python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
import torch import torch.distributed as dist from torch.nn.modules import Module from torch.autograd import Variable def _flatten_dense_tensors(tensors): """Flatten dense tensors into a contiguous 1D buffer. Assume tensors are of same dense type. Since inputs are dense, the resulting tensor will be a concatenated 1D buffer. Element-wise operation on this buffer will be equivalent to operating individually. Arguments: tensors (Iterable[Tensor]): dense tensors to flatten. Returns: A contiguous 1D buffer containing input tensors. """ if len(tensors) == 1: return tensors[0].contiguous().view(-1) flat = torch.cat([t.contiguous().view(-1) for t in tensors], dim=0) return flat def _unflatten_dense_tensors(flat, tensors): """View a flat buffer using the sizes of tensors. Assume that tensors are of same dense type, and that flat is given by _flatten_dense_tensors. Arguments: flat (Tensor): flattened dense tensors to unflatten. tensors (Iterable[Tensor]): dense tensors whose sizes will be used to unflatten flat. Returns: Unflattened dense tensors with sizes same as tensors and values from flat. """ outputs = [] offset = 0 for tensor in tensors: numel = tensor.numel() outputs.append(flat.narrow(0, offset, numel).view_as(tensor)) offset += numel return tuple(outputs) ''' This version of DistributedDataParallel is designed to be used in conjunction with the multiproc.py launcher included with this example. It assumes that your run is using multiprocess with 1 GPU/process, that the model is on the correct device, and that torch.set_device has been used to set the device. Parameters are broadcasted to the other processes on initialization of DistributedDataParallel, and will be allreduced at the finish of the backward pass. ''' class DistributedDataParallel(Module): def __init__(self, module): super(DistributedDataParallel, self).__init__() #fallback for PyTorch 0.3 if not hasattr(dist, '_backend'): self.warn_on_half = True else: self.warn_on_half = True if dist._backend == dist.dist_backend.GLOO else False self.module = module for p in self.module.state_dict().values(): if not torch.is_tensor(p): continue dist.broadcast(p, 0) def allreduce_params(): if(self.needs_reduction): self.needs_reduction = False buckets = {} for param in self.module.parameters(): if param.requires_grad and param.grad is not None: tp = type(param.data) if tp not in buckets: buckets[tp] = [] buckets[tp].append(param) if self.warn_on_half: if torch.cuda.HalfTensor in buckets: print("WARNING: gloo dist backend for half parameters may be extremely slow." + " It is recommended to use the NCCL backend in this case. This currently requires" + "PyTorch built from top of tree master.") self.warn_on_half = False for tp in buckets: bucket = buckets[tp] grads = [param.grad.data for param in bucket] coalesced = _flatten_dense_tensors(grads) dist.all_reduce(coalesced) coalesced /= dist.get_world_size() for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced) for param in list(self.module.parameters()): def allreduce_hook(*unused): param._execution_engine.queue_callback(allreduce_params) if param.requires_grad: param.register_hook(allreduce_hook) def forward(self, *inputs, **kwargs): self.needs_reduction = True return self.module(*inputs, **kwargs) ''' def _sync_buffers(self): buffers = list(self.module._all_buffers()) if len(buffers) > 0: # cross-node buffer sync flat_buffers = _flatten_dense_tensors(buffers) dist.broadcast(flat_buffers, 0) for buf, synced in zip(buffers, _unflatten_dense_tensors(flat_buffers, buffers)): buf.copy_(synced) def train(self, mode=True): # Clear NCCL communicator and CUDA event cache of the default group ID, # These cache will be recreated at the later call. This is currently a # work-around for a potential NCCL deadlock. if dist._backend == dist.dist_backend.NCCL: dist._clear_group_cache() super(DistributedDataParallel, self).train(mode) self.module.train(mode) ''' ''' Modifies existing model to do gradient allreduce, but doesn't change class so you don't need "module" ''' def apply_gradient_allreduce(module): if not hasattr(dist, '_backend'): module.warn_on_half = True else: module.warn_on_half = True if dist._backend == dist.dist_backend.GLOO else False for p in module.state_dict().values(): if not torch.is_tensor(p): continue dist.broadcast(p, 0) def allreduce_params(): if(module.needs_reduction): module.needs_reduction = False buckets = {} for param in module.parameters(): if param.requires_grad and param.grad is not None: tp = param.data.dtype if tp not in buckets: buckets[tp] = [] buckets[tp].append(param) if module.warn_on_half: if torch.cuda.HalfTensor in buckets: print("WARNING: gloo dist backend for half parameters may be extremely slow." + " It is recommended to use the NCCL backend in this case. This currently requires" + "PyTorch built from top of tree master.") module.warn_on_half = False for tp in buckets: bucket = buckets[tp] grads = [param.grad.data for param in bucket] coalesced = _flatten_dense_tensors(grads) dist.all_reduce(coalesced) coalesced /= dist.get_world_size() for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced) for param in list(module.parameters()): def allreduce_hook(*unused): Variable._execution_engine.queue_callback(allreduce_params) if param.requires_grad: param.register_hook(allreduce_hook) def set_needs_reduction(self, input, output): self.needs_reduction = True module.register_forward_hook(set_needs_reduction) return module
tacotron2-master
distributed.py
import random import numpy as np import torch import torch.utils.data import layers from utils import load_wav_to_torch, load_filepaths_and_text from text import text_to_sequence class TextMelLoader(torch.utils.data.Dataset): """ 1) loads audio,text pairs 2) normalizes text and converts them to sequences of one-hot vectors 3) computes mel-spectrograms from audio files. """ def __init__(self, audiopaths_and_text, hparams): self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text) self.text_cleaners = hparams.text_cleaners self.max_wav_value = hparams.max_wav_value self.sampling_rate = hparams.sampling_rate self.load_mel_from_disk = hparams.load_mel_from_disk self.stft = layers.TacotronSTFT( hparams.filter_length, hparams.hop_length, hparams.win_length, hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin, hparams.mel_fmax) random.seed(hparams.seed) random.shuffle(self.audiopaths_and_text) def get_mel_text_pair(self, audiopath_and_text): # separate filename and text audiopath, text = audiopath_and_text[0], audiopath_and_text[1] text = self.get_text(text) mel = self.get_mel(audiopath) return (text, mel) def get_mel(self, filename): if not self.load_mel_from_disk: audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.stft.sampling_rate: raise ValueError("{} {} SR doesn't match target {} SR".format( sampling_rate, self.stft.sampling_rate)) audio_norm = audio / self.max_wav_value audio_norm = audio_norm.unsqueeze(0) audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False) melspec = self.stft.mel_spectrogram(audio_norm) melspec = torch.squeeze(melspec, 0) else: melspec = torch.from_numpy(np.load(filename)) assert melspec.size(0) == self.stft.n_mel_channels, ( 'Mel dimension mismatch: given {}, expected {}'.format( melspec.size(0), self.stft.n_mel_channels)) return melspec def get_text(self, text): text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners)) return text_norm def __getitem__(self, index): return self.get_mel_text_pair(self.audiopaths_and_text[index]) def __len__(self): return len(self.audiopaths_and_text) class TextMelCollate(): """ Zero-pads model inputs and targets based on number of frames per setep """ def __init__(self, n_frames_per_step): self.n_frames_per_step = n_frames_per_step def __call__(self, batch): """Collate's training batch from normalized text and mel-spectrogram PARAMS ------ batch: [text_normalized, mel_normalized] """ # Right zero-pad all one-hot text sequences to max input length input_lengths, ids_sorted_decreasing = torch.sort( torch.LongTensor([len(x[0]) for x in batch]), dim=0, descending=True) max_input_len = input_lengths[0] text_padded = torch.LongTensor(len(batch), max_input_len) text_padded.zero_() for i in range(len(ids_sorted_decreasing)): text = batch[ids_sorted_decreasing[i]][0] text_padded[i, :text.size(0)] = text # Right zero-pad mel-spec num_mels = batch[0][1].size(0) max_target_len = max([x[1].size(1) for x in batch]) if max_target_len % self.n_frames_per_step != 0: max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step assert max_target_len % self.n_frames_per_step == 0 # include mel padded and gate padded mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len) mel_padded.zero_() gate_padded = torch.FloatTensor(len(batch), max_target_len) gate_padded.zero_() output_lengths = torch.LongTensor(len(batch)) for i in range(len(ids_sorted_decreasing)): mel = batch[ids_sorted_decreasing[i]][1] mel_padded[i, :, :mel.size(1)] = mel gate_padded[i, mel.size(1)-1:] = 1 output_lengths[i] = mel.size(1) return text_padded, input_lengths, mel_padded, gate_padded, \ output_lengths
tacotron2-master
data_utils.py
from torch import nn class Tacotron2Loss(nn.Module): def __init__(self): super(Tacotron2Loss, self).__init__() def forward(self, model_output, targets): mel_target, gate_target = targets[0], targets[1] mel_target.requires_grad = False gate_target.requires_grad = False gate_target = gate_target.view(-1, 1) mel_out, mel_out_postnet, gate_out, _ = model_output gate_out = gate_out.view(-1, 1) mel_loss = nn.MSELoss()(mel_out, mel_target) + \ nn.MSELoss()(mel_out_postnet, mel_target) gate_loss = nn.BCEWithLogitsLoss()(gate_out, gate_target) return mel_loss + gate_loss
tacotron2-master
loss_function.py
import numpy as np from scipy.io.wavfile import read import torch def get_mask_from_lengths(lengths): max_len = torch.max(lengths).item() ids = torch.arange(0, max_len, out=torch.cuda.LongTensor(max_len)) mask = (ids < lengths.unsqueeze(1)).bool() return mask def load_wav_to_torch(full_path): sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(filename, split="|"): with open(filename, encoding='utf-8') as f: filepaths_and_text = [line.strip().split(split) for line in f] return filepaths_and_text def to_gpu(x): x = x.contiguous() if torch.cuda.is_available(): x = x.cuda(non_blocking=True) return torch.autograd.Variable(x)
tacotron2-master
utils.py
import os import time import argparse import math from numpy import finfo import torch from distributed import apply_gradient_allreduce import torch.distributed as dist from torch.utils.data.distributed import DistributedSampler from torch.utils.data import DataLoader from model import Tacotron2 from data_utils import TextMelLoader, TextMelCollate from loss_function import Tacotron2Loss from logger import Tacotron2Logger from hparams import create_hparams def reduce_tensor(tensor, n_gpus): rt = tensor.clone() dist.all_reduce(rt, op=dist.reduce_op.SUM) rt /= n_gpus return rt def init_distributed(hparams, n_gpus, rank, group_name): assert torch.cuda.is_available(), "Distributed mode requires CUDA." print("Initializing Distributed") # Set cuda device so everything is done on the right GPU. torch.cuda.set_device(rank % torch.cuda.device_count()) # Initialize distributed communication dist.init_process_group( backend=hparams.dist_backend, init_method=hparams.dist_url, world_size=n_gpus, rank=rank, group_name=group_name) print("Done initializing distributed") def prepare_dataloaders(hparams): # Get data, data loaders and collate function ready trainset = TextMelLoader(hparams.training_files, hparams) valset = TextMelLoader(hparams.validation_files, hparams) collate_fn = TextMelCollate(hparams.n_frames_per_step) if hparams.distributed_run: train_sampler = DistributedSampler(trainset) shuffle = False else: train_sampler = None shuffle = True train_loader = DataLoader(trainset, num_workers=1, shuffle=shuffle, sampler=train_sampler, batch_size=hparams.batch_size, pin_memory=False, drop_last=True, collate_fn=collate_fn) return train_loader, valset, collate_fn def prepare_directories_and_logger(output_directory, log_directory, rank): if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) logger = Tacotron2Logger(os.path.join(output_directory, log_directory)) else: logger = None return logger def load_model(hparams): model = Tacotron2(hparams).cuda() if hparams.fp16_run: model.decoder.attention_layer.score_mask_value = finfo('float16').min if hparams.distributed_run: model = apply_gradient_allreduce(model) return model def warm_start_model(checkpoint_path, model, ignore_layers): assert os.path.isfile(checkpoint_path) print("Warm starting model from checkpoint '{}'".format(checkpoint_path)) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') model_dict = checkpoint_dict['state_dict'] if len(ignore_layers) > 0: model_dict = {k: v for k, v in model_dict.items() if k not in ignore_layers} dummy_dict = model.state_dict() dummy_dict.update(model_dict) model_dict = dummy_dict model.load_state_dict(model_dict) return model def load_checkpoint(checkpoint_path, model, optimizer): assert os.path.isfile(checkpoint_path) print("Loading checkpoint '{}'".format(checkpoint_path)) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') model.load_state_dict(checkpoint_dict['state_dict']) optimizer.load_state_dict(checkpoint_dict['optimizer']) learning_rate = checkpoint_dict['learning_rate'] iteration = checkpoint_dict['iteration'] print("Loaded checkpoint '{}' from iteration {}" .format( checkpoint_path, iteration)) return model, optimizer, learning_rate, iteration def save_checkpoint(model, optimizer, learning_rate, iteration, filepath): print("Saving model and optimizer state at iteration {} to {}".format( iteration, filepath)) torch.save({'iteration': iteration, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'learning_rate': learning_rate}, filepath) def validate(model, criterion, valset, iteration, batch_size, n_gpus, collate_fn, logger, distributed_run, rank): """Handles all the validation scoring and printing""" model.eval() with torch.no_grad(): val_sampler = DistributedSampler(valset) if distributed_run else None val_loader = DataLoader(valset, sampler=val_sampler, num_workers=1, shuffle=False, batch_size=batch_size, pin_memory=False, collate_fn=collate_fn) val_loss = 0.0 for i, batch in enumerate(val_loader): x, y = model.parse_batch(batch) y_pred = model(x) loss = criterion(y_pred, y) if distributed_run: reduced_val_loss = reduce_tensor(loss.data, n_gpus).item() else: reduced_val_loss = loss.item() val_loss += reduced_val_loss val_loss = val_loss / (i + 1) model.train() if rank == 0: print("Validation loss {}: {:9f} ".format(iteration, val_loss)) logger.log_validation(val_loss, model, y, y_pred, iteration) def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, rank, group_name, hparams): """Training and validation logging results to tensorboard and stdout Params ------ output_directory (string): directory to save checkpoints log_directory (string) directory to save tensorboard logs checkpoint_path(string): checkpoint path n_gpus (int): number of gpus rank (int): rank of current gpu hparams (object): comma separated list of "name=value" pairs. """ if hparams.distributed_run: init_distributed(hparams, n_gpus, rank, group_name) torch.manual_seed(hparams.seed) torch.cuda.manual_seed(hparams.seed) model = load_model(hparams) learning_rate = hparams.learning_rate optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=hparams.weight_decay) if hparams.fp16_run: from apex import amp model, optimizer = amp.initialize( model, optimizer, opt_level='O2') if hparams.distributed_run: model = apply_gradient_allreduce(model) criterion = Tacotron2Loss() logger = prepare_directories_and_logger( output_directory, log_directory, rank) train_loader, valset, collate_fn = prepare_dataloaders(hparams) # Load checkpoint if one exists iteration = 0 epoch_offset = 0 if checkpoint_path is not None: if warm_start: model = warm_start_model( checkpoint_path, model, hparams.ignore_layers) else: model, optimizer, _learning_rate, iteration = load_checkpoint( checkpoint_path, model, optimizer) if hparams.use_saved_learning_rate: learning_rate = _learning_rate iteration += 1 # next iteration is iteration + 1 epoch_offset = max(0, int(iteration / len(train_loader))) model.train() is_overflow = False # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, hparams.epochs): print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): start = time.perf_counter() for param_group in optimizer.param_groups: param_group['lr'] = learning_rate model.zero_grad() x, y = model.parse_batch(batch) y_pred = model(x) loss = criterion(y_pred, y) if hparams.distributed_run: reduced_loss = reduce_tensor(loss.data, n_gpus).item() else: reduced_loss = loss.item() if hparams.fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if hparams.fp16_run: grad_norm = torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), hparams.grad_clip_thresh) is_overflow = math.isnan(grad_norm) else: grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), hparams.grad_clip_thresh) optimizer.step() if not is_overflow and rank == 0: duration = time.perf_counter() - start print("Train loss {} {:.6f} Grad Norm {:.6f} {:.2f}s/it".format( iteration, reduced_loss, grad_norm, duration)) logger.log_training( reduced_loss, grad_norm, learning_rate, duration, iteration) if not is_overflow and (iteration % hparams.iters_per_checkpoint == 0): validate(model, criterion, valset, iteration, hparams.batch_size, n_gpus, collate_fn, logger, hparams.distributed_run, rank) if rank == 0: checkpoint_path = os.path.join( output_directory, "checkpoint_{}".format(iteration)) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-o', '--output_directory', type=str, help='directory to save checkpoints') parser.add_argument('-l', '--log_directory', type=str, help='directory to save tensorboard logs') parser.add_argument('-c', '--checkpoint_path', type=str, default=None, required=False, help='checkpoint path') parser.add_argument('--warm_start', action='store_true', help='load model weights only, ignore specified layers') parser.add_argument('--n_gpus', type=int, default=1, required=False, help='number of gpus') parser.add_argument('--rank', type=int, default=0, required=False, help='rank of current gpu') parser.add_argument('--group_name', type=str, default='group_name', required=False, help='Distributed group name') parser.add_argument('--hparams', type=str, required=False, help='comma separated name=value pairs') args = parser.parse_args() hparams = create_hparams(args.hparams) torch.backends.cudnn.enabled = hparams.cudnn_enabled torch.backends.cudnn.benchmark = hparams.cudnn_benchmark print("FP16 Run:", hparams.fp16_run) print("Dynamic Loss Scaling:", hparams.dynamic_loss_scaling) print("Distributed Run:", hparams.distributed_run) print("cuDNN Enabled:", hparams.cudnn_enabled) print("cuDNN Benchmark:", hparams.cudnn_benchmark) train(args.output_directory, args.log_directory, args.checkpoint_path, args.warm_start, args.n_gpus, args.rank, args.group_name, hparams)
tacotron2-master
train.py
import torch from librosa.filters import mel as librosa_mel_fn from audio_processing import dynamic_range_compression from audio_processing import dynamic_range_decompression from stft import STFT class LinearNorm(torch.nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): super(LinearNorm, self).__init__() self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) torch.nn.init.xavier_uniform_( self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, x): return self.linear_layer(x) class ConvNorm(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain='linear'): super(ConvNorm, self).__init__() if padding is None: assert(kernel_size % 2 == 1) padding = int(dilation * (kernel_size - 1) / 2) self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) torch.nn.init.xavier_uniform_( self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, signal): conv_signal = self.conv(signal) return conv_signal class TacotronSTFT(torch.nn.Module): def __init__(self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, mel_fmax=8000.0): super(TacotronSTFT, self).__init__() self.n_mel_channels = n_mel_channels self.sampling_rate = sampling_rate self.stft_fn = STFT(filter_length, hop_length, win_length) mel_basis = librosa_mel_fn( sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax) mel_basis = torch.from_numpy(mel_basis).float() self.register_buffer('mel_basis', mel_basis) def spectral_normalize(self, magnitudes): output = dynamic_range_compression(magnitudes) return output def spectral_de_normalize(self, magnitudes): output = dynamic_range_decompression(magnitudes) return output def mel_spectrogram(self, y): """Computes mel-spectrograms from a batch of waves PARAMS ------ y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] RETURNS ------- mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) """ assert(torch.min(y.data) >= -1) assert(torch.max(y.data) <= 1) magnitudes, phases = self.stft_fn.transform(y) magnitudes = magnitudes.data mel_output = torch.matmul(self.mel_basis, magnitudes) mel_output = self.spectral_normalize(mel_output) return mel_output
tacotron2-master
layers.py
import time import torch import sys import subprocess argslist = list(sys.argv)[1:] num_gpus = torch.cuda.device_count() argslist.append('--n_gpus={}'.format(num_gpus)) workers = [] job_id = time.strftime("%Y_%m_%d-%H%M%S") argslist.append("--group_name=group_{}".format(job_id)) for i in range(num_gpus): argslist.append('--rank={}'.format(i)) stdout = None if i == 0 else open("logs/{}_GPU_{}.log".format(job_id, i), "w") print(argslist) p = subprocess.Popen([str(sys.executable)]+argslist, stdout=stdout) workers.append(p) argslist = argslist[:-1] for p in workers: p.wait()
tacotron2-master
multiproc.py
import torch class LossScaler: def __init__(self, scale=1): self.cur_scale = scale # `params` is a list / generator of torch.Variable def has_overflow(self, params): return False # `x` is a torch.Tensor def _has_inf_or_nan(x): return False # `overflow` is boolean indicating whether we overflowed in gradient def update_scale(self, overflow): pass @property def loss_scale(self): return self.cur_scale def scale_gradient(self, module, grad_in, grad_out): return tuple(self.loss_scale * g for g in grad_in) def backward(self, loss): scaled_loss = loss*self.loss_scale scaled_loss.backward() class DynamicLossScaler: def __init__(self, init_scale=2**32, scale_factor=2., scale_window=1000): self.cur_scale = init_scale self.cur_iter = 0 self.last_overflow_iter = -1 self.scale_factor = scale_factor self.scale_window = scale_window # `params` is a list / generator of torch.Variable def has_overflow(self, params): # return False for p in params: if p.grad is not None and DynamicLossScaler._has_inf_or_nan(p.grad.data): return True return False # `x` is a torch.Tensor def _has_inf_or_nan(x): cpu_sum = float(x.float().sum()) if cpu_sum == float('inf') or cpu_sum == -float('inf') or cpu_sum != cpu_sum: return True return False # `overflow` is boolean indicating whether we overflowed in gradient def update_scale(self, overflow): if overflow: #self.cur_scale /= self.scale_factor self.cur_scale = max(self.cur_scale/self.scale_factor, 1) self.last_overflow_iter = self.cur_iter else: if (self.cur_iter - self.last_overflow_iter) % self.scale_window == 0: self.cur_scale *= self.scale_factor # self.cur_scale = 1 self.cur_iter += 1 @property def loss_scale(self): return self.cur_scale def scale_gradient(self, module, grad_in, grad_out): return tuple(self.loss_scale * g for g in grad_in) def backward(self, loss): scaled_loss = loss*self.loss_scale scaled_loss.backward() ############################################################## # Example usage below here -- assuming it's in a separate file ############################################################## if __name__ == "__main__": import torch from torch.autograd import Variable from dynamic_loss_scaler import DynamicLossScaler # N is batch size; D_in is input dimension; # H is hidden dimension; D_out is output dimension. N, D_in, H, D_out = 64, 1000, 100, 10 # Create random Tensors to hold inputs and outputs, and wrap them in Variables. x = Variable(torch.randn(N, D_in), requires_grad=False) y = Variable(torch.randn(N, D_out), requires_grad=False) w1 = Variable(torch.randn(D_in, H), requires_grad=True) w2 = Variable(torch.randn(H, D_out), requires_grad=True) parameters = [w1, w2] learning_rate = 1e-6 optimizer = torch.optim.SGD(parameters, lr=learning_rate) loss_scaler = DynamicLossScaler() for t in range(500): y_pred = x.mm(w1).clamp(min=0).mm(w2) loss = (y_pred - y).pow(2).sum() * loss_scaler.loss_scale print('Iter {} loss scale: {}'.format(t, loss_scaler.loss_scale)) print('Iter {} scaled loss: {}'.format(t, loss.data[0])) print('Iter {} unscaled loss: {}'.format(t, loss.data[0] / loss_scaler.loss_scale)) # Run backprop optimizer.zero_grad() loss.backward() # Check for overflow has_overflow = DynamicLossScaler.has_overflow(parameters) # If no overflow, unscale grad and update as usual if not has_overflow: for param in parameters: param.grad.data.mul_(1. / loss_scaler.loss_scale) optimizer.step() # Otherwise, don't do anything -- ie, skip iteration else: print('OVERFLOW!') # Update loss scale for next iteration loss_scaler.update_scale(has_overflow)
tacotron2-master
loss_scaler.py
""" from https://github.com/keithito/tacotron """ import re valid_symbols = [ 'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2', 'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2', 'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY', 'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1', 'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0', 'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH' ] _valid_symbol_set = set(valid_symbols) class CMUDict: '''Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict''' def __init__(self, file_or_path, keep_ambiguous=True): if isinstance(file_or_path, str): with open(file_or_path, encoding='latin-1') as f: entries = _parse_cmudict(f) else: entries = _parse_cmudict(file_or_path) if not keep_ambiguous: entries = {word: pron for word, pron in entries.items() if len(pron) == 1} self._entries = entries def __len__(self): return len(self._entries) def lookup(self, word): '''Returns list of ARPAbet pronunciations of the given word.''' return self._entries.get(word.upper()) _alt_re = re.compile(r'\([0-9]+\)') def _parse_cmudict(file): cmudict = {} for line in file: if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"): parts = line.split(' ') word = re.sub(_alt_re, '', parts[0]) pronunciation = _get_pronunciation(parts[1]) if pronunciation: if word in cmudict: cmudict[word].append(pronunciation) else: cmudict[word] = [pronunciation] return cmudict def _get_pronunciation(s): parts = s.strip().split(' ') for part in parts: if part not in _valid_symbol_set: return None return ' '.join(parts)
tacotron2-master
text/cmudict.py
""" from https://github.com/keithito/tacotron """ import re from text import cleaners from text.symbols import symbols # Mappings from symbol to numeric ID and vice versa: _symbol_to_id = {s: i for i, s in enumerate(symbols)} _id_to_symbol = {i: s for i, s in enumerate(symbols)} # Regular expression matching text enclosed in curly braces: _curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)') def text_to_sequence(text, cleaner_names): '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. The text can optionally have ARPAbet sequences enclosed in curly braces embedded in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street." Args: text: string to convert to a sequence cleaner_names: names of the cleaner functions to run the text through Returns: List of integers corresponding to the symbols in the text ''' sequence = [] # Check for curly braces and treat their contents as ARPAbet: while len(text): m = _curly_re.match(text) if not m: sequence += _symbols_to_sequence(_clean_text(text, cleaner_names)) break sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names)) sequence += _arpabet_to_sequence(m.group(2)) text = m.group(3) return sequence def sequence_to_text(sequence): '''Converts a sequence of IDs back to a string''' result = '' for symbol_id in sequence: if symbol_id in _id_to_symbol: s = _id_to_symbol[symbol_id] # Enclose ARPAbet back in curly braces: if len(s) > 1 and s[0] == '@': s = '{%s}' % s[1:] result += s return result.replace('}{', ' ') def _clean_text(text, cleaner_names): for name in cleaner_names: cleaner = getattr(cleaners, name) if not cleaner: raise Exception('Unknown cleaner: %s' % name) text = cleaner(text) return text def _symbols_to_sequence(symbols): return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)] def _arpabet_to_sequence(text): return _symbols_to_sequence(['@' + s for s in text.split()]) def _should_keep_symbol(s): return s in _symbol_to_id and s is not '_' and s is not '~'
tacotron2-master
text/__init__.py
""" from https://github.com/keithito/tacotron """ import inflect import re _inflect = inflect.engine() _comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])') _decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)') _pounds_re = re.compile(r'£([0-9\,]*[0-9]+)') _dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)') _ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)') _number_re = re.compile(r'[0-9]+') def _remove_commas(m): return m.group(1).replace(',', '') def _expand_decimal_point(m): return m.group(1).replace('.', ' point ') def _expand_dollars(m): match = m.group(1) parts = match.split('.') if len(parts) > 2: return match + ' dollars' # Unexpected format dollars = int(parts[0]) if parts[0] else 0 cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0 if dollars and cents: dollar_unit = 'dollar' if dollars == 1 else 'dollars' cent_unit = 'cent' if cents == 1 else 'cents' return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit) elif dollars: dollar_unit = 'dollar' if dollars == 1 else 'dollars' return '%s %s' % (dollars, dollar_unit) elif cents: cent_unit = 'cent' if cents == 1 else 'cents' return '%s %s' % (cents, cent_unit) else: return 'zero dollars' def _expand_ordinal(m): return _inflect.number_to_words(m.group(0)) def _expand_number(m): num = int(m.group(0)) if num > 1000 and num < 3000: if num == 2000: return 'two thousand' elif num > 2000 and num < 2010: return 'two thousand ' + _inflect.number_to_words(num % 100) elif num % 100 == 0: return _inflect.number_to_words(num // 100) + ' hundred' else: return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ') else: return _inflect.number_to_words(num, andword='') def normalize_numbers(text): text = re.sub(_comma_number_re, _remove_commas, text) text = re.sub(_pounds_re, r'\1 pounds', text) text = re.sub(_dollars_re, _expand_dollars, text) text = re.sub(_decimal_number_re, _expand_decimal_point, text) text = re.sub(_ordinal_re, _expand_ordinal, text) text = re.sub(_number_re, _expand_number, text) return text
tacotron2-master
text/numbers.py
""" from https://github.com/keithito/tacotron """ ''' Defines the set of symbols used in text input to the model. The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. ''' from text import cmudict _pad = '_' _punctuation = '!\'(),.:;? ' _special = '-' _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' # Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters): _arpabet = ['@' + s for s in cmudict.valid_symbols] # Export all symbols: symbols = [_pad] + list(_special) + list(_punctuation) + list(_letters) + _arpabet
tacotron2-master
text/symbols.py
""" from https://github.com/keithito/tacotron """ ''' Cleaners are transformations that run over the input text at both training and eval time. Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" hyperparameter. Some cleaners are English-specific. You'll typically want to use: 1. "english_cleaners" for English text 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using the Unidecode library (https://pypi.python.org/pypi/Unidecode) 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update the symbols in symbols.py to match your data). ''' import re from unidecode import unidecode from .numbers import normalize_numbers # Regular expression matching whitespace: _whitespace_re = re.compile(r'\s+') # List of (regular expression, replacement) pairs for abbreviations: _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ ('mrs', 'misess'), ('mr', 'mister'), ('dr', 'doctor'), ('st', 'saint'), ('co', 'company'), ('jr', 'junior'), ('maj', 'major'), ('gen', 'general'), ('drs', 'doctors'), ('rev', 'reverend'), ('lt', 'lieutenant'), ('hon', 'honorable'), ('sgt', 'sergeant'), ('capt', 'captain'), ('esq', 'esquire'), ('ltd', 'limited'), ('col', 'colonel'), ('ft', 'fort'), ]] def expand_abbreviations(text): for regex, replacement in _abbreviations: text = re.sub(regex, replacement, text) return text def expand_numbers(text): return normalize_numbers(text) def lowercase(text): return text.lower() def collapse_whitespace(text): return re.sub(_whitespace_re, ' ', text) def convert_to_ascii(text): return unidecode(text) def basic_cleaners(text): '''Basic pipeline that lowercases and collapses whitespace without transliteration.''' text = lowercase(text) text = collapse_whitespace(text) return text def transliteration_cleaners(text): '''Pipeline for non-English text that transliterates to ASCII.''' text = convert_to_ascii(text) text = lowercase(text) text = collapse_whitespace(text) return text def english_cleaners(text): '''Pipeline for English text, including number and abbreviation expansion.''' text = convert_to_ascii(text) text = lowercase(text) text = expand_numbers(text) text = expand_abbreviations(text) text = collapse_whitespace(text) return text
tacotron2-master
text/cleaners.py
import warp as wp # this script generates a header that can be used to bind # builtins e.g.: quat_inverse(), etc to Python through # ctypes, this could allow calling all builtins # from Python wp.init() f = open("warp/native/exports.h", "w") wp.export_builtins(f) f.close() print("Finished")
warp-main
build_exports.py
import os import sys import subprocess import warp as wp wp.init() # docs # disable sphinx color output os.environ["NO_COLOR"] = "1" with open("docs/modules/functions.rst", "w") as function_ref: wp.print_builtins(function_ref) # run Sphinx build try: if os.name == 'nt': subprocess.check_output("make.bat html", cwd="docs", shell=True) else: subprocess.run("make clean", cwd="docs", shell=True) subprocess.check_output("make html", cwd="docs", shell=True) except subprocess.CalledProcessError as e: print(e.output.decode()) raise e # generate stubs for autocomplete stub_file = open("warp/stubs.py", "w") wp.export_stubs(stub_file) stub_file.close() # code formatting subprocess.run([sys.executable, "-m", "black", "warp/stubs.py"]) print("Finished")
warp-main
build_docs.py
import argparse import os import shutil from typing import NamedTuple import setuptools from wheel.bdist_wheel import bdist_wheel # Parse --build-option arguments meant for the bdist_wheel command. We have to parse these # ourselves because when bdist_wheel runs it's too late to select a subset of libraries for package_data. parser = argparse.ArgumentParser() parser.add_argument("command") parser.add_argument("--platform", "-P", type=str, default="", help="Wheel platform: windows|linux|macos") args = parser.parse_known_args()[0] class Platform(NamedTuple): name: str fancy_name: str extension: str tag: str platforms = [ Platform("windows", "Windows", ".dll", "win_amd64"), Platform("linux", "Linux", ".so", "manylinux2014_x86_64"), Platform("macos", "macOS", ".dylib", "macosx_10_13_x86_64"), ] # Determine supported platforms of warp/bin libraries based on their extension def detect_warp_platforms(): detected_platforms = set() for filename in os.listdir("warp/bin"): for p in platforms: if os.path.splitext(filename)[1] == p.extension: detected_platforms.add(p) if len(detected_platforms) == 0: raise Exception("No libraries found in warp/bin. Please run build_lib.py first.") return detected_platforms detected_platforms = detect_warp_platforms() wheel_platform = None # The one platform for which we're building a wheel if args.command == "bdist_wheel": if args.platform != "": for p in platforms: if args.platform == p.name or args.platform == p.fancy_name: wheel_platform = p print(f"Platform argument specified for building {p.fancy_name} wheel") break if wheel_platform is None: print(f"Platform argument '{args.platform}' not recognized") elif wheel_platform not in detected_platforms: print(f"No libraries found for {wheel_platform.fancy_name}") print(f"Falling back to auto-detection") wheel_platform = None if wheel_platform is None: if len(detected_platforms) > 1: print("Libraries for multiple platforms were detected. Picking the first one.") print("Run `python -m build --wheel -C--build-option=-P[windows|linux|macos]` to select a specific one.") wheel_platform = next(iter(detected_platforms)) print("Creating Warp wheel for " + wheel_platform.fancy_name) # Binary wheel distribution builds assume that the platform you're building on will be the platform # of the package. This class overrides the platform tag. # https://packaging.python.org/en/latest/specifications/platform-compatibility-tags class WarpBDistWheel(bdist_wheel): # Even though we parse the platform argument ourselves, we need to declare it here as well so # setuptools.Command can validate the command line options. user_options = bdist_wheel.user_options + [ ("platform=", "P", "Wheel platform: windows|linux|macos"), ] def initialize_options(self): super().initialize_options() self.platform = "" def get_tag(self): # The wheel's complete tag format is {python tag}-{abi tag}-{platform tag}. return "py3", "none", wheel_platform.tag def run(self): super().run() # Clean up so we can re-invoke `py -m build --wheel -C--build-option=--platform=...` # See https://github.com/pypa/setuptools/issues/1871 for details. shutil.rmtree("./build", ignore_errors=True) shutil.rmtree("./warp_lang.egg-info", ignore_errors=True) # Distributions are identified as non-pure (i.e. containing non-Python code, or binaries) if the # setuptools.setup() `ext_modules` parameter is not empty, but this assumes building extension # modules from source through the Python build. This class provides an override for prebuilt binaries: class BinaryDistribution(setuptools.Distribution): def has_ext_modules(self): return True def get_warp_libraries(extension): libraries = [] for filename in os.listdir("warp/bin"): if os.path.splitext(filename)[1] == extension: libraries.append("bin/" + filename) return libraries if wheel_platform is not None: warp_binary_libraries = get_warp_libraries(wheel_platform.extension) else: warp_binary_libraries = [] # Not needed during egg_info command setuptools.setup( package_data={ "": [ "native/*.cpp", "native/*.cu", "native/*.h", "native/clang/*.cpp", "native/nanovdb/*.h", "tests/assets/*", ] + warp_binary_libraries, }, distclass=BinaryDistribution, cmdclass={ "bdist_wheel": WarpBDistWheel, }, )
warp-main
setup.py
import os import subprocess import sys import warp from warp.build_dll import build_dll_for_arch, run_cmd # set build output path off this file base_path = os.path.dirname(os.path.realpath(__file__)) build_path = os.path.join(base_path, "warp") llvm_project_dir = "external/llvm-project" llvm_project_path = os.path.join(base_path, llvm_project_dir) llvm_path = os.path.join(llvm_project_path, "llvm") llvm_build_path = os.path.join(llvm_project_path, "out/build/") llvm_install_path = os.path.join(llvm_project_path, "out/install/") # Fetch prebuilt Clang/LLVM libraries if os.name == "nt": packman = "tools\\packman\\packman.cmd" packages = {"x86_64": "15.0.7-windows-x86_64-ptx-vs142"} else: packman = "./tools/packman/packman" if sys.platform == "darwin": packages = { "arm64": "15.0.7-darwin-aarch64-macos11", "x86_64": "15.0.7-darwin-x86_64-macos11", } else: packages = {"x86_64": "15.0.7-linux-x86_64-ptx-gcc7.5-cxx11abi0"} for arch in packages: subprocess.check_call( [ packman, "install", "-l", f"./_build/host-deps/llvm-project/release-{arch}", "clang+llvm-warp", packages[arch], ] ) def build_from_source_for_arch(args, arch): # Install dependencies subprocess.check_call([sys.executable, "-m", "pip", "install", "gitpython"]) subprocess.check_call([sys.executable, "-m", "pip", "install", "cmake"]) subprocess.check_call([sys.executable, "-m", "pip", "install", "ninja"]) from git import Repo repo_url = "https://github.com/llvm/llvm-project.git" if not os.path.exists(llvm_project_path): print("Cloning LLVM project...") shallow_clone = True # https://github.blog/2020-12-21-get-up-to-speed-with-partial-clone-and-shallow-clone/ if shallow_clone: repo = Repo.clone_from( repo_url, to_path=llvm_project_path, single_branch=True, branch="llvmorg-15.0.7", depth=1 ) else: repo = Repo.clone_from(repo_url, to_path=llvm_project_path) repo.git.checkout("tags/llvmorg-15.0.7", "-b", "llvm-15.0.7") else: print(f"Found existing {llvm_project_dir} directory") repo = Repo(llvm_project_path) # CMake supports Debug, Release, RelWithDebInfo, and MinSizeRel builds if warp.config.mode == "release": # prefer smaller size over aggressive speed cmake_build_type = "MinSizeRel" else: # When warp.config.mode == "debug" we build a Debug version of warp.dll but # we generally don't want warp-clang.dll to be a slow Debug version. if args.debug_llvm: cmake_build_type = "Debug" else: # The GDB/LLDB debugger observes the __jit_debug_register_code symbol # defined by the LLVM JIT, for which it needs debug info. cmake_build_type = "RelWithDebInfo" # Location of cmake and ninja installed through pip (see build.bat / build.sh) python_bin = "python/Scripts" if sys.platform == "win32" else "python/bin" os.environ["PATH"] = os.path.join(base_path, "_build/target-deps/" + python_bin) + os.pathsep + os.environ["PATH"] if arch == "arm64": target_backend = "AArch64" else: target_backend = "X86" if sys.platform == "darwin": host_triple = f"{arch}-apple-macos11" elif os.name == "nt": host_triple = f"{arch}-pc-windows" else: host_triple = f"{arch}-pc-linux" build_path = os.path.join(llvm_build_path, f"{warp.config.mode}-{ arch}") install_path = os.path.join(llvm_install_path, f"{warp.config.mode}-{ arch}") # Build LLVM and Clang cmake_gen = [ # fmt: off "cmake", "-S", llvm_path, "-B", build_path, "-G", "Ninja", "-D", f"CMAKE_BUILD_TYPE={cmake_build_type}", "-D", "LLVM_USE_CRT_RELEASE=MT", "-D", "LLVM_USE_CRT_MINSIZEREL=MT", "-D", "LLVM_USE_CRT_DEBUG=MTd", "-D", "LLVM_USE_CRT_RELWITHDEBINFO=MTd", "-D", f"LLVM_TARGETS_TO_BUILD={target_backend};NVPTX", "-D", "LLVM_ENABLE_PROJECTS=clang", "-D", "LLVM_ENABLE_ZLIB=FALSE", "-D", "LLVM_ENABLE_ZSTD=FALSE", "-D", "LLVM_ENABLE_TERMINFO=FALSE", "-D", "LLVM_BUILD_LLVM_C_DYLIB=FALSE", "-D", "LLVM_BUILD_RUNTIME=FALSE", "-D", "LLVM_BUILD_RUNTIMES=FALSE", "-D", "LLVM_BUILD_TOOLS=FALSE", "-D", "LLVM_BUILD_UTILS=FALSE", "-D", "LLVM_INCLUDE_BENCHMARKS=FALSE", "-D", "LLVM_INCLUDE_DOCS=FALSE", "-D", "LLVM_INCLUDE_EXAMPLES=FALSE", "-D", "LLVM_INCLUDE_RUNTIMES=FALSE", "-D", "LLVM_INCLUDE_TESTS=FALSE", "-D", "LLVM_INCLUDE_TOOLS=TRUE", # Needed by Clang "-D", "LLVM_INCLUDE_UTILS=FALSE", "-D", "CMAKE_CXX_FLAGS=-D_GLIBCXX_USE_CXX11_ABI=0", # The pre-C++11 ABI is still the default on the CentOS 7 toolchain "-D", f"CMAKE_INSTALL_PREFIX={install_path}", "-D", f"LLVM_HOST_TRIPLE={host_triple}", "-D", f"CMAKE_OSX_ARCHITECTURES={ arch}", # Disable unused tools and features "-D", "CLANG_BUILD_TOOLS=FALSE", "-D", "LLVM_ENABLE_PLUGINS=FALSE", "-D", "CLANG_PLUGIN_SUPPORT=FALSE", "-D", "CLANG_ENABLE_ARCMT=FALSE", "-D", "CLANG_ENABLE_STATIC_ANALYZER=FALSE", "-D", "CLANG_TOOLING_BUILD_AST_INTROSPECTION=FALSE", "-D", "CLANG_TOOL_AMDGPU_ARCH_BUILD=FALSE", "-D", "CLANG_TOOL_APINOTES_TEST_BUILD=FALSE", "-D", "CLANG_TOOL_ARCMT_TEST_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_CHECK_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_DIFF_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_EXTDEF_MAPPING_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_FORMAT_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_FORMAT_VS_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_FUZZER_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_IMPORT_TEST_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_LINKER_WRAPPER_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_NVLINK_WRAPPER_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_OFFLOAD_BUNDLER_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_OFFLOAD_PACKAGER_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_OFFLOAD_WRAPPER_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_REFACTOR_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_RENAME_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_REPL_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_SCAN_DEPS_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_SHLIB_BUILD=FALSE", "-D", "CLANG_TOOL_C_ARCMT_TEST_BUILD=FALSE", "-D", "CLANG_TOOL_C_INDEX_TEST_BUILD=FALSE", "-D", "CLANG_TOOL_DIAGTOOL_BUILD=FALSE", "-D", "CLANG_TOOL_DRIVER_BUILD=FALSE", "-D", "CLANG_TOOL_LIBCLANG_BUILD=FALSE", "-D", "CLANG_TOOL_SCAN_BUILD_BUILD=FALSE", "-D", "CLANG_TOOL_SCAN_BUILD_PY_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_OFFLOAD_BUNDLER_BUILD=FALSE", "-D", "CLANG_TOOL_SCAN_VIEW_BUILD=FALSE", "-D", "LLVM_ENABLE_BINDINGS=FALSE", "-D", "LLVM_ENABLE_OCAMLDOC=FALSE", "-D", "LLVM_TOOL_BUGPOINT_BUILD=FALSE", "-D", "LLVM_TOOL_BUGPOINT_PASSES_BUILD=FALSE", "-D", "LLVM_TOOL_CLANG_BUILD=FALSE", "-D", "LLVM_TOOL_DSYMUTIL_BUILD=FALSE", "-D", "LLVM_TOOL_DXIL_DIS_BUILD=FALSE", "-D", "LLVM_TOOL_GOLD_BUILD=FALSE", "-D", "LLVM_TOOL_LLC_BUILD=FALSE", "-D", "LLVM_TOOL_LLDB_BUILD=FALSE", "-D", "LLVM_TOOL_LLI_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_AR_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_AS_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_AS_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_BCANALYZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CAT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CFI_VERIFY_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CONFIG_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_COV_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CVTRES_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CXXDUMP_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CXXFILT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CXXMAP_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_C_TEST_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DEBUGINFOD_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DEBUGINFOD_FIND_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DIFF_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DIS_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DIS_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DLANG_DEMANGLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DWARFDUMP_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DWARFUTIL_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DWP_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_EXEGESIS_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_EXTRACT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_GO_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_GSYMUTIL_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_IFS_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_ISEL_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_ITANIUM_DEMANGLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_JITLINK_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_JITLISTENER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_LIBTOOL_DARWIN_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_LINK_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_LIPO_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_LTO2_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_LTO_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MCA_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MC_ASSEMBLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MC_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MC_DISASSEMBLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MICROSOFT_DEMANGLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_ML_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MODEXTRACT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_NM_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_OBJCOPY_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_OBJDUMP_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_OPT_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_OPT_REPORT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_PDBUTIL_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_PROFDATA_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_PROFGEN_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_RC_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_READOBJ_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_REDUCE_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_REMARK_SIZE_DIFF_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_RTDYLD_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_RUST_DEMANGLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_SHLIB_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_SIM_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_SIZE_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_SPECIAL_CASE_LIST_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_SPLIT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_STRESS_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_STRINGS_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_SYMBOLIZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_TAPI_DIFF_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_TLI_CHECKER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_UNDNAME_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_XRAY_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_YAML_NUMERIC_PARSER_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_YAML_PARSER_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LTO_BUILD=FALSE", "-D", "LLVM_TOOL_OBJ2YAML_BUILD=FALSE", "-D", "LLVM_TOOL_OPT_BUILD=FALSE", "-D", "LLVM_TOOL_OPT_VIEWER_BUILD=FALSE", "-D", "LLVM_TOOL_REMARKS_SHLIB_BUILD=FALSE", "-D", "LLVM_TOOL_SANCOV_BUILD=FALSE", "-D", "LLVM_TOOL_SANSTATS_BUILD=FALSE", "-D", "LLVM_TOOL_SPLIT_FILE_BUILD=FALSE", "-D", "LLVM_TOOL_VERIFY_USELISTORDER_BUILD=FALSE", "-D", "LLVM_TOOL_VFABI_DEMANGLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_XCODE_TOOLCHAIN_BUILD=FALSE", "-D", "LLVM_TOOL_YAML2OBJ_BUILD=FALSE", # fmt: on ] subprocess.check_call(cmake_gen, stderr=subprocess.STDOUT) cmake_build = ["cmake", "--build", build_path] subprocess.check_call(cmake_build, stderr=subprocess.STDOUT) cmake_install = ["cmake", "--install", build_path] subprocess.check_call(cmake_install, stderr=subprocess.STDOUT) def build_from_source(args): build_from_source_for_arch(args, "x86_64") if sys.platform == "darwin": build_from_source_for_arch(args, "arm64") # build warp-clang.dll def build_warp_clang_for_arch(args, lib_name, arch): try: cpp_sources = [ "native/clang/clang.cpp", "native/crt.cpp", ] clang_cpp_paths = [os.path.join(build_path, cpp) for cpp in cpp_sources] clang_dll_path = os.path.join(build_path, f"bin/{lib_name}") if args.build_llvm: # obtain Clang and LLVM libraries from the local build install_path = os.path.join(llvm_install_path, f"{warp.config.mode}-{arch}") libpath = os.path.join(install_path, "lib") else: # obtain Clang and LLVM libraries from packman assert os.path.exists("_build/host-deps/llvm-project"), "run build.bat / build.sh" libpath = os.path.join(base_path, f"_build/host-deps/llvm-project/release-{arch}/lib") for _, _, libs in os.walk(libpath): break # just the top level contains library files if os.name == "nt": libs.append("Version.lib") libs.append(f'/LIBPATH:"{libpath}"') else: libs = [f"-l{lib[3:-2]}" for lib in libs if os.path.splitext(lib)[1] == ".a"] if sys.platform == "darwin": libs += libs # prevents unresolved symbols due to link order else: libs.insert(0, "-Wl,--start-group") libs.append("-Wl,--end-group") libs.append(f"-L{libpath}") libs.append("-lpthread") libs.append("-ldl") build_dll_for_arch( dll_path=clang_dll_path, cpp_paths=clang_cpp_paths, cu_path=None, libs=libs, mode=warp.config.mode if args.build_llvm else "release", arch=arch, verify_fp=warp.config.verify_fp, fast_math=warp.config.fast_math, ) except Exception as e: # output build error print(f"Warp Clang/LLVM build error: {e}") # report error sys.exit(1) def build_warp_clang(args, lib_name): if sys.platform == "darwin": # create a universal binary by combining x86-64 and AArch64 builds build_warp_clang_for_arch(args, lib_name + "-x86_64", "x86_64") build_warp_clang_for_arch(args, lib_name + "-arm64", "arm64") dylib_path = os.path.join(build_path, f"bin/{lib_name}") run_cmd(f"lipo -create -output {dylib_path} {dylib_path}-x86_64 {dylib_path}-arm64") os.remove(f"{dylib_path}-x86_64") os.remove(f"{dylib_path}-arm64") else: build_warp_clang_for_arch(args, lib_name, "x86_64")
warp-main
build_llvm.py
# This script is an 'offline' build of the core warp runtime libraries # designed to be executed as part of CI / developer workflows, not # as part of the user runtime (since it requires CUDA toolkit, etc) import sys if sys.version_info[0] < 3: raise Exception("Warp requires Python 3.x minimum") import argparse import os import warp.config from warp.build_dll import build_dll, find_host_compiler, set_msvc_compiler parser = argparse.ArgumentParser(description="Warp build script") parser.add_argument("--msvc_path", type=str, help="Path to MSVC compiler (optional if already on PATH)") parser.add_argument("--sdk_path", type=str, help="Path to WinSDK (optional if already on PATH)") parser.add_argument("--cuda_path", type=str, help="Path to CUDA SDK") parser.add_argument( "--mode", type=str, default="release", help="Build configuration, default 'release'", choices=["release", "debug"], ) # Note argparse.BooleanOptionalAction can be used here when Python 3.9+ becomes the minimum supported version parser.add_argument("--verbose", action="store_true", help="Verbose building output, default enabled") parser.add_argument("--no_verbose", dest="verbose", action="store_false") parser.set_defaults(verbose=True) parser.add_argument( "--verify_fp", action="store_true", help="Verify kernel inputs and outputs are finite after each launch, default disabled", ) parser.add_argument("--no_verify_fp", dest="verify_fp", action="store_false") parser.set_defaults(verify_fp=False) parser.add_argument("--fast_math", action="store_true", help="Enable fast math on library, default disabled") parser.add_argument("--no_fast_math", dest="fast_math", action="store_false") parser.set_defaults(fast_math=False) parser.add_argument("--quick", action="store_true", help="Only generate PTX code, disable CUTLASS ops") parser.add_argument("--build_llvm", action="store_true", help="Build Clang/LLVM compiler from source, default disabled") parser.add_argument("--no_build_llvm", dest="build_llvm", action="store_false") parser.set_defaults(build_llvm=False) parser.add_argument("--debug_llvm", action="store_true", help="Enable LLVM compiler code debugging, default disabled") parser.add_argument("--no_debug_llvm", dest="debug_llvm", action="store_false") parser.set_defaults(debug_llvm=False) parser.add_argument("--standalone", action="store_true", help="Use standalone LLVM-based JIT compiler, default enabled") parser.add_argument("--no_standalone", dest="standalone", action="store_false") parser.set_defaults(standalone=True) args = parser.parse_args() # set build output path off this file base_path = os.path.dirname(os.path.realpath(__file__)) build_path = os.path.join(base_path, "warp") print(args) warp.config.verbose = args.verbose warp.config.mode = args.mode warp.config.verify_fp = args.verify_fp warp.config.fast_math = args.fast_math # See PyTorch for reference on how to find nvcc.exe more robustly # https://pytorch.org/docs/stable/_modules/torch/utils/cpp_extension.html#CppExtension def find_cuda(): # Guess #1 cuda_home = os.environ.get("CUDA_HOME") or os.environ.get("CUDA_PATH") return cuda_home # setup CUDA paths if sys.platform == "darwin": warp.config.cuda_path = None else: if args.cuda_path: warp.config.cuda_path = args.cuda_path else: warp.config.cuda_path = find_cuda() # setup MSVC and WinSDK paths if os.name == "nt": if args.sdk_path and args.msvc_path: # user provided MSVC set_msvc_compiler(msvc_path=args.msvc_path, sdk_path=args.sdk_path) else: # attempt to find MSVC in environment (will set vcvars) warp.config.host_compiler = find_host_compiler() if not warp.config.host_compiler: print("Warp build error: Could not find MSVC compiler") sys.exit(1) # return platform specific shared library name def lib_name(name): if sys.platform == "win32": return f"{name}.dll" elif sys.platform == "darwin": return f"lib{name}.dylib" else: return f"{name}.so" try: # build warp.dll cpp_sources = [ "native/warp.cpp", "native/crt.cpp", "native/cuda_util.cpp", "native/mesh.cpp", "native/hashgrid.cpp", "native/reduce.cpp", "native/runlength_encode.cpp", "native/sort.cpp", "native/sparse.cpp", "native/volume.cpp", "native/marching.cpp", "native/cutlass_gemm.cpp", ] warp_cpp_paths = [os.path.join(build_path, cpp) for cpp in cpp_sources] if warp.config.cuda_path is None: print("Warning: CUDA toolchain not found, building without CUDA support") warp_cu_path = None else: warp_cu_path = os.path.join(build_path, "native/warp.cu") warp_dll_path = os.path.join(build_path, f"bin/{lib_name('warp')}") build_dll( dll_path=warp_dll_path, cpp_paths=warp_cpp_paths, cu_path=warp_cu_path, mode=warp.config.mode, verify_fp=warp.config.verify_fp, fast_math=args.fast_math, quick=args.quick, ) # build warp-clang.dll if args.standalone: import build_llvm if args.build_llvm: build_llvm.build_from_source(args) build_llvm.build_warp_clang(args, lib_name("warp-clang")) except Exception as e: # output build error print(f"Warp build error: {e}") # report error sys.exit(1)
warp-main
build_lib.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Public Python API exposed by the omni.warp.nodes package.""" __all__ = [ "AttrTracking", "NodeTimer", "basis_curves_copy_bundle", "basis_curves_create_bundle", "basis_curves_get_curve_count", "basis_curves_get_curve_vertex_counts", "basis_curves_get_display_color", "basis_curves_get_local_extent", "basis_curves_get_point_count", "basis_curves_get_points", "basis_curves_get_widths", "basis_curves_get_world_extent", "bundle_get_attr", "bundle_get_child_count", "bundle_get_prim_type", "bundle_get_world_xform", "bundle_has_changed", "bundle_have_attrs_changed", "bundle_set_prim_type", "bundle_set_world_xform", "from_omni_graph", "mesh_create_bundle", "mesh_copy_bundle", "mesh_get_display_color", "mesh_get_face_count", "mesh_get_face_vertex_counts", "mesh_get_face_vertex_indices", "mesh_get_local_extent", "mesh_get_normals", "mesh_get_point_count", "mesh_get_points", "mesh_triangulate", "mesh_get_uvs", "mesh_get_velocities", "mesh_get_vertex_count", "mesh_get_world_extent", "points_create_bundle", "points_copy_bundle", "points_get_display_color", "points_get_local_extent", "points_get_masses", "points_get_point_count", "points_get_points", "points_get_velocities", "points_get_widths", "points_get_world_extent", "type_convert_og_to_warp", "type_convert_sdf_name_to_warp", "type_convert_sdf_name_to_og", ] from omni.warp.nodes._impl.attributes import ( AttrTracking, from_omni_graph, ) from omni.warp.nodes._impl.bundles import ( bundle_get_attr, bundle_get_child_count, bundle_get_prim_type, bundle_get_world_xform, bundle_has_changed, bundle_have_attrs_changed, ) from omni.warp.nodes._impl.common import ( NodeTimer, type_convert_og_to_warp, type_convert_sdf_name_to_warp, type_convert_sdf_name_to_og, ) from omni.warp.nodes._impl.basis_curves import ( basis_curves_copy_bundle, basis_curves_create_bundle, basis_curves_get_curve_count, basis_curves_get_curve_vertex_counts, basis_curves_get_display_color, basis_curves_get_local_extent, basis_curves_get_point_count, basis_curves_get_points, basis_curves_get_widths, basis_curves_get_world_extent, ) from omni.warp.nodes._impl.mesh import ( mesh_create_bundle, mesh_copy_bundle, mesh_get_display_color, mesh_get_face_count, mesh_get_face_vertex_counts, mesh_get_face_vertex_indices, mesh_get_local_extent, mesh_get_normals, mesh_get_point_count, mesh_get_points, mesh_triangulate, mesh_get_uvs, mesh_get_velocities, mesh_get_vertex_count, mesh_get_world_extent, ) from omni.warp.nodes._impl.points import ( points_create_bundle, points_copy_bundle, points_get_display_color, points_get_local_extent, points_get_masses, points_get_point_count, points_get_points, points_get_velocities, points_get_widths, points_get_world_extent, )
warp-main
exts/omni.warp/omni/warp/nodes/__init__.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Node retrieving a time with a fixed time step.""" import omni.timeline class OgnFixedTimeState: def __init__(self): self.time = 0.0 self.initialized = False class OgnFixedTime: """Node.""" @staticmethod def internal_state(): return OgnFixedTimeState() @staticmethod def compute(db) -> bool: """Compute the outputs from the current input""" timeline = omni.timeline.get_timeline_interface() context = db.internal_state if context.initialized == False: context.time = db.inputs.start context.initialized = True db.outputs.time = context.time if timeline.is_playing(): context.time += 1.0 / db.inputs.fps return True
warp-main
exts/omni.warp/omni/warp/nodes/_impl/OgnFixedTime.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Sample node that simulates flocking behaviors by animating prim attributes.""" import math import traceback import numpy as np import carb.settings import omni.kit.app import omni.graph.core as og import omni.usd import usdrt import warp as wp import omni.warp.nodes from omni.warp.nodes.ogn.OgnSamplePrimFlockingDatabase import OgnSamplePrimFlockingDatabase # device used for flocking simulation MAIN_DEVICE = "cuda:0" # device used for updating colors COLOR_DEVICE = "cpu" # Kernels # ----------------------------------------------------------------------------- @wp.struct class Boid: vel: wp.vec3f wander_angles: wp.vec2f mass: float group: int @wp.struct class Obstacle: pos: wp.vec3f radius: float @wp.struct class World: lower: wp.vec3f upper: wp.vec3f grid: wp.uint64 seed: int biases: wp.mat33f obstacles: wp.array(dtype=Obstacle) @wp.kernel(enable_backward=False) def copy_positions(dst: wp.array(dtype=wp.vec3f), src: wp.fabricarray(dtype=wp.vec3d)): tid = wp.tid() pos = src[tid] dst[tid] = wp.vec3f(float(pos[0]), float(pos[1]), float(pos[2])) @wp.kernel(enable_backward=False) def assign_colors( glows: wp.array(dtype=float), groups: wp.array(dtype=int), color_ramps: wp.array2d(dtype=wp.vec3f), colors: wp.fabricarrayarray(dtype=wp.vec3f) ): tid = wp.tid() glow = glows[tid] group = groups[tid] if glow < 0.4: alpha = glow / 0.4 colors[tid][0] = (1.0 - alpha) * color_ramps[group, 0] + alpha * color_ramps[group, 1] elif glow < 0.8: alpha = (glow - 0.4) / 0.4 colors[tid][0] = (1.0 - alpha) * color_ramps[group, 1] + alpha * color_ramps[group, 2] else: alpha = (glow - 0.8) / 0.2 colors[tid][0] = (1.0 - alpha) * color_ramps[group, 2] + alpha * color_ramps[group, 3] @wp.func def intersect_ray_sphere(origin: wp.vec3f, dir: wp.vec3f, center: wp.vec3f, radius: float): to_sphere = center - origin tc = wp.dot(to_sphere, dir) if tc < 0.0: return tc d = wp.sqrt(wp.length_sq(to_sphere) - tc * tc) if d < 0.0: return -999999.0 ts = wp.sqrt(radius * radius - d * d) return tc - ts @wp.kernel(enable_backward=False) def boids( boids: wp.array(dtype=Boid), world: World, dt: float, positions: wp.fabricarray(dtype=wp.vec3d), orientations: wp.fabricarray(dtype=wp.quatf), glows: wp.array(dtype=float), ): tid = wp.tid() boid = boids[tid] old_pos = positions[tid] old_rot = orientations[tid] pos = wp.vec3(float(old_pos[0]), float(old_pos[1]), float(old_pos[2])) vel = boid.vel forward = wp.quat_rotate(old_rot, wp.vec3f(1.0, 0.0, 0.0)) force = wp.vec3f(0.0) # obstacle avoidance depenetration_force = 100.0 avoidance_dist = 20.0 avoidance_force = 20.0 obstacles = world.obstacles num_obstacles = obstacles.shape[0] for i in range(num_obstacles): obstacle = obstacles[i] to_obstacle = obstacle.pos - pos # use padded radius radius = obstacle.radius + 2.0 if wp.length(to_obstacle) < radius: # depenetration force += depenetration_force * wp.normalize(-to_obstacle) else: # avoidance t = intersect_ray_sphere(pos, forward, obstacle.pos, radius) if t > 0.0 and t < avoidance_dist: intersection_point = pos + t * forward out = intersection_point - obstacle.pos force += avoidance_force * (1.0 - t / avoidance_dist) * wp.normalize(out) # wander r = 10.0 s0 = wp.sin(boid.wander_angles[0]) c0 = wp.cos(boid.wander_angles[0]) s1 = wp.sin(boid.wander_angles[1]) c1 = wp.cos(boid.wander_angles[1]) p = wp.vec3f(r * s0 * s1, r * s0 * c1, r * c0) offset = r + 1.0 target = pos + wp.quat_rotate(old_rot, wp.vec3f(offset, 0.0, 0.0) + p) wander_force = 7.0 force += wander_force * wp.normalize(target - pos) state = wp.rand_init(world.seed, tid) angle0 = boid.wander_angles[0] + wp.pi * (0.1 - 0.2 * wp.randf(state)) angle1 = boid.wander_angles[1] + wp.pi * (0.1 - 0.2 * wp.randf(state)) boid.wander_angles = wp.vec2f(angle0, angle1) cohesion_radius = 15.0 cohesion_force = 20.0 separation_radius = 10.0 separation_force = 100.0 # flocking query = wp.hash_grid_query(world.grid, pos, cohesion_radius) num_neighbors = int(0) num_align_neighbors = int(0) num_cohesion_neighbors = float(0) num_decohesion_neighbors = float(0) cohesion_pos_sum = wp.vec3f(0.0) decohesion_pos_sum = wp.vec3f(0.0) vel_sum = wp.vec3f(0.0) for index in query: if index != tid: other = boids[index] other_pos64 = positions[index] other_pos = wp.vec3f(float(other_pos64[0]), float(other_pos64[1]), float(other_pos64[2])) dist = wp.length(pos - other_pos) if dist < cohesion_radius: to_other = wp.normalize(other_pos - pos) # separation if dist < separation_radius: force -= separation_force * (1.0 - dist / separation_radius) * to_other # cohesion bias = world.biases[boid.group, other.group] if bias > 0.0: cohesion_pos_sum += bias * other_pos num_cohesion_neighbors += bias else: decohesion_pos_sum -= bias * other_pos num_decohesion_neighbors -= bias # alignment if other.group == boid.group: vel_sum += bias * other.vel num_align_neighbors += 1 num_neighbors += 1 # align if num_align_neighbors > 0: vel_avg = vel_sum / float(num_align_neighbors) force += vel_avg - vel # cohere if num_cohesion_neighbors > 0.0: cohesion_pos_avg = cohesion_pos_sum / float(num_cohesion_neighbors) force += cohesion_force * wp.normalize(cohesion_pos_avg - pos) # decohere (group separation) if num_decohesion_neighbors > 0.0: decohesion_pos_avg = decohesion_pos_sum / float(num_decohesion_neighbors) force += cohesion_force * wp.normalize(pos - decohesion_pos_avg) # boundaries boundary_force = 20.0 if pos[0] >= world.upper[0]: force += wp.vec3f(-boundary_force, 0.0, 0.0) if pos[0] <= world.lower[0]: force += wp.vec3f(boundary_force, 0.0, 0.0) if pos[1] >= world.upper[1]: force += wp.vec3f(0.0, -0.5 * boundary_force, 0.0) if pos[1] <= world.lower[1]: force += wp.vec3f(0.0, 5.0 * boundary_force, 0.0) if pos[2] >= world.upper[2]: force += wp.vec3f(0.0, 0.0, -boundary_force) if pos[2] <= world.lower[2]: force += wp.vec3f(0.0, 0.0, boundary_force) vel += dt * force / boid.mass # clamp speed max_speed = 15.0 speed_sq = wp.length_sq(vel) if speed_sq > max_speed * max_speed: vel = max_speed * wp.normalize(vel) # update position pos += dt * vel positions[tid] = wp.vec3d(wp.float64(pos[0]), wp.float64(pos[1]), wp.float64(pos[2])) # update orientation dq = wp.quat_between_vectors(forward, vel) orientations[tid] = wp.normalize(dq * orientations[tid]) # save velocity boid.vel = vel boids[tid] = boid # update glow as an exponentially weighted moving average to keep it smooth glow = wp.min(1.0, float(num_neighbors) / 25.0) glow_alpha = 0.25 glows[tid] = glow_alpha * glow + (1.0 - glow_alpha) * glows[tid] # Internal State # ------------------------------------------------------------------------------ class InternalState: """Internal state for the node.""" def __init__(self) -> None: self.initialized = False def initialize(self, device): # requirement checks ext_mgr = omni.kit.app.get_app().get_extension_manager() # make sure USDRT is enabled usdrt_ext_name = "usdrt.scenegraph" if not ext_mgr.is_extension_enabled(usdrt_ext_name): raise RuntimeError(f"This sample requires the '{usdrt_ext_name}' extension to be enabled") # check USDRT version to make sure we have a working SelectPrims() usdrt_ext_id = ext_mgr.get_enabled_extension_id(usdrt_ext_name) usdrt_version_string = ext_mgr.get_extension_dict(usdrt_ext_id)["package"]["version"] usdrt_version = tuple(int(v) for v in usdrt_version_string.split(".")) if usdrt_version < (7, 3, 0): raise RuntimeError(f"USDRT version 7.3.0 is required, found {usdrt_version_string}. Please update to a newer version of Kit to run this sample.") # check if FSD is enabled settings = carb.settings.get_settings() is_fsd_enabled = settings.get_as_bool("/app/useFabricSceneDelegate") if not is_fsd_enabled: print("***") print("*** Flocking demo warning: The Fabric Scene Delegate is not enabled.") print("*** Some features, like color animation, may not work.") print("*** You can enable FSD in Preferences->Rendering.") print("***") stage_id = omni.usd.get_context().get_stage_id() usdrt_stage = usdrt.Usd.Stage.Attach(stage_id) # import to Fabric for prim in usdrt_stage.Traverse(): pass # set up for Fabric interop boid_root = usdrt_stage.GetPrimAtPath(usdrt.Sdf.Path("/World/Boids")) boid_prims = boid_root.GetChildren() for prim in boid_prims: pos = prim.GetAttribute("xformOp:translate").Get() prim.CreateAttribute("_worldPosition", usdrt.Sdf.ValueTypeNames.Double3, True).Set(pos) prim.CreateAttribute("_worldOrientation", usdrt.Sdf.ValueTypeNames.Quatf, True).Set(usdrt.Gf.Quatf(1, 0, 0, 0)) # create a custom tag for the boids (could use applied schema too) prim.CreateAttribute("BoidTag", usdrt.Sdf.ValueTypeNames.AppliedSchemaTypeTag, True) num_boids = len(boid_prims) self.stage = usdrt_stage self.require_schemas = ["BoidTag"] self.transform_attrs = [ (usdrt.Sdf.ValueTypeNames.Double3, "_worldPosition", usdrt.Usd.Access.ReadWrite), (usdrt.Sdf.ValueTypeNames.Quatf, "_worldOrientation", usdrt.Usd.Access.ReadWrite), ] self.color_attrs = [ (usdrt.Sdf.ValueTypeNames.Float3Array, "primvars:_emissive", usdrt.Usd.Access.ReadWrite), ] npboids = np.zeros(num_boids, dtype=Boid.numpy_dtype()) angles = math.pi - 2 * math.pi * np.random.rand(num_boids) vx = 20 * np.sin(angles) vz = 20 * np.cos(angles) npboids["vel"][:, 0] = vx npboids["vel"][:, 2] = vz npboids["wander_angles"][:, 0] = math.pi * np.random.rand(num_boids) npboids["wander_angles"][:, 1] = 2 * math.pi * np.random.rand(num_boids) min_mass = 1.0 max_mass = 2.0 npboids["mass"][:] = min_mass + (max_mass - min_mass) * np.random.rand(num_boids) # we can have up to 3 groups currently, but that can be easily extended self.num_groups = 2 npboids["group"] = np.random.randint(self.num_groups, size=num_boids) num_obstacles = 3 npobstacles = np.zeros(num_obstacles, dtype=Obstacle.numpy_dtype()) npobstacles["pos"][0] = (-20, 30, -40) npobstacles["radius"][0] = 40 npobstacles["pos"][1] = (90, 30, 30) npobstacles["radius"][1] = 30 npobstacles["pos"][2] = (-100, 30, 60) npobstacles["radius"][2] = 25 self.grid = wp.HashGrid(dim_x=32, dim_y=32, dim_z=32, device=device) biases = wp.mat33f(-1.0) for i in range(self.num_groups): biases[i, i] = 1.0 world = World() world.lower = (-120, 20, -90) world.upper = (120, 40, 90) world.grid = self.grid.id world.seed = 0 world.biases = biases world.obstacles = wp.array(npobstacles, dtype=Obstacle, device=device) self.world = world self.num_boids = num_boids self.boids = wp.array(npboids, dtype=Boid, device=device) # color ramps per group color_ramps = [ [[0.3, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 0.5, 0.0], [1.0, 1.0, 0.5]], [[0.0, 0.0, 0.3], [0.0, 0.0, 1.0], [0.0, 0.5, 1.0], [0.5, 1.0, 1.0]], [[0.0, 0.3, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.5], [0.8, 1.0, 0.8]], ] # copy of positions used for updating the spatial grid self.positions = wp.zeros(num_boids, dtype=wp.vec3f, device=device) # color ramps are only used on the COLOR_DEVICE self.color_ramps_c = wp.array(color_ramps, dtype=wp.vec3f, device=COLOR_DEVICE) # keep a copy of group assignments on the COLOR_DEVICE self.groups_c = wp.array(npboids["group"], device=COLOR_DEVICE) # if we use different devices, the glow array must be copied on each update if COLOR_DEVICE == device: # use the same glow array on each device, no copying needed self.glows_c = wp.zeros(num_boids, dtype=float, device=device) self.glows_m = self.glows_c elif COLOR_DEVICE == "cpu" or device == "cpu": # use a pinned host array for async copying glows between devices glows_h = wp.zeros(num_boids, dtype=float, device="cpu", pinned=True) if COLOR_DEVICE == "cpu": self.glows_c = glows_h self.glows_m = wp.zeros_like(glows_h, device=device) else: self.glows_c = wp.zeros_like(glows_h, device=COLOR_DEVICE) self.glows_m = glows_h else: # two different CUDA devices self.glows_c = wp.zeros(num_boids, dtype=float, device=COLOR_DEVICE) self.glows_m = wp.zeros(num_boids, dtype=float, device=device) # ...but that's currently not supported in Kit raise ValueError("Multiple GPUs not supported yet") self.time = 0.0 self.min_group_think = 3.0 self.max_group_think = 10.0 self.next_group_think = self.min_group_think + (self.max_group_think - self.min_group_think) * np.random.rand() self.frameno = 0 self.initialized = True # Compute # ------------------------------------------------------------------------------ def compute(db: OgnSamplePrimFlockingDatabase) -> None: """Evaluates the node.""" state = db.internal_state device = wp.get_device() if not state.initialized: state.initialize(device) state.frameno += 1 # get transform attributes selection = state.stage.SelectPrims( require_applied_schemas=state.require_schemas, require_attrs=state.transform_attrs, device=str(device) ) fpos = wp.fabricarray(data=selection, attrib="_worldPosition") frot = wp.fabricarray(data=selection, attrib="_worldOrientation") # use fixed dt for stability dt = 1.0 / 60.0 state.time += dt # copy positions to a contiguous array and convert to vec3f so they can be used to update the spatial grid wp.launch(copy_positions, dim=state.num_boids, inputs=[state.positions, fpos]) # grid cell radius should be a bit bigger than query radius cell_radius = 20.0 state.grid.build(state.positions, cell_radius) state.world.seed = state.frameno # step the flocking simulation wp.launch(boids, dim=state.num_boids, inputs=[state.boids, state.world, dt, fpos, frot, state.glows_m]) # async copy from main device and remember the stream so we can sync later if COLOR_DEVICE != device: if device.is_cuda: work_stream = device.stream else: work_stream = wp.get_stream(COLOR_DEVICE) wp.copy(state.glows_c, state.glows_m, stream=work_stream) else: work_stream = None # get color attributes color_selection = state.stage.SelectPrims( require_applied_schemas=state.require_schemas, require_attrs=state.color_attrs, device=COLOR_DEVICE ) fcolor = wp.fabricarray(data=color_selection, attrib="primvars:_emissive") # occasionally update group biases (whether they are attracted or repelled from each other) if state.num_groups > 1 and state.time >= state.next_group_think: # pick two random groups group0 = np.random.randint(state.num_groups) group1 = np.random.randint(state.num_groups) while group0 == group1: group1 = np.random.randint(state.num_groups) # bias towards intra-group separation, but also allow attraction state.world.biases[group0, group1] = 1.0 - 5.0 * np.random.rand() state.world.biases[group1, group0] = 1.0 - 5.0 * np.random.rand() state.next_group_think += state.min_group_think + (state.max_group_think - state.min_group_think) * np.random.rand() if work_stream is not None: # wait for async GPU work to complete wp.synchronize_stream(work_stream) # update colors wp.launch(assign_colors, dim=state.num_boids, inputs=[state.glows_c, state.groups_c, state.color_ramps_c, fcolor], device=COLOR_DEVICE) # Node Entry Point # ------------------------------------------------------------------------------ class OgnSamplePrimFlocking: """Node.""" @staticmethod def internal_state() -> InternalState: return InternalState() @staticmethod def compute(db: OgnSamplePrimFlockingDatabase) -> None: device = wp.get_device(MAIN_DEVICE) try: with wp.ScopedDevice(device): compute(db) except Exception: db.log_error(traceback.format_exc()) return # Fire the execution for the downstream nodes. db.outputs.execOut = og.ExecutionAttributeState.ENABLED
warp-main
exts/omni.warp/omni/warp/nodes/_impl/OgnSamplePrimFlocking.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Warp kernel exposed as an OmniGraph node.""" import traceback from typing import Tuple import omni.graph.core as og import omni.graph.tools.ogn as ogn import omni.timeline import warp as wp from omni.warp.nodes._impl.kernel import ( EXPLICIT_SOURCE, InternalStateBase, UserAttributesEvent, deserialize_user_attribute_descs, gather_attribute_infos, get_kernel_args, initialize_kernel_module, validate_input_arrays, write_output_attrs, ) from omni.warp.nodes._impl.attributes import attr_join_name from omni.warp.nodes.ogn.OgnKernelDatabase import OgnKernelDatabase QUIET_DEFAULT = wp.config.quiet ATTR_PORT_TYPE_INPUT = og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT ATTR_PORT_TYPE_OUTPUT = og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT # Internal State # ------------------------------------------------------------------------------ class InternalState(InternalStateBase): """Internal state for the node.""" def __init__(self) -> None: super().__init__() self.attr_tracking = omni.warp.nodes.AttrTracking( ( "dimCount", ), ) def needs_initialization( self, db: OgnKernelDatabase, check_file_modified_time: bool, ) -> bool: """Checks if the internal state needs to be (re)initialized.""" if super().needs_initialization( db, check_file_modified_time=check_file_modified_time, ): return True if self.attr_tracking.have_attrs_changed(db): return True return False def initialize( self, db: OgnKernelDatabase, kernel_dim_count: int, ) -> bool: """Initializes the internal state and recompile the kernel.""" if not super().initialize(db): return False # Retrieve the user attribute descriptions, if any. attr_descs = deserialize_user_attribute_descs(db.state.userAttrDescs) # Gather the information about each attribute to pass to the kernel. attr_infos = gather_attribute_infos( db.node, db.inputs, db.outputs, attr_descs, kernel_dim_count, ) try: kernel_module = initialize_kernel_module( attr_infos, self._code_provider, self._code_str, self._code_file, ) except Exception: db.log_error(traceback.format_exc()) return False # Define the base class members. self.attr_infos = attr_infos self.kernel_module = kernel_module self.attr_tracking.update_state(db) return True # Compute # ------------------------------------------------------------------------------ def infer_kernel_shape( db: OgnKernelDatabase, ) -> Tuple[int, ...]: """Infers the shape of the kernel.""" source = db.inputs.dimSource if source == EXPLICIT_SOURCE: dim_count = min(max(db.inputs.dimCount, 0), wp.types.ARRAY_MAX_DIMS) return tuple(max(getattr(db.inputs, "dim{}".format(i + 1)), 0) for i in range(dim_count)) try: value = getattr(db.inputs, source) except AttributeError: raise RuntimeError( "The attribute '{}' used to source the dimension doesn't exist.".format( attr_join_name(ATTR_PORT_TYPE_INPUT, source) ) ) try: return (value.shape[0],) except AttributeError: raise RuntimeError( "The attribute '{}' used to source the dimension isn't an array.".format( attr_join_name(ATTR_PORT_TYPE_INPUT, source) ) ) def compute(db: OgnKernelDatabase, device: wp.context.Device) -> None: """Evaluates the node.""" db.set_dynamic_attribute_memory_location( on_gpu=device.is_cuda, gpu_ptr_kind=og.PtrToPtrKind.CPU, ) # Infer the kernels's shape. kernel_shape = infer_kernel_shape(db) # Ensure that our internal state is correctly initialized. timeline = omni.timeline.get_timeline_interface() if db.internal_state.needs_initialization(db, timeline.is_stopped()): if not db.internal_state.initialize(db, len(kernel_shape)): return db.internal_state.is_valid = True # Exit early if there are no outputs defined. if not db.internal_state.attr_infos[ATTR_PORT_TYPE_OUTPUT]: return # Retrieve the inputs and outputs argument values to pass to the kernel. inputs, outputs = get_kernel_args( db.inputs, db.outputs, db.internal_state.attr_infos, db.internal_state.kernel_module, kernel_shape, ) # Ensure that all array input values are valid. validate_input_arrays(db.node, db.internal_state.attr_infos, inputs) # Launch the kernel. wp.launch( db.internal_state.kernel_module.compute, dim=kernel_shape, inputs=[inputs], outputs=[outputs], ) # Write the output values to the node's attributes. write_output_attrs(db.outputs, db.internal_state.attr_infos, outputs) # Node Entry Point # ------------------------------------------------------------------------------ class OgnKernel: """Warp's kernel node.""" @staticmethod def internal_state() -> InternalState: return InternalState() @staticmethod def initialize(graph_context: og.GraphContext, node: og.Node) -> None: # Populate the devices tokens. attr = og.Controller.attribute("inputs:device", node) if attr.get_metadata(ogn.MetadataKeys.ALLOWED_TOKENS) is None: attr.set_metadata(ogn.MetadataKeys.ALLOWED_TOKENS, ",".join(["cpu", "cuda:0"])) @staticmethod def compute(db: OgnKernelDatabase) -> None: try: device = wp.get_device(db.inputs.device) except Exception: # Fallback to a default device. # This can happen due to a scene being authored on a device # (e.g.: `cuda:1`) that is not available to another user opening # that same scene. device = wp.get_device("cuda:0") try: with wp.ScopedDevice(device): compute(db, device) except Exception: db.internal_state.is_valid = False db.log_error(traceback.format_exc()) wp.config.quiet = True return else: wp.config.quiet = QUIET_DEFAULT # Reset the user attributes event since it has now been processed. db.state.userAttrsEvent = UserAttributesEvent.NONE # Fire the execution for the downstream nodes. db.outputs.execOut = og.ExecutionAttributeState.ENABLED
warp-main
exts/omni.warp/omni/warp/nodes/_impl/OgnKernel.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Helpers to author point cloud geometries represented as OmniGraph bundles.""" from math import inf from typing import Optional import numpy as np import omni.graph.core as og import warp as wp from omni.warp.nodes._impl.attributes import ( attr_get, attr_get_array_on_gpu, attr_set, ) from omni.warp.nodes._impl.bundles import ( bundle_copy_attr_value, bundle_create_attr, bundle_create_child, bundle_create_metadata_attr, bundle_get_attr, bundle_get_world_xform, bundle_set_prim_type, bundle_set_world_xform, ) # Public API # ------------------------------------------------------------------------------ def points_create_bundle( dst_bundle: og.BundleContents, point_count: int, xform: Optional[np.ndarray] = None, create_display_color: bool = False, create_masses: bool = False, create_velocities: bool = False, create_widths: bool = False, child_idx: int = 0, ) -> None: """Creates and initializes point cloud attributes within a bundle.""" child_bundle = bundle_create_child(dst_bundle, child_idx) bundle_create_attr( child_bundle, "points", og.Type( og.BaseDataType.FLOAT, tuple_count=3, array_depth=1, role=og.AttributeRole.POSITION, ), size=point_count, ) bundle_set_prim_type(dst_bundle, "Points", child_idx=child_idx) if xform is not None: bundle_set_world_xform(dst_bundle, xform, child_idx=child_idx) if create_display_color: bundle_create_attr( child_bundle, "primvars:displayColor", og.Type( og.BaseDataType.FLOAT, tuple_count=3, array_depth=1, role=og.AttributeRole.COLOR, ), size=point_count, ) interp_attr = bundle_create_metadata_attr( child_bundle, "primvars:displayColor", "interpolation", og.Type( og.BaseDataType.TOKEN, tuple_count=1, array_depth=0, role=og.AttributeRole.NONE, ), ) attr_set(interp_attr, "vertex") if create_masses: bundle_create_attr( child_bundle, "masses", og.Type( og.BaseDataType.FLOAT, tuple_count=1, array_depth=1, role=og.AttributeRole.NONE, ), size=point_count, ) if create_velocities: bundle_create_attr( child_bundle, "velocities", og.Type( og.BaseDataType.FLOAT, tuple_count=3, array_depth=1, role=og.AttributeRole.VECTOR, ), size=point_count, ) if create_widths: bundle_create_attr( child_bundle, "widths", og.Type( og.BaseDataType.FLOAT, tuple_count=1, array_depth=1, role=og.AttributeRole.NONE, ), size=point_count, ) def points_copy_bundle( dst_bundle: og.BundleContents, src_bundle: og.BundleContents, deep_copy: bool = False, child_idx: int = 0, ) -> None: """Creates and initializes points attributes from an existing bundle.""" dst_child_bundle = bundle_create_child(dst_bundle, child_idx) src_child_bundle = src_bundle.bundle.get_child_bundle(child_idx) dst_child_bundle.copy_bundle(src_child_bundle) if deep_copy: bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "points", wp.vec3) bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "primvars:displayColor", wp.vec3) bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "masses", float) bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "velocities", wp.vec3) bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "widths", float) def points_get_point_count( bundle: og.BundleContents, child_idx: int = 0, ) -> int: """Retrieves the number of points.""" return bundle_get_attr(bundle, "points", child_idx).size() def points_get_points( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=wp.vec3): """Retrieves the bundle points attribute as a Warp array.""" attr = bundle_get_attr(bundle, "points", child_idx) return attr_get_array_on_gpu(attr, wp.vec3, read_only=bundle.read_only) def points_get_velocities( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=wp.vec3): """Retrieves the bundle velocities attribute as a Warp array.""" attr = bundle_get_attr(bundle, "velocities", child_idx) return attr_get_array_on_gpu(attr, wp.vec3, read_only=bundle.read_only) def points_get_widths( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=float): """Retrieves the bundle widths attribute as a Warp array.""" attr = bundle_get_attr(bundle, "widths", child_idx) return attr_get_array_on_gpu(attr, float, read_only=bundle.read_only) def points_get_masses( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=float): """Retrieves the bundle masses attribute as a Warp array.""" attr = bundle_get_attr(bundle, "masses", child_idx) return attr_get_array_on_gpu(attr, float, read_only=bundle.read_only) def points_get_display_color( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=wp.vec3): """Retrieves the bundle display color attribute as a Warp array.""" attr = bundle_get_attr(bundle, "primvars:displayColor", child_idx) return attr_get_array_on_gpu(attr, wp.vec3, read_only=bundle.read_only) def points_get_local_extent( bundle: og.BundleContents, child_idx: int = 0, ) -> np.ndarray: """Retrieves the local extent of the geometry points.""" # Some standard workflows include a single 'extent' attribute when defining # geometry primitives on the stage. attr = bundle_get_attr(bundle, "extent", child_idx) if attr is not None: return attr_get(attr) # Alternatively, the ReadPrims node offers an option to compute the bounding # box which results in a triple of 'bboxMinCorner', 'bboxMaxCorner', # and 'bboxTransform' attributes. min_attr = bundle_get_attr(bundle, "bboxMinCorner", child_idx) max_attr = bundle_get_attr(bundle, "bboxMaxCorner", child_idx) if min_attr is not None and max_attr is not None: return np.stack( ( attr_get(min_attr), attr_get(max_attr), ), ) # The last resort is to compute the extent ourselves from # the point positions. points = points_get_points(bundle, child_idx=child_idx) min_extent = wp.array((+inf, +inf, +inf), dtype=wp.vec3) max_extent = wp.array((-inf, -inf, -inf), dtype=wp.vec3) wp.launch( _compute_extent_kernel, dim=len(points), inputs=[points], outputs=[min_extent, max_extent], ) return np.concatenate((min_extent.numpy(), max_extent.numpy())) def points_get_world_extent( bundle: og.BundleContents, axis_aligned: bool = False, child_idx: int = 0, ) -> np.ndarray: """Retrieves the world extent of the geometry points.""" extent = points_get_local_extent(bundle, child_idx=child_idx) xform = bundle_get_world_xform(bundle, child_idx=child_idx) if axis_aligned: points = np.array( ( (extent[0][0], extent[0][1], extent[0][2]), (extent[0][0], extent[0][1], extent[1][2]), (extent[0][0], extent[1][1], extent[0][2]), (extent[0][0], extent[1][1], extent[1][2]), (extent[1][0], extent[1][1], extent[1][2]), (extent[1][0], extent[0][1], extent[1][2]), (extent[1][0], extent[1][1], extent[0][2]), (extent[1][0], extent[0][1], extent[0][2]), ), ) else: points = extent points = np.pad(points, ((0, 0), (0, 1)), constant_values=1) points = np.dot(xform.T, points[:, :, None]).squeeze()[:-1, :].T return np.array( ( np.amin(points, axis=0), np.amax(points, axis=0), ) ) # Private Helpers # ------------------------------------------------------------------------------ @wp.kernel(enable_backward=False) def _compute_extent_kernel( points: wp.array(dtype=wp.vec3), out_min_extent: wp.array(dtype=wp.vec3), out_max_extent: wp.array(dtype=wp.vec3), ): """Computes the extent of a point cloud.""" tid = wp.tid() wp.atomic_min(out_min_extent, 0, points[tid]) wp.atomic_max(out_max_extent, 0, points[tid])
warp-main
exts/omni.warp/omni/warp/nodes/_impl/points.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Backend implementation for kernel node(s).""" from __future__ import annotations from enum import IntFlag import functools import hashlib import importlib.util import json import operator import os import tempfile from typing import ( Any, Callable, Mapping, NamedTuple, Optional, Sequence, Tuple, Union, ) import omni.graph.core as og import warp as wp from omni.warp.nodes._impl.common import ( IntEnum, get_warp_type_from_data_type_name, type_convert_og_to_warp, ) from omni.warp.nodes._impl.attributes import ( ATTR_BUNDLE_TYPE, attr_cast_array_to_warp, attr_get_base_name, attr_get_name, attr_join_name, ) _ATTR_PORT_TYPE_INPUT = og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT _ATTR_PORT_TYPE_OUTPUT = og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT EXPLICIT_SOURCE = "explicit" # Enumerators # ------------------------------------------------------------------------------ class UserAttributesEvent(IntFlag): """User attributes event.""" NONE = 0 CREATED = 1 << 0 REMOVED = 1 << 1 class OutputArrayShapeSource(IntEnum): """Method to infer the shape of output attribute arrays.""" AS_INPUT_OR_AS_KERNEL = (0, "as input if any, or as kernel") AS_KERNEL = (1, "as kernel") class OutputBundleTypeSource(IntEnum): """Method to infer the type of output attribute bundles.""" AS_INPUT = (0, "as input if any") AS_INPUT_OR_EXPLICIT = (1, "as input if any, or explicit") EXPLICIT = (2, "explicit") class ArrayAttributeFormat(IntEnum): """Format describing how attribute arrays are defined on the node.""" RAW = (0, "raw") BUNDLE = (1, "bundle") # User Attributes Description # ------------------------------------------------------------------------------ class UserAttributeDesc(NamedTuple): """Description of an attribute added dynamically by users through the UI. This struct is what the Attribute Editor UI passes to the node in order to communicate any attribute metadata. """ port_type: og.AttributePortType base_name: str data_type_name: str is_array: bool array_format: ArrayAttributeFormat array_shape_source: Union[None, OutputArrayShapeSource] optional: bool @classmethod def deserialize( cls, data: Mapping[str:Any], ) -> Optional[UserAttributeDesc]: """Creates a new instance based on a serialized representation.""" # Retrieve the port type. It's invalid not to have any set. port_type = data.get("port_type") if port_type is None: return None port_type = og.AttributePortType(port_type) # Define sensible default values. # Although this class requires all of its member values to be explicitly # defined upon initialization, it's possible that the incoming data was # serialized with an older version of this class, in which case we might # want to try filling any gap. values = { "array_format": ArrayAttributeFormat.RAW, "array_shape_source": ( OutputArrayShapeSource.AS_INPUT_OR_AS_KERNEL if port_type == _ATTR_PORT_TYPE_OUTPUT else None ), "optional": False, } # Override the default values with the incoming data. values.update({k: v for k, v in data.items() if k in cls._fields}) # Ensure that the member values are set using their rightful types. values.update( { "port_type": port_type, "array_format": ArrayAttributeFormat(values["array_format"]), "array_shape_source": ( None if values["array_shape_source"] is None else OutputArrayShapeSource(values["array_shape_source"]) ), } ) try: # This might error in case some members are still missing. return cls(**values) except TypeError: return None @property def name(self) -> str: """Retrieves the attribute's name prefixed with its port type.""" return attr_join_name(self.port_type, self.base_name) @property def type(self) -> og.Attribute: """Retrieves OmniGraph's attribute type.""" return og.AttributeType.type_from_sdf_type_name(self.type_name) @property def type_name(self) -> str: """Retrieves OmniGraph's attribute type name.""" if self.is_array: return "{}[]".format(self.data_type_name) return self.data_type_name def serialize(self) -> Mapping[str:Any]: """Converts this instance into a serialized representation.""" return self._replace( port_type=int(self.port_type), )._asdict() def deserialize_user_attribute_descs( data: str, ) -> Mapping[str, UserAttributeDesc]: """Deserializes a string into a mapping of (name, desc).""" descs = {attr_join_name(x["port_type"], x["base_name"]): UserAttributeDesc.deserialize(x) for x in json.loads(data)} # Filter out any invalid description. return {k: v for k, v in descs.items() if v is not None} def serialize_user_attribute_descs( descs: Mapping[str, UserAttributeDesc], ) -> str: """Serializes a mapping of (name, desc) into a string.""" return json.dumps(tuple(x.serialize() for x in descs.values())) # User Attributes Information # ------------------------------------------------------------------------------ class OutputAttributeInfo(NamedTuple): """Information relating to an output node attribute.""" array_shape_source: Optional[OutputArrayShapeSource] bundle_type_source: Optional[OutputBundleTypeSource] bundle_type_explicit: Optional[str] = None class AttributeInfo(NamedTuple): """Information relating to a node attribute. This struct contains all the metadata required by the node to initialize and evaluate. This includes compiling the kernel and initializing the Inputs and Outputs structs that are then passed to the kernel as parameters. We don't directly store the array shape, if any, since it is possible that it might vary between each evaluation of the node's compute. Instead, we store which method to use to infer the array's shape and let the node determine the actual shape during each compute step. Note ---- The `warp_type` member represents the type of the kernel parameter corresdonding to that attribute. If the attribute is a bundle, then it is expected to be a `wp.struct` holding the values of the bundle, unless the bundle is of type :class:`Array`, in which case `warp_type` should be a standard `wp.array`. """ port_type: og.AttributePortType base_name: str og_type: og.Type warp_type: type output: Optional[OutputAttributeInfo] = None @property def name(self) -> str: return attr_join_name(self.port_type, self.base_name) @property def og_data_type(self) -> og.Type: return og.Type( self.og_type.base_type, tuple_count=self.og_type.tuple_count, array_depth=0, role=self.og_type.role, ) @property def is_array(self) -> bool: return self.og_type.array_depth > 0 @property def is_bundle(self) -> bool: return self.og_type == ATTR_BUNDLE_TYPE @property def dim_count(self) -> int: if self.is_array: return self.warp_type.ndim return 0 @property def warp_data_type(self) -> type: if self.is_array: return self.warp_type.dtype return self.warp_type @property def warp_type_name(self) -> str: if self.is_bundle: return self.warp_type.cls.__name__ return get_warp_type_from_data_type_name( self.warp_data_type.__name__, dim_count=self.dim_count, as_str=True, ) @property def warp_data_type_name(self) -> str: if self.is_bundle: return self.warp_type.cls.__name__ return get_warp_type_from_data_type_name( self.warp_data_type.__name__, dim_count=0, as_str=True, ) def gather_attribute_infos( node: og.Node, db_inputs: Any, db_outputs: Any, attr_descs: Mapping[str, UserAttributeDesc], kernel_dim_count: int, ) -> Mapping[og.AttributePortType, Tuple[AttributeInfo, ...]]: """Gathers the information for each user attribute. See also: :class:`AttributeInfo`. """ def extract_partial_info_from_attr(attr: og.Attribute) -> Tuple[Any, ...]: """Extract a partial information set from an attribute.""" name = attr_get_name(attr) base_name = attr_get_base_name(attr) og_type = attr.get_resolved_type() is_array = og_type.array_depth > 0 return (name, base_name, og_type, is_array) # Retrieve the user attributes defined on the node. attrs = tuple(x for x in node.get_attributes() if x.is_dynamic()) # Gather the information for the input attributes. input_attr_infos = [] for attr in attrs: if attr.get_port_type() != _ATTR_PORT_TYPE_INPUT: continue (name, base_name, og_type, is_array) = extract_partial_info_from_attr(attr) og_data_type = og.Type( og_type.base_type, tuple_count=og_type.tuple_count, array_depth=0, role=og_type.role, ) input_attr_infos.append( AttributeInfo( port_type=_ATTR_PORT_TYPE_INPUT, base_name=base_name, og_type=og_type, warp_type=type_convert_og_to_warp( og_data_type, dim_count=int(is_array), ), ) ) # Gather the information for the output attributes. output_attr_infos = [] for attr in attrs: if attr.get_port_type() != _ATTR_PORT_TYPE_OUTPUT: continue (name, base_name, og_type, is_array) = extract_partial_info_from_attr(attr) desc = attr_descs.get(name) if desc is None: # Fallback for nodes created before the attribute description # feature was implemented. array_shape_source = OutputArrayShapeSource.AS_INPUT_OR_AS_KERNEL else: array_shape_source = desc.array_shape_source if array_shape_source == OutputArrayShapeSource.AS_INPUT_OR_AS_KERNEL: # Check if we have an input attribute with a matching name, # in which case we use its array dimension count. try: dim_count = next(x.dim_count for x in input_attr_infos if x.base_name == base_name) except StopIteration: # Fallback to using the kernel's dimension count. dim_count = kernel_dim_count elif array_shape_source == OutputArrayShapeSource.AS_KERNEL: dim_count = kernel_dim_count else: assert False, "Unexpected array shape source method '{}'.".format(array_shape_source) og_data_type = og.Type( og_type.base_type, tuple_count=og_type.tuple_count, array_depth=0, role=og_type.role, ) output_attr_infos.append( AttributeInfo( port_type=_ATTR_PORT_TYPE_OUTPUT, base_name=base_name, og_type=og_type, warp_type=type_convert_og_to_warp( og_data_type, dim_count=dim_count, ), output=OutputAttributeInfo( array_shape_source=array_shape_source, bundle_type_source=OutputBundleTypeSource.AS_INPUT, ), ) ) return { _ATTR_PORT_TYPE_INPUT: tuple(input_attr_infos), _ATTR_PORT_TYPE_OUTPUT: tuple(output_attr_infos), } # Kernel Code # ------------------------------------------------------------------------------ _STRUCT_DECLARATION_CODE_TEMPLATE = """@wp.struct class {name}: {members} """ def _generate_struct_declaration_code(warp_struct: wp.struct) -> str: """Generates the code declaring a Warp struct.""" lines = [] for label, var in warp_struct.vars.items(): warp_type = var.type if isinstance(warp_type, wp.array): warp_data_type = warp_type.dtype dim_count = warp_type.ndim else: warp_data_type = warp_type dim_count = 0 warp_type_name = get_warp_type_from_data_type_name( warp_data_type.__name__, dim_count=dim_count, as_str=True, ) lines.append(" {}: {}".format(label, warp_type_name)) return _STRUCT_DECLARATION_CODE_TEMPLATE.format( name=warp_struct.cls.__name__, members="\n".join(lines), ) _HEADER_CODE_TEMPLATE = """import warp as wp {declarations} @wp.struct class Inputs: {inputs} pass @wp.struct class Outputs: {outputs} pass """ def _generate_header_code( attr_infos: Mapping[og.AttributePortType, Tuple[AttributeInfo, ...]], ) -> str: """Generates the code header based on the node's attributes.""" # Retrieve all the Warp struct types corresponding to bundle attributes. struct_types = {x.warp_type_name: x.warp_type for _, v in attr_infos.items() for x in v if x.is_bundle} # Generate the code that declares the Warp structs found. declarations = [""] declarations.extend(_generate_struct_declaration_code(x) for _, x in struct_types.items()) # Generate the lines of code declaring the members for each port type. lines = {k: tuple(" {}: {}".format(x.base_name, x.warp_type_name) for x in v) for k, v in attr_infos.items()} # Return the template code populated with the members. return _HEADER_CODE_TEMPLATE.format( declarations="\n".join(declarations), inputs="\n".join(lines.get(_ATTR_PORT_TYPE_INPUT, ())), outputs="\n".join(lines.get(_ATTR_PORT_TYPE_OUTPUT, ())), ) def _get_user_code(code_provider: str, code_str: str, code_file: str) -> str: """Retrieves the code provided by the user.""" if code_provider == "embedded": return code_str if code_provider == "file": with open(code_file, "r") as f: return f.read() assert False, "Unexpected code provider '{}'.".format(code_provider) # Kernel Module # ------------------------------------------------------------------------------ def _load_code_as_module(code: str, name: str) -> Any: """Loads a Python module from the given source code.""" # It's possible to use the `exec()` built-in function to create and # populate a Python module with the source code defined in a string, # however warp requires access to the source code of the kernel's # function, which is only available when the original source file # pointed by the function attribute `__code__.co_filename` can # be opened to read the lines corresponding to that function. # As such, we must write the source code into a temporary file # on disk before importing it as a module and having the function # turned into a kernel by warp's mechanism. # Create a temporary file. file, file_path = tempfile.mkstemp(suffix=".py") try: # Save the embedded code into the temporary file. with os.fdopen(file, "w") as f: f.write(code) # Import the temporary file as a Python module. spec = importlib.util.spec_from_file_location(name, file_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) finally: # The resulting Python module is stored into memory as a bytcode # object and the kernel function has already been parsed by warp # as long as it was correctly decorated, so it's now safe to # clean-up the temporary file. os.remove(file_path) return module def initialize_kernel_module( attr_infos: Mapping[og.AttributePortType, Tuple[AttributeInfo, ...]], code_provider: str, code_str: str, code_file: str, ) -> wp.context.Module: # Ensure that all output parameters are arrays. Writing to non-array # types is not supported as per CUDA's design. invalid_attrs = tuple(x.name for x in attr_infos[_ATTR_PORT_TYPE_OUTPUT] if not x.is_array and not x.is_bundle) if invalid_attrs: raise RuntimeError( "Output attributes are required to be arrays or bundles but " "the following attributes are not: {}.".format(", ".join(invalid_attrs)) ) # Retrieve the kernel code to evaluate. code_header = _generate_header_code(attr_infos) user_code = _get_user_code(code_provider, code_str, code_file) code = "{}\n{}".format(code_header, user_code) # Create a Python module made of the kernel code. # We try to keep its name unique to ensure that it's not clashing with # other kernel modules from the same session. uid = hashlib.blake2b(bytes(code, encoding="utf-8"), digest_size=8) module_name = "warp-kernelnode-{}".format(uid.hexdigest()) kernel_module = _load_code_as_module(code, module_name) # Validate the module's contents. if not hasattr(kernel_module, "compute"): raise RuntimeError("The code must define a kernel function named 'compute'.") if not isinstance(kernel_module.compute, wp.context.Kernel): raise RuntimeError("The 'compute' function must be decorated with '@wp.kernel'.") # Configure warp to only compute the forward pass. wp.set_module_options({"enable_backward": False}, module=kernel_module) return kernel_module # Data I/O # ------------------------------------------------------------------------------ def _infer_output_array_shape( attr_info: AttributeInfo, input_attr_infos: Tuple[AttributeInfo, ...], kernel_inputs: Any, kernel_shape: Sequence[int], ) -> Tuple[int, ...]: if attr_info.output.array_shape_source == OutputArrayShapeSource.AS_INPUT_OR_AS_KERNEL: # Check if we have an input attribute with a matching name, # in which case we use its array shape. try: ref_attr_base_name = next( x.base_name for x in input_attr_infos if (x.base_name == attr_info.base_name and x.is_array and x.dim_count == attr_info.dim_count) ) return getattr(kernel_inputs, ref_attr_base_name).shape except StopIteration: # Fallback to using the kernel's shape. return tuple(kernel_shape) if attr_info.output.array_shape_source == OutputArrayShapeSource.AS_KERNEL: return tuple(kernel_shape) assert False, "Unexpected array shape source method '{}'.".format(attr_info.output.array_shape_source) class KernelArgsConfig(NamedTuple): """Configuration for resolving kernel arguments.""" input_bundle_handlers: Optional[Mapping[str, Callable]] = None output_bundle_handlers: Optional[Mapping[str, Callable]] = None def get_kernel_args( db_inputs: Any, db_outputs: Any, attr_infos: Mapping[og.AttributePortType, Tuple[AttributeInfo, ...]], kernel_module: Any, kernel_shape: Sequence[int], device: Optional[wp.context.Device] = None, config: Optional[KernelArgsConfig] = None, ) -> Tuple[Any, Any]: """Retrieves the in/out argument values to pass to the kernel.""" if device is None: device = wp.get_device() if config is None: config = KernelArgsConfig() # Initialize the kernel's input data. inputs = kernel_module.Inputs() for info in attr_infos[_ATTR_PORT_TYPE_INPUT]: # Retrieve the input attribute value and cast it to # the corresponding warp type. if info.is_array: value = getattr(db_inputs, info.base_name) # The array value might define 2 dimensions when tuples such as # wp.vec3 are used as data type, so we preserve only the first # dimension to retrieve the actual shape since OmniGraph only # supports 1D arrays anyways. shape = value.shape[:1] value = attr_cast_array_to_warp( value, info.warp_data_type, shape, device, ) elif info.is_bundle: raise NotImplementedError("Bundle attributes are not yet supported.") else: value = getattr(db_inputs, info.base_name) # Store the result in the inputs struct. setattr(inputs, info.base_name, value) # Initialize the kernel's output data. outputs = kernel_module.Outputs() for info in attr_infos[_ATTR_PORT_TYPE_OUTPUT]: # Retrieve the output attribute value and cast it to the corresponding # warp type. if info.is_array: shape = _infer_output_array_shape( info, attr_infos[_ATTR_PORT_TYPE_INPUT], inputs, kernel_shape, ) # Allocate a buffer for the array. size = functools.reduce(operator.mul, shape) setattr(db_outputs, "{}_size".format(info.base_name), size) value = getattr(db_outputs, info.base_name) value = attr_cast_array_to_warp( value, info.warp_data_type, shape, device, ) elif info.is_bundle: raise NotImplementedError("Bundle attributes are not yet supported.") else: assert False, "Output attributes are expected to be arrays or bundles." # Store the result in the outputs struct. setattr(outputs, info.base_name, value) return (inputs, outputs) def write_output_attrs( db_outputs: Any, attr_infos: Mapping[og.AttributePortType, Tuple[AttributeInfo, ...]], kernel_outputs: Any, device: Optional[wp.context.Device] = None, ) -> None: """Writes the output values to the node's attributes.""" if device is None: device = wp.get_device() if device.is_cuda: # CUDA attribute arrays are directly being written to by Warp. return for info in attr_infos[_ATTR_PORT_TYPE_OUTPUT]: value = getattr(kernel_outputs, info.base_name) setattr(db_outputs, info.base_name, value) # Validation # ------------------------------------------------------------------------------ def validate_input_arrays( node: og.Node, attr_infos: Mapping[og.AttributePortType, Tuple[AttributeInfo, ...]], kernel_inputs: Any, ) -> None: """Validates array input attributes.""" for info in attr_infos[_ATTR_PORT_TYPE_INPUT]: value = getattr(kernel_inputs, info.base_name) if not isinstance(value, wp.array): continue # Ensure that all array input attributes are not NULL, # unless they are set as being optional. attr = og.Controller.attribute(info.name, node) if not attr.is_optional_for_compute and not value.ptr: raise RuntimeError("Empty value for non-optional attribute '{}'.".format(info.name)) # Node's Internal State # ------------------------------------------------------------------------------ class InternalStateBase: """Base class for the node's internal state.""" def __init__(self) -> None: self._code_provider = None self._code_str = None self._code_file = None self._code_file_timestamp = None self.attr_infos = None self.kernel_module = None self.is_valid = False def needs_initialization( self, db: Any, check_file_modified_time: bool, ) -> bool: """Checks if the internal state needs to be (re)initialized.""" if self.is_valid: # If everything is in order, we only need to recompile the kernel # when attributes are removed, since adding new attributes is not # a breaking change. if self.kernel_module is None or UserAttributesEvent.REMOVED & db.state.userAttrsEvent: return True else: # If something previously went wrong, we always recompile the kernel # when attributes are edited, in case it might fix code that # errored out due to referencing a non-existing attribute. if db.state.userAttrsEvent != UserAttributesEvent.NONE: return True if self.attr_infos is None: return True if self._code_provider != db.inputs.codeProvider: return True if self._code_provider == "embedded": if self._code_str != db.inputs.codeStr: return True elif self._code_provider == "file": if self._code_file != db.inputs.codeFile or ( check_file_modified_time and (self._code_file_timestamp != os.path.getmtime(self._code_file)) ): return True else: assert False, ("Unexpected code provider '{}'.".format(self._code_provider),) return False def initialize(self, db: Any) -> bool: """Initialize the internal state and recompile the kernel.""" # Cache the node attribute values relevant to this internal state. # They're the ones used to check whether this state is outdated or not. self._code_provider = db.inputs.codeProvider self._code_str = db.inputs.codeStr self._code_file = db.inputs.codeFile return True
warp-main
exts/omni.warp/omni/warp/nodes/_impl/kernel.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Helpers to author OmniGraph attributes.""" import functools import inspect import math import operator from typing import ( Any, Optional, Union, Sequence, ) import numpy as np import omni.graph.core as og import warp as wp from omni.warp.nodes._impl.common import type_convert_og_to_warp ATTR_BUNDLE_TYPE = og.Type( og.BaseDataType.RELATIONSHIP, 1, 0, og.AttributeRole.BUNDLE, ) # Names # ------------------------------------------------------------------------------ _ATTR_PORT_TYPES = ( og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE, ) _ATTR_NAME_FMTS = {x: "{}:{{}}".format(og.get_port_type_namespace(x)) for x in _ATTR_PORT_TYPES} def attr_join_name( port_type: og.AttributePortType, base_name: str, ) -> str: """Build an attribute name by prefixing it with its port type.""" return _ATTR_NAME_FMTS[port_type].format(base_name) def attr_get_base_name( attr: og.Attribute, ) -> str: """Retrieves an attribute base name.""" name = attr.get_name() if ( attr.get_type_name() == "bundle" and (attr.get_port_type() == og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) and name.startswith("outputs_") ): # Output bundles are a bit special because they are in fact implemented # as USD primitives, and USD doesn't support the colon symbol `:` in # primitive names, thus output bundles are prefixed with `outputs_` in # OmniGraph instead of `outputs:` like everything else. return name[8:] return name.split(":")[-1] def attr_get_name( attr: og.Attribute, ) -> str: """Retrieves an attribute name.""" name = attr.get_name() if ( attr.get_type_name() == "bundle" and (attr.get_port_type() == og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) and name.startswith("outputs_") ): # Output bundles are a bit special because they are in fact implemented # as USD primitives, and USD doesn't support the colon symbol `:` in # primitive names, thus output bundles are prefixed with `outputs_` in # OmniGraph instead of `outputs:` like everything else. return attr_join_name( og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT, name[8:], ) return name # Values # ------------------------------------------------------------------------------ def attr_get( attr: og.AttributeData, ) -> Any: """Retrieves the value from an attribute living on the CPU.""" return attr.get(on_gpu=False) def attr_set( attr: og.AttributeData, value: Any, ) -> None: """Sets the given value onto an array attribute living on the CPU.""" attr.set(value, on_gpu=False) def attr_get_array_on_gpu( attr: og.AttributeData, dtype: type, read_only: bool = True, ) -> wp.array: """Retrieves the value of an array attribute living on the GPU.""" attr.gpu_ptr_kind = og.PtrToPtrKind.CPU (ptr, _) = attr.get_array( on_gpu=True, get_for_write=not read_only, reserved_element_count=0 if read_only else attr.size(), ) return wp.from_ptr(ptr, attr.size(), dtype=dtype) def attr_cast_array_to_warp( value: Union[np.array, og.DataWrapper], dtype: type, shape: Sequence[int], device: wp.context.Device, ) -> wp.array: """Casts an attribute array value to its corresponding warp type.""" if device.is_cpu: return wp.array( value, dtype=dtype, shape=shape, owner=False, device=device, ) elif device.is_cuda: size = functools.reduce(operator.mul, shape) return wp.types.from_ptr( value.memory, size, dtype=dtype, shape=shape, device=device, ) assert False, "Unexpected device '{}'.".format(device.alias) # Tracking # ------------------------------------------------------------------------------ class AttrTracking: """Attributes state for tracking changes.""" def __init__(self, names: Sequence[str]) -> None: self._names = names self._state = [None] * len(names) def have_attrs_changed(self, db: og.Database) -> bool: """Compare the current attribute values with the internal state.""" for i, name in enumerate(self._names): cached_value = self._state[i] current_value = getattr(db.inputs, name) if isinstance(current_value, np.ndarray): if not np.array_equal(current_value, cached_value): return True elif current_value != cached_value: return True return False def update_state(self, db: og.Database) -> None: """Updates the internal state with the current attribute values.""" for i, name in enumerate(self._names): current_value = getattr(db.inputs, name) if isinstance(current_value, np.ndarray): self._state[i] = current_value.copy() else: self._state[i] = current_value # High-level Helper # ------------------------------------------------------------------------------ def from_omni_graph( value: Union[np.ndarray, og.DataWrapper, og.AttributeData, og.DynamicAttributeAccess], dtype: Optional[type] = None, shape: Optional[Sequence[int]] = None, device: Optional[wp.context.Device] = None, ) -> wp.array: """Casts an OmniGraph array data to its corresponding Warp type.""" def from_data_wrapper( data: og.DataWrapper, dtype: Optional[type], shape: Optional[Sequence[int]], device: Optional[wp.context.Device], ) -> wp.array: if data.gpu_ptr_kind != og.PtrToPtrKind.CPU: raise RuntimeError("All pointers must live on the CPU, make sure to set 'cudaPointers' to 'cpu'.") elif not data.is_array: raise RuntimeError("The attribute data isn't an array.") if dtype is None: base_type = type_convert_og_to_warp( og.Type( data.dtype.base_type, tuple_count=data.dtype.tuple_count, array_depth=0, role=og.AttributeRole.MATRIX if data.dtype.is_matrix_type() else og.AttributeRole.NONE, ), ) dim_count = len(data.shape) if dim_count == 1: dtype = base_type elif dim_count == 2: dtype = wp.types.vector(length=data.shape[1], dtype=base_type) elif dim_count == 3: dtype = wp.types.matrix(shape=(data.shape[1], data.shape[2]), dtype=base_type) else: raise RuntimeError("Arrays with more than 3 dimensions are not supported.") arr_size = data.shape[0] * data.dtype.size element_size = wp.types.type_size_in_bytes(dtype) if shape is None: # Infer a shape compatible with the dtype. for i in range(len(data.shape)): if functools.reduce(operator.mul, data.shape[: i + 1]) * element_size == arr_size: shape = data.shape[: i + 1] break if shape is None: if arr_size % element_size != 0: raise RuntimeError( "Cannot infer a size matching the Warp data type '{}' with " "an array size of '{}' bytes.".format(dtype.__name__, arr_size) ) size = arr_size // element_size else: size = functools.reduce(operator.mul, shape) src_device = wp.get_device(str(data.device)) dst_device = device return wp.from_ptr( data.memory, size, dtype=dtype, shape=shape, device=src_device, ).to(dst_device) def from_attr_data( data: og.AttributeData, dtype: Optional[type], shape: Optional[Sequence[int]], device: Optional[wp.context.Device], ) -> wp.array: if data.gpu_valid(): on_gpu = True elif data.cpu_valid(): on_gpu = False else: raise RuntimeError("The attribute data isn't valid.") if on_gpu: data_type = data.get_type() base_type = type_convert_og_to_warp( og.Type( data_type.base_type, tuple_count=data_type.tuple_count, array_depth=0, role=data_type.role, ), ) if dtype is None: dtype = base_type arr_size = data.size() * wp.types.type_size_in_bytes(base_type) element_size = wp.types.type_size_in_bytes(dtype) if shape is None: # Infer a shape compatible with the dtype. if data_type.is_matrix_type(): dim = math.isqrt(data_type.tuple_count) arr_shape = (data.size(), dim, dim) else: arr_shape = (data.size(), data_type.tuple_count) for i in range(len(arr_shape)): if functools.reduce(operator.mul, arr_shape[: i + 1]) * element_size == arr_size: shape = arr_shape[: i + 1] break if shape is None: if arr_size % element_size != 0: raise RuntimeError( "Cannot infer a size matching the Warp data type '{}' with " "an array size of '{}' bytes.".format(dtype.__name__, arr_size) ) size = arr_size // element_size else: size = functools.reduce(operator.mul, shape) data.gpu_ptr_kind = og.PtrToPtrKind.CPU (ptr, _) = data.get_array( on_gpu=True, get_for_write=not data.is_read_only(), reserved_element_count=0 if data.is_read_only() else data.size(), ) src_device = wp.get_device("cuda") dst_device = device return wp.from_ptr( ptr, size, dtype=dtype, shape=shape, device=src_device, ).to(dst_device) else: arr = data.get_array( on_gpu=False, get_for_write=not data.is_read_only(), reserved_element_count=0 if data.is_read_only() else data.size(), ) return wp.from_numpy(arr, dtype=dtype, shape=shape, device=device) if isinstance(value, np.ndarray): return wp.from_numpy(value, dtype=dtype, shape=shape, device=device) elif isinstance(value, og.DataWrapper): return from_data_wrapper(value, dtype, shape, device) elif isinstance(value, og.AttributeData): return from_attr_data(value, dtype, shape, device) elif og.DynamicAttributeAccess in inspect.getmro(type(getattr(value, "_parent", None))): if device is None: device = wp.get_device() if device.is_cpu: return wp.from_numpy(value.cpu, dtype=dtype, shape=shape, device=device) elif device.is_cuda: return from_data_wrapper(value.gpu, dtype, shape, device) else: assert False, "Unexpected device '{}'.".format(device.alias) return None
warp-main
exts/omni.warp/omni/warp/nodes/_impl/attributes.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Helpers to author OmniGraph bundles.""" from typing import ( Optional, Sequence, ) import numpy as np import omni.graph.core as og import warp as wp from omni.warp.nodes._impl.attributes import ( attr_get, attr_get_array_on_gpu, attr_set, ) # High-level Bundle API (og.BundleContents) # ------------------------------------------------------------------------------ def bundle_get_child_count( bundle: og.BundleContents, ) -> int: """Retrieves the number of children defined for a bundle.""" return bundle.bundle.get_child_bundle_count() def bundle_get_prim_type( bundle: og.BundleContents, child_idx: int = 0, ) -> str: """Retrieves the primitive type.""" attr = bundle_get_attr(bundle, "sourcePrimType", child_idx) return attr_get(attr) def bundle_set_prim_type( bundle: og.BundleContents, prim_type: str, child_idx: int = 0, ) -> None: """Sets the primitive type.""" child_bundle = bundle_create_child(bundle, child_idx) attr = bundle_create_attr( child_bundle, "sourcePrimType", og.Type( og.BaseDataType.TOKEN, tuple_count=1, array_depth=0, role=og.AttributeRole.NONE, ), ) attr_set(attr, prim_type) def bundle_get_world_xform( bundle: og.BundleContents, child_idx: int = 0, ) -> np.ndarray: """Retrieves the world transformation matrix.""" attr = bundle_get_attr(bundle, "worldMatrix", child_idx) if attr is None: return np.identity(4) return attr_get(attr).reshape(4, 4) def bundle_set_world_xform( bundle: og.BundleContents, xform: np.ndarray, child_idx: int = 0, ) -> None: """Sets the bundle's world transformation matrix.""" child_bundle = bundle_create_child(bundle, child_idx) attr = bundle_create_attr( child_bundle, "worldMatrix", og.Type( og.BaseDataType.DOUBLE, tuple_count=16, array_depth=0, role=og.AttributeRole.MATRIX, ), ) attr_set(attr, xform) def bundle_create_child( bundle: og.BundleContents, child_idx: int = 0, ) -> og.IBundle2: """Creates a single child bundle if it doesn't already exist.""" if child_idx < bundle.bundle.get_child_bundle_count(): return bundle.bundle.get_child_bundle(child_idx) return bundle.bundle.create_child_bundle("prim{}".format(child_idx)) def bundle_get_attr( bundle: og.BundleContents, name: str, child_idx: int = 0, ) -> Optional[og.AttributeData]: """Retrieves a bundle attribute from its name.""" if bundle.bundle.get_child_bundle_count(): attr = bundle.bundle.get_child_bundle(child_idx).get_attribute_by_name(name) else: attr = bundle.bundle.get_attribute_by_name(name) if not attr.is_valid(): return None return attr def bundle_has_changed( bundle: og.BundleContents, child_idx: int = 0, ) -> bool: """Checks whether the contents of the bundle has changed.""" with bundle.changes() as bundle_changes: child_bundle = bundle.bundle.get_child_bundle(child_idx) return bundle_changes.get_change(child_bundle) != og.BundleChangeType.NONE def bundle_have_attrs_changed( bundle: og.BundleContents, attr_names: Sequence[str], child_idx: int = 0, ) -> bool: """Checks whether the contents of a bundle's attributes have changed.""" with bundle.changes() as bundle_changes: child_bundle = bundle.bundle.get_child_bundle(child_idx) for attr_name in attr_names: attr = child_bundle.get_attribute_by_name(attr_name) if bundle_changes.get_change(attr) != og.BundleChangeType.NONE: return True return False # Low-level Bundle API (og.IBundle2) # ------------------------------------------------------------------------------ def bundle_create_attr( bundle: og.IBundle2, name: str, og_type: og.Type, size: int = 0, ) -> og.AttributeData: """Creates a bundle attribute if it doesn't already exist.""" attr = bundle.get_attribute_by_name(name) if attr.is_valid() and attr.get_type() == og_type and attr.size() == size: return attr return bundle.create_attribute(name, og_type, element_count=size) def bundle_create_metadata_attr( bundle: og.IBundle2, name: str, field_name: str, og_type: og.Type, ) -> og.AttributeData: """Creates a bundle metadata attribute if it doesn't already exist.""" attr = bundle.get_attribute_metadata_by_name(name, field_name) if attr.is_valid() and attr.get_type() == og_type: return attr return bundle.create_attribute_metadata(name, field_name, og_type) def bundle_copy_attr_value( dst_bundle: og.IBundle2, src_bundle: og.IBundle2, name: str, dtype: og.Type, ) -> None: """Copies an attribute value from one bundle to another.""" dst_attr = dst_bundle.get_attribute_by_name(name) src_attr = src_bundle.get_attribute_by_name(name) if not dst_attr.is_valid() or not src_attr.is_valid(): return wp.copy( attr_get_array_on_gpu(dst_attr, dtype, read_only=False), attr_get_array_on_gpu(src_attr, dtype, read_only=True), )
warp-main
exts/omni.warp/omni/warp/nodes/_impl/bundles.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Node inspecting the changes made to an attribute.""" import traceback from typing import Union import numpy as np import omni.graph.core as og import warp as wp from omni.warp.nodes.ogn.OgnBundleInspectChangesDatabase import OgnBundleInspectChangesDatabase _ATTR_NAMES_PER_PRIM_TYPE = { "Mesh": ( "points", "faceVertexCounts", "faceVertexIndices", "primvars:normals", "primvars:st", ), "Points": ( "points", "widths", ), } # Helpers # ------------------------------------------------------------------------------ def get_cpu_array( attr: og.AttributeData, read_only: bool = True, ) -> Union[np.ndarray, str]: """Retrieves the value of an array attribute living on the CPU.""" return attr.get_array( on_gpu=False, get_for_write=not read_only, reserved_element_count=0 if read_only else attr.size(), ) # Compute # ------------------------------------------------------------------------------ def compute(db: OgnBundleInspectChangesDatabase) -> None: """Evaluates the node.""" if not db.inputs.bundle.valid or not db.outputs.bundle.valid: return db.outputs.bundle = db.inputs.bundle attrs_changed = [] with db.inputs.bundle.changes() as bundle_changes: for bundle in db.inputs.bundle.bundle.get_child_bundles(): attr = bundle.get_attribute_by_name("sourcePrimType") prim_type = get_cpu_array(attr) attr_names = _ATTR_NAMES_PER_PRIM_TYPE.get(prim_type) for attr_name in attr_names: if attr_name in attrs_changed: continue attr = bundle.get_attribute_by_name(attr_name) changes = bundle_changes.get_change(attr) if changes == og.BundleChangeType.NONE: continue attrs_changed.append(attr_name) db.outputs.attrsChanged = " ".join(attrs_changed) db.outputs.topologyChanged = db.outputs.attrsChanged != "points" # Node Entry Point # ------------------------------------------------------------------------------ class OgnBundleInspectChanges: """Node.""" @staticmethod def compute(db: OgnBundleInspectChangesDatabase) -> None: device = wp.get_device("cuda:0") try: with wp.ScopedDevice(device): compute(db) except Exception: db.log_error(traceback.format_exc()) return # Fire the execution for the downstream nodes. db.outputs.execOut = og.ExecutionAttributeState.ENABLED
warp-main
exts/omni.warp/omni/warp/nodes/_impl/OgnBundleInspectChanges.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Node simulating particles.""" from math import inf import traceback import numpy as np import omni.graph.core as og import omni.timeline import warp as wp import omni.warp.nodes from omni.warp.nodes.ogn.OgnParticlesSimulateDatabase import OgnParticlesSimulateDatabase USE_GRAPH = True PROFILING = False # Kernels # ------------------------------------------------------------------------------ @wp.kernel(enable_backward=False) def query_max_value_kernel( values: wp.array(dtype=float), out_max: wp.array(dtype=float), ): wp.atomic_max(out_max, 0, values[wp.tid()]) @wp.kernel(enable_backward=False) def compute_particles_inv_mass_kernel( masses: wp.array(dtype=float), out_inv_masses: wp.array(dtype=float), ): tid = wp.tid() out_inv_masses[tid] = 1.0 / masses[tid] @wp.kernel(enable_backward=False) def compute_particles_radius_kernel( widths: wp.array(dtype=float), out_radii: wp.array(dtype=float), ): tid = wp.tid() out_radii[tid] = widths[tid] * 0.5 @wp.kernel(enable_backward=False) def transform_points_kernel( points: wp.array(dtype=wp.vec3), xform: wp.mat44, out_points: wp.array(dtype=wp.vec3), ): tid = wp.tid() out_points[tid] = wp.transform_point(xform, points[tid]) @wp.kernel(enable_backward=False) def update_collider_kernel( points_0: wp.array(dtype=wp.vec3), points_1: wp.array(dtype=wp.vec3), xform_0: wp.mat44, xform_1: wp.mat44, sim_dt: float, out_points: wp.array(dtype=wp.vec3), out_velocities: wp.array(dtype=wp.vec3), ): tid = wp.tid() point_0 = wp.transform_point(xform_0, points_0[tid]) point_1 = wp.transform_point(xform_1, points_1[tid]) out_points[tid] = point_0 out_velocities[tid] = (point_1 - point_0) / sim_dt @wp.kernel(enable_backward=False) def update_particles_kernel( points_0: wp.array(dtype=wp.vec3), xform: wp.mat44, out_points: wp.array(dtype=wp.vec3), out_velocities: wp.array(dtype=wp.vec3), ): tid = wp.tid() point = wp.transform_point(xform, points_0[tid]) diff = point - points_0[tid] out_points[tid] = point out_velocities[tid] = out_velocities[tid] + diff # Internal State # ------------------------------------------------------------------------------ class InternalState: """Internal state for the node.""" def __init__(self) -> None: self.sim_dt = None self.sim_tick = None self.model = None self.integrator = None self.state_0 = None self.state_1 = None self.xform = None self.collider_xform = None self.collider_mesh = None self.collider_points_0 = None self.collider_points_1 = None self.graph = None self.sim_enabled = True self.time = 0.0 self.is_valid = False self.attr_tracking = omni.warp.nodes.AttrTracking( ( "substepCount", "gravity", "globalScale", "contactElasticStiffness", "contactFrictionStiffness", "contactFrictionCoeff", "contactDampingStiffness", "particlesQueryRange", "particlesContactAdhesion", "particlesContactCohesion", "colliderContactDistance", "colliderContactQueryRange", "groundEnabled", "groundAltitude", ), ) def needs_initialization(self, db: OgnParticlesSimulateDatabase) -> bool: """Checks if the internal state needs to be (re)initialized.""" if not self.is_valid or not db.inputs.enabled or not self.sim_enabled: return True if self.attr_tracking.have_attrs_changed(db): return True if db.inputs.time < self.time: # Reset the simulation when we're rewinding. return True return False def initialize( self, db: OgnParticlesSimulateDatabase, device: wp.context.Device, ) -> bool: """Initializes the internal state.""" # Lazy load warp.sim here to not slow down extension loading. import warp.sim # Compute the simulation time step. timeline = omni.timeline.get_timeline_interface() sim_rate = timeline.get_ticks_per_second() sim_dt = 1.0 / sim_rate # Initialize Warp's simulation model builder. builder = wp.sim.ModelBuilder() # Retrieve some data from the particles points. points = omni.warp.nodes.points_get_points(db.inputs.particles) xform = omni.warp.nodes.bundle_get_world_xform(db.inputs.particles) # Transform the particles point positions into world space. world_points = wp.empty(len(points), dtype=wp.vec3) wp.launch( kernel=transform_points_kernel, dim=len(points), inputs=[ points, xform.T, ], outputs=[ world_points, ], ) if db.inputs.collider.valid: # Retrieve some data from the collider mesh. collider_points = omni.warp.nodes.mesh_get_points(db.inputs.collider) collider_xform = omni.warp.nodes.bundle_get_world_xform(db.inputs.collider) # Transform the collider point positions into world space. collider_world_points = wp.empty( len(collider_points), dtype=wp.vec3, ) wp.launch( kernel=transform_points_kernel, dim=len(collider_points), inputs=[ collider_points, collider_xform.T, ], outputs=[ collider_world_points, ], ) # Initialize Warp's mesh instance, which requires # triangulated meshes. collider_face_vertex_indices = omni.warp.nodes.mesh_triangulate( db.inputs.collider, ) collider_mesh = wp.sim.Mesh( collider_world_points.numpy(), collider_face_vertex_indices.numpy(), compute_inertia=False, ) # Register the collider geometry mesh into Warp's simulation model # builder. builder.add_shape_mesh( body=-1, mesh=collider_mesh, pos=(0.0, 0.0, 0.0), rot=(0.0, 0.0, 0.0, 1.0), scale=(1.0, 1.0, 1.0), ) # Store the collider's point positions as internal state. collider_points_0 = wp.empty_like(collider_points) collider_points_1 = wp.empty_like(collider_points) wp.copy(collider_points_0, collider_points) wp.copy(collider_points_1, collider_points) # Store the class members. self.collider_xform = collider_xform.copy() self.collider_mesh = collider_mesh self.collider_points_0 = collider_points_0 self.collider_points_1 = collider_points_1 else: self.collider_mesh = None # Register the ground. builder.set_ground_plane( offset=-db.inputs.groundAltitude, ke=db.inputs.contactElasticStiffness * db.inputs.globalScale, kd=db.inputs.contactDampingStiffness * db.inputs.globalScale, kf=db.inputs.contactFrictionStiffness * db.inputs.globalScale, mu=db.inputs.contactFrictionCoeff, ) # Build the simulation model. model = builder.finalize() # Register the input particles into the system. model.particle_count = omni.warp.nodes.points_get_point_count(db.inputs.particles) model.particle_q = world_points model.particle_qd = omni.warp.nodes.points_get_velocities(db.inputs.particles) model.particle_mass = omni.warp.nodes.points_get_masses(db.inputs.particles) model.particle_inv_mass = wp.empty_like(model.particle_mass) wp.launch( compute_particles_inv_mass_kernel, dim=model.particle_count, inputs=[model.particle_mass], outputs=[model.particle_inv_mass], ) widths = omni.warp.nodes.points_get_widths(db.inputs.particles) model._particle_radius = wp.empty_like(widths) wp.launch( compute_particles_radius_kernel, dim=model.particle_count, inputs=[widths], outputs=[model._particle_radius], ) model.particle_flags = wp.empty(model.particle_count, dtype=wp.uint32) model.particle_flags.fill_(warp.sim.model.PARTICLE_FLAG_ACTIVE.value) max_width = wp.array((-inf,), dtype=float) wp.launch( query_max_value_kernel, dim=model.particle_count, inputs=[widths], outputs=[max_width], ) model.particle_max_radius = float(max_width.numpy()[0]) * 0.5 # Allocate a single contact per particle. model.allocate_soft_contacts(model.particle_count) # Initialize the integrator. integrator = wp.sim.SemiImplicitIntegrator() # Set the model properties. model.ground = db.inputs.groundEnabled model.gravity = db.inputs.gravity model.particle_adhesion = db.inputs.particlesContactAdhesion model.particle_cohesion = db.inputs.particlesContactCohesion model.particle_ke = db.inputs.contactElasticStiffness * db.inputs.globalScale model.particle_kf = db.inputs.contactFrictionStiffness * db.inputs.globalScale model.particle_mu = db.inputs.contactFrictionCoeff model.particle_kd = db.inputs.contactDampingStiffness * db.inputs.globalScale model.soft_contact_ke = db.inputs.contactElasticStiffness * db.inputs.globalScale model.soft_contact_kf = db.inputs.contactFrictionStiffness * db.inputs.globalScale model.soft_contact_mu = db.inputs.contactFrictionCoeff model.soft_contact_kd = db.inputs.contactDampingStiffness * db.inputs.globalScale model.soft_contact_margin = db.inputs.colliderContactDistance * db.inputs.colliderContactQueryRange # Store the class members. self.sim_dt = sim_dt self.sim_tick = 0 self.model = model self.integrator = integrator self.state_0 = model.state() self.state_1 = model.state() self.xform = xform.copy() if USE_GRAPH: # Create the CUDA graph. We first manually load the necessary # modules to avoid the capture to load all the modules that are # registered and possibly not relevant. wp.load_module(device=device) wp.load_module(module=warp.sim, device=device, recursive=True) wp.capture_begin(force_module_load=False) step(db) self.graph = wp.capture_end() else: self.graph = None self.attr_tracking.update_state(db) return True # Compute # ------------------------------------------------------------------------------ def update_collider( db: OgnParticlesSimulateDatabase, ) -> None: """Updates the collider state.""" state = db.internal_state points = omni.warp.nodes.mesh_get_points(db.inputs.collider) xform = omni.warp.nodes.bundle_get_world_xform(db.inputs.collider) # Swap the previous and current collider point positions. (state.collider_points_0, state.collider_points_1) = ( state.collider_points_1, state.collider_points_0, ) # Store the current point positions. wp.copy(state.collider_points_1, points) # Retrieve the previous and current world transformations. xform_0 = state.collider_xform xform_1 = xform # Update the internal point positions and velocities. wp.launch( kernel=update_collider_kernel, dim=len(state.collider_mesh.vertices), inputs=[ state.collider_points_0, state.collider_points_1, xform_0.T, xform_1.T, state.sim_dt, ], outputs=[ state.collider_mesh.mesh.points, state.collider_mesh.mesh.velocities, ], ) # Refit the BVH. state.collider_mesh.mesh.refit() # Update the state members. state.collider_xform = xform.copy() def update_particles( db: OgnParticlesSimulateDatabase, ) -> None: """Updates the particles state.""" state = db.internal_state xform = omni.warp.nodes.bundle_get_world_xform(db.inputs.particles) # Retrieve the previous and current world transformations. xform_0 = state.xform xform_1 = xform # Update the internal point positions and velocities. wp.launch( kernel=update_particles_kernel, dim=len(state.state_0.particle_q), inputs=[ state.state_0.particle_q, np.matmul(np.linalg.inv(xform_0), xform_1).T, ], outputs=[ state.state_0.particle_q, state.state_0.particle_qd, ], ) # Update the state members. state.xform = xform.copy() def step(db: OgnParticlesSimulateDatabase) -> None: """Steps through the simulation.""" state = db.internal_state sim_dt = state.sim_dt / db.inputs.substepCount # Run the collision detection once per frame. wp.sim.collide(state.model, state.state_0) for _ in range(db.inputs.substepCount): state.state_0.clear_forces() state.integrator.simulate( state.model, state.state_0, state.state_1, sim_dt, ) # Swap the previous and current states. (state.state_0, state.state_1) = (state.state_1, state.state_0) def simulate(db: OgnParticlesSimulateDatabase) -> None: """Simulates the particles at the current time.""" state = db.internal_state state.model.particle_grid.build( state.state_0.particle_q, state.model.particle_max_radius * db.inputs.particlesQueryRange, ) if USE_GRAPH: wp.capture_launch(state.graph) else: step(db) def compute(db: OgnParticlesSimulateDatabase, device: wp.context.Device) -> None: """Evaluates the node.""" if not db.inputs.particles.valid or not db.outputs.particles.valid: return state = db.internal_state if not db.inputs.enabled: # Pass through the data. db.outputs.particles = db.inputs.particles # Store whether the simulation was last enabled. state.sim_enabled = False return if state.needs_initialization(db): # Initialize the internal state if it hasn't been already. # We want to use the input particles geometry as the initial state # of the simulation so we copy its bundle to the output one. db.outputs.particles = db.inputs.particles if not state.initialize(db, device): return else: # We skip the simulation if it has just been initialized. if state.sim_tick == 0 and omni.warp.nodes.bundle_has_changed(db.inputs.particles): if not state.initialize(db, device): return if ( db.inputs.collider.valid and state.collider_mesh is not None and omni.warp.nodes.bundle_has_changed(db.inputs.collider) ): # The collider might be animated so we need to update its state. update_collider(db) if omni.warp.nodes.bundle_have_attrs_changed(db.inputs.particles, ("worldMatrix",)): update_particles(db) with omni.warp.nodes.NodeTimer("simulate", db, active=PROFILING): # Run the particles simulation at the current time. simulate(db) with omni.warp.nodes.NodeTimer("transform_points_to_local_space", db, active=PROFILING): # Retrieve some data from the particles points. xform = omni.warp.nodes.bundle_get_world_xform(db.inputs.particles) # Transform the particles point positions back into local space # and store them into the bundle. out_points = omni.warp.nodes.points_get_points(db.outputs.particles) wp.launch( kernel=transform_points_kernel, dim=len(out_points), inputs=[ state.state_0.particle_q, np.linalg.inv(xform).T, ], outputs=[ out_points, ], ) # Increment the simulation tick. state.sim_tick += 1 # Store whether the simulation was last enabled. state.sim_enabled = True # Store the current time. state.time = db.inputs.time # Node Entry Point # ------------------------------------------------------------------------------ class OgnParticlesSimulate: """Node.""" @staticmethod def internal_state() -> InternalState: return InternalState() @staticmethod def compute(db: OgnParticlesSimulateDatabase) -> None: device = wp.get_device("cuda:0") try: with wp.ScopedDevice(device): compute(db, device) except Exception: db.log_error(traceback.format_exc()) db.internal_state.is_valid = False return db.internal_state.is_valid = True # Fire the execution for the downstream nodes. db.outputs.execOut = og.ExecutionAttributeState.ENABLED
warp-main
exts/omni.warp/omni/warp/nodes/_impl/OgnParticlesSimulate.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Node converting a volume into a geometry mesh.""" import traceback import omni.graph.core as og import warp as wp import omni.warp.nodes from omni.warp.nodes.ogn.OgnMeshFromVolumeDatabase import OgnMeshFromVolumeDatabase PROFILING = False # Kernels # ------------------------------------------------------------------------------ @wp.kernel(enable_backward=False) def transform_points_kernel( points: wp.array(dtype=wp.vec3), center: wp.vec3, scale: wp.vec3, out_points: wp.array(dtype=wp.vec3), ): """Transform the points with the given offset and scale values.""" tid = wp.tid() pos = points[tid] pos = pos - center pos = wp.cw_mul(pos, scale) out_points[tid] = pos # Internal State # ------------------------------------------------------------------------------ class InternalState: """Internal state for the node.""" def __init__(self) -> None: self.mc = None self.is_valid = False self.attr_tracking = omni.warp.nodes.AttrTracking( ( "dim1", "dim2", "dim3", "maxPoints", "maxTriangles", ), ) def needs_initialization(self, db: OgnMeshFromVolumeDatabase) -> bool: """Checks if the internal state needs to be (re)initialized.""" if not self.is_valid: return True if self.attr_tracking.have_attrs_changed(db): return True return False def initialize(self, db: OgnMeshFromVolumeDatabase) -> bool: """Initializes the internal state.""" # Initialize Warp's marching cubes helper. mc = wp.MarchingCubes( int(db.inputs.dim1), int(db.inputs.dim2), int(db.inputs.dim3), db.inputs.maxPoints, db.inputs.maxTriangles, ) # Store the class members. self.mc = mc self.attr_tracking.update_state(db) return True # Compute # ------------------------------------------------------------------------------ def compute(db: OgnMeshFromVolumeDatabase) -> None: """Evaluates the node.""" db.outputs.mesh.changes().activate() if not db.inputs.data.memory or db.inputs.data.shape[0] == 0: return state = db.internal_state # Initialize the internal state if it hasn't been already. if state.needs_initialization(db): if not state.initialize(db): return dims = (db.inputs.dim1, db.inputs.dim2, db.inputs.dim3) size = dims[0] * dims[1] * dims[2] if db.inputs.data.shape[0] != size: raise RuntimeError( "The length of the input array data doesn't match with " "the given size: `{} != {}`.".format(db.inputs.data.shape[0], size) ) # Alias the incoming memory to a Warp array. data = wp.from_ptr( db.inputs.data.memory, size, dtype=float, shape=dims, ) with omni.warp.nodes.NodeTimer("surface_mesh", db, active=PROFILING): # Let Warp's marching cubes helper generate the mesh surface at # the given ISO threshold value. state.mc.surface(data, db.inputs.threshold) # The generated surface is triangulated, so we have 3 vertices per face. face_count = int(len(state.mc.indices) / 3) vertex_count = len(state.mc.indices) point_count = len(state.mc.verts) if not point_count or not vertex_count or not face_count: return # Warp's marching cubes helper allocates its own arrays to store # the resulting mesh geometry but, eventually, we need to write that data # to OmniGraph, so we create a new geometry mesh within the output bundle. omni.warp.nodes.mesh_create_bundle( db.outputs.mesh, point_count, vertex_count, face_count, xform=db.inputs.transform, ) out_points = omni.warp.nodes.mesh_get_points(db.outputs.mesh) out_face_vertex_counts = omni.warp.nodes.mesh_get_face_vertex_counts( db.outputs.mesh, ) out_face_vertex_indices = omni.warp.nodes.mesh_get_face_vertex_indices( db.outputs.mesh, ) # Copy the data to the output geometry mesh bundle. wp.copy(out_points, state.mc.verts) wp.copy(out_face_vertex_indices, state.mc.indices) # Set all faces to be triangles. out_face_vertex_counts.fill_(3) # Transform the mesh to fit the given center and size values. center = ( dims[0] * 0.5, dims[1] * 0.5, dims[2] * 0.5, ) scale = ( db.inputs.size[0] / dims[0], db.inputs.size[1] / dims[1], db.inputs.size[2] / dims[2], ) with omni.warp.nodes.NodeTimer("transform_points", db, active=PROFILING): wp.launch( transform_points_kernel, dim=point_count, inputs=[ state.mc.verts, center, scale, ], outputs=[ out_points, ], ) # Node Entry Point # ------------------------------------------------------------------------------ class OgnMeshFromVolume: """Node.""" @staticmethod def internal_state() -> InternalState: return InternalState() @staticmethod def compute(db: OgnMeshFromVolumeDatabase) -> None: device = wp.get_device("cuda:0") try: with wp.ScopedDevice(device): compute(db) except Exception: db.log_error(traceback.format_exc()) db.internal_state.is_valid = False return db.internal_state.is_valid = True # Fire the execution for the downstream nodes. db.outputs.execOut = og.ExecutionAttributeState.ENABLED
warp-main
exts/omni.warp/omni/warp/nodes/_impl/OgnMeshFromVolume.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Node collection and private implementation for the corresponding API."""
warp-main
exts/omni.warp/omni/warp/nodes/_impl/__init__.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Node writing a dynamic texture.""" import ctypes import traceback import omni.graph.core as og import omni.warp.nodes import warp as wp from omni.warp.nodes.ogn.OgnTextureWriteDatabase import OgnTextureWriteDatabase try: import omni.ui as ui except ImportError: ui = None # Internal State # ------------------------------------------------------------------------------ class InternalState: """Internal state for the node.""" def __init__(self) -> None: self.texture_provider = None self.is_valid = False self.attr_tracking = omni.warp.nodes.AttrTracking( ( "uri", ), ) def needs_initialization(self, db: OgnTextureWriteDatabase) -> bool: """Checks if the internal state needs to be (re)initialized.""" if not self.is_valid: return True if self.attr_tracking.have_attrs_changed(db): return True return False def initialize( self, db: OgnTextureWriteDatabase, ) -> bool: """Initializes the internal state.""" uri = db.inputs.uri if not uri.startswith("dynamic://"): return False texture_provider = ui.DynamicTextureProvider(uri[10:]) # Store the class members. self.texture_provider = texture_provider self.attr_tracking.update_state(db) return True # Compute # ------------------------------------------------------------------------------ def compute(db: OgnTextureWriteDatabase) -> None: """Evaluates the node.""" if ui is None: db.log_warning("Cannot write dynamic textures in headless mode.") return if not db.inputs.data.memory or db.inputs.data.shape[0] == 0: return state = db.internal_state if state.needs_initialization(db): # Initialize the internal state if it hasn't been already. if not state.initialize(db): return dim_count = min(max(db.inputs.dimCount, 0), wp.types.ARRAY_MAX_DIMS) resolution = tuple(max(getattr(db.inputs, "dim{}".format(i + 1)), 0) for i in range(dim_count)) # We need to dereference OG's attribute pointer to get the actual pointer # to the data. data_ptr = ctypes.cast(db.inputs.data.memory, ctypes.POINTER(ctypes.c_size_t)).contents.value # Write the texture to the provider. state.texture_provider.set_bytes_data_from_gpu( data_ptr, resolution, format=ui.TextureFormat.RGBA32_SFLOAT, ) # Node Entry Point # ------------------------------------------------------------------------------ class OgnTextureWrite: """Dynamic texture write node.""" @staticmethod def internal_state() -> InternalState: return InternalState() @staticmethod def compute(db: OgnTextureWriteDatabase) -> None: try: compute(db) except Exception: db.log_error(traceback.format_exc()) db.internal_state.is_valid = False return db.internal_state.is_valid = True # Trigger the execution for the downstream nodes. db.outputs.execOut = og.ExecutionAttributeState.ENABLED
warp-main
exts/omni.warp/omni/warp/nodes/_impl/OgnTextureWrite.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Helpers to author mesh geometries represented as OmniGraph bundles.""" from typing import Optional import numpy as np import omni.graph.core as og import warp as wp from omni.warp.nodes._impl.attributes import ( attr_get, attr_get_array_on_gpu, attr_set, ) from omni.warp.nodes._impl.bundles import ( bundle_copy_attr_value, bundle_create_attr, bundle_create_child, bundle_create_metadata_attr, bundle_get_attr, bundle_set_prim_type, bundle_set_world_xform, ) from omni.warp.nodes._impl.points import ( points_get_display_color, points_get_points, points_get_velocities, points_get_local_extent, points_get_world_extent, ) def mesh_create_bundle( dst_bundle: og.BundleContents, point_count: int, vertex_count: int, face_count: int, xform: Optional[np.ndarray] = None, create_display_color: bool = False, create_normals: bool = False, create_uvs: bool = False, child_idx: int = 0, ) -> None: """Creates and initializes mesh attributes within a bundle.""" child_bundle = bundle_create_child(dst_bundle, child_idx) bundle_create_attr( child_bundle, "points", og.Type( og.BaseDataType.FLOAT, tuple_count=3, array_depth=1, role=og.AttributeRole.POSITION, ), size=point_count, ) bundle_create_attr( child_bundle, "faceVertexCounts", og.Type( og.BaseDataType.INT, tuple_count=1, array_depth=1, role=og.AttributeRole.NONE, ), size=face_count, ) bundle_create_attr( child_bundle, "faceVertexIndices", og.Type( og.BaseDataType.INT, tuple_count=1, array_depth=1, role=og.AttributeRole.NONE, ), size=vertex_count, ) bundle_set_prim_type(dst_bundle, "Mesh", child_idx=child_idx) if xform is not None: bundle_set_world_xform(dst_bundle, xform, child_idx=child_idx) if create_display_color: bundle_create_attr( child_bundle, "primvars:displayColor", og.Type( og.BaseDataType.FLOAT, tuple_count=3, array_depth=1, role=og.AttributeRole.COLOR, ), size=point_count, ) interp_attr = bundle_create_metadata_attr( child_bundle, "primvars:displayColor", "interpolation", og.Type( og.BaseDataType.TOKEN, tuple_count=1, array_depth=0, role=og.AttributeRole.NONE, ), ) attr_set(interp_attr, "vertex") if create_normals: bundle_create_attr( child_bundle, "normals", og.Type( og.BaseDataType.FLOAT, tuple_count=3, array_depth=1, role=og.AttributeRole.NORMAL, ), size=vertex_count, ) if create_uvs: bundle_create_attr( child_bundle, "primvars:st", og.Type( og.BaseDataType.FLOAT, tuple_count=2, array_depth=1, role=og.AttributeRole.TEXCOORD, ), size=vertex_count, ) def mesh_copy_bundle( dst_bundle: og.BundleContents, src_bundle: og.BundleContents, deep_copy: bool = False, child_idx: int = 0, ) -> None: """Creates and initializes mesh attributes from an existing bundle.""" dst_child_bundle = bundle_create_child(dst_bundle, child_idx) src_child_bundle = src_bundle.bundle.get_child_bundle(child_idx) dst_child_bundle.copy_bundle(src_child_bundle) if deep_copy: bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "points", wp.vec3) bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "faceVertexCounts", int) bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "faceVertexIndices", int) bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "primvars:displayColor", wp.vec3) bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "normals", wp.vec3) bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "primvars:st", wp.vec2) def mesh_get_point_count( bundle: og.BundleContents, child_idx: int = 0, ) -> int: """Retrieves the number of points.""" return bundle_get_attr(bundle, "points", child_idx).size() def mesh_get_vertex_count( bundle: og.BundleContents, child_idx: int = 0, ) -> int: """Retrieves the number of vertices.""" attr = bundle_get_attr(bundle, "faceVertexCounts", child_idx) return int(np.sum(attr_get(attr))) def mesh_get_face_count( bundle: og.BundleContents, child_idx: int = 0, ) -> int: """Retrieves the number of faces.""" return bundle_get_attr(bundle, "faceVertexCounts", child_idx).size() def mesh_get_points( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=wp.vec3): """Retrieves the bundle points attribute as a Warp array.""" return points_get_points(bundle, child_idx=child_idx) def mesh_get_velocities( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=wp.vec3): """Retrieves the bundle velocities attribute as a Warp array.""" return points_get_velocities(bundle, child_idx=child_idx) def mesh_get_normals( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=wp.vec3): """Retrieves the bundle normals attribute as a Warp array.""" attr = bundle_get_attr(bundle, "normals", child_idx) return attr_get_array_on_gpu(attr, wp.vec3, read_only=bundle.read_only) def mesh_get_uvs( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=wp.vec2): """Retrieves the bundle UVs attribute as a Warp array.""" attr = bundle_get_attr(bundle, "primvars:st", child_idx) return attr_get_array_on_gpu(attr, wp.vec2, read_only=bundle.read_only) def mesh_get_display_color( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=wp.vec3): """Retrieves the bundle display color attribute as a Warp array.""" return points_get_display_color(bundle, child_idx=child_idx) def mesh_get_face_vertex_counts( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=int): """Retrieves the bundle face vertex counts attribute as a Warp array.""" attr = bundle_get_attr(bundle, "faceVertexCounts", child_idx) return attr_get_array_on_gpu(attr, int, read_only=bundle.read_only) def mesh_get_face_vertex_indices( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=int): """Retrieves the bundle face vertex indices attribute as a Warp array.""" attr = bundle_get_attr(bundle, "faceVertexIndices", child_idx) return attr_get_array_on_gpu(attr, int, read_only=bundle.read_only) def mesh_get_local_extent( bundle: og.BundleContents, child_idx: int = 0, ) -> np.ndarray: """Retrieves the local extent of the geometry mesh.""" return points_get_local_extent(bundle, child_idx=child_idx) def mesh_get_world_extent( bundle: og.BundleContents, axis_aligned: bool = False, child_idx: int = 0, ) -> np.ndarray: """Retrieves the world extent of the geometry mesh.""" return points_get_world_extent( bundle, axis_aligned=axis_aligned, child_idx=child_idx, ) def mesh_triangulate( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=int): """Computes a triangulated version of the face vertex indices.""" counts = mesh_get_face_vertex_counts(bundle, child_idx=child_idx).numpy() if np.all(counts == 3): return mesh_get_face_vertex_indices(bundle, child_idx=child_idx) indices = mesh_get_face_vertex_indices(bundle, child_idx=child_idx).numpy() tri_face_count = np.sum(np.subtract(counts, 2)) out = np.empty(tri_face_count * 3, dtype=int) dst_offset = 0 src_offset = 0 for count in counts: for i in range(count - 2): out[dst_offset] = indices[src_offset] out[dst_offset + 1] = indices[src_offset + i + 1] out[dst_offset + 2] = indices[src_offset + i + 2] dst_offset += 3 src_offset += count return wp.array(out, dtype=int, copy=True)
warp-main
exts/omni.warp/omni/warp/nodes/_impl/mesh.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Node generating particles inside a mesh.""" import traceback from typing import Tuple import numpy as np import omni.graph.core as og import warp as wp import omni.warp.nodes from omni.warp.nodes.ogn.OgnParticlesFromMeshDatabase import OgnParticlesFromMeshDatabase PROFILING = False # Kernels # ------------------------------------------------------------------------------ @wp.kernel(enable_backward=False) def transform_points_kernel( points: wp.array(dtype=wp.vec3), xform: wp.mat44, out_points: wp.array(dtype=wp.vec3), ): tid = wp.tid() out_points[tid] = wp.transform_point(xform, points[tid]) @wp.kernel(enable_backward=False) def sample_mesh_kernel( mesh: wp.uint64, grid_lower_bound: wp.vec3, max_points: int, min_sdf: float, max_sdf: float, spacing: float, spacing_jitter: float, seed: int, out_point_count: wp.array(dtype=int), out_points: wp.array(dtype=wp.vec3), ): tid = wp.tid() x, y, z = wp.tid() # Retrieve the cell's center position. cell_pos = ( grid_lower_bound + wp.vec3( float(x) + 0.5, float(y) + 0.5, float(z) + 0.5, ) * spacing ) # Query the closest location on the mesh. max_dist = 1000.0 sign = float(0.0) face_index = int(0) face_u = float(0.0) face_v = float(0.0) if not wp.mesh_query_point( mesh, cell_pos, max_dist, sign, face_index, face_u, face_v, ): return # Evaluates the position of the closest mesh location found. mesh_pos = wp.mesh_eval_position(mesh, face_index, face_u, face_v) # Check that the cell's distance to the mesh location is within # the desired range. dist = wp.length(cell_pos - mesh_pos) * sign if dist < min_sdf or dist > max_sdf: return # Increment the counter of valid point locations found. point_index = wp.atomic_add(out_point_count, 0, 1) if point_index > max_points: return # Compute the spacing jitter value while making sure it's normalized # in a range [-1, 1]. rng = wp.rand_init(seed, tid) jitter = wp.vec3( wp.randf(rng) * 2.0 - 1.0, wp.randf(rng) * 2.0 - 1.0, wp.randf(rng) * 2.0 - 1.0, ) # Store the point position. out_points[point_index] = cell_pos + jitter * spacing_jitter # Internal State # ------------------------------------------------------------------------------ class InternalState: """Internal state for the node.""" def __init__(self) -> None: self.mesh = None self.is_valid = False self.attr_tracking = omni.warp.nodes.AttrTracking( ( "transform", "seed", "minSdf", "maxSdf", "radius", "spacing", "spacingJitter", "mass", "velocityDir", "velocityAmount", "maxPoints", ), ) def needs_initialization(self, db: OgnParticlesFromMeshDatabase) -> bool: """Checks if the internal state needs to be (re)initialized.""" if not self.is_valid: return True if omni.warp.nodes.bundle_has_changed(db.inputs.mesh): return True return False def initialize(self, db: OgnParticlesFromMeshDatabase) -> bool: """Initializes the internal state.""" point_count = omni.warp.nodes.mesh_get_point_count(db.inputs.mesh) xform = omni.warp.nodes.bundle_get_world_xform(db.inputs.mesh) # Transform the mesh's point positions into world space. world_point_positions = wp.empty(point_count, dtype=wp.vec3) wp.launch( kernel=transform_points_kernel, dim=point_count, inputs=[ omni.warp.nodes.mesh_get_points(db.inputs.mesh), xform.T, ], outputs=[ world_point_positions, ], ) # Initialize Warp's mesh instance, which requires # a triangulated topology. face_vertex_indices = omni.warp.nodes.mesh_triangulate(db.inputs.mesh) mesh = wp.Mesh( points=world_point_positions, velocities=wp.zeros(point_count, dtype=wp.vec3), indices=face_vertex_indices, ) # Store the class members. self.mesh = mesh return True # Compute # ------------------------------------------------------------------------------ def spawn_particles(db: OgnParticlesFromMeshDatabase) -> Tuple[wp.array, int]: """Spawns the particles by filling the given point positions array.""" # Initialize an empty array that will hold the particle positions. points = wp.empty(db.inputs.maxPoints, dtype=wp.vec3) # Retrieve the mesh's aligned bounding box. extent = omni.warp.nodes.mesh_get_world_extent( db.inputs.mesh, axis_aligned=True, ) # Compute the emitter's bounding box size. extent_size = extent[1] - extent[0] # Infer the emitter's grid dimensions from its bounding box size and # the requested spacing. spacing = max(db.inputs.spacing, 1e-6) dims = (extent_size / spacing).astype(int) + 1 dims = np.maximum(dims, 1) # Add one particle per grid cell located within the mesh geometry. point_count = wp.zeros(1, dtype=int) wp.launch( kernel=sample_mesh_kernel, dim=dims, inputs=[ db.internal_state.mesh.id, extent[0], db.inputs.maxPoints, db.inputs.minSdf, db.inputs.maxSdf, spacing, db.inputs.spacingJitter, db.inputs.seed, ], outputs=[ point_count, points, ], ) # Retrieve the actual number of particles created. point_count = min(int(point_count.numpy()[0]), db.inputs.maxPoints) return (points, point_count) def compute(db: OgnParticlesFromMeshDatabase) -> None: """Evaluates the node.""" db.outputs.particles.changes().activate() if not db.inputs.mesh.valid or not db.outputs.particles.valid: return state = db.internal_state # Initialize the internal state if it hasn't been already. if state.needs_initialization(db): if not state.initialize(db): return elif not state.attr_tracking.have_attrs_changed(db): return with omni.warp.nodes.NodeTimer("spawn_particles", db, active=PROFILING): # Spawn new particles inside the mesh. (points, point_count) = spawn_particles(db) # Create a new geometry points within the output bundle. omni.warp.nodes.points_create_bundle( db.outputs.particles, point_count, xform=db.inputs.transform, create_masses=True, create_velocities=True, create_widths=True, ) # Copy the point positions onto the output bundle. wp.copy( omni.warp.nodes.points_get_points(db.outputs.particles), points, count=point_count, ) if point_count: velocities = omni.warp.nodes.points_get_velocities(db.outputs.particles) if db.inputs.velocityAmount < 1e-6: velocities.fill_(0.0) else: # Retrieve the mesh's world transformation. xform = omni.warp.nodes.bundle_get_world_xform(db.inputs.mesh) # Retrieve the normalized velocity direction. vel = db.inputs.velocityDir vel /= np.linalg.norm(vel) # Transform the velocity local direction with the mesh's world # rotation matrix to get the velocity direction in world space. vel = np.dot(xform[:3, :3].T, vel) # Scale the result to get the velocity's magnitude. vel *= db.inputs.velocityAmount # Store the velocities in the output bundle. velocities.fill_(wp.vec3(vel)) # Store the radius in the output bundle. widths = omni.warp.nodes.points_get_widths(db.outputs.particles) widths.fill_(db.inputs.radius * 2.0) # Store the mass in the output bundle. masses = omni.warp.nodes.points_get_masses(db.outputs.particles) masses.fill_(db.inputs.mass) state.attr_tracking.update_state(db) # Node Entry Point # ------------------------------------------------------------------------------ class OgnParticlesFromMesh: """Node.""" @staticmethod def internal_state() -> InternalState: return InternalState() @staticmethod def compute(db: OgnParticlesFromMeshDatabase) -> None: device = wp.get_device("cuda:0") try: with wp.ScopedDevice(device): compute(db) except Exception: db.log_error(traceback.format_exc()) db.internal_state.is_valid = False return db.internal_state.is_valid = True # Fire the execution for the downstream nodes. db.outputs.execOut = og.ExecutionAttributeState.ENABLED
warp-main
exts/omni.warp/omni/warp/nodes/_impl/OgnParticlesFromMesh.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Node creating a geometry mesh grid.""" import traceback import numpy as np import omni.graph.core as og import warp as wp import omni.warp.nodes from omni.warp.nodes._impl.kernels.grid_create import grid_create_launch_kernel from omni.warp.nodes.ogn.OgnGridCreateDatabase import OgnGridCreateDatabase PROFILING = False # Internal State # ------------------------------------------------------------------------------ class InternalState: """Internal state for the node.""" def __init__(self) -> None: self.is_valid = False self.attr_tracking = omni.warp.nodes.AttrTracking( ( "transform", "size", "dims", ), ) # Compute # ------------------------------------------------------------------------------ def compute(db: OgnGridCreateDatabase) -> None: """Evaluates the node.""" db.outputs.mesh.changes().activate() if not db.outputs.mesh.valid: return state = db.internal_state if state.is_valid and not state.attr_tracking.have_attrs_changed(db): return # Compute the mesh's topology counts. face_count = db.inputs.dims[0] * db.inputs.dims[1] vertex_count = face_count * 4 point_count = (db.inputs.dims[0] + 1) * (db.inputs.dims[1] + 1) # Create a new geometry mesh within the output bundle. omni.warp.nodes.mesh_create_bundle( db.outputs.mesh, point_count, vertex_count, face_count, xform=db.inputs.transform, create_normals=True, create_uvs=True, ) with omni.warp.nodes.NodeTimer("grid_create", db, active=PROFILING): # Evaluate the kernel. grid_create_launch_kernel( omni.warp.nodes.mesh_get_points(db.outputs.mesh), omni.warp.nodes.mesh_get_face_vertex_counts(db.outputs.mesh), omni.warp.nodes.mesh_get_face_vertex_indices(db.outputs.mesh), omni.warp.nodes.mesh_get_normals(db.outputs.mesh), omni.warp.nodes.mesh_get_uvs(db.outputs.mesh), db.inputs.size.tolist(), db.inputs.dims.tolist(), ) state.attr_tracking.update_state(db) # Node Entry Point # ------------------------------------------------------------------------------ class OgnGridCreate: """Node.""" @staticmethod def internal_state() -> InternalState: return InternalState() @staticmethod def compute(db: OgnGridCreateDatabase) -> None: device = wp.get_device("cuda:0") try: with wp.ScopedDevice(device): compute(db) except Exception: db.log_error(traceback.format_exc()) db.internal_state.is_valid = False return db.internal_state.is_valid = True # Fire the execution for the downstream nodes. db.outputs.execOut = og.ExecutionAttributeState.ENABLED
warp-main
exts/omni.warp/omni/warp/nodes/_impl/OgnGridCreate.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """General helpers for this extension.""" from enum import Enum from typing import ( Any, Optional, Union, ) import omni.graph.core as og import warp as wp # General # ------------------------------------------------------------------------------ class IntEnum(int, Enum): """Base class for integer enumerators with labels.""" def __new__(cls, value, label): obj = int.__new__(cls, value) obj._value_ = value obj.label = label return obj # Timer # ------------------------------------------------------------------------------ class NodeTimer(object): """Context wrapping Warp's scoped timer for use with nodes.""" def __init__(self, name: str, db: Any, active: bool = False) -> None: name = "{}:{}".format(db.node.get_prim_path(), name) self.timer = wp.ScopedTimer(name, active=active, synchronize=True) def __enter__(self) -> None: self.timer.__enter__() return self def __exit__(self, type: Any, value: Any, traceback: Any) -> None: self.timer.__exit__(type, value, traceback) # Types # ------------------------------------------------------------------------------ _BaseDType = og.BaseDataType _AttrRole = og.AttributeRole # fmt: off _DATA_TYPES_MAPPING = ( ("bool" , (_BaseDType.BOOL , 1, _AttrRole.NONE ), "int8" ), ("color3f" , (_BaseDType.FLOAT , 3, _AttrRole.COLOR ), "vec3" ), ("color4f" , (_BaseDType.FLOAT , 4, _AttrRole.COLOR ), "vec4" ), ("double" , (_BaseDType.DOUBLE, 1, _AttrRole.NONE ), "float64"), ("float" , (_BaseDType.FLOAT , 1, _AttrRole.NONE ), "float32"), ("float2" , (_BaseDType.FLOAT , 2, _AttrRole.NONE ), "vec2" ), ("float3" , (_BaseDType.FLOAT , 3, _AttrRole.NONE ), "vec3" ), ("float4" , (_BaseDType.FLOAT , 4, _AttrRole.NONE ), "vec4" ), ("int" , (_BaseDType.INT , 1, _AttrRole.NONE ), "int32" ), ("int64" , (_BaseDType.INT64 , 1, _AttrRole.NONE ), "int64" ), ("matrix2d" , (_BaseDType.DOUBLE, 4, _AttrRole.MATRIX ), "mat22d" ), ("matrix3d" , (_BaseDType.DOUBLE, 9, _AttrRole.MATRIX ), "mat33d" ), ("matrix4d" , (_BaseDType.DOUBLE, 16, _AttrRole.MATRIX ), "mat44d" ), ("normal3f" , (_BaseDType.FLOAT , 3, _AttrRole.NORMAL ), "vec3" ), ("point3f" , (_BaseDType.FLOAT , 3, _AttrRole.POSITION ), "vec3" ), ("quatf" , (_BaseDType.FLOAT , 4, _AttrRole.QUATERNION), "quat" ), ("texCoord2f", (_BaseDType.FLOAT , 2, _AttrRole.TEXCOORD ), "vec2" ), ("texCoord3f", (_BaseDType.FLOAT , 3, _AttrRole.TEXCOORD ), "vec3" ), ("timecode" , (_BaseDType.DOUBLE, 1, _AttrRole.TIMECODE ), "float64"), ("token" , (_BaseDType.TOKEN , 1, _AttrRole.NONE ), "uint64" ), ("uchar" , (_BaseDType.UCHAR , 1, _AttrRole.NONE ), "uint8" ), ("uint" , (_BaseDType.UINT , 1, _AttrRole.NONE ), "uint32" ), ("uint64" , (_BaseDType.UINT64, 1, _AttrRole.NONE ), "uint64" ), ("vector3f" , (_BaseDType.FLOAT , 3, _AttrRole.VECTOR ), "vec3" ), ) _SDF_DATA_TYPE_TO_OG = {k: v for (k, v, _) in _DATA_TYPES_MAPPING} _SDF_DATA_TYPE_NAME_TO_WARP = {k: v for (k, _, v) in _DATA_TYPES_MAPPING} _OG_DATA_TYPE_TO_WARP = {k: v for (_, k, v) in _DATA_TYPES_MAPPING} # fmt: on SUPPORTED_OG_DATA_TYPES = tuple( og.Type(base_data_type, tuple_count=tuple_count, array_depth=0, role=role) for base_data_type, tuple_count, role in _OG_DATA_TYPE_TO_WARP.keys() ) SUPPORTED_OG_ARRAY_TYPES = tuple( og.Type(base_data_type, tuple_count=tuple_count, array_depth=1, role=role) for base_data_type, tuple_count, role in _OG_DATA_TYPE_TO_WARP.keys() ) SUPPORTED_OG_TYPES = SUPPORTED_OG_DATA_TYPES + SUPPORTED_OG_ARRAY_TYPES SUPPORTED_SDF_DATA_TYPE_NAMES = tuple(_SDF_DATA_TYPE_NAME_TO_WARP.keys()) def get_warp_type_from_data_type_name( data_type_name: str, dim_count: int = 0, as_str: bool = False, str_namespace: Optional[str] = "wp", ): if as_str: prefix = "" if str_namespace is None else "{}.".format(str_namespace) if dim_count == 0: return "{prefix}{dtype}".format(prefix=prefix, dtype=data_type_name) if dim_count == 1: return "{prefix}array(dtype={prefix}{dtype})".format( prefix=prefix, dtype=data_type_name, ) return "{prefix}array(dtype={prefix}{dtype}, ndim={ndim})".format( prefix=prefix, dtype=data_type_name, ndim=dim_count, ) dtype = getattr(wp.types, data_type_name) if dim_count == 0: return dtype if dim_count == 1: return wp.array(dtype=dtype) return wp.array(dtype=dtype, ndim=dim_count) def type_convert_og_to_warp( og_type: og.Type, dim_count: Optional[int] = None, as_str: bool = False, str_namespace: Optional[str] = "wp", ) -> Union[Any, str]: """Converts an OmniGraph type into a compatible Warp type.""" data_type_name = _OG_DATA_TYPE_TO_WARP.get( (og_type.base_type, og_type.tuple_count, og_type.role), ) if data_type_name is None: raise RuntimeError("Unsupported attribute type '{}'.".format(og_type)) if dim_count is None: dim_count = og_type.array_depth return get_warp_type_from_data_type_name( data_type_name, dim_count=dim_count, as_str=as_str, str_namespace=str_namespace, ) def type_convert_sdf_name_to_warp( sdf_type_name: str, dim_count: Optional[int] = None, as_str: bool = False, str_namespace: Optional[str] = "wp", ) -> Union[Any, str]: """Converts a Sdf type name into a compatible Warp type.""" if sdf_type_name.endswith("[]"): sdf_type_name = sdf_type_name[:-2] if dim_count is None: dim_count = 1 elif dim_count is None: dim_count = 0 data_type_name = _SDF_DATA_TYPE_NAME_TO_WARP.get(sdf_type_name) if data_type_name is None: raise RuntimeError("Unsupported attribute type '{}'.".format(sdf_type_name)) return get_warp_type_from_data_type_name( data_type_name, dim_count=dim_count, as_str=as_str, str_namespace=str_namespace, ) def type_convert_sdf_name_to_og( sdf_type_name: str, is_array: Optional[bool] = None, ) -> og.Type: """Converts a Sdf type name into its corresponding OmniGraph type.""" if sdf_type_name.endswith("[]"): sdf_type_name = sdf_type_name[:-2] if is_array is None: is_array = True elif is_array is None: is_array = False data_type = _SDF_DATA_TYPE_TO_OG.get(sdf_type_name) if data_type is None: raise RuntimeError("Unsupported attribute type '{}'.".format(sdf_type_name)) base_data_type, tuple_count, role = data_type return og.Type( base_data_type, tuple_count=tuple_count, array_depth=int(is_array), role=role, )
warp-main
exts/omni.warp/omni/warp/nodes/_impl/common.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Node creating a grid geometry simulated with a wave equation solver.""" from math import sqrt import traceback import numpy as np import omni.graph.core as og import omni.timeline import warp as wp import omni.warp.nodes from omni.warp.nodes._impl.kernels.grid_create import grid_create_launch_kernel from omni.warp.nodes.ogn.OgnWaveSolveDatabase import OgnWaveSolveDatabase PROFILING = False # Kernels # ----------------------------------------------------------------------------- @wp.func def sample_height( height_map: wp.array(dtype=float), x: int, z: int, point_count_x: int, point_count_z: int, ): # Clamp to the grid's bounds. x = wp.clamp(x, 0, point_count_x - 1) z = wp.clamp(z, 0, point_count_z - 1) return height_map[z * point_count_x + x] @wp.func def laplacian( height_map: wp.array(dtype=float), x: int, z: int, point_count_x: int, point_count_z: int, ): # See https://en.wikipedia.org/wiki/Wave_equation. ddx = ( sample_height(height_map, x + 1, z, point_count_x, point_count_z) - sample_height(height_map, x, z, point_count_x, point_count_z) * 2.0 + sample_height(height_map, x - 1, z, point_count_x, point_count_z) ) ddz = ( sample_height(height_map, x, z + 1, point_count_x, point_count_z) - sample_height(height_map, x, z, point_count_x, point_count_z) * 2.0 + sample_height(height_map, x, z - 1, point_count_x, point_count_z) ) return ddx + ddz @wp.kernel(enable_backward=False) def displace_kernel( point_count_x: int, center_x: float, center_z: float, radius: float, amplitude: float, time: float, out_height_map_0: wp.array(dtype=float), out_height_map_1: wp.array(dtype=float), ): tid = wp.tid() x = tid % point_count_x z = tid // point_count_x dx = float(x) - center_x dz = float(z) - center_z dist_sq = float(dx * dx + dz * dz) if dist_sq < radius * radius: height = amplitude * wp.sin(time) out_height_map_0[tid] = height out_height_map_1[tid] = height @wp.kernel(enable_backward=False) def simulate_kernel( point_count_x: int, point_count_z: int, inv_cell_size: float, speed: float, damping: float, dt: float, height_map_1: wp.array(dtype=float), out_height_map_0: wp.array(dtype=float), ): tid = wp.tid() x = tid % point_count_x z = tid // point_count_x d = laplacian(height_map_1, x, z, point_count_x, point_count_z) d *= inv_cell_size * inv_cell_size # Integrate and write the result in the 'previous' height map buffer since # it will be then swapped to become the 'current' one. h0 = out_height_map_0[tid] h1 = height_map_1[tid] out_height_map_0[tid] = h1 * 2.0 - h0 + (d * speed - (h1 - h0) * damping) * dt * dt @wp.kernel(enable_backward=False) def update_mesh_kernel( height_map: wp.array(dtype=float), out_points: wp.array(dtype=wp.vec3), ): tid = wp.tid() height = height_map[tid] pos = out_points[tid] out_points[tid] = wp.vec3(pos[0], height, pos[2]) # Internal State # ------------------------------------------------------------------------------ class InternalState: """Internal state for the node.""" def __init__(self) -> None: self.height_map_0 = None self.height_map_1 = None self.time = 0.0 self.is_valid = False self.attr_tracking = omni.warp.nodes.AttrTracking( ( "size", "cellSize", ), ) def needs_initialization(self, db: OgnWaveSolveDatabase) -> bool: """Checks if the internal state needs to be (re)initialized.""" if not self.is_valid: return True if self.attr_tracking.have_attrs_changed(db): return True if db.inputs.time < self.time: # Reset the simulation when we're rewinding. return True return False def initialize( self, db: OgnWaveSolveDatabase, dims: np.ndarray, ) -> bool: """Initializes the internal state.""" point_count = omni.warp.nodes.mesh_get_point_count(db.outputs.mesh) # Initialize a double buffering for the height map. height_map_0 = wp.zeros(point_count, dtype=float) height_map_1 = wp.zeros(point_count, dtype=float) # Build the grid mesh. grid_create_launch_kernel( omni.warp.nodes.mesh_get_points(db.outputs.mesh), omni.warp.nodes.mesh_get_face_vertex_counts(db.outputs.mesh), omni.warp.nodes.mesh_get_face_vertex_indices(db.outputs.mesh), omni.warp.nodes.mesh_get_normals(db.outputs.mesh), omni.warp.nodes.mesh_get_uvs(db.outputs.mesh), db.inputs.size.tolist(), dims.tolist(), update_topology=True, ) # Store the class members. self.height_map_0 = height_map_0 self.height_map_1 = height_map_1 self.attr_tracking.update_state(db) return True # Compute # ------------------------------------------------------------------------------ def displace( db: OgnWaveSolveDatabase, dims: np.ndarray, cell_size: np.ndarray, ) -> None: """Displaces the height map with the collider.""" state = db.internal_state # Retrieve some data from the grid mesh. xform = omni.warp.nodes.bundle_get_world_xform(db.outputs.mesh) # Retrieve some data from the collider mesh. collider_xform = omni.warp.nodes.bundle_get_world_xform(db.inputs.collider) collider_extent = omni.warp.nodes.mesh_get_world_extent( db.inputs.collider, axis_aligned=True, ) # Retrieve the collider's position in the grid's object space. collider_pos = np.pad(collider_xform[3][:3], (0, 1), constant_values=1) collider_pos = np.dot(np.linalg.inv(xform).T, collider_pos) # Compute the collider's radius. collider_radius = np.amax(collider_extent[1] - collider_extent[0]) * 0.5 # Determine the point around which the grid will be displaced. center_x = (dims[0] + 1) * 0.5 - float(collider_pos[0]) / cell_size[0] center_z = (dims[1] + 1) * 0.5 - float(collider_pos[2]) / cell_size[1] # Clamp the deformation center to the grid's bounds. center_x = max(0, min(dims[0], center_x)) center_z = max(0, min(dims[1], center_z)) # Apply the displacement if the collider is in contact with the grid. contact_radius_sq = (collider_radius**2) - (abs(collider_pos[1]) ** 2) if contact_radius_sq > 0: cell_size_uniform = (cell_size[0] + cell_size[1]) * 0.5 center_radius = sqrt(contact_radius_sq) / cell_size_uniform wp.launch( kernel=displace_kernel, dim=omni.warp.nodes.mesh_get_point_count(db.outputs.mesh), inputs=[ dims[0] + 1, center_x, center_z, center_radius, db.inputs.amplitude, db.inputs.time, ], outputs=[ state.height_map_0, state.height_map_1, ], ) def simulate( db: OgnWaveSolveDatabase, dims: np.ndarray, cell_size: np.ndarray, sim_dt: bool, ) -> None: """Solves the wave simulation.""" state = db.internal_state cell_size_uniform = (cell_size[0] + cell_size[1]) * 0.5 wp.launch( kernel=simulate_kernel, dim=omni.warp.nodes.mesh_get_point_count(db.outputs.mesh), inputs=[ dims[0] + 1, dims[1] + 1, 1.0 / cell_size_uniform, db.inputs.speed, db.inputs.damping, sim_dt, state.height_map_1, ], outputs=[ state.height_map_0, ], ) # Swap the height map buffers state.height_map_0, state.height_map_1 = ( state.height_map_1, state.height_map_0, ) def update_mesh(db: OgnWaveSolveDatabase) -> None: """Updates the output grid mesh.""" state = db.internal_state wp.launch( kernel=update_mesh_kernel, dim=omni.warp.nodes.mesh_get_point_count(db.outputs.mesh), inputs=[ state.height_map_1, ], outputs=[ omni.warp.nodes.mesh_get_points(db.outputs.mesh), ], ) def compute(db: OgnWaveSolveDatabase) -> None: """Evaluates the node.""" db.outputs.mesh.changes().activate() if not db.outputs.mesh.valid: return state = db.internal_state # Compute the number of divisions. dims = (db.inputs.size / db.inputs.cellSize).astype(int) # Compute the mesh's topology counts. face_count = dims[0] * dims[1] vertex_count = face_count * 4 point_count = (dims[0] + 1) * (dims[1] + 1) # Create a new geometry mesh within the output bundle. omni.warp.nodes.mesh_create_bundle( db.outputs.mesh, point_count, vertex_count, face_count, xform=db.inputs.transform, create_normals=True, create_uvs=True, ) if state.needs_initialization(db): # Initialize the internal state if it hasn't been already. if not state.initialize(db, dims): return else: # We skip the simulation if it has just been initialized. # Retrieve the simulation's delta time. timeline = omni.timeline.get_timeline_interface() sim_rate = timeline.get_ticks_per_second() sim_dt = 1.0 / sim_rate # Infer the size of each cell from the overall grid size and the number # of dimensions. cell_size = db.inputs.size / dims if db.inputs.collider.valid: with omni.warp.nodes.NodeTimer("displace", db, active=PROFILING): # Deform the grid with a displacement value if the collider # is in contact with it. displace(db, dims, cell_size) with omni.warp.nodes.NodeTimer("simulate", db, active=PROFILING): # Simulate the ripples using the wave equation. simulate(db, dims, cell_size, sim_dt) with omni.warp.nodes.NodeTimer("update_mesh", db, active=PROFILING): # Update the mesh points with the height map resulting from # the displacement and simulation steps. update_mesh(db) # Store the current time. state.time = db.inputs.time # Node Entry Point # ------------------------------------------------------------------------------ class OgnWaveSolve: """Node.""" @staticmethod def internal_state() -> InternalState: return InternalState() @staticmethod def compute(db: OgnWaveSolveDatabase) -> None: device = wp.get_device("cuda:0") try: with wp.ScopedDevice(device): compute(db) except Exception: db.log_error(traceback.format_exc()) db.internal_state.is_valid = False return db.internal_state.is_valid = True # Fire the execution for the downstream nodes. db.outputs.execOut = og.ExecutionAttributeState.ENABLED
warp-main
exts/omni.warp/omni/warp/nodes/_impl/OgnWaveSolve.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Node simulating cloth.""" import traceback import numpy as np import omni.graph.core as og import omni.timeline import warp as wp import omni.warp.nodes from omni.warp.nodes.ogn.OgnClothSimulateDatabase import OgnClothSimulateDatabase USE_GRAPH = True PROFILING = False # Kernels # ------------------------------------------------------------------------------ @wp.kernel(enable_backward=False) def transform_points_kernel( points: wp.array(dtype=wp.vec3), xform: wp.mat44, out_points: wp.array(dtype=wp.vec3), ): tid = wp.tid() out_points[tid] = wp.transform_point(xform, points[tid]) @wp.kernel(enable_backward=False) def update_collider_kernel( points_0: wp.array(dtype=wp.vec3), points_1: wp.array(dtype=wp.vec3), xform_0: wp.mat44, xform_1: wp.mat44, sim_dt: float, out_points: wp.array(dtype=wp.vec3), out_velocities: wp.array(dtype=wp.vec3), ): tid = wp.tid() point_0 = wp.transform_point(xform_0, points_0[tid]) point_1 = wp.transform_point(xform_1, points_1[tid]) out_points[tid] = point_0 out_velocities[tid] = (point_1 - point_0) / sim_dt @wp.kernel(enable_backward=False) def update_cloth_kernel( points_0: wp.array(dtype=wp.vec3), xform: wp.mat44, out_points: wp.array(dtype=wp.vec3), out_velocities: wp.array(dtype=wp.vec3), ): tid = wp.tid() point = wp.transform_point(xform, points_0[tid]) diff = point - points_0[tid] out_points[tid] = point out_velocities[tid] = out_velocities[tid] + diff @wp.kernel def update_contacts_kernel( points: wp.array(dtype=wp.vec3), velocities: wp.array(dtype=wp.vec3), sim_dt: float, out_points: wp.array(dtype=wp.vec3), ): tid = wp.tid() out_points[tid] = points[tid] + velocities[tid] * sim_dt # Internal State # ------------------------------------------------------------------------------ class InternalState: """Internal state for the node.""" def __init__(self) -> None: self.sim_dt = None self.sim_tick = None self.model = None self.integrator = None self.state_0 = None self.state_1 = None self.xform = None self.collider_xform = None self.collider_mesh = None self.collider_points_0 = None self.collider_points_1 = None self.graph = None self.sim_enabled = True self.time = 0.0 self.is_valid = False self.attr_tracking = omni.warp.nodes.AttrTracking( ( "substepCount", "gravity", "globalScale", "contactElasticStiffness", "contactFrictionStiffness", "contactFrictionCoeff", "contactDampingStiffness", "clothDensity", "clothTriElasticStiffness", "clothTriAreaStiffness", "clothTriDampingStiffness", "clothEdgeBendingStiffness", "clothEdgeDampingStiffness", "colliderContactDistance", "colliderContactQueryRange", "groundEnabled", "groundAltitude", ), ) def needs_initialization(self, db: OgnClothSimulateDatabase) -> bool: """Checks if the internal state needs to be (re)initialized.""" if not self.is_valid or not db.inputs.enabled or not self.sim_enabled: return True if self.attr_tracking.have_attrs_changed(db): return True if db.inputs.time < self.time: # Reset the simulation when we're rewinding. return True return False def initialize( self, db: OgnClothSimulateDatabase, device: wp.context.Device, ) -> bool: """Initializes the internal state.""" # Lazy load warp.sim here to not slow down extension loading. import warp.sim # Compute the simulation time step. timeline = omni.timeline.get_timeline_interface() sim_rate = timeline.get_ticks_per_second() sim_dt = 1.0 / sim_rate # Initialize Warp's simulation model builder. builder = wp.sim.ModelBuilder() # Retrieve some data from the cloth mesh. points = omni.warp.nodes.mesh_get_points(db.inputs.cloth) xform = omni.warp.nodes.bundle_get_world_xform(db.inputs.cloth) # Transform the cloth point positions into world space. world_points = wp.empty(len(points), dtype=wp.vec3) wp.launch( kernel=transform_points_kernel, dim=len(points), inputs=[ points, xform.T, ], outputs=[ world_points, ], ) # Register the cloth geometry mesh into Warp's simulation model builder, # which requires triangulated meshes. face_vertex_indices = omni.warp.nodes.mesh_triangulate(db.inputs.cloth) builder.add_cloth_mesh( pos=(0.0, 0.0, 0.0), rot=(0.0, 0.0, 0.0, 1.0), scale=1.0, vel=(0.0, 0.0, 0.0), vertices=world_points.numpy(), indices=face_vertex_indices.numpy(), density=db.inputs.clothDensity, tri_ke=db.inputs.clothTriElasticStiffness * db.inputs.globalScale, tri_ka=db.inputs.clothTriAreaStiffness * db.inputs.globalScale, tri_kd=db.inputs.clothTriDampingStiffness * db.inputs.globalScale, edge_ke=db.inputs.clothEdgeBendingStiffness * db.inputs.globalScale, edge_kd=db.inputs.clothEdgeDampingStiffness * db.inputs.globalScale, ) # Set a uniform mass to avoid large discrepencies. avg_mass = np.mean(builder.particle_mass) builder.particle_mass = np.full( (len(builder.particle_mass),), avg_mass, ) if db.inputs.collider.valid: # Retrieve some data from the collider mesh. collider_points = omni.warp.nodes.mesh_get_points(db.inputs.collider) collider_xform = omni.warp.nodes.bundle_get_world_xform(db.inputs.collider) # Transform the collider point position into world space. collider_world_points = wp.empty( len(collider_points), dtype=wp.vec3, ) wp.launch( kernel=transform_points_kernel, dim=len(collider_points), inputs=[ collider_points, collider_xform.T, ], outputs=[ collider_world_points, ], ) # Initialize Warp's mesh instance, which requires # triangulated meshes. collider_face_vertex_indices = omni.warp.nodes.mesh_triangulate( db.inputs.collider, ) collider_mesh = wp.sim.Mesh( collider_world_points.numpy(), collider_face_vertex_indices.numpy(), compute_inertia=False, ) # Register the collider geometry mesh into Warp's simulation model # builder. builder.add_shape_mesh( body=-1, mesh=collider_mesh, pos=(0.0, 0.0, 0.0), rot=(0.0, 0.0, 0.0, 1.0), scale=(1.0, 1.0, 1.0), density=0.0, ke=0.0, kd=0.0, kf=0.0, mu=0.0, ) # Store the collider's point positions as internal state. collider_points_0 = wp.empty_like(collider_points) collider_points_1 = wp.empty_like(collider_points) wp.copy(collider_points_0, collider_points) wp.copy(collider_points_1, collider_points) # Store the class members. self.collider_xform = collider_xform.copy() self.collider_mesh = collider_mesh self.collider_points_0 = collider_points_0 self.collider_points_1 = collider_points_1 else: self.collider_mesh = None # Register the ground. builder.set_ground_plane( offset=-db.inputs.groundAltitude + db.inputs.colliderContactDistance, ke=db.inputs.contactElasticStiffness * db.inputs.globalScale, kd=db.inputs.contactDampingStiffness * db.inputs.globalScale, kf=db.inputs.contactFrictionStiffness * db.inputs.globalScale, mu=db.inputs.contactFrictionCoeff, ) # Build the simulation model. model = builder.finalize() # Allocate a single contact per particle. model.allocate_soft_contacts(model.particle_count) # Initialize the integrator. integrator = wp.sim.SemiImplicitIntegrator() # Set the model properties. model.ground = db.inputs.groundEnabled model.gravity = db.inputs.gravity model.soft_contact_ke = db.inputs.contactElasticStiffness * db.inputs.globalScale model.soft_contact_kf = db.inputs.contactFrictionStiffness * db.inputs.globalScale model.soft_contact_mu = db.inputs.contactFrictionCoeff model.soft_contact_kd = db.inputs.contactDampingStiffness * db.inputs.globalScale model.soft_contact_margin = db.inputs.colliderContactDistance * db.inputs.colliderContactQueryRange model.particle_radius.fill_(db.inputs.colliderContactDistance) # Store the class members. self.sim_dt = sim_dt self.sim_tick = 0 self.model = model self.integrator = integrator self.state_0 = model.state() self.state_1 = model.state() self.xform = xform.copy() if USE_GRAPH: # Create the CUDA graph. We first manually load the necessary # modules to avoid the capture to load all the modules that are # registered and possibly not relevant. wp.load_module(device=device) wp.load_module(module=warp.sim, device=device, recursive=True) wp.capture_begin(force_module_load=False) step(db) self.graph = wp.capture_end() else: self.graph = None self.attr_tracking.update_state(db) return True # Compute # ------------------------------------------------------------------------------ def update_collider( db: OgnClothSimulateDatabase, ) -> None: """Updates the collider state.""" state = db.internal_state points = omni.warp.nodes.mesh_get_points(db.inputs.collider) xform = omni.warp.nodes.bundle_get_world_xform(db.inputs.collider) # Swap the previous and current collider point positions. (state.collider_points_0, state.collider_points_1) = ( state.collider_points_1, state.collider_points_0, ) # Store the current point positions. wp.copy(state.collider_points_1, points) # Retrieve the previous and current world transformations. xform_0 = state.collider_xform xform_1 = xform # Update the internal point positions and velocities. wp.launch( kernel=update_collider_kernel, dim=len(state.collider_mesh.vertices), inputs=[ state.collider_points_0, state.collider_points_1, xform_0.T, xform_1.T, state.sim_dt, ], outputs=[ state.collider_mesh.mesh.points, state.collider_mesh.mesh.velocities, ], ) # Refit the BVH. state.collider_mesh.mesh.refit() # Update the state members. state.collider_xform = xform.copy() def update_cloth( db: OgnClothSimulateDatabase, ) -> None: """Updates the cloth state.""" state = db.internal_state xform = omni.warp.nodes.bundle_get_world_xform(db.inputs.cloth) # Retrieve the previous and current world transformations. xform_0 = state.xform xform_1 = xform # Update the internal point positions and velocities. wp.launch( kernel=update_cloth_kernel, dim=len(state.state_0.particle_q), inputs=[ state.state_0.particle_q, np.matmul(np.linalg.inv(xform_0), xform_1).T, ], outputs=[ state.state_0.particle_q, state.state_0.particle_qd, ], ) # Update the state members. state.xform = xform.copy() def step(db: OgnClothSimulateDatabase) -> None: """Steps through the simulation.""" state = db.internal_state sim_dt = state.sim_dt / db.inputs.substepCount # Run the collision detection once per frame. wp.sim.collide(state.model, state.state_0) for _ in range(db.inputs.substepCount): state.state_0.clear_forces() wp.launch( update_contacts_kernel, state.model.soft_contact_max, inputs=[ state.model.soft_contact_body_pos, state.model.soft_contact_body_vel, sim_dt, ], outputs=[ state.model.soft_contact_body_pos, ], ) state.integrator.simulate( state.model, state.state_0, state.state_1, sim_dt, ) # Swap the previous and current states. (state.state_0, state.state_1) = (state.state_1, state.state_0) def simulate(db: OgnClothSimulateDatabase) -> None: """Simulates the cloth at the current time.""" state = db.internal_state if USE_GRAPH: wp.capture_launch(state.graph) else: step(db) def compute(db: OgnClothSimulateDatabase, device: wp.context.Device) -> None: """Evaluates the node.""" if not db.inputs.cloth.valid or not db.outputs.cloth.valid: return state = db.internal_state if not db.inputs.enabled: # Pass through the data. db.outputs.cloth = db.inputs.cloth # Store whether the simulation was last enabled. state.sim_enabled = False return if state.needs_initialization(db): # Initialize the internal state if it hasn't been already. # We want to use the input cloth geometry as the initial state # of the simulation so we copy its bundle to the output one. db.outputs.cloth = db.inputs.cloth if not state.initialize(db, device): return else: # We skip the simulation if it has just been initialized. if state.sim_tick == 0 and omni.warp.nodes.bundle_has_changed(db.inputs.cloth): if not state.initialize(db, device): return if ( db.inputs.collider.valid and state.collider_mesh is not None and omni.warp.nodes.bundle_has_changed(db.inputs.collider) ): # The collider might be animated so we need to update its state. update_collider(db) if omni.warp.nodes.bundle_have_attrs_changed(db.inputs.cloth, ("worldMatrix",)): update_cloth(db) with omni.warp.nodes.NodeTimer("simulate", db, active=PROFILING): # Run the cloth simulation at the current time. simulate(db) with omni.warp.nodes.NodeTimer("transform_points_to_local_space", db, active=PROFILING): # Retrieve some data from the cloth mesh. xform = omni.warp.nodes.bundle_get_world_xform(db.inputs.cloth) # Transform the cloth point positions back into local space # and store them into the bundle. out_points = omni.warp.nodes.points_get_points(db.outputs.cloth) wp.launch( kernel=transform_points_kernel, dim=len(out_points), inputs=[ state.state_0.particle_q, np.linalg.inv(xform).T, ], outputs=[ out_points, ], ) # Increment the simulation tick. state.sim_tick += 1 # Store whether the simulation was last enabled. state.sim_enabled = True # Store the current time. state.time = db.inputs.time # Node Entry Point # ------------------------------------------------------------------------------ class OgnClothSimulate: """Node.""" @staticmethod def internal_state() -> InternalState: return InternalState() @staticmethod def compute(db: OgnClothSimulateDatabase) -> None: device = wp.get_device("cuda:0") try: with wp.ScopedDevice(device): compute(db, device) except Exception: db.log_error(traceback.format_exc()) db.internal_state.is_valid = False return db.internal_state.is_valid = True # Fire the execution for the downstream nodes. db.outputs.execOut = og.ExecutionAttributeState.ENABLED
warp-main
exts/omni.warp/omni/warp/nodes/_impl/OgnClothSimulate.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Helpers to author basis curves geometries represented as OmniGraph bundles.""" from typing import Optional import numpy as np import omni.graph.core as og import warp as wp from omni.warp.nodes._impl.attributes import ( attr_get_array_on_gpu, attr_set, ) from omni.warp.nodes._impl.bundles import ( bundle_copy_attr_value, bundle_create_attr, bundle_create_child, bundle_create_metadata_attr, bundle_get_attr, bundle_set_prim_type, bundle_set_world_xform, ) from omni.warp.nodes._impl.points import ( points_get_display_color, points_get_points, points_get_widths, points_get_local_extent, points_get_world_extent, ) # Public API # ------------------------------------------------------------------------------ def basis_curves_create_bundle( dst_bundle: og.BundleContents, point_count: int, curve_count: int, type: Optional[str] = None, basis: Optional[str] = None, wrap: Optional[str] = None, xform: Optional[np.ndarray] = None, create_display_color: bool = False, create_widths: bool = False, child_idx: int = 0, ) -> None: """Creates and initializes point cloud attributes within a bundle.""" child_bundle = bundle_create_child(dst_bundle, child_idx) bundle_create_attr( child_bundle, "points", og.Type( og.BaseDataType.FLOAT, tuple_count=3, array_depth=1, role=og.AttributeRole.POSITION, ), size=point_count, ) bundle_create_attr( child_bundle, "curveVertexCounts", og.Type( og.BaseDataType.INT, tuple_count=1, array_depth=1, role=og.AttributeRole.NONE, ), size=curve_count, ) if type is not None: attr = bundle_create_attr( child_bundle, "type", og.Type( og.BaseDataType.TOKEN, tuple_count=1, array_depth=0, role=og.AttributeRole.NONE, ), ) attr_set(attr, type) if basis is not None: attr = bundle_create_attr( child_bundle, "basis", og.Type( og.BaseDataType.TOKEN, tuple_count=1, array_depth=0, role=og.AttributeRole.NONE, ), ) attr_set(attr, basis) if wrap is not None: attr = bundle_create_attr( child_bundle, "warp", og.Type( og.BaseDataType.TOKEN, tuple_count=1, array_depth=0, role=og.AttributeRole.NONE, ), ) attr_set(attr, wrap) bundle_set_prim_type(dst_bundle, "BasisCurves", child_idx=child_idx) if xform is not None: bundle_set_world_xform(dst_bundle, xform, child_idx=child_idx) if create_display_color: bundle_create_attr( child_bundle, "primvars:displayColor", og.Type( og.BaseDataType.FLOAT, tuple_count=3, array_depth=1, role=og.AttributeRole.COLOR, ), size=point_count, ) interp_attr = bundle_create_metadata_attr( child_bundle, "primvars:displayColor", "interpolation", og.Type( og.BaseDataType.TOKEN, tuple_count=1, array_depth=0, role=og.AttributeRole.NONE, ), ) attr_set(interp_attr, "vertex") if create_widths: bundle_create_attr( child_bundle, "widths", og.Type( og.BaseDataType.FLOAT, tuple_count=1, array_depth=1, role=og.AttributeRole.NONE, ), size=point_count, ) def basis_curves_copy_bundle( dst_bundle: og.BundleContents, src_bundle: og.BundleContents, deep_copy: bool = False, child_idx: int = 0, ) -> None: """Creates and initializes points attributes from an existing bundle.""" dst_child_bundle = bundle_create_child(dst_bundle, child_idx) src_child_bundle = src_bundle.bundle.get_child_bundle(child_idx) dst_child_bundle.copy_bundle(src_child_bundle) if deep_copy: bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "points", wp.vec3) bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "curveVertexCounts", int) bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "primvars:displayColor", wp.vec3) bundle_copy_attr_value(dst_child_bundle, src_child_bundle, "widths", float) def basis_curves_get_point_count( bundle: og.BundleContents, child_idx: int = 0, ) -> int: """Retrieves the number of points.""" return bundle_get_attr(bundle, "points", child_idx).size() def basis_curves_get_curve_count( bundle: og.BundleContents, child_idx: int = 0, ) -> int: """Retrieves the number of curves.""" return bundle_get_attr(bundle, "curveVertexCounts", child_idx).size() def basis_curves_get_points( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=wp.vec3): """Retrieves the bundle points attribute as a Warp array.""" return points_get_points(bundle, child_idx=child_idx) def basis_curves_get_widths( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=float): """Retrieves the bundle widths attribute as a Warp array.""" return points_get_widths(bundle, child_idx=child_idx) def basis_curves_get_display_color( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=wp.vec3): """Retrieves the bundle display color attribute as a Warp array.""" return points_get_display_color(bundle, child_idx=child_idx) def basis_curves_get_curve_vertex_counts( bundle: og.BundleContents, child_idx: int = 0, ) -> wp.array(dtype=int): """Retrieves the bundle curve vertex counts attribute as a Warp array.""" attr = bundle_get_attr(bundle, "curveVertexCounts", child_idx) return attr_get_array_on_gpu(attr, int, read_only=bundle.read_only) def basis_curves_get_local_extent( bundle: og.BundleContents, child_idx: int = 0, ) -> np.ndarray: """Retrieves the local extent of the geometry points.""" return points_get_local_extent(bundle, child_idx=child_idx) def basis_curves_get_world_extent( bundle: og.BundleContents, axis_aligned: bool = False, child_idx: int = 0, ) -> np.ndarray: """Retrieves the world extent of the geometry points.""" return points_get_world_extent( bundle, axis_aligned=axis_aligned, child_idx=child_idx, )
warp-main
exts/omni.warp/omni/warp/nodes/_impl/basis_curves.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Sample node deforming a geometry mesh.""" import traceback import omni.graph.core as og import warp as wp import omni.warp.nodes from omni.warp.nodes.ogn.OgnSampleMeshDeformDatabase import OgnSampleMeshDeformDatabase PROFILING = False # Kernels # ----------------------------------------------------------------------------- @wp.kernel(enable_backward=False) def deform_mesh_kernel( points: wp.array(dtype=wp.vec3), time: float, out_points: wp.array(dtype=wp.vec3), ): """Kernel to deform a geometry mesh.""" tid = wp.tid() pos = points[tid] displacement = wp.vec3(0.0, wp.sin(time + pos[0] * 0.1) * 10.0, 0.0) out_points[tid] = pos + displacement # Compute # ------------------------------------------------------------------------------ def compute(db: OgnSampleMeshDeformDatabase) -> None: """Evaluates the node.""" if not db.inputs.mesh.valid or not db.outputs.mesh.valid: return # Copy the input geometry mesh bundle and read its contents. db.outputs.mesh = db.inputs.mesh # Retrieve the input and output point data. points = omni.warp.nodes.mesh_get_points(db.inputs.mesh) out_points = omni.warp.nodes.mesh_get_points(db.outputs.mesh) with omni.warp.nodes.NodeTimer("deform_mesh", db, active=PROFILING): # Evaluate the kernel once per point. wp.launch( kernel=deform_mesh_kernel, dim=len(points), inputs=[ points, db.inputs.time, ], outputs=[ out_points, ], ) # Node Entry Point # ------------------------------------------------------------------------------ class OgnSampleMeshDeform: """Node.""" @staticmethod def compute(db: OgnSampleMeshDeformDatabase) -> None: device = wp.get_device("cuda:0") try: with wp.ScopedDevice(device): compute(db) except Exception: db.log_error(traceback.format_exc()) return # Fire the execution for the downstream nodes. db.outputs.execOut = og.ExecutionAttributeState.ENABLED
warp-main
exts/omni.warp/omni/warp/nodes/_impl/OgnSampleMeshDeform.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Sample node generating a procedural volume.""" import traceback import omni.graph.core as og import warp as wp import omni.warp.nodes from omni.warp.nodes.ogn.OgnSampleProceduralVolumeDatabase import OgnSampleProceduralVolumeDatabase MIN_RES = 8 PROFILING = False # Kernels # ------------------------------------------------------------------------------ @wp.func def sdf_create_box(pos: wp.vec3, size: wp.vec3): """Creates a SDF box primitive.""" # https://iquilezles.org/articles/distfunctions q = wp.vec3( wp.abs(pos[0]) - size[0], wp.abs(pos[1]) - size[1], wp.abs(pos[2]) - size[2], ) qp = wp.vec3(wp.max(q[0], 0.0), wp.max(q[1], 0.0), wp.max(q[2], 0.0)) return wp.length(qp) + wp.min(wp.max(q[0], wp.max(q[1], q[2])), 0.0) @wp.func def sdf_create_torus(pos: wp.vec3, major_radius: float, minor_radius: float): """Creates a SDF torus primitive.""" # https://iquilezles.org/articles/distfunctions q = wp.vec2(wp.length(wp.vec2(pos[0], pos[2])) - major_radius, pos[1]) return wp.length(q) - minor_radius @wp.func def sdf_translate(pos: wp.vec3, offset: wp.vec3): """Translates a SDF position vector with an offset.""" return pos - offset @wp.func def sdf_rotate(pos: wp.vec3, angles: wp.vec3): """Rotates a SDF position vector using Euler angles.""" rot = wp.quat_rpy( wp.radians(angles[0]), wp.radians(angles[1]), wp.radians(angles[2]), ) return wp.quat_rotate_inv(rot, pos) @wp.func def sdf_smooth_min(a: float, b: float, radius: float): """Creates a SDF torus primitive.""" # https://iquilezles.org/articles/smin h = wp.max(radius - wp.abs(a - b), 0.0) / radius return wp.min(a, b) - h * h * h * radius * (1.0 / 6.0) @wp.kernel(enable_backward=False) def generate_volume_kernel( torus_altitude: float, torus_major_radius: float, torus_minor_radius: float, smooth_min_radius: float, dim: int, time: float, out_data: wp.array3d(dtype=float), ): """Kernel to generate a SDF volume based on primitives.""" i, j, k = wp.tid() # Retrieve the position of the current cell in a normalized [-1, 1] range # for each dimension. pos = wp.vec3( 2.0 * ((float(i) + 0.5) / float(dim)) - 1.0, 2.0 * ((float(j) + 0.5) / float(dim)) - 1.0, 2.0 * ((float(k) + 0.5) / float(dim)) - 1.0, ) box = sdf_create_box( sdf_translate(pos, wp.vec3(0.0, -0.7, 0.0)), wp.vec3(0.9, 0.3, 0.9), ) torus = sdf_create_torus( sdf_rotate( sdf_translate(pos, wp.vec3(0.0, torus_altitude, 0.0)), wp.vec3(wp.sin(time) * 90.0, wp.cos(time) * 45.0, 0.0), ), torus_major_radius, torus_minor_radius, ) out_data[i, j, k] = sdf_smooth_min(box, torus, smooth_min_radius) # Compute # ------------------------------------------------------------------------------ def compute(db: OgnSampleProceduralVolumeDatabase) -> None: """Evaluates the node.""" # Enforce a minimum dimension or else nothing's left to draw. dim = max(db.inputs.dim, MIN_RES) db.outputs.data_size = dim * dim * dim data = omni.warp.nodes.from_omni_graph( db.outputs.data, dtype=float, shape=(dim, dim, dim), ) with omni.warp.nodes.NodeTimer("generate_volume", db, active=PROFILING): wp.launch( kernel=generate_volume_kernel, dim=data.shape, inputs=[ db.inputs.torusAltitude, db.inputs.torusMajorRadius, db.inputs.torusMinorRadius, db.inputs.smoothMinRadius, dim, db.inputs.time, ], outputs=[ data, ], ) # Node Entry Point # ------------------------------------------------------------------------------ class OgnSampleProceduralVolume: """Node.""" @staticmethod def compute(db: OgnSampleProceduralVolumeDatabase) -> None: device = wp.get_device("cuda:0") try: with wp.ScopedDevice(device): compute(db) except Exception: db.log_error(traceback.format_exc()) return # Fire the execution for the downstream nodes. db.outputs.execOut = og.ExecutionAttributeState.ENABLED
warp-main
exts/omni.warp/omni/warp/nodes/_impl/OgnSampleProceduralVolume.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Warp kernel creating a grid mesh geometry.""" from typing import Tuple import warp as wp # Helpers # ----------------------------------------------------------------------------- @wp.func def _define_face( face: int, vertex_1: int, vertex_2: int, vertex_3: int, vertex_4: int, out_face_vertex_indices: wp.array(dtype=int), ): out_face_vertex_indices[face * 4 + 0] = vertex_1 out_face_vertex_indices[face * 4 + 1] = vertex_2 out_face_vertex_indices[face * 4 + 2] = vertex_3 out_face_vertex_indices[face * 4 + 3] = vertex_4 @wp.func def _set_face_normals( face: int, normal: wp.vec3, out_normals: wp.array(dtype=wp.vec3), ): out_normals[face * 4 + 0] = normal out_normals[face * 4 + 1] = normal out_normals[face * 4 + 2] = normal out_normals[face * 4 + 3] = normal @wp.func def _set_face_uvs( face: int, uv_1: wp.vec2, uv_2: wp.vec2, uv_3: wp.vec2, uv_4: wp.vec2, out_uvs: wp.array(dtype=wp.vec2), ): out_uvs[face * 4 + 0] = uv_1 out_uvs[face * 4 + 1] = uv_2 out_uvs[face * 4 + 2] = uv_3 out_uvs[face * 4 + 3] = uv_4 # Kernel # ----------------------------------------------------------------------------- @wp.kernel(enable_backward=False) def _kernel( half_size: wp.vec2, res: wp.vec2i, update_topology: int, dt_pos: wp.vec2, dt_uv: wp.vec2, out_points: wp.array(dtype=wp.vec3), out_face_vertex_indices: wp.array(dtype=int), out_normals: wp.array(dtype=wp.vec3), out_uvs: wp.array(dtype=wp.vec2), ): """Kernel to create a geometry mesh grid.""" tid = wp.tid() i = int(tid % res[0]) j = int(tid / res[0]) if i == 0 and j == 0: point = 0 out_points[point] = wp.vec3( half_size[0], 0.0, half_size[1], ) if i == 0: point = (j + 1) * (res[0] + 1) out_points[point] = wp.vec3( half_size[0], 0.0, half_size[1] - dt_pos[1] * float(j + 1), ) if j == 0: point = i + 1 out_points[point] = wp.vec3( half_size[0] - dt_pos[0] * float(i + 1), 0.0, half_size[1], ) point = (j + 1) * (res[0] + 1) + i + 1 out_points[point] = wp.vec3( half_size[0] - dt_pos[0] * float(i + 1), 0.0, half_size[1] - dt_pos[1] * float(j + 1), ) if update_topology: face = tid # Face vertex indices. vertex_4 = point vertex_3 = vertex_4 - 1 vertex_1 = vertex_3 - res[0] vertex_2 = vertex_1 - 1 _define_face(face, vertex_1, vertex_2, vertex_3, vertex_4, out_face_vertex_indices) # Vertex normals. _set_face_normals(face, wp.vec3(0.0, 1.0, 0.0), out_normals) # Vertex UVs. s_0 = 1.0 - dt_uv[0] * float(i) s_1 = 1.0 - dt_uv[0] * float(i + 1) t_0 = dt_uv[1] * float(j) t_1 = dt_uv[1] * float(j + 1) _set_face_uvs( face, wp.vec2(s_1, t_0), wp.vec2(s_0, t_0), wp.vec2(s_0, t_1), wp.vec2(s_1, t_1), out_uvs, ) # Launcher # ----------------------------------------------------------------------------- def grid_create_launch_kernel( out_points: wp.array, out_face_vertex_counts: wp.array, out_face_vertex_indices: wp.array, out_normals: wp.array, out_uvs: wp.array, size: Tuple[float, float], dims: Tuple[int, int], update_topology: bool = True, ): """Launches the kernel.""" face_count = dims[0] * dims[1] half_size = ( size[0] * 0.5, size[1] * 0.5, ) dt_pos = wp.vec2( size[0] / float(dims[0]), size[1] / float(dims[1]), ) dt_uv = ( 1.0 / float(dims[0]), 1.0 / float(dims[1]), ) wp.launch( kernel=_kernel, dim=face_count, inputs=[ half_size, dims, update_topology, dt_pos, dt_uv, ], outputs=[ out_points, out_face_vertex_indices, out_normals, out_uvs, ], ) out_face_vertex_counts.fill_(4)
warp-main
exts/omni.warp/omni/warp/nodes/_impl/kernels/grid_create.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Shared Warp kernels."""
warp-main
exts/omni.warp/omni/warp/nodes/_impl/kernels/__init__.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Property to edit the file path pointing to the kernel's code.""" from typing import ( Any, Callable, ) from omni.kit.property.usd.usd_property_widget import UsdPropertyUiEntry from omni.kit.property.usd.usd_property_widget_builder import UsdPropertiesWidgetBuilder from omni.kit.window.property.templates import HORIZONTAL_SPACING import omni.ui as ui def get_code_file_prop_builder(layout: Any) -> Callable: """Builds the function used to create the property.""" def fn(ui_prop: UsdPropertyUiEntry, *args): with ui.HStack(spacing=HORIZONTAL_SPACING): UsdPropertiesWidgetBuilder._string_builder( layout.compute_node_widget.stage, ui_prop.prop_name, ui_prop.property_type, ui_prop.metadata, prim_paths=(layout.node_prim_path,), additional_label_kwargs={ "style": { "alignment": ui.Alignment.RIGHT, }, }, ) return fn
warp-main
exts/omni.warp/omni/warp/nodes/_impl/props/codefile.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Properties used by the custom node UI templates. These are built against the `omni.kit.property.usd` framework and are being passed to the `build_fn` argument of `CustomLayoutProperty` objects. """
warp-main
exts/omni.warp/omni/warp/nodes/_impl/props/__init__.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Property to edit the kernel's source code embedded to the node.""" from typing import ( Any, Callable, ) import omni.graph.core as og from omni.kit.property.usd.usd_property_widget import UsdPropertyUiEntry from omni.kit.property.usd.usd_property_widget_builder import UsdPropertiesWidgetBuilder from omni.kit.widget.text_editor import TextEditor from omni.kit.window.property.templates import HORIZONTAL_SPACING import omni.ui as ui _DIALOG_TITLE = "Kernel Editor" _DIALOG_WIDTH = 800 _DIALOG_HEIGHT = 600 _BUTTON_WIDTH = 100 class _State: """State object shared across the various handlers.""" def __init__(self, layout: Any): self.layout = layout self.dialog = None self.editor = None self.code_str_attr = og.Controller.attribute( "inputs:codeStr", layout.node, ) def is_read_only(self) -> bool: return self.code_str_attr.get_upstream_connection_count() > 0 def _get_save_btn_clicked_handler(state: _State) -> Callable: def fn(): # Trim the trailing new line character inserted by # the text editor. code = state.editor.text[:-1] # Save the content into the corresponding string attribute. assert not state.is_read_only() og.Controller.set(state.code_str_attr, code, update_usd=True) # Restore the title to its default state. state.dialog.title = _DIALOG_TITLE return fn def _get_edit_btn_clicked_handler(state: _State) -> Callable: def fn(): read_only = state.is_read_only() dialog = ui.Window( _DIALOG_TITLE, width=_DIALOG_WIDTH, height=_DIALOG_HEIGHT, dockPreference=ui.DockPreference.MAIN, ) with dialog.frame: with ui.VStack(): state.editor = TextEditor( syntax=TextEditor.Syntax.PYTHON, text=og.Controller.get(state.code_str_attr), read_only=read_only, ) if not read_only: with ui.HStack(height=0): ui.Spacer() ui.Button( "Save", width=_BUTTON_WIDTH, clicked_fn=_get_save_btn_clicked_handler(state), tooltip="Save the changes to the code", ) # Store the dialog widget into the state to avoid having it # not showing up due to being garbage collected. state.dialog = dialog return fn def get_code_str_prop_builder(layout: Any) -> Callable: """Builds the function used to create the property.""" def fn(ui_prop: UsdPropertyUiEntry, *args): state = _State(layout) with ui.HStack(spacing=HORIZONTAL_SPACING): UsdPropertiesWidgetBuilder._create_label( ui_prop.prop_name, ui_prop.metadata, { "style": { "alignment": ui.Alignment.RIGHT, }, }, ) ui.Button( "View" if state.is_read_only() else "Edit", width=_BUTTON_WIDTH, clicked_fn=_get_edit_btn_clicked_handler(state), tooltip="View/edit the embedded kernel code", ) return fn
warp-main
exts/omni.warp/omni/warp/nodes/_impl/props/codestr.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Property to pick the source used to infer an attribute's value.""" from typing import ( Any, Callable, Sequence, Tuple, ) from omni.kit.property.usd.usd_attribute_model import TfTokenAttributeModel from omni.kit.property.usd.usd_property_widget import UsdPropertyUiEntry from omni.kit.property.usd.usd_property_widget_builder import UsdPropertiesWidgetBuilder from omni.kit.window.property.templates import HORIZONTAL_SPACING import omni.ui as ui def get_source_picker_prop_builder( layout: Any, sources: Sequence[str], ) -> Callable: """Builds the function used to create the property.""" def fn(ui_prop: UsdPropertyUiEntry, *args): class _Model(TfTokenAttributeModel): def _get_allowed_tokens(self, _) -> Tuple[str]: return tuple(sources) with ui.HStack(spacing=HORIZONTAL_SPACING): # It is necessary to define a dummy allowed token otherwise # the code in `UsdPropertiesWidgetBuilder._tftoken_builder()` exits # before attempting to call our custom model. metadata = ui_prop.metadata.copy() metadata.update( { "allowedTokens": ("dummy",), } ) UsdPropertiesWidgetBuilder.build( layout.compute_node_widget.stage, ui_prop.prop_name, metadata, ui_prop.property_type, prim_paths=(layout.node_prim_path,), additional_label_kwargs={ "style": { "alignment": ui.Alignment.RIGHT, }, }, additional_widget_kwargs={ "model_cls": _Model, }, ) return fn
warp-main
exts/omni.warp/omni/warp/nodes/_impl/props/sourcepicker.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Property to edit the node attributes based on the kernel's parameters.""" from functools import partial from typing import ( Any, Callable, Sequence, ) import omni.graph.core as og import omni.ui as ui from omni.warp.nodes._impl.kernel import ( ArrayAttributeFormat, UserAttributeDesc, UserAttributesEvent, deserialize_user_attribute_descs, serialize_user_attribute_descs, ) from omni.warp.nodes._impl.attributes import ( ATTR_BUNDLE_TYPE, attr_get_name, attr_join_name, ) from omni.warp.nodes._impl.widgets.attributeeditor import AttributeEditor _BUTTON_WIDTH = 100 class _State: """State object shared across the various handlers.""" def __init__(self, layout): self.layout = layout self.dialog = None self.remove_attr_menu = None def _add_user_attribute_desc(state: _State, desc: UserAttributeDesc) -> None: data = og.Controller.get(state.layout.user_attr_descs_attr) descs = deserialize_user_attribute_descs(data) descs[desc.name] = desc data = serialize_user_attribute_descs(descs) og.Controller.set(state.layout.user_attr_descs_attr, data, update_usd=True) def _remove_user_attribute_desc( state: _State, port_type: og.AttributePortType, base_name: str, ) -> None: data = og.Controller.get(state.layout.user_attr_descs_attr) descs = deserialize_user_attribute_descs(data) name = attr_join_name(port_type, base_name) descs.pop(name, None) data = serialize_user_attribute_descs(descs) og.Controller.set(state.layout.user_attr_descs_attr, data, update_usd=True) def _get_attribute_creation_handler(state: _State) -> Callable: def fn(attr_desc: UserAttributeDesc): if any(attr_get_name(x) == attr_desc.name for x in state.layout.node.get_attributes()): raise RuntimeError("The attribute '{}' already exists on the node.".format(attr_desc.name)) if attr_desc.array_format == ArrayAttributeFormat.RAW: attr_type = attr_desc.type elif attr_desc.array_format == ArrayAttributeFormat.BUNDLE: attr_type = ATTR_BUNDLE_TYPE else: assert False, "Unexpected array attribute format '{}'.".format( attr_desc.array_format, ) attr = og.Controller.create_attribute( state.layout.node, attr_desc.base_name, attr_type, attr_desc.port_type, ) if attr is None: raise RuntimeError("Failed to create the attribute '{}'.".format(attr_desc.name)) attr.is_optional_for_compute = attr_desc.optional # Store the new attribute's description within the node's state. _add_user_attribute_desc(state, attr_desc) # Inform the node that a new attribute was created. og.Controller.set( state.layout.user_attrs_event_attr, UserAttributesEvent.CREATED, ) state.layout.refresh() return fn def _get_attribute_removal_handler(state: _State) -> Callable: def fn(attr): port_type = attr.get_port_type() name = attr_get_name(attr) if not og.Controller.remove_attribute(attr): return # Remove that attribute's description from the node's state. _remove_user_attribute_desc(state, port_type, name) # Inform the node that an existing attribute was removed. og.Controller.set( state.layout.user_attrs_event_attr, UserAttributesEvent.REMOVED, ) state.layout.refresh() return fn def _get_add_btn_clicked_handler( state: _State, supported_types: Sequence[str], ) -> Callable: def fn(): dialog = AttributeEditor( supported_types, _get_attribute_creation_handler(state), ) # Store the dialog widget into the state to avoid having it # not showing up due to being garbage collected. state.dialog = dialog return fn def _get_remove_btn_clicked_handler(state: _State) -> Callable: def fn(): attrs = tuple(x for x in state.layout.node.get_attributes() if x.is_dynamic()) if not attrs: return menu = ui.Menu() with menu: for attr in attrs: ui.MenuItem( attr_get_name(attr), triggered_fn=partial( _get_attribute_removal_handler(state), attr, ), ) menu.show() # Store the menu widget into the state to avoid having it # not showing up due to being garbage collected. state.remove_attr_menu = menu return fn def get_edit_attrs_prop_builder( layout: Any, supported_types: Sequence[str], ) -> Callable: """Builds the function used to create the property.""" def fn(*args): state = _State(layout) with ui.HStack(): ui.Button( "Add +", width=_BUTTON_WIDTH, clicked_fn=_get_add_btn_clicked_handler(state, supported_types), tooltip="Opens an UI to add a new attribute", ) ui.Spacer(width=8) ui.Button( "Remove -", width=_BUTTON_WIDTH, clicked_fn=_get_remove_btn_clicked_handler(state), tooltip="Opens a menu to remove an existing node attribute", ) return fn
warp-main
exts/omni.warp/omni/warp/nodes/_impl/props/editattrs.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import ( Optional, Sequence, ) import omni.graph.core as og from omni.kit.property.usd.custom_layout_helper import ( CustomLayoutFrame, CustomLayoutGroup, CustomLayoutProperty, ) from omni.kit.property.usd.usd_property_widget import UsdPropertyUiEntry PROPS = ( "inputs:enabled", "inputs:substepCount", "inputs:gravity", "inputs:globalScale", "inputs:contactElasticStiffness", "inputs:contactFrictionStiffness", "inputs:contactFrictionCoeff", "inputs:contactDampingStiffness", "inputs:clothDensity", "inputs:clothTriElasticStiffness", "inputs:clothTriAreaStiffness", "inputs:clothTriDampingStiffness", "inputs:clothEdgeBendingStiffness", "inputs:clothEdgeDampingStiffness", "inputs:colliderContactDistance", "inputs:colliderContactQueryRange", "inputs:groundEnabled", "inputs:groundAltitude", ) def find_prop( props: Sequence[UsdPropertyUiEntry], name: str, ) -> Optional[UsdPropertyUiEntry]: try: return next(x for x in props if x.prop_name == name) except StopIteration: return None class CustomLayout: def __init__(self, compute_node_widget): self.enable = True self.compute_node_widget = compute_node_widget self.node_prim_path = self.compute_node_widget._payload[-1] self.node = og.Controller.node(self.node_prim_path) def apply(self, props) -> Sequence[UsdPropertyUiEntry]: user_props = tuple(find_prop(props, x) for x in PROPS) frame = CustomLayoutFrame(hide_extra=True) with frame: with CustomLayoutGroup("Inputs"): for prop in user_props: if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) return frame.apply(props)
warp-main
exts/omni.warp/omni/warp/nodes/_impl/templates/template_omni.warp.WarpClothSimulate.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import ( Optional, Sequence, ) import omni.graph.core as og from omni.kit.property.usd.custom_layout_helper import ( CustomLayoutFrame, CustomLayoutGroup, CustomLayoutProperty, ) from omni.kit.property.usd.usd_property_widget import UsdPropertyUiEntry PROPS = ( "inputs:enabled", "inputs:substepCount", "inputs:gravity", "inputs:globalScale", "inputs:contactElasticStiffness", "inputs:contactFrictionStiffness", "inputs:contactFrictionCoeff", "inputs:contactDampingStiffness", "inputs:particlesQueryRange", "inputs:particlesContactAdhesion", "inputs:particlesContactCohesion", "inputs:colliderContactDistance", "inputs:colliderContactQueryRange", "inputs:groundEnabled", "inputs:groundAltitude", ) def find_prop( props: Sequence[UsdPropertyUiEntry], name: str, ) -> Optional[UsdPropertyUiEntry]: try: return next(x for x in props if x.prop_name == name) except StopIteration: return None class CustomLayout: def __init__(self, compute_node_widget): self.enable = True self.compute_node_widget = compute_node_widget self.node_prim_path = self.compute_node_widget._payload[-1] self.node = og.Controller.node(self.node_prim_path) def apply(self, props) -> Sequence[UsdPropertyUiEntry]: user_props = tuple(find_prop(props, x) for x in PROPS) frame = CustomLayoutFrame(hide_extra=True) with frame: with CustomLayoutGroup("Inputs"): for prop in user_props: if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) return frame.apply(props)
warp-main
exts/omni.warp/omni/warp/nodes/_impl/templates/template_omni.warp.WarpParticlesSimulate.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from functools import partial from typing import ( Optional, Sequence, ) import omni.graph.core as og from omni.kit.property.usd.custom_layout_helper import ( CustomLayoutFrame, CustomLayoutGroup, CustomLayoutProperty, ) from omni.kit.property.usd.usd_property_widget import UsdPropertyUiEntry import warp as wp def find_prop( props: Sequence[UsdPropertyUiEntry], name: str, ) -> Optional[UsdPropertyUiEntry]: """Finds a prop by its name.""" try: return next(p for p in props if p.prop_name == name) except StopIteration: return None class CustomLayout: """Custom UI for the kernel node.""" def __init__(self, compute_node_widget): self.enable = True self.compute_node_widget = compute_node_widget self.node_prim_path = self.compute_node_widget._payload[-1] self.node = og.Controller.node(self.node_prim_path) self.dim_count_attr = og.Controller.attribute( "inputs:dimCount", self.node, ) self.dim_count_attr.register_value_changed_callback(self._handle_dim_count_value_changed) def _handle_dim_count_value_changed(self, attr: og.Attribute) -> None: """Callback for the dimension count attribute value having changed.""" # Redraw the UI to display a different set of attributes depending on # the dimension count value. self.refresh() def refresh(self) -> None: """Redraws the UI.""" self.compute_node_widget.rebuild_window() def apply(self, props) -> Sequence[UsdPropertyUiEntry]: """Builds the UI.""" frame = CustomLayoutFrame(hide_extra=True) with frame: with CustomLayoutGroup("Inputs"): prop = find_prop(props, "inputs:uri") if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) prop = find_prop(props, "inputs:dimCount") if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) dim_count = min( max( og.Controller.get(self.dim_count_attr), 0, ), wp.types.ARRAY_MAX_DIMS, ) for i in range(dim_count): prop = find_prop( props, "inputs:dim{}".format(i + 1), ) if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=(prop.metadata["customData"]["uiName"]), ) prop = find_prop(props, "inputs:pixelFormat") if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) return frame.apply(props)
warp-main
exts/omni.warp/omni/warp/nodes/_impl/templates/template_omni.warp.WarpTextureWrite.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import ( Optional, Sequence, ) import omni.graph.core as og from omni.kit.property.usd.custom_layout_helper import ( CustomLayoutFrame, CustomLayoutGroup, CustomLayoutProperty, ) from omni.kit.property.usd.usd_property_widget import UsdPropertyUiEntry PROPS = ( "inputs:torusAltitude", "inputs:torusMajorRadius", "inputs:torusMinorRadius", "inputs:smoothMinRadius", "inputs:dim", "inputs:time", ) def find_prop( props: Sequence[UsdPropertyUiEntry], name: str, ) -> Optional[UsdPropertyUiEntry]: try: return next(x for x in props if x.prop_name == name) except StopIteration: return None class CustomLayout: def __init__(self, compute_node_widget): self.enable = True self.compute_node_widget = compute_node_widget self.node_prim_path = self.compute_node_widget._payload[-1] self.node = og.Controller.node(self.node_prim_path) def apply(self, props) -> Sequence[UsdPropertyUiEntry]: user_props = tuple(find_prop(props, x) for x in PROPS) frame = CustomLayoutFrame(hide_extra=True) with frame: with CustomLayoutGroup("Inputs"): for prop in user_props: if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) return frame.apply(props)
warp-main
exts/omni.warp/omni/warp/nodes/_impl/templates/template_omni.warp.WarpSampleProceduralVolume.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import ( Optional, Sequence, ) import omni.graph.core as og from omni.kit.property.usd.custom_layout_helper import ( CustomLayoutFrame, CustomLayoutGroup, CustomLayoutProperty, ) from omni.kit.property.usd.usd_property_widget import UsdPropertyUiEntry PROPS = ( "inputs:size", "inputs:dim1", "inputs:dim2", "inputs:dim3", "inputs:maxPoints", "inputs:maxTriangles", "inputs:threshold", ) def find_prop( props: Sequence[UsdPropertyUiEntry], name: str, ) -> Optional[UsdPropertyUiEntry]: try: return next(x for x in props if x.prop_name == name) except StopIteration: return None class CustomLayout: def __init__(self, compute_node_widget): self.enable = True self.compute_node_widget = compute_node_widget self.node_prim_path = self.compute_node_widget._payload[-1] self.node = og.Controller.node(self.node_prim_path) def apply(self, props) -> Sequence[UsdPropertyUiEntry]: user_props = tuple(find_prop(props, x) for x in PROPS) frame = CustomLayoutFrame(hide_extra=True) with frame: with CustomLayoutGroup("Inputs"): for prop in user_props: if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) return frame.apply(props)
warp-main
exts/omni.warp/omni/warp/nodes/_impl/templates/template_omni.warp.WarpMeshFromVolume.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Templates defining custom node UIs. These override the default behaviour from OmniGraph where widgets are automatically generated based on the attributes defined in the node's `.ogn` file. """
warp-main
exts/omni.warp/omni/warp/nodes/_impl/templates/__init__.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import ( Optional, Sequence, ) import omni.graph.core as og from omni.kit.property.usd.custom_layout_helper import ( CustomLayoutFrame, CustomLayoutGroup, CustomLayoutProperty, ) from omni.kit.property.usd.usd_property_widget import UsdPropertyUiEntry PROPS = ( "inputs:size", "inputs:dims", ) def find_prop( props: Sequence[UsdPropertyUiEntry], name: str, ) -> Optional[UsdPropertyUiEntry]: try: return next(x for x in props if x.prop_name == name) except StopIteration: return None class CustomLayout: def __init__(self, compute_node_widget): self.enable = True self.compute_node_widget = compute_node_widget self.node_prim_path = self.compute_node_widget._payload[-1] self.node = og.Controller.node(self.node_prim_path) def apply(self, props) -> Sequence[UsdPropertyUiEntry]: user_props = tuple(find_prop(props, x) for x in PROPS) frame = CustomLayoutFrame(hide_extra=True) with frame: with CustomLayoutGroup("Inputs"): for prop in user_props: if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) return frame.apply(props)
warp-main
exts/omni.warp/omni/warp/nodes/_impl/templates/template_omni.warp.WarpGridCreate.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import ( Optional, Sequence, ) import omni.graph.core as og from omni.kit.property.usd.custom_layout_helper import ( CustomLayoutFrame, CustomLayoutGroup, CustomLayoutProperty, ) from omni.kit.property.usd.usd_property_widget import UsdPropertyUiEntry PROPS = ("inputs:time",) def find_prop( props: Sequence[UsdPropertyUiEntry], name: str, ) -> Optional[UsdPropertyUiEntry]: try: return next(x for x in props if x.prop_name == name) except StopIteration: return None class CustomLayout: def __init__(self, compute_node_widget): self.enable = True self.compute_node_widget = compute_node_widget self.node_prim_path = self.compute_node_widget._payload[-1] self.node = og.Controller.node(self.node_prim_path) def apply(self, props) -> Sequence[UsdPropertyUiEntry]: user_props = tuple(find_prop(props, x) for x in PROPS) frame = CustomLayoutFrame(hide_extra=True) with frame: with CustomLayoutGroup("Inputs"): for prop in user_props: if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) return frame.apply(props)
warp-main
exts/omni.warp/omni/warp/nodes/_impl/templates/template_omni.warp.WarpSampleMeshDeform.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import ( Optional, Sequence, ) import omni.graph.core as og from omni.kit.property.usd.custom_layout_helper import ( CustomLayoutFrame, CustomLayoutGroup, CustomLayoutProperty, ) from omni.kit.property.usd.usd_property_widget import UsdPropertyUiEntry PROPS = ( "inputs:seed", "inputs:minSdf", "inputs:maxSdf", "inputs:radius", "inputs:spacing", "inputs:spacingJitter", "inputs:mass", "inputs:velocityDir", "inputs:velocityAmount", "inputs:maxPoints", ) def find_prop( props: Sequence[UsdPropertyUiEntry], name: str, ) -> Optional[UsdPropertyUiEntry]: try: return next(x for x in props if x.prop_name == name) except StopIteration: return None class CustomLayout: def __init__(self, compute_node_widget): self.enable = True self.compute_node_widget = compute_node_widget self.node_prim_path = self.compute_node_widget._payload[-1] self.node = og.Controller.node(self.node_prim_path) def apply(self, props) -> Sequence[UsdPropertyUiEntry]: user_props = tuple(find_prop(props, x) for x in PROPS) frame = CustomLayoutFrame(hide_extra=True) with frame: with CustomLayoutGroup("Inputs"): for prop in user_props: if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) return frame.apply(props)
warp-main
exts/omni.warp/omni/warp/nodes/_impl/templates/template_omni.warp.WarpParticlesFromMesh.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from functools import partial from typing import ( Optional, Sequence, ) import omni.graph.core as og from omni.kit.property.usd.custom_layout_helper import ( CustomLayoutFrame, CustomLayoutGroup, CustomLayoutProperty, ) from omni.kit.property.usd.usd_property_widget import UsdPropertyUiEntry import warp as wp from omni.warp.nodes._impl.common import SUPPORTED_SDF_DATA_TYPE_NAMES from omni.warp.nodes._impl.kernel import EXPLICIT_SOURCE from omni.warp.nodes._impl.attributes import ( attr_get_base_name, attr_get_name, ) from omni.warp.nodes._impl.props.codefile import get_code_file_prop_builder from omni.warp.nodes._impl.props.codestr import get_code_str_prop_builder from omni.warp.nodes._impl.props.editattrs import get_edit_attrs_prop_builder from omni.warp.nodes._impl.props.sourcepicker import get_source_picker_prop_builder def find_prop( props: Sequence[UsdPropertyUiEntry], name: str, ) -> Optional[UsdPropertyUiEntry]: """Finds a prop by its name.""" try: return next(p for p in props if p.prop_name == name) except StopIteration: return None class CustomLayout: """Custom UI for the kernel node.""" def __init__(self, compute_node_widget): self.enable = True self.compute_node_widget = compute_node_widget self.node_prim_path = self.compute_node_widget._payload[-1] self.node = og.Controller.node(self.node_prim_path) self.dim_source_attr = og.Controller.attribute( "inputs:dimSource", self.node, ) self.dim_count_attr = og.Controller.attribute( "inputs:dimCount", self.node, ) self.code_provider_attr = og.Controller.attribute( "inputs:codeProvider", self.node, ) self.user_attr_descs_attr = og.Controller.attribute( "state:userAttrDescs", self.node, ) self.user_attrs_event_attr = og.Controller.attribute( "state:userAttrsEvent", self.node, ) self.node.register_on_connected_callback(self._handle_node_attr_connected) self.node.register_on_disconnected_callback(self._handle_node_attr_disconnected) self.dim_source_attr.register_value_changed_callback(self._handle_dim_source_value_changed) self.dim_count_attr.register_value_changed_callback(self._handle_dim_count_value_changed) self.code_provider_attr.register_value_changed_callback(self._handle_code_provider_value_changed) def _handle_node_attr_connected( self, attr_from: og.Attribute, attr_to: og.Attribute, ) -> None: """Callback for a node attribute having been disconnected.""" if attr_get_name(attr_to) == "inputs:codeStr": # Redraw the UI to update the view/edit code button label. self.refresh() def _handle_node_attr_disconnected( self, attr_from: og.Attribute, attr_to: og.Attribute, ) -> None: """Callback for a node attribute having been disconnected.""" if attr_get_name(attr_to) == "inputs:codeStr": # Redraw the UI to update the view/edit code button label. self.refresh() def _handle_dim_source_value_changed(self, attr: og.Attribute) -> None: """Callback for the dimension source attribute value having changed.""" # Redraw the UI to display a different set of attributes depending on # the dimension source value. self.refresh() def _handle_dim_count_value_changed(self, attr: og.Attribute) -> None: """Callback for the dimension count attribute value having changed.""" # Redraw the UI to display a different set of attributes depending on # the dimension count value. self.refresh() def _handle_code_provider_value_changed(self, attr: og.Attribute) -> None: """Callback for the code provider attribute value having changed.""" # Redraw the UI to display a different set of attributes depending on # the code provider value. self.refresh() def refresh(self) -> None: """Redraws the UI.""" self.compute_node_widget.rebuild_window() def apply(self, props) -> Sequence[UsdPropertyUiEntry]: """Builds the UI.""" input_array_attrs = tuple( x for x in self.node.get_attributes() if ( x.is_dynamic() and x.get_port_type() == og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT and x.get_resolved_type().array_depth > 0 ) ) dim_sources = (EXPLICIT_SOURCE,) + tuple(attr_get_base_name(x) for x in input_array_attrs) frame = CustomLayoutFrame(hide_extra=True) with frame: with CustomLayoutGroup("Add and Remove Attributes"): CustomLayoutProperty( None, display_name=None, build_fn=get_edit_attrs_prop_builder( self, SUPPORTED_SDF_DATA_TYPE_NAMES, ), ) with CustomLayoutGroup("Inputs"): prop = find_prop(props, "inputs:device") if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) prop = find_prop(props, "inputs:dimSource") if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], build_fn=partial( get_source_picker_prop_builder( self, dim_sources, ), prop, ), ) dim_source = og.Controller.get(self.dim_source_attr) if dim_source == EXPLICIT_SOURCE: prop = find_prop(props, "inputs:dimCount") if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) dim_count = min( max( og.Controller.get(self.dim_count_attr), 0, ), wp.types.ARRAY_MAX_DIMS, ) for i in range(dim_count): prop = find_prop(props, "inputs:dim{}".format(i + 1)) if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) prop = find_prop(props, "inputs:codeProvider") if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) code_provider = og.Controller.get(self.code_provider_attr) if code_provider == "embedded": prop = find_prop(props, "inputs:codeStr") if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], build_fn=partial( get_code_str_prop_builder(self), prop, ), ) elif code_provider == "file": prop = find_prop(props, "inputs:codeFile") if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], build_fn=partial( get_code_file_prop_builder(self), prop, ), ) else: raise RuntimeError("Unexpected code provider '{}'".format(code_provider)) return frame.apply(props)
warp-main
exts/omni.warp/omni/warp/nodes/_impl/templates/template_omni.warp.WarpKernel.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import ( Optional, Sequence, ) import omni.graph.core as og from omni.kit.property.usd.custom_layout_helper import ( CustomLayoutFrame, CustomLayoutGroup, CustomLayoutProperty, ) from omni.kit.property.usd.usd_property_widget import UsdPropertyUiEntry PROPS = ( "inputs:size", "inputs:cellSize", "inputs:gravity", "inputs:amplitude", "inputs:speed", "inputs:damping", ) def find_prop( props: Sequence[UsdPropertyUiEntry], name: str, ) -> Optional[UsdPropertyUiEntry]: try: return next(x for x in props if x.prop_name == name) except StopIteration: return None class CustomLayout: def __init__(self, compute_node_widget): self.enable = True self.compute_node_widget = compute_node_widget self.node_prim_path = self.compute_node_widget._payload[-1] self.node = og.Controller.node(self.node_prim_path) def apply(self, props) -> Sequence[UsdPropertyUiEntry]: user_props = tuple(find_prop(props, x) for x in PROPS) frame = CustomLayoutFrame(hide_extra=True) with frame: with CustomLayoutGroup("Inputs"): for prop in user_props: if prop is not None: CustomLayoutProperty( prop.prop_name, display_name=prop.metadata["customData"]["uiName"], ) return frame.apply(props)
warp-main
exts/omni.warp/omni/warp/nodes/_impl/templates/template_omni.warp.WarpWaveSolve.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Widgets used by the custom node UI templates. These are built solely against the `omni.ui` framework and could in theory be reused outside of the context of node UIs, unlike the properties that are built on top of `omni.kit.property.usd`. """
warp-main
exts/omni.warp/omni/warp/nodes/_impl/widgets/__init__.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Widget for a dialog window to author node attributes.""" from functools import partial import omni.graph.core as og from omni.kit.widget.searchfield import SearchField import omni.ui as ui from omni.warp.nodes._impl.kernel import ( ArrayAttributeFormat, OutputArrayShapeSource, UserAttributeDesc, ) _DIALOG_TITLE = "Attribute Creator" _DIALOG_PADDING = 15 _DATA_TYPE_FRAME_HEIGHT = 300 _LABEL_WIDTH = 100 _FIELD_WIDTH = 275 _DIALOG_BTNS_FRAME_HEIGHT = 20 def _add_label(title): ui.Label(title, alignment=ui.Alignment.RIGHT, width=_LABEL_WIDTH) ui.Spacer(width=_DIALOG_PADDING) class AttributeEditor: """Editor to add/remove node attributes.""" def __init__(self, data_type_names, create_attr_callback): self.supported_data_type_names = data_type_names self.filtered_data_type_names = data_type_names self.create_attr_callback = create_attr_callback self.dialog = None self.input_port_btn = None self.output_port_btn = None self.name_field = None self.data_type_frame = None self.selected_data_type_btn = None self.is_array_frame = None self.is_array_checkbox = None self.array_format_frame = None self.array_format_combobox = None self.output_array_shape_source_frame = None self.output_array_shape_source_combobox = None self.optional_frame = None self.optional_checkbox = None self.error_msg_label = None self._build() @property def port_type(self): if self.input_port_btn.checked: return og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT if self.output_port_btn.checked: return og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT return None @property def name(self): return self.name_field.model.get_value_as_string() @property def data_type(self): if self.selected_data_type_btn is None: return None return self.selected_data_type_btn.text @property def is_array(self): return self.is_array_checkbox.model.get_value_as_bool() @property def array_format(self): return ArrayAttributeFormat(self.array_format_combobox.model.get_item_value_model().get_value_as_int()) @property def array_shape_source(self): if self.port_type == og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT: enum_type = OutputArrayShapeSource widget = self.output_array_shape_source_combobox else: return None value = widget.model.get_item_value_model().get_value_as_int() return enum_type(value) @property def optional(self): return self.optional_checkbox.model.get_value_as_bool() def _update_array_shape_source_visibility(self): self.output_array_shape_source_frame.visible = ( self.port_type == og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT and self.is_array ) def _handle_data_type_clicked(self, btn): if self.selected_data_type_btn is not None: self.selected_data_type_btn.checked = False self.selected_data_type_btn = btn self.selected_data_type_btn.checked = True def _handle_input_port_btn_clicked(self): self.is_array_frame.enabled = True self.optional_frame.visible = True self._update_array_shape_source_visibility() def _handle_output_port_btn_clicked(self): self.is_array_checkbox.model.set_value(True) self.is_array_frame.enabled = False self.optional_frame.visible = False self._update_array_shape_source_visibility() def _handle_data_type_search(self, text): if text is None: self.filtered_data_type_names = self.supported_data_type_names else: text = text[0] self.filtered_data_type_names = tuple(x for x in self.supported_data_type_names if text in x) self._build_data_type_frame() self.selected_data_type_btn = None def _handle_is_array_value_changed(self, model): # TODO: uncomment when support for dynamic bundle attributes is added # in OmniGraph. # self.array_format_frame.visible = model.get_value_as_bool() self._update_array_shape_source_visibility() def _handle_array_format_item_changed(self, model, item): self._update_array_shape_source_visibility() def _handle_ok_btn_clicked(self): port_type = self.port_type if port_type is None: self._set_error_msg("A port type must be selected.") return name = self.name if not name: self._set_error_msg("The attribute's name cannot be empty.") return if not name[0].isalpha(): self._set_error_msg("The first character of the attribute's name must be a letter.") return if self.data_type is None: self._set_error_msg("A data type for the new attribute must be selected.") return attr_desc = UserAttributeDesc( port_type=port_type, base_name=name, data_type_name=self.data_type, is_array=self.is_array, array_format=self.array_format, array_shape_source=self.array_shape_source, optional=(self.port_type == og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT and self.optional), ) try: self.create_attr_callback(attr_desc) except Exception as e: self._set_error_msg(str(e)) return self.dialog.visible = False def _handle_cancel_btn_clicked(self): self.dialog.visible = False def _set_error_msg(self, msg): self.error_msg_label.text = msg self.error_msg_label.visible = True def _build_data_type_frame(self): self.data_type_frame.clear() with self.data_type_frame: with ui.VStack(): for data_type_name in self.filtered_data_type_names: btn = ui.Button(data_type_name) btn.set_clicked_fn( partial( self._handle_data_type_clicked, btn, ), ) def _build(self): self.dialog = ui.Window( _DIALOG_TITLE, padding_x=_DIALOG_PADDING, padding_y=_DIALOG_PADDING, auto_resize=True, ) with self.dialog.frame: with ui.VStack(spacing=10): # Placeholder to display any error message. self.error_msg_label = ui.Label( "", alignment=ui.Alignment.H_CENTER, word_wrap=True, visible=False, style={ "color": 0xFF0000FF, }, ) # Port type. with ui.HStack(height=0): _add_label("Port Type") radio_collection = ui.RadioCollection() with ui.HStack(width=_FIELD_WIDTH): self.input_port_btn = ui.RadioButton( text="input", radio_collection=radio_collection, clicked_fn=self._handle_input_port_btn_clicked, ) self.output_port_btn = ui.RadioButton( text="output", radio_collection=radio_collection, clicked_fn=self._handle_output_port_btn_clicked, ) # Name. with ui.HStack(height=0): _add_label("Name") self.name_field = ui.StringField(width=_FIELD_WIDTH) # Data type. with ui.HStack(height=0): _add_label("Data Type") with ui.VStack(width=_FIELD_WIDTH): SearchField( show_tokens=False, on_search_fn=self._handle_data_type_search, subscribe_edit_changed=True, ) self.data_type_frame = ui.ScrollingFrame( height=_DATA_TYPE_FRAME_HEIGHT, horizontal_scrollbar_policy=(ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_OFF), style_type_name_override="TreeView", ) self._build_data_type_frame() # Is array flag. self.is_array_frame = ui.HStack(height=0) with self.is_array_frame: _add_label("Is Array") self.is_array_checkbox = ui.CheckBox(width=_FIELD_WIDTH) self.is_array_checkbox.model.add_value_changed_fn(self._handle_is_array_value_changed) # Array's format. self.array_format_frame = ui.HStack(height=0, visible=False) with self.array_format_frame: _add_label("Array Format") self.array_format_combobox = ui.ComboBox( 0, *(x.label for x in ArrayAttributeFormat), width=_FIELD_WIDTH, ) self.array_format_combobox.model.add_item_changed_fn(self._handle_array_format_item_changed) # Output array's shape. self.output_array_shape_source_frame = ui.HStack( height=0, visible=False, ) with self.output_array_shape_source_frame: _add_label("Array Shape") self.output_array_shape_source_combobox = ui.ComboBox( 0, *(x.label for x in OutputArrayShapeSource), width=_FIELD_WIDTH, ) # Optional flag. self.optional_frame = ui.HStack(height=0) with self.optional_frame: _add_label("Optional") self.optional_checkbox = ui.CheckBox(width=_FIELD_WIDTH) # Dialog buttons. with ui.HStack(height=0): ui.Spacer() with ui.HStack( width=_FIELD_WIDTH, height=_DIALOG_BTNS_FRAME_HEIGHT, ): ui.Button( "OK", clicked_fn=self._handle_ok_btn_clicked, ) ui.Button( "Cancel", clicked_fn=self._handle_cancel_btn_clicked, )
warp-main
exts/omni.warp/omni/warp/nodes/_impl/widgets/attributeeditor.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Tests for the `from_omni_graph()` API.""" import omni.graph.core as og import omni.graph.core.tests as ogts import omni.warp import warp as wp from omni.warp.nodes.tests._common import ( array_are_equal, attr_set_array, bundle_create_attr, bundle_get_attr, register_node, ) # Test Node Definitions # ----------------------------------------------------------------------------- MAKE_DATA_NODE_DEF = """{ "WarpTestsMakeData": { "version": 1, "description": "Make data.", "language": "Python", "uiName": "Make Data", "cudaPointers": "cpu", "outputs": { "floatArrayAttr": { "type": "float[]", "uiName": "Float Array", "description": "Float array." }, "vec3ArrayAttr": { "type": "float[3][]", "uiName": "Vector3 Array", "description": "Vector3 array." }, "mat4ArrayAttr": { "type": "matrixd[4][]", "uiName": "Matrix4 Array", "description": "Matrix4 array." }, "bundleAttr": { "type": "bundle", "uiName": "Bundle", "description": "Bundle." } } } } """ class MakeDataNode: @staticmethod def compute(db: og.Database) -> bool: db.outputs.floatArrayAttr = (1.0, 2.0, 3.0) db.outputs.vec3ArrayAttr = ((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)) db.outputs.mat4ArrayAttr = ( ( (1.0, 2.0, 3.0, 4.0), (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), ), ( (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), (5.0, 6.0, 7.0, 8.0), ), ) for variant in ("cpuBundle", "gpuBundle"): attr = bundle_create_attr( db.outputs.bundleAttr, "{}FloatArray".format(variant), og.Type( og.BaseDataType.FLOAT, tuple_count=1, array_depth=1, role=og.AttributeRole.NONE, ), size=3, ) attr_set_array( attr, wp.array(db.outputs.floatArrayAttr, dtype=wp.float32), on_gpu=variant == "gpuBundle", ) attr = bundle_create_attr( db.outputs.bundleAttr, "{}Vec3Array".format(variant), og.Type( og.BaseDataType.FLOAT, tuple_count=3, array_depth=1, role=og.AttributeRole.NONE, ), size=2, ) attr_set_array( attr, wp.array(db.outputs.vec3ArrayAttr, dtype=wp.vec3), on_gpu=variant == "gpuBundle", ) attr = bundle_create_attr( db.outputs.bundleAttr, "{}Mat4Array".format(variant), og.Type( og.BaseDataType.DOUBLE, tuple_count=16, array_depth=1, role=og.AttributeRole.MATRIX, ), size=2, ) attr_set_array( attr, wp.array(db.outputs.mat4ArrayAttr, dtype=wp.mat44d), on_gpu=variant == "gpuBundle", ) return True FROM_OMNI_GRAPH_NODE_DEF = """{ "WarpTestsFromOmniGraph": { "version": 1, "description": "From omni graph.", "language": "Python", "uiName": "From Omni Graph", "cudaPointers": "cpu", "inputs": { "anyFloatArrayAttr": { "type": "float[]", "uiName": "Float Array (Any)", "description": "Float array (any).", "memoryType": "any" }, "cpuFloatArrayAttr": { "type": "float[]", "uiName": "Float Array (CPU)", "description": "Float array (cpu).", "memoryType": "cpu" }, "gpuFloatArrayAttr": { "type": "float[]", "uiName": "Float Array (GPU)", "description": "Float array (gpu).", "memoryType": "cuda" }, "anyVec3ArrayAttr": { "type": "float[3][]", "uiName": "Vector3 Array (Any)", "description": "Vector3 array (any).", "memoryType": "any" }, "cpuVec3ArrayAttr": { "type": "float[3][]", "uiName": "Vector3 Array (CPU)", "description": "Vector3 array (cpu).", "memoryType": "cpu" }, "gpuVec3ArrayAttr": { "type": "float[3][]", "uiName": "Vector3 Array (GPU)", "description": "Vector3 array (gpu).", "memoryType": "cuda" }, "anyMat4ArrayAttr": { "type": "matrixd[4][]", "uiName": "Matrix4 Array (Any)", "description": "Matrix4 array (any).", "memoryType": "any" }, "cpuMat4ArrayAttr": { "type": "matrixd[4][]", "uiName": "Matrix4 Array (CPU)", "description": "Matrix4 array (cpu).", "memoryType": "cpu" }, "gpuMat4ArrayAttr": { "type": "matrixd[4][]", "uiName": "Matrix4 Array (GPU)", "description": "Matrix4 array (gpu).", "memoryType": "cuda" }, "bundleAttr": { "type": "bundle", "uiName": "Bundle", "description": "Bundle." }, "device": { "type": "string", "uiName": "Device", "description": "Device." } }, "outputs": { "success": { "type": "bool", "uiName": "Success", "description": "Success." } } } } """ def compute(db: og.Database) -> None: """Evaluates the node.""" variants = ("any", "cpu", "gpu", "cpuBundle", "gpuBundle") # Float Array # -------------------------------------------------------------------------- attr = "floatArray" for variant in variants: if variant in ("cpuBundle", "gpuBundle"): data = bundle_get_attr(db.inputs.bundleAttr, "{}FloatArray".format(variant)) else: data = getattr(db.inputs, "{}FloatArrayAttr".format(variant)) result = omni.warp.from_omni_graph(data) expected = wp.array((1.0, 2.0, 3.0), dtype=wp.float32, shape=(3,)) if not array_are_equal(result, expected): raise RuntimeError("Test for {} ({}) not passing.".format(attr, variant)) # Cast the array to vec3. result = omni.warp.from_omni_graph(data, dtype=wp.vec3) expected = wp.array(((1.0, 2.0, 3.0),), dtype=wp.vec3, shape=(1,)) if not array_are_equal(result, expected): raise RuntimeError("Test for {} ({}) with casting to wp.vec3 not passing.".format(attr, variant)) # Vector3 Array # -------------------------------------------------------------------------- attr = "vec3Array" for variant in variants: if variant in ("cpuBundle", "gpuBundle"): data = bundle_get_attr(db.inputs.bundleAttr, "{}Vec3Array".format(variant)) else: data = getattr(db.inputs, "{}Vec3ArrayAttr".format(variant)) result = omni.warp.from_omni_graph(data) expected = wp.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=wp.vec3, shape=(2,)) if not array_are_equal(result, expected): raise RuntimeError("Test for {} ({}) not passing.".format(attr, variant)) # Cast the array to floats while preserving the same shape. result = omni.warp.from_omni_graph(data, dtype=wp.float32) expected = wp.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=wp.float32, shape=(2, 3)) if not array_are_equal(result, expected): raise RuntimeError("Test for {} ({}) with casting to float not passing.".format(attr, variant)) # Cast the array to floats while flattening it to a single dimension. result = omni.warp.from_omni_graph(data, dtype=wp.float32, shape=(6,)) expected = wp.array((1.0, 2.0, 3.0, 4.0, 5.0, 6.0), dtype=wp.float32, shape=(6,)) if not array_are_equal(result, expected): raise RuntimeError("Test for {} ({}) with flattening not passing.".format(attr, variant)) # Matrix4 Array # -------------------------------------------------------------------------- attr = "mat4Array" for variant in variants: if variant in ("cpuBundle", "gpuBundle"): data = bundle_get_attr(db.inputs.bundleAttr, "{}Mat4Array".format(variant)) else: data = getattr(db.inputs, "{}Mat4ArrayAttr".format(variant)) # Due to OmniGraph only supporting 1-D arrays with elements that might # be represented as tuples, we can at best reconstruct 2-D arrays, # however arrays made of elements such as matrices require 3 dimensions # and hence are not something that we can infer from the data we're # being given, so we need to explicitly pass the dtype here. result = omni.warp.from_omni_graph(data, dtype=wp.mat44d) expected = wp.array( ( ( (1.0, 2.0, 3.0, 4.0), (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), ), ( (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), (5.0, 6.0, 7.0, 8.0), ), ), dtype=wp.mat44d, shape=(2,), ) if not array_are_equal(result, expected): raise RuntimeError("Test for {} ({}) not passing.".format(attr, variant)) # Cast the array to vec4d. result = omni.warp.from_omni_graph(data, dtype=wp.vec4d) expected = wp.array( ( ( (1.0, 2.0, 3.0, 4.0), (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), ), ( (2.0, 3.0, 4.0, 5.0), (3.0, 4.0, 5.0, 6.0), (4.0, 5.0, 6.0, 7.0), (5.0, 6.0, 7.0, 8.0), ), ), dtype=wp.vec4d, shape=(2, 4), ) if not array_are_equal(result, expected): raise RuntimeError("Test for {} ({}) with casting to vec4 not passing.".format(attr, variant)) # Cast the array to floats while flattening it to a single dimension. result = omni.warp.from_omni_graph(data, dtype=wp.float64, shape=(32,)) expected = wp.array( ( 1.0, 2.0, 3.0, 4.0, 2.0, 3.0, 4.0, 5.0, 3.0, 4.0, 5.0, 6.0, 4.0, 5.0, 6.0, 7.0, 2.0, 3.0, 4.0, 5.0, 3.0, 4.0, 5.0, 6.0, 4.0, 5.0, 6.0, 7.0, 5.0, 6.0, 7.0, 8.0, ), dtype=wp.float64, shape=(32,), ) if not array_are_equal(result, expected): raise RuntimeError("Test for {} ({}) with flattening not passing.".format(attr, variant)) class FromOmniGraphNode: @staticmethod def compute(db: og.Database) -> bool: device = wp.get_device(db.inputs.device) try: with wp.ScopedDevice(device): compute(db) except Exception: db.outputs.success = False raise db.outputs.success = True return True # Test Case # ----------------------------------------------------------------------------- class TestApiFromOmniGraph(ogts.OmniGraphTestCase): async def setUp(self) -> None: await super().setUp() register_node(MakeDataNode, MAKE_DATA_NODE_DEF, "omni.warp.nodes") register_node(FromOmniGraphNode, FROM_OMNI_GRAPH_NODE_DEF, "omni.warp.nodes") (graph, _, _, _) = og.Controller.edit( "/Graph", { og.Controller.Keys.CREATE_NODES: [ ("MakeData", "omni.warp.nodes.WarpTestsMakeData"), ("FromOmniGraph", "omni.warp.nodes.WarpTestsFromOmniGraph"), ], og.Controller.Keys.CONNECT: [ ("MakeData.outputs:floatArrayAttr", "FromOmniGraph.inputs:anyFloatArrayAttr"), ("MakeData.outputs:floatArrayAttr", "FromOmniGraph.inputs:cpuFloatArrayAttr"), ("MakeData.outputs:floatArrayAttr", "FromOmniGraph.inputs:gpuFloatArrayAttr"), ("MakeData.outputs:vec3ArrayAttr", "FromOmniGraph.inputs:anyVec3ArrayAttr"), ("MakeData.outputs:vec3ArrayAttr", "FromOmniGraph.inputs:cpuVec3ArrayAttr"), ("MakeData.outputs:vec3ArrayAttr", "FromOmniGraph.inputs:gpuVec3ArrayAttr"), ("MakeData.outputs:mat4ArrayAttr", "FromOmniGraph.inputs:anyMat4ArrayAttr"), ("MakeData.outputs:mat4ArrayAttr", "FromOmniGraph.inputs:cpuMat4ArrayAttr"), ("MakeData.outputs:mat4ArrayAttr", "FromOmniGraph.inputs:gpuMat4ArrayAttr"), ("MakeData.outputs_bundleAttr", "FromOmniGraph.inputs:bundleAttr"), ], }, ) self.graph = graph async def test_main(self): node = og.Controller.node(("FromOmniGraph", self.graph)) device_attr = og.Controller.attribute("inputs:device", node) success_attr = og.Controller.attribute("outputs:success", node) device_attr.set("cpu") await og.Controller.evaluate(self.graph) self.assertTrue(success_attr.get()) device_attr.set("cuda:0") await og.Controller.evaluate(self.graph) self.assertTrue(success_attr.get())
warp-main
exts/omni.warp/omni/warp/nodes/tests/test_api_from_omni_graph.py
"""Shared helpers for the extension's tests.""" from typing import Optional import importlib import os import tempfile import numpy as np import omni.graph.core as og import omni.graph.tools.ogn as ogn import warp as wp def register_node( cls: type, ogn_definition: str, extension: str, ) -> None: """Registers a new node type based on its class object and OGN code.""" # Parse the OGN definition. interface_wrapper = ogn.NodeInterfaceWrapper(ogn_definition, extension) # Generate the node's `og.Database` class and load it as a module. db_definition = ogn.generate_python( ogn.GeneratorConfiguration( node_file_path=None, node_interface=interface_wrapper.node_interface, extension=extension, module=extension, base_name=cls.__name__, destination_directory=None, ), ) module_name = "{}.{}".format(extension, cls.__name__) file, file_path = tempfile.mkstemp(suffix=".py") try: with os.fdopen(file, "w") as f: f.write(db_definition) spec = importlib.util.spec_from_file_location(module_name, file_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) finally: os.remove(file_path) # Register the node. db_cls = getattr(module, "{}Database".format(cls.__name__)) db_cls.register(cls) def bundle_create_attr( bundle: og.BundleContents, name: str, og_type: og.Type, size: int = 0, ) -> og.AttributeData: """Creates a bundle attribute if it doesn't already exist.""" if bundle.bundle.get_child_bundle_count() > 0: prim_bundle = bundle.bundle.get_child_bundle(0) else: prim_bundle = bundle.bundle.create_child_bundle("prim0") attr = prim_bundle.get_attribute_by_name(name) if attr.is_valid() and attr.get_type() == og_type and attr.size() == size: return attr return prim_bundle.create_attribute(name, og_type, element_count=size) def bundle_get_attr( bundle: og.BundleContents, name: str, ) -> Optional[og.AttributeData]: """Retrieves a bundle attribute from its name.""" if bundle.bundle.get_child_bundle_count(): attr = bundle.bundle.get_child_bundle(0).get_attribute_by_name(name) else: attr = bundle.bundle.get_attribute_by_name(name) if not attr.is_valid(): return None return attr def attr_set_array( attr: og.AttributeData, value: wp.array, on_gpu: bool = False, ) -> None: """Sets the given array data onto an attribute.""" if on_gpu: attr.gpu_ptr_kind = og.PtrToPtrKind.CPU (ptr, _) = attr.get_array( on_gpu=True, get_for_write=True, reserved_element_count=attr.size(), ) data = wp.from_ptr(ptr, attr.size(), dtype=value.dtype) wp.copy(data, value) else: attr.set(value.numpy(), on_gpu=False) def array_are_equal( a: wp.array, b: wp.array, ) -> bool: """Checks whether two arrays are equal.""" return a.shape == b.shape and a.dtype == a.dtype and np.array_equal(a.numpy(), b.numpy())
warp-main
exts/omni.warp/omni/warp/nodes/tests/_common.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Tests for the extension omni.warp.nodes.""" scan_for_test_modules = True
warp-main
exts/omni.warp/omni/warp/nodes/tests/__init__.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Tests for the API that does type conversions.""" from typing import Any import omni.graph.core as og import omni.kit import omni.warp import warp as wp def are_array_annotations_equal(a: Any, b: Any) -> bool: return ( isinstance(a, wp.array) and isinstance(b, wp.array) and a.dtype == b.dtype and a.ndim == b.ndim ) class TestApiTypeConversions(omni.kit.test.AsyncTestCase): async def test_og_to_warp_conversion(self): og_type = og.Type( og.BaseDataType.BOOL, tuple_count=1, array_depth=0, role=og.AttributeRole.NONE, ) wp_type = omni.warp.nodes.type_convert_og_to_warp(og_type) expected = wp.int8 self.assertEqual(wp_type, expected) wp_type = omni.warp.nodes.type_convert_og_to_warp(og_type, dim_count=1) expected = wp.array(dtype=wp.int8) self.assertTrue(are_array_annotations_equal(wp_type, expected)) # ---------------------------------------------------------------------- og_type = og.Type( og.BaseDataType.FLOAT, tuple_count=3, array_depth=1, role=og.AttributeRole.COLOR, ) wp_type = omni.warp.nodes.type_convert_og_to_warp(og_type) expected = wp.array(dtype=wp.vec3) self.assertTrue(are_array_annotations_equal(wp_type, expected)) wp_type = omni.warp.nodes.type_convert_og_to_warp(og_type, dim_count=0) expected = wp.vec3 self.assertEqual(wp_type, expected) # ---------------------------------------------------------------------- og_type = og.Type( og.BaseDataType.DOUBLE, tuple_count=9, array_depth=0, role=og.AttributeRole.MATRIX, ) wp_type = omni.warp.nodes.type_convert_og_to_warp(og_type) expected = wp.mat33d self.assertEqual(wp_type, expected) wp_type = omni.warp.nodes.type_convert_og_to_warp(og_type, dim_count=1) expected = wp.array(dtype=wp.mat33d) self.assertTrue(are_array_annotations_equal(wp_type, expected)) # ---------------------------------------------------------------------- og_type = og.Type( og.BaseDataType.FLOAT, tuple_count=4, array_depth=1, role=og.AttributeRole.QUATERNION, ) wp_type = omni.warp.nodes.type_convert_og_to_warp(og_type) expected = wp.array(dtype=wp.quat) self.assertTrue(are_array_annotations_equal(wp_type, expected)) wp_type = omni.warp.nodes.type_convert_og_to_warp(og_type, dim_count=0) expected = wp.quat self.assertEqual(wp_type, expected) async def test_sdf_name_to_warp_conversion(self): sdf_name = "color4f" wp_type = omni.warp.nodes.type_convert_sdf_name_to_warp(sdf_name) expected = wp.vec4 self.assertEqual(wp_type, expected) wp_type = omni.warp.nodes.type_convert_sdf_name_to_warp(sdf_name, dim_count=1) expected = wp.array(dtype=wp.vec4) self.assertTrue(are_array_annotations_equal(wp_type, expected)) # ---------------------------------------------------------------------- sdf_name = "point3f[]" wp_type = omni.warp.nodes.type_convert_sdf_name_to_warp(sdf_name) expected = wp.array(dtype=wp.vec3) self.assertTrue(are_array_annotations_equal(wp_type, expected)) wp_type = omni.warp.nodes.type_convert_sdf_name_to_warp(sdf_name, dim_count=0) expected = wp.vec3 self.assertEqual(wp_type, expected) # ---------------------------------------------------------------------- sdf_name = "timecode" wp_type = omni.warp.nodes.type_convert_sdf_name_to_warp(sdf_name) expected = wp.float64 self.assertEqual(wp_type, expected) wp_type = omni.warp.nodes.type_convert_sdf_name_to_warp(sdf_name, dim_count=1) expected = wp.array(dtype=wp.float64) self.assertTrue(are_array_annotations_equal(wp_type, expected)) # ---------------------------------------------------------------------- sdf_name = "token[]" wp_type = omni.warp.nodes.type_convert_sdf_name_to_warp(sdf_name) expected = wp.array(dtype=wp.uint64) self.assertTrue(are_array_annotations_equal(wp_type, expected)) wp_type = omni.warp.nodes.type_convert_sdf_name_to_warp(sdf_name, dim_count=0) expected = wp.uint64 self.assertEqual(wp_type, expected) async def test_sdf_name_to_og_conversion(self): sdf_name = "float2" og_type = omni.warp.nodes.type_convert_sdf_name_to_og(sdf_name) expected = og.Type( og.BaseDataType.FLOAT, tuple_count=2, array_depth=0, role=og.AttributeRole.NONE, ) self.assertEqual(og_type, expected) og_type = omni.warp.nodes.type_convert_sdf_name_to_og(sdf_name, is_array=True) expected = og.Type( og.BaseDataType.FLOAT, tuple_count=2, array_depth=1, role=og.AttributeRole.NONE, ) self.assertEqual(og_type, expected) # ---------------------------------------------------------------------- sdf_name = "matrix3d[]" og_type = omni.warp.nodes.type_convert_sdf_name_to_og(sdf_name) expected = og.Type( og.BaseDataType.DOUBLE, tuple_count=9, array_depth=1, role=og.AttributeRole.MATRIX, ) self.assertEqual(og_type, expected) og_type = omni.warp.nodes.type_convert_sdf_name_to_og(sdf_name, is_array=False) expected = og.Type( og.BaseDataType.DOUBLE, tuple_count=9, array_depth=0, role=og.AttributeRole.MATRIX, ) self.assertEqual(og_type, expected) # ---------------------------------------------------------------------- sdf_name = "texCoord2f" og_type = omni.warp.nodes.type_convert_sdf_name_to_og(sdf_name) expected = og.Type( og.BaseDataType.FLOAT, tuple_count=2, array_depth=0, role=og.AttributeRole.TEXCOORD, ) self.assertEqual(og_type, expected) og_type = omni.warp.nodes.type_convert_sdf_name_to_og(sdf_name, is_array=True) expected = og.Type( og.BaseDataType.FLOAT, tuple_count=2, array_depth=1, role=og.AttributeRole.TEXCOORD, ) self.assertEqual(og_type, expected) # ---------------------------------------------------------------------- sdf_name = "uchar[]" og_type = omni.warp.nodes.type_convert_sdf_name_to_og(sdf_name) expected = og.Type( og.BaseDataType.UCHAR, tuple_count=1, array_depth=1, role=og.AttributeRole.NONE, ) self.assertEqual(og_type, expected) og_type = omni.warp.nodes.type_convert_sdf_name_to_og(sdf_name, is_array=False) expected = og.Type( og.BaseDataType.UCHAR, tuple_count=1, array_depth=0, role=og.AttributeRole.NONE, ) self.assertEqual(og_type, expected)
warp-main
exts/omni.warp/omni/warp/nodes/tests/test_api_type_conversions.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Entry point for the extension.""" import asyncio from contextlib import suppress import os import subprocess import sys from typing import Sequence import webbrowser import carb import carb.dictionary import omni.ext import omni.graph.core as og import omni.kit.actions.core import warp as wp SCENES_PATH = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../../data/scenes")) NODES_INIT_PATH = os.path.normpath( os.path.join(os.path.dirname(os.path.abspath(__file__)), "../nodes/_impl/__init__.py") ) WARP_GETTING_STARTED_URL = "https://docs.omniverse.nvidia.com/extensions/latest/ext_warp.html" WARP_DOCUMENTATION_URL = "https://nvidia.github.io/warp/" SETTING_ENABLE_BACKWARD = "/exts/omni.warp/enable_backward" SETTING_KERNEL_NODE_OPT_IN = "/app/omni.warp/kernel_opt_in" SETTING_KERNEL_NODE_ENABLE_OPT_IN = "/app/omni.warp/kernel_enable_opt_in" OMNIGRAPH_STAGEUPDATE_ORDER = 100 # We want our attach() to run after OG so that nodes have been instantiated def open_file(filename): if sys.platform == "win32": os.startfile(filename) else: subprocess.call(["xdg-open", filename]) def set_all_graphs_enabled(enable: bool) -> None: """Set the enabled state of all OmniGraphs""" graphs = og.get_all_graphs() for graph in graphs: graph.set_disabled(not enable) def is_kernel_node_check_enabled() -> bool: """Check whether the kernel node opt-in is enabled""" settings = carb.settings.get_settings() if not settings.is_accessible_as( carb.dictionary.ItemType.BOOL, SETTING_KERNEL_NODE_ENABLE_OPT_IN, ): # The enable-setting is not present, we enable the check return True if not settings.get(SETTING_KERNEL_NODE_ENABLE_OPT_IN): # The enable-setting is present and False, disable the check return False # the enable-setting is present and True, enable the check return True VERIFY_KERNEL_NODE_LOAD_MSG = """This stage contains Warp kernel nodes. There is currently no limitation on what code can be executed by this node. This means that graphs that contain these nodes should only be used when the author of the graph is trusted. Do you want to enable the Warp kernel node functionality for this session? """ def verify_kernel_node_load(nodes: Sequence[og.Node]): """Confirm the user wants to run the nodes for the current session.""" from omni.kit.window.popup_dialog import MessageDialog def on_cancel(dialog: MessageDialog): settings = carb.settings.get_settings() settings.set(SETTING_KERNEL_NODE_OPT_IN, False) dialog.hide() def on_ok(dialog: MessageDialog): settings = carb.settings.get_settings() settings.set(SETTING_KERNEL_NODE_OPT_IN, True) dialog.hide() dialog = MessageDialog( title="Warning", width=400, message=VERIFY_KERNEL_NODE_LOAD_MSG, ok_handler=on_ok, ok_label="Yes", cancel_handler=on_cancel, cancel_label="No", ) async def show_async(): import omni.kit.app # wait a few frames to allow the app ui to finish loading await omni.kit.app.get_app().next_update_async() await omni.kit.app.get_app().next_update_async() dialog.show() asyncio.ensure_future(show_async()) def check_for_kernel_nodes() -> None: """Check for kernel node instances and confirm user wants to run them.""" # If the check is not enabled then we are good if not is_kernel_node_check_enabled(): return # Check is enabled - see if they already opted-in settings = carb.settings.get_settings() if settings.get(SETTING_KERNEL_NODE_OPT_IN): # The check is enabled, and they opted-in return # The check is enabled but they opted out, or haven't been prompted yet try: import omni.kit.window.popup_dialog except ImportError: # Don't prompt in headless mode return graphs = og.get_all_graphs() nodes = tuple( n for g in graphs for n in g.get_nodes() if n.get_node_type().get_node_type() == "omni.warp.WarpKernel" ) if not nodes: # No nodes means we can leave them enabled return # Disable them until we get the opt-in via the async dialog set_all_graphs_enabled(False) verify_kernel_node_load(nodes) def on_attach(*args, **kwargs) -> None: """Called when USD stage is attached""" check_for_kernel_nodes() def on_kernel_opt_in_setting_change( item: carb.dictionary.Item, change_type: carb.settings.ChangeEventType, ) -> None: """Update the local cache of the setting value""" if change_type != carb.settings.ChangeEventType.CHANGED: return settings = carb.settings.get_settings() if settings.get(SETTING_KERNEL_NODE_OPT_IN): set_all_graphs_enabled(True) class OmniWarpExtension(omni.ext.IExt): def __init__(self, *args, **kwargs): import omni.kit.app super().__init__(*args, **kwargs) self._menu = None self._stage_subscription = None self._opt_in_setting_sub = None with suppress(ImportError): app = omni.kit.app.get_app() manager = app.get_extension_manager() if manager.is_extension_enabled("omni.graph.ui"): import omni.graph.ui omni.graph.ui.ComputeNodeWidget.get_instance().add_template_path(NODES_INIT_PATH) def on_startup(self, ext_id): import omni.kit.app settings = carb.settings.get_settings() wp.config.enable_backward = settings.get(SETTING_ENABLE_BACKWARD) wp.init() self._is_live = True self._ext_name = "omni.warp" with suppress(ImportError): import omni.kit.menu.utils from omni.warp._extension.menu import WarpMenu self._register_actions() self._menu = WarpMenu() with suppress(ImportError): import omni.kit.browser.sample omni.kit.browser.sample.register_sample_folder(SCENES_PATH, "Warp") stage_update = omni.stageupdate.get_stage_update_interface() self._stage_subscription = stage_update.create_stage_update_node( "WarpKernelAttach", on_attach_fn=on_attach, ) assert self._stage_subscription nodes = stage_update.get_stage_update_nodes() stage_update.set_stage_update_node_order( len(nodes) - 1, OMNIGRAPH_STAGEUPDATE_ORDER + 1, ) self._opt_in_setting_sub = omni.kit.app.SettingChangeSubscription( SETTING_KERNEL_NODE_OPT_IN, on_kernel_opt_in_setting_change, ) assert self._opt_in_setting_sub # Expose the `from_omni_graph` function onto the `omni.warp` module for # backward compatibility. This cannot be done by using a `__init__.py` # file directly under the `omni/warp` folder because it represents # a Python namespace package. import omni.warp import omni.warp.nodes omni.warp.from_omni_graph = omni.warp.nodes.from_omni_graph def on_shutdown(self): if self._menu is not None: self._menu.shutdown() self._menu = None self._deregister_actions() with suppress(ImportError): import omni.kit.browser.sample omni.kit.browser.sample.unregister_sample_folder(SCENES_PATH) self._stage_subscription = None self._opt_in_setting_sub = None # Clean-up the extension's API. import omni.warp delattr(omni.warp, "from_omni_graph") def _register_actions(self): action_registry = omni.kit.actions.core.get_action_registry() actions_tag = "Warp menu actions" # actions action_registry.register_action( self._ext_name, "getting_started", lambda: self._on_getting_started_click(), display_name="Warp->Getting Started", description="", tag=actions_tag, ) action_registry.register_action( self._ext_name, "documentation", lambda: self._on_documentation_click(), display_name="Warp->Documentation", description="", tag=actions_tag, ) action_registry.register_action( self._ext_name, "browse_scenes", lambda: self._on_browse_scenes_click(), display_name="Warp->Browse Scenes", description="", tag=actions_tag, ) def _deregister_actions(self): action_registry = omni.kit.actions.core.get_action_registry() action_registry.deregister_all_actions_for_extension(self._ext_name) def _on_browse_scenes_click(self): open_file(SCENES_PATH) def _on_getting_started_click(self, *_): webbrowser.open(WARP_GETTING_STARTED_URL) def _on_documentation_click(self, *_): webbrowser.open(WARP_DOCUMENTATION_URL)
warp-main
exts/omni.warp/omni/warp/_extension/__init__.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import omni.kit.menu.utils from omni.kit.menu.utils import MenuItemDescription class WarpMenu: def __init__(self): omni.kit.menu.utils.set_default_menu_proirity("Warp", -8) self._top_menu = None self._build_warp_menu() def _build_warp_menu(self): # Warp menu warp_menu = [] warp_menu.append(MenuItemDescription(name="Documentation", onclick_action=("omni.warp", "documentation"))) warp_menu.append(MenuItemDescription(name="Getting Started", onclick_action=("omni.warp", "getting_started"))) warp_menu.append(MenuItemDescription(name="Sample Scenes", onclick_action=("omni.warp", "browse_scenes"))) self._top_menu = [MenuItemDescription(name="Warp", appear_after="Simulation", sub_menu=warp_menu)] omni.kit.menu.utils.add_menu_items(self._top_menu, "Window", -8) def shutdown(self): omni.kit.menu.utils.remove_menu_items(self._top_menu, "Window")
warp-main
exts/omni.warp/omni/warp/_extension/menu.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Public API for the omni.warp.core extension""" # Register the extension by importing its entry point class. from omni.warp.core._impl.extension import OmniWarpCoreExtension as _
warp-main
exts/omni.warp.core/omni/warp/core/__init__.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Private Python implementation for the extension."""
warp-main
exts/omni.warp.core/omni/warp/core/_impl/__init__.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import omni.ext import warp as wp class OmniWarpCoreExtension(omni.ext.IExt): def on_startup(self, ext_id): wp.init()
warp-main
exts/omni.warp.core/omni/warp/core/_impl/extension.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Tests for the extension omni.warp.""" scan_for_test_modules = True
warp-main
exts/omni.warp.core/omni/warp/core/tests/__init__.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Tests for the Warp library itself. Only a trimmed down list of tests is run since the full suite is too slow. """ import omni.kit import warp as wp import warp.tests.test_codegen import warp.tests.test_mesh_query_aabb import warp.tests.test_mesh_query_point import warp.tests.test_mesh_query_ray import warp.tests.test_conditional import warp.tests.test_operators import warp.tests.test_rounding import warp.tests.test_hash_grid import warp.tests.test_ctypes import warp.tests.test_rand import warp.tests.test_noise import warp.tests.test_tape initialized = False class BaseTestCase(omni.kit.test.AsyncTestCase): @classmethod def setUpClass(cls): global initialized if not initialized: # Load all the Warp modules just once. This needs to be done # within the `setUpClass` method instead of at the module level # to avoid the reload to be done as soon as this module is imported, # which might happen when scanning for existing tests without # actually needing to run these ones. wp.force_load() initialized = True test_clss = ( warp.tests.test_codegen.register(BaseTestCase), warp.tests.test_mesh_query_aabb.register(BaseTestCase), warp.tests.test_mesh_query_point.register(BaseTestCase), warp.tests.test_mesh_query_ray.register(BaseTestCase), warp.tests.test_conditional.register(BaseTestCase), warp.tests.test_operators.register(BaseTestCase), warp.tests.test_rounding.register(BaseTestCase), warp.tests.test_hash_grid.register(BaseTestCase), warp.tests.test_ctypes.register(BaseTestCase), warp.tests.test_rand.register(BaseTestCase), warp.tests.test_noise.register(BaseTestCase), warp.tests.test_tape.register(BaseTestCase), ) # Each test class needs to be defined at the module level to be found by # the test runners. locals().update({str(i): x for i, x in enumerate(test_clss)})
warp-main
exts/omni.warp.core/omni/warp/core/tests/test_ext.py
# Use this file to bootstrap packman into your Python environment (3.7.x). Simply # add the path by doing sys.insert to where packmanconf.py is located and then execute: # # >>> import packmanconf # >>> packmanconf.init() # # It will use the configured remote(s) and the version of packman in the same folder, # giving you full access to the packman API via the following module # # >> import packmanapi # >> dir(packmanapi) import os import platform import sys def init(): """Call this function to initialize the packman configuration. Calls to the packman API will work after successfully calling this function. Note: This function only needs to be called once during the execution of your program. Calling it repeatedly is harmless but wasteful. Compatibility with your Python interpreter is checked and upon failure the function will report what is required. Example: >>> import packmanconf >>> packmanconf.init() >>> import packmanapi >>> packmanapi.set_verbosity_level(packmanapi.VERBOSITY_HIGH) """ major = sys.version_info[0] minor = sys.version_info[1] if major != 3 or minor != 10: raise RuntimeError( f"This version of packman requires Python 3.10.x, but {major}.{minor} was provided" ) conf_dir = os.path.dirname(os.path.abspath(__file__)) os.environ["PM_INSTALL_PATH"] = conf_dir packages_root = get_packages_root(conf_dir) version = get_version(conf_dir) module_dir = get_module_dir(conf_dir, packages_root, version) sys.path.insert(1, module_dir) def get_packages_root(conf_dir: str) -> str: root = os.getenv("PM_PACKAGES_ROOT") if not root: platform_name = platform.system() if platform_name == "Windows": drive, _ = os.path.splitdrive(conf_dir) root = os.path.join(drive, "packman-repo") elif platform_name == "Darwin": # macOS root = os.path.join( os.path.expanduser("~"), "/Library/Application Support/packman-cache" ) elif platform_name == "Linux": try: cache_root = os.environ["XDG_HOME_CACHE"] except KeyError: cache_root = os.path.join(os.path.expanduser("~"), ".cache") return os.path.join(cache_root, "packman") else: raise RuntimeError(f"Unsupported platform '{platform_name}'") # make sure the path exists: os.makedirs(root, exist_ok=True) return root def get_module_dir(conf_dir, packages_root: str, version: str) -> str: module_dir = os.path.join(packages_root, "packman-common", version) if not os.path.exists(module_dir): import tempfile tf = tempfile.NamedTemporaryFile(delete=False) target_name = tf.name tf.close() url = f"http://bootstrap.packman.nvidia.com/packman-common@{version}.zip" print(f"Downloading '{url}' ...") import urllib.request urllib.request.urlretrieve(url, target_name) from importlib.machinery import SourceFileLoader # import module from path provided script_path = os.path.join(conf_dir, "bootstrap", "install_package.py") ip = SourceFileLoader("install_package", script_path).load_module() print("Unpacking ...") ip.install_package(target_name, module_dir) os.unlink(tf.name) return module_dir def get_version(conf_dir: str): path = os.path.join(conf_dir, "packman") if not os.path.exists(path): # in dev repo fallback path += ".sh" with open(path, "rt", encoding="utf8") as launch_file: for line in launch_file.readlines(): if line.startswith("PM_PACKMAN_VERSION"): _, value = line.split("=") return value.strip() raise RuntimeError(f"Unable to find 'PM_PACKMAN_VERSION' in '{path}'")
warp-main
tools/packman/packmanconf.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import zipfile import tempfile import sys import os import stat import time from typing import Any, Callable RENAME_RETRY_COUNT = 100 RENAME_RETRY_DELAY = 0.1 logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") def remove_directory_item(path): if os.path.islink(path) or os.path.isfile(path): try: os.remove(path) except PermissionError: # make sure we have access and try again: os.chmod(path, stat.S_IRWXU) os.remove(path) else: # try first to delete the dir because this will work for folder junctions, otherwise we would follow the junctions and cause destruction! clean_out_folder = False try: # make sure we have access preemptively - this is necessary because recursing into a directory without permissions # will only lead to heart ache os.chmod(path, stat.S_IRWXU) os.rmdir(path) except OSError: clean_out_folder = True if clean_out_folder: # we should make sure the directory is empty names = os.listdir(path) for name in names: fullname = os.path.join(path, name) remove_directory_item(fullname) # now try to again get rid of the folder - and not catch if it raises: os.rmdir(path) class StagingDirectory: def __init__(self, staging_path): self.staging_path = staging_path self.temp_folder_path = None os.makedirs(staging_path, exist_ok=True) def __enter__(self): self.temp_folder_path = tempfile.mkdtemp(prefix="ver-", dir=self.staging_path) return self def get_temp_folder_path(self): return self.temp_folder_path # this function renames the temp staging folder to folder_name, it is required that the parent path exists! def promote_and_rename(self, folder_name): abs_dst_folder_name = os.path.join(self.staging_path, folder_name) os.rename(self.temp_folder_path, abs_dst_folder_name) def __exit__(self, type, value, traceback): # Remove temp staging folder if it's still there (something went wrong): path = self.temp_folder_path if os.path.isdir(path): remove_directory_item(path) def rename_folder(staging_dir: StagingDirectory, folder_name: str): try: staging_dir.promote_and_rename(folder_name) except OSError as exc: # if we failed to rename because the folder now exists we can assume that another packman process # has managed to update the package before us - in all other cases we re-raise the exception abs_dst_folder_name = os.path.join(staging_dir.staging_path, folder_name) if os.path.exists(abs_dst_folder_name): logger.warning( f"Directory {abs_dst_folder_name} already present, package installation already completed" ) else: raise def call_with_retry( op_name: str, func: Callable, retry_count: int = 3, retry_delay: float = 20 ) -> Any: retries_left = retry_count while True: try: return func() except (OSError, IOError) as exc: logger.warning(f"Failure while executing {op_name} [{str(exc)}]") if retries_left: retry_str = "retry" if retries_left == 1 else "retries" logger.warning( f"Retrying after {retry_delay} seconds" f" ({retries_left} {retry_str} left) ..." ) time.sleep(retry_delay) else: logger.error("Maximum retries exceeded, giving up") raise retries_left -= 1 def rename_folder_with_retry(staging_dir: StagingDirectory, folder_name): dst_path = os.path.join(staging_dir.staging_path, folder_name) call_with_retry( f"rename {staging_dir.get_temp_folder_path()} -> {dst_path}", lambda: rename_folder(staging_dir, folder_name), RENAME_RETRY_COUNT, RENAME_RETRY_DELAY, ) def install_package(package_path, install_path): staging_path, version = os.path.split(install_path) with StagingDirectory(staging_path) as staging_dir: output_folder = staging_dir.get_temp_folder_path() with zipfile.ZipFile(package_path, allowZip64=True) as zip_file: zip_file.extractall(output_folder) # attempt the rename operation rename_folder_with_retry(staging_dir, version) print(f"Package successfully installed to {install_path}") if __name__ == "__main__": executable_paths = os.getenv("PATH") paths_list = executable_paths.split(os.path.pathsep) if executable_paths else [] target_path_np = os.path.normpath(sys.argv[2]) target_path_np_nc = os.path.normcase(target_path_np) for exec_path in paths_list: if os.path.normcase(os.path.normpath(exec_path)) == target_path_np_nc: raise RuntimeError(f"packman will not install to executable path '{exec_path}'") install_package(sys.argv[1], target_path_np)
warp-main
tools/packman/bootstrap/install_package.py
import os import sys import io import contextlib import packmanapi REPO_ROOT = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../..") REPO_DEPS_FILE = os.path.join(REPO_ROOT, "deps/repo-deps.packman.xml") def bootstrap(): """ Bootstrap all omni.repo modules. Pull with packman from repo.packman.xml and add them all to python sys.path to enable importing. """ #with contextlib.redirect_stdout(io.StringIO()): deps = packmanapi.pull(REPO_DEPS_FILE) for dep_path in deps.values(): if dep_path not in sys.path: sys.path.append(dep_path) if __name__ == "__main__": bootstrap() import omni.repo.man omni.repo.man.main(REPO_ROOT)
warp-main
tools/repoman/repoman.py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath("..")) # -- Project information ----------------------------------------------------- project = "Warp" copyright = "2023, NVIDIA" author = "NVIDIA" version = "1.0.0-beta.2" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.napoleon", # Convert docstrings to reStructuredText "sphinx.ext.intersphinx", "sphinx.ext.autosummary", "sphinx.ext.todo", # Third-party extensions: # 'sphinx_tabs.tabs', # 'sphinx_copybutton' # 'autodocsumm' ] # put type hints inside the description instead of the signature (easier to read) autodoc_typehints = "description" # document class *and* __init__ methods autoclass_content = "both" autodoc_member_order = "bysource" # autodoc_typehints_format # add_module_names = False todo_include_todos = True todo_emit_warnings = True intersphinx_mapping = { "python": ("https://docs.python.org/3", None), "numpy": ("http://docs.scipy.org/doc/numpy/", None), } # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "furo" html_title = f"Warp {version}" html_show_sphinx = False # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] html_css_files = ["custom.css"] html_theme_options = { "top_of_page_button": None, "light_css_variables": { "admonition-title-font-size": "100%", "admonition-font-size": "100%", "color-api-pre-name": "#4e9a06", # "#76b900", "color-api-name": "#4e9a06", # "#76b900", "color-admonition-title--seealso": "#ffffff", "color-admonition-title-background--seealso": "#448aff", "color-admonition-title-background--note": "#76b900", "color-admonition-title--note": "#ffffff", }, "dark_css_variables": { "color-admonition-title-background--note": "#535353", "color-admonition-title--note": "#ffffff", }, "light_logo": "logo-light-mode.png", "dark_logo": "logo-dark-mode.png", "footer_icons": [ { "name": "GitHub", "url": "https://github.com/NVIDIA/warp", "html": """ <svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M8 0C3.58 0 0 3.58 0 8c0 3.54 2.29 6.53 5.47 7.59.4.07.55-.17.55-.38 0-.19-.01-.82-.01-1.49-2.01.37-2.53-.49-2.69-.94-.09-.23-.48-.94-.82-1.13-.28-.15-.68-.52-.01-.53.63-.01 1.08.58 1.23.82.72 1.21 1.87.87 2.33.66.07-.52.28-.87.51-1.07-1.78-.2-3.64-.89-3.64-3.95 0-.87.31-1.59.82-2.15-.08-.2-.36-1.02.08-2.12 0 0 .67-.21 2.2.82.64-.18 1.32-.27 2-.27.68 0 1.36.09 2 .27 1.53-1.04 2.2-.82 2.2-.82.44 1.1.16 1.92.08 2.12.51.56.82 1.27.82 2.15 0 3.07-1.87 3.75-3.65 3.95.29.25.54.73.54 1.48 0 1.07-.01 1.93-.01 2.2 0 .21.15.46.55.38A8.013 8.013 0 0 0 16 8c0-4.42-3.58-8-8-8z"></path> </svg> """, "class": "", }, ], }
warp-main
docs/conf.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Sim Rigid FEM # # Shows how to set up a rigid sphere colliding with an FEM beam # using wp.sim.ModelBuilder(). # ########################################################################### import os import warp as wp import warp.sim import warp.sim.render wp.init() class Example: def __init__(self, stage): self.sim_width = 8 self.sim_height = 8 self.sim_fps = 60.0 self.sim_substeps = 32 self.sim_duration = 5.0 self.sim_frames = int(self.sim_duration * self.sim_fps) self.sim_dt = (1.0 / self.sim_fps) / self.sim_substeps self.sim_time = 0.0 self.sim_iterations = 1 self.sim_relaxation = 1.0 builder = wp.sim.ModelBuilder() builder.default_particle_radius = 0.01 builder.add_soft_grid( pos=(0.0, 0.0, 0.0), rot=wp.quat_identity(), vel=(0.0, 0.0, 0.0), dim_x=20, dim_y=10, dim_z=10, cell_x=0.1, cell_y=0.1, cell_z=0.1, density=100.0, k_mu=50000.0, k_lambda=20000.0, k_damp=0.0, ) b = builder.add_body(origin=wp.transform((0.5, 2.5, 0.5), wp.quat_identity())) builder.add_shape_sphere(body=b, radius=0.75, density=100.0) self.model = builder.finalize() self.model.ground = True self.model.soft_contact_ke = 1.0e3 self.model.soft_contact_kd = 0.0 self.model.soft_contact_kf = 1.0e3 self.integrator = wp.sim.SemiImplicitIntegrator() self.state_0 = self.model.state() self.state_1 = self.model.state() self.renderer = wp.sim.render.SimRendererOpenGL(self.model, stage, scaling=1.0) def update(self): with wp.ScopedTimer("simulate", active=True): for s in range(self.sim_substeps): wp.sim.collide(self.model, self.state_0) self.state_0.clear_forces() self.state_1.clear_forces() self.integrator.simulate(self.model, self.state_0, self.state_1, self.sim_dt) self.sim_time += self.sim_dt # swap states (self.state_0, self.state_1) = (self.state_1, self.state_0) def render(self, is_live=False): with wp.ScopedTimer("render", active=True): time = 0.0 if is_live else self.sim_time self.renderer.begin_frame(time) self.renderer.render(self.state_0) self.renderer.end_frame() if __name__ == "__main__": stage_path = os.path.join(os.path.dirname(__file__), "outputs/example_sim_rigid_fem.usd") example = Example(stage_path) for i in range(example.sim_frames): example.update() example.render() example.renderer.save()
warp-main
examples/example_sim_rigid_fem.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Smooth Particle Hydrodynamics # # Shows how to implement a SPH # Neighbors are found using the wp.HashGrid class, and # wp.hash_grid_query(), wp.hash_grid_query_next() kernel methods. # # Reference Publication # Müller, Matthias, David Charypar, and Markus H. Gross. # "Particle-based fluid simulation for interactive applications." # Symposium on Computer animation. Vol. 2. 2003. # ########################################################################### import numpy as np import warp as wp import warp.render import os wp.init() @wp.func def square(x: float): return x * x @wp.func def cube(x: float): return x * x * x @wp.func def fifth(x: float): return x * x * x * x * x @wp.func def density_kernel(xyz: wp.vec3, smoothing_length: float): # calculate distance distance = wp.dot(xyz, xyz) return wp.max(cube(square(smoothing_length) - distance), 0.0) @wp.func def diff_pressure_kernel( xyz: wp.vec3, pressure: float, neighbor_pressure: float, neighbor_rho: float, smoothing_length: float ): # calculate distance distance = wp.sqrt(wp.dot(xyz, xyz)) if distance < smoothing_length: # calculate terms of kernel term_1 = -xyz / distance term_2 = (neighbor_pressure + pressure) / (2.0 * neighbor_rho) term_3 = square(smoothing_length - distance) return term_1 * term_2 * term_3 else: return wp.vec3() @wp.func def diff_viscous_kernel(xyz: wp.vec3, v: wp.vec3, neighbor_v: wp.vec3, neighbor_rho: float, smoothing_length: float): # calculate distance distance = wp.sqrt(wp.dot(xyz, xyz)) # calculate terms of kernel if distance < smoothing_length: term_1 = (neighbor_v - v) / neighbor_rho term_2 = smoothing_length - distance return term_1 * term_2 else: return wp.vec3() @wp.kernel def compute_density( grid: wp.uint64, particle_x: wp.array(dtype=wp.vec3), particle_rho: wp.array(dtype=float), density_normalization: float, smoothing_length: float, ): tid = wp.tid() # order threads by cell i = wp.hash_grid_point_id(grid, tid) # get local particle variables x = particle_x[i] # store density rho = float(0.0) # particle contact neighbors = wp.hash_grid_query(grid, x, smoothing_length) # loop through neighbors to compute density for index in neighbors: # compute distance distance = x - particle_x[index] # compute kernel derivative rho += density_kernel(distance, smoothing_length) # add external potential particle_rho[i] = density_normalization * rho @wp.kernel def get_acceleration( grid: wp.uint64, particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), particle_rho: wp.array(dtype=float), particle_a: wp.array(dtype=wp.vec3), isotropic_exp: float, base_density: float, gravity: float, pressure_normalization: float, viscous_normalization: float, smoothing_length: float, ): tid = wp.tid() # order threads by cell i = wp.hash_grid_point_id(grid, tid) # get local particle variables x = particle_x[i] v = particle_v[i] rho = particle_rho[i] pressure = isotropic_exp * (rho - base_density) # store forces pressure_force = wp.vec3() viscous_force = wp.vec3() # particle contact neighbors = wp.hash_grid_query(grid, x, smoothing_length) # loop through neighbors to compute acceleration for index in neighbors: if index != i: # get neighbor velocity neighbor_v = particle_v[index] # get neighbor density and pressures neighbor_rho = particle_rho[index] neighbor_pressure = isotropic_exp * (neighbor_rho - base_density) # compute relative position relative_position = particle_x[index] - x # calculate pressure force pressure_force += diff_pressure_kernel( relative_position, pressure, neighbor_pressure, neighbor_rho, smoothing_length ) # compute kernel derivative viscous_force += diff_viscous_kernel(relative_position, v, neighbor_v, neighbor_rho, smoothing_length) # sum all forces force = pressure_normalization * pressure_force + viscous_normalization * viscous_force # add external potential particle_a[i] = force / rho + wp.vec3(0.0, gravity, 0.0) @wp.kernel def apply_bounds( particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), damping_coef: float, width: float, height: float, length: float, ): tid = wp.tid() # get pos and velocity x = particle_x[tid] v = particle_v[tid] # clamp x left if x[0] < 0.0: x = wp.vec3(0.0, x[1], x[2]) v = wp.vec3(v[0] * damping_coef, v[1], v[2]) # clamp x right if x[0] > width: x = wp.vec3(width, x[1], x[2]) v = wp.vec3(v[0] * damping_coef, v[1], v[2]) # clamp y bot if x[1] < 0.0: x = wp.vec3(x[0], 0.0, x[2]) v = wp.vec3(v[0], v[1] * damping_coef, v[2]) # clamp z left if x[2] < 0.0: x = wp.vec3(x[0], x[1], 0.0) v = wp.vec3(v[0], v[1], v[2] * damping_coef) # clamp z right if x[2] > length: x = wp.vec3(x[0], x[1], length) v = wp.vec3(v[0], v[1], v[2] * damping_coef) # apply clamps particle_x[tid] = x particle_v[tid] = v @wp.kernel def kick(particle_v: wp.array(dtype=wp.vec3), particle_a: wp.array(dtype=wp.vec3), dt: float): tid = wp.tid() v = particle_v[tid] particle_v[tid] = v + particle_a[tid] * dt @wp.kernel def drift(particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), dt: float): tid = wp.tid() x = particle_x[tid] particle_x[tid] = x + particle_v[tid] * dt @wp.kernel def initialize_particles( particle_x: wp.array(dtype=wp.vec3), smoothing_length: float, width: float, height: float, length: float ): tid = wp.tid() # grid size nr_x = wp.int32(width / 4.0 / smoothing_length) nr_y = wp.int32(height / smoothing_length) nr_z = wp.int32(length / 4.0 / smoothing_length) # calculate particle position z = wp.float(tid % nr_z) y = wp.float((tid // nr_z) % nr_y) x = wp.float((tid // (nr_z * nr_y)) % nr_x) pos = smoothing_length * wp.vec3(x, y, z) # add small jitter state = wp.rand_init(123, tid) pos = pos + 0.001 * smoothing_length * wp.vec3(wp.randn(state), wp.randn(state), wp.randn(state)) # set position particle_x[tid] = pos class Example: def __init__(self, stage): # render params self.frame_dt = 1.0 / 60.0 self.frame_count = 600 self.renderer = wp.render.UsdRenderer(stage) self.sim_time = 0.0 # simulation params self.smoothing_length = 0.8 # NOTE change this to adjust number of particles self.width = 80.0 # x self.height = 80.0 # y self.length = 80.0 # z self.isotropic_exp = 20 self.base_density = 1.0 self.particle_mass = 0.01 * self.smoothing_length**3 # reduce according to smoothing length self.dt = 0.01 * self.smoothing_length # decrease sim dt by smoothing length self.dynamic_visc = 0.025 self.damping_coef = -0.95 self.gravity = -0.1 self.n = int( self.height * (self.width / 4.0) * (self.height / 4.0) / (self.smoothing_length**3) ) # number particles (small box in corner) self.sim_step_to_frame_ratio = int(32 / self.smoothing_length) # constants self.density_normalization = (315.0 * self.particle_mass) / ( 64.0 * np.pi * self.smoothing_length**9 ) # integrate density kernel self.pressure_normalization = -(45.0 * self.particle_mass) / (np.pi * self.smoothing_length**6) self.viscous_normalization = (45.0 * self.dynamic_visc * self.particle_mass) / ( np.pi * self.smoothing_length**6 ) # allocate arrays self.x = wp.empty(tuple([self.n]), dtype=wp.vec3) self.v = wp.zeros(tuple([self.n]), dtype=wp.vec3) self.rho = wp.zeros(tuple([self.n]), dtype=float) self.a = wp.zeros(tuple([self.n]), dtype=wp.vec3) # set random positions wp.launch( kernel=initialize_particles, dim=self.n, inputs=[self.x, self.smoothing_length, self.width, self.height, self.length], ) # initialize in small area # create hash array grid_size = int(self.height / (4.0 * self.smoothing_length)) self.grid = wp.HashGrid(grid_size, grid_size, grid_size) def update(self): with wp.ScopedTimer("simulate", active=True): for s in range(self.sim_step_to_frame_ratio): with wp.ScopedTimer("grid build", active=False): # build grid self.grid.build(self.x, self.smoothing_length) with wp.ScopedTimer("forces", active=False): # compute density of points wp.launch( kernel=compute_density, dim=self.n, inputs=[self.grid.id, self.x, self.rho, self.density_normalization, self.smoothing_length], ) # get new acceleration wp.launch( kernel=get_acceleration, dim=self.n, inputs=[ self.grid.id, self.x, self.v, self.rho, self.a, self.isotropic_exp, self.base_density, self.gravity, self.pressure_normalization, self.viscous_normalization, self.smoothing_length, ], ) # apply bounds wp.launch( kernel=apply_bounds, dim=self.n, inputs=[self.x, self.v, self.damping_coef, self.width, self.height, self.length], ) # kick wp.launch(kernel=kick, dim=self.n, inputs=[self.v, self.a, self.dt]) # drift wp.launch(kernel=drift, dim=self.n, inputs=[self.x, self.v, self.dt]) def render(self, is_live=False): with wp.ScopedTimer("render", active=True): time = 0.0 if is_live else self.sim_time self.renderer.begin_frame(time) self.renderer.render_points(points=self.x.numpy(), radius=self.smoothing_length, name="points") self.renderer.end_frame() self.sim_time += self.frame_dt if __name__ == "__main__": stage_path = os.path.join(os.path.dirname(__file__), "outputs/example_sph.usd") example = Example(stage_path) for i in range(example.frame_count): example.render() example.update() example.renderer.save()
warp-main
examples/example_sph.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ############################################################################# # Example Ray Cast # # Shows how to use the built-in wp.Mesh data structure and wp.mesh_query_ray() # function to implement a basic ray-tracer. # ############################################################################## import matplotlib.pyplot as plt from pxr import Usd, UsdGeom import warp as wp import numpy as np import os wp.init() @wp.kernel def draw(mesh: wp.uint64, cam_pos: wp.vec3, width: int, height: int, pixels: wp.array(dtype=wp.vec3)): tid = wp.tid() x = tid % width y = tid // width sx = 2.0 * float(x) / float(height) - 1.0 sy = 2.0 * float(y) / float(height) - 1.0 # compute view ray ro = cam_pos rd = wp.normalize(wp.vec3(sx, sy, -1.0)) t = float(0.0) u = float(0.0) v = float(0.0) sign = float(0.0) n = wp.vec3() f = int(0) color = wp.vec3(0.0, 0.0, 0.0) if wp.mesh_query_ray(mesh, ro, rd, 1.0e6, t, u, v, sign, n, f): color = n * 0.5 + wp.vec3(0.5, 0.5, 0.5) pixels[tid] = color class Example: def __init__(self): self.width = 1024 self.height = 1024 self.cam_pos = (0.0, 1.0, 2.0) asset_stage = Usd.Stage.Open(os.path.join(os.path.dirname(__file__), "assets/bunny.usd")) mesh_geom = UsdGeom.Mesh(asset_stage.GetPrimAtPath("/bunny/bunny")) points = np.array(mesh_geom.GetPointsAttr().Get()) indices = np.array(mesh_geom.GetFaceVertexIndicesAttr().Get()) self.pixels = wp.zeros(self.width * self.height, dtype=wp.vec3) # create wp mesh self.mesh = wp.Mesh( points=wp.array(points, dtype=wp.vec3), velocities=None, indices=wp.array(indices, dtype=int) ) def update(self): pass def render(self, is_live=False): with wp.ScopedTimer("render"): wp.launch( kernel=draw, dim=self.width * self.height, inputs=[self.mesh.id, self.cam_pos, self.width, self.height, self.pixels], ) wp.synchronize_device() plt.imshow( self.pixels.numpy().reshape((self.height, self.width, 3)), origin="lower", interpolation="antialiased" ) plt.show() if __name__ == "__main__": example = Example() example.render()
warp-main
examples/example_raycast.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Sim Rigid Chain # # Shows how to set up a chain of rigid bodies connected by different joint # types using wp.sim.ModelBuilder(). There is one chain for each joint # type, including fixed joints which act as a flexible beam. # ########################################################################### import numpy as np import os import warp as wp import warp.sim import warp.sim.render wp.init() class Example: frame_dt = 1.0 / 100.0 episode_duration = 5.0 # seconds episode_frames = int(episode_duration / frame_dt) sim_substeps = 32 # 5 sim_dt = frame_dt / sim_substeps sim_steps = int(episode_duration / sim_dt) sim_time = 0.0 render_time = 0.0 def __init__(self, stage=None, render=True): self.chain_length = 8 self.chain_width = 1.0 self.chain_types = [ wp.sim.JOINT_REVOLUTE, wp.sim.JOINT_FIXED, wp.sim.JOINT_BALL, wp.sim.JOINT_UNIVERSAL, wp.sim.JOINT_COMPOUND, ] self.enable_rendering = render builder = wp.sim.ModelBuilder() for c, t in enumerate(self.chain_types): # start a new articulation builder.add_articulation() for i in range(self.chain_length): if i == 0: parent = -1 parent_joint_xform = wp.transform([0.0, 0.0, c * 1.0], wp.quat_identity()) else: parent = builder.joint_count - 1 parent_joint_xform = wp.transform([self.chain_width, 0.0, 0.0], wp.quat_identity()) # create body b = builder.add_body(origin=wp.transform([i, 0.0, c * 1.0], wp.quat_identity()), armature=0.1) # create shape s = builder.add_shape_box( pos=(self.chain_width * 0.5, 0.0, 0.0), hx=self.chain_width * 0.5, hy=0.1, hz=0.1, density=10.0, body=b, ) joint_type = t if joint_type == wp.sim.JOINT_REVOLUTE: joint_limit_lower = -np.deg2rad(60.0) joint_limit_upper = np.deg2rad(60.0) builder.add_joint_revolute( parent=parent, child=b, axis=(0.0, 0.0, 1.0), parent_xform=parent_joint_xform, child_xform=wp.transform_identity(), limit_lower=joint_limit_lower, limit_upper=joint_limit_upper, target_ke=0.0, target_kd=0.0, limit_ke=30.0, limit_kd=30.0, ) elif joint_type == wp.sim.JOINT_UNIVERSAL: builder.add_joint_universal( parent=parent, child=b, axis_0=wp.sim.JointAxis((1.0, 0.0, 0.0), -np.deg2rad(60.0), np.deg2rad(60.0)), axis_1=wp.sim.JointAxis((0.0, 0.0, 1.0), -np.deg2rad(60.0), np.deg2rad(60.0)), parent_xform=parent_joint_xform, child_xform=wp.transform_identity(), ) elif joint_type == wp.sim.JOINT_BALL: builder.add_joint_ball( parent=parent, child=b, parent_xform=parent_joint_xform, child_xform=wp.transform_identity(), ) elif joint_type == wp.sim.JOINT_FIXED: builder.add_joint_fixed( parent=parent, child=b, parent_xform=parent_joint_xform, child_xform=wp.transform_identity(), ) elif joint_type == wp.sim.JOINT_COMPOUND: builder.add_joint_compound( parent=parent, child=b, axis_0=wp.sim.JointAxis((1.0, 0.0, 0.0), -np.deg2rad(60.0), np.deg2rad(60.0)), axis_1=wp.sim.JointAxis((0.0, 1.0, 0.0), -np.deg2rad(60.0), np.deg2rad(60.0)), axis_2=wp.sim.JointAxis((0.0, 0.0, 1.0), -np.deg2rad(60.0), np.deg2rad(60.0)), parent_xform=parent_joint_xform, child_xform=wp.transform_identity(), ) # finalize model self.model = builder.finalize() self.model.ground = False self.integrator = wp.sim.XPBDIntegrator(iterations=5) # ----------------------- # set up Usd renderer self.renderer = None if render: self.renderer = wp.sim.render.SimRenderer(self.model, stage, scaling=20.0) def update(self): for _ in range(self.sim_substeps): self.state_0.clear_forces() self.integrator.simulate(self.model, self.state_0, self.state_1, self.sim_dt) self.state_0, self.state_1 = self.state_1, self.state_0 def render(self, is_live=False): time = 0.0 if is_live else self.sim_time self.renderer.begin_frame(time) self.renderer.render(self.state_0) self.renderer.end_frame() def run(self, render=True): # --------------- # run simulation self.sim_time = 0.0 self.state_0 = self.model.state() self.state_1 = self.model.state() wp.sim.eval_fk(self.model, self.model.joint_q, self.model.joint_qd, None, self.state_0) profiler = {} # create update graph wp.capture_begin() # simulate self.update() graph = wp.capture_end() # simulate with wp.ScopedTimer("simulate", detailed=False, print=False, active=True, dict=profiler): for f in range(0, self.episode_frames): with wp.ScopedTimer("simulate", active=True): wp.capture_launch(graph) self.sim_time += self.frame_dt if self.enable_rendering: with wp.ScopedTimer("render", active=True): self.render() wp.synchronize() if self.enable_rendering: self.renderer.save() if __name__ == "__main__": stage = os.path.join(os.path.dirname(__file__), "outputs/example_sim_rigid_chain.usd") robot = Example(stage, render=True) robot.run()
warp-main
examples/example_sim_rigid_chain.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Struct # # Shows how to define a custom struct and use it during gradient computation # ########################################################################### import numpy as np import warp as wp wp.init() @wp.struct class TestStruct: x: wp.vec3 a: wp.array(dtype=wp.vec3) b: wp.array(dtype=wp.vec3) @wp.kernel def test_kernel(s: TestStruct): tid = wp.tid() s.b[tid] = s.a[tid] + s.x @wp.kernel def loss_kernel(s: TestStruct, loss: wp.array(dtype=float)): tid = wp.tid() v = s.b[tid] wp.atomic_add(loss, 0, float(tid + 1) * (v[0] + 2.0 * v[1] + 3.0 * v[2])) # create struct ts = TestStruct() # set members ts.x = wp.vec3(1.0, 2.0, 3.0) ts.a = wp.array( np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), dtype=wp.vec3, requires_grad=True, ) ts.b = wp.zeros(2, dtype=wp.vec3, requires_grad=True) loss = wp.zeros(1, dtype=float, requires_grad=True) tape = wp.Tape() with tape: wp.launch(test_kernel, dim=2, inputs=[ts]) wp.launch(loss_kernel, dim=2, inputs=[ts, loss]) tape.backward(loss) print(loss) print(tape.gradients[ts].a)
warp-main
examples/example_struct.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Mesh # # Shows how to implement a PBD particle simulation with collision against # a deforming triangle mesh. The mesh collision uses wp.mesh_query_point_sign_normal() # to compute the closest point, and wp.Mesh.refit() to update the mesh # object after deformation. # ########################################################################### import numpy as np import warp as wp import warp.render from pxr import Usd, UsdGeom import os wp.init() @wp.kernel def deform(positions: wp.array(dtype=wp.vec3), t: float): tid = wp.tid() x = positions[tid] offset = -wp.sin(x[0]) * 0.02 scale = wp.sin(t) x = x + wp.vec3(0.0, offset * scale, 0.0) positions[tid] = x @wp.kernel def simulate( positions: wp.array(dtype=wp.vec3), velocities: wp.array(dtype=wp.vec3), mesh: wp.uint64, restitution: float, margin: float, dt: float, ): tid = wp.tid() x = positions[tid] v = velocities[tid] v = v + wp.vec3(0.0, 0.0 - 9.8, 0.0) * dt - v * 0.1 * dt xpred = x + v * dt face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) max_dist = 1.5 if wp.mesh_query_point_sign_normal(mesh, xpred, max_dist, sign, face_index, face_u, face_v): p = wp.mesh_eval_position(mesh, face_index, face_u, face_v) delta = xpred - p dist = wp.length(delta) * sign err = dist - margin # mesh collision if err < 0.0: n = wp.normalize(delta) * sign xpred = xpred - n * err # pbd update v = (xpred - x) * (1.0 / dt) x = xpred positions[tid] = x velocities[tid] = v class Example: def __init__(self, stage): self.num_particles = 1000 self.sim_steps = 500 self.sim_dt = 1.0 / 60.0 self.sim_time = 0.0 self.sim_timers = {} self.sim_restitution = 0.0 self.sim_margin = 0.1 self.renderer = wp.render.UsdRenderer(stage) usd_stage = Usd.Stage.Open(os.path.join(os.path.dirname(__file__), "assets/bunny.usd")) usd_geom = UsdGeom.Mesh(usd_stage.GetPrimAtPath("/bunny/bunny")) usd_scale = 10.0 # create collision mesh self.mesh = wp.Mesh( points=wp.array(usd_geom.GetPointsAttr().Get() * usd_scale, dtype=wp.vec3), indices=wp.array(usd_geom.GetFaceVertexIndicesAttr().Get(), dtype=int), ) # random particles init_pos = (np.random.rand(self.num_particles, 3) - np.array([0.5, -1.5, 0.5])) * 10.0 init_vel = np.random.rand(self.num_particles, 3) * 0.0 self.positions = wp.from_numpy(init_pos, dtype=wp.vec3) self.velocities = wp.from_numpy(init_vel, dtype=wp.vec3) def update(self): with wp.ScopedTimer("simulate", detailed=False, dict=self.sim_timers): wp.launch(kernel=deform, dim=len(self.mesh.points), inputs=[self.mesh.points, self.sim_time]) # refit the mesh BVH to account for the deformation self.mesh.refit() wp.launch( kernel=simulate, dim=self.num_particles, inputs=[ self.positions, self.velocities, self.mesh.id, self.sim_restitution, self.sim_margin, self.sim_dt, ], ) def render(self, is_live=False): with wp.ScopedTimer("render", detailed=False): time = 0.0 if is_live else self.sim_time self.renderer.begin_frame(time) self.renderer.render_mesh(name="mesh", points=self.mesh.points.numpy(), indices=self.mesh.indices.numpy()) self.renderer.render_points(name="points", points=self.positions.numpy(), radius=self.sim_margin) self.renderer.end_frame() self.sim_time += self.sim_dt if __name__ == "__main__": stage_path = os.path.join(os.path.dirname(__file__), "outputs/example_mesh.usd") example = Example(stage_path) for i in range(example.sim_steps): example.update() example.render() example.renderer.save()
warp-main
examples/example_mesh.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Sim Cloth # # Shows a simulation of an FEM cloth model colliding against a static # rigid body mesh using the wp.sim.ModelBuilder(). # ########################################################################### import argparse import os import math from enum import Enum import numpy as np import warp as wp import warp.sim import warp.sim.render from pxr import Usd, UsdGeom wp.init() class IntegratorType(Enum): EULER = "euler" XPBD = "xpbd" def __str__(self): return self.value class Example: def __init__(self, stage): self.parser = argparse.ArgumentParser() self.parser.add_argument( "--integrator", help="Type of integrator", type=IntegratorType, choices=list(IntegratorType), default=IntegratorType.EULER, ) args = self.parser.parse_args() self.integrator_type = args.integrator self.sim_width = 64 self.sim_height = 32 self.sim_fps = 60.0 self.sim_substeps = 32 self.sim_duration = 5.0 self.sim_frames = int(self.sim_duration * self.sim_fps) self.sim_dt = (1.0 / self.sim_fps) / self.sim_substeps self.sim_time = 0.0 self.sim_use_graph = wp.get_device().is_cuda self.simulate_timer = wp.ScopedTimer("simulate", dict={}) builder = wp.sim.ModelBuilder() if self.integrator_type == IntegratorType.EULER: builder.add_cloth_grid( pos=(0.0, 4.0, 0.0), rot=wp.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi * 0.5), vel=(0.0, 0.0, 0.0), dim_x=self.sim_width, dim_y=self.sim_height, cell_x=0.1, cell_y=0.1, mass=0.1, fix_left=True, tri_ke=1.0e3, tri_ka=1.0e3, tri_kd=1.0e1, ) else: builder.add_cloth_grid( pos=(0.0, 4.0, 0.0), rot=wp.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi * 0.5), vel=(0.0, 0.0, 0.0), dim_x=self.sim_width, dim_y=self.sim_height, cell_x=0.1, cell_y=0.1, mass=0.1, fix_left=True, edge_ke=1.0e2, add_springs=True, spring_ke=1.0e3, spring_kd=0.0, ) usd_stage = Usd.Stage.Open(os.path.join(os.path.dirname(__file__), "assets/bunny.usd")) usd_geom = UsdGeom.Mesh(usd_stage.GetPrimAtPath("/bunny/bunny")) mesh_points = np.array(usd_geom.GetPointsAttr().Get()) mesh_indices = np.array(usd_geom.GetFaceVertexIndicesAttr().Get()) mesh = wp.sim.Mesh(mesh_points, mesh_indices) builder.add_shape_mesh( body=-1, mesh=mesh, pos=(1.0, 0.0, 1.0), rot=wp.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi * 0.5), scale=(2.0, 2.0, 2.0), ke=1.0e2, kd=1.0e2, kf=1.0e1, ) self.model = builder.finalize() self.model.ground = True self.model.soft_contact_ke = 1.0e4 self.model.soft_contact_kd = 1.0e2 if self.integrator_type == IntegratorType.EULER: self.integrator = wp.sim.SemiImplicitIntegrator() else: self.integrator = wp.sim.XPBDIntegrator(iterations=1) self.state_0 = self.model.state() self.state_1 = self.model.state() self.renderer = wp.sim.render.SimRenderer(self.model, stage, scaling=40.0) if self.sim_use_graph: # create update graph wp.capture_begin() wp.sim.collide(self.model, self.state_0) for s in range(self.sim_substeps): self.state_0.clear_forces() self.integrator.simulate(self.model, self.state_0, self.state_1, self.sim_dt) # swap states (self.state_0, self.state_1) = (self.state_1, self.state_0) self.graph = wp.capture_end() def update(self): with self.simulate_timer: if self.sim_use_graph: wp.capture_launch(self.graph) else: wp.sim.collide(self.model, self.state_0) for s in range(self.sim_substeps): self.state_0.clear_forces() self.integrator.simulate(self.model, self.state_0, self.state_1, self.sim_dt) # swap states (self.state_0, self.state_1) = (self.state_1, self.state_0) def render(self, is_live=False): with wp.ScopedTimer("render", active=True): time = 0.0 if is_live else self.sim_time self.renderer.begin_frame(time) self.renderer.render(self.state_0) self.renderer.end_frame() self.sim_time += 1.0 / self.sim_fps if __name__ == "__main__": stage_path = os.path.join(os.path.dirname(__file__), "outputs/example_sim_cloth.usd") example = Example(stage_path) for i in range(example.sim_frames): example.update() example.render() frame_times = example.simulate_timer.dict["simulate"] print("\nAverage frame sim time: {:.2f} ms".format(sum(frame_times) / len(frame_times))) example.renderer.save()
warp-main
examples/example_sim_cloth.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Multi-GPU # # A basic example that shows how to allocate arrays and launch kernels # on all available CUDA devices. # ########################################################################### import warp as wp wp.init() @wp.kernel def inc(a: wp.array(dtype=float)): tid = wp.tid() a[tid] = a[tid] + 1.0 # get all CUDA devices devices = wp.get_cuda_devices() device_count = len(devices) # number of launches iters = 1000 # list of arrays, one per device arrs = [] # loop over all devices for device in devices: # use a ScopedDevice to set the target device with wp.ScopedDevice(device): # allocate array a = wp.zeros(250 * 1024 * 1024, dtype=float) arrs.append(a) # launch kernels for _ in range(iters): wp.launch(inc, dim=a.size, inputs=[a]) # synchronize all devices wp.synchronize() # print results for i in range(device_count): print(f"{arrs[i].device} -> {arrs[i].numpy()}")
warp-main
examples/example_multigpu.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Sim Grad Bounce # # Shows how to use Warp to optimize the initial velocity of a particle # such that it bounces off the wall and floor in order to hit a target. # # This example uses the built-in wp.Tape() object to compute gradients of # the distance to target (loss) w.r.t the initial velocity, followed by # a simple gradient-descent optimization step. # ########################################################################### import os import numpy as np import warp as wp import warp.sim import warp.sim.render wp.init() class Bounce: # seconds sim_duration = 0.6 # control frequency frame_dt = 1.0 / 60.0 frame_steps = int(sim_duration / frame_dt) # sim frequency sim_substeps = 8 sim_steps = frame_steps * sim_substeps sim_dt = frame_dt / sim_substeps sim_time = 0.0 render_time = 0.0 train_iters = 250 train_rate = 0.02 ke = 1.0e4 kf = 0.0 kd = 1.0e1 mu = 0.25 def __init__(self, render=True, profile=False, adapter=None): builder = wp.sim.ModelBuilder() builder.add_particle(pos=(-0.5, 1.0, 0.0), vel=(5.0, -5.0, 0.0), mass=1.0) builder.add_shape_box( body=-1, pos=(2.0, 1.0, 0.0), hx=0.25, hy=1.0, hz=1.0, ke=self.ke, kf=self.kf, kd=self.kd, mu=self.mu ) self.device = wp.get_device(adapter) self.profile = profile self.model = builder.finalize(self.device) self.model.ground = True self.model.soft_contact_ke = self.ke self.model.soft_contact_kf = self.kf self.model.soft_contact_kd = self.kd self.model.soft_contact_mu = self.mu self.model.soft_contact_margin = 10.0 self.model.soft_contact_restitution = 1.0 self.integrator = wp.sim.SemiImplicitIntegrator() self.target = (-2.0, 1.5, 0.0) self.loss = wp.zeros(1, dtype=wp.float32, device=self.device, requires_grad=True) # allocate sim states for trajectory self.states = [] for i in range(self.sim_steps + 1): self.states.append(self.model.state(requires_grad=True)) # one-shot contact creation (valid if we're doing simple collision against a constant normal plane) wp.sim.collide(self.model, self.states[0]) self.stage = None if render: self.stage = wp.sim.render.SimRendererOpenGL( self.model, os.path.join(os.path.dirname(__file__), "outputs/example_sim_grad_bounce.usd"), scaling=1.0 ) @wp.kernel def loss_kernel(pos: wp.array(dtype=wp.vec3), target: wp.vec3, loss: wp.array(dtype=float)): # distance to target delta = pos[0] - target loss[0] = wp.dot(delta, delta) @wp.kernel def step_kernel(x: wp.array(dtype=wp.vec3), grad: wp.array(dtype=wp.vec3), alpha: float): tid = wp.tid() # gradient descent step x[tid] = x[tid] - grad[tid] * alpha def compute_loss(self): # run control loop for i in range(self.sim_steps): self.states[i].clear_forces() self.integrator.simulate(self.model, self.states[i], self.states[i + 1], self.sim_dt) # compute loss on final state wp.launch( self.loss_kernel, dim=1, inputs=[self.states[-1].particle_q, self.target, self.loss], device=self.device ) return self.loss def render(self, iter): if self.stage is None: return # render every 16 iters if iter % 16 > 0: return # draw trajectory traj_verts = [self.states[0].particle_q.numpy()[0].tolist()] for i in range(0, self.sim_steps, self.sim_substeps): traj_verts.append(self.states[i].particle_q.numpy()[0].tolist()) self.stage.begin_frame(self.render_time) self.stage.render(self.states[i]) self.stage.render_box(pos=self.target, rot=wp.quat_identity(), extents=(0.1, 0.1, 0.1), name="target") self.stage.render_line_strip( vertices=traj_verts, color=wp.render.bourke_color_map(0.0, 7.0, self.loss.numpy()[0]), radius=0.02, name=f"traj_{iter}", ) self.stage.end_frame() self.render_time += self.frame_dt def check_grad(self): param = self.states[0].particle_qd # initial value x_c = param.numpy().flatten() # compute numeric gradient x_grad_numeric = np.zeros_like(x_c) for i in range(len(x_c)): eps = 1.0e-3 step = np.zeros_like(x_c) step[i] = eps x_1 = x_c + step x_0 = x_c - step param.assign(x_1) l_1 = self.compute_loss().numpy()[0] param.assign(x_0) l_0 = self.compute_loss().numpy()[0] dldx = (l_1 - l_0) / (eps * 2.0) x_grad_numeric[i] = dldx # reset initial state param.assign(x_c) # compute analytic gradient tape = wp.Tape() with tape: l = self.compute_loss() tape.backward(l) x_grad_analytic = tape.gradients[param] print(f"numeric grad: {x_grad_numeric}") print(f"analytic grad: {x_grad_analytic}") tape.zero() def train(self): for i in range(self.train_iters): tape = wp.Tape() with wp.ScopedTimer("Forward", active=self.profile): with tape: self.compute_loss() with wp.ScopedTimer("Backward", active=self.profile): tape.backward(self.loss) with wp.ScopedTimer("Render", active=self.profile): self.render(i) with wp.ScopedTimer("Step", active=self.profile): x = self.states[0].particle_qd x_grad = tape.gradients[self.states[0].particle_qd] print(f"Iter: {i} Loss: {self.loss}") print(f" x: {x} g: {x_grad}") wp.launch(self.step_kernel, dim=len(x), inputs=[x, x_grad, self.train_rate], device=self.device) tape.zero() if self.stage is not None: self.stage.save() def train_graph(self): # capture forward/backward passes wp.capture_begin() tape = wp.Tape() with tape: self.compute_loss() tape.backward(self.loss) self.graph = wp.capture_end() # replay and optimize for i in range(self.train_iters): with wp.ScopedTimer("Step", active=self.profile): # forward + backward wp.capture_launch(self.graph) # gradient descent step x = self.states[0].particle_qd wp.launch(self.step_kernel, dim=len(x), inputs=[x, x.grad, self.train_rate], device=self.device) x_grad = tape.gradients[self.states[0].particle_qd] print(f"Iter: {i} Loss: {self.loss}") print(f" x: {x} g: {x_grad}") # clear grads for next iteration tape.zero() with wp.ScopedTimer("Render", active=self.profile): self.render(i) if self.stage is not None: self.stage.save() bounce = Bounce(profile=False, render=True) bounce.check_grad() bounce.train_graph()
warp-main
examples/example_sim_grad_bounce.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ############################################################################# # Example Mesh Intersection # # Show how to use built-in BVH query to test if two triangle meshes intersect. # ############################################################################## import warp as wp import warp.render import numpy as np np.random.seed(42) from pxr import Usd, UsdGeom import os wp.init() @wp.func def cw_min(a: wp.vec3, b: wp.vec3): return wp.vec3(wp.min(a[0], b[0]), wp.min(a[1], b[1]), wp.min(a[2], b[2])) @wp.func def cw_max(a: wp.vec3, b: wp.vec3): return wp.vec3(wp.max(a[0], b[0]), wp.max(a[1], b[1]), wp.max(a[2], b[2])) @wp.kernel def intersect( mesh_0: wp.uint64, mesh_1: wp.uint64, num_faces: int, xforms: wp.array(dtype=wp.transform), result: wp.array(dtype=int), ): tid = wp.tid() # mesh_0 is assumed to be the query mesh, we launch one thread # for each face in mesh_0 and test it against the opposing mesh's BVH face = tid % num_faces batch = tid // num_faces # transforms from mesh_0 -> mesh_1 space xform = xforms[batch] # load query triangles points and transform to mesh_1's space v0 = wp.transform_point(xform, wp.mesh_eval_position(mesh_0, face, 1.0, 0.0)) v1 = wp.transform_point(xform, wp.mesh_eval_position(mesh_0, face, 0.0, 1.0)) v2 = wp.transform_point(xform, wp.mesh_eval_position(mesh_0, face, 0.0, 0.0)) # compute bounds of the query triangle lower = cw_min(cw_min(v0, v1), v2) upper = cw_max(cw_max(v0, v1), v2) query = wp.mesh_query_aabb(mesh_1, lower, upper) for f in query: u0 = wp.mesh_eval_position(mesh_1, f, 1.0, 0.0) u1 = wp.mesh_eval_position(mesh_1, f, 0.0, 1.0) u2 = wp.mesh_eval_position(mesh_1, f, 0.0, 0.0) # test for triangle intersection i = wp.intersect_tri_tri(v0, v1, v2, u0, u1, u2) if i > 0: result[batch] = 1 return # use if you want to count all intersections # wp.atomic_add(result, batch, i) class Example: def __init__(self, stage): self.query_count = 1024 self.has_queried = False self.renderer = wp.render.UsdRenderer(stage) self.path_0 = "assets/cube.usda" self.path_1 = "assets/sphere.usda" self.mesh_0 = self.load_mesh(self.path_0, "/Cube/Cube_001") self.mesh_1 = self.load_mesh(self.path_1, "/Sphere/Sphere") self.query_num_faces = int(len(self.mesh_0.indices) / 3) self.query_num_points = len(self.mesh_0.points) # generate random relative transforms self.xforms = [] for i in range(self.query_count): # random offset p = (np.random.rand(3) * 0.5 - 0.5) * 5.0 # random orientation axis = wp.normalize(np.random.rand(3) * 0.5 - 0.5) angle = float(np.random.rand(1)[0]) q = wp.quat_from_axis_angle(wp.normalize(axis), angle) self.xforms.append(wp.transform(p, q)) self.array_result = wp.zeros(self.query_count, dtype=int) self.array_xforms = wp.array(self.xforms, dtype=wp.transform) # force module load (for accurate profiling) wp.force_load() def update(self): with wp.ScopedTimer("intersect", active=True): wp.launch( kernel=intersect, dim=self.query_num_faces * self.query_count, inputs=[self.mesh_0.id, self.mesh_1.id, self.query_num_faces, self.array_xforms, self.array_result], ) wp.synchronize() def render(self, is_live=False): # bring results back to host result = self.array_result.numpy() print(result) with wp.ScopedTimer("render", active=True): self.renderer.begin_frame(0.0) for i in range(self.query_count): spacing = 8.0 offset = i * spacing xform = self.xforms[i] self.renderer.render_ref( f"mesh_{i}_0", os.path.join(os.path.dirname(__file__), self.path_0), pos=wp.vec3(xform.p[0] + offset, xform.p[1], xform.p[2]), rot=xform.q, scale=(1.0, 1.0, 1.0), ) self.renderer.render_ref( f"mesh_{i}_1", os.path.join(os.path.dirname(__file__), self.path_1), pos=(offset, 0.0, 0.0), rot=wp.quat_identity(), scale=(1.0, 1.0, 1.0), ) # if pair intersects then draw a small box above the pair if result[i] > 0: self.renderer.render_box( f"result_{i}", pos=wp.vec3(xform.p[0] + offset, xform.p[1] + 5.0, xform.p[2]), rot=wp.quat_identity(), extents=(0.1, 0.1, 0.1), ) self.renderer.end_frame() # create collision meshes def load_mesh(self, path, prim): usd_path = os.path.join(os.path.dirname(__file__), path) usd_stage = Usd.Stage.Open(usd_path) usd_geom = UsdGeom.Mesh(usd_stage.GetPrimAtPath(prim)) mesh = wp.Mesh( points=wp.array(usd_geom.GetPointsAttr().Get(), dtype=wp.vec3), indices=wp.array(usd_geom.GetFaceVertexIndicesAttr().Get(), dtype=int), ) return mesh if __name__ == "__main__": stage_path = os.path.join(os.path.dirname(__file__), "outputs/example_mesh_intersect.usd") example = Example(stage_path) example.update() example.render() example.renderer.save()
warp-main
examples/example_mesh_intersect.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Ray March # # Shows how to implement an SDF ray marching based renderer. Please see # https://iquilezles.org/www/articles/distfunctions/distfunctions.htm # for reference on different distance functions. # ########################################################################### import matplotlib.pyplot as plt import warp as wp wp.init() # signed sphere @wp.func def sdf_sphere(p: wp.vec3, r: float): return wp.length(p) - r # signed box @wp.func def sdf_box(upper: wp.vec3, p: wp.vec3): qx = wp.abs(p[0]) - upper[0] qy = wp.abs(p[1]) - upper[1] qz = wp.abs(p[2]) - upper[2] e = wp.vec3(wp.max(qx, 0.0), wp.max(qy, 0.0), wp.max(qz, 0.0)) return wp.length(e) + wp.min(wp.max(qx, wp.max(qy, qz)), 0.0) @wp.func def sdf_plane(p: wp.vec3, plane: wp.vec4): return plane[0] * p[0] + plane[1] * p[1] + plane[2] * p[2] + plane[3] # union @wp.func def op_union(d1: float, d2: float): return wp.min(d1, d2) # subtraction @wp.func def op_subtract(d1: float, d2: float): return wp.max(-d1, d2) # intersection @wp.func def op_intersect(d1: float, d2: float): return wp.max(d1, d2) # simple scene @wp.func def sdf(p: wp.vec3): # intersection of two spheres sphere_1 = wp.vec3(0.0, 0.0, 0.0) sphere_2 = wp.vec3(0.0, 0.75, 0.0) d = op_subtract(sdf_sphere(p - sphere_2, 0.75), sdf_box(wp.vec3(1.0, 0.5, 0.5), p)) # sdf_sphere(p + sphere_1, 1.0)) # ground plane d = op_union(d, sdf_plane(p, wp.vec4(0.0, 1.0, 0.0, 1.0))) return d @wp.func def normal(p: wp.vec3): eps = 1.0e-5 # compute gradient of the SDF using finite differences dx = sdf(p + wp.vec3(eps, 0.0, 0.0)) - sdf(p - wp.vec3(eps, 0.0, 0.0)) dy = sdf(p + wp.vec3(0.0, eps, 0.0)) - sdf(p - wp.vec3(0.0, eps, 0.0)) dz = sdf(p + wp.vec3(0.0, 0.0, eps)) - sdf(p - wp.vec3(0.0, 0.0, eps)) return wp.normalize(wp.vec3(dx, dy, dz)) @wp.func def shadow(ro: wp.vec3, rd: wp.vec3): t = float(0.0) s = float(1.0) for i in range(64): d = sdf(ro + t * rd) t = t + wp.clamp(d, 0.0001, 2.0) h = wp.clamp(4.0 * d / t, 0.0, 1.0) s = wp.min(s, h * h * (3.0 - 2.0 * h)) if t > 8.0: return 1.0 return s @wp.kernel def draw(cam_pos: wp.vec3, cam_rot: wp.quat, width: int, height: int, pixels: wp.array(dtype=wp.vec3)): tid = wp.tid() x = tid % width y = tid // width # compute pixel coordinates sx = (2.0 * float(x) - float(width)) / float(height) sy = (2.0 * float(y) - float(height)) / float(height) # compute view ray ro = cam_pos rd = wp.quat_rotate(cam_rot, wp.normalize(wp.vec3(sx, sy, -2.0))) t = float(0.0) # ray march for i in range(128): d = sdf(ro + rd * t) t = t + d if d < 0.01: p = ro + rd * t n = normal(p) l = wp.normalize(wp.vec3(0.6, 0.4, 0.5)) # half-vector h = wp.normalize(l - rd) diffuse = wp.dot(n, l) specular = wp.clamp(wp.dot(n, h), 0.0, 1.0) ** 80.0 fresnel = 0.04 + 0.96 * wp.clamp(1.0 - wp.dot(h, l), 0.0, 1.0) ** 5.0 intensity = 2.0 result = ( wp.vec3(0.6, 0.6, 0.59) * (diffuse * (1.0 - fresnel) + specular * fresnel * 10.0) * shadow(p, l) * intensity ) # gamma pixels[tid] = wp.vec3(result[0] ** 2.2, result[1] ** 2.2, result[2] ** 2.2) else: pixels[tid] = wp.vec3(0.4, 0.45, 0.5) * 1.5 class Example: def __init__(self): self.width = 2048 self.height = 1024 self.cam_pos = (-1.25, 1.0, 2.0) self.cam_rot = wp.quat_rpy(-0.5, -0.5, 0.0) self.pixels = wp.zeros(self.width * self.height, dtype=wp.vec3) def render(self, is_live=False): with wp.ScopedTimer("render"): wp.launch( kernel=draw, dim=self.width * self.height, inputs=[self.cam_pos, self.cam_rot, self.width, self.height, self.pixels], ) wp.synchronize_device() plt.imshow( self.pixels.numpy().reshape((self.height, self.width, 3)), origin="lower", interpolation="antialiased" ) plt.show() if __name__ == "__main__": example = Example() example.render()
warp-main
examples/example_raymarch.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Sim Rigid Kinematics # # Tests rigid body forward and backwards kinematics through the # wp.sim.eval_ik() and wp.sim.eval_fk() methods. # ########################################################################### import os import numpy as np import warp as wp import warp.sim import warp.sim.render wp.init() TARGET = wp.constant(wp.vec3(2.0, 1.0, 0.0)) @wp.kernel def compute_loss(body_q: wp.array(dtype=wp.transform), body_index: int, loss: wp.array(dtype=float)): x = wp.transform_get_translation(body_q[body_index]) delta = x - TARGET loss[0] = wp.dot(delta, delta) @wp.kernel def step_kernel(x: wp.array(dtype=float), grad: wp.array(dtype=float), alpha: float): tid = wp.tid() # gradient descent step x[tid] = x[tid] - grad[tid] * alpha class Robot: def __init__(self, render=True, num_envs=1, device=None): builder = wp.sim.ModelBuilder() builder.add_articulation() chain_length = 4 chain_width = 1.0 for i in range(chain_length): if i == 0: parent = -1 parent_joint_xform = wp.transform([0.0, 0.0, 0.0], wp.quat_identity()) else: parent = builder.joint_count - 1 parent_joint_xform = wp.transform([chain_width, 0.0, 0.0], wp.quat_identity()) # create body b = builder.add_body(origin=wp.transform([i, 0.0, 0.0], wp.quat_identity()), armature=0.1) builder.add_joint_revolute( parent=parent, child=b, axis=(0.0, 0.0, 1.0), parent_xform=parent_joint_xform, child_xform=wp.transform_identity(), limit_lower=-np.deg2rad(60.0), limit_upper=np.deg2rad(60.0), target_ke=0.0, target_kd=0.0, limit_ke=30.0, limit_kd=30.0, ) if i == chain_length - 1: # create end effector s = builder.add_shape_sphere(pos=(0.0, 0.0, 0.0), radius=0.1, density=10.0, body=b) else: # create shape s = builder.add_shape_box( pos=(chain_width * 0.5, 0.0, 0.0), hx=chain_width * 0.5, hy=0.1, hz=0.1, density=10.0, body=b ) self.device = wp.get_device(device) # finalize model self.model = builder.finalize(self.device) self.model.ground = False self.state = self.model.state() # ----------------------- # set up Usd renderer self.renderer = wp.sim.render.SimRenderer( self.model, os.path.join(os.path.dirname(__file__), "outputs/example_sim_fk_grad.usd"), scaling=50.0 ) def run(self, render=True): render_time = 0.0 train_iters = 1024 train_rate = 0.01 # optimization variables self.loss = wp.zeros(1, dtype=float, device=self.device) self.model.joint_q.requires_grad = True self.state.body_q.requires_grad = True self.loss.requires_grad = True for i in range(train_iters): tape = wp.Tape() with tape: wp.sim.eval_fk(self.model, self.model.joint_q, self.model.joint_qd, None, self.state) wp.launch( compute_loss, dim=1, inputs=[self.state.body_q, len(self.state.body_q) - 1, self.loss], device=self.device, ) tape.backward(loss=self.loss) print(self.loss) print(tape.gradients[self.model.joint_q]) # gradient descent wp.launch( step_kernel, dim=len(self.model.joint_q), inputs=[self.model.joint_q, tape.gradients[self.model.joint_q], train_rate], device=self.device, ) # zero gradients tape.zero() # render self.renderer.begin_frame(render_time) self.renderer.render(self.state) self.renderer.render_sphere(name="target", pos=TARGET, rot=wp.quat_identity(), radius=0.1) self.renderer.end_frame() render_time += 1.0 / 60.0 self.renderer.save() robot = Robot(render=True, device=wp.get_preferred_device(), num_envs=1) robot.run()
warp-main
examples/example_sim_fk_grad.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Bechmarks for kernel launches with different types of args ########################################################################### import warp as wp @wp.struct class S0: pass @wp.struct class Sf: x: float y: float z: float @wp.struct class Sv: u: wp.vec3 v: wp.vec3 w: wp.vec3 @wp.struct class Sm: M: wp.mat33 N: wp.mat33 O: wp.mat33 @wp.struct class Sa: a: wp.array(dtype=float) b: wp.array(dtype=float) c: wp.array(dtype=float) @wp.struct class Sz: a: wp.array(dtype=float) b: wp.array(dtype=float) c: wp.array(dtype=float) x: float y: float z: float u: wp.vec3 v: wp.vec3 w: wp.vec3 @wp.kernel def k0(): tid = wp.tid() @wp.kernel def kf(x: float, y: float, z: float): tid = wp.tid() @wp.kernel def kv(u: wp.vec3, v: wp.vec3, w: wp.vec3): tid = wp.tid() @wp.kernel def km(M: wp.mat33, N: wp.mat33, O: wp.mat33): tid = wp.tid() @wp.kernel def ka(a: wp.array(dtype=float), b: wp.array(dtype=float), c: wp.array(dtype=float)): tid = wp.tid() @wp.kernel def kz( a: wp.array(dtype=float), b: wp.array(dtype=float), c: wp.array(dtype=float), x: float, y: float, z: float, u: wp.vec3, v: wp.vec3, w: wp.vec3, ): tid = wp.tid() @wp.kernel def ks0(s: S0): tid = wp.tid() @wp.kernel def ksf(s: Sf): tid = wp.tid() @wp.kernel def ksv(s: Sv): tid = wp.tid() @wp.kernel def ksm(s: Sm): tid = wp.tid() @wp.kernel def ksa(s: Sa): tid = wp.tid() @wp.kernel def ksz(s: Sz): tid = wp.tid() wp.init() wp.build.clear_kernel_cache() devices = wp.get_devices() num_launches = 100000 for device in devices: with wp.ScopedDevice(device): print(f"\n=================== Device '{device}' ===================") wp.force_load(device) n = 1 a = wp.zeros(n, dtype=float) b = wp.zeros(n, dtype=float) c = wp.zeros(n, dtype=float) x = 17.0 y = 42.0 z = 99.0 u = wp.vec3(1, 2, 3) v = wp.vec3(10, 20, 30) w = wp.vec3(100, 200, 300) M = wp.mat33() N = wp.mat33() O = wp.mat33() s0 = S0() sf = Sf() sf.x = x sf.y = y sf.z = z sv = Sv() sv.u = u sv.v = v sv.w = w sm = Sm() sm.M = M sm.N = N sm.O = O sa = Sa() sa.a = a sa.b = b sa.c = c sz = Sz() sz.a = a sz.b = b sz.c = c sz.x = x sz.y = y sz.z = z sz.u = u sz.v = v sz.w = w tk0 = wp.ScopedTimer("k0") tkf = wp.ScopedTimer("kf") tkv = wp.ScopedTimer("kv") tkm = wp.ScopedTimer("km") tka = wp.ScopedTimer("ka") tkz = wp.ScopedTimer("kz") ts0 = wp.ScopedTimer("s0") tsf = wp.ScopedTimer("sf") tsv = wp.ScopedTimer("sv") tsm = wp.ScopedTimer("sm") tsa = wp.ScopedTimer("sa") tsz = wp.ScopedTimer("sz") wp.synchronize_device() with tk0: for _ in range(num_launches): wp.launch(k0, dim=1, inputs=[]) wp.synchronize_device() with tkf: for _ in range(num_launches): wp.launch(kf, dim=1, inputs=[x, y, z]) wp.synchronize_device() with tkv: for _ in range(num_launches): wp.launch(kv, dim=1, inputs=[u, v, w]) wp.synchronize_device() with tkm: for _ in range(num_launches): wp.launch(km, dim=1, inputs=[M, N, O]) wp.synchronize_device() with tka: for _ in range(num_launches): wp.launch(ka, dim=1, inputs=[a, b, c]) wp.synchronize_device() with tkz: for _ in range(num_launches): wp.launch(kz, dim=1, inputs=[a, b, c, x, y, z, u, v, w]) # structs wp.synchronize_device() with ts0: for _ in range(num_launches): wp.launch(ks0, dim=1, inputs=[s0]) wp.synchronize_device() with tsf: for _ in range(num_launches): wp.launch(ksf, dim=1, inputs=[sf]) wp.synchronize_device() with tsv: for _ in range(num_launches): wp.launch(ksv, dim=1, inputs=[sv]) wp.synchronize_device() with tsm: for _ in range(num_launches): wp.launch(ksm, dim=1, inputs=[sm]) wp.synchronize_device() with tsa: for _ in range(num_launches): wp.launch(ksa, dim=1, inputs=[sa]) wp.synchronize_device() with tsz: for _ in range(num_launches): wp.launch(ksz, dim=1, inputs=[sz]) wp.synchronize_device() timers = [ [tk0, ts0], [tkf, tsf], [tkv, tsv], [tkm, tsm], [tka, tsa], [tkz, tsz], ] print("--------------------------------") print(f"| args | direct | struct |") print("--------------------------------") for tk, ts in timers: print(f"| {tk.name} |{tk.elapsed:10.0f} |{ts.elapsed:10.0f} |") print("--------------------------------")
warp-main
examples/benchmark_launches.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Sim Quadruped # # Shows how to set up a simulation of a rigid-body quadruped articulation # from a URDF using the wp.sim.ModelBuilder(). # Note this example does not include a trained policy. # ########################################################################### import math import numpy as np import os import warp as wp import warp.sim import warp.sim.render from env.environment import compute_env_offsets wp.init() class Example: frame_dt = 1.0 / 100.0 episode_duration = 5.0 # seconds episode_frames = int(episode_duration / frame_dt) sim_substeps = 5 sim_dt = frame_dt / sim_substeps sim_steps = int(episode_duration / sim_dt) sim_time = 0.0 render_time = 0.0 def __init__(self, stage=None, render=True, num_envs=1): self.enable_rendering = render self.num_envs = num_envs articulation_builder = wp.sim.ModelBuilder() wp.sim.parse_urdf( os.path.join(os.path.dirname(__file__), "assets/quadruped.urdf"), articulation_builder, xform=wp.transform([0.0, 0.7, 0.0], wp.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi * 0.5)), floating=True, density=1000, armature=0.01, stiffness=120, damping=1, shape_ke=1.0e4, shape_kd=1.0e2, shape_kf=1.0e2, shape_mu=0.0, limit_ke=1.0e4, limit_kd=1.0e1, ) builder = wp.sim.ModelBuilder() offsets = compute_env_offsets(num_envs) for i in range(num_envs): builder.add_builder(articulation_builder, xform=wp.transform(offsets[i], wp.quat_identity())) builder.joint_q[-12:] = [0.2, 0.4, -0.6, -0.2, -0.4, 0.6, -0.2, 0.4, -0.6, 0.2, -0.4, 0.6] builder.joint_target[-12:] = [0.2, 0.4, -0.6, -0.2, -0.4, 0.6, -0.2, 0.4, -0.6, 0.2, -0.4, 0.6] np.set_printoptions(suppress=True) # finalize model self.model = builder.finalize() self.model.ground = True self.model.joint_attach_ke = 16000.0 self.model.joint_attach_kd = 200.0 self.integrator = wp.sim.XPBDIntegrator() # ----------------------- # set up Usd renderer self.renderer = None if render: self.renderer = wp.sim.render.SimRenderer(self.model, stage) def update(self): for _ in range(self.sim_substeps): self.state_0.clear_forces() wp.sim.collide(self.model, self.state_0) self.integrator.simulate(self.model, self.state_0, self.state_1, self.sim_dt) self.state_0, self.state_1 = self.state_1, self.state_0 def render(self, is_live=False): time = 0.0 if is_live else self.sim_time self.renderer.begin_frame(time) self.renderer.render(self.state_0) self.renderer.end_frame() def run(self, render=True): # --------------- # run simulation self.sim_time = 0.0 self.state_0 = self.model.state() self.state_1 = self.model.state() wp.sim.eval_fk(self.model, self.model.joint_q, self.model.joint_qd, None, self.state_0) profiler = {} # create update graph wp.capture_begin() # simulate self.update() graph = wp.capture_end() # simulate with wp.ScopedTimer("simulate", detailed=False, print=False, active=True, dict=profiler): for f in range(0, self.episode_frames): with wp.ScopedTimer("simulate", active=True): wp.capture_launch(graph) self.sim_time += self.frame_dt if self.enable_rendering: with wp.ScopedTimer("render", active=True): self.render() self.renderer.save() wp.synchronize() avg_time = np.array(profiler["simulate"]).mean() / self.episode_frames avg_steps_second = 1000.0 * float(self.num_envs) / avg_time print(f"envs: {self.num_envs} steps/second {avg_steps_second} avg_time {avg_time}") return 1000.0 * float(self.num_envs) / avg_time profile = False if profile: env_count = 2 env_times = [] env_size = [] for i in range(15): robot = Example(render=False, num_envs=env_count) steps_per_second = robot.run() env_size.append(env_count) env_times.append(steps_per_second) env_count *= 2 # dump times for i in range(len(env_times)): print(f"envs: {env_size[i]} steps/second: {env_times[i]}") # plot import matplotlib.pyplot as plt plt.figure(1) plt.plot(env_size, env_times) plt.xscale("log") plt.xlabel("Number of Envs") plt.yscale("log") plt.ylabel("Steps/Second") plt.show() else: stage = os.path.join(os.path.dirname(__file__), "outputs/example_sim_quadruped.usd") robot = Example(stage, render=True, num_envs=25) robot.run()
warp-main
examples/example_sim_quadruped.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Sim Rigid Kinematics # # Tests rigid body forward and backwards kinematics through the # wp.sim.eval_ik() and wp.sim.eval_fk() methods. Shows how to connect # gradients from Warp to PyTorch, through custom autograd nodes. # ########################################################################### import os import numpy as np import torch import warp as wp import warp.sim import warp.sim.render wp.init() class ForwardKinematics(torch.autograd.Function): @staticmethod def forward(ctx, joint_q, joint_qd, model): # ensure Torch operations complete before running Warp wp.synchronize_device() ctx.tape = wp.Tape() ctx.model = model ctx.joint_q = wp.from_torch(joint_q) ctx.joint_qd = wp.from_torch(joint_qd) # allocate output ctx.state = model.state() with ctx.tape: wp.sim.eval_fk(model, ctx.joint_q, ctx.joint_qd, None, ctx.state) # ensure Warp operations complete before returning data to Torch wp.synchronize_device() return (wp.to_torch(ctx.state.body_q), wp.to_torch(ctx.state.body_qd)) @staticmethod def backward(ctx, adj_body_q, adj_body_qd): # ensure Torch operations complete before running Warp wp.synchronize_device() # map incoming Torch grads to our output variables ctx.state.body_q.grad = wp.from_torch(adj_body_q, dtype=wp.transform) ctx.state.body_qd.grad = wp.from_torch(adj_body_qd, dtype=wp.spatial_vector) ctx.tape.backward() # ensure Warp operations complete before returning data to Torch wp.synchronize_device() # return adjoint w.r.t. inputs return (wp.to_torch(ctx.tape.gradients[ctx.joint_q]), wp.to_torch(ctx.tape.gradients[ctx.joint_qd]), None) class Robot: def __init__(self, render=True, num_envs=1, device=None): builder = wp.sim.ModelBuilder() builder.add_articulation() chain_length = 4 chain_width = 1.0 for i in range(chain_length): if i == 0: parent = -1 parent_joint_xform = wp.transform([0.0, 0.0, 0.0], wp.quat_identity()) else: parent = builder.joint_count - 1 parent_joint_xform = wp.transform([chain_width, 0.0, 0.0], wp.quat_identity()) # create body b = builder.add_body(origin=wp.transform([i, 0.0, 0.0], wp.quat_identity()), armature=0.1) builder.add_joint_revolute( parent=parent, child=b, axis=(0.0, 0.0, 1.0), parent_xform=parent_joint_xform, child_xform=wp.transform_identity(), limit_lower=-np.deg2rad(60.0), limit_upper=np.deg2rad(60.0), target_ke=0.0, target_kd=0.0, limit_ke=30.0, limit_kd=30.0, ) if i == chain_length - 1: # create end effector s = builder.add_shape_sphere(pos=(0.0, 0.0, 0.0), radius=0.1, density=10.0, body=b) else: # create shape s = builder.add_shape_box( pos=(chain_width * 0.5, 0.0, 0.0), hx=chain_width * 0.5, hy=0.1, hz=0.1, density=10.0, body=b ) # finalize model self.model = builder.finalize(device) self.model.ground = False self.torch_device = wp.device_to_torch(self.model.device) # ----------------------- # set up Usd renderer self.renderer = wp.sim.render.SimRenderer( self.model, os.path.join(os.path.dirname(__file__), "outputs/example_sim_fk_grad.usd"), scaling=50.0 ) def run(self, render=True): render_time = 0.0 train_iters = 1024 train_rate = 0.01 target = torch.from_numpy(np.array((2.0, 1.0, 0.0))).to(self.torch_device) # optimization variable joint_q = torch.zeros(len(self.model.joint_q), requires_grad=True, device=self.torch_device) joint_qd = torch.zeros(len(self.model.joint_qd), requires_grad=True, device=self.torch_device) for i in range(train_iters): (body_q, body_qd) = ForwardKinematics.apply(joint_q, joint_qd, self.model) l = torch.norm(body_q[self.model.body_count - 1][0:3] - target) ** 2.0 l.backward() print(l) print(joint_q.grad) with torch.no_grad(): joint_q -= joint_q.grad * train_rate joint_q.grad.zero_() # render s = self.model.state() s.body_q = wp.from_torch(body_q, dtype=wp.transform) s.body_qd = wp.from_torch(body_qd, dtype=wp.spatial_vector) self.renderer.begin_frame(render_time) self.renderer.render(s) self.renderer.render_sphere(name="target", pos=target, rot=wp.quat_identity(), radius=0.1) self.renderer.end_frame() render_time += 1.0 / 60.0 self.renderer.save() robot = Robot(render=True, device="cuda", num_envs=1) robot.run()
warp-main
examples/example_sim_fk_grad_torch.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Trajectory Optimization # # Shows how to optimize torque trajectories for a simple planar environment # using Warp's provided Adam optimizer. # ########################################################################### import os import numpy as np import warp as wp import warp.sim import warp.sim.render from warp.optim import Adam import matplotlib.pyplot as plt wp.init() @wp.kernel def loss_l2(states: wp.array(dtype=wp.float32), targets: wp.array(dtype=wp.float32), loss: wp.array(dtype=wp.float32)): i = wp.tid() diff = states[i] - targets[i] l = diff * diff wp.atomic_add(loss, 0, l) @wp.kernel def apply_torque(torques: wp.array(dtype=wp.float32), start_index: int, body_f: wp.array(dtype=wp.spatial_vector)): fx = torques[start_index + 0] fz = torques[start_index + 1] body_f[0] = wp.spatial_vector(0.0, 0.0, 0.0, fx, 0.0, fz) @wp.kernel def save_state(body_q: wp.array(dtype=wp.transform), start_index: int, states: wp.array(dtype=wp.float32)): pos = wp.transform_get_translation(body_q[0]) states[start_index + 0] = pos[0] states[start_index + 1] = pos[2] class Environment: frame_dt = 1.0 / 60.0 episode_frames = 100 sim_substeps = 1 sim_dt = frame_dt / sim_substeps sim_time = 0.0 render_time = 0.0 def __init__(self, device="cpu"): builder = wp.sim.ModelBuilder() self.device = device # add planar joints builder = wp.sim.ModelBuilder(gravity=0.0) builder.add_articulation() b = builder.add_body(origin=wp.transform()) s = builder.add_shape_box(pos=(0.0, 0.0, 0.0), hx=0.5, hy=0.5, hz=0.5, density=100.0, body=b) # compute reference trajectory rad = np.linspace(0.0, np.pi * 2, self.episode_frames) self.ref_traj = np.stack([np.cos(rad), np.sin(rad)], axis=1) # set initial joint configuration to first reference state builder.body_q[0] = wp.transform(p=[self.ref_traj[0][0], 0.0, self.ref_traj[0][1]]) self.ref_traj = wp.array(self.ref_traj.flatten(), dtype=wp.float32, device=self.device, requires_grad=True) # finalize model self.model = builder.finalize(device, requires_grad=True) self.builder = builder self.model.ground = False self.dof_q = self.model.joint_coord_count self.dof_qd = self.model.joint_dof_count self.num_bodies = self.model.body_count self.action_dim = 2 self.state_dim = 2 assert len(self.ref_traj) == self.episode_frames * self.state_dim self.integrator = wp.sim.SemiImplicitIntegrator() def simulate(self, state: wp.sim.State, action: wp.array, action_index: int, requires_grad=False) -> wp.sim.State: """ Simulate the system for the given states. """ for _ in range(self.sim_substeps): if requires_grad: next_state = self.model.state(requires_grad=True) else: next_state = state next_state.clear_forces() wp.sim.collide(self.model, state) # apply generalized torques to rigid body here, instead of planar joints wp.launch(apply_torque, 1, inputs=[action, action_index], outputs=[state.body_f], device=action.device) state = self.integrator.simulate(self.model, state, next_state, self.sim_dt, requires_grad=requires_grad) return state def _render(self, state: wp.sim.State): self.renderer.begin_frame(self.render_time) self.renderer.render(state) self.renderer.end_frame() self.render_time += self.frame_dt self.renderer.save() def forward(self, actions: wp.array, requires_grad=False, loss=None, render=False): """ Advances the system dynamics given the rigid-body state in maximal coordinates and generalized joint torques [body_q, body_qd, tau]. Simulates for the set number of substeps and returns the next state in maximal and (optional) generalized coordinates [body_q_next, body_qd_next, joint_q_next, joint_qd_next]. """ actions.requires_grad = requires_grad state = self.model.state(requires_grad=requires_grad) if render: # set up Usd renderer self.renderer = wp.sim.render.SimRenderer( self.model, os.path.join(os.path.dirname(__file__), "outputs/example_sim_trajopt.usd"), scaling=100.0 ) self.render_time = 0.0 self._render(state) states = wp.zeros( self.episode_frames * self.state_dim, dtype=wp.float32, device=self.device, requires_grad=requires_grad ) for i in range(self.episode_frames): # simulate next_state = self.simulate(state, actions, action_index=i * self.action_dim, requires_grad=requires_grad) # save state wp.launch( save_state, dim=1, inputs=[next_state.body_q, i * self.state_dim], outputs=[states], device=self.device ) # update state state = next_state if render: self._render(state) # compute loss if loss is None: loss = wp.zeros(1, dtype=wp.float32, device=self.device, requires_grad=requires_grad) wp.launch( loss_l2, dim=self.state_dim * self.episode_frames, inputs=[states, self.ref_traj], outputs=[loss], device=self.device, ) return states def optimize(self, num_iter=100, lr=0.01): # initial guess actions = wp.array( np.zeros(self.episode_frames * self.action_dim) * 100.0, dtype=wp.float32, device=self.device, requires_grad=True, ) optimizer = Adam([actions], lr=lr) loss = wp.zeros(1, dtype=wp.float32, device=self.device, requires_grad=True) # optimize for i in range(1, num_iter + 1): loss.zero_() tape = wp.Tape() with tape: self.forward(actions, requires_grad=True, loss=loss) if i % 10 == 0: print(f"iter {i}/{num_iter} loss: {loss.numpy()[0]:.3f}") tape.backward(loss=loss) # print("action grad", actions.grad.numpy()) assert not np.isnan(actions.grad.numpy()).any(), "NaN in gradient" optimizer.step([actions.grad]) tape.zero() return actions np.set_printoptions(precision=4, linewidth=2000, suppress=True) sim = Environment(device=wp.get_preferred_device()) best_actions = sim.optimize(num_iter=250, lr=1e2) # render opt_traj = sim.forward(best_actions, render=True) np_states = opt_traj.numpy().reshape((-1, 2)) np_ref = sim.ref_traj.numpy().reshape((-1, 2)) plt.plot(np_ref[:, 0], np_ref[:, 1], label="reference") plt.plot(np_states[:, 0], np_states[:, 1], label="optimized") plt.grid() plt.legend() plt.axis("equal") plt.show()
warp-main
examples/example_sim_trajopt.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp import os example_dir = os.path.dirname(os.path.realpath(__file__)) # set default cache directory before wp.init() wp.config.kernel_cache_dir = os.path.join(example_dir, "tmp", "warpcache1") wp.init() print("+++ Current cache directory: ", wp.config.kernel_cache_dir) # change cache directory after wp.init() wp.build.init_kernel_cache(os.path.join(example_dir, "tmp", "warpcache2")) print("+++ Current cache directory: ", wp.config.kernel_cache_dir) # clear kernel cache (forces fresh kernel builds every time) wp.build.clear_kernel_cache() @wp.kernel def basic(x: wp.array(dtype=float)): tid = wp.tid() x[tid] = float(tid) device = "cpu" n = 10 x = wp.zeros(n, dtype=float, device=device) wp.launch(kernel=basic, dim=n, inputs=[x], device=device) print(x.numpy())
warp-main
examples/example_cache_management.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Fluid # # Shows how to implement a simple 2D Stable Fluids solver using # multidimensional arrays and launches. # ########################################################################### import math import warp as wp import warp.render import matplotlib import matplotlib.pyplot as plt import matplotlib.animation as anim wp.init() grid_width = wp.constant(256) grid_height = wp.constant(128) @wp.func def lookup_float(f: wp.array2d(dtype=float), x: int, y: int): x = wp.clamp(x, 0, grid_width - 1) y = wp.clamp(y, 0, grid_height - 1) return f[x, y] @wp.func def sample_float(f: wp.array2d(dtype=float), x: float, y: float): lx = int(wp.floor(x)) ly = int(wp.floor(y)) tx = x - float(lx) ty = y - float(ly) s0 = wp.lerp(lookup_float(f, lx, ly), lookup_float(f, lx + 1, ly), tx) s1 = wp.lerp(lookup_float(f, lx, ly + 1), lookup_float(f, lx + 1, ly + 1), tx) s = wp.lerp(s0, s1, ty) return s @wp.func def lookup_vel(f: wp.array2d(dtype=wp.vec2), x: int, y: int): if x < 0 or x >= grid_width: return wp.vec2() if y < 0 or y >= grid_height: return wp.vec2() return f[x, y] @wp.func def sample_vel(f: wp.array2d(dtype=wp.vec2), x: float, y: float): lx = int(wp.floor(x)) ly = int(wp.floor(y)) tx = x - float(lx) ty = y - float(ly) s0 = wp.lerp(lookup_vel(f, lx, ly), lookup_vel(f, lx + 1, ly), tx) s1 = wp.lerp(lookup_vel(f, lx, ly + 1), lookup_vel(f, lx + 1, ly + 1), tx) s = wp.lerp(s0, s1, ty) return s @wp.kernel def advect( u0: wp.array2d(dtype=wp.vec2), u1: wp.array2d(dtype=wp.vec2), rho0: wp.array2d(dtype=float), rho1: wp.array2d(dtype=float), dt: float, ): i, j = wp.tid() u = u0[i, j] # trace backward p = wp.vec2(float(i), float(j)) p = p - u * dt # advect u1[i, j] = sample_vel(u0, p[0], p[1]) rho1[i, j] = sample_float(rho0, p[0], p[1]) @wp.kernel def divergence(u: wp.array2d(dtype=wp.vec2), div: wp.array2d(dtype=float)): i, j = wp.tid() if i == grid_width - 1: return if j == grid_height - 1: return dx = (u[i + 1, j][0] - u[i, j][0]) * 0.5 dy = (u[i, j + 1][1] - u[i, j][1]) * 0.5 div[i, j] = dx + dy @wp.kernel def pressure_solve(p0: wp.array2d(dtype=float), p1: wp.array2d(dtype=float), div: wp.array2d(dtype=float)): i, j = wp.tid() s1 = lookup_float(p0, i - 1, j) s2 = lookup_float(p0, i + 1, j) s3 = lookup_float(p0, i, j - 1) s4 = lookup_float(p0, i, j + 1) # Jacobi update err = s1 + s2 + s3 + s4 - div[i, j] p1[i, j] = err * 0.25 @wp.kernel def pressure_apply(p: wp.array2d(dtype=float), u: wp.array2d(dtype=wp.vec2)): i, j = wp.tid() if i == 0 or i == grid_width - 1: return if j == 0 or j == grid_height - 1: return # pressure gradient f_p = wp.vec2(p[i + 1, j] - p[i - 1, j], p[i, j + 1] - p[i, j - 1]) * 0.5 u[i, j] = u[i, j] - f_p @wp.kernel def integrate(u: wp.array2d(dtype=wp.vec2), rho: wp.array2d(dtype=float), dt: float): i, j = wp.tid() # gravity f_g = wp.vec2(-90.8, 0.0) * rho[i, j] # integrate u[i, j] = u[i, j] + dt * f_g # fade rho[i, j] = rho[i, j] * (1.0 - 0.1 * dt) @wp.kernel def init(rho: wp.array2d(dtype=float), u: wp.array2d(dtype=wp.vec2), radius: int, dir: wp.vec2): i, j = wp.tid() d = wp.length(wp.vec2(float(i - grid_width / 2), float(j - grid_height / 2))) if d < radius: rho[i, j] = 1.0 u[i, j] = dir class Example: def __init__(self): self.sim_fps = 60.0 self.sim_substeps = 2 self.iterations = 100 self.sim_dt = (1.0 / self.sim_fps) / self.sim_substeps self.sim_time = 0.0 self.device = wp.get_device() shape = (grid_width, grid_height) self.u0 = wp.zeros(shape, dtype=wp.vec2) self.u1 = wp.zeros(shape, dtype=wp.vec2) self.rho0 = wp.zeros(shape, dtype=float) self.rho1 = wp.zeros(shape, dtype=float) self.p0 = wp.zeros(shape, dtype=float) self.p1 = wp.zeros(shape, dtype=float) self.div = wp.zeros(shape, dtype=float) # capture pressure solve as a CUDA graph if self.device.is_cuda: wp.capture_begin() self.solve() self.graph = wp.capture_end() def update(self): pass def solve(self): for i in range(self.iterations): wp.launch(pressure_solve, dim=self.p0.shape, inputs=[self.p0, self.p1, self.div]) # swap pressure fields (self.p0, self.p1) = (self.p1, self.p0) def render(self, img, i): with wp.ScopedTimer("update"): for i in range(self.sim_substeps): shape = (grid_width, grid_height) dt = self.sim_dt speed = 400.0 angle = math.sin(self.sim_time * 4.0) * 1.5 vel = wp.vec2(math.cos(angle) * speed, math.sin(angle) * speed) # update emitters wp.launch(init, dim=shape, inputs=[self.rho0, self.u0, 5, vel]) # force integrate wp.launch(integrate, dim=shape, inputs=[self.u0, self.rho0, dt]) wp.launch(divergence, dim=shape, inputs=[self.u0, self.div]) # pressure solve self.p0.zero_() self.p1.zero_() if self.device.is_cuda: wp.capture_launch(self.graph) else: self.solve() # velocity update wp.launch(pressure_apply, dim=shape, inputs=[self.p0, self.u0]) # semi-Lagrangian advection wp.launch(advect, dim=shape, inputs=[self.u0, self.u1, self.rho0, self.rho1, dt]) # swap buffers (self.u0, self.u1) = (self.u1, self.u0) (self.rho0, self.rho1) = (self.rho1, self.rho0) self.sim_time += dt # plot with wp.ScopedTimer("render"): img.set_array(self.rho0.numpy()) return (img,) if __name__ == "__main__": example = Example() fig = plt.figure() img = plt.imshow(example.rho0.numpy(), origin="lower", animated=True, interpolation="antialiased") img.set_norm(matplotlib.colors.Normalize(0.0, 1.0)) seq = anim.FuncAnimation(fig, lambda i: example.render(img, i), frames=100000, blit=True, interval=8, repeat=False) plt.show()
warp-main
examples/example_fluid.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Sim Rigid Force # # Shows how to apply an external force (torque) to a rigid body causing # it to roll. # ########################################################################### import os import warp as wp import warp.sim import warp.sim.render wp.init() class Example: def __init__(self, stage): self.sim_fps = 60.0 self.sim_substeps = 5 self.sim_duration = 5.0 self.sim_frames = int(self.sim_duration * self.sim_fps) self.sim_dt = (1.0 / self.sim_fps) / self.sim_substeps self.sim_time = 0.0 builder = wp.sim.ModelBuilder() b = builder.add_body(origin=wp.transform((0.0, 2.0, 0.0), wp.quat_identity())) builder.add_shape_box(body=b, hx=0.5, hy=0.5, hz=0.5, density=1000.0) self.model = builder.finalize() self.model.ground = True self.integrator = wp.sim.XPBDIntegrator() self.state_0 = self.model.state() self.state_1 = self.model.state() self.renderer = wp.sim.render.SimRenderer(self.model, stage, scaling=20.0) def update(self): with wp.ScopedTimer("simulate"): for s in range(self.sim_substeps): wp.sim.collide(self.model, self.state_0) self.state_0.clear_forces() self.state_1.clear_forces() self.state_0.body_f.assign( [ [0.0, 0.0, -3000.0, 0.0, 0.0, 0.0], ] ) self.integrator.simulate(self.model, self.state_0, self.state_1, self.sim_dt) self.sim_time += self.sim_dt # swap states (self.state_0, self.state_1) = (self.state_1, self.state_0) def render(self, is_live=False): with wp.ScopedTimer("render"): time = 0.0 if is_live else self.sim_time self.renderer.begin_frame(time) self.renderer.render(self.state_0) self.renderer.end_frame() if __name__ == "__main__": stage_path = os.path.join(os.path.dirname(__file__), "outputs/example_sim_rigid_force.usd") example = Example(stage_path) for i in range(example.sim_frames): example.update() example.render() example.renderer.save()
warp-main
examples/example_sim_rigid_force.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Wave # # Shows how to implement a simple 2D wave-equation solver with collision # against a moving sphere. # ########################################################################### import os import math import warp as wp import warp.render wp.init() @wp.func def sample(f: wp.array(dtype=float), x: int, y: int, width: int, height: int): # clamp texture coords x = wp.clamp(x, 0, width - 1) y = wp.clamp(y, 0, height - 1) s = f[y * width + x] return s @wp.func def laplacian(f: wp.array(dtype=float), x: int, y: int, width: int, height: int): ddx = sample(f, x + 1, y, width, height) - 2.0 * sample(f, x, y, width, height) + sample(f, x - 1, y, width, height) ddy = sample(f, x, y + 1, width, height) - 2.0 * sample(f, x, y, width, height) + sample(f, x, y - 1, width, height) return ddx + ddy @wp.kernel def wave_displace( hcurrent: wp.array(dtype=float), hprevious: wp.array(dtype=float), width: int, height: int, center_x: float, center_y: float, r: float, mag: float, t: float, ): tid = wp.tid() x = tid % width y = tid // width dx = float(x) - center_x dy = float(y) - center_y dist_sq = float(dx * dx + dy * dy) if dist_sq < r * r: h = mag * wp.sin(t) hcurrent[tid] = h hprevious[tid] = h @wp.kernel def wave_solve( hprevious: wp.array(dtype=float), hcurrent: wp.array(dtype=float), width: int, height: int, inv_cell: float, k_speed: float, k_damp: float, dt: float, ): tid = wp.tid() x = tid % width y = tid // width l = laplacian(hcurrent, x, y, width, height) * inv_cell * inv_cell # integrate h1 = hcurrent[tid] h0 = hprevious[tid] h = 2.0 * h1 - h0 + dt * dt * (k_speed * l - k_damp * (h1 - h0)) # buffers get swapped each iteration hprevious[tid] = h # simple kernel to apply height deltas to a vertex array @wp.kernel def grid_update(heights: wp.array(dtype=float), vertices: wp.array(dtype=wp.vec3)): tid = wp.tid() h = heights[tid] v = vertices[tid] v_new = wp.vec3(v[0], h, v[2]) vertices[tid] = v_new class Example: def __init__(self, stage): self.sim_width = 128 self.sim_height = 128 self.sim_fps = 60.0 self.sim_substeps = 16 self.sim_duration = 5.0 self.sim_frames = int(self.sim_duration * self.sim_fps) self.sim_dt = (1.0 / self.sim_fps) / self.sim_substeps self.sim_time = 0.0 # wave constants self.k_speed = 1.0 self.k_damp = 0.0 # grid constants self.grid_size = 0.1 self.grid_displace = 0.5 self.renderer = wp.render.UsdRenderer(stage) vertices = [] self.indices = [] def grid_index(x, y, stride): return y * stride + x for z in range(self.sim_height): for x in range(self.sim_width): pos = ( float(x) * self.grid_size, 0.0, float(z) * self.grid_size, ) # - Gf.Vec3f(float(self.sim_width)/2*self.grid_size, 0.0, float(self.sim_height)/2*self.grid_size) # directly modifies verts_host memory since this is a numpy alias of the same buffer vertices.append(pos) if x > 0 and z > 0: self.indices.append(grid_index(x - 1, z - 1, self.sim_width)) self.indices.append(grid_index(x, z, self.sim_width)) self.indices.append(grid_index(x, z - 1, self.sim_width)) self.indices.append(grid_index(x - 1, z - 1, self.sim_width)) self.indices.append(grid_index(x - 1, z, self.sim_width)) self.indices.append(grid_index(x, z, self.sim_width)) # simulation grids self.sim_grid0 = wp.zeros(self.sim_width * self.sim_height, dtype=float) self.sim_grid1 = wp.zeros(self.sim_width * self.sim_height, dtype=float) self.sim_verts = wp.array(vertices, dtype=wp.vec3) # create surface displacment around a point self.cx = self.sim_width / 2 + math.sin(self.sim_time) * self.sim_width / 3 self.cy = self.sim_height / 2 + math.cos(self.sim_time) * self.sim_height / 3 def update(self): with wp.ScopedTimer("simulate", active=True): for s in range(self.sim_substeps): # create surface displacment around a point self.cx = self.sim_width / 2 + math.sin(self.sim_time) * self.sim_width / 3 self.cy = self.sim_height / 2 + math.cos(self.sim_time) * self.sim_height / 3 wp.launch( kernel=wave_displace, dim=self.sim_width * self.sim_height, inputs=[ self.sim_grid0, self.sim_grid1, self.sim_width, self.sim_height, self.cx, self.cy, 10.0, self.grid_displace, -math.pi * 0.5, ], ) # integrate wave equation wp.launch( kernel=wave_solve, dim=self.sim_width * self.sim_height, inputs=[ self.sim_grid0, self.sim_grid1, self.sim_width, self.sim_height, 1.0 / self.grid_size, self.k_speed, self.k_damp, self.sim_dt, ], ) # swap grids (self.sim_grid0, self.sim_grid1) = (self.sim_grid1, self.sim_grid0) self.sim_time += self.sim_dt with wp.ScopedTimer("mesh", active=False): # update grid vertices from heights wp.launch(kernel=grid_update, dim=self.sim_width * self.sim_height, inputs=[self.sim_grid0, self.sim_verts]) def render(self, is_live=False): with wp.ScopedTimer("render", active=True): time = 0.0 if is_live else self.sim_time vertices = self.sim_verts.numpy() self.renderer.begin_frame(time) self.renderer.render_mesh("surface", vertices, self.indices) self.renderer.render_sphere( "sphere", (self.cx * self.grid_size, 0.0, self.cy * self.grid_size), (0.0, 0.0, 0.0, 1.0), 10.0 * self.grid_size, ) self.renderer.end_frame() if __name__ == "__main__": stage_path = os.path.join(os.path.dirname(__file__), "outputs/example_wave.usd") example = Example(stage_path) for i in range(example.sim_frames): example.update() example.render() example.renderer.save()
warp-main
examples/example_wave.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example NanoVDB # # Shows how to implement a particle simulation with collision against # a NanoVDB signed-distance field. In this example the NanoVDB field # is created offline in Houdini. The particle kernel uses the Warp # wp.volume_sample_f() method to compute the SDF and normal at a point. # ########################################################################### import os import math import numpy as np import warp as wp import warp.render wp.init() @wp.func def volume_grad(volume: wp.uint64, p: wp.vec3): eps = 1.0 q = wp.volume_world_to_index(volume, p) # compute gradient of the SDF using finite differences dx = wp.volume_sample_f(volume, q + wp.vec3(eps, 0.0, 0.0), wp.Volume.LINEAR) - wp.volume_sample_f( volume, q - wp.vec3(eps, 0.0, 0.0), wp.Volume.LINEAR ) dy = wp.volume_sample_f(volume, q + wp.vec3(0.0, eps, 0.0), wp.Volume.LINEAR) - wp.volume_sample_f( volume, q - wp.vec3(0.0, eps, 0.0), wp.Volume.LINEAR ) dz = wp.volume_sample_f(volume, q + wp.vec3(0.0, 0.0, eps), wp.Volume.LINEAR) - wp.volume_sample_f( volume, q - wp.vec3(0.0, 0.0, eps), wp.Volume.LINEAR ) return wp.normalize(wp.vec3(dx, dy, dz)) @wp.kernel def simulate( positions: wp.array(dtype=wp.vec3), velocities: wp.array(dtype=wp.vec3), volume: wp.uint64, restitution: float, margin: float, dt: float, ): tid = wp.tid() x = positions[tid] v = velocities[tid] v = v + wp.vec3(0.0, 0.0, -980.0) * dt - v * 0.1 * dt xpred = x + v * dt xpred_local = wp.volume_world_to_index(volume, xpred) #d = wp.volume_sample_f(volume, xpred_local, wp.Volume.LINEAR) n = wp.vec3() d = wp.volume_sample_grad_f(volume, xpred_local, wp.Volume.LINEAR, n) if d < margin: #n = volume_grad(volume, xpred) n = wp.normalize(n) err = d - margin # mesh collision xpred = xpred - n * err # ground collision if xpred[2] < 0.0: xpred = wp.vec3(xpred[0], xpred[1], 0.0) # pbd update v = (xpred - x) * (1.0 / dt) x = xpred positions[tid] = x velocities[tid] = v class Example: def __init__(self, stage): self.num_particles = 10000 self.sim_steps = 1000 self.sim_dt = 1.0 / 60.0 self.sim_substeps = 3 self.sim_time = 0.0 self.sim_timers = {} self.sim_render = True self.sim_restitution = 0.0 self.sim_margin = 15.0 self.renderer = wp.render.UsdRenderer(stage, up_axis="z") self.renderer.render_ground(size=10000.0) init_pos = 1000.0 * (np.random.rand(self.num_particles, 3) * 2.0 - 1.0) + np.array((0.0, 0.0, 3000.0)) init_vel = np.random.rand(self.num_particles, 3) self.positions = wp.from_numpy(init_pos.astype(np.float32), dtype=wp.vec3) self.velocities = wp.from_numpy(init_vel.astype(np.float32), dtype=wp.vec3) # load collision volume file = open(os.path.join(os.path.dirname(__file__), "assets/rocks.nvdb"), "rb") # create Volume object self.volume = wp.Volume.load_from_nvdb(file) def update(self): with wp.ScopedTimer("simulate", detailed=False, dict=self.sim_timers): for s in range(self.sim_substeps): wp.launch( kernel=simulate, dim=self.num_particles, inputs=[ self.positions, self.velocities, self.volume.id, self.sim_restitution, self.sim_margin, self.sim_dt / float(self.sim_substeps), ], ) wp.synchronize_device() def render(self, is_live=False): with wp.ScopedTimer("render", detailed=False): time = 0.0 if is_live else self.sim_time self.renderer.begin_frame(time) self.renderer.render_ref( name="collision", path=os.path.join(os.path.dirname(__file__), "assets/rocks.usd"), pos=(0.0, 0.0, 0.0), rot=wp.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi), scale=(1.0, 1.0, 1.0), ) self.renderer.render_points(name="points", points=self.positions.numpy(), radius=self.sim_margin) self.renderer.end_frame() self.sim_time += self.sim_dt if __name__ == "__main__": stage_path = os.path.join(os.path.dirname(__file__), "outputs/example_nvdb.usd") example = Example(stage_path) for i in range(example.sim_steps): example.update() example.render() example.renderer.save()
warp-main
examples/example_nvdb.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Jacobian # # Demonstrates how to compute the Jacobian of a multi-valued function. # Here, we use the simulation of a cartpole to differentiate # through the kinematics function. We instantiate multiple copies of the # cartpole and compute the Jacobian of the state of each cartpole in parallel # in order to perform inverse kinematics via Jacobian transpose. # ########################################################################### import os import math import numpy as np import warp as wp import warp.sim import warp.sim.render wp.init() class Robot: frame_dt = 1.0 / 60.0 render_time = 0.0 # step size to use for the IK updates step_size = 0.1 def __init__(self, render=True, num_envs=1, device=None): builder = wp.sim.ModelBuilder() self.render = render self.num_envs = num_envs self.device = device articulation_builder = wp.sim.ModelBuilder() wp.sim.parse_urdf( os.path.join(os.path.dirname(__file__), "assets/cartpole.urdf"), articulation_builder, xform=wp.transform_identity(), floating=False, density=0, armature=0.1, stiffness=0.0, damping=0.0, shape_ke=1.0e4, shape_kd=1.0e2, shape_kf=1.0e2, shape_mu=1.0, limit_ke=1.0e4, limit_kd=1.0e1, ) builder = wp.sim.ModelBuilder() self.num_links = len(articulation_builder.joint_type) # use the last link as the end-effector self.ee_link_index = self.num_links - 1 self.ee_link_offset = wp.vec3(0.0, 0.0, 1.0) self.dof = len(articulation_builder.joint_q) self.target_origin = [] for i in range(num_envs): builder.add_builder( articulation_builder, xform=wp.transform( np.array((i * 2.0, 4.0, 0.0)), wp.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi * 0.5) ), ) self.target_origin.append((i * 2.0, 4.0, 0.0)) # joint initial positions builder.joint_q[-3:] = np.random.uniform(-0.5, 0.5, size=3) self.target_origin = np.array(self.target_origin) # finalize model self.model = builder.finalize(device) self.model.ground = True self.model.joint_q.requires_grad = True self.model.body_q.requires_grad = True self.model.joint_attach_ke = 1600.0 self.model.joint_attach_kd = 20.0 self.integrator = wp.sim.SemiImplicitIntegrator() # ----------------------- # set up Usd renderer if self.render: self.renderer = wp.sim.render.SimRenderer( self.model, os.path.join(os.path.dirname(__file__), "outputs/example_jacobian_ik.usd") ) self.ee_pos = wp.zeros(self.num_envs, dtype=wp.vec3, device=device, requires_grad=True) @wp.kernel def compute_endeffector_position( body_q: wp.array(dtype=wp.transform), num_links: int, ee_link_index: int, ee_link_offset: wp.vec3, ee_pos: wp.array(dtype=wp.vec3), ): tid = wp.tid() ee_pos[tid] = wp.transform_point(body_q[tid * num_links + ee_link_index], ee_link_offset) def compute_ee_position(self): # computes the end-effector position from the current joint angles wp.sim.eval_fk(self.model, self.model.joint_q, self.model.joint_qd, None, self.state) wp.launch( self.compute_endeffector_position, dim=self.num_envs, inputs=[self.state.body_q, self.num_links, self.ee_link_index, self.ee_link_offset], outputs=[self.ee_pos], device=self.device, ) return self.ee_pos def compute_jacobian(self): # our function has 3 outputs (EE position), so we need a 3xN jacobian per environment jacobians = np.empty((self.num_envs, 3, self.dof), dtype=np.float32) tape = wp.Tape() with tape: self.compute_ee_position() for output_index in range(3): # select which row of the Jacobian we want to compute select_index = np.zeros(3) select_index[output_index] = 1.0 e = wp.array(np.tile(select_index, self.num_envs), dtype=wp.vec3, device=self.device) tape.backward(grads={self.ee_pos: e}) q_grad_i = tape.gradients[self.model.joint_q] jacobians[:, output_index, :] = q_grad_i.numpy().reshape(self.num_envs, self.dof) tape.zero() return jacobians def compute_fd_jacobian(self, eps=1e-4): jacobians = np.zeros((self.num_envs, 3, self.dof), dtype=np.float32) q0 = self.model.joint_q.numpy().copy() for e in range(self.num_envs): for i in range(self.dof): q = q0.copy() q[e * self.dof + i] += eps self.model.joint_q.assign(q) self.compute_ee_position() f_plus = self.ee_pos.numpy()[e].copy() q[e * self.dof + i] -= 2 * eps self.model.joint_q.assign(q) self.compute_ee_position() f_minus = self.ee_pos.numpy()[e].copy() jacobians[e, :, i] = (f_plus - f_minus) / (2 * eps) return jacobians def run(self, render=True): profiler = {} self.state = self.model.state(requires_grad=True) if render: print("autodiff:") print(self.compute_jacobian()) print("finite diff:") print(self.compute_fd_jacobian()) for _ in range(5): # select new random target points targets = self.target_origin.copy() targets[:, 1:] += np.random.uniform(-0.5, 0.5, size=(self.num_envs, 2)) for iter in range(50): with wp.ScopedTimer("jacobian", print=False, active=True, dict=profiler): # compute jacobian jacobians = self.compute_jacobian() # jacobians = self.compute_fd_jacobian() # compute error ee_pos = self.compute_ee_position().numpy() error = targets - ee_pos error = error.reshape(self.num_envs, 3, 1) # compute Jacobian transpose update delta_q = np.matmul(jacobians.transpose(0, 2, 1), error) self.model.joint_q = wp.array( self.model.joint_q.numpy() + self.step_size * delta_q.flatten(), dtype=wp.float32, device=self.device, requires_grad=True, ) # render if render: self.render_time += self.frame_dt self.renderer.begin_frame(self.render_time) self.renderer.render(self.state) self.renderer.render_points("targets", targets, radius=0.05) self.renderer.render_points("ee_pos", ee_pos, radius=0.05) self.renderer.end_frame() self.renderer.save() print("iter:", iter, "error:", error.mean()) avg_time = np.array(profiler["jacobian"]).mean() avg_steps_second = 1000.0 * float(self.num_envs) / avg_time print(f"envs: {self.num_envs} steps/second {avg_steps_second} avg_time {avg_time}") return 1000.0 * float(self.num_envs) / avg_time profile = False if profile: env_count = 2 env_times = [] env_size = [] for i in range(12): robot = Robot(render=False, num_envs=env_count) steps_per_second = robot.run(render=False) env_size.append(env_count) env_times.append(steps_per_second) env_count *= 2 # dump times for i in range(len(env_times)): print(f"envs: {env_size[i]} steps/second: {env_times[i]}") # plot import matplotlib.pyplot as plt plt.figure(1) plt.plot(env_size, env_times) plt.xscale("log") plt.xlabel("Number of Envs") plt.yscale("log") plt.ylabel("Steps/Second") plt.show() else: robot = Robot(render=True, num_envs=10) robot.run()
warp-main
examples/example_jacobian_ik.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # OpenGL renderer example # # Demonstrates how to set up tiled rendering and retrieves the pixels from # OpenGLRenderer as a Warp array while keeping all memory on the GPU. # ########################################################################### import warp as wp import warp.render import numpy as np wp.init() # number of viewports to render in a single frame num_tiles = 4 # whether to split tiles into subplots split_up_tiles = True # whether to apply custom tile arrangement custom_tile_arrangement = False # whether to display the pixels in a matplotlib figure show_plot = True renderer = wp.render.OpenGLRenderer(vsync=False) instance_ids = [] if custom_tile_arrangement: positions = [] sizes = [] else: positions = None sizes = None if num_tiles > 1: # set up instances to hide one of the capsules in each tile for i in range(num_tiles): instances = [j for j in np.arange(13) if j != i + 2] instance_ids.append(instances) if custom_tile_arrangement: angle = np.pi * 2.0 / num_tiles * i positions.append((int(np.cos(angle) * 150 + 250), int(np.sin(angle) * 150 + 250))) sizes.append((150, 150)) renderer.setup_tiled_rendering(instance_ids, tile_positions=positions, tile_sizes=sizes) renderer.render_ground() if show_plot: import matplotlib.pyplot as plt if split_up_tiles: pixels = wp.zeros((num_tiles, renderer.tile_height, renderer.tile_width, 3), dtype=wp.float32) ncols = int(np.ceil(np.sqrt(num_tiles))) nrows = int(np.ceil(num_tiles / float(ncols))) img_plots = [] aspect_ratio = renderer.tile_height / renderer.tile_width fig, axes = plt.subplots( ncols=ncols, nrows=nrows, constrained_layout=True, figsize=(ncols * 3.5, nrows * 3.5 * aspect_ratio), squeeze=False, sharex=True, sharey=True, num=1, ) tile_temp = np.zeros((renderer.tile_height, renderer.tile_width, 3), dtype=np.float32) for dim in range(ncols * nrows): ax = axes[dim // ncols, dim % ncols] if dim >= num_tiles: ax.axis("off") continue img_plots.append(ax.imshow(tile_temp)) else: fig = plt.figure(1) pixels = wp.zeros((renderer.screen_height, renderer.screen_width, 3), dtype=wp.float32) img_plot = plt.imshow(pixels.numpy()) plt.ion() plt.show() while renderer.is_running(): time = renderer.clock_time renderer.begin_frame(time) for i in range(10): renderer.render_capsule( f"capsule_{i}", [i - 5.0, np.sin(time + i * 0.2), -3.0], [0.0, 0.0, 0.0, 1.0], radius=0.5, half_height=0.8 ) renderer.render_cylinder( "cylinder", [3.2, 1.0, np.sin(time + 0.5)], np.array(wp.quat_from_axis_angle((1.0, 0.0, 0.0), np.sin(time + 0.5))), radius=0.5, half_height=0.8, ) renderer.render_cone( "cone", [-1.2, 1.0, 0.0], np.array(wp.quat_from_axis_angle((0.707, 0.707, 0.0), time)), radius=0.5, half_height=0.8, ) renderer.end_frame() if show_plot and plt.fignum_exists(1): if split_up_tiles: pixel_shape = (num_tiles, renderer.tile_height, renderer.tile_width, 3) else: pixel_shape = (renderer.screen_height, renderer.screen_width, 3) if pixel_shape != pixels.shape: # make sure we resize the pixels array to the right dimensions if the user resizes the window pixels = wp.zeros(pixel_shape, dtype=wp.float32) renderer.get_pixels(pixels, split_up_tiles=split_up_tiles) if split_up_tiles: pixels_np = pixels.numpy() for i, img_plot in enumerate(img_plots): img_plot.set_data(pixels_np[i]) else: img_plot.set_data(pixels.numpy()) fig.canvas.draw() fig.canvas.flush_events() renderer.clear()
warp-main
examples/example_render_opengl.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Sim Granular # # Shows how to set up a particle-based granular material model using the # wp.sim.ModelBuilder(). # ########################################################################### import os import warp as wp import warp.sim import warp.sim.render wp.init() class Example: def __init__(self, stage): self.frame_dt = 1.0 / 60 self.frame_count = 400 self.sim_substeps = 64 self.sim_dt = self.frame_dt / self.sim_substeps self.sim_steps = self.frame_count * self.sim_substeps self.sim_time = 0.0 self.radius = 0.1 builder = wp.sim.ModelBuilder() builder.default_particle_radius = self.radius builder.add_particle_grid( dim_x=16, dim_y=32, dim_z=16, cell_x=self.radius * 2.0, cell_y=self.radius * 2.0, cell_z=self.radius * 2.0, pos=(0.0, 1.0, 0.0), rot=wp.quat_identity(), vel=(5.0, 0.0, 0.0), mass=0.1, jitter=self.radius * 0.1, ) self.model = builder.finalize() self.model.particle_kf = 25.0 self.model.soft_contact_kd = 100.0 self.model.soft_contact_kf *= 2.0 self.state_0 = self.model.state() self.state_1 = self.model.state() self.integrator = wp.sim.SemiImplicitIntegrator() self.renderer = wp.sim.render.SimRenderer(self.model, stage, scaling=20.0) def update(self): with wp.ScopedTimer("simulate", active=True): self.model.particle_grid.build(self.state_0.particle_q, self.radius * 2.0) for s in range(self.sim_substeps): self.state_0.clear_forces() self.integrator.simulate(self.model, self.state_0, self.state_1, self.sim_dt) # swap states (self.state_0, self.state_1) = (self.state_1, self.state_0) def render(self, is_live=False): with wp.ScopedTimer("render", active=True): time = 0.0 if is_live else self.sim_time self.renderer.begin_frame(time) self.renderer.render(self.state_0) self.renderer.end_frame() self.sim_time += self.frame_dt if __name__ == "__main__": stage_path = os.path.join(os.path.dirname(__file__), "outputs/example_sim_granular.usd") example = Example(stage_path) for i in range(example.frame_count): example.update() example.render() example.renderer.save()
warp-main
examples/example_sim_granular.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. ########################################################################### # Example Sim Grad Cloth # # Shows how to use Warp to optimize the initial velocities of a piece of # cloth such that it's center of mass hits a target after a specified time. # # This example uses the built-in wp.Tape() object to compute gradients of # the distance to target (loss) w.r.t the initial velocity, followed by # a simple gradient-descent optimization step. # ########################################################################### import os import math import warp as wp import warp.sim import warp.sim.render wp.init() class Cloth: # seconds sim_duration = 2.0 # control frequency frame_dt = 1.0 / 60.0 frame_steps = int(sim_duration / frame_dt) # sim frequency sim_substeps = 16 sim_steps = frame_steps * sim_substeps sim_dt = frame_dt / sim_substeps sim_time = 0.0 render_time = 0.0 train_iters = 64 train_rate = 5.0 def __init__(self, render=True, profile=False, adapter=None): builder = wp.sim.ModelBuilder() builder.default_particle_radius = 0.01 dim_x = 16 dim_y = 16 builder.add_cloth_grid( pos=(0.0, 0.0, 0.0), vel=(0.1, 0.1, 0.0), rot=wp.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi * 0.25), dim_x=dim_x, dim_y=dim_y, cell_x=1.0 / dim_x, cell_y=1.0 / dim_y, mass=1.0, tri_ke=10000.0, tri_ka=10000.0, tri_kd=100.0, tri_lift=10.0, tri_drag=5.0, ) self.device = wp.get_device(adapter) self.profile = profile self.model = builder.finalize(self.device) self.model.ground = False self.integrator = wp.sim.SemiImplicitIntegrator() self.target = (8.0, 0.0, 0.0) self.com = wp.zeros(1, dtype=wp.vec3, device=self.device, requires_grad=True) self.loss = wp.zeros(1, dtype=wp.float32, device=self.device, requires_grad=True) # allocate sim states for trajectory self.states = [] for i in range(self.sim_steps + 1): self.states.append(self.model.state(requires_grad=True)) if self.render: self.stage = wp.sim.render.SimRendererOpenGL( self.model, os.path.join(os.path.dirname(__file__), "outputs/example_sim_grad_cloth.usd"), scaling=4.0 ) @wp.kernel def com_kernel(positions: wp.array(dtype=wp.vec3), n: int, com: wp.array(dtype=wp.vec3)): tid = wp.tid() # compute center of mass wp.atomic_add(com, 0, positions[tid] / float(n)) @wp.kernel def loss_kernel(com: wp.array(dtype=wp.vec3), target: wp.vec3, loss: wp.array(dtype=float)): # sq. distance to target delta = com[0] - target loss[0] = wp.dot(delta, delta) @wp.kernel def step_kernel(x: wp.array(dtype=wp.vec3), grad: wp.array(dtype=wp.vec3), alpha: float): tid = wp.tid() # gradient descent step x[tid] = x[tid] - grad[tid] * alpha def compute_loss(self): # run control loop for i in range(self.sim_steps): self.states[i].clear_forces() self.integrator.simulate(self.model, self.states[i], self.states[i + 1], self.sim_dt) # compute loss on final state self.com.zero_() wp.launch( self.com_kernel, dim=self.model.particle_count, inputs=[self.states[-1].particle_q, self.model.particle_count, self.com], device=self.device, ) wp.launch(self.loss_kernel, dim=1, inputs=[self.com, self.target, self.loss], device=self.device) return self.loss def render(self, iter): # render every 4 iters if iter % 4 > 0: return # draw trajectory traj_verts = [self.states[0].particle_q.numpy().mean(axis=0)] for i in range(0, self.sim_steps, self.sim_substeps): traj_verts.append(self.states[i].particle_q.numpy().mean(axis=0)) self.stage.begin_frame(self.render_time) self.stage.render(self.states[i]) self.stage.render_box(pos=self.target, rot=wp.quat_identity(), extents=(0.1, 0.1, 0.1), name="target") self.stage.render_line_strip( vertices=traj_verts, color=wp.render.bourke_color_map(0.0, 269.0, self.loss.numpy()[0]), radius=0.02, name=f"traj_{iter}", ) self.stage.end_frame() self.render_time += self.frame_dt def train(self, mode="gd"): tape = wp.Tape() for i in range(self.train_iters): with wp.ScopedTimer("Forward", active=self.profile): with tape: self.compute_loss() with wp.ScopedTimer("Backward", active=self.profile): tape.backward(self.loss) with wp.ScopedTimer("Render", active=self.profile): self.render(i) with wp.ScopedTimer("Step", active=self.profile): x = self.states[0].particle_qd x_grad = tape.gradients[self.states[0].particle_qd] print(f"Iter: {i} Loss: {self.loss}") wp.launch(self.step_kernel, dim=len(x), inputs=[x, x_grad, self.train_rate], device=self.device) tape.reset() def train_graph(self, mode="gd"): wp.capture_begin() tape = wp.Tape() with tape: self.compute_loss() tape.backward(self.loss) self.graph = wp.capture_end() for i in range(self.train_iters): with wp.ScopedTimer("Replay", active=self.profile): wp.capture_launch(self.graph) with wp.ScopedTimer("Render", active=self.profile): self.render(i) with wp.ScopedTimer("Step", active=self.profile): x = self.states[0].particle_qd print(f"Iter: {i} Loss: {self.loss}") wp.launch(self.step_kernel, dim=len(x), inputs=[x, x.grad, self.train_rate], device=self.device) tape.zero() self.stage.save() bounce = Cloth(profile=False, render=True) bounce.train_graph("gd")
warp-main
examples/example_sim_grad_cloth.py