(self, device) -> CellArg: args = self.CellArg() args.res = self.res args.cell_size = self.cell_size args.origin = self.bounds_lo return args @wp.func def cell_position(args: CellArg, s: Sample): cell = Grid3D.get_cell(args.res, s.element_index) return ( wp.vec3( (float(cell[0]) + s.element_coords[0]) * args.cell_size[0], (float(cell[1]) + s.element_coords[1]) * args.cell_size[1], (float(cell[2]) + s.element_coords[2]) * args.cell_size[2], ) + args.origin ) @wp.func def cell_lookup(args: CellArg, pos: wp.vec3): loc_pos = wp.cw_div(pos - args.origin, args.cell_size) x = wp.clamp(loc_pos[0], 0.0, float(args.res[0])) y = wp.clamp(loc_pos[1], 0.0, float(args.res[1])) z = wp.clamp(loc_pos[2], 0.0, float(args.res[2])) x_cell = wp.min(wp.floor(x), float(args.res[0]) - 1.0) y_cell = wp.min(wp.floor(y), float(args.res[1]) - 1.0) z_cell = wp.min(wp.floor(z), float(args.res[2]) - 1.0) coords = Coords(x - x_cell, y - y_cell, z - z_cell) cell_index = Grid3D.cell_index(args.res, Grid3D.Cell(int(x_cell), int(y_cell), int(z_cell))) return Sample(cell_index, coords, NULL_QP_INDEX, 0.0, NULL_DOF_INDEX, NULL_DOF_INDEX) @wp.func def cell_lookup(args: CellArg, pos: wp.vec3, guess: Sample): return Grid3D.cell_lookup(args, pos) @wp.func def cell_measure(args: CellArg, cell_index: ElementIndex, coords: Coords): return args.cell_size[0] * args.cell_size[1] * args.cell_size[2] @wp.func def cell_measure(args: CellArg, s: Sample): return Grid3D.cell_measure(args, s.element_index, s.element_coords) @wp.func def cell_measure_ratio(args: CellArg, s: Sample): return 1.0 @wp.func def cell_normal(args: CellArg, s: Sample): return wp.vec3(0.0) def side_arg_value(self, device) -> SideArg: args = self.SideArg() axis_dims = vec3i( self.res[1] * self.res[2], self.res[2] * self.res[0], self.res[0] * self.res[1], ) args.axis_offsets = vec3i( 0, axis_dims[0], axis_dims[0] + axis_dims[1], ) args.cell_count = self.cell_count() args.cell_arg = self.cell_arg_value(device) return args def side_index_arg_value(self, device) -> SideIndexArg: return self.side_arg_value(device) @wp.func def boundary_side_index(args: SideArg, boundary_side_index: int): """Boundary side to side index""" axis_side_index = boundary_side_index // 2 border = boundary_side_index - 2 * axis_side_index if axis_side_index < args.axis_offsets[1]: axis = 0 elif axis_side_index < args.axis_offsets[2]: axis = 1 else: axis = 2 lat_long = axis_side_index - args.axis_offsets[axis] latitude_res = args.cell_arg.res[Grid3D.LOC_TO_WORLD[axis, 2]] longitude = lat_long // latitude_res latitude = lat_long - longitude * latitude_res altitude = border * args.cell_arg.res[axis] side = Grid3D.Side(axis, vec3i(altitude, longitude, latitude)) return Grid3D.side_index(args, side) @wp.func def side_position(args: SideArg, s: Sample): side = Grid3D.get_side(args, s.element_index) local_pos = wp.vec3( float(side.origin[0]), float(side.origin[1]) + s.element_coords[0], float(side.origin[2]) + s.element_coords[1], ) pos = args.cell_arg.origin + wp.cw_mul(Grid3D._local_to_world(side.axis, local_pos), args.cell_arg.cell_size) return pos @wp.func def side_measure(args: SideArg, side_index: ElementIndex, coords: Coords): side = Grid3D.get_side(args, side_index) long_axis = Grid3D.LOC_TO_WORLD[side.axis, 1] lat_axis = Grid3D.LOC_TO_WORLD[side.axis, 2] return args.cell_arg.cell_size[long_axis] * args.cell_arg.cell_size[lat_axis] @wp.func def side_measure(args: SideArg, s: Sample): return Grid3D.side_measure(args, s.element_index, s.element_coords) @wp.func def side_measure_ratio(args: SideArg, s: Sample): side = Grid3D.get_side(args, s.element_index) alt_axis = Grid3D.LOC_TO_WORLD[side.axis, 0] return 1.0 / args.cell_arg.cell_size[alt_axis] @wp.func def side_normal(args: SideArg, s: Sample): side = Grid3D.get_side(args, s.element_index) if side.origin[0] == 0: sign = -1.0 else: sign = 1.0 local_n = wp.vec3(sign, 0.0, 0.0) return Grid3D._local_to_world(side.axis, local_n) @wp.func def side_inner_cell_index(arg: SideArg, side_index: ElementIndex): side = Grid3D.get_side(arg, side_index) if side.origin[0] == 0: inner_alt = 0 else: inner_alt = side.origin[0] - 1 inner_origin = vec3i(inner_alt, side.origin[1], side.origin[2]) cell = Grid3D._local_to_world(side.axis, inner_origin) return Grid3D.cell_index(arg.cell_arg.res, cell) @wp.func def side_outer_cell_index(arg: SideArg, side_index: ElementIndex): side = Grid3D.get_side(arg, side_index) alt_axis = Grid3D.LOC_TO_WORLD[side.axis, 0] if side.origin[0] == arg.cell_arg.res[alt_axis]: outer_alt = arg.cell_arg.res[alt_axis] - 1 else: outer_alt = side.origin[0] outer_origin = vec3i(outer_alt, side.origin[1], side.origin[2]) cell = Grid3D._local_to_world(side.axis, outer_origin) return Grid3D.cell_index(arg.cell_arg.res, cell)
warp-main
warp/fem/geometry/grid_3d.py
from typing import Tuple, List from warp.fem.types import Coords from warp.fem.polynomial import Polynomial, quadrature_1d class Element: @staticmethod def instantiate_quadrature(order: int, family: Polynomial) -> Tuple[List[Coords], List[float]]: """Returns a quadrature of a given order for a prototypical element""" raise NotImplementedError def _point_count_from_order(order: int, family: Polynomial): if family == Polynomial.GAUSS_LEGENDRE: point_count = max(1, order // 2 + 1) elif family == Polynomial.LOBATTO_GAUSS_LEGENDRE: point_count = max(2, order // 2 + 2) elif family == Polynomial.EQUISPACED_CLOSED: point_count = max(2, 2 * (order // 2) + 1) elif family == Polynomial.EQUISPACED_OPEN: point_count = max(1, 2 * (order // 2) + 1) return point_count class Cube(Element): @staticmethod def instantiate_quadrature(order: int, family: Polynomial): if family is None: family = Polynomial.GAUSS_LEGENDRE point_count = _point_count_from_order(order=order, family=family) gauss_1d, weights_1d = quadrature_1d(point_count=point_count, family=family) coords = [Coords(x, y, z) for x in gauss_1d for y in gauss_1d for z in gauss_1d] weights = [wx * wy * wz for wx in weights_1d for wy in weights_1d for wz in weights_1d] return coords, weights class Square(Element): @staticmethod def instantiate_quadrature(order: int, family: Polynomial): if family is None: family = Polynomial.GAUSS_LEGENDRE point_count = _point_count_from_order(order=order, family=family) gauss_1d, weights_1d = quadrature_1d(point_count=point_count, family=family) coords = [Coords(x, y, 0.0) for x in gauss_1d for y in gauss_1d] weights = [wx * wy for wx in weights_1d for wy in weights_1d] return coords, weights class LinearEdge(Element): @staticmethod def instantiate_quadrature(order: int, family: Polynomial): if family is None: family = Polynomial.GAUSS_LEGENDRE point_count = _point_count_from_order(order=order, family=family) gauss_1d, weights_1d = quadrature_1d(point_count=point_count, family=family) coords = [Coords(x, 0.0, 0.0) for x in gauss_1d] return coords, weights_1d class Triangle(Element): @staticmethod def instantiate_quadrature(order: int, family: Polynomial): if family is not None: # Duffy transformation from square to triangle point_count = _point_count_from_order(order=order + 1, family=family) gauss_1d, weights_1d = quadrature_1d(point_count=point_count, family=family) coords = [Coords(1.0 - x - y + x * y, x, y * (1.0 - x)) for x in gauss_1d for y in gauss_1d] # Scale weight by 2.0 so that they sum up to 1 weights = [2.0 * wx * (1.0 - x) * wy for x, wx in zip(gauss_1d, weights_1d) for wy in weights_1d] return coords, weights if order <= 1: weights = [1.0] coords = [Coords(1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0)] elif order <= 2: weights = [1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0] coords = [ Coords(2.0 / 3.0, 1.0 / 6.0, 1.0 / 6.0), Coords(1.0 / 6.0, 2.0 / 3.0, 1.0 / 6.0), Coords(1.0 / 6.0, 1.0 / 6.0, 2.0 / 3.0), ] elif order <= 3: # Hillion 1977, # "Numerical Integration on a Triangle" weights = [ 3.18041381743977225049491153185954e-01, 3.18041381743977225049491153185954e-01, 1.81958618256022719439357615556219e-01, 1.81958618256022719439357615556219e-01, ] coords = [ Coords( 6.66390246014701426169324349757517e-01, 1.78558728263616461884311092944699e-01, 1.55051025721682111946364557297784e-01, ), Coords( 1.78558728263616461884311092944699e-01, 6.66390246014701426169324349757517e-01, 1.55051025721682056435213326039957e-01, ), Coords( 2.80019915499074012465996474929852e-01, 7.50311102226081383381739442484104e-02, 6.44948974278317876951405196450651e-01, ), Coords( 7.50311102226081383381739442484104e-02, 2.80019915499074012465996474929852e-01, 6.44948974278317876951405196450651e-01, ), ] elif order <= 4: # Witherden and Vincent 2015, # "On the identification of symmetric quadrature rules for finite element methods" # https://doi.org/10.1016/j.camwa.2015.03.017 weights = [ 2.23381589678011471811203136894619e-01, 2.23381589678011471811203136894619e-01, 2.23381589678011471811203136894619e-01, 1.09951743655321870773988734981685e-01, 1.09951743655321870773988734981685e-01, 1.09951743655321870773988734981685e-01, ] coords = [ Coords( 4.45948490915964890213274429697776e-01, 4.45948490915964890213274429697776e-01, 1.08103018168070219573451140604448e-01, ), Coords( 4.45948490915964890213274429697776e-01, 1.08103018168070219573451140604448e-01, 4.45948490915964890213274429697776e-01, ), Coords( 1.08103018168070219573451140604448e-01, 4.45948490915964890213274429697776e-01, 4.45948490915964890213274429697776e-01, ), Coords( 9.15762135097707430375635340169538e-02, 9.15762135097707430375635340169538e-02, 8.16847572980458513924872931966092e-01, ), Coords( 9.15762135097707430375635340169538e-02, 8.16847572980458513924872931966092e-01, 9.15762135097707430375635340169538e-02, ), Coords( 8.16847572980458513924872931966092e-01, 9.15762135097707430375635340169538e-02, 9.15762135097707430375635340169538e-02, ), ] elif order <= 5: weights = [ 2.25000000000000005551115123125783e-01, 1.25939180544827139529573400977824e-01, 1.25939180544827139529573400977824e-01, 1.25939180544827139529573400977824e-01, 1.32394152788506191953388224646915e-01, 1.32394152788506191953388224646915e-01, 1.32394152788506191953388224646915e-01, ] coords = [ Coords( 3.33333333333333314829616256247391e-01, 3.33333333333333314829616256247391e-01, 3.33333333333333314829616256247391e-01, ), Coords( 1.01286507323456342888334802410100e-01, 1.01286507323456342888334802410100e-01, 7.97426985353087314223330395179801e-01, ), Coords( 1.01286507323456342888334802410100e-01, 7.97426985353087314223330395179801e-01, 1.01286507323456342888334802410100e-01, ), Coords( 7.97426985353087314223330395179801e-01, 1.01286507323456342888334802410100e-01, 1.01286507323456342888334802410100e-01, ), Coords( 4.70142064105115109473587153843255e-01, 4.70142064105115109473587153843255e-01, 5.97158717897697810528256923134904e-02, ), Coords( 4.70142064105115109473587153843255e-01, 5.97158717897697810528256923134904e-02, 4.70142064105115109473587153843255e-01, ), Coords( 5.97158717897697810528256923134904e-02, 4.70142064105115109473587153843255e-01, 4.70142064105115109473587153843255e-01, ), ] elif order <= 6: weights = [ 5.08449063702068326797700592578622e-02, 5.08449063702068326797700592578622e-02, 5.08449063702068326797700592578622e-02, 1.16786275726379396022736045779311e-01, 1.16786275726379396022736045779311e-01, 1.16786275726379396022736045779311e-01, 8.28510756183735846969184990484791e-02, 8.28510756183735846969184990484791e-02, 8.28510756183735846969184990484791e-02, 8.28510756183735846969184990484791e-02, 8.28510756183735846969184990484791e-02, 8.28510756183735846969184990484791e-02, ] coords = [ Coords( 6.30890144915022266225435032538371e-02, 6.30890144915022266225435032538371e-02, 8.73821971016995546754912993492326e-01, ), Coords( 6.30890144915022266225435032538371e-02, 8.73821971016995546754912993492326e-01, 6.30890144915022266225435032538371e-02, ), Coords( 8.73821971016995546754912993492326e-01, 6.30890144915022266225435032538371e-02, 6.30890144915022266225435032538371e-02, ), Coords( 2.49286745170910428726074314909056e-01, 2.49286745170910428726074314909056e-01, 5.01426509658179142547851370181888e-01, ), Coords( 2.49286745170910428726074314909056e-01, 5.01426509658179142547851370181888e-01, 2.49286745170910428726074314909056e-01, ), Coords( 5.01426509658179142547851370181888e-01, 2.49286745170910428726074314909056e-01, 2.49286745170910428726074314909056e-01, ), Coords( 5.31450498448169383891581674106419e-02, 3.10352451033784393352732422499685e-01, 6.36502499121398668258109410089673e-01, ), Coords( 5.31450498448169383891581674106419e-02, 6.36502499121398668258109410089673e-01, 3.10352451033784393352732422499685e-01, ), Coords( 3.10352451033784393352732422499685e-01, 5.31450498448169383891581674106419e-02, 6.36502499121398668258109410089673e-01, ), Coords( 3.10352451033784393352732422499685e-01, 6.36502499121398668258109410089673e-01, 5.31450498448169383891581674106419e-02, ), Coords( 6.36502499121398668258109410089673e-01, 5.31450498448169383891581674106419e-02, 3.10352451033784393352732422499685e-01, ), Coords( 6.36502499121398668258109410089673e-01, 3.10352451033784393352732422499685e-01, 5.31450498448169383891581674106419e-02, ), ] else: # Order 8 weights = [ 1.44315607677787172136163462710101e-01, 9.50916342672846193195823616406415e-02, 9.50916342672846193195823616406415e-02, 9.50916342672846193195823616406415e-02, 1.03217370534718244634575512463925e-01, 1.03217370534718244634575512463925e-01, 1.03217370534718244634575512463925e-01, 3.24584976231980792960030157701112e-02, 3.24584976231980792960030157701112e-02, 3.24584976231980792960030157701112e-02, 2.72303141744349927466650740370824e-02, 2.72303141744349927466650740370824e-02, 2.72303141744349927466650740370824e-02, 2.72303141744349927466650740370824e-02, 2.72303141744349927466650740370824e-02, 2.72303141744349927466650740370824e-02, ] coords = [ Coords( 3.33333333333333314829616256247391e-01, 3.33333333333333314829616256247391e-01, 3.33333333333333314829616256247391e-01, ), Coords( 4.59292588292723125142913431773195e-01, 4.59292588292723125142913431773195e-01, 8.14148234145537497141731364536099e-02, ), Coords( 4.59292588292723125142913431773195e-01, 8.14148234145537497141731364536099e-02, 4.59292588292723125142913431773195e-01, ), Coords( 8.14148234145537497141731364536099e-02, 4.59292588292723125142913431773195e-01, 4.59292588292723125142913431773195e-01, ), Coords( 1.70569307751760212976677166807349e-01, 1.70569307751760212976677166807349e-01, 6.58861384496479574046645666385302e-01, ), Coords( 1.70569307751760212976677166807349e-01, 6.58861384496479574046645666385302e-01, 1.70569307751760212976677166807349e-01, ), Coords( 6.58861384496479574046645666385302e-01, 1.70569307751760212976677166807349e-01, 1.70569307751760212976677166807349e-01, ), Coords( 5.05472283170309566457945038564503e-02, 5.05472283170309566457945038564503e-02, 8.98905543365938086708410992287099e-01, ), Coords( 5.05472283170309566457945038564503e-02, 8.98905543365938086708410992287099e-01, 5.05472283170309566457945038564503e-02, ), Coords( 8.98905543365938086708410992287099e-01, 5.05472283170309566457945038564503e-02, 5.05472283170309566457945038564503e-02, ), Coords( 8.39477740995758781039626228448469e-03, 2.63112829634638112352718053443823e-01, 7.28492392955404355348036915529519e-01, ), Coords( 8.39477740995758781039626228448469e-03, 7.28492392955404355348036915529519e-01, 2.63112829634638112352718053443823e-01, ), Coords( 2.63112829634638112352718053443823e-01, 8.39477740995758781039626228448469e-03, 7.28492392955404355348036915529519e-01, ), Coords( 2.63112829634638112352718053443823e-01, 7.28492392955404355348036915529519e-01, 8.39477740995758781039626228448469e-03, ), Coords( 7.28492392955404355348036915529519e-01, 8.39477740995758781039626228448469e-03, 2.63112829634638112352718053443823e-01, ), Coords( 7.28492392955404355348036915529519e-01, 2.63112829634638112352718053443823e-01, 8.39477740995758781039626228448469e-03, ), ] return coords, weights class Tetrahedron(Element): @staticmethod def instantiate_quadrature(order: int, family: Polynomial): if family is not None: # Duffy transformation from square to triangle point_count = _point_count_from_order(order=order + 1, family=family) gauss_1d, weights_1d = quadrature_1d(point_count=point_count, family=family) coords = [ Coords(x, y * (1.0 - x), z * (1.0 - x) * (1.0 - y)) for x in gauss_1d for y in gauss_1d for z in gauss_1d ] # Scale weight by 6.0 so that they sum up to 1 weights = [ 6.0 * wx * wy * wz * (1.0 - x) * (1.0 - x) * (1.0 - y) for x, wx in zip(gauss_1d, weights_1d) for y, wy in zip(gauss_1d, weights_1d) for wz in weights_1d ] return coords, weights # Shunn and Ham 2012 # "Symmetric quadrature rules for tetrahedra based on a cubic close-packed lattice arrangement" # https://doi.org/10.1016/j.cam.2012.03.032 # TODO: add Witherden and Vincent 2015, if order <= 1: weights = [1.0] coords = [Coords(1.0 / 4.0, 1.0 / 4.0, 1.0 / 4.0)] elif order <= 2: weights = [1.0 / 4.0, 1.0 / 4.0, 1.0 / 4.0, 1.0 / 4.0] coords = [ Coords(0.1381966011250110, 0.1381966011250110, 0.1381966011250110), Coords(0.5854101966249680, 0.1381966011250110, 0.1381966011250110), Coords(0.1381966011250110, 0.5854101966249680, 0.1381966011250110), Coords(0.1381966011250110, 0.1381966011250110, 0.5854101966249680), ] elif order <= 3: weights = [ 0.0476331348432089, 0.0476331348432089, 0.0476331348432089, 0.0476331348432089, 0.1349112434378610, 0.1349112434378610, 0.1349112434378610, 0.1349112434378610, 0.1349112434378610, 0.1349112434378610, ] coords = [ Coords(0.0738349017262234, 0.0738349017262234, 0.0738349017262234), Coords(0.7784952948213300, 0.0738349017262234, 0.0738349017262234), Coords(0.0738349017262234, 0.7784952948213300, 0.0738349017262234), Coords(0.0738349017262234, 0.0738349017262234, 0.7784952948213300), Coords(0.4062443438840510, 0.0937556561159491, 0.0937556561159491), Coords(0.0937556561159491, 0.4062443438840510, 0.0937556561159491), Coords(0.0937556561159491, 0.0937556561159491, 0.4062443438840510), Coords(0.4062443438840510, 0.4062443438840510, 0.0937556561159491), Coords(0.4062443438840510, 0.0937556561159491, 0.4062443438840510), Coords(0.0937556561159491, 0.4062443438840510, 0.4062443438840510), ] elif order <= 4: weights = [ 0.0070670747944695, 0.0070670747944695, 0.0070670747944695, 0.0070670747944695, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.0469986689718877, 0.1019369182898680, 0.1019369182898680, 0.1019369182898680, 0.1019369182898680, ] coords = [ Coords(0.0323525947272439, 0.0323525947272439, 0.0323525947272439), Coords(0.9029422158182680, 0.0323525947272439, 0.0323525947272439), Coords(0.0323525947272439, 0.9029422158182680, 0.0323525947272439), Coords(0.0323525947272439, 0.0323525947272439, 0.9029422158182680), Coords(0.6165965330619370, 0.0603604415251421, 0.0603604415251421), Coords(0.2626825838877790, 0.0603604415251421, 0.0603604415251421), Coords(0.0603604415251421, 0.6165965330619370, 0.0603604415251421), Coords(0.0603604415251421, 0.2626825838877790, 0.0603604415251421), Coords(0.0603604415251421, 0.0603604415251421, 0.6165965330619370), Coords(0.0603604415251421, 0.0603604415251421, 0.2626825838877790), Coords(0.2626825838877790, 0.6165965330619370, 0.0603604415251421), Coords(0.6165965330619370, 0.2626825838877790, 0.0603604415251421), Coords(0.2626825838877790, 0.0603604415251421, 0.6165965330619370), Coords(0.6165965330619370, 0.0603604415251421, 0.2626825838877790), Coords(0.0603604415251421, 0.2626825838877790, 0.6165965330619370), Coords(0.0603604415251421, 0.6165965330619370, 0.2626825838877790), Coords(0.3097693042728620, 0.3097693042728620, 0.0706920871814129), Coords(0.3097693042728620, 0.0706920871814129, 0.3097693042728620), Coords(0.0706920871814129, 0.3097693042728620, 0.3097693042728620), Coords(0.3097693042728620, 0.3097693042728620, 0.3097693042728620), ] elif order <= 5: weights = [ 0.0021900463965388, 0.0021900463965388, 0.0021900463965388, 0.0021900463965388, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0143395670177665, 0.0250305395686746, 0.0250305395686746, 0.0250305395686746, 0.0250305395686746, 0.0250305395686746, 0.0250305395686746, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0479839333057554, 0.0931745731195340, ] coords = [ Coords(0.0267367755543735, 0.0267367755543735, 0.0267367755543735), Coords(0.9197896733368800, 0.0267367755543735, 0.0267367755543735), Coords(0.0267367755543735, 0.9197896733368800, 0.0267367755543735), Coords(0.0267367755543735, 0.0267367755543735, 0.9197896733368800), Coords(0.7477598884818090, 0.0391022406356488, 0.0391022406356488), Coords(0.1740356302468940, 0.0391022406356488, 0.0391022406356488), Coords(0.0391022406356488, 0.7477598884818090, 0.0391022406356488), Coords(0.0391022406356488, 0.1740356302468940, 0.0391022406356488), Coords(0.0391022406356488, 0.0391022406356488, 0.7477598884818090), Coords(0.0391022406356488, 0.0391022406356488, 0.1740356302468940), Coords(0.1740356302468940, 0.7477598884818090, 0.0391022406356488), Coords(0.7477598884818090, 0.1740356302468940, 0.0391022406356488), Coords(0.1740356302468940, 0.0391022406356488, 0.7477598884818090), Coords(0.7477598884818090, 0.0391022406356488, 0.1740356302468940), Coords(0.0391022406356488, 0.1740356302468940, 0.7477598884818090), Coords(0.0391022406356488, 0.7477598884818090, 0.1740356302468940), Coords(0.4547545999844830, 0.0452454000155172, 0.0452454000155172), Coords(0.0452454000155172, 0.4547545999844830, 0.0452454000155172), Coords(0.0452454000155172, 0.0452454000155172, 0.4547545999844830), Coords(0.4547545999844830, 0.4547545999844830, 0.0452454000155172), Coords(0.4547545999844830, 0.0452454000155172, 0.4547545999844830), Coords(0.0452454000155172, 0.4547545999844830, 0.4547545999844830), Coords(0.2232010379623150, 0.2232010379623150, 0.0504792790607720), Coords(0.5031186450145980, 0.2232010379623150, 0.0504792790607720), Coords(0.2232010379623150, 0.5031186450145980, 0.0504792790607720), Coords(0.2232010379623150, 0.0504792790607720, 0.2232010379623150), Coords(0.5031186450145980, 0.0504792790607720, 0.2232010379623150), Coords(0.2232010379623150, 0.0504792790607720, 0.5031186450145980), Coords(0.0504792790607720, 0.2232010379623150, 0.2232010379623150), Coords(0.0504792790607720, 0.5031186450145980, 0.2232010379623150), Coords(0.0504792790607720, 0.2232010379623150, 0.5031186450145980), Coords(0.5031186450145980, 0.2232010379623150, 0.2232010379623150), Coords(0.2232010379623150, 0.5031186450145980, 0.2232010379623150), Coords(0.2232010379623150, 0.2232010379623150, 0.5031186450145980), Coords(0.2500000000000000, 0.2500000000000000, 0.2500000000000000), ] elif order <= 6: weights = [ 0.0010373112336140, 0.0010373112336140, 0.0010373112336140, 0.0010373112336140, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0096016645399480, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0164493976798232, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0153747766513310, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0293520118375230, 0.0366291366405108, 0.0366291366405108, 0.0366291366405108, 0.0366291366405108, ] coords = [ Coords(0.0149520651530592, 0.0149520651530592, 0.0149520651530592), Coords(0.9551438045408220, 0.0149520651530592, 0.0149520651530592), Coords(0.0149520651530592, 0.9551438045408220, 0.0149520651530592), Coords(0.0149520651530592, 0.0149520651530592, 0.9551438045408220), Coords(0.1518319491659370, 0.0340960211962615, 0.0340960211962615), Coords(0.7799760084415400, 0.0340960211962615, 0.0340960211962615), Coords(0.0340960211962615, 0.1518319491659370, 0.0340960211962615), Coords(0.0340960211962615, 0.7799760084415400, 0.0340960211962615), Coords(0.0340960211962615, 0.0340960211962615, 0.1518319491659370), Coords(0.0340960211962615, 0.0340960211962615, 0.7799760084415400), Coords(0.7799760084415400, 0.1518319491659370, 0.0340960211962615), Coords(0.1518319491659370, 0.7799760084415400, 0.0340960211962615), Coords(0.7799760084415400, 0.0340960211962615, 0.1518319491659370), Coords(0.1518319491659370, 0.0340960211962615, 0.7799760084415400), Coords(0.0340960211962615, 0.7799760084415400, 0.1518319491659370), Coords(0.0340960211962615, 0.1518319491659370, 0.7799760084415400), Coords(0.5526556431060170, 0.0462051504150017, 0.0462051504150017), Coords(0.3549340560639790, 0.0462051504150017, 0.0462051504150017), Coords(0.0462051504150017, 0.5526556431060170, 0.0462051504150017), Coords(0.0462051504150017, 0.3549340560639790, 0.0462051504150017), Coords(0.0462051504150017, 0.0462051504150017, 0.5526556431060170), Coords(0.0462051504150017, 0.0462051504150017, 0.3549340560639790), Coords(0.3549340560639790, 0.5526556431060170, 0.0462051504150017), Coords(0.5526556431060170, 0.3549340560639790, 0.0462051504150017), Coords(0.3549340560639790, 0.0462051504150017, 0.5526556431060170), Coords(0.5526556431060170, 0.0462051504150017, 0.3549340560639790), Coords(0.0462051504150017, 0.3549340560639790, 0.5526556431060170), Coords(0.0462051504150017, 0.5526556431060170, 0.3549340560639790), Coords(0.2281904610687610, 0.2281904610687610, 0.0055147549744775), Coords(0.5381043228880020, 0.2281904610687610, 0.0055147549744775), Coords(0.2281904610687610, 0.5381043228880020, 0.0055147549744775), Coords(0.2281904610687610, 0.0055147549744775, 0.2281904610687610), Coords(0.5381043228880020, 0.0055147549744775, 0.2281904610687610), Coords(0.2281904610687610, 0.0055147549744775, 0.5381043228880020), Coords(0.0055147549744775, 0.2281904610687610, 0.2281904610687610), Coords(0.0055147549744775, 0.5381043228880020, 0.2281904610687610), Coords(0.0055147549744775, 0.2281904610687610, 0.5381043228880020), Coords(0.5381043228880020, 0.2281904610687610, 0.2281904610687610), Coords(0.2281904610687610, 0.5381043228880020, 0.2281904610687610), Coords(0.2281904610687610, 0.2281904610687610, 0.5381043228880020), Coords(0.3523052600879940, 0.3523052600879940, 0.0992057202494530), Coords(0.1961837595745600, 0.3523052600879940, 0.0992057202494530), Coords(0.3523052600879940, 0.1961837595745600, 0.0992057202494530), Coords(0.3523052600879940, 0.0992057202494530, 0.3523052600879940), Coords(0.1961837595745600, 0.0992057202494530, 0.3523052600879940), Coords(0.3523052600879940, 0.0992057202494530, 0.1961837595745600), Coords(0.0992057202494530, 0.3523052600879940, 0.3523052600879940), Coords(0.0992057202494530, 0.1961837595745600, 0.3523052600879940), Coords(0.0992057202494530, 0.3523052600879940, 0.1961837595745600), Coords(0.1961837595745600, 0.3523052600879940, 0.3523052600879940), Coords(0.3523052600879940, 0.1961837595745600, 0.3523052600879940), Coords(0.3523052600879940, 0.3523052600879940, 0.1961837595745600), Coords(0.1344783347929940, 0.1344783347929940, 0.1344783347929940), Coords(0.5965649956210170, 0.1344783347929940, 0.1344783347929940), Coords(0.1344783347929940, 0.5965649956210170, 0.1344783347929940), Coords(0.1344783347929940, 0.1344783347929940, 0.5965649956210170), ] else: raise NotImplementedError return coords, weights
warp-main
warp/fem/geometry/element.py
from typing import Any import warp as wp from warp.fem.types import Coords @wp.func def project_on_seg_at_origin(q: Any, seg: Any, len_sq: float): s = wp.clamp(wp.dot(q, seg) / len_sq, 0.0, 1.0) return wp.length_sq(q - s * seg), s @wp.func def project_on_tri_at_origin(q: Any, e1: Any, e2: Any): e1e1 = wp.dot(e1, e1) e1e2 = wp.dot(e1, e2) e2e2 = wp.dot(e2, e2) det = e1e1 * e2e2 - e1e2 * e1e2 if det > e1e1 * e2e2 * 1.0e-6: e1p = wp.dot(e1, q) e2p = wp.dot(e2, q) s = (e2e2 * e1p - e1e2 * e2p) / det t = (e1e1 * e2p - e1e2 * e1p) / det if s >= 0.0 and t >= 0.0 and s + t <= 1.0: # point inside triangle (distance can be non-zero in 3D case) return wp.length_sq(q - s * e1 - t * e2), Coords(1.0 - s - t, s, t) d1, s1 = project_on_seg_at_origin(q, e1, e1e1) d2, s2 = project_on_seg_at_origin(q, e2, e2e2) d12, s12 = project_on_seg_at_origin(q - e1, e2 - e1, wp.length_sq(e2 - e1)) if d1 <= d2: if d1 <= d12: return d1, Coords(1.0 - s1, s1, 0.0) elif d2 <= d12: return d2, Coords(1.0 - s2, 0.0, s2) return d12, Coords(0.0, 1.0 - s12, s12) @wp.func def project_on_tet_at_origin(q: wp.vec3, e1: wp.vec3, e2: wp.vec3, e3: wp.vec3): mat = wp.inverse(wp.mat33(e1, e2, e3)) coords = mat * q if wp.min(coords) >= 0.0 and coords[0] + coords[1] + coords[2] <= 1.0: return 0.0, coords # Not inside tet, compare closest point on each tri d12, s12 = project_on_tri_at_origin(q, e1, e2) d23, s23 = project_on_tri_at_origin(q, e2, e3) d31, s31 = project_on_tri_at_origin(q, e3, e1) d123, s123 = project_on_tri_at_origin(q - e1, e2 - e1, e3 - e1) dmin = wp.min(wp.vec4(d12, d23, d31, d123)) if dmin == d12: return dmin, Coords(s12[1], s12[2], 0.0) elif dmin == d23: return dmin, Coords(0.0, s23[1], s23[2]) elif dmin == d31: return dmin, Coords(s31[2], 0.0, s31[1]) else: return dmin, s123
warp-main
warp/fem/geometry/closest_point.py
import warp as wp from warp.fem.types import ElementIndex, Coords, vec2i, Sample from warp.fem.types import NULL_ELEMENT_INDEX, OUTSIDE, NULL_DOF_INDEX, NULL_QP_INDEX from .geometry import Geometry from .element import Triangle, LinearEdge from .closest_point import project_on_tri_at_origin @wp.struct class Trimesh2DArg: tri_vertex_indices: wp.array2d(dtype=int) positions: wp.array(dtype=wp.vec2) vertex_tri_offsets: wp.array(dtype=int) vertex_tri_indices: wp.array(dtype=int) edge_vertex_indices: wp.array(dtype=vec2i) edge_tri_indices: wp.array(dtype=vec2i) class Trimesh2D(Geometry): """Two-dimensional triangular mesh geometry""" def __init__(self, tri_vertex_indices: wp.array, positions: wp.array): """ Constructs a two-dimensional triangular mesh. Args: tri_vertex_indices: warp array of shape (num_tris, 3) containing vertex indices for each tri positions: warp array of shape (num_vertices, 2) containing 2d position for each vertex """ self.dimension = 2 self.tri_vertex_indices = tri_vertex_indices self.positions = positions self._edge_vertex_indices: wp.array = None self._edge_tri_indices: wp.array = None self._vertex_tri_offsets: wp.array = None self._vertex_tri_indices: wp.array = None self._build_topology() def cell_count(self): return self.tri_vertex_indices.shape[0] def vertex_count(self): return self.positions.shape[0] def side_count(self): return self._edge_vertex_indices.shape[0] def boundary_side_count(self): return self._boundary_edge_indices.shape[0] def reference_cell(self) -> Triangle: return Triangle() def reference_side(self) -> LinearEdge: return LinearEdge() CellArg = Trimesh2DArg SideArg = Trimesh2DArg @wp.struct class SideIndexArg: boundary_edge_indices: wp.array(dtype=int) # Geometry device interface def cell_arg_value(self, device) -> CellArg: args = self.CellArg() args.tri_vertex_indices = self.tri_vertex_indices.to(device) args.positions = self.positions.to(device) args.edge_vertex_indices = self._edge_vertex_indices.to(device) args.edge_tri_indices = self._edge_tri_indices.to(device) args.vertex_tri_offsets = self._vertex_tri_offsets.to(device) args.vertex_tri_indices = self._vertex_tri_indices.to(device) return args @wp.func def cell_position(args: CellArg, s: Sample): tri_idx = args.tri_vertex_indices[s.element_index] return ( s.element_coords[0] * args.positions[tri_idx[0]] + s.element_coords[1] * args.positions[tri_idx[1]] + s.element_coords[2] * args.positions[tri_idx[2]] ) @wp.func def _project_on_tri(args: CellArg, pos: wp.vec2, tri_index: int): p0 = args.positions[args.tri_vertex_indices[tri_index, 0]] q = pos - p0 e1 = args.positions[args.tri_vertex_indices[tri_index, 1]] - p0 e2 = args.positions[args.tri_vertex_indices[tri_index, 2]] - p0 dist, coords = project_on_tri_at_origin(q, e1, e2) return dist, coords @wp.func def cell_lookup(args: CellArg, pos: wp.vec2, guess: Sample): closest_tri = int(NULL_ELEMENT_INDEX) closest_coords = Coords(OUTSIDE) closest_dist = float(1.0e8) for v in range(3): vtx = args.tri_vertex_indices[guess.element_index, v] tri_beg = args.vertex_tri_offsets[vtx] tri_end = args.vertex_tri_offsets[vtx + 1] for t in range(tri_beg, tri_end): tri = args.vertex_tri_indices[t] dist, coords = Trimesh2D._project_on_tri(args, pos, tri) if dist <= closest_dist: closest_dist = dist closest_tri = tri closest_coords = coords return Sample(closest_tri, closest_coords, NULL_QP_INDEX, 0.0, NULL_DOF_INDEX, NULL_DOF_INDEX) @wp.func def cell_measure(args: CellArg, cell_index: ElementIndex, coords: Coords): tri_idx = args.tri_vertex_indices[cell_index] v0 = args.positions[tri_idx[0]] v1 = args.positions[tri_idx[1]] v2 = args.positions[tri_idx[2]] e1 = v1 - v0 e2 = v2 - v0 return 0.5 * wp.abs(e1[0] * e2[1] - e1[1] * e2[0]) @wp.func def cell_measure(args: CellArg, s: Sample): return Trimesh2D.cell_measure(args, s.element_index, s.element_coords) @wp.func def cell_measure_ratio(args: CellArg, s: Sample): return 1.0 @wp.func def cell_normal(args: CellArg, s: Sample): return wp.vec2(0.0) def side_arg_value(self, device) -> SideArg: return self.cell_arg_value(device) def side_index_arg_value(self, device) -> SideIndexArg: args = self.SideIndexArg() args.boundary_edge_indices = self._boundary_edge_indices.to(device) return args @wp.func def boundary_side_index(args: SideIndexArg, boundary_side_index: int): """Boundary side to side index""" return args.boundary_edge_indices[boundary_side_index] @wp.func def side_position(args: SideArg, s: Sample): edge_idx = args.edge_vertex_indices[s.element_index] return (1.0 - s.element_coords[0]) * args.positions[edge_idx[0]] + s.element_coords[0] * args.positions[ edge_idx[1] ] @wp.func def side_measure(args: SideArg, side_index: ElementIndex, coords: Coords): edge_idx = args.edge_vertex_indices[side_index] v0 = args.positions[edge_idx[0]] v1 = args.positions[edge_idx[1]] return wp.length(v1 - v0) @wp.func def side_measure(args: SideArg, s: Sample): return Trimesh2D.side_measure(args, s.element_index, s.element_coords) @wp.func def side_measure_ratio(args: SideArg, s: Sample): inner = Trimesh2D.side_inner_cell_index(args, s.element_index) outer = Trimesh2D.side_outer_cell_index(args, s.element_index) return Trimesh2D.side_measure(args, s) / wp.min( Trimesh2D.cell_measure(args, inner, Coords()), Trimesh2D.cell_measure(args, outer, Coords()), ) @wp.func def side_normal(args: SideArg, s: Sample): edge_idx = args.edge_vertex_indices[s.element_index] v0 = args.positions[edge_idx[0]] v1 = args.positions[edge_idx[1]] e = v1 - v0 return wp.normalize(wp.vec2(-e[1], e[0])) @wp.func def side_inner_cell_index(arg: SideArg, side_index: ElementIndex): return arg.edge_tri_indices[side_index][0] @wp.func def side_outer_cell_index(arg: SideArg, side_index: ElementIndex): return arg.edge_tri_indices[side_index][1] @wp.func def edge_to_tri_coords(args: SideArg, side_index: ElementIndex, tri_index: ElementIndex, side_coords: Coords): edge_vidx = args.edge_vertex_indices[side_index] tri_vidx = args.tri_vertex_indices[tri_index] v0 = tri_vidx[0] v1 = tri_vidx[1] cx = float(0.0) cy = float(0.0) cz = float(0.0) if edge_vidx[0] == v0: cx = 1.0 - side_coords[0] elif edge_vidx[0] == v1: cy = 1.0 - side_coords[0] else: cz = 1.0 - side_coords[0] if edge_vidx[1] == v0: cx = side_coords[0] elif edge_vidx[1] == v1: cy = side_coords[0] else: cz = side_coords[0] return Coords(cx, cy, cz) @wp.func def tri_to_edge_coords(args: SideArg, side_index: ElementIndex, tri_index: ElementIndex, tri_coords: Coords): edge_vidx = args.edge_vertex_indices[side_index] tri_vidx = args.tri_vertex_indices[tri_index] start = int(2) end = int(2) for k in range(2): v = tri_vidx[k] if edge_vidx[1] == v: end = k elif edge_vidx[0] == v: start = k return wp.select( tri_coords[start] + tri_coords[end] > 0.999, Coords(OUTSIDE), Coords(tri_coords[end], 0.0, 0.0) ) def _build_topology(self): from warp.fem.utils import compress_node_indices, masked_indices, _get_pinned_temp_count_buffer from warp.utils import array_scan device = self.tri_vertex_indices.device self._vertex_tri_offsets, self._vertex_tri_indices, _, __ = compress_node_indices( self.vertex_count(), self.tri_vertex_indices ) vertex_start_edge_count = wp.zeros(dtype=int, device=device, shape=self.vertex_count()) vertex_start_edge_offsets = wp.empty_like(vertex_start_edge_count) vertex_edge_ends = wp.empty(dtype=int, device=device, shape=(3 * self.cell_count())) vertex_edge_tris = wp.empty(dtype=int, device=device, shape=(3 * self.cell_count(), 2)) # Count face edges starting at each vertex wp.launch( kernel=Trimesh2D._count_starting_edges_kernel, device=device, dim=self.cell_count(), inputs=[self.tri_vertex_indices, vertex_start_edge_count], ) array_scan(in_array=vertex_start_edge_count, out_array=vertex_start_edge_offsets, inclusive=False) # Count number of unique edges (deduplicate across faces) vertex_unique_edge_count = vertex_start_edge_count wp.launch( kernel=Trimesh2D._count_unique_starting_edges_kernel, device=device, dim=self.vertex_count(), inputs=[ self._vertex_tri_offsets, self._vertex_tri_indices, self.tri_vertex_indices, vertex_start_edge_offsets, vertex_unique_edge_count, vertex_edge_ends, vertex_edge_tris, ], ) vertex_unique_edge_offsets = wp.empty_like(vertex_start_edge_offsets) array_scan(in_array=vertex_start_edge_count, out_array=vertex_unique_edge_offsets, inclusive=False) # Get back edge count to host if device.is_cuda: edge_count = _get_pinned_temp_count_buffer(device) # Last vertex will not own any edge, so its count will be zero; just fetching last prefix count is ok wp.copy(dest=edge_count, src=vertex_unique_edge_offsets, src_offset=self.vertex_count() - 1, count=1) wp.synchronize_stream(wp.get_stream()) edge_count = int(edge_count.numpy()[0]) else: edge_count = int(vertex_unique_edge_offsets.numpy()[self.vertex_count() - 1]) self._edge_vertex_indices = wp.empty(shape=(edge_count,), dtype=vec2i, device=device) self._edge_tri_indices = wp.empty(shape=(edge_count,), dtype=vec2i, device=device) boundary_mask = wp.empty(shape=(edge_count,), dtype=int, device=device) # Compress edge data wp.launch( kernel=Trimesh2D._compress_edges_kernel, device=device, dim=self.vertex_count(), inputs=[ vertex_start_edge_offsets, vertex_unique_edge_offsets, vertex_unique_edge_count, vertex_edge_ends, vertex_edge_tris, self._edge_vertex_indices, self._edge_tri_indices, boundary_mask, ], ) # Flip normals if necessary wp.launch( kernel=Trimesh2D._flip_edge_normals, device=device, dim=self.side_count(), inputs=[self._edge_vertex_indices, self._edge_tri_indices, self.tri_vertex_indices, self.positions], ) self._boundary_edge_indices, _ = masked_indices(boundary_mask) @wp.kernel def _count_starting_edges_kernel( tri_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_count: wp.array(dtype=int) ): t = wp.tid() for k in range(3): v0 = tri_vertex_indices[t, k] v1 = tri_vertex_indices[t, (k + 1) % 3] if v0 < v1: wp.atomic_add(vertex_start_edge_count, v0, 1) else: wp.atomic_add(vertex_start_edge_count, v1, 1) @wp.func def _find( needle: int, values: wp.array(dtype=int), beg: int, end: int, ): for i in range(beg, end): if values[i] == needle: return i return -1 @wp.kernel def _count_unique_starting_edges_kernel( vertex_tri_offsets: wp.array(dtype=int), vertex_tri_indices: wp.array(dtype=int), tri_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_offsets: wp.array(dtype=int), vertex_start_edge_count: wp.array(dtype=int), edge_ends: wp.array(dtype=int), edge_tris: wp.array2d(dtype=int), ): v = wp.tid() edge_beg = vertex_start_edge_offsets[v] tri_beg = vertex_tri_offsets[v] tri_end = vertex_tri_offsets[v + 1] edge_cur = edge_beg for tri in range(tri_beg, tri_end): t = vertex_tri_indices[tri] for k in range(3): v0 = tri_vertex_indices[t, k] v1 = tri_vertex_indices[t, (k + 1) % 3] if v == wp.min(v0, v1): other_v = wp.max(v0, v1) # Check if other_v has been seen seen_idx = Trimesh2D._find(other_v, edge_ends, edge_beg, edge_cur) if seen_idx == -1: edge_ends[edge_cur] = other_v edge_tris[edge_cur, 0] = t edge_tris[edge_cur, 1] = t edge_cur += 1 else: edge_tris[seen_idx, 1] = t vertex_start_edge_count[v] = edge_cur - edge_beg @wp.kernel def _compress_edges_kernel( vertex_start_edge_offsets: wp.array(dtype=int), vertex_unique_edge_offsets: wp.array(dtype=int), vertex_unique_edge_count: wp.array(dtype=int), uncompressed_edge_ends: wp.array(dtype=int), uncompressed_edge_tris: wp.array2d(dtype=int), edge_vertex_indices: wp.array(dtype=vec2i), edge_tri_indices: wp.array(dtype=vec2i), boundary_mask: wp.array(dtype=int), ): v = wp.tid() start_beg = vertex_start_edge_offsets[v] unique_beg = vertex_unique_edge_offsets[v] unique_count = vertex_unique_edge_count[v] for e in range(unique_count): src_index = start_beg + e edge_index = unique_beg + e edge_vertex_indices[edge_index] = vec2i(v, uncompressed_edge_ends[src_index]) t0 = uncompressed_edge_tris[src_index, 0] t1 = uncompressed_edge_tris[src_index, 1] edge_tri_indices[edge_index] = vec2i(t0, t1) if t0 == t1: boundary_mask[edge_index] = 1 else: boundary_mask[edge_index] = 0 @wp.kernel def _flip_edge_normals( edge_vertex_indices: wp.array(dtype=vec2i), edge_tri_indices: wp.array(dtype=vec2i), tri_vertex_indices: wp.array2d(dtype=int), positions: wp.array(dtype=wp.vec2), ): e = wp.tid() tri = edge_tri_indices[e][0] tri_vidx = tri_vertex_indices[tri] edge_vidx = edge_vertex_indices[e] tri_centroid = (positions[tri_vidx[0]] + positions[tri_vidx[1]] + positions[tri_vidx[2]]) / 3.0 v0 = positions[edge_vidx[0]] v1 = positions[edge_vidx[1]] edge_center = 0.5 * (v1 + v0) edge_vec = v1 - v0 edge_normal = wp.vec2(-edge_vec[1], edge_vec[0]) # if edge normal points toward first triangle centroid, flip indices if wp.dot(tri_centroid - edge_center, edge_normal) > 0.0: edge_vertex_indices[e] = vec2i(edge_vidx[1], edge_vidx[0])
warp-main
warp/fem/geometry/trimesh_2d.py
import warp as wp from warp.fem.types import ElementIndex, Coords, vec2i, vec3i, Sample from warp.fem.types import NULL_ELEMENT_INDEX, OUTSIDE, NULL_DOF_INDEX, NULL_QP_INDEX from .geometry import Geometry from .element import Triangle, Tetrahedron from .closest_point import project_on_tet_at_origin @wp.struct class TetmeshArg: tet_vertex_indices: wp.array2d(dtype=int) positions: wp.array(dtype=wp.vec3) vertex_tet_offsets: wp.array(dtype=int) vertex_tet_indices: wp.array(dtype=int) face_vertex_indices: wp.array(dtype=vec3i) face_tet_indices: wp.array(dtype=vec2i) class Tetmesh(Geometry): """Tetrahedral mesh geometry""" def __init__(self, tet_vertex_indices: wp.array, positions: wp.array): """ Constructs a tetrahedral mesh. Args: tet_vertex_indices: warp array of shape (num_tets, 4) containing vertex indices for each tet positions: warp array of shape (num_vertices, 3) containing 3d position for each vertex """ self.dimension = 3 self.tet_vertex_indices = tet_vertex_indices self.positions = positions self._face_vertex_indices: wp.array = None self._face_tet_indices: wp.array = None self._vertex_tet_offsets: wp.array = None self._vertex_tet_indices: wp.array = None self._build_topology() def cell_count(self): return self.tet_vertex_indices.shape[0] def vertex_count(self): return self.positions.shape[0] def side_count(self): return self._face_vertex_indices.shape[0] def boundary_side_count(self): return self._boundary_face_indices.shape[0] def reference_cell(self) -> Triangle: return Tetrahedron() def reference_side(self) -> Triangle: return Triangle() CellArg = TetmeshArg SideArg = TetmeshArg @wp.struct class SideIndexArg: boundary_face_indices: wp.array(dtype=int) # Geometry device interface def cell_arg_value(self, device) -> CellArg: args = self.CellArg() args.tet_vertex_indices = self.tet_vertex_indices.to(device) args.positions = self.positions.to(device) args.face_vertex_indices = self._face_vertex_indices.to(device) args.face_tet_indices = self._face_tet_indices.to(device) args.vertex_tet_offsets = self._vertex_tet_offsets.to(device) args.vertex_tet_indices = self._vertex_tet_indices.to(device) return args @wp.func def cell_position(args: CellArg, s: Sample): tet_idx = args.tet_vertex_indices[s.element_index] w0 = 1.0 - s.element_coords[0] - s.element_coords[1] - s.element_coords[2] return ( w0 * args.positions[tet_idx[0]] + s.element_coords[0] * args.positions[tet_idx[1]] + s.element_coords[1] * args.positions[tet_idx[2]] + s.element_coords[2] * args.positions[tet_idx[3]] ) @wp.func def _project_on_tet(args: CellArg, pos: wp.vec3, tet_index: int): p0 = args.positions[args.tet_vertex_indices[tet_index, 0]] q = pos - p0 e1 = args.positions[args.tet_vertex_indices[tet_index, 1]] - p0 e2 = args.positions[args.tet_vertex_indices[tet_index, 2]] - p0 e3 = args.positions[args.tet_vertex_indices[tet_index, 3]] - p0 dist, coords = project_on_tet_at_origin(q, e1, e2, e3) return dist, coords @wp.func def cell_lookup(args: CellArg, pos: wp.vec3, guess: Sample): closest_tet = int(NULL_ELEMENT_INDEX) closest_coords = Coords(OUTSIDE) closest_dist = float(1.0e8) for v in range(4): vtx = args.tet_vertex_indices[guess.element_index, v] tet_beg = args.vertex_tet_offsets[vtx] tet_end = args.vertex_tet_offsets[vtx + 1] for t in range(tet_beg, tet_end): tet = args.vertex_tet_indices[t] dist, coords = Tetmesh._project_on_tet(args, pos, tet) if dist <= closest_dist: closest_dist = dist closest_tet = tet closest_coords = coords return Sample(closest_tet, closest_coords, NULL_QP_INDEX, 0.0, NULL_DOF_INDEX, NULL_DOF_INDEX) @wp.func def cell_measure(args: CellArg, cell_index: ElementIndex, coords: Coords): tet_idx = args.tet_vertex_indices[cell_index] v0 = args.positions[tet_idx[0]] v1 = args.positions[tet_idx[1]] v2 = args.positions[tet_idx[2]] v3 = args.positions[tet_idx[3]] mat = wp.mat33( v1 - v0, v2 - v0, v3 - v0, ) return wp.abs(wp.determinant(mat)) / 6.0 @wp.func def cell_measure(args: CellArg, s: Sample): return Tetmesh.cell_measure(args, s.element_index, s.element_coords) @wp.func def cell_measure_ratio(args: CellArg, s: Sample): return 1.0 @wp.func def cell_normal(args: CellArg, s: Sample): return wp.vec3(0.0) def side_arg_value(self, device) -> SideArg: return self.cell_arg_value(device) def side_index_arg_value(self, device) -> SideIndexArg: args = self.SideIndexArg() args.boundary_face_indices = self._boundary_face_indices.to(device) return args @wp.func def boundary_side_index(args: SideIndexArg, boundary_side_index: int): """Boundary side to side index""" return args.boundary_face_indices[boundary_side_index] @wp.func def side_position(args: SideArg, s: Sample): face_idx = args.face_vertex_indices[s.element_index] return ( s.element_coords[0] * args.positions[face_idx[0]] + s.element_coords[1] * args.positions[face_idx[1]] + s.element_coords[2] * args.positions[face_idx[2]] ) @wp.func def side_measure(args: SideArg, side_index: ElementIndex, coords: Coords): face_idx = args.face_vertex_indices[side_index] v0 = args.positions[face_idx[0]] v1 = args.positions[face_idx[1]] v2 = args.positions[face_idx[2]] return 0.5 * wp.length(wp.cross(v1 - v0, v2 - v0)) @wp.func def side_measure(args: SideArg, s: Sample): return Tetmesh.side_measure(args, s.element_index, s.element_coords) @wp.func def side_measure_ratio(args: SideArg, s: Sample): inner = Tetmesh.side_inner_cell_index(args, s.element_index) outer = Tetmesh.side_outer_cell_index(args, s.element_index) return Tetmesh.side_measure(args, s) / wp.min( Tetmesh.cell_measure(args, inner, Coords()), Tetmesh.cell_measure(args, outer, Coords()), ) @wp.func def side_normal(args: SideArg, s: Sample): face_idx = args.face_vertex_indices[s.element_index] v0 = args.positions[face_idx[0]] v1 = args.positions[face_idx[1]] v2 = args.positions[face_idx[2]] return wp.normalize(wp.cross(v1 - v0, v2 - v0)) @wp.func def face_to_tet_coords(args: SideArg, side_index: ElementIndex, tet_index: ElementIndex, side_coords: Coords): fvi = args.face_vertex_indices[side_index] tv1 = args.tet_vertex_indices[tet_index, 1] tv2 = args.tet_vertex_indices[tet_index, 2] tv3 = args.tet_vertex_indices[tet_index, 3] c1 = float(0.0) c2 = float(0.0) c3 = float(0.0) for k in range(3): if tv1 == fvi[k]: c1 = side_coords[k] elif tv2 == fvi[k]: c2 = side_coords[k] elif tv3 == fvi[k]: c3 = side_coords[k] return Coords(c1, c2, c3) @wp.func def tet_to_face_coords(args: SideArg, side_index: ElementIndex, tet_index: ElementIndex, tet_coords: Coords): fvi = args.face_vertex_indices[side_index] tv1 = args.tet_vertex_indices[tet_index, 1] tv2 = args.tet_vertex_indices[tet_index, 2] tv3 = args.tet_vertex_indices[tet_index, 3] if tv1 == fvi[0]: c0 = tet_coords[0] elif tv2 == fvi[0]: c0 = tet_coords[1] elif tv3 == fvi[0]: c0 = tet_coords[2] else: c0 = 1.0 - tet_coords[0] - tet_coords[1] - tet_coords[2] if tv1 == fvi[1]: c1 = tet_coords[0] elif tv2 == fvi[1]: c1 = tet_coords[1] elif tv3 == fvi[1]: c1 = tet_coords[2] else: c1 = 1.0 - tet_coords[0] - tet_coords[1] - tet_coords[2] if tv1 == fvi[2]: c2 = tet_coords[0] elif tv2 == fvi[2]: c2 = tet_coords[1] elif tv3 == fvi[2]: c2 = tet_coords[2] else: c2 = 1.0 - tet_coords[0] - tet_coords[1] - tet_coords[2] return wp.select(c0 + c1 + c2 > 0.999, Coords(OUTSIDE), Coords(c0, c1, c2)) @wp.func def side_inner_cell_index(arg: SideArg, side_index: ElementIndex): return arg.face_tet_indices[side_index][0] @wp.func def side_outer_cell_index(arg: SideArg, side_index: ElementIndex): return arg.face_tet_indices[side_index][1] def _build_topology(self): from warp.fem.utils import compress_node_indices, masked_indices, _get_pinned_temp_count_buffer from warp.utils import array_scan device = self.tet_vertex_indices.device self._vertex_tet_offsets, self._vertex_tet_indices, _, __ = compress_node_indices( self.vertex_count(), self.tet_vertex_indices ) vertex_start_face_count = wp.zeros(dtype=int, device=device, shape=self.vertex_count()) vertex_start_face_offsets = wp.empty_like(vertex_start_face_count) vertex_face_other_vs = wp.empty(dtype=vec2i, device=device, shape=(4 * self.cell_count())) vertex_face_tets = wp.empty(dtype=int, device=device, shape=(4 * self.cell_count(), 2)) # Count face edges starting at each vertex wp.launch( kernel=Tetmesh._count_starting_faces_kernel, device=device, dim=self.cell_count(), inputs=[self.tet_vertex_indices, vertex_start_face_count], ) array_scan(in_array=vertex_start_face_count, out_array=vertex_start_face_offsets, inclusive=False) # Count number of unique edges (deduplicate across faces) vertex_unique_face_count = vertex_start_face_count wp.launch( kernel=Tetmesh._count_unique_starting_faces_kernel, device=device, dim=self.vertex_count(), inputs=[ self._vertex_tet_offsets, self._vertex_tet_indices, self.tet_vertex_indices, vertex_start_face_offsets, vertex_unique_face_count, vertex_face_other_vs, vertex_face_tets, ], ) vertex_unique_face_offsets = wp.empty_like(vertex_start_face_offsets) array_scan(in_array=vertex_start_face_count, out_array=vertex_unique_face_offsets, inclusive=False) # Get back edge count to host if device.is_cuda: face_count = _get_pinned_temp_count_buffer(device) # Last vertex will not own any edge, so its count will be zero; just fetching last prefix count is ok wp.copy(dest=face_count, src=vertex_unique_face_offsets, src_offset=self.vertex_count() - 1, count=1) wp.synchronize_stream(wp.get_stream()) face_count = int(face_count.numpy()[0]) else: face_count = int(vertex_unique_face_offsets.numpy()[self.vertex_count() - 1]) self._face_vertex_indices = wp.empty(shape=(face_count,), dtype=vec3i, device=device) self._face_tet_indices = wp.empty(shape=(face_count,), dtype=vec2i, device=device) boundary_mask = wp.empty(shape=(face_count,), dtype=int, device=device) # Compress edge data wp.launch( kernel=Tetmesh._compress_faces_kernel, device=device, dim=self.vertex_count(), inputs=[ vertex_start_face_offsets, vertex_unique_face_offsets, vertex_unique_face_count, vertex_face_other_vs, vertex_face_tets, self._face_vertex_indices, self._face_tet_indices, boundary_mask, ], ) # Flip normals if necessary wp.launch( kernel=Tetmesh._flip_face_normals, device=device, dim=self.side_count(), inputs=[self._face_vertex_indices, self._face_tet_indices, self.tet_vertex_indices, self.positions], ) self._boundary_face_indices, _ = masked_indices(boundary_mask) @wp.kernel def _count_starting_faces_kernel( tet_vertex_indices: wp.array2d(dtype=int), vertex_start_face_count: wp.array(dtype=int) ): t = wp.tid() for k in range(4): vi = vec3i(tet_vertex_indices[t, k], tet_vertex_indices[t, (k + 1) % 4], tet_vertex_indices[t, (k + 2) % 4]) vm = wp.min(vi) for i in range(3): if vm == vi[i]: wp.atomic_add(vertex_start_face_count, vm, 1) @wp.func def _find( needle: vec2i, values: wp.array(dtype=vec2i), beg: int, end: int, ): for i in range(beg, end): if values[i] == needle: return i return -1 @wp.kernel def _count_unique_starting_faces_kernel( vertex_tet_offsets: wp.array(dtype=int), vertex_tet_indices: wp.array(dtype=int), tet_vertex_indices: wp.array2d(dtype=int), vertex_start_face_offsets: wp.array(dtype=int), vertex_start_face_count: wp.array(dtype=int), face_other_vs: wp.array(dtype=vec2i), face_tets: wp.array2d(dtype=int), ): v = wp.tid() face_beg = vertex_start_face_offsets[v] tet_beg = vertex_tet_offsets[v] tet_end = vertex_tet_offsets[v + 1] face_cur = face_beg for tet in range(tet_beg, tet_end): t = vertex_tet_indices[tet] for k in range(4): vi = vec3i( tet_vertex_indices[t, k], tet_vertex_indices[t, (k + 1) % 4], tet_vertex_indices[t, (k + 2) % 4] ) min_v = wp.min(vi) if v == min_v: max_v = wp.max(vi) mid_v = vi[0] + vi[1] + vi[2] - min_v - max_v other_v = vec2i(mid_v, max_v) # Check if other_v has been seen seen_idx = Tetmesh._find(other_v, face_other_vs, face_beg, face_cur) if seen_idx == -1: face_other_vs[face_cur] = other_v face_tets[face_cur, 0] = t face_tets[face_cur, 1] = t face_cur += 1 else: face_tets[seen_idx, 1] = t vertex_start_face_count[v] = face_cur - face_beg @wp.kernel def _compress_faces_kernel( vertex_start_face_offsets: wp.array(dtype=int), vertex_unique_face_offsets: wp.array(dtype=int), vertex_unique_face_count: wp.array(dtype=int), uncompressed_face_other_vs: wp.array(dtype=vec2i), uncompressed_face_tets: wp.array2d(dtype=int), face_vertex_indices: wp.array(dtype=vec3i), face_tet_indices: wp.array(dtype=vec2i), boundary_mask: wp.array(dtype=int), ): v = wp.tid() start_beg = vertex_start_face_offsets[v] unique_beg = vertex_unique_face_offsets[v] unique_count = vertex_unique_face_count[v] for f in range(unique_count): src_index = start_beg + f face_index = unique_beg + f face_vertex_indices[face_index] = vec3i( v, uncompressed_face_other_vs[src_index][0], uncompressed_face_other_vs[src_index][1], ) t0 = uncompressed_face_tets[src_index, 0] t1 = uncompressed_face_tets[src_index, 1] face_tet_indices[face_index] = vec2i(t0, t1) if t0 == t1: boundary_mask[face_index] = 1 else: boundary_mask[face_index] = 0 @wp.kernel def _flip_face_normals( face_vertex_indices: wp.array(dtype=vec3i), face_tet_indices: wp.array(dtype=vec2i), tet_vertex_indices: wp.array2d(dtype=int), positions: wp.array(dtype=wp.vec3), ): e = wp.tid() tet = face_tet_indices[e][0] tet_vidx = tet_vertex_indices[tet] face_vidx = face_vertex_indices[e] tet_centroid = ( positions[tet_vidx[0]] + positions[tet_vidx[1]] + positions[tet_vidx[2]] + positions[tet_vidx[3]] ) / 4.0 v0 = positions[face_vidx[0]] v1 = positions[face_vidx[1]] v2 = positions[face_vidx[2]] face_center = (v1 + v0 + v2) / 3.0 face_normal = wp.cross(v1 - v0, v2 - v0) # if face normal points toward first tet centroid, flip indices if wp.dot(tet_centroid - face_center, face_normal) > 0.0: face_vertex_indices[e] = vec3i(face_vidx[0], face_vidx[2], face_vidx[1])
warp-main
warp/fem/geometry/tetmesh.py
from typing import Any import warp as wp from warp.fem.types import Sample, ElementIndex, Coords from .element import Element class Geometry: """ Interface class for discrete geometries A geometry is composed of cells and sides. Sides may be boundary or interior (between cells). """ dimension: int = 0 def cell_count(self): raise NotImplementedError def side_count(self): raise NotImplementedError def boundary_side_count(self): raise NotImplementedError def reference_cell(self) -> Element: """Prototypical element for a cell""" raise NotImplementedError def reference_side(self) -> Element: """Prototypical element for a side""" raise NotImplementedError @property def name(self) -> str: return self.__class__.__name__ def __str__(self) -> str: return self.name CellArg: wp.codegen.Struct """Structure containing arguments to be passed to device function evaluating cell-related quantities""" SideArg: wp.codegen.Struct """Structure containing arguments to be passed to device function evaluating side-related quantities""" def cell_arg_value(self, device) -> "Geometry.CellArg": """Value of the arguments to be passed to cell-related device functions""" raise NotImplementedError def cell_position(args: "Geometry.CellArg", s: "Sample"): """Device function returning the cell position at a sample point""" raise NotImplementedError def cell_lookup(args: "Geometry.CellArg", pos: Any): """Device function returning the cell sample point corresponding to a world position""" raise NotImplementedError def cell_lookup(args: "Geometry.CellArg", pos: Any, guess: "Sample"): """Device function returning the cell sample point corresponding to a world position. Can use guess for faster lookup""" raise NotImplementedError def cell_measure(args: "Geometry.CellArg", cell_index: ElementIndex, coords: Coords): """Device function returning the measure determinant (e.g. volume, area) at a given point""" raise NotImplementedError def cell_measure(args: "Geometry.CellArg", s: "Sample"): """Device function returning the measure determinant (e.g. volume, area) at a given point""" raise NotImplementedError def cell_measure_ratio(args: "Geometry.CellArg", s: "Sample"): """Device function returning the ratio of the measure of a side to that of its neighbour cells""" raise NotImplementedError def cell_normal(args: "Geometry.CellArg", s: "Sample"): """Device function returning the element normal at a sample point""" raise NotImplementedError def side_arg_value(self, device) -> "Geometry.SideArg": """Value of the arguments to be passed to side-related device functions""" raise NotImplementedError def boundary_side_index(args: "Geometry.SideArg", boundary_side_index: int): """Device function returning the side index corresponding to a boundary side""" raise NotImplementedError def side_position(args: "Geometry.SideArg", s: "Sample"): """Device function returning the side position at a sample point""" raise NotImplementedError def side_measure(args: "Geometry.SideArg", cell_index: ElementIndex, coords: Coords): """Device function returning the measure determinant (e.g. volume, area) at a given point""" raise NotImplementedError def side_measure(args: "Geometry.SideArg", s: "Sample"): """Device function returning the measure determinant (e.g. volume, area) at a given point""" raise NotImplementedError def side_measure_ratio(args: "Geometry.SideArg", s: "Sample"): """Device function returning the ratio of the measure of a side to that of its neighbour cells""" raise NotImplementedError def side_normal(args: "Geometry.SideArg", s: "Sample"): """Device function returning the element normal at a sample point""" raise NotImplementedError def side_inner_cell_index(args: "Geometry.SideArg", side_index: ElementIndex): """Device function returning the inner cell index for a given side""" raise NotImplementedError def side_outer_cell_index(args: "Geometry.SideArg", side_index: ElementIndex): """Device function returning the outer cell index for a given side""" raise NotImplementedError
warp-main
warp/fem/geometry/geometry.py
import warp as wp import numpy as np from warp.fem.types import ElementIndex, Coords, OUTSIDE from warp.fem.types import vec2i, vec3i from warp.fem.polynomial import Polynomial, lagrange_scales, quadrature_1d, is_closed from warp.fem.geometry import Grid3D from .dof_mapper import DofMapper from .nodal_function_space import NodalFunctionSpace, NodalFunctionSpaceTrace class Grid3DFunctionSpace(NodalFunctionSpace): DIMENSION = wp.constant(3) @wp.struct class SpaceArg: geo_arg: Grid3D.SideArg inv_cell_size: wp.vec3 def __init__(self, grid: Grid3D, dtype: type = float, dof_mapper: DofMapper = None): super().__init__(dtype, dof_mapper) self._grid = grid @property def geometry(self) -> Grid3D: return self._grid def space_arg_value(self, device): arg = self.SpaceArg() arg.geo_arg = self.geometry.side_arg_value(device) arg.inv_cell_size = wp.vec3( 1.0 / self.geometry.cell_size[0], 1.0 / self.geometry.cell_size[1], 1.0 / self.geometry.cell_size[2], ) return arg class Trace(NodalFunctionSpaceTrace): def __init__(self, space: NodalFunctionSpace): super().__init__(space) self.ORDER = space.ORDER @wp.func def _inner_cell_index(args: SpaceArg, side_index: ElementIndex): cell_index = Grid3D.side_inner_cell_index(args.geo_arg, side_index) return cell_index @wp.func def _outer_cell_index(args: SpaceArg, side_index: ElementIndex): return Grid3D.side_outer_cell_index(args.geo_arg, side_index) @wp.func def _inner_cell_coords(args: SpaceArg, side_index: ElementIndex, side_coords: Coords): side = Grid3D.get_side(args.geo_arg, side_index) if side.origin[0] == 0: inner_alt = 0.0 else: inner_alt = 1.0 return Grid3D._local_to_world(side.axis, wp.vec3(inner_alt, side_coords[0], side_coords[1])) @wp.func def _outer_cell_coords(args: SpaceArg, side_index: ElementIndex, side_coords: Coords): side = Grid3D.get_side(args.geo_arg, side_index) alt_axis = Grid3D.LOC_TO_WORLD[side.axis, 0] if side.origin[0] == args.geo_arg.cell_arg.res[alt_axis]: outer_alt = 1.0 else: outer_alt = 0.0 return Grid3D._local_to_world(side.axis, wp.vec3(outer_alt, side_coords[0], side_coords[1])) @wp.func def _cell_to_side_coords( args: SpaceArg, side_index: ElementIndex, element_index: ElementIndex, element_coords: Coords, ): side = Grid3D.get_side(args.geo_arg, side_index) cell = Grid3D.get_cell(args.geo_arg.cell_arg.res, element_index) if float(side.origin[0] - cell[side.axis]) == element_coords[side.axis]: long_axis = Grid3D.LOC_TO_WORLD[side.axis, 1] lat_axis = Grid3D.LOC_TO_WORLD[side.axis, 2] return Coords(element_coords[long_axis], element_coords[lat_axis], 0.0) return Coords(OUTSIDE) @wp.func def _vertex_coords(vidx_in_cell: int): x = vidx_in_cell // 4 y = (vidx_in_cell - 4 * x) // 2 z = vidx_in_cell - 4 * x - 2 * y return vec3i(x, y, z) @wp.func def _vertex_coords_f(vidx_in_cell: int): x = vidx_in_cell // 4 y = (vidx_in_cell - 4 * x) // 2 z = vidx_in_cell - 4 * x - 2 * y return wp.vec3(float(x), float(y), float(z)) @wp.func def _vertex_index(args: SpaceArg, cell_index: ElementIndex, vidx_in_cell: int): res = args.geo_arg.cell_arg.res strides = vec2i((res[1] + 1) * (res[2] + 1), res[2] + 1) corner = Grid3D.get_cell(res, cell_index) + Grid3DFunctionSpace._vertex_coords(vidx_in_cell) return Grid3D._from_3d_index(strides, corner) class Grid3DPiecewiseConstantSpace(Grid3DFunctionSpace): ORDER = wp.constant(0) NODES_PER_ELEMENT = wp.constant(1) def __init__(self, grid: Grid3D, dtype: type = float, dof_mapper: DofMapper = None): super().__init__(grid, dtype, dof_mapper) self.element_outer_weight = self.element_inner_weight self.element_outer_weight_gradient = self.element_inner_weight_gradient def node_count(self) -> int: return self._grid.cell_count() def node_positions(self): X = (np.arange(0, self.geometry.res[0], dtype=float) + 0.5) * self._grid.cell_size[0] + self._grid.bounds_lo[0] Y = (np.arange(0, self.geometry.res[1], dtype=float) + 0.5) * self._grid.cell_size[1] + self._grid.bounds_lo[1] Z = (np.arange(0, self.geometry.res[2], dtype=float) + 0.5) * self._grid.cell_size[2] + self._grid.bounds_lo[2] return np.meshgrid(X, Y, Z, indexing="ij") @wp.func def element_node_index( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return element_index @wp.func def node_coords_in_element( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): if node_index_in_elt == 0: return Coords(0.5, 0.5, 0.5) return Coords(OUTSIDE) @wp.func def node_quadrature_weight( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 1.0 @wp.func def element_inner_weight( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt == 0: return 1.0 return 0.0 @wp.func def element_inner_weight_gradient( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): return wp.vec3(0.0) class Trace(Grid3DFunctionSpace.Trace): NODES_PER_ELEMENT = wp.constant(2) ORDER = wp.constant(0) def __init__(self, space: "Grid3DPiecewiseConstantSpace"): super().__init__(space) self.element_node_index = self._make_element_node_index(space) self.element_inner_weight = self._make_element_inner_weight(space) self.element_inner_weight_gradient = self._make_element_inner_weight_gradient(space) self.element_outer_weight = self._make_element_outer_weight(space) self.element_outer_weight_gradient = self._make_element_outer_weight_gradient(space) @wp.func def node_coords_in_element( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_element: int, ): if node_index_in_element >= 0: return Coords(0.5, 0.5, 0.0) elif node_index_in_element == 1: return Coords(0.5, 0.5, 0.0) return Coords(OUTSIDE) @wp.func def node_quadrature_weight( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 1.0 def trace(self): return Grid3DPiecewiseConstantSpace.Trace(self) class GridTripolynomialShapeFunctions: def __init__(self, degree: int, family: Polynomial): self.family = family self.ORDER = wp.constant(degree) self.NODES_PER_ELEMENT = wp.constant((degree + 1) ** 3) self.NODES_PER_SIDE = wp.constant(degree + 1) lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family) lagrange_scale = lagrange_scales(lobatto_coords) NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32) self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords)) self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight)) self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale)) self._node_ijk = self._make_node_ijk() @property def name(self) -> str: return f"{self.family}_{self.ORDER}" def _make_node_ijk(self): ORDER = self.ORDER def node_ijk( node_index_in_elt: int, ): node_i = node_index_in_elt // ((ORDER + 1) * (ORDER + 1)) node_jk = node_index_in_elt - (ORDER + 1) * (ORDER + 1) * node_i node_j = node_jk // (ORDER + 1) node_k = node_jk - (ORDER + 1) * node_j return node_i, node_j, node_k from warp.fem import cache return cache.get_func(node_ijk, self.name) def make_node_coords_in_element(self): LOBATTO_COORDS = self.LOBATTO_COORDS def node_coords_in_element( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): node_i, node_j, node_k = self._node_ijk(node_index_in_elt) return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], LOBATTO_COORDS[node_k]) from warp.fem import cache return cache.get_func(node_coords_in_element, self.name) def make_node_quadrature_weight(self): ORDER = self.ORDER LOBATTO_WEIGHT = self.LOBATTO_WEIGHT def node_quadrature_weight( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): node_i, node_j, node_k = self._node_ijk(node_index_in_elt) return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j] * LOBATTO_WEIGHT[node_k] def node_quadrature_weight_linear( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 0.125 from warp.fem import cache if ORDER == 1: return cache.get_func(node_quadrature_weight_linear, self.name) return cache.get_func(node_quadrature_weight, self.name) def make_trace_node_quadrature_weight(self): ORDER = self.ORDER NODES_PER_ELEMENT = self.NODES_PER_ELEMENT LOBATTO_WEIGHT = self.LOBATTO_WEIGHT def trace_node_quadrature_weight( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): if node_index_in_elt >= NODES_PER_ELEMENT: node_index_in_cell = node_index_in_elt - NODES_PER_ELEMENT else: node_index_in_cell = node_index_in_elt # We're either on a side interior or at a vertex # If we find one index at extremum, pick the two other node_i, node_j, node_k = self._node_ijk(node_index_in_cell) if node_i == 0 or node_i == ORDER: return LOBATTO_WEIGHT[node_j] * LOBATTO_WEIGHT[node_k] if node_j == 0 or node_j == ORDER: return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_k] return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j] def trace_node_quadrature_weight_linear( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 0.25 from warp.fem import cache if ORDER == 1: return cache.get_func(trace_node_quadrature_weight_linear, self.name) return cache.get_func(trace_node_quadrature_weight, self.name) def make_element_inner_weight(self): ORDER = self.ORDER NODES_PER_ELEMENT = self.NODES_PER_ELEMENT LOBATTO_COORDS = self.LOBATTO_COORDS LAGRANGE_SCALE = self.LAGRANGE_SCALE def element_inner_weight( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= NODES_PER_ELEMENT: return 0.0 node_i, node_j, node_k = self._node_ijk(node_index_in_elt) w = float(1.0) for k in range(ORDER + 1): if k != node_i: w *= coords[0] - LOBATTO_COORDS[k] if k != node_j: w *= coords[1] - LOBATTO_COORDS[k] if k != node_k: w *= coords[2] - LOBATTO_COORDS[k] w *= LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] * LAGRANGE_SCALE[node_k] return w def element_inner_weight_linear( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= 8: return 0.0 v = Grid3DFunctionSpace._vertex_coords_f(node_index_in_elt) wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0] wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1] wz = (1.0 - coords[2]) * (1.0 - v[2]) + v[2] * coords[2] return wx * wy * wz from warp.fem import cache if ORDER == 1: return cache.get_func(element_inner_weight_linear, self.name) return cache.get_func(element_inner_weight, self.name) def make_element_inner_weight_gradient(self): ORDER = self.ORDER NODES_PER_ELEMENT = self.NODES_PER_ELEMENT LOBATTO_COORDS = self.LOBATTO_COORDS LAGRANGE_SCALE = self.LAGRANGE_SCALE def element_inner_weight_gradient( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= NODES_PER_ELEMENT: return wp.vec3(0.0) node_i, node_j, node_k = self._node_ijk(node_index_in_elt) prefix_xy = float(1.0) prefix_yz = float(1.0) prefix_zx = float(1.0) for k in range(ORDER + 1): if k != node_i: prefix_yz *= coords[0] - LOBATTO_COORDS[k] if k != node_j: prefix_zx *= coords[1] - LOBATTO_COORDS[k] if k != node_k: prefix_xy *= coords[2] - LOBATTO_COORDS[k] prefix_x = prefix_zx * prefix_xy prefix_y = prefix_yz * prefix_xy prefix_z = prefix_zx * prefix_yz grad_x = float(0.0) grad_y = float(0.0) grad_z = float(0.0) for k in range(ORDER + 1): if k != node_i: delta_x = coords[0] - LOBATTO_COORDS[k] grad_x = grad_x * delta_x + prefix_x prefix_x *= delta_x if k != node_j: delta_y = coords[1] - LOBATTO_COORDS[k] grad_y = grad_y * delta_y + prefix_y prefix_y *= delta_y if k != node_k: delta_z = coords[2] - LOBATTO_COORDS[k] grad_z = grad_z * delta_z + prefix_z prefix_z *= delta_z grad = ( LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] * LAGRANGE_SCALE[node_k] * wp.vec3( grad_x * args.inv_cell_size[0], grad_y * args.inv_cell_size[1], grad_z * args.inv_cell_size[2], ) ) return grad def element_inner_weight_gradient_linear( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= 8: return wp.vec3(0.0) v = Grid3DFunctionSpace._vertex_coords_f(node_index_in_elt) wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0] wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1] wz = (1.0 - coords[2]) * (1.0 - v[2]) + v[2] * coords[2] dx = (2.0 * v[0] - 1.0) * args.inv_cell_size[0] dy = (2.0 * v[1] - 1.0) * args.inv_cell_size[1] dz = (2.0 * v[2] - 1.0) * args.inv_cell_size[2] return wp.vec3(dx * wy * wz, dy * wz * wx, dz * wx * wy) from warp.fem import cache if ORDER == 1: return cache.get_func(element_inner_weight_gradient_linear, self.name) return cache.get_func(element_inner_weight_gradient, self.name) class GridTripolynomialSpace(Grid3DFunctionSpace): def __init__( self, grid: Grid3D, degree: int, family: int, dtype: type = float, dof_mapper: DofMapper = None, ): super().__init__(grid, dtype, dof_mapper) if family is None: family = Polynomial.LOBATTO_GAUSS_LEGENDRE if not is_closed(family): raise ValueError("A closed polynomial family is required to defined a continuous funciton space") self._shape = GridTripolynomialShapeFunctions(degree, family=family) self.ORDER = self._shape.ORDER self.NODES_PER_ELEMENT = self._shape.NODES_PER_ELEMENT self.element_node_index = self._make_element_node_index() self.node_coords_in_element = self._shape.make_node_coords_in_element() self.node_quadrature_weight = self._shape.make_node_quadrature_weight() self.element_inner_weight = self._shape.make_element_inner_weight() self.element_inner_weight_gradient = self._shape.make_element_inner_weight_gradient() self.element_outer_weight = self.element_inner_weight self.element_outer_weight_gradient = self.element_inner_weight_gradient def node_count(self) -> int: return ( (self._grid.res[0] * self.ORDER + 1) * (self._grid.res[1] * self.ORDER + 1) * (self._grid.res[2] * self.ORDER + 1) ) def node_positions(self): res = self._grid.res cell_coords = np.array(self._shape.LOBATTO_COORDS)[:-1] grid_coords_x = np.repeat(np.arange(0, res[0], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[0] ) grid_coords_x = np.append(grid_coords_x, res[0]) X = grid_coords_x * self._grid.cell_size[0] + self._grid.origin[0] grid_coords_y = np.repeat(np.arange(0, res[1], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[1] ) grid_coords_y = np.append(grid_coords_y, res[1]) Y = grid_coords_y * self._grid.cell_size[1] + self._grid.origin[1] grid_coords_z = np.repeat(np.arange(0, res[2], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[2] ) grid_coords_z = np.append(grid_coords_z, res[2]) Z = grid_coords_z * self._grid.cell_size[2] + self._grid.origin[2] return np.meshgrid(X, Y, Z, indexing="ij") def _make_element_node_index(self): ORDER = self.ORDER def element_node_index( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): res = args.geo_arg.cell_arg.res cell = Grid3D.get_cell(res, element_index) node_i, node_j, node_k = self._shape._node_ijk(node_index_in_elt) node_x = ORDER * cell[0] + node_i node_y = ORDER * cell[1] + node_j node_z = ORDER * cell[2] + node_k node_pitch_y = (res[2] * ORDER) + 1 node_pitch_x = node_pitch_y * ((res[1] * ORDER) + 1) node_index = node_pitch_x * node_x + node_pitch_y * node_y + node_z return node_index from warp.fem import cache return cache.get_func(element_node_index, f"{self.name}_{ORDER}") class Trace(Grid3DFunctionSpace.Trace): def __init__(self, space: "GridTripolynomialSpace"): super().__init__(space) self.element_node_index = self._make_element_node_index(space) self.node_coords_in_element = self._make_node_coords_in_element(space) self.node_quadrature_weight = space._shape.make_trace_node_quadrature_weight() self.element_inner_weight = self._make_element_inner_weight(space) self.element_inner_weight_gradient = self._make_element_inner_weight_gradient(space) self.element_outer_weight = self._make_element_outer_weight(space) self.element_outer_weight_gradient = self._make_element_outer_weight_gradient(space) def trace(self): return GridTripolynomialSpace.Trace(self) class GridDGTripolynomialSpace(Grid3DFunctionSpace): def __init__( self, grid: Grid3D, degree: int, family: Polynomial, dtype: type = float, dof_mapper: DofMapper = None, ): super().__init__(grid, dtype, dof_mapper) if family is None: family = Polynomial.LOBATTO_GAUSS_LEGENDRE self._shape = GridTripolynomialShapeFunctions(degree, family=family) self.ORDER = self._shape.ORDER self.NODES_PER_ELEMENT = self._shape.NODES_PER_ELEMENT self.element_node_index = self._make_element_node_index() self.node_coords_in_element = self._shape.make_node_coords_in_element() self.node_quadrature_weight = self._shape.make_node_quadrature_weight() self.element_inner_weight = self._shape.make_element_inner_weight() self.element_inner_weight_gradient = self._shape.make_element_inner_weight_gradient() self.element_outer_weight = self.element_inner_weight self.element_outer_weight_gradient = self.element_inner_weight_gradient def node_count(self) -> int: return self._grid.cell_count() * (self.ORDER + 1) ** 3 def node_positions(self): res = self._grid.res cell_coords = np.array(self._shape.LOBATTO_COORDS) grid_coords_x = np.repeat(np.arange(0, res[0], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[0] ) X = grid_coords_x * self._grid.cell_size[0] + self._grid.origin[0] grid_coords_y = np.repeat(np.arange(0, res[1], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[1] ) Y = grid_coords_y * self._grid.cell_size[1] + self._grid.origin[1] grid_coords_z = np.repeat(np.arange(0, res[2], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[2] ) Z = grid_coords_z * self._grid.cell_size[2] + self._grid.origin[2] return np.meshgrid(X, Y, Z, indexing="ij") def _make_element_node_index(self): NODES_PER_ELEMENT = self.NODES_PER_ELEMENT def element_node_index( args: Grid3DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return element_index * NODES_PER_ELEMENT + node_index_in_elt from warp.fem import cache return cache.get_func(element_node_index, f"{self.name}_{self.ORDER}") class Trace(GridTripolynomialSpace.Trace): def __init__(self, space: "GridDGTripolynomialSpace"): super().__init__(space) def trace(self): return GridDGTripolynomialSpace.Trace(self)
warp-main
warp/fem/space/grid_3d_function_space.py
from typing import Any import warp as wp from warp.fem.types import DofIndex, ElementIndex, Coords, get_node_coord from warp.fem.geometry import GeometryPartition from warp.fem import utils from .function_space import FunctionSpace from .dof_mapper import DofMapper, IdentityMapper from .partition import make_space_partition, SpacePartition class NodalFunctionSpace(FunctionSpace): """Function space where values are collocated at nodes""" def __init__(self, dtype: type = float, dof_mapper: DofMapper = None): self.dof_mapper = IdentityMapper(dtype) if dof_mapper is None else dof_mapper self.dtype = self.dof_mapper.value_dtype self.dof_dtype = self.dof_mapper.dof_dtype if self.dtype == wp.float32: self.gradient_dtype = wp.vec2 elif self.dtype == wp.vec2: self.gradient_dtype = wp.mat22 elif self.dtype == wp.vec3: self.gradient_dtype = wp.mat33 else: self.gradient_dtype = None self.VALUE_DOF_COUNT = self.dof_mapper.DOF_SIZE self.unit_dof_value = self._make_unit_dof_value(self.dof_mapper) @property def name(self): return f"{self.__class__.__qualname__}_{self.ORDER}_{self.dof_mapper}".replace(".", "_") def make_field( self, space_partition: SpacePartition = None, geometry_partition: GeometryPartition = None, ) -> "wp.fem.field.NodalField": from warp.fem.field import NodalField if space_partition is None: space_partition = make_space_partition(self, geometry_partition) return NodalField(space=self, space_partition=space_partition) @staticmethod def _make_unit_dof_value(dof_mapper: DofMapper): from warp.fem import cache def unit_dof_value(args: Any, dof: DofIndex): return dof_mapper.dof_to_value(utils.unit_element(dof_mapper.dof_dtype(0.0), get_node_coord(dof))) return cache.get_func(unit_dof_value, str(dof_mapper)) # Interface for generating Trace space def _inner_cell_index(args: Any, side_index: ElementIndex): """Given a side, returns the index of the inner cell""" raise NotImplementedError def _outer_cell_index(args: Any, side_index: ElementIndex): """Given a side, returns the index of the outer cell""" raise NotImplementedError def _inner_cell_coords(args: Any, side_index: ElementIndex, side_coords: Coords): """Given coordinates within a side, returns coordinates within the inner cell""" raise NotImplementedError def _outer_cell_coords(args: Any, side_index: ElementIndex, side_coords: Coords): """Given coordinates within a side, returns coordinates within the outer cell""" raise NotImplementedError def _cell_to_side_coords( args: Any, side_index: ElementIndex, element_index: ElementIndex, element_coords: Coords, ): """Given coordinates within a cell, returns coordinates within a side, or OUTSIDE""" raise NotImplementedError class NodalFunctionSpaceTrace(NodalFunctionSpace): """Trace of a NodalFunctionSpace""" def __init__(self, space: NodalFunctionSpace): self._space = space super().__init__(space.dtype, space.dof_mapper) self.geometry = space.geometry self.NODES_PER_ELEMENT = wp.constant(2 * space.NODES_PER_ELEMENT) self.DIMENSION = space.DIMENSION - 1 self.SpaceArg = space.SpaceArg self.space_arg_value = space.space_arg_value def node_count(self) -> int: return self._space.node_count() @property def name(self): return f"{self._space.name}_Trace" @staticmethod def _make_element_node_index(space: NodalFunctionSpace): from warp.fem import cache NODES_PER_ELEMENT = space.NODES_PER_ELEMENT def trace_element_node_index(args: space.SpaceArg, element_index: ElementIndex, node_index_in_elt: int): if node_index_in_elt < NODES_PER_ELEMENT: inner_element = space._inner_cell_index(args, element_index) return space.element_node_index(args, inner_element, node_index_in_elt) outer_element = space._outer_cell_index(args, element_index) return space.element_node_index(args, outer_element, node_index_in_elt - NODES_PER_ELEMENT) return cache.get_func(trace_element_node_index, space.name) @staticmethod def _make_node_coords_in_element(space: NodalFunctionSpace): from warp.fem import cache NODES_PER_ELEMENT = space.NODES_PER_ELEMENT def trace_node_coords_in_element( args: space.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): if node_index_in_elt < NODES_PER_ELEMENT: neighbour_elem = space._inner_cell_index(args, element_index) neighbour_coords = space.node_coords_in_element(args, neighbour_elem, node_index_in_elt) else: neighbour_elem = space._outer_cell_index(args, element_index) neighbour_coords = space.node_coords_in_element( args, neighbour_elem, node_index_in_elt - NODES_PER_ELEMENT, ) return space._cell_to_side_coords(args, element_index, neighbour_elem, neighbour_coords) return cache.get_func(trace_node_coords_in_element, space.name) @staticmethod def _make_element_inner_weight(space: NodalFunctionSpace): from warp.fem import cache def trace_element_inner_weight( args: space.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): return space.element_inner_weight( args, space._inner_cell_index(args, element_index), space._inner_cell_coords(args, element_index, coords), node_index_in_elt, ) return cache.get_func(trace_element_inner_weight, space.name) @staticmethod def _make_element_outer_weight(space: NodalFunctionSpace): from warp.fem import cache NODES_PER_ELEMENT = space.NODES_PER_ELEMENT def trace_element_outer_weight( args: space.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): return space.element_outer_weight( args, space._outer_cell_index(args, element_index), space._outer_cell_coords(args, element_index, coords), node_index_in_elt - NODES_PER_ELEMENT, ) return cache.get_func(trace_element_outer_weight, space.name) @staticmethod def _make_element_inner_weight_gradient(space: NodalFunctionSpace): from warp.fem import cache def trace_element_inner_weight_gradient( args: space.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): return space.element_inner_weight_gradient( args, space._inner_cell_index(args, element_index), space._inner_cell_coords(args, element_index, coords), node_index_in_elt, ) return cache.get_func(trace_element_inner_weight_gradient, space.name) @staticmethod def _make_element_outer_weight_gradient(space: NodalFunctionSpace): from warp.fem import cache NODES_PER_ELEMENT = space.NODES_PER_ELEMENT def trace_element_outer_weight_gradient( args: space.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): return space.element_outer_weight_gradient( args, space._outer_cell_index(args, element_index), space._outer_cell_coords(args, element_index, coords), node_index_in_elt - NODES_PER_ELEMENT, ) return cache.get_func(trace_element_outer_weight_gradient, space.name) def __eq__(self, other: "NodalFunctionSpaceTrace") -> bool: return self._space == other._space
warp-main
warp/fem/space/nodal_function_space.py
from typing import Any, Optional import warp as wp from warp.fem.geometry import GeometryPartition, WholeGeometryPartition from warp.fem.utils import compress_node_indices, _iota_kernel from warp.fem.types import NULL_NODE_INDEX from .function_space import FunctionSpace wp.set_module_options({"enable_backward": False}) class SpacePartition: class PartitionArg: pass def __init__(self, space: FunctionSpace, geo_partition: GeometryPartition): self.space = space self.geo_partition = geo_partition def node_count(self): """Returns number of nodes in this partition""" def owned_node_count(self) -> int: """Returns number of nodes in this partition, excluding exterior halo""" def interior_node_count(self) -> int: """Returns number of interior nodes in this partition""" def space_node_indices(self) -> wp.array: """Return the global function space indices for nodes in this partition""" def partition_arg_value(self, device): pass def partition_node_index(args: Any, space_node_index: int): """Returns the index in the partition of a function space node, or -1 if it does not exist""" def __str__(self) -> str: return self.name @property def name(self) -> str: return f"{self.__class__.__name__}" class WholeSpacePartition(SpacePartition): @wp.struct class PartitionArg: pass def __init__(self, space: FunctionSpace): super().__init__(space, WholeGeometryPartition(space.geometry)) self._node_indices = None def node_count(self): """Returns number of nodes in this partition""" return self.space.node_count() def owned_node_count(self) -> int: """Returns number of nodes in this partition, excluding exterior halo""" return self.space.node_count() def interior_node_count(self) -> int: """Returns number of interior nodes in this partition""" return self.space.node_count() def space_node_indices(self): """Return the global function space indices for nodes in this partition""" if self._node_indices is None: self._node_indices = wp.empty(shape=(self.node_count(),), dtype=int) wp.launch(kernel=_iota_kernel, dim=self._node_indices.shape, inputs=[self._node_indices, 1]) return self._node_indices def partition_arg_value(self, device): return WholeSpacePartition.PartitionArg() @wp.func def partition_node_index(args: Any, space_node_index: int): return space_node_index def __eq__(self, other: SpacePartition) -> bool: return isinstance(other, SpacePartition) and self.space == other.space class NodeCategory: OWNED_INTERIOR = wp.constant(0) """Node is touched exclusively by this partition, not touched by frontier side""" OWNED_FRONTIER = wp.constant(1) """Node is touched by a frontier side, but belongs to an element of this partition""" HALO_LOCAL_SIDE = wp.constant(2) """Node belongs to an element of another partition, but is touched by one of our frontier side""" HALO_OTHER_SIDE = wp.constant(3) """Node belongs to an element of another partition, and is not touched by one of our frontier side""" EXTERIOR = wp.constant(4) """Node is never referenced by this partition""" COUNT = 5 class NodePartition(SpacePartition): @wp.struct class PartitionArg: space_to_partition: wp.array(dtype=int) def __init__(self, space: FunctionSpace, geo_partition: GeometryPartition, with_halo: bool = True, device=None): super().__init__(space, geo_partition=geo_partition) self._compute_node_indices_from_sides(device, with_halo) def node_count(self) -> int: """Returns number of nodes referenced by this partition, including exterior halo""" return int(self._category_offsets[NodeCategory.HALO_OTHER_SIDE + 1]) def owned_node_count(self) -> int: """Returns number of nodes in this partition, excluding exterior halo""" return int(self._category_offsets[NodeCategory.OWNED_FRONTIER + 1]) def interior_node_count(self) -> int: """Returns number of interior nodes in this partition""" return int(self._category_offsets[NodeCategory.OWNED_INTERIOR + 1]) def space_node_indices(self): """Return the global function space indices for nodes in this partition""" return self._node_indices def partition_arg_value(self, device): arg = NodePartition.PartitionArg() arg.space_to_partition = self._space_to_partition.to(device) return arg @wp.func def partition_node_index(args: PartitionArg, space_node_index: int): return args.space_to_partition[space_node_index] def _compute_node_indices_from_sides(self, device, with_halo: bool): from warp.fem import cache trace_space = self.space.trace() NODES_PER_CELL = self.space.NODES_PER_ELEMENT NODES_PER_SIDE = trace_space.NODES_PER_ELEMENT def node_category_from_cells_fn( geo_partition_arg: self.geo_partition.CellArg, space_arg: self.space.SpaceArg, node_mask: wp.array(dtype=int), ): partition_cell_index = wp.tid() cell_index = self.geo_partition.cell_index(geo_partition_arg, partition_cell_index) for n in range(NODES_PER_CELL): space_nidx = self.space.element_node_index(space_arg, cell_index, n) node_mask[space_nidx] = NodeCategory.OWNED_INTERIOR def node_category_from_owned_sides_fn( geo_partition_arg: self.geo_partition.SideArg, space_arg: trace_space.SpaceArg, node_mask: wp.array(dtype=int), ): partition_side_index = wp.tid() side_index = self.geo_partition.side_index(geo_partition_arg, partition_side_index) for n in range(NODES_PER_SIDE): space_nidx = trace_space.element_node_index(space_arg, side_index, n) if node_mask[space_nidx] == NodeCategory.EXTERIOR: node_mask[space_nidx] = NodeCategory.HALO_LOCAL_SIDE def node_category_from_frontier_sides_fn( geo_partition_arg: self.geo_partition.SideArg, space_arg: trace_space.SpaceArg, node_mask: wp.array(dtype=int), ): frontier_side_index = wp.tid() side_index = self.geo_partition.frontier_side_index(geo_partition_arg, frontier_side_index) for n in range(NODES_PER_SIDE): space_nidx = trace_space.element_node_index(space_arg, side_index, n) if node_mask[space_nidx] == NodeCategory.EXTERIOR: node_mask[space_nidx] = NodeCategory.HALO_OTHER_SIDE elif node_mask[space_nidx] == NodeCategory.OWNED_INTERIOR: node_mask[space_nidx] = NodeCategory.OWNED_FRONTIER node_category_from_cells_kernel = cache.get_kernel( node_category_from_cells_fn, suffix=f"{self.geo_partition.name}_{self.space.name}", ) node_category_from_owned_sides_kernel = cache.get_kernel( node_category_from_owned_sides_fn, suffix=f"{self.geo_partition.name}_{self.space.name}", ) node_category_from_frontier_sides_kernel = cache.get_kernel( node_category_from_frontier_sides_fn, suffix=f"{self.geo_partition.name}_{self.space.name}", ) node_category = wp.empty( shape=(self.space.node_count(),), dtype=int, device=device, ) node_category.fill_(value=NodeCategory.EXTERIOR) wp.launch( dim=self.geo_partition.cell_count(), kernel=node_category_from_cells_kernel, inputs=[ self.geo_partition.cell_arg_value(device), self.space.space_arg_value(device), node_category, ], device=device, ) if with_halo: wp.launch( dim=self.geo_partition.side_count(), kernel=node_category_from_owned_sides_kernel, inputs=[ self.geo_partition.side_arg_value(device), self.space.space_arg_value(device), node_category, ], device=device, ) wp.launch( dim=self.geo_partition.frontier_side_count(), kernel=node_category_from_frontier_sides_kernel, inputs=[ self.geo_partition.side_arg_value(device), self.space.space_arg_value(device), node_category, ], device=device, ) self._finalize_node_indices(node_category) def _finalize_node_indices(self, node_category: wp.array(dtype=int)): category_offsets, node_indices, _, __ = compress_node_indices(NodeCategory.COUNT, node_category) self._category_offsets = category_offsets.numpy() # Compute globla to local indices self._space_to_partition = node_category # Reuse array storage wp.launch( kernel=NodePartition._scatter_partition_indices, dim=self.space.node_count(), device=self._space_to_partition.device, inputs=[self.node_count(), node_indices, self._space_to_partition], ) # Copy to shrinked-to-fit array, save on memory self._node_indices = wp.empty(shape=(self.node_count()), dtype=int, device=node_indices.device) wp.copy(dest=self._node_indices, src=node_indices, count=self.node_count()) @wp.kernel def _scatter_partition_indices( local_node_count: int, node_indices: wp.array(dtype=int), space_to_partition_indices: wp.array(dtype=int), ): local_idx = wp.tid() space_idx = node_indices[local_idx] if local_idx < local_node_count: space_to_partition_indices[space_idx] = local_idx else: space_to_partition_indices[space_idx] = NULL_NODE_INDEX def make_space_partition( space: FunctionSpace, geometry_partition: Optional[GeometryPartition] = None, with_halo: bool = True, device=None, ) -> SpacePartition: """Computes the substep of nodes from a function space that touch a geometry partition Args: space: the function space to consider geometry_partition: The subset of the space geometry. If not provided, use the whole geometry. with_halo: if True, include the halo nodes (nodes from exterior frontier cells to the partition) device: Warp device on which to perform and store computations Returns: the resulting space partition """ if geometry_partition is not None and geometry_partition.cell_count() < geometry_partition.geometry.cell_count(): return NodePartition(space, geometry_partition, with_halo=with_halo, device=device) return WholeSpacePartition(space)
warp-main
warp/fem/space/partition.py
import warp as wp import numpy as np from warp.fem.types import ElementIndex, Coords, OUTSIDE, vec2i, vec3i from warp.fem.geometry import Trimesh2D from .dof_mapper import DofMapper from .nodal_function_space import NodalFunctionSpace, NodalFunctionSpaceTrace class Trimesh2DFunctionSpace(NodalFunctionSpace): DIMENSION = wp.constant(2) @wp.struct class SpaceArg: geo_arg: Trimesh2D.SideArg reference_transforms: wp.array(dtype=wp.mat22f) tri_edge_indices: wp.array2d(dtype=int) vertex_count: int edge_count: int def __init__(self, mesh: Trimesh2D, dtype: type = float, dof_mapper: DofMapper = None): super().__init__(dtype, dof_mapper) self._mesh = mesh self._reference_transforms: wp.array = None self._tri_edge_indices: wp.array = None self._compute_reference_transforms() self._compute_tri_edge_indices() @property def geometry(self) -> Trimesh2D: return self._mesh def space_arg_value(self, device): arg = self.SpaceArg() arg.geo_arg = self.geometry.side_arg_value(device) arg.reference_transforms = self._reference_transforms.to(device) arg.tri_edge_indices = self._tri_edge_indices.to(device) arg.vertex_count = self._mesh.vertex_count() arg.edge_count = self._mesh.side_count() return arg class Trace(NodalFunctionSpaceTrace): def __init__(self, space: NodalFunctionSpace): super().__init__(space) self.ORDER = space.ORDER @wp.func def _inner_cell_index(args: SpaceArg, side_index: ElementIndex): return Trimesh2D.side_inner_cell_index(args.geo_arg, side_index) @wp.func def _outer_cell_index(args: SpaceArg, side_index: ElementIndex): return Trimesh2D.side_outer_cell_index(args.geo_arg, side_index) @wp.func def _inner_cell_coords(args: SpaceArg, side_index: ElementIndex, side_coords: Coords): tri_index = Trimesh2D.side_inner_cell_index(args.geo_arg, side_index) return Trimesh2D.edge_to_tri_coords(args.geo_arg, side_index, tri_index, side_coords) @wp.func def _outer_cell_coords(args: SpaceArg, side_index: ElementIndex, side_coords: Coords): tri_index = Trimesh2D.side_outer_cell_index(args.geo_arg, side_index) return Trimesh2D.edge_to_tri_coords(args.geo_arg, side_index, tri_index, side_coords) @wp.func def _cell_to_side_coords( args: SpaceArg, side_index: ElementIndex, element_index: ElementIndex, element_coords: Coords, ): return Trimesh2D.tri_to_edge_coords(args.geo_arg, side_index, element_index, element_coords) def _compute_reference_transforms(self): self._reference_transforms = wp.empty( dtype=wp.mat22f, device=self._mesh.positions.device, shape=(self._mesh.cell_count()) ) wp.launch( kernel=Trimesh2DFunctionSpace._compute_reference_transforms_kernel, dim=self._reference_transforms.shape, device=self._reference_transforms.device, inputs=[self._mesh.tri_vertex_indices, self._mesh.positions, self._reference_transforms], ) def _compute_tri_edge_indices(self): self._tri_edge_indices = wp.empty( dtype=int, device=self._mesh.tri_vertex_indices.device, shape=(self._mesh.cell_count(), 3) ) wp.launch( kernel=Trimesh2DFunctionSpace._compute_tri_edge_indices_kernel, dim=self._mesh._edge_tri_indices.shape, device=self._mesh.tri_vertex_indices.device, inputs=[ self._mesh._edge_tri_indices, self._mesh._edge_vertex_indices, self._mesh.tri_vertex_indices, self._tri_edge_indices, ], ) @wp.kernel def _compute_reference_transforms_kernel( tri_vertex_indices: wp.array2d(dtype=int), positions: wp.array(dtype=wp.vec2f), transforms: wp.array(dtype=wp.mat22f), ): t = wp.tid() p0 = positions[tri_vertex_indices[t, 0]] p1 = positions[tri_vertex_indices[t, 1]] p2 = positions[tri_vertex_indices[t, 2]] e1 = p1 - p0 e2 = p2 - p0 mat = wp.mat22(e1, e2) transforms[t] = wp.transpose(wp.inverse(mat)) @wp.func def _find_edge_index_in_tri( edge_vtx: vec2i, tri_vtx: vec3i, ): for k in range(2): if (edge_vtx[0] == tri_vtx[k] and edge_vtx[1] == tri_vtx[k + 1]) or ( edge_vtx[1] == tri_vtx[k] and edge_vtx[0] == tri_vtx[k + 1] ): return k return 2 @wp.kernel def _compute_tri_edge_indices_kernel( edge_tri_indices: wp.array(dtype=vec2i), edge_vertex_indices: wp.array(dtype=vec2i), tri_vertex_indices: wp.array2d(dtype=int), tri_edge_indices: wp.array2d(dtype=int), ): e = wp.tid() edge_vtx = edge_vertex_indices[e] edge_tris = edge_tri_indices[e] t0 = edge_tris[0] t0_vtx = vec3i(tri_vertex_indices[t0, 0], tri_vertex_indices[t0, 1], tri_vertex_indices[t0, 2]) t0_edge = Trimesh2DFunctionSpace._find_edge_index_in_tri(edge_vtx, t0_vtx) tri_edge_indices[t0, t0_edge] = e t1 = edge_tris[1] if t1 != t0: t1_vtx = vec3i(tri_vertex_indices[t1, 0], tri_vertex_indices[t1, 1], tri_vertex_indices[t1, 2]) t1_edge = Trimesh2DFunctionSpace._find_edge_index_in_tri(edge_vtx, t1_vtx) tri_edge_indices[t1, t1_edge] = e class Trimesh2DPiecewiseConstantSpace(Trimesh2DFunctionSpace): ORDER = wp.constant(0) NODES_PER_ELEMENT = wp.constant(1) def __init__(self, grid: Trimesh2D, dtype: type = float, dof_mapper: DofMapper = None): super().__init__(grid, dtype, dof_mapper) self.element_outer_weight = self.element_inner_weight self.element_outer_weight_gradient = self.element_inner_weight_gradient def node_count(self) -> int: return self._mesh.cell_count() def node_positions(self): vtx_pos = self._mesh.positions.numpy() tri_vtx = self._mesh.tri_vertex_indices.numpy() tri_pos = vtx_pos[tri_vtx] centers = tri_pos.sum(axis=1) / 3.0 return centers[:,0], centers[:,1] @wp.func def element_node_index( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return element_index @wp.func def node_coords_in_element( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): if node_index_in_elt == 0: return Coords(1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0) return Coords(OUTSIDE) @wp.func def node_quadrature_weight( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 1.0 @wp.func def element_inner_weight( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt == 0: return 1.0 return 0.0 @wp.func def element_inner_weight_gradient( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): return wp.vec2(0.0) class Trace(Trimesh2DFunctionSpace.Trace): NODES_PER_ELEMENT = wp.constant(2) ORDER = wp.constant(0) def __init__(self, space: "Trimesh2DPiecewiseConstantSpace"): super().__init__(space) self.element_node_index = self._make_element_node_index(space) self.element_inner_weight = self._make_element_inner_weight(space) self.element_inner_weight_gradient = self._make_element_inner_weight_gradient(space) self.element_outer_weight = self._make_element_outer_weight(space) self.element_outer_weight_gradient = self._make_element_outer_weight_gradient(space) @wp.func def node_coords_in_element( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_element: int, ): if node_index_in_element == 0: return Coords(0.5, 0.0, 0.0) elif node_index_in_element == 1: return Coords(0.5, 0.0, 0.0) return Coords(OUTSIDE) @wp.func def node_quadrature_weight( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 1.0 def trace(self): return Trimesh2DPiecewiseConstantSpace.Trace(self) def _triangle_node_index(tx: int, ty: int, degree: int): VERTEX_NODE_COUNT = 3 SIDE_INTERIOR_NODE_COUNT = degree - 1 # Index in similar order to e.g. VTK # First vertices, then edge (counterclokwise) then interior points (recursively) if tx == 0: if ty == 0: return 0 elif ty == degree: return 2 else: edge_index = 2 return VERTEX_NODE_COUNT + SIDE_INTERIOR_NODE_COUNT * edge_index + (SIDE_INTERIOR_NODE_COUNT - ty) elif ty == 0: if tx == degree: return 1 else: edge_index = 0 return VERTEX_NODE_COUNT + SIDE_INTERIOR_NODE_COUNT * edge_index + tx - 1 elif tx + ty == degree: edge_index = 1 return VERTEX_NODE_COUNT + SIDE_INTERIOR_NODE_COUNT * edge_index + ty - 1 vertex_edge_node_count = 3 * degree return vertex_edge_node_count + _triangle_node_index(tx - 1, ty - 1, degree - 2) class Trimesh2DPolynomialShapeFunctions: INVALID = wp.constant(-1) VERTEX = wp.constant(0) EDGE = wp.constant(1) INTERIOR = wp.constant(2) def __init__(self, degree: int): self.ORDER = wp.constant(degree) self.NODES_PER_ELEMENT = wp.constant((degree + 1) * (degree + 2) // 2) self.NODES_PER_SIDE = wp.constant(degree + 1) triangle_coords = np.empty((self.NODES_PER_ELEMENT, 2), dtype=int) for tx in range(degree + 1): for ty in range(degree + 1 - tx): index = _triangle_node_index(tx, ty, degree) triangle_coords[index] = [tx, ty] CoordTypeVec = wp.mat(dtype=int, shape=(self.NODES_PER_ELEMENT, 2)) self.NODE_TRIANGLE_COORDS = wp.constant(CoordTypeVec(triangle_coords)) self.node_type_and_type_index = self._get_node_type_and_type_index() self._node_triangle_coordinates = self._get_node_triangle_coordinates() @property def name(self) -> str: return f"{self.ORDER}" def _get_node_triangle_coordinates(self): NODE_TRIANGLE_COORDS = self.NODE_TRIANGLE_COORDS def node_triangle_coordinates( node_index_in_elt: int, ): return vec2i(NODE_TRIANGLE_COORDS[node_index_in_elt, 0], NODE_TRIANGLE_COORDS[node_index_in_elt, 1]) from warp.fem import cache return cache.get_func(node_triangle_coordinates, self.name) def _get_node_type_and_type_index(self): ORDER = self.ORDER NODES_PER_ELEMENT = self.NODES_PER_ELEMENT def node_type_and_index( node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= NODES_PER_ELEMENT: return Trimesh2DPolynomialShapeFunctions.INVALID, Trimesh2DPolynomialShapeFunctions.INVALID if node_index_in_elt < 3: return Trimesh2DPolynomialShapeFunctions.VERTEX, node_index_in_elt if node_index_in_elt < 3 * ORDER: return Trimesh2DPolynomialShapeFunctions.EDGE, (node_index_in_elt - 3) return Trimesh2DPolynomialShapeFunctions.INTERIOR, (node_index_in_elt - 3 * ORDER) from warp.fem import cache return cache.get_func(node_type_and_index, self.name) def make_node_coords_in_element(self): ORDER = self.ORDER def node_coords_in_element( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): tri_coords = self._node_triangle_coordinates(node_index_in_elt) cx = float(tri_coords[0]) / float(ORDER) cy = float(tri_coords[1]) / float(ORDER) return Coords(1.0 - cx - cy, cx, cy) from warp.fem import cache return cache.get_func(node_coords_in_element, self.name) def make_node_quadrature_weight(self): ORDER = self.ORDER def node_uniform_quadrature_weight( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) base_weight = 1.0 / float(3 * ORDER * ORDER) if node_type == Trimesh2DPolynomialShapeFunctions.VERTEX: return base_weight if node_type == Trimesh2DPolynomialShapeFunctions.EDGE: return 2.0 * base_weight return 4.0 * base_weight def node_linear_quadrature_weight( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 1.0 / 3.0 from warp.fem import cache if ORDER == 1: return cache.get_func(node_linear_quadrature_weight, self.name) return cache.get_func(node_uniform_quadrature_weight, self.name) def make_trace_node_quadrature_weight(self): ORDER = self.ORDER NODES_PER_ELEMENT = self.NODES_PER_ELEMENT def trace_uniform_node_quadrature_weight( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): if node_index_in_elt >= NODES_PER_ELEMENT: node_index_in_cell = node_index_in_elt - NODES_PER_ELEMENT else: node_index_in_cell = node_index_in_elt # We're either on a side interior or at a vertex node_type, type_index = self.node_type_and_type_index(node_index_in_cell) base_weight = 1.0 / float(ORDER) return wp.select(node_type == Trimesh2DPolynomialShapeFunctions.VERTEX, base_weight, 0.5 * base_weight) def trace_linear_node_quadrature_weight( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 0.5 from warp.fem import cache if ORDER == 1: return cache.get_func(trace_linear_node_quadrature_weight, self.name) return cache.get_func(trace_uniform_node_quadrature_weight, self.name) def make_element_inner_weight(self): ORDER = self.ORDER def element_inner_weight_linear( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= 3: return 0.0 return coords[node_index_in_elt] def element_inner_weight_quadratic( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) if node_type == Trimesh2DPolynomialShapeFunctions.VERTEX: # Vertex return coords[type_index] * (2.0 * coords[type_index] - 1.0) elif node_type == Trimesh2DPolynomialShapeFunctions.EDGE: # Edge c1 = type_index c2 = (type_index + 1) % 3 return 4.0 * coords[c1] * coords[c2] return 0.0 def element_inner_weight_cubic( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) if node_type == Trimesh2DPolynomialShapeFunctions.VERTEX: # Vertex return 0.5 * coords[type_index] * (3.0 * coords[type_index] - 1.0) * (3.0 * coords[type_index] - 2.0) elif node_type == Trimesh2DPolynomialShapeFunctions.EDGE: # Edge edge = type_index // 2 k = type_index - 2 * edge c1 = (edge + k) % 3 c2 = (edge + 1 - k) % 3 return 4.5 * coords[c1] * coords[c2] * (3.0 * coords[c1] - 1.0) elif node_type == Trimesh2DPolynomialShapeFunctions.INTERIOR: # Interior return 27.0 * coords[0] * coords[1] * coords[2] return 0.0 from warp.fem import cache if ORDER == 1: return cache.get_func(element_inner_weight_linear, self.name) elif ORDER == 2: return cache.get_func(element_inner_weight_quadratic, self.name) elif ORDER == 3: return cache.get_func(element_inner_weight_cubic, self.name) return None def make_element_inner_weight_gradient(self): ORDER = self.ORDER def element_inner_weight_gradient_linear( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= 3: return wp.vec2(0.0) dw_dc = wp.vec3(0.0) dw_dc[node_index_in_elt] = 1.0 dw_du = wp.vec2(dw_dc[1] - dw_dc[0], dw_dc[2] - dw_dc[0]) return args.reference_transforms[element_index] * dw_du def element_inner_weight_gradient_quadratic( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) dw_dc = wp.vec3(0.0) if node_type == Trimesh2DPolynomialShapeFunctions.VERTEX: # Vertex dw_dc[type_index] = 4.0 * coords[type_index] - 1.0 elif node_type == Trimesh2DPolynomialShapeFunctions.EDGE: # Edge c1 = type_index c2 = (type_index + 1) % 3 dw_dc[c1] = 4.0 * coords[c2] dw_dc[c2] = 4.0 * coords[c1] dw_du = wp.vec2(dw_dc[1] - dw_dc[0], dw_dc[2] - dw_dc[0]) return args.reference_transforms[element_index] * dw_du def element_inner_weight_gradient_cubic( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) dw_dc = wp.vec3(0.0) if node_type == Trimesh2DPolynomialShapeFunctions.VERTEX: # Vertex dw_dc[type_index] = ( 0.5 * 27.0 * coords[type_index] * coords[type_index] - 9.0 * coords[type_index] + 1.0 ) elif node_type == Trimesh2DPolynomialShapeFunctions.EDGE: # Edge edge = type_index // 2 k = type_index - 2 * edge c1 = (edge + k) % 3 c2 = (edge + 1 - k) % 3 dw_dc[c1] = 4.5 * coords[c2] * (6.0 * coords[c1] - 1.0) dw_dc[c2] = 4.5 * coords[c1] * (3.0 * coords[c1] - 1.0) elif node_type == Trimesh2DPolynomialShapeFunctions.INTERIOR: # Interior dw_dc = wp.vec3( 27.0 * coords[1] * coords[2], 27.0 * coords[2] * coords[0], 27.0 * coords[0] * coords[1] ) dw_du = wp.vec2(dw_dc[1] - dw_dc[0], dw_dc[2] - dw_dc[0]) return args.reference_transforms[element_index] * dw_du from warp.fem import cache if ORDER == 1: return cache.get_func(element_inner_weight_gradient_linear, self.name) elif ORDER == 2: return cache.get_func(element_inner_weight_gradient_quadratic, self.name) elif ORDER == 3: return cache.get_func(element_inner_weight_gradient_cubic, self.name) return None @staticmethod def node_positions(space): if space.ORDER == 1: return np.transpose(space._mesh.positions.numpy()) NODES_PER_ELEMENT = space.NODES_PER_ELEMENT def fill_node_positions_fn( space_arg: space.SpaceArg, node_positions: wp.array(dtype=wp.vec2), ): element_index = wp.tid() tri_idx = space_arg.geo_arg.tri_vertex_indices[element_index] p0 = space_arg.geo_arg.positions[tri_idx[0]] p1 = space_arg.geo_arg.positions[tri_idx[1]] p2 = space_arg.geo_arg.positions[tri_idx[2]] for n in range(NODES_PER_ELEMENT): node_index = space.element_node_index(space_arg, element_index, n) coords = space.node_coords_in_element(space_arg, element_index, n) pos = coords[0] * p0 + coords[1] * p1 + coords[2] * p2 node_positions[node_index] = pos from warp.fem import cache fill_node_positions = cache.get_kernel( fill_node_positions_fn, suffix=space.name, ) device = space._mesh.tri_vertex_indices.device node_positions = wp.empty( shape=space.node_count(), dtype=wp.vec2, device=device, ) wp.launch( dim=space._mesh.cell_count(), kernel=fill_node_positions, inputs=[ space.space_arg_value(device), node_positions, ], device=device, ) return np.transpose(node_positions.numpy()) @staticmethod def node_triangulation(space): if space.ORDER == 1: return space._mesh.tri_vertex_indices.numpy() NODES_PER_ELEMENT = space.NODES_PER_ELEMENT def fill_element_node_indices_fn( space_arg: space.SpaceArg, element_node_indices: wp.array2d(dtype=int), ): element_index = wp.tid() for n in range(NODES_PER_ELEMENT): element_node_indices[element_index, n] = space.element_node_index(space_arg, element_index, n) from warp.fem import cache fill_element_node_indices = cache.get_kernel( fill_element_node_indices_fn, suffix=space.name, ) device = space._mesh.tri_vertex_indices.device element_node_indices = wp.empty( shape=(space._mesh.cell_count(), NODES_PER_ELEMENT), dtype=int, device=device, ) wp.launch( dim=element_node_indices.shape[0], kernel=fill_element_node_indices, inputs=[ space.space_arg_value(device), element_node_indices, ], device=device, ) element_node_indices = element_node_indices.numpy() if space.ORDER == 2: element_triangles = [[0, 3, 5], [3, 1, 4], [2, 5, 4], [3, 4, 5]] elif space.ORDER == 3: element_triangles = [ [0, 3, 8], [3, 4, 9], [4, 1, 5], [8, 3, 9], [4, 5, 9], [8, 9, 7], [9, 5, 6], [6, 7, 9], [7, 6, 2], ] tri_indices = element_node_indices[:, element_triangles].reshape(-1, 3) return tri_indices class Trimesh2DPolynomialSpace(Trimesh2DFunctionSpace): def __init__(self, grid: Trimesh2D, degree: int, dtype: type = float, dof_mapper: DofMapper = None): super().__init__(grid, dtype, dof_mapper) self._shape = Trimesh2DPolynomialShapeFunctions(degree) self.ORDER = self._shape.ORDER self.NODES_PER_ELEMENT = self._shape.NODES_PER_ELEMENT self.element_node_index = self._make_element_node_index() self.node_coords_in_element = self._shape.make_node_coords_in_element() self.node_quadrature_weight = self._shape.make_node_quadrature_weight() self.element_inner_weight = self._shape.make_element_inner_weight() self.element_inner_weight_gradient = self._shape.make_element_inner_weight_gradient() self.element_outer_weight = self.element_inner_weight self.element_outer_weight_gradient = self.element_inner_weight_gradient def _make_element_node_index(self): INTERIOR_NODES_PER_SIDE = wp.constant(max(0, self.ORDER - 1)) INTERIOR_NODES_PER_CELL = wp.constant(max(0, self.ORDER - 2) * max(0, self.ORDER - 1) // 2) def element_node_index( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): node_type, type_index = self._shape.node_type_and_type_index(node_index_in_elt) if node_type == Trimesh2DPolynomialShapeFunctions.VERTEX: return args.geo_arg.tri_vertex_indices[element_index][type_index] global_offset = args.vertex_count if node_type == Trimesh2DPolynomialShapeFunctions.EDGE: edge = type_index // INTERIOR_NODES_PER_SIDE edge_node = type_index - INTERIOR_NODES_PER_SIDE * edge global_edge_index = args.tri_edge_indices[element_index][edge] if ( args.geo_arg.edge_vertex_indices[global_edge_index][0] != args.geo_arg.tri_vertex_indices[element_index][edge] ): edge_node = INTERIOR_NODES_PER_SIDE - 1 - edge_node return global_offset + INTERIOR_NODES_PER_SIDE * global_edge_index + edge_node global_offset += INTERIOR_NODES_PER_SIDE * args.edge_count return global_offset + INTERIOR_NODES_PER_CELL * element_index + type_index from warp.fem import cache return cache.get_func(element_node_index, self.name) def node_count(self) -> int: INTERIOR_NODES_PER_SIDE = wp.constant(max(0, self.ORDER - 1)) INTERIOR_NODES_PER_CELL = wp.constant(max(0, self.ORDER - 2) * max(0, self.ORDER - 1) // 2) return ( self._mesh.vertex_count() + self._mesh.side_count() * INTERIOR_NODES_PER_SIDE + self._mesh.cell_count() * INTERIOR_NODES_PER_CELL ) def node_positions(self): return Trimesh2DPolynomialShapeFunctions.node_positions(self) def node_triangulation(self): return Trimesh2DPolynomialShapeFunctions.node_triangulation(self) class Trace(Trimesh2DFunctionSpace.Trace): NODES_PER_ELEMENT = wp.constant(2) ORDER = wp.constant(0) def __init__(self, space: "Trimesh2DPolynomialSpace"): super().__init__(space) self.element_node_index = self._make_element_node_index(space) self.node_coords_in_element = self._make_node_coords_in_element(space) self.node_quadrature_weight = space._shape.make_trace_node_quadrature_weight() self.element_inner_weight = self._make_element_inner_weight(space) self.element_inner_weight_gradient = self._make_element_inner_weight_gradient(space) self.element_outer_weight = self._make_element_outer_weight(space) self.element_outer_weight_gradient = self._make_element_outer_weight_gradient(space) def trace(self): return Trimesh2DPolynomialSpace.Trace(self) class Trimesh2DDGPolynomialSpace(Trimesh2DFunctionSpace): def __init__( self, mesh: Trimesh2D, degree: int, dtype: type = float, dof_mapper: DofMapper = None, ): super().__init__(mesh, dtype, dof_mapper) self._shape = Trimesh2DPolynomialShapeFunctions(degree) self.ORDER = self._shape.ORDER self.NODES_PER_ELEMENT = self._shape.NODES_PER_ELEMENT self.element_node_index = self._make_element_node_index() self.node_coords_in_element = self._shape.make_node_coords_in_element() self.node_quadrature_weight = self._shape.make_node_quadrature_weight() self.element_inner_weight = self._shape.make_element_inner_weight() self.element_inner_weight_gradient = self._shape.make_element_inner_weight_gradient() self.element_outer_weight = self.element_inner_weight self.element_outer_weight_gradient = self.element_inner_weight_gradient def node_count(self) -> int: return self._mesh.cell_count() * self.NODES_PER_ELEMENT def node_positions(self): return Trimesh2DPolynomialShapeFunctions.node_positions(self) def node_triangulation(self): return Trimesh2DPolynomialShapeFunctions.node_triangulation(self) def _make_element_node_index(self): NODES_PER_ELEMENT = self.NODES_PER_ELEMENT def element_node_index( args: Trimesh2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return element_index * NODES_PER_ELEMENT + node_index_in_elt from warp.fem import cache return cache.get_func(element_node_index, f"{self.name}_{self.ORDER}") class Trace(Trimesh2DPolynomialSpace.Trace): def __init__(self, space: "Trimesh2DDGPolynomialSpace"): super().__init__(space) def trace(self): return Trimesh2DDGPolynomialSpace.Trace(self)
warp-main
warp/fem/space/trimesh_2d_function_space.py
from typing import Optional import warp.fem.domain import warp.fem.geometry import warp.fem.polynomial from .function_space import FunctionSpace from .nodal_function_space import NodalFunctionSpace from .grid_2d_function_space import ( GridPiecewiseConstantSpace, GridBipolynomialSpace, GridDGBipolynomialSpace, ) from .grid_3d_function_space import ( GridTripolynomialSpace, GridDGTripolynomialSpace, Grid3DPiecewiseConstantSpace, ) from .trimesh_2d_function_space import ( Trimesh2DPiecewiseConstantSpace, Trimesh2DPolynomialSpace, Trimesh2DDGPolynomialSpace, ) from .tetmesh_function_space import TetmeshPiecewiseConstantSpace, TetmeshPolynomialSpace, TetmeshDGPolynomialSpace from .partition import SpacePartition, make_space_partition from .restriction import SpaceRestriction from .dof_mapper import DofMapper, IdentityMapper, SymmetricTensorMapper def make_space_restriction( space: FunctionSpace, space_partition: Optional[SpacePartition] = None, domain: Optional[warp.fem.domain.GeometryDomain] = None, device=None, ) -> SpaceRestriction: """ Restricts a function space to a Domain, i.e. a subset of its elements. Args: space: the space to be restricted space_partition: if provided, the subset of nodes from ``space`` to consider domain: the domain to restrict the space to, defaults to all cells of the space geometry or partition. """ if domain is None: if space_partition is None: domain = warp.fem.domain.Cells(geometry=space.geometry) else: domain = warp.fem.domain.Cells(geometry=space_partition.geo_partition) return SpaceRestriction(space=space, space_partition=space_partition, domain=domain, device=device) def make_polynomial_space( geo: warp.fem.geometry.Geometry, dtype: type = float, dof_mapper: Optional[DofMapper] = None, degree: int = 1, discontinuous: bool = False, family: Optional[warp.fem.polynomial.Polynomial] = None, ) -> FunctionSpace: """ Equip elements of a geometry with a Lagrange polynomial function space Args: geo: the Geometry on which to build the space dtype: value type the function space. If ``dof_mapper`` is provided, the value type from the DofMapper will be used instead. dof_mapper: mapping from node degrees of freedom to function values, defaults to Identity. Useful for reduced coordinates, e.g. :py:class:`SymmetricTensorMapper` maps 2x2 (resp 3x3) symmetric tensors to 3 (resp 6) degrees of freedom. degree: polynomial degree of the per-element shape functions discontinuous: if True, use Discontinuous Galerkin shape functions. Discontinuous is implied if degree is 0, i.e, piecewise-constant shape functions. family: Polynomial family used to generate the shape function basis. If not provided, a reasonable basis is chosen. Returns: the constructed function space """ if isinstance(geo, warp.fem.geometry.Grid2D): if degree == 0: return GridPiecewiseConstantSpace(geo, dtype=dtype, dof_mapper=dof_mapper) if discontinuous: return GridDGBipolynomialSpace(geo, dtype=dtype, dof_mapper=dof_mapper, degree=degree, family=family) else: return GridBipolynomialSpace(geo, dtype=dtype, dof_mapper=dof_mapper, degree=degree, family=family) if isinstance(geo, warp.fem.geometry.Grid3D): if degree == 0: return Grid3DPiecewiseConstantSpace(geo, dtype=dtype, dof_mapper=dof_mapper) if discontinuous: return GridDGTripolynomialSpace(geo, dtype=dtype, dof_mapper=dof_mapper, degree=degree, family=family) else: return GridTripolynomialSpace(geo, dtype=dtype, dof_mapper=dof_mapper, degree=degree, family=family) if isinstance(geo, warp.fem.geometry.Trimesh2D): if degree == 0: return Trimesh2DPiecewiseConstantSpace(geo, dtype=dtype, dof_mapper=dof_mapper) if discontinuous: return Trimesh2DDGPolynomialSpace(geo, dtype=dtype, dof_mapper=dof_mapper, degree=degree) else: return Trimesh2DPolynomialSpace(geo, dtype=dtype, dof_mapper=dof_mapper, degree=degree) if isinstance(geo, warp.fem.geometry.Tetmesh): if degree == 0: return TetmeshPiecewiseConstantSpace(geo, dtype=dtype, dof_mapper=dof_mapper) if discontinuous: return TetmeshDGPolynomialSpace(geo, dtype=dtype, dof_mapper=dof_mapper, degree=degree) else: return TetmeshPolynomialSpace(geo, dtype=dtype, dof_mapper=dof_mapper, degree=degree) raise NotImplementedError
warp-main
warp/fem/space/__init__.py
from typing import Any from enum import Enum import math import warp as wp import warp.types from warp.fem.types import vec6 _SQRT_2 = wp.constant(math.sqrt(2.0)) _SQRT_3 = wp.constant(math.sqrt(3.0)) _SQRT_1_2 = wp.constant(math.sqrt(1.0 / 2.0)) _SQRT_1_3 = wp.constant(math.sqrt(1.0 / 3.0)) class DofMapper: """Base class from mapping node degrees of freedom to function values""" value_dtype: type dof_dtype: type DOF_SIZE: int @wp.func def dof_to_value(dof: Any): raise NotImplementedError @wp.func def value_to_dof(val: Any): raise NotImplementedError def __str__(self): return f"{self.value_dtype.__name__}_{self.DOF_SIZE}" class IdentityMapper(DofMapper): """Identity mapper""" def __init__(self, dtype: type): if dtype == float: dtype = wp.float32 self.value_dtype = dtype self.dof_dtype = dtype size = warp.types.type_length(dtype) self.DOF_SIZE = wp.constant(size) @wp.func def dof_to_value(dof: Any): return dof @wp.func def value_to_dof(val: Any): return val class SymmetricTensorMapper(DofMapper): """Orthonormal isomorphism from R^{n (n+1)} to nxn symmetric tensors, using usual L2 norm for vectors and half Frobenius norm, (tau : tau)/2 for tensors. """ class Mapping(Enum): VOIGT = 0 """Voigt ordering of vector coefficients: first the three diagonal terms, then off-diagonal coefficients""" DB16 = 1 """Ordering that also separates normal from tangential coefficients: first trace, then other diagonal terms, then off-diagonal coefficients. See [Daviet and Bertails-Descoubes 2016]""" def __init__(self, dtype: type, mapping: Mapping = Mapping.VOIGT): self.value_dtype = dtype self.mapping = mapping if dtype == wp.mat22: self.dof_dtype = wp.vec3 self.DOF_SIZE = wp.constant(3) if mapping == SymmetricTensorMapper.Mapping.VOIGT: self.dof_to_value = SymmetricTensorMapper.dof_to_value_2d_voigt self.value_to_dof = SymmetricTensorMapper.value_to_dof_2d_voigt else: self.dof_to_value = SymmetricTensorMapper.dof_to_value_2d self.value_to_dof = SymmetricTensorMapper.value_to_dof_2d elif dtype == wp.mat33: self.dof_dtype = vec6 self.DOF_SIZE = wp.constant(6) if mapping == SymmetricTensorMapper.Mapping.VOIGT: self.dof_to_value = SymmetricTensorMapper.dof_to_value_3d_voigt self.value_to_dof = SymmetricTensorMapper.value_to_dof_3d_voigt else: self.dof_to_value = SymmetricTensorMapper.dof_to_value_3d self.value_to_dof = SymmetricTensorMapper.value_to_dof_3d else: raise ValueError("Unsupported value dtype: ", dtype) def __str__(self): return f"{self.mapping}_{self.DOF_SIZE}" @wp.func def dof_to_value_2d(dof: wp.vec3): a = dof[0] b = dof[1] c = dof[2] return wp.mat22(a + b, c, c, a - b) @wp.func def value_to_dof_2d(val: wp.mat22): a = 0.5 * (val[0, 0] + val[1, 1]) b = 0.5 * (val[0, 0] - val[1, 1]) c = 0.5 * (val[0, 1] + val[1, 0]) return wp.vec3(a, b, c) @wp.func def dof_to_value_2d_voigt(dof: wp.vec3): a = _SQRT_2 * dof[0] b = _SQRT_2 * dof[1] c = dof[2] return wp.mat22(a, c, c, b) @wp.func def value_to_dof_2d_voigt(val: wp.mat22): a = _SQRT_1_2 * val[0, 0] b = _SQRT_1_2 * val[1, 1] c = 0.5 * (val[0, 1] + val[1, 0]) return wp.vec3(a, b, c) @wp.func def dof_to_value_3d(dof: vec6): a = dof[0] * _SQRT_2 * _SQRT_1_3 b = dof[1] c = dof[2] * _SQRT_1_3 d = dof[3] e = dof[4] f = dof[5] return wp.mat33( a + b - c, f, e, f, a - b - c, d, e, d, a + 2.0 * c, ) @wp.func def value_to_dof_3d(val: wp.mat33): a = (val[0, 0] + val[1, 1] + val[2, 2]) * _SQRT_1_3 * _SQRT_1_2 b = 0.5 * (val[0, 0] - val[1, 1]) c = 0.5 * (val[2, 2] - (val[0, 0] + val[1, 1] + val[2, 2]) / 3.0) * _SQRT_3 d = 0.5 * (val[2, 1] + val[1, 2]) e = 0.5 * (val[0, 2] + val[2, 0]) f = 0.5 * (val[1, 0] + val[0, 1]) return vec6(a, b, c, d, e, f) @wp.func def dof_to_value_3d_voigt(dof: vec6): a = _SQRT_2 * dof[0] b = _SQRT_2 * dof[1] c = _SQRT_2 * dof[2] d = dof[3] e = dof[4] f = dof[5] return wp.mat33( a, f, e, f, b, d, e, d, c, ) @wp.func def value_to_dof_3d_voigt(val: wp.mat33): a = _SQRT_1_2 * val[0, 0] b = _SQRT_1_2 * val[1, 1] c = _SQRT_1_2 * val[2, 2] d = 0.5 * (val[2, 1] + val[1, 2]) e = 0.5 * (val[0, 2] + val[2, 0]) f = 0.5 * (val[1, 0] + val[0, 1]) return vec6(a, b, c, d, e, f)
warp-main
warp/fem/space/dof_mapper.py
import warp as wp from warp.fem.domain import GeometryDomain from warp.fem.types import NodeElementIndex from warp.fem.utils import compress_node_indices from .function_space import FunctionSpace from .partition import SpacePartition wp.set_module_options({"enable_backward": False}) class SpaceRestriction: """Restriction of a space to a given GeometryDomain""" def __init__( self, space: FunctionSpace, domain: GeometryDomain, space_partition: SpacePartition, device=None, ): if domain.dimension() == space.DIMENSION - 1: space = space.trace() if domain.dimension() != space.DIMENSION: raise ValueError("Incompatible space and domain dimensions") self.space = space self.space_partition = space_partition self.domain = domain self._compute_node_element_indices(device=device) def _compute_node_element_indices(self, device): from warp.fem import cache NODES_PER_ELEMENT = self.space.NODES_PER_ELEMENT def fill_element_node_indices_fn( domain_index_arg: self.domain.ElementIndexArg, space_arg: self.space.SpaceArg, partition_arg: self.space_partition.PartitionArg, element_node_indices: wp.array2d(dtype=int), ): domain_element_index = wp.tid() element_index = self.domain.element_index(domain_index_arg, domain_element_index) for n in range(NODES_PER_ELEMENT): space_nidx = self.space.element_node_index(space_arg, element_index, n) partition_nidx = self.space_partition.partition_node_index(partition_arg, space_nidx) element_node_indices[domain_element_index, n] = partition_nidx fill_element_node_indices = cache.get_kernel( fill_element_node_indices_fn, suffix=f"{self.domain.name}_{self.space.name}_{self.space_partition.name}", ) element_node_indices = wp.empty( shape=(self.domain.element_count(), NODES_PER_ELEMENT), dtype=int, device=device, ) wp.launch( dim=element_node_indices.shape[0], kernel=fill_element_node_indices, inputs=[ self.domain.element_index_arg_value(device), self.space.space_arg_value(device), self.space_partition.partition_arg_value(device), element_node_indices, ], device=device, ) # Build compressed map from node to element indices flattened_node_indices = element_node_indices.reshape(element_node_indices.size) ( self._dof_partition_element_offsets, node_array_indices, self._node_count, self._dof_partition_indices, ) = compress_node_indices(self.space_partition.node_count(), flattened_node_indices) # Extract element index and index in element self._dof_element_indices = wp.empty_like(flattened_node_indices) self._dof_indices_in_element = wp.empty_like(flattened_node_indices) wp.launch( kernel=SpaceRestriction._split_vertex_element_index, dim=flattened_node_indices.shape, inputs=[NODES_PER_ELEMENT, node_array_indices, self._dof_element_indices, self._dof_indices_in_element], device=flattened_node_indices.device, ) def node_count(self): return self._node_count def partition_element_offsets(self): return self._dof_partition_element_offsets def node_partition_indices(self): return self._dof_partition_indices def total_node_element_count(self): return self._dof_element_indices.size @wp.struct class NodeArg: dof_element_offsets: wp.array(dtype=int) dof_element_indices: wp.array(dtype=int) dof_partition_indices: wp.array(dtype=int) dof_indices_in_element: wp.array(dtype=int) def node_arg(self, device): arg = SpaceRestriction.NodeArg() arg.dof_element_offsets = self._dof_partition_element_offsets.to(device) arg.dof_element_indices = self._dof_element_indices.to(device) arg.dof_partition_indices = self._dof_partition_indices.to(device) arg.dof_indices_in_element = self._dof_indices_in_element.to(device) return arg @wp.func def node_partition_index(args: NodeArg, node_index: int): return args.dof_partition_indices[node_index] @wp.func def node_element_count(args: NodeArg, node_index: int): partition_node_index = SpaceRestriction.node_partition_index(args, node_index) return args.dof_element_offsets[partition_node_index + 1] - args.dof_element_offsets[partition_node_index] @wp.func def node_element_index(args: NodeArg, node_index: int, element_index: int): partition_node_index = SpaceRestriction.node_partition_index(args, node_index) offset = args.dof_element_offsets[partition_node_index] + element_index domain_element_index = args.dof_element_indices[offset] index_in_element = args.dof_indices_in_element[offset] return NodeElementIndex(domain_element_index, index_in_element) @wp.kernel def _split_vertex_element_index( vertex_per_element: int, sorted_indices: wp.array(dtype=int), vertex_element_index: wp.array(dtype=int), vertex_index_in_element: wp.array(dtype=int), ): idx = sorted_indices[wp.tid()] element_index = idx // vertex_per_element vertex_element_index[wp.tid()] = element_index vertex_index_in_element[wp.tid()] = idx - vertex_per_element * element_index
warp-main
warp/fem/space/restriction.py
import warp as wp import numpy as np from warp.fem.types import ElementIndex, Coords, OUTSIDE, vec2i, vec3i, vec4i from warp.fem.geometry import Tetmesh from .dof_mapper import DofMapper from .nodal_function_space import NodalFunctionSpace, NodalFunctionSpaceTrace class TetmeshFunctionSpace(NodalFunctionSpace): DIMENSION = wp.constant(3) @wp.struct class SpaceArg: geo_arg: Tetmesh.SideArg reference_transforms: wp.array(dtype=wp.mat33f) tet_edge_indices: wp.array2d(dtype=int) tet_face_indices: wp.array2d(dtype=int) vertex_count: int edge_count: int face_count: int def __init__(self, mesh: Tetmesh, dtype: type = float, dof_mapper: DofMapper = None): super().__init__(dtype, dof_mapper) self._mesh = mesh self._reference_transforms: wp.array = None self._tet_face_indices: wp.array = None self._compute_reference_transforms() self._compute_tet_face_indices() self._compute_tet_edge_indices() @property def geometry(self) -> Tetmesh: return self._mesh def edge_count(self): return self._edge_vertex_indices.shape[0] def space_arg_value(self, device): arg = self.SpaceArg() arg.geo_arg = self.geometry.side_arg_value(device) arg.reference_transforms = self._reference_transforms.to(device) arg.tet_face_indices = self._tet_face_indices.to(device) arg.tet_edge_indices = self._tet_edge_indices.to(device) arg.vertex_count = self._mesh.vertex_count() arg.face_count = self._mesh.side_count() arg.edge_count = self.edge_count() return arg class Trace(NodalFunctionSpaceTrace): def __init__(self, space: NodalFunctionSpace): super().__init__(space) self.ORDER = space.ORDER @wp.func def _inner_cell_index(args: SpaceArg, side_index: ElementIndex): return Tetmesh.side_inner_cell_index(args.geo_arg, side_index) @wp.func def _outer_cell_index(args: SpaceArg, side_index: ElementIndex): return Tetmesh.side_outer_cell_index(args.geo_arg, side_index) @wp.func def _inner_cell_coords(args: SpaceArg, side_index: ElementIndex, side_coords: Coords): tet_index = Tetmesh.side_inner_cell_index(args.geo_arg, side_index) return Tetmesh.face_to_tet_coords(args.geo_arg, side_index, tet_index, side_coords) @wp.func def _outer_cell_coords(args: SpaceArg, side_index: ElementIndex, side_coords: Coords): tet_index = Tetmesh.side_outer_cell_index(args.geo_arg, side_index) return Tetmesh.face_to_tet_coords(args.geo_arg, side_index, tet_index, side_coords) @wp.func def _cell_to_side_coords( args: SpaceArg, side_index: ElementIndex, element_index: ElementIndex, element_coords: Coords, ): return Tetmesh.tet_to_face_coords(args.geo_arg, side_index, element_index, element_coords) def _compute_reference_transforms(self): self._reference_transforms = wp.empty( dtype=wp.mat33f, device=self._mesh.positions.device, shape=(self._mesh.cell_count()) ) wp.launch( kernel=TetmeshFunctionSpace._compute_reference_transforms_kernel, dim=self._reference_transforms.shape, device=self._reference_transforms.device, inputs=[self._mesh.tet_vertex_indices, self._mesh.positions, self._reference_transforms], ) def _compute_tet_face_indices(self): self._tet_face_indices = wp.empty( dtype=int, device=self._mesh.tet_vertex_indices.device, shape=(self._mesh.cell_count(), 4) ) wp.launch( kernel=TetmeshFunctionSpace._compute_tet_face_indices_kernel, dim=self._mesh._face_tet_indices.shape, device=self._mesh.tet_vertex_indices.device, inputs=[ self._mesh._face_tet_indices, self._mesh._face_vertex_indices, self._mesh.tet_vertex_indices, self._tet_face_indices, ], ) def _compute_tet_edge_indices(self): from warp.fem.utils import _get_pinned_temp_count_buffer from warp.utils import array_scan device = self._mesh.tet_vertex_indices.device vertex_start_edge_count = wp.zeros(dtype=int, device=device, shape=self._mesh.vertex_count()) vertex_start_edge_offsets = wp.empty_like(vertex_start_edge_count) vertex_edge_ends = wp.empty(dtype=int, device=device, shape=(6 * self._mesh.cell_count())) # Count face edges starting at each vertex wp.launch( kernel=TetmeshFunctionSpace._count_starting_edges_kernel, device=device, dim=self._mesh.cell_count(), inputs=[self._mesh.tet_vertex_indices, vertex_start_edge_count], ) array_scan(in_array=vertex_start_edge_count, out_array=vertex_start_edge_offsets, inclusive=False) # Count number of unique edges (deduplicate across faces) vertex_unique_edge_count = vertex_start_edge_count wp.launch( kernel=TetmeshFunctionSpace._count_unique_starting_edges_kernel, device=device, dim=self._mesh.vertex_count(), inputs=[ self._mesh._vertex_tet_offsets, self._mesh._vertex_tet_indices, self._mesh.tet_vertex_indices, vertex_start_edge_offsets, vertex_unique_edge_count, vertex_edge_ends, ], ) vertex_unique_edge_offsets = wp.empty_like(vertex_start_edge_offsets) array_scan(in_array=vertex_start_edge_count, out_array=vertex_unique_edge_offsets, inclusive=False) # Get back edge count to host if device.is_cuda: edge_count = _get_pinned_temp_count_buffer(device) # Last vertex will not own any edge, so its count will be zero; just fetching last prefix count is ok wp.copy(dest=edge_count, src=vertex_unique_edge_offsets, src_offset=self._mesh.vertex_count() - 1, count=1) wp.synchronize_stream(wp.get_stream()) edge_count = int(edge_count.numpy()[0]) else: edge_count = int(vertex_unique_edge_offsets.numpy()[self._mesh.vertex_count() - 1]) self._edge_vertex_indices = wp.empty(shape=(edge_count,), dtype=vec2i, device=device) self._tet_edge_indices = wp.empty( dtype=int, device=self._mesh.tet_vertex_indices.device, shape=(self._mesh.cell_count(), 6) ) # Compress edge data wp.launch( kernel=TetmeshFunctionSpace._compress_edges_kernel, device=device, dim=self._mesh.vertex_count(), inputs=[ self._mesh._vertex_tet_offsets, self._mesh._vertex_tet_indices, self._mesh.tet_vertex_indices, vertex_start_edge_offsets, vertex_unique_edge_offsets, vertex_unique_edge_count, vertex_edge_ends, self._edge_vertex_indices, self._tet_edge_indices, ], ) @wp.kernel def _compute_reference_transforms_kernel( tet_vertex_indices: wp.array2d(dtype=int), positions: wp.array(dtype=wp.vec3f), transforms: wp.array(dtype=wp.mat33f), ): t = wp.tid() p0 = positions[tet_vertex_indices[t, 0]] p1 = positions[tet_vertex_indices[t, 1]] p2 = positions[tet_vertex_indices[t, 2]] p3 = positions[tet_vertex_indices[t, 3]] e1 = p1 - p0 e2 = p2 - p0 e3 = p3 - p0 mat = wp.mat33(e1, e2, e3) transforms[t] = wp.transpose(wp.inverse(mat)) @wp.func def _find_face_index_in_tet( face_vtx: vec3i, tet_vtx: vec4i, ): for k in range(3): tvk = vec3i(tet_vtx[k], tet_vtx[(k + 1) % 4], tet_vtx[(k + 2) % 4]) # Use fact that face always start with min vertex min_t = wp.min(tvk) max_t = wp.max(tvk) mid_t = tvk[0] + tvk[1] + tvk[2] - min_t - max_t if min_t == face_vtx[0] and ( (face_vtx[2] == max_t and face_vtx[1] == mid_t) or (face_vtx[1] == max_t and face_vtx[2] == mid_t) ): return k return 3 @wp.kernel def _compute_tet_face_indices_kernel( face_tet_indices: wp.array(dtype=vec2i), face_vertex_indices: wp.array(dtype=vec3i), tet_vertex_indices: wp.array2d(dtype=int), tet_face_indices: wp.array2d(dtype=int), ): e = wp.tid() face_vtx = face_vertex_indices[e] face_tets = face_tet_indices[e] t0 = face_tets[0] t0_vtx = vec4i( tet_vertex_indices[t0, 0], tet_vertex_indices[t0, 1], tet_vertex_indices[t0, 2], tet_vertex_indices[t0, 3] ) t0_face = TetmeshFunctionSpace._find_face_index_in_tet(face_vtx, t0_vtx) tet_face_indices[t0, t0_face] = e t1 = face_tets[1] if t1 != t0: t1_vtx = vec4i( tet_vertex_indices[t1, 0], tet_vertex_indices[t1, 1], tet_vertex_indices[t1, 2], tet_vertex_indices[t1, 3], ) t1_face = TetmeshFunctionSpace._find_face_index_in_tet(face_vtx, t1_vtx) tet_face_indices[t1, t1_face] = e @wp.kernel def _count_starting_edges_kernel( tri_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_count: wp.array(dtype=int) ): t = wp.tid() for k in range(3): v0 = tri_vertex_indices[t, k] v1 = tri_vertex_indices[t, (k + 1) % 3] if v0 < v1: wp.atomic_add(vertex_start_edge_count, v0, 1) else: wp.atomic_add(vertex_start_edge_count, v1, 1) for k in range(3): v0 = tri_vertex_indices[t, k] v1 = tri_vertex_indices[t, 3] if v0 < v1: wp.atomic_add(vertex_start_edge_count, v0, 1) else: wp.atomic_add(vertex_start_edge_count, v1, 1) @wp.func def _find( needle: int, values: wp.array(dtype=int), beg: int, end: int, ): for i in range(beg, end): if values[i] == needle: return i return -1 @wp.kernel def _count_unique_starting_edges_kernel( vertex_tet_offsets: wp.array(dtype=int), vertex_tet_indices: wp.array(dtype=int), tet_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_offsets: wp.array(dtype=int), vertex_start_edge_count: wp.array(dtype=int), edge_ends: wp.array(dtype=int), ): v = wp.tid() edge_beg = vertex_start_edge_offsets[v] tet_beg = vertex_tet_offsets[v] tet_end = vertex_tet_offsets[v + 1] edge_cur = edge_beg for tet in range(tet_beg, tet_end): t = vertex_tet_indices[tet] for k in range(3): v0 = tet_vertex_indices[t, k] v1 = tet_vertex_indices[t, (k + 1) % 3] if v == wp.min(v0, v1): other_v = wp.max(v0, v1) if TetmeshFunctionSpace._find(other_v, edge_ends, edge_beg, edge_cur) == -1: edge_ends[edge_cur] = other_v edge_cur += 1 for k in range(3): v0 = tet_vertex_indices[t, k] v1 = tet_vertex_indices[t, 3] if v == wp.min(v0, v1): other_v = wp.max(v0, v1) if TetmeshFunctionSpace._find(other_v, edge_ends, edge_beg, edge_cur) == -1: edge_ends[edge_cur] = other_v edge_cur += 1 vertex_start_edge_count[v] = edge_cur - edge_beg @wp.kernel def _compress_edges_kernel( vertex_tet_offsets: wp.array(dtype=int), vertex_tet_indices: wp.array(dtype=int), tet_vertex_indices: wp.array2d(dtype=int), vertex_start_edge_offsets: wp.array(dtype=int), vertex_unique_edge_offsets: wp.array(dtype=int), vertex_unique_edge_count: wp.array(dtype=int), uncompressed_edge_ends: wp.array(dtype=int), edge_vertex_indices: wp.array(dtype=vec2i), tet_edge_indices: wp.array2d(dtype=int), ): v = wp.tid() uncompressed_beg = vertex_start_edge_offsets[v] unique_beg = vertex_unique_edge_offsets[v] unique_count = vertex_unique_edge_count[v] for e in range(unique_count): src_index = uncompressed_beg + e edge_index = unique_beg + e edge_vertex_indices[edge_index] = vec2i(v, uncompressed_edge_ends[src_index]) tet_beg = vertex_tet_offsets[v] tet_end = vertex_tet_offsets[v + 1] for tet in range(tet_beg, tet_end): t = vertex_tet_indices[tet] for k in range(3): v0 = tet_vertex_indices[t, k] v1 = tet_vertex_indices[t, (k + 1) % 3] if v == wp.min(v0, v1): other_v = wp.max(v0, v1) edge_id = ( TetmeshFunctionSpace._find( other_v, uncompressed_edge_ends, uncompressed_beg, uncompressed_beg + unique_count ) - uncompressed_beg + unique_beg ) tet_edge_indices[t][k] = edge_id for k in range(3): v0 = tet_vertex_indices[t, k] v1 = tet_vertex_indices[t, 3] if v == wp.min(v0, v1): other_v = wp.max(v0, v1) edge_id = ( TetmeshFunctionSpace._find( other_v, uncompressed_edge_ends, uncompressed_beg, uncompressed_beg + unique_count ) - uncompressed_beg + unique_beg ) tet_edge_indices[t][k + 3] = edge_id class TetmeshPiecewiseConstantSpace(TetmeshFunctionSpace): ORDER = wp.constant(0) NODES_PER_ELEMENT = wp.constant(1) def __init__(self, grid: Tetmesh, dtype: type = float, dof_mapper: DofMapper = None): super().__init__(grid, dtype, dof_mapper) self.element_outer_weight = self.element_inner_weight self.element_outer_weight_gradient = self.element_inner_weight_gradient def node_count(self) -> int: return self._mesh.cell_count() def node_positions(self): vtx_pos = self._mesh.positions.numpy() tet_vtx = self._mesh.tet_vertex_indices.numpy() tet_pos = vtx_pos[tet_vtx] centers = tet_pos.sum(axis=1) / 4.0 return centers[:, 0], centers[:, 1], centers[:, 2] @wp.func def element_node_index( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return element_index @wp.func def node_coords_in_element( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): if node_index_in_elt == 0: return Coords(1.0 / 4.0, 1.0 / 4.0, 1.0 / 4.0) return Coords(OUTSIDE) @wp.func def node_quadrature_weight( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 1.0 @wp.func def element_inner_weight( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt == 0: return 1.0 return 0.0 @wp.func def element_inner_weight_gradient( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): return wp.vec3(0.0) class Trace(TetmeshFunctionSpace.Trace): NODES_PER_ELEMENT = wp.constant(2) ORDER = wp.constant(0) def __init__(self, space: "TetmeshPiecewiseConstantSpace"): super().__init__(space) self.element_node_index = self._make_element_node_index(space) self.element_inner_weight = self._make_element_inner_weight(space) self.element_inner_weight_gradient = self._make_element_inner_weight_gradient(space) self.element_outer_weight = self._make_element_outer_weight(space) self.element_outer_weight_gradient = self._make_element_outer_weight_gradient(space) @wp.func def node_coords_in_element( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_element: int, ): if node_index_in_element == 0: return Coords(1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0) elif node_index_in_element == 1: return Coords(1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0) return Coords(OUTSIDE) @wp.func def node_quadrature_weight( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 1.0 def trace(self): return TetmeshPiecewiseConstantSpace.Trace(self) def _tet_node_index(tx: int, ty: int, tz: int, degree: int): from .trimesh_2d_function_space import _triangle_node_index VERTEX_NODE_COUNT = 4 EDGE_INTERIOR_NODE_COUNT = degree - 1 VERTEX_EDGE_NODE_COUNT = VERTEX_NODE_COUNT + 6 * EDGE_INTERIOR_NODE_COUNT FACE_INTERIOR_NODE_COUNT = (degree - 1) * (degree - 2) // 2 VERTEX_EDGE_FACE_NODE_COUNT = VERTEX_EDGE_NODE_COUNT + 4 * FACE_INTERIOR_NODE_COUNT # Index in similar order to e.g. VTK # First vertices, then edges (counterclokwise), then faces, then interior points (recursively) if tx == 0: if ty == 0: if tz == 0: return 0 elif tz == degree: return 3 else: # 0-3 edge edge_index = 3 return VERTEX_NODE_COUNT + EDGE_INTERIOR_NODE_COUNT * edge_index + (tz - 1) elif tz == 0: if ty == degree: return 2 else: # 2-0 edge edge_index = 2 return VERTEX_NODE_COUNT + EDGE_INTERIOR_NODE_COUNT * edge_index + (EDGE_INTERIOR_NODE_COUNT - ty) elif tz + ty == degree: # 2-3 edge edge_index = 5 return VERTEX_NODE_COUNT + EDGE_INTERIOR_NODE_COUNT * edge_index + (tz - 1) else: # 2-3-0 face face_index = 2 return ( VERTEX_EDGE_NODE_COUNT + FACE_INTERIOR_NODE_COUNT * face_index + _triangle_node_index(degree - 2 - ty, tz - 1, degree - 2) ) elif ty == 0: if tz == 0: if tx == degree: return 1 else: # 0-1 edge edge_index = 0 return VERTEX_NODE_COUNT + EDGE_INTERIOR_NODE_COUNT * edge_index + (tx - 1) elif tz + tx == degree: # 1-3 edge edge_index = 4 return VERTEX_NODE_COUNT + EDGE_INTERIOR_NODE_COUNT * edge_index + (tz - 1) else: # 3-0-1 face face_index = 3 return ( VERTEX_EDGE_NODE_COUNT + FACE_INTERIOR_NODE_COUNT * face_index + _triangle_node_index(tx - 1, tz - 1, degree - 2) ) elif tz == 0: if tx + ty == degree: # 1-2 edge edge_index = 1 return VERTEX_NODE_COUNT + EDGE_INTERIOR_NODE_COUNT * edge_index + (ty - 1) else: # 0-1-2 face face_index = 0 return ( VERTEX_EDGE_NODE_COUNT + FACE_INTERIOR_NODE_COUNT * face_index + _triangle_node_index(tx - 1, ty - 1, degree - 2) ) elif tx + ty + tz == degree: # 1-2-3 face face_index = 1 return ( VERTEX_EDGE_NODE_COUNT + FACE_INTERIOR_NODE_COUNT * face_index + _triangle_node_index(tx - 1, tz - 1, degree - 2) ) return VERTEX_EDGE_FACE_NODE_COUNT + _tet_node_index(tx - 1, ty - 1, tz - 1, degree - 3) class TetmeshPolynomialShapeFunctions: INVALID = wp.constant(-1) VERTEX = wp.constant(0) EDGE = wp.constant(1) FACE = wp.constant(2) INTERIOR = wp.constant(3) def __init__(self, degree: int): self.ORDER = wp.constant(degree) self.NODES_PER_ELEMENT = wp.constant((degree + 1) * (degree + 2) * (degree + 3) // 6) self.NODES_PER_SIDE = wp.constant((degree + 1) * (degree + 2) // 2) tet_coords = np.empty((self.NODES_PER_ELEMENT, 3), dtype=int) for tx in range(degree + 1): for ty in range(degree + 1 - tx): for tz in range(degree + 1 - tx - ty): index = _tet_node_index(tx, ty, tz, degree) tet_coords[index] = [tx, ty, tz] CoordTypeVec = wp.mat(dtype=int, shape=(self.NODES_PER_ELEMENT, 3)) self.NODE_TET_COORDS = wp.constant(CoordTypeVec(tet_coords)) self.node_type_and_type_index = self._get_node_type_and_type_index() self._node_tet_coordinates = self._get_node_tet_coordinates() @property def name(self) -> str: return f"{self.ORDER}" def _get_node_tet_coordinates(self): NODE_TET_COORDS = self.NODE_TET_COORDS def node_tet_coordinates( node_index_in_elt: int, ): return vec3i( NODE_TET_COORDS[node_index_in_elt, 0], NODE_TET_COORDS[node_index_in_elt, 1], NODE_TET_COORDS[node_index_in_elt, 2], ) from warp.fem import cache return cache.get_func(node_tet_coordinates, self.name) def _get_node_type_and_type_index(self): ORDER = self.ORDER NODES_PER_ELEMENT = self.NODES_PER_ELEMENT def node_type_and_index( node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= NODES_PER_ELEMENT: return TetmeshPolynomialShapeFunctions.INVALID, TetmeshPolynomialShapeFunctions.INVALID if node_index_in_elt < 4: return TetmeshPolynomialShapeFunctions.VERTEX, node_index_in_elt if node_index_in_elt < (6 * ORDER - 2): return TetmeshPolynomialShapeFunctions.EDGE, (node_index_in_elt - 4) if node_index_in_elt < (2 * ORDER * ORDER + 2): return TetmeshPolynomialShapeFunctions.FACE, (node_index_in_elt - (6 * ORDER - 2)) return TetmeshPolynomialShapeFunctions.INTERIOR, (node_index_in_elt - (2 * ORDER * ORDER + 2)) from warp.fem import cache return cache.get_func(node_type_and_index, self.name) def make_node_coords_in_element(self): ORDER = self.ORDER def node_coords_in_element( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): tet_coords = self._node_tet_coordinates(node_index_in_elt) cx = float(tet_coords[0]) / float(ORDER) cy = float(tet_coords[1]) / float(ORDER) cz = float(tet_coords[2]) / float(ORDER) return Coords(cx, cy, cz) from warp.fem import cache return cache.get_func(node_coords_in_element, self.name) def make_node_quadrature_weight(self): ORDER = self.ORDER def node_uniform_quadrature_weight( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) base_weight = 1.0 / float(4 * ORDER * ORDER * ORDER) if node_type == TetmeshPolynomialShapeFunctions.VERTEX: return base_weight if node_type == TetmeshPolynomialShapeFunctions.EDGE: return 2.0 * base_weight if node_type == TetmeshPolynomialShapeFunctions.FACE: return 4.0 * base_weight return 8.0 * base_weight def node_linear_quadrature_weight( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 1.0 / 4.0 from warp.fem import cache if ORDER == 1: return cache.get_func(node_linear_quadrature_weight, self.name) return cache.get_func(node_uniform_quadrature_weight, self.name) def make_trace_node_quadrature_weight(self): ORDER = self.ORDER NODES_PER_ELEMENT = self.NODES_PER_ELEMENT def trace_uniform_node_quadrature_weight( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): if node_index_in_elt >= NODES_PER_ELEMENT: node_index_in_cell = node_index_in_elt - NODES_PER_ELEMENT else: node_index_in_cell = node_index_in_elt # We're either on a side interior or at a vertex node_type, type_index = self.node_type_and_type_index(node_index_in_cell) base_weight = 1.0 / float(3 * ORDER * ORDER) if node_type == TetmeshPolynomialShapeFunctions.VERTEX: return base_weight if node_type == TetmeshPolynomialShapeFunctions.EDGE: return 2.0 * base_weight return 4.0 * base_weight def trace_linear_node_quadrature_weight( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 1.0 / 3.0 from warp.fem import cache if ORDER == 1: return cache.get_func(trace_linear_node_quadrature_weight, self.name) return cache.get_func(trace_uniform_node_quadrature_weight, self.name) def make_element_inner_weight(self): ORDER = self.ORDER def element_inner_weight_linear( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= 4: return 0.0 tet_coords = wp.vec4(1.0 - coords[0] - coords[1] - coords[2], coords[0], coords[1], coords[2]) return tet_coords[node_index_in_elt] def element_inner_weight_quadratic( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) tet_coords = wp.vec4(1.0 - coords[0] - coords[1] - coords[2], coords[0], coords[1], coords[2]) if node_type == TetmeshPolynomialShapeFunctions.VERTEX: # Vertex return tet_coords[type_index] * (2.0 * tet_coords[type_index] - 1.0) elif node_type == TetmeshPolynomialShapeFunctions.EDGE: # Edge if type_index < 3: c1 = type_index c2 = (type_index + 1) % 3 else: c1 = type_index - 3 c2 = 3 return 4.0 * tet_coords[c1] * tet_coords[c2] return 0.0 def element_inner_weight_cubic( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) tet_coords = wp.vec4(1.0 - coords[0] - coords[1] - coords[2], coords[0], coords[1], coords[2]) if node_type == TetmeshPolynomialShapeFunctions.VERTEX: # Vertex return ( 0.5 * tet_coords[type_index] * (3.0 * tet_coords[type_index] - 1.0) * (3.0 * tet_coords[type_index] - 2.0) ) elif node_type == TetmeshPolynomialShapeFunctions.EDGE: # Edge edge = type_index // 2 edge_node = type_index - 2 * edge if edge < 3: c1 = (edge + edge_node) % 3 c2 = (edge + 1 - edge_node) % 3 elif edge_node == 0: c1 = edge - 3 c2 = 3 else: c1 = 3 c2 = edge - 3 return 4.5 * tet_coords[c1] * tet_coords[c2] * (3.0 * tet_coords[c1] - 1.0) elif node_type == TetmeshPolynomialShapeFunctions.FACE: # Interior c1 = type_index c2 = (c1 + 1) % 4 c3 = (c1 + 2) % 4 return 27.0 * tet_coords[c1] * tet_coords[c2] * tet_coords[c3] return 0.0 from warp.fem import cache if ORDER == 1: return cache.get_func(element_inner_weight_linear, self.name) elif ORDER == 2: return cache.get_func(element_inner_weight_quadratic, self.name) elif ORDER == 3: return cache.get_func(element_inner_weight_cubic, self.name) return None def make_element_inner_weight_gradient(self): ORDER = self.ORDER def element_inner_weight_gradient_linear( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= 4: return wp.vec3(0.0) dw_dc = wp.vec4(0.0) dw_dc[node_index_in_elt] = 1.0 dw_du = wp.vec3(dw_dc[1] - dw_dc[0], dw_dc[2] - dw_dc[0], dw_dc[3] - dw_dc[0]) return args.reference_transforms[element_index] * dw_du def element_inner_weight_gradient_quadratic( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) tet_coords = wp.vec4(1.0 - coords[0] - coords[1] - coords[2], coords[0], coords[1], coords[2]) dw_dc = wp.vec4(0.0) if node_type == TetmeshPolynomialShapeFunctions.VERTEX: # Vertex dw_dc[type_index] = 4.0 * tet_coords[type_index] - 1.0 elif node_type == TetmeshPolynomialShapeFunctions.EDGE: # Edge if type_index < 3: c1 = type_index c2 = (type_index + 1) % 3 else: c1 = type_index - 3 c2 = 3 dw_dc[c1] = 4.0 * tet_coords[c2] dw_dc[c2] = 4.0 * tet_coords[c1] dw_du = wp.vec3(dw_dc[1] - dw_dc[0], dw_dc[2] - dw_dc[0], dw_dc[3] - dw_dc[0]) return args.reference_transforms[element_index] * dw_du def element_inner_weight_gradient_cubic( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): node_type, type_index = self.node_type_and_type_index(node_index_in_elt) tet_coords = wp.vec4(1.0 - coords[0] - coords[1] - coords[2], coords[0], coords[1], coords[2]) dw_dc = wp.vec4(0.0) if node_type == TetmeshPolynomialShapeFunctions.VERTEX: # Vertex dw_dc[type_index] = ( 0.5 * 27.0 * tet_coords[type_index] * tet_coords[type_index] - 9.0 * tet_coords[type_index] + 1.0 ) elif node_type == TetmeshPolynomialShapeFunctions.EDGE: # Edge edge = type_index // 2 edge_node = type_index - 2 * edge if edge < 3: c1 = (edge + edge_node) % 3 c2 = (edge + 1 - edge_node) % 3 elif edge_node == 0: c1 = edge - 3 c2 = 3 else: c1 = 3 c2 = edge - 3 dw_dc[c1] = 4.5 * tet_coords[c2] * (6.0 * tet_coords[c1] - 1.0) dw_dc[c2] = 4.5 * tet_coords[c1] * (3.0 * tet_coords[c1] - 1.0) elif node_type == TetmeshPolynomialShapeFunctions.FACE: # Interior c1 = type_index c2 = (c1 + 1) % 4 c3 = (c1 + 2) % 4 dw_dc[c1] = 27.0 * tet_coords[c2] * tet_coords[c3] dw_dc[c2] = 27.0 * tet_coords[c3] * tet_coords[c1] dw_dc[c3] = 27.0 * tet_coords[c1] * tet_coords[c2] dw_du = wp.vec3(dw_dc[1] - dw_dc[0], dw_dc[2] - dw_dc[0], dw_dc[3] - dw_dc[0]) return args.reference_transforms[element_index] * dw_du from warp.fem import cache if ORDER == 1: return cache.get_func(element_inner_weight_gradient_linear, self.name) elif ORDER == 2: return cache.get_func(element_inner_weight_gradient_quadratic, self.name) elif ORDER == 3: return cache.get_func(element_inner_weight_gradient_cubic, self.name) return None @staticmethod def node_positions(space): if space.ORDER == 1: node_positions = space._mesh.positions.numpy() return node_positions[:, 0], node_positions[:, 1], node_positions[:, 2] NODES_PER_ELEMENT = space.NODES_PER_ELEMENT def fill_node_positions_fn( space_arg: space.SpaceArg, node_positions: wp.array(dtype=wp.vec3), ): element_index = wp.tid() tet_idx = space_arg.geo_arg.tet_vertex_indices[element_index] p0 = space_arg.geo_arg.positions[tet_idx[0]] p1 = space_arg.geo_arg.positions[tet_idx[1]] p2 = space_arg.geo_arg.positions[tet_idx[2]] p3 = space_arg.geo_arg.positions[tet_idx[3]] for n in range(NODES_PER_ELEMENT): node_index = space.element_node_index(space_arg, element_index, n) coords = space.node_coords_in_element(space_arg, element_index, n) pos = p0 + coords[0] * (p1 - p0) + coords[1] * (p2 - p0) + coords[2] * (p3 - p0) node_positions[node_index] = pos from warp.fem import cache fill_node_positions = cache.get_kernel( fill_node_positions_fn, suffix=space.name, ) device = space._mesh.tet_vertex_indices.device node_positions = wp.empty( shape=space.node_count(), dtype=wp.vec3, device=device, ) wp.launch( dim=space._mesh.cell_count(), kernel=fill_node_positions, inputs=[ space.space_arg_value(device), node_positions, ], device=device, ) node_positions = node_positions.numpy() return node_positions[:, 0], node_positions[:, 1], node_positions[:, 2] class TetmeshPolynomialSpace(TetmeshFunctionSpace): def __init__(self, grid: Tetmesh, degree: int, dtype: type = float, dof_mapper: DofMapper = None): super().__init__(grid, dtype, dof_mapper) self._shape = TetmeshPolynomialShapeFunctions(degree) self.ORDER = self._shape.ORDER self.NODES_PER_ELEMENT = self._shape.NODES_PER_ELEMENT self.element_node_index = self._make_element_node_index() self.node_coords_in_element = self._shape.make_node_coords_in_element() self.node_quadrature_weight = self._shape.make_node_quadrature_weight() self.element_inner_weight = self._shape.make_element_inner_weight() self.element_inner_weight_gradient = self._shape.make_element_inner_weight_gradient() self.element_outer_weight = self.element_inner_weight self.element_outer_weight_gradient = self.element_inner_weight_gradient def _make_element_node_index(self): INTERIOR_NODES_PER_EDGE = wp.constant(max(0, self.ORDER - 1)) INTERIOR_NODES_PER_FACE = wp.constant(max(0, self.ORDER - 2) * max(0, self.ORDER - 1) // 2) INTERIOR_NODES_PER_CELL = wp.constant( max(0, self.ORDER - 3) * max(0, self.ORDER - 2) * max(0, self.ORDER - 1) // 6 ) def element_node_index( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): node_type, type_index = self._shape.node_type_and_type_index(node_index_in_elt) if node_type == TetmeshPolynomialShapeFunctions.VERTEX: return args.geo_arg.tet_vertex_indices[element_index][type_index] global_offset = args.vertex_count if node_type == TetmeshPolynomialShapeFunctions.EDGE: edge = type_index // INTERIOR_NODES_PER_EDGE edge_node = type_index - INTERIOR_NODES_PER_EDGE * edge global_edge_index = args.tet_edge_indices[element_index][edge] # Test if we need to swap edge direction if INTERIOR_NODES_PER_EDGE > 1: if edge < 3: c1 = edge c2 = (edge + 1) % 3 else: c1 = edge - 3 c2 = 3 if ( args.geo_arg.tet_vertex_indices[element_index][c1] > args.geo_arg.tet_vertex_indices[element_index][c2] ): edge_node = INTERIOR_NODES_PER_EDGE - 1 - edge_node return global_offset + INTERIOR_NODES_PER_EDGE * global_edge_index + edge_node global_offset += INTERIOR_NODES_PER_EDGE * args.edge_count if node_type == TetmeshPolynomialShapeFunctions.FACE: face = type_index // INTERIOR_NODES_PER_FACE face_node = type_index - INTERIOR_NODES_PER_FACE * face global_face_index = args.tet_face_indices[element_index][face] if INTERIOR_NODES_PER_FACE == 3: # Hard code for P4 case, 3 nodes per face # Higher orders would require rotating triangle coordinates, this is not supported yet vidx = args.geo_arg.tet_vertex_indices[element_index][(face + face_node) % 4] fvi = args.geo_arg.face_vertex_indices[global_face_index] if vidx == fvi[0]: face_node = 0 elif vidx == fvi[1]: face_node = 1 else: face_node = 2 return global_offset + INTERIOR_NODES_PER_FACE * global_face_index + face_node global_offset += INTERIOR_NODES_PER_FACE * args.face_count return global_offset + INTERIOR_NODES_PER_CELL * element_index + type_index from warp.fem import cache return cache.get_func(element_node_index, self.name) def node_count(self) -> int: INTERIOR_NODES_PER_EDGE = wp.constant(max(0, self.ORDER - 1)) INTERIOR_NODES_PER_FACE = wp.constant(max(0, self.ORDER - 2) * max(0, self.ORDER - 1) // 2) INTERIOR_NODES_PER_CELL = wp.constant( max(0, self.ORDER - 3) * max(0, self.ORDER - 2) * max(0, self.ORDER - 1) // 6 ) return ( self._mesh.vertex_count() + self.edge_count() * INTERIOR_NODES_PER_EDGE + self._mesh.side_count() * INTERIOR_NODES_PER_FACE + self._mesh.cell_count() * INTERIOR_NODES_PER_CELL ) def node_positions(self): return TetmeshPolynomialShapeFunctions.node_positions(self) class Trace(TetmeshFunctionSpace.Trace): NODES_PER_ELEMENT = wp.constant(2) ORDER = wp.constant(0) def __init__(self, space: "TetmeshPolynomialSpace"): super().__init__(space) self.element_node_index = self._make_element_node_index(space) self.node_coords_in_element = self._make_node_coords_in_element(space) self.node_quadrature_weight = space._shape.make_trace_node_quadrature_weight() self.element_inner_weight = self._make_element_inner_weight(space) self.element_inner_weight_gradient = self._make_element_inner_weight_gradient(space) self.element_outer_weight = self._make_element_outer_weight(space) self.element_outer_weight_gradient = self._make_element_outer_weight_gradient(space) def trace(self): return TetmeshPolynomialSpace.Trace(self) class TetmeshDGPolynomialSpace(TetmeshFunctionSpace): def __init__( self, mesh: Tetmesh, degree: int, dtype: type = float, dof_mapper: DofMapper = None, ): super().__init__(mesh, dtype, dof_mapper) self._shape = TetmeshPolynomialShapeFunctions(degree) self.ORDER = self._shape.ORDER self.NODES_PER_ELEMENT = self._shape.NODES_PER_ELEMENT self.element_node_index = self._make_element_node_index() self.node_coords_in_element = self._shape.make_node_coords_in_element() self.node_quadrature_weight = self._shape.make_node_quadrature_weight() self.element_inner_weight = self._shape.make_element_inner_weight() self.element_inner_weight_gradient = self._shape.make_element_inner_weight_gradient() self.element_outer_weight = self.element_inner_weight self.element_outer_weight_gradient = self.element_inner_weight_gradient def node_count(self) -> int: return self._mesh.cell_count() * self.NODES_PER_ELEMENT def node_positions(self): return TetmeshPolynomialShapeFunctions.node_positions(self) def node_triangulation(self): return TetmeshPolynomialShapeFunctions.node_triangulation(self) def _make_element_node_index(self): NODES_PER_ELEMENT = self.NODES_PER_ELEMENT def element_node_index( args: TetmeshFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return element_index * NODES_PER_ELEMENT + node_index_in_elt from warp.fem import cache return cache.get_func(element_node_index, f"{self.name}_{self.ORDER}") class Trace(TetmeshPolynomialSpace.Trace): def __init__(self, space: "TetmeshDGPolynomialSpace"): super().__init__(space) def trace(self): return TetmeshDGPolynomialSpace.Trace(self)
warp-main
warp/fem/space/tetmesh_function_space.py
import warp as wp import numpy as np from warp.fem.types import ElementIndex, Coords, OUTSIDE from warp.fem.types import vec2i from warp.fem.polynomial import Polynomial, lagrange_scales, quadrature_1d, is_closed from warp.fem.geometry import Grid2D from .dof_mapper import DofMapper from .nodal_function_space import NodalFunctionSpace, NodalFunctionSpaceTrace class Grid2DFunctionSpace(NodalFunctionSpace): DIMENSION = wp.constant(2) @wp.struct class SpaceArg: geo_arg: Grid2D.SideArg inv_cell_size: wp.vec2 def __init__(self, grid: Grid2D, dtype: type = float, dof_mapper: DofMapper = None): super().__init__(dtype, dof_mapper) self._grid = grid @property def geometry(self) -> Grid2D: return self._grid def space_arg_value(self, device): arg = self.SpaceArg() arg.geo_arg = self.geometry.side_arg_value(device) arg.inv_cell_size = wp.vec2( 1.0 / self.geometry.cell_size[0], 1.0 / self.geometry.cell_size[1], ) return arg class Trace(NodalFunctionSpaceTrace): def __init__(self, space: NodalFunctionSpace): super().__init__(space) self.ORDER = space.ORDER @wp.func def _inner_cell_index(args: SpaceArg, side_index: ElementIndex): return Grid2D.side_inner_cell_index(args.geo_arg, side_index) @wp.func def _outer_cell_index(args: SpaceArg, side_index: ElementIndex): return Grid2D.side_outer_cell_index(args.geo_arg, side_index) @wp.func def _inner_cell_coords(args: SpaceArg, side_index: ElementIndex, side_coords: Coords): side = Grid2D.get_side(args.geo_arg, side_index) if side.origin[0] == 0: inner_alt = 0.0 else: inner_alt = 1.0 coords = Grid2D._rotate(side.axis, wp.vec2(inner_alt, side_coords[0])) return Coords(coords[0], coords[1], 0.0) @wp.func def _outer_cell_coords(args: SpaceArg, side_index: ElementIndex, side_coords: Coords): side = Grid2D.get_side(args.geo_arg, side_index) alt_axis = Grid2D.ROTATION[side.axis, 0] if side.origin[0] == args.geo_arg.cell_arg.res[alt_axis]: outer_alt = 1.0 else: outer_alt = 0.0 coords = Grid2D._rotate(side.axis, wp.vec2(outer_alt, side_coords[0])) return Coords(coords[0], coords[1], 0.0) @wp.func def _cell_to_side_coords( args: SpaceArg, side_index: ElementIndex, element_index: ElementIndex, element_coords: Coords, ): side = Grid2D.get_side(args.geo_arg, side_index) cell = Grid2D.get_cell(args.geo_arg.cell_arg.res, element_index) if float(side.origin[0] - cell[side.axis]) == element_coords[side.axis]: long_axis = Grid2D.ROTATION[side.axis, 1] return Coords(element_coords[long_axis], 0.0, 0.0) return Coords(OUTSIDE) @wp.func def _vertex_coords(vidx_in_cell: int): x = vidx_in_cell // 2 y = vidx_in_cell - 2 * x return vec2i(x, y) @wp.func def _vertex_coords_f(vidx_in_cell: int): x = vidx_in_cell // 2 y = vidx_in_cell - 2 * x return wp.vec2(float(x), float(y)) @wp.func def _vertex_index(args: SpaceArg, cell_index: ElementIndex, vidx_in_cell: int): res = args.geo_arg.cell_arg.res x_stride = res[1] + 1 corner = Grid2D.get_cell(res, cell_index) + Grid2DFunctionSpace._vertex_coords(vidx_in_cell) return Grid2D._from_2d_index(x_stride, corner) class GridPiecewiseConstantSpace(Grid2DFunctionSpace): ORDER = wp.constant(0) NODES_PER_ELEMENT = wp.constant(1) def __init__(self, grid: Grid2D, dtype: type = float, dof_mapper: DofMapper = None): super().__init__(grid, dtype, dof_mapper) self.element_outer_weight = self.element_inner_weight self.element_outer_weight_gradient = self.element_inner_weight_gradient def node_count(self) -> int: return self._grid.cell_count() def node_positions(self): res = self._grid.res X = (np.arange(0, res[0], dtype=float) + 0.5) * self._grid.cell_size[0] + self._grid.origin[0] Y = (np.arange(0, res[1], dtype=float) + 0.5) * self._grid.cell_size[1] + self._grid.origin[1] return np.meshgrid(X, Y, indexing="ij") @wp.func def element_node_index( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return element_index @wp.func def node_coords_in_element( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): if node_index_in_elt == 0: return Coords(0.5, 0.5, 0.0) return Coords(OUTSIDE) @wp.func def node_quadrature_weight( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 1.0 @wp.func def element_inner_weight( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt == 0: return 1.0 return 0.0 @wp.func def element_inner_weight_gradient( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): return wp.vec2(0.0) class Trace(Grid2DFunctionSpace.Trace): NODES_PER_ELEMENT = wp.constant(2) ORDER = wp.constant(0) def __init__(self, space: "GridPiecewiseConstantSpace"): super().__init__(space) self.element_node_index = self._make_element_node_index(space) self.element_inner_weight = self._make_element_inner_weight(space) self.element_inner_weight_gradient = self._make_element_inner_weight_gradient(space) self.element_outer_weight = self._make_element_outer_weight(space) self.element_outer_weight_gradient = self._make_element_outer_weight_gradient(space) @wp.func def node_coords_in_element( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_element: int, ): if node_index_in_element == 0: return Coords(0.5, 0.0, 0.0) elif node_index_in_element == 1: return Coords(0.5, 0.0, 0.0) return Coords(OUTSIDE) @wp.func def node_quadrature_weight( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 1.0 def trace(self): return GridPiecewiseConstantSpace.Trace(self) class GridBipolynomialShapeFunctions: def __init__(self, degree: int, family: Polynomial): self.family = family self.ORDER = wp.constant(degree) self.NODES_PER_ELEMENT = wp.constant((degree + 1) * (degree + 1)) self.NODES_PER_SIDE = wp.constant(degree + 1) lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family) lagrange_scale = lagrange_scales(lobatto_coords) NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32) self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords)) self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight)) self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale)) @property def name(self) -> str: return f"{self.family}_{self.ORDER}" def make_node_coords_in_element(self): ORDER = self.ORDER LOBATTO_COORDS = self.LOBATTO_COORDS def node_coords_in_element( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): node_i = node_index_in_elt // (ORDER + 1) node_j = node_index_in_elt - (ORDER + 1) * node_i return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], 0.0) from warp.fem import cache return cache.get_func(node_coords_in_element, self.name) def make_node_quadrature_weight(self): ORDER = self.ORDER LOBATTO_WEIGHT = self.LOBATTO_WEIGHT def node_quadrature_weight( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): node_i = node_index_in_elt // (ORDER + 1) node_j = node_index_in_elt - (ORDER + 1) * node_i return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j] def node_quadrature_weight_linear( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 0.25 from warp.fem import cache if ORDER == 1: return cache.get_func(node_quadrature_weight_linear, self.name) return cache.get_func(node_quadrature_weight, self.name) def make_trace_node_quadrature_weight(self): ORDER = self.ORDER NODES_PER_ELEMENT = self.NODES_PER_ELEMENT LOBATTO_WEIGHT = self.LOBATTO_WEIGHT def trace_node_quadrature_weight( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): if node_index_in_elt >= NODES_PER_ELEMENT: node_index_in_cell = node_index_in_elt - NODES_PER_ELEMENT else: node_index_in_cell = node_index_in_elt # We're either on a side interior or at a vertex # I.e., either both indices are at extrema, or only one is # Pick the interior one if possible, if both are at extrema pick any one node_i = node_index_in_cell // (ORDER + 1) if node_i > 0 and node_i < ORDER: return LOBATTO_WEIGHT[node_i] node_j = node_index_in_cell - (ORDER + 1) * node_i return LOBATTO_WEIGHT[node_j] def trace_node_quadrature_weight_linear( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return 0.5 from warp.fem import cache if ORDER == 1: return cache.get_func(trace_node_quadrature_weight_linear, self.name) return cache.get_func(trace_node_quadrature_weight, self.name) def make_element_inner_weight(self): ORDER = self.ORDER NODES_PER_ELEMENT = self.NODES_PER_ELEMENT LOBATTO_COORDS = self.LOBATTO_COORDS LAGRANGE_SCALE = self.LAGRANGE_SCALE def element_inner_weight( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= NODES_PER_ELEMENT: return 0.0 node_i = node_index_in_elt // (ORDER + 1) node_j = node_index_in_elt - (ORDER + 1) * node_i w = float(1.0) for k in range(ORDER + 1): if k != node_i: w *= coords[0] - LOBATTO_COORDS[k] if k != node_j: w *= coords[1] - LOBATTO_COORDS[k] w *= LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] return w def element_inner_weight_linear( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= 4: return 0.0 v = Grid2DFunctionSpace._vertex_coords_f(node_index_in_elt) wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0] wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1] return wx * wy from warp.fem import cache if ORDER == 1: return cache.get_func(element_inner_weight_linear, self.name) return cache.get_func(element_inner_weight, self.name) def make_element_inner_weight_gradient(self): ORDER = self.ORDER NODES_PER_ELEMENT = self.NODES_PER_ELEMENT LOBATTO_COORDS = self.LOBATTO_COORDS LAGRANGE_SCALE = self.LAGRANGE_SCALE def element_inner_weight_gradient( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= NODES_PER_ELEMENT: return wp.vec2(0.0) node_i = node_index_in_elt // (ORDER + 1) node_j = node_index_in_elt - (ORDER + 1) * node_i prefix_x = float(1.0) prefix_y = float(1.0) for k in range(ORDER + 1): if k != node_i: prefix_y *= coords[0] - LOBATTO_COORDS[k] if k != node_j: prefix_x *= coords[1] - LOBATTO_COORDS[k] grad_x = float(0.0) grad_y = float(0.0) for k in range(ORDER + 1): if k != node_i: delta_x = coords[0] - LOBATTO_COORDS[k] grad_x = grad_x * delta_x + prefix_x prefix_x *= delta_x if k != node_j: delta_y = coords[1] - LOBATTO_COORDS[k] grad_y = grad_y * delta_y + prefix_y prefix_y *= delta_y grad = ( LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] * wp.vec2(grad_x * args.inv_cell_size[0], grad_y * args.inv_cell_size[1]) ) return grad def element_inner_weight_gradient_linear( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, coords: Coords, node_index_in_elt: int, ): if node_index_in_elt < 0 or node_index_in_elt >= 4: return wp.vec2(0.0) v = Grid2DFunctionSpace._vertex_coords_f(node_index_in_elt) wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0] wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1] dx = (2.0 * v[0] - 1.0) * args.inv_cell_size[0] dy = (2.0 * v[1] - 1.0) * args.inv_cell_size[1] return wp.vec2(dx * wy, dy * wx) from warp.fem import cache if ORDER == 1: return cache.get_func(element_inner_weight_gradient_linear, self.name) return cache.get_func(element_inner_weight_gradient, self.name) class GridBipolynomialSpace(Grid2DFunctionSpace): def __init__( self, grid: Grid2D, degree: int, family: int, dtype: type = float, dof_mapper: DofMapper = None, ): super().__init__(grid, dtype, dof_mapper) if family is None: family = Polynomial.LOBATTO_GAUSS_LEGENDRE if not is_closed(family): raise ValueError("A closed polynomial family is required to defined a continuous funciton space") self._shape = GridBipolynomialShapeFunctions(degree, family=family) self.ORDER = self._shape.ORDER self.NODES_PER_ELEMENT = self._shape.NODES_PER_ELEMENT self.element_node_index = self._make_element_node_index() self.node_coords_in_element = self._shape.make_node_coords_in_element() self.node_quadrature_weight = self._shape.make_node_quadrature_weight() self.element_inner_weight = self._shape.make_element_inner_weight() self.element_inner_weight_gradient = self._shape.make_element_inner_weight_gradient() self.element_outer_weight = self.element_inner_weight self.element_outer_weight_gradient = self.element_inner_weight_gradient def node_count(self) -> int: return (self._grid.res[0] * self.ORDER + 1) * (self._grid.res[1] * self.ORDER + 1) def node_positions(self): res = self._grid.res cell_coords = np.array(self._shape.LOBATTO_COORDS)[:-1] grid_coords_x = np.repeat(np.arange(0, res[0], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[0] ) grid_coords_x = np.append(grid_coords_x, res[0]) X = grid_coords_x * self._grid.cell_size[0] + self._grid.origin[0] grid_coords_y = np.repeat(np.arange(0, res[1], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[1] ) grid_coords_y = np.append(grid_coords_y, res[1]) Y = grid_coords_y * self._grid.cell_size[1] + self._grid.origin[1] return np.meshgrid(X, Y, indexing="ij") def _make_element_node_index(self): ORDER = self.ORDER def element_node_index( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): res = args.geo_arg.cell_arg.res cell = Grid2D.get_cell(res, element_index) node_i = node_index_in_elt // (ORDER + 1) node_j = node_index_in_elt - (ORDER + 1) * node_i node_x = ORDER * cell[0] + node_i node_y = ORDER * cell[1] + node_j node_pitch = (res[1] * ORDER) + 1 node_index = node_pitch * node_x + node_y return node_index from warp.fem import cache return cache.get_func(element_node_index, f"{self.name}_{ORDER}") class Trace(Grid2DFunctionSpace.Trace): def __init__(self, space: "GridBipolynomialSpace"): super().__init__(space) self.element_node_index = self._make_element_node_index(space) self.node_coords_in_element = self._make_node_coords_in_element(space) self.node_quadrature_weight = space._shape.make_trace_node_quadrature_weight() self.element_inner_weight = self._make_element_inner_weight(space) self.element_inner_weight_gradient = self._make_element_inner_weight_gradient(space) self.element_outer_weight = self._make_element_outer_weight(space) self.element_outer_weight_gradient = self._make_element_outer_weight_gradient(space) def trace(self): return GridBipolynomialSpace.Trace(self) class GridDGBipolynomialSpace(Grid2DFunctionSpace): def __init__( self, grid: Grid2D, degree: int, family: Polynomial, dtype: type = float, dof_mapper: DofMapper = None, ): super().__init__(grid, dtype, dof_mapper) if family is None: family = Polynomial.LOBATTO_GAUSS_LEGENDRE self._shape = GridBipolynomialShapeFunctions(degree, family=family) self.ORDER = self._shape.ORDER self.NODES_PER_ELEMENT = self._shape.NODES_PER_ELEMENT self.element_node_index = self._make_element_node_index() self.node_coords_in_element = self._shape.make_node_coords_in_element() self.node_quadrature_weight = self._shape.make_node_quadrature_weight() self.element_inner_weight = self._shape.make_element_inner_weight() self.element_inner_weight_gradient = self._shape.make_element_inner_weight_gradient() self.element_outer_weight = self.element_inner_weight self.element_outer_weight_gradient = self.element_inner_weight_gradient def node_count(self) -> int: return self._grid.cell_count() * (self.ORDER + 1) ** 2 def node_positions(self): res = self._grid.res cell_coords = np.array(self._shape.LOBATTO_COORDS) grid_coords_x = np.repeat(np.arange(0, res[0], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[0] ) X = grid_coords_x * self._grid.cell_size[0] + self._grid.origin[0] grid_coords_y = np.repeat(np.arange(0, res[1], dtype=float), len(cell_coords)) + np.tile( cell_coords, reps=res[1] ) Y = grid_coords_y * self._grid.cell_size[1] + self._grid.origin[1] return np.meshgrid(X, Y, indexing="ij") def _make_element_node_index(self): NODES_PER_ELEMENT = self.NODES_PER_ELEMENT def element_node_index( args: Grid2DFunctionSpace.SpaceArg, element_index: ElementIndex, node_index_in_elt: int, ): return element_index * NODES_PER_ELEMENT + node_index_in_elt from warp.fem import cache return cache.get_func(element_node_index, f"{self.name}_{self.ORDER}") class Trace(GridBipolynomialSpace.Trace): def __init__(self, space: "GridBipolynomialSpace"): super().__init__(space) def trace(self): return GridDGBipolynomialSpace.Trace(self)
warp-main
warp/fem/space/grid_2d_function_space.py
from typing import Any import warp as wp from warp.fem.types import DofIndex, ElementIndex, Coords from warp.fem import geometry class FunctionSpace: """ Interface class for function spaces, i.e. geometry + interpolation basis """ DIMENSION: int """Input dimension of the function space""" NODES_PER_ELEMENT: int """Number of interpolation nodes per element of the geometry""" ORDER: int """Order of the interpolation basis""" VALUE_DOF_COUNT: int """Number of degrees of freedom per node""" dtype: type """Value type of the interpolation functions""" SpaceArg: wp.codegen.Struct """Structure containing arguments to be passed to device function""" def node_count(self) -> int: """Number of nodes in the interpolation basis""" raise NotImplementedError def node_positions(self) -> Any: """Node positions, for visualization purposes only""" raise NotImplementedError def geometry(self) -> geometry.Geometry: """Underlying geometry""" raise NotImplementedError def space_arg_value(self, device) -> wp.codegen.StructInstance: """Value of the arguments to be passed to device functions""" raise NotImplementedError @property def name(self): return self.__class__.__name__ @property def degree(self): return self.ORDER def __str__(self): return self.name def trace(self): """Trace of the function space over lower-dimensional elements of the geometry""" raise NotImplementedError def make_field(self, space_partition=None, geometry_partition=None): """Returns a zero-initialized field over this function space""" raise NotImplementedError def unit_dof_value(args: Any, dof: DofIndex): """Unit value for a given degree of freedom. Typically a rank-1 tensor""" raise NotImplementedError def element_node_index(args: Any, element_index: ElementIndex, node_index_in_elt: int): """Global node index for a given node in a given element""" raise NotImplementedError def node_coords_in_element(args: Any, element_index: ElementIndex, node_index_in_elt: int): """Coordinates inside element of a given node""" raise NotImplementedError def element_inner_weight(args: Any, element_index: ElementIndex, coords: Coords, node_index_in_elt: int): """Inner weight for a node at given coordinates""" raise NotImplementedError def element_inner_weight_gradient(args: Any, element_index: ElementIndex, coords: Coords, node_index_in_elt: int): """Inner weight gradient for a node at given coordinates""" raise NotImplementedError def element_outer_weight(args: Any, element_index: ElementIndex, coords: Coords, node_index_in_elt: int): """Outer weight for a node at given coordinates""" raise NotImplementedError @wp.func def element_outer_weight_gradient(args: Any, element_index: ElementIndex, coords: Coords, node_index_in_elt: int): """Outer weight gradient for a node at given coordinates""" raise NotImplementedError
warp-main
warp/fem/space/function_space.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import numpy as np import math import warp as wp from warp.tests.test_base import * import unittest wp.init() @wp.kernel def make_field(field: wp.array3d(dtype=float), center: wp.vec3, radius: float): i, j, k = wp.tid() p = wp.vec3(float(i), float(j), float(k)) d = wp.length(p - center) - radius field[i, j, k] = d def test_marching_cubes(test, device): dim = 64 max_verts = 10**6 max_tris = 10**6 field = wp.zeros(shape=(dim, dim, dim), dtype=float, device=device) iso = wp.MarchingCubes(nx=dim, ny=dim, nz=dim, max_verts=max_verts, max_tris=max_tris, device=device) radius = dim / 4.0 wp.launch(make_field, dim=field.shape, inputs=[field, wp.vec3(dim / 2, dim / 2, dim / 2), radius], device="cuda") iso.surface(field=field, threshold=0.0) # check that all returned vertices lie on the surface of the sphere length = np.linalg.norm(iso.verts.numpy() - np.array([dim / 2, dim / 2, dim / 2]), axis=1) error = np.abs(length - radius) test.assertTrue(np.max(error) < 1.0) def register(parent): devices = ["cuda"] class TestMarchingCubes(parent): pass add_function_test(TestMarchingCubes, "test_marching_cubes", test_marching_cubes, devices=devices) return TestMarchingCubes if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_marching_cubes.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp from warp.tests.test_base import * import unittest wp.init() @wp.kernel def inc(a: wp.array(dtype=float)): tid = wp.tid() a[tid] = a[tid] + 1.0 @wp.kernel def inc_new(src: wp.array(dtype=float), dst: wp.array(dtype=float)): tid = wp.tid() dst[tid] = src[tid] + 1.0 @wp.kernel def sum(a: wp.array(dtype=float), b: wp.array(dtype=float), c: wp.array(dtype=float)): tid = wp.tid() c[tid] = a[tid] + b[tid] # number of elements to use for testing N = 10 * 1024 * 1024 def test_stream_arg_implicit_sync(test, device): # wp.zeros() and array.numpy() should not require explicit sync a = wp.zeros(N, dtype=float, device=device) b = wp.empty(N, dtype=float, device=device) c = wp.empty(N, dtype=float, device=device) new_stream = wp.Stream(device) # launch work on new stream wp.launch(inc, dim=a.size, inputs=[a], stream=new_stream) wp.copy(b, a, stream=new_stream) wp.launch(inc, dim=a.size, inputs=[a], stream=new_stream) wp.copy(c, a, stream=new_stream) wp.launch(inc, dim=a.size, inputs=[a], stream=new_stream) assert_np_equal(a.numpy(), np.full(N, fill_value=3.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) def test_stream_scope_implicit_sync(test, device): # wp.zeros() and array.numpy() should not require explicit sync with wp.ScopedDevice(device): a = wp.zeros(N, dtype=float) b = wp.empty(N, dtype=float) c = wp.empty(N, dtype=float) old_stream = wp.get_stream() new_stream = wp.Stream() # launch work on new stream with wp.ScopedStream(new_stream): assert wp.get_stream() == new_stream wp.launch(inc, dim=a.size, inputs=[a]) wp.copy(b, a) wp.launch(inc, dim=a.size, inputs=[a]) wp.copy(c, a) wp.launch(inc, dim=a.size, inputs=[a]) assert wp.get_stream() == old_stream assert_np_equal(a.numpy(), np.full(N, fill_value=3.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) def test_stream_arg_synchronize(test, device): a = wp.zeros(N, dtype=float, device=device) b = wp.empty(N, dtype=float, device=device) c = wp.empty(N, dtype=float, device=device) d = wp.empty(N, dtype=float, device=device) stream1 = wp.get_stream(device) stream2 = wp.Stream(device) stream3 = wp.Stream(device) wp.launch(inc, dim=N, inputs=[a], device=device) # b and c depend on a wp.synchronize_stream(stream1) wp.launch(inc_new, dim=N, inputs=[a, b], stream=stream2) wp.launch(inc_new, dim=N, inputs=[a, c], stream=stream3) # d depends on b and c wp.synchronize_stream(stream2) wp.synchronize_stream(stream3) wp.launch(sum, dim=N, inputs=[b, c, d], device=device) assert_np_equal(a.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(d.numpy(), np.full(N, fill_value=4.0)) def test_stream_arg_wait_event(test, device): a = wp.zeros(N, dtype=float, device=device) b = wp.empty(N, dtype=float, device=device) c = wp.empty(N, dtype=float, device=device) d = wp.empty(N, dtype=float, device=device) stream1 = wp.get_stream(device) stream2 = wp.Stream(device) stream3 = wp.Stream(device) event1 = wp.Event(device) event2 = wp.Event(device) event3 = wp.Event(device) wp.launch(inc, dim=N, inputs=[a], stream=stream1) stream1.record_event(event1) # b and c depend on a stream2.wait_event(event1) stream3.wait_event(event1) wp.launch(inc_new, dim=N, inputs=[a, b], stream=stream2) stream2.record_event(event2) wp.launch(inc_new, dim=N, inputs=[a, c], stream=stream3) stream3.record_event(event3) # d depends on b and c stream1.wait_event(event2) stream1.wait_event(event3) wp.launch(sum, dim=N, inputs=[b, c, d], stream=stream1) assert_np_equal(a.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(d.numpy(), np.full(N, fill_value=4.0)) def test_stream_arg_wait_stream(test, device): a = wp.zeros(N, dtype=float, device=device) b = wp.empty(N, dtype=float, device=device) c = wp.empty(N, dtype=float, device=device) d = wp.empty(N, dtype=float, device=device) stream1 = wp.get_stream(device) stream2 = wp.Stream(device) stream3 = wp.Stream(device) wp.launch(inc, dim=N, inputs=[a], stream=stream1) # b and c depend on a stream2.wait_stream(stream1) stream3.wait_stream(stream1) wp.launch(inc_new, dim=N, inputs=[a, b], stream=stream2) wp.launch(inc_new, dim=N, inputs=[a, c], stream=stream3) # d depends on b and c stream1.wait_stream(stream2) stream1.wait_stream(stream3) wp.launch(sum, dim=N, inputs=[b, c, d], stream=stream1) assert_np_equal(a.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(d.numpy(), np.full(N, fill_value=4.0)) def test_stream_scope_synchronize(test, device): with wp.ScopedDevice(device): a = wp.zeros(N, dtype=float) b = wp.empty(N, dtype=float) c = wp.empty(N, dtype=float) d = wp.empty(N, dtype=float) stream2 = wp.Stream() stream3 = wp.Stream() wp.launch(inc, dim=N, inputs=[a]) # b and c depend on a wp.synchronize_stream() with wp.ScopedStream(stream2): wp.launch(inc_new, dim=N, inputs=[a, b]) with wp.ScopedStream(stream3): wp.launch(inc_new, dim=N, inputs=[a, c]) # d depends on b and c wp.synchronize_stream(stream2) wp.synchronize_stream(stream3) wp.launch(sum, dim=N, inputs=[b, c, d]) assert_np_equal(a.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(d.numpy(), np.full(N, fill_value=4.0)) def test_stream_scope_wait_event(test, device): with wp.ScopedDevice(device): a = wp.zeros(N, dtype=float) b = wp.empty(N, dtype=float) c = wp.empty(N, dtype=float) d = wp.empty(N, dtype=float) stream2 = wp.Stream() stream3 = wp.Stream() event1 = wp.Event() event2 = wp.Event() event3 = wp.Event() wp.launch(inc, dim=N, inputs=[a]) wp.record_event(event1) # b and c depend on a with wp.ScopedStream(stream2): wp.wait_event(event1) wp.launch(inc_new, dim=N, inputs=[a, b]) wp.record_event(event2) with wp.ScopedStream(stream3): wp.wait_event(event1) wp.launch(inc_new, dim=N, inputs=[a, c]) wp.record_event(event3) # d depends on b and c wp.wait_event(event2) wp.wait_event(event3) wp.launch(sum, dim=N, inputs=[b, c, d]) assert_np_equal(a.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(d.numpy(), np.full(N, fill_value=4.0)) def test_stream_scope_wait_stream(test, device): with wp.ScopedDevice(device): a = wp.zeros(N, dtype=float) b = wp.empty(N, dtype=float) c = wp.empty(N, dtype=float) d = wp.empty(N, dtype=float) stream1 = wp.get_stream() stream2 = wp.Stream() stream3 = wp.Stream() wp.launch(inc, dim=N, inputs=[a]) # b and c depend on a with wp.ScopedStream(stream2): wp.wait_stream(stream1) wp.launch(inc_new, dim=N, inputs=[a, b]) with wp.ScopedStream(stream3): wp.wait_stream(stream1) wp.launch(inc_new, dim=N, inputs=[a, c]) # d depends on b and c wp.wait_stream(stream2) wp.wait_stream(stream3) wp.launch(sum, dim=N, inputs=[b, c, d]) assert_np_equal(a.numpy(), np.full(N, fill_value=1.0)) assert_np_equal(b.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(c.numpy(), np.full(N, fill_value=2.0)) assert_np_equal(d.numpy(), np.full(N, fill_value=4.0)) def test_stream_arg_graph_mgpu(test, device): # resources on GPU 0 stream0 = wp.get_stream("cuda:0") a0 = wp.zeros(N, dtype=float, device="cuda:0") b0 = wp.empty(N, dtype=float, device="cuda:0") c0 = wp.empty(N, dtype=float, device="cuda:0") # resources on GPU 1 stream1 = wp.get_stream("cuda:1") a1 = wp.zeros(N, dtype=float, device="cuda:1") # start recording on stream0 wp.capture_begin(stream=stream0) # branch into stream1 stream1.wait_stream(stream0) # launch concurrent kernels on each stream wp.launch(inc, dim=N, inputs=[a0], stream=stream0) wp.launch(inc, dim=N, inputs=[a1], stream=stream1) # wait for stream1 to finish stream0.wait_stream(stream1) # copy values from stream1 wp.copy(b0, a1, stream=stream0) # compute sum wp.launch(sum, dim=N, inputs=[a0, b0, c0], stream=stream0) # finish recording on stream0 g = wp.capture_end(stream=stream0) # replay num_iters = 10 for _ in range(num_iters): wp.capture_launch(g, stream=stream0) # check results assert_np_equal(c0.numpy(), np.full(N, fill_value=2 * num_iters)) def test_stream_scope_graph_mgpu(test, device): # resources on GPU 0 with wp.ScopedDevice("cuda:0"): stream0 = wp.get_stream() a0 = wp.zeros(N, dtype=float) b0 = wp.empty(N, dtype=float) c0 = wp.empty(N, dtype=float) # resources on GPU 1 with wp.ScopedDevice("cuda:1"): stream1 = wp.get_stream() a1 = wp.zeros(N, dtype=float) # capture graph with wp.ScopedDevice("cuda:0"): # start recording wp.capture_begin() with wp.ScopedDevice("cuda:1"): # branch into stream1 wp.wait_stream(stream0) wp.launch(inc, dim=N, inputs=[a1]) wp.launch(inc, dim=N, inputs=[a0]) # wait for stream1 to finish wp.wait_stream(stream1) # copy values from stream1 wp.copy(b0, a1) # compute sum wp.launch(sum, dim=N, inputs=[a0, b0, c0]) # finish recording g = wp.capture_end() # replay with wp.ScopedDevice("cuda:0"): num_iters = 10 for _ in range(num_iters): wp.capture_launch(g) # check results assert_np_equal(c0.numpy(), np.full(N, fill_value=2 * num_iters)) def register(parent): devices = wp.get_cuda_devices() class TestStreams(parent): pass add_function_test(TestStreams, "test_stream_arg_implicit_sync", test_stream_arg_implicit_sync, devices=devices) add_function_test(TestStreams, "test_stream_scope_implicit_sync", test_stream_scope_implicit_sync, devices=devices) add_function_test(TestStreams, "test_stream_arg_synchronize", test_stream_arg_synchronize, devices=devices) add_function_test(TestStreams, "test_stream_arg_wait_event", test_stream_arg_wait_event, devices=devices) add_function_test(TestStreams, "test_stream_arg_wait_stream", test_stream_arg_wait_stream, devices=devices) add_function_test(TestStreams, "test_stream_scope_synchronize", test_stream_scope_synchronize, devices=devices) add_function_test(TestStreams, "test_stream_scope_wait_event", test_stream_scope_wait_event, devices=devices) add_function_test(TestStreams, "test_stream_scope_wait_stream", test_stream_scope_wait_stream, devices=devices) if len(devices) > 1: add_function_test(TestStreams, "test_stream_arg_graph_mgpu", test_stream_arg_graph_mgpu) add_function_test(TestStreams, "test_stream_scope_graph_mgpu", test_stream_scope_graph_mgpu) return TestStreams if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_streams.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from warp.tests.test_base import * import numpy as np wp.init() # float volume tests @wp.kernel def test_volume_lookup_f(volume: wp.uint64, points: wp.array(dtype=wp.vec3)): tid = wp.tid() p = points[tid] expected = p[0] * p[1] * p[2] if abs(p[0]) > 10.0 or abs(p[1]) > 10.0 or abs(p[2]) > 10.0: expected = 10.0 i = int(p[0]) j = int(p[1]) k = int(p[2]) expect_eq(wp.volume_lookup_f(volume, i, j, k), expected) @wp.kernel def test_volume_sample_closest_f(volume: wp.uint64, points: wp.array(dtype=wp.vec3)): tid = wp.tid() p = points[tid] i = round(p[0]) j = round(p[1]) k = round(p[2]) expected = i * j * k if abs(i) > 10.0 or abs(j) > 10.0 or abs(k) > 10.0: expected = 10.0 expect_eq(wp.volume_sample_f(volume, p, wp.Volume.CLOSEST), expected) q = wp.volume_index_to_world(volume, p) q_inv = wp.volume_world_to_index(volume, q) expect_eq(p, q_inv) @wp.kernel def test_volume_sample_linear_f(volume: wp.uint64, points: wp.array(dtype=wp.vec3)): tid = wp.tid() p = points[tid] expected = p[0] * p[1] * p[2] if abs(p[0]) > 10.0 or abs(p[1]) > 10.0 or abs(p[2]) > 10.0: return # not testing against background values expect_near(wp.volume_sample_f(volume, p, wp.Volume.LINEAR), expected, 2.0e-4) @wp.kernel def test_volume_sample_grad_linear_f(volume: wp.uint64, points: wp.array(dtype=wp.vec3)): tid = wp.tid() p = points[tid] expected_val = p[0] * p[1] * p[2] expected_gx = p[1] * p[2] expected_gy = p[0] * p[2] expected_gz = p[0] * p[1] if abs(p[0]) > 10.0 or abs(p[1]) > 10.0 or abs(p[2]) > 10.0: return # not testing against background values grad = wp.vec3(0.0, 0.0, 0.0) val = wp.volume_sample_grad_f(volume, p, wp.Volume.LINEAR, grad) expect_near(val, expected_val, 2.0e-4) expect_near(grad[0], expected_gx, 2.0e-4) expect_near(grad[1], expected_gy, 2.0e-4) expect_near(grad[2], expected_gz, 2.0e-4) @wp.kernel def test_volume_sample_local_f_linear_values( volume: wp.uint64, points: wp.array(dtype=wp.vec3), values: wp.array(dtype=wp.float32) ): tid = wp.tid() p = points[tid] values[tid] = wp.volume_sample_f(volume, p, wp.Volume.LINEAR) @wp.kernel def test_volume_sample_grad_local_f_linear_values( volume: wp.uint64, points: wp.array(dtype=wp.vec3), values: wp.array(dtype=wp.float32), case_num:int ): tid = wp.tid() p = points[tid] grad = wp.vec3(0.0, 0.0, 0.0) val = wp.volume_sample_grad_f(volume, p, wp.Volume.LINEAR, grad) if case_num == 0: values[tid] = val elif case_num == 1: values[tid] = grad[0] elif case_num == 2: values[tid] = grad[1] elif case_num == 3: values[tid] = grad[2] @wp.kernel def test_volume_sample_world_f_linear_values( volume: wp.uint64, points: wp.array(dtype=wp.vec3), values: wp.array(dtype=wp.float32) ): tid = wp.tid() q = points[tid] p = wp.volume_world_to_index(volume, q) values[tid] = wp.volume_sample_f(volume, p, wp.Volume.LINEAR) @wp.kernel def test_volume_sample_grad_world_f_linear_values( volume: wp.uint64, points: wp.array(dtype=wp.vec3), values: wp.array(dtype=wp.float32), case_num:int ): tid = wp.tid() q = points[tid] p = wp.volume_world_to_index(volume, q) grad = wp.vec3(0.0, 0.0, 0.0) val = wp.volume_sample_grad_f(volume, p, wp.Volume.LINEAR, grad) if case_num == 0: values[tid] = val elif case_num == 1: values[tid] = grad[0] elif case_num == 2: values[tid] = grad[1] elif case_num == 3: values[tid] = grad[2] # vec3f volume tests @wp.kernel def test_volume_lookup_v(volume: wp.uint64, points: wp.array(dtype=wp.vec3)): tid = wp.tid() p = points[tid] expected = wp.vec3( p[0] + 2.0 * p[1] + 3.0 * p[2], 4.0 * p[0] + 5.0 * p[1] + 6.0 * p[2], 7.0 * p[0] + 8.0 * p[1] + 9.0 * p[2] ) if abs(p[0]) > 10.0 or abs(p[1]) > 10.0 or abs(p[2]) > 10.0: expected = wp.vec3(10.8, -4.13, 10.26) i = int(p[0]) j = int(p[1]) k = int(p[2]) expect_eq(wp.volume_lookup_v(volume, i, j, k), expected) @wp.kernel def test_volume_sample_closest_v(volume: wp.uint64, points: wp.array(dtype=wp.vec3)): tid = wp.tid() p = points[tid] i = round(p[0]) j = round(p[1]) k = round(p[2]) expected = wp.vec3(i + 2.0 * j + 3.0 * k, 4.0 * i + 5.0 * j + 6.0 * k, 7.0 * i + 8.0 * j + 9.0 * k) if abs(i) > 10.0 or abs(j) > 10.0 or abs(k) > 10.0: expected = wp.vec3(10.8, -4.13, 10.26) expect_eq(wp.volume_sample_v(volume, p, wp.Volume.CLOSEST), expected) q = wp.volume_index_to_world(volume, p) q_inv = wp.volume_world_to_index(volume, q) expect_eq(p, q_inv) @wp.kernel def test_volume_sample_linear_v(volume: wp.uint64, points: wp.array(dtype=wp.vec3)): tid = wp.tid() p = points[tid] expected = wp.vec3( p[0] + 2.0 * p[1] + 3.0 * p[2], 4.0 * p[0] + 5.0 * p[1] + 6.0 * p[2], 7.0 * p[0] + 8.0 * p[1] + 9.0 * p[2] ) if abs(p[0]) > 10.0 or abs(p[1]) > 10.0 or abs(p[2]) > 10.0: return # not testing against background values expect_near(wp.volume_sample_v(volume, p, wp.Volume.LINEAR), expected, 2.0e-4) @wp.kernel def test_volume_sample_local_v_linear_values( volume: wp.uint64, points: wp.array(dtype=wp.vec3), values: wp.array(dtype=wp.float32) ): tid = wp.tid() p = points[tid] ones = wp.vec3(1.0, 1.0, 1.0) values[tid] = wp.dot(wp.volume_sample_v(volume, p, wp.Volume.LINEAR), ones) @wp.kernel def test_volume_sample_world_v_linear_values( volume: wp.uint64, points: wp.array(dtype=wp.vec3), values: wp.array(dtype=wp.float32) ): tid = wp.tid() q = points[tid] p = wp.volume_world_to_index(volume, q) ones = wp.vec3(1.0, 1.0, 1.0) values[tid] = wp.dot(wp.volume_sample_v(volume, p, wp.Volume.LINEAR), ones) # int32 volume tests @wp.kernel def test_volume_lookup_i(volume: wp.uint64, points: wp.array(dtype=wp.vec3)): tid = wp.tid() p = points[tid] i = int(p[0]) j = int(p[1]) k = int(p[2]) expected = i * j * k if abs(i) > 10 or abs(j) > 10 or abs(k) > 10: expected = 10 expect_eq(wp.volume_lookup_i(volume, i, j, k), expected) @wp.kernel def test_volume_sample_i(volume: wp.uint64, points: wp.array(dtype=wp.vec3)): tid = wp.tid() p = points[tid] i = round(p[0]) j = round(p[1]) k = round(p[2]) expected = int(i * j * k) if abs(i) > 10.0 or abs(j) > 10.0 or abs(k) > 10.0: expected = 10 expect_eq(wp.volume_sample_i(volume, p), expected) q = wp.volume_index_to_world(volume, p) q_inv = wp.volume_world_to_index(volume, q) expect_eq(p, q_inv) # Index/world transformation tests @wp.kernel def test_volume_index_to_world( volume: wp.uint64, points: wp.array(dtype=wp.vec3), values: wp.array(dtype=wp.float32), grad_values: wp.array(dtype=wp.vec3), ): tid = wp.tid() p = points[tid] ones = wp.vec3(1.0, 1.0, 1.0) values[tid] = wp.dot(wp.volume_index_to_world(volume, p), ones) grad_values[tid] = wp.volume_index_to_world_dir(volume, ones) @wp.kernel def test_volume_world_to_index( volume: wp.uint64, points: wp.array(dtype=wp.vec3), values: wp.array(dtype=wp.float32), grad_values: wp.array(dtype=wp.vec3), ): tid = wp.tid() p = points[tid] ones = wp.vec3(1.0, 1.0, 1.0) values[tid] = wp.dot(wp.volume_world_to_index(volume, p), ones) grad_values[tid] = wp.volume_world_to_index_dir(volume, ones) # Volume write tests @wp.kernel def test_volume_store_f(volume: wp.uint64, points: wp.array(dtype=wp.vec3), values: wp.array(dtype=wp.float32)): tid = wp.tid() p = points[tid] i = int(p[0]) j = int(p[1]) k = int(p[2]) # NB: Writing outside the allocated domain overwrites the background value of the Volume if abs(i) <= 11 and abs(j) <= 11 and abs(k) <= 11: wp.volume_store_f(volume, i, j, k, float(i + 100 * j + 10000 * k)) values[tid] = wp.volume_lookup_f(volume, i, j, k) @wp.kernel def test_volume_store_v(volume: wp.uint64, points: wp.array(dtype=wp.vec3), values: wp.array(dtype=wp.vec3)): tid = wp.tid() p = points[tid] i = int(p[0]) j = int(p[1]) k = int(p[2]) # NB: Writing outside the allocated domain overwrites the background value of the Volume if abs(i) <= 11 and abs(j) <= 11 and abs(k) <= 11: wp.volume_store_v(volume, i, j, k, p) values[tid] = wp.volume_lookup_v(volume, i, j, k) @wp.kernel def test_volume_store_i(volume: wp.uint64, points: wp.array(dtype=wp.vec3), values: wp.array(dtype=wp.int32)): tid = wp.tid() p = points[tid] i = int(p[0]) j = int(p[1]) k = int(p[2]) # NB: Writing outside the allocated domain overwrites the background value of the Volume if abs(i) <= 11 and abs(j) <= 11 and abs(k) <= 11: wp.volume_store_i(volume, i, j, k, i + 100 * j + 10000 * k) values[tid] = wp.volume_lookup_i(volume, i, j, k) def register(parent): devices = get_test_devices() rng = np.random.default_rng(101215) # Note about the test grids: # test_grid and test_int32_grid # active region: [-10,10]^3 # values: v[i,j,k] = i * j * k # voxel size: 0.25 # # test_vec_grid # active region: [-10,10]^3 # values: v[i,j,k] = (i + 2*j + 3*k, 4*i + 5*j + 6*k, 7*i + 8*j + 9*k) # voxel size: 0.25 # # torus # index to world transformation: # [0.1, 0, 0, 0] # [0, 0, 0.1, 0] # [0, 0.1, 0, 0] # [1, 2, 3, 1] # (-90 degrees rotation along X) # voxel size: 0.1 volume_paths = { "float": os.path.abspath(os.path.join(os.path.dirname(__file__), "assets/test_grid.nvdb")), "int32": os.path.abspath(os.path.join(os.path.dirname(__file__), "assets/test_int32_grid.nvdb")), "vec3f": os.path.abspath(os.path.join(os.path.dirname(__file__), "assets/test_vec_grid.nvdb")), "torus": os.path.abspath(os.path.join(os.path.dirname(__file__), "assets/torus.nvdb")), "float_write": os.path.abspath(os.path.join(os.path.dirname(__file__), "assets/test_grid.nvdb")), } test_volume_tiles = ( np.array([[i, j, k] for i in range(-2, 2) for j in range(-2, 2) for k in range(-2, 2)], dtype=np.int32) * 8 ) volumes = {} points = {} points_jittered = {} for value_type, path in volume_paths.items(): volumes[value_type] = {} volume_data = open(path, "rb").read() for device in devices: try: volume = wp.Volume.load_from_nvdb(volume_data, device) except RuntimeError as e: raise RuntimeError(f'Failed to load volume from "{path}" to {device} memory:\n{e}') volumes[value_type][device.alias] = volume axis = np.linspace(-1, 1, 3) point_grid = np.array([[x, y, z] for x in axis for y in axis for z in axis], dtype=np.float32) class TestVolumes(parent): def test_volume_sample_linear_f_gradient(self): for device in devices: points = rng.uniform(-10.0, 10.0, size=(100, 3)) values = wp.array(np.zeros(1), dtype=wp.float32, device=device, requires_grad=True) for case in points: uvws = wp.array(case, dtype=wp.vec3, device=device, requires_grad=True) xyzs = wp.array(case * 0.25, dtype=wp.vec3, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch( test_volume_sample_local_f_linear_values, dim=1, inputs=[volumes["float"][device.alias].id, uvws, values], device=device, ) tape.backward(values) x, y, z = case grad_expected = np.array([y * z, x * z, x * y]) grad_computed = tape.gradients[uvws].numpy()[0] np.testing.assert_allclose(grad_computed, grad_expected, rtol=1e-4) tape = wp.Tape() with tape: wp.launch( test_volume_sample_world_f_linear_values, dim=1, inputs=[volumes["float"][device.alias].id, xyzs, values], device=device, ) tape.backward(values) x, y, z = case grad_expected = np.array([y * z, x * z, x * y]) / 0.25 grad_computed = tape.gradients[xyzs].numpy()[0] np.testing.assert_allclose(grad_computed, grad_expected, rtol=1e-4) def test_volume_sample_grad_linear_f_gradient(self): for device in devices: points = rng.uniform(-10.0, 10.0, size=(100, 3)) values = wp.array(np.zeros(1), dtype=wp.float32, device=device, requires_grad=True) for case in points: uvws = wp.array(case, dtype=wp.vec3, device=device, requires_grad=True) xyzs = wp.array(case * 0.25, dtype=wp.vec3, device=device, requires_grad=True) for case_num in range(4): tape = wp.Tape() with tape: wp.launch( test_volume_sample_grad_local_f_linear_values, dim=1, inputs=[volumes["float"][device.alias].id, uvws, values, case_num], device=device, ) tape.backward(values) x, y, z = case grad_computed = tape.gradients[uvws].numpy()[0] if case_num == 0: grad_expected = np.array([y * z, x * z, x * y]) elif case_num == 1: grad_expected = np.array([0.0, z, y]) elif case_num == 2: grad_expected = np.array([z, 0.0, x]) elif case_num == 3: grad_expected = np.array([y, x, 0.0]) np.testing.assert_allclose(grad_computed, grad_expected, rtol=1e-4) tape.zero() for case_num in range(4): tape = wp.Tape() with tape: wp.launch( test_volume_sample_grad_world_f_linear_values, dim=1, inputs=[volumes["float"][device.alias].id, xyzs, values, case_num], device=device, ) tape.backward(values) x, y, z = case grad_computed = tape.gradients[xyzs].numpy()[0] if case_num == 0: grad_expected = np.array([y * z, x * z, x * y]) / 0.25 elif case_num == 1: grad_expected = np.array([0.0, z, y]) / 0.25 elif case_num == 2: grad_expected = np.array([z, 0.0, x]) / 0.25 elif case_num == 3: grad_expected = np.array([y, x, 0.0]) / 0.25 np.testing.assert_allclose(grad_computed, grad_expected, rtol=1e-4) tape.zero() def test_volume_sample_linear_v_gradient(self): for device in devices: points = rng.uniform(-10.0, 10.0, size=(100, 3)) values = wp.zeros(1, dtype=wp.float32, device=device, requires_grad=True) for case in points: uvws = wp.array(case, dtype=wp.vec3, device=device, requires_grad=True) xyzs = wp.array(case * 0.25, dtype=wp.vec3, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch( test_volume_sample_local_v_linear_values, dim=1, inputs=[volumes["vec3f"][device.alias].id, uvws, values], device=device, ) tape.backward(values) grad_expected = np.array([6.0, 15.0, 24.0]) grad_computed = tape.gradients[uvws].numpy()[0] np.testing.assert_allclose(grad_computed, grad_expected, rtol=1e-4) tape = wp.Tape() with tape: wp.launch( test_volume_sample_world_v_linear_values, dim=1, inputs=[volumes["vec3f"][device.alias].id, xyzs, values], device=device, ) tape.backward(values) grad_expected = np.array([6.0, 15.0, 24.0]) / 0.25 grad_computed = tape.gradients[xyzs].numpy()[0] np.testing.assert_allclose(grad_computed, grad_expected, rtol=1e-4) def test_volume_transform_gradient(self): for device in devices: values = wp.zeros(1, dtype=wp.float32, device=device, requires_grad=True) grad_values = wp.zeros(1, dtype=wp.vec3, device=device) points = rng.uniform(-10.0, 10.0, size=(10, 3)) for case in points: points = wp.array(case, dtype=wp.vec3, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch( test_volume_index_to_world, dim=1, inputs=[volumes["torus"][device.alias].id, points, values, grad_values], device=device, ) tape.backward(values) grad_computed = tape.gradients[points].numpy() grad_expected = grad_values.numpy() np.testing.assert_allclose(grad_computed, grad_expected, rtol=1e-4) grad_computed = tape.gradients[points].numpy() grad_expected = grad_values.numpy() np.testing.assert_allclose(grad_computed, grad_expected, rtol=1e-4) def test_volume_store(self): values_ref = np.array([x + 100 * y + 10000 * z for x, y, z in point_grid]) for device in devices: points = wp.array(point_grid, dtype=wp.vec3, device=device) values = wp.empty(len(point_grid), dtype=wp.float32, device=device) wp.launch( test_volume_store_f, dim=len(point_grid), inputs=[volumes["float_write"][device.alias].id, points, values], device=device, ) values_res = values.numpy() np.testing.assert_equal(values_res, values_ref) def test_volume_allocation_f(self): bg_value = -123.0 points_np = np.append(point_grid, [[8096, 8096, 8096]], axis=0) values_ref = np.append(np.array([x + 100 * y + 10000 * z for x, y, z in point_grid]), bg_value) for device in devices: if device.is_cpu: continue volume = wp.Volume.allocate( min=[-11, -11, -11], max=[11, 11, 11], voxel_size=0.1, bg_value=bg_value, device=device ) points = wp.array(points_np, dtype=wp.vec3, device=device) values = wp.empty(len(points_np), dtype=wp.float32, device=device) wp.launch(test_volume_store_f, dim=len(points_np), inputs=[volume.id, points, values], device=device) values_res = values.numpy() np.testing.assert_equal(values_res, values_ref) def test_volume_allocation_v(self): bg_value = (-1, 2.0, -3) points_np = np.append(point_grid, [[8096, 8096, 8096]], axis=0) values_ref = np.append(point_grid, [bg_value], axis=0) for device in devices: if device.is_cpu: continue volume = wp.Volume.allocate( min=[-11, -11, -11], max=[11, 11, 11], voxel_size=0.1, bg_value=bg_value, device=device ) points = wp.array(points_np, dtype=wp.vec3, device=device) values = wp.empty(len(points_np), dtype=wp.vec3, device=device) wp.launch(test_volume_store_v, dim=len(points_np), inputs=[volume.id, points, values], device=device) values_res = values.numpy() np.testing.assert_equal(values_res, values_ref) def test_volume_allocation_i(self): bg_value = -123 points_np = np.append(point_grid, [[8096, 8096, 8096]], axis=0) values_ref = np.append( np.array([x + 100 * y + 10000 * z for x, y, z in point_grid], dtype=np.int32), bg_value ) for device in devices: if device.is_cpu: continue volume = wp.Volume.allocate( min=[-11, -11, -11], max=[11, 11, 11], voxel_size=0.1, bg_value=bg_value, device=device ) points = wp.array(points_np, dtype=wp.vec3, device=device) values = wp.empty(len(points_np), dtype=wp.int32, device=device) wp.launch(test_volume_store_i, dim=len(points_np), inputs=[volume.id, points, values], device=device) values_res = values.numpy() np.testing.assert_equal(values_res, values_ref) def test_volume_introspection(self): for volume_names in ("float", "vec3f"): for device in devices: volume = volumes[volume_names][device.alias] tiles_actual = volume.get_tiles().numpy() tiles_sorted = tiles_actual[np.lexsort(tiles_actual.T[::-1])] voxel_size = np.array(volume.get_voxel_size()) np.testing.assert_equal(test_volume_tiles, tiles_sorted) np.testing.assert_equal([0.25] * 3, voxel_size) for device in devices: points_jittered_np = point_grid + rng.uniform(-0.5, 0.5, size=point_grid.shape) points[device.alias] = wp.array(point_grid, dtype=wp.vec3, device=device) points_jittered[device.alias] = wp.array(points_jittered_np, dtype=wp.vec3, device=device) add_kernel_test( TestVolumes, test_volume_lookup_f, dim=len(point_grid), inputs=[volumes["float"][device.alias].id, points[device.alias]], devices=[device], ) add_kernel_test( TestVolumes, test_volume_sample_closest_f, dim=len(point_grid), inputs=[volumes["float"][device.alias].id, points_jittered[device.alias]], devices=[device.alias], ) add_kernel_test( TestVolumes, test_volume_sample_linear_f, dim=len(point_grid), inputs=[volumes["float"][device.alias].id, points_jittered[device.alias]], devices=[device.alias], ) add_kernel_test( TestVolumes, test_volume_sample_grad_linear_f, dim=len(point_grid), inputs=[volumes["float"][device.alias].id, points_jittered[device.alias]], devices=[device.alias], ) add_kernel_test( TestVolumes, test_volume_lookup_v, dim=len(point_grid), inputs=[volumes["vec3f"][device.alias].id, points[device.alias]], devices=[device.alias], ) add_kernel_test( TestVolumes, test_volume_sample_closest_v, dim=len(point_grid), inputs=[volumes["vec3f"][device.alias].id, points_jittered[device.alias]], devices=[device.alias], ) add_kernel_test( TestVolumes, test_volume_sample_linear_v, dim=len(point_grid), inputs=[volumes["vec3f"][device.alias].id, points_jittered[device.alias]], devices=[device.alias], ) add_kernel_test( TestVolumes, test_volume_lookup_i, dim=len(point_grid), inputs=[volumes["int32"][device.alias].id, points[device.alias]], devices=[device.alias], ) add_kernel_test( TestVolumes, test_volume_sample_i, dim=len(point_grid), inputs=[volumes["int32"][device.alias].id, points_jittered[device.alias]], devices=[device.alias], ) return TestVolumes if __name__ == "__main__": wp.force_load() c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_volume.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from warp.tests.test_base import * from warp.sim import ModelBuilder import numpy as np wp.init() def register(parent): class TestModel(parent): def test_add_triangles(self): pts = np.array( [ [-0.00585869, 0.34189449, -1.17415233], [-1.894547, 0.1788074, 0.9251329], [-1.26141048, 0.16140787, 0.08823282], [-0.08609255, -0.82722546, 0.65995427], [0.78827592, -1.77375711, -0.55582718], ] ) tris = np.array([[0, 3, 4], [0, 2, 3], [2, 1, 3], [1, 4, 3]]) builder1 = ModelBuilder() builder2 = ModelBuilder() for pt in pts: builder1.add_particle(pt, [0.0, 0.0, 0.0], 1.0) builder2.add_particle(pt, [0.0, 0.0, 0.0], 1.0) # test add_triangle(s) with default arguments: areas = builder2.add_triangles(tris[:, 0], tris[:, 1], tris[:, 2]) for i, t in enumerate(tris): area = builder1.add_triangle(t[0], t[1], t[2]) self.assertAlmostEqual(area, areas[i], places=6) # test add_triangle(s) with non default arguments: tri_ke = np.random.randn(pts.shape[0]) tri_ka = np.random.randn(pts.shape[0]) tri_kd = np.random.randn(pts.shape[0]) tri_drag = np.random.randn(pts.shape[0]) tri_lift = np.random.randn(pts.shape[0]) for i, t in enumerate(tris): builder1.add_triangle( t[0], t[1], t[2], tri_ke[i], tri_ka[i], tri_kd[i], tri_drag[i], tri_lift[i], ) builder2.add_triangles(tris[:, 0], tris[:, 1], tris[:, 2], tri_ke, tri_ka, tri_kd, tri_drag, tri_lift) assert_np_equal(np.array(builder1.tri_indices), np.array(builder2.tri_indices)) assert_np_equal(np.array(builder1.tri_poses), np.array(builder2.tri_poses), tol=1.0e-6) assert_np_equal(np.array(builder1.tri_activations), np.array(builder2.tri_activations)) assert_np_equal(np.array(builder1.tri_materials), np.array(builder2.tri_materials)) def test_add_edges(self): pts = np.array( [ [-0.00585869, 0.34189449, -1.17415233], [-1.894547, 0.1788074, 0.9251329], [-1.26141048, 0.16140787, 0.08823282], [-0.08609255, -0.82722546, 0.65995427], [0.78827592, -1.77375711, -0.55582718], ] ) edges = np.array([[0, 4, 3, 1], [3, 2, 4, 1]]) builder1 = ModelBuilder() builder2 = ModelBuilder() for pt in pts: builder1.add_particle(pt, [0.0, 0.0, 0.0], 1.0) builder2.add_particle(pt, [0.0, 0.0, 0.0], 1.0) # test defaults: for i in range(2): builder1.add_edge(edges[i, 0], edges[i, 1], edges[i, 2], edges[i, 3]) builder2.add_edges(edges[:, 0], edges[:, 1], edges[:, 2], edges[:, 3]) # test non defaults: rest = np.random.randn(2) edge_ke = np.random.randn(2) edge_kd = np.random.randn(2) for i in range(2): builder1.add_edge(edges[i, 0], edges[i, 1], edges[i, 2], edges[i, 3], rest[i], edge_ke[i], edge_kd[i]) builder2.add_edges(edges[:, 0], edges[:, 1], edges[:, 2], edges[:, 3], rest, edge_ke, edge_kd) assert_np_equal(np.array(builder1.edge_indices), np.array(builder2.edge_indices)) assert_np_equal(np.array(builder1.edge_rest_angle), np.array(builder2.edge_rest_angle), tol=1.0e-4) assert_np_equal(np.array(builder1.edge_bending_properties), np.array(builder2.edge_bending_properties)) return TestModel if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_model.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import unittest import warp as wp from warp.tests.test_base import * wp.init() epsilon = 0.00001 @wp.kernel def closest_point_edge_edge_kernel( p1: wp.array(dtype=wp.vec3), q1: wp.array(dtype=wp.vec3), p2: wp.array(dtype=wp.vec3), q2: wp.array(dtype=wp.vec3), epsilon: float, st0: wp.array(dtype=wp.vec3), c1: wp.array(dtype=wp.vec3), c2: wp.array(dtype=wp.vec3), ): tid = wp.tid() st = wp.closest_point_edge_edge(p1[tid], q1[tid], p2[tid], q2[tid], epsilon) s = st[0] t = st[1] st0[tid] = st c1[tid] = p1[tid] + (q1[tid] - p1[tid]) * s c2[tid] = p2[tid] + (q2[tid] - p2[tid]) * t def closest_point_edge_edge_launch(p1, q1, p2, q2, epsilon, st0, c1, c2, device): n = len(p1) wp.launch( kernel=closest_point_edge_edge_kernel, dim=n, inputs=[p1, q1, p2, q2, epsilon], outputs=[st0, c1, c2], device=device, ) def run_closest_point_edge_edge(p1_h, q1_h, p2_h, q2_h, device): p1 = wp.array(p1_h, dtype=wp.vec3, device=device) q1 = wp.array(q1_h, dtype=wp.vec3, device=device) p2 = wp.array(p2_h, dtype=wp.vec3, device=device) q2 = wp.array(q2_h, dtype=wp.vec3, device=device) st0 = wp.empty_like(p1) c1 = wp.empty_like(p1) c2 = wp.empty_like(p1) closest_point_edge_edge_launch(p1, q1, p2, q2, epsilon, st0, c1, c2, device) wp.synchronize() view = st0.numpy() return view def test_edge_edge_middle_crossing(test, device): p1_h = np.array([[0, 0, 0]]) q1_h = np.array([[1, 1, 0]]) p2_h = np.array([[0, 1, 0]]) q2_h = np.array([[1, 0, 0]]) res = run_closest_point_edge_edge(p1_h, q1_h, p2_h, q2_h, device) st0 = res[0] test.assertAlmostEqual(st0[0], 0.5) # s value test.assertAlmostEqual(st0[1], 0.5) # t value def test_edge_edge_parallel_s1_t0(test, device): p1_h = np.array([[0, 0, 0]]) q1_h = np.array([[1, 1, 0]]) p2_h = np.array([[2, 2, 0]]) q2_h = np.array([[3, 3, 0]]) res = run_closest_point_edge_edge(p1_h, q1_h, p2_h, q2_h, device) st0 = res[0] test.assertAlmostEqual(st0[0], 1.0) # s value test.assertAlmostEqual(st0[1], 0.0) # t value def test_edge_edge_parallel_s0_t1(test, device): p1_h = np.array([[0, 0, 0]]) q1_h = np.array([[1, 1, 0]]) p2_h = np.array([[-2, -2, 0]]) q2_h = np.array([[-1, -1, 0]]) res = run_closest_point_edge_edge(p1_h, q1_h, p2_h, q2_h, device) st0 = res[0] test.assertAlmostEqual(st0[0], 0.0) # s value test.assertAlmostEqual(st0[1], 1.0) # t value def test_edge_edge_both_degenerate_case(test, device): p1_h = np.array([[0, 0, 0]]) q1_h = np.array([[0, 0, 0]]) p2_h = np.array([[1, 1, 1]]) q2_h = np.array([[1, 1, 1]]) res = run_closest_point_edge_edge(p1_h, q1_h, p2_h, q2_h, device) st0 = res[0] test.assertAlmostEqual(st0[0], 0.0) # s value test.assertAlmostEqual(st0[1], 0.0) # t value def test_edge_edge_degenerate_first_edge(test, device): p1_h = np.array([[0, 0, 0]]) q1_h = np.array([[0, 0, 0]]) p2_h = np.array([[0, 1, 0]]) q2_h = np.array([[1, 0, 0]]) res = run_closest_point_edge_edge(p1_h, q1_h, p2_h, q2_h, device) st0 = res[0] test.assertAlmostEqual(st0[0], 0.0) # s value test.assertAlmostEqual(st0[1], 0.5) # t value def test_edge_edge_degenerate_second_edge(test, device): p1_h = np.array([[1, 0, 0]]) q1_h = np.array([[0, 1, 0]]) p2_h = np.array([[1, 1, 0]]) q2_h = np.array([[1, 1, 0]]) res = run_closest_point_edge_edge(p1_h, q1_h, p2_h, q2_h, device) st0 = res[0] test.assertAlmostEqual(st0[0], 0.5) # s value test.assertAlmostEqual(st0[1], 0.0) # t value def test_edge_edge_parallel(test, device): p1_h = np.array([[0, 0, 0]]) q1_h = np.array([[1, 0, 0]]) p2_h = np.array([[-0.5, 1, 0]]) q2_h = np.array([[0.5, 1, 0]]) res = run_closest_point_edge_edge(p1_h, q1_h, p2_h, q2_h, device) st0 = res[0] test.assertAlmostEqual(st0[0], 0.0) # s value test.assertAlmostEqual(st0[1], 0.5) # t value def test_edge_edge_perpendicular_s1_t0(test, device): p1_h = np.array([[0, 0, 0]]) q1_h = np.array([[1, 1, 0]]) p2_h = np.array([[10, 1, 0]]) q2_h = np.array([[11, 0, 0]]) res = run_closest_point_edge_edge(p1_h, q1_h, p2_h, q2_h, device) st0 = res[0] test.assertAlmostEqual(st0[0], 1.0) # s value test.assertAlmostEqual(st0[1], 0.0) # t value def test_edge_edge_perpendicular_s0_t1(test, device): p1_h = np.array([[0, 0, 0]]) q1_h = np.array([[1, 1, 0]]) p2_h = np.array([[-11, -1, 0]]) q2_h = np.array([[-5, 0, 0]]) res = run_closest_point_edge_edge(p1_h, q1_h, p2_h, q2_h, device) st0 = res[0] test.assertAlmostEqual(st0[0], 0.0) # s value test.assertAlmostEqual(st0[1], 1.0) # t value def register(parent): devices = get_test_devices() class TestClosestPointEdgeEdgeMethods(parent): pass add_function_test( TestClosestPointEdgeEdgeMethods, "test_edge_edge_middle_crossing", test_edge_edge_middle_crossing, devices=devices, ) add_function_test( TestClosestPointEdgeEdgeMethods, "test_edge_edge_parallel_s1_t0", test_edge_edge_parallel_s1_t0, devices=devices ) add_function_test( TestClosestPointEdgeEdgeMethods, "test_edge_edge_parallel_s0_t1", test_edge_edge_parallel_s0_t1, devices=devices ) add_function_test( TestClosestPointEdgeEdgeMethods, "test_edge_edge_both_degenerate_case", test_edge_edge_both_degenerate_case, devices=devices, ) add_function_test( TestClosestPointEdgeEdgeMethods, "test_edge_edge_degenerate_first_edge", test_edge_edge_degenerate_first_edge, devices=devices, ) add_function_test( TestClosestPointEdgeEdgeMethods, "test_edge_edge_degenerate_second_edge", test_edge_edge_degenerate_second_edge, devices=devices, ) add_function_test( TestClosestPointEdgeEdgeMethods, "test_edge_edge_parallel", test_edge_edge_parallel, devices=devices ) add_function_test( TestClosestPointEdgeEdgeMethods, "test_edge_edge_perpendicular_s1_t0", test_edge_edge_perpendicular_s1_t0, devices=devices, ) add_function_test( TestClosestPointEdgeEdgeMethods, "test_edge_edge_perpendicular_s0_t1", test_edge_edge_perpendicular_s0_t1, devices=devices, ) return TestClosestPointEdgeEdgeMethods if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_closest_point_edge_edge.py
# This file is used to test reloading module references. import warp as wp import warp.tests.test_reference_reference as refref wp.init() @wp.func def magic(): return 2.0 * refref.more_magic()
warp-main
warp/tests/test_reference.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from dataclasses import dataclass from typing import Any import unittest import numpy as np import warp as wp from warp.tests.test_base import * @dataclass class TestData: a: Any b: Any t: float expected: Any expected_adj_a: Any = None expected_adj_b: Any = None expected_adj_t: float = None def check_backwards(self): return self.expected_adj_a is not None and self.expected_adj_b is not None and self.expected_adj_t is not None TEST_DATA = { wp.float32: ( TestData( a=1.0, b=5.0, t=0.75, expected=4.0, expected_adj_a=0.25, expected_adj_b=0.75, expected_adj_t=4.0, ), TestData( a=-2.0, b=5.0, t=0.25, expected=-0.25, expected_adj_a=0.75, expected_adj_b=0.25, expected_adj_t=7.0, ), TestData( a=1.23, b=2.34, t=0.5, expected=1.785, expected_adj_a=0.5, expected_adj_b=0.5, expected_adj_t=1.11, ), ), wp.vec2: ( TestData( a=[1, 2], b=[3, 4], t=0.5, expected=[2, 3], ), ), wp.vec3: ( TestData( a=[1, 2, 3], b=[3, 4, 5], t=0.5, expected=[2, 3, 4], ), ), wp.vec4: ( TestData( a=[1, 2, 3, 4], b=[3, 4, 5, 6], t=0.5, expected=[2, 3, 4, 5], ), ), wp.mat22: ( TestData( a=[[1, 2], [2, 1]], b=[[3, 4], [4, 3]], t=0.5, expected=[[2, 3], [3, 2]], ), ), wp.mat33: ( TestData( a=[[1, 2, 3], [3, 1, 2], [2, 3, 1]], b=[[3, 4, 5], [5, 3, 4], [4, 5, 3]], t=0.5, expected=[[2, 3, 4], [4, 2, 3], [3, 4, 2]], ), ), wp.mat44: ( TestData( a=[[1, 2, 3, 4], [4, 1, 2, 3], [3, 4, 1, 2], [2, 3, 4, 1]], b=[[3, 4, 5, 6], [6, 3, 4, 5], [5, 6, 3, 4], [4, 5, 6, 3]], t=0.5, expected=[[2, 3, 4, 5], [5, 2, 3, 4], [4, 5, 2, 3], [3, 4, 5, 2]], ), ), wp.quat: ( TestData( a=[1, 2, 3, 4], b=[3, 4, 5, 6], t=0.5, expected=[2, 3, 4, 5], ), ), wp.transform: ( TestData( a=[1, 2, 3, 4, 5, 6, 7], b=[3, 4, 5, 6, 7, 8, 9], t=0.5, expected=[2, 3, 4, 5, 6, 7, 8], ), ), wp.spatial_vector: ( TestData( a=[1, 2, 3, 4, 5, 6], b=[3, 4, 5, 6, 7, 8], t=0.5, expected=[2, 3, 4, 5, 6, 7], ), ), wp.spatial_matrix: ( TestData( a=[ [1, 2, 3, 4, 5, 6], [6, 1, 2, 3, 4, 5], [5, 6, 1, 2, 3, 4], [4, 5, 6, 1, 2, 3], [3, 4, 5, 6, 1, 2], [2, 3, 4, 5, 6, 1], ], b=[ [3, 4, 5, 6, 7, 8], [8, 3, 4, 5, 6, 7], [7, 8, 3, 4, 5, 6], [6, 7, 8, 3, 4, 5], [5, 6, 7, 8, 3, 4], [4, 5, 6, 7, 8, 3], ], t=0.5, expected=[ [2, 3, 4, 5, 6, 7], [7, 2, 3, 4, 5, 6], [6, 7, 2, 3, 4, 5], [5, 6, 7, 2, 3, 4], [4, 5, 6, 7, 2, 3], [3, 4, 5, 6, 7, 2], ], ), ), } wp.init() def test_lerp(test, device): def make_kernel_fn(data_type): def fn( a: wp.array(dtype=data_type), b: wp.array(dtype=data_type), t: wp.array(dtype=float), out: wp.array(dtype=data_type), ): out[0] = wp.lerp(a[0], b[0], t[0]) return fn for data_type in TEST_DATA: kernel_fn = make_kernel_fn(data_type) module = wp.get_module(kernel_fn.__module__) kernel = wp.Kernel( func=kernel_fn, key=f"test_lerp_{data_type.__name__}_kernel", module=module, ) for test_data in TEST_DATA[data_type]: a = wp.array( [test_data.a], dtype=data_type, device=device, requires_grad=True, ) b = wp.array( [test_data.b], dtype=data_type, device=device, requires_grad=True, ) t = wp.array( [test_data.t], dtype=float, device=device, requires_grad=True, ) out = wp.array( [0] * wp.types.type_length(data_type), dtype=data_type, device=device, requires_grad=True, ) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[a, b, t, out], device=device, ) assert_np_equal( out.numpy(), np.array([test_data.expected]), tol=1e-6, ) if test_data.check_backwards(): tape.backward(out) assert_np_equal( tape.gradients[a].numpy(), np.array([test_data.expected_adj_a]), tol=1e-6, ) assert_np_equal( tape.gradients[b].numpy(), np.array([test_data.expected_adj_b]), tol=1e-6, ) assert_np_equal( tape.gradients[t].numpy(), np.array([test_data.expected_adj_t]), tol=1e-6, ) def register(parent): devices = get_test_devices() class TestLerp(parent): pass add_function_test(TestLerp, "test_lerp", test_lerp, devices=devices) return TestLerp if __name__ == "__main__": _ = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_lerp.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest # include parent path import numpy as np import warp as wp from warp.tests.test_base import * wp.init() dim_x = wp.constant(2) dim_y = wp.constant(2) dim_z = wp.constant(2) dim_w = wp.constant(2) @wp.kernel def kernel1d(a: wp.array(dtype=int, ndim=1)): i = wp.tid() wp.expect_eq(a[i], i) @wp.kernel def kernel2d(a: wp.array(dtype=int, ndim=2)): i, j = wp.tid() wp.expect_eq(a[i, j], i * dim_y + j) @wp.kernel def kernel3d(a: wp.array(dtype=int, ndim=3)): i, j, k = wp.tid() wp.expect_eq(a[i, j, k], i * dim_y * dim_z + j * dim_z + k) @wp.kernel def kernel4d(a: wp.array(dtype=int, ndim=4)): i, j, k, l = wp.tid() wp.expect_eq(a[i, j, k, l], i * dim_y * dim_z * dim_w + j * dim_z * dim_w + k * dim_w + l) def test1d(test, device): a = np.arange(0, dim_x).reshape(dim_x) wp.launch(kernel1d, dim=a.shape, inputs=[wp.array(a, dtype=int, device=device)], device=device) def test2d(test, device): a = np.arange(0, dim_x * dim_y).reshape(dim_x, dim_y) wp.launch(kernel2d, dim=a.shape, inputs=[wp.array(a, dtype=int, device=device)], device=device) def test3d(test, device): a = np.arange(0, dim_x * dim_y * dim_z).reshape(dim_x, dim_y, dim_z) wp.launch(kernel3d, dim=a.shape, inputs=[wp.array(a, dtype=int, device=device)], device=device) def test4d(test, device): a = np.arange(0, dim_x * dim_y * dim_z * dim_w).reshape(dim_x, dim_y, dim_z, dim_w) wp.launch(kernel4d, dim=a.shape, inputs=[wp.array(a, dtype=int, device=device)], device=device) @wp.struct class Params: a: wp.array(dtype=int) i: int f: float @wp.kernel def kernel_cmd(params: Params, i: int, f: float, v: wp.vec3, m: wp.mat33, out: wp.array(dtype=int)): tid = wp.tid() wp.expect_eq(params.i, i) wp.expect_eq(params.f, f) wp.expect_eq(i, int(f)) wp.expect_eq(v[0], f) wp.expect_eq(v[1], f) wp.expect_eq(v[2], f) wp.expect_eq(m[0, 0], f) wp.expect_eq(m[1, 1], f) wp.expect_eq(m[2, 2], f) out[tid] = tid + i def test_launch_cmd(test, device): n = 1 ref = np.arange(0, n) out = wp.zeros(n, dtype=int, device=device) params = Params() params.i = 1 params.f = 1.0 v = wp.vec3(params.f, params.f, params.f) m = wp.mat33(params.f, 0.0, 0.0, 0.0, params.f, 0.0, 0.0, 0.0, params.f) # standard launch wp.launch(kernel_cmd, dim=n, inputs=[params, params.i, params.f, v, m, out], device=device) assert_np_equal(out.numpy(), ref + params.i) # cmd launch out.zero_() cmd = wp.launch(kernel_cmd, dim=n, inputs=[params, params.i, params.f, v, m, out], device=device, record_cmd=True) cmd.launch() assert_np_equal(out.numpy(), ref + params.i) def test_launch_cmd_set_param(test, device): n = 1 ref = np.arange(0, n) params = Params() v = wp.vec3() m = wp.mat33() cmd = wp.launch(kernel_cmd, dim=n, inputs=[params, 0, 0.0, v, m, None], device=device, record_cmd=True) # cmd param modification out = wp.zeros(n, dtype=int, device=device) params.i = 13 params.f = 13.0 v = wp.vec3(params.f, params.f, params.f) m = wp.mat33(params.f, 0.0, 0.0, 0.0, params.f, 0.0, 0.0, 0.0, params.f) cmd.set_param_at_index(0, params) cmd.set_param_at_index(1, params.i) cmd.set_param_at_index(2, params.f) cmd.set_param_at_index(3, v) cmd.set_param_at_index(4, m) cmd.set_param_by_name("out", out) cmd.launch() assert_np_equal(out.numpy(), ref + params.i) # test changing params after launch directly # because we now cache the ctypes object inside the wp.struct # instance the command buffer will be automatically updated params.i = 14 params.f = 14.0 v = wp.vec3(params.f, params.f, params.f) m = wp.mat33(params.f, 0.0, 0.0, 0.0, params.f, 0.0, 0.0, 0.0, params.f) # this is the line we explicitly leave out to # ensure that param changes are reflected in the launch # launch.set_param_at_index(0, params) cmd.set_param_at_index(1, params.i) cmd.set_param_at_index(2, params.f) cmd.set_param_at_index(3, v) cmd.set_param_at_index(4, m) cmd.set_param_by_name("out", out) cmd.launch() assert_np_equal(out.numpy(), ref + params.i) def test_launch_cmd_set_ctype(test, device): n = 1 ref = np.arange(0, n) params = Params() v = wp.vec3() m = wp.mat33() cmd = wp.launch(kernel_cmd, dim=n, inputs=[params, 0, 0.0, v, m, None], device=device, record_cmd=True) # cmd param modification out = wp.zeros(n, dtype=int, device=device) # cmd param modification out.zero_() params.i = 13 params.f = 13.0 v = wp.vec3(params.f, params.f, params.f) m = wp.mat33(params.f, 0.0, 0.0, 0.0, params.f, 0.0, 0.0, 0.0, params.f) cmd.set_param_at_index_from_ctype(0, params.__ctype__()) cmd.set_param_at_index_from_ctype(1, params.i) cmd.set_param_at_index_from_ctype(2, params.f) cmd.set_param_at_index_from_ctype(3, v) cmd.set_param_at_index_from_ctype(4, m) cmd.set_param_by_name_from_ctype("out", out.__ctype__()) cmd.launch() assert_np_equal(out.numpy(), ref + params.i) @wp.kernel def arange(out: wp.array(dtype=int)): tid = wp.tid() out[tid] = tid def test_launch_cmd_set_dim(test, device): n = 10 ref = np.arange(0, n, dtype=int) out = wp.zeros(n, dtype=int, device=device) cmd = wp.launch(arange, dim=n, inputs=[out], device=device, record_cmd=True) cmd.set_dim(5) cmd.launch() # check first half the array is filled while rest is still zero assert_np_equal(out.numpy()[0:5], ref[0:5]) assert_np_equal(out.numpy()[5:], np.zeros(5)) out.zero_() cmd.set_dim(10) cmd.launch() # check the whole array was filled assert_np_equal(out.numpy(), ref) def test_launch_cmd_empty(test, device): n = 10 ref = np.arange(0, n, dtype=int) out = wp.zeros(n, dtype=int, device=device) cmd = wp.Launch(arange, device) cmd.set_dim(5) cmd.set_param_by_name("out", out) cmd.launch() # check first half the array is filled while rest is still zero assert_np_equal(out.numpy()[0:5], ref[0:5]) assert_np_equal(out.numpy()[5:], np.zeros(5)) out.zero_() cmd.set_dim(10) cmd.launch() # check the whole array was filled assert_np_equal(out.numpy(), ref) @wp.kernel def kernel_mul( values: wp.array(dtype=int), coeff: int, out: wp.array(dtype=int), ): tid = wp.tid() out[tid] = values[tid] * coeff def test_launch_tuple_args(test, device): values = wp.array(np.arange(0, 4), dtype=int, device=device) coeff = 3 out = wp.empty_like(values) wp.launch( kernel_mul, dim=len(values), inputs=( values, coeff, ), outputs=(out,), device=device, ) assert_np_equal(out.numpy(), np.array((0, 3, 6, 9))) @wp.kernel def conditional_sum(result: wp.array(dtype=wp.uint64)): i, j, k = wp.tid() if i == 0: wp.atomic_add(result, 0, wp.uint64(1)) def test_launch_large_kernel(test, device): """Test tid() on kernel launch of 2**33 threads. The function conditional sum will add 1 to result for every thread that has an i index of 0. Due to the size of the grid, this test is not run on CPUs """ test_result = wp.zeros(shape=(1,), dtype=wp.uint64, device=device) large_dim_length = 2**16 half_result = large_dim_length * large_dim_length wp.launch(kernel=conditional_sum, dim=[2, large_dim_length, large_dim_length], inputs=[test_result], device=device) test.assertEqual(test_result.numpy()[0], half_result) def register(parent): devices = get_test_devices() class TestLaunch(parent): pass add_function_test(TestLaunch, "test_launch_1d", test1d, devices=devices) add_function_test(TestLaunch, "test_launch_2d", test2d, devices=devices) add_function_test(TestLaunch, "test_launch_3d", test3d, devices=devices) add_function_test(TestLaunch, "test_launch_4d", test4d, devices=devices) add_function_test(TestLaunch, "test_launch_cmd", test_launch_cmd, devices=devices) add_function_test(TestLaunch, "test_launch_cmd_set_param", test_launch_cmd_set_param, devices=devices) add_function_test(TestLaunch, "test_launch_cmd_set_ctype", test_launch_cmd_set_ctype, devices=devices) add_function_test(TestLaunch, "test_launch_cmd_set_dim", test_launch_cmd_set_dim, devices=devices) add_function_test(TestLaunch, "test_launch_cmd_empty", test_launch_cmd_empty, devices=devices) add_function_test(TestLaunch, "test_launch_large_kernel", test_launch_large_kernel, devices=wp.get_cuda_devices()) return TestLaunch if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_launch.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from warp.tests.test_base import * import numpy as np # import matplotlib.pyplot as plt wp.init() @wp.kernel def pnoise( kernel_seed: int, W: int, px: int, py: int, noise_values: wp.array(dtype=float), pixel_values: wp.array(dtype=float) ): tid = wp.tid() state = wp.rand_init(kernel_seed) x = (float(tid % W) + 0.5) * 0.2 y = (float(tid / W) + 0.5) * 0.2 p = wp.vec2(x, y) n = wp.pnoise(state, p, px, py) noise_values[tid] = n g = ((n + 1.0) / 2.0) * 255.0 pixel_values[tid] = g @wp.kernel def curlnoise(kernel_seed: int, W: int, noise_coords: wp.array(dtype=wp.vec2), noise_vectors: wp.array(dtype=wp.vec2)): tid = wp.tid() state = wp.rand_init(kernel_seed) x = (float(tid % W) + 0.5) * 0.2 y = (float(tid / W) + 0.5) * 0.2 p = wp.vec2(x, y) v = wp.curlnoise(state, p) noise_coords[tid] = p noise_vectors[tid] = v def test_pnoise(test, device): # image dim W = 256 H = 256 N = W * H seed = 42 # periodic perlin noise test px = 16 py = 16 noise_values = wp.zeros(N, dtype=float, device=device) pixel_values = wp.zeros(N, dtype=float, device=device) wp.launch(kernel=pnoise, dim=N, inputs=[seed, W, px, py, noise_values, pixel_values], outputs=[], device=device) # Perlin theoretical range is [-0.5*sqrt(n), 0.5*sqrt(n)] for n dimensions n = noise_values.numpy() # max = np.max(n) # min = np.min(n) img = pixel_values.numpy() img = np.reshape(img, (W, H)) ### Figure viewing ### # img = img.astype(np.uint8) # imgplot = plt.imshow(img, 'gray') # plt.savefig("pnoise_test.png") ### Generating pnoise_test_result_true.npy ### # np.save(os.path.join(os.path.dirname(__file__), "assets/pnoise_golden.npy"), img) ### Golden image comparison ### img_true = np.load(os.path.join(os.path.dirname(__file__), "assets/pnoise_golden.npy")) test.assertTrue(img.shape == img_true.shape) err = np.max(np.abs(img - img_true)) tolerance = 1.5e-3 test.assertTrue(err < tolerance, f"err is {err} which is >= {tolerance}") def test_curlnoise(test, device): # image dim W = 128 H = 128 N = W * H seed = 42 # curl noise test quiver_coords_host = wp.zeros(N, dtype=wp.vec2, device="cpu") quiver_coords = wp.zeros(N, dtype=wp.vec2, device=device) quiver_arrows_host = wp.zeros(N, dtype=wp.vec2, device="cpu") quiver_arrows = wp.zeros(N, dtype=wp.vec2, device=device) wp.launch(kernel=curlnoise, dim=N, inputs=[seed, W, quiver_coords, quiver_arrows], outputs=[], device=device) wp.copy(quiver_coords_host, quiver_coords) wp.copy(quiver_arrows_host, quiver_arrows) wp.synchronize() xy_coords = quiver_coords_host.numpy() uv_coords = quiver_arrows_host.numpy() # normalize norms = uv_coords[:, 0] * uv_coords[:, 0] + uv_coords[:, 1] * uv_coords[:, 1] uv_coords = uv_coords / np.sqrt(np.max(norms)) X = xy_coords[:, 0] Y = xy_coords[:, 1] U = uv_coords[:, 0] V = uv_coords[:, 1] ### Figure viewing ### # fig, ax = plt.subplots(figsize=(25,25)) # ax.quiver(X, Y, U, V) # ax.axis([0.0, 25.0, 0.0, 25.0]) # ax.set_aspect('equal') # plt.savefig("curlnoise_test.png") ### Generating curlnoise_test_result_true.npy ### result = np.stack((xy_coords, uv_coords)) # np.save(os.path.join(os.path.dirname(__file__), "assets/curlnoise_golden.npy"), result) ### Golden image comparison ### result_true = np.load(os.path.join(os.path.dirname(__file__), "assets/curlnoise_golden.npy")) test.assertTrue(result.shape, result_true.shape) err = np.max(np.abs(result - result_true)) test.assertTrue(err < 1e-04) @wp.kernel def noise_loss_kernel( kernel_seed: int, query_positions: wp.array(dtype=wp.vec2), noise_values: wp.array(dtype=float), noise_loss: wp.array(dtype=float), ): tid = wp.tid() state = wp.rand_init(kernel_seed) p = query_positions[tid] n = wp.noise(state, p) noise_values[tid] = n wp.atomic_add(noise_loss, 0, n) @wp.kernel def noise_cd(kernel_seed: int, query_positions: wp.array(dtype=wp.vec2), gradients: wp.array(dtype=wp.vec2)): tid = wp.tid() state = wp.rand_init(kernel_seed) p = query_positions[tid] eps = 1.0e-3 pl = wp.vec2(p[0] - eps, p[1]) pr = wp.vec2(p[0] + eps, p[1]) pd = wp.vec2(p[0], p[1] - eps) pu = wp.vec2(p[0], p[1] + eps) nl = wp.noise(state, pl) nr = wp.noise(state, pr) nd = wp.noise(state, pd) nu = wp.noise(state, pu) gx = (nr - nl) / (2.0 * eps) gy = (nu - nd) / (2.0 * eps) gradients[tid] = wp.vec2(gx, gy) def test_adj_noise(test, device): # grid dim N = 9 seed = 42 tape = wp.Tape() positions = np.array( [ [-0.1, -0.1], [0.0, -0.1], [0.1, -0.1], [-0.1, 0.0], [0.0, 0.0], [0.1, 0.0], [-0.1, 0.1], [0.0, 0.1], [0.1, 0.1], ] ) with tape: query_positions = wp.array(positions, dtype=wp.vec2, device=device, requires_grad=True) noise_values = wp.zeros(N, dtype=float, device=device) noise_loss = wp.zeros(n=1, dtype=float, device=device, requires_grad=True) wp.launch( kernel=noise_loss_kernel, dim=N, inputs=[seed, query_positions, noise_values, noise_loss], device=device ) # analytic tape.backward(loss=noise_loss) analytic = tape.gradients[query_positions].numpy().reshape((3, 3, 2)) # central difference gradients = wp.zeros(N, dtype=wp.vec2, device=device) wp.launch(kernel=noise_cd, dim=N, inputs=[seed, query_positions, gradients], device=device) gradients_host = gradients.numpy().reshape((3, 3, 2)) diff = analytic - gradients_host result = np.sum(diff * diff, axis=2) err = np.where(result > 1.0e-3, result, 0).sum() test.assertTrue(err < 1.0e-8) def register(parent): devices = get_test_devices() class TestNoise(parent): pass add_function_test(TestNoise, "test_pnoise", test_pnoise, devices=devices) add_function_test(TestNoise, "test_curlnoise", test_curlnoise, devices=devices) add_function_test(TestNoise, "test_adj_noise", test_adj_noise, devices=devices) return TestNoise if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_noise.py
import numpy as np import warp as wp from warp.utils import array_sum, array_inner from warp.tests.test_base import * wp.init() def make_test_array_sum(dtype): N = 1000 def test_array_sum(test, device): cols = wp.types.type_length(dtype) values_np = np.random.rand(N, cols) values = wp.array(values_np, device=device, dtype=dtype) vsum = array_sum(values) ref_vsum = values_np.sum(axis=0) assert_np_equal(vsum / N, ref_vsum / N, 0.0001) return test_array_sum def make_test_array_sum_axis(dtype): I = 5 J = 10 K = 2 N = I * J * K def test_array_sum(test, device): values_np = np.random.rand(I, J, K) values = wp.array(values_np, shape=(I, J, K), device=device, dtype=dtype) for axis in range(3): vsum = array_sum(values, axis=axis) ref_vsum = values_np.sum(axis=axis) assert_np_equal(vsum.numpy() / N, ref_vsum / N, 0.0001) return test_array_sum def make_test_array_inner(dtype): N = 1000 def test_array_inner(test, device): cols = wp.types.type_length(dtype) a_np = np.random.rand(N, cols) b_np = np.random.rand(N, cols) a = wp.array(a_np, device=device, dtype=dtype) b = wp.array(b_np, device=device, dtype=dtype) ab = array_inner(a, b) ref_ab = np.dot(a_np.flatten(), b_np.flatten()) test.assertAlmostEqual(ab / N, ref_ab / N, places=5) return test_array_inner def make_test_array_inner_axis(dtype): I = 5 J = 10 K = 2 N = I * J * K def test_array_inner(test, device): a_np = np.random.rand(I, J, K) b_np = np.random.rand(I, J, K) a = wp.array(a_np, shape=(I, J, K), device=device, dtype=dtype) b = wp.array(b_np, shape=(I, J, K), device=device, dtype=dtype) ab = array_inner(a, b, axis=0) ref_ab = np.einsum(a_np, [0, 1, 2], b_np, [0, 1, 2], [1, 2]) assert_np_equal(ab.numpy() / N, ref_ab / N, 0.0001) ab = array_inner(a, b, axis=1) ref_ab = np.einsum(a_np, [0, 1, 2], b_np, [0, 1, 2], [0, 2]) assert_np_equal(ab.numpy() / N, ref_ab / N, 0.0001) ab = array_inner(a, b, axis=2) ref_ab = np.einsum(a_np, [0, 1, 2], b_np, [0, 1, 2], [0, 1]) assert_np_equal(ab.numpy() / N, ref_ab / N, 0.0001) return test_array_inner def register(parent): devices = get_test_devices() class TestArraySym(parent): pass add_function_test(TestArraySym, "test_array_sum_double", make_test_array_sum(wp.float64), devices=devices) add_function_test(TestArraySym, "test_array_sum_vec3", make_test_array_sum(wp.vec3), devices=devices) add_function_test(TestArraySym, "test_array_sum_axis_float", make_test_array_sum_axis(wp.float32), devices=devices) add_function_test(TestArraySym, "test_array_inner_double", make_test_array_inner(wp.float64), devices=devices) add_function_test(TestArraySym, "test_array_inner_vec3", make_test_array_inner(wp.vec3), devices=devices) add_function_test( TestArraySym, "test_array_inner_axis_float", make_test_array_inner_axis(wp.float32), devices=devices ) return TestArraySym if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_array_reduce.py
import warp as wp import numpy as np wp.init() @wp.kernel def arange(out: wp.array(dtype=int)): tid = wp.tid() out[tid] = tid device = "cuda:0" cmds = [] n = 10 arrays = [] for i in range(5): arrays.append(wp.zeros(n, dtype=int, device=device)) # setup CUDA graph wp.capture_begin() # launch kernels and keep command object around for i in range(5): cmd = wp.launch(arange, dim=n, inputs=[arrays[i]], device=device, record_cmd=True) cmds.append(cmd) graph = wp.capture_end() #--------------------------------------- ref = np.arange(0, n, dtype=int) wp.capture_launch(graph) for i in range(5): print(arrays[i].numpy()) #--------------------------------------- n = 16 arrays = [] for i in range(5): arrays.append(wp.zeros(n, dtype=int, device=device)) # update graph params for i in range(5): cmd.set_dim(n) cmd.set_param(arrays[i]) cmd.update_graph() wp.capture_launch(graph) wp.synchronize() ref = np.arange(0, n, dtype=int) for i in range(5): print(arrays[i].numpy())
warp-main
warp/tests/test_misc.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import numpy as np import math import warp as wp from warp.tests.test_base import * np.random.seed(42) wp.init() wp.verify_cuda = True @wp.kernel def test_print(): wp.print(1.0) wp.print("this is a string") wp.printf("this is a float %f\n", 457.5) wp.printf("this is an int %d\n", 123) wp.launch(kernel=test_print, dim=1, inputs=[], outputs=[], device="cuda") wp.synchronize() print("finished")
warp-main
warp/tests/test_print.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. #################################################################################################### # # This file demonstrates step-through debugging support of the C++ code generated for a Warp kernel # running on the CPU. # # This is not a unit test; it should be run interactively. # # For a fully integrated experience use Visual Studio Code and install the "Python C++ Debugger" # and "CodeLLDB" extensions. Add the following configurations to your .vscode/launch.json file: # """ { "name": "Warp Debugger", "type": "pythoncpp", "request": "launch", "pythonLaunchName": "Python: Current File", "cppAttachName": "(lldb) Attach", }, { "name": "Python: Current File", "type": "python", "request": "launch", "program": "${file}", "console": "integratedTerminal", "stopOnEntry": false, }, { "name": "(lldb) Attach", "type": "lldb", "request": "attach", }, """ # # Then run this .py file using the "Warp Debugger" configuration. # # Check out the following resources for more information about launch configurations and # troubleshooting common VSCode debugger integration issues: # • https://vscode-docs.readthedocs.io/en/stable/editor/debugging/#launch-configurations # • https://code.visualstudio.com/docs/cpp/cpp-debug#_debugging # #################################################################################################### import unittest import warp as wp from warp.tests.test_base import * # The init() function prints the directory of the kernel cache which contains the .cpp files # generated from Warp kernels. You can put breakpoints in these C++ files through Visual Studio Code, # but it's generally more convenient to use wp.breakpoint(). See the example below. wp.init() # Enable kernels to be compiled with debug info and disable optimizations wp.config.mode = "debug" # Make sure Warp was built with `build_lib.py --mode=debug` assert wp.context.runtime.core.is_debug_enabled(), "Warp must be built in debug mode to enable debugging kernels" @wp.kernel def test_breakpoint(n: int): a = int(0) for i in range(0, n): if a == 5: # Your debugger should halt at the C++ code corresponding with the next line, # namely a call to the __debugbreak() intrinsic function. wp.breakpoint() break a += 1 wp.expect_eq(a, 5) def register(parent): class TestDebug(parent): pass wp.build.clear_kernel_cache() add_kernel_test(TestDebug, name="test_breakpoint", kernel=test_breakpoint, dim=1, inputs=[10], devices=["cpu"]) return TestDebug if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2, failfast=True)
warp-main
warp/tests/test_debug.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import numpy as np import warp as wp from warp.tests.test_base import * np.random.seed(42) wp.init() @wp.kernel def bvh_query_aabb(bvh_id: wp.uint64, lower: wp.vec3, upper: wp.vec3, bounds_intersected: wp.array(dtype=int)): query = wp.bvh_query_aabb(bvh_id, lower, upper) bounds_nr = int(0) while wp.bvh_query_next(query, bounds_nr): bounds_intersected[bounds_nr] = 1 @wp.kernel def bvh_query_ray(bvh_id: wp.uint64, start: wp.vec3, dir: wp.vec3, bounds_intersected: wp.array(dtype=int)): query = wp.bvh_query_ray(bvh_id, start, dir) bounds_nr = int(0) while wp.bvh_query_next(query, bounds_nr): bounds_intersected[bounds_nr] = 1 def aabb_overlap(a_lower, a_upper, b_lower, b_upper): if ( a_lower[0] > b_upper[0] or a_lower[1] > b_upper[1] or a_lower[2] > b_upper[2] or a_upper[0] < b_lower[0] or a_upper[1] < b_lower[1] or a_upper[2] < b_lower[2] ): return 0 else: return 1 def intersect_ray_aabb(start, dir, lower, upper): l1 = (lower[0] - start[0]) * dir[0] l2 = (upper[0] - start[0]) * dir[0] lmin = min(l1, l2) lmax = max(l1, l2) l1 = (lower[1] - start[1]) * dir[1] l2 = (upper[1] - start[1]) * dir[1] lmin = max(min(l1, l2), lmin) lmax = min(max(l1, l2), lmax) l1 = (lower[2] - start[2]) * dir[2] l2 = (upper[2] - start[2]) * dir[2] lmin = max(min(l1, l2), lmin) lmax = min(max(l1, l2), lmax) if lmax >= 0.0 and lmax >= lmin: return 1 else: return 0 def test_bvh(test, type, device): num_bounds = 100 lowers = np.random.rand(num_bounds, 3) * 5.0 uppers = lowers + np.random.rand(num_bounds, 3) * 5.0 device_lowers = wp.array(lowers, dtype=wp.vec3, device=device) device_uppers = wp.array(uppers, dtype=wp.vec3, device=device) bvh = wp.Bvh(device_lowers, device_uppers) bounds_intersected = wp.zeros(shape=(num_bounds), dtype=int, device=device) query_lower = wp.vec3(2.0, 2.0, 2.0) query_upper = wp.vec3(8.0, 8.0, 8.0) query_start = wp.vec3(0.0, 0.0, 0.0) query_dir = wp.normalize(wp.vec3(1.0, 1.0, 1.0)) for test_case in range(2): if type == "AABB": wp.launch( kernel=bvh_query_aabb, dim=1, inputs=[bvh.id, query_lower, query_upper, bounds_intersected], device=device, ) else: wp.launch( kernel=bvh_query_ray, dim=1, inputs=[bvh.id, query_start, query_dir, bounds_intersected], device=device ) device_intersected = bounds_intersected.numpy() for i in range(num_bounds): lower = lowers[i] upper = uppers[i] if type == "AABB": host_intersected = aabb_overlap(lower, upper, query_lower, query_upper) else: host_intersected = intersect_ray_aabb(query_start, query_dir, lower, upper) test.assertEqual(host_intersected, device_intersected[i]) if test_case == 0: lowers = np.random.rand(num_bounds, 3) * 5.0 uppers = lowers + np.random.rand(num_bounds, 3) * 5.0 wp.copy(device_lowers, wp.array(lowers, dtype=wp.vec3)) wp.copy(device_uppers, wp.array(uppers, dtype=wp.vec3)) bvh.refit() bounds_intersected.zero_() def test_bvh_query_aabb(test, device): test_bvh(test, "AABB", device) def test_bvh_query_ray(test, device): test_bvh(test, "ray", device) def register(parent): devices = get_test_devices() class TestBvh(parent): pass add_function_test(TestBvh, "test_bvh_aabb", test_bvh_query_aabb, devices=devices) add_function_test(TestBvh, "test_bvh_ray", test_bvh_query_ray, devices=devices) return TestBvh if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_bvh.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp MINUS_ONE = wp.constant(-1)
warp-main
warp/tests/test_compile_consts_dummy.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from warp.tests.test_base import * import numpy as np compare_to_numpy = False print_results = False wp.init() @wp.kernel def test_kernel( x: wp.array(dtype=float), x_round: wp.array(dtype=float), x_rint: wp.array(dtype=float), x_trunc: wp.array(dtype=float), x_cast: wp.array(dtype=float), x_floor: wp.array(dtype=float), x_ceil: wp.array(dtype=float), ): tid = wp.tid() x_round[tid] = wp.round(x[tid]) x_rint[tid] = wp.rint(x[tid]) x_trunc[tid] = wp.trunc(x[tid]) x_cast[tid] = float(int(x[tid])) x_floor[tid] = wp.floor(x[tid]) x_ceil[tid] = wp.ceil(x[tid]) def test_rounding(test, device): nx = np.array( [ 4.9, 4.5, 4.1, 3.9, 3.5, 3.1, 2.9, 2.5, 2.1, 1.9, 1.5, 1.1, 0.9, 0.5, 0.1, -0.1, -0.5, -0.9, -1.1, -1.5, -1.9, -2.1, -2.5, -2.9, -3.1, -3.5, -3.9, -4.1, -4.5, -4.9, ], dtype=np.float32, ) x = wp.array(nx, device=device) N = len(x) x_round = wp.empty(N, dtype=float, device=device) x_rint = wp.empty(N, dtype=float, device=device) x_trunc = wp.empty(N, dtype=float, device=device) x_cast = wp.empty(N, dtype=float, device=device) x_floor = wp.empty(N, dtype=float, device=device) x_ceil = wp.empty(N, dtype=float, device=device) wp.launch(kernel=test_kernel, dim=N, inputs=[x, x_round, x_rint, x_trunc, x_cast, x_floor, x_ceil], device=device) wp.synchronize() nx_round = x_round.numpy().reshape(N) nx_rint = x_rint.numpy().reshape(N) nx_trunc = x_trunc.numpy().reshape(N) nx_cast = x_cast.numpy().reshape(N) nx_floor = x_floor.numpy().reshape(N) nx_ceil = x_ceil.numpy().reshape(N) tab = np.stack([nx, nx_round, nx_rint, nx_trunc, nx_cast, nx_floor, nx_ceil], axis=1) golden = np.array( [ [4.9, 5.0, 5.0, 4.0, 4.0, 4.0, 5.0], [4.5, 5.0, 4.0, 4.0, 4.0, 4.0, 5.0], [4.1, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0], [3.9, 4.0, 4.0, 3.0, 3.0, 3.0, 4.0], [3.5, 4.0, 4.0, 3.0, 3.0, 3.0, 4.0], [3.1, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0], [2.9, 3.0, 3.0, 2.0, 2.0, 2.0, 3.0], [2.5, 3.0, 2.0, 2.0, 2.0, 2.0, 3.0], [2.1, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0], [1.9, 2.0, 2.0, 1.0, 1.0, 1.0, 2.0], [1.5, 2.0, 2.0, 1.0, 1.0, 1.0, 2.0], [1.1, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.9, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0], [0.5, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0], [0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], [-0.1, -0.0, -0.0, -0.0, 0.0, -1.0, -0.0], [-0.5, -1.0, -0.0, -0.0, 0.0, -1.0, -0.0], [-0.9, -1.0, -1.0, -0.0, 0.0, -1.0, -0.0], [-1.1, -1.0, -1.0, -1.0, -1.0, -2.0, -1.0], [-1.5, -2.0, -2.0, -1.0, -1.0, -2.0, -1.0], [-1.9, -2.0, -2.0, -1.0, -1.0, -2.0, -1.0], [-2.1, -2.0, -2.0, -2.0, -2.0, -3.0, -2.0], [-2.5, -3.0, -2.0, -2.0, -2.0, -3.0, -2.0], [-2.9, -3.0, -3.0, -2.0, -2.0, -3.0, -2.0], [-3.1, -3.0, -3.0, -3.0, -3.0, -4.0, -3.0], [-3.5, -4.0, -4.0, -3.0, -3.0, -4.0, -3.0], [-3.9, -4.0, -4.0, -3.0, -3.0, -4.0, -3.0], [-4.1, -4.0, -4.0, -4.0, -4.0, -5.0, -4.0], [-4.5, -5.0, -4.0, -4.0, -4.0, -5.0, -4.0], [-4.9, -5.0, -5.0, -4.0, -4.0, -5.0, -4.0], ], dtype=np.float32, ) assert_np_equal(tab, golden) if print_results: np.set_printoptions(formatter={"float": lambda x: "{:6.1f}".format(x).replace(".0", ".")}) print("----------------------------------------------") print(" %5s %5s %5s %5s %5s %5s %5s" % ("x ", "round", "rint", "trunc", "cast", "floor", "ceil")) print(tab) print("----------------------------------------------") if compare_to_numpy: nx_round = np.round(nx) nx_rint = np.rint(nx) nx_trunc = np.trunc(nx) nx_fix = np.fix(nx) nx_floor = np.floor(nx) nx_ceil = np.ceil(nx) tab = np.stack([nx, nx_round, nx_rint, nx_trunc, nx_fix, nx_floor, nx_ceil], axis=1) print(" %5s %5s %5s %5s %5s %5s %5s" % ("x ", "round", "rint", "trunc", "fix", "floor", "ceil")) print(tab) print("----------------------------------------------") def register(parent): class TestRounding(parent): pass devices = get_test_devices() add_function_test(TestRounding, "test_rounding", test_rounding, devices=devices) return TestRounding if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_rounding.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import warp as wp from warp.tests.test_base import * wp.init() @wp.kernel def scale( x: wp.array(dtype=float), y: wp.array(dtype=float), ): y[0] = x[0] ** 2.0 @wp.kernel(enable_backward=True) def scale_1( x: wp.array(dtype=float), y: wp.array(dtype=float), ): y[0] = x[0] ** 2.0 @wp.kernel(enable_backward=False) def scale_2( x: wp.array(dtype=float), y: wp.array(dtype=float), ): y[0] = x[0] ** 2.0 def test_options_1(test, device): x = wp.array([3.0], dtype=float, requires_grad=True, device=device) y = wp.zeros_like(x) wp.set_module_options({"enable_backward": False}) tape = wp.Tape() with tape: wp.launch(scale, dim=1, inputs=[x, y], device=device) tape.backward(y) assert_np_equal(tape.gradients[x].numpy(), np.array(0.0)) def test_options_2(test, device): x = wp.array([3.0], dtype=float, requires_grad=True, device=device) y = wp.zeros_like(x) wp.set_module_options({"enable_backward": True}) tape = wp.Tape() with tape: wp.launch(scale, dim=1, inputs=[x, y], device=device) tape.backward(y) assert_np_equal(tape.gradients[x].numpy(), np.array(6.0)) def test_options_3(test, device): x = wp.array([3.0], dtype=float, requires_grad=True, device=device) y = wp.zeros_like(x) wp.set_module_options({"enable_backward": False}) tape = wp.Tape() with tape: wp.launch(scale_1, dim=1, inputs=[x, y], device=device) tape.backward(y) assert_np_equal(tape.gradients[x].numpy(), np.array(6.0)) def test_options_4(test, device): x = wp.array([3.0], dtype=float, requires_grad=True, device=device) y = wp.zeros_like(x) wp.set_module_options({"enable_backward": True}) tape = wp.Tape() with tape: wp.launch(scale_2, dim=1, inputs=[x, y], device=device) tape.backward(y) assert_np_equal(tape.gradients[x].numpy(), np.array(0.0)) def register(parent): devices = get_test_devices() class TestOptions(parent): pass add_function_test(TestOptions, "test_options_1", test_options_1, devices=devices) add_function_test(TestOptions, "test_options_2", test_options_2, devices=devices) add_function_test(TestOptions, "test_options_3", test_options_3, devices=devices) add_function_test(TestOptions, "test_options_4", test_options_4, devices=devices) return TestOptions if __name__ == "__main__": _ = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_options.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import os import warp as wp # Uncomment to run the tests on all devices # import warp.tests.test_base # warp.tests.test_base.test_mode = "all" from warp.tests.test_base import get_test_devices import warp.tests.test_codegen import warp.tests.test_mesh_query_aabb import warp.tests.test_mesh_query_point import warp.tests.test_mesh_query_ray import warp.tests.test_bvh import warp.tests.test_conditional import warp.tests.test_operators import warp.tests.test_rounding import warp.tests.test_hash_grid import warp.tests.test_ctypes import warp.tests.test_rand import warp.tests.test_noise import warp.tests.test_tape import warp.tests.test_compile_consts import warp.tests.test_volume import warp.tests.test_mlp import warp.tests.test_grad import warp.tests.test_intersect import warp.tests.test_array import warp.tests.test_launch import warp.tests.test_import import warp.tests.test_func import warp.tests.test_fp16 import warp.tests.test_reload import warp.tests.test_struct import warp.tests.test_closest_point_edge_edge import warp.tests.test_multigpu import warp.tests.test_quat import warp.tests.test_atomic import warp.tests.test_adam import warp.tests.test_transient_module import warp.tests.test_lerp import warp.tests.test_smoothstep import warp.tests.test_model import warp.tests.test_fast_math import warp.tests.test_streams import warp.tests.test_torch import warp.tests.test_pinned import warp.tests.test_matmul import warp.tests.test_options import warp.tests.test_dlpack import warp.tests.test_vec import warp.tests.test_mat import warp.tests.test_arithmetic import warp.tests.test_spatial import warp.tests.test_sparse import warp.tests.test_math import warp.tests.test_generics import warp.tests.test_indexedarray import warp.tests.test_copy import warp.tests.test_mesh import warp.tests.test_fabricarray import warp.tests.test_bool def register_tests(parent): tests = [] tests.append(warp.tests.test_codegen.register(parent)) tests.append(warp.tests.test_mesh_query_aabb.register(parent)) tests.append(warp.tests.test_mesh_query_point.register(parent)) tests.append(warp.tests.test_mesh_query_ray.register(parent)) tests.append(warp.tests.test_bvh.register(parent)) tests.append(warp.tests.test_conditional.register(parent)) tests.append(warp.tests.test_operators.register(parent)) tests.append(warp.tests.test_rounding.register(parent)) tests.append(warp.tests.test_hash_grid.register(parent)) tests.append(warp.tests.test_ctypes.register(parent)) tests.append(warp.tests.test_rand.register(parent)) tests.append(warp.tests.test_noise.register(parent)) tests.append(warp.tests.test_tape.register(parent)) tests.append(warp.tests.test_compile_consts.register(parent)) tests.append(warp.tests.test_volume.register(parent)) tests.append(warp.tests.test_mlp.register(parent)) tests.append(warp.tests.test_grad.register(parent)) tests.append(warp.tests.test_intersect.register(parent)) tests.append(warp.tests.test_array.register(parent)) tests.append(warp.tests.test_launch.register(parent)) tests.append(warp.tests.test_import.register(parent)) tests.append(warp.tests.test_func.register(parent)) tests.append(warp.tests.test_fp16.register(parent)) tests.append(warp.tests.test_reload.register(parent)) tests.append(warp.tests.test_struct.register(parent)) tests.append(warp.tests.test_closest_point_edge_edge.register(parent)) tests.append(warp.tests.test_multigpu.register(parent)) tests.append(warp.tests.test_quat.register(parent)) tests.append(warp.tests.test_atomic.register(parent)) tests.append(warp.tests.test_adam.register(parent)) tests.append(warp.tests.test_transient_module.register(parent)) tests.append(warp.tests.test_lerp.register(parent)) tests.append(warp.tests.test_smoothstep.register(parent)) tests.append(warp.tests.test_model.register(parent)) tests.append(warp.tests.test_fast_math.register(parent)) tests.append(warp.tests.test_streams.register(parent)) tests.append(warp.tests.test_torch.register(parent)) tests.append(warp.tests.test_pinned.register(parent)) tests.append(warp.tests.test_matmul.register(parent)) tests.append(warp.tests.test_options.register(parent)) tests.append(warp.tests.test_dlpack.register(parent)) tests.append(warp.tests.test_vec.register(parent)) tests.append(warp.tests.test_mat.register(parent)) tests.append(warp.tests.test_arithmetic.register(parent)) tests.append(warp.tests.test_spatial.register(parent)) tests.append(warp.tests.test_sparse.register(parent)) tests.append(warp.tests.test_math.register(parent)) tests.append(warp.tests.test_generics.register(parent)) tests.append(warp.tests.test_indexedarray.register(parent)) tests.append(warp.tests.test_copy.register(parent)) tests.append(warp.tests.test_mesh.register(parent)) tests.append(warp.tests.test_fabricarray.register(parent)) tests.append(warp.tests.test_bool.register(parent)) return tests class TeamCityTestResult(unittest.TextTestResult): """This class will report each test result to TeamCity""" def __init__(self, stream, descriptions, verbosity): super(TeamCityTestResult, self).__init__(stream, descriptions, verbosity) def addSuccess(self, test): super(TeamCityTestResult, self).addSuccess(test) self.reportSuccess(test) def addError(self, test, err): super(TeamCityTestResult, self).addError(test, err) self.reportFailure(test) def addFailure(self, test, err): super(TeamCityTestResult, self).addFailure(test, err) self.reportFailure(test) def addSkip(self, test, reason): super(TeamCityTestResult, self).addSkip(test, reason) def addExpectedFailure(self, test, err): super(TeamCityTestResult, self).addExpectedFailure(test, err) self.reportSuccess(test) def addUnexpectedSuccess(self, test): super(TeamCityTestResult, self).addUnexpectedSuccess(test) self.reportFailure(test) def reportSuccess(self, test): test_id = test.id() print(f"##teamcity[testStarted name='{test_id}']") print(f"##teamcity[testFinished name='{test_id}']") def reportFailure(self, test): test_id = test.id() print(f"##teamcity[testStarted name='{test_id}']") print(f"##teamcity[testFailed name='{test_id}']") print(f"##teamcity[testFinished name='{test_id}']") class TeamCityTestRunner(unittest.TextTestRunner): """Test runner that will report test results to TeamCity if running in TeamCity""" def __init__(self, **kwargs): self.running_in_teamcity = os.environ.get("TEAMCITY_VERSION") is not None if self.running_in_teamcity: kwargs["resultclass"] = TeamCityTestResult super(TeamCityTestRunner, self).__init__(**kwargs) def run(self, test, name): if self.running_in_teamcity: print(f"##teamcity[testSuiteStarted name='{name}']") result = super(TeamCityTestRunner, self).run(test) if self.running_in_teamcity: print(f"##teamcity[testSuiteFinished name='{name}']") if not result.wasSuccessful(): print(f"##teamcity[buildStatus status='FAILURE']") return result def run(): test_suite = unittest.TestSuite() tests = register_tests(unittest.TestCase) for test in tests: test_suite.addTest(unittest.defaultTestLoader.loadTestsFromTestCase(test)) # force rebuild of all kernels wp.build.clear_kernel_cache() # load all modules for device in get_test_devices(): wp.force_load(device) runner = TeamCityTestRunner(verbosity=2, failfast=False) ret = not runner.run(test_suite, "WarpTests").wasSuccessful() return ret if __name__ == "__main__": ret = run() import sys sys.exit(ret)
warp-main
warp/tests/test_all.py
import numpy as np import warp as wp from warp.sparse import bsr_zeros, bsr_set_from_triplets, bsr_get_diag, bsr_diag, bsr_set_transpose, bsr_axpy, bsr_mm from warp.tests.test_base import * wp.init() def _get_block(mat, row, col, block_shape): return mat[row * block_shape[0] : (row + 1) * block_shape[0], col * block_shape[1] : (col + 1) * block_shape[1]] def _triplets_to_dense(shape, rows, cols, values): mat = np.zeros(shape) rows = rows.numpy() cols = cols.numpy() values = values.numpy() block_shape = values.shape[1:] if values.ndim == 3 else (1, 1) for row, col, val in zip(rows, cols, values): mat_block = _get_block(mat, row, col, block_shape) mat_block += val return mat def _bsr_to_dense(bsr): mat = np.zeros(bsr.shape) offsets = bsr.offsets.numpy() columns = bsr.columns.numpy() values = bsr.values.numpy() for row in range(bsr.nrow): beg = offsets[row] end = offsets[row + 1] for block in range(beg, end): mat_block = _get_block(mat, row, columns[block], bsr.block_shape) mat_block += values[block] return mat def test_csr_from_triplets(test, device): shape = (8, 6) n = 100 rows = wp.array(np.random.randint(0, shape[0], n, dtype=int), dtype=int, device=device) cols = wp.array(np.random.randint(0, shape[1], n, dtype=int), dtype=int, device=device) vals = wp.array(np.random.rand(n), dtype=float, device=device) ref = _triplets_to_dense(shape, rows, cols, vals) csr = bsr_zeros(shape[0], shape[1], float, device=device) bsr_set_from_triplets(csr, rows, cols, vals) res = _bsr_to_dense(csr) assert_np_equal(ref, res, 0.0001) def test_bsr_from_triplets(test, device): block_shape = (3, 2) nrow = 4 ncol = 9 shape = (block_shape[0] * nrow, block_shape[1] * ncol) n = 50 rows = wp.array(np.random.randint(0, nrow, n, dtype=int), dtype=int, device=device) cols = wp.array(np.random.randint(0, ncol, n, dtype=int), dtype=int, device=device) vals = wp.array(np.random.rand(n, block_shape[0], block_shape[1]), dtype=float, device=device) ref = _triplets_to_dense(shape, rows, cols, vals) bsr = bsr_zeros(nrow, ncol, wp.types.matrix(shape=block_shape, dtype=float), device=device) bsr_set_from_triplets(bsr, rows, cols, vals) res = _bsr_to_dense(bsr) assert_np_equal(ref, res, 0.0001) def test_bsr_get_diag(test, device): block_shape = (3, 3) nrow = 4 ncol = 4 nnz = 6 rows = wp.array([0, 1, 2, 3, 2, 1], dtype=int, device=device) cols = wp.array([1, 1, 1, 3, 2, 2], dtype=int, device=device) vals_np = np.random.rand(nnz, block_shape[0], block_shape[1]) vals = wp.array(vals_np, dtype=float, device=device) bsr = bsr_zeros(nrow, ncol, wp.types.matrix(shape=block_shape, dtype=float), device=device) bsr_set_from_triplets(bsr, rows, cols, vals) diag = bsr_get_diag(bsr) diag_np = diag.numpy() assert_np_equal(diag_np[0], np.zeros(block_shape)) assert_np_equal(diag_np[1], vals_np[1], tol=0.00001) assert_np_equal(diag_np[2], vals_np[4], tol=0.00001) assert_np_equal(diag_np[3], vals_np[3], tol=0.00001) # Test round-trip diag_bsr = bsr_diag(diag) diag = bsr_get_diag(diag_bsr) assert_np_equal(diag_np, diag.numpy()) def make_test_bsr_transpose(block_shape, scalar_type): def test_bsr_transpose(test, device): nrow = 4 ncol = 5 nnz = 6 rows = wp.array([0, 1, 2, 3, 2, 1], dtype=int, device=device) cols = wp.array([1, 4, 1, 3, 0, 2], dtype=int, device=device) vals_np = np.random.rand(nnz, block_shape[0], block_shape[1]) vals = wp.array(vals_np, dtype=scalar_type, device=device).reshape((nnz, block_shape[0], block_shape[1])) bsr = bsr_zeros(nrow, ncol, wp.types.matrix(shape=block_shape, dtype=scalar_type), device=device) bsr_set_from_triplets(bsr, rows, cols, vals) ref = np.transpose(_bsr_to_dense(bsr)) bsr_transposed = bsr_zeros( ncol, nrow, wp.types.matrix(shape=block_shape[::-1], dtype=scalar_type), device=device ) bsr_set_transpose(dest=bsr_transposed, src=bsr) res = _bsr_to_dense(bsr_transposed) assert_np_equal(ref, res, 0.0001) return test_bsr_transpose def make_test_bsr_axpy(block_shape, scalar_type): def test_bsr_axpy(test, device): nrow = 2 ncol = 3 nnz = 6 alpha = -1.0 beta = 2.0 x_rows = wp.array(np.random.randint(0, nrow, nnz, dtype=int), dtype=int, device=device) x_cols = wp.array(np.random.randint(0, ncol, nnz, dtype=int), dtype=int, device=device) x_vals = wp.array(np.random.rand(nnz, block_shape[0], block_shape[1]), dtype=scalar_type, device=device) x_vals = x_vals.reshape((nnz, block_shape[0], block_shape[1])) x = bsr_zeros(nrow, ncol, wp.types.matrix(shape=block_shape, dtype=scalar_type), device=device) bsr_set_from_triplets(x, x_rows, x_cols, x_vals) y_rows = wp.array(np.random.randint(0, nrow, nnz, dtype=int), dtype=int, device=device) y_cols = wp.array(np.random.randint(0, ncol, nnz, dtype=int), dtype=int, device=device) y_vals = wp.array(np.random.rand(nnz, block_shape[0], block_shape[1]), dtype=scalar_type, device=device) y_vals = y_vals.reshape((nnz, block_shape[0], block_shape[1])) y = bsr_zeros(nrow, ncol, wp.types.matrix(shape=block_shape, dtype=scalar_type), device=device) bsr_set_from_triplets(y, y_rows, y_cols, y_vals) ref = alpha * _bsr_to_dense(x) + beta * _bsr_to_dense(y) bsr_axpy(x, y, alpha, beta) res = _bsr_to_dense(y) assert_np_equal(ref, res, 0.0001) return test_bsr_axpy def make_test_bsr_mm(block_shape, scalar_type): def test_bsr_mm(test, device): x_nrow = 3 x_ncol = 2 x_block_shape = block_shape y_nrow = 2 y_ncol = 3 y_block_shape = block_shape[::-1] z_nrow = x_nrow z_ncol = y_ncol z_block_shape = (x_block_shape[0], y_block_shape[1]) nnz = 6 alpha = -1.0 beta = 2.0 x_rows = wp.array(np.random.randint(0, x_nrow, nnz, dtype=int), dtype=int, device=device) x_cols = wp.array(np.random.randint(0, x_ncol, nnz, dtype=int), dtype=int, device=device) x_vals = wp.array(np.random.rand(nnz, x_block_shape[0], x_block_shape[1]), dtype=scalar_type, device=device) x_vals = x_vals.reshape((nnz, x_block_shape[0], x_block_shape[1])) x = bsr_zeros(x_nrow, x_ncol, wp.types.matrix(shape=x_block_shape, dtype=scalar_type), device=device) bsr_set_from_triplets(x, x_rows, x_cols, x_vals) y_rows = wp.array(np.random.randint(0, y_nrow, nnz, dtype=int), dtype=int, device=device) y_cols = wp.array(np.random.randint(0, y_ncol, nnz, dtype=int), dtype=int, device=device) y_vals = wp.array(np.random.rand(nnz, y_block_shape[0], y_block_shape[1]), dtype=scalar_type, device=device) y_vals = y_vals.reshape((nnz, y_block_shape[0], y_block_shape[1])) y = bsr_zeros(y_nrow, y_ncol, wp.types.matrix(shape=y_block_shape, dtype=scalar_type), device=device) bsr_set_from_triplets(y, y_rows, y_cols, y_vals) z_rows = wp.array(np.random.randint(0, z_nrow, nnz, dtype=int), dtype=int, device=device) z_cols = wp.array(np.random.randint(0, z_ncol, nnz, dtype=int), dtype=int, device=device) z_vals = wp.array(np.random.rand(nnz, z_block_shape[0], z_block_shape[1]), dtype=scalar_type, device=device) z_vals = z_vals.reshape((nnz, z_block_shape[0], z_block_shape[1])) z = bsr_zeros(z_nrow, z_ncol, wp.types.matrix(shape=z_block_shape, dtype=scalar_type), device=device) bsr_set_from_triplets(z, z_rows, z_cols, z_vals) ref = alpha * (_bsr_to_dense(x) @ _bsr_to_dense(y)) + beta * _bsr_to_dense(z) bsr_mm(x, y, z, alpha, beta) res = _bsr_to_dense(z) assert_np_equal(ref, res, 0.0001) return test_bsr_mm def register(parent): devices = get_test_devices() class TestSparse(parent): pass add_function_test(TestSparse, "test_csr_from_triplets", test_csr_from_triplets, devices=devices) add_function_test(TestSparse, "test_bsr_from_triplets", test_bsr_from_triplets, devices=devices) add_function_test(TestSparse, "test_bsr_get_diag", test_bsr_get_diag, devices=devices) add_function_test(TestSparse, "test_csr_transpose", make_test_bsr_transpose((1, 1), wp.float32), devices=devices) add_function_test( TestSparse, "test_bsr_transpose_1_3", make_test_bsr_transpose((1, 3), wp.float32), devices=devices ) add_function_test( TestSparse, "test_bsr_transpose_3_3", make_test_bsr_transpose((3, 3), wp.float64), devices=devices ) add_function_test(TestSparse, "test_csr_axpy", make_test_bsr_axpy((1, 1), wp.float32), devices=devices) add_function_test(TestSparse, "test_bsr_axpy_1_3", make_test_bsr_axpy((1, 3), wp.float32), devices=devices) add_function_test(TestSparse, "test_bsr_axpy_3_3", make_test_bsr_axpy((3, 3), wp.float64), devices=devices) add_function_test(TestSparse, "test_csr_mm", make_test_bsr_mm((1, 1), wp.float32), devices=devices) add_function_test(TestSparse, "test_bsr_mm_1_3", make_test_bsr_mm((1, 3), wp.float32), devices=devices) add_function_test(TestSparse, "test_bsr_mm_3_3", make_test_bsr_mm((3, 3), wp.float64), devices=devices) return TestSparse if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_sparse.py
import warp as wp # dummy class used in test_reload.py class ClassKernelTest: def __init__(self, device): # 3x3 frames in the rest pose: self.identities = wp.zeros(shape=10, dtype=wp.mat33, device=device) wp.launch(kernel=self.gen_identities_kernel, dim=10, inputs=[self.identities], device=device) @wp.func def return_identity(e: int): return wp.mat33(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0) @wp.kernel def gen_identities_kernel(s: wp.array(dtype=wp.mat33)): tid = wp.tid() s[tid] = ClassKernelTest.return_identity(tid)
warp-main
warp/tests/test_class_kernel.py
import warp as wp import numpy as np from warp.tests.test_base import * wp.init() @wp.kernel def intersect_tri( v0: wp.vec3, v1: wp.vec3, v2: wp.vec3, u0: wp.vec3, u1: wp.vec3, u2: wp.vec3, result: wp.array(dtype=int) ): tid = wp.tid() result[0] = wp.intersect_tri_tri(v0, v1, v2, u0, u1, u2) def test_intersect_tri(test, device): points_intersect = [ wp.vec3(0.0, 0.0, 0.0), wp.vec3(1.0, 0.0, 0.0), wp.vec3(0.0, 0.0, 1.0), wp.vec3(0.5, -0.5, 0.0), wp.vec3(0.5, -0.5, 1.0), wp.vec3(0.5, 0.5, 0.0), ] points_separated = [ wp.vec3(0.0, 0.0, 0.0), wp.vec3(1.0, 0.0, 0.0), wp.vec3(0.0, 0.0, 1.0), wp.vec3(-0.5, -0.5, 0.0), wp.vec3(-0.5, -0.5, 1.0), wp.vec3(-0.5, 0.5, 0.0), ] result = wp.zeros(1, dtype=int, device=device) wp.launch(intersect_tri, dim=1, inputs=[*points_intersect, result], device=device) assert_np_equal(result.numpy(), np.array([1])) wp.launch(intersect_tri, dim=1, inputs=[*points_separated, result], device=device) assert_np_equal(result.numpy(), np.array([0])) def register(parent): devices = get_test_devices() class TestIntersect(parent): pass add_function_test(TestIntersect, "test_intersect_tri", test_intersect_tri, devices=devices) return TestIntersect if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2, failfast=False)
warp-main
warp/tests/test_intersect.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp from warp.tests.test_base import * wp.init() @wp.func def mlp_activation(z: float): return wp.tanh(z) @wp.kernel def mlp_kernel( weights: wp.array2d(dtype=float), bias: wp.array(dtype=float), x: wp.array2d(dtype=float), y: wp.array2d(dtype=float), ): wp.mlp(weights, bias, mlp_activation, wp.tid(), x, y) @wp.kernel def loss_kernel(x: wp.array2d(dtype=float), loss: wp.array(dtype=float)): i, j = wp.tid() wp.atomic_add(loss, 0, x[i, j] * x[i, j]) def test_mlp(test, device): np.random.seed(0) m = 10 n = 200 batches = 20000 weights = wp.array(np.random.rand(m, n) * 0.5 - 0.5, dtype=float, device=device) bias = wp.array(np.random.rand(m) * 0.5 - 0.5, dtype=float, device=device) x = wp.array(np.random.rand(n, batches), dtype=float, device=device) y = wp.zeros(shape=(m, batches), device=device) with wp.ScopedTimer("warp", active=False): wp.launch(mlp_kernel, dim=batches, inputs=[weights, bias, x, y], device=device) wp.synchronize() # A*x + b with wp.ScopedTimer("numpy", active=False): expect = np.tanh(weights.numpy().reshape(m, n) @ x.numpy().reshape(-1, batches) + bias.numpy().reshape(m, 1)) result = y.numpy().reshape(-1, batches) assert_np_equal(result, expect, tol=1.0e-6) def create_mlp(m, n): import torch torch.manual_seed(0) class FeedForward(torch.nn.Module): def __init__(self, input_size, hidden_size): super(FeedForward, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.fc1 = torch.nn.Linear(self.input_size, self.hidden_size) self.act = torch.nn.Tanh() def forward(self, x): out = self.fc1(x) out = self.act(out) return out return FeedForward(m, n) def create_golden(): import torch input_size = 32 hidden_size = 16 batch_size = 64 network = create_mlp(input_size, hidden_size) x = torch.Tensor(np.random.rand(batch_size, input_size)) x.requires_grad = True y = network.forward(x) y.retain_grad() loss = torch.inner(y.flatten(), y.flatten()) loss.backward(retain_graph=True) results = {} results["weights"] = network.fc1.weight.cpu().detach().numpy() results["weights_grad"] = network.fc1.weight.grad.cpu().detach().numpy() results["bias"] = network.fc1.bias.cpu().detach().numpy() results["bias_grad"] = network.fc1.bias.grad.cpu().detach().numpy() results["x"] = x.cpu().detach().numpy() results["x_grad"] = x.grad.cpu().detach().numpy() results["y"] = y.cpu().detach().numpy() results["y_grad"] = y.grad.cpu().detach().numpy() results["loss"] = loss.cpu().detach().numpy() np.save(os.path.join(os.path.dirname(__file__), "assets/mlp_golden.npy"), results, allow_pickle=True) def load_golden(): return np.load(os.path.join(os.path.dirname(__file__), "assets/mlp_golden.npy"), allow_pickle=True).item() def test_mlp_grad(test, device): # uncomment to re-build golden files # create_golden() results = load_golden() torch_weights = results["weights"] torch_weights_grad = results["weights_grad"] torch_bias = results["bias"] torch_bias_grad = results["bias_grad"] torch_x = results["x"].T torch_x_grad = results["x_grad"].T torch_y = results["y"].T torch_y_grad = results["y_grad"].T torch_loss = results["loss"].T weights = wp.array(torch_weights, dtype=float, device=device, requires_grad=True) bias = wp.array(torch_bias, dtype=float, device=device, requires_grad=True) x = wp.array(torch_x, dtype=float, device=device, requires_grad=True) y = wp.array(torch_y, dtype=float, device=device, requires_grad=True) y.zero_() loss = wp.zeros(1, dtype=float, device=device, requires_grad=True) m = torch_weights.shape[0] n = torch_weights.shape[1] b = torch_x.shape[1] tape = wp.Tape() with tape: wp.launch(mlp_kernel, dim=b, inputs=[weights, bias, x, y], device=device) wp.launch(loss_kernel, dim=y.shape, inputs=[y, loss], device=device) tape.backward(loss=loss) # check forward result assert_np_equal(y.numpy().reshape(-1, b), torch_y, tol=1.0e-1) assert_np_equal(loss.numpy(), torch_loss, tol=1.0e-1) # check backward result assert_np_equal(tape.gradients[weights].numpy().reshape(m, n), torch_weights_grad, tol=1.0e-1) assert_np_equal(tape.gradients[bias].numpy(), torch_bias_grad, tol=1.0e-1) assert_np_equal(tape.gradients[x].numpy().reshape(n, b), torch_x_grad, tol=1.0e-1) assert_np_equal(tape.gradients[y].numpy().reshape(m, b), torch_y_grad, tol=1.0e-1) def profile_mlp_torch(device): import torch m = 128 n = 64 steps = 20 for i in range(steps): b = 2**i network = create_mlp(m, n) x = torch.Tensor(np.random.rand(b, m)) with wp.ScopedTimer("torch_forward" + str(b)): y = network.forward(x) torch.cuda.synchronize() for i in range(steps): b = 2**i network = create_mlp(m, n) x = torch.Tensor(np.random.rand(b, m)) y = network.forward(x) loss = torch.norm(y) # run once to alloc all gradients loss.backward(retain_graph=True) with wp.ScopedTimer("torch-backward" + str(b)): loss.backward() torch.cuda.synchronize() def profile_mlp_warp(device): m = 128 n = 64 steps = 20 for i in range(steps): b = 2**i weights = wp.array(np.random.rand(m, n) * 0.5 - 0.5, dtype=float, device=device) bias = wp.array(np.random.rand(m) * 0.5 - 0.5, dtype=float, device=device) x = wp.array(np.random.rand(n, b), dtype=float, device=device) y = wp.zeros(shape=(m, b), device=device) with wp.ScopedTimer("warp-forward" + str(b)): wp.launch(mlp_kernel, dim=b, inputs=[weights, bias, x, y], device=device) wp.synchronize() for i in range(steps): b = 2**i weights = wp.array(np.random.rand(m, n) * 0.5 - 0.5, dtype=float, device=device, requires_grad=True) bias = wp.array(np.random.rand(m) * 0.5 - 0.5, dtype=float, device=device, requires_grad=True) x = wp.array(np.random.rand(n, b), dtype=float, device=device, requires_grad=True) y = wp.zeros(shape=(m, b), device=device, requires_grad=True) loss = wp.zeros(1, dtype=float, device=device) tape = wp.Tape() with tape: wp.launch(mlp_kernel, dim=b, inputs=[weights, bias, x, y], device=device) wp.launch(loss_kernel, dim=y.size, inputs=[y.flatten(), loss], device=device) # run backward once to ensure all adjoints are allocated tape.backward(loss) wp.synchronize() with wp.ScopedTimer("warp-backward" + str(b)): tape.backward(loss) wp.synchronize() # profile_mlp_warp("cuda") # profile_mlp_torch("cuda") def register(parent): devices = get_test_devices() class TestMLP(parent): pass add_function_test(TestMLP, "test_mlp", test_mlp, devices=devices) add_function_test(TestMLP, "test_mlp_grad", test_mlp_grad, devices=devices) return TestMLP if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2, failfast=False)
warp-main
warp/tests/test_mlp.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import numpy as np import warp as wp from warp.tests.test_base import * # fmt: off POINT_POSITIONS = ( ( 0.5, -0.5, 0.5), (-0.5, -0.5, 0.5), ( 0.5, 0.5, 0.5), (-0.5, 0.5, 0.5), (-0.5, -0.5, -0.5), ( 0.5, -0.5, -0.5), (-0.5, 0.5, -0.5), ( 0.5, 0.5, -0.5), ) # Right-hand winding order. This corresponds to USD's (and others). RIGHT_HANDED_FACE_VERTEX_INDICES = ( 0, 3, 1, 0, 2, 3, 4, 7, 5, 4, 6, 7, 6, 2, 7, 6, 3, 2, 5, 1, 4, 5, 0, 1, 5, 2, 0, 5, 7, 2, 1, 6, 4, 1, 3, 6, ) # Left-hand winding order. This corresponds to Houdini's (and others). LEFT_HANDED_FACE_VERTEX_INDICES = ( 0, 1, 3, 0, 3, 2, 4, 5, 7, 4, 7, 6, 6, 7, 2, 6, 2, 3, 5, 4, 1, 5, 1, 0, 5, 0, 2, 5, 2, 7, 1, 4, 6, 1, 6, 3, ) # fmt: on POINT_COUNT = 8 VERTEX_COUNT = 36 FACE_COUNT = 12 wp.init() @wp.kernel(enable_backward=False) def read_points_kernel( mesh_id: wp.uint64, out_points: wp.array(dtype=wp.vec3), ): tid = wp.tid() mesh = wp.mesh_get(mesh_id) out_points[tid] = mesh.points[tid] @wp.kernel(enable_backward=False) def read_indices_kernel( mesh_id: wp.uint64, out_indices: wp.array(dtype=int), ): tid = wp.tid() mesh = wp.mesh_get(mesh_id) out_indices[tid * 3 + 0] = mesh.indices[tid * 3 + 0] out_indices[tid * 3 + 1] = mesh.indices[tid * 3 + 1] out_indices[tid * 3 + 2] = mesh.indices[tid * 3 + 2] def test_mesh_read_properties(test, device): points = wp.array(POINT_POSITIONS, dtype=wp.vec3) indices = wp.array(RIGHT_HANDED_FACE_VERTEX_INDICES, dtype=int) mesh = wp.Mesh(points=points, indices=indices) assert mesh.points.size == POINT_COUNT assert mesh.indices.size == VERTEX_COUNT assert int(mesh.indices.size / 3) == FACE_COUNT out_points = wp.empty(POINT_COUNT, dtype=wp.vec3) wp.launch( read_points_kernel, dim=POINT_COUNT, inputs=[ mesh.id, ], outputs=[ out_points, ], ) assert_np_equal(out_points.numpy(), np.array(POINT_POSITIONS)) out_indices = wp.empty(VERTEX_COUNT, dtype=int) wp.launch( read_indices_kernel, dim=FACE_COUNT, inputs=[ mesh.id, ], outputs=[ out_indices, ], ) assert_np_equal(out_indices.numpy(), np.array(RIGHT_HANDED_FACE_VERTEX_INDICES)) @wp.kernel(enable_backward=False) def query_point_kernel( mesh_id: wp.uint64, expected_sign: float, ): point = wp.vec3(0.1, 0.2, 0.3) expected_pos = wp.vec3(0.1, 0.2, 0.5) sign = float(0.0) face = int(0) bary_u = float(0.0) bary_v = float(0.0) wp.mesh_query_point( mesh_id, point, 1e6, sign, face, bary_u, bary_v, ) pos = wp.mesh_eval_position(mesh_id, face, bary_u, bary_v) wp.expect_eq(wp.sign(sign), expected_sign) wp.expect_eq(face, 1) wp.expect_near(wp.length(pos - expected_pos), 0.0) def test_mesh_query_point(test, device): points = wp.array(POINT_POSITIONS, dtype=wp.vec3) indices = wp.array(RIGHT_HANDED_FACE_VERTEX_INDICES, dtype=int) mesh = wp.Mesh(points=points, indices=indices) expected_sign = -1.0 wp.launch( query_point_kernel, dim=1, inputs=[ mesh.id, expected_sign, ], ) indices = wp.array(LEFT_HANDED_FACE_VERTEX_INDICES, dtype=int) mesh = wp.Mesh(points=points, indices=indices) expected_sign = 1.0 wp.launch( query_point_kernel, dim=1, inputs=[ mesh.id, expected_sign, ], ) @wp.kernel(enable_backward=False) def query_ray_kernel( mesh_id: wp.uint64, expected_sign: float, ): start = wp.vec3(0.1, 0.2, 0.3) dir = wp.normalize(wp.vec3(-1.2, 2.3, -3.4)) expected_t = 0.557828 expected_pos = wp.vec3(-0.0565217, 0.5, -0.143478) t = float(0.0) bary_u = float(0.0) bary_v = float(0.0) sign = float(0.0) normal = wp.vec3(0.0, 0.0, 0.0) face = int(0) wp.mesh_query_ray( mesh_id, start, dir, 1e6, t, bary_u, bary_v, sign, normal, face, ) pos = wp.mesh_eval_position(mesh_id, face, bary_u, bary_v) wp.expect_near(t, expected_t) wp.expect_near(t, wp.length(pos - start), 1e-6) wp.expect_eq(wp.sign(sign), expected_sign) wp.expect_eq(face, 4) wp.expect_near(wp.length(pos - expected_pos), 0.0, 1e-6) def test_mesh_query_ray(test, device): points = wp.array(POINT_POSITIONS, dtype=wp.vec3) indices = wp.array(RIGHT_HANDED_FACE_VERTEX_INDICES, dtype=int) mesh = wp.Mesh(points=points, indices=indices) expected_sign = -1.0 wp.launch( query_ray_kernel, dim=1, inputs=[ mesh.id, expected_sign, ], ) indices = wp.array(LEFT_HANDED_FACE_VERTEX_INDICES, dtype=int) mesh = wp.Mesh(points=points, indices=indices) expected_sign = 1.0 wp.launch( query_ray_kernel, dim=1, inputs=[ mesh.id, expected_sign, ], ) def test_mesh_refit_graph(test, device): points = wp.array(POINT_POSITIONS, dtype=wp.vec3) indices = wp.array(RIGHT_HANDED_FACE_VERTEX_INDICES, dtype=int) mesh = wp.Mesh(points=points, indices=indices) wp.capture_begin() mesh.refit() graph = wp.capture_end() # replay num_iters = 10 for _ in range(num_iters): wp.capture_launch(graph) def register(parent): devices = get_test_devices() class TestMesh(parent): pass add_function_test(TestMesh, "test_mesh_read_properties", test_mesh_read_properties, devices=devices) add_function_test(TestMesh, "test_mesh_query_point", test_mesh_query_point, devices=devices) add_function_test(TestMesh, "test_mesh_query_ray", test_mesh_query_ray, devices=devices) add_function_test(TestMesh, "test_mesh_refit_graph", test_mesh_refit_graph, devices=wp.get_cuda_devices()) return TestMesh if __name__ == "__main__": _ = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_mesh.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from warp.tests.test_base import * import numpy as np wp.init() # wp.config.cache_kernels = False # Volume write tests @wp.kernel def test_volume_store_f(volume: wp.uint64, points: wp.array(dtype=wp.vec3)): tid = wp.tid() p = points[tid] i = int(p[0]) j = int(p[1]) k = int(p[2]) wp.volume_store_f(volume, i, j, k, float(i + 100 * j + 10000 * k)) @wp.kernel def test_volume_readback_f(volume: wp.uint64, points: wp.array(dtype=wp.vec3), values: wp.array(dtype=wp.float32)): tid = wp.tid() p = points[tid] i = int(p[0]) j = int(p[1]) k = int(p[2]) values[tid] = wp.volume_lookup_f(volume, i, j, k) @wp.kernel def test_get_list_of_tiles( volume: wp.uint64, points_is: wp.array2d(dtype=wp.int32), points_ws: wp.array(dtype=wp.vec3), tiles_is: wp.array2d(dtype=wp.int32), tiles_ws: wp.array2d(dtype=wp.int32), ): tid = wp.tid() tiles_is[tid, 0] = points_is[tid, 0] tiles_is[tid, 1] = points_is[tid, 1] tiles_is[tid, 2] = points_is[tid, 2] q = wp.volume_world_to_index(volume, points_ws[tid]) tiles_ws[tid, 0] = int(q[0] / 8.0) * 8 tiles_ws[tid, 1] = int(q[1] / 8.0) * 8 tiles_ws[tid, 2] = int(q[2] / 8.0) * 8 @wp.kernel def test_volume_tile_store_f(volume: wp.uint64, tiles: wp.array2d(dtype=wp.int32)): tid = wp.tid() ti = tiles[tid, 0] tj = tiles[tid, 1] tk = tiles[tid, 2] for r in range(512): ii = ti + (r / 64) % 8 jj = tj + (r / 8) % 8 kk = tk + r % 8 wp.volume_store_f(volume, ii, jj, kk, float(100 * ii + 10 * jj + kk)) @wp.kernel def test_volume_tile_store_ws_f(volume: wp.uint64, tiles: wp.array(dtype=wp.vec3)): tid = wp.tid() q = wp.volume_world_to_index(volume, tiles[tid]) ti = int(wp.round(q[0])) tj = int(wp.round(q[1])) tk = int(wp.round(q[2])) for r in range(512): ii = ti + (r / 64) % 8 jj = tj + (r / 8) % 8 kk = tk + r % 8 wp.volume_store_f(volume, ii, jj, kk, float(100 * ii + 10 * jj + kk)) @wp.kernel def test_volume_tile_readback_f( volume: wp.uint64, tiles: wp.array2d(dtype=wp.int32), values: wp.array(dtype=wp.float32) ): tid = wp.tid() ti = tiles[tid, 0] tj = tiles[tid, 1] tk = tiles[tid, 2] for r in range(512): ii = ti + (r / 64) % 8 jj = tj + (r / 8) % 8 kk = tk + r % 8 values[tid * 512 + r] = wp.volume_lookup_f(volume, ii, jj, kk) @wp.kernel def test_volume_tile_store_v(volume: wp.uint64, tiles: wp.array2d(dtype=wp.int32)): tid = wp.tid() ti = tiles[tid, 0] tj = tiles[tid, 1] tk = tiles[tid, 2] for r in range(512): ii = ti + (r / 64) % 8 jj = tj + (r / 8) % 8 kk = tk + r % 8 wp.volume_store_v(volume, ii, jj, kk, wp.vec3(float(ii), float(jj), float(kk))) @wp.kernel def test_volume_tile_readback_v(volume: wp.uint64, tiles: wp.array2d(dtype=wp.int32), values: wp.array(dtype=wp.vec3)): tid = wp.tid() ti = tiles[tid, 0] tj = tiles[tid, 1] tk = tiles[tid, 2] for r in range(512): ii = ti + (r / 64) % 8 jj = tj + (r / 8) % 8 kk = tk + r % 8 values[tid * 512 + r] = wp.volume_lookup_v(volume, ii, jj, kk) rng = np.random.default_rng(101215) def register(parent): devices = get_test_devices() class TestVolumes(parent): def test_volume_allocation(self): voxel_size = 0.125 background_value = 123.456 translation = wp.vec3(-12.3, 4.56, -789) axis = np.linspace(-11, 11, 23) points_ref = np.array([[x, y, z] for x in axis for y in axis for z in axis]) values_ref = np.array([x + 100 * y + 10000 * z for x in axis for y in axis for z in axis]) num_points = len(points_ref) bb_max = np.array([11, 11, 11]) for device in devices: if device.is_cpu: continue volume_a = wp.Volume.allocate( -bb_max, bb_max, voxel_size=voxel_size, bg_value=background_value, translation=translation, device=device, ) volume_b = wp.Volume.allocate( -bb_max * voxel_size + translation, bb_max * voxel_size + translation, voxel_size=voxel_size, bg_value=background_value, translation=translation, points_in_world_space=True, device=device, ) points = wp.array(points_ref, dtype=wp.vec3, device=device) values_a = wp.empty(num_points, dtype=wp.float32, device=device) values_b = wp.empty(num_points, dtype=wp.float32, device=device) wp.launch(test_volume_store_f, dim=num_points, inputs=[volume_a.id, points], device=device) wp.launch(test_volume_store_f, dim=num_points, inputs=[volume_b.id, points], device=device) wp.launch(test_volume_readback_f, dim=num_points, inputs=[volume_a.id, points, values_a], device=device) wp.launch(test_volume_readback_f, dim=num_points, inputs=[volume_b.id, points, values_b], device=device) np.testing.assert_equal(values_a.numpy(), values_ref) np.testing.assert_equal(values_b.numpy(), values_ref) def test_volume_allocate_by_tiles_f(self): voxel_size = 0.125 background_value = 123.456 translation = wp.vec3(-12.3, 4.56, -789) num_tiles = 1000 tiles = rng.integers(-512, 512, size=(num_tiles, 3), dtype=np.int32) points_is = tiles * 8 # points in index space points_ws = points_is * voxel_size + translation # points in world space values_ref = np.empty(num_tiles * 512) for t in range(num_tiles): ti, tj, tk = points_is[t] for i in range(8): for j in range(8): for k in range(8): values_ref[t * 512 + i * 64 + j * 8 + k] = float(100 * (ti + i) + 10 * (tj + j) + (tk + k)) for device in devices: if device.is_cpu: continue points_is_d = wp.array(points_is, dtype=wp.int32, device=device) points_ws_d = wp.array(points_ws, dtype=wp.vec3, device=device) volume_a = wp.Volume.allocate_by_tiles( points_is_d, voxel_size, background_value, translation, device=device ) volume_b = wp.Volume.allocate_by_tiles( points_ws_d, voxel_size, background_value, translation, device=device ) values_a = wp.empty(num_tiles * 512, dtype=wp.float32, device=device) values_b = wp.empty(num_tiles * 512, dtype=wp.float32, device=device) wp.launch(test_volume_tile_store_f, dim=num_tiles, inputs=[volume_a.id, points_is_d], device=device) wp.launch(test_volume_tile_store_ws_f, dim=num_tiles, inputs=[volume_b.id, points_ws_d], device=device) wp.launch( test_volume_tile_readback_f, dim=num_tiles, inputs=[volume_a.id, points_is_d, values_a], device=device, ) wp.launch( test_volume_tile_readback_f, dim=num_tiles, inputs=[volume_b.id, points_is_d, values_b], device=device, ) np.testing.assert_equal(values_a.numpy(), values_ref) np.testing.assert_equal(values_b.numpy(), values_ref) def test_volume_allocate_by_tiles_v(self): num_tiles = 1000 tiles = rng.integers(-512, 512, size=(num_tiles, 3), dtype=np.int32) points_is = tiles * 8 values_ref = np.empty((len(tiles) * 512, 3)) for t in range(len(tiles)): ti, tj, tk = points_is[t] for i in range(8): for j in range(8): for k in range(8): values_ref[t * 512 + i * 64 + j * 8 + k] = [ti + i, tj + j, tk + k] for device in devices: if device.is_cpu: continue points_d = wp.array(points_is, dtype=wp.int32, device=device) volume = wp.Volume.allocate_by_tiles(points_d, 0.1, wp.vec3(1, 2, 3), device=device) values = wp.empty(len(points_d) * 512, dtype=wp.vec3, device=device) wp.launch(test_volume_tile_store_v, dim=len(points_d), inputs=[volume.id, points_d], device=device) wp.launch( test_volume_tile_readback_v, dim=len(points_d), inputs=[volume.id, points_d, values], device=device ) values_res = values.numpy() np.testing.assert_equal(values_res, values_ref) return TestVolumes if __name__ == "__main__": wp.force_load() c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_volume_write.py
import warp as wp wp.init() @wp.func def multiply(x: float): return x * x @wp.kernel def kern(expect: float): wp.expect_eq(multiply(4.0), expect) def run(expect, device): wp.launch(kern, dim=1, inputs=[expect], device=device)
warp-main
warp/tests/test_square.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import numpy as np import math import warp as wp from warp.tests.test_base import * import unittest wp.init() # construct kernel + test function for atomic ops on each vec/matrix type def make_atomic_test(type): def test_atomic_kernel( out_add: wp.array(dtype=type), out_min: wp.array(dtype=type), out_max: wp.array(dtype=type), val: wp.array(dtype=type), ): tid = wp.tid() wp.atomic_add(out_add, 0, val[tid]) wp.atomic_min(out_min, 0, val[tid]) wp.atomic_max(out_max, 0, val[tid]) # register a custom kernel (no decorator) function # this lets us register the same function definition # against multiple symbols, with different arg types module = wp.get_module(test_atomic_kernel.__module__) kernel = wp.Kernel(func=test_atomic_kernel, key=f"test_atomic_{type.__name__}_kernel", module=module) def test_atomic(test, device): n = 1024 rng = np.random.default_rng(42) if type == wp.int32: base = (rng.random(size=1, dtype=np.float32) * 100.0).astype(np.int32) val = (rng.random(size=n, dtype=np.float32) * 100.0).astype(np.int32) elif type == wp.float32: base = rng.random(size=1, dtype=np.float32) val = rng.random(size=n, dtype=np.float32) else: base = rng.random(size=(1, *type._shape_), dtype=float) val = rng.random(size=(n, *type._shape_), dtype=float) add_array = wp.array(base, dtype=type, device=device) min_array = wp.array(base, dtype=type, device=device) max_array = wp.array(base, dtype=type, device=device) val_array = wp.array(val, dtype=type, device=device) wp.launch(kernel, n, inputs=[add_array, min_array, max_array, val_array], device=device) val = np.append(val, [base[0]], axis=0) assert_np_equal(add_array.numpy(), np.sum(val, axis=0), tol=1.0e-2) assert_np_equal(min_array.numpy(), np.min(val, axis=0), tol=1.0e-2) assert_np_equal(max_array.numpy(), np.max(val, axis=0), tol=1.0e-2) return test_atomic # generate test functions for atomic types test_atomic_int = make_atomic_test(wp.int32) test_atomic_float = make_atomic_test(wp.float32) test_atomic_vec2 = make_atomic_test(wp.vec2) test_atomic_vec3 = make_atomic_test(wp.vec3) test_atomic_vec4 = make_atomic_test(wp.vec4) test_atomic_mat22 = make_atomic_test(wp.mat22) test_atomic_mat33 = make_atomic_test(wp.mat33) test_atomic_mat44 = make_atomic_test(wp.mat44) def register(parent): devices = get_test_devices() class TestAtomic(parent): pass add_function_test(TestAtomic, "test_atomic_int", test_atomic_int, devices=devices) add_function_test(TestAtomic, "test_atomic_float", test_atomic_float, devices=devices) add_function_test(TestAtomic, "test_atomic_vec2", test_atomic_vec2, devices=devices) add_function_test(TestAtomic, "test_atomic_vec3", test_atomic_vec3, devices=devices) add_function_test(TestAtomic, "test_atomic_vec4", test_atomic_vec4, devices=devices) add_function_test(TestAtomic, "test_atomic_mat22", test_atomic_mat22, devices=devices) add_function_test(TestAtomic, "test_atomic_mat33", test_atomic_mat33, devices=devices) add_function_test(TestAtomic, "test_atomic_mat44", test_atomic_mat44, devices=devices) return TestAtomic if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_atomic.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import unittest # include parent path import numpy as np import warp as wp from warp.tests.test_base import * wp.init() @wp.kernel def kernel_1d(a: wp.array(dtype=int, ndim=1)): i = wp.tid() wp.expect_eq(a[i], wp.tid()) a[i] = a[i] * 2 wp.atomic_add(a, i, 1) wp.expect_eq(a[i], wp.tid() * 2 + 1) def test_1d(test, device): dim_x = 4 a = np.arange(0, dim_x, dtype=np.int32) arr = wp.array(a, device=device) test.assertEqual(arr.shape, a.shape) test.assertEqual(arr.size, a.size) test.assertEqual(arr.ndim, a.ndim) with CheckOutput(test): wp.launch(kernel_1d, dim=arr.size, inputs=[arr], device=device) @wp.kernel def kernel_2d(a: wp.array(dtype=int, ndim=2), m: int, n: int): i = wp.tid() // n j = wp.tid() % n wp.expect_eq(a[i, j], wp.tid()) wp.expect_eq(a[i][j], wp.tid()) a[i, j] = a[i, j] * 2 wp.atomic_add(a, i, j, 1) wp.expect_eq(a[i, j], wp.tid() * 2 + 1) def test_2d(test, device): dim_x = 4 dim_y = 2 a = np.arange(0, dim_x * dim_y, dtype=np.int32) a = a.reshape(dim_x, dim_y) arr = wp.array(a, device=device) test.assertEqual(arr.shape, a.shape) test.assertEqual(arr.size, a.size) test.assertEqual(arr.ndim, a.ndim) with CheckOutput(test): wp.launch(kernel_2d, dim=arr.size, inputs=[arr, dim_x, dim_y], device=device) @wp.kernel def kernel_3d(a: wp.array(dtype=int, ndim=3), m: int, n: int, o: int): i = wp.tid() // (n * o) j = wp.tid() % (n * o) // o k = wp.tid() % o wp.expect_eq(a[i, j, k], wp.tid()) wp.expect_eq(a[i][j][k], wp.tid()) a[i, j, k] = a[i, j, k] * 2 a[i][j][k] = a[i][j][k] * 2 wp.atomic_add(a, i, j, k, 1) wp.expect_eq(a[i, j, k], wp.tid() * 4 + 1) def test_3d(test, device): dim_x = 8 dim_y = 4 dim_z = 2 a = np.arange(0, dim_x * dim_y * dim_z, dtype=np.int32) a = a.reshape(dim_x, dim_y, dim_z) arr = wp.array(a, device=device) test.assertEqual(arr.shape, a.shape) test.assertEqual(arr.size, a.size) test.assertEqual(arr.ndim, a.ndim) with CheckOutput(test): wp.launch(kernel_3d, dim=arr.size, inputs=[arr, dim_x, dim_y, dim_z], device=device) @wp.kernel def kernel_4d(a: wp.array(dtype=int, ndim=4), m: int, n: int, o: int, p: int): i = wp.tid() // (n * o * p) j = wp.tid() % (n * o * p) // (o * p) k = wp.tid() % (o * p) / p l = wp.tid() % p wp.expect_eq(a[i, j, k, l], wp.tid()) wp.expect_eq(a[i][j][k][l], wp.tid()) def test_4d(test, device): dim_x = 16 dim_y = 8 dim_z = 4 dim_w = 2 a = np.arange(0, dim_x * dim_y * dim_z * dim_w, dtype=np.int32) a = a.reshape(dim_x, dim_y, dim_z, dim_w) arr = wp.array(a, device=device) test.assertEqual(arr.shape, a.shape) test.assertEqual(arr.size, a.size) test.assertEqual(arr.ndim, a.ndim) with CheckOutput(test): wp.launch(kernel_4d, dim=arr.size, inputs=[arr, dim_x, dim_y, dim_z, dim_w], device=device) @wp.kernel def kernel_4d_transposed(a: wp.array(dtype=int, ndim=4), m: int, n: int, o: int, p: int): i = wp.tid() // (n * o * p) j = wp.tid() % (n * o * p) // (o * p) k = wp.tid() % (o * p) / p l = wp.tid() % p wp.expect_eq(a[l, k, j, i], wp.tid()) wp.expect_eq(a[l][k][j][i], wp.tid()) def test_4d_transposed(test, device): dim_x = 16 dim_y = 8 dim_z = 4 dim_w = 2 a = np.arange(0, dim_x * dim_y * dim_z * dim_w, dtype=np.int32) a = a.reshape(dim_x, dim_y, dim_z, dim_w) arr = wp.array(a, device=device) # Transpose the array manually, as using the wp.array() constructor with arr.T would make it contiguous first a_T = a.T arr_T = wp.array( dtype=arr.dtype, shape=a_T.shape, strides=a_T.__array_interface__["strides"], capacity=arr.capacity, ptr=arr.ptr, owner=False, requires_grad=arr.requires_grad, device=device, ) test.assertFalse(arr_T.is_contiguous) test.assertEqual(arr_T.shape, a_T.shape) test.assertEqual(arr_T.strides, a_T.__array_interface__["strides"]) test.assertEqual(arr_T.size, a_T.size) test.assertEqual(arr_T.ndim, a_T.ndim) with CheckOutput(test): wp.launch(kernel_4d_transposed, dim=arr_T.size, inputs=[arr_T, dim_x, dim_y, dim_z, dim_w], device=device) @wp.kernel def lower_bound_kernel(values: wp.array(dtype=float), arr: wp.array(dtype=float), indices: wp.array(dtype=int)): tid = wp.tid() indices[tid] = wp.lower_bound(arr, values[tid]) def test_lower_bound(test, device): arr = wp.array(np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0], dtype=float), dtype=float, device=device) values = wp.array(np.array([-0.1, 0.0, 2.5, 4.0, 5.0, 5.5], dtype=float), dtype=float, device=device) indices = wp.zeros(6, dtype=int, device=device) wp.launch(kernel=lower_bound_kernel, dim=6, inputs=[values, arr, indices], device=device) test.assertTrue((np.array([0, 0, 3, 4, 5, 5]) == indices.numpy()).all()) @wp.kernel def f1(arr: wp.array(dtype=float)): wp.expect_eq(arr.shape[0], 10) @wp.kernel def f2(arr: wp.array2d(dtype=float)): wp.expect_eq(arr.shape[0], 10) wp.expect_eq(arr.shape[1], 20) slice = arr[0] wp.expect_eq(slice.shape[0], 20) @wp.kernel def f3(arr: wp.array3d(dtype=float)): wp.expect_eq(arr.shape[0], 10) wp.expect_eq(arr.shape[1], 20) wp.expect_eq(arr.shape[2], 30) slice = arr[0, 0] wp.expect_eq(slice.shape[0], 30) @wp.kernel def f4(arr: wp.array4d(dtype=float)): wp.expect_eq(arr.shape[0], 10) wp.expect_eq(arr.shape[1], 20) wp.expect_eq(arr.shape[2], 30) wp.expect_eq(arr.shape[3], 40) slice = arr[0, 0, 0] wp.expect_eq(slice.shape[0], 40) def test_shape(test, device): with CheckOutput(test): a1 = wp.zeros(dtype=float, shape=10, device=device) wp.launch(f1, dim=1, inputs=[a1], device=device) a2 = wp.zeros(dtype=float, shape=(10, 20), device=device) wp.launch(f2, dim=1, inputs=[a2], device=device) a3 = wp.zeros(dtype=float, shape=(10, 20, 30), device=device) wp.launch(f3, dim=1, inputs=[a3], device=device) a4 = wp.zeros(dtype=float, shape=(10, 20, 30, 40), device=device) wp.launch(f4, dim=1, inputs=[a4], device=device) @wp.kernel def sum_array(arr: wp.array(dtype=float), loss: wp.array(dtype=float)): tid = wp.tid() wp.atomic_add(loss, 0, arr[tid]) def test_flatten(test, device): np_arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=float) arr = wp.array(np_arr, dtype=float, shape=np_arr.shape, device=device, requires_grad=True) arr_flat = arr.flatten() arr_comp = wp.array(np_arr.flatten(), dtype=float, device=device) assert_array_equal(arr_flat, arr_comp) loss = wp.zeros(1, dtype=float, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(kernel=sum_array, dim=len(arr_flat), inputs=[arr_flat, loss], device=device) tape.backward(loss=loss) grad = tape.gradients[arr_flat] ones = wp.array( np.ones( (8,), dtype=float, ), dtype=float, device=device, ) assert_array_equal(grad, ones) test.assertEqual(loss.numpy()[0], 36) def test_reshape(test, device): np_arr = np.arange(6, dtype=float) arr = wp.array(np_arr, dtype=float, device=device, requires_grad=True) arr_reshaped = arr.reshape((3, 2)) arr_comp = wp.array(np_arr.reshape((3, 2)), dtype=float, device=device) assert_array_equal(arr_reshaped, arr_comp) arr_reshaped = arr_reshaped.reshape(6) assert_array_equal(arr_reshaped, arr) loss = wp.zeros(1, dtype=float, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(kernel=sum_array, dim=len(arr_reshaped), inputs=[arr_reshaped, loss], device=device) tape.backward(loss=loss) grad = tape.gradients[arr_reshaped] ones = wp.array( np.ones( (6,), dtype=float, ), dtype=float, device=device, ) assert_array_equal(grad, ones) test.assertEqual(loss.numpy()[0], 15) np_arr = np.arange(6, dtype=float) arr = wp.array(np_arr, dtype=float, device=device) arr_infer = arr.reshape((-1, 3)) arr_comp = wp.array(np_arr.reshape((-1, 3)), dtype=float, device=device) assert_array_equal(arr_infer, arr_comp) @wp.kernel def compare_stepped_window_a(x: wp.array2d(dtype=float)): wp.expect_eq(x[0, 0], 1.0) wp.expect_eq(x[0, 1], 2.0) wp.expect_eq(x[1, 0], 9.0) wp.expect_eq(x[1, 1], 10.0) @wp.kernel def compare_stepped_window_b(x: wp.array2d(dtype=float)): wp.expect_eq(x[0, 0], 3.0) wp.expect_eq(x[0, 1], 4.0) wp.expect_eq(x[1, 0], 7.0) wp.expect_eq(x[1, 1], 8.0) wp.expect_eq(x[2, 0], 11.0) wp.expect_eq(x[2, 1], 12.0) def test_slicing(test, device): np_arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=float) arr = wp.array(np_arr, dtype=float, shape=np_arr.shape, device=device, requires_grad=True) slice_a = arr[1, :, :] # test indexing slice_b = arr[1:2, :, :] # test slicing slice_c = arr[-1, :, :] # test negative indexing slice_d = arr[-2:-1, :, :] # test negative slicing slice_e = arr[-1:3, :, :] # test mixed slicing slice_e2 = slice_e[0, 0, :] # test 2x slicing slice_f = arr[0:3:2, 0, :] # test step assert_array_equal(slice_a, wp.array(np_arr[1, :, :], dtype=float, device=device)) assert_array_equal(slice_b, wp.array(np_arr[1:2, :, :], dtype=float, device=device)) assert_array_equal(slice_c, wp.array(np_arr[-1, :, :], dtype=float, device=device)) assert_array_equal(slice_d, wp.array(np_arr[-2:-1, :, :], dtype=float, device=device)) assert_array_equal(slice_e, wp.array(np_arr[-1:3, :, :], dtype=float, device=device)) assert_array_equal(slice_e2, wp.array(np_arr[2, 0, :], dtype=float, device=device)) # wp does not support copying from/to non-contiguous arrays # stepped windows must read on the device the original array was created on wp.launch(kernel=compare_stepped_window_a, dim=1, inputs=[slice_f], device=device) slice_flat = slice_b.flatten() loss = wp.zeros(1, dtype=float, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(kernel=sum_array, dim=len(slice_flat), inputs=[slice_flat, loss], device=device) tape.backward(loss=loss) grad = tape.gradients[slice_flat] ones = wp.array( np.ones( (4,), dtype=float, ), dtype=float, device=device, ) assert_array_equal(grad, ones) test.assertEqual(loss.numpy()[0], 26) index_a = arr[1] index_b = arr[2, 1] index_c = arr[1, :] index_d = arr[:, 1] assert_array_equal(index_a, wp.array(np_arr[1], dtype=float, device=device)) assert_array_equal(index_b, wp.array(np_arr[2, 1], dtype=float, device=device)) assert_array_equal(index_c, wp.array(np_arr[1, :], dtype=float, device=device)) wp.launch(kernel=compare_stepped_window_b, dim=1, inputs=[index_d], device=device) np_arr = np.zeros(10, dtype=int) wp_arr = wp.array(np_arr, dtype=int, device=device) assert_array_equal(wp_arr[:5], wp.array(np_arr[:5], dtype=int, device=device)) assert_array_equal(wp_arr[1:5], wp.array(np_arr[1:5], dtype=int, device=device)) assert_array_equal(wp_arr[-9:-5:1], wp.array(np_arr[-9:-5:1], dtype=int, device=device)) assert_array_equal(wp_arr[:5,], wp.array(np_arr[:5], dtype=int, device=device)) # noqa: E231 def test_view(test, device): np_arr_a = np.arange(1, 10, 1, dtype=np.uint32) np_arr_b = np.arange(1, 10, 1, dtype=np.float32) np_arr_c = np.arange(1, 10, 1, dtype=np.uint16) np_arr_d = np.arange(1, 10, 1, dtype=np.float16) np_arr_e = np.ones((4, 4), dtype=np.float32) wp_arr_a = wp.array(np_arr_a, dtype=wp.uint32, device=device) wp_arr_b = wp.array(np_arr_b, dtype=wp.float32, device=device) wp_arr_c = wp.array(np_arr_a, dtype=wp.uint16, device=device) wp_arr_d = wp.array(np_arr_b, dtype=wp.float16, device=device) wp_arr_e = wp.array(np_arr_e, dtype=wp.vec4, device=device) wp_arr_f = wp.array(np_arr_e, dtype=wp.quat, device=device) assert np.array_equal(np_arr_a.view(dtype=np.float32), wp_arr_a.view(dtype=wp.float32).numpy()) assert np.array_equal(np_arr_b.view(dtype=np.uint32), wp_arr_b.view(dtype=wp.uint32).numpy()) assert np.array_equal(np_arr_c.view(dtype=np.float16), wp_arr_c.view(dtype=wp.float16).numpy()) assert np.array_equal(np_arr_d.view(dtype=np.uint16), wp_arr_d.view(dtype=wp.uint16).numpy()) assert_array_equal(wp_arr_e.view(dtype=wp.quat), wp_arr_f) @wp.kernel def compare_2darrays(x: wp.array2d(dtype=float), y: wp.array2d(dtype=float), z: wp.array2d(dtype=int)): i, j = wp.tid() if x[i, j] == y[i, j]: z[i, j] = 1 @wp.kernel def compare_3darrays(x: wp.array3d(dtype=float), y: wp.array3d(dtype=float), z: wp.array3d(dtype=int)): i, j, k = wp.tid() if x[i, j, k] == y[i, j, k]: z[i, j, k] = 1 def test_transpose(test, device): # test default transpose in non-square 2d case # wp does not support copying from/to non-contiguous arrays so check in kernel np_arr = np.array([[1, 2], [3, 4], [5, 6]], dtype=float) arr = wp.array(np_arr, dtype=float, device=device) arr_transpose = arr.transpose() arr_compare = wp.array(np_arr.transpose(), dtype=float, device=device) check = wp.zeros(shape=(2, 3), dtype=int, device=device) wp.launch(compare_2darrays, dim=(2, 3), inputs=[arr_transpose, arr_compare, check], device=device) assert np.array_equal(check.numpy(), np.ones((2, 3), dtype=int)) # test transpose in square 3d case # wp does not support copying from/to non-contiguous arrays so check in kernel np_arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=float) arr = wp.array3d(np_arr, dtype=float, shape=np_arr.shape, device=device, requires_grad=True) arr_transpose = arr.transpose((0, 2, 1)) arr_compare = wp.array3d(np_arr.transpose((0, 2, 1)), dtype=float, device=device) check = wp.zeros(shape=(3, 2, 2), dtype=int, device=device) wp.launch(compare_3darrays, dim=(3, 2, 2), inputs=[arr_transpose, arr_compare, check], device=device) assert np.array_equal(check.numpy(), np.ones((3, 2, 2), dtype=int)) # test transpose in square 3d case without axes supplied arr_transpose = arr.transpose() arr_compare = wp.array3d(np_arr.transpose(), dtype=float, device=device) check = wp.zeros(shape=(2, 2, 3), dtype=int, device=device) wp.launch(compare_3darrays, dim=(2, 2, 3), inputs=[arr_transpose, arr_compare, check], device=device) assert np.array_equal(check.numpy(), np.ones((2, 2, 3), dtype=int)) # test transpose in 1d case (should be noop) np_arr = np.array([1, 2, 3], dtype=float) arr = wp.array(np_arr, dtype=float, device=device) assert np.array_equal(np_arr.transpose(), arr.transpose().numpy()) def test_fill_scalar(test, device): dim_x = 4 for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): a1 = wp.zeros(dim_x, dtype=wptype, device=device) a2 = wp.zeros((dim_x, dim_x), dtype=wptype, device=device) a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=wptype, device=device) a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=wptype, device=device) assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) # fill with int value fill_value = 42 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype)) a1.zero_() a2.zero_() a3.zero_() a4.zero_() assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) if wptype in wp.types.float_types: # fill with float value fill_value = 13.37 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype)) # fill with Warp scalar value fill_value = wptype(17) a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value.value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value.value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value.value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value.value, dtype=nptype)) def test_fill_vector(test, device): # test filling a vector array with scalar or vector values (vec_type, list, or numpy array) dim_x = 4 for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # vector types vector_types = [ wp.types.vector(2, wptype), wp.types.vector(3, wptype), wp.types.vector(4, wptype), wp.types.vector(5, wptype), ] for vec_type in vector_types: vec_len = vec_type._length_ a1 = wp.zeros(dim_x, dtype=vec_type, device=device) a2 = wp.zeros((dim_x, dim_x), dtype=vec_type, device=device) a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=vec_type, device=device) a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=vec_type, device=device) assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype)) # fill with int scalar fill_value = 42 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype)) # test zeroing a1.zero_() a2.zero_() a3.zero_() a4.zero_() assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype)) # vector values can be passed as a list, numpy array, or Warp vector instance fill_list = [17, 42, 99, 101, 127][:vec_len] fill_arr = np.array(fill_list, dtype=nptype) fill_vec = vec_type(fill_list) expected1 = np.tile(fill_arr, a1.size).reshape((*a1.shape, vec_len)) expected2 = np.tile(fill_arr, a2.size).reshape((*a2.shape, vec_len)) expected3 = np.tile(fill_arr, a3.size).reshape((*a3.shape, vec_len)) expected4 = np.tile(fill_arr, a4.size).reshape((*a4.shape, vec_len)) # fill with list of vector length a1.fill_(fill_list) a2.fill_(fill_list) a3.fill_(fill_list) a4.fill_(fill_list) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with numpy array of vector length a1.fill_(fill_arr) a2.fill_(fill_arr) a3.fill_(fill_arr) a4.fill_(fill_arr) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with vec instance a1.fill_(fill_vec) a2.fill_(fill_vec) a3.fill_(fill_vec) a4.fill_(fill_vec) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) if wptype in wp.types.float_types: # fill with float scalar fill_value = 13.37 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype)) # fill with float list of vector length fill_list = [-2.5, -1.25, 1.25, 2.5, 5.0][:vec_len] a1.fill_(fill_list) a2.fill_(fill_list) a3.fill_(fill_list) a4.fill_(fill_list) expected1 = np.tile(np.array(fill_list, dtype=nptype), a1.size).reshape((*a1.shape, vec_len)) expected2 = np.tile(np.array(fill_list, dtype=nptype), a2.size).reshape((*a2.shape, vec_len)) expected3 = np.tile(np.array(fill_list, dtype=nptype), a3.size).reshape((*a3.shape, vec_len)) expected4 = np.tile(np.array(fill_list, dtype=nptype), a4.size).reshape((*a4.shape, vec_len)) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) def test_fill_matrix(test, device): # test filling a matrix array with scalar or matrix values (mat_type, nested list, or 2d numpy array) dim_x = 4 for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # matrix types matrix_types = [ # square matrices wp.types.matrix((2, 2), wptype), wp.types.matrix((3, 3), wptype), wp.types.matrix((4, 4), wptype), wp.types.matrix((5, 5), wptype), # non-square matrices wp.types.matrix((2, 3), wptype), wp.types.matrix((3, 2), wptype), wp.types.matrix((3, 4), wptype), wp.types.matrix((4, 3), wptype), ] for mat_type in matrix_types: mat_len = mat_type._length_ mat_shape = mat_type._shape_ a1 = wp.zeros(dim_x, dtype=mat_type, device=device) a2 = wp.zeros((dim_x, dim_x), dtype=mat_type, device=device) a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=mat_type, device=device) a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=mat_type, device=device) assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype)) # fill with scalar fill_value = 42 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full((*a1.shape, *mat_shape), fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full((*a2.shape, *mat_shape), fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full((*a3.shape, *mat_shape), fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full((*a4.shape, *mat_shape), fill_value, dtype=nptype)) # test zeroing a1.zero_() a2.zero_() a3.zero_() a4.zero_() assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype)) # matrix values can be passed as a 1d numpy array, 2d numpy array, flat list, nested list, or Warp matrix instance if wptype != wp.bool: fill_arr1 = np.arange(mat_len, dtype=nptype) else: fill_arr1 = np.ones(mat_len, dtype=nptype) fill_arr2 = fill_arr1.reshape(mat_shape) fill_list1 = list(fill_arr1) fill_list2 = [list(row) for row in fill_arr2] fill_mat = mat_type(fill_arr1) expected1 = np.tile(fill_arr1, a1.size).reshape((*a1.shape, *mat_shape)) expected2 = np.tile(fill_arr1, a2.size).reshape((*a2.shape, *mat_shape)) expected3 = np.tile(fill_arr1, a3.size).reshape((*a3.shape, *mat_shape)) expected4 = np.tile(fill_arr1, a4.size).reshape((*a4.shape, *mat_shape)) # fill with 1d numpy array a1.fill_(fill_arr1) a2.fill_(fill_arr1) a3.fill_(fill_arr1) a4.fill_(fill_arr1) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with 2d numpy array a1.fill_(fill_arr2) a2.fill_(fill_arr2) a3.fill_(fill_arr2) a4.fill_(fill_arr2) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with flat list a1.fill_(fill_list1) a2.fill_(fill_list1) a3.fill_(fill_list1) a4.fill_(fill_list1) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with nested list a1.fill_(fill_list2) a2.fill_(fill_list2) a3.fill_(fill_list2) a4.fill_(fill_list2) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with mat instance a1.fill_(fill_mat) a2.fill_(fill_mat) a3.fill_(fill_mat) a4.fill_(fill_mat) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) @wp.struct class FillStruct: # scalar members (make sure to test float16) i1: wp.int8 i2: wp.int16 i4: wp.int32 i8: wp.int64 f2: wp.float16 f4: wp.float32 f8: wp.float16 # vector members (make sure to test vectors of float16) v2: wp.types.vector(2, wp.int64) v3: wp.types.vector(3, wp.float32) v4: wp.types.vector(4, wp.float16) v5: wp.types.vector(5, wp.uint8) # matrix members (make sure to test matrices of float16) m2: wp.types.matrix((2, 2), wp.float64) m3: wp.types.matrix((3, 3), wp.int32) m4: wp.types.matrix((4, 4), wp.float16) m5: wp.types.matrix((5, 5), wp.int8) # arrays a1: wp.array(dtype=float) a2: wp.array2d(dtype=float) a3: wp.array3d(dtype=float) a4: wp.array4d(dtype=float) def test_fill_struct(test, device): dim_x = 4 nptype = FillStruct.numpy_dtype() a1 = wp.zeros(dim_x, dtype=FillStruct, device=device) a2 = wp.zeros((dim_x, dim_x), dtype=FillStruct, device=device) a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=FillStruct, device=device) a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=FillStruct, device=device) assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) s = FillStruct() # fill with default struct value (should be all zeros) a1.fill_(s) a2.fill_(s) a3.fill_(s) a4.fill_(s) assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) # scalars s.i1 = -17 s.i2 = 42 s.i4 = 99 s.i8 = 101 s.f2 = -1.25 s.f4 = 13.37 s.f8 = 0.125 # vectors s.v2 = [21, 22] s.v3 = [31, 32, 33] s.v4 = [41, 42, 43, 44] s.v5 = [51, 52, 53, 54, 55] # matrices s.m2 = [[61, 62]] * 2 s.m3 = [[71, 72, 73]] * 3 s.m4 = [[81, 82, 83, 84]] * 4 s.m5 = [[91, 92, 93, 94, 95]] * 5 # arrays s.a1 = wp.zeros((2,) * 1, dtype=float, device=device) s.a2 = wp.zeros((2,) * 2, dtype=float, device=device) s.a3 = wp.zeros((2,) * 3, dtype=float, device=device) s.a4 = wp.zeros((2,) * 4, dtype=float, device=device) # fill with custom struct value a1.fill_(s) a2.fill_(s) a3.fill_(s) a4.fill_(s) ns = s.numpy_value() expected1 = np.empty(a1.shape, dtype=nptype) expected2 = np.empty(a2.shape, dtype=nptype) expected3 = np.empty(a3.shape, dtype=nptype) expected4 = np.empty(a4.shape, dtype=nptype) expected1.fill(ns) expected2.fill(ns) expected3.fill(ns) expected4.fill(ns) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # test clearing a1.zero_() a2.zero_() a3.zero_() a4.zero_() assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) def test_fill_slices(test, device): # test fill_ and zero_ for non-contiguous arrays # Note: we don't need to test the whole range of dtypes (vectors, matrices, structs) here dim_x = 8 for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): a1 = wp.zeros(dim_x, dtype=wptype, device=device) a2 = wp.zeros((dim_x, dim_x), dtype=wptype, device=device) a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=wptype, device=device) a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=wptype, device=device) assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) # partititon each array into even and odd slices a1a = a1[::2] a1b = a1[1::2] a2a = a2[::2] a2b = a2[1::2] a3a = a3[::2] a3b = a3[1::2] a4a = a4[::2] a4b = a4[1::2] # fill even slices fill_a = 17 a1a.fill_(fill_a) a2a.fill_(fill_a) a3a.fill_(fill_a) a4a.fill_(fill_a) # ensure filled slices are correct assert_np_equal(a1a.numpy(), np.full(a1a.shape, fill_a, dtype=nptype)) assert_np_equal(a2a.numpy(), np.full(a2a.shape, fill_a, dtype=nptype)) assert_np_equal(a3a.numpy(), np.full(a3a.shape, fill_a, dtype=nptype)) assert_np_equal(a4a.numpy(), np.full(a4a.shape, fill_a, dtype=nptype)) # ensure unfilled slices are unaffected assert_np_equal(a1b.numpy(), np.zeros(a1b.shape, dtype=nptype)) assert_np_equal(a2b.numpy(), np.zeros(a2b.shape, dtype=nptype)) assert_np_equal(a3b.numpy(), np.zeros(a3b.shape, dtype=nptype)) assert_np_equal(a4b.numpy(), np.zeros(a4b.shape, dtype=nptype)) # fill odd slices fill_b = 42 a1b.fill_(fill_b) a2b.fill_(fill_b) a3b.fill_(fill_b) a4b.fill_(fill_b) # ensure filled slices are correct assert_np_equal(a1b.numpy(), np.full(a1b.shape, fill_b, dtype=nptype)) assert_np_equal(a2b.numpy(), np.full(a2b.shape, fill_b, dtype=nptype)) assert_np_equal(a3b.numpy(), np.full(a3b.shape, fill_b, dtype=nptype)) assert_np_equal(a4b.numpy(), np.full(a4b.shape, fill_b, dtype=nptype)) # ensure unfilled slices are unaffected assert_np_equal(a1a.numpy(), np.full(a1a.shape, fill_a, dtype=nptype)) assert_np_equal(a2a.numpy(), np.full(a2a.shape, fill_a, dtype=nptype)) assert_np_equal(a3a.numpy(), np.full(a3a.shape, fill_a, dtype=nptype)) assert_np_equal(a4a.numpy(), np.full(a4a.shape, fill_a, dtype=nptype)) # clear even slices a1a.zero_() a2a.zero_() a3a.zero_() a4a.zero_() # ensure cleared slices are correct assert_np_equal(a1a.numpy(), np.zeros(a1a.shape, dtype=nptype)) assert_np_equal(a2a.numpy(), np.zeros(a2a.shape, dtype=nptype)) assert_np_equal(a3a.numpy(), np.zeros(a3a.shape, dtype=nptype)) assert_np_equal(a4a.numpy(), np.zeros(a4a.shape, dtype=nptype)) # ensure uncleared slices are unaffected assert_np_equal(a1b.numpy(), np.full(a1b.shape, fill_b, dtype=nptype)) assert_np_equal(a2b.numpy(), np.full(a2b.shape, fill_b, dtype=nptype)) assert_np_equal(a3b.numpy(), np.full(a3b.shape, fill_b, dtype=nptype)) assert_np_equal(a4b.numpy(), np.full(a4b.shape, fill_b, dtype=nptype)) # re-fill even slices a1a.fill_(fill_a) a2a.fill_(fill_a) a3a.fill_(fill_a) a4a.fill_(fill_a) # clear odd slices a1b.zero_() a2b.zero_() a3b.zero_() a4b.zero_() # ensure cleared slices are correct assert_np_equal(a1b.numpy(), np.zeros(a1b.shape, dtype=nptype)) assert_np_equal(a2b.numpy(), np.zeros(a2b.shape, dtype=nptype)) assert_np_equal(a3b.numpy(), np.zeros(a3b.shape, dtype=nptype)) assert_np_equal(a4b.numpy(), np.zeros(a4b.shape, dtype=nptype)) # ensure uncleared slices are unaffected assert_np_equal(a1a.numpy(), np.full(a1a.shape, fill_a, dtype=nptype)) assert_np_equal(a2a.numpy(), np.full(a2a.shape, fill_a, dtype=nptype)) assert_np_equal(a3a.numpy(), np.full(a3a.shape, fill_a, dtype=nptype)) assert_np_equal(a4a.numpy(), np.full(a4a.shape, fill_a, dtype=nptype)) def test_full_scalar(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # fill with int value and specific dtype fill_value = 42 a = wp.full(shape, fill_value, dtype=wptype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, wptype) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(shape, fill_value, dtype=nptype)) if wptype in wp.types.float_types: # fill with float value and specific dtype fill_value = 13.37 a = wp.full(shape, fill_value, dtype=wptype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, wptype) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(shape, fill_value, dtype=nptype)) # fill with int value and automatically inferred dtype fill_value = 42 a = wp.full(shape, fill_value, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, wp.int32) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, np.int32) assert_np_equal(na, np.full(shape, fill_value, dtype=np.int32)) # fill with float value and automatically inferred dtype fill_value = 13.37 a = wp.full(shape, fill_value, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, wp.float32) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, np.float32) assert_np_equal(na, np.full(shape, fill_value, dtype=np.float32)) def test_full_vector(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim # full from scalar for veclen in [2, 3, 4, 5]: npshape = (*shape, veclen) for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): vectype = wp.types.vector(veclen, wptype) # fill with scalar int value and specific dtype fill_value = 42 a = wp.full(shape, fill_value, dtype=vectype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * veclen, fill_value, dtype=nptype).reshape(npshape)) if wptype in wp.types.float_types: # fill with scalar float value and specific dtype fill_value = 13.37 a = wp.full(shape, fill_value, dtype=vectype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * veclen, fill_value, dtype=nptype).reshape(npshape)) # fill with vector value and specific dtype fill_vec = vectype(42) a = wp.full(shape, fill_vec, dtype=vectype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * veclen, 42, dtype=nptype).reshape(npshape)) # fill with vector value and automatically inferred dtype a = wp.full(shape, fill_vec, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * veclen, 42, dtype=nptype).reshape(npshape)) fill_lists = [ [17, 42], [17, 42, 99], [17, 42, 99, 101], [17, 42, 99, 101, 127], ] # full from list and numpy array for fill_list in fill_lists: veclen = len(fill_list) npshape = (*shape, veclen) for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): vectype = wp.types.vector(veclen, wptype) # fill with list and specific dtype a = wp.full(shape, fill_list, dtype=vectype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) expected = np.tile(np.array(fill_list, dtype=nptype), a.size).reshape(npshape) assert_np_equal(na, expected) fill_arr = np.array(fill_list, dtype=nptype) # fill with numpy array and specific dtype a = wp.full(shape, fill_arr, dtype=vectype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, vectype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, expected) # fill with numpy array and automatically infer dtype a = wp.full(shape, fill_arr, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertTrue(wp.types.types_equal(a.dtype, vectype)) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, expected) # fill with list and automatically infer dtype a = wp.full(shape, fill_list, device=device) na = a.numpy() test.assertEqual(a.shape, shape) # check that the inferred dtype is a vector # Note that we cannot guarantee the scalar type, because it depends on numpy and may vary by platform # (e.g. int64 on Linux and int32 on Windows). test.assertEqual(a.dtype._wp_generic_type_str_, "vec_t") test.assertEqual(a.dtype._length_, veclen) expected = np.tile(np.array(fill_list), a.size).reshape(npshape) assert_np_equal(na, expected) def test_full_matrix(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): matrix_types = [ # square matrices wp.types.matrix((2, 2), wptype), wp.types.matrix((3, 3), wptype), wp.types.matrix((4, 4), wptype), wp.types.matrix((5, 5), wptype), # non-square matrices wp.types.matrix((2, 3), wptype), wp.types.matrix((3, 2), wptype), wp.types.matrix((3, 4), wptype), wp.types.matrix((4, 3), wptype), ] for mattype in matrix_types: npshape = (*shape, *mattype._shape_) # fill with scalar int value and specific dtype fill_value = 42 a = wp.full(shape, fill_value, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * mattype._length_, fill_value, dtype=nptype).reshape(npshape)) if wptype in wp.types.float_types: # fill with scalar float value and specific dtype fill_value = 13.37 a = wp.full(shape, fill_value, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * mattype._length_, fill_value, dtype=nptype).reshape(npshape)) # fill with matrix value and specific dtype fill_mat = mattype(42) a = wp.full(shape, fill_mat, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * mattype._length_, 42, dtype=nptype).reshape(npshape)) # fill with matrix value and automatically inferred dtype fill_mat = mattype(42) a = wp.full(shape, fill_mat, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, np.full(a.size * mattype._length_, 42, dtype=nptype).reshape(npshape)) # fill with 1d numpy array and specific dtype if wptype != wp.bool: fill_arr1d = np.arange(mattype._length_, dtype=nptype) else: fill_arr1d = np.ones(mattype._length_, dtype=nptype) a = wp.full(shape, fill_arr1d, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) expected = np.tile(fill_arr1d, a.size).reshape(npshape) assert_np_equal(na, expected) # fill with 2d numpy array and specific dtype fill_arr2d = fill_arr1d.reshape(mattype._shape_) a = wp.full(shape, fill_arr2d, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, expected) # fill with 2d numpy array and automatically infer dtype a = wp.full(shape, fill_arr2d, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertTrue(wp.types.types_equal(a.dtype, mattype)) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, expected) # fill with flat list and specific dtype fill_list1d = list(fill_arr1d) a = wp.full(shape, fill_list1d, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, expected) # fill with nested list and specific dtype fill_list2d = [list(row) for row in fill_arr2d] a = wp.full(shape, fill_list2d, dtype=mattype, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, mattype) test.assertEqual(na.shape, npshape) test.assertEqual(na.dtype, nptype) assert_np_equal(na, expected) mat_lists = [ # square matrices [[1, 2], [3, 4]], [[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], # non-square matrices [[1, 2, 3, 4], [5, 6, 7, 8]], [[1, 2], [3, 4], [5, 6], [7, 8]], ] # fill with nested lists and automatically infer dtype for fill_list in mat_lists: num_rows = len(fill_list) num_cols = len(fill_list[0]) npshape = (*shape, num_rows, num_cols) a = wp.full(shape, fill_list, device=device) na = a.numpy() test.assertEqual(a.shape, shape) # check that the inferred dtype is a correctly shaped matrix # Note that we cannot guarantee the scalar type, because it depends on numpy and may vary by platform # (e.g. int64 on Linux and int32 on Windows). test.assertEqual(a.dtype._wp_generic_type_str_, "mat_t") test.assertEqual(a.dtype._shape_, (num_rows, num_cols)) expected = np.tile(np.array(fill_list).flatten(), a.size).reshape(npshape) assert_np_equal(na, expected) def test_full_struct(test, device): dim = 4 for ndim in range(1, 5): shape = (dim,) * ndim s = FillStruct() # fill with default struct (should be zeros) a = wp.full(shape, s, dtype=FillStruct, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, FillStruct) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, FillStruct.numpy_dtype()) assert_np_equal(na, np.zeros(a.size, dtype=FillStruct.numpy_dtype())) # scalars s.i1 = -17 s.i2 = 42 s.i4 = 99 s.i8 = 101 s.f2 = -1.25 s.f4 = 13.37 s.f8 = 0.125 # vectors s.v2 = [21, 22] s.v3 = [31, 32, 33] s.v4 = [41, 42, 43, 44] s.v5 = [51, 52, 53, 54, 55] # matrices s.m2 = [[61, 62]] * 2 s.m3 = [[71, 72, 73]] * 3 s.m4 = [[81, 82, 83, 84]] * 4 s.m5 = [[91, 92, 93, 94, 95]] * 5 # arrays s.a1 = wp.zeros((2,) * 1, dtype=float, device=device) s.a2 = wp.zeros((2,) * 2, dtype=float, device=device) s.a3 = wp.zeros((2,) * 3, dtype=float, device=device) s.a4 = wp.zeros((2,) * 4, dtype=float, device=device) # fill with initialized struct and explicit dtype a = wp.full(shape, s, dtype=FillStruct, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, FillStruct) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, FillStruct.numpy_dtype()) expected = np.empty(shape, dtype=FillStruct.numpy_dtype()) expected.fill(s.numpy_value()) assert_np_equal(na, expected) # fill with initialized struct and automatically inferred dtype a = wp.full(shape, s, device=device) na = a.numpy() test.assertEqual(a.shape, shape) test.assertEqual(a.dtype, FillStruct) test.assertEqual(na.shape, shape) test.assertEqual(na.dtype, FillStruct.numpy_dtype()) assert_np_equal(na, expected) def test_round_trip(test, device): dim_x = 4 for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): a_np = np.random.randn(dim_x).astype(nptype) a = wp.array(a_np, device=device) test.assertEqual(a.dtype, wptype) assert_np_equal(a.numpy(), a_np) v_np = np.random.randn(dim_x, 3).astype(nptype) v = wp.array(v_np, dtype=wp.types.vector(3, wptype), device=device) assert_np_equal(v.numpy(), v_np) def test_empty_array(test, device): # Test whether common operations work with empty (zero-sized) arrays # without throwing exceptions. def test_empty_ops(ndim, nrows, ncols, wptype, nptype): shape = (0,) * ndim dtype_shape = () if wptype in wp.types.scalar_types: # scalar, vector, or matrix if ncols > 0: if nrows > 0: wptype = wp.types.matrix((nrows, ncols), wptype) else: wptype = wp.types.vector(ncols, wptype) dtype_shape = wptype._shape_ fill_value = wptype(42) else: # struct fill_value = wptype() # create a zero-sized array a = wp.empty(shape, dtype=wptype, device=device, requires_grad=True) test.assertEqual(a.ptr, None) test.assertEqual(a.size, 0) test.assertEqual(a.shape, shape) test.assertEqual(a.grad.ptr, None) test.assertEqual(a.grad.size, 0) test.assertEqual(a.grad.shape, shape) # all of these methods should succeed with zero-sized arrays a.zero_() a.fill_(fill_value) b = a.flatten() b = a.reshape((0,)) b = a.transpose() b = a.contiguous() b = wp.empty_like(a) b = wp.zeros_like(a) b = wp.full_like(a, fill_value) b = wp.clone(a) wp.copy(a, b) a.assign(b) na = a.numpy() test.assertEqual(na.size, 0) test.assertEqual(na.shape, (*shape, *dtype_shape)) test.assertEqual(na.dtype, nptype) test.assertEqual(a.list(), []) for ndim in range(1, 5): # test with scalars, vectors, and matrices for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # scalars test_empty_ops(ndim, 0, 0, wptype, nptype) for ncols in [2, 3, 4, 5]: # vectors test_empty_ops(ndim, 0, ncols, wptype, nptype) # square matrices test_empty_ops(ndim, ncols, ncols, wptype, nptype) # non-square matrices test_empty_ops(ndim, 2, 3, wptype, nptype) test_empty_ops(ndim, 3, 2, wptype, nptype) test_empty_ops(ndim, 3, 4, wptype, nptype) test_empty_ops(ndim, 4, 3, wptype, nptype) # test with structs test_empty_ops(ndim, 0, 0, FillStruct, FillStruct.numpy_dtype()) def test_empty_from_numpy(test, device): # Test whether wrapping an empty (zero-sized) numpy array works correctly def test_empty_from_data(ndim, nrows, ncols, wptype, nptype): shape = (0,) * ndim dtype_shape = () if ncols > 0: if nrows > 0: wptype = wp.types.matrix((nrows, ncols), wptype) else: wptype = wp.types.vector(ncols, wptype) dtype_shape = wptype._shape_ npshape = (*shape, *dtype_shape) na = np.empty(npshape, dtype=nptype) a = wp.array(na, dtype=wptype, device=device) test.assertEqual(a.size, 0) test.assertEqual(a.shape, shape) for ndim in range(1, 5): # test with scalars, vectors, and matrices for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # scalars test_empty_from_data(ndim, 0, 0, wptype, nptype) for ncols in [2, 3, 4, 5]: # vectors test_empty_from_data(ndim, 0, ncols, wptype, nptype) # square matrices test_empty_from_data(ndim, ncols, ncols, wptype, nptype) # non-square matrices test_empty_from_data(ndim, 2, 3, wptype, nptype) test_empty_from_data(ndim, 3, 2, wptype, nptype) test_empty_from_data(ndim, 3, 4, wptype, nptype) test_empty_from_data(ndim, 4, 3, wptype, nptype) def test_empty_from_list(test, device): # Test whether creating an array from an empty Python list works correctly def test_empty_from_data(nrows, ncols, wptype): if ncols > 0: if nrows > 0: wptype = wp.types.matrix((nrows, ncols), wptype) else: wptype = wp.types.vector(ncols, wptype) a = wp.array([], dtype=wptype, device=device) test.assertEqual(a.size, 0) test.assertEqual(a.shape, (0,)) # test with scalars, vectors, and matrices for wptype in wp.types.scalar_types: # scalars test_empty_from_data(0, 0, wptype) for ncols in [2, 3, 4, 5]: # vectors test_empty_from_data(0, ncols, wptype) # square matrices test_empty_from_data(ncols, ncols, wptype) # non-square matrices test_empty_from_data(2, 3, wptype) test_empty_from_data(3, 2, wptype) test_empty_from_data(3, 4, wptype) test_empty_from_data(4, 3, wptype) def test_to_list_scalar(test, device): dim = 3 fill_value = 42 for ndim in range(1, 5): shape = (dim,) * ndim for wptype in wp.types.scalar_types: a = wp.full(shape, fill_value, dtype=wptype, device=device) l = a.list() test.assertEqual(len(l), a.size) test.assertTrue(all(x == fill_value for x in l)) def test_to_list_vector(test, device): dim = 3 for ndim in range(1, 5): shape = (dim,) * ndim for veclen in [2, 3, 4, 5]: for wptype in wp.types.scalar_types: vectype = wp.types.vector(veclen, wptype) fill_value = vectype(42) a = wp.full(shape, fill_value, dtype=vectype, device=device) l = a.list() test.assertEqual(len(l), a.size) test.assertTrue(all(x == fill_value for x in l)) def test_to_list_matrix(test, device): dim = 3 for ndim in range(1, 5): shape = (dim,) * ndim for wptype in wp.types.scalar_types: matrix_types = [ # square matrices wp.types.matrix((2, 2), wptype), wp.types.matrix((3, 3), wptype), wp.types.matrix((4, 4), wptype), wp.types.matrix((5, 5), wptype), # non-square matrices wp.types.matrix((2, 3), wptype), wp.types.matrix((3, 2), wptype), wp.types.matrix((3, 4), wptype), wp.types.matrix((4, 3), wptype), ] for mattype in matrix_types: fill_value = mattype(42) a = wp.full(shape, fill_value, dtype=mattype, device=device) l = a.list() test.assertEqual(len(l), a.size) test.assertTrue(all(x == fill_value for x in l)) def test_to_list_struct(test, device): @wp.struct class Inner: h: wp.float16 v: wp.vec3 @wp.struct class ListStruct: i: int f: float h: wp.float16 vi: wp.vec2i vf: wp.vec3f vh: wp.vec4h mi: wp.types.matrix((2, 2), int) mf: wp.types.matrix((3, 3), float) mh: wp.types.matrix((4, 4), wp.float16) inner: Inner a1: wp.array(dtype=int) a2: wp.array2d(dtype=float) a3: wp.array3d(dtype=wp.float16) bool: wp.bool dim = 3 s = ListStruct() s.i = 42 s.f = 2.5 s.h = -1.25 s.vi = wp.vec2i(1, 2) s.vf = wp.vec3f(0.1, 0.2, 0.3) s.vh = wp.vec4h(1.0, 2.0, 3.0, 4.0) s.mi = [[1, 2], [3, 4]] s.mf = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] s.mh = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]] s.inner = Inner() s.inner.h = 1.5 s.inner.v = [1, 2, 3] s.a1 = wp.empty(1, dtype=int, device=device) s.a2 = wp.empty((1, 1), dtype=float, device=device) s.a3 = wp.empty((1, 1, 1), dtype=wp.float16, device=device) s.bool = True for ndim in range(1, 5): shape = (dim,) * ndim a = wp.full(shape, s, dtype=ListStruct, device=device) l = a.list() for i in range(a.size): test.assertEqual(l[i].i, s.i) test.assertEqual(l[i].f, s.f) test.assertEqual(l[i].h, s.h) test.assertEqual(l[i].vi, s.vi) test.assertEqual(l[i].vf, s.vf) test.assertEqual(l[i].vh, s.vh) test.assertEqual(l[i].mi, s.mi) test.assertEqual(l[i].mf, s.mf) test.assertEqual(l[i].mh, s.mh) test.assertEqual(l[i].bool, s.bool) test.assertEqual(l[i].inner.h, s.inner.h) test.assertEqual(l[i].inner.v, s.inner.v) test.assertEqual(l[i].a1.dtype, s.a1.dtype) test.assertEqual(l[i].a1.ndim, s.a1.ndim) test.assertEqual(l[i].a2.dtype, s.a2.dtype) test.assertEqual(l[i].a2.ndim, s.a2.ndim) test.assertEqual(l[i].a3.dtype, s.a3.dtype) test.assertEqual(l[i].a3.ndim, s.a3.ndim) def test_large_arrays_slow(test, device): # The goal of this test is to use arrays just large enough to know # if there's a flaw in handling arrays with more than 2**31-1 elements # Unfortunately, it takes a long time to run so it won't be run automatically # without changes to support how frequently a test may be run total_elements = 2**31 + 8 # 1-D to 4-D arrays: test zero_, fill_, then zero_ for scalar data types: for total_dims in range(1, 5): dim_x = math.ceil(total_elements ** (1 / total_dims)) shape_tuple = tuple([dim_x] * total_dims) for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): a1 = wp.zeros(shape_tuple, dtype=wptype, device=device) assert_np_equal(a1.numpy(), np.zeros_like(a1.numpy())) a1.fill_(127) assert_np_equal(a1.numpy(), 127 * np.ones_like(a1.numpy())) a1.zero_() assert_np_equal(a1.numpy(), np.zeros_like(a1.numpy())) def test_large_arrays_fast(test, device): # A truncated version of test_large_arrays_slow meant to catch basic errors total_elements = 2**31 + 8 nptype = np.dtype(np.int8) wptype = wp.types.np_dtype_to_warp_type[nptype] a1 = wp.zeros((total_elements,), dtype=wptype, device=device) assert_np_equal(a1.numpy(), np.zeros_like(a1.numpy())) a1.fill_(127) assert_np_equal(a1.numpy(), 127 * np.ones_like(a1.numpy())) a1.zero_() assert_np_equal(a1.numpy(), np.zeros_like(a1.numpy())) @wp.kernel def kernel_array_to_bool(array_null: wp.array(dtype=float), array_valid: wp.array(dtype=float)): if not array_null: # always succeed wp.expect_eq(0, 0) else: # force failure wp.expect_eq(1, 2) if array_valid: # always succeed wp.expect_eq(0, 0) else: # force failure wp.expect_eq(1, 2) def test_array_to_bool(test, device): arr = wp.zeros(8, dtype=float, device=device) wp.launch(kernel_array_to_bool, dim=1, inputs=[None, arr], device=device) @wp.struct class InputStruct: param1: int param2: float param3: wp.vec3 param4: wp.array(dtype=float) @wp.struct class OutputStruct: param1: int param2: float param3: wp.vec3 @wp.kernel def struct_array_kernel(inputs: wp.array(dtype=InputStruct), outputs: wp.array(dtype=OutputStruct)): tid = wp.tid() wp.expect_eq(inputs[tid].param1, tid) wp.expect_eq(inputs[tid].param2, float(tid * tid)) wp.expect_eq(inputs[tid].param3[0], 1.0) wp.expect_eq(inputs[tid].param3[1], 2.0) wp.expect_eq(inputs[tid].param3[2], 3.0) wp.expect_eq(inputs[tid].param4[0], 1.0) wp.expect_eq(inputs[tid].param4[1], 2.0) wp.expect_eq(inputs[tid].param4[2], 3.0) o = OutputStruct() o.param1 = inputs[tid].param1 o.param2 = inputs[tid].param2 o.param3 = inputs[tid].param3 outputs[tid] = o def test_array_of_structs(test, device): num_items = 10 l = [] for i in range(num_items): s = InputStruct() s.param1 = i s.param2 = float(i * i) s.param3 = wp.vec3(1.0, 2.0, 3.0) s.param4 = wp.array([1.0, 2.0, 3.0], dtype=float, device=device) l.append(s) # initialize array from list of structs inputs = wp.array(l, dtype=InputStruct, device=device) outputs = wp.zeros(num_items, dtype=OutputStruct, device=device) # pass to our compute kernel wp.launch(struct_array_kernel, dim=num_items, inputs=[inputs, outputs], device=device) out_numpy = outputs.numpy() out_list = outputs.list() out_cptr = outputs.to("cpu").cptr() for i in range(num_items): test.assertEqual(out_numpy[i][0], l[i].param1) test.assertEqual(out_numpy[i][1], l[i].param2) assert_np_equal(out_numpy[i][2], np.array(l[i].param3)) # test named slices of numpy structured array test.assertEqual(out_numpy["param1"][i], l[i].param1) test.assertEqual(out_numpy["param2"][i], l[i].param2) assert_np_equal(out_numpy["param3"][i], np.array(l[i].param3)) test.assertEqual(out_list[i].param1, l[i].param1) test.assertEqual(out_list[i].param2, l[i].param2) test.assertEqual(out_list[i].param3, l[i].param3) test.assertEqual(out_cptr[i].param1, l[i].param1) test.assertEqual(out_cptr[i].param2, l[i].param2) test.assertEqual(out_cptr[i].param3, l[i].param3) @wp.struct class GradStruct: param1: int param2: float param3: wp.vec3 @wp.kernel def test_array_of_structs_grad_kernel(inputs: wp.array(dtype=GradStruct), loss: wp.array(dtype=float)): tid = wp.tid() wp.atomic_add(loss, 0, inputs[tid].param2 * 2.0) def test_array_of_structs_grad(test, device): num_items = 10 l = [] for i in range(num_items): g = GradStruct() g.param2 = float(i) l.append(g) a = wp.array(l, dtype=GradStruct, device=device, requires_grad=True) loss = wp.zeros(1, dtype=float, device=device, requires_grad=True) with wp.Tape() as tape: wp.launch(test_array_of_structs_grad_kernel, dim=num_items, inputs=[a, loss], device=device) tape.backward(loss) grads = a.grad.numpy() assert_np_equal(grads["param2"], np.full(num_items, 2.0, dtype=np.float32)) @wp.struct class NumpyStruct: x: int v: wp.vec3 def test_array_of_structs_from_numpy(test, device): num_items = 10 na = np.zeros(num_items, dtype=NumpyStruct.numpy_dtype()) na["x"] = 17 na["v"] = (1, 2, 3) a = wp.array(data=na, dtype=NumpyStruct, device=device) assert_np_equal(a.numpy(), na) def test_array_of_structs_roundtrip(test, device): num_items = 10 value = NumpyStruct() value.x = 17 value.v = wp.vec3(1.0, 2.0, 3.0) # create Warp structured array a = wp.full(num_items, value, device=device) # convert to NumPy structured array na = a.numpy() expected = np.zeros(num_items, dtype=NumpyStruct.numpy_dtype()) expected["x"] = value.x expected["v"] = value.v assert_np_equal(na, expected) # modify a field na["x"] = 42 # convert back to Warp array a = wp.from_numpy(na, NumpyStruct, device=device) expected["x"] = 42 assert_np_equal(a.numpy(), expected) def test_array_from_numpy(test, device): arr = np.array((1.0, 2.0, 3.0), dtype=float) result = wp.from_numpy(arr) expected = wp.array((1.0, 2.0, 3.0), dtype=wp.float32, shape=(3,)) assert_np_equal(result.numpy(), expected.numpy()) result = wp.from_numpy(arr, dtype=wp.vec3) expected = wp.array(((1.0, 2.0, 3.0),), dtype=wp.vec3, shape=(1,)) assert_np_equal(result.numpy(), expected.numpy()) # -------------------------------------------------------------------------- arr = np.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=float) result = wp.from_numpy(arr) expected = wp.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=wp.vec3, shape=(2,)) assert_np_equal(result.numpy(), expected.numpy()) result = wp.from_numpy(arr, dtype=wp.float32) expected = wp.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=wp.float32, shape=(2, 3)) assert_np_equal(result.numpy(), expected.numpy()) result = wp.from_numpy(arr, dtype=wp.float32, shape=(6,)) expected = wp.array((1.0, 2.0, 3.0, 4.0, 5.0, 6.0), dtype=wp.float32, shape=(6,)) assert_np_equal(result.numpy(), expected.numpy()) # -------------------------------------------------------------------------- arr = np.array( ( ( (1.0, 2.0, 3.0, 4.0), (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), ), ( (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), (5.0, 6.0, 7.0, 8.0), ), ), dtype=float, ) result = wp.from_numpy(arr) expected = wp.array( ( ( (1.0, 2.0, 3.0, 4.0), (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), ), ( (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), (5.0, 6.0, 7.0, 8.0), ), ), dtype=wp.mat44, shape=(2,), ) assert_np_equal(result.numpy(), expected.numpy()) result = wp.from_numpy(arr, dtype=wp.float32) expected = wp.array( ( ( (1.0, 2.0, 3.0, 4.0), (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), ), ( (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), (5.0, 6.0, 7.0, 8.0), ), ), dtype=wp.float32, shape=(2, 4, 4), ) assert_np_equal(result.numpy(), expected.numpy()) result = wp.from_numpy(arr, dtype=wp.vec4) expected = wp.array( ( (1.0, 2.0, 3.0, 4.0), (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), (5.0, 6.0, 7.0, 8.0), ), dtype=wp.vec4, shape=(8,), ) assert_np_equal(result.numpy(), expected.numpy()) result = wp.from_numpy(arr, dtype=wp.float32, shape=(32,)) expected = wp.array( ( 1.0, 2.0, 3.0, 4.0, 2.0, 3.0, 4.0, 5.0, 3.0, 4.0, 5.0, 6.0, 4.0, 5.0, 6.0, 7.0, 2.0, 3.0, 4.0, 5.0, 3.0, 4.0, 5.0, 6.0, 4.0, 5.0, 6.0, 7.0, 5.0, 6.0, 7.0, 8.0, ), dtype=wp.float32, shape=(32,), ) assert_np_equal(result.numpy(), expected.numpy()) def register(parent): devices = get_test_devices() class TestArray(parent): pass add_function_test(TestArray, "test_shape", test_shape, devices=devices) add_function_test(TestArray, "test_flatten", test_flatten, devices=devices) add_function_test(TestArray, "test_reshape", test_reshape, devices=devices) add_function_test(TestArray, "test_slicing", test_slicing, devices=devices) add_function_test(TestArray, "test_transpose", test_transpose, devices=devices) add_function_test(TestArray, "test_view", test_view, devices=devices) add_function_test(TestArray, "test_1d_array", test_1d, devices=devices) add_function_test(TestArray, "test_2d_array", test_2d, devices=devices) add_function_test(TestArray, "test_3d_array", test_3d, devices=devices) add_function_test(TestArray, "test_4d_array", test_4d, devices=devices) add_function_test(TestArray, "test_4d_array_transposed", test_4d_transposed, devices=devices) add_function_test(TestArray, "test_fill_scalar", test_fill_scalar, devices=devices) add_function_test(TestArray, "test_fill_vector", test_fill_vector, devices=devices) add_function_test(TestArray, "test_fill_matrix", test_fill_matrix, devices=devices) add_function_test(TestArray, "test_fill_struct", test_fill_struct, devices=devices) add_function_test(TestArray, "test_fill_slices", test_fill_slices, devices=devices) add_function_test(TestArray, "test_full_scalar", test_full_scalar, devices=devices) add_function_test(TestArray, "test_full_vector", test_full_vector, devices=devices) add_function_test(TestArray, "test_full_matrix", test_full_matrix, devices=devices) add_function_test(TestArray, "test_full_struct", test_full_struct, devices=devices) add_function_test(TestArray, "test_empty_array", test_empty_array, devices=devices) add_function_test(TestArray, "test_empty_from_numpy", test_empty_from_numpy, devices=devices) add_function_test(TestArray, "test_empty_from_list", test_empty_from_list, devices=devices) add_function_test(TestArray, "test_to_list_scalar", test_to_list_scalar, devices=devices) add_function_test(TestArray, "test_to_list_vector", test_to_list_vector, devices=devices) add_function_test(TestArray, "test_to_list_matrix", test_to_list_matrix, devices=devices) add_function_test(TestArray, "test_to_list_struct", test_to_list_struct, devices=devices) add_function_test(TestArray, "test_lower_bound", test_lower_bound, devices=devices) add_function_test(TestArray, "test_round_trip", test_round_trip, devices=devices) add_function_test(TestArray, "test_large_arrays_fast", test_large_arrays_fast, devices=devices) add_function_test(TestArray, "test_array_to_bool", test_array_to_bool, devices=devices) add_function_test(TestArray, "test_array_of_structs", test_array_of_structs, devices=devices) add_function_test(TestArray, "test_array_of_structs_grad", test_array_of_structs_grad, devices=devices) add_function_test(TestArray, "test_array_of_structs_from_numpy", test_array_of_structs_from_numpy, devices=devices) add_function_test(TestArray, "test_array_of_structs_roundtrip", test_array_of_structs_roundtrip, devices=devices) add_function_test(TestArray, "test_array_from_numpy", test_array_from_numpy, devices=devices) return TestArray if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_array.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest # include parent path import numpy as np import warp as wp from warp.tests.test_base import * wp.init() @wp.kernel def op_kernel(x: wp.array(dtype=float), y: wp.array(dtype=float)): tid = wp.tid() y[tid] = 0.5 - x[tid] * 2.0 @wp.kernel def inc(a: wp.array(dtype=float)): tid = wp.tid() a[tid] = a[tid] + 1.0 @wp.kernel def arange(start: int, step: int, a: wp.array(dtype=int)): tid = wp.tid() a[tid] = start + step * tid # copy elements between non-contiguous 1d arrays of float @wp.kernel def copy1d_float_kernel(dst: wp.array(dtype=float), src: wp.array(dtype=float)): i = wp.tid() dst[i] = src[i] # copy elements between non-contiguous 2d arrays of float @wp.kernel def copy2d_float_kernel(dst: wp.array2d(dtype=float), src: wp.array2d(dtype=float)): i, j = wp.tid() dst[i, j] = src[i, j] # copy elements between non-contiguous 3d arrays of float @wp.kernel def copy3d_float_kernel(dst: wp.array3d(dtype=float), src: wp.array3d(dtype=float)): i, j, k = wp.tid() dst[i, j, k] = src[i, j, k] # copy elements between non-contiguous 2d arrays of vec3 @wp.kernel def copy2d_vec3_kernel(dst: wp.array2d(dtype=wp.vec3), src: wp.array2d(dtype=wp.vec3)): i, j = wp.tid() dst[i, j] = src[i, j] # copy elements between non-contiguous 2d arrays of mat22 @wp.kernel def copy2d_mat22_kernel(dst: wp.array2d(dtype=wp.mat22), src: wp.array2d(dtype=wp.mat22)): i, j = wp.tid() dst[i, j] = src[i, j] def test_torch_zerocopy(test, device): import torch a = wp.zeros(10, dtype=wp.float32, device=device) t = wp.to_torch(a) assert a.ptr == t.data_ptr() torch_device = wp.device_to_torch(device) t = torch.zeros(10, dtype=torch.float32, device=torch_device) a = wp.from_torch(t) assert a.ptr == t.data_ptr() def test_from_torch(test, device): import torch torch_device = wp.device_to_torch(device) # automatically determine warp dtype def wrap_scalar_tensor_implicit(torch_dtype, expected_warp_dtype): t = torch.zeros(10, dtype=torch_dtype, device=torch_device) a = wp.from_torch(t) assert a.dtype == expected_warp_dtype assert a.shape == tuple(t.shape) wrap_scalar_tensor_implicit(torch.float64, wp.float64) wrap_scalar_tensor_implicit(torch.float32, wp.float32) wrap_scalar_tensor_implicit(torch.float16, wp.float16) wrap_scalar_tensor_implicit(torch.int64, wp.int64) wrap_scalar_tensor_implicit(torch.int32, wp.int32) wrap_scalar_tensor_implicit(torch.int16, wp.int16) wrap_scalar_tensor_implicit(torch.int8, wp.int8) wrap_scalar_tensor_implicit(torch.uint8, wp.uint8) wrap_scalar_tensor_implicit(torch.bool, wp.bool) # explicitly specify warp dtype def wrap_scalar_tensor_explicit(torch_dtype, expected_warp_dtype): t = torch.zeros(10, dtype=torch_dtype, device=torch_device) a = wp.from_torch(t, expected_warp_dtype) assert a.dtype == expected_warp_dtype assert a.shape == tuple(t.shape) wrap_scalar_tensor_explicit(torch.float64, wp.float64) wrap_scalar_tensor_explicit(torch.float32, wp.float32) wrap_scalar_tensor_explicit(torch.float16, wp.float16) wrap_scalar_tensor_explicit(torch.int64, wp.int64) wrap_scalar_tensor_explicit(torch.int64, wp.uint64) wrap_scalar_tensor_explicit(torch.int32, wp.int32) wrap_scalar_tensor_explicit(torch.int32, wp.uint32) wrap_scalar_tensor_explicit(torch.int16, wp.int16) wrap_scalar_tensor_explicit(torch.int16, wp.uint16) wrap_scalar_tensor_explicit(torch.int8, wp.int8) wrap_scalar_tensor_explicit(torch.int8, wp.uint8) wrap_scalar_tensor_explicit(torch.uint8, wp.uint8) wrap_scalar_tensor_explicit(torch.uint8, wp.int8) wrap_scalar_tensor_explicit(torch.bool, wp.uint8) wrap_scalar_tensor_explicit(torch.bool, wp.int8) wrap_scalar_tensor_explicit(torch.bool, wp.bool) def wrap_vec_tensor(n, desired_warp_dtype): t = torch.zeros((10, n), dtype=torch.float32, device=torch_device) a = wp.from_torch(t, desired_warp_dtype) assert a.dtype == desired_warp_dtype assert a.shape == (10,) wrap_vec_tensor(2, wp.vec2) wrap_vec_tensor(3, wp.vec3) wrap_vec_tensor(4, wp.vec4) wrap_vec_tensor(6, wp.spatial_vector) wrap_vec_tensor(7, wp.transform) def wrap_mat_tensor(n, m, desired_warp_dtype): t = torch.zeros((10, n, m), dtype=torch.float32, device=torch_device) a = wp.from_torch(t, desired_warp_dtype) assert a.dtype == desired_warp_dtype assert a.shape == (10,) wrap_mat_tensor(2, 2, wp.mat22) wrap_mat_tensor(3, 3, wp.mat33) wrap_mat_tensor(4, 4, wp.mat44) wrap_mat_tensor(6, 6, wp.spatial_matrix) def wrap_vec_tensor_with_grad(n, desired_warp_dtype): t = torch.zeros((10, n), dtype=torch.float32, device=torch_device) a = wp.from_torch(t, desired_warp_dtype, requires_grad=True) assert a.dtype == desired_warp_dtype assert a.shape == (10,) wrap_vec_tensor_with_grad(2, wp.vec2) wrap_vec_tensor_with_grad(3, wp.vec3) wrap_vec_tensor_with_grad(4, wp.vec4) wrap_vec_tensor_with_grad(6, wp.spatial_vector) wrap_vec_tensor_with_grad(7, wp.transform) def wrap_mat_tensor_with_grad(n, m, desired_warp_dtype): t = torch.zeros((10, n, m), dtype=torch.float32, device=torch_device) a = wp.from_torch(t, desired_warp_dtype, requires_grad=True) assert a.dtype == desired_warp_dtype assert a.shape == (10,) wrap_mat_tensor_with_grad(2, 2, wp.mat22) wrap_mat_tensor_with_grad(3, 3, wp.mat33) wrap_mat_tensor_with_grad(4, 4, wp.mat44) wrap_mat_tensor_with_grad(6, 6, wp.spatial_matrix) def test_to_torch(test, device): import torch def wrap_scalar_array(warp_dtype, expected_torch_dtype): a = wp.zeros(10, dtype=warp_dtype, device=device) t = wp.to_torch(a) assert t.dtype == expected_torch_dtype assert tuple(t.shape) == a.shape wrap_scalar_array(wp.float64, torch.float64) wrap_scalar_array(wp.float32, torch.float32) wrap_scalar_array(wp.float16, torch.float16) wrap_scalar_array(wp.int64, torch.int64) wrap_scalar_array(wp.int32, torch.int32) wrap_scalar_array(wp.int16, torch.int16) wrap_scalar_array(wp.int8, torch.int8) wrap_scalar_array(wp.uint8, torch.uint8) wrap_scalar_array(wp.bool, torch.bool) # not supported by torch # wrap_scalar_array(wp.uint64, torch.int64) # wrap_scalar_array(wp.uint32, torch.int32) # wrap_scalar_array(wp.uint16, torch.int16) def wrap_vec_array(n, warp_dtype): a = wp.zeros(10, dtype=warp_dtype, device=device) t = wp.to_torch(a) assert t.dtype == torch.float32 assert tuple(t.shape) == (10, n) wrap_vec_array(2, wp.vec2) wrap_vec_array(3, wp.vec3) wrap_vec_array(4, wp.vec4) wrap_vec_array(6, wp.spatial_vector) wrap_vec_array(7, wp.transform) def wrap_mat_array(n, m, warp_dtype): a = wp.zeros(10, dtype=warp_dtype, device=device) t = wp.to_torch(a) assert t.dtype == torch.float32 assert tuple(t.shape) == (10, n, m) wrap_mat_array(2, 2, wp.mat22) wrap_mat_array(3, 3, wp.mat33) wrap_mat_array(4, 4, wp.mat44) wrap_mat_array(6, 6, wp.spatial_matrix) def test_from_torch_slices(test, device): import torch torch_device = wp.device_to_torch(device) # 1D slice, contiguous t_base = torch.arange(10, dtype=torch.float32, device=torch_device) t = t_base[2:9] a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert a.is_contiguous assert a.shape == tuple(t.shape) assert_np_equal(a.numpy(), t.cpu().numpy()) # 1D slice with non-contiguous stride t_base = torch.arange(10, dtype=torch.float32, device=torch_device) t = t_base[2:9:2] a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape) # copy contents to contiguous array a_contiguous = wp.empty_like(a) wp.launch(copy1d_float_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) # 2D slices (non-contiguous) t_base = torch.arange(24, dtype=torch.float32, device=torch_device).reshape((4, 6)) t = t_base[1:3, 2:5] a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape) # copy contents to contiguous array a_contiguous = wp.empty_like(a) wp.launch(copy2d_float_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) # 3D slices (non-contiguous) t_base = torch.arange(36, dtype=torch.float32, device=torch_device).reshape((4, 3, 3)) t = t_base[::2, 0:1, 1:2] a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape) # copy contents to contiguous array a_contiguous = wp.empty_like(a) wp.launch(copy3d_float_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) # 2D slices of vec3 (inner contiguous, outer non-contiguous) t_base = torch.arange(150, dtype=torch.float32, device=torch_device).reshape((10, 5, 3)) t = t_base[1:7:2, 2:5] a = wp.from_torch(t, dtype=wp.vec3) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape[:-1]) # copy contents to contiguous array a_contiguous = wp.empty_like(a) wp.launch(copy2d_vec3_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) # 2D slices of mat22 (inner contiguous, outer non-contiguous) t_base = torch.arange(200, dtype=torch.float32, device=torch_device).reshape((10, 5, 2, 2)) t = t_base[1:7:2, 2:5] a = wp.from_torch(t, dtype=wp.mat22) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape[:-2]) # copy contents to contiguous array a_contiguous = wp.empty_like(a) wp.launch(copy2d_mat22_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) def test_from_torch_zero_strides(test, device): import torch torch_device = wp.device_to_torch(device) t_base = torch.arange(9, dtype=torch.float32, device=torch_device).reshape((3, 3)) # expand outermost dimension t = t_base.unsqueeze(0).expand(3, -1, -1) a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape) a_contiguous = wp.empty_like(a) wp.launch(copy3d_float_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) # expand middle dimension t = t_base.unsqueeze(1).expand(-1, 3, -1) a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape) a_contiguous = wp.empty_like(a) wp.launch(copy3d_float_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) # expand innermost dimension t = t_base.unsqueeze(2).expand(-1, -1, 3) a = wp.from_torch(t) assert a.ptr == t.data_ptr() assert not a.is_contiguous assert a.shape == tuple(t.shape) a_contiguous = wp.empty_like(a) wp.launch(copy3d_float_kernel, dim=a.shape, inputs=[a_contiguous, a], device=device) assert_np_equal(a_contiguous.numpy(), t.cpu().numpy()) def test_torch_mgpu_from_torch(test, device): import torch n = 32 t0 = torch.arange(0, n, 1, dtype=torch.int32, device="cuda:0") t1 = torch.arange(0, n * 2, 2, dtype=torch.int32, device="cuda:1") a0 = wp.from_torch(t0, dtype=wp.int32) a1 = wp.from_torch(t1, dtype=wp.int32) assert a0.device == "cuda:0" assert a1.device == "cuda:1" expected0 = np.arange(0, n, 1) expected1 = np.arange(0, n * 2, 2) assert_np_equal(a0.numpy(), expected0) assert_np_equal(a1.numpy(), expected1) def test_torch_mgpu_to_torch(test, device): n = 32 with wp.ScopedDevice("cuda:0"): a0 = wp.empty(n, dtype=wp.int32) wp.launch(arange, dim=a0.size, inputs=[0, 1, a0]) with wp.ScopedDevice("cuda:1"): a1 = wp.empty(n, dtype=wp.int32) wp.launch(arange, dim=a1.size, inputs=[0, 2, a1]) t0 = wp.to_torch(a0) t1 = wp.to_torch(a1) assert str(t0.device) == "cuda:0" assert str(t1.device) == "cuda:1" expected0 = np.arange(0, n, 1, dtype=np.int32) expected1 = np.arange(0, n * 2, 2, dtype=np.int32) assert_np_equal(t0.cpu().numpy(), expected0) assert_np_equal(t1.cpu().numpy(), expected1) def test_torch_mgpu_interop(test, device): import torch n = 1024 * 1024 with torch.cuda.device(0): t0 = torch.arange(n, dtype=torch.float32, device="cuda") a0 = wp.from_torch(t0) wp.launch(inc, dim=a0.size, inputs=[a0], stream=wp.stream_from_torch()) with torch.cuda.device(1): t1 = torch.arange(n, dtype=torch.float32, device="cuda") a1 = wp.from_torch(t1) wp.launch(inc, dim=a1.size, inputs=[a1], stream=wp.stream_from_torch()) assert a0.device == "cuda:0" assert a1.device == "cuda:1" expected = np.arange(n, dtype=int) + 1 # ensure the torch tensors were modified by warp assert_np_equal(t0.cpu().numpy(), expected) assert_np_equal(t1.cpu().numpy(), expected) def test_torch_autograd(test, device): """Test torch autograd with a custom Warp op""" import torch # custom autograd op class TestFunc(torch.autograd.Function): @staticmethod def forward(ctx, x): # allocate output array y = torch.empty_like(x) ctx.x = x ctx.y = y wp.launch(kernel=op_kernel, dim=len(x), inputs=[wp.from_torch(x)], outputs=[wp.from_torch(y)]) return y @staticmethod def backward(ctx, adj_y): # adjoints should be allocated as zero initialized adj_x = torch.zeros_like(ctx.x).contiguous() adj_y = adj_y.contiguous() wp_x = wp.from_torch(ctx.x, grad=adj_x) wp_y = wp.from_torch(ctx.y, grad=adj_y) wp.launch( kernel=op_kernel, dim=len(ctx.x), # fwd inputs inputs=[wp_x], outputs=[wp_y], # adj inputs (already stored in input/output arrays, passing null pointers) adj_inputs=[None], adj_outputs=[None], adjoint=True, ) return adj_x # run autograd on given device with wp.ScopedDevice(device): torch_device = wp.device_to_torch(device) # input data x = torch.ones(16, dtype=torch.float32, device=torch_device, requires_grad=True) # execute op y = TestFunc.apply(x) # compute grads l = y.sum() l.backward() passed = (x.grad == -2.0).all() assert passed.item() def test_torch_graph_torch_stream(test, device): """Capture Torch graph on Torch stream""" import torch torch_device = wp.device_to_torch(device) n = 1024 * 1024 t = torch.zeros(n, dtype=torch.float32, device=torch_device) a = wp.from_torch(t) g = torch.cuda.CUDAGraph() # create a device-specific torch stream to use for capture # (otherwise torch.cuda.graph reuses its capture stream, which can be problematic if it's from a different device) torch_stream = torch.cuda.Stream(device=torch_device) # make warp use the same stream warp_stream = wp.stream_from_torch(torch_stream) # capture graph with wp.ScopedStream(warp_stream), torch.cuda.graph(g, stream=torch_stream): t += 1.0 wp.launch(inc, dim=n, inputs=[a]) t += 1.0 wp.launch(inc, dim=n, inputs=[a]) # replay graph num_iters = 10 for i in range(num_iters): g.replay() passed = (t == num_iters * 4.0).all() assert passed.item() def test_torch_graph_warp_stream(test, device): """Capture Torch graph on Warp stream""" import torch torch_device = wp.device_to_torch(device) n = 1024 * 1024 t = torch.zeros(n, dtype=torch.float32, device=torch_device) a = wp.from_torch(t) g = torch.cuda.CUDAGraph() # make torch use the warp stream from the given device torch_stream = wp.stream_to_torch(device) # capture graph with wp.ScopedDevice(device), torch.cuda.graph(g, stream=torch_stream): t += 1.0 wp.launch(inc, dim=n, inputs=[a]) t += 1.0 wp.launch(inc, dim=n, inputs=[a]) # replay graph num_iters = 10 for i in range(num_iters): g.replay() passed = (t == num_iters * 4.0).all() assert passed.item() def test_warp_graph_warp_stream(test, device): """Capture Warp graph on Warp stream""" import torch torch_device = wp.device_to_torch(device) n = 1024 * 1024 t = torch.zeros(n, dtype=torch.float32, device=torch_device) a = wp.from_torch(t) # make torch use the warp stream from the given device torch_stream = wp.stream_to_torch(device) # capture graph with wp.ScopedDevice(device), torch.cuda.stream(torch_stream): wp.capture_begin() t += 1.0 wp.launch(inc, dim=n, inputs=[a]) t += 1.0 wp.launch(inc, dim=n, inputs=[a]) g = wp.capture_end() # replay graph num_iters = 10 for i in range(num_iters): wp.capture_launch(g) passed = (t == num_iters * 4.0).all() assert passed.item() def test_warp_graph_torch_stream(test, device): """Capture Warp graph on Torch stream""" import torch torch_device = wp.device_to_torch(device) n = 1024 * 1024 t = torch.zeros(n, dtype=torch.float32, device=torch_device) a = wp.from_torch(t) # create a device-specific torch stream to use for capture # (the default torch stream is not suitable for graph capture) torch_stream = torch.cuda.Stream(device=torch_device) # make warp use the same stream warp_stream = wp.stream_from_torch(torch_stream) # capture graph with wp.ScopedStream(warp_stream), torch.cuda.stream(torch_stream): wp.capture_begin() t += 1.0 wp.launch(inc, dim=n, inputs=[a]) t += 1.0 wp.launch(inc, dim=n, inputs=[a]) g = wp.capture_end() # replay graph num_iters = 10 for i in range(num_iters): wp.capture_launch(g) passed = (t == num_iters * 4.0).all() assert passed.item() def register(parent): class TestTorch(parent): pass try: import torch # check which Warp devices work with Torch # CUDA devices may fail if Torch was not compiled with CUDA support test_devices = get_test_devices() torch_compatible_devices = [] torch_compatible_cuda_devices = [] for d in test_devices: try: t = torch.arange(10, device=wp.device_to_torch(d)) t += 1 torch_compatible_devices.append(d) if d.is_cuda: torch_compatible_cuda_devices.append(d) except Exception as e: print(f"Skipping Torch tests on device '{d}' due to exception: {e}") if torch_compatible_devices: add_function_test(TestTorch, "test_from_torch", test_from_torch, devices=torch_compatible_devices) add_function_test( TestTorch, "test_from_torch_slices", test_from_torch_slices, devices=torch_compatible_devices ) add_function_test( TestTorch, "test_from_torch_zero_strides", test_from_torch_zero_strides, devices=torch_compatible_devices, ) add_function_test(TestTorch, "test_to_torch", test_to_torch, devices=torch_compatible_devices) add_function_test(TestTorch, "test_torch_zerocopy", test_torch_zerocopy, devices=torch_compatible_devices) add_function_test(TestTorch, "test_torch_autograd", test_torch_autograd, devices=torch_compatible_devices) if torch_compatible_cuda_devices: add_function_test( TestTorch, "test_torch_graph_torch_stream", test_torch_graph_torch_stream, devices=torch_compatible_cuda_devices, ) add_function_test( TestTorch, "test_torch_graph_warp_stream", test_torch_graph_warp_stream, devices=torch_compatible_cuda_devices, ) add_function_test( TestTorch, "test_warp_graph_warp_stream", test_warp_graph_warp_stream, devices=torch_compatible_cuda_devices, ) add_function_test( TestTorch, "test_warp_graph_torch_stream", test_warp_graph_torch_stream, devices=torch_compatible_cuda_devices, ) # multi-GPU tests if len(torch_compatible_cuda_devices) > 1: add_function_test(TestTorch, "test_torch_mgpu_from_torch", test_torch_mgpu_from_torch) add_function_test(TestTorch, "test_torch_mgpu_to_torch", test_torch_mgpu_to_torch) add_function_test(TestTorch, "test_torch_mgpu_interop", test_torch_mgpu_interop) except Exception as e: print(f"Skipping Torch tests due to exception: {e}") return TestTorch if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_torch.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp from warp.tests.test_base import * wp.init() np_signed_int_types = [ np.int8, np.int16, np.int32, np.int64, np.byte, ] np_unsigned_int_types = [ np.uint8, np.uint16, np.uint32, np.uint64, np.ubyte, ] np_int_types = np_signed_int_types + np_unsigned_int_types np_float_types = [np.float16, np.float32, np.float64] np_scalar_types = np_int_types + np_float_types def randvals(shape, dtype): if dtype in np_float_types: return np.random.randn(*shape).astype(dtype) elif dtype in [np.int8, np.uint8, np.byte, np.ubyte]: return np.random.randint(1, 3, size=shape, dtype=dtype) return np.random.randint(1, 5, size=shape, dtype=dtype) kernel_cache = dict() def getkernel(func, suffix=""): module = wp.get_module(func.__module__) key = func.__name__ + "_" + suffix if key not in kernel_cache: kernel_cache[key] = wp.Kernel(func=func, key=key, module=module) return kernel_cache[key] def get_select_kernel(dtype): def output_select_kernel_fn( input: wp.array(dtype=dtype), index: int, out: wp.array(dtype=dtype), ): out[0] = input[index] return getkernel(output_select_kernel_fn, suffix=dtype.__name__) def get_select_kernel2(dtype): def output_select_kernel2_fn( input: wp.array(dtype=dtype, ndim=2), index0: int, index1: int, out: wp.array(dtype=dtype), ): out[0] = input[index0, index1] return getkernel(output_select_kernel2_fn, suffix=dtype.__name__) def test_arrays(test, device, dtype): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) v2_np = randvals((10, 2), dtype) v3_np = randvals((10, 3), dtype) v4_np = randvals((10, 4), dtype) v5_np = randvals((10, 5), dtype) v2 = wp.array(v2_np, dtype=vec2, requires_grad=True, device=device) v3 = wp.array(v3_np, dtype=vec3, requires_grad=True, device=device) v4 = wp.array(v4_np, dtype=vec4, requires_grad=True, device=device) v5 = wp.array(v5_np, dtype=vec5, requires_grad=True, device=device) assert_np_equal(v2.numpy(), v2_np, tol=1.0e-6) assert_np_equal(v3.numpy(), v3_np, tol=1.0e-6) assert_np_equal(v4.numpy(), v4_np, tol=1.0e-6) assert_np_equal(v5.numpy(), v5_np, tol=1.0e-6) vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) v2 = wp.array(v2_np, dtype=vec2, requires_grad=True, device=device) v3 = wp.array(v3_np, dtype=vec3, requires_grad=True, device=device) v4 = wp.array(v4_np, dtype=vec4, requires_grad=True, device=device) assert_np_equal(v2.numpy(), v2_np, tol=1.0e-6) assert_np_equal(v3.numpy(), v3_np, tol=1.0e-6) assert_np_equal(v4.numpy(), v4_np, tol=1.0e-6) def test_components(test, device, dtype): # test accessing vector components from Python - this is especially important # for float16, which requires special handling internally wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec3 = wp.types.vector(length=3, dtype=wptype) v = vec3(1, 2, 3) # test __getitem__ for individual components test.assertEqual(v[0], 1) test.assertEqual(v[1], 2) test.assertEqual(v[2], 3) # test __getitem__ for slices s = v[:] test.assertEqual(s[0], 1) test.assertEqual(s[1], 2) test.assertEqual(s[2], 3) s = v[1:] test.assertEqual(s[0], 2) test.assertEqual(s[1], 3) s = v[:2] test.assertEqual(s[0], 1) test.assertEqual(s[1], 2) s = v[::2] test.assertEqual(s[0], 1) test.assertEqual(s[1], 3) # test __setitem__ for individual components v[0] = 4 v[1] = 5 v[2] = 6 test.assertEqual(v[0], 4) test.assertEqual(v[1], 5) test.assertEqual(v[2], 6) # test __setitem__ for slices v[:] = [7, 8, 9] test.assertEqual(v[0], 7) test.assertEqual(v[1], 8) test.assertEqual(v[2], 9) v[1:] = [10, 11] test.assertEqual(v[0], 7) test.assertEqual(v[1], 10) test.assertEqual(v[2], 11) v[:2] = [12, 13] test.assertEqual(v[0], 12) test.assertEqual(v[1], 13) test.assertEqual(v[2], 11) v[::2] = [14, 15] test.assertEqual(v[0], 14) test.assertEqual(v[1], 13) test.assertEqual(v[2], 15) def test_anon_type_instance(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def check_scalar_init( input: wp.array(dtype=wptype), output: wp.array(dtype=wptype), ): v2result = wp.vector(input[0], length=2) v3result = wp.vector(input[1], length=3) v4result = wp.vector(input[2], length=4) v5result = wp.vector(input[3], length=5) idx = 0 for i in range(2): output[idx] = wptype(2) * v2result[i] idx = idx + 1 for i in range(3): output[idx] = wptype(2) * v3result[i] idx = idx + 1 for i in range(4): output[idx] = wptype(2) * v4result[i] idx = idx + 1 for i in range(5): output[idx] = wptype(2) * v5result[i] idx = idx + 1 def check_component_init( input: wp.array(dtype=wptype), output: wp.array(dtype=wptype), ): v2result = wp.vector(input[0], input[1]) v3result = wp.vector(input[2], input[3], input[4]) v4result = wp.vector(input[5], input[6], input[7], input[8]) v5result = wp.vector(input[9], input[10], input[11], input[12], input[13]) idx = 0 for i in range(2): output[idx] = wptype(2) * v2result[i] idx = idx + 1 for i in range(3): output[idx] = wptype(2) * v3result[i] idx = idx + 1 for i in range(4): output[idx] = wptype(2) * v4result[i] idx = idx + 1 for i in range(5): output[idx] = wptype(2) * v5result[i] idx = idx + 1 scalar_kernel = getkernel(check_scalar_init, suffix=dtype.__name__) component_kernel = getkernel(check_component_init, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return input = wp.array(randvals([4], dtype), requires_grad=True, device=device) output = wp.zeros(2 + 3 + 4 + 5, dtype=wptype, requires_grad=True, device=device) wp.launch(scalar_kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy()[:2], 2 * np.array([input.numpy()[0]] * 2), tol=1.0e-6) assert_np_equal(output.numpy()[2:5], 2 * np.array([input.numpy()[1]] * 3), tol=1.0e-6) assert_np_equal(output.numpy()[5:9], 2 * np.array([input.numpy()[2]] * 4), tol=1.0e-6) assert_np_equal(output.numpy()[9:], 2 * np.array([input.numpy()[3]] * 5), tol=1.0e-6) if dtype in np_float_types: out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(len(output)): tape = wp.Tape() with tape: wp.launch(scalar_kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(input.numpy()) if i < 2: expected[0] = 2 elif i < 5: expected[1] = 2 elif i < 9: expected[2] = 2 else: expected[3] = 2 assert_np_equal(tape.gradients[input].numpy(), expected, tol=tol) tape.reset() tape.zero() input = wp.array(randvals([2 + 3 + 4 + 5], dtype), requires_grad=True, device=device) output = wp.zeros(2 + 3 + 4 + 5, dtype=wptype, requires_grad=True, device=device) wp.launch(component_kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy(), 2 * input.numpy(), tol=1.0e-6) if dtype in np_float_types: out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(len(output)): tape = wp.Tape() with tape: wp.launch(component_kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(input.numpy()) expected[i] = 2 assert_np_equal(tape.gradients[input].numpy(), expected, tol=tol) tape.reset() tape.zero() def test_constants(test, device, dtype, register_kernels=False): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) cv2 = wp.constant(vec2(1, 2)) cv3 = wp.constant(vec3(1, 2, 3)) cv4 = wp.constant(vec4(1, 2, 3, 4)) cv5 = wp.constant(vec5(1, 2, 3, 4, 5)) def check_vector_constants(): wp.expect_eq(cv2, vec2(wptype(1), wptype(2))) wp.expect_eq(cv3, vec3(wptype(1), wptype(2), wptype(3))) wp.expect_eq(cv4, vec4(wptype(1), wptype(2), wptype(3), wptype(4))) wp.expect_eq(cv5, vec5(wptype(1), wptype(2), wptype(3), wptype(4), wptype(5))) kernel = getkernel(check_vector_constants, suffix=dtype.__name__) if register_kernels: return wp.launch(kernel, dim=1, inputs=[]) def test_constructors(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_scalar_constructor( input: wp.array(dtype=wptype), v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v20: wp.array(dtype=wptype), v21: wp.array(dtype=wptype), v30: wp.array(dtype=wptype), v31: wp.array(dtype=wptype), v32: wp.array(dtype=wptype), v40: wp.array(dtype=wptype), v41: wp.array(dtype=wptype), v42: wp.array(dtype=wptype), v43: wp.array(dtype=wptype), v50: wp.array(dtype=wptype), v51: wp.array(dtype=wptype), v52: wp.array(dtype=wptype), v53: wp.array(dtype=wptype), v54: wp.array(dtype=wptype), ): v2result = vec2(input[0]) v3result = vec3(input[0]) v4result = vec4(input[0]) v5result = vec5(input[0]) v2[0] = v2result v3[0] = v3result v4[0] = v4result v5[0] = v5result # multiply outputs by 2 so we've got something to backpropagate v20[0] = wptype(2) * v2result[0] v21[0] = wptype(2) * v2result[1] v30[0] = wptype(2) * v3result[0] v31[0] = wptype(2) * v3result[1] v32[0] = wptype(2) * v3result[2] v40[0] = wptype(2) * v4result[0] v41[0] = wptype(2) * v4result[1] v42[0] = wptype(2) * v4result[2] v43[0] = wptype(2) * v4result[3] v50[0] = wptype(2) * v5result[0] v51[0] = wptype(2) * v5result[1] v52[0] = wptype(2) * v5result[2] v53[0] = wptype(2) * v5result[3] v54[0] = wptype(2) * v5result[4] def check_vector_constructors( input: wp.array(dtype=wptype), v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v20: wp.array(dtype=wptype), v21: wp.array(dtype=wptype), v30: wp.array(dtype=wptype), v31: wp.array(dtype=wptype), v32: wp.array(dtype=wptype), v40: wp.array(dtype=wptype), v41: wp.array(dtype=wptype), v42: wp.array(dtype=wptype), v43: wp.array(dtype=wptype), v50: wp.array(dtype=wptype), v51: wp.array(dtype=wptype), v52: wp.array(dtype=wptype), v53: wp.array(dtype=wptype), v54: wp.array(dtype=wptype), ): v2result = vec2(input[0], input[1]) v3result = vec3(input[2], input[3], input[4]) v4result = vec4(input[5], input[6], input[7], input[8]) v5result = vec5(input[9], input[10], input[11], input[12], input[13]) v2[0] = v2result v3[0] = v3result v4[0] = v4result v5[0] = v5result # multiply the output by 2 so we've got something to backpropagate: v20[0] = wptype(2) * v2result[0] v21[0] = wptype(2) * v2result[1] v30[0] = wptype(2) * v3result[0] v31[0] = wptype(2) * v3result[1] v32[0] = wptype(2) * v3result[2] v40[0] = wptype(2) * v4result[0] v41[0] = wptype(2) * v4result[1] v42[0] = wptype(2) * v4result[2] v43[0] = wptype(2) * v4result[3] v50[0] = wptype(2) * v5result[0] v51[0] = wptype(2) * v5result[1] v52[0] = wptype(2) * v5result[2] v53[0] = wptype(2) * v5result[3] v54[0] = wptype(2) * v5result[4] vec_kernel = getkernel(check_vector_constructors, suffix=dtype.__name__) kernel = getkernel(check_scalar_constructor, suffix=dtype.__name__) if register_kernels: return input = wp.array(randvals([1], dtype), requires_grad=True, device=device) v2 = wp.zeros(1, dtype=vec2, device=device) v3 = wp.zeros(1, dtype=vec3, device=device) v4 = wp.zeros(1, dtype=vec4, device=device) v5 = wp.zeros(1, dtype=vec5, device=device) v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[input], outputs=[v2, v3, v4, v5, v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54], device=device, ) if dtype in np_float_types: for l in [v20, v21]: tape.backward(loss=l) test.assertEqual(tape.gradients[input].numpy()[0], 2.0) tape.zero() for l in [v30, v31, v32]: tape.backward(loss=l) test.assertEqual(tape.gradients[input].numpy()[0], 2.0) tape.zero() for l in [v40, v41, v42, v43]: tape.backward(loss=l) test.assertEqual(tape.gradients[input].numpy()[0], 2.0) tape.zero() for l in [v50, v51, v52, v53, v54]: tape.backward(loss=l) test.assertEqual(tape.gradients[input].numpy()[0], 2.0) tape.zero() val = input.numpy()[0] assert_np_equal(v2.numpy()[0], np.array([val, val]), tol=1.0e-6) assert_np_equal(v3.numpy()[0], np.array([val, val, val]), tol=1.0e-6) assert_np_equal(v4.numpy()[0], np.array([val, val, val, val]), tol=1.0e-6) assert_np_equal(v5.numpy()[0], np.array([val, val, val, val, val]), tol=1.0e-6) assert_np_equal(v20.numpy()[0], 2 * val, tol=1.0e-6) assert_np_equal(v21.numpy()[0], 2 * val, tol=1.0e-6) assert_np_equal(v30.numpy()[0], 2 * val, tol=1.0e-6) assert_np_equal(v31.numpy()[0], 2 * val, tol=1.0e-6) assert_np_equal(v32.numpy()[0], 2 * val, tol=1.0e-6) assert_np_equal(v40.numpy()[0], 2 * val, tol=1.0e-6) assert_np_equal(v41.numpy()[0], 2 * val, tol=1.0e-6) assert_np_equal(v42.numpy()[0], 2 * val, tol=1.0e-6) assert_np_equal(v43.numpy()[0], 2 * val, tol=1.0e-6) assert_np_equal(v50.numpy()[0], 2 * val, tol=1.0e-6) assert_np_equal(v51.numpy()[0], 2 * val, tol=1.0e-6) assert_np_equal(v52.numpy()[0], 2 * val, tol=1.0e-6) assert_np_equal(v53.numpy()[0], 2 * val, tol=1.0e-6) assert_np_equal(v54.numpy()[0], 2 * val, tol=1.0e-6) input = wp.array(randvals([14], dtype), requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( vec_kernel, dim=1, inputs=[input], outputs=[v2, v3, v4, v5, v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54], device=device, ) if dtype in np_float_types: for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]): tape.backward(loss=l) grad = tape.gradients[input].numpy() expected_grad = np.zeros_like(grad) expected_grad[i] = 2 assert_np_equal(grad, expected_grad, tol=tol) tape.zero() assert_np_equal(v2.numpy()[0, 0], input.numpy()[0], tol=tol) assert_np_equal(v2.numpy()[0, 1], input.numpy()[1], tol=tol) assert_np_equal(v3.numpy()[0, 0], input.numpy()[2], tol=tol) assert_np_equal(v3.numpy()[0, 1], input.numpy()[3], tol=tol) assert_np_equal(v3.numpy()[0, 2], input.numpy()[4], tol=tol) assert_np_equal(v4.numpy()[0, 0], input.numpy()[5], tol=tol) assert_np_equal(v4.numpy()[0, 1], input.numpy()[6], tol=tol) assert_np_equal(v4.numpy()[0, 2], input.numpy()[7], tol=tol) assert_np_equal(v4.numpy()[0, 3], input.numpy()[8], tol=tol) assert_np_equal(v5.numpy()[0, 0], input.numpy()[9], tol=tol) assert_np_equal(v5.numpy()[0, 1], input.numpy()[10], tol=tol) assert_np_equal(v5.numpy()[0, 2], input.numpy()[11], tol=tol) assert_np_equal(v5.numpy()[0, 3], input.numpy()[12], tol=tol) assert_np_equal(v5.numpy()[0, 4], input.numpy()[13], tol=tol) assert_np_equal(v20.numpy()[0], 2 * input.numpy()[0], tol=tol) assert_np_equal(v21.numpy()[0], 2 * input.numpy()[1], tol=tol) assert_np_equal(v30.numpy()[0], 2 * input.numpy()[2], tol=tol) assert_np_equal(v31.numpy()[0], 2 * input.numpy()[3], tol=tol) assert_np_equal(v32.numpy()[0], 2 * input.numpy()[4], tol=tol) assert_np_equal(v40.numpy()[0], 2 * input.numpy()[5], tol=tol) assert_np_equal(v41.numpy()[0], 2 * input.numpy()[6], tol=tol) assert_np_equal(v42.numpy()[0], 2 * input.numpy()[7], tol=tol) assert_np_equal(v43.numpy()[0], 2 * input.numpy()[8], tol=tol) assert_np_equal(v50.numpy()[0], 2 * input.numpy()[9], tol=tol) assert_np_equal(v51.numpy()[0], 2 * input.numpy()[10], tol=tol) assert_np_equal(v52.numpy()[0], 2 * input.numpy()[11], tol=tol) assert_np_equal(v53.numpy()[0], 2 * input.numpy()[12], tol=tol) assert_np_equal(v54.numpy()[0], 2 * input.numpy()[13], tol=tol) def test_indexing(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_indexing( v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v20: wp.array(dtype=wptype), v21: wp.array(dtype=wptype), v30: wp.array(dtype=wptype), v31: wp.array(dtype=wptype), v32: wp.array(dtype=wptype), v40: wp.array(dtype=wptype), v41: wp.array(dtype=wptype), v42: wp.array(dtype=wptype), v43: wp.array(dtype=wptype), v50: wp.array(dtype=wptype), v51: wp.array(dtype=wptype), v52: wp.array(dtype=wptype), v53: wp.array(dtype=wptype), v54: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: v20[0] = wptype(2) * v2[0][0] v21[0] = wptype(2) * v2[0][1] v30[0] = wptype(2) * v3[0][0] v31[0] = wptype(2) * v3[0][1] v32[0] = wptype(2) * v3[0][2] v40[0] = wptype(2) * v4[0][0] v41[0] = wptype(2) * v4[0][1] v42[0] = wptype(2) * v4[0][2] v43[0] = wptype(2) * v4[0][3] v50[0] = wptype(2) * v5[0][0] v51[0] = wptype(2) * v5[0][1] v52[0] = wptype(2) * v5[0][2] v53[0] = wptype(2) * v5[0][3] v54[0] = wptype(2) * v5[0][4] kernel = getkernel(check_indexing, suffix=dtype.__name__) if register_kernels: return v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[v2, v3, v4, v5], outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54], device=device, ) if dtype in np_float_types: for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]): tape.backward(loss=l) allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]]) expected_grads = np.zeros_like(allgrads) expected_grads[i] = 2 assert_np_equal(allgrads, expected_grads, tol=tol) tape.zero() assert_np_equal(v20.numpy()[0], 2.0 * v2.numpy()[0, 0], tol=tol) assert_np_equal(v21.numpy()[0], 2.0 * v2.numpy()[0, 1], tol=tol) assert_np_equal(v30.numpy()[0], 2.0 * v3.numpy()[0, 0], tol=tol) assert_np_equal(v31.numpy()[0], 2.0 * v3.numpy()[0, 1], tol=tol) assert_np_equal(v32.numpy()[0], 2.0 * v3.numpy()[0, 2], tol=tol) assert_np_equal(v40.numpy()[0], 2.0 * v4.numpy()[0, 0], tol=tol) assert_np_equal(v41.numpy()[0], 2.0 * v4.numpy()[0, 1], tol=tol) assert_np_equal(v42.numpy()[0], 2.0 * v4.numpy()[0, 2], tol=tol) assert_np_equal(v43.numpy()[0], 2.0 * v4.numpy()[0, 3], tol=tol) assert_np_equal(v50.numpy()[0], 2.0 * v5.numpy()[0, 0], tol=tol) assert_np_equal(v51.numpy()[0], 2.0 * v5.numpy()[0, 1], tol=tol) assert_np_equal(v52.numpy()[0], 2.0 * v5.numpy()[0, 2], tol=tol) assert_np_equal(v53.numpy()[0], 2.0 * v5.numpy()[0, 3], tol=tol) assert_np_equal(v54.numpy()[0], 2.0 * v5.numpy()[0, 4], tol=tol) def test_equality(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_equality( v20: wp.array(dtype=vec2), v21: wp.array(dtype=vec2), v22: wp.array(dtype=vec2), v30: wp.array(dtype=vec3), v31: wp.array(dtype=vec3), v32: wp.array(dtype=vec3), v33: wp.array(dtype=vec3), v40: wp.array(dtype=vec4), v41: wp.array(dtype=vec4), v42: wp.array(dtype=vec4), v43: wp.array(dtype=vec4), v44: wp.array(dtype=vec4), v50: wp.array(dtype=vec5), v51: wp.array(dtype=vec5), v52: wp.array(dtype=vec5), v53: wp.array(dtype=vec5), v54: wp.array(dtype=vec5), v55: wp.array(dtype=vec5), ): wp.expect_eq(v20[0], v20[0]) wp.expect_neq(v21[0], v20[0]) wp.expect_neq(v22[0], v20[0]) wp.expect_eq(v30[0], v30[0]) wp.expect_neq(v31[0], v30[0]) wp.expect_neq(v32[0], v30[0]) wp.expect_neq(v33[0], v30[0]) wp.expect_eq(v40[0], v40[0]) wp.expect_neq(v41[0], v40[0]) wp.expect_neq(v42[0], v40[0]) wp.expect_neq(v43[0], v40[0]) wp.expect_neq(v44[0], v40[0]) wp.expect_eq(v50[0], v50[0]) wp.expect_neq(v51[0], v50[0]) wp.expect_neq(v52[0], v50[0]) wp.expect_neq(v53[0], v50[0]) wp.expect_neq(v54[0], v50[0]) wp.expect_neq(v55[0], v50[0]) kernel = getkernel(check_equality, suffix=dtype.__name__) if register_kernels: return v20 = wp.array([1.0, 2.0], dtype=vec2, requires_grad=True, device=device) v21 = wp.array([1.0, 3.0], dtype=vec2, requires_grad=True, device=device) v22 = wp.array([3.0, 2.0], dtype=vec2, requires_grad=True, device=device) v30 = wp.array([1.0, 2.0, 3.0], dtype=vec3, requires_grad=True, device=device) v31 = wp.array([-1.0, 2.0, 3.0], dtype=vec3, requires_grad=True, device=device) v32 = wp.array([1.0, -2.0, 3.0], dtype=vec3, requires_grad=True, device=device) v33 = wp.array([1.0, 2.0, -3.0], dtype=vec3, requires_grad=True, device=device) v40 = wp.array([1.0, 2.0, 3.0, 4.0], dtype=vec4, requires_grad=True, device=device) v41 = wp.array([-1.0, 2.0, 3.0, 4.0], dtype=vec4, requires_grad=True, device=device) v42 = wp.array([1.0, -2.0, 3.0, 4.0], dtype=vec4, requires_grad=True, device=device) v43 = wp.array([1.0, 2.0, -3.0, 4.0], dtype=vec4, requires_grad=True, device=device) v44 = wp.array([1.0, 2.0, 3.0, -4.0], dtype=vec4, requires_grad=True, device=device) v50 = wp.array([1.0, 2.0, 3.0, 4.0, 5.0], dtype=vec5, requires_grad=True, device=device) v51 = wp.array([-1.0, 2.0, 3.0, 4.0, 5.0], dtype=vec5, requires_grad=True, device=device) v52 = wp.array([1.0, -2.0, 3.0, 4.0, 5.0], dtype=vec5, requires_grad=True, device=device) v53 = wp.array([1.0, 2.0, -3.0, 4.0, 5.0], dtype=vec5, requires_grad=True, device=device) v54 = wp.array([1.0, 2.0, 3.0, -4.0, 5.0], dtype=vec5, requires_grad=True, device=device) v55 = wp.array([1.0, 2.0, 3.0, 4.0, -5.0], dtype=vec5, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ v20, v21, v22, v30, v31, v32, v33, v40, v41, v42, v43, v44, v50, v51, v52, v53, v54, v55, ], outputs=[], device=device, ) def test_negation(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_negation( v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v2out: wp.array(dtype=vec2), v3out: wp.array(dtype=vec3), v4out: wp.array(dtype=vec4), v5out: wp.array(dtype=vec5), v20: wp.array(dtype=wptype), v21: wp.array(dtype=wptype), v30: wp.array(dtype=wptype), v31: wp.array(dtype=wptype), v32: wp.array(dtype=wptype), v40: wp.array(dtype=wptype), v41: wp.array(dtype=wptype), v42: wp.array(dtype=wptype), v43: wp.array(dtype=wptype), v50: wp.array(dtype=wptype), v51: wp.array(dtype=wptype), v52: wp.array(dtype=wptype), v53: wp.array(dtype=wptype), v54: wp.array(dtype=wptype), ): v2result = -v2[0] v3result = -v3[0] v4result = -v4[0] v5result = -v5[0] v2out[0] = v2result v3out[0] = v3result v4out[0] = v4result v5out[0] = v5result # multiply these outputs by 2 so we've got something to backpropagate: v20[0] = wptype(2) * v2result[0] v21[0] = wptype(2) * v2result[1] v30[0] = wptype(2) * v3result[0] v31[0] = wptype(2) * v3result[1] v32[0] = wptype(2) * v3result[2] v40[0] = wptype(2) * v4result[0] v41[0] = wptype(2) * v4result[1] v42[0] = wptype(2) * v4result[2] v43[0] = wptype(2) * v4result[3] v50[0] = wptype(2) * v5result[0] v51[0] = wptype(2) * v5result[1] v52[0] = wptype(2) * v5result[2] v53[0] = wptype(2) * v5result[3] v54[0] = wptype(2) * v5result[4] kernel = getkernel(check_negation, suffix=dtype.__name__) if register_kernels: return v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) v5_np = randvals((1, 5), dtype) v5 = wp.array(v5_np, dtype=vec5, requires_grad=True, device=device) v2out = wp.zeros(1, dtype=vec2, device=device) v3out = wp.zeros(1, dtype=vec3, device=device) v4out = wp.zeros(1, dtype=vec4, device=device) v5out = wp.zeros(1, dtype=vec5, device=device) v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[v2, v3, v4, v5], outputs=[v2out, v3out, v4out, v5out, v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54], device=device, ) if dtype in np_float_types: for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]): tape.backward(loss=l) allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]]) expected_grads = np.zeros_like(allgrads) expected_grads[i] = -2 assert_np_equal(allgrads, expected_grads, tol=tol) tape.zero() assert_np_equal(v2out.numpy()[0], -v2.numpy()[0], tol=tol) assert_np_equal(v3out.numpy()[0], -v3.numpy()[0], tol=tol) assert_np_equal(v4out.numpy()[0], -v4.numpy()[0], tol=tol) assert_np_equal(v5out.numpy()[0], -v5.numpy()[0], tol=tol) def test_scalar_multiplication(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_mul( s: wp.array(dtype=wptype), v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v20: wp.array(dtype=wptype), v21: wp.array(dtype=wptype), v30: wp.array(dtype=wptype), v31: wp.array(dtype=wptype), v32: wp.array(dtype=wptype), v40: wp.array(dtype=wptype), v41: wp.array(dtype=wptype), v42: wp.array(dtype=wptype), v43: wp.array(dtype=wptype), v50: wp.array(dtype=wptype), v51: wp.array(dtype=wptype), v52: wp.array(dtype=wptype), v53: wp.array(dtype=wptype), v54: wp.array(dtype=wptype), ): v2result = s[0] * v2[0] v3result = s[0] * v3[0] v4result = s[0] * v4[0] v5result = s[0] * v5[0] # multiply outputs by 2 so we've got something to backpropagate: v20[0] = wptype(2) * v2result[0] v21[0] = wptype(2) * v2result[1] v30[0] = wptype(2) * v3result[0] v31[0] = wptype(2) * v3result[1] v32[0] = wptype(2) * v3result[2] v40[0] = wptype(2) * v4result[0] v41[0] = wptype(2) * v4result[1] v42[0] = wptype(2) * v4result[2] v43[0] = wptype(2) * v4result[3] v50[0] = wptype(2) * v5result[0] v51[0] = wptype(2) * v5result[1] v52[0] = wptype(2) * v5result[2] v53[0] = wptype(2) * v5result[3] v54[0] = wptype(2) * v5result[4] kernel = getkernel(check_mul, suffix=dtype.__name__) if register_kernels: return s = wp.array(randvals([1], dtype), requires_grad=True, device=device) v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s, v2, v3, v4, v5, ], outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54], device=device, ) assert_np_equal(v20.numpy()[0], 2 * s.numpy()[0] * v2.numpy()[0, 0], tol=tol) assert_np_equal(v21.numpy()[0], 2 * s.numpy()[0] * v2.numpy()[0, 1], tol=tol) assert_np_equal(v30.numpy()[0], 2 * s.numpy()[0] * v3.numpy()[0, 0], tol=10 * tol) assert_np_equal(v31.numpy()[0], 2 * s.numpy()[0] * v3.numpy()[0, 1], tol=10 * tol) assert_np_equal(v32.numpy()[0], 2 * s.numpy()[0] * v3.numpy()[0, 2], tol=10 * tol) assert_np_equal(v40.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 0], tol=10 * tol) assert_np_equal(v41.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 1], tol=10 * tol) assert_np_equal(v42.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 2], tol=10 * tol) assert_np_equal(v43.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 3], tol=10 * tol) assert_np_equal(v50.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 0], tol=10 * tol) assert_np_equal(v51.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 1], tol=10 * tol) assert_np_equal(v52.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 2], tol=10 * tol) assert_np_equal(v53.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 3], tol=10 * tol) assert_np_equal(v54.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 4], tol=10 * tol) incmps = np.concatenate([v.numpy()[0] for v in [v2, v3, v4, v5]]) if dtype in np_float_types: for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43]): tape.backward(loss=l) sgrad = tape.gradients[s].numpy()[0] assert_np_equal(sgrad, 2 * incmps[i], tol=10 * tol) allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4]]) expected_grads = np.zeros_like(allgrads) expected_grads[i] = s.numpy()[0] * 2 assert_np_equal(allgrads, expected_grads, tol=10 * tol) tape.zero() def test_scalar_multiplication_rightmul(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_rightmul( s: wp.array(dtype=wptype), v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v20: wp.array(dtype=wptype), v21: wp.array(dtype=wptype), v30: wp.array(dtype=wptype), v31: wp.array(dtype=wptype), v32: wp.array(dtype=wptype), v40: wp.array(dtype=wptype), v41: wp.array(dtype=wptype), v42: wp.array(dtype=wptype), v43: wp.array(dtype=wptype), v50: wp.array(dtype=wptype), v51: wp.array(dtype=wptype), v52: wp.array(dtype=wptype), v53: wp.array(dtype=wptype), v54: wp.array(dtype=wptype), ): v2result = v2[0] * s[0] v3result = v3[0] * s[0] v4result = v4[0] * s[0] v5result = v5[0] * s[0] # multiply outputs by 2 so we've got something to backpropagate: v20[0] = wptype(2) * v2result[0] v21[0] = wptype(2) * v2result[1] v30[0] = wptype(2) * v3result[0] v31[0] = wptype(2) * v3result[1] v32[0] = wptype(2) * v3result[2] v40[0] = wptype(2) * v4result[0] v41[0] = wptype(2) * v4result[1] v42[0] = wptype(2) * v4result[2] v43[0] = wptype(2) * v4result[3] v50[0] = wptype(2) * v5result[0] v51[0] = wptype(2) * v5result[1] v52[0] = wptype(2) * v5result[2] v53[0] = wptype(2) * v5result[3] v54[0] = wptype(2) * v5result[4] kernel = getkernel(check_rightmul, suffix=dtype.__name__) if register_kernels: return s = wp.array(randvals([1], dtype), requires_grad=True, device=device) v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s, v2, v3, v4, v5, ], outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54], device=device, ) assert_np_equal(v20.numpy()[0], 2 * s.numpy()[0] * v2.numpy()[0, 0], tol=tol) assert_np_equal(v21.numpy()[0], 2 * s.numpy()[0] * v2.numpy()[0, 1], tol=tol) assert_np_equal(v30.numpy()[0], 2 * s.numpy()[0] * v3.numpy()[0, 0], tol=10 * tol) assert_np_equal(v31.numpy()[0], 2 * s.numpy()[0] * v3.numpy()[0, 1], tol=10 * tol) assert_np_equal(v32.numpy()[0], 2 * s.numpy()[0] * v3.numpy()[0, 2], tol=10 * tol) assert_np_equal(v40.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 0], tol=10 * tol) assert_np_equal(v41.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 1], tol=10 * tol) assert_np_equal(v42.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 2], tol=10 * tol) assert_np_equal(v43.numpy()[0], 2 * s.numpy()[0] * v4.numpy()[0, 3], tol=10 * tol) assert_np_equal(v50.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 0], tol=10 * tol) assert_np_equal(v51.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 1], tol=10 * tol) assert_np_equal(v52.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 2], tol=10 * tol) assert_np_equal(v53.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 3], tol=10 * tol) assert_np_equal(v54.numpy()[0], 2 * s.numpy()[0] * v5.numpy()[0, 4], tol=10 * tol) incmps = np.concatenate([v.numpy()[0] for v in [v2, v3, v4, v5]]) if dtype in np_float_types: for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43]): tape.backward(loss=l) sgrad = tape.gradients[s].numpy()[0] assert_np_equal(sgrad, 2 * incmps[i], tol=10 * tol) allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4]]) expected_grads = np.zeros_like(allgrads) expected_grads[i] = s.numpy()[0] * 2 assert_np_equal(allgrads, expected_grads, tol=10 * tol) tape.zero() def test_cw_multiplication(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_cw_mul( s2: wp.array(dtype=vec2), s3: wp.array(dtype=vec3), s4: wp.array(dtype=vec4), s5: wp.array(dtype=vec5), v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v20: wp.array(dtype=wptype), v21: wp.array(dtype=wptype), v30: wp.array(dtype=wptype), v31: wp.array(dtype=wptype), v32: wp.array(dtype=wptype), v40: wp.array(dtype=wptype), v41: wp.array(dtype=wptype), v42: wp.array(dtype=wptype), v43: wp.array(dtype=wptype), v50: wp.array(dtype=wptype), v51: wp.array(dtype=wptype), v52: wp.array(dtype=wptype), v53: wp.array(dtype=wptype), v54: wp.array(dtype=wptype), ): v2result = wp.cw_mul(s2[0], v2[0]) v3result = wp.cw_mul(s3[0], v3[0]) v4result = wp.cw_mul(s4[0], v4[0]) v5result = wp.cw_mul(s5[0], v5[0]) v20[0] = wptype(2) * v2result[0] v21[0] = wptype(2) * v2result[1] v30[0] = wptype(2) * v3result[0] v31[0] = wptype(2) * v3result[1] v32[0] = wptype(2) * v3result[2] v40[0] = wptype(2) * v4result[0] v41[0] = wptype(2) * v4result[1] v42[0] = wptype(2) * v4result[2] v43[0] = wptype(2) * v4result[3] v50[0] = wptype(2) * v5result[0] v51[0] = wptype(2) * v5result[1] v52[0] = wptype(2) * v5result[2] v53[0] = wptype(2) * v5result[3] v54[0] = wptype(2) * v5result[4] kernel = getkernel(check_cw_mul, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) s3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) s4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) s5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54], device=device, ) assert_np_equal(v20.numpy()[0], 2 * s2.numpy()[0, 0] * v2.numpy()[0, 0], tol=10 * tol) assert_np_equal(v21.numpy()[0], 2 * s2.numpy()[0, 1] * v2.numpy()[0, 1], tol=10 * tol) assert_np_equal(v30.numpy()[0], 2 * s3.numpy()[0, 0] * v3.numpy()[0, 0], tol=10 * tol) assert_np_equal(v31.numpy()[0], 2 * s3.numpy()[0, 1] * v3.numpy()[0, 1], tol=10 * tol) assert_np_equal(v32.numpy()[0], 2 * s3.numpy()[0, 2] * v3.numpy()[0, 2], tol=10 * tol) assert_np_equal(v40.numpy()[0], 2 * s4.numpy()[0, 0] * v4.numpy()[0, 0], tol=10 * tol) assert_np_equal(v41.numpy()[0], 2 * s4.numpy()[0, 1] * v4.numpy()[0, 1], tol=10 * tol) assert_np_equal(v42.numpy()[0], 2 * s4.numpy()[0, 2] * v4.numpy()[0, 2], tol=10 * tol) assert_np_equal(v43.numpy()[0], 2 * s4.numpy()[0, 3] * v4.numpy()[0, 3], tol=10 * tol) assert_np_equal(v50.numpy()[0], 2 * s5.numpy()[0, 0] * v5.numpy()[0, 0], tol=10 * tol) assert_np_equal(v51.numpy()[0], 2 * s5.numpy()[0, 1] * v5.numpy()[0, 1], tol=10 * tol) assert_np_equal(v52.numpy()[0], 2 * s5.numpy()[0, 2] * v5.numpy()[0, 2], tol=10 * tol) assert_np_equal(v53.numpy()[0], 2 * s5.numpy()[0, 3] * v5.numpy()[0, 3], tol=10 * tol) assert_np_equal(v54.numpy()[0], 2 * s5.numpy()[0, 4] * v5.numpy()[0, 4], tol=10 * tol) incmps = np.concatenate([v.numpy()[0] for v in [v2, v3, v4, v5]]) scmps = np.concatenate([v.numpy()[0] for v in [s2, s3, s4, s5]]) if dtype in np_float_types: for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]): tape.backward(loss=l) sgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [s2, s3, s4, s5]]) expected_grads = np.zeros_like(sgrads) expected_grads[i] = incmps[i] * 2 assert_np_equal(sgrads, expected_grads, tol=10 * tol) allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]]) expected_grads = np.zeros_like(allgrads) expected_grads[i] = scmps[i] * 2 assert_np_equal(allgrads, expected_grads, tol=10 * tol) tape.zero() def test_scalar_division(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_div( s: wp.array(dtype=wptype), v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v20: wp.array(dtype=wptype), v21: wp.array(dtype=wptype), v30: wp.array(dtype=wptype), v31: wp.array(dtype=wptype), v32: wp.array(dtype=wptype), v40: wp.array(dtype=wptype), v41: wp.array(dtype=wptype), v42: wp.array(dtype=wptype), v43: wp.array(dtype=wptype), v50: wp.array(dtype=wptype), v51: wp.array(dtype=wptype), v52: wp.array(dtype=wptype), v53: wp.array(dtype=wptype), v54: wp.array(dtype=wptype), ): v2result = v2[0] / s[0] v3result = v3[0] / s[0] v4result = v4[0] / s[0] v5result = v5[0] / s[0] v20[0] = wptype(2) * v2result[0] v21[0] = wptype(2) * v2result[1] v30[0] = wptype(2) * v3result[0] v31[0] = wptype(2) * v3result[1] v32[0] = wptype(2) * v3result[2] v40[0] = wptype(2) * v4result[0] v41[0] = wptype(2) * v4result[1] v42[0] = wptype(2) * v4result[2] v43[0] = wptype(2) * v4result[3] v50[0] = wptype(2) * v5result[0] v51[0] = wptype(2) * v5result[1] v52[0] = wptype(2) * v5result[2] v53[0] = wptype(2) * v5result[3] v54[0] = wptype(2) * v5result[4] kernel = getkernel(check_div, suffix=dtype.__name__) if register_kernels: return s = wp.array(randvals([1], dtype), requires_grad=True, device=device) v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s, v2, v3, v4, v5, ], outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54], device=device, ) if dtype in np_int_types: assert_np_equal(v20.numpy()[0], 2 * (v2.numpy()[0, 0] // (s.numpy()[0])), tol=tol) assert_np_equal(v21.numpy()[0], 2 * (v2.numpy()[0, 1] // (s.numpy()[0])), tol=tol) assert_np_equal(v30.numpy()[0], 2 * (v3.numpy()[0, 0] // (s.numpy()[0])), tol=10 * tol) assert_np_equal(v31.numpy()[0], 2 * (v3.numpy()[0, 1] // (s.numpy()[0])), tol=10 * tol) assert_np_equal(v32.numpy()[0], 2 * (v3.numpy()[0, 2] // (s.numpy()[0])), tol=10 * tol) assert_np_equal(v40.numpy()[0], 2 * (v4.numpy()[0, 0] // (s.numpy()[0])), tol=10 * tol) assert_np_equal(v41.numpy()[0], 2 * (v4.numpy()[0, 1] // (s.numpy()[0])), tol=10 * tol) assert_np_equal(v42.numpy()[0], 2 * (v4.numpy()[0, 2] // (s.numpy()[0])), tol=10 * tol) assert_np_equal(v43.numpy()[0], 2 * (v4.numpy()[0, 3] // (s.numpy()[0])), tol=10 * tol) assert_np_equal(v50.numpy()[0], 2 * (v5.numpy()[0, 0] // (s.numpy()[0])), tol=10 * tol) assert_np_equal(v51.numpy()[0], 2 * (v5.numpy()[0, 1] // (s.numpy()[0])), tol=10 * tol) assert_np_equal(v52.numpy()[0], 2 * (v5.numpy()[0, 2] // (s.numpy()[0])), tol=10 * tol) assert_np_equal(v53.numpy()[0], 2 * (v5.numpy()[0, 3] // (s.numpy()[0])), tol=10 * tol) assert_np_equal(v54.numpy()[0], 2 * (v5.numpy()[0, 4] // (s.numpy()[0])), tol=10 * tol) else: assert_np_equal(v20.numpy()[0], 2 * v2.numpy()[0, 0] / (s.numpy()[0]), tol=tol) assert_np_equal(v21.numpy()[0], 2 * v2.numpy()[0, 1] / (s.numpy()[0]), tol=tol) assert_np_equal(v30.numpy()[0], 2 * v3.numpy()[0, 0] / (s.numpy()[0]), tol=10 * tol) assert_np_equal(v31.numpy()[0], 2 * v3.numpy()[0, 1] / (s.numpy()[0]), tol=10 * tol) assert_np_equal(v32.numpy()[0], 2 * v3.numpy()[0, 2] / (s.numpy()[0]), tol=10 * tol) assert_np_equal(v40.numpy()[0], 2 * v4.numpy()[0, 0] / (s.numpy()[0]), tol=10 * tol) assert_np_equal(v41.numpy()[0], 2 * v4.numpy()[0, 1] / (s.numpy()[0]), tol=10 * tol) assert_np_equal(v42.numpy()[0], 2 * v4.numpy()[0, 2] / (s.numpy()[0]), tol=10 * tol) assert_np_equal(v43.numpy()[0], 2 * v4.numpy()[0, 3] / (s.numpy()[0]), tol=10 * tol) assert_np_equal(v50.numpy()[0], 2 * v5.numpy()[0, 0] / (s.numpy()[0]), tol=10 * tol) assert_np_equal(v51.numpy()[0], 2 * v5.numpy()[0, 1] / (s.numpy()[0]), tol=10 * tol) assert_np_equal(v52.numpy()[0], 2 * v5.numpy()[0, 2] / (s.numpy()[0]), tol=10 * tol) assert_np_equal(v53.numpy()[0], 2 * v5.numpy()[0, 3] / (s.numpy()[0]), tol=10 * tol) assert_np_equal(v54.numpy()[0], 2 * v5.numpy()[0, 4] / (s.numpy()[0]), tol=10 * tol) incmps = np.concatenate([v.numpy()[0] for v in [v2, v3, v4, v5]]) if dtype in np_float_types: for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]): tape.backward(loss=l) sgrad = tape.gradients[s].numpy()[0] # d/ds v/s = -v/s^2 assert_np_equal(sgrad, -2 * incmps[i] / (s.numpy()[0] * s.numpy()[0]), tol=10 * tol) allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]]) expected_grads = np.zeros_like(allgrads) expected_grads[i] = 2 / s.numpy()[0] # d/dv v/s = 1/s assert_np_equal(allgrads, expected_grads, tol=tol) tape.zero() def test_cw_division(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_cw_div( s2: wp.array(dtype=vec2), s3: wp.array(dtype=vec3), s4: wp.array(dtype=vec4), s5: wp.array(dtype=vec5), v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v20: wp.array(dtype=wptype), v21: wp.array(dtype=wptype), v30: wp.array(dtype=wptype), v31: wp.array(dtype=wptype), v32: wp.array(dtype=wptype), v40: wp.array(dtype=wptype), v41: wp.array(dtype=wptype), v42: wp.array(dtype=wptype), v43: wp.array(dtype=wptype), v50: wp.array(dtype=wptype), v51: wp.array(dtype=wptype), v52: wp.array(dtype=wptype), v53: wp.array(dtype=wptype), v54: wp.array(dtype=wptype), ): v2result = wp.cw_div(v2[0], s2[0]) v3result = wp.cw_div(v3[0], s3[0]) v4result = wp.cw_div(v4[0], s4[0]) v5result = wp.cw_div(v5[0], s5[0]) v20[0] = wptype(2) * v2result[0] v21[0] = wptype(2) * v2result[1] v30[0] = wptype(2) * v3result[0] v31[0] = wptype(2) * v3result[1] v32[0] = wptype(2) * v3result[2] v40[0] = wptype(2) * v4result[0] v41[0] = wptype(2) * v4result[1] v42[0] = wptype(2) * v4result[2] v43[0] = wptype(2) * v4result[3] v50[0] = wptype(2) * v5result[0] v51[0] = wptype(2) * v5result[1] v52[0] = wptype(2) * v5result[2] v53[0] = wptype(2) * v5result[3] v54[0] = wptype(2) * v5result[4] kernel = getkernel(check_cw_div, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) s3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) s4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) s5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54], device=device, ) if dtype in np_int_types: assert_np_equal(v20.numpy()[0], 2 * (v2.numpy()[0, 0] // s2.numpy()[0, 0]), tol=tol) assert_np_equal(v21.numpy()[0], 2 * (v2.numpy()[0, 1] // s2.numpy()[0, 1]), tol=tol) assert_np_equal(v30.numpy()[0], 2 * (v3.numpy()[0, 0] // s3.numpy()[0, 0]), tol=tol) assert_np_equal(v31.numpy()[0], 2 * (v3.numpy()[0, 1] // s3.numpy()[0, 1]), tol=tol) assert_np_equal(v32.numpy()[0], 2 * (v3.numpy()[0, 2] // s3.numpy()[0, 2]), tol=tol) assert_np_equal(v40.numpy()[0], 2 * (v4.numpy()[0, 0] // s4.numpy()[0, 0]), tol=tol) assert_np_equal(v41.numpy()[0], 2 * (v4.numpy()[0, 1] // s4.numpy()[0, 1]), tol=tol) assert_np_equal(v42.numpy()[0], 2 * (v4.numpy()[0, 2] // s4.numpy()[0, 2]), tol=tol) assert_np_equal(v43.numpy()[0], 2 * (v4.numpy()[0, 3] // s4.numpy()[0, 3]), tol=tol) assert_np_equal(v50.numpy()[0], 2 * (v5.numpy()[0, 0] // s5.numpy()[0, 0]), tol=tol) assert_np_equal(v51.numpy()[0], 2 * (v5.numpy()[0, 1] // s5.numpy()[0, 1]), tol=tol) assert_np_equal(v52.numpy()[0], 2 * (v5.numpy()[0, 2] // s5.numpy()[0, 2]), tol=tol) assert_np_equal(v53.numpy()[0], 2 * (v5.numpy()[0, 3] // s5.numpy()[0, 3]), tol=tol) assert_np_equal(v54.numpy()[0], 2 * (v5.numpy()[0, 4] // s5.numpy()[0, 4]), tol=tol) else: assert_np_equal(v20.numpy()[0], 2 * v2.numpy()[0, 0] / s2.numpy()[0, 0], tol=tol) assert_np_equal(v21.numpy()[0], 2 * v2.numpy()[0, 1] / s2.numpy()[0, 1], tol=tol) assert_np_equal(v30.numpy()[0], 2 * v3.numpy()[0, 0] / s3.numpy()[0, 0], tol=tol) assert_np_equal(v31.numpy()[0], 2 * v3.numpy()[0, 1] / s3.numpy()[0, 1], tol=tol) assert_np_equal(v32.numpy()[0], 2 * v3.numpy()[0, 2] / s3.numpy()[0, 2], tol=tol) assert_np_equal(v40.numpy()[0], 2 * v4.numpy()[0, 0] / s4.numpy()[0, 0], tol=tol) assert_np_equal(v41.numpy()[0], 2 * v4.numpy()[0, 1] / s4.numpy()[0, 1], tol=tol) assert_np_equal(v42.numpy()[0], 2 * v4.numpy()[0, 2] / s4.numpy()[0, 2], tol=tol) assert_np_equal(v43.numpy()[0], 2 * v4.numpy()[0, 3] / s4.numpy()[0, 3], tol=tol) assert_np_equal(v50.numpy()[0], 2 * v5.numpy()[0, 0] / s5.numpy()[0, 0], tol=tol) assert_np_equal(v51.numpy()[0], 2 * v5.numpy()[0, 1] / s5.numpy()[0, 1], tol=tol) assert_np_equal(v52.numpy()[0], 2 * v5.numpy()[0, 2] / s5.numpy()[0, 2], tol=tol) assert_np_equal(v53.numpy()[0], 2 * v5.numpy()[0, 3] / s5.numpy()[0, 3], tol=tol) assert_np_equal(v54.numpy()[0], 2 * v5.numpy()[0, 4] / s5.numpy()[0, 4], tol=tol) if dtype in np_float_types: incmps = np.concatenate([v.numpy()[0] for v in [v2, v3, v4, v5]]) scmps = np.concatenate([v.numpy()[0] for v in [s2, s3, s4, s5]]) for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]): tape.backward(loss=l) sgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [s2, s3, s4, s5]]) expected_grads = np.zeros_like(sgrads) # d/ds v/s = -v/s^2 expected_grads[i] = -incmps[i] * 2 / (scmps[i] * scmps[i]) assert_np_equal(sgrads, expected_grads, tol=20 * tol) allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]]) expected_grads = np.zeros_like(allgrads) # d/dv v/s = 1/s expected_grads[i] = 2 / scmps[i] assert_np_equal(allgrads, expected_grads, tol=tol) tape.zero() def test_addition(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_add( s2: wp.array(dtype=vec2), s3: wp.array(dtype=vec3), s4: wp.array(dtype=vec4), s5: wp.array(dtype=vec5), v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v20: wp.array(dtype=wptype), v21: wp.array(dtype=wptype), v30: wp.array(dtype=wptype), v31: wp.array(dtype=wptype), v32: wp.array(dtype=wptype), v40: wp.array(dtype=wptype), v41: wp.array(dtype=wptype), v42: wp.array(dtype=wptype), v43: wp.array(dtype=wptype), v50: wp.array(dtype=wptype), v51: wp.array(dtype=wptype), v52: wp.array(dtype=wptype), v53: wp.array(dtype=wptype), v54: wp.array(dtype=wptype), ): v2result = v2[0] + s2[0] v3result = v3[0] + s3[0] v4result = v4[0] + s4[0] v5result = v5[0] + s5[0] v20[0] = wptype(2) * v2result[0] v21[0] = wptype(2) * v2result[1] v30[0] = wptype(2) * v3result[0] v31[0] = wptype(2) * v3result[1] v32[0] = wptype(2) * v3result[2] v40[0] = wptype(2) * v4result[0] v41[0] = wptype(2) * v4result[1] v42[0] = wptype(2) * v4result[2] v43[0] = wptype(2) * v4result[3] v50[0] = wptype(2) * v5result[0] v51[0] = wptype(2) * v5result[1] v52[0] = wptype(2) * v5result[2] v53[0] = wptype(2) * v5result[3] v54[0] = wptype(2) * v5result[4] kernel = getkernel(check_add, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) s3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) s4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) s5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54], device=device, ) assert_np_equal(v20.numpy()[0], 2 * (v2.numpy()[0, 0] + s2.numpy()[0, 0]), tol=tol) assert_np_equal(v21.numpy()[0], 2 * (v2.numpy()[0, 1] + s2.numpy()[0, 1]), tol=tol) assert_np_equal(v30.numpy()[0], 2 * (v3.numpy()[0, 0] + s3.numpy()[0, 0]), tol=tol) assert_np_equal(v31.numpy()[0], 2 * (v3.numpy()[0, 1] + s3.numpy()[0, 1]), tol=tol) assert_np_equal(v32.numpy()[0], 2 * (v3.numpy()[0, 2] + s3.numpy()[0, 2]), tol=tol) assert_np_equal(v40.numpy()[0], 2 * (v4.numpy()[0, 0] + s4.numpy()[0, 0]), tol=tol) assert_np_equal(v41.numpy()[0], 2 * (v4.numpy()[0, 1] + s4.numpy()[0, 1]), tol=tol) assert_np_equal(v42.numpy()[0], 2 * (v4.numpy()[0, 2] + s4.numpy()[0, 2]), tol=tol) assert_np_equal(v43.numpy()[0], 2 * (v4.numpy()[0, 3] + s4.numpy()[0, 3]), tol=tol) assert_np_equal(v50.numpy()[0], 2 * (v5.numpy()[0, 0] + s5.numpy()[0, 0]), tol=tol) assert_np_equal(v51.numpy()[0], 2 * (v5.numpy()[0, 1] + s5.numpy()[0, 1]), tol=tol) assert_np_equal(v52.numpy()[0], 2 * (v5.numpy()[0, 2] + s5.numpy()[0, 2]), tol=tol) assert_np_equal(v53.numpy()[0], 2 * (v5.numpy()[0, 3] + s5.numpy()[0, 3]), tol=tol) assert_np_equal(v54.numpy()[0], 2 * (v5.numpy()[0, 4] + s5.numpy()[0, 4]), tol=2 * tol) if dtype in np_float_types: for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]): tape.backward(loss=l) sgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [s2, s3, s4, s5]]) expected_grads = np.zeros_like(sgrads) expected_grads[i] = 2 assert_np_equal(sgrads, expected_grads, tol=10 * tol) allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]]) assert_np_equal(allgrads, expected_grads, tol=tol) tape.zero() def test_subtraction_unsigned(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_subtraction_unsigned(): wp.expect_eq(vec2(wptype(3), wptype(4)) - vec2(wptype(1), wptype(2)), vec2(wptype(2), wptype(2))) wp.expect_eq( vec3( wptype(3), wptype(4), wptype(4), ) - vec3(wptype(1), wptype(2), wptype(3)), vec3(wptype(2), wptype(2), wptype(1)), ) wp.expect_eq( vec4( wptype(3), wptype(4), wptype(4), wptype(5), ) - vec4(wptype(1), wptype(2), wptype(3), wptype(4)), vec4(wptype(2), wptype(2), wptype(1), wptype(1)), ) wp.expect_eq( vec5( wptype(3), wptype(4), wptype(4), wptype(5), wptype(4), ) - vec5(wptype(1), wptype(2), wptype(3), wptype(4), wptype(4)), vec5(wptype(2), wptype(2), wptype(1), wptype(1), wptype(0)), ) kernel = getkernel(check_subtraction_unsigned, suffix=dtype.__name__) if register_kernels: return wp.launch(kernel, dim=1, inputs=[], outputs=[], device=device) def test_subtraction(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_subtraction( s2: wp.array(dtype=vec2), s3: wp.array(dtype=vec3), s4: wp.array(dtype=vec4), s5: wp.array(dtype=vec5), v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v20: wp.array(dtype=wptype), v21: wp.array(dtype=wptype), v30: wp.array(dtype=wptype), v31: wp.array(dtype=wptype), v32: wp.array(dtype=wptype), v40: wp.array(dtype=wptype), v41: wp.array(dtype=wptype), v42: wp.array(dtype=wptype), v43: wp.array(dtype=wptype), v50: wp.array(dtype=wptype), v51: wp.array(dtype=wptype), v52: wp.array(dtype=wptype), v53: wp.array(dtype=wptype), v54: wp.array(dtype=wptype), ): v2result = v2[0] - s2[0] v3result = v3[0] - s3[0] v4result = v4[0] - s4[0] v5result = v5[0] - s5[0] # multiply outputs by 2 so there's something to backpropagate: v20[0] = wptype(2) * v2result[0] v21[0] = wptype(2) * v2result[1] v30[0] = wptype(2) * v3result[0] v31[0] = wptype(2) * v3result[1] v32[0] = wptype(2) * v3result[2] v40[0] = wptype(2) * v4result[0] v41[0] = wptype(2) * v4result[1] v42[0] = wptype(2) * v4result[2] v43[0] = wptype(2) * v4result[3] v50[0] = wptype(2) * v5result[0] v51[0] = wptype(2) * v5result[1] v52[0] = wptype(2) * v5result[2] v53[0] = wptype(2) * v5result[3] v54[0] = wptype(2) * v5result[4] kernel = getkernel(check_subtraction, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) s3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) s4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) s5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54], device=device, ) assert_np_equal(v20.numpy()[0], 2 * (v2.numpy()[0, 0] - s2.numpy()[0, 0]), tol=tol) assert_np_equal(v21.numpy()[0], 2 * (v2.numpy()[0, 1] - s2.numpy()[0, 1]), tol=tol) assert_np_equal(v30.numpy()[0], 2 * (v3.numpy()[0, 0] - s3.numpy()[0, 0]), tol=tol) assert_np_equal(v31.numpy()[0], 2 * (v3.numpy()[0, 1] - s3.numpy()[0, 1]), tol=tol) assert_np_equal(v32.numpy()[0], 2 * (v3.numpy()[0, 2] - s3.numpy()[0, 2]), tol=tol) assert_np_equal(v40.numpy()[0], 2 * (v4.numpy()[0, 0] - s4.numpy()[0, 0]), tol=2 * tol) assert_np_equal(v41.numpy()[0], 2 * (v4.numpy()[0, 1] - s4.numpy()[0, 1]), tol=2 * tol) assert_np_equal(v42.numpy()[0], 2 * (v4.numpy()[0, 2] - s4.numpy()[0, 2]), tol=2 * tol) assert_np_equal(v43.numpy()[0], 2 * (v4.numpy()[0, 3] - s4.numpy()[0, 3]), tol=2 * tol) assert_np_equal(v50.numpy()[0], 2 * (v5.numpy()[0, 0] - s5.numpy()[0, 0]), tol=tol) assert_np_equal(v51.numpy()[0], 2 * (v5.numpy()[0, 1] - s5.numpy()[0, 1]), tol=tol) assert_np_equal(v52.numpy()[0], 2 * (v5.numpy()[0, 2] - s5.numpy()[0, 2]), tol=tol) assert_np_equal(v53.numpy()[0], 2 * (v5.numpy()[0, 3] - s5.numpy()[0, 3]), tol=tol) assert_np_equal(v54.numpy()[0], 2 * (v5.numpy()[0, 4] - s5.numpy()[0, 4]), tol=tol) if dtype in np_float_types: for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]): tape.backward(loss=l) sgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [s2, s3, s4, s5]]) expected_grads = np.zeros_like(sgrads) expected_grads[i] = -2 assert_np_equal(sgrads, expected_grads, tol=10 * tol) allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]]) expected_grads = np.zeros_like(allgrads) # d/dv v/s = 1/s expected_grads[i] = 2 assert_np_equal(allgrads, expected_grads, tol=tol) tape.zero() def test_dotproduct(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_dot( s2: wp.array(dtype=vec2), s3: wp.array(dtype=vec3), s4: wp.array(dtype=vec4), s5: wp.array(dtype=vec5), v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), dot2: wp.array(dtype=wptype), dot3: wp.array(dtype=wptype), dot4: wp.array(dtype=wptype), dot5: wp.array(dtype=wptype), ): dot2[0] = wptype(2) * wp.dot(v2[0], s2[0]) dot3[0] = wptype(2) * wp.dot(v3[0], s3[0]) dot4[0] = wptype(2) * wp.dot(v4[0], s4[0]) dot5[0] = wptype(2) * wp.dot(v5[0], s5[0]) kernel = getkernel(check_dot, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) s3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) s4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) s5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) dot2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) dot3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) dot4 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) dot5 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[dot2, dot3, dot4, dot5], device=device, ) assert_np_equal(dot2.numpy()[0], 2.0 * (v2.numpy() * s2.numpy()).sum(), tol=10 * tol) assert_np_equal(dot3.numpy()[0], 2.0 * (v3.numpy() * s3.numpy()).sum(), tol=10 * tol) assert_np_equal(dot4.numpy()[0], 2.0 * (v4.numpy() * s4.numpy()).sum(), tol=10 * tol) assert_np_equal(dot5.numpy()[0], 2.0 * (v5.numpy() * s5.numpy()).sum(), tol=10 * tol) if dtype in np_float_types: tape.backward(loss=dot2) sgrads = tape.gradients[s2].numpy()[0] expected_grads = 2.0 * v2.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v2].numpy()[0] expected_grads = 2.0 * s2.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=tol) tape.zero() tape.backward(loss=dot3) sgrads = tape.gradients[s3].numpy()[0] expected_grads = 2.0 * v3.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v3].numpy()[0] expected_grads = 2.0 * s3.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=tol) tape.zero() tape.backward(loss=dot4) sgrads = tape.gradients[s4].numpy()[0] expected_grads = 2.0 * v4.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v4].numpy()[0] expected_grads = 2.0 * s4.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=tol) tape.zero() tape.backward(loss=dot5) sgrads = tape.gradients[s5].numpy()[0] expected_grads = 2.0 * v5.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v5].numpy()[0] expected_grads = 2.0 * s5.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=10 * tol) tape.zero() def test_length(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-7, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_length( v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), l2: wp.array(dtype=wptype), l3: wp.array(dtype=wptype), l4: wp.array(dtype=wptype), l5: wp.array(dtype=wptype), l22: wp.array(dtype=wptype), l23: wp.array(dtype=wptype), l24: wp.array(dtype=wptype), l25: wp.array(dtype=wptype), ): l2[0] = wptype(2) * wp.length(v2[0]) l3[0] = wptype(2) * wp.length(v3[0]) l4[0] = wptype(2) * wp.length(v4[0]) l5[0] = wptype(2) * wp.length(v5[0]) l22[0] = wptype(2) * wp.length_sq(v2[0]) l23[0] = wptype(2) * wp.length_sq(v3[0]) l24[0] = wptype(2) * wp.length_sq(v4[0]) l25[0] = wptype(2) * wp.length_sq(v5[0]) kernel = getkernel(check_length, suffix=dtype.__name__) if register_kernels: return v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) l2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) l3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) l4 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) l5 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) l22 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) l23 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) l24 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) l25 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ v2, v3, v4, v5, ], outputs=[l2, l3, l4, l5, l22, l23, l24, l25], device=device, ) assert_np_equal(l2.numpy()[0], 2 * np.linalg.norm(v2.numpy()), tol=10 * tol) assert_np_equal(l3.numpy()[0], 2 * np.linalg.norm(v3.numpy()), tol=10 * tol) assert_np_equal(l4.numpy()[0], 2 * np.linalg.norm(v4.numpy()), tol=10 * tol) assert_np_equal(l5.numpy()[0], 2 * np.linalg.norm(v5.numpy()), tol=10 * tol) assert_np_equal(l22.numpy()[0], 2 * np.linalg.norm(v2.numpy()) ** 2, tol=10 * tol) assert_np_equal(l23.numpy()[0], 2 * np.linalg.norm(v3.numpy()) ** 2, tol=10 * tol) assert_np_equal(l24.numpy()[0], 2 * np.linalg.norm(v4.numpy()) ** 2, tol=10 * tol) assert_np_equal(l25.numpy()[0], 2 * np.linalg.norm(v5.numpy()) ** 2, tol=10 * tol) tape.backward(loss=l2) grad = tape.gradients[v2].numpy()[0] expected_grad = 2 * v2.numpy()[0] / np.linalg.norm(v2.numpy()) assert_np_equal(grad, expected_grad, tol=10 * tol) tape.zero() tape.backward(loss=l3) grad = tape.gradients[v3].numpy()[0] expected_grad = 2 * v3.numpy()[0] / np.linalg.norm(v3.numpy()) assert_np_equal(grad, expected_grad, tol=10 * tol) tape.zero() tape.backward(loss=l4) grad = tape.gradients[v4].numpy()[0] expected_grad = 2 * v4.numpy()[0] / np.linalg.norm(v4.numpy()) assert_np_equal(grad, expected_grad, tol=10 * tol) tape.zero() tape.backward(loss=l5) grad = tape.gradients[v5].numpy()[0] expected_grad = 2 * v5.numpy()[0] / np.linalg.norm(v5.numpy()) assert_np_equal(grad, expected_grad, tol=10 * tol) tape.zero() tape.backward(loss=l22) grad = tape.gradients[v2].numpy()[0] expected_grad = 4 * v2.numpy()[0] assert_np_equal(grad, expected_grad, tol=10 * tol) tape.zero() tape.backward(loss=l23) grad = tape.gradients[v3].numpy()[0] expected_grad = 4 * v3.numpy()[0] assert_np_equal(grad, expected_grad, tol=10 * tol) tape.zero() tape.backward(loss=l24) grad = tape.gradients[v4].numpy()[0] expected_grad = 4 * v4.numpy()[0] assert_np_equal(grad, expected_grad, tol=10 * tol) tape.zero() tape.backward(loss=l25) grad = tape.gradients[v5].numpy()[0] expected_grad = 4 * v5.numpy()[0] assert_np_equal(grad, expected_grad, tol=10 * tol) tape.zero() def test_normalize(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) def check_normalize( v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), n20: wp.array(dtype=wptype), n21: wp.array(dtype=wptype), n30: wp.array(dtype=wptype), n31: wp.array(dtype=wptype), n32: wp.array(dtype=wptype), n40: wp.array(dtype=wptype), n41: wp.array(dtype=wptype), n42: wp.array(dtype=wptype), n43: wp.array(dtype=wptype), n50: wp.array(dtype=wptype), n51: wp.array(dtype=wptype), n52: wp.array(dtype=wptype), n53: wp.array(dtype=wptype), n54: wp.array(dtype=wptype), ): n2 = wptype(2) * wp.normalize(v2[0]) n3 = wptype(2) * wp.normalize(v3[0]) n4 = wptype(2) * wp.normalize(v4[0]) n5 = wptype(2) * wp.normalize(v5[0]) n20[0] = n2[0] n21[0] = n2[1] n30[0] = n3[0] n31[0] = n3[1] n32[0] = n3[2] n40[0] = n4[0] n41[0] = n4[1] n42[0] = n4[2] n43[0] = n4[3] n50[0] = n5[0] n51[0] = n5[1] n52[0] = n5[2] n53[0] = n5[3] n54[0] = n5[4] def check_normalize_alt( v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), n20: wp.array(dtype=wptype), n21: wp.array(dtype=wptype), n30: wp.array(dtype=wptype), n31: wp.array(dtype=wptype), n32: wp.array(dtype=wptype), n40: wp.array(dtype=wptype), n41: wp.array(dtype=wptype), n42: wp.array(dtype=wptype), n43: wp.array(dtype=wptype), n50: wp.array(dtype=wptype), n51: wp.array(dtype=wptype), n52: wp.array(dtype=wptype), n53: wp.array(dtype=wptype), n54: wp.array(dtype=wptype), ): n2 = wptype(2) * v2[0] / wp.length(v2[0]) n3 = wptype(2) * v3[0] / wp.length(v3[0]) n4 = wptype(2) * v4[0] / wp.length(v4[0]) n5 = wptype(2) * v5[0] / wp.length(v5[0]) n20[0] = n2[0] n21[0] = n2[1] n30[0] = n3[0] n31[0] = n3[1] n32[0] = n3[2] n40[0] = n4[0] n41[0] = n4[1] n42[0] = n4[2] n43[0] = n4[3] n50[0] = n5[0] n51[0] = n5[1] n52[0] = n5[2] n53[0] = n5[3] n54[0] = n5[4] normalize_kernel = getkernel(check_normalize, suffix=dtype.__name__) normalize_alt_kernel = getkernel(check_normalize_alt, suffix=dtype.__name__) if register_kernels: return # I've already tested the things I'm using in check_normalize_alt, so I'll just # make sure the two are giving the same results/gradients v2 = wp.array(randvals((1, 2), dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals((1, 4), dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals((1, 5), dtype), dtype=vec5, requires_grad=True, device=device) n20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n20_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n21_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n30_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n31_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n32_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n40_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n41_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n42_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n43_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n50_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n51_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n52_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n53_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n54_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) outputs0 = [ n20, n21, n30, n31, n32, n40, n41, n42, n43, n50, n51, n52, n53, n54, ] tape0 = wp.Tape() with tape0: wp.launch( normalize_kernel, dim=1, inputs=[ v2, v3, v4, v5, ], outputs=outputs0, device=device, ) outputs1 = [ n20_alt, n21_alt, n30_alt, n31_alt, n32_alt, n40_alt, n41_alt, n42_alt, n43_alt, n50_alt, n51_alt, n52_alt, n53_alt, n54_alt, ] tape1 = wp.Tape() with tape1: wp.launch( normalize_alt_kernel, dim=1, inputs=[ v2, v3, v4, v5, ], outputs=outputs1, device=device, ) for ncmp, ncmpalt in zip(outputs0, outputs1): assert_np_equal(ncmp.numpy()[0], ncmpalt.numpy()[0], tol=10 * tol) invecs = [ v2, v2, v3, v3, v3, v4, v4, v4, v4, v5, v5, v5, v5, v5, ] for ncmp, ncmpalt, v in zip(outputs0, outputs1, invecs): tape0.backward(loss=ncmp) tape1.backward(loss=ncmpalt) assert_np_equal(tape0.gradients[v].numpy()[0], tape1.gradients[v].numpy()[0], tol=10 * tol) tape0.zero() tape1.zero() def test_crossproduct(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec3 = wp.types.vector(length=3, dtype=wptype) def check_cross( s3: wp.array(dtype=vec3), v3: wp.array(dtype=vec3), c0: wp.array(dtype=wptype), c1: wp.array(dtype=wptype), c2: wp.array(dtype=wptype), ): c = wp.cross(s3[0], v3[0]) # multiply outputs by 2 so we've got something to backpropagate: c0[0] = wptype(2) * c[0] c1[0] = wptype(2) * c[1] c2[0] = wptype(2) * c[2] kernel = getkernel(check_cross, suffix=dtype.__name__) if register_kernels: return s3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) v3 = wp.array(randvals((1, 3), dtype), dtype=vec3, requires_grad=True, device=device) c0 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) c1 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) c2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s3, v3, ], outputs=[c0, c1, c2], device=device, ) result = 2 * np.cross(s3.numpy(), v3.numpy())[0] assert_np_equal(c0.numpy()[0], result[0], tol=10 * tol) assert_np_equal(c1.numpy()[0], result[1], tol=10 * tol) assert_np_equal(c2.numpy()[0], result[2], tol=10 * tol) if dtype in np_float_types: # c.x = sy vz - sz vy # c.y = sz vx - sx vz # c.z = sx vy - sy vx # ( d/dsx d/dsy d/dsz )c.x = ( 0 vz -vy ) # ( d/dsx d/dsy d/dsz )c.y = ( -vz 0 vx ) # ( d/dsx d/dsy d/dsz )c.z = ( vy -vx 0 ) # ( d/dvx d/dvy d/dvz )c.x = (0 -sz sy) # ( d/dvx d/dvy d/dvz )c.y = (sz 0 -sx) # ( d/dvx d/dvy d/dvz )c.z = (-sy sx 0) tape.backward(loss=c0) assert_np_equal( tape.gradients[s3].numpy(), 2.0 * np.array([0, v3.numpy()[0, 2], -v3.numpy()[0, 1]]), tol=10 * tol ) assert_np_equal( tape.gradients[v3].numpy(), 2.0 * np.array([0, -s3.numpy()[0, 2], s3.numpy()[0, 1]]), tol=10 * tol ) tape.zero() tape.backward(loss=c1) assert_np_equal( tape.gradients[s3].numpy(), 2.0 * np.array([-v3.numpy()[0, 2], 0, v3.numpy()[0, 0]]), tol=10 * tol ) assert_np_equal( tape.gradients[v3].numpy(), 2.0 * np.array([s3.numpy()[0, 2], 0, -s3.numpy()[0, 0]]), tol=10 * tol ) tape.zero() tape.backward(loss=c2) assert_np_equal( tape.gradients[s3].numpy(), 2.0 * np.array([v3.numpy()[0, 1], -v3.numpy()[0, 0], 0]), tol=10 * tol ) assert_np_equal( tape.gradients[v3].numpy(), 2.0 * np.array([-s3.numpy()[0, 1], s3.numpy()[0, 0], 0]), tol=10 * tol ) tape.zero() def test_minmax(test, device, dtype, register_kernels=False): np.random.seed(123) # \TODO: not quite sure why, but the numbers are off for 16 bit float # on the cpu (but not cuda). This is probably just the sketchy float16 # arithmetic I implemented to get all this stuff working, so # hopefully that can be fixed when we do that correctly. tol = { np.float16: 1.0e-2, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) # \TODO: Also not quite sure why: this kernel compiles incredibly # slowly though... def check_vec_min_max( a: wp.array(dtype=wptype, ndim=2), b: wp.array(dtype=wptype, ndim=2), mins: wp.array(dtype=wptype, ndim=2), maxs: wp.array(dtype=wptype, ndim=2), ): for i in range(10): # multiplying by 2 so we've got something to backpropagate: a2read = vec2(a[i, 0], a[i, 1]) b2read = vec2(b[i, 0], b[i, 1]) c2 = wptype(2) * wp.min(a2read, b2read) d2 = wptype(2) * wp.max(a2read, b2read) a3read = vec3(a[i, 2], a[i, 3], a[i, 4]) b3read = vec3(b[i, 2], b[i, 3], b[i, 4]) c3 = wptype(2) * wp.min(a3read, b3read) d3 = wptype(2) * wp.max(a3read, b3read) a4read = vec4(a[i, 5], a[i, 6], a[i, 7], a[i, 8]) b4read = vec4(b[i, 5], b[i, 6], b[i, 7], b[i, 8]) c4 = wptype(2) * wp.min(a4read, b4read) d4 = wptype(2) * wp.max(a4read, b4read) a5read = vec5(a[i, 9], a[i, 10], a[i, 11], a[i, 12], a[i, 13]) b5read = vec5(b[i, 9], b[i, 10], b[i, 11], b[i, 12], b[i, 13]) c5 = wptype(2) * wp.min(a5read, b5read) d5 = wptype(2) * wp.max(a5read, b5read) mins[i, 0] = c2[0] mins[i, 1] = c2[1] mins[i, 2] = c3[0] mins[i, 3] = c3[1] mins[i, 4] = c3[2] mins[i, 5] = c4[0] mins[i, 6] = c4[1] mins[i, 7] = c4[2] mins[i, 8] = c4[3] mins[i, 9] = c5[0] mins[i, 10] = c5[1] mins[i, 11] = c5[2] mins[i, 12] = c5[3] mins[i, 13] = c5[4] maxs[i, 0] = d2[0] maxs[i, 1] = d2[1] maxs[i, 2] = d3[0] maxs[i, 3] = d3[1] maxs[i, 4] = d3[2] maxs[i, 5] = d4[0] maxs[i, 6] = d4[1] maxs[i, 7] = d4[2] maxs[i, 8] = d4[3] maxs[i, 9] = d5[0] maxs[i, 10] = d5[1] maxs[i, 11] = d5[2] maxs[i, 12] = d5[3] maxs[i, 13] = d5[4] kernel = getkernel(check_vec_min_max, suffix=dtype.__name__) output_select_kernel = get_select_kernel2(wptype) if register_kernels: return a = wp.array(randvals((10, 14), dtype), dtype=wptype, requires_grad=True, device=device) b = wp.array(randvals((10, 14), dtype), dtype=wptype, requires_grad=True, device=device) mins = wp.zeros((10, 14), dtype=wptype, requires_grad=True, device=device) maxs = wp.zeros((10, 14), dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[a, b], outputs=[mins, maxs], device=device) assert_np_equal(mins.numpy(), 2 * np.minimum(a.numpy(), b.numpy()), tol=tol) assert_np_equal(maxs.numpy(), 2 * np.maximum(a.numpy(), b.numpy()), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) if dtype in np_float_types: for i in range(10): for j in range(14): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[a, b], outputs=[mins, maxs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[mins, i, j], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(a.numpy()) expected[i, j] = 2 if (a.numpy()[i, j] < b.numpy()[i, j]) else 0 assert_np_equal(tape.gradients[a].numpy(), expected, tol=tol) expected[i, j] = 2 if (b.numpy()[i, j] < a.numpy()[i, j]) else 0 assert_np_equal(tape.gradients[b].numpy(), expected, tol=tol) tape.zero() tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[a, b], outputs=[mins, maxs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[maxs, i, j], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(a.numpy()) expected[i, j] = 2 if (a.numpy()[i, j] > b.numpy()[i, j]) else 0 assert_np_equal(tape.gradients[a].numpy(), expected, tol=tol) expected[i, j] = 2 if (b.numpy()[i, j] > a.numpy()[i, j]) else 0 assert_np_equal(tape.gradients[b].numpy(), expected, tol=tol) tape.zero() def test_equivalent_types(test, device, dtype, register_kernels=False): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] # vector types vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) # vector types equivalent to the above vec2_equiv = wp.types.vector(length=2, dtype=wptype) vec3_equiv = wp.types.vector(length=3, dtype=wptype) vec4_equiv = wp.types.vector(length=4, dtype=wptype) vec5_equiv = wp.types.vector(length=5, dtype=wptype) # declare kernel with original types def check_equivalence( v2: vec2, v3: vec3, v4: vec4, v5: vec5, ): wp.expect_eq(v2, vec2(wptype(1), wptype(2))) wp.expect_eq(v3, vec3(wptype(1), wptype(2), wptype(3))) wp.expect_eq(v4, vec4(wptype(1), wptype(2), wptype(3), wptype(4))) wp.expect_eq(v5, vec5(wptype(1), wptype(2), wptype(3), wptype(4), wptype(5))) wp.expect_eq(v2, vec2_equiv(wptype(1), wptype(2))) wp.expect_eq(v3, vec3_equiv(wptype(1), wptype(2), wptype(3))) wp.expect_eq(v4, vec4_equiv(wptype(1), wptype(2), wptype(3), wptype(4))) wp.expect_eq(v5, vec5_equiv(wptype(1), wptype(2), wptype(3), wptype(4), wptype(5))) kernel = getkernel(check_equivalence, suffix=dtype.__name__) if register_kernels: return # call kernel with equivalent types v2 = vec2_equiv(1, 2) v3 = vec3_equiv(1, 2, 3) v4 = vec4_equiv(1, 2, 3, 4) v5 = vec5_equiv(1, 2, 3, 4, 5) wp.launch(kernel, dim=1, inputs=[v2, v3, v4, v5], device=device) def test_conversions(test, device, dtype, register_kernels=False): def check_vectors_equal( v0: wp.vec3, v1: wp.vec3, v2: wp.vec3, v3: wp.vec3, ): wp.expect_eq(v1, v0) wp.expect_eq(v2, v0) wp.expect_eq(v3, v0) kernel = getkernel(check_vectors_equal, suffix=dtype.__name__) if register_kernels: return v0 = wp.vec3(1, 2, 3) # test explicit conversions - constructing vectors from different containers v1 = wp.vec3((1, 2, 3)) v2 = wp.vec3([1, 2, 3]) v3 = wp.vec3(np.array([1, 2, 3], dtype=dtype)) wp.launch(kernel, dim=1, inputs=[v0, v1, v2, v3], device=device) # test implicit conversions - passing different containers as vectors to wp.launch() v1 = (1, 2, 3) v2 = [1, 2, 3] v3 = np.array([1, 2, 3], dtype=dtype) wp.launch(kernel, dim=1, inputs=[v0, v1, v2, v3], device=device) # Test matrix constructors using explicit type (float16) # note that these tests are specifically not using generics / closure # args to create kernels dynamically (like the rest of this file) # as those use different code paths to resolve arg types which # has lead to regressions. @wp.kernel def test_constructors_explicit_precision(): # construction for custom matrix types ones = wp.vector(wp.float16(1.0), length=2) zeros = wp.vector(length=2, dtype=wp.float16) custom = wp.vector(wp.float16(0.0), wp.float16(1.0)) for i in range(2): wp.expect_eq(ones[i], wp.float16(1.0)) wp.expect_eq(zeros[i], wp.float16(0.0)) wp.expect_eq(custom[i], wp.float16(i)) # Same as above but with a default (float/int) type # which tests some different code paths that # need to ensure types are correctly canonicalized # during codegen @wp.kernel def test_constructors_default_precision(): # construction for custom matrix types ones = wp.vector(1.0, length=2) zeros = wp.vector(length=2, dtype=float) custom = wp.vector(0.0, 1.0) for i in range(2): wp.expect_eq(ones[i], 1.0) wp.expect_eq(zeros[i], 0.0) wp.expect_eq(custom[i], float(i)) @wp.kernel def test_vector_mutation(expected: wp.types.vector(length=10, dtype=float)): v = wp.vector(length=10, dtype=float) # test element indexing v[0] = 1.0 for i in range(1, 10): v[i] = float(i) + 1.0 wp.expect_eq(v, expected) CONSTANT_LENGTH = wp.constant(10) # tests that we can use global constants in length keyword argument # for vector constructor @wp.kernel def test_constructors_constant_length(): v = wp.vector(length=(CONSTANT_LENGTH), dtype=float) for i in range(CONSTANT_LENGTH): v[i] = float(i) def register(parent): devices = get_test_devices() class TestVec(parent): pass add_kernel_test(TestVec, test_constructors_explicit_precision, dim=1, devices=devices) add_kernel_test(TestVec, test_constructors_default_precision, dim=1, devices=devices) add_kernel_test(TestVec, test_constructors_constant_length, dim=1, devices=devices) vec10 = wp.types.vector(length=10, dtype=float) add_kernel_test( TestVec, test_vector_mutation, dim=1, inputs=[vec10(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0)], devices=devices, ) for dtype in np_unsigned_int_types: add_function_test_register_kernel( TestVec, f"test_subtraction_unsigned_{dtype.__name__}", test_subtraction_unsigned, devices=devices, dtype=dtype, ) for dtype in np_signed_int_types + np_float_types: add_function_test_register_kernel( TestVec, f"test_negation_{dtype.__name__}", test_negation, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_subtraction_{dtype.__name__}", test_subtraction, devices=devices, dtype=dtype ) for dtype in np_float_types: add_function_test_register_kernel( TestVec, f"test_crossproduct_{dtype.__name__}", test_crossproduct, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_length_{dtype.__name__}", test_length, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_normalize_{dtype.__name__}", test_normalize, devices=devices, dtype=dtype ) for dtype in np_scalar_types: add_function_test(TestVec, f"test_arrays_{dtype.__name__}", test_arrays, devices=devices, dtype=dtype) add_function_test(TestVec, f"test_components_{dtype.__name__}", test_components, devices=None, dtype=dtype) add_function_test_register_kernel( TestVec, f"test_constructors_{dtype.__name__}", test_constructors, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_anon_type_instance_{dtype.__name__}", test_anon_type_instance, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_indexing_{dtype.__name__}", test_indexing, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_equality_{dtype.__name__}", test_equality, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_scalar_multiplication_{dtype.__name__}", test_scalar_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestVec, f"test_scalar_multiplication_rightmul_{dtype.__name__}", test_scalar_multiplication_rightmul, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestVec, f"test_cw_multiplication_{dtype.__name__}", test_cw_multiplication, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_scalar_division_{dtype.__name__}", test_scalar_division, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_cw_division_{dtype.__name__}", test_cw_division, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_addition_{dtype.__name__}", test_addition, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_dotproduct_{dtype.__name__}", test_dotproduct, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_equivalent_types_{dtype.__name__}", test_equivalent_types, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_conversions_{dtype.__name__}", test_conversions, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestVec, f"test_constants_{dtype.__name__}", test_constants, devices=devices, dtype=dtype ) # the kernels in this test compile incredibly slowly... # add_function_test_register_kernel(TestVec, f"test_minmax_{dtype.__name__}", test_minmax, devices=devices, dtype=dtype) return TestVec if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2, failfast=True)
warp-main
warp/tests/test_vec.py