python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import numpy as np import warp as wp from warp.tests.test_base import * import unittest wp.init() @wp.kernel def mul_1d(a: wp.array1d(dtype=float), s: float): i = wp.tid() a[i] = a[i] * s @wp.kernel def mul_2d(a: wp.array2d(dtype=float), s: float): i, j = wp.tid() a[i, j] = a[i, j] * s @wp.kernel def mul_3d(a: wp.array3d(dtype=float), s: float): i, j, k = wp.tid() a[i, j, k] = a[i, j, k] * s @wp.kernel def mul_4d(a: wp.array4d(dtype=float), s: float): i, j, k, l = wp.tid() a[i, j, k, l] = a[i, j, k, l] * s def test_copy_strided(test, device): with wp.ScopedDevice(device): np_data1 = np.arange(10, dtype=np.float32) np_data2 = np.arange(100, dtype=np.float32).reshape((10, 10)) np_data3 = np.arange(1000, dtype=np.float32).reshape((10, 10, 10)) np_data4 = np.arange(10000, dtype=np.float32).reshape((10, 10, 10, 10)) wp_data1 = wp.array(data=np_data1, copy=True) wp_data2 = wp.array(data=np_data2, copy=True) wp_data3 = wp.array(data=np_data3, copy=True) wp_data4 = wp.array(data=np_data4, copy=True) expected1 = np_data1[1::2] expected2 = np_data2[1::2, 1::2] expected3 = np_data3[1::2, 1::2, 1::2] expected4 = np_data4[1::2, 1::2, 1::2, 1::2] a1 = wp_data1[1::2] a2 = wp_data2[1::2, 1::2] a3 = wp_data3[1::2, 1::2, 1::2] a4 = wp_data4[1::2, 1::2, 1::2, 1::2] assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) b1 = wp.zeros_like(a1) b2 = wp.zeros_like(a2) b3 = wp.zeros_like(a3) b4 = wp.zeros_like(a4) test.assertFalse(a1.is_contiguous) test.assertFalse(a2.is_contiguous) test.assertFalse(a3.is_contiguous) test.assertFalse(a4.is_contiguous) test.assertTrue(b1.is_contiguous) test.assertTrue(b2.is_contiguous) test.assertTrue(b3.is_contiguous) test.assertTrue(b4.is_contiguous) # copy non-contiguous to contiguous wp.copy(b1, a1) wp.copy(b2, a2) wp.copy(b3, a3) wp.copy(b4, a4) assert_np_equal(a1.numpy(), b1.numpy()) assert_np_equal(a2.numpy(), b2.numpy()) assert_np_equal(a3.numpy(), b3.numpy()) assert_np_equal(a4.numpy(), b4.numpy()) s = 2.0 wp.launch(mul_1d, dim=b1.shape, inputs=[b1, s]) wp.launch(mul_2d, dim=b2.shape, inputs=[b2, s]) wp.launch(mul_3d, dim=b3.shape, inputs=[b3, s]) wp.launch(mul_4d, dim=b4.shape, inputs=[b4, s]) # copy contiguous to non-contiguous wp.copy(a1, b1) wp.copy(a2, b2) wp.copy(a3, b3) wp.copy(a4, b4) assert_np_equal(a1.numpy(), b1.numpy()) assert_np_equal(a2.numpy(), b2.numpy()) assert_np_equal(a3.numpy(), b3.numpy()) assert_np_equal(a4.numpy(), b4.numpy()) assert_np_equal(a1.numpy(), expected1 * s) assert_np_equal(a2.numpy(), expected2 * s) assert_np_equal(a3.numpy(), expected3 * s) assert_np_equal(a4.numpy(), expected4 * s) def test_copy_indexed(test, device): with wp.ScopedDevice(device): np_data1 = np.arange(10, dtype=np.float32) np_data2 = np.arange(100, dtype=np.float32).reshape((10, 10)) np_data3 = np.arange(1000, dtype=np.float32).reshape((10, 10, 10)) np_data4 = np.arange(10000, dtype=np.float32).reshape((10, 10, 10, 10)) wp_data1 = wp.array(data=np_data1, copy=True) wp_data2 = wp.array(data=np_data2, copy=True) wp_data3 = wp.array(data=np_data3, copy=True) wp_data4 = wp.array(data=np_data4, copy=True) np_indices = np.array([1, 5, 8, 9]) wp_indices = wp.array(data=np_indices, dtype=wp.int32) # Note: Indexing using multiple index arrays works differently # in Numpy and Warp, so the syntax is different. expected1 = np_data1[np_indices] expected2 = np_data2[np_indices][:, np_indices] expected3 = np_data3[np_indices][:, np_indices][:, :, np_indices] expected4 = np_data4[np_indices][:, np_indices][:, :, np_indices][:, :, :, np_indices] a1 = wp_data1[wp_indices] a2 = wp_data2[wp_indices, wp_indices] a3 = wp_data3[wp_indices, wp_indices, wp_indices] a4 = wp_data4[wp_indices, wp_indices, wp_indices, wp_indices] assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) b1 = wp.zeros_like(a1) b2 = wp.zeros_like(a2) b3 = wp.zeros_like(a3) b4 = wp.zeros_like(a4) test.assertFalse(a1.is_contiguous) test.assertFalse(a2.is_contiguous) test.assertFalse(a3.is_contiguous) test.assertFalse(a4.is_contiguous) test.assertTrue(b1.is_contiguous) test.assertTrue(b2.is_contiguous) test.assertTrue(b3.is_contiguous) test.assertTrue(b4.is_contiguous) # copy non-contiguous to contiguous wp.copy(b1, a1) wp.copy(b2, a2) wp.copy(b3, a3) wp.copy(b4, a4) assert_np_equal(a1.numpy(), b1.numpy()) assert_np_equal(a2.numpy(), b2.numpy()) assert_np_equal(a3.numpy(), b3.numpy()) assert_np_equal(a4.numpy(), b4.numpy()) s = 2.0 wp.launch(mul_1d, dim=b1.shape, inputs=[b1, s]) wp.launch(mul_2d, dim=b2.shape, inputs=[b2, s]) wp.launch(mul_3d, dim=b3.shape, inputs=[b3, s]) wp.launch(mul_4d, dim=b4.shape, inputs=[b4, s]) # copy contiguous to non-contiguous wp.copy(a1, b1) wp.copy(a2, b2) wp.copy(a3, b3) wp.copy(a4, b4) assert_np_equal(a1.numpy(), b1.numpy()) assert_np_equal(a2.numpy(), b2.numpy()) assert_np_equal(a3.numpy(), b3.numpy()) assert_np_equal(a4.numpy(), b4.numpy()) assert_np_equal(a1.numpy(), expected1 * s) assert_np_equal(a2.numpy(), expected2 * s) assert_np_equal(a3.numpy(), expected3 * s) assert_np_equal(a4.numpy(), expected4 * s) def register(parent): devices = get_test_devices() class TestCopy(parent): pass add_function_test(TestCopy, "test_copy_strided", test_copy_strided, devices=devices) add_function_test(TestCopy, "test_copy_indexed", test_copy_indexed, devices=devices) return TestCopy if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_copy.py
import warp as wp import numpy as np import unittest import warp as wp from warp.tests.test_base import * wp.init() @wp.kernel def test_pow(x: float, e: float, result: float): tid = wp.tid() y = wp.pow(-2.0, e) wp.expect_eq(y, result) def test_fast_math(test, device): # on all systems pow() should handle negative base correctly wp.set_module_options({"fast_math": False}) wp.launch(test_pow, dim=1, inputs=[-2.0, 2.0, 4.0], device=device) # on CUDA with --fast-math enabled taking the pow() # of a negative number will result in a NaN if wp.get_device(device).is_cuda: wp.set_module_options({"fast_math": True}) with test.assertRaises(Exception): with CheckOutput(): wp.launch(test_pow, dim=1, inputs=[-2.0, 2.0, 2.0], device=device) def register(parent): class TestFastMath(parent): pass devices = get_test_devices() add_function_test(TestFastMath, "test_fast_math", test_fast_math, devices=devices) return TestFastMath if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_fast_math.py
import numpy as np import math import warp as wp from warp.tests.test_base import * wp.init() np_float_types = [np.float32, np.float64, np.float16] kernel_cache = dict() def getkernel(func, suffix=""): module = wp.get_module(func.__module__) key = func.__name__ + "_" + suffix if key not in kernel_cache: kernel_cache[key] = wp.Kernel(func=func, key=key, module=module) return kernel_cache[key] def get_select_kernel(dtype): def output_select_kernel_fn( input: wp.array(dtype=dtype), index: int, out: wp.array(dtype=dtype), ): out[0] = input[index] return getkernel(output_select_kernel_fn, suffix=dtype.__name__) ############################################################ def test_spatial_vector_constructors(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec3 = wp.types.vector(length=3, dtype=wptype) spatial_vector = wp.types.vector(length=6, dtype=wptype) def check_spatial_vector_component_constructor( input: wp.array(dtype=wptype), out: wp.array(dtype=wptype), ): result = spatial_vector(input[0], input[1], input[2], input[3], input[4], input[5]) # multiply the output by 2 so we've got something to backpropagate: out[0] = wptype(2) * result[0] out[1] = wptype(2) * result[1] out[2] = wptype(2) * result[2] out[3] = wptype(2) * result[3] out[4] = wptype(2) * result[4] out[5] = wptype(2) * result[5] def check_spatial_vector_vector_constructor( input: wp.array(dtype=wptype), out: wp.array(dtype=wptype), ): result = spatial_vector(vec3(input[0], input[1], input[2]), vec3(input[3], input[4], input[5])) # multiply the output by 2 so we've got something to backpropagate: out[0] = wptype(2) * result[0] out[1] = wptype(2) * result[1] out[2] = wptype(2) * result[2] out[3] = wptype(2) * result[3] out[4] = wptype(2) * result[4] out[5] = wptype(2) * result[5] kernel = getkernel(check_spatial_vector_component_constructor, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) vec_kernel = getkernel(check_spatial_vector_vector_constructor, suffix=dtype.__name__) if register_kernels: return input = wp.array(np.random.randn(6).astype(dtype), requires_grad=True, device=device) output = wp.zeros_like(input) wp.launch(kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy(), 2 * input.numpy(), tol=tol) for i in range(len(input)): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[cmp], device=device) tape.backward(loss=cmp) expectedgrads = np.zeros(len(input)) expectedgrads[i] = 2 assert_np_equal(tape.gradients[input].numpy(), expectedgrads) tape.zero() input = wp.array(np.random.randn(6).astype(dtype), requires_grad=True, device=device) output = wp.zeros_like(input) wp.launch(vec_kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy(), 2 * input.numpy(), tol=tol) for i in range(len(input)): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[cmp], device=device) tape.backward(loss=cmp) expectedgrads = np.zeros(len(input)) expectedgrads[i] = 2 assert_np_equal(tape.gradients[input].numpy(), expectedgrads) tape.zero() def test_spatial_vector_indexing(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_vector = wp.types.vector(length=6, dtype=wptype) def check_spatial_vector_indexing( input: wp.array(dtype=spatial_vector), out: wp.array(dtype=wptype), ): inpt = input[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(6): out[idx] = wptype(2) * inpt[i] idx = idx + 1 kernel = getkernel(check_spatial_vector_indexing, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return input = wp.array(np.random.randn(1, 6).astype(dtype), dtype=spatial_vector, requires_grad=True, device=device) outcmps = wp.zeros(6, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[input], outputs=[outcmps], device=device) assert_np_equal(outcmps.numpy(), 2 * input.numpy().ravel(), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(6): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[input], outputs=[outcmps], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcmps, i], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros(6, dtype=dtype) expectedresult[i] = 2 assert_np_equal(tape.gradients[input].numpy()[0], expectedresult) tape.zero() def test_spatial_vector_scalar_multiplication(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_vector = wp.types.vector(length=6, dtype=wptype) def check_spatial_vector_scalar_mul( s: wp.array(dtype=wptype), q: wp.array(dtype=spatial_vector), outcmps_l: wp.array(dtype=wptype), outcmps_r: wp.array(dtype=wptype), ): lresult = s[0] * q[0] rresult = q[0] * s[0] # multiply outputs by 2 so we've got something to backpropagate: for i in range(6): outcmps_l[i] = wptype(2) * lresult[i] outcmps_r[i] = wptype(2) * rresult[i] kernel = getkernel(check_spatial_vector_scalar_mul, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return s = wp.array(np.random.randn(1).astype(dtype), requires_grad=True, device=device) q = wp.array(np.random.randn(1, 6).astype(dtype), dtype=spatial_vector, requires_grad=True, device=device) outcmps_l = wp.zeros(6, dtype=wptype, requires_grad=True, device=device) outcmps_r = wp.zeros(6, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[s, q], outputs=[ outcmps_l, outcmps_r, ], device=device, ) assert_np_equal(outcmps_l.numpy(), 2 * s.numpy()[0] * q.numpy(), tol=tol) assert_np_equal(outcmps_r.numpy(), 2 * s.numpy()[0] * q.numpy(), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(6): # test left/right mul gradients: for wrt in [outcmps_l, outcmps_r]: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[s, q], outputs=[outcmps_l, outcmps_r], device=device) wp.launch(output_select_kernel, dim=1, inputs=[wrt, i], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros(6, dtype=dtype) expectedresult[i] = 2 * s.numpy()[0] assert_np_equal(tape.gradients[q].numpy()[0], expectedresult, tol=tol) assert_np_equal(tape.gradients[s].numpy()[0], 2 * q.numpy()[0, i], tol=tol) tape.zero() def test_spatial_vector_add_sub(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_vector = wp.types.vector(length=6, dtype=wptype) def check_spatial_vector_add_sub( q: wp.array(dtype=spatial_vector), v: wp.array(dtype=spatial_vector), outputs_add: wp.array(dtype=wptype), outputs_sub: wp.array(dtype=wptype), ): addresult = q[0] + v[0] subresult = q[0] - v[0] for i in range(6): outputs_add[i] = wptype(2) * addresult[i] outputs_sub[i] = wptype(2) * subresult[i] kernel = getkernel(check_spatial_vector_add_sub, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return q = wp.array(np.random.randn(6).astype(dtype), dtype=spatial_vector, requires_grad=True, device=device) v = wp.array(np.random.randn(6).astype(dtype), dtype=spatial_vector, requires_grad=True, device=device) outputs_add = wp.zeros(6, dtype=wptype, requires_grad=True, device=device) outputs_sub = wp.zeros(6, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ q, v, ], outputs=[outputs_add, outputs_sub], device=device, ) assert_np_equal(outputs_add.numpy(), 2 * (q.numpy() + v.numpy()), tol=tol) assert_np_equal(outputs_sub.numpy(), 2 * (q.numpy() - v.numpy()), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(6): # test add gradients: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[q, v], outputs=[outputs_add, outputs_sub], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_add, i], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros(6, dtype=dtype) expectedresult[i] = 2 assert_np_equal(tape.gradients[q].numpy()[0], expectedresult, tol=tol) assert_np_equal(tape.gradients[v].numpy()[0], expectedresult, tol=tol) tape.zero() # test subtraction gradients: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[q, v], outputs=[outputs_add, outputs_sub], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_sub, i], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros(6, dtype=dtype) expectedresult[i] = 2 assert_np_equal(tape.gradients[q].numpy()[0], expectedresult, tol=tol) assert_np_equal(tape.gradients[v].numpy()[0], -expectedresult, tol=tol) tape.zero() def test_spatial_dot(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_vector = wp.types.vector(length=6, dtype=wptype) def check_spatial_dot( s: wp.array(dtype=spatial_vector), v: wp.array(dtype=spatial_vector), dot: wp.array(dtype=wptype), ): dot[0] = wptype(2) * wp.spatial_dot(v[0], s[0]) kernel = getkernel(check_spatial_dot, suffix=dtype.__name__) if register_kernels: return s = wp.array(np.random.randn(6).astype(dtype), dtype=spatial_vector, requires_grad=True, device=device) v = wp.array(np.random.randn(6).astype(dtype), dtype=spatial_vector, requires_grad=True, device=device) dot = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s, v, ], outputs=[dot], device=device, ) assert_np_equal(dot.numpy()[0], 2.0 * (v.numpy() * s.numpy()).sum(), tol=tol) tape.backward(loss=dot) sgrads = tape.gradients[s].numpy()[0] expected_grads = 2.0 * v.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v].numpy()[0] expected_grads = 2.0 * s.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=tol) def test_spatial_cross(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_vector = wp.types.vector(length=6, dtype=wptype) def check_spatial_cross( s: wp.array(dtype=spatial_vector), v: wp.array(dtype=spatial_vector), outputs: wp.array(dtype=wptype), outputs_dual: wp.array(dtype=wptype), outputs_wcrossw: wp.array(dtype=wptype), outputs_vcrossw: wp.array(dtype=wptype), outputs_wcrossv: wp.array(dtype=wptype), outputs_vcrossv: wp.array(dtype=wptype), ): c = wp.spatial_cross(s[0], v[0]) d = wp.spatial_cross_dual(s[0], v[0]) # multiply outputs by 2 so we've got something to backpropagate: for i in range(6): outputs[i] = wptype(2) * c[i] outputs_dual[i] = wptype(2) * d[i] sw = wp.spatial_top(s[0]) sv = wp.spatial_bottom(s[0]) vw = wp.spatial_top(v[0]) vv = wp.spatial_bottom(v[0]) wcrossw = wp.cross(sw, vw) vcrossw = wp.cross(sv, vw) wcrossv = wp.cross(sw, vv) vcrossv = wp.cross(sv, vv) for i in range(3): outputs_wcrossw[i] = wcrossw[i] outputs_vcrossw[i] = vcrossw[i] outputs_wcrossv[i] = wcrossv[i] outputs_vcrossv[i] = vcrossv[i] kernel = getkernel(check_spatial_cross, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return s = wp.array(np.random.randn(6).astype(dtype), dtype=spatial_vector, requires_grad=True, device=device) v = wp.array(np.random.randn(6).astype(dtype), dtype=spatial_vector, requires_grad=True, device=device) outputs = wp.zeros(6, dtype=wptype, requires_grad=True, device=device) outputs_dual = wp.zeros(6, dtype=wptype, requires_grad=True, device=device) outputs_wcrossw = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) outputs_vcrossw = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) outputs_wcrossv = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) outputs_vcrossv = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ s, v, ], outputs=[outputs, outputs_dual, outputs_wcrossw, outputs_vcrossw, outputs_wcrossv, outputs_vcrossv], device=device, ) sw = s.numpy()[0, :3] sv = s.numpy()[0, 3:] vw = v.numpy()[0, :3] vv = v.numpy()[0, 3:] wcrossw = np.cross(sw, vw) vcrossw = np.cross(sv, vw) wcrossv = np.cross(sw, vv) vcrossv = np.cross(sv, vv) assert_np_equal(outputs.numpy()[:3], 2 * wcrossw, tol=tol) assert_np_equal(outputs.numpy()[3:], 2 * (vcrossw + wcrossv), tol=tol) assert_np_equal(outputs_dual.numpy()[:3], 2 * (wcrossw + vcrossv), tol=tol) assert_np_equal(outputs_dual.numpy()[3:], 2 * wcrossv, tol=tol) for i in range(3): cmp_w = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_v = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_w_dual = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_v_dual = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_wcrossw = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_vcrossw = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_wcrossv = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_vcrossv = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s, v, ], outputs=[outputs, outputs_dual, outputs_wcrossw, outputs_vcrossw, outputs_wcrossv, outputs_vcrossv], device=device, ) # ith w and v vector components of spatial_cross: wp.launch(output_select_kernel, dim=1, inputs=[outputs, i], outputs=[cmp_w], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, i + 3], outputs=[cmp_v], device=device) # ith w and v vector components of spatial_cross_dual: wp.launch(output_select_kernel, dim=1, inputs=[outputs_dual, i], outputs=[cmp_w_dual], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_dual, i + 3], outputs=[cmp_v_dual], device=device) # ith vector components of some cross products: wp.launch(output_select_kernel, dim=1, inputs=[outputs_wcrossw, i], outputs=[cmp_wcrossw], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_vcrossw, i], outputs=[cmp_vcrossw], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_wcrossv, i], outputs=[cmp_wcrossv], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_vcrossv, i], outputs=[cmp_vcrossv], device=device) def getgrads(cmp): tape.backward(loss=cmp) sgrads = 1.0 * tape.gradients[s].numpy() vgrads = 1.0 * tape.gradients[v].numpy() tape.zero() return sgrads, vgrads dcmp_w_ds, dcmp_w_dv = getgrads(cmp_w) dcmp_v_ds, dcmp_v_dv = getgrads(cmp_v) dcmp_w_dual_ds, dcmp_w_dual_dv = getgrads(cmp_w_dual) dcmp_v_dual_ds, dcmp_v_dual_dv = getgrads(cmp_v_dual) dcmp_wcrossw_ds, dcmp_wcrossw_dv = getgrads(cmp_wcrossw) dcmp_vcrossw_ds, dcmp_vcrossw_dv = getgrads(cmp_vcrossw) dcmp_wcrossv_ds, dcmp_wcrossv_dv = getgrads(cmp_wcrossv) dcmp_vcrossv_ds, dcmp_vcrossv_dv = getgrads(cmp_vcrossv) assert_np_equal(dcmp_w_ds, 2 * dcmp_wcrossw_ds, tol=tol) assert_np_equal(dcmp_w_dv, 2 * dcmp_wcrossw_dv, tol=tol) assert_np_equal(dcmp_v_ds, 2 * (dcmp_vcrossw_ds + dcmp_wcrossv_ds), tol=tol) assert_np_equal(dcmp_v_dv, 2 * (dcmp_vcrossw_dv + dcmp_wcrossv_dv), tol=tol) assert_np_equal(dcmp_w_dual_ds, 2 * (dcmp_wcrossw_ds + dcmp_vcrossv_ds), tol=tol) assert_np_equal(dcmp_w_dual_dv, 2 * (dcmp_wcrossw_dv + dcmp_vcrossv_dv), tol=tol) assert_np_equal(dcmp_v_dual_ds, 2 * dcmp_wcrossv_ds, tol=tol) assert_np_equal(dcmp_v_dual_dv, 2 * dcmp_wcrossv_dv, tol=tol) def test_spatial_top_bottom(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_vector = wp.types.vector(length=6, dtype=wptype) def check_spatial_top_bottom( s: wp.array(dtype=spatial_vector), outputs: wp.array(dtype=wptype), ): top = wp.spatial_top(s[0]) bottom = wp.spatial_bottom(s[0]) outputs[0] = wptype(2) * top[0] outputs[1] = wptype(2) * top[1] outputs[2] = wptype(2) * top[2] outputs[3] = wptype(2) * bottom[0] outputs[4] = wptype(2) * bottom[1] outputs[5] = wptype(2) * bottom[2] kernel = getkernel(check_spatial_top_bottom, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return s = wp.array(np.random.randn(6).astype(dtype), dtype=spatial_vector, requires_grad=True, device=device) outputs = wp.zeros(6, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ s, ], outputs=[outputs], device=device, ) assert_np_equal(outputs.numpy(), 2.0 * s.numpy(), tol=tol) for i in range(6): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s, ], outputs=[outputs], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outputs, i], outputs=[cmp], device=device) tape.backward(loss=cmp) expectedgrads = np.zeros(6) expectedgrads[i] = 2 assert_np_equal(tape.gradients[s].numpy(), expectedgrads) tape.zero() def test_transform_constructors(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec3 = wp.types.vector(length=3, dtype=wptype) transform = wp.types.transformation(dtype=wptype) quat = wp.types.quaternion(dtype=wptype) def check_transform_constructor( input: wp.array(dtype=wptype), out: wp.array(dtype=wptype), ): result = transform(vec3(input[0], input[1], input[2]), quat(input[3], input[4], input[5], input[6])) # multiply the output by 2 so we've got something to backpropagate: out[0] = wptype(2) * result[0] out[1] = wptype(2) * result[1] out[2] = wptype(2) * result[2] out[3] = wptype(2) * result[3] out[4] = wptype(2) * result[4] out[5] = wptype(2) * result[5] out[6] = wptype(2) * result[6] kernel = getkernel(check_transform_constructor, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return p = np.random.randn(3).astype(dtype) q = np.random.randn(4).astype(dtype) q /= np.linalg.norm(q) input = wp.array(np.concatenate((p, q)), requires_grad=True, device=device) output = wp.zeros_like(input) wp.launch(kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy(), 2 * input.numpy(), tol=tol) for i in range(len(input)): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[cmp], device=device) tape.backward(loss=cmp) expectedgrads = np.zeros(len(input)) expectedgrads[i] = 2 assert_np_equal(tape.gradients[input].numpy(), expectedgrads) tape.zero() def test_transform_indexing(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] transform = wp.types.transformation(dtype=wptype) def check_transform_indexing( input: wp.array(dtype=transform), out: wp.array(dtype=wptype), ): inpt = input[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(7): out[idx] = wptype(2) * inpt[i] idx = idx + 1 kernel = getkernel(check_transform_indexing, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return input = wp.array(np.random.randn(1, 7).astype(dtype), dtype=transform, requires_grad=True, device=device) outcmps = wp.zeros(7, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[input], outputs=[outcmps], device=device) assert_np_equal(outcmps.numpy(), 2 * input.numpy().ravel(), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(7): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[input], outputs=[outcmps], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcmps, i], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros(7, dtype=dtype) expectedresult[i] = 2 assert_np_equal(tape.gradients[input].numpy()[0], expectedresult) tape.zero() def test_transform_scalar_multiplication(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] transform = wp.types.transformation(dtype=wptype) def check_transform_scalar_mul( s: wp.array(dtype=wptype), q: wp.array(dtype=transform), outcmps_l: wp.array(dtype=wptype), outcmps_r: wp.array(dtype=wptype), ): lresult = s[0] * q[0] rresult = q[0] * s[0] # multiply outputs by 2 so we've got something to backpropagate: for i in range(7): outcmps_l[i] = wptype(2) * lresult[i] outcmps_r[i] = wptype(2) * rresult[i] kernel = getkernel(check_transform_scalar_mul, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return s = wp.array(np.random.randn(1).astype(dtype), requires_grad=True, device=device) q = wp.array(np.random.randn(1, 7).astype(dtype), dtype=transform, requires_grad=True, device=device) outcmps_l = wp.zeros(7, dtype=wptype, requires_grad=True, device=device) outcmps_r = wp.zeros(7, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[s, q], outputs=[ outcmps_l, outcmps_r, ], device=device, ) assert_np_equal(outcmps_l.numpy(), 2 * s.numpy()[0] * q.numpy(), tol=tol) assert_np_equal(outcmps_r.numpy(), 2 * s.numpy()[0] * q.numpy(), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(7): # test left/right mul gradients: for wrt in [outcmps_l, outcmps_r]: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[s, q], outputs=[outcmps_l, outcmps_r], device=device) wp.launch(output_select_kernel, dim=1, inputs=[wrt, i], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros(7, dtype=dtype) expectedresult[i] = 2 * s.numpy()[0] assert_np_equal(tape.gradients[q].numpy()[0], expectedresult, tol=tol) assert_np_equal(tape.gradients[s].numpy()[0], 2 * q.numpy()[0, i], tol=tol) tape.zero() def test_transform_add_sub(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] transform = wp.types.transformation(dtype=wptype) def check_transform_add_sub( q: wp.array(dtype=transform), v: wp.array(dtype=transform), outputs_add: wp.array(dtype=wptype), outputs_sub: wp.array(dtype=wptype), ): addresult = q[0] + v[0] subresult = q[0] - v[0] for i in range(7): outputs_add[i] = wptype(2) * addresult[i] outputs_sub[i] = wptype(2) * subresult[i] kernel = getkernel(check_transform_add_sub, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return q = wp.array(np.random.randn(7).astype(dtype), dtype=transform, requires_grad=True, device=device) v = wp.array(np.random.randn(7).astype(dtype), dtype=transform, requires_grad=True, device=device) outputs_add = wp.zeros(7, dtype=wptype, requires_grad=True, device=device) outputs_sub = wp.zeros(7, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ q, v, ], outputs=[outputs_add, outputs_sub], device=device, ) assert_np_equal(outputs_add.numpy(), 2 * (q.numpy() + v.numpy()), tol=tol) assert_np_equal(outputs_sub.numpy(), 2 * (q.numpy() - v.numpy()), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(7): # test add gradients: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[q, v], outputs=[outputs_add, outputs_sub], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_add, i], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros(7, dtype=dtype) expectedresult[i] = 2 assert_np_equal(tape.gradients[q].numpy()[0], expectedresult, tol=tol) assert_np_equal(tape.gradients[v].numpy()[0], expectedresult, tol=tol) tape.zero() # test subtraction gradients: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[q, v], outputs=[outputs_add, outputs_sub], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_sub, i], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros(7, dtype=dtype) expectedresult[i] = 2 assert_np_equal(tape.gradients[q].numpy()[0], expectedresult, tol=tol) assert_np_equal(tape.gradients[v].numpy()[0], -expectedresult, tol=tol) tape.zero() def test_transform_get_trans_rot(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] transform = wp.types.transformation(dtype=wptype) def check_transform_get_trans_rot( s: wp.array(dtype=transform), outputs: wp.array(dtype=wptype), ): trans = wp.transform_get_translation(s[0]) q = wp.transform_get_rotation(s[0]) outputs[0] = wptype(2) * trans[0] outputs[1] = wptype(2) * trans[1] outputs[2] = wptype(2) * trans[2] outputs[3] = wptype(2) * q[0] outputs[4] = wptype(2) * q[1] outputs[5] = wptype(2) * q[2] outputs[6] = wptype(2) * q[3] kernel = getkernel(check_transform_get_trans_rot, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return s = wp.array(np.random.randn(7).astype(dtype), dtype=transform, requires_grad=True, device=device) outputs = wp.zeros(7, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ s, ], outputs=[outputs], device=device, ) assert_np_equal(outputs.numpy(), 2.0 * s.numpy(), tol=tol) for i in range(7): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s, ], outputs=[outputs], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outputs, i], outputs=[cmp], device=device) tape.backward(loss=cmp) expectedgrads = np.zeros(7) expectedgrads[i] = 2 assert_np_equal(tape.gradients[s].numpy(), expectedgrads) tape.zero() def test_transform_multiply(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] transform = wp.types.transformation(dtype=wptype) def check_transform_multiply( a: wp.array(dtype=transform), b: wp.array(dtype=transform), outputs: wp.array(dtype=wptype), outputs_fn: wp.array(dtype=wptype), outputs_manual: wp.array(dtype=wptype), ): result = a[0] * b[0] result_fn = wp.transform_multiply(a[0], b[0]) # let's just work out the transform multiplication manually # and compare value/gradients with that: atrans = wp.transform_get_translation(a[0]) arot = wp.transform_get_rotation(a[0]) btrans = wp.transform_get_translation(b[0]) brot = wp.transform_get_rotation(b[0]) trans = wp.quat_rotate(arot, btrans) + atrans rot = arot * brot result_manual = transform(trans, rot) for i in range(7): outputs[i] = wptype(2) * result[i] outputs_fn[i] = wptype(2) * result_fn[i] outputs_manual[i] = wptype(2) * result_manual[i] kernel = getkernel(check_transform_multiply, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return q = np.random.randn(7) s = np.random.randn(7) q[3:] /= np.linalg.norm(q[3:]) s[3:] /= np.linalg.norm(s[3:]) q = wp.array(q.astype(dtype), dtype=transform, requires_grad=True, device=device) s = wp.array(s.astype(dtype), dtype=transform, requires_grad=True, device=device) outputs = wp.zeros(7, dtype=wptype, requires_grad=True, device=device) outputs_fn = wp.zeros(7, dtype=wptype, requires_grad=True, device=device) outputs_manual = wp.zeros(7, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ q, s, ], outputs=[outputs, outputs_fn, outputs_manual], device=device, ) assert_np_equal(outputs.numpy(), outputs_fn.numpy(), tol=tol) assert_np_equal(outputs.numpy(), outputs_manual.numpy(), tol=tol) for i in range(7): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_fn = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_manual = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ q, s, ], outputs=[outputs, outputs_fn, outputs_manual], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outputs, i], outputs=[cmp], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_fn, i], outputs=[cmp_fn], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_manual, i], outputs=[cmp_manual], device=device) tape.backward(loss=cmp) qgrads = 1.0 * tape.gradients[q].numpy() sgrads = 1.0 * tape.gradients[s].numpy() tape.zero() tape.backward(loss=cmp_fn) qgrads_fn = 1.0 * tape.gradients[q].numpy() sgrads_fn = 1.0 * tape.gradients[s].numpy() tape.zero() tape.backward(loss=cmp_manual) qgrads_manual = 1.0 * tape.gradients[q].numpy() sgrads_manual = 1.0 * tape.gradients[s].numpy() tape.zero() assert_np_equal(qgrads, qgrads_fn, tol=tol) assert_np_equal(sgrads, sgrads_fn, tol=tol) assert_np_equal(qgrads, qgrads_manual, tol=tol) assert_np_equal(sgrads, sgrads_manual, tol=tol) def test_transform_inverse(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] transform = wp.types.transformation(dtype=wptype) def check_transform_inverse( a: wp.array(dtype=transform), outputs: wp.array(dtype=wptype), outputs_shouldbeidentity: wp.array(dtype=wptype), outputs_manual: wp.array(dtype=wptype), ): result = wp.transform_inverse(a[0]) idt = result * a[0] # let's just work out the transform inverse manually # and compare value/gradients with that: atrans = wp.transform_get_translation(a[0]) arot = wp.transform_get_rotation(a[0]) rotinv = wp.quat_inverse(arot) result_manual = transform(-wp.quat_rotate(rotinv, atrans), rotinv) for i in range(7): outputs[i] = wptype(2) * result[i] outputs_shouldbeidentity[i] = wptype(2) * idt[i] outputs_manual[i] = wptype(2) * result_manual[i] kernel = getkernel(check_transform_inverse, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return q = np.random.randn(7) s = np.random.randn(7) q[3:] /= np.linalg.norm(q[3:]) s[3:] /= np.linalg.norm(s[3:]) q = wp.array(q.astype(dtype), dtype=transform, requires_grad=True, device=device) outputs = wp.zeros(7, dtype=wptype, requires_grad=True, device=device) outputs_shouldbeidentity = wp.zeros(7, dtype=wptype, requires_grad=True, device=device) outputs_manual = wp.zeros(7, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ q, ], outputs=[outputs, outputs_shouldbeidentity, outputs_manual], device=device, ) # check inverse: assert_np_equal(outputs_shouldbeidentity.numpy(), np.array([0, 0, 0, 0, 0, 0, 2]), tol=tol) # same as manual result: assert_np_equal(outputs.numpy(), outputs_manual.numpy(), tol=tol) for i in range(7): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_manual = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ q, ], outputs=[outputs, outputs_shouldbeidentity, outputs_manual], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outputs, i], outputs=[cmp], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_manual, i], outputs=[cmp_manual], device=device) tape.backward(loss=cmp) qgrads = 1.0 * tape.gradients[q].numpy() tape.zero() tape.backward(loss=cmp_manual) qgrads_manual = 1.0 * tape.gradients[q].numpy() tape.zero() # check gradients against manual result: assert_np_equal(qgrads, qgrads_manual, tol=tol) def test_transform_point_vector(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] transform = wp.types.transformation(dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) def check_transform_point_vector( t: wp.array(dtype=transform), v: wp.array(dtype=vec3), outputs_pt: wp.array(dtype=wptype), outputs_pt_manual: wp.array(dtype=wptype), outputs_vec: wp.array(dtype=wptype), outputs_vec_manual: wp.array(dtype=wptype), ): result_pt = wp.transform_point(t[0], v[0]) result_pt_manual = wp.transform_get_translation(t[0]) + wp.quat_rotate(wp.transform_get_rotation(t[0]), v[0]) result_vec = wp.transform_vector(t[0], v[0]) result_vec_manual = wp.quat_rotate(wp.transform_get_rotation(t[0]), v[0]) for i in range(3): outputs_pt[i] = wptype(2) * result_pt[i] outputs_pt_manual[i] = wptype(2) * result_pt_manual[i] outputs_vec[i] = wptype(2) * result_vec[i] outputs_vec_manual[i] = wptype(2) * result_vec_manual[i] kernel = getkernel(check_transform_point_vector, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return q = np.random.randn(7) q[3:] /= np.linalg.norm(q[3:]) t = wp.array(q.astype(dtype), dtype=transform, requires_grad=True, device=device) v = wp.array(np.random.randn(3), dtype=vec3, requires_grad=True, device=device) outputs_pt = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) outputs_pt_manual = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) outputs_vec = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) outputs_vec_manual = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[t, v], outputs=[outputs_pt, outputs_pt_manual, outputs_vec, outputs_vec_manual], device=device, ) # same as manual results: assert_np_equal(outputs_pt.numpy(), outputs_pt_manual.numpy(), tol=tol) assert_np_equal(outputs_vec.numpy(), outputs_vec_manual.numpy(), tol=tol) for i in range(3): cmp_pt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_pt_manual = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_vec = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_vec_manual = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[t, v], outputs=[outputs_pt, outputs_pt_manual, outputs_vec, outputs_vec_manual], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outputs_pt, i], outputs=[cmp_pt], device=device) wp.launch( output_select_kernel, dim=1, inputs=[outputs_pt_manual, i], outputs=[cmp_pt_manual], device=device ) wp.launch(output_select_kernel, dim=1, inputs=[outputs_vec, i], outputs=[cmp_vec], device=device) wp.launch( output_select_kernel, dim=1, inputs=[outputs_vec_manual, i], outputs=[cmp_vec_manual], device=device ) tape.backward(loss=cmp_pt) tgrads_pt = 1.0 * tape.gradients[t].numpy() vgrads_pt = 1.0 * tape.gradients[v].numpy() tape.zero() tape.backward(loss=cmp_pt_manual) tgrads_pt_manual = 1.0 * tape.gradients[t].numpy() vgrads_pt_manual = 1.0 * tape.gradients[v].numpy() tape.zero() tape.backward(loss=cmp_vec) tgrads_vec = 1.0 * tape.gradients[t].numpy() vgrads_vec = 1.0 * tape.gradients[v].numpy() tape.zero() tape.backward(loss=cmp_vec_manual) tgrads_vec_manual = 1.0 * tape.gradients[t].numpy() vgrads_vec_manual = 1.0 * tape.gradients[v].numpy() tape.zero() # check gradients against manual result: assert_np_equal(tgrads_pt, tgrads_pt_manual, tol=tol) assert_np_equal(vgrads_pt, vgrads_pt_manual, tol=tol) assert_np_equal(tgrads_vec, tgrads_vec_manual, tol=tol) assert_np_equal(vgrads_vec, vgrads_vec_manual, tol=tol) def test_spatial_matrix_constructors(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_matrix = wp.types.matrix(shape=(6, 6), dtype=wptype) def check_spatial_matrix_constructor( input: wp.array(dtype=wptype), out: wp.array(dtype=wptype), ): # multiply the output by 2 so we've got something to backpropagate: result0 = spatial_matrix( input[0], input[1], input[2], input[3], input[4], input[5], input[6], input[7], input[8], input[9], input[10], input[11], input[12], input[13], input[14], input[15], input[16], input[17], input[18], input[19], input[20], input[21], input[22], input[23], input[24], input[25], input[26], input[27], input[28], input[29], input[30], input[31], input[32], input[33], input[34], input[35], ) result1 = spatial_matrix() idx = 0 for i in range(6): for j in range(6): out[idx] = wptype(2) * result0[i, j] idx = idx + 1 for i in range(6): for j in range(6): out[idx] = result1[i, j] idx = idx + 1 kernel = getkernel(check_spatial_matrix_constructor, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return input = wp.array(np.random.randn(6 * 6).astype(dtype), requires_grad=True, device=device) output = wp.zeros(2 * 6 * 6, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy()[: 6 * 6], 2 * input.numpy(), tol=tol) assert_np_equal(output.numpy()[6 * 6 :], np.zeros_like(input.numpy()), tol=tol) for i in range(len(input)): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[cmp], device=device) tape.backward(loss=cmp) expectedgrads = np.zeros(len(input)) expectedgrads[i] = 2 assert_np_equal(tape.gradients[input].numpy(), expectedgrads) tape.zero() break def test_spatial_matrix_indexing(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_matrix = wp.types.matrix(shape=(6, 6), dtype=wptype) def check_spatial_matrix_indexing( input: wp.array(dtype=spatial_matrix), out: wp.array(dtype=wptype), ): inpt = input[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(6): for j in range(6): out[idx] = wptype(2) * inpt[i, j] idx = idx + 1 kernel = getkernel(check_spatial_matrix_indexing, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return input = wp.array(np.random.randn(1, 6, 6).astype(dtype), dtype=spatial_matrix, requires_grad=True, device=device) outcmps = wp.zeros(6 * 6, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[input], outputs=[outcmps], device=device) assert_np_equal(outcmps.numpy(), 2 * input.numpy().ravel(), tol=tol) idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(6): for j in range(6): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[input], outputs=[outcmps], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcmps, idx], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros((6, 6), dtype=dtype) expectedresult[i, j] = 2 assert_np_equal(tape.gradients[input].numpy()[0], expectedresult) tape.zero() idx = idx + 1 def test_spatial_matrix_scalar_multiplication(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_matrix = wp.types.matrix(shape=(6, 6), dtype=wptype) def check_spatial_matrix_scalar_mul( s: wp.array(dtype=wptype), q: wp.array(dtype=spatial_matrix), outcmps_l: wp.array(dtype=wptype), outcmps_r: wp.array(dtype=wptype), ): lresult = s[0] * q[0] rresult = q[0] * s[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(6): for j in range(6): outcmps_l[idx] = wptype(2) * lresult[i, j] outcmps_r[idx] = wptype(2) * rresult[i, j] idx = idx + 1 kernel = getkernel(check_spatial_matrix_scalar_mul, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return s = wp.array(np.random.randn(1).astype(dtype), requires_grad=True, device=device) q = wp.array(np.random.randn(1, 6, 6).astype(dtype), dtype=spatial_matrix, requires_grad=True, device=device) outcmps_l = wp.zeros(6 * 6, dtype=wptype, requires_grad=True, device=device) outcmps_r = wp.zeros(6 * 6, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[s, q], outputs=[ outcmps_l, outcmps_r, ], device=device, ) assert_np_equal(outcmps_l.numpy(), 2 * s.numpy()[0] * q.numpy(), tol=tol) assert_np_equal(outcmps_r.numpy(), 2 * s.numpy()[0] * q.numpy(), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) idx = 0 for i in range(6): for j in range(6): # test left/right mul gradients: for wrt in [outcmps_l, outcmps_r]: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[s, q], outputs=[outcmps_l, outcmps_r], device=device) wp.launch(output_select_kernel, dim=1, inputs=[wrt, idx], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros((6, 6), dtype=dtype) expectedresult[i, j] = 2 * s.numpy()[0] assert_np_equal(tape.gradients[q].numpy()[0], expectedresult, tol=tol) assert_np_equal(tape.gradients[s].numpy()[0], 2 * q.numpy()[0, i, j], tol=tol) tape.zero() idx = idx + 1 def test_spatial_matrix_add_sub(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_matrix = wp.types.matrix(shape=(6, 6), dtype=wptype) def check_spatial_matrix_add_sub( q: wp.array(dtype=spatial_matrix), v: wp.array(dtype=spatial_matrix), outputs_add: wp.array(dtype=wptype), outputs_sub: wp.array(dtype=wptype), ): addresult = q[0] + v[0] subresult = q[0] - v[0] idx = 0 for i in range(6): for j in range(6): outputs_add[idx] = wptype(2) * addresult[i, j] outputs_sub[idx] = wptype(2) * subresult[i, j] idx = idx + 1 kernel = getkernel(check_spatial_matrix_add_sub, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return q = wp.array(np.random.randn(1, 6, 6).astype(dtype), dtype=spatial_matrix, requires_grad=True, device=device) v = wp.array(np.random.randn(1, 6, 6).astype(dtype), dtype=spatial_matrix, requires_grad=True, device=device) outputs_add = wp.zeros(6 * 6, dtype=wptype, requires_grad=True, device=device) outputs_sub = wp.zeros(6 * 6, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ q, v, ], outputs=[outputs_add, outputs_sub], device=device, ) assert_np_equal(outputs_add.numpy(), 2 * (q.numpy() + v.numpy()), tol=tol) assert_np_equal(outputs_sub.numpy(), 2 * (q.numpy() - v.numpy()), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) idx = 0 for i in range(6): for j in range(6): # test add gradients: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[q, v], outputs=[outputs_add, outputs_sub], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_add, idx], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros((6, 6), dtype=dtype) expectedresult[i, j] = 2 assert_np_equal(tape.gradients[q].numpy()[0], expectedresult, tol=tol) assert_np_equal(tape.gradients[v].numpy()[0], expectedresult, tol=tol) tape.zero() # test subtraction gradients: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[q, v], outputs=[outputs_add, outputs_sub], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_sub, idx], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros((6, 6), dtype=dtype) expectedresult[i, j] = 2 assert_np_equal(tape.gradients[q].numpy()[0], expectedresult, tol=tol) assert_np_equal(tape.gradients[v].numpy()[0], -expectedresult, tol=tol) tape.zero() idx = idx + 1 def test_spatial_matvec_multiplication(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 2.0e-2, np.float32: 5.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_matrix = wp.types.matrix(shape=(6, 6), dtype=wptype) spatial_vector = wp.types.vector(length=6, dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_spatial_mat_vec_mul( v: wp.array(dtype=spatial_vector), m: wp.array(dtype=spatial_matrix), outcomponents: wp.array(dtype=wptype), ): result = m[0] * v[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(6): outcomponents[idx] = wptype(2) * result[i] idx = idx + 1 kernel = getkernel(check_spatial_mat_vec_mul, suffix=dtype.__name__) if register_kernels: return v = wp.array(np.random.randn(1, 6).astype(dtype), dtype=spatial_vector, requires_grad=True, device=device) m = wp.array(np.random.randn(1, 6, 6).astype(dtype), dtype=spatial_matrix, requires_grad=True, device=device) outcomponents = wp.zeros(6, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[v, m], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy(), 2 * np.matmul(m.numpy()[0], v.numpy()[0]), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(6): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[v, m], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, i], outputs=[out], device=device) tape.backward(loss=out) assert_np_equal(tape.gradients[v].numpy()[0], 2 * m.numpy()[0, i, :], tol=tol) expectedresult = np.zeros((6, 6), dtype=dtype) expectedresult[i, :] = 2 * v.numpy()[0] assert_np_equal(tape.gradients[m].numpy()[0], expectedresult, tol=tol) tape.zero() def test_spatial_matmat_multiplication(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 2.0e-2, np.float32: 5.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_matrix = wp.types.matrix(shape=(6, 6), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_mat_mul( v: wp.array(dtype=spatial_matrix), m: wp.array(dtype=spatial_matrix), outcomponents: wp.array(dtype=wptype), ): result = m[0] * v[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(6): for j in range(6): outcomponents[idx] = wptype(2) * result[i, j] idx = idx + 1 kernel = getkernel(check_mat_mat_mul, suffix=dtype.__name__) if register_kernels: return v = wp.array(np.random.randn(1, 6, 6).astype(dtype), dtype=spatial_matrix, requires_grad=True, device=device) m = wp.array(np.random.randn(1, 6, 6).astype(dtype), dtype=spatial_matrix, requires_grad=True, device=device) outcomponents = wp.zeros(6 * 6, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[v, m], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy(), 2 * np.matmul(m.numpy()[0], v.numpy()[0]), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) idx = 0 for i in range(6): for j in range(6): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[v, m], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros((6, 6), dtype=dtype) expected[:, j] = 2 * m.numpy()[0, i, :] assert_np_equal(tape.gradients[v].numpy()[0], expected, tol=10 * tol) expected = np.zeros((6, 6), dtype=dtype) expected[i, :] = 2 * v.numpy()[0, :, j] assert_np_equal(tape.gradients[m].numpy()[0], expected, tol=10 * tol) tape.zero() idx = idx + 1 def test_spatial_mat_transpose(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_matrix = wp.types.matrix(shape=(6, 6), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_spatial_mat_transpose( m: wp.array(dtype=spatial_matrix), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: mat = wptype(2) * wp.transpose(m[0]) idx = 0 for i in range(6): for j in range(6): outcomponents[idx] = mat[i, j] idx = idx + 1 kernel = getkernel(check_spatial_mat_transpose, suffix=dtype.__name__) if register_kernels: return m = wp.array(np.random.randn(1, 6, 6).astype(dtype), dtype=spatial_matrix, requires_grad=True, device=device) outcomponents = wp.zeros(6 * 6, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[m], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy(), 2 * m.numpy()[0].T, tol=tol) idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(6): for j in range(6): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros((6, 6), dtype=dtype) expectedresult[j, i] = 2 assert_np_equal(tape.gradients[m].numpy()[0], expectedresult) tape.zero() idx = idx + 1 def test_spatial_outer_product(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] spatial_vector = wp.types.vector(length=6, dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_spatial_outer_product( s: wp.array(dtype=spatial_vector), v: wp.array(dtype=spatial_vector), outcomponents: wp.array(dtype=wptype), ): mresult = wptype(2) * wp.outer(s[0], v[0]) # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(6): for j in range(6): outcomponents[idx] = mresult[i, j] idx = idx + 1 kernel = getkernel(check_spatial_outer_product, suffix=dtype.__name__) if register_kernels: return s = wp.array(np.random.randn(1, 6).astype(dtype), dtype=spatial_vector, requires_grad=True, device=device) v = wp.array(np.random.randn(1, 6).astype(dtype), dtype=spatial_vector, requires_grad=True, device=device) outcomponents = wp.zeros(6 * 6, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[s, v], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy(), 2 * s.numpy()[0, :, None] * v.numpy()[0, None, :], tol=tol) idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(6): for j in range(6): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s, v, ], outputs=[outcomponents], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) # this component's gonna be s_i * v_j, so its s gradient is gonna be nozero # at the ith component and its v gradient will be nonzero at the jth component: expectedresult = np.zeros((6), dtype=dtype) expectedresult[i] = 2 * v.numpy()[0, j] assert_np_equal(tape.gradients[s].numpy()[0], expectedresult, tol=10 * tol) expectedresult = np.zeros((6), dtype=dtype) expectedresult[j] = 2 * s.numpy()[0, i] assert_np_equal(tape.gradients[v].numpy()[0], expectedresult, tol=10 * tol) tape.zero() idx = idx + 1 def test_spatial_adjoint(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat3 = wp.types.matrix(shape=(3, 3), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_spatial_adjoint( R: wp.array(dtype=mat3), S: wp.array(dtype=mat3), outcomponents: wp.array(dtype=wptype), ): mresult = wptype(2) * wp.spatial_adjoint(R[0], S[0]) # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(6): for j in range(6): outcomponents[idx] = mresult[i, j] idx = idx + 1 kernel = getkernel(check_spatial_adjoint, suffix=dtype.__name__) if register_kernels: return R = wp.array(np.random.randn(1, 3, 3).astype(dtype), dtype=mat3, requires_grad=True, device=device) S = wp.array(np.random.randn(1, 3, 3).astype(dtype), dtype=mat3, requires_grad=True, device=device) outcomponents = wp.zeros(6 * 6, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[R, S], outputs=[outcomponents], device=device) result = outcomponents.numpy().reshape(6, 6) expected = np.zeros_like(result) expected[:3, :3] = R.numpy() expected[3:, 3:] = R.numpy() expected[3:, :3] = S.numpy() assert_np_equal(result, 2 * expected, tol=tol) idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(6): for j in range(6): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ R, S, ], outputs=[outcomponents], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) # this component's gonna be s_i * v_j, so its s gradient is gonna be nozero # at the ith component and its v gradient will be nonzero at the jth component: expectedresult = np.zeros((3, 3), dtype=dtype) if (i // 3 == 0 and j // 3 == 0) or (i // 3 == 1 and j // 3 == 1): expectedresult[i % 3, j % 3] = 2 assert_np_equal(tape.gradients[R].numpy()[0], expectedresult, tol=10 * tol) expectedresult = np.zeros((3, 3), dtype=dtype) if i // 3 == 1 and j // 3 == 0: expectedresult[i % 3, j % 3] = 2 assert_np_equal(tape.gradients[S].numpy()[0], expectedresult, tol=10 * tol) tape.zero() idx = idx + 1 def test_transform_identity(test, device, dtype, register_kernels=False): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def transform_identity_test(output: wp.array(dtype=wptype)): t = wp.transform_identity(dtype=wptype) for i in range(7): output[i] = t[i] def transform_identity_test_default(output: wp.array(dtype=wp.float32)): t = wp.transform_identity() for i in range(7): output[i] = t[i] quat_identity_kernel = getkernel(transform_identity_test, suffix=dtype.__name__) quat_identity_default_kernel = getkernel(transform_identity_test_default, suffix=np.float32.__name__) if register_kernels: return output = wp.zeros(7, dtype=wptype, device=device) wp.launch(quat_identity_kernel, dim=1, inputs=[], outputs=[output], device=device) expected = np.zeros_like(output.numpy()) expected[-1] = 1 assert_np_equal(output.numpy(), expected) # let's just test that it defaults to float32: output = wp.zeros(7, dtype=wp.float32, device=device) wp.launch(quat_identity_default_kernel, dim=1, inputs=[], outputs=[output], device=device) expected = np.zeros_like(output.numpy()) expected[-1] = 1 assert_np_equal(output.numpy(), expected) def test_transform_anon_type_instance(test, device, dtype, register_kernels=False): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def transform_create_test(input: wp.array(dtype=wptype), output: wp.array(dtype=wptype)): t = wp.transformation( wp.vector(input[0], input[1], input[2]), wp.quaternion(input[3], input[4], input[5], input[6]) ) for i in range(7): output[i] = wptype(2) * t[i] transform_create_kernel = getkernel(transform_create_test, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return input = wp.array(np.random.randn(7).astype(dtype), requires_grad=True, device=device) output = wp.zeros(7, dtype=wptype, requires_grad=True, device=device) wp.launch(transform_create_kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy(), 2 * input.numpy()) for i in range(len(input)): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch(transform_create_kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[cmp], device=device) tape.backward(loss=cmp) expectedgrads = np.zeros(len(input)) expectedgrads[i] = 2 assert_np_equal(tape.gradients[input].numpy(), expectedgrads) tape.zero() def register(parent): devices = get_test_devices() class TestSpatial(parent): pass for dtype in np_float_types: add_function_test_register_kernel( TestSpatial, f"test_spatial_vector_constructors_{dtype.__name__}", test_spatial_vector_constructors, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_spatial_vector_indexing_{dtype.__name__}", test_spatial_vector_indexing, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_spatial_vector_scalar_multiplication_{dtype.__name__}", test_spatial_vector_scalar_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_spatial_vector_add_sub_{dtype.__name__}", test_spatial_vector_add_sub, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_spatial_dot_{dtype.__name__}", test_spatial_dot, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestSpatial, f"test_spatial_cross_{dtype.__name__}", test_spatial_cross, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestSpatial, f"test_spatial_top_bottom_{dtype.__name__}", test_spatial_top_bottom, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_transform_constructors_{dtype.__name__}", test_transform_constructors, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_transform_anon_type_instance_{dtype.__name__}", test_transform_anon_type_instance, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_transform_identity_{dtype.__name__}", test_transform_identity, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_transform_indexing_{dtype.__name__}", test_transform_indexing, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_transform_get_trans_rot_{dtype.__name__}", test_transform_get_trans_rot, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_transform_multiply_{dtype.__name__}", test_transform_multiply, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_transform_inverse_{dtype.__name__}", test_transform_inverse, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_transform_point_vector_{dtype.__name__}", test_transform_point_vector, devices=devices, dtype=dtype, ) # are these two valid? They don't seem to be doing things you'd want to do, # maybe they should be removed add_function_test_register_kernel( TestSpatial, f"test_transform_scalar_multiplication_{dtype.__name__}", test_transform_scalar_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_transform_add_sub_{dtype.__name__}", test_transform_add_sub, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_spatial_matrix_constructors_{dtype.__name__}", test_spatial_matrix_constructors, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_spatial_matrix_indexing_{dtype.__name__}", test_spatial_matrix_indexing, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_spatial_matrix_scalar_multiplication_{dtype.__name__}", test_spatial_matrix_scalar_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_spatial_matrix_add_sub_{dtype.__name__}", test_spatial_matrix_add_sub, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_spatial_matvec_multiplication_{dtype.__name__}", test_spatial_matvec_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_spatial_matmat_multiplication_{dtype.__name__}", test_spatial_matmat_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_spatial_outer_product_{dtype.__name__}", test_spatial_outer_product, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestSpatial, f"test_spatial_adjoint_{dtype.__name__}", test_spatial_adjoint, devices=devices, dtype=dtype ) # \TODO: test spatial_mass and spatial_jacobian return TestSpatial if __name__ == "__main__": wp.build.clear_kernel_cache() c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_spatial.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import numpy as np import math import warp as wp from warp.tests.test_base import * np.random.seed(42) wp.init() # triangulate a list of polygon face indices def triangulate(face_counts, face_indices): num_tris = np.sum(np.subtract(face_counts, 2)) num_tri_vtx = num_tris * 3 tri_indices = np.zeros(num_tri_vtx, dtype=int) ctr = 0 wedgeIdx = 0 for nb in face_counts: for i in range(nb - 2): tri_indices[ctr] = face_indices[wedgeIdx] tri_indices[ctr + 1] = face_indices[wedgeIdx + i + 1] tri_indices[ctr + 2] = face_indices[wedgeIdx + i + 2] ctr += 3 wedgeIdx += nb return tri_indices @wp.kernel def mesh_query_ray_loss( mesh: wp.uint64, query_points: wp.array(dtype=wp.vec3), query_dirs: wp.array(dtype=wp.vec3), intersection_points: wp.array(dtype=wp.vec3), loss: wp.array(dtype=float), ): tid = wp.tid() p = query_points[tid] D = query_dirs[tid] max_t = 10012.0 t = float(0.0) bary_u = float(0.0) bary_v = float(0.0) sign = float(0.0) normal = wp.vec3() face_index = int(0) q = wp.vec3() if wp.mesh_query_ray(mesh, p, D, max_t, t, bary_u, bary_v, sign, normal, face_index): q = wp.mesh_eval_position(mesh, face_index, bary_u, bary_v) intersection_points[tid] = q l = q[0] loss[tid] = l def test_mesh_query_ray_grad(test, device): from pxr import Usd, UsdGeom, Gf, Sdf # test tri # print("Testing Single Triangle") # mesh_points = wp.array(np.array([[0.0, 0.0, 0.0], [2.0, 0.0, 0.0], [0.0, 2.0, 0.0]]), dtype=wp.vec3, device=device) # mesh_indices = wp.array(np.array([0,1,2]), dtype=int, device=device) mesh = Usd.Stage.Open(os.path.abspath(os.path.join(os.path.dirname(__file__), "assets/torus.usda"))) mesh_geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/World/Torus")) mesh_counts = mesh_geom.GetFaceVertexCountsAttr().Get() mesh_indices = mesh_geom.GetFaceVertexIndicesAttr().Get() tri_indices = triangulate(mesh_counts, mesh_indices) mesh_points = wp.array(np.array(mesh_geom.GetPointsAttr().Get()), dtype=wp.vec3, device=device) mesh_indices = wp.array(np.array(tri_indices), dtype=int, device=device) p = wp.vec3(50.0, 50.0, 0.0) D = wp.vec3(0.0, -1.0, 0.0) # create mesh mesh = wp.Mesh(points=mesh_points, velocities=None, indices=mesh_indices) tape = wp.Tape() # analytic gradients with tape: query_points = wp.array(p, dtype=wp.vec3, device=device, requires_grad=True) query_dirs = wp.array(D, dtype=wp.vec3, device=device, requires_grad=True) intersection_points = wp.zeros(n=1, dtype=wp.vec3, device=device) loss = wp.zeros(n=1, dtype=float, device=device, requires_grad=True) wp.launch( kernel=mesh_query_ray_loss, dim=1, inputs=[mesh.id, query_points, query_dirs, intersection_points, loss], device=device, ) tape.backward(loss=loss) q = intersection_points.numpy().flatten() analytic_p = tape.gradients[query_points].numpy().flatten() analytic_D = tape.gradients[query_dirs].numpy().flatten() # numeric gradients # ray origin eps = 1.0e-3 loss_values_p = [] numeric_p = np.zeros(3) offset_query_points = [ wp.vec3(p[0] - eps, p[1], p[2]), wp.vec3(p[0] + eps, p[1], p[2]), wp.vec3(p[0], p[1] - eps, p[2]), wp.vec3(p[0], p[1] + eps, p[2]), wp.vec3(p[0], p[1], p[2] - eps), wp.vec3(p[0], p[1], p[2] + eps), ] for i in range(6): q = offset_query_points[i] query_points = wp.array(q, dtype=wp.vec3, device=device) query_dirs = wp.array(D, dtype=wp.vec3, device=device) intersection_points = wp.zeros(n=1, dtype=wp.vec3, device=device) loss = wp.zeros(n=1, dtype=float, device=device) wp.launch( kernel=mesh_query_ray_loss, dim=1, inputs=[mesh.id, query_points, query_dirs, intersection_points, loss], device=device, ) loss_values_p.append(loss.numpy()[0]) for i in range(3): l_0 = loss_values_p[i * 2] l_1 = loss_values_p[i * 2 + 1] gradient = (l_1 - l_0) / (2.0 * eps) numeric_p[i] = gradient # ray dir loss_values_D = [] numeric_D = np.zeros(3) offset_query_dirs = [ wp.vec3(D[0] - eps, D[1], D[2]), wp.vec3(D[0] + eps, D[1], D[2]), wp.vec3(D[0], D[1] - eps, D[2]), wp.vec3(D[0], D[1] + eps, D[2]), wp.vec3(D[0], D[1], D[2] - eps), wp.vec3(D[0], D[1], D[2] + eps), ] for i in range(6): q = offset_query_dirs[i] query_points = wp.array(p, dtype=wp.vec3, device=device) query_dirs = wp.array(q, dtype=wp.vec3, device=device) intersection_points = wp.zeros(n=1, dtype=wp.vec3, device=device) loss = wp.zeros(n=1, dtype=float, device=device) wp.launch( kernel=mesh_query_ray_loss, dim=1, inputs=[mesh.id, query_points, query_dirs, intersection_points, loss], device=device, ) loss_values_D.append(loss.numpy()[0]) for i in range(3): l_0 = loss_values_D[i * 2] l_1 = loss_values_D[i * 2 + 1] gradient = (l_1 - l_0) / (2.0 * eps) numeric_D[i] = gradient error_p = ((analytic_p - numeric_p) * (analytic_p - numeric_p)).sum(axis=0) error_D = ((analytic_D - numeric_D) * (analytic_D - numeric_D)).sum(axis=0) tolerance = 1.0e-3 test.assertTrue(error_p < tolerance, f"error is {error_p} which is >= {tolerance}") test.assertTrue(error_D < tolerance, f"error is {error_D} which is >= {tolerance}") @wp.kernel def raycast_kernel( mesh: wp.uint64, ray_starts: wp.array(dtype=wp.vec3), ray_directions: wp.array(dtype=wp.vec3), ray_hits: wp.array(dtype=wp.vec3), count: wp.array(dtype=int), ): t = float(0.0) # hit distance along ray u = float(0.0) # hit face barycentric u v = float(0.0) # hit face barycentric v sign = float(0.0) # hit face sign n = wp.vec3() # hit face normal f = int(0) # hit face index max_dist = 1e6 # max raycast disance # ray cast against the mesh tid = wp.tid() if wp.mesh_query_ray(mesh, ray_starts[tid], ray_directions[tid], max_dist, t, u, v, sign, n, f): wp.atomic_add(count, 0, 1) # tests rays against a quad of two connected triangles # with rays exactly falling on the edge, tests that # there are no leaks def test_mesh_query_ray_edge(test, device): # Create raycast starts and directions xx, yy = np.meshgrid(np.arange(0.1, 0.4, 0.01), np.arange(0.1, 0.4, 0.01)) xx = xx.flatten().reshape(-1, 1) yy = yy.flatten().reshape(-1, 1) zz = np.ones_like(xx) ray_starts = np.concatenate((xx, yy, zz), axis=1) ray_dirs = np.zeros_like(ray_starts) ray_dirs[:, 2] = -1.0 # Create simple square mesh vertices = np.array([[0.0, 0.0, 0.0], [0.0, 0.5, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0]], dtype=np.float32) triangles = np.array([[1, 0, 2], [1, 2, 3]], dtype=np.int32) mesh = wp.Mesh( points=wp.array(vertices, dtype=wp.vec3, device=device), indices=wp.array(triangles.flatten(), dtype=int, device=device), ) counts = wp.zeros(1, dtype=int, device=device) n = len(ray_starts) ray_starts = wp.array(ray_starts, shape=(n,), dtype=wp.vec3, device=device) ray_dirs = wp.array(ray_dirs, shape=(n,), dtype=wp.vec3, device=device) ray_hits = wp.zeros((n,), dtype=wp.vec3, device=device) wp.launch(kernel=raycast_kernel, dim=n, inputs=[mesh.id, ray_starts, ray_dirs, ray_hits, counts], device=device) wp.synchronize() test.assertEqual(counts.numpy()[0], n) def register(parent): devices = get_test_devices() class TestMeshQueryRay(parent): pass add_function_test(TestMeshQueryRay, "test_mesh_query_ray_edge", test_mesh_query_ray_edge, devices=devices) # USD import failures should not count as a test failure try: from pxr import Usd, UsdGeom have_usd = True except: have_usd = False if have_usd: add_function_test(TestMeshQueryRay, "test_mesh_query_ray_grad", test_mesh_query_ray_grad, devices=devices) return TestMeshQueryRay if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_mesh_query_ray.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp from warp.tests.test_base import * np.random.seed(532) wp.init() num_points = 4096 dim_x = 128 dim_y = 128 dim_z = 128 scale = 150.0 cell_radius = 8.0 query_radius = 8.0 num_runs = 4 print_enabled = False @wp.kernel def count_neighbors(grid: wp.uint64, radius: float, points: wp.array(dtype=wp.vec3), counts: wp.array(dtype=int)): tid = wp.tid() # order threads by cell i = wp.hash_grid_point_id(grid, tid) # query point p = points[i] count = int(0) # construct query around point p for index in wp.hash_grid_query(grid, p, radius): # compute distance to point d = wp.length(p - points[index]) if d <= radius: count += 1 counts[i] = count @wp.kernel def count_neighbors_reference( radius: float, points: wp.array(dtype=wp.vec3), counts: wp.array(dtype=int), num_points: int ): tid = wp.tid() i = tid % num_points j = tid // num_points # query point p = points[i] q = points[j] # compute distance to point d = wp.length(p - q) if d <= radius: wp.atomic_add(counts, i, 1) def test_hashgrid_query(test, device): grid = wp.HashGrid(dim_x, dim_y, dim_z, device) for i in range(num_runs): if print_enabled: print(f"Run: {i+1}") print("---------") np.random.seed(532) points = np.random.rand(num_points, 3) * scale - np.array((scale, scale, scale)) * 0.5 def particle_grid(dim_x, dim_y, dim_z, lower, radius, jitter): points = np.meshgrid( np.linspace(0, dim_x, dim_x), np.linspace(0, dim_y, dim_y), np.linspace(0, dim_z, dim_z) ) points_t = np.array((points[0], points[1], points[2])).T * radius * 2.0 + np.array(lower) points_t = points_t + np.random.rand(*points_t.shape) * radius * jitter return points_t.reshape((-1, 3)) points = particle_grid(16, 32, 16, (0.0, 0.3, 0.0), cell_radius * 0.25, 0.1) points_arr = wp.array(points, dtype=wp.vec3, device=device) counts_arr = wp.zeros(len(points), dtype=int, device=device) counts_arr_ref = wp.zeros(len(points), dtype=int, device=device) with wp.ScopedTimer("brute", active=print_enabled): wp.launch( kernel=count_neighbors_reference, dim=len(points) * len(points), inputs=[query_radius, points_arr, counts_arr_ref, len(points)], device=device, ) wp.synchronize() with wp.ScopedTimer("grid build", active=print_enabled): grid.build(points_arr, cell_radius) wp.synchronize() with wp.ScopedTimer("grid query", active=print_enabled): wp.launch( kernel=count_neighbors, dim=len(points), inputs=[grid.id, query_radius, points_arr, counts_arr], device=device, ) wp.synchronize() counts = counts_arr.numpy() counts_ref = counts_arr_ref.numpy() if print_enabled: print(f"Grid min: {np.min(counts)} max: {np.max(counts)} avg: {np.mean(counts)}") print(f"Ref min: {np.min(counts_ref)} max: {np.max(counts_ref)} avg: {np.mean(counts_ref)}") print(f"Passed: {np.array_equal(counts, counts_ref)}") test.assertTrue(np.array_equal(counts, counts_ref)) def register(parent): devices = get_test_devices() class TestHashGrid(parent): pass add_function_test(TestHashGrid, "test_hashgrid_query", test_hashgrid_query, devices=devices) return TestHashGrid if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2, failfast=False)
warp-main
warp/tests/test_hash_grid.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import math import warp as wp from warp.tests.test_base import * wp.init() @wp.kernel def test_operators_scalar_float(): a = 1.0 b = 2.0 c = a * b d = a + b e = a / b f = a - b g = b**8.0 h = 10.0 // 3.0 expect_eq(c, 2.0) expect_eq(d, 3.0) expect_eq(e, 0.5) expect_eq(f, -1.0) expect_eq(g, 256.0) expect_eq(h, 3.0) @wp.kernel def test_operators_scalar_int(): a = 1 b = 2 c = a * b d = a + b e = a / b f = a - b # g = b**8 # integer pow not implemented h = 10 // 3 i = 10 % 3 j = 2 << 3 k = 16 >> 1 expect_eq(c, 2) expect_eq(d, 3) expect_eq(e, 0) expect_eq(f, -1) # expect_eq(g, 256) expect_eq(h, 3) expect_eq(i, 1) expect_eq(j, 16) expect_eq(k, 8) f0 = wp.uint32(1 << 0) f1 = wp.uint32(1 << 3) expect_eq(f0 | f1, f0 + f1) expect_eq(f0 & f1, wp.uint32(0)) l = wp.uint8(0) for n in range(8): l |= wp.uint8(1 << n) expect_eq(l, ~wp.uint8(0)) @wp.kernel def test_operators_vector_index(): v = wp.vec4(1.0, 2.0, 3.0, 4.0) expect_eq(v[0], 1.0) expect_eq(v[1], 2.0) expect_eq(v[2], 3.0) expect_eq(v[3], 4.0) @wp.kernel def test_operators_matrix_index(): m22 = wp.mat22(1.0, 2.0, 3.0, 4.0) expect_eq(m22[0, 0], 1.0) expect_eq(m22[0, 1], 2.0) expect_eq(m22[1, 0], 3.0) expect_eq(m22[1, 1], 4.0) @wp.kernel def test_operators_vec3(): v = vec3(1.0, 2.0, 3.0) r0 = v * 3.0 r1 = 3.0 * v expect_eq(r0, vec3(3.0, 6.0, 9.0)) expect_eq(r1, vec3(3.0, 6.0, 9.0)) col0 = vec3(1.0, 0.0, 0.0) col1 = vec3(0.0, 2.0, 0.0) col2 = vec3(0.0, 0.0, 3.0) m = mat33(col0, col1, col2) expect_eq(m * vec3(1.0, 0.0, 0.0), col0) expect_eq(m * vec3(0.0, 1.0, 0.0), col1) expect_eq(m * vec3(0.0, 0.0, 1.0), col2) two = vec3(1.0) * 2.0 expect_eq(two, vec3(2.0, 2.0, 2.0)) @wp.kernel def test_operators_vec4(): v = vec4(1.0, 2.0, 3.0, 4.0) r0 = v * 3.0 r1 = 3.0 * v expect_eq(r0, vec4(3.0, 6.0, 9.0, 12.0)) expect_eq(r1, vec4(3.0, 6.0, 9.0, 12.0)) col0 = vec4(1.0, 0.0, 0.0, 0.0) col1 = vec4(0.0, 2.0, 0.0, 0.0) col2 = vec4(0.0, 0.0, 3.0, 0.0) col3 = vec4(0.0, 0.0, 0.0, 4.0) m = mat44(col0, col1, col2, col3) expect_eq(m * vec4(1.0, 0.0, 0.0, 0.0), col0) expect_eq(m * vec4(0.0, 1.0, 0.0, 0.0), col1) expect_eq(m * vec4(0.0, 0.0, 1.0, 0.0), col2) expect_eq(m * vec4(0.0, 0.0, 0.0, 1.0), col3) two = vec4(1.0) * 2.0 expect_eq(two, vec4(2.0, 2.0, 2.0, 2.0)) @wp.kernel def test_operators_mat22(): m = mat22(1.0, 2.0, 3.0, 4.0) r = mat22(3.0, 6.0, 9.0, 12.0) r0 = m * 3.0 r1 = 3.0 * m expect_eq(r0, r) expect_eq(r1, r) expect_eq(r0[0, 0], 3.0) expect_eq(r0[0, 1], 6.0) expect_eq(r0[1, 0], 9.0) expect_eq(r0[1, 1], 12.0) expect_eq(r0[0], wp.vec2(3.0, 6.0)) expect_eq(r0[1], wp.vec2(9.0, 12.0)) @wp.kernel def test_operators_mat33(): m = mat33(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0) r = mat33(3.0, 6.0, 9.0, 12.0, 15.0, 18.0, 21.0, 24.0, 27.0) r0 = m * 3.0 r1 = 3.0 * m expect_eq(r0, r) expect_eq(r1, r) expect_eq(r0[0, 0], 3.0) expect_eq(r0[0, 1], 6.0) expect_eq(r0[0, 2], 9.0) expect_eq(r0[1, 0], 12.0) expect_eq(r0[1, 1], 15.0) expect_eq(r0[1, 2], 18.0) expect_eq(r0[2, 0], 21.0) expect_eq(r0[2, 1], 24.0) expect_eq(r0[2, 2], 27.0) expect_eq(r0[0], wp.vec3(3.0, 6.0, 9.0)) expect_eq(r0[1], wp.vec3(12.0, 15.0, 18.0)) expect_eq(r0[2], wp.vec3(21.0, 24.0, 27.0)) @wp.kernel def test_operators_mat44(): m = mat44(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0) r = mat44(3.0, 6.0, 9.0, 12.0, 15.0, 18.0, 21.0, 24.0, 27.0, 30.0, 33.0, 36.0, 39.0, 42.0, 45.0, 48.0) r0 = m * 3.0 r1 = 3.0 * m expect_eq(r0, r) expect_eq(r1, r) expect_eq(r0[0, 0], 3.0) expect_eq(r0[0, 1], 6.0) expect_eq(r0[0, 2], 9.0) expect_eq(r0[0, 3], 12.0) expect_eq(r0[1, 0], 15.0) expect_eq(r0[1, 1], 18.0) expect_eq(r0[1, 2], 21.0) expect_eq(r0[1, 3], 24.0) expect_eq(r0[2, 0], 27.0) expect_eq(r0[2, 1], 30.0) expect_eq(r0[2, 2], 33.0) expect_eq(r0[2, 3], 36.0) expect_eq(r0[3, 0], 39.0) expect_eq(r0[3, 1], 42.0) expect_eq(r0[3, 2], 45.0) expect_eq(r0[3, 3], 48.0) expect_eq(r0[0], wp.vec4(3.0, 6.0, 9.0, 12.0)) expect_eq(r0[1], wp.vec4(15.0, 18.0, 21.0, 24.0)) expect_eq(r0[2], wp.vec4(27.0, 30.0, 33.0, 36.0)) expect_eq(r0[3], wp.vec4(39.0, 42.0, 45.0, 48.0)) def register(parent): devices = get_test_devices() class TestOperators(parent): pass add_kernel_test(TestOperators, test_operators_scalar_float, dim=1, devices=devices) add_kernel_test(TestOperators, test_operators_scalar_int, dim=1, devices=devices) add_kernel_test(TestOperators, test_operators_matrix_index, dim=1, devices=devices) add_kernel_test(TestOperators, test_operators_vector_index, dim=1, devices=devices) add_kernel_test(TestOperators, test_operators_vec3, dim=1, devices=devices) add_kernel_test(TestOperators, test_operators_vec4, dim=1, devices=devices) add_kernel_test(TestOperators, test_operators_mat22, dim=1, devices=devices) add_kernel_test(TestOperators, test_operators_mat33, dim=1, devices=devices) add_kernel_test(TestOperators, test_operators_mat44, dim=1, devices=devices) return TestOperators if __name__ == "__main__": wp.force_load() c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_operators.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp from warp.tests.test_base import * wp.init() @wp.kernel def mul_constant(x: wp.array(dtype=float), y: wp.array(dtype=float)): tid = wp.tid() y[tid] = x[tid] * 2.0 @wp.kernel def mul_variable(x: wp.array(dtype=float), y: wp.array(dtype=float), z: wp.array(dtype=float)): tid = wp.tid() z[tid] = x[tid] * y[tid] @wp.kernel def dot_product(x: wp.array(dtype=float), y: wp.array(dtype=float), z: wp.array(dtype=float)): tid = wp.tid() wp.atomic_add(z, 0, x[tid] * y[tid]) def test_tape_mul_constant(test, device): dim = 8 iters = 16 tape = wp.Tape() # record onto tape with tape: # input data x0 = wp.array(np.zeros(dim), dtype=wp.float32, device=device, requires_grad=True) x = x0 for i in range(iters): y = wp.empty_like(x, requires_grad=True) wp.launch(kernel=mul_constant, dim=dim, inputs=[x], outputs=[y], device=device) x = y # loss = wp.sum(x) x.grad = wp.array(np.ones(dim), device=device, dtype=wp.float32) # run backward tape.backward() # grad = 2.0^iters assert_np_equal(tape.gradients[x0].numpy(), np.ones(dim) * (2**iters)) def test_tape_mul_variable(test, device): dim = 8 tape = wp.Tape() # record onto tape with tape: # input data x = wp.array(np.ones(dim) * 16.0, dtype=wp.float32, device=device, requires_grad=True) y = wp.array(np.ones(dim) * 32.0, dtype=wp.float32, device=device, requires_grad=True) z = wp.zeros_like(x) wp.launch(kernel=mul_variable, dim=dim, inputs=[x, y], outputs=[z], device=device) # loss = wp.sum(x) z.grad = wp.array(np.ones(dim), device=device, dtype=wp.float32) # run backward tape.backward() # grad_x=y, grad_y=x assert_np_equal(tape.gradients[x].numpy(), y.numpy()) assert_np_equal(tape.gradients[y].numpy(), x.numpy()) # run backward again with different incoming gradient # should accumulate the same gradients again onto output # so gradients = 2.0*prev tape.backward() assert_np_equal(tape.gradients[x].numpy(), y.numpy() * 2.0) assert_np_equal(tape.gradients[y].numpy(), x.numpy() * 2.0) def test_tape_dot_product(test, device): dim = 8 tape = wp.Tape() # record onto tape with tape: # input data x = wp.array(np.ones(dim) * 16.0, dtype=wp.float32, device=device, requires_grad=True) y = wp.array(np.ones(dim) * 32.0, dtype=wp.float32, device=device, requires_grad=True) z = wp.zeros(n=1, dtype=wp.float32, device=device, requires_grad=True) wp.launch(kernel=dot_product, dim=dim, inputs=[x, y], outputs=[z], device=device) # scalar loss tape.backward(loss=z) # grad_x=y, grad_y=x assert_np_equal(tape.gradients[x].numpy(), y.numpy()) assert_np_equal(tape.gradients[y].numpy(), x.numpy()) def register(parent): devices = get_test_devices() class TestTape(parent): pass add_function_test(TestTape, "test_tape_mul_constant", test_tape_mul_constant, devices=devices) add_function_test(TestTape, "test_tape_mul_variable", test_tape_mul_variable, devices=devices) add_function_test(TestTape, "test_tape_dot_product", test_tape_dot_product, devices=devices) return TestTape if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_tape.py
warp-main
warp/tests/__init__.py
import numpy as np import warp as wp from warp.utils import runlength_encode from warp.tests.test_base import * wp.init() def test_runlength_encode_int(test, device): n = 1000 values_np = np.sort(np.random.randint(-10, 10, n, dtype=int)) unique_values_np, unique_counts_np = np.unique(values_np, return_counts=True) values = wp.array(values_np, device=device, dtype=int) unique_values = wp.empty_like(values) unique_counts = wp.empty_like(values) run_count = runlength_encode(values, unique_values, unique_counts) assert run_count == len(unique_values_np) assert (unique_values.numpy()[:run_count] == unique_values_np[:run_count]).all() assert (unique_counts.numpy()[:run_count] == unique_counts_np[:run_count]).all() def register(parent): devices = get_test_devices() class TestRunlengthEncode(parent): pass add_function_test(TestRunlengthEncode, "test_runlength_encode_int", test_runlength_encode_int, devices=devices) return TestRunlengthEncode if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_runlength_encode.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp from warp.tests.test_base import * import unittest wp.init() @wp.struct class Model: dt: float gravity: wp.vec3 m: wp.array(dtype=float) @wp.struct class State: x: wp.array(dtype=wp.vec3) v: wp.array(dtype=wp.vec3) @wp.kernel def kernel_step(state_in: State, state_out: State, model: Model): i = wp.tid() state_out.v[i] = state_in.v[i] + model.gravity / model.m[i] * model.dt state_out.x[i] = state_in.x[i] + state_out.v[i] * model.dt @wp.kernel def kernel_step_with_copy(state_in: State, state_out: State, model: Model): i = wp.tid() model_rescaled = Model(1.0, model.gravity / model.m[i] * model.dt, model.m) state_out_copy = State(state_out.x, state_out.v) state_out_copy.v[i] = state_in.v[i] + model_rescaled.gravity state_out_copy.x[i] = state_in.x[i] + state_out_copy.v[i] * model.dt def test_step(test, device): dim = 5 dt = 0.01 gravity = np.array([0, 0, -9.81]) m = np.ones(dim) m_model = wp.array(m, dtype=float, device=device) model = Model() model.m = m_model model.dt = dt model.gravity = wp.vec3(0, 0, -9.81) np.random.seed(0) x = np.random.normal(size=(dim, 3)) v = np.random.normal(size=(dim, 3)) x_expected = x + (v + gravity / m[:, None] * dt) * dt x_in = wp.array(x, dtype=wp.vec3, device=device) v_in = wp.array(v, dtype=wp.vec3, device=device) state_in = State() state_in.x = x_in state_in.v = v_in state_out = State() state_out.x = wp.empty_like(x_in) state_out.v = wp.empty_like(v_in) for step_kernel in [kernel_step, kernel_step_with_copy]: with CheckOutput(test): wp.launch(step_kernel, dim=dim, inputs=[state_in, state_out, model], device=device) assert_np_equal(state_out.x.numpy(), x_expected, tol=1e-6) @wp.kernel def kernel_loss(x: wp.array(dtype=wp.vec3), loss: wp.array(dtype=float)): i = wp.tid() wp.atomic_add(loss, 0, x[i][0] * x[i][0] + x[i][1] * x[i][1] + x[i][2] * x[i][2]) def test_step_grad(test, device): dim = 5 dt = 0.01 gravity = np.array([0, 0, -9.81]) np.random.seed(0) m = np.random.rand(dim) + 0.1 m_model = wp.array(m, dtype=float, device=device, requires_grad=True) model = Model() model.m = m_model model.dt = dt model.gravity = wp.vec3(0, 0, -9.81) x = np.random.normal(size=(dim, 3)) v = np.random.normal(size=(dim, 3)) x_in = wp.array(x, dtype=wp.vec3, device=device, requires_grad=True) v_in = wp.array(v, dtype=wp.vec3, device=device, requires_grad=True) state_in = State() state_in.x = x_in state_in.v = v_in state_out = State() state_out.x = wp.empty_like(x_in, requires_grad=True) state_out.v = wp.empty_like(v_in, requires_grad=True) loss = wp.empty(1, dtype=float, device=device, requires_grad=True) for step_kernel in [kernel_step, kernel_step_with_copy]: tape = wp.Tape() with tape: wp.launch(step_kernel, dim=dim, inputs=[state_in, state_out, model], device=device) wp.launch(kernel_loss, dim=dim, inputs=[state_out.x, loss], device=device) tape.backward(loss) dl_dx = 2 * state_out.x.numpy() dl_dv = dl_dx * dt dv_dm = -gravity * dt / m[:, None] ** 2 dl_dm = (dl_dv * dv_dm).sum(-1) assert_np_equal(state_out.x.grad.numpy(), dl_dx, tol=1e-6) assert_np_equal(state_in.x.grad.numpy(), dl_dx, tol=1e-6) assert_np_equal(state_out.v.grad.numpy(), dl_dv, tol=1e-6) assert_np_equal(state_in.v.grad.numpy(), dl_dv, tol=1e-6) assert_np_equal(model.m.grad.numpy(), dl_dm, tol=1e-6) tape.zero() assert state_out.x.grad.numpy().sum() == 0.0 assert state_in.x.grad.numpy().sum() == 0.0 assert state_out.v.grad.numpy().sum() == 0.0 assert state_in.v.grad.numpy().sum() == 0.0 assert model.m.grad.numpy().sum() == 0.0 @wp.struct class Empty: pass @wp.kernel def test_empty(input: Empty): tid = wp.tid() @wp.struct class Uninitialized: data: wp.array(dtype=int) @wp.kernel def test_uninitialized(input: Uninitialized): tid = wp.tid() @wp.struct class Baz: data: wp.array(dtype=int) z: wp.vec3 @wp.struct class Bar: baz: Baz y: float @wp.struct class Foo: bar: Bar x: int @wp.kernel def kernel_nested_struct(foo: Foo): tid = wp.tid() foo.bar.baz.data[tid] = ( foo.bar.baz.data[tid] + foo.x + int(foo.bar.y * 100.0) + int(wp.length_sq(foo.bar.baz.z)) + tid * 2 ) def test_nested_struct(test, device): dim = 3 foo = Foo() foo.bar = Bar() foo.bar.baz = Baz() foo.bar.baz.data = wp.zeros(dim, dtype=int, device=device) foo.bar.baz.z = wp.vec3(1, 2, 3) foo.bar.y = 1.23 foo.x = 123 wp.launch(kernel_nested_struct, dim=dim, inputs=[foo], device=device) assert_array_equal( foo.bar.baz.data, wp.array((260, 262, 264), dtype=int, device=device), ) @wp.kernel def test_struct_instantiate(data: wp.array(dtype=int)): baz = Baz(data, wp.vec3(0.0, 0.0, 26.0)) bar = Bar(baz, 25.0) foo = Foo(bar, 24) wp.expect_eq(foo.x, 24) wp.expect_eq(foo.bar.y, 25.0) wp.expect_eq(foo.bar.baz.z[2], 26.0) wp.expect_eq(foo.bar.baz.data[0], 1) @wp.struct class MathThings: v1: wp.vec3 v2: wp.vec3 v3: wp.vec3 m1: wp.mat22 m2: wp.mat22 m3: wp.mat22 m4: wp.mat22 m5: wp.mat22 m6: wp.mat22 @wp.kernel def check_math_conversions(s: MathThings): wp.expect_eq(s.v1, wp.vec3(1.0, 2.0, 3.0)) wp.expect_eq(s.v2, wp.vec3(10.0, 20.0, 30.0)) wp.expect_eq(s.v3, wp.vec3(100.0, 200.0, 300.0)) wp.expect_eq(s.m1, wp.mat22(1.0, 2.0, 3.0, 4.0)) wp.expect_eq(s.m2, wp.mat22(10.0, 20.0, 30.0, 40.0)) wp.expect_eq(s.m3, wp.mat22(100.0, 200.0, 300.0, 400.0)) wp.expect_eq(s.m4, wp.mat22(1.0, 2.0, 3.0, 4.0)) wp.expect_eq(s.m5, wp.mat22(10.0, 20.0, 30.0, 40.0)) wp.expect_eq(s.m6, wp.mat22(100.0, 200.0, 300.0, 400.0)) def test_struct_math_conversions(test, device): s = MathThings() # test assigning various containers to vector and matrix attributes s.v1 = (1, 2, 3) s.v2 = [10, 20, 30] s.v3 = np.array([100, 200, 300]) # 2d containers for matrices s.m1 = ((1, 2), (3, 4)) s.m2 = [[10, 20], [30, 40]] s.m3 = np.array([[100, 200], [300, 400]]) # 1d containers for matrices s.m4 = (1, 2, 3, 4) s.m5 = [10, 20, 30, 40] s.m6 = np.array([100, 200, 300, 400]) wp.launch(check_math_conversions, dim=1, inputs=[s]) @wp.struct class TestData: value: wp.int32 @wp.func def GetTestData(value: wp.int32): return TestData(value * 2) @wp.kernel def test_return_struct(data: wp.array(dtype=wp.int32)): tid = wp.tid() data[tid] = GetTestData(tid).value wp.expect_eq(data[tid], tid * 2) @wp.struct class ReturnStruct: a: int b: int @wp.func def test_return_func(): a = ReturnStruct(1, 2) return a @wp.kernel def test_return(): t = test_return_func() wp.expect_eq(t.a, 1) wp.expect_eq(t.b, 2) @wp.struct class DefaultAttribNested: f: float @wp.struct class DefaultAttribStruct: i: int d: wp.float64 v: wp.vec3 m: wp.mat22 a: wp.array(dtype=wp.int32) s: DefaultAttribNested @wp.func def check_default_attributes_func(data: DefaultAttribStruct): wp.expect_eq(data.i, wp.int32(0)) wp.expect_eq(data.d, wp.float64(0)) wp.expect_eq(data.v, wp.vec3(0.0, 0.0, 0.0)) wp.expect_eq(data.m, wp.mat22(0.0, 0.0, 0.0, 0.0)) wp.expect_eq(data.a.shape[0], 0) wp.expect_eq(data.s.f, wp.float32(0.0)) @wp.kernel def check_default_attributes_kernel(data: DefaultAttribStruct): check_default_attributes_func(data) # check structs default initialized in Python correctly def test_struct_default_attributes_python(test, device): s = DefaultAttribStruct() wp.launch(check_default_attributes_kernel, dim=1, inputs=[s]) # check structs default initialized in kernels correctly @wp.kernel def test_struct_default_attributes_kernel(): s = DefaultAttribStruct() check_default_attributes_func(s) @wp.struct class MutableStruct: param1: int param2: float @wp.kernel def test_struct_mutate_attributes_kernel(): t = MutableStruct() t.param1 = 1 t.param2 = 1.1 wp.expect_eq(t.param1, 1) wp.expect_eq(t.param2, 1.1) @wp.struct class InnerStruct: i: int @wp.struct class ArrayStruct: array: wp.array(dtype=InnerStruct) @wp.kernel def struct2_reader(test: ArrayStruct): k = wp.tid() wp.expect_eq(k + 1, test.array[k].i) def test_nested_array_struct(test, device): var1 = InnerStruct() var1.i = 1 var2 = InnerStruct() var2.i = 2 struct = ArrayStruct() struct.array = wp.array([var1, var2], dtype=InnerStruct) wp.launch(struct2_reader, dim=2, inputs=[struct]) def register(parent): devices = get_test_devices() class TestStruct(parent): pass add_function_test(TestStruct, "test_step", test_step, devices=devices) add_function_test(TestStruct, "test_step_grad", test_step_grad, devices=devices) add_kernel_test(TestStruct, kernel=test_empty, name="test_empty", dim=1, inputs=[Empty()], devices=devices) add_kernel_test( TestStruct, kernel=test_uninitialized, name="test_uninitialized", dim=1, inputs=[Uninitialized()], devices=devices, ) add_kernel_test(TestStruct, kernel=test_return, name="test_return", dim=1, inputs=[], devices=devices) add_function_test(TestStruct, "test_nested_struct", test_nested_struct, devices=devices) add_function_test(TestStruct, "test_nested_array_struct", test_nested_array_struct, devices=devices) add_function_test(TestStruct, "test_struct_math_conversions", test_struct_math_conversions, devices=devices) add_function_test( TestStruct, "test_struct_default_attributes_python", test_struct_default_attributes_python, devices=devices ) add_kernel_test( TestStruct, name="test_struct_default_attributes", kernel=test_struct_default_attributes_kernel, dim=1, inputs=[], devices=devices, ) add_kernel_test( TestStruct, name="test_struct_mutate_attributes", kernel=test_struct_mutate_attributes_kernel, dim=1, inputs=[], devices=devices, ) for device in devices: add_kernel_test( TestStruct, kernel=test_struct_instantiate, name="test_struct_instantiate", dim=1, inputs=[wp.array([1], dtype=int, device=device)], devices=[device], ) add_kernel_test( TestStruct, kernel=test_return_struct, name="test_return_struct", dim=1, inputs=[wp.zeros(10, dtype=int, device=device)], devices=[device], ) return TestStruct if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_struct.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import numpy as np import math import warp as wp from warp.tests.test_base import * import unittest wp.init() @wp.kernel def add_vec2(dest: wp.array(dtype=wp.vec2), c: wp.vec2): tid = wp.tid() dest[tid] = c @wp.kernel def transform_vec2(dest: wp.array(dtype=wp.vec2), m: wp.mat22, v: wp.vec2): tid = wp.tid() p = wp.mul(m, v) dest[tid] = p @wp.kernel def add_vec3(dest: wp.array(dtype=wp.vec3), c: wp.vec3): tid = wp.tid() dest[tid] = c @wp.kernel def transform_vec3(dest: wp.array(dtype=wp.vec3), m: wp.mat33, v: wp.vec3): tid = wp.tid() p = wp.mul(m, v) dest[tid] = p @wp.kernel def transform_multiply(xforms: wp.array(dtype=wp.transform), a: wp.transform): tid = wp.tid() xforms[tid] = wp.transform_multiply(xforms[tid], a) def test_vec2_arg(test, device, n): dest = wp.zeros(n=n, dtype=wp.vec2, device=device) c = np.array((1.0, 2.0)) wp.launch(add_vec2, dim=n, inputs=[dest, c], device=device) # ensure type can round-trip from Python->GPU->Python test.assertTrue(np.array_equal(dest.numpy(), np.tile(c, (n, 1)))) def test_vec2_transform(test, device, n): dest = wp.zeros(n=n, dtype=wp.vec2, device=device) c = np.array((1.0, 2.0)) m = np.array(((3.0, -1.0), (2.5, 4.0))) wp.launch(transform_vec2, dim=n, inputs=[dest, m, c], device=device) test.assertTrue(np.array_equal(dest.numpy(), np.tile(m @ c, (n, 1)))) def test_vec3_arg(test, device, n): dest = wp.zeros(n=n, dtype=wp.vec3, device=device) c = np.array((1.0, 2.0, 3.0)) wp.launch(add_vec3, dim=n, inputs=[dest, c], device=device) test.assertTrue(np.array_equal(dest.numpy(), np.tile(c, (n, 1)))) def test_vec3_transform(test, device, n): dest = wp.zeros(n=n, dtype=wp.vec3, device=device) c = np.array((1.0, 2.0, 3.0)) m = np.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0), (7.0, 8.0, 9.0))) wp.launch(transform_vec3, dim=n, inputs=[dest, m, c], device=device) test.assertTrue(np.array_equal(dest.numpy(), np.tile(m @ c, (n, 1)))) def test_transform_multiply(test, device, n): a = wp.transform((0.0, 1.0, 0.0), wp.utils.quat_identity()) x = [] for i in range(10): x.append(wp.utils.transform_identity()) xforms = wp.array(x, dtype=wp.transform, device=device) wp.launch(transform_multiply, dim=n, inputs=[xforms, a], device=device) # construct kernel + test harness for given matrix / vector types def make_matrix_test(dim, matrix, vector): def test_matrix_kernel( a: wp.array(dtype=matrix), b: wp.array(dtype=matrix), c: wp.array(dtype=matrix), x: wp.array(dtype=vector), result_m: wp.array(dtype=matrix), result_i: wp.array(dtype=matrix), result_d: wp.array(dtype=float), result_x: wp.array(dtype=vector), ): tid = wp.tid() m = a[tid] * b[tid] + c[tid] * 2.0 result_m[tid] = m result_x[tid] = m * x[tid] result_d[tid] = wp.determinant(m) invm = wp.inverse(m) result_i[tid] = m * invm # register a custom kernel (no decorator) function # this lets us register the same function definition # against multiple symbols, with different arg types module = wp.get_module(test_matrix_kernel.__module__) kernel = wp.Kernel(func=test_matrix_kernel, key=f"test_mat{dim}{dim}_kernel", module=module) def test_matrix(test, device): rng = np.random.default_rng(42) n = 1024 a = rng.random(size=(n, dim, dim), dtype=float) b = rng.random(size=(n, dim, dim), dtype=float) c = rng.random(size=(n, dim, dim), dtype=float) x = rng.random(size=(n, dim, 1), dtype=float) a_array = wp.array(a, dtype=matrix, device=device) b_array = wp.array(b, dtype=matrix, device=device) c_array = wp.array(c, dtype=matrix, device=device) x_array = wp.array(x, dtype=vector, device=device) result_m_array = wp.zeros_like(a_array) result_i_array = wp.zeros_like(a_array) result_x_array = wp.zeros_like(x_array) result_d_array = wp.zeros(n, dtype=float, device=device) wp.launch( kernel, n, inputs=[a_array, b_array, c_array, x_array, result_m_array, result_i_array, result_d_array, result_x_array], device=device, ) # numpy reference result result_m = np.matmul(a, b) + c * 2.0 result_x = np.matmul(result_m, x) result_i = np.array([np.eye(dim)] * n) result_d = np.linalg.det(result_m) assert_np_equal(result_m_array.numpy(), result_m, tol=1.0e-5) assert_np_equal(result_i_array.numpy(), result_i, tol=1.0e-3) assert_np_equal(result_d_array.numpy(), result_d, tol=1.0e-3) assert_np_equal(result_x_array.numpy(), result_x, tol=1.0e-5) return test_matrix # generate test functions for matrix types test_mat22 = make_matrix_test(2, wp.mat22, wp.vec2) test_mat33 = make_matrix_test(3, wp.mat33, wp.vec3) test_mat44 = make_matrix_test(4, wp.mat44, wp.vec4) def test_scalar_array(test, device): scalar_list = (0.0, 1.0, 2.0) scalar_array = wp.array(scalar_list, device=device) assert_np_equal(np.array(scalar_list), scalar_array.numpy()) def test_vector_array(test, device): vector_list = [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0), (2.0, 2.0, 2.0)] vector_array = wp.array(vector_list, dtype=wp.vec3, device=device) assert_np_equal(np.array(vector_list), vector_array.numpy()) @wp.kernel def test_vector_arg_types(v2: wp.vec2, v3: wp.vec3, v4: wp.vec4, m22: wp.mat22, m33: wp.mat33, m44: wp.mat44): wp.expect_eq(v2, wp.vec2(1.0, 2.0)) wp.expect_eq(v3, wp.vec3(1.0, 2.0, 3.0)) wp.expect_eq(v4, wp.vec4(1.0, 2.0, 3.0, 4.0)) wp.expect_eq(m22, wp.mat22(1.0, 2.0, 3.0, 4.0)) wp.expect_eq(m33, wp.mat33(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)) wp.expect_eq(m44, wp.mat44(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0)) @wp.kernel def test_scalar_arg_types( i8: wp.int8, u8: wp.uint8, i16: wp.int16, u16: wp.uint16, i32: wp.int32, u32: wp.uint32, i64: wp.int64, u64: wp.uint64, f32: wp.float32, f64: wp.float64, ): wp.expect_eq(int(i8), -64) wp.expect_eq(int(u8), 255) wp.expect_eq(int(i16), -64) wp.expect_eq(int(u16), 255) wp.expect_eq(int(i32), -64) wp.expect_eq(int(u32), 255) wp.expect_eq(int(i64), -64) wp.expect_eq(int(u64), 255) wp.expect_eq(int(f32), 3) wp.expect_eq(int(f64), 3) wp.expect_eq(float(f32), 3.14159) wp.expect_eq(float(f64), 3.14159) @wp.kernel def test_scalar_array_types_load( i8: wp.array(dtype=wp.int8), u8: wp.array(dtype=wp.uint8), i16: wp.array(dtype=wp.int16), u16: wp.array(dtype=wp.uint16), i32: wp.array(dtype=wp.int32), u32: wp.array(dtype=wp.uint32), i64: wp.array(dtype=wp.int64), u64: wp.array(dtype=wp.uint64), f32: wp.array(dtype=wp.float32), f64: wp.array(dtype=wp.float64), ): tid = wp.tid() wp.expect_eq(int(i8[tid]), tid) wp.expect_eq(int(u8[tid]), tid) wp.expect_eq(int(i16[tid]), tid) wp.expect_eq(int(u16[tid]), tid) wp.expect_eq(int(i32[tid]), tid) wp.expect_eq(int(u32[tid]), tid) wp.expect_eq(int(i64[tid]), tid) wp.expect_eq(int(u64[tid]), tid) wp.expect_eq(float(f32[tid]), float(tid)) wp.expect_eq(float(f64[tid]), float(tid)) @wp.kernel def test_scalar_array_types_store( i8: wp.array(dtype=wp.int8), u8: wp.array(dtype=wp.uint8), i16: wp.array(dtype=wp.int16), u16: wp.array(dtype=wp.uint16), i32: wp.array(dtype=wp.int32), u32: wp.array(dtype=wp.uint32), i64: wp.array(dtype=wp.int64), u64: wp.array(dtype=wp.uint64), f32: wp.array(dtype=wp.float32), f64: wp.array(dtype=wp.float64), ): tid = wp.tid() i8[tid] = wp.int8(tid) u8[tid] = wp.uint8(tid) i16[tid] = wp.int16(tid) u16[tid] = wp.uint16(tid) i32[tid] = wp.int32(tid) u32[tid] = wp.uint32(tid) i64[tid] = wp.int64(tid) u64[tid] = wp.uint64(tid) f32[tid] = wp.float32(tid) f64[tid] = wp.float64(tid) # check round-trip wp.expect_eq(int(i8[tid]), tid) wp.expect_eq(int(u8[tid]), tid) wp.expect_eq(int(i16[tid]), tid) wp.expect_eq(int(u16[tid]), tid) wp.expect_eq(int(i32[tid]), tid) wp.expect_eq(int(u32[tid]), tid) wp.expect_eq(int(i64[tid]), tid) wp.expect_eq(int(u64[tid]), tid) wp.expect_eq(float(f32[tid]), float(tid)) wp.expect_eq(float(f64[tid]), float(tid)) @wp.kernel def test_type_conversions(): # below tests auto-generated by the following snippet: # scalar_types_all = [*wp.types.scalar_types, int, float] # for t in scalar_types_all: # for u in scalar_types_all: # def prefix(t): # if t == int or t == float: # return t.__name__ # else: # return "wp." + t.__name__ # print(f"wp.expect_eq({prefix(t)}(2.0), {prefix(t)}({prefix(u)}(2.0)))") wp.expect_eq(wp.int8(2.0), wp.int8(wp.int8(2.0))) wp.expect_eq(wp.int8(2.0), wp.int8(wp.uint8(2.0))) wp.expect_eq(wp.int8(2.0), wp.int8(wp.int16(2.0))) wp.expect_eq(wp.int8(2.0), wp.int8(wp.uint16(2.0))) wp.expect_eq(wp.int8(2.0), wp.int8(wp.int32(2.0))) wp.expect_eq(wp.int8(2.0), wp.int8(wp.uint32(2.0))) wp.expect_eq(wp.int8(2.0), wp.int8(wp.int64(2.0))) wp.expect_eq(wp.int8(2.0), wp.int8(wp.uint64(2.0))) wp.expect_eq(wp.int8(2.0), wp.int8(wp.float16(2.0))) wp.expect_eq(wp.int8(2.0), wp.int8(wp.float32(2.0))) wp.expect_eq(wp.int8(2.0), wp.int8(wp.float64(2.0))) wp.expect_eq(wp.int8(2.0), wp.int8(int(2.0))) wp.expect_eq(wp.int8(2.0), wp.int8(float(2.0))) wp.expect_eq(wp.uint8(2.0), wp.uint8(wp.int8(2.0))) wp.expect_eq(wp.uint8(2.0), wp.uint8(wp.uint8(2.0))) wp.expect_eq(wp.uint8(2.0), wp.uint8(wp.int16(2.0))) wp.expect_eq(wp.uint8(2.0), wp.uint8(wp.uint16(2.0))) wp.expect_eq(wp.uint8(2.0), wp.uint8(wp.int32(2.0))) wp.expect_eq(wp.uint8(2.0), wp.uint8(wp.uint32(2.0))) wp.expect_eq(wp.uint8(2.0), wp.uint8(wp.int64(2.0))) wp.expect_eq(wp.uint8(2.0), wp.uint8(wp.uint64(2.0))) wp.expect_eq(wp.uint8(2.0), wp.uint8(wp.float16(2.0))) wp.expect_eq(wp.uint8(2.0), wp.uint8(wp.float32(2.0))) wp.expect_eq(wp.uint8(2.0), wp.uint8(wp.float64(2.0))) wp.expect_eq(wp.uint8(2.0), wp.uint8(int(2.0))) wp.expect_eq(wp.uint8(2.0), wp.uint8(float(2.0))) wp.expect_eq(wp.int16(2.0), wp.int16(wp.int8(2.0))) wp.expect_eq(wp.int16(2.0), wp.int16(wp.uint8(2.0))) wp.expect_eq(wp.int16(2.0), wp.int16(wp.int16(2.0))) wp.expect_eq(wp.int16(2.0), wp.int16(wp.uint16(2.0))) wp.expect_eq(wp.int16(2.0), wp.int16(wp.int32(2.0))) wp.expect_eq(wp.int16(2.0), wp.int16(wp.uint32(2.0))) wp.expect_eq(wp.int16(2.0), wp.int16(wp.int64(2.0))) wp.expect_eq(wp.int16(2.0), wp.int16(wp.uint64(2.0))) wp.expect_eq(wp.int16(2.0), wp.int16(wp.float16(2.0))) wp.expect_eq(wp.int16(2.0), wp.int16(wp.float32(2.0))) wp.expect_eq(wp.int16(2.0), wp.int16(wp.float64(2.0))) wp.expect_eq(wp.int16(2.0), wp.int16(int(2.0))) wp.expect_eq(wp.int16(2.0), wp.int16(float(2.0))) wp.expect_eq(wp.uint16(2.0), wp.uint16(wp.int8(2.0))) wp.expect_eq(wp.uint16(2.0), wp.uint16(wp.uint8(2.0))) wp.expect_eq(wp.uint16(2.0), wp.uint16(wp.int16(2.0))) wp.expect_eq(wp.uint16(2.0), wp.uint16(wp.uint16(2.0))) wp.expect_eq(wp.uint16(2.0), wp.uint16(wp.int32(2.0))) wp.expect_eq(wp.uint16(2.0), wp.uint16(wp.uint32(2.0))) wp.expect_eq(wp.uint16(2.0), wp.uint16(wp.int64(2.0))) wp.expect_eq(wp.uint16(2.0), wp.uint16(wp.uint64(2.0))) wp.expect_eq(wp.uint16(2.0), wp.uint16(wp.float16(2.0))) wp.expect_eq(wp.uint16(2.0), wp.uint16(wp.float32(2.0))) wp.expect_eq(wp.uint16(2.0), wp.uint16(wp.float64(2.0))) wp.expect_eq(wp.uint16(2.0), wp.uint16(int(2.0))) wp.expect_eq(wp.uint16(2.0), wp.uint16(float(2.0))) wp.expect_eq(wp.int32(2.0), wp.int32(wp.int8(2.0))) wp.expect_eq(wp.int32(2.0), wp.int32(wp.uint8(2.0))) wp.expect_eq(wp.int32(2.0), wp.int32(wp.int16(2.0))) wp.expect_eq(wp.int32(2.0), wp.int32(wp.uint16(2.0))) wp.expect_eq(wp.int32(2.0), wp.int32(wp.int32(2.0))) wp.expect_eq(wp.int32(2.0), wp.int32(wp.uint32(2.0))) wp.expect_eq(wp.int32(2.0), wp.int32(wp.int64(2.0))) wp.expect_eq(wp.int32(2.0), wp.int32(wp.uint64(2.0))) wp.expect_eq(wp.int32(2.0), wp.int32(wp.float16(2.0))) wp.expect_eq(wp.int32(2.0), wp.int32(wp.float32(2.0))) wp.expect_eq(wp.int32(2.0), wp.int32(wp.float64(2.0))) wp.expect_eq(wp.int32(2.0), wp.int32(int(2.0))) wp.expect_eq(wp.int32(2.0), wp.int32(float(2.0))) wp.expect_eq(wp.uint32(2.0), wp.uint32(wp.int8(2.0))) wp.expect_eq(wp.uint32(2.0), wp.uint32(wp.uint8(2.0))) wp.expect_eq(wp.uint32(2.0), wp.uint32(wp.int16(2.0))) wp.expect_eq(wp.uint32(2.0), wp.uint32(wp.uint16(2.0))) wp.expect_eq(wp.uint32(2.0), wp.uint32(wp.int32(2.0))) wp.expect_eq(wp.uint32(2.0), wp.uint32(wp.uint32(2.0))) wp.expect_eq(wp.uint32(2.0), wp.uint32(wp.int64(2.0))) wp.expect_eq(wp.uint32(2.0), wp.uint32(wp.uint64(2.0))) wp.expect_eq(wp.uint32(2.0), wp.uint32(wp.float16(2.0))) wp.expect_eq(wp.uint32(2.0), wp.uint32(wp.float32(2.0))) wp.expect_eq(wp.uint32(2.0), wp.uint32(wp.float64(2.0))) wp.expect_eq(wp.uint32(2.0), wp.uint32(int(2.0))) wp.expect_eq(wp.uint32(2.0), wp.uint32(float(2.0))) wp.expect_eq(wp.int64(2.0), wp.int64(wp.int8(2.0))) wp.expect_eq(wp.int64(2.0), wp.int64(wp.uint8(2.0))) wp.expect_eq(wp.int64(2.0), wp.int64(wp.int16(2.0))) wp.expect_eq(wp.int64(2.0), wp.int64(wp.uint16(2.0))) wp.expect_eq(wp.int64(2.0), wp.int64(wp.int32(2.0))) wp.expect_eq(wp.int64(2.0), wp.int64(wp.uint32(2.0))) wp.expect_eq(wp.int64(2.0), wp.int64(wp.int64(2.0))) wp.expect_eq(wp.int64(2.0), wp.int64(wp.uint64(2.0))) wp.expect_eq(wp.int64(2.0), wp.int64(wp.float16(2.0))) wp.expect_eq(wp.int64(2.0), wp.int64(wp.float32(2.0))) wp.expect_eq(wp.int64(2.0), wp.int64(wp.float64(2.0))) wp.expect_eq(wp.int64(2.0), wp.int64(int(2.0))) wp.expect_eq(wp.int64(2.0), wp.int64(float(2.0))) wp.expect_eq(wp.uint64(2.0), wp.uint64(wp.int8(2.0))) wp.expect_eq(wp.uint64(2.0), wp.uint64(wp.uint8(2.0))) wp.expect_eq(wp.uint64(2.0), wp.uint64(wp.int16(2.0))) wp.expect_eq(wp.uint64(2.0), wp.uint64(wp.uint16(2.0))) wp.expect_eq(wp.uint64(2.0), wp.uint64(wp.int32(2.0))) wp.expect_eq(wp.uint64(2.0), wp.uint64(wp.uint32(2.0))) wp.expect_eq(wp.uint64(2.0), wp.uint64(wp.int64(2.0))) wp.expect_eq(wp.uint64(2.0), wp.uint64(wp.uint64(2.0))) wp.expect_eq(wp.uint64(2.0), wp.uint64(wp.float16(2.0))) wp.expect_eq(wp.uint64(2.0), wp.uint64(wp.float32(2.0))) wp.expect_eq(wp.uint64(2.0), wp.uint64(wp.float64(2.0))) wp.expect_eq(wp.uint64(2.0), wp.uint64(int(2.0))) wp.expect_eq(wp.uint64(2.0), wp.uint64(float(2.0))) wp.expect_eq(wp.float16(2.0), wp.float16(wp.int8(2.0))) wp.expect_eq(wp.float16(2.0), wp.float16(wp.uint8(2.0))) wp.expect_eq(wp.float16(2.0), wp.float16(wp.int16(2.0))) wp.expect_eq(wp.float16(2.0), wp.float16(wp.uint16(2.0))) wp.expect_eq(wp.float16(2.0), wp.float16(wp.int32(2.0))) wp.expect_eq(wp.float16(2.0), wp.float16(wp.uint32(2.0))) wp.expect_eq(wp.float16(2.0), wp.float16(wp.int64(2.0))) wp.expect_eq(wp.float16(2.0), wp.float16(wp.uint64(2.0))) wp.expect_eq(wp.float16(2.0), wp.float16(wp.float16(2.0))) wp.expect_eq(wp.float16(2.0), wp.float16(wp.float32(2.0))) wp.expect_eq(wp.float16(2.0), wp.float16(wp.float64(2.0))) wp.expect_eq(wp.float16(2.0), wp.float16(int(2.0))) wp.expect_eq(wp.float16(2.0), wp.float16(float(2.0))) wp.expect_eq(wp.float32(2.0), wp.float32(wp.int8(2.0))) wp.expect_eq(wp.float32(2.0), wp.float32(wp.uint8(2.0))) wp.expect_eq(wp.float32(2.0), wp.float32(wp.int16(2.0))) wp.expect_eq(wp.float32(2.0), wp.float32(wp.uint16(2.0))) wp.expect_eq(wp.float32(2.0), wp.float32(wp.int32(2.0))) wp.expect_eq(wp.float32(2.0), wp.float32(wp.uint32(2.0))) wp.expect_eq(wp.float32(2.0), wp.float32(wp.int64(2.0))) wp.expect_eq(wp.float32(2.0), wp.float32(wp.uint64(2.0))) wp.expect_eq(wp.float32(2.0), wp.float32(wp.float16(2.0))) wp.expect_eq(wp.float32(2.0), wp.float32(wp.float32(2.0))) wp.expect_eq(wp.float32(2.0), wp.float32(wp.float64(2.0))) wp.expect_eq(wp.float32(2.0), wp.float32(int(2.0))) wp.expect_eq(wp.float32(2.0), wp.float32(float(2.0))) wp.expect_eq(wp.float64(2.0), wp.float64(wp.int8(2.0))) wp.expect_eq(wp.float64(2.0), wp.float64(wp.uint8(2.0))) wp.expect_eq(wp.float64(2.0), wp.float64(wp.int16(2.0))) wp.expect_eq(wp.float64(2.0), wp.float64(wp.uint16(2.0))) wp.expect_eq(wp.float64(2.0), wp.float64(wp.int32(2.0))) wp.expect_eq(wp.float64(2.0), wp.float64(wp.uint32(2.0))) wp.expect_eq(wp.float64(2.0), wp.float64(wp.int64(2.0))) wp.expect_eq(wp.float64(2.0), wp.float64(wp.uint64(2.0))) wp.expect_eq(wp.float64(2.0), wp.float64(wp.float16(2.0))) wp.expect_eq(wp.float64(2.0), wp.float64(wp.float32(2.0))) wp.expect_eq(wp.float64(2.0), wp.float64(wp.float64(2.0))) wp.expect_eq(wp.float64(2.0), wp.float64(int(2.0))) wp.expect_eq(wp.float64(2.0), wp.float64(float(2.0))) wp.expect_eq(int(2.0), int(wp.int8(2.0))) wp.expect_eq(int(2.0), int(wp.uint8(2.0))) wp.expect_eq(int(2.0), int(wp.int16(2.0))) wp.expect_eq(int(2.0), int(wp.uint16(2.0))) wp.expect_eq(int(2.0), int(wp.int32(2.0))) wp.expect_eq(int(2.0), int(wp.uint32(2.0))) wp.expect_eq(int(2.0), int(wp.int64(2.0))) wp.expect_eq(int(2.0), int(wp.uint64(2.0))) wp.expect_eq(int(2.0), int(wp.float16(2.0))) wp.expect_eq(int(2.0), int(wp.float32(2.0))) wp.expect_eq(int(2.0), int(wp.float64(2.0))) wp.expect_eq(int(2.0), int(int(2.0))) wp.expect_eq(int(2.0), int(float(2.0))) wp.expect_eq(float(2.0), float(wp.int8(2.0))) wp.expect_eq(float(2.0), float(wp.uint8(2.0))) wp.expect_eq(float(2.0), float(wp.int16(2.0))) wp.expect_eq(float(2.0), float(wp.uint16(2.0))) wp.expect_eq(float(2.0), float(wp.int32(2.0))) wp.expect_eq(float(2.0), float(wp.uint32(2.0))) wp.expect_eq(float(2.0), float(wp.int64(2.0))) wp.expect_eq(float(2.0), float(wp.uint64(2.0))) wp.expect_eq(float(2.0), float(wp.float16(2.0))) wp.expect_eq(float(2.0), float(wp.float32(2.0))) wp.expect_eq(float(2.0), float(wp.float64(2.0))) wp.expect_eq(float(2.0), float(int(2.0))) wp.expect_eq(float(2.0), float(float(2.0))) def test_scalar_array_types(test, device, load, store): dim = 64 i8 = wp.array(np.linspace(0, dim, dim, endpoint=False, dtype=np.int8), device=device) u8 = wp.array(np.linspace(0, dim, dim, endpoint=False, dtype=np.uint8), device=device) i16 = wp.array(np.linspace(0, dim, dim, endpoint=False, dtype=np.int16), device=device) u16 = wp.array(np.linspace(0, dim, dim, endpoint=False, dtype=np.uint16), device=device) i32 = wp.array(np.linspace(0, dim, dim, endpoint=False, dtype=np.int32), device=device) u32 = wp.array(np.linspace(0, dim, dim, endpoint=False, dtype=np.uint32), device=device) i64 = wp.array(np.linspace(0, dim, dim, endpoint=False, dtype=np.int64), device=device) u64 = wp.array(np.linspace(0, dim, dim, endpoint=False, dtype=np.uint64), device=device) f32 = wp.array(np.linspace(0, dim, dim, endpoint=False, dtype=np.float32), device=device) f64 = wp.array(np.linspace(0, dim, dim, endpoint=False, dtype=np.float64), device=device) if load: wp.launch( test_scalar_array_types_load, dim=dim, inputs=[i8, u8, i16, u16, i32, u32, i64, u64, f32, f64], device=device, ) if store: wp.launch( test_scalar_array_types_store, dim=dim, inputs=[i8, u8, i16, u16, i32, u32, i64, u64, f32, f64], device=device, ) @wp.kernel def test_transform_matrix(): r = wp.quat_from_axis_angle(wp.vec3(1.0, 0.0, 0.0), 0.5) t = wp.vec3(0.25, 0.5, -0.75) s = wp.vec3(2.0, 0.5, 0.75) m = wp.mat44(t, r, s) p = wp.vec3(1.0, 2.0, 3.0) r_0 = wp.quat_rotate(r, wp.cw_mul(s, p)) + t r_1 = wp.transform_point(m, p) r_2 = wp.transform_vector(m, p) wp.expect_near(r_0, r_1, 1.0e-4) wp.expect_near(r_2, r_0 - t, 1.0e-4) def register(parent): devices = get_test_devices() class TestCTypes(parent): pass inputs = [ wp.vec2(1.0, 2.0), wp.vec3(1.0, 2.0, 3.0), wp.vec4(1.0, 2.0, 3.0, 4.0), wp.mat22(1.0, 2.0, 3.0, 4.0), wp.mat33(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0), wp.mat44(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0), ] add_function_test(TestCTypes, "test_mat22", test_mat22, devices=devices) add_function_test(TestCTypes, "test_mat33", test_mat33, devices=devices) add_function_test(TestCTypes, "test_mat44", test_mat44, devices=devices) add_kernel_test( TestCTypes, name="test_scalar_arg_types", kernel=test_scalar_arg_types, dim=1, inputs=[-64, 255, -64, 255, -64, 255, -64, 255, 3.14159, 3.14159], devices=devices, ) add_kernel_test( TestCTypes, name="test_scalar_arg_types_explicit", kernel=test_scalar_arg_types, dim=1, inputs=[ wp.int8(-64), wp.uint8(255), wp.int16(-64), wp.uint16(255), wp.int32(-64), wp.uint32(255), wp.int64(-64), wp.uint64(255), wp.float32(3.14159), wp.float64(3.14159), ], devices=devices, ) add_kernel_test( TestCTypes, name="test_vector_arg_types", kernel=test_vector_arg_types, dim=1, inputs=inputs, devices=devices ) add_kernel_test(TestCTypes, name="test_type_convesrions", kernel=test_type_conversions, dim=1, devices=devices) add_function_test( TestCTypes, "test_scalar_array_load", test_scalar_array_types, devices=devices, load=True, store=False ) add_function_test( TestCTypes, "test_scalar_array_store", test_scalar_array_types, devices=devices, load=False, store=True ) add_function_test(TestCTypes, "test_vec2_arg", test_vec2_arg, devices=devices, n=8) add_function_test(TestCTypes, "test_vec2_transform", test_vec2_transform, devices=devices, n=8) add_function_test(TestCTypes, "test_vec3_arg", test_vec3_arg, devices=devices, n=8) add_function_test(TestCTypes, "test_vec3_transform", test_vec3_transform, devices=devices, n=8) add_function_test(TestCTypes, "test_transform_multiply", test_transform_multiply, devices=devices, n=8) add_kernel_test(TestCTypes, name="test_transform_matrix", kernel=test_transform_matrix, dim=1, devices=devices) add_function_test(TestCTypes, "test_scalar_array", test_scalar_array, devices=devices) add_function_test(TestCTypes, "test_vector_array", test_vector_array, devices=devices) return TestCTypes if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_ctypes.py
import numpy as np import warp as wp from warp.tests.test_base import * wp.init() TRUE_CONSTANT = wp.constant(True) @wp.func def identity_function(input_bool: wp.bool, plain_bool: bool): return input_bool and plain_bool @wp.kernel def identity_test(data: wp.array(dtype=wp.bool)): i = wp.tid() data[i] = data[i] and True data[i] = data[i] and wp.bool(True) data[i] = data[i] and not False data[i] = data[i] and not wp.bool(False) data[i] = identity_function(data[i], True) if data[i]: data[i] = True else: data[i] = False if not data[i]: data[i] = False else: data[i] = True if data[i] and True: data[i] = True else: data[i] = False if data[i] or False: data[i] = True else: data[i] = False def test_bool_identity_ops(test, device): dim_x = 10 rand_np = np.random.rand(dim_x) > 0.5 data_array = wp.array(data=rand_np, device=device) test.assertEqual(data_array.dtype, wp.bool) wp.launch(identity_test, dim=data_array.shape, inputs=[data_array], device=device) assert_np_equal(data_array.numpy(), rand_np) @wp.kernel def check_compile_constant(result: wp.array(dtype=wp.bool)): if TRUE_CONSTANT: result[0] = TRUE_CONSTANT else: result[0] = False def test_bool_constant(test, device): compile_constant_value = wp.zeros(1, dtype=wp.bool) wp.launch(check_compile_constant, 1, inputs=[compile_constant_value]) test.assertTrue(compile_constant_value.numpy()[0]) def register(parent): devices = get_test_devices() class TestBool(parent): pass add_function_test(TestBool, "test_bool_identity_ops", test_bool_identity_ops, devices=devices) add_function_test(TestBool, "test_bool_constant", test_bool_constant, devices=devices) return TestBool if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_bool.py
import unittest import numpy as np import warp as wp from warp.tests.test_base import * wp.init() @wp.kernel def load_store_half(f32: wp.array(dtype=wp.float32), f16: wp.array(dtype=wp.float16)): tid = wp.tid() # check conversion from f32->f16 a = wp.float16(f32[tid]) b = f16[tid] wp.expect_eq(a, b) # check stores f16[tid] = a def test_fp16_conversion(test, device): s = [1.0, 2.0, 3.0, -3.14159] np_f32 = np.array(s, dtype=np.float32) np_f16 = np.array(s, dtype=np.float16) wp_f32 = wp.array(s, dtype=wp.float32, device=device) wp_f16 = wp.array(s, dtype=wp.float16, device=device) assert_np_equal(np_f32, wp_f32.numpy()) assert_np_equal(np_f16, wp_f16.numpy()) wp.launch(load_store_half, dim=len(s), inputs=[wp_f32, wp_f16], device=device) # check that stores worked assert_np_equal(np_f16, wp_f16.numpy()) @wp.kernel def value_load_store_half(f16_value: wp.float16, f16_array: wp.array(dtype=wp.float16)): wp.expect_eq(f16_value, f16_array[0]) # check stores f16_array[0] = f16_value def test_fp16_kernel_parameter(test, device): """Test the ability to pass in fp16 into kernels as parameters""" s = [1.0, 2.0, 3.0, -3.14159] for test_val in s: np_f16 = np.array([test_val], dtype=np.float16) wp_f16 = wp.array([test_val], dtype=wp.float16, device=device) wp.launch(value_load_store_half, (1,), inputs=[wp.float16(test_val), wp_f16], device=device) # check that stores worked assert_np_equal(np_f16, wp_f16.numpy()) # Do the same thing but pass in test_val as a Python float to test automatic conversion wp_f16 = wp.array([test_val], dtype=wp.float16, device=device) wp.launch(value_load_store_half, (1,), inputs=[test_val, wp_f16], device=device) assert_np_equal(np_f16, wp_f16.numpy()) @wp.kernel def mul_half(input: wp.array(dtype=wp.float16), output: wp.array(dtype=wp.float16)): tid = wp.tid() # convert to compute type fp32 x = wp.float(input[tid]) * 2.0 # store back as fp16 output[tid] = wp.float16(x) def test_fp16_grad(test, device): # checks that gradients are correctly propagated for # fp16 arrays, even when intermediate calculations # are performed in e.g.: fp32 s = np.random.rand(15).astype(np.float16) input = wp.array(s, dtype=wp.float16, device=device, requires_grad=True) output = wp.zeros_like(input) tape = wp.Tape() with tape: wp.launch(mul_half, dim=len(s), inputs=[input, output], device=device) ones = wp.array(np.ones(len(output)), dtype=wp.float16, device=device) tape.backward(grads={output: ones}) assert_np_equal(input.grad.numpy(), np.ones(len(s)) * 2.0) def register(parent): class TestFp16(parent): pass devices = [] if wp.is_cpu_available(): devices.append("cpu") for cuda_device in wp.get_cuda_devices(): if cuda_device.arch >= 70: devices.append(cuda_device) add_function_test(TestFp16, "test_fp16_conversion", test_fp16_conversion, devices=devices) add_function_test(TestFp16, "test_fp16_grad", test_fp16_grad, devices=devices) add_function_test(TestFp16, "test_fp16_kernel_parameter", test_fp16_kernel_parameter, devices=devices) return TestFp16 if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_fp16.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import sys import unittest from warp.tests.test_base import * import warp.tests.test_compile_consts_dummy import warp as wp wp.init() LOCAL_ONE = wp.constant(1) SQRT3_OVER_3 = wp.constant(0.57735026919) UNIT_VEC = wp.constant(wp.vec3(SQRT3_OVER_3, SQRT3_OVER_3, SQRT3_OVER_3)) class Foobar: ONE = wp.constant(1) TWO = wp.constant(2) @wp.kernel def test_constants_int(a: int): if Foobar.ONE > 0: a = 123 + Foobar.TWO + warp.tests.test_compile_consts_dummy.MINUS_ONE else: a = 456 + LOCAL_ONE expect_eq(a, 124) @wp.kernel def test_constants_float(x: float): x = SQRT3_OVER_3 for i in range(3): expect_eq(UNIT_VEC[i], x) approx_one = wp.dot(UNIT_VEC, UNIT_VEC) expect_near(approx_one, 1.0, 1e-6) def test_constant_math(test, device): # test doing math with Python defined constants in *Python* scope twopi = wp.pi * 2.0 import math test.assertEqual(twopi, math.pi * 2.0) def test_constant_closure_capture(test, device): def make_closure_kernel(cst): def closure_kernel_fn(expected: int): wp.expect_eq(cst, expected) key = f"test_constant_closure_capture_{cst}" return wp.Kernel(func=closure_kernel_fn, key=key, module=wp.get_module(closure_kernel_fn.__module__)) one_closure = make_closure_kernel(Foobar.ONE) two_closure = make_closure_kernel(Foobar.TWO) wp.launch(one_closure, dim=(1), inputs=[1], device=device) wp.launch(two_closure, dim=(1), inputs=[2], device=device) def register(parent): class TestConstants(parent): pass a = 0 x = 0.0 devices = get_test_devices() add_kernel_test(TestConstants, test_constants_int, dim=1, inputs=[a], devices=devices) add_kernel_test(TestConstants, test_constants_float, dim=1, inputs=[x], devices=devices) add_function_test(TestConstants, "test_constant_math", test_constant_math, devices=devices) add_function_test(TestConstants, "test_constant_closure_capture", test_constant_closure_capture, devices=devices) return TestConstants if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_compile_consts.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import numpy as np import math import warp as wp from warp.tests.test_base import * import unittest wp.init() # from test_func import sqr import warp.tests.test_func as test_func @wp.kernel def test_import_func(): # test a cross-module function reference is resolved correctly x = test_func.sqr(2.0) y = test_func.cube(2.0) wp.expect_eq(x, 4.0) wp.expect_eq(y, 8.0) def register(parent): devices = get_test_devices() class TestImport(parent): pass add_kernel_test(TestImport, kernel=test_import_func, name="test_import_func", dim=1, devices=devices) return TestImport if __name__ == "__main__": c = register(unittest.TestCase) # unittest.main(verbosity=2) wp.force_load() loader = unittest.defaultTestLoader testSuite = loader.loadTestsFromTestCase(c) testSuite.debug()
warp-main
warp/tests/test_import.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import os import sys import numpy as np import math import ctypes import warp as wp from warp.tests.test_base import * import unittest wp.init() @wp.kernel def test_conditional_if_else(): a = 0.5 b = 2.0 if a > b: c = 1.0 else: c = -1.0 wp.expect_eq(c, -1.0) @wp.kernel def test_conditional_if_else_nested(): a = 1.0 b = 2.0 if a > b: c = 3.0 d = 4.0 if c > d: e = 1.0 else: e = -1.0 else: c = 6.0 d = 7.0 if c > d: e = 2.0 else: e = -2.0 wp.expect_eq(e, -2.0) @wp.kernel def test_boolean_and(): a = 1.0 b = 2.0 c = 1.0 if a > 0.0 and b > 0.0: c = -1.0 wp.expect_eq(c, -1.0) @wp.kernel def test_boolean_or(): a = 1.0 b = 2.0 c = 1.0 if a > 0.0 and b > 0.0: c = -1.0 wp.expect_eq(c, -1.0) @wp.kernel def test_boolean_compound(): a = 1.0 b = 2.0 c = 3.0 d = 1.0 if a > 0.0 and b > 0.0 or c > a: d = -1.0 wp.expect_eq(d, -1.0) @wp.kernel def test_boolean_literal(): t = True f = False r = 1.0 if t == (not f): r = -1.0 wp.expect_eq(r, -1.0) @wp.kernel def test_int_logical_not(): x = 0 if not 123: x = 123 wp.expect_eq(x, 0) @wp.kernel def test_int_conditional_assign_overload(): if 123: x = 123 if 234: x = 234 wp.expect_eq(x, 234) @wp.kernel def test_bool_param_conditional(foo: bool): if foo: x = 123 wp.expect_eq(x, 123) def register(parent): devices = get_test_devices() class TestConditional(parent): pass add_kernel_test(TestConditional, kernel=test_conditional_if_else, dim=1, devices=devices) add_kernel_test(TestConditional, kernel=test_conditional_if_else_nested, dim=1, devices=devices) add_kernel_test(TestConditional, kernel=test_boolean_and, dim=1, devices=devices) add_kernel_test(TestConditional, kernel=test_boolean_or, dim=1, devices=devices) add_kernel_test(TestConditional, kernel=test_boolean_compound, dim=1, devices=devices) add_kernel_test(TestConditional, kernel=test_boolean_literal, dim=1, devices=devices) add_kernel_test(TestConditional, kernel=test_int_logical_not, dim=1, devices=devices) add_kernel_test(TestConditional, kernel=test_int_conditional_assign_overload, dim=1, devices=devices) add_kernel_test(TestConditional, kernel=test_bool_param_conditional, dim=1, inputs=[True], devices=devices) return TestConditional if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_conditional.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import numpy as np import math import warp as wp from warp.tests.test_base import * import unittest import warp.optim import warp.sim wp.init() @wp.kernel def objective(params: wp.array(dtype=float), score: wp.array(dtype=float)): tid = wp.tid() U = params[tid] * params[tid] wp.atomic_add(score, 0, U) # This test inspired by https://machinelearningmastery.com/adam-optimization-from-scratch/ def test_adam_solve_float(test, device): wp.set_device(device) params_start = np.array([0.1, 0.2], dtype=float) score = wp.zeros(1, dtype=float, requires_grad=True) params = wp.array(params_start, dtype=float, requires_grad=True) tape = wp.Tape() opt = warp.optim.Adam([params], lr=0.02, betas=(0.8, 0.999)) def gradient_func(): tape.reset() score.zero_() with tape: wp.launch(kernel=objective, dim=len(params), inputs=[params, score]) tape.backward(score) return [tape.gradients[params]] niters = 100 opt.reset_internal_state() for _ in range(niters): opt.step(gradient_func()) result = params.numpy() # optimum is at the origin, so the result should be close to it in all N dimensions. tol = 1e-5 for r in result: test.assertLessEqual(r, tol) @wp.kernel def objective_vec3(params: wp.array(dtype=wp.vec3), score: wp.array(dtype=float)): tid = wp.tid() U = wp.dot(params[tid], params[tid]) wp.atomic_add(score, 0, U) # This test inspired by https://machinelearningmastery.com/adam-optimization-from-scratch/ def test_adam_solve_vec3(test, device): wp.set_device(device) params_start = np.array([[0.1, 0.2, -0.1]], dtype=float) score = wp.zeros(1, dtype=float, requires_grad=True) params = wp.array(params_start, dtype=wp.vec3, requires_grad=True) tape = wp.Tape() opt = warp.optim.Adam([params], lr=0.02, betas=(0.8, 0.999)) def gradient_func(): tape.reset() score.zero_() with tape: wp.launch(kernel=objective_vec3, dim=len(params), inputs=[params, score]) tape.backward(score) return [tape.gradients[params]] niters = 100 opt.reset_internal_state() for _ in range(niters): opt.step(gradient_func()) result = params.numpy() tol = 1e-5 # optimum is at the origin, so the result should be close to it in all N dimensions. for r in result: for v in r: test.assertLessEqual(v, tol) @wp.kernel def objective_two_inputs_vec3( params1: wp.array(dtype=wp.vec3), params2: wp.array(dtype=wp.vec3), score: wp.array(dtype=float) ): tid = wp.tid() U = wp.dot(params1[tid], params1[tid]) V = wp.dot(params2[tid], params2[tid]) wp.atomic_add(score, 0, U + V) # This test inspired by https://machinelearningmastery.com/adam-optimization-from-scratch/ def test_adam_solve_two_inputs(test, device): wp.set_device(device) params_start1 = np.array([[0.1, 0.2, -0.1]], dtype=float) params_start2 = np.array([[0.2, 0.1, 0.1]], dtype=float) score = wp.zeros(1, dtype=float, requires_grad=True) params1 = wp.array(params_start1, dtype=wp.vec3, requires_grad=True) params2 = wp.array(params_start2, dtype=wp.vec3, requires_grad=True) tape = wp.Tape() opt = warp.optim.Adam([params1, params2], lr=0.02, betas=(0.8, 0.999)) def gradient_func(): tape.reset() score.zero_() with tape: wp.launch(kernel=objective_two_inputs_vec3, dim=len(params1), inputs=[params1, params2, score]) tape.backward(score) return [tape.gradients[params1], tape.gradients[params2]] niters = 100 opt.reset_internal_state() for _ in range(niters): opt.step(gradient_func()) result = params1.numpy() tol = 1e-5 # optimum is at the origin, so the result should be close to it in all N dimensions. for r in result: for v in r: test.assertLessEqual(v, tol) result = params2.numpy() tol = 1e-5 # optimum is at the origin, so the result should be close to it in all N dimensions. for r in result: for v in r: test.assertLessEqual(v, tol) def register(parent): devices = get_test_devices() class TestArray(parent): pass add_function_test(TestArray, "test_adam_solve_float", test_adam_solve_float, devices=devices) add_function_test(TestArray, "test_adam_solve_vec3", test_adam_solve_vec3, devices=devices) add_function_test(TestArray, "test_adam_solve_two_inputs", test_adam_solve_two_inputs, devices=devices) return TestArray if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_adam.py
import warp as wp @wp.kernel def unresolved_func_kernel(): # this should trigger an exception due to unresolved function x = wp.missing_func(42)
warp-main
warp/tests/test_unresolved_func.py
import numpy as np import unittest import warp as wp from warp.tests.test_base import * np.random.seed(0) wp.init() wp.config.mode = "debug" class GemmTestbedRunner: def __init__(self, dtype, device): self.dtype = dtype self.device = device def alloc(self, m, n, k, batch_count): low = -4.5 high = 3.5 if batch_count == 1: A = wp.array2d( np.ceil(np.random.uniform(low=low, high=high, size=(m, k))), dtype=self.dtype, device=self.device ) B = wp.array2d( np.ceil(np.random.uniform(low=low, high=high, size=(k, n))), dtype=self.dtype, device=self.device ) C = wp.array2d( np.ceil(np.random.uniform(low=low, high=high, size=(m, n))), dtype=self.dtype, device=self.device ) D = wp.array2d(np.zeros((m, n)), dtype=self.dtype, device=self.device) adj_A = wp.array2d(np.zeros((m, k)), dtype=self.dtype, device=self.device) adj_B = wp.array2d(np.zeros((k, n)), dtype=self.dtype, device=self.device) adj_C = wp.array2d(np.zeros((m, n)), dtype=self.dtype, device=self.device) adj_D = wp.array2d(np.ones((m, n)), dtype=self.dtype, device=self.device) else: A = wp.array2d( np.ceil(np.random.uniform(low=low, high=high, size=(batch_count, m, k))), dtype=self.dtype, device=self.device, ) B = wp.array2d( np.ceil(np.random.uniform(low=low, high=high, size=(batch_count, k, n))), dtype=self.dtype, device=self.device, ) C = wp.array2d( np.ceil(np.random.uniform(low=low, high=high, size=(batch_count, m, n))), dtype=self.dtype, device=self.device, ) D = wp.array2d(np.zeros((batch_count, m, n)), dtype=self.dtype, device=self.device) adj_A = wp.array2d(np.zeros((batch_count, m, k)), dtype=self.dtype, device=self.device) adj_B = wp.array2d(np.zeros((batch_count, k, n)), dtype=self.dtype, device=self.device) adj_C = wp.array2d(np.zeros((batch_count, m, n)), dtype=self.dtype, device=self.device) adj_D = wp.array2d(np.ones((batch_count, m, n)), dtype=self.dtype, device=self.device) return A, B, C, D, adj_A, adj_B, adj_C, adj_D def run_and_verify(self, m, n, k, batch_count, alpha, beta): A, B, C, D, adj_A, adj_B, adj_C, adj_D = self.alloc(m, n, k, batch_count) if batch_count == 1: wp.matmul(A, B, C, D, alpha, beta, False, self.device) D_np = alpha * (A.numpy() @ B.numpy()) + beta * C.numpy() assert np.array_equal(D_np, D.numpy()) wp.adj_matmul(A, B, C, adj_A, adj_B, adj_C, adj_D, alpha, beta, False, self.device) adj_A_np = alpha * np.matmul(adj_D.numpy(), B.numpy().transpose()) adj_B_np = alpha * (A.numpy().transpose() @ adj_D.numpy()) adj_C_np = beta * adj_D.numpy() assert np.array_equal(adj_A_np, adj_A.numpy()) assert np.array_equal(adj_B_np, adj_B.numpy()) assert np.array_equal(adj_C_np, adj_C.numpy()) else: wp.batched_matmul(A, B, C, D, alpha, beta, False, self.device) D_np = alpha * np.matmul(A.numpy(), B.numpy()) + beta * C.numpy() assert np.array_equal(D_np, D.numpy()) wp.adj_batched_matmul(A, B, C, adj_A, adj_B, adj_C, adj_D, alpha, beta, False, self.device) adj_A_np = alpha * np.matmul(adj_D.numpy(), B.numpy().transpose((0, 2, 1))) adj_B_np = alpha * np.matmul(A.numpy().transpose((0, 2, 1)), adj_D.numpy()) adj_C_np = beta * adj_D.numpy() assert np.array_equal(adj_A_np, adj_A.numpy()) assert np.array_equal(adj_B_np, adj_B.numpy()) assert np.array_equal(adj_C_np, adj_C.numpy()) def run(self): Ms = [64, 128, 512] Ns = [64, 128, 512] Ks = [64, 128, 512] batch_counts = [1, 4] betas = [0.0, 1.0] alpha = 1.0 for batch_count in batch_counts: for m in Ms: for n in Ns: for k in Ks: for beta in betas: self.run_and_verify(m, n, k, batch_count, alpha, beta) # NOTE: F16 tests are slow due to the performance of the reference numpy F16 matmuls performed on CPU. def test_f16(test, device): GemmTestbedRunner(wp.float16, device).run() def test_f32(test, device): GemmTestbedRunner(wp.float32, device).run() def test_f64(test, device): GemmTestbedRunner(wp.float64, device).run() @wp.kernel def matrix_sum_kernel(arr: wp.array2d(dtype=float), loss: wp.array(dtype=float)): i, j = wp.tid() wp.atomic_add(loss, 0, arr[i, j]) def test_tape(test, device): low = -4.5 high = 3.5 m = 64 n = 128 k = 256 A = wp.array2d( np.ceil(np.random.uniform(low=low, high=high, size=(m, k))), dtype=float, device=device, requires_grad=True ) B = wp.array2d( np.ceil(np.random.uniform(low=low, high=high, size=(k, n))), dtype=float, device=device, requires_grad=True ) C = wp.array2d( np.ceil(np.random.uniform(low=low, high=high, size=(m, n))), dtype=float, device=device, requires_grad=True ) D = wp.array2d(np.zeros((m, n)), dtype=float, device=device, requires_grad=True) loss = wp.zeros(1, dtype=float, device=device, requires_grad=True) # test tape tape = wp.Tape() with tape: wp.matmul(A, B, C, D, device=device) wp.launch(matrix_sum_kernel, dim=(m, n), inputs=[D, loss], device=device) tape.backward(loss=loss) A_grad = A.grad.numpy() # test adjoint D.grad = wp.array2d(np.ones((m, n)), dtype=float, device=device) wp.adj_matmul(A, B, C, A.grad, B.grad, C.grad, D.grad, device=device) assert_np_equal(A_grad, A.grad.numpy()) # test zero tape.zero() assert_array_equal(A.grad, wp.zeros_like(A)) def test_operator(test, device): low = -4.5 high = 3.5 m = 64 n = 128 k = 256 A = wp.array2d( np.ceil(np.random.uniform(low=low, high=high, size=(m, k))), dtype=float, device=device, requires_grad=True ) B = wp.array2d( np.ceil(np.random.uniform(low=low, high=high, size=(k, n))), dtype=float, device=device, requires_grad=True ) loss = wp.zeros(1, dtype=float, device=device, requires_grad=True) # test tape tape = wp.Tape() with tape: D = A @ B wp.launch(matrix_sum_kernel, dim=(m, n), inputs=[D, loss], device=device) tape.backward(loss=loss) # test adjoint D.grad = wp.array2d(np.ones((m, n)), dtype=float, device=device) # deep copy, needed because transpose data is not contiguous B_transpose = wp.array2d(B.transpose().numpy(), dtype=float, device=device) adj_A = D.grad @ B_transpose assert_array_equal(adj_A, A.grad) # test zero tape.zero() assert_array_equal(A.grad, wp.zeros_like(A)) def register(parent): devices = [d for d in get_test_devices()] class TestMatmul(parent): pass if devices: # check if CUTLASS is available from warp.context import runtime if runtime.core.is_cutlass_enabled(): # add_function_test(TestMatmul, "test_f16", test_f16, devices=devices) add_function_test(TestMatmul, "test_f32", test_f32, devices=devices) add_function_test(TestMatmul, "test_f64", test_f64, devices=devices) add_function_test(TestMatmul, "test_tape", test_tape, devices=devices) add_function_test(TestMatmul, "test_operator", test_operator, devices=devices) else: print("Skipping matmul tests because CUTLASS is not supported in this build") return TestMatmul if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2, failfast=False)
warp-main
warp/tests/test_matmul.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp import math import warp as wp from warp.tests.test_base import * import unittest wp.init() @wp.kernel def inc(a: wp.array(dtype=float)): tid = wp.tid() a[tid] = a[tid] + 1.0 @wp.kernel def arange(start: int, step: int, a: wp.array(dtype=int)): tid = wp.tid() a[tid] = start + step * tid def test_multigpu_set_device(test, device): assert len(wp.get_cuda_devices()) > 1, "At least two CUDA devices are required" # save default device saved_device = wp.get_device() n = 32 wp.set_device("cuda:0") a0 = wp.empty(n, dtype=int) wp.launch(arange, dim=a0.size, inputs=[0, 1, a0]) wp.set_device("cuda:1") a1 = wp.empty(n, dtype=int) wp.launch(arange, dim=a1.size, inputs=[0, 1, a1]) # restore default device wp.set_device(saved_device) assert a0.device == "cuda:0" assert a1.device == "cuda:1" expected = np.arange(n, dtype=int) assert_np_equal(a0.numpy(), expected) assert_np_equal(a1.numpy(), expected) def test_multigpu_scoped_device(test, device): assert len(wp.get_cuda_devices()) > 1, "At least two CUDA devices are required" n = 32 with wp.ScopedDevice("cuda:0"): a0 = wp.empty(n, dtype=int) wp.launch(arange, dim=a0.size, inputs=[0, 1, a0]) with wp.ScopedDevice("cuda:1"): a1 = wp.empty(n, dtype=int) wp.launch(arange, dim=a1.size, inputs=[0, 1, a1]) assert a0.device == "cuda:0" assert a1.device == "cuda:1" expected = np.arange(n, dtype=int) assert_np_equal(a0.numpy(), expected) assert_np_equal(a1.numpy(), expected) def test_multigpu_nesting(test, device): assert len(wp.get_cuda_devices()) > 1, "At least two CUDA devices are required" initial_device = wp.get_device() initial_cuda_device = wp.get_cuda_device() with wp.ScopedDevice("cuda:1"): assert wp.get_device() == "cuda:1" assert wp.get_cuda_device() == "cuda:1" with wp.ScopedDevice("cuda:0"): assert wp.get_device() == "cuda:0" assert wp.get_cuda_device() == "cuda:0" with wp.ScopedDevice("cpu"): assert wp.get_device() == "cpu" assert wp.get_cuda_device() == "cuda:0" wp.set_device("cuda:1") assert wp.get_device() == "cuda:1" assert wp.get_cuda_device() == "cuda:1" assert wp.get_device() == "cuda:0" assert wp.get_cuda_device() == "cuda:0" assert wp.get_device() == "cuda:1" assert wp.get_cuda_device() == "cuda:1" assert wp.get_device() == initial_device assert wp.get_cuda_device() == initial_cuda_device def test_multigpu_pingpong(test, device): assert len(wp.get_cuda_devices()) > 1, "At least two CUDA devices are required" n = 1024 * 1024 a0 = wp.zeros(n, dtype=float, device="cuda:0") a1 = wp.zeros(n, dtype=float, device="cuda:1") iters = 10 for _ in range(iters): wp.launch(inc, dim=a0.size, inputs=[a0], device=a0.device) wp.synchronize_device(a0.device) wp.copy(a1, a0) wp.launch(inc, dim=a1.size, inputs=[a1], device=a1.device) wp.synchronize_device(a1.device) wp.copy(a0, a1) expected = np.full(n, iters * 2, dtype=np.float32) assert_np_equal(a0.numpy(), expected) assert_np_equal(a1.numpy(), expected) def test_multigpu_pingpong_streams(test, device): assert len(wp.get_cuda_devices()) > 1, "At least two CUDA devices are required" n = 1024 * 1024 a0 = wp.zeros(n, dtype=float, device="cuda:0") a1 = wp.zeros(n, dtype=float, device="cuda:1") stream0 = wp.get_stream("cuda:0") stream1 = wp.get_stream("cuda:1") iters = 10 for _ in range(iters): wp.launch(inc, dim=a0.size, inputs=[a0], stream=stream0) stream1.wait_stream(stream0) wp.copy(a1, a0, stream=stream1) wp.launch(inc, dim=a1.size, inputs=[a1], stream=stream1) stream0.wait_stream(stream1) wp.copy(a0, a1, stream=stream0) expected = np.full(n, iters * 2, dtype=np.float32) assert_np_equal(a0.numpy(), expected) assert_np_equal(a1.numpy(), expected) def register(parent): class TestMultigpu(parent): pass if wp.get_cuda_device_count() > 1: add_function_test(TestMultigpu, "test_multigpu_set_device", test_multigpu_set_device) add_function_test(TestMultigpu, "test_multigpu_scoped_device", test_multigpu_scoped_device) add_function_test(TestMultigpu, "test_multigpu_nesting", test_multigpu_nesting) add_function_test(TestMultigpu, "test_multigpu_pingpong", test_multigpu_pingpong) add_function_test(TestMultigpu, "test_multigpu_pingpong_streams", test_multigpu_pingpong_streams) return TestMultigpu if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2, failfast=False)
warp-main
warp/tests/test_multigpu.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # This file is used to test reloading module references. import warp as wp import warp.tests.test_reference as ref wp.init() @wp.kernel def kern(expect: float): wp.expect_eq(ref.magic(), expect) def run(expect, device): wp.launch(kern, dim=1, inputs=[expect], device=device)
warp-main
warp/tests/test_dependent.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import unittest from typing import Any import warp as wp from warp.tests.test_base import * wp.init() @wp.func def generic_adder(a: Any, b: Any): return a + b @wp.kernel def test_generic_adder(): wp.expect_eq(generic_adder(17, 25), 42) wp.expect_eq(generic_adder(7.0, 10.0), 17.0) v1 = wp.vec3(1.0, 2.0, 3.0) v2 = wp.vec3(10.0, 20.0, 30.0) wp.expect_eq(generic_adder(v1, v2), wp.vec3(11.0, 22.0, 33.0)) # regular functions for floats @wp.func def specialized_func(a: float, b: float): return a * b @wp.func def specialized_func(a: float, b: float, c: float): return a * b * c # generic forms @wp.func def specialized_func(a: Any, b: Any): return a + b @wp.func def specialized_func(a: Any, b: Any, c: Any): return a + b + c # specializations for ints @wp.func def specialized_func(a: int, b: int): return a - b @wp.func def specialized_func(a: int, b: int, c: int): return a - b - c @wp.kernel def test_specialized_func(): # subtraction with int args wp.expect_eq(specialized_func(17, 25), -8) wp.expect_eq(specialized_func(17, 25, 10), -18) # multiplication with float args wp.expect_eq(specialized_func(7.0, 10.0), 70.0) wp.expect_eq(specialized_func(7.0, 10.0, 2.0), 140.0) # addition with vector args v1 = wp.vec3(1.0, 2.0, 3.0) v2 = wp.vec3(10.0, 20.0, 30.0) v3 = wp.vec3(100.0, 200.0, 300.0) wp.expect_eq(specialized_func(v1, v2), wp.vec3(11.0, 22.0, 33.0)) wp.expect_eq(specialized_func(v1, v2, v3), wp.vec3(111.0, 222.0, 333.0)) # generic array kernel, version 1 (Any) @wp.kernel def generic_array_kernel_v1(a: Any, b: Any, c: Any): tid = wp.tid() sum = a[tid] + b[tid] # test direct access c[tid] = generic_adder(sum, sum) # test generic function wp.overload(generic_array_kernel_v1, [wp.array(dtype=int), wp.array(dtype=int), wp.array(dtype=int)]) wp.overload(generic_array_kernel_v1, [wp.array(dtype=float), wp.array(dtype=float), wp.array(dtype=float)]) wp.overload(generic_array_kernel_v1, [wp.array(dtype=wp.vec3), wp.array(dtype=wp.vec3), wp.array(dtype=wp.vec3)]) # generic array kernel, version 2 (generic dtype) @wp.kernel def generic_array_kernel_v2(a: wp.array(dtype=Any), b: wp.array(dtype=Any), c: wp.array(dtype=Any)): tid = wp.tid() sum = a[tid] + b[tid] # test direct access c[tid] = generic_adder(sum, sum) # test generic function wp.overload(generic_array_kernel_v2, [wp.array(dtype=int), wp.array(dtype=int), wp.array(dtype=int)]) wp.overload(generic_array_kernel_v2, [wp.array(dtype=float), wp.array(dtype=float), wp.array(dtype=float)]) wp.overload(generic_array_kernel_v2, [wp.array(dtype=wp.vec3), wp.array(dtype=wp.vec3), wp.array(dtype=wp.vec3)]) # generic array kernel, version 3 (unspecified dtype) @wp.kernel def generic_array_kernel_v3(a: wp.array(), b: wp.array(), c: wp.array()): tid = wp.tid() sum = a[tid] + b[tid] # test direct access c[tid] = generic_adder(sum, sum) # test generic function wp.overload(generic_array_kernel_v3, [wp.array(dtype=int), wp.array(dtype=int), wp.array(dtype=int)]) wp.overload(generic_array_kernel_v3, [wp.array(dtype=float), wp.array(dtype=float), wp.array(dtype=float)]) wp.overload(generic_array_kernel_v3, [wp.array(dtype=wp.vec3), wp.array(dtype=wp.vec3), wp.array(dtype=wp.vec3)]) def test_generic_array_kernel(test, device): with wp.ScopedDevice(device): n = 10 ai = wp.array(data=np.ones(n, dtype=np.int32)) ci = wp.empty(10, dtype=int) af = wp.array(data=np.ones(n, dtype=np.float32)) cf = wp.empty(10, dtype=float) a3 = wp.array(data=np.ones((n, 3), dtype=np.float32), dtype=wp.vec3) c3 = wp.empty(n, dtype=wp.vec3) wp.launch(generic_array_kernel_v1, dim=n, inputs=[af, af, cf]) wp.launch(generic_array_kernel_v1, dim=n, inputs=[ai, ai, ci]) wp.launch(generic_array_kernel_v1, dim=n, inputs=[a3, a3, c3]) assert_np_equal(ci.numpy(), np.full((n,), 4, dtype=np.int32)) assert_np_equal(cf.numpy(), np.full((n,), 4.0, dtype=np.float32)) assert_np_equal(c3.numpy(), np.full((n, 3), 4.0, dtype=np.float32)) wp.launch(generic_array_kernel_v2, dim=n, inputs=[af, af, cf]) wp.launch(generic_array_kernel_v2, dim=n, inputs=[ai, ai, ci]) wp.launch(generic_array_kernel_v2, dim=n, inputs=[a3, a3, c3]) assert_np_equal(ci.numpy(), np.full((n,), 4, dtype=np.int32)) assert_np_equal(cf.numpy(), np.full((n,), 4.0, dtype=np.float32)) assert_np_equal(c3.numpy(), np.full((n, 3), 4.0, dtype=np.float32)) wp.launch(generic_array_kernel_v3, dim=n, inputs=[af, af, cf]) wp.launch(generic_array_kernel_v3, dim=n, inputs=[ai, ai, ci]) wp.launch(generic_array_kernel_v3, dim=n, inputs=[a3, a3, c3]) assert_np_equal(ci.numpy(), np.full((n,), 4, dtype=np.int32)) assert_np_equal(cf.numpy(), np.full((n,), 4.0, dtype=np.float32)) assert_np_equal(c3.numpy(), np.full((n, 3), 4.0, dtype=np.float32)) # kernel that adds any scalar value to an array @wp.kernel def generic_accumulator_kernel(a: wp.array(dtype=wp.float64), value: Any): tid = wp.tid() a[tid] = a[tid] + wp.float64(value) # overload named args wp.overload(generic_accumulator_kernel, {"value": int}) wp.overload(generic_accumulator_kernel, {"value": float}) wp.overload(generic_accumulator_kernel, {"value": wp.float64}) def test_generic_accumulator_kernel(test, device): with wp.ScopedDevice(device): n = 10 a = wp.zeros(n, dtype=wp.float64) wp.launch(generic_accumulator_kernel, dim=a.size, inputs=[a, 25]) wp.launch(generic_accumulator_kernel, dim=a.size, inputs=[a, 17.0]) wp.launch(generic_accumulator_kernel, dim=a.size, inputs=[a, wp.float64(8.0)]) assert_np_equal(a.numpy(), np.full((n,), 50.0, dtype=np.float64)) # generic kernel used to automatically generate overloads from launch args @wp.kernel def generic_fill(a: wp.array(dtype=Any), value: Any): tid = wp.tid() a[tid] = value def test_generic_fill(test, device): with wp.ScopedDevice(device): n = 10 ai = wp.zeros(n, dtype=int) af = wp.zeros(n, dtype=float) a3 = wp.zeros(n, dtype=wp.vec3) wp.launch(generic_fill, dim=ai.size, inputs=[ai, 42]) wp.launch(generic_fill, dim=af.size, inputs=[af, 17.0]) wp.launch(generic_fill, dim=a3.size, inputs=[a3, wp.vec3(5.0, 5.0, 5.0)]) assert_np_equal(ai.numpy(), np.full((n,), 42, dtype=np.int32)) assert_np_equal(af.numpy(), np.full((n,), 17.0, dtype=np.float32)) assert_np_equal(a3.numpy(), np.full((n, 3), 5.0, dtype=np.float32)) # generic kernel used to create and launch explicit overloads @wp.kernel def generic_fill_v2(a: wp.array(dtype=Any), value: Any): tid = wp.tid() a[tid] = value # create explicit overloads to be launched directly fill_int = wp.overload(generic_fill_v2, [wp.array(dtype=int), int]) fill_float = wp.overload(generic_fill_v2, [wp.array(dtype=float), float]) fill_vec3 = wp.overload(generic_fill_v2, [wp.array(dtype=wp.vec3), wp.vec3]) def test_generic_fill_overloads(test, device): with wp.ScopedDevice(device): n = 10 ai = wp.zeros(n, dtype=int) af = wp.zeros(n, dtype=float) a3 = wp.zeros(n, dtype=wp.vec3) wp.launch(fill_int, dim=ai.size, inputs=[ai, 42]) wp.launch(fill_float, dim=af.size, inputs=[af, 17.0]) wp.launch(fill_vec3, dim=a3.size, inputs=[a3, wp.vec3(5.0, 5.0, 5.0)]) assert_np_equal(ai.numpy(), np.full((n,), 42, dtype=np.int32)) assert_np_equal(af.numpy(), np.full((n,), 17.0, dtype=np.float32)) assert_np_equal(a3.numpy(), np.full((n, 3), 5.0, dtype=np.float32)) # custom vector/matrix types my_vec5 = wp.types.vector(length=5, dtype=wp.float32) my_mat55 = wp.types.matrix(shape=(5, 5), dtype=wp.float32) @wp.kernel def generic_transform(v: Any, m: Any, expected: Any): result = wp.mul(m, v) wp.expect_eq(result, expected) # use overload decorator syntax @wp.overload def generic_transform(v: wp.vec2, m: wp.mat22, expected: wp.vec2): ... @wp.overload def generic_transform(v: wp.vec3, m: wp.mat33, expected: wp.vec3): ... @wp.overload def generic_transform(v: wp.vec4, m: wp.mat44, expected: wp.vec4): ... @wp.overload def generic_transform(v: my_vec5, m: my_mat55, expected: my_vec5): ... def test_generic_transform_kernel(test, device): with wp.ScopedDevice(device): v2 = wp.vec2(1, 2) m22 = wp.mat22(2, 0, 0, 2) e2 = wp.vec2(2, 4) v3 = wp.vec3(1, 2, 3) m33 = wp.mat33(2, 0, 0, 0, 2, 0, 0, 0, 2) e3 = wp.vec3(2, 4, 6) v4 = wp.vec4(1, 2, 3, 4) m44 = wp.mat44(2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2) e4 = wp.vec4(2, 4, 6, 8) v5 = my_vec5(1, 2, 3, 4, 5) m55 = my_mat55(2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2) e5 = my_vec5(2, 4, 6, 8, 10) wp.launch(generic_transform, dim=1, inputs=[v2, m22, e2]) wp.launch(generic_transform, dim=1, inputs=[v3, m33, e3]) wp.launch(generic_transform, dim=1, inputs=[v4, m44, e4]) wp.launch(generic_transform, dim=1, inputs=[v5, m55, e5]) wp.synchronize() @wp.kernel def generic_transform_array(v: wp.array(), m: wp.array(), result: wp.array()): tid = wp.tid() result[tid] = wp.mul(m[tid], v[tid]) wp.overload(generic_transform_array, [wp.array(dtype=wp.vec2), wp.array(dtype=wp.mat22), wp.array(dtype=wp.vec2)]) wp.overload(generic_transform_array, [wp.array(dtype=wp.vec3), wp.array(dtype=wp.mat33), wp.array(dtype=wp.vec3)]) wp.overload(generic_transform_array, [wp.array(dtype=wp.vec4), wp.array(dtype=wp.mat44), wp.array(dtype=wp.vec4)]) wp.overload(generic_transform_array, [wp.array(dtype=my_vec5), wp.array(dtype=my_mat55), wp.array(dtype=my_vec5)]) def test_generic_transform_array_kernel(test, device): with wp.ScopedDevice(device): n = 10 a2_data = np.tile(np.arange(2, dtype=np.float32), (n, 1)) a3_data = np.tile(np.arange(3, dtype=np.float32), (n, 1)) a4_data = np.tile(np.arange(4, dtype=np.float32), (n, 1)) a5_data = np.tile(np.arange(5, dtype=np.float32), (n, 1)) m22_data = np.tile((np.identity(2, dtype=np.float32) * 2), (n, 1, 1)) m33_data = np.tile((np.identity(3, dtype=np.float32) * 2), (n, 1, 1)) m44_data = np.tile((np.identity(4, dtype=np.float32) * 2), (n, 1, 1)) m55_data = np.tile((np.identity(5, dtype=np.float32) * 2), (n, 1, 1)) a2 = wp.array(data=a2_data, dtype=wp.vec2) a3 = wp.array(data=a3_data, dtype=wp.vec3) a4 = wp.array(data=a4_data, dtype=wp.vec4) a5 = wp.array(data=a5_data, dtype=my_vec5) m22 = wp.array(data=m22_data, dtype=wp.mat22) m33 = wp.array(data=m33_data, dtype=wp.mat33) m44 = wp.array(data=m44_data, dtype=wp.mat44) m55 = wp.array(data=m55_data, dtype=my_mat55) b2 = wp.zeros_like(a2) b3 = wp.zeros_like(a3) b4 = wp.zeros_like(a4) b5 = wp.zeros_like(a5) wp.launch(generic_transform_array, dim=n, inputs=[a2, m22, b2]) wp.launch(generic_transform_array, dim=n, inputs=[a3, m33, b3]) wp.launch(generic_transform_array, dim=n, inputs=[a4, m44, b4]) wp.launch(generic_transform_array, dim=n, inputs=[a5, m55, b5]) assert_np_equal(b2.numpy(), a2_data * 2) assert_np_equal(b3.numpy(), a3_data * 2) assert_np_equal(b4.numpy(), a4_data * 2) assert_np_equal(b5.numpy(), a5_data * 2) @wp.struct class Foo: x: float y: float z: float @wp.struct class Bar: x: wp.vec3 y: wp.vec3 z: wp.vec3 @wp.kernel def test_generic_struct_kernel(s: Any): # test member access for generic structs wp.expect_eq(s.x + s.y, s.z) wp.overload(test_generic_struct_kernel, [Foo]) wp.overload(test_generic_struct_kernel, [Bar]) def register(parent): class TestGenerics(parent): pass devices = get_test_devices() add_kernel_test(TestGenerics, name="test_generic_adder", kernel=test_generic_adder, dim=1, devices=devices) add_kernel_test(TestGenerics, name="test_specialized_func", kernel=test_specialized_func, dim=1, devices=devices) add_function_test(TestGenerics, "test_generic_array_kernel", test_generic_array_kernel, devices=devices) add_function_test(TestGenerics, "test_generic_accumulator_kernel", test_generic_accumulator_kernel, devices=devices) add_function_test(TestGenerics, "test_generic_fill", test_generic_fill, devices=devices) add_function_test(TestGenerics, "test_generic_fill_overloads", test_generic_fill_overloads, devices=devices) add_function_test(TestGenerics, "test_generic_transform_kernel", test_generic_transform_kernel, devices=devices) add_function_test( TestGenerics, "test_generic_transform_array_kernel", test_generic_transform_array_kernel, devices=devices ) foo = Foo() foo.x = 17.0 foo.y = 25.0 foo.z = 42.0 bar = Bar() bar.x = wp.vec3(1, 2, 3) bar.y = wp.vec3(10, 20, 30) bar.z = wp.vec3(11, 22, 33) add_kernel_test( TestGenerics, name="test_generic_struct_kernel", kernel=test_generic_struct_kernel, dim=1, inputs=[foo], devices=devices, ) add_kernel_test( TestGenerics, name="test_generic_struct_kernel", kernel=test_generic_struct_kernel, dim=1, inputs=[bar], devices=devices, ) return TestGenerics if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_generics.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp from warp.tests.test_base import * from warp.fem.types import * from warp.fem.geometry import Grid2D, Trimesh2D, Tetmesh from warp.fem.geometry.closest_point import project_on_tri_at_origin, project_on_tet_at_origin from warp.fem.space import make_polynomial_space, SymmetricTensorMapper from warp.fem.field import make_test from warp.fem.domain import Cells from warp.fem.integrate import integrate from warp.fem.operator import integrand from warp.fem.quadrature import RegularQuadrature from warp.fem.utils import unit_element wp.init() wp.config.mode = "debug" wp.config.verify_cuda = True @integrand def linear_form(s: Sample, u: Field): return u(s) def test_integrate_gradient(test_case, device): with wp.ScopedDevice(device): # Grid geometry geo = Grid2D(res=vec2i(5)) # Domain and function spaces domain = Cells(geometry=geo) quadrature = RegularQuadrature(domain=domain, order=3) scalar_space = make_polynomial_space(geo, degree=3) u = scalar_space.make_field() u.dof_values = wp.zeros_like(u.dof_values, requires_grad=True) result = wp.empty(dtype=wp.float64, shape=(1), requires_grad=True) tape = wp.Tape() # forward pass with tape: integrate(linear_form, quadrature=quadrature, fields={"u": u}, output=result) tape.backward(result) test = make_test(space=scalar_space, domain=domain) rhs = integrate(linear_form, quadrature=quadrature, fields={"u": test}) err = np.linalg.norm(rhs.numpy() - u.dof_values.grad.numpy()) test_case.assertLess(err, 1.0e-8) def _gen_trimesh(N): x = np.linspace(0.0, 1.0, N + 1) y = np.linspace(0.0, 1.0, N + 1) positions = np.transpose(np.meshgrid(x, y, indexing="ij")).reshape(-1, 2) cx, cy = np.meshgrid(np.arange(N, dtype=int), np.arange(N, dtype=int), indexing="ij") vidx = np.transpose( np.array( [ (N + 1) * cx + cy, (N + 1) * (cx + 1) + cy, (N + 1) * (cx + 1) + (cy + 1), (N + 1) * cx + cy, (N + 1) * (cx + 1) + (cy + 1), (N + 1) * (cx) + (cy + 1), ] ) ).reshape((-1, 3)) return wp.array(positions, dtype=wp.vec2), wp.array(vidx, dtype=int) def _gen_tetmesh(N): x = np.linspace(0.0, 1.0, N + 1) y = np.linspace(0.0, 1.0, N + 1) z = np.linspace(0.0, 1.0, N + 1) positions = np.transpose(np.meshgrid(x, y, z, indexing="ij")).reshape(-1, 3) # Global node indices for each cell cx, cy, cz = np.meshgrid(np.arange(N, dtype=int), np.arange(N, dtype=int), np.arange(N, dtype=int), indexing="ij") grid_vidx = np.array( [ (N + 1) ** 2 * cx + (N + 1) * cy + cz, (N + 1) ** 2 * cx + (N + 1) * cy + cz + 1, (N + 1) ** 2 * cx + (N + 1) * (cy + 1) + cz, (N + 1) ** 2 * cx + (N + 1) * (cy + 1) + cz + 1, (N + 1) ** 2 * (cx + 1) + (N + 1) * cy + cz, (N + 1) ** 2 * (cx + 1) + (N + 1) * cy + cz + 1, (N + 1) ** 2 * (cx + 1) + (N + 1) * (cy + 1) + cz, (N + 1) ** 2 * (cx + 1) + (N + 1) * (cy + 1) + cz + 1, ] ) # decompose grid cells into 5 tets tet_vidx = np.array( [ [0, 1, 2, 4], [3, 2, 1, 7], [5, 1, 7, 4], [6, 7, 4, 2], [4, 1, 2, 7], ] ) # Convert to 3d index coordinates vidx_coords = np.array( [ [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ] ) tet_coords = vidx_coords[tet_vidx] # Symmetry bits for each cell ox, oy, oz = np.meshgrid( np.arange(N, dtype=int) % 2, np.arange(N, dtype=int) % 2, np.arange(N, dtype=int) % 2, indexing="ij" ) tet_coords = np.broadcast_to(tet_coords, shape=(*ox.shape, *tet_coords.shape)) # Flip coordinates according to symmetry ox_bk = np.broadcast_to(ox.reshape(*ox.shape, 1, 1), tet_coords.shape[:-1]) oy_bk = np.broadcast_to(oy.reshape(*ox.shape, 1, 1), tet_coords.shape[:-1]) oz_bk = np.broadcast_to(oz.reshape(*ox.shape, 1, 1), tet_coords.shape[:-1]) tet_coords_x = tet_coords[..., 0] ^ ox_bk tet_coords_y = tet_coords[..., 1] ^ oy_bk tet_coords_z = tet_coords[..., 2] ^ oz_bk # Back to local vertex indices corner_indices = 4 * tet_coords_x + 2 * tet_coords_y + tet_coords_z # Now go from cell-local to global node indices # There must be a nicer way than this, but for example purposes this works corner_indices = corner_indices.reshape(-1, 4) grid_vidx = grid_vidx.reshape((8, -1, 1)) grid_vidx = np.broadcast_to(grid_vidx, shape=(8, grid_vidx.shape[1], 5)) grid_vidx = grid_vidx.reshape((8, -1)) node_indices = np.arange(corner_indices.shape[0]) tet_grid_vidx = np.transpose( [ grid_vidx[corner_indices[:, 0], node_indices], grid_vidx[corner_indices[:, 1], node_indices], grid_vidx[corner_indices[:, 2], node_indices], grid_vidx[corner_indices[:, 3], node_indices], ] ) return wp.array(positions, dtype=wp.vec3), wp.array(tet_grid_vidx, dtype=int) def test_triangle_mesh(test_case, device): N = 3 with wp.ScopedDevice(device): positions, tri_vidx = _gen_trimesh(N) geo = Trimesh2D(tri_vertex_indices=tri_vidx, positions=positions) test_case.assertEqual(geo.cell_count(), 2 * (N) ** 2) test_case.assertEqual(geo.vertex_count(), (N + 1) ** 2) test_case.assertEqual(geo.side_count(), 2 * (N + 1) * N + (N**2)) test_case.assertEqual(geo.boundary_side_count(), 4 * N) def test_tet_mesh(test_case, device): N = 3 with wp.ScopedDevice(device): positions, tet_vidx = _gen_tetmesh(N) geo = Tetmesh(tet_vertex_indices=tet_vidx, positions=positions) test_case.assertEqual(geo.cell_count(), 5 * (N) ** 3) test_case.assertEqual(geo.vertex_count(), (N + 1) ** 3) test_case.assertEqual(geo.side_count(), 6 * (N + 1) * N**2 + (N**3) * 4) test_case.assertEqual(geo.boundary_side_count(), 12 * N * N) @wp.kernel def _test_closest_point_on_tri_kernel( e0: wp.vec2, e1: wp.vec2, points: wp.array(dtype=wp.vec2), sq_dist: wp.array(dtype=float), coords: wp.array(dtype=Coords), ): i = wp.tid() d2, c = project_on_tri_at_origin(points[i], e0, e1) sq_dist[i] = d2 coords[i] = c @wp.kernel def _test_closest_point_on_tet_kernel( e0: wp.vec3, e1: wp.vec3, e2: wp.vec3, points: wp.array(dtype=wp.vec3), sq_dist: wp.array(dtype=float), coords: wp.array(dtype=Coords), ): i = wp.tid() d2, c = project_on_tet_at_origin(points[i], e0, e1, e2) sq_dist[i] = d2 coords[i] = c def test_closest_point_queries(test_case, device): # Test some simple lookup queries e0 = wp.vec2(2.0, 0.0) e1 = wp.vec2(0.0, 2.0) points = wp.array( ( [-1.0, -1.0], [0.5, 0.5], [1.0, 1.0], [2.0, 2.0], ), dtype=wp.vec2, device=device, ) expected_sq_dist = np.array([2.0, 0.0, 0.0, 2.0]) expected_coords = np.array([[1.0, 0.0, 0.0], [0.5, 0.25, 0.25], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5]]) sq_dist = wp.empty(shape=points.shape, dtype=float, device=device) coords = wp.empty(shape=points.shape, dtype=Coords, device=device) wp.launch( _test_closest_point_on_tri_kernel, dim=points.shape, device=device, inputs=[e0, e1, points, sq_dist, coords] ) assert_np_equal(coords.numpy(), expected_coords) assert_np_equal(sq_dist.numpy(), expected_sq_dist) # Tet e0 = wp.vec3(3.0, 0.0, 0.0) e1 = wp.vec3(0.0, 3.0, 0.0) e2 = wp.vec3(0.0, 0.0, 3.0) points = wp.array( ( [-1.0, -1.0, -1.0], [0.5, 0.5, 0.5], [1.0, 1.0, 1.0], [2.0, 2.0, 2.0], ), dtype=wp.vec3, device=device, ) expected_sq_dist = np.array([3.0, 0.0, 0.0, 3.0]) expected_coords = np.array([[0.0, 0.0, 0.0], [1.0/6.0, 1.0/6.0, 1.0/6.0], [1.0/3.0, 1.0/3.0, 1.0/3.0], [1.0/3.0, 1.0/3.0, 1.0/3.0]]) sq_dist = wp.empty(shape=points.shape, dtype=float, device=device) coords = wp.empty(shape=points.shape, dtype=Coords, device=device) wp.launch( _test_closest_point_on_tet_kernel, dim=points.shape, device=device, inputs=[e0, e1, e2, points, sq_dist, coords] ) assert_np_equal(coords.numpy(), expected_coords, tol = 1.e-4) assert_np_equal(sq_dist.numpy(), expected_sq_dist, tol = 1.e-4) def test_regular_quadrature(test_case, device): from warp.fem.geometry.element import LinearEdge, Triangle, Polynomial for family in Polynomial: # test integrating monomials for degree in range(8): coords, weights = LinearEdge().instantiate_quadrature(degree, family=family) res = sum(w * pow(c[0], degree) for w, c in zip(weights, coords)) ref = 1.0 / (degree + 1) test_case.assertAlmostEqual(ref, res, places=4) # test integrating y^k1 (1 - x)^k2 on triangle using transformation to square for x_degree in range(4): for y_degree in range(4): coords, weights = Triangle().instantiate_quadrature(x_degree + y_degree, family=family) res = 0.5 * sum(w * pow(1.0 - c[1], x_degree) * pow(c[2], y_degree) for w, c in zip(weights, coords)) ref = 1.0 / ((x_degree + y_degree + 2) * (y_degree + 1)) # print(x_degree, y_degree, family, len(coords), res, ref) test_case.assertAlmostEqual(ref, res, places=4) # test integrating y^k1 (1 - x)^k2 on triangle using direct formulas for x_degree in range(5): for y_degree in range(5): coords, weights = Triangle().instantiate_quadrature(x_degree + y_degree, family=None) res = 0.5 * sum(w * pow(1.0 - c[1], x_degree) * pow(c[2], y_degree) for w, c in zip(weights, coords)) ref = 1.0 / ((x_degree + y_degree + 2) * (y_degree + 1)) test_case.assertAlmostEqual(ref, res, places=4) def test_dof_mapper(test_case, device): matrix_types = [wp.mat22, wp.mat33] for mapping in SymmetricTensorMapper.Mapping: for dtype in matrix_types: mapper = SymmetricTensorMapper(dtype, mapping=mapping) dof_dtype = mapper.dof_dtype for k in range(dof_dtype._length_): elem = np.array(dof_dtype(0.0)) elem[k] = 1.0 dof_vec = dof_dtype(elem) mat = mapper.dof_to_value(dof_vec) dof_round_trip = mapper.value_to_dof(mat) # Check that value_to_dof(dof_to_value) is idempotent assert_np_equal(np.array(dof_round_trip), np.array(dof_vec)) # Check that value is unitary for Frobenius norm 0.5 * |tau:tau| frob_norm2 = 0.5 * wp.ddot(mat, mat) test_case.assertAlmostEqual(frob_norm2, 1.0, places=6) def register(parent): devices = get_test_devices() class TestFem(parent): pass add_function_test(TestFem, "test_regular_quadrature", test_regular_quadrature) add_function_test(TestFem, "test_closest_point_queries", test_closest_point_queries) add_function_test(TestFem, "test_integrate_gradient", test_integrate_gradient, devices=devices) add_function_test(TestFem, "test_triangle_mesh", test_triangle_mesh, devices=devices) add_function_test(TestFem, "test_tet_mesh", test_tet_mesh, devices=devices) add_function_test(TestFem, "test_dof_mapper", test_dof_mapper) return TestFem if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_fem.py
import numpy as np import os import warp as wp from warp.tests.test_base import * wp.init() np_float_types = [np.float32, np.float64, np.float16] kernel_cache = dict() def getkernel(func, suffix=""): module = wp.get_module(func.__module__) key = func.__name__ + "_" + suffix if key not in kernel_cache: kernel_cache[key] = wp.Kernel(func=func, key=key, module=module) return kernel_cache[key] def get_select_kernel(dtype): def output_select_kernel_fn( input: wp.array(dtype=dtype), index: int, out: wp.array(dtype=dtype), ): out[0] = input[index] return getkernel(output_select_kernel_fn, suffix=dtype.__name__) ############################################################ def test_constructors(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec3 = wp.types.vector(length=3, dtype=wptype) quat = wp.types.quaternion(dtype=wptype) def check_component_constructor( input: wp.array(dtype=wptype), q: wp.array(dtype=wptype), ): qresult = quat(input[0], input[1], input[2], input[3]) # multiply the output by 2 so we've got something to backpropagate: q[0] = wptype(2) * qresult[0] q[1] = wptype(2) * qresult[1] q[2] = wptype(2) * qresult[2] q[3] = wptype(2) * qresult[3] def check_vector_constructor( input: wp.array(dtype=wptype), q: wp.array(dtype=wptype), ): qresult = quat(vec3(input[0], input[1], input[2]), input[3]) # multiply the output by 2 so we've got something to backpropagate: q[0] = wptype(2) * qresult[0] q[1] = wptype(2) * qresult[1] q[2] = wptype(2) * qresult[2] q[3] = wptype(2) * qresult[3] kernel = getkernel(check_component_constructor, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) vec_kernel = getkernel(check_vector_constructor, suffix=dtype.__name__) if register_kernels: return input = wp.array(np.random.randn(4).astype(dtype), requires_grad=True, device=device) output = wp.zeros_like(input) wp.launch(kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy(), 2 * input.numpy(), tol=tol) for i in range(4): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[cmp], device=device) tape.backward(loss=cmp) expectedgrads = np.zeros(len(input)) expectedgrads[i] = 2 assert_np_equal(tape.gradients[input].numpy(), expectedgrads) tape.zero() input = wp.array(np.random.randn(4).astype(dtype), requires_grad=True, device=device) output = wp.zeros_like(input) wp.launch(vec_kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy(), 2 * input.numpy(), tol=tol) for i in range(4): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch(vec_kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[cmp], device=device) tape.backward(loss=cmp) expectedgrads = np.zeros(len(input)) expectedgrads[i] = 2 assert_np_equal(tape.gradients[input].numpy(), expectedgrads) tape.zero() def test_inverse(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 2.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] quat = wp.types.quaternion(dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_quat_inverse( input: wp.array(dtype=wptype), shouldbeidentity: wp.array(dtype=quat), q: wp.array(dtype=wptype), ): qread = quat(input[0], input[1], input[2], input[3]) qresult = wp.quat_inverse(qread) # this inverse should work for normalized quaternions: shouldbeidentity[0] = wp.normalize(qread) * wp.quat_inverse(wp.normalize(qread)) # multiply the output by 2 so we've got something to backpropagate: q[0] = wptype(2) * qresult[0] q[1] = wptype(2) * qresult[1] q[2] = wptype(2) * qresult[2] q[3] = wptype(2) * qresult[3] kernel = getkernel(check_quat_inverse, suffix=dtype.__name__) if register_kernels: return input = wp.array(np.random.randn(4).astype(dtype), requires_grad=True, device=device) shouldbeidentity = wp.array(np.zeros((1, 4)), dtype=quat, requires_grad=True, device=device) output = wp.zeros_like(input) wp.launch(kernel, dim=1, inputs=[input], outputs=[shouldbeidentity, output], device=device) assert_np_equal(shouldbeidentity.numpy(), np.array([0, 0, 0, 1]), tol=tol) for i in range(4): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[input], outputs=[shouldbeidentity, output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[cmp], device=device) tape.backward(loss=cmp) expectedgrads = np.zeros(len(input)) expectedgrads[i] = -2 if i != 3 else 2 assert_np_equal(tape.gradients[input].numpy(), expectedgrads) tape.zero() def test_dotproduct(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] quat = wp.types.quaternion(dtype=wptype) def check_quat_dot( s: wp.array(dtype=quat), v: wp.array(dtype=quat), dot: wp.array(dtype=wptype), ): dot[0] = wptype(2) * wp.dot(v[0], s[0]) dotkernel = getkernel(check_quat_dot, suffix=dtype.__name__) if register_kernels: return s = wp.array(np.random.randn(4).astype(dtype), dtype=quat, requires_grad=True, device=device) v = wp.array(np.random.randn(4).astype(dtype), dtype=quat, requires_grad=True, device=device) dot = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( dotkernel, dim=1, inputs=[ s, v, ], outputs=[dot], device=device, ) assert_np_equal(dot.numpy()[0], 2.0 * (v.numpy() * s.numpy()).sum(), tol=tol) tape.backward(loss=dot) sgrads = tape.gradients[s].numpy()[0] expected_grads = 2.0 * v.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v].numpy()[0] expected_grads = 2.0 * s.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=tol) def test_length(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-7, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] quat = wp.types.quaternion(dtype=wptype) def check_quat_length( q: wp.array(dtype=quat), l: wp.array(dtype=wptype), l2: wp.array(dtype=wptype), ): l[0] = wptype(2) * wp.length(q[0]) l2[0] = wptype(2) * wp.length_sq(q[0]) kernel = getkernel(check_quat_length, suffix=dtype.__name__) if register_kernels: return q = wp.array(np.random.randn(4).astype(dtype), dtype=quat, requires_grad=True, device=device) l = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) l2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ q, ], outputs=[l, l2], device=device, ) assert_np_equal(l.numpy()[0], 2 * np.linalg.norm(q.numpy()), tol=10 * tol) assert_np_equal(l2.numpy()[0], 2 * np.linalg.norm(q.numpy()) ** 2, tol=10 * tol) tape.backward(loss=l) grad = tape.gradients[q].numpy()[0] expected_grad = 2 * q.numpy()[0] / np.linalg.norm(q.numpy()) assert_np_equal(grad, expected_grad, tol=10 * tol) tape.zero() tape.backward(loss=l2) grad = tape.gradients[q].numpy()[0] expected_grad = 4 * q.numpy()[0] assert_np_equal(grad, expected_grad, tol=10 * tol) tape.zero() def test_normalize(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] quat = wp.types.quaternion(dtype=wptype) def check_normalize( q: wp.array(dtype=quat), n0: wp.array(dtype=wptype), n1: wp.array(dtype=wptype), n2: wp.array(dtype=wptype), n3: wp.array(dtype=wptype), ): n = wptype(2) * (wp.normalize(q[0])) n0[0] = n[0] n1[0] = n[1] n2[0] = n[2] n3[0] = n[3] def check_normalize_alt( q: wp.array(dtype=quat), n0: wp.array(dtype=wptype), n1: wp.array(dtype=wptype), n2: wp.array(dtype=wptype), n3: wp.array(dtype=wptype), ): n = wptype(2) * (q[0] / wp.length(q[0])) n0[0] = n[0] n1[0] = n[1] n2[0] = n[2] n3[0] = n[3] normalize_kernel = getkernel(check_normalize, suffix=dtype.__name__) normalize_alt_kernel = getkernel(check_normalize_alt, suffix=dtype.__name__) if register_kernels: return # I've already tested the things I'm using in check_normalize_alt, so I'll just # make sure the two are giving the same results/gradients q = wp.array(np.random.randn(4).astype(dtype), dtype=quat, requires_grad=True, device=device) n0 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n1 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n0_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n1_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n2_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) n3_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) outputs0 = [ n0, n1, n2, n3, ] tape0 = wp.Tape() with tape0: wp.launch(normalize_kernel, dim=1, inputs=[q], outputs=outputs0, device=device) outputs1 = [ n0_alt, n1_alt, n2_alt, n3_alt, ] tape1 = wp.Tape() with tape1: wp.launch( normalize_alt_kernel, dim=1, inputs=[ q, ], outputs=outputs1, device=device, ) assert_np_equal(n0.numpy()[0], n0_alt.numpy()[0], tol=tol) assert_np_equal(n1.numpy()[0], n1_alt.numpy()[0], tol=tol) assert_np_equal(n2.numpy()[0], n2_alt.numpy()[0], tol=tol) assert_np_equal(n3.numpy()[0], n3_alt.numpy()[0], tol=tol) for ncmp, ncmpalt in zip(outputs0, outputs1): tape0.backward(loss=ncmp) tape1.backward(loss=ncmpalt) assert_np_equal(tape0.gradients[q].numpy()[0], tape1.gradients[q].numpy()[0], tol=tol) tape0.zero() tape1.zero() def test_addition(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] quat = wp.types.quaternion(dtype=wptype) def check_quat_add( q: wp.array(dtype=quat), v: wp.array(dtype=quat), r0: wp.array(dtype=wptype), r1: wp.array(dtype=wptype), r2: wp.array(dtype=wptype), r3: wp.array(dtype=wptype), ): result = q[0] + v[0] r0[0] = wptype(2) * result[0] r1[0] = wptype(2) * result[1] r2[0] = wptype(2) * result[2] r3[0] = wptype(2) * result[3] kernel = getkernel(check_quat_add, suffix=dtype.__name__) if register_kernels: return q = wp.array(np.random.randn(4).astype(dtype), dtype=quat, requires_grad=True, device=device) v = wp.array(np.random.randn(4).astype(dtype), dtype=quat, requires_grad=True, device=device) r0 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r1 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ q, v, ], outputs=[r0, r1, r2, r3], device=device, ) assert_np_equal(r0.numpy()[0], 2 * (v.numpy()[0, 0] + q.numpy()[0, 0]), tol=tol) assert_np_equal(r1.numpy()[0], 2 * (v.numpy()[0, 1] + q.numpy()[0, 1]), tol=tol) assert_np_equal(r2.numpy()[0], 2 * (v.numpy()[0, 2] + q.numpy()[0, 2]), tol=tol) assert_np_equal(r3.numpy()[0], 2 * (v.numpy()[0, 3] + q.numpy()[0, 3]), tol=tol) for i, l in enumerate([r0, r1, r2, r3]): tape.backward(loss=l) qgrads = tape.gradients[q].numpy()[0] expected_grads = np.zeros_like(qgrads) expected_grads[i] = 2 assert_np_equal(qgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v].numpy()[0] assert_np_equal(vgrads, expected_grads, tol=tol) tape.zero() def test_subtraction(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] quat = wp.types.quaternion(dtype=wptype) def check_quat_sub( q: wp.array(dtype=quat), v: wp.array(dtype=quat), r0: wp.array(dtype=wptype), r1: wp.array(dtype=wptype), r2: wp.array(dtype=wptype), r3: wp.array(dtype=wptype), ): result = v[0] - q[0] r0[0] = wptype(2) * result[0] r1[0] = wptype(2) * result[1] r2[0] = wptype(2) * result[2] r3[0] = wptype(2) * result[3] kernel = getkernel(check_quat_sub, suffix=dtype.__name__) if register_kernels: return q = wp.array(np.random.randn(4).astype(dtype), dtype=quat, requires_grad=True, device=device) v = wp.array(np.random.randn(4).astype(dtype), dtype=quat, requires_grad=True, device=device) r0 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r1 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ q, v, ], outputs=[r0, r1, r2, r3], device=device, ) assert_np_equal(r0.numpy()[0], 2 * (v.numpy()[0, 0] - q.numpy()[0, 0]), tol=tol) assert_np_equal(r1.numpy()[0], 2 * (v.numpy()[0, 1] - q.numpy()[0, 1]), tol=tol) assert_np_equal(r2.numpy()[0], 2 * (v.numpy()[0, 2] - q.numpy()[0, 2]), tol=tol) assert_np_equal(r3.numpy()[0], 2 * (v.numpy()[0, 3] - q.numpy()[0, 3]), tol=tol) for i, l in enumerate([r0, r1, r2, r3]): tape.backward(loss=l) qgrads = tape.gradients[q].numpy()[0] expected_grads = np.zeros_like(qgrads) expected_grads[i] = -2 assert_np_equal(qgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v].numpy()[0] expected_grads[i] = 2 assert_np_equal(vgrads, expected_grads, tol=tol) tape.zero() def test_scalar_multiplication(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] quat = wp.types.quaternion(dtype=wptype) def check_quat_scalar_mul( s: wp.array(dtype=wptype), q: wp.array(dtype=quat), l0: wp.array(dtype=wptype), l1: wp.array(dtype=wptype), l2: wp.array(dtype=wptype), l3: wp.array(dtype=wptype), r0: wp.array(dtype=wptype), r1: wp.array(dtype=wptype), r2: wp.array(dtype=wptype), r3: wp.array(dtype=wptype), ): lresult = s[0] * q[0] rresult = q[0] * s[0] # multiply outputs by 2 so we've got something to backpropagate: l0[0] = wptype(2) * lresult[0] l1[0] = wptype(2) * lresult[1] l2[0] = wptype(2) * lresult[2] l3[0] = wptype(2) * lresult[3] r0[0] = wptype(2) * rresult[0] r1[0] = wptype(2) * rresult[1] r2[0] = wptype(2) * rresult[2] r3[0] = wptype(2) * rresult[3] kernel = getkernel(check_quat_scalar_mul, suffix=dtype.__name__) if register_kernels: return s = wp.array(np.random.randn(1).astype(dtype), requires_grad=True, device=device) q = wp.array(np.random.randn(1, 4).astype(dtype), dtype=quat, requires_grad=True, device=device) l0 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) l1 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) l2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) l3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r0 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r1 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[s, q], outputs=[ l0, l1, l2, l3, r0, r1, r2, r3, ], device=device, ) assert_np_equal(l0.numpy()[0], 2 * s.numpy()[0] * q.numpy()[0, 0], tol=tol) assert_np_equal(l1.numpy()[0], 2 * s.numpy()[0] * q.numpy()[0, 1], tol=tol) assert_np_equal(l2.numpy()[0], 2 * s.numpy()[0] * q.numpy()[0, 2], tol=tol) assert_np_equal(l3.numpy()[0], 2 * s.numpy()[0] * q.numpy()[0, 3], tol=tol) assert_np_equal(r0.numpy()[0], 2 * s.numpy()[0] * q.numpy()[0, 0], tol=tol) assert_np_equal(r1.numpy()[0], 2 * s.numpy()[0] * q.numpy()[0, 1], tol=tol) assert_np_equal(r2.numpy()[0], 2 * s.numpy()[0] * q.numpy()[0, 2], tol=tol) assert_np_equal(r3.numpy()[0], 2 * s.numpy()[0] * q.numpy()[0, 3], tol=tol) if dtype in np_float_types: for i, outputs in enumerate([(l0, r0), (l1, r1), (l2, r2), (l3, r3)]): for l in outputs: tape.backward(loss=l) sgrad = tape.gradients[s].numpy()[0] assert_np_equal(sgrad, 2 * q.numpy()[0, i], tol=tol) allgrads = tape.gradients[q].numpy()[0] expected_grads = np.zeros_like(allgrads) expected_grads[i] = s.numpy()[0] * 2 assert_np_equal(allgrads, expected_grads, tol=10 * tol) tape.zero() def test_scalar_division(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] quat = wp.types.quaternion(dtype=wptype) def check_quat_scalar_div( s: wp.array(dtype=wptype), q: wp.array(dtype=quat), r0: wp.array(dtype=wptype), r1: wp.array(dtype=wptype), r2: wp.array(dtype=wptype), r3: wp.array(dtype=wptype), ): result = q[0] / s[0] # multiply outputs by 2 so we've got something to backpropagate: r0[0] = wptype(2) * result[0] r1[0] = wptype(2) * result[1] r2[0] = wptype(2) * result[2] r3[0] = wptype(2) * result[3] kernel = getkernel(check_quat_scalar_div, suffix=dtype.__name__) if register_kernels: return s = wp.array(np.random.randn(1).astype(dtype), requires_grad=True, device=device) q = wp.array(np.random.randn(1, 4).astype(dtype), dtype=quat, requires_grad=True, device=device) r0 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r1 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[s, q], outputs=[ r0, r1, r2, r3, ], device=device, ) assert_np_equal(r0.numpy()[0], 2 * q.numpy()[0, 0] / s.numpy()[0], tol=tol) assert_np_equal(r1.numpy()[0], 2 * q.numpy()[0, 1] / s.numpy()[0], tol=tol) assert_np_equal(r2.numpy()[0], 2 * q.numpy()[0, 2] / s.numpy()[0], tol=tol) assert_np_equal(r3.numpy()[0], 2 * q.numpy()[0, 3] / s.numpy()[0], tol=tol) if dtype in np_float_types: for i, r in enumerate([r0, r1, r2, r3]): tape.backward(loss=r) sgrad = tape.gradients[s].numpy()[0] assert_np_equal(sgrad, -2 * q.numpy()[0, i] / (s.numpy()[0] * s.numpy()[0]), tol=tol) allgrads = tape.gradients[q].numpy()[0] expected_grads = np.zeros_like(allgrads) expected_grads[i] = 2 / s.numpy()[0] assert_np_equal(allgrads, expected_grads, tol=10 * tol) tape.zero() def test_quat_multiplication(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] quat = wp.types.quaternion(dtype=wptype) def check_quat_mul( s: wp.array(dtype=quat), q: wp.array(dtype=quat), r0: wp.array(dtype=wptype), r1: wp.array(dtype=wptype), r2: wp.array(dtype=wptype), r3: wp.array(dtype=wptype), ): result = s[0] * q[0] # multiply outputs by 2 so we've got something to backpropagate: r0[0] = wptype(2) * result[0] r1[0] = wptype(2) * result[1] r2[0] = wptype(2) * result[2] r3[0] = wptype(2) * result[3] kernel = getkernel(check_quat_mul, suffix=dtype.__name__) if register_kernels: return s = wp.array(np.random.randn(1, 4).astype(dtype), dtype=quat, requires_grad=True, device=device) q = wp.array(np.random.randn(1, 4).astype(dtype), dtype=quat, requires_grad=True, device=device) r0 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r1 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[s, q], outputs=[ r0, r1, r2, r3, ], device=device, ) a = s.numpy() b = q.numpy() assert_np_equal( r0.numpy()[0], 2 * (a[0, 3] * b[0, 0] + b[0, 3] * a[0, 0] + a[0, 1] * b[0, 2] - b[0, 1] * a[0, 2]), tol=tol ) assert_np_equal( r1.numpy()[0], 2 * (a[0, 3] * b[0, 1] + b[0, 3] * a[0, 1] + a[0, 2] * b[0, 0] - b[0, 2] * a[0, 0]), tol=tol ) assert_np_equal( r2.numpy()[0], 2 * (a[0, 3] * b[0, 2] + b[0, 3] * a[0, 2] + a[0, 0] * b[0, 1] - b[0, 0] * a[0, 1]), tol=tol ) assert_np_equal( r3.numpy()[0], 2 * (a[0, 3] * b[0, 3] - a[0, 0] * b[0, 0] - a[0, 1] * b[0, 1] - a[0, 2] * b[0, 2]), tol=tol ) tape.backward(loss=r0) agrad = tape.gradients[s].numpy()[0] assert_np_equal(agrad, 2 * np.array([b[0, 3], b[0, 2], -b[0, 1], b[0, 0]]), tol=tol) bgrad = tape.gradients[q].numpy()[0] assert_np_equal(bgrad, 2 * np.array([a[0, 3], -a[0, 2], a[0, 1], a[0, 0]]), tol=tol) tape.zero() tape.backward(loss=r1) agrad = tape.gradients[s].numpy()[0] assert_np_equal(agrad, 2 * np.array([-b[0, 2], b[0, 3], b[0, 0], b[0, 1]]), tol=tol) bgrad = tape.gradients[q].numpy()[0] assert_np_equal(bgrad, 2 * np.array([a[0, 2], a[0, 3], -a[0, 0], a[0, 1]]), tol=tol) tape.zero() tape.backward(loss=r2) agrad = tape.gradients[s].numpy()[0] assert_np_equal(agrad, 2 * np.array([b[0, 1], -b[0, 0], b[0, 3], b[0, 2]]), tol=tol) bgrad = tape.gradients[q].numpy()[0] assert_np_equal(bgrad, 2 * np.array([-a[0, 1], a[0, 0], a[0, 3], a[0, 2]]), tol=tol) tape.zero() tape.backward(loss=r3) agrad = tape.gradients[s].numpy()[0] assert_np_equal(agrad, 2 * np.array([-b[0, 0], -b[0, 1], -b[0, 2], b[0, 3]]), tol=tol) bgrad = tape.gradients[q].numpy()[0] assert_np_equal(bgrad, 2 * np.array([-a[0, 0], -a[0, 1], -a[0, 2], a[0, 3]]), tol=tol) tape.zero() def test_indexing(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] quat = wp.types.quaternion(dtype=wptype) def check_quat_indexing( q: wp.array(dtype=quat), r0: wp.array(dtype=wptype), r1: wp.array(dtype=wptype), r2: wp.array(dtype=wptype), r3: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: r0[0] = wptype(2) * q[0][0] r1[0] = wptype(2) * q[0][1] r2[0] = wptype(2) * q[0][2] r3[0] = wptype(2) * q[0][3] kernel = getkernel(check_quat_indexing, suffix=dtype.__name__) if register_kernels: return q = wp.array(np.random.randn(1, 4).astype(dtype), dtype=quat, requires_grad=True, device=device) r0 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r1 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[q], outputs=[r0, r1, r2, r3], device=device) for i, l in enumerate([r0, r1, r2, r3]): tape.backward(loss=l) allgrads = tape.gradients[q].numpy()[0] expected_grads = np.zeros_like(allgrads) expected_grads[i] = 2 assert_np_equal(allgrads, expected_grads, tol=tol) tape.zero() assert_np_equal(r0.numpy()[0], 2.0 * q.numpy()[0, 0], tol=tol) assert_np_equal(r1.numpy()[0], 2.0 * q.numpy()[0, 1], tol=tol) assert_np_equal(r2.numpy()[0], 2.0 * q.numpy()[0, 2], tol=tol) assert_np_equal(r3.numpy()[0], 2.0 * q.numpy()[0, 3], tol=tol) def test_quat_lerp(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] quat = wp.types.quaternion(dtype=wptype) def check_quat_lerp( s: wp.array(dtype=quat), q: wp.array(dtype=quat), t: wp.array(dtype=wptype), r0: wp.array(dtype=wptype), r1: wp.array(dtype=wptype), r2: wp.array(dtype=wptype), r3: wp.array(dtype=wptype), ): result = wp.lerp(s[0], q[0], t[0]) # multiply outputs by 2 so we've got something to backpropagate: r0[0] = wptype(2) * result[0] r1[0] = wptype(2) * result[1] r2[0] = wptype(2) * result[2] r3[0] = wptype(2) * result[3] kernel = getkernel(check_quat_lerp, suffix=dtype.__name__) if register_kernels: return s = wp.array(np.random.randn(1, 4).astype(dtype), dtype=quat, requires_grad=True, device=device) q = wp.array(np.random.randn(1, 4).astype(dtype), dtype=quat, requires_grad=True, device=device) t = wp.array(np.random.uniform(size=1).astype(dtype), dtype=wptype, requires_grad=True, device=device) r0 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r1 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) r3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[s, q, t], outputs=[ r0, r1, r2, r3, ], device=device, ) a = s.numpy() b = q.numpy() tt = t.numpy() assert_np_equal(r0.numpy()[0], 2 * ((1 - tt) * a[0, 0] + tt * b[0, 0]), tol=tol) assert_np_equal(r1.numpy()[0], 2 * ((1 - tt) * a[0, 1] + tt * b[0, 1]), tol=tol) assert_np_equal(r2.numpy()[0], 2 * ((1 - tt) * a[0, 2] + tt * b[0, 2]), tol=tol) assert_np_equal(r3.numpy()[0], 2 * ((1 - tt) * a[0, 3] + tt * b[0, 3]), tol=tol) for i, l in enumerate([r0, r1, r2, r3]): tape.backward(loss=l) agrad = tape.gradients[s].numpy()[0] bgrad = tape.gradients[q].numpy()[0] tgrad = tape.gradients[t].numpy()[0] expected_grads = np.zeros_like(agrad) expected_grads[i] = 2 * (1 - tt) assert_np_equal(agrad, expected_grads, tol=tol) expected_grads[i] = 2 * tt assert_np_equal(bgrad, expected_grads, tol=tol) assert_np_equal(tgrad, 2 * (b[0, i] - a[0, i]), tol=tol) tape.zero() def test_quat_rotate(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] quat = wp.types.quaternion(dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) def check_quat_rotate( q: wp.array(dtype=quat), v: wp.array(dtype=vec3), outputs: wp.array(dtype=wptype), outputs_inv: wp.array(dtype=wptype), outputs_manual: wp.array(dtype=wptype), outputs_inv_manual: wp.array(dtype=wptype), ): result = wp.quat_rotate(q[0], v[0]) result_inv = wp.quat_rotate_inv(q[0], v[0]) qv = vec3(q[0][0], q[0][1], q[0][2]) qw = q[0][3] result_manual = v[0] * (wptype(2) * qw * qw - wptype(1)) result_manual += wp.cross(qv, v[0]) * qw * wptype(2) result_manual += qv * wp.dot(qv, v[0]) * wptype(2) result_inv_manual = v[0] * (wptype(2) * qw * qw - wptype(1)) result_inv_manual -= wp.cross(qv, v[0]) * qw * wptype(2) result_inv_manual += qv * wp.dot(qv, v[0]) * wptype(2) for i in range(3): # multiply outputs by 2 so we've got something to backpropagate: outputs[i] = wptype(2) * result[i] outputs_inv[i] = wptype(2) * result_inv[i] outputs_manual[i] = wptype(2) * result_manual[i] outputs_inv_manual[i] = wptype(2) * result_inv_manual[i] kernel = getkernel(check_quat_rotate, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return q = np.random.randn(1, 4) q /= np.linalg.norm(q) q = wp.array(q.astype(dtype), dtype=quat, requires_grad=True, device=device) v = wp.array(0.5 * np.random.randn(1, 3).astype(dtype), dtype=vec3, requires_grad=True, device=device) # test values against the manually computed result: outputs = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) outputs_inv = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) outputs_manual = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) outputs_inv_manual = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[q, v], outputs=[ outputs, outputs_inv, outputs_manual, outputs_inv_manual, ], device=device, ) assert_np_equal(outputs.numpy(), outputs_manual.numpy(), tol=tol) assert_np_equal(outputs_inv.numpy(), outputs_inv_manual.numpy(), tol=tol) # test gradients against the manually computed result: for i in range(3): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_inv = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_manual = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_inv_manual = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[q, v], outputs=[ outputs, outputs_inv, outputs_manual, outputs_inv_manual, ], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outputs, i], outputs=[cmp], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_inv, i], outputs=[cmp_inv], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs_manual, i], outputs=[cmp_manual], device=device) wp.launch( output_select_kernel, dim=1, inputs=[outputs_inv_manual, i], outputs=[cmp_inv_manual], device=device ) tape.backward(loss=cmp) qgrads = 1.0 * tape.gradients[q].numpy() vgrads = 1.0 * tape.gradients[v].numpy() tape.zero() tape.backward(loss=cmp_inv) qgrads_inv = 1.0 * tape.gradients[q].numpy() vgrads_inv = 1.0 * tape.gradients[v].numpy() tape.zero() tape.backward(loss=cmp_manual) qgrads_manual = 1.0 * tape.gradients[q].numpy() vgrads_manual = 1.0 * tape.gradients[v].numpy() tape.zero() tape.backward(loss=cmp_inv_manual) qgrads_inv_manual = 1.0 * tape.gradients[q].numpy() vgrads_inv_manual = 1.0 * tape.gradients[v].numpy() tape.zero() assert_np_equal(qgrads, qgrads_manual, tol=tol) assert_np_equal(vgrads, vgrads_manual, tol=tol) assert_np_equal(qgrads_inv, qgrads_inv_manual, tol=tol) assert_np_equal(vgrads_inv, vgrads_inv_manual, tol=tol) def test_quat_to_matrix(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] quat = wp.types.quaternion(dtype=wptype) mat3 = wp.types.matrix(shape=(3, 3), dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) def check_quat_to_matrix( q: wp.array(dtype=quat), outputs: wp.array(dtype=wptype), outputs_manual: wp.array(dtype=wptype), ): result = wp.quat_to_matrix(q[0]) xaxis = wp.quat_rotate( q[0], vec3( wptype(1), wptype(0), wptype(0), ), ) yaxis = wp.quat_rotate( q[0], vec3( wptype(0), wptype(1), wptype(0), ), ) zaxis = wp.quat_rotate( q[0], vec3( wptype(0), wptype(0), wptype(1), ), ) result_manual = mat3(xaxis, yaxis, zaxis) idx = 0 for i in range(3): for j in range(3): # multiply outputs by 2 so we've got something to backpropagate: outputs[idx] = wptype(2) * result[i, j] outputs_manual[idx] = wptype(2) * result_manual[i, j] idx = idx + 1 kernel = getkernel(check_quat_to_matrix, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return q = np.random.randn(1, 4) q /= np.linalg.norm(q) q = wp.array(q.astype(dtype), dtype=quat, requires_grad=True, device=device) # test values against the manually computed result: outputs = wp.zeros(3 * 3, dtype=wptype, requires_grad=True, device=device) outputs_manual = wp.zeros(3 * 3, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[q], outputs=[ outputs, outputs_manual, ], device=device, ) assert_np_equal(outputs.numpy(), outputs_manual.numpy(), tol=tol) # sanity check: divide by 2 to remove that scale factor we put in there, and # it should be a rotation matrix R = 0.5 * outputs.numpy().reshape(3, 3) assert_np_equal(np.matmul(R, R.T), np.eye(3), tol=tol) # test gradients against the manually computed result: idx = 0 for i in range(3): for j in range(3): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) cmp_manual = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[q], outputs=[ outputs, outputs_manual, ], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outputs, idx], outputs=[cmp], device=device) wp.launch( output_select_kernel, dim=1, inputs=[outputs_manual, idx], outputs=[cmp_manual], device=device ) tape.backward(loss=cmp) qgrads = 1.0 * tape.gradients[q].numpy() tape.zero() tape.backward(loss=cmp_manual) qgrads_manual = 1.0 * tape.gradients[q].numpy() tape.zero() assert_np_equal(qgrads, qgrads_manual, tol=tol) idx = idx + 1 ############################################################ def test_slerp_grad(test, device, dtype, register_kernels=False): seed = 42 np.random.seed(seed) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec3 = wp.types.vector(3, wptype) quat = wp.types.quaternion(wptype) def slerp_kernel( q0: wp.array(dtype=quat), q1: wp.array(dtype=quat), t: wp.array(dtype=wptype), loss: wp.array(dtype=wptype), index: int, ): tid = wp.tid() q = wp.quat_slerp(q0[tid], q1[tid], t[tid]) wp.atomic_add(loss, 0, q[index]) slerp_kernel = getkernel(slerp_kernel, suffix=dtype.__name__) def slerp_kernel_forward( q0: wp.array(dtype=quat), q1: wp.array(dtype=quat), t: wp.array(dtype=wptype), loss: wp.array(dtype=wptype), index: int, ): tid = wp.tid() axis = vec3() angle = wptype(0.0) wp.quat_to_axis_angle(wp.mul(wp.quat_inverse(q0[tid]), q1[tid]), axis, angle) q = wp.mul(q0[tid], wp.quat_from_axis_angle(axis, t[tid] * angle)) wp.atomic_add(loss, 0, q[index]) slerp_kernel_forward = getkernel(slerp_kernel_forward, suffix=dtype.__name__) def quat_sampler_slerp(kernel_seed: int, quats: wp.array(dtype=quat)): tid = wp.tid() state = wp.rand_init(kernel_seed, tid) angle = wp.randf(state, 0.0, 2.0 * 3.1415926535) dir = wp.sample_unit_sphere_surface(state) * wp.sin(angle * 0.5) q = quat(wptype(dir[0]), wptype(dir[1]), wptype(dir[2]), wptype(wp.cos(angle * 0.5))) qn = wp.normalize(q) quats[tid] = qn quat_sampler = getkernel(quat_sampler_slerp, suffix=dtype.__name__) if register_kernels: return N = 50 q0 = wp.zeros(N, dtype=quat, device=device, requires_grad=True) q1 = wp.zeros(N, dtype=quat, device=device, requires_grad=True) wp.launch(kernel=quat_sampler, dim=N, inputs=[seed, q0], device=device) wp.launch(kernel=quat_sampler, dim=N, inputs=[seed + 1, q1], device=device) t = np.random.uniform(0.0, 1.0, N) t = wp.array(t, dtype=wptype, device=device, requires_grad=True) def compute_gradients(kernel, wrt, index): loss = wp.zeros(1, dtype=wptype, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(kernel=kernel, dim=N, inputs=[q0, q1, t, loss, index], device=device) tape.backward(loss) gradients = 1.0 * tape.gradients[wrt].numpy() tape.zero() return loss.numpy()[0], gradients eps = { np.float16: 2.0e-2, np.float32: 1.0e-5, np.float64: 1.0e-8, }.get(dtype, 0) # wrt t # gather gradients from builtin adjoints xcmp, gradients_x = compute_gradients(slerp_kernel, t, 0) ycmp, gradients_y = compute_gradients(slerp_kernel, t, 1) zcmp, gradients_z = compute_gradients(slerp_kernel, t, 2) wcmp, gradients_w = compute_gradients(slerp_kernel, t, 3) # gather gradients from autodiff xcmp_auto, gradients_x_auto = compute_gradients(slerp_kernel_forward, t, 0) ycmp_auto, gradients_y_auto = compute_gradients(slerp_kernel_forward, t, 1) zcmp_auto, gradients_z_auto = compute_gradients(slerp_kernel_forward, t, 2) wcmp_auto, gradients_w_auto = compute_gradients(slerp_kernel_forward, t, 3) assert_np_equal(gradients_x, gradients_x_auto, tol=eps) assert_np_equal(gradients_y, gradients_y_auto, tol=eps) assert_np_equal(gradients_z, gradients_z_auto, tol=eps) assert_np_equal(gradients_w, gradients_w_auto, tol=eps) assert_np_equal(xcmp, xcmp_auto, tol=eps) assert_np_equal(ycmp, ycmp_auto, tol=eps) assert_np_equal(zcmp, zcmp_auto, tol=eps) assert_np_equal(wcmp, wcmp_auto, tol=eps) # wrt q0 # gather gradients from builtin adjoints xcmp, gradients_x = compute_gradients(slerp_kernel, q0, 0) ycmp, gradients_y = compute_gradients(slerp_kernel, q0, 1) zcmp, gradients_z = compute_gradients(slerp_kernel, q0, 2) wcmp, gradients_w = compute_gradients(slerp_kernel, q0, 3) # gather gradients from autodiff xcmp_auto, gradients_x_auto = compute_gradients(slerp_kernel_forward, q0, 0) ycmp_auto, gradients_y_auto = compute_gradients(slerp_kernel_forward, q0, 1) zcmp_auto, gradients_z_auto = compute_gradients(slerp_kernel_forward, q0, 2) wcmp_auto, gradients_w_auto = compute_gradients(slerp_kernel_forward, q0, 3) assert_np_equal(gradients_x, gradients_x_auto, tol=eps) assert_np_equal(gradients_y, gradients_y_auto, tol=eps) assert_np_equal(gradients_z, gradients_z_auto, tol=eps) assert_np_equal(gradients_w, gradients_w_auto, tol=eps) assert_np_equal(xcmp, xcmp_auto, tol=eps) assert_np_equal(ycmp, ycmp_auto, tol=eps) assert_np_equal(zcmp, zcmp_auto, tol=eps) assert_np_equal(wcmp, wcmp_auto, tol=eps) # wrt q1 # gather gradients from builtin adjoints xcmp, gradients_x = compute_gradients(slerp_kernel, q1, 0) ycmp, gradients_y = compute_gradients(slerp_kernel, q1, 1) zcmp, gradients_z = compute_gradients(slerp_kernel, q1, 2) wcmp, gradients_w = compute_gradients(slerp_kernel, q1, 3) # gather gradients from autodiff xcmp_auto, gradients_x_auto = compute_gradients(slerp_kernel_forward, q1, 0) ycmp_auto, gradients_y_auto = compute_gradients(slerp_kernel_forward, q1, 1) zcmp_auto, gradients_z_auto = compute_gradients(slerp_kernel_forward, q1, 2) wcmp_auto, gradients_w_auto = compute_gradients(slerp_kernel_forward, q1, 3) assert_np_equal(gradients_x, gradients_x_auto, tol=eps) assert_np_equal(gradients_y, gradients_y_auto, tol=eps) assert_np_equal(gradients_z, gradients_z_auto, tol=eps) assert_np_equal(gradients_w, gradients_w_auto, tol=eps) assert_np_equal(xcmp, xcmp_auto, tol=eps) assert_np_equal(ycmp, ycmp_auto, tol=eps) assert_np_equal(zcmp, zcmp_auto, tol=eps) assert_np_equal(wcmp, wcmp_auto, tol=eps) ############################################################ def test_quat_to_axis_angle_grad(test, device, dtype, register_kernels=False): seed = 42 rng = np.random.default_rng(seed) num_rand = 50 wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec3 = wp.types.vector(3, wptype) vec4 = wp.types.vector(4, wptype) quat = wp.types.quaternion(wptype) def quat_to_axis_angle_kernel(quats: wp.array(dtype=quat), loss: wp.array(dtype=wptype), coord_idx: int): tid = wp.tid() axis = vec3() angle = wptype(0.0) wp.quat_to_axis_angle(quats[tid], axis, angle) a = vec4(axis[0], axis[1], axis[2], angle) wp.atomic_add(loss, 0, a[coord_idx]) quat_to_axis_angle_kernel = getkernel(quat_to_axis_angle_kernel, suffix=dtype.__name__) def quat_to_axis_angle_kernel_forward(quats: wp.array(dtype=quat), loss: wp.array(dtype=wptype), coord_idx: int): tid = wp.tid() q = quats[tid] axis = vec3() angle = wptype(0.0) v = vec3(q[0], q[1], q[2]) if q[3] < wptype(0): axis = -wp.normalize(v) else: axis = wp.normalize(v) angle = wptype(2) * wp.atan2(wp.length(v), wp.abs(q[3])) a = vec4(axis[0], axis[1], axis[2], angle) wp.atomic_add(loss, 0, a[coord_idx]) quat_to_axis_angle_kernel_forward = getkernel(quat_to_axis_angle_kernel_forward, suffix=dtype.__name__) def quat_sampler(kernel_seed: int, angles: wp.array(dtype=float), quats: wp.array(dtype=quat)): tid = wp.tid() state = wp.rand_init(kernel_seed, tid) angle = angles[tid] dir = wp.sample_unit_sphere_surface(state) * wp.sin(angle * 0.5) q = quat(wptype(dir[0]), wptype(dir[1]), wptype(dir[2]), wptype(wp.cos(angle * 0.5))) qn = wp.normalize(q) quats[tid] = qn quat_sampler = getkernel(quat_sampler, suffix=dtype.__name__) if register_kernels: return quats = wp.zeros(num_rand, dtype=quat, device=device, requires_grad=True) angles = wp.array( np.linspace(0.0, 2.0 * np.pi, num_rand, endpoint=False, dtype=np.float32), dtype=float, device=device ) wp.launch(kernel=quat_sampler, dim=num_rand, inputs=[seed, angles, quats], device=device) edge_cases = np.array( [(1.0, 0.0, 0.0, 0.0), (0.0, 1.0 / np.sqrt(3), 1.0 / np.sqrt(3), 1.0 / np.sqrt(3)), (0.0, 0.0, 0.0, 0.0)] ) num_edge = len(edge_cases) edge_cases = wp.array(edge_cases, dtype=quat, device=device, requires_grad=True) def compute_gradients(arr, kernel, dim, index): loss = wp.zeros(1, dtype=wptype, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(kernel=kernel, dim=dim, inputs=[arr, loss, index], device=device) tape.backward(loss) gradients = 1.0 * tape.gradients[arr].numpy() tape.zero() return loss.numpy()[0], gradients # gather gradients from builtin adjoints xcmp, gradients_x = compute_gradients(quats, quat_to_axis_angle_kernel, num_rand, 0) ycmp, gradients_y = compute_gradients(quats, quat_to_axis_angle_kernel, num_rand, 1) zcmp, gradients_z = compute_gradients(quats, quat_to_axis_angle_kernel, num_rand, 2) wcmp, gradients_w = compute_gradients(quats, quat_to_axis_angle_kernel, num_rand, 3) # gather gradients from autodiff xcmp_auto, gradients_x_auto = compute_gradients(quats, quat_to_axis_angle_kernel_forward, num_rand, 0) ycmp_auto, gradients_y_auto = compute_gradients(quats, quat_to_axis_angle_kernel_forward, num_rand, 1) zcmp_auto, gradients_z_auto = compute_gradients(quats, quat_to_axis_angle_kernel_forward, num_rand, 2) wcmp_auto, gradients_w_auto = compute_gradients(quats, quat_to_axis_angle_kernel_forward, num_rand, 3) # edge cases: gather gradients from builtin adjoints _, edge_gradients_x = compute_gradients(edge_cases, quat_to_axis_angle_kernel, num_edge, 0) _, edge_gradients_y = compute_gradients(edge_cases, quat_to_axis_angle_kernel, num_edge, 1) _, edge_gradients_z = compute_gradients(edge_cases, quat_to_axis_angle_kernel, num_edge, 2) _, edge_gradients_w = compute_gradients(edge_cases, quat_to_axis_angle_kernel, num_edge, 3) # edge cases: gather gradients from autodiff _, edge_gradients_x_auto = compute_gradients(edge_cases, quat_to_axis_angle_kernel_forward, num_edge, 0) _, edge_gradients_y_auto = compute_gradients(edge_cases, quat_to_axis_angle_kernel_forward, num_edge, 1) _, edge_gradients_z_auto = compute_gradients(edge_cases, quat_to_axis_angle_kernel_forward, num_edge, 2) _, edge_gradients_w_auto = compute_gradients(edge_cases, quat_to_axis_angle_kernel_forward, num_edge, 3) eps = { np.float16: 2.0e-1, np.float32: 2.0e-4, np.float64: 2.0e-7, }.get(dtype, 0) assert_np_equal(xcmp, xcmp_auto, tol=eps) assert_np_equal(ycmp, ycmp_auto, tol=eps) assert_np_equal(zcmp, zcmp_auto, tol=eps) assert_np_equal(wcmp, wcmp_auto, tol=eps) assert_np_equal(gradients_x, gradients_x_auto, tol=eps) assert_np_equal(gradients_y, gradients_y_auto, tol=eps) assert_np_equal(gradients_z, gradients_z_auto, tol=eps) assert_np_equal(gradients_w, gradients_w_auto, tol=eps) assert_np_equal(edge_gradients_x, edge_gradients_x_auto, tol=eps) assert_np_equal(edge_gradients_y, edge_gradients_y_auto, tol=eps) assert_np_equal(edge_gradients_z, edge_gradients_z_auto, tol=eps) assert_np_equal(edge_gradients_w, edge_gradients_w_auto, tol=eps) ############################################################ def test_quat_rpy_grad(test, device, dtype, register_kernels=False): seed = 42 np.random.seed(seed) N = 3 wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec3 = wp.types.vector(3, wptype) quat = wp.types.quaternion(wptype) def rpy_to_quat_kernel(rpy_arr: wp.array(dtype=vec3), loss: wp.array(dtype=wptype), coord_idx: int): tid = wp.tid() rpy = rpy_arr[tid] roll = rpy[0] pitch = rpy[1] yaw = rpy[2] q = wp.quat_rpy(roll, pitch, yaw) wp.atomic_add(loss, 0, q[coord_idx]) rpy_to_quat_kernel = getkernel(rpy_to_quat_kernel, suffix=dtype.__name__) def rpy_to_quat_kernel_forward(rpy_arr: wp.array(dtype=vec3), loss: wp.array(dtype=wptype), coord_idx: int): tid = wp.tid() rpy = rpy_arr[tid] roll = rpy[0] pitch = rpy[1] yaw = rpy[2] cy = wp.cos(yaw * wptype(0.5)) sy = wp.sin(yaw * wptype(0.5)) cr = wp.cos(roll * wptype(0.5)) sr = wp.sin(roll * wptype(0.5)) cp = wp.cos(pitch * wptype(0.5)) sp = wp.sin(pitch * wptype(0.5)) w = cy * cr * cp + sy * sr * sp x = cy * sr * cp - sy * cr * sp y = cy * cr * sp + sy * sr * cp z = sy * cr * cp - cy * sr * sp q = quat(x, y, z, w) wp.atomic_add(loss, 0, q[coord_idx]) rpy_to_quat_kernel_forward = getkernel(rpy_to_quat_kernel_forward, suffix=dtype.__name__) if register_kernels: return rpy_arr = np.random.uniform(-np.pi, np.pi, (N, 3)) rpy_arr = wp.array(rpy_arr, dtype=vec3, device=device, requires_grad=True) def compute_gradients(kernel, wrt, index): loss = wp.zeros(1, dtype=wptype, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(kernel=kernel, dim=N, inputs=[wrt, loss, index], device=device) tape.backward(loss) gradients = 1.0 * tape.gradients[wrt].numpy() tape.zero() return loss.numpy()[0], gradients # wrt rpy # gather gradients from builtin adjoints rcmp, gradients_r = compute_gradients(rpy_to_quat_kernel, rpy_arr, 0) pcmp, gradients_p = compute_gradients(rpy_to_quat_kernel, rpy_arr, 1) ycmp, gradients_y = compute_gradients(rpy_to_quat_kernel, rpy_arr, 2) # gather gradients from autodiff rcmp_auto, gradients_r_auto = compute_gradients(rpy_to_quat_kernel_forward, rpy_arr, 0) pcmp_auto, gradients_p_auto = compute_gradients(rpy_to_quat_kernel_forward, rpy_arr, 1) ycmp_auto, gradients_y_auto = compute_gradients(rpy_to_quat_kernel_forward, rpy_arr, 2) eps = { np.float16: 2.0e-2, np.float32: 1.0e-5, np.float64: 1.0e-8, }.get(dtype, 0) assert_np_equal(rcmp, rcmp_auto, tol=eps) assert_np_equal(pcmp, pcmp_auto, tol=eps) assert_np_equal(ycmp, ycmp_auto, tol=eps) assert_np_equal(gradients_r, gradients_r_auto, tol=eps) assert_np_equal(gradients_p, gradients_p_auto, tol=eps) assert_np_equal(gradients_y, gradients_y_auto, tol=eps) ############################################################ def test_quat_from_matrix(test, device, dtype, register_kernels=False): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat33 = wp.types.matrix((3, 3), wptype) quat = wp.types.quaternion(wptype) def quat_from_matrix(m: wp.array2d(dtype=wptype), loss: wp.array(dtype=wptype), idx: int): tid = wp.tid() matrix = mat33( m[tid, 0], m[tid, 1], m[tid, 2], m[tid, 3], m[tid, 4], m[tid, 5], m[tid, 6], m[tid, 7], m[tid, 8] ) q = wp.quat_from_matrix(matrix) wp.atomic_add(loss, 0, q[idx]) def quat_from_matrix_forward(mats: wp.array2d(dtype=wptype), loss: wp.array(dtype=wptype), idx: int): tid = wp.tid() m = mat33( mats[tid, 0], mats[tid, 1], mats[tid, 2], mats[tid, 3], mats[tid, 4], mats[tid, 5], mats[tid, 6], mats[tid, 7], mats[tid, 8], ) tr = m[0][0] + m[1][1] + m[2][2] x = wptype(0) y = wptype(0) z = wptype(0) w = wptype(0) h = wptype(0) if tr >= wptype(0): h = wp.sqrt(tr + wptype(1)) w = wptype(0.5) * h h = wptype(0.5) / h x = (m[2][1] - m[1][2]) * h y = (m[0][2] - m[2][0]) * h z = (m[1][0] - m[0][1]) * h else: max_diag = 0 if m[1][1] > m[0][0]: max_diag = 1 if m[2][2] > m[max_diag][max_diag]: max_diag = 2 if max_diag == 0: h = wp.sqrt((m[0][0] - (m[1][1] + m[2][2])) + wptype(1)) x = wptype(0.5) * h h = wptype(0.5) / h y = (m[0][1] + m[1][0]) * h z = (m[2][0] + m[0][2]) * h w = (m[2][1] - m[1][2]) * h elif max_diag == 1: h = wp.sqrt((m[1][1] - (m[2][2] + m[0][0])) + wptype(1)) y = wptype(0.5) * h h = wptype(0.5) / h z = (m[1][2] + m[2][1]) * h x = (m[0][1] + m[1][0]) * h w = (m[0][2] - m[2][0]) * h if max_diag == 2: h = wp.sqrt((m[2][2] - (m[0][0] + m[1][1])) + wptype(1)) z = wptype(0.5) * h h = wptype(0.5) / h x = (m[2][0] + m[0][2]) * h y = (m[1][2] + m[2][1]) * h w = (m[1][0] - m[0][1]) * h q = wp.normalize(quat(x, y, z, w)) wp.atomic_add(loss, 0, q[idx]) quat_from_matrix = getkernel(quat_from_matrix, suffix=dtype.__name__) quat_from_matrix_forward = getkernel(quat_from_matrix_forward, suffix=dtype.__name__) if register_kernels: return m = np.array( [ [1.0, 0.0, 0.0, 0.0, 0.5, 0.866, 0.0, -0.866, 0.5], [0.866, 0.0, 0.25, -0.433, 0.5, 0.75, -0.25, -0.866, 0.433], [0.866, -0.433, 0.25, 0.0, 0.5, 0.866, -0.5, -0.75, 0.433], [-1.2, -1.6, -2.3, 0.25, -0.6, -0.33, 3.2, -1.0, -2.2], ] ) m = wp.array2d(m, dtype=wptype, device=device, requires_grad=True) N = m.shape[0] def compute_gradients(kernel, wrt, index): loss = wp.zeros(1, dtype=wptype, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(kernel=kernel, dim=N, inputs=[m, loss, index], device=device) tape.backward(loss) gradients = 1.0 * tape.gradients[wrt].numpy() tape.zero() return loss.numpy()[0], gradients # gather gradients from builtin adjoints cmpx, gradients_x = compute_gradients(quat_from_matrix, m, 0) cmpy, gradients_y = compute_gradients(quat_from_matrix, m, 1) cmpz, gradients_z = compute_gradients(quat_from_matrix, m, 2) cmpw, gradients_w = compute_gradients(quat_from_matrix, m, 3) # gather gradients from autodiff cmpx_auto, gradients_x_auto = compute_gradients(quat_from_matrix_forward, m, 0) cmpy_auto, gradients_y_auto = compute_gradients(quat_from_matrix_forward, m, 1) cmpz_auto, gradients_z_auto = compute_gradients(quat_from_matrix_forward, m, 2) cmpw_auto, gradients_w_auto = compute_gradients(quat_from_matrix_forward, m, 3) # compare eps = 1.0e6 eps = { np.float16: 2.0e-2, np.float32: 1.0e-5, np.float64: 1.0e-8, }.get(dtype, 0) assert_np_equal(cmpx, cmpx_auto, tol=eps) assert_np_equal(cmpy, cmpy_auto, tol=eps) assert_np_equal(cmpz, cmpz_auto, tol=eps) assert_np_equal(cmpw, cmpw_auto, tol=eps) assert_np_equal(gradients_x, gradients_x_auto, tol=eps) assert_np_equal(gradients_y, gradients_y_auto, tol=eps) assert_np_equal(gradients_z, gradients_z_auto, tol=eps) assert_np_equal(gradients_w, gradients_w_auto, tol=eps) def test_quat_identity(test, device, dtype, register_kernels=False): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def quat_identity_test(output: wp.array(dtype=wptype)): q = wp.quat_identity(dtype=wptype) output[0] = q[0] output[1] = q[1] output[2] = q[2] output[3] = q[3] def quat_identity_test_default(output: wp.array(dtype=wp.float32)): q = wp.quat_identity() output[0] = q[0] output[1] = q[1] output[2] = q[2] output[3] = q[3] quat_identity_kernel = getkernel(quat_identity_test, suffix=dtype.__name__) quat_identity_default_kernel = getkernel(quat_identity_test_default, suffix=np.float32.__name__) if register_kernels: return output = wp.zeros(4, dtype=wptype, device=device) wp.launch(quat_identity_kernel, dim=1, inputs=[], outputs=[output], device=device) expected = np.zeros_like(output.numpy()) expected[3] = 1 assert_np_equal(output.numpy(), expected) # let's just test that it defaults to float32: output = wp.zeros(4, dtype=wp.float32, device=device) wp.launch(quat_identity_default_kernel, dim=1, inputs=[], outputs=[output], device=device) expected = np.zeros_like(output.numpy()) expected[3] = 1 assert_np_equal(output.numpy(), expected) def test_anon_type_instance(test, device, dtype, register_kernels=False): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def quat_create_test(input: wp.array(dtype=wptype), output: wp.array(dtype=wptype)): # component constructor: q = wp.quaternion(input[0], input[1], input[2], input[3]) output[0] = wptype(2) * q[0] output[1] = wptype(2) * q[1] output[2] = wptype(2) * q[2] output[3] = wptype(2) * q[3] # vector / scalar constructor: q2 = wp.quaternion(wp.vector(input[4], input[5], input[6]), input[7]) output[4] = wptype(2) * q2[0] output[5] = wptype(2) * q2[1] output[6] = wptype(2) * q2[2] output[7] = wptype(2) * q2[3] quat_create_kernel = getkernel(quat_create_test, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return input = wp.array(np.random.randn(8).astype(dtype), requires_grad=True, device=device) output = wp.zeros(8, dtype=wptype, requires_grad=True, device=device) wp.launch(quat_create_kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy(), 2 * input.numpy()) for i in range(len(input)): cmp = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch(quat_create_kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[cmp], device=device) tape.backward(loss=cmp) expectedgrads = np.zeros(len(input)) expectedgrads[i] = 2 assert_np_equal(tape.gradients[input].numpy(), expectedgrads) tape.zero() # Same as above but with a default (float) type # which tests some different code paths that # need to ensure types are correctly canonicalized # during codegen @wp.kernel def test_constructor_default(): qzero = wp.quat() wp.expect_eq(qzero[0], 0.0) wp.expect_eq(qzero[1], 0.0) wp.expect_eq(qzero[2], 0.0) wp.expect_eq(qzero[3], 0.0) qval = wp.quat(1.0, 2.0, 3.0, 4.0) wp.expect_eq(qval[0], 1.0) wp.expect_eq(qval[1], 2.0) wp.expect_eq(qval[2], 3.0) wp.expect_eq(qval[3], 4.0) qeye = wp.quat_identity() wp.expect_eq(qeye[0], 0.0) wp.expect_eq(qeye[1], 0.0) wp.expect_eq(qeye[2], 0.0) wp.expect_eq(qeye[3], 1.0) def register(parent): devices = get_test_devices() class TestQuat(parent): pass add_kernel_test(TestQuat, test_constructor_default, dim=1, devices=devices) for dtype in np_float_types: add_function_test_register_kernel( TestQuat, f"test_constructors_{dtype.__name__}", test_constructors, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_anon_type_instance_{dtype.__name__}", test_anon_type_instance, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_inverse_{dtype.__name__}", test_inverse, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_quat_identity_{dtype.__name__}", test_quat_identity, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_dotproduct_{dtype.__name__}", test_dotproduct, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_length_{dtype.__name__}", test_length, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_normalize_{dtype.__name__}", test_normalize, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_addition_{dtype.__name__}", test_addition, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_subtraction_{dtype.__name__}", test_subtraction, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_scalar_multiplication_{dtype.__name__}", test_scalar_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestQuat, f"test_scalar_division_{dtype.__name__}", test_scalar_division, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_quat_multiplication_{dtype.__name__}", test_quat_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestQuat, f"test_indexing_{dtype.__name__}", test_indexing, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_quat_lerp_{dtype.__name__}", test_quat_lerp, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_quat_to_axis_angle_grad_{dtype.__name__}", test_quat_to_axis_angle_grad, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestQuat, f"test_slerp_grad_{dtype.__name__}", test_slerp_grad, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_quat_rpy_grad_{dtype.__name__}", test_quat_rpy_grad, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_quat_from_matrix_{dtype.__name__}", test_quat_from_matrix, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_quat_rotate_{dtype.__name__}", test_quat_rotate, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestQuat, f"test_quat_to_matrix_{dtype.__name__}", test_quat_to_matrix, devices=devices, dtype=dtype ) return TestQuat if __name__ == "__main__": wp.build.clear_kernel_cache() c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_quat.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np # import matplotlib.pyplot as plt import warp as wp from warp.tests.test_base import * wp.init() @wp.kernel def test_kernel( kernel_seed: int, int_a: wp.array(dtype=int), int_ab: wp.array(dtype=int), float_01: wp.array(dtype=float), float_ab: wp.array(dtype=float), ): tid = wp.tid() state = wp.rand_init(kernel_seed, tid) int_a[tid] = wp.randi(state) int_ab[tid] = wp.randi(state, 0, 100) float_01[tid] = wp.randf(state) float_ab[tid] = wp.randf(state, 0.0, 100.0) def test_rand(test, device): N = 10 int_a_device = wp.zeros(N, dtype=int, device=device) int_a_host = wp.zeros(N, dtype=int, device="cpu") int_ab_device = wp.zeros(N, dtype=int, device=device) int_ab_host = wp.zeros(N, dtype=int, device="cpu") float_01_device = wp.zeros(N, dtype=float, device=device) float_01_host = wp.zeros(N, dtype=float, device="cpu") float_ab_device = wp.zeros(N, dtype=float, device=device) float_ab_host = wp.zeros(N, dtype=float, device="cpu") seed = 42 wp.launch( kernel=test_kernel, dim=N, inputs=[seed, int_a_device, int_ab_device, float_01_device, float_ab_device], outputs=[], device=device, ) wp.copy(int_a_host, int_a_device) wp.copy(int_ab_host, int_ab_device) wp.copy(float_01_host, float_01_device) wp.copy(float_ab_host, float_ab_device) wp.synchronize() int_a = int_a_host.numpy() int_ab = int_ab_host.numpy() float_01 = float_01_host.numpy() float_ab = float_ab_host.numpy() int_a_true = np.array( [ -575632308, 59537738, 1898992239, 442961864, -1069147335, -478445524, 1803659809, 2122909397, -1888556360, 334603718, ] ) int_ab_true = np.array([46, 58, 46, 83, 85, 39, 72, 99, 18, 41]) float_01_true = np.array( [ 0.72961855, 0.86200964, 0.28770837, 0.8187722, 0.186335, 0.6101239, 0.56432086, 0.70428324, 0.64812654, 0.27679986, ] ) float_ab_true = np.array( [96.04259, 73.33809, 63.601555, 38.647305, 71.813896, 64.65809, 77.79791, 46.579605, 94.614456, 91.921814] ) test.assertTrue((int_a == int_a_true).all()) test.assertTrue((int_ab == int_ab_true).all()) err = np.max(np.abs(float_01 - float_01_true)) test.assertTrue(err < 1e-04) err = np.max(np.abs(float_ab - float_ab_true)) test.assertTrue(err < 1e-04) @wp.kernel def sample_cdf_kernel(kernel_seed: int, cdf: wp.array(dtype=float), samples: wp.array(dtype=int)): tid = wp.tid() state = wp.rand_init(kernel_seed, tid) samples[tid] = wp.sample_cdf(state, cdf) def test_sample_cdf(test, device): seed = 42 cdf = np.arange(0.0, 1.0, 0.01, dtype=float) cdf = cdf * cdf cdf = wp.array(cdf, dtype=float, device=device) num_samples = 1000 samples = wp.zeros(num_samples, dtype=int, device=device) wp.launch(kernel=sample_cdf_kernel, dim=num_samples, inputs=[seed, cdf, samples], device=device) # histogram should be linear # plt.hist(samples.numpy()) # plt.show() @wp.kernel def sampling_kernel( kernel_seed: int, triangle_samples: wp.array(dtype=wp.vec2), square_samples: wp.array(dtype=wp.vec2), ring_samples: wp.array(dtype=wp.vec2), disk_samples: wp.array(dtype=wp.vec2), sphere_surface_samples: wp.array(dtype=wp.vec3), sphere_samples: wp.array(dtype=wp.vec3), hemisphere_surface_samples: wp.array(dtype=wp.vec3), hemisphere_samples: wp.array(dtype=wp.vec3), cube_samples: wp.array(dtype=wp.vec3), ): tid = wp.tid() state = wp.rand_init(kernel_seed, tid) triangle_samples[tid] = wp.sample_triangle(state) ring_samples[tid] = wp.sample_unit_ring(state) disk_samples[tid] = wp.sample_unit_disk(state) sphere_surface_samples[tid] = wp.sample_unit_sphere_surface(state) sphere_samples[tid] = wp.sample_unit_sphere(state) hemisphere_surface_samples[tid] = wp.sample_unit_hemisphere_surface(state) hemisphere_samples[tid] = wp.sample_unit_hemisphere(state) square_samples[tid] = wp.sample_unit_square(state) cube_samples[tid] = wp.sample_unit_cube(state) def test_sampling_methods(test, device): seed = 42 num_samples = 100 triangle_samples = wp.zeros(num_samples, dtype=wp.vec2, device=device) square_samples = wp.zeros(num_samples, dtype=wp.vec2, device=device) ring_samples = wp.zeros(num_samples, dtype=wp.vec2, device=device) disk_samples = wp.zeros(num_samples, dtype=wp.vec2, device=device) sphere_surface_samples = wp.zeros(num_samples, dtype=wp.vec3, device=device) sphere_samples = wp.zeros(num_samples, dtype=wp.vec3, device=device) hemisphere_surface_samples = wp.zeros(num_samples, dtype=wp.vec3, device=device) hemisphere_samples = wp.zeros(num_samples, dtype=wp.vec3, device=device) cube_samples = wp.zeros(num_samples, dtype=wp.vec3, device=device) wp.launch( kernel=sampling_kernel, dim=num_samples, inputs=[ seed, triangle_samples, square_samples, ring_samples, disk_samples, sphere_surface_samples, sphere_samples, hemisphere_surface_samples, hemisphere_samples, cube_samples, ], device=device, ) # bounds check test.assertTrue((triangle_samples.numpy()[:, 0] <= 1.0).all()) test.assertTrue((triangle_samples.numpy()[:, 0] >= 0.0).all()) test.assertTrue((triangle_samples.numpy()[:, 1] >= 0.0).all()) test.assertTrue((triangle_samples.numpy()[:, 1] >= 0.0).all()) test.assertTrue((square_samples.numpy()[:, 0] >= -0.5).all()) test.assertTrue((square_samples.numpy()[:, 0] <= 1.5).all()) test.assertTrue((square_samples.numpy()[:, 1] >= -0.5).all()) test.assertTrue((square_samples.numpy()[:, 1] <= 0.5).all()) test.assertTrue((cube_samples.numpy()[:, 0] >= -0.5).all()) test.assertTrue((cube_samples.numpy()[:, 0] <= 0.5).all()) test.assertTrue((cube_samples.numpy()[:, 1] >= -0.5).all()) test.assertTrue((cube_samples.numpy()[:, 1] <= 0.5).all()) test.assertTrue((cube_samples.numpy()[:, 2] >= -0.5).all()) test.assertTrue((cube_samples.numpy()[:, 2] <= 0.5).all()) test.assertTrue((hemisphere_surface_samples.numpy()[:, 2] >= 0.0).all()) test.assertTrue((hemisphere_samples.numpy()[:, 2] >= 0.0).all()) test.assertTrue((np.linalg.norm(ring_samples.numpy(), axis=1) <= 1.0 + 1e6).all()) test.assertTrue((np.linalg.norm(disk_samples.numpy(), axis=1) <= 1.0 + 1e6).all()) test.assertTrue((np.linalg.norm(sphere_surface_samples.numpy(), axis=1) <= 1.0 + 1e6).all()) test.assertTrue((np.linalg.norm(sphere_samples.numpy(), axis=1) <= 1.0 + 1e6).all()) test.assertTrue((np.linalg.norm(hemisphere_surface_samples.numpy(), axis=1) <= 1.0 + 1e6).all()) test.assertTrue((np.linalg.norm(hemisphere_samples.numpy(), axis=1) <= 1.0 + 1e6).all()) @wp.kernel def sample_poisson_kernel( kernel_seed: int, poisson_samples_low: wp.array(dtype=wp.uint32), poisson_samples_high: wp.array(dtype=wp.uint32) ): tid = wp.tid() state = wp.rand_init(kernel_seed, tid) x = wp.poisson(state, 3.0) y = wp.poisson(state, 42.0) poisson_samples_low[tid] = x poisson_samples_high[tid] = y def test_poisson(test, device): seed = 13 N = 20000 poisson_low = wp.zeros(N, dtype=wp.uint32, device=device) poisson_high = wp.zeros(N, dtype=wp.uint32, device=device) wp.launch(kernel=sample_poisson_kernel, dim=N, inputs=[seed, poisson_low, poisson_high], device=device) # bins = np.arange(100) # _ = plt.hist(poisson_high.numpy(), bins) # plt.show() np.random.default_rng(seed) np_poisson_low = np.random.poisson(3.0, N) np_poisson_high = np.random.poisson(42.0, N) poisson_low_mean = np.mean(poisson_low.numpy()) np_poisson_low_mean = np.mean(np_poisson_low) poisson_high_mean = np.mean(poisson_high.numpy()) np_poisson_high_mean = np.mean(np_poisson_high) poisson_low_std = np.std(poisson_low.numpy()) np_poisson_low_std = np.std(np_poisson_low) poisson_high_std = np.std(poisson_high.numpy()) np_poisson_high_std = np.std(np_poisson_high) # compare basic distribution characteristics test.assertTrue(np.abs(poisson_low_mean - np_poisson_low_mean) <= 5e-1) test.assertTrue(np.abs(poisson_high_mean - np_poisson_high_mean) <= 5e-1) test.assertTrue(np.abs(poisson_low_std - np_poisson_low_std) <= 2e-1) test.assertTrue(np.abs(poisson_high_std - np_poisson_high_std) <= 2e-1) def register(parent): devices = get_test_devices() class TestNoise(parent): pass add_function_test(TestNoise, "test_rand", test_rand, devices=devices) add_function_test(TestNoise, "test_sample_cdf", test_sample_cdf, devices=devices) add_function_test(TestNoise, "test_sampling_methods", test_sampling_methods, devices=devices) add_function_test(TestNoise, "test_poisson", test_poisson, devices=devices) return TestNoise if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_rand.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp from warp.tests.test_base import * wp.init() @wp.func def min_vec3(a: wp.vec3, b: wp.vec3): return wp.vec3(wp.min(a[0], b[0]), wp.min(a[1], b[1]), wp.min(a[2], b[2])) @wp.func def max_vec3(a: wp.vec3, b: wp.vec3): return wp.vec3(wp.max(a[0], b[0]), wp.max(a[1], b[1]), wp.max(a[2], b[2])) @wp.kernel def compute_bounds( indices: wp.array(dtype=int), positions: wp.array(dtype=wp.vec3), lowers: wp.array(dtype=wp.vec3), uppers: wp.array(dtype=wp.vec3), ): tid = wp.tid() i = indices[tid * 3 + 0] j = indices[tid * 3 + 1] k = indices[tid * 3 + 2] x0 = positions[i] # point zero x1 = positions[j] # point one x2 = positions[k] # point two lower = min_vec3(min_vec3(x0, x1), x2) upper = max_vec3(max_vec3(x0, x1), x2) lowers[tid] = lower uppers[tid] = upper @wp.kernel def compute_num_contacts( lowers: wp.array(dtype=wp.vec3), uppers: wp.array(dtype=wp.vec3), mesh_id: wp.uint64, counts: wp.array(dtype=int) ): face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) tid = wp.tid() upper = uppers[tid] lower = lowers[tid] query = wp.mesh_query_aabb(mesh_id, lower, upper) count = int(0) # index = int(-1) # while wp.mesh_query_aabb_next(query, index): for index in query: count = count + 1 counts[tid] = count def test_compute_bounds(test, device): # create two touching triangles. points = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [-1, -1, 1]]) indices = np.array([0, 1, 2, 1, 2, 3]) m = wp.Mesh( points=wp.array(points, dtype=wp.vec3, device=device), indices=wp.array(indices, dtype=int, device=device), ) num_tris = int(len(indices) / 3) # First compute bounds of each of the triangles. lowers = wp.empty(n=num_tris, dtype=wp.vec3, device=device) uppers = wp.empty_like(lowers) wp.launch( kernel=compute_bounds, dim=num_tris, inputs=[m.indices, m.points], outputs=[lowers, uppers], device=device, ) lower_view = lowers.numpy() upper_view = uppers.numpy() wp.synchronize() # Confirm the bounds of each triangle are correct. test.assertTrue(lower_view[0][0] == 0) test.assertTrue(lower_view[0][1] == 0) test.assertTrue(lower_view[0][2] == 0) test.assertTrue(upper_view[0][0] == 1) test.assertTrue(upper_view[0][1] == 1) test.assertTrue(upper_view[0][2] == 0) test.assertTrue(lower_view[1][0] == -1) test.assertTrue(lower_view[1][1] == -1) test.assertTrue(lower_view[1][2] == 0) test.assertTrue(upper_view[1][0] == 1) test.assertTrue(upper_view[1][1] == 1) test.assertTrue(upper_view[1][2] == 1) def test_mesh_query_aabb_count_overlap(test, device): # create two touching triangles. points = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [-1, -1, 1]]) indices = np.array([0, 1, 2, 1, 2, 3]) m = wp.Mesh( points=wp.array(points, dtype=wp.vec3, device=device), indices=wp.array(indices, dtype=int, device=device), ) num_tris = int(len(indices) / 3) # Compute AABB of each of the triangles. lowers = wp.empty(n=num_tris, dtype=wp.vec3, device=device) uppers = wp.empty_like(lowers) wp.launch( kernel=compute_bounds, dim=num_tris, inputs=[m.indices, m.points], outputs=[lowers, uppers], device=device, ) counts = wp.empty(n=num_tris, dtype=int, device=device) wp.launch( kernel=compute_num_contacts, dim=num_tris, inputs=[lowers, uppers, m.id], outputs=[counts], device=device, ) wp.synchronize() view = counts.numpy() # 2 triangles that share a vertex having overlapping AABBs. for c in view: test.assertTrue(c == 2) def test_mesh_query_aabb_count_nonoverlap(test, device): # create two separate triangles. points = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [10, 0, 0], [10, 1, 0], [10, 0, 1]]) indices = np.array([0, 1, 2, 3, 4, 5]) m = wp.Mesh( points=wp.array(points, dtype=wp.vec3, device=device), indices=wp.array(indices, dtype=int, device=device), ) num_tris = int(len(indices) / 3) lowers = wp.empty(n=num_tris, dtype=wp.vec3, device=device) uppers = wp.empty_like(lowers) wp.launch( kernel=compute_bounds, dim=num_tris, inputs=[m.indices, m.points], outputs=[lowers, uppers], device=device, ) counts = wp.empty(n=num_tris, dtype=int, device=device) wp.launch( kernel=compute_num_contacts, dim=num_tris, inputs=[lowers, uppers, m.id], outputs=[counts], device=device, ) wp.synchronize() view = counts.numpy() # AABB query only returns one triangle at a time, the triangles are not close enough to overlap. for c in view: test.assertTrue(c == 1) def register(parent): devices = get_test_devices() class TestMeshQueryAABBMethods(parent): pass add_function_test(TestMeshQueryAABBMethods, "test_compute_bounds", test_compute_bounds, devices=devices) add_function_test( TestMeshQueryAABBMethods, "test_mesh_query_aabb_count_overlap", test_mesh_query_aabb_count_overlap, devices=devices, ) add_function_test( TestMeshQueryAABBMethods, "test_mesh_query_aabb_count_nonoverlap", test_mesh_query_aabb_count_nonoverlap, devices=devices, ) return TestMeshQueryAABBMethods if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_mesh_query_aabb.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import importlib import os import tempfile import unittest import warp as wp from warp.tests.test_base import * from importlib import util CODE = """# -*- coding: utf-8 -*- import warp as wp @wp.struct class Data: x: wp.array(dtype=int) @wp.func def increment(x: int): # This shouldn't be picked up. return x + 123 @wp.func def increment(x: int): return x + 1 @wp.kernel def compute(data: Data): data.x[0] = increment(data.x[0]) """ wp.init() def load_code_as_module(code, name): file, file_path = tempfile.mkstemp(suffix=".py") try: with os.fdopen(file, "w") as f: f.write(code) spec = util.spec_from_file_location(name, file_path) module = util.module_from_spec(spec) spec.loader.exec_module(module) finally: os.remove(file_path) return module def test_transient_module(test, device): module = load_code_as_module(CODE, "") # Loading it a second time shouldn't be an issue. module = load_code_as_module(CODE, "") assert len(module.compute.module.structs) == 1 assert len(module.compute.module.functions) == 1 data = module.Data() data.x = wp.array([123], dtype=int) wp.set_module_options({"foo": "bar"}, module=module) assert wp.get_module_options(module=module).get("foo") == "bar" assert module.compute.module.options.get("foo") == "bar" wp.launch(module.compute, dim=1, inputs=[data]) assert_np_equal(data.x.numpy(), np.array([124])) def register(parent): devices = get_test_devices() class TestTransientModule(parent): pass add_function_test(TestTransientModule, "test_transient_module", test_transient_module, devices=devices) return TestTransientModule if __name__ == "__main__": _ = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_transient_module.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp import math import warp as wp from warp.tests.test_base import * import unittest import importlib import os # dummy module used for testing reload import warp.tests.test_square as test_square # dummy modules used for testing reload with dependencies import warp.tests.test_dependent as test_dependent import warp.tests.test_reference as test_reference import warp.tests.test_reference_reference as test_reference_reference wp.init() def test_redefine(test, device): # -------------------------------------------- # first pass @wp.kernel def basic(x: wp.array(dtype=float)): tid = wp.tid() x[tid] = float(tid) * 1.0 n = 32 x = wp.zeros(n, dtype=float, device=device) wp.launch(kernel=basic, dim=n, inputs=[x], device=device) # -------------------------------------------- # redefine kernel, should trigger a recompile @wp.kernel def basic(x: wp.array(dtype=float)): tid = wp.tid() x[tid] = float(tid) * 2.0 y = wp.zeros(n, dtype=float, device=device) wp.launch(kernel=basic, dim=n, inputs=[y], device=device) assert_np_equal(np.arange(0, n, 1), x.numpy()) assert_np_equal(np.arange(0, n, 1) * 2.0, y.numpy()) square_two = """import warp as wp wp.init() @wp.func def sqr(x: float): return x * x @wp.kernel def kern(expect: float): wp.expect_eq(sqr(2.0), expect) def run(expect, device): wp.launch(kern, dim=1, inputs=[expect], device=device) """ square_four = """import warp as wp wp.init() @wp.func def multiply(x: float): return x * x @wp.kernel def kern(expect: float): wp.expect_eq(multiply(4.0), expect) def run(expect, device): wp.launch(kern, dim=1, inputs=[expect], device=device) """ def test_reload(test, device): # write out the module python and import it f = open(os.path.abspath(os.path.join(os.path.dirname(__file__), "test_square.py")), "w") f.writelines(square_two) f.flush() f.close() importlib.reload(test_square) test_square.run(expect=4.0, device=device) # 2*2=4 f = open(os.path.abspath(os.path.join(os.path.dirname(__file__), "test_square.py")), "w") f.writelines(square_four) f.flush() f.close() # reload module, this should trigger all of the funcs / kernels to be updated importlib.reload(test_square) test_square.run(expect=16.0, device=device) # 4*4 = 16 def test_reload_class(test, device): def test_func(): import warp.tests.test_class_kernel from warp.tests.test_class_kernel import ClassKernelTest import importlib as imp imp.reload(warp.tests.test_class_kernel) ctest = ClassKernelTest(device) expected = np.zeros((10, 3, 3), dtype=np.float32) expected[:] = np.eye(3) assert_np_equal(expected, ctest.identities.numpy()) test_func() test_func() template_ref = """# This file is used to test reloading module references. import warp as wp import warp.tests.test_reference_reference as refref wp.init() @wp.func def magic(): return {} * refref.more_magic() """ template_refref = """# This file is used to test reloading module references. import warp as wp wp.init() @wp.func def more_magic(): return {} """ def test_reload_references(test, device): path_ref = os.path.abspath(os.path.join(os.path.dirname(__file__), "test_reference.py")) path_refref = os.path.abspath(os.path.join(os.path.dirname(__file__), "test_reference_reference.py")) # rewrite both dependency modules and reload them with open(path_ref, "w") as f: f.writelines(template_ref.format(1.0)) importlib.reload(test_reference) with open(path_refref, "w") as f: f.writelines(template_refref.format(1.0)) importlib.reload(test_reference_reference) test_dependent.run(expect=1.0, device=device) # 1 * 1 = 1 # rewrite and reload the first dependency module with open(path_ref, "w") as f: f.writelines(template_ref.format(2.0)) importlib.reload(test_reference) test_dependent.run(expect=2.0, device=device) # 2 * 1 = 1 # rewrite and reload the second dependency module with open(path_refref, "w") as f: f.writelines(template_refref.format(2.0)) importlib.reload(test_reference_reference) test_dependent.run(expect=4.0, device=device) # 2 * 2 = 4 def register(parent): devices = get_test_devices() class TestReload(parent): pass add_function_test(TestReload, "test_redefine", test_redefine, devices=devices) add_function_test(TestReload, "test_reload", test_reload, devices=devices) add_function_test(TestReload, "test_reload_class", test_reload_class, devices=devices) add_function_test(TestReload, "test_reload_references", test_reload_references, devices=devices) return TestReload if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2, failfast=False)
warp-main
warp/tests/test_reload.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp from warp.tests.test_base import * import unittest wp.init() def test_pinned(test, device): assert wp.get_device(device).is_cuda, "Test device must be a CUDA device" n = 1024 * 1024 ones = np.ones(n, dtype=np.float32) # pageable host arrays for synchronous transfers a_pageable1 = wp.array(ones, dtype=float, device="cpu") a_pageable2 = wp.zeros_like(a_pageable1) assert a_pageable1.pinned == False assert a_pageable2.pinned == False # pinned host arrays for asynchronous transfers a_pinned1 = wp.array(ones, dtype=float, device="cpu", pinned=True) a_pinned2 = wp.zeros_like(a_pinned1) assert a_pinned1.pinned == True assert a_pinned2.pinned == True # device array a_device = wp.zeros(n, dtype=float, device=device) assert a_device.pinned == False wp.synchronize_device(device) with wp.ScopedTimer("Synchronous copy", print=False) as pageable_timer: wp.copy(a_device, a_pageable1) wp.copy(a_pageable2, a_device) wp.synchronize_device(device) with wp.ScopedTimer("Asynchronous copy", print=False) as pinned_timer: wp.copy(a_device, a_pinned1) wp.copy(a_pinned2, a_device) wp.synchronize_device(device) # ensure correct results assert_np_equal(a_pageable2.numpy(), ones) assert_np_equal(a_pinned2.numpy(), ones) # ensure that launching asynchronous transfers took less CPU time assert pinned_timer.elapsed < pageable_timer.elapsed, "Pinned transfers did not take less CPU time" def register(parent): cuda_devices = wp.get_cuda_devices() class TestPinned(parent): pass if cuda_devices: add_function_test(TestPinned, "test_pinned", test_pinned, devices=cuda_devices) return TestPinned if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_pinned.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import numpy as np import math import warp as wp from warp.tests.test_base import * import unittest wp.init() @wp.func def sqr(x: float): return x * x # test nested user function calls # and explicit return type hints @wp.func def cube(x: float) -> float: return sqr(x) * x @wp.func def custom(x: int): return x + 1 @wp.func def custom(x: float): return x + 1.0 @wp.func def custom(x: wp.vec3): return x + wp.vec3(1.0, 0.0, 0.0) @wp.func def noreturn(x: wp.vec3): x = x + wp.vec3(0.0, 1.0, 0.0) wp.expect_eq(x, wp.vec3(1.0, 1.0, 0.0)) @wp.kernel def test_overload_func(): # tests overloading a custom @wp.func i = custom(1) f = custom(1.0) v = custom(wp.vec3(1.0, 0.0, 0.0)) wp.expect_eq(i, 2) wp.expect_eq(f, 2.0) wp.expect_eq(v, wp.vec3(2.0, 0.0, 0.0)) noreturn(wp.vec3(1.0, 0.0, 0.0)) @wp.func def foo(x: int): # This shouldn't be picked up. return x * 2 @wp.func def foo(x: int): return x * 3 @wp.kernel def test_override_func(): i = foo(1) wp.expect_eq(i, 3) def test_native_func_export(test, device): # tests calling native functions from Python q = wp.quat(0.0, 0.0, 0.0, 1.0) assert_np_equal(np.array([*q]), np.array([0.0, 0.0, 0.0, 1.0])) r = wp.quat_from_axis_angle((1.0, 0.0, 0.0), 2.0) assert_np_equal(np.array([*r]), np.array([0.8414709568023682, 0.0, 0.0, 0.5403022170066833]), tol=1.0e-3) q = wp.quat(1.0, 2.0, 3.0, 4.0) q = wp.normalize(q) * 2.0 assert_np_equal( np.array([*q]), np.array([0.18257418274879456, 0.3651483654975891, 0.547722578048706, 0.7302967309951782]) * 2.0, tol=1.0e-3, ) v2 = wp.vec2(1.0, 2.0) v2 = wp.normalize(v2) * 2.0 assert_np_equal(np.array([*v2]), np.array([0.4472135901451111, 0.8944271802902222]) * 2.0, tol=1.0e-3) v3 = wp.vec3(1.0, 2.0, 3.0) v3 = wp.normalize(v3) * 2.0 assert_np_equal( np.array([*v3]), np.array([0.26726123690605164, 0.5345224738121033, 0.8017836809158325]) * 2.0, tol=1.0e-3 ) v4 = wp.vec4(1.0, 2.0, 3.0, 4.0) v4 = wp.normalize(v4) * 2.0 assert_np_equal( np.array([*v4]), np.array([0.18257418274879456, 0.3651483654975891, 0.547722578048706, 0.7302967309951782]) * 2.0, tol=1.0e-3, ) m22 = wp.mat22(1.0, 2.0, 3.0, 4.0) m22 = m22 + m22 test.assertEqual(m22[1, 1], 8.0) test.assertEqual(str(m22), "[[2.0, 4.0],\n [6.0, 8.0]]") t = wp.transform( wp.vec3(0.0, 0.0, 0.0), wp.quat(0.0, 0.0, 0.0, 1.0), ) assert_np_equal(np.array([*t]), np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0])) f = wp.sin(math.pi * 0.5) test.assertAlmostEqual(f, 1.0, places=3) def test_user_func_export(test, device): # tests calling overloaded user-defined functions from Python i = custom(1) f = custom(1.0) v = custom(wp.vec3(1.0, 0.0, 0.0)) test.assertEqual(i, 2) test.assertEqual(f, 2.0) assert_np_equal(np.array([*v]), np.array([2.0, 0.0, 0.0])) def test_func_closure_capture(test, device): def make_closure_kernel(func): def closure_kernel_fn(data: wp.array(dtype=float), expected: float): f = func(data[wp.tid()]) wp.expect_eq(f, expected) key = f"test_func_closure_capture_{func.key}" return wp.Kernel(func=closure_kernel_fn, key=key, module=wp.get_module(closure_kernel_fn.__module__)) sqr_closure = make_closure_kernel(sqr) cube_closure = make_closure_kernel(cube) data = wp.array([2.0], dtype=float, device=device) expected_sqr = 4.0 expected_cube = 8.0 wp.launch(sqr_closure, dim=data.shape, inputs=[data, expected_sqr], device=device) wp.launch(cube_closure, dim=data.shape, inputs=[data, expected_cube], device=device) @wp.func def test_func(param1: wp.int32, param2: wp.int32, param3: wp.int32) -> wp.float32: return 1.0 @wp.kernel def test_return_kernel(test_data: wp.array(dtype=wp.float32)): tid = wp.tid() test_data[tid] = wp.lerp(test_func(0, 1, 2), test_func(0, 1, 2), 0.5) def test_return_func(test, device): test_data = wp.zeros(100, dtype=wp.float32, device=device) wp.launch(kernel=test_return_kernel, dim=test_data.size, inputs=[test_data], device=device) @wp.func def multi_valued_func(a: wp.float32, b: wp.float32): return a + b, a - b, a * b, a / b def test_multi_valued_func(test, device): @wp.kernel def test_multi_valued_kernel(test_data1: wp.array(dtype=wp.float32), test_data2: wp.array(dtype=wp.float32)): tid = wp.tid() d1, d2 = test_data1[tid], test_data2[tid] a, b, c, d = multi_valued_func(d1, d2) wp.expect_eq(a, d1 + d2) wp.expect_eq(b, d1 - d2) wp.expect_eq(c, d1 * d2) wp.expect_eq(d, d1 / d2) test_data1 = wp.array(np.arange(100), dtype=wp.float32, device=device) test_data2 = wp.array(np.arange(100, 0, -1), dtype=wp.float32, device=device) wp.launch(kernel=test_multi_valued_kernel, dim=test_data1.size, inputs=[test_data1, test_data2], device=device) @wp.kernel def test_func_defaults(): # test default as expected wp.expect_near(1.0, 1.0 + 1.0e-6) # test that changing tolerance still works wp.expect_near(1.0, 1.1, 0.5) def register(parent): devices = get_test_devices() class TestFunc(parent): pass add_kernel_test(TestFunc, kernel=test_overload_func, name="test_overload_func", dim=1, devices=devices) add_function_test(TestFunc, func=test_return_func, name="test_return_func", devices=devices) add_kernel_test(TestFunc, kernel=test_override_func, name="test_override_func", dim=1, devices=devices) add_function_test(TestFunc, func=test_native_func_export, name="test_native_func_export", devices=["cpu"]) add_function_test(TestFunc, func=test_user_func_export, name="test_user_func_export", devices=["cpu"]) add_function_test(TestFunc, func=test_func_closure_capture, name="test_func_closure_capture", devices=devices) add_function_test(TestFunc, func=test_multi_valued_func, name="test_multi_valued_func", devices=devices) add_kernel_test(TestFunc, kernel=test_func_defaults, name="test_func_defaults", dim=1, devices=devices) return TestFunc if __name__ == "__main__": c = register(unittest.TestCase) wp.force_load() unittest.main(verbosity=2)
warp-main
warp/tests/test_func.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import unittest import os import ctypes import warp as wp from warp.tests.test_base import * wp.init() @wp.kernel def inc(a: wp.array(dtype=float)): tid = wp.tid() a[tid] = a[tid] + 1.0 def test_dlpack_warp_to_warp(test, device): a1 = wp.array(data=np.arange(10, dtype=np.float32), device=device) a2 = wp.from_dlpack(wp.to_dlpack(a1)) test.assertEqual(a1.ptr, a2.ptr) test.assertEqual(a1.device, a2.device) test.assertEqual(a1.dtype, a2.dtype) test.assertEqual(a1.shape, a2.shape) test.assertEqual(a1.strides, a2.strides) assert_np_equal(a1.numpy(), a2.numpy()) wp.launch(inc, dim=a2.size, inputs=[a2], device=device) assert_np_equal(a1.numpy(), a2.numpy()) def test_dlpack_dtypes_and_shapes(test, device): # automatically determine scalar dtype def wrap_scalar_tensor_implicit(dtype): a1 = wp.zeros(10, dtype=dtype, device=device) a2 = wp.from_dlpack(wp.to_dlpack(a1)) test.assertEqual(a1.ptr, a2.ptr) test.assertEqual(a1.device, a2.device) test.assertEqual(a1.dtype, a2.dtype) test.assertEqual(a1.shape, a2.shape) test.assertEqual(a1.strides, a2.strides) # explicitly specify scalar dtype def wrap_scalar_tensor_explicit(dtype, target_dtype): a1 = wp.zeros(10, dtype=dtype, device=device) a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=target_dtype) test.assertEqual(a1.ptr, a2.ptr) test.assertEqual(a1.device, a2.device) test.assertEqual(a1.dtype, dtype) test.assertEqual(a2.dtype, target_dtype) test.assertEqual(a1.shape, a2.shape) test.assertEqual(a1.strides, a2.strides) # convert vector arrays to scalar arrays def wrap_vector_to_scalar_tensor(vec_dtype): scalar_type = vec_dtype._wp_scalar_type_ scalar_size = ctypes.sizeof(vec_dtype._type_) a1 = wp.zeros(10, dtype=vec_dtype, device=device) a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=scalar_type) test.assertEqual(a1.ptr, a2.ptr) test.assertEqual(a1.device, a2.device) test.assertEqual(a2.ndim, a1.ndim + 1) test.assertEqual(a1.dtype, vec_dtype) test.assertEqual(a2.dtype, scalar_type) test.assertEqual(a2.shape, (*a1.shape, vec_dtype._length_)) test.assertEqual(a2.strides, (*a1.strides, scalar_size)) # convert scalar arrays to vector arrays def wrap_scalar_to_vector_tensor(vec_dtype): scalar_type = vec_dtype._wp_scalar_type_ scalar_size = ctypes.sizeof(vec_dtype._type_) a1 = wp.zeros((10, vec_dtype._length_), dtype=scalar_type, device=device) a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=vec_dtype) test.assertEqual(a1.ptr, a2.ptr) test.assertEqual(a1.device, a2.device) test.assertEqual(a2.ndim, a1.ndim - 1) test.assertEqual(a1.dtype, scalar_type) test.assertEqual(a2.dtype, vec_dtype) test.assertEqual(a1.shape, (*a2.shape, vec_dtype._length_)) test.assertEqual(a1.strides, (*a2.strides, scalar_size)) # convert matrix arrays to scalar arrays def wrap_matrix_to_scalar_tensor(mat_dtype): scalar_type = mat_dtype._wp_scalar_type_ scalar_size = ctypes.sizeof(mat_dtype._type_) a1 = wp.zeros(10, dtype=mat_dtype, device=device) a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=scalar_type) test.assertEqual(a1.ptr, a2.ptr) test.assertEqual(a1.device, a2.device) test.assertEqual(a2.ndim, a1.ndim + 2) test.assertEqual(a1.dtype, mat_dtype) test.assertEqual(a2.dtype, scalar_type) test.assertEqual(a2.shape, (*a1.shape, *mat_dtype._shape_)) test.assertEqual(a2.strides, (*a1.strides, scalar_size * mat_dtype._shape_[1], scalar_size)) # convert scalar arrays to matrix arrays def wrap_scalar_to_matrix_tensor(mat_dtype): scalar_type = mat_dtype._wp_scalar_type_ scalar_size = ctypes.sizeof(mat_dtype._type_) a1 = wp.zeros((10, *mat_dtype._shape_), dtype=scalar_type, device=device) a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=mat_dtype) test.assertEqual(a1.ptr, a2.ptr) test.assertEqual(a1.device, a2.device) test.assertEqual(a2.ndim, a1.ndim - 2) test.assertEqual(a1.dtype, scalar_type) test.assertEqual(a2.dtype, mat_dtype) test.assertEqual(a1.shape, (*a2.shape, *mat_dtype._shape_)) test.assertEqual(a1.strides, (*a2.strides, scalar_size * mat_dtype._shape_[1], scalar_size)) for t in wp.types.scalar_types: wrap_scalar_tensor_implicit(t) for t in wp.types.scalar_types: wrap_scalar_tensor_explicit(t, t) # test signed/unsigned conversions wrap_scalar_tensor_explicit(wp.int8, wp.uint8) wrap_scalar_tensor_explicit(wp.uint8, wp.int8) wrap_scalar_tensor_explicit(wp.int16, wp.uint16) wrap_scalar_tensor_explicit(wp.uint16, wp.int16) wrap_scalar_tensor_explicit(wp.int32, wp.uint32) wrap_scalar_tensor_explicit(wp.uint32, wp.int32) wrap_scalar_tensor_explicit(wp.int64, wp.uint64) wrap_scalar_tensor_explicit(wp.uint64, wp.int64) vec_types = [] for t in wp.types.scalar_types: for vec_len in [2, 3, 4, 5]: vec_types.append(wp.types.vector(vec_len, t)) vec_types.append(wp.quath) vec_types.append(wp.quatf) vec_types.append(wp.quatd) vec_types.append(wp.transformh) vec_types.append(wp.transformf) vec_types.append(wp.transformd) vec_types.append(wp.spatial_vectorh) vec_types.append(wp.spatial_vectorf) vec_types.append(wp.spatial_vectord) for vec_type in vec_types: wrap_vector_to_scalar_tensor(vec_type) wrap_scalar_to_vector_tensor(vec_type) mat_shapes = [(2, 2), (3, 3), (4, 4), (5, 5), (2, 3), (3, 2), (3, 4), (4, 3)] mat_types = [] for t in wp.types.scalar_types: for mat_shape in mat_shapes: mat_types.append(wp.types.matrix(mat_shape, t)) mat_types.append(wp.spatial_matrixh) mat_types.append(wp.spatial_matrixf) mat_types.append(wp.spatial_matrixd) for mat_type in mat_types: wrap_matrix_to_scalar_tensor(mat_type) wrap_scalar_to_matrix_tensor(mat_type) def test_dlpack_warp_to_torch(test, device): import torch.utils.dlpack a = wp.array(data=np.arange(10, dtype=np.float32), device=device) t = torch.utils.dlpack.from_dlpack(wp.to_dlpack(a)) item_size = wp.types.type_size_in_bytes(a.dtype) test.assertEqual(a.ptr, t.data_ptr()) test.assertEqual(a.device, wp.device_from_torch(t.device)) test.assertEqual(a.dtype, wp.torch.dtype_from_torch(t.dtype)) test.assertEqual(a.shape, tuple(t.shape)) test.assertEqual(a.strides, tuple(s * item_size for s in t.stride())) assert_np_equal(a.numpy(), t.cpu().numpy()) wp.launch(inc, dim=a.size, inputs=[a], device=device) assert_np_equal(a.numpy(), t.cpu().numpy()) t += 1 assert_np_equal(a.numpy(), t.cpu().numpy()) def test_dlpack_torch_to_warp(test, device): import torch import torch.utils.dlpack t = torch.arange(10, dtype=torch.float32, device=wp.device_to_torch(device)) a = wp.from_dlpack(torch.utils.dlpack.to_dlpack(t)) item_size = wp.types.type_size_in_bytes(a.dtype) test.assertEqual(a.ptr, t.data_ptr()) test.assertEqual(a.device, wp.device_from_torch(t.device)) test.assertEqual(a.dtype, wp.torch.dtype_from_torch(t.dtype)) test.assertEqual(a.shape, tuple(t.shape)) test.assertEqual(a.strides, tuple(s * item_size for s in t.stride())) assert_np_equal(a.numpy(), t.cpu().numpy()) wp.launch(inc, dim=a.size, inputs=[a], device=device) assert_np_equal(a.numpy(), t.cpu().numpy()) t += 1 assert_np_equal(a.numpy(), t.cpu().numpy()) def test_dlpack_warp_to_jax(test, device): import jax import jax.dlpack a = wp.array(data=np.arange(10, dtype=np.float32), device=device) # use generic dlpack conversion j1 = jax.dlpack.from_dlpack(wp.to_dlpack(a)) # use jax wrapper j2 = wp.to_jax(a) test.assertEqual(a.ptr, j1.unsafe_buffer_pointer()) test.assertEqual(a.ptr, j2.unsafe_buffer_pointer()) test.assertEqual(a.device, wp.device_from_jax(j1.device())) test.assertEqual(a.device, wp.device_from_jax(j2.device())) test.assertEqual(a.shape, j1.shape) test.assertEqual(a.shape, j2.shape) assert_np_equal(a.numpy(), np.asarray(j1)) assert_np_equal(a.numpy(), np.asarray(j2)) wp.launch(inc, dim=a.size, inputs=[a], device=device) wp.synchronize_device(device) # HACK? Run a no-op operation so that Jax flags the arrays as dirty # and gets the latest values, which were modified by Warp. j1 += 0 j2 += 0 assert_np_equal(a.numpy(), np.asarray(j1)) assert_np_equal(a.numpy(), np.asarray(j2)) def test_dlpack_jax_to_warp(test, device): import jax import jax.dlpack with jax.default_device(wp.device_to_jax(device)): j = jax.numpy.arange(10, dtype=jax.numpy.float32) # use generic dlpack conversion a1 = wp.from_dlpack(jax.dlpack.to_dlpack(j)) # use jax wrapper a2 = wp.from_jax(j) test.assertEqual(a1.ptr, j.unsafe_buffer_pointer()) test.assertEqual(a2.ptr, j.unsafe_buffer_pointer()) test.assertEqual(a1.device, wp.device_from_jax(j.device())) test.assertEqual(a2.device, wp.device_from_jax(j.device())) test.assertEqual(a1.shape, j.shape) test.assertEqual(a2.shape, j.shape) assert_np_equal(a1.numpy(), np.asarray(j)) assert_np_equal(a2.numpy(), np.asarray(j)) wp.launch(inc, dim=a1.size, inputs=[a1], device=device) wp.synchronize_device(device) # HACK? Run a no-op operation so that Jax flags the array as dirty # and gets the latest values, which were modified by Warp. j += 0 assert_np_equal(a1.numpy(), np.asarray(j)) assert_np_equal(a2.numpy(), np.asarray(j)) def register(parent): class TestDLPack(parent): pass devices = get_test_devices() add_function_test(TestDLPack, "test_dlpack_warp_to_warp", test_dlpack_warp_to_warp, devices=devices) add_function_test(TestDLPack, "test_dlpack_dtypes_and_shapes", test_dlpack_dtypes_and_shapes, devices=devices) # torch interop via dlpack try: import torch import torch.utils.dlpack # check which Warp devices work with Torch # CUDA devices may fail if Torch was not compiled with CUDA support test_devices = get_test_devices() torch_compatible_devices = [] for d in test_devices: try: t = torch.arange(10, device=wp.device_to_torch(d)) t += 1 torch_compatible_devices.append(d) except Exception as e: print(f"Skipping Torch DLPack tests on device '{d}' due to exception: {e}") if torch_compatible_devices: add_function_test( TestDLPack, "test_dlpack_warp_to_torch", test_dlpack_warp_to_torch, devices=torch_compatible_devices ) add_function_test( TestDLPack, "test_dlpack_torch_to_warp", test_dlpack_torch_to_warp, devices=torch_compatible_devices ) except Exception as e: print(f"Skipping Torch DLPack tests due to exception: {e}") # jax interop via dlpack try: # prevent Jax from gobbling up GPU memory os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false" import jax import jax.dlpack # check which Warp devices work with Jax # CUDA devices may fail if Jax cannot find a CUDA Toolkit test_devices = get_test_devices() jax_compatible_devices = [] for d in test_devices: try: with jax.default_device(wp.device_to_jax(d)): j = jax.numpy.arange(10, dtype=jax.numpy.float32) j += 1 jax_compatible_devices.append(d) except Exception as e: print(f"Skipping Jax DLPack tests on device '{d}' due to exception: {e}") if jax_compatible_devices: add_function_test( TestDLPack, "test_dlpack_warp_to_jax", test_dlpack_warp_to_jax, devices=jax_compatible_devices ) add_function_test( TestDLPack, "test_dlpack_jax_to_warp", test_dlpack_jax_to_warp, devices=jax_compatible_devices ) except Exception as e: print(f"Skipping Jax DLPack tests due to exception: {e}") return TestDLPack if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_dlpack.py
import numpy as np import math import warp as wp from warp.tests.test_base import * import unittest wp.init() @wp.kernel def eval_dense_gemm( m: int, n: int, p: int, t1: int, t2: int, A: wp.array(dtype=float), B: wp.array(dtype=float), C: wp.array(dtype=float), ): wp.dense_gemm(m, n, p, t1, t2, A, B, C) @wp.kernel def eval_dense_cholesky(n: int, A: wp.array(dtype=float), regularization: float, L: wp.array(dtype=float)): wp.dense_chol(n, A, regularization, L) @wp.kernel def eval_dense_subs(n: int, L: wp.array(dtype=float), b: wp.array(dtype=float), x: wp.array(dtype=float)): wp.dense_subs(n, L, b, x) # helper that propagates gradients back to A, treating L as a constant / temporary variable # allows us to reuse the Cholesky decomposition from the forward pass @wp.kernel def eval_dense_solve( n: int, A: wp.array(dtype=float), L: wp.array(dtype=float), b: wp.array(dtype=float), x: wp.array(dtype=float) ): wp.dense_solve(n, A, L, b, x) def register(parent): devices = get_test_devices() class TestDense(parent): pass # just testing compilation of the dense matrix routines # most are deprecated / WIP wp.force_load() return TestDense if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_dense.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest from typing import Any import numpy as np import warp as wp from warp.tests.test_array import FillStruct from warp.tests.test_base import * wp.init() @wp.kernel def kernel_1d(a: wp.indexedarray(dtype=float), expected: wp.array(dtype=float)): i = wp.tid() wp.expect_eq(a[i], expected[i]) a[i] = 2.0 * a[i] wp.atomic_add(a, i, 1.0) wp.expect_eq(a[i], 2.0 * expected[i] + 1.0) def test_indexedarray_1d(test, device): values = np.arange(10, dtype=np.float32) arr = wp.array(data=values, device=device) indices = wp.array([1, 3, 5, 7, 9], dtype=int, device=device) iarr = wp.indexedarray(arr, [indices]) test.assertEqual(iarr.dtype, arr.dtype) test.assertEqual(iarr.ndim, 1) test.assertEqual(iarr.shape, (5,)) test.assertEqual(iarr.size, 5) expected_arr = wp.array(data=[1, 3, 5, 7, 9], dtype=float, device=device) wp.launch(kernel_1d, dim=iarr.size, inputs=[iarr, expected_arr], device=device) @wp.kernel def kernel_2d(a: wp.indexedarray2d(dtype=float), expected: wp.array2d(dtype=float)): i, j = wp.tid() # check expected values wp.expect_eq(a[i, j], expected[i, j]) # test wp.view() wp.expect_eq(a[i][j], a[i, j]) a[i, j] = 2.0 * a[i, j] wp.atomic_add(a, i, j, 1.0) wp.expect_eq(a[i, j], 2.0 * expected[i, j] + 1.0) def test_indexedarray_2d(test, device): values = np.arange(100, dtype=np.float32).reshape((10, 10)) arr = wp.array(data=values, device=device) indices0 = wp.array([1, 3], dtype=int, device=device) indices1 = wp.array([2, 4, 8], dtype=int, device=device) iarr = wp.indexedarray(arr, [indices0, indices1]) test.assertEqual(iarr.dtype, arr.dtype) test.assertEqual(iarr.ndim, 2) test.assertEqual(iarr.shape, (2, 3)) test.assertEqual(iarr.size, 6) expected_values = [[12, 14, 18], [32, 34, 38]] expected_arr = wp.array(data=expected_values, dtype=float, device=device) wp.launch(kernel_2d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device) @wp.kernel def kernel_3d(a: wp.indexedarray3d(dtype=float), expected: wp.array3d(dtype=float)): i, j, k = wp.tid() # check expected values wp.expect_eq(a[i, j, k], expected[i, j, k]) # test wp.view() wp.expect_eq(a[i][j][k], a[i, j, k]) wp.expect_eq(a[i, j][k], a[i, j, k]) wp.expect_eq(a[i][j, k], a[i, j, k]) a[i, j, k] = 2.0 * a[i, j, k] wp.atomic_add(a, i, j, k, 1.0) wp.expect_eq(a[i, j, k], 2.0 * expected[i, j, k] + 1.0) def test_indexedarray_3d(test, device): values = np.arange(1000, dtype=np.float32).reshape((10, 10, 10)) arr = wp.array(data=values, device=device) indices0 = wp.array([1, 3], dtype=int, device=device) indices1 = wp.array([2, 4, 8], dtype=int, device=device) indices2 = wp.array([0, 5], dtype=int, device=device) iarr = wp.indexedarray(arr, [indices0, indices1, indices2]) test.assertEqual(iarr.dtype, arr.dtype) test.assertEqual(iarr.ndim, 3) test.assertEqual(iarr.shape, (2, 3, 2)) test.assertEqual(iarr.size, 12) expected_values = [ [[120, 125], [140, 145], [180, 185]], [[320, 325], [340, 345], [380, 385]], ] expected_arr = wp.array(data=expected_values, dtype=float, device=device) wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device) @wp.kernel def kernel_4d(a: wp.indexedarray4d(dtype=float), expected: wp.array4d(dtype=float)): i, j, k, l = wp.tid() # check expected values wp.expect_eq(a[i, j, k, l], expected[i, j, k, l]) # test wp.view() wp.expect_eq(a[i][j][k][l], a[i, j, k, l]) wp.expect_eq(a[i][j, k, l], a[i, j, k, l]) wp.expect_eq(a[i, j][k, l], a[i, j, k, l]) wp.expect_eq(a[i, j, k][l], a[i, j, k, l]) a[i, j, k, l] = 2.0 * a[i, j, k, l] wp.atomic_add(a, i, j, k, l, 1.0) wp.expect_eq(a[i, j, k, l], 2.0 * expected[i, j, k, l] + 1.0) def test_indexedarray_4d(test, device): values = np.arange(10000, dtype=np.float32).reshape((10, 10, 10, 10)) arr = wp.array(data=values, device=device) indices0 = wp.array([1, 3], dtype=int, device=device) indices1 = wp.array([2, 4, 8], dtype=int, device=device) indices2 = wp.array([0, 5], dtype=int, device=device) indices3 = wp.array([6, 7, 9], dtype=int, device=device) iarr = wp.indexedarray(arr, [indices0, indices1, indices2, indices3]) test.assertEqual(iarr.dtype, arr.dtype) test.assertEqual(iarr.ndim, 4) test.assertEqual(iarr.shape, (2, 3, 2, 3)) test.assertEqual(iarr.size, 36) expected_values = [ [ [[1206, 1207, 1209], [1256, 1257, 1259]], [[1406, 1407, 1409], [1456, 1457, 1459]], [[1806, 1807, 1809], [1856, 1857, 1859]], ], [ [[3206, 3207, 3209], [3256, 3257, 3259]], [[3406, 3407, 3409], [3456, 3457, 3459]], [[3806, 3807, 3809], [3856, 3857, 3859]], ], ] expected_arr = wp.array(data=expected_values, dtype=float, device=device) wp.launch(kernel_4d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device) def test_indexedarray_mixed(test, device): # [[[ 0, 1, 2, 3], # [ 4, 5, 6, 7], # [ 8, 9, 10, 11], # [12, 13, 14, 15]], # [[16, 17, 18, 19], # [20, 21, 22, 23], # [24, 25, 26, 27], # [28, 29, 30, 31]], # [[32, 33, 34, 35], # [36, 37, 38, 39], # [40, 41, 42, 43], # [44, 45, 46, 47], # [[48, 49, 50, 51], # [52, 53, 54, 55], # [56, 57, 58, 59], # [60, 61, 62, 63]]]] values = np.arange(64, dtype=np.float32).reshape((4, 4, 4)) indices = wp.array([0, 3], dtype=int, device=device) # ----- arr = wp.array(data=values, device=device) iarr = wp.indexedarray(arr, [indices, None, None]) test.assertEqual(iarr.dtype, arr.dtype) test.assertEqual(iarr.ndim, 3) test.assertEqual(iarr.shape, (2, 4, 4)) test.assertEqual(iarr.size, 32) expected_values = [ [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]], [[48, 49, 50, 51], [52, 53, 54, 55], [56, 57, 58, 59], [60, 61, 62, 63]], ] expected_arr = wp.array(data=expected_values, dtype=float, device=device) wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device) # ----- arr = wp.array(data=values, device=device) iarr = wp.indexedarray(arr, [indices, indices, None]) test.assertEqual(iarr.dtype, arr.dtype) test.assertEqual(iarr.ndim, 3) test.assertEqual(iarr.shape, (2, 2, 4)) test.assertEqual(iarr.size, 16) expected_values = [[[0, 1, 2, 3], [12, 13, 14, 15]], [[48, 49, 50, 51], [60, 61, 62, 63]]] expected_arr = wp.array(data=expected_values, dtype=float, device=device) wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device) # ----- arr = wp.array(data=values, device=device) iarr = wp.indexedarray(arr, [indices, None, indices]) test.assertEqual(iarr.dtype, arr.dtype) test.assertEqual(iarr.ndim, 3) test.assertEqual(iarr.shape, (2, 4, 2)) test.assertEqual(iarr.size, 16) expected_values = [[[0, 3], [4, 7], [8, 11], [12, 15]], [[48, 51], [52, 55], [56, 59], [60, 63]]] expected_arr = wp.array(data=expected_values, dtype=float, device=device) wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device) # ----- arr = wp.array(data=values, device=device) iarr = wp.indexedarray(arr, [None, indices, indices]) test.assertEqual(iarr.dtype, arr.dtype) test.assertEqual(iarr.ndim, 3) test.assertEqual(iarr.shape, (4, 2, 2)) test.assertEqual(iarr.size, 16) expected_values = [[[0, 3], [12, 15]], [[16, 19], [28, 31]], [[32, 35], [44, 47]], [[48, 51], [60, 63]]] expected_arr = wp.array(data=expected_values, dtype=float, device=device) wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device) vec2i = wp.types.vector(length=2, dtype=wp.int32) vec3i = wp.types.vector(length=3, dtype=wp.int32) vec4i = wp.types.vector(length=4, dtype=wp.int32) @wp.kernel def shape_kernel_1d(arr: wp.indexedarray1d(dtype=float), expected: int): wp.expect_eq(arr.shape[0], expected) @wp.kernel def shape_kernel_2d(arr: wp.indexedarray2d(dtype=float), expected: vec2i): wp.expect_eq(arr.shape[0], expected[0]) wp.expect_eq(arr.shape[1], expected[1]) # 1d slice view = arr[0] wp.expect_eq(view.shape[0], expected[1]) @wp.kernel def shape_kernel_3d(arr: wp.indexedarray3d(dtype=float), expected: vec3i): wp.expect_eq(arr.shape[0], expected[0]) wp.expect_eq(arr.shape[1], expected[1]) wp.expect_eq(arr.shape[2], expected[2]) # 2d slice view2 = arr[0] wp.expect_eq(view2.shape[0], expected[1]) wp.expect_eq(view2.shape[1], expected[2]) # 1d slice view1 = arr[0, 0] wp.expect_eq(view1.shape[0], expected[2]) @wp.kernel def shape_kernel_4d(arr: wp.indexedarray4d(dtype=float), expected: vec4i): wp.expect_eq(arr.shape[0], expected[0]) wp.expect_eq(arr.shape[1], expected[1]) wp.expect_eq(arr.shape[2], expected[2]) wp.expect_eq(arr.shape[3], expected[3]) # 3d slice view3 = arr[0] wp.expect_eq(view3.shape[0], expected[1]) wp.expect_eq(view3.shape[1], expected[2]) wp.expect_eq(view3.shape[2], expected[3]) # 2d slice view2 = arr[0, 0] wp.expect_eq(view2.shape[0], expected[2]) wp.expect_eq(view2.shape[1], expected[3]) # 1d slice view1 = arr[0, 0, 0] wp.expect_eq(view1.shape[0], expected[3]) def test_indexedarray_shape(test, device): with wp.ScopedDevice(device): data1 = wp.zeros(10, dtype=float) data2 = wp.zeros((10, 20), dtype=float) data3 = wp.zeros((10, 20, 30), dtype=float) data4 = wp.zeros((10, 20, 30, 40), dtype=float) indices1 = wp.array(data=[2, 7], dtype=int) indices2 = wp.array(data=[2, 7, 12, 17], dtype=int) indices3 = wp.array(data=[2, 7, 12, 17, 22, 27], dtype=int) indices4 = wp.array(data=[2, 7, 12, 17, 22, 27, 32, 37], dtype=int) ia1 = wp.indexedarray(data1, [indices1]) wp.launch(shape_kernel_1d, dim=1, inputs=[ia1, 2]) ia2_1 = wp.indexedarray(data2, [indices1, None]) ia2_2 = wp.indexedarray(data2, [None, indices2]) ia2_3 = wp.indexedarray(data2, [indices1, indices2]) wp.launch(shape_kernel_2d, dim=1, inputs=[ia2_1, vec2i(2, 20)]) wp.launch(shape_kernel_2d, dim=1, inputs=[ia2_2, vec2i(10, 4)]) wp.launch(shape_kernel_2d, dim=1, inputs=[ia2_3, vec2i(2, 4)]) ia3_1 = wp.indexedarray(data3, [indices1, None, None]) ia3_2 = wp.indexedarray(data3, [None, indices2, None]) ia3_3 = wp.indexedarray(data3, [None, None, indices3]) ia3_4 = wp.indexedarray(data3, [indices1, indices2, None]) ia3_5 = wp.indexedarray(data3, [indices1, None, indices3]) ia3_6 = wp.indexedarray(data3, [None, indices2, indices3]) ia3_7 = wp.indexedarray(data3, [indices1, indices2, indices3]) wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_1, vec3i(2, 20, 30)]) wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_2, vec3i(10, 4, 30)]) wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_3, vec3i(10, 20, 6)]) wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_4, vec3i(2, 4, 30)]) wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_5, vec3i(2, 20, 6)]) wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_6, vec3i(10, 4, 6)]) wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_7, vec3i(2, 4, 6)]) ia4_1 = wp.indexedarray(data4, [indices1, None, None, None]) ia4_2 = wp.indexedarray(data4, [indices1, None, None, indices4]) ia4_3 = wp.indexedarray(data4, [None, indices2, indices3, None]) ia4_4 = wp.indexedarray(data4, [indices1, indices2, indices3, indices4]) wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_1, vec4i(2, 20, 30, 40)]) wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_2, vec4i(2, 20, 30, 8)]) wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_3, vec4i(10, 4, 6, 40)]) wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_4, vec4i(2, 4, 6, 8)]) wp.synchronize_device(device) def test_indexedarray_getitem(test, device): with wp.ScopedDevice(device): data = wp.array(data=np.arange(1000, dtype=np.int32).reshape((10, 10, 10))) I = wp.array(data=[0, 1, 2], dtype=int) # use constructor a1 = wp.indexedarray(data, [None, None, I]) a2 = wp.indexedarray(data, [None, I]) a3 = wp.indexedarray(data, [None, I, I]) a4 = wp.indexedarray(data, [I]) a5 = wp.indexedarray(data, [I, None, I]) a6 = wp.indexedarray(data, [I, I]) a7 = wp.indexedarray(data, [I, I, I]) # use array.__getitem__() b1 = data[:, :, I] b2 = data[:, I] b3 = data[:, I, I] b4 = data[I] b5 = data[I, :, I] b6 = data[I, I] b7 = data[I, I, I] test.assertEqual(type(a1), type(b1)) test.assertEqual(type(a2), type(b2)) test.assertEqual(type(a3), type(b3)) test.assertEqual(type(a4), type(b4)) test.assertEqual(type(a5), type(b5)) test.assertEqual(type(a6), type(b6)) test.assertEqual(type(a7), type(b7)) assert_np_equal(a1.numpy(), b1.numpy()) assert_np_equal(a2.numpy(), b2.numpy()) assert_np_equal(a3.numpy(), b3.numpy()) assert_np_equal(a4.numpy(), b4.numpy()) assert_np_equal(a5.numpy(), b5.numpy()) assert_np_equal(a6.numpy(), b6.numpy()) assert_np_equal(a7.numpy(), b7.numpy()) def test_indexedarray_slicing(test, device): with wp.ScopedDevice(device): data = wp.array(data=np.arange(1000, dtype=np.int32).reshape((10, 10, 10))) # test equivalence of slicing and indexing the same range s = slice(0, 3) I = wp.array(data=[0, 1, 2], dtype=int) a0 = data[s, s, s] test.assertEqual(type(a0), wp.array) a1 = data[s, s, I] test.assertEqual(type(a1), wp.indexedarray) a2 = data[s, I, s] test.assertEqual(type(a2), wp.indexedarray) a3 = data[s, I, I] test.assertEqual(type(a3), wp.indexedarray) a4 = data[I, s, s] test.assertEqual(type(a4), wp.indexedarray) a5 = data[I, s, I] test.assertEqual(type(a5), wp.indexedarray) a6 = data[I, I, s] test.assertEqual(type(a6), wp.indexedarray) a7 = data[I, I, I] test.assertEqual(type(a7), wp.indexedarray) expected = a0.numpy() assert_np_equal(a1.numpy(), expected) assert_np_equal(a2.numpy(), expected) assert_np_equal(a3.numpy(), expected) assert_np_equal(a4.numpy(), expected) assert_np_equal(a5.numpy(), expected) assert_np_equal(a6.numpy(), expected) assert_np_equal(a7.numpy(), expected) # generic increment kernels that work with any array (regular or indexed) @wp.kernel def inc_1d(a: Any): i = wp.tid() a[i] = a[i] + 1 @wp.kernel def inc_2d(a: Any): i, j = wp.tid() a[i, j] = a[i, j] + 1 @wp.kernel def inc_3d(a: Any): i, j, k = wp.tid() a[i, j, k] = a[i, j, k] + 1 @wp.kernel def inc_4d(a: Any): i, j, k, l = wp.tid() a[i, j, k, l] = a[i, j, k, l] + 1 # optional overloads to avoid module reloading wp.overload(inc_1d, [wp.array1d(dtype=int)]) wp.overload(inc_2d, [wp.array2d(dtype=int)]) wp.overload(inc_3d, [wp.array3d(dtype=int)]) wp.overload(inc_4d, [wp.array4d(dtype=int)]) wp.overload(inc_1d, [wp.indexedarray1d(dtype=int)]) wp.overload(inc_2d, [wp.indexedarray2d(dtype=int)]) wp.overload(inc_3d, [wp.indexedarray3d(dtype=int)]) wp.overload(inc_4d, [wp.indexedarray4d(dtype=int)]) def test_indexedarray_generics(test, device): with wp.ScopedDevice(device): data1 = wp.zeros((5,), dtype=int) data2 = wp.zeros((5, 5), dtype=int) data3 = wp.zeros((5, 5, 5), dtype=int) data4 = wp.zeros((5, 5, 5, 5), dtype=int) indices = wp.array(data=[0, 4], dtype=int) ia1 = wp.indexedarray(data1, [indices]) ia2 = wp.indexedarray(data2, [indices, indices]) ia3 = wp.indexedarray(data3, [indices, indices, indices]) ia4 = wp.indexedarray(data4, [indices, indices, indices, indices]) wp.launch(inc_1d, dim=data1.shape, inputs=[data1]) wp.launch(inc_2d, dim=data2.shape, inputs=[data2]) wp.launch(inc_3d, dim=data3.shape, inputs=[data3]) wp.launch(inc_4d, dim=data4.shape, inputs=[data4]) wp.launch(inc_1d, dim=ia1.shape, inputs=[ia1]) wp.launch(inc_2d, dim=ia2.shape, inputs=[ia2]) wp.launch(inc_3d, dim=ia3.shape, inputs=[ia3]) wp.launch(inc_4d, dim=ia4.shape, inputs=[ia4]) expected1 = np.ones(5, dtype=np.int32) expected1[0] = 2 expected1[4] = 2 expected2 = np.ones((5, 5), dtype=np.int32) expected2[0, 0] = 2 expected2[0, 4] = 2 expected2[4, 0] = 2 expected2[4, 4] = 2 expected3 = np.ones((5, 5, 5), dtype=np.int32) expected3[0, 0, 0] = 2 expected3[0, 0, 4] = 2 expected3[0, 4, 0] = 2 expected3[0, 4, 4] = 2 expected3[4, 0, 0] = 2 expected3[4, 0, 4] = 2 expected3[4, 4, 0] = 2 expected3[4, 4, 4] = 2 expected4 = np.ones((5, 5, 5, 5), dtype=np.int32) expected4[0, 0, 0, 0] = 2 expected4[0, 0, 0, 4] = 2 expected4[0, 0, 4, 0] = 2 expected4[0, 0, 4, 4] = 2 expected4[0, 4, 0, 0] = 2 expected4[0, 4, 0, 4] = 2 expected4[0, 4, 4, 0] = 2 expected4[0, 4, 4, 4] = 2 expected4[4, 0, 0, 0] = 2 expected4[4, 0, 0, 4] = 2 expected4[4, 0, 4, 0] = 2 expected4[4, 0, 4, 4] = 2 expected4[4, 4, 0, 0] = 2 expected4[4, 4, 0, 4] = 2 expected4[4, 4, 4, 0] = 2 expected4[4, 4, 4, 4] = 2 assert_np_equal(data1.numpy(), expected1) assert_np_equal(data2.numpy(), expected2) assert_np_equal(data3.numpy(), expected3) assert_np_equal(data4.numpy(), expected4) assert_np_equal(ia1.numpy(), np.full((2,), 2, dtype=np.int32)) assert_np_equal(ia2.numpy(), np.full((2, 2), 2, dtype=np.int32)) assert_np_equal(ia3.numpy(), np.full((2, 2, 2), 2, dtype=np.int32)) assert_np_equal(ia4.numpy(), np.full((2, 2, 2, 2), 2, dtype=np.int32)) def test_indexedarray_empty(test, device): # Test whether common operations work with empty (zero-sized) indexed arrays # without throwing exceptions. def test_empty_ops(ndim, nrows, ncols, wptype, nptype): data_shape = (1,) * ndim dtype_shape = () if wptype in wp.types.scalar_types: # scalar, vector, or matrix if ncols > 0: if nrows > 0: wptype = wp.types.matrix((nrows, ncols), wptype) else: wptype = wp.types.vector(ncols, wptype) dtype_shape = wptype._shape_ fill_value = wptype(42) else: # struct fill_value = wptype() # create a data array data = wp.empty(data_shape, dtype=wptype, device=device, requires_grad=True) # create a zero-sized array of indices indices = wp.empty(0, dtype=int, device=device) a = data[indices] # we expect dim to be zero for the empty indexed array, unchanged otherwise expected_shape = (0, *data_shape[1:]) test.assertEqual(a.size, 0) test.assertEqual(a.shape, expected_shape) # all of these methods should succeed with zero-sized arrays a.zero_() a.fill_(fill_value) b = a.contiguous() b = wp.empty_like(a) b = wp.zeros_like(a) b = wp.full_like(a, fill_value) b = wp.clone(a) wp.copy(a, b) a.assign(b) na = a.numpy() test.assertEqual(na.size, 0) test.assertEqual(na.shape, (*expected_shape, *dtype_shape)) test.assertEqual(na.dtype, nptype) test.assertEqual(a.list(), []) for ndim in range(1, 5): # test with scalars, vectors, and matrices for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # scalars test_empty_ops(ndim, 0, 0, wptype, nptype) for ncols in [2, 3, 4, 5]: # vectors test_empty_ops(ndim, 0, ncols, wptype, nptype) # square matrices test_empty_ops(ndim, ncols, ncols, wptype, nptype) # non-square matrices test_empty_ops(ndim, 2, 3, wptype, nptype) test_empty_ops(ndim, 3, 2, wptype, nptype) test_empty_ops(ndim, 3, 4, wptype, nptype) test_empty_ops(ndim, 4, 3, wptype, nptype) # test with structs test_empty_ops(ndim, 0, 0, FillStruct, FillStruct.numpy_dtype()) def test_indexedarray_fill_scalar(test, device): dim_x = 4 for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): data1 = wp.zeros(dim_x, dtype=wptype, device=device) data2 = wp.zeros((dim_x, dim_x), dtype=wptype, device=device) data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=wptype, device=device) data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=wptype, device=device) indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device) a1 = data1[indices] a2 = data2[indices] a3 = data3[indices] a4 = data4[indices] assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) # fill with int value fill_value = 42 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype)) a1.zero_() a2.zero_() a3.zero_() a4.zero_() assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) if wptype in wp.types.float_types: # fill with float value fill_value = 13.37 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype)) # fill with Warp scalar value fill_value = wptype(17) a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value.value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value.value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value.value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value.value, dtype=nptype)) def test_indexedarray_fill_vector(test, device): # test filling a vector array with scalar or vector values (vec_type, list, or numpy array) dim_x = 4 for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # vector types vector_types = [ wp.types.vector(2, wptype), wp.types.vector(3, wptype), wp.types.vector(4, wptype), wp.types.vector(5, wptype), ] for vec_type in vector_types: vec_len = vec_type._length_ data1 = wp.zeros(dim_x, dtype=vec_type, device=device) data2 = wp.zeros((dim_x, dim_x), dtype=vec_type, device=device) data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=vec_type, device=device) data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=vec_type, device=device) indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device) a1 = data1[indices] a2 = data2[indices] a3 = data3[indices] a4 = data4[indices] assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype)) # fill with int scalar fill_value = 42 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype)) # test zeroing a1.zero_() a2.zero_() a3.zero_() a4.zero_() assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype)) # vector values can be passed as a list, numpy array, or Warp vector instance fill_list = [17, 42, 99, 101, 127][:vec_len] fill_arr = np.array(fill_list, dtype=nptype) fill_vec = vec_type(fill_list) expected1 = np.tile(fill_arr, a1.size).reshape((*a1.shape, vec_len)) expected2 = np.tile(fill_arr, a2.size).reshape((*a2.shape, vec_len)) expected3 = np.tile(fill_arr, a3.size).reshape((*a3.shape, vec_len)) expected4 = np.tile(fill_arr, a4.size).reshape((*a4.shape, vec_len)) # fill with list of vector length a1.fill_(fill_list) a2.fill_(fill_list) a3.fill_(fill_list) a4.fill_(fill_list) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with numpy array of vector length a1.fill_(fill_arr) a2.fill_(fill_arr) a3.fill_(fill_arr) a4.fill_(fill_arr) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with vec instance a1.fill_(fill_vec) a2.fill_(fill_vec) a3.fill_(fill_vec) a4.fill_(fill_vec) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) if wptype in wp.types.float_types: # fill with float scalar fill_value = 13.37 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype)) # fill with float list of vector length fill_list = [-2.5, -1.25, 1.25, 2.5, 5.0][:vec_len] a1.fill_(fill_list) a2.fill_(fill_list) a3.fill_(fill_list) a4.fill_(fill_list) expected1 = np.tile(np.array(fill_list, dtype=nptype), a1.size).reshape((*a1.shape, vec_len)) expected2 = np.tile(np.array(fill_list, dtype=nptype), a2.size).reshape((*a2.shape, vec_len)) expected3 = np.tile(np.array(fill_list, dtype=nptype), a3.size).reshape((*a3.shape, vec_len)) expected4 = np.tile(np.array(fill_list, dtype=nptype), a4.size).reshape((*a4.shape, vec_len)) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) def test_indexedarray_fill_matrix(test, device): # test filling a matrix array with scalar or matrix values (mat_type, nested list, or 2d numpy array) dim_x = 4 for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # matrix types matrix_types = [ # square matrices wp.types.matrix((2, 2), wptype), wp.types.matrix((3, 3), wptype), wp.types.matrix((4, 4), wptype), wp.types.matrix((5, 5), wptype), # non-square matrices wp.types.matrix((2, 3), wptype), wp.types.matrix((3, 2), wptype), wp.types.matrix((3, 4), wptype), wp.types.matrix((4, 3), wptype), ] for mat_type in matrix_types: mat_len = mat_type._length_ mat_shape = mat_type._shape_ data1 = wp.zeros(dim_x, dtype=mat_type, device=device) data2 = wp.zeros((dim_x, dim_x), dtype=mat_type, device=device) data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=mat_type, device=device) data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=mat_type, device=device) indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device) a1 = data1[indices] a2 = data2[indices] a3 = data3[indices] a4 = data4[indices] assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype)) # fill with scalar fill_value = 42 a1.fill_(fill_value) a2.fill_(fill_value) a3.fill_(fill_value) a4.fill_(fill_value) assert_np_equal(a1.numpy(), np.full((*a1.shape, *mat_shape), fill_value, dtype=nptype)) assert_np_equal(a2.numpy(), np.full((*a2.shape, *mat_shape), fill_value, dtype=nptype)) assert_np_equal(a3.numpy(), np.full((*a3.shape, *mat_shape), fill_value, dtype=nptype)) assert_np_equal(a4.numpy(), np.full((*a4.shape, *mat_shape), fill_value, dtype=nptype)) # test zeroing a1.zero_() a2.zero_() a3.zero_() a4.zero_() assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype)) # matrix values can be passed as a 1d numpy array, 2d numpy array, flat list, nested list, or Warp matrix instance if wptype != wp.bool: fill_arr1 = np.arange(mat_len, dtype=nptype) else: fill_arr1 = np.ones(mat_len, dtype=nptype) fill_arr2 = fill_arr1.reshape(mat_shape) fill_list1 = list(fill_arr1) fill_list2 = [list(row) for row in fill_arr2] fill_mat = mat_type(fill_arr1) expected1 = np.tile(fill_arr1, a1.size).reshape((*a1.shape, *mat_shape)) expected2 = np.tile(fill_arr1, a2.size).reshape((*a2.shape, *mat_shape)) expected3 = np.tile(fill_arr1, a3.size).reshape((*a3.shape, *mat_shape)) expected4 = np.tile(fill_arr1, a4.size).reshape((*a4.shape, *mat_shape)) # fill with 1d numpy array a1.fill_(fill_arr1) a2.fill_(fill_arr1) a3.fill_(fill_arr1) a4.fill_(fill_arr1) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with 2d numpy array a1.fill_(fill_arr2) a2.fill_(fill_arr2) a3.fill_(fill_arr2) a4.fill_(fill_arr2) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with flat list a1.fill_(fill_list1) a2.fill_(fill_list1) a3.fill_(fill_list1) a4.fill_(fill_list1) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with nested list a1.fill_(fill_list2) a2.fill_(fill_list2) a3.fill_(fill_list2) a4.fill_(fill_list2) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # clear a1.zero_() a2.zero_() a3.zero_() a4.zero_() # fill with mat instance a1.fill_(fill_mat) a2.fill_(fill_mat) a3.fill_(fill_mat) a4.fill_(fill_mat) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) def test_indexedarray_fill_struct(test, device): dim_x = 8 nptype = FillStruct.numpy_dtype() data1 = wp.zeros(dim_x, dtype=FillStruct, device=device) data2 = wp.zeros((dim_x, dim_x), dtype=FillStruct, device=device) data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=FillStruct, device=device) data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=FillStruct, device=device) indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device) a1 = data1[indices] a2 = data2[indices] a3 = data3[indices] a4 = data4[indices] assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) s = FillStruct() # fill with default struct value (should be all zeros) a1.fill_(s) a2.fill_(s) a3.fill_(s) a4.fill_(s) assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) # scalars s.i1 = -17 s.i2 = 42 s.i4 = 99 s.i8 = 101 s.f2 = -1.25 s.f4 = 13.37 s.f8 = 0.125 # vectors s.v2 = [21, 22] s.v3 = [31, 32, 33] s.v4 = [41, 42, 43, 44] s.v5 = [51, 52, 53, 54, 55] # matrices s.m2 = [[61, 62]] * 2 s.m3 = [[71, 72, 73]] * 3 s.m4 = [[81, 82, 83, 84]] * 4 s.m5 = [[91, 92, 93, 94, 95]] * 5 # arrays s.a1 = wp.zeros((2,) * 1, dtype=float, device=device) s.a2 = wp.zeros((2,) * 2, dtype=float, device=device) s.a3 = wp.zeros((2,) * 3, dtype=float, device=device) s.a4 = wp.zeros((2,) * 4, dtype=float, device=device) # fill with custom struct value a1.fill_(s) a2.fill_(s) a3.fill_(s) a4.fill_(s) ns = s.numpy_value() expected1 = np.empty(a1.shape, dtype=nptype) expected2 = np.empty(a2.shape, dtype=nptype) expected3 = np.empty(a3.shape, dtype=nptype) expected4 = np.empty(a4.shape, dtype=nptype) expected1.fill(ns) expected2.fill(ns) expected3.fill(ns) expected4.fill(ns) assert_np_equal(a1.numpy(), expected1) assert_np_equal(a2.numpy(), expected2) assert_np_equal(a3.numpy(), expected3) assert_np_equal(a4.numpy(), expected4) # test clearing a1.zero_() a2.zero_() a3.zero_() a4.zero_() assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype)) assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype)) assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype)) assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype)) def register(parent): devices = get_test_devices() class TestIndexedArray(parent): pass add_function_test(TestIndexedArray, "test_indexedarray_1d", test_indexedarray_1d, devices=devices) add_function_test(TestIndexedArray, "test_indexedarray_2d", test_indexedarray_2d, devices=devices) add_function_test(TestIndexedArray, "test_indexedarray_3d", test_indexedarray_3d, devices=devices) add_function_test(TestIndexedArray, "test_indexedarray_4d", test_indexedarray_4d, devices=devices) add_function_test(TestIndexedArray, "test_indexedarray_mixed", test_indexedarray_mixed, devices=devices) add_function_test(TestIndexedArray, "test_indexedarray_shape", test_indexedarray_shape, devices=devices) add_function_test(TestIndexedArray, "test_indexedarray_getitem", test_indexedarray_getitem, devices=devices) add_function_test(TestIndexedArray, "test_indexedarray_slicing", test_indexedarray_slicing, devices=devices) add_function_test(TestIndexedArray, "test_indexedarray_generics", test_indexedarray_generics, devices=devices) add_function_test(TestIndexedArray, "test_indexedarray_empty", test_indexedarray_empty, devices=devices) add_function_test(TestIndexedArray, "test_indexedarray_fill_scalar", test_indexedarray_fill_scalar, devices=devices) add_function_test(TestIndexedArray, "test_indexedarray_fill_vector", test_indexedarray_fill_vector, devices=devices) add_function_test(TestIndexedArray, "test_indexedarray_fill_matrix", test_indexedarray_fill_matrix, devices=devices) add_function_test(TestIndexedArray, "test_indexedarray_fill_struct", test_indexedarray_fill_struct, devices=devices) return TestIndexedArray if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_indexedarray.py
import warp as wp @wp.kernel def unresolved_symbol_kernel(): # this should trigger an exception due to unresolved symbol x = missing_symbol
warp-main
warp/tests/test_unresolved_symbol.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp from warp.tests.test_base import * wp.init() np_signed_int_types = [ np.int8, np.int16, np.int32, np.int64, np.byte, ] np_unsigned_int_types = [ np.uint8, np.uint16, np.uint32, np.uint64, np.ubyte, ] np_int_types = np_signed_int_types + np_unsigned_int_types np_float_types = [np.float16, np.float32, np.float64] np_scalar_types = np_int_types + np_float_types def randvals(shape, dtype): if dtype in np_float_types: return np.random.randn(*shape).astype(dtype) elif dtype in [np.int8, np.uint8, np.byte, np.ubyte]: return np.random.randint(1, 3, size=shape, dtype=dtype) return np.random.randint(1, 5, size=shape, dtype=dtype) kernel_cache = dict() def getkernel(func, suffix=""): module = wp.get_module(func.__module__) key = func.__name__ + "_" + suffix if key not in kernel_cache: kernel_cache[key] = wp.Kernel(func=func, key=key, module=module) return kernel_cache[key] def get_select_kernel(dtype): def output_select_kernel_fn( input: wp.array(dtype=dtype), index: int, out: wp.array(dtype=dtype), ): out[0] = input[index] return getkernel(output_select_kernel_fn, suffix=dtype.__name__) def test_arrays(test, device, dtype): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype) np.random.seed(123) v2_np = randvals([10, 2, 2], dtype) v3_np = randvals([10, 3, 3], dtype) v4_np = randvals([10, 4, 4], dtype) v5_np = randvals([10, 5, 5], dtype) v32_np = randvals([10, 3, 2], dtype) v2 = wp.array(v2_np, dtype=mat22, requires_grad=True, device=device) v3 = wp.array(v3_np, dtype=mat33, requires_grad=True, device=device) v4 = wp.array(v4_np, dtype=mat44, requires_grad=True, device=device) v5 = wp.array(v5_np, dtype=mat55, requires_grad=True, device=device) v32 = wp.array(v32_np, dtype=mat32, requires_grad=True, device=device) assert_np_equal(v2.numpy(), v2_np, tol=1.0e-6) assert_np_equal(v3.numpy(), v3_np, tol=1.0e-6) assert_np_equal(v4.numpy(), v4_np, tol=1.0e-6) assert_np_equal(v5.numpy(), v5_np, tol=1.0e-6) assert_np_equal(v32.numpy(), v32_np, tol=1.0e-6) mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) v2 = wp.array(v2_np, dtype=mat22, requires_grad=True, device=device) v3 = wp.array(v3_np, dtype=mat33, requires_grad=True, device=device) v4 = wp.array(v4_np, dtype=mat44, requires_grad=True, device=device) assert_np_equal(v2.numpy(), v2_np, tol=1.0e-6) assert_np_equal(v3.numpy(), v3_np, tol=1.0e-6) assert_np_equal(v4.numpy(), v4_np, tol=1.0e-6) def test_components(test, device, dtype): # test accessing matrix components from Python - this is especially important # for float16, which requires special handling internally wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat23 = wp.types.matrix(shape=(2, 3), dtype=wptype) m = mat23(1, 2, 3, 4, 5, 6) # test __getitem__ for row vectors r0 = m[0] r1 = m[1] test.assertEqual(r0[0], 1) test.assertEqual(r0[1], 2) test.assertEqual(r0[2], 3) test.assertEqual(r1[0], 4) test.assertEqual(r1[1], 5) test.assertEqual(r1[2], 6) # test __getitem__ for individual components test.assertEqual(m[0, 0], 1) test.assertEqual(m[0, 1], 2) test.assertEqual(m[0, 2], 3) test.assertEqual(m[1, 0], 4) test.assertEqual(m[1, 1], 5) test.assertEqual(m[1, 2], 6) # test __setitem__ for row vectors m[0] = [7, 8, 9] m[1] = [10, 11, 12] test.assertEqual(m[0, 0], 7) test.assertEqual(m[0, 1], 8) test.assertEqual(m[0, 2], 9) test.assertEqual(m[1, 0], 10) test.assertEqual(m[1, 1], 11) test.assertEqual(m[1, 2], 12) # test __setitem__ for individual components m[0, 0] = 13 m[0, 1] = 14 m[0, 2] = 15 m[1, 0] = 16 m[1, 1] = 17 m[1, 2] = 18 test.assertEqual(m[0, 0], 13) test.assertEqual(m[0, 1], 14) test.assertEqual(m[0, 2], 15) test.assertEqual(m[1, 0], 16) test.assertEqual(m[1, 1], 17) test.assertEqual(m[1, 2], 18) def test_constants(test, device, dtype, register_kernels=False): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype) cm22 = wp.constant(mat22(22)) cm33 = wp.constant(mat33(33)) cm44 = wp.constant(mat44(44)) cm55 = wp.constant(mat55(55)) cm32 = wp.constant(mat32(32)) def check_matrix_constants(): wp.expect_eq(cm22, mat22(wptype(22))) wp.expect_eq(cm33, mat33(wptype(33))) wp.expect_eq(cm44, mat44(wptype(44))) wp.expect_eq(cm55, mat55(wptype(55))) wp.expect_eq(cm32, mat32(wptype(32))) kernel = getkernel(check_matrix_constants, suffix=dtype.__name__) if register_kernels: return wp.launch(kernel, dim=1, inputs=[]) def test_constructors(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_scalar_mat_constructor( input: wp.array(dtype=wptype), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: m2result = wptype(2) * mat22(input[0]) m3result = wptype(2) * mat33(input[0]) m4result = wptype(2) * mat44(input[0]) m5result = wptype(2) * mat55(input[0]) idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = m5result[i, j] idx = idx + 1 def check_component_mat_constructor( input: wp.array(dtype=wptype), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: m2result = wptype(2) * mat22(input[0], input[1], input[2], input[3]) m3result = wptype(2) * mat33( input[4], input[5], input[6], input[7], input[8], input[9], input[10], input[11], input[12], ) m4result = wptype(2) * mat44( input[13], input[14], input[15], input[16], input[17], input[18], input[19], input[20], input[21], input[22], input[23], input[24], input[25], input[26], input[27], input[28], ) m5result = wptype(2) * mat55( input[29], input[30], input[31], input[32], input[33], input[34], input[35], input[36], input[37], input[38], input[39], input[40], input[41], input[42], input[43], input[44], input[45], input[46], input[47], input[48], input[49], input[50], input[51], input[52], input[53], ) idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = m5result[i, j] idx = idx + 1 def check_vector_mat_constructor( input: wp.array(dtype=wptype), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: m2result = wptype(2) * mat22(vec2(input[0], input[2]), vec2(input[1], input[3])) m3result = wptype(2) * mat33( vec3(input[4], input[7], input[10]), vec3(input[5], input[8], input[11]), vec3(input[6], input[9], input[12]), ) m4result = wptype(2) * mat44( vec4(input[13], input[17], input[21], input[25]), vec4(input[14], input[18], input[22], input[26]), vec4(input[15], input[19], input[23], input[27]), vec4(input[16], input[20], input[24], input[28]), ) m5result = wptype(2) * mat55( vec5(input[29], input[34], input[39], input[44], input[49]), vec5(input[30], input[35], input[40], input[45], input[50]), vec5(input[31], input[36], input[41], input[46], input[51]), vec5(input[32], input[37], input[42], input[47], input[52]), vec5(input[33], input[38], input[43], input[48], input[53]), ) idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = m5result[i, j] idx = idx + 1 kernel = getkernel(check_scalar_mat_constructor, suffix=dtype.__name__) compkernel = getkernel(check_component_mat_constructor, suffix=dtype.__name__) veckernel = getkernel(check_vector_mat_constructor, suffix=dtype.__name__) if register_kernels: return input = wp.array(randvals([1], dtype), requires_grad=True, device=device) val = input.numpy()[0] outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[input], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy()[:4], 2 * val * np.ones(2 * 2), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * val * np.ones(3 * 3), tol=tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * val * np.ones(4 * 4), tol=tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * val * np.ones(5 * 5), tol=tol) if dtype in np_float_types: for idx in range(len(outcomponents)): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[input], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) test.assertEqual(tape.gradients[input].numpy()[0], 2) tape.zero() input = wp.array(randvals([2 * 2 + 3 * 3 + 4 * 4 + 5 * 5], dtype), requires_grad=True, device=device) wp.launch(compkernel, dim=1, inputs=[input], outputs=[outcomponents], device=device) assert_np_equal(2 * input.numpy(), outcomponents.numpy(), tol=10 * tol) if dtype in np_float_types: for idx in range(len(outcomponents)): tape = wp.Tape() with tape: wp.launch(compkernel, dim=1, inputs=[input], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) expectedgrads = np.zeros(len(input)) expectedgrads[idx] = 2 assert_np_equal(tape.gradients[input].numpy(), expectedgrads) tape.zero() wp.launch(veckernel, dim=1, inputs=[input], outputs=[outcomponents], device=device) assert_np_equal(2 * input.numpy(), outcomponents.numpy(), tol=10 * tol) if dtype in np_float_types: for idx in range(len(outcomponents)): tape = wp.Tape() with tape: wp.launch(veckernel, dim=1, inputs=[input], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) expectedgrads = np.zeros(len(input)) expectedgrads[idx] = 2 assert_np_equal(tape.gradients[input].numpy(), expectedgrads) tape.zero() def test_quat_constructor(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) quat = wp.types.quaternion(dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_quat_constructor( p: wp.array(dtype=vec3), r: wp.array(dtype=quat), s: wp.array(dtype=vec3), outcomponents: wp.array(dtype=wptype), outcomponents_alt: wp.array(dtype=wptype), ): m = mat44(p[0], r[0], s[0]) R = wp.transpose(wp.quat_to_matrix(r[0])) c0 = s[0][0] * R[0] c1 = s[0][1] * R[1] c2 = s[0][2] * R[2] m_alt = mat44( vec4(c0[0], c0[1], c0[2], wptype(0.0)), vec4(c1[0], c1[1], c1[2], wptype(0.0)), vec4(c2[0], c2[1], c2[2], wptype(0.0)), vec4(p[0][0], p[0][1], p[0][2], wptype(1.0)), ) idx = 0 for i in range(4): for j in range(4): outcomponents[idx] = m[i, j] outcomponents_alt[idx] = m_alt[i, j] idx = idx + 1 kernel = getkernel(check_mat_quat_constructor, suffix=dtype.__name__) if register_kernels: return # translation: p = wp.array(np.random.randn(1, 3).astype(dtype), dtype=vec3, requires_grad=True, device=device) # generate a normalized quaternion for the rotation: r = np.random.randn(1, 4) r /= np.linalg.norm(r) r = wp.array(r.astype(dtype), dtype=quat, requires_grad=True, device=device) # scale: s = wp.array(np.random.randn(1, 3).astype(dtype), dtype=vec3, requires_grad=True, device=device) # just going to generate the matrix using the constructor, then # more manually, and make sure the values/gradients are the same: outcomponents = wp.zeros(4 * 4, dtype=wptype, requires_grad=True, device=device) outcomponents_alt = wp.zeros(4 * 4, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[p, r, s], outputs=[outcomponents, outcomponents_alt], device=device) assert_np_equal(outcomponents.numpy(), outcomponents_alt.numpy(), tol=1.0e-6) idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) out_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(4): for j in range(4): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[p, r, s], outputs=[outcomponents, outcomponents_alt], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents_alt, idx], outputs=[out_alt], device=device ) tape.backward(loss=out) p_grad = 1.0 * tape.gradients[p].numpy()[0] r_grad = 1.0 * tape.gradients[r].numpy()[0] s_grad = 1.0 * tape.gradients[s].numpy()[0] tape.zero() tape.backward(loss=out_alt) p_grad_alt = 1.0 * tape.gradients[p].numpy()[0] r_grad_alt = 1.0 * tape.gradients[r].numpy()[0] s_grad_alt = 1.0 * tape.gradients[s].numpy()[0] tape.zero() assert_np_equal(p_grad, p_grad_alt, tol=tol) assert_np_equal(r_grad, r_grad_alt, tol=tol) assert_np_equal(s_grad, s_grad_alt, tol=tol) idx = idx + 1 def test_indexing(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_indexing( m2: wp.array(dtype=mat22), m3: wp.array(dtype=mat33), m4: wp.array(dtype=mat44), m5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * m2[0][i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * m3[0][i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * m4[0][i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * m5[0][i, j] idx = idx + 1 kernel = getkernel(check_mat_indexing, suffix=dtype.__name__) if register_kernels: return m2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy()[:4], 2 * m2.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * m3.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * m4.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * m5.numpy().reshape(-1), tol=tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, input in [(2, m2), (3, m3), (4, m4), (5, m5)]: for i in range(dim): for j in range(dim): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5], outputs=[outcomponents], device=device) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2 assert_np_equal(tape.gradients[input].numpy()[0], expectedresult) tape.zero() idx = idx + 1 def test_equality(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) def check_mat_equality(): wp.expect_eq( mat22(wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0)), mat22(wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0)), ) wp.expect_neq( mat22(wptype(1.0), wptype(2.0), wptype(3.0), -wptype(4.0)), mat22(wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0)), ) wp.expect_eq( mat33( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), ), mat33( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), ), ) wp.expect_neq( mat33( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), ), mat33( wptype(1.0), wptype(2.0), wptype(3.0), -wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), ), ) wp.expect_eq( mat44( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), ), mat44( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), ), ) wp.expect_neq( mat44( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), ), mat44( -wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), ), ) wp.expect_eq( mat55( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), wptype(17.0), wptype(18.0), wptype(19.0), wptype(20.0), wptype(21.0), wptype(22.0), wptype(23.0), wptype(24.0), wptype(25.0), ), mat55( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), wptype(17.0), wptype(18.0), wptype(19.0), wptype(20.0), wptype(21.0), wptype(22.0), wptype(23.0), wptype(24.0), wptype(25.0), ), ) wp.expect_neq( mat55( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), wptype(17.0), wptype(18.0), wptype(19.0), wptype(20.0), wptype(21.0), wptype(22.0), wptype(23.0), wptype(24.0), wptype(25.0), ), mat55( wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0), wptype(5.0), wptype(6.0), wptype(7.0), wptype(8.0), wptype(9.0), wptype(10.0), wptype(11.0), wptype(12.0), wptype(13.0), wptype(14.0), wptype(15.0), wptype(16.0), -wptype(17.0), wptype(18.0), wptype(19.0), wptype(20.0), wptype(21.0), wptype(22.0), wptype(23.0), wptype(24.0), wptype(25.0), ), ) kernel = getkernel(check_mat_equality, suffix=dtype.__name__) if register_kernels: return wp.launch(kernel, dim=1, inputs=[], outputs=[], device=device) def test_negation(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_negation( m2: wp.array(dtype=mat22), m3: wp.array(dtype=mat33), m4: wp.array(dtype=mat44), m5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), ): mat2 = -m2[0] mat3 = -m3[0] mat4 = -m4[0] mat5 = -m5[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * mat2[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * mat3[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * mat4[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * mat5[i, j] idx = idx + 1 kernel = getkernel(check_mat_negation, suffix=dtype.__name__) if register_kernels: return m2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy()[:4], -2 * m2.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], -2 * m3.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[13:29], -2 * m4.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[29:54], -2 * m5.numpy().reshape(-1), tol=tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, input in [(2, m2), (3, m3), (4, m4), (5, m5)]: for i in range(dim): for j in range(dim): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5], outputs=[outcomponents], device=device) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = -2 assert_np_equal(tape.gradients[input].numpy()[0], expectedresult) tape.zero() idx = idx + 1 def test_transpose(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_transpose( m2: wp.array(dtype=mat22), m3: wp.array(dtype=mat33), m4: wp.array(dtype=mat44), m5: wp.array(dtype=mat55), m32: wp.array(dtype=mat32), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: mat2 = wptype(2) * wp.transpose(m2[0]) mat3 = wptype(2) * wp.transpose(m3[0]) mat4 = wptype(2) * wp.transpose(m4[0]) mat5 = wptype(2) * wp.transpose(m5[0]) mat32 = wptype(2) * wp.transpose(m32[0]) idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = mat2[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = mat3[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = mat4[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = mat5[i, j] idx = idx + 1 for i in range(2): for j in range(3): outcomponents[idx] = mat32[i, j] idx = idx + 1 kernel = getkernel(check_mat_transpose, suffix=dtype.__name__) if register_kernels: return m2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) m32 = wp.array(randvals([1, 3, 2], dtype), dtype=mat32, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 2 * 3, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5, m32], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy()[:4], 2 * m2.numpy()[0].T.reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * m3.numpy()[0].T.reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * m4.numpy()[0].T.reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * m5.numpy()[0].T.reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[54:], 2 * m32.numpy()[0].T.reshape(-1), tol=tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for input in [m2, m3, m4, m5]: for i in range(input.dtype._shape_[0]): for j in range(input.dtype._shape_[1]): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5, m32], outputs=[outcomponents], device=device) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((input.dtype._shape_[1], input.dtype._shape_[0]), dtype=dtype) expectedresult[j, i] = 2 assert_np_equal(tape.gradients[input].numpy()[0], expectedresult) tape.zero() idx = idx + 1 def test_scalar_multiplication(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_scalar_mul( s: wp.array(dtype=wptype), m2: wp.array(dtype=mat22), m3: wp.array(dtype=mat33), m4: wp.array(dtype=mat44), m5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), outcomponents_rightmul: wp.array(dtype=wptype), ): m2result = s[0] * m2[0] m3result = s[0] * m3[0] m4result = s[0] * m4[0] m5result = s[0] * m5[0] m2resultright = m2[0] * s[0] m3resultright = m3[0] * s[0] m4resultright = m4[0] * s[0] m5resultright = m5[0] * s[0] m2result_2 = s[0] * m2[0] m3result_2 = s[0] * m3[0] m4result_2 = s[0] * m4[0] m5result_2 = s[0] * m5[0] m2resultright_2 = m2[0] * s[0] m3resultright_2 = m3[0] * s[0] m4resultright_2 = m4[0] * s[0] m5resultright_2 = m5[0] * s[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * m2result[i, j] outcomponents_rightmul[idx] = wptype(2) * m2resultright[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * m3result[i, j] outcomponents_rightmul[idx] = wptype(2) * m3resultright[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * m4result[i, j] outcomponents_rightmul[idx] = wptype(2) * m4resultright[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * m5result[i, j] outcomponents_rightmul[idx] = wptype(2) * m5resultright[i, j] idx = idx + 1 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * m2result_2[i, j] outcomponents_rightmul[idx] = wptype(2) * m2resultright_2[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * m3result_2[i, j] outcomponents_rightmul[idx] = wptype(2) * m3resultright_2[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * m4result_2[i, j] outcomponents_rightmul[idx] = wptype(2) * m4resultright_2[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * m5result_2[i, j] outcomponents_rightmul[idx] = wptype(2) * m5resultright_2[i, j] idx = idx + 1 kernel = getkernel(check_mat_scalar_mul, suffix=dtype.__name__) if register_kernels: return s = wp.array(randvals([1], dtype), requires_grad=True, device=device) m2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * (2 * 2 + 3 * 3 + 4 * 4 + 5 * 5), dtype=wptype, requires_grad=True, device=device) outcomponents_rightmul = wp.zeros( 2 * (2 * 2 + 3 * 3 + 4 * 4 + 5 * 5), dtype=wptype, requires_grad=True, device=device ) wp.launch(kernel, dim=1, inputs=[s, m2, m3, m4, m5], outputs=[outcomponents, outcomponents_rightmul], device=device) sval = s.numpy()[0] assert_np_equal(outcomponents.numpy()[:4], 2 * sval * m2.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * sval * m3.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * sval * m4.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * sval * m5.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents_rightmul.numpy()[:4], 2 * sval * m2.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents_rightmul.numpy()[4:13], 2 * sval * m3.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents_rightmul.numpy()[13:29], 2 * sval * m4.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents_rightmul.numpy()[29:54], 2 * sval * m5.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents.numpy()[54:58], 2 * sval * m2.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[58:67], 2 * sval * m3.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents.numpy()[67:83], 2 * sval * m4.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents.numpy()[83:108], 2 * sval * m5.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents_rightmul.numpy()[54:58], 2 * sval * m2.numpy().reshape(-1), tol=tol) assert_np_equal(outcomponents_rightmul.numpy()[58:67], 2 * sval * m3.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents_rightmul.numpy()[67:83], 2 * sval * m4.numpy().reshape(-1), tol=10 * tol) assert_np_equal(outcomponents_rightmul.numpy()[83:108], 2 * sval * m5.numpy().reshape(-1), tol=10 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, input in [(2, m2), (3, m3), (4, m4), (5, m5)]: for i in range(dim): for j in range(dim): # test left mul gradient: tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[s, m2, m3, m4, m5], outputs=[outcomponents, outcomponents_rightmul], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2 * sval assert_np_equal(tape.gradients[input].numpy()[0], expectedresult, tol=10 * tol) assert_np_equal(tape.gradients[s].numpy()[0], 2 * input.numpy()[0, i, j], tol=10 * tol) tape.zero() # test right mul gradient: tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[s, m2, m3, m4, m5], outputs=[outcomponents, outcomponents_rightmul], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents_rightmul, idx], outputs=[out], device=device, ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2 * sval assert_np_equal(tape.gradients[input].numpy()[0], expectedresult, tol=10 * tol) assert_np_equal(tape.gradients[s].numpy()[0], 2 * input.numpy()[0, i, j], tol=10 * tol) tape.zero() idx = idx + 1 def test_matvec_multiplication(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 2.0e-2, np.float32: 5.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_vec_mul( v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), v32: wp.array(dtype=vec2), m2: wp.array(dtype=mat22), m3: wp.array(dtype=mat33), m4: wp.array(dtype=mat44), m5: wp.array(dtype=mat55), m32: wp.array(dtype=mat32), outcomponents: wp.array(dtype=wptype), ): v2result = m2[0] * v2[0] v3result = m3[0] * v3[0] v4result = m4[0] * v4[0] v5result = m5[0] * v5[0] v32result = m32[0] * v32[0] v2result_2 = m2[0] @ v2[0] v3result_2 = m3[0] @ v3[0] v4result_2 = m4[0] @ v4[0] v5result_2 = m5[0] @ v5[0] v32result_2 = m32[0] @ v32[0] idx = 0 # multiply outputs by 2 so we've got something to backpropagate: for i in range(2): outcomponents[idx] = wptype(2) * v2result[i] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * v3result[i] idx = idx + 1 for i in range(4): outcomponents[idx] = wptype(2) * v4result[i] idx = idx + 1 for i in range(5): outcomponents[idx] = wptype(2) * v5result[i] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * v32result[i] idx = idx + 1 for i in range(2): outcomponents[idx] = wptype(2) * v2result_2[i] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * v3result_2[i] idx = idx + 1 for i in range(4): outcomponents[idx] = wptype(2) * v4result_2[i] idx = idx + 1 for i in range(5): outcomponents[idx] = wptype(2) * v5result_2[i] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * v32result_2[i] idx = idx + 1 kernel = getkernel(check_mat_vec_mul, suffix=dtype.__name__) if register_kernels: return v2 = wp.array(randvals([1, 2], dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals([1, 3], dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals([1, 4], dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals([1, 5], dtype), dtype=vec5, requires_grad=True, device=device) v32 = wp.array(randvals([1, 2], dtype), dtype=vec2, requires_grad=True, device=device) m2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) m32 = wp.array(randvals([1, 3, 2], dtype), dtype=mat32, requires_grad=True, device=device) outcomponents = wp.zeros(2 * (2 + 3 + 4 + 5 + 3), dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m32], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy()[:2], 2 * np.matmul(m2.numpy()[0], v2.numpy()[0]), tol=tol) assert_np_equal(outcomponents.numpy()[2:5], 2 * np.matmul(m3.numpy()[0], v3.numpy()[0]), tol=tol) assert_np_equal(outcomponents.numpy()[5:9], 2 * np.matmul(m4.numpy()[0], v4.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents.numpy()[9:14], 2 * np.matmul(m5.numpy()[0], v5.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents.numpy()[14:17], 2 * np.matmul(m32.numpy()[0], v32.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents.numpy()[17:19], 2 * np.matmul(m2.numpy()[0], v2.numpy()[0]), tol=tol) assert_np_equal(outcomponents.numpy()[19:22], 2 * np.matmul(m3.numpy()[0], v3.numpy()[0]), tol=tol) assert_np_equal(outcomponents.numpy()[22:26], 2 * np.matmul(m4.numpy()[0], v4.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents.numpy()[26:31], 2 * np.matmul(m5.numpy()[0], v5.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents.numpy()[31:34], 2 * np.matmul(m32.numpy()[0], v32.numpy()[0]), tol=5 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, invec, inmat in [(2, v2, m2), (3, v3, m3), (4, v4, m4), (5, v5, m5), (3, v32, m32)]: for i in range(dim): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m32], outputs=[outcomponents], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) assert_np_equal(tape.gradients[invec].numpy()[0], 2 * inmat.numpy()[0, i, :], tol=2 * tol) expectedresult = np.zeros(inmat.dtype._shape_, dtype=dtype) expectedresult[i, :] = 2 * invec.numpy()[0] assert_np_equal(tape.gradients[inmat].numpy()[0], expectedresult, tol=2 * tol) tape.zero() idx = idx + 1 def test_matmat_multiplication(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 2.0e-2, np.float32: 5.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_mat_mul( a2: wp.array(dtype=mat22), a3: wp.array(dtype=mat33), a4: wp.array(dtype=mat44), a5: wp.array(dtype=mat55), a32: wp.array(dtype=mat32), b2: wp.array(dtype=mat22), b3: wp.array(dtype=mat33), b4: wp.array(dtype=mat44), b5: wp.array(dtype=mat55), b32: wp.array(dtype=mat32), outcomponents: wp.array(dtype=wptype), ): c2result = b2[0] * a2[0] c3result = b3[0] * a3[0] c4result = b4[0] * a4[0] c5result = b5[0] * a5[0] c32result = b32[0] * a2[0] c32result2 = b3[0] * a32[0] c2result_2 = b2[0] @ a2[0] c3result_2 = b3[0] @ a3[0] c4result_2 = b4[0] @ a4[0] c5result_2 = b5[0] @ a5[0] c32result_2 = b32[0] @ a2[0] c32result2_2 = b3[0] @ a32[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * c2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * c3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * c4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * c5result[i, j] idx = idx + 1 for i in range(3): for j in range(2): outcomponents[idx] = wptype(2) * c32result[i, j] idx = idx + 1 for i in range(3): for j in range(2): outcomponents[idx] = wptype(2) * c32result2[i, j] idx = idx + 1 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * c2result_2[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * c3result_2[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * c4result_2[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * c5result_2[i, j] idx = idx + 1 for i in range(3): for j in range(2): outcomponents[idx] = wptype(2) * c32result_2[i, j] idx = idx + 1 for i in range(3): for j in range(2): outcomponents[idx] = wptype(2) * c32result2_2[i, j] idx = idx + 1 kernel = getkernel(check_mat_mat_mul, suffix=dtype.__name__) if register_kernels: return v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) v32 = wp.array(randvals([1, 3, 2], dtype), dtype=mat32, requires_grad=True, device=device) m2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) m32 = wp.array(randvals([1, 3, 2], dtype), dtype=mat32, requires_grad=True, device=device) outcomponents = wp.zeros( 2 * (2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 3 * 2 + 3 * 2), dtype=wptype, requires_grad=True, device=device ) wp.launch(kernel, dim=1, inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m32], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy()[:4], 2 * np.matmul(m2.numpy()[0], v2.numpy()[0]), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * np.matmul(m3.numpy()[0], v3.numpy()[0]), tol=tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * np.matmul(m4.numpy()[0], v4.numpy()[0]), tol=2 * tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * np.matmul(m5.numpy()[0], v5.numpy()[0]), tol=10 * tol) assert_np_equal(outcomponents.numpy()[54:60], 2 * np.matmul(m32.numpy()[0], v2.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents.numpy()[60:66], 2 * np.matmul(m3.numpy()[0], v32.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents.numpy()[66:70], 2 * np.matmul(m2.numpy()[0], v2.numpy()[0]), tol=tol) assert_np_equal(outcomponents.numpy()[70:79], 2 * np.matmul(m3.numpy()[0], v3.numpy()[0]), tol=tol) assert_np_equal(outcomponents.numpy()[79:95], 2 * np.matmul(m4.numpy()[0], v4.numpy()[0]), tol=2 * tol) assert_np_equal(outcomponents.numpy()[95:120], 2 * np.matmul(m5.numpy()[0], v5.numpy()[0]), tol=10 * tol) assert_np_equal(outcomponents.numpy()[120:126], 2 * np.matmul(m32.numpy()[0], v2.numpy()[0]), tol=5 * tol) assert_np_equal(outcomponents.numpy()[126:132], 2 * np.matmul(m3.numpy()[0], v32.numpy()[0]), tol=5 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for v, m in [(v2, m2), (v3, m3), (v4, m4), (v5, m5), (v2, m32), (v32, m3)]: rows, cols = m.dtype._shape_[0], v.dtype._shape_[1] for i in range(rows): for j in range(cols): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m32], outputs=[outcomponents], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expected = np.zeros(v.dtype._shape_, dtype=dtype) expected[:, j] = 2 * m.numpy()[0, i, :] assert_np_equal(tape.gradients[v].numpy()[0], expected, tol=10 * tol) expected = np.zeros(m.dtype._shape_, dtype=dtype) expected[i, :] = 2 * v.numpy()[0, :, j] assert_np_equal(tape.gradients[m].numpy()[0], expected, tol=10 * tol) tape.zero() idx = idx + 1 def test_cw_multiplication(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_cw_mul( s2: wp.array(dtype=mat22), s3: wp.array(dtype=mat33), s4: wp.array(dtype=mat44), s5: wp.array(dtype=mat55), v2: wp.array(dtype=mat22), v3: wp.array(dtype=mat33), v4: wp.array(dtype=mat44), v5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), ): v2result = wptype(2) * wp.cw_mul(v2[0], s2[0]) v3result = wptype(2) * wp.cw_mul(v3[0], s3[0]) v4result = wptype(2) * wp.cw_mul(v4[0], s4[0]) v5result = wptype(2) * wp.cw_mul(v5[0], s5[0]) # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = v2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = v3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = v4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = v5result[i, j] idx = idx + 1 kernel = getkernel(check_mat_cw_mul, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) s3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) s4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) s5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) assert_np_equal(outcomponents.numpy()[:4], 2 * (v2.numpy() * s2.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * (v3.numpy() * s3.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * (v4.numpy() * s4.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * (v5.numpy() * s5.numpy()).reshape(-1), tol=50 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, in1, in2 in [(2, s2, v2), (3, s3, v3), (4, s4, v4), (5, s5, v5)]: for i in range(dim): for j in range(dim): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2 * in1.numpy()[0][i, j] assert_np_equal(tape.gradients[in2].numpy()[0], expectedresult, tol=5 * tol) expectedresult[i, j] = 2 * in2.numpy()[0][i, j] assert_np_equal(tape.gradients[in1].numpy()[0], expectedresult, tol=5 * tol) tape.zero() idx = idx + 1 def test_cw_division(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_cw_div( s2: wp.array(dtype=mat22), s3: wp.array(dtype=mat33), s4: wp.array(dtype=mat44), s5: wp.array(dtype=mat55), v2: wp.array(dtype=mat22), v3: wp.array(dtype=mat33), v4: wp.array(dtype=mat44), v5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), ): v2result = wptype(2) * wp.cw_div(v2[0], s2[0]) v3result = wptype(2) * wp.cw_div(v3[0], s3[0]) v4result = wptype(2) * wp.cw_div(v4[0], s4[0]) v5result = wptype(2) * wp.cw_div(v5[0], s5[0]) # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = v2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = v3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = v4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = v5result[i, j] idx = idx + 1 kernel = getkernel(check_mat_cw_div, suffix=dtype.__name__) if register_kernels: return s2 = randvals([1, 2, 2], dtype) s3 = randvals([1, 3, 3], dtype) s4 = randvals([1, 4, 4], dtype) s5 = randvals([1, 5, 5], dtype) # set denominators to 1 if their magnitudes are small # to prevent divide by zero, or overflows if we're testing # float16: s2[np.abs(s2) < 1.0e-2] = 1 s3[np.abs(s3) < 1.0e-2] = 1 s4[np.abs(s4) < 1.0e-2] = 1 s5[np.abs(s5) < 1.0e-2] = 1 s2 = wp.array(s2, dtype=mat22, requires_grad=True, device=device) s3 = wp.array(s3, dtype=mat33, requires_grad=True, device=device) s4 = wp.array(s4, dtype=mat44, requires_grad=True, device=device) s5 = wp.array(s5, dtype=mat55, requires_grad=True, device=device) v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) if dtype in np_float_types: assert_np_equal(outcomponents.numpy()[:4], 2 * (v2.numpy() / s2.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * (v3.numpy() / s3.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * (v4.numpy() / s4.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * (v5.numpy() / s5.numpy()).reshape(-1), tol=50 * tol) else: assert_np_equal(outcomponents.numpy()[:4], 2 * (v2.numpy() // s2.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * (v3.numpy() // s3.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * (v4.numpy() // s4.numpy()).reshape(-1), tol=50 * tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * (v5.numpy() // s5.numpy()).reshape(-1), tol=50 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, s, v in [(2, s2, v2), (3, s3, v3), (4, s4, v4), (5, s5, v5)]: for i in range(dim): for j in range(dim): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) # y = v/s # dy/dv = 1.0/s # dy/ds = -v/s^2 expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2.0 / (s.numpy()[0, i, j]) assert_np_equal(tape.gradients[v].numpy()[0], expectedresult, tol=50 * tol) expectedresult[i, j] = -2.0 * v.numpy()[0, i, j] / (s.numpy()[0, i, j] ** 2) assert_np_equal( tape.gradients[s].numpy()[0], expectedresult, tol=abs(outcomponents.numpy()[idx]) * 50 * tol ) tape.zero() idx = idx + 1 def test_outer_product(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec2 = wp.types.vector(length=2, dtype=wptype) vec3 = wp.types.vector(length=3, dtype=wptype) vec4 = wp.types.vector(length=4, dtype=wptype) vec5 = wp.types.vector(length=5, dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_outer_product( s2: wp.array(dtype=vec2), s3: wp.array(dtype=vec3), s4: wp.array(dtype=vec4), s5: wp.array(dtype=vec5), v2: wp.array(dtype=vec2), v3: wp.array(dtype=vec3), v4: wp.array(dtype=vec4), v5: wp.array(dtype=vec5), outcomponents: wp.array(dtype=wptype), ): m22result = wptype(2) * wp.outer(s2[0], v2[0]) m33result = wptype(2) * wp.outer(s3[0], v3[0]) m44result = wptype(2) * wp.outer(s4[0], v4[0]) m55result = wptype(2) * wp.outer(s5[0], v5[0]) m25result = wptype(2) * wp.outer(s2[0], v5[0]) # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = m22result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = m33result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = m44result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = m55result[i, j] idx = idx + 1 for i in range(2): for j in range(5): outcomponents[idx] = m25result[i, j] idx = idx + 1 kernel = getkernel(check_mat_outer_product, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals([1, 2], dtype), dtype=vec2, requires_grad=True, device=device) s3 = wp.array(randvals([1, 3], dtype), dtype=vec3, requires_grad=True, device=device) s4 = wp.array(randvals([1, 4], dtype), dtype=vec4, requires_grad=True, device=device) s5 = wp.array(randvals([1, 5], dtype), dtype=vec5, requires_grad=True, device=device) v2 = wp.array(randvals([1, 2], dtype), dtype=vec2, requires_grad=True, device=device) v3 = wp.array(randvals([1, 3], dtype), dtype=vec3, requires_grad=True, device=device) v4 = wp.array(randvals([1, 4], dtype), dtype=vec4, requires_grad=True, device=device) v5 = wp.array(randvals([1, 5], dtype), dtype=vec5, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 2 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[s2, s3, s4, s5, v2, v3, v4, v5], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy()[:4], 2 * s2.numpy()[0, :, None] * v2.numpy()[0, None, :], tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * s3.numpy()[0, :, None] * v3.numpy()[0, None, :], tol=10 * tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * s4.numpy()[0, :, None] * v4.numpy()[0, None, :], tol=10 * tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * s5.numpy()[0, :, None] * v5.numpy()[0, None, :], tol=10 * tol) assert_np_equal(outcomponents.numpy()[54:], 2 * s2.numpy()[0, :, None] * v5.numpy()[0, None, :], tol=10 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for s, v in [(s2, v2), (s3, v3), (s4, v4), (s5, v5), (s2, v5)]: rows = s.dtype._length_ cols = v.dtype._length_ for i in range(rows): for j in range(cols): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) # this component's gonna be s_i * v_j, so its s gradient is gonna be nozero # at the ith component and its v gradient will be nonzero at the jth component: expectedresult = np.zeros((rows), dtype=dtype) expectedresult[i] = 2 * v.numpy()[0, j] assert_np_equal(tape.gradients[s].numpy()[0], expectedresult, tol=10 * tol) expectedresult = np.zeros((cols), dtype=dtype) expectedresult[j] = 2 * s.numpy()[0, i] assert_np_equal(tape.gradients[v].numpy()[0], expectedresult, tol=10 * tol) tape.zero() idx = idx + 1 def test_scalar_division(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_scalar_div( s: wp.array(dtype=wptype), m2: wp.array(dtype=mat22), m3: wp.array(dtype=mat33), m4: wp.array(dtype=mat44), m5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), ): m2result = m2[0] / s[0] m3result = m3[0] / s[0] m4result = m4[0] / s[0] m5result = m5[0] / s[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * m5result[i, j] idx = idx + 1 kernel = getkernel(check_mat_scalar_div, suffix=dtype.__name__) if register_kernels: return s = wp.array(randvals([1], dtype), requires_grad=True, device=device) m2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) m5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[s, m2, m3, m4, m5], outputs=[outcomponents], device=device) sval = s.numpy()[0] if dtype in np_float_types: assert_np_equal(outcomponents.numpy()[:4], 2 * m2.numpy().reshape(-1) / sval, tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * m3.numpy().reshape(-1) / sval, tol=10 * tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * m4.numpy().reshape(-1) / sval, tol=10 * tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * m5.numpy().reshape(-1) / sval, tol=10 * tol) else: assert_np_equal(outcomponents.numpy()[:4], 2 * (m2.numpy().reshape(-1) // sval), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * (m3.numpy().reshape(-1) // sval), tol=10 * tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * (m4.numpy().reshape(-1) // sval), tol=10 * tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * (m5.numpy().reshape(-1) // sval), tol=10 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, input in [(2, m2), (3, m3), (4, m4), (5, m5)]: for i in range(dim): for j in range(dim): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[s, m2, m3, m4, m5], outputs=[outcomponents], device=device) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2.0 / sval assert_np_equal(tape.gradients[input].numpy()[0], expectedresult, tol=10 * tol) assert_np_equal( tape.gradients[s].numpy()[0], -2 * input.numpy()[0, i, j] / (sval * sval), tol=10 * tol ) tape.zero() idx = idx + 1 def test_addition(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 2.0e-2, np.float32: 5.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_add( s2: wp.array(dtype=mat22), s3: wp.array(dtype=mat33), s4: wp.array(dtype=mat44), s5: wp.array(dtype=mat55), v2: wp.array(dtype=mat22), v3: wp.array(dtype=mat33), v4: wp.array(dtype=mat44), v5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), ): v2result = v2[0] + s2[0] v3result = v3[0] + s3[0] v4result = v4[0] + s4[0] v5result = v5[0] + s5[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * v2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * v3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * v4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * v5result[i, j] idx = idx + 1 kernel = getkernel(check_mat_add, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) s3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) s4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) s5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) assert_np_equal(outcomponents.numpy()[:4], 2 * (v2.numpy() + s2.numpy()).reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * (v3.numpy() + s3.numpy()).reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * (v4.numpy() + s4.numpy()).reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * (v5.numpy() + s5.numpy()).reshape(-1), tol=tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, in1, in2 in [(2, s2, v2), (3, s3, v3), (4, s4, v4), (5, s5, v5)]: for i in range(dim): for j in range(dim): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2 assert_np_equal(tape.gradients[in2].numpy()[0], expectedresult, tol=10 * tol) expectedresult[i, j] = 2 assert_np_equal(tape.gradients[in1].numpy()[0], expectedresult, tol=10 * tol) tape.zero() idx = idx + 1 def test_subtraction(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_sub( s2: wp.array(dtype=mat22), s3: wp.array(dtype=mat33), s4: wp.array(dtype=mat44), s5: wp.array(dtype=mat55), v2: wp.array(dtype=mat22), v3: wp.array(dtype=mat33), v4: wp.array(dtype=mat44), v5: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), ): v2result = v2[0] - s2[0] v3result = v3[0] - s3[0] v4result = v4[0] - s4[0] v5result = v5[0] - s5[0] # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * v2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * v3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * v4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): outcomponents[idx] = wptype(2) * v5result[i, j] idx = idx + 1 kernel = getkernel(check_mat_sub, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) s3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) s4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) s5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) assert_np_equal(outcomponents.numpy()[:4], 2 * (v2.numpy() - s2.numpy()).reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * (v3.numpy() - s3.numpy()).reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[13:29], 2 * (v4.numpy() - s4.numpy()).reshape(-1), tol=tol) assert_np_equal(outcomponents.numpy()[29:54], 2 * (v5.numpy() - s5.numpy()).reshape(-1), tol=10 * tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, in1, in2 in [(2, s2, v2), (3, s3, v3), (4, s4, v4), (5, s5, v5)]: for i in range(dim): for j in range(dim): tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[outcomponents], device=device, ) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) expectedresult = np.zeros((dim, dim), dtype=dtype) expectedresult[i, j] = 2 assert_np_equal(tape.gradients[in2].numpy()[0], expectedresult, tol=10 * tol) expectedresult[i, j] = -2 assert_np_equal(tape.gradients[in1].numpy()[0], expectedresult, tol=10 * tol) tape.zero() idx = idx + 1 def test_ddot(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) def check_mat_dot( s2: wp.array(dtype=mat22), s3: wp.array(dtype=mat33), s4: wp.array(dtype=mat44), s5: wp.array(dtype=mat55), v2: wp.array(dtype=mat22), v3: wp.array(dtype=mat33), v4: wp.array(dtype=mat44), v5: wp.array(dtype=mat55), dot2: wp.array(dtype=wptype), dot3: wp.array(dtype=wptype), dot4: wp.array(dtype=wptype), dot5: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: dot2[0] = wptype(2) * wp.ddot(v2[0], s2[0]) dot3[0] = wptype(2) * wp.ddot(v3[0], s3[0]) dot4[0] = wptype(2) * wp.ddot(v4[0], s4[0]) dot5[0] = wptype(2) * wp.ddot(v5[0], s5[0]) kernel = getkernel(check_mat_dot, suffix=dtype.__name__) if register_kernels: return s2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) s3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) s4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) s5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) dot2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) dot3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) dot4 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) dot5 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ s2, s3, s4, s5, v2, v3, v4, v5, ], outputs=[dot2, dot3, dot4, dot5], device=device, ) assert_np_equal(dot2.numpy()[0], 2 * (v2.numpy() * s2.numpy()).sum(), tol=10 * tol) assert_np_equal(dot3.numpy()[0], 2 * (v3.numpy() * s3.numpy()).sum(), tol=10 * tol) assert_np_equal(dot4.numpy()[0], 2 * (v4.numpy() * s4.numpy()).sum(), tol=50 * tol) assert_np_equal(dot5.numpy()[0], 2 * (v5.numpy() * s5.numpy()).sum(), tol=200 * tol) if dtype in np_float_types: tape.backward(loss=dot2) sgrads = tape.gradients[s2].numpy()[0] expected_grads = 2.0 * v2.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v2].numpy()[0] expected_grads = 2.0 * s2.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=10 * tol) tape.zero() tape.backward(loss=dot3) sgrads = tape.gradients[s3].numpy()[0] expected_grads = 2.0 * v3.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v3].numpy()[0] expected_grads = 2.0 * s3.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=10 * tol) tape.zero() tape.backward(loss=dot4) sgrads = tape.gradients[s4].numpy()[0] expected_grads = 2.0 * v4.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v4].numpy()[0] expected_grads = 2.0 * s4.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=10 * tol) tape.zero() tape.backward(loss=dot5) sgrads = tape.gradients[s5].numpy()[0] expected_grads = 2.0 * v5.numpy()[0] assert_np_equal(sgrads, expected_grads, tol=10 * tol) vgrads = tape.gradients[v5].numpy()[0] expected_grads = 2.0 * s5.numpy()[0] assert_np_equal(vgrads, expected_grads, tol=10 * tol) tape.zero() def test_determinant(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) def check_mat_det( v2: wp.array(dtype=mat22), v3: wp.array(dtype=mat33), v4: wp.array(dtype=mat44), det2: wp.array(dtype=wptype), det3: wp.array(dtype=wptype), det4: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: det2[0] = wptype(2) * wp.determinant(v2[0]) det3[0] = wptype(2) * wp.determinant(v3[0]) det4[0] = wptype(2) * wp.determinant(v4[0]) kernel = getkernel(check_mat_det, suffix=dtype.__name__) if register_kernels: return v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) det2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) det3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) det4 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ v2, v3, v4, ], outputs=[ det2, det3, det4, ], device=device, ) if dtype in np_float_types: assert_np_equal(det2.numpy()[0], 2 * np.linalg.det(v2.numpy()[0].astype(np.float64)), tol=100 * tol) assert_np_equal(det3.numpy()[0], 2 * np.linalg.det(v3.numpy()[0].astype(np.float64)), tol=100 * tol) assert_np_equal(det4.numpy()[0], 2 * np.linalg.det(v4.numpy()[0].astype(np.float64)), tol=420 * tol) else: assert_np_equal(det2.numpy()[0], 2 * np.around(np.linalg.det(v2.numpy()[0])).astype(int)) assert_np_equal(det3.numpy()[0], 2 * np.around(np.linalg.det(v3.numpy()[0])).astype(int)) assert_np_equal(det4.numpy()[0], 2 * np.around(np.linalg.det(v4.numpy()[0])).astype(int)) if dtype in np_float_types: # determinant derivative formula is annoying so finite differences? tape.backward(loss=det2) v2grads = 1.0 * tape.gradients[v2].numpy()[0] tape.zero() tape.backward(loss=det3) v3grads = 1.0 * tape.gradients[v3].numpy()[0] tape.zero() tape.backward(loss=det4) v4grads = 1.0 * tape.gradients[v4].numpy()[0] tape.zero() # finite differences are also annoying hence the large tolerance... # absolute nightmare in float16 too innit... dx = 0.01 if dtype == np.float16 else 0.0001 fdtol = 2.0e-1 if dtype == np.float16 else 2.0e-3 for i in range(2): for j in range(2): v2test = v2.numpy() v2test[0, i, j] += dx wp.launch( kernel, dim=1, inputs=[ wp.array(v2test, dtype=v2.dtype, requires_grad=True, device=device), v3, v4, ], outputs=[ det2, det3, det4, ], device=device, ) dplus = det2.numpy()[0] v2test[0, i, j] -= 2.0 * dx wp.launch( kernel, dim=1, inputs=[ wp.array(v2test, dtype=v2.dtype, requires_grad=True, device=device), v3, v4, ], outputs=[ det2, det3, det4, ], device=device, ) dminus = det2.numpy()[0] assert_np_equal((dplus - dminus) / (2.0 * dx * dplus), v2grads[i, j] / dplus, tol=fdtol) for i in range(3): for j in range(3): v3test = v3.numpy() v3test[0, i, j] += dx wp.launch( kernel, dim=1, inputs=[ v2, wp.array(v3test, dtype=v3.dtype, requires_grad=True, device=device), v4, ], outputs=[ det2, det3, det4, ], device=device, ) dplus = det3.numpy()[0] v3test[0, i, j] -= 2.0 * dx wp.launch( kernel, dim=1, inputs=[ v2, wp.array(v3test, dtype=v3.dtype, requires_grad=True, device=device), v4, ], outputs=[ det2, det3, det4, ], device=device, ) dminus = det3.numpy()[0] assert_np_equal((dplus - dminus) / (2.0 * dx * dplus), v3grads[i, j] / dplus, tol=fdtol) for i in range(4): for j in range(4): v4test = v4.numpy() v4test[0, i, j] += dx wp.launch( kernel, dim=1, inputs=[ v2, v3, wp.array(v4test, dtype=v4.dtype, requires_grad=True, device=device), ], outputs=[ det2, det3, det4, ], device=device, ) dplus = det4.numpy()[0] v4test[0, i, j] -= 2.0 * dx wp.launch( kernel, dim=1, inputs=[ v2, v3, wp.array(v4test, dtype=v4.dtype, requires_grad=True, device=device), ], outputs=[ det2, det3, det4, ], device=device, ) dminus = det4.numpy()[0] assert_np_equal((dplus - dminus) / (2.0 * dx * dplus), v4grads[i, j] / dplus, tol=fdtol) def test_trace(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) def check_mat_trace( v2: wp.array(dtype=mat22), v3: wp.array(dtype=mat33), v4: wp.array(dtype=mat44), v5: wp.array(dtype=mat55), tr2: wp.array(dtype=wptype), tr3: wp.array(dtype=wptype), tr4: wp.array(dtype=wptype), tr5: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: tr2[0] = wptype(2) * wp.trace(v2[0]) tr3[0] = wptype(2) * wp.trace(v3[0]) tr4[0] = wptype(2) * wp.trace(v4[0]) tr5[0] = wptype(2) * wp.trace(v5[0]) kernel = getkernel(check_mat_trace, suffix=dtype.__name__) if register_kernels: return v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device) v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device) v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device) tr2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tr3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tr4 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tr5 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[ v2, v3, v4, v5, ], outputs=[ tr2, tr3, tr4, tr5, ], device=device, ) assert_np_equal(tr2.numpy()[0], 2 * np.trace(v2.numpy()[0]), tol=10 * tol) assert_np_equal(tr3.numpy()[0], 2 * np.trace(v3.numpy()[0]), tol=10 * tol) assert_np_equal(tr4.numpy()[0], 2 * np.trace(v4.numpy()[0]), tol=200 * tol) assert_np_equal(tr4.numpy()[0], 2 * np.trace(v4.numpy()[0]), tol=200 * tol) if dtype in np_float_types: tape.backward(loss=tr2) vgrads = tape.gradients[v2].numpy()[0] assert_np_equal(vgrads, 2.0 * np.eye(2), tol=10 * tol) tape.zero() tape.backward(loss=tr3) vgrads = tape.gradients[v3].numpy()[0] assert_np_equal(vgrads, 2.0 * np.eye(3), tol=10 * tol) tape.zero() tape.backward(loss=tr4) vgrads = tape.gradients[v4].numpy()[0] assert_np_equal(vgrads, 2.0 * np.eye(4), tol=10 * tol) tape.zero() tape.backward(loss=tr5) vgrads = tape.gradients[v5].numpy()[0] assert_np_equal(vgrads, 2.0 * np.eye(5), tol=10 * tol) tape.zero() def test_diag(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec5 = wp.types.vector(length=5, dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_diag( s5: wp.array(dtype=vec5), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: m55result = wptype(2) * wp.diag(s5[0]) idx = 0 for i in range(5): for j in range(5): outcomponents[idx] = m55result[i, j] idx = idx + 1 kernel = getkernel(check_mat_diag, suffix=dtype.__name__) if register_kernels: return s5 = wp.array(randvals([1, 5], dtype), dtype=vec5, requires_grad=True, device=device) outcomponents = wp.zeros(5 * 5, dtype=wptype, requires_grad=True, device=device) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[s5], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy(), 2 * np.diag(s5.numpy()[0]), tol=tol) if dtype in np_float_types: idx = 0 for i in range(5): for j in range(5): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[s5], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros(5, dtype=dtype) if i == j: expectedresult[i] = 2 assert_np_equal(tape.gradients[s5].numpy()[0], expectedresult, tol=10 * tol) tape.zero() idx = idx + 1 def test_get_diag(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat55 = wp.types.vector(shape=(5, 5), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_diag( m55: wp.array(dtype=mat55), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: vec5result = wptype(2) * wp.get_diag(m55[0]) idx = 0 for i in range(5): outcomponents[idx] = vec5result[i] idx = idx + 1 kernel = getkernel(check_mat_diag, suffix=dtype.__name__) if register_kernels: return m55 = wp.array(randvals((1, 5, 5), dtype), dtype=mat55, requires_grad=True, device=device) outcomponents = wp.zeros(5, dtype=wptype, requires_grad=True, device=device) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[m55], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy(), 2 * np.diag(m55.numpy()[0]), tol=tol) if dtype in np_float_types: idx = 0 for i in range(5): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m55], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) expectedresult = np.zeros((5, 5), dtype=dtype) expectedresult[i, i] = 2 assert_np_equal(tape.gradients[m55].numpy()[0], expectedresult, tol=10 * tol) tape.zero() idx = idx + 1 def test_inverse(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 2.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_inverse( m2: wp.array(dtype=mat22), m3: wp.array(dtype=mat33), m4: wp.array(dtype=mat44), outcomponents: wp.array(dtype=wptype), ): m2result = wp.inverse(m2[0]) m3result = wp.inverse(m3[0]) m4result = wp.inverse(m4[0]) # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(2): for j in range(2): outcomponents[idx] = wptype(2) * m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): outcomponents[idx] = wptype(2) * m4result[i, j] idx = idx + 1 kernel = getkernel(check_mat_inverse, suffix=dtype.__name__) if register_kernels: return m2 = wp.array(2 * (randvals([1, 2, 2], dtype) + 0.2 * np.eye(2)), dtype=mat22, requires_grad=True, device=device) m3 = wp.array(2 * (randvals([1, 3, 3], dtype) + 0.2 * np.eye(3)), dtype=mat33, requires_grad=True, device=device) m4 = wp.array(2 * (randvals([1, 4, 4], dtype) + 0.2 * np.eye(4)), dtype=mat44, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4, dtype=wptype, requires_grad=True, device=device) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[m2, m3, m4], outputs=[outcomponents], device=device) assert_np_equal(outcomponents.numpy()[:4], 2 * np.linalg.inv(m2.numpy()[0].astype(np.float64)), tol=tol) assert_np_equal(outcomponents.numpy()[4:13], 2 * np.linalg.inv(m3.numpy()[0].astype(np.float64)), tol=5 * tol) assert_np_equal(outcomponents.numpy()[13:], 2 * np.linalg.inv(m4.numpy()[0].astype(np.float64)), tol=5 * tol) if dtype in np_float_types: # check gradients: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for dim, input in [(2, m2), (3, m3), (4, m4)]: minv = np.linalg.inv(input.numpy()[0].astype(np.float64)) for i in range(dim): for j in range(dim): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m2, m3, m4], outputs=[outcomponents], device=device) wp.launch( output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device ) tape.backward(loss=out) d = np.zeros((dim, dim)) d[j, i] = 2 assert_np_equal( tape.gradients[input].numpy()[0], -np.matmul(minv, np.matmul(d, minv)).T, tol=10 * tol ) tape.zero() idx = idx + 1 # let's check 2x2 using different formulae just for (in)sanity's sake: m = m2.numpy()[0] det = m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1] expected = 2 * np.array([[m[1, 1], -m[0, 1]], [-m[1, 0], m[0, 0]]], dtype=dtype) / det assert_np_equal(expected, outcomponents.numpy()[:4], tol=tol) # 0,0 component is this: # 2 * m[1,1] / (m[0,0]*m[1,1] - m[1,0] * m[0,1]) assert_np_equal(2 * m[1, 1] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]), outcomponents.numpy()[0], tol=tol) tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m2, m3, m4], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, 0], outputs=[out], device=device) if dtype in np_float_types: tape.backward(loss=out) g = tape.gradients[m2].numpy()[0] assert_np_equal(-2 * m[1, 1] * m[1, 1] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[0, 0], tol=tol) assert_np_equal(2 * m[1, 1] * m[0, 1] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[1, 0], tol=tol) assert_np_equal(-2 * m[0, 1] * m[1, 0] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[1, 1], tol=tol) assert_np_equal(2 * m[1, 1] * m[1, 0] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[0, 1], tol=tol) tape.zero() # 0,1 component is this: # -2 * m[0,1] / (m[0,0]*m[1,1] - m[1,0] * m[0,1]) assert_np_equal(-2 * m[0, 1] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]), outcomponents.numpy()[1], tol=tol) tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m2, m3, m4], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, 1], outputs=[out], device=device) if dtype in np_float_types: tape.backward(loss=out) g = tape.gradients[m2].numpy()[0] assert_np_equal(2 * m[0, 1] * m[1, 1] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[0, 0], tol=tol) assert_np_equal(-2 * m[0, 1] * m[0, 1] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[1, 0], tol=tol) assert_np_equal(2 * m[0, 0] * m[0, 1] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[1, 1], tol=tol) assert_np_equal(-2 * m[1, 1] * m[0, 0] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[0, 1], tol=tol) tape.zero() # 1,0 component is this: # -2 * m[1,0] / (m[0,0]*m[1,1] - m[1,0] * m[0,1]) assert_np_equal(-2 * m[1, 0] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]), outcomponents.numpy()[2], tol=tol) tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m2, m3, m4], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, 2], outputs=[out], device=device) if dtype in np_float_types: tape.backward(loss=out) g = tape.gradients[m2].numpy()[0] assert_np_equal(2 * m[1, 1] * m[1, 0] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[0, 0], tol=tol) assert_np_equal(-2 * m[0, 0] * m[1, 1] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[1, 0], tol=tol) assert_np_equal(2 * m[0, 0] * m[1, 0] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[1, 1], tol=tol) assert_np_equal(-2 * m[1, 0] * m[1, 0] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[0, 1], tol=tol) tape.zero() # 1,1 component is this: # 2 * m[0,0] / (m[0,0]*m[1,1] - m[1,0] * m[0,1]) assert_np_equal(2 * m[0, 0] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]), outcomponents.numpy()[3], tol=tol) tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m2, m3, m4], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, 3], outputs=[out], device=device) if dtype in np_float_types: tape.backward(loss=out) g = tape.gradients[m2].numpy()[0] assert_np_equal(-2 * m[0, 1] * m[1, 0] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[0, 0], tol=tol) assert_np_equal(2 * m[0, 0] * m[0, 1] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[1, 0], tol=tol) assert_np_equal(2 * m[0, 0] * m[1, 0] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[0, 1], tol=tol) assert_np_equal(-2 * m[0, 0] * m[0, 0] / (m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) ** 2, g[1, 1], tol=tol) tape.zero() def test_svd(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-6, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec3 = wp.types.vector(length=3, dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) def check_mat_svd( m3: wp.array(dtype=mat33), Uout: wp.array(dtype=mat33), sigmaout: wp.array(dtype=vec3), Vout: wp.array(dtype=mat33), outcomponents: wp.array(dtype=wptype), ): U = mat33() sigma = vec3() V = mat33() wp.svd3(m3[0], U, sigma, V) Uout[0] = U sigmaout[0] = sigma Vout[0] = V # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * U[i, j] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * sigma[i] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * V[i, j] idx = idx + 1 kernel = getkernel(check_mat_svd, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return m3 = wp.array(randvals([1, 3, 3], dtype) + np.eye(3), dtype=mat33, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 3 * 3 + 3, dtype=wptype, requires_grad=True, device=device) Uout = wp.zeros(1, dtype=mat33, requires_grad=True, device=device) sigmaout = wp.zeros(1, dtype=vec3, requires_grad=True, device=device) Vout = wp.zeros(1, dtype=mat33, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[m3], outputs=[Uout, sigmaout, Vout, outcomponents], device=device) Uout_np = Uout.numpy()[0].astype(np.float64) sigmaout_np = np.diag(sigmaout.numpy()[0].astype(np.float64)) Vout_np = Vout.numpy()[0].astype(np.float64) assert_np_equal( np.matmul(Uout_np, np.matmul(sigmaout_np, Vout_np.T)), m3.numpy()[0].astype(np.float64), tol=30 * tol ) if dtype == np.float16: # I'm not even going to bother testing the gradients for float16 # because the rounding errors are terrible... return # check gradients: out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) idx = 0 for idx in range(3 * 3 + 3 + 3 * 3): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m3], outputs=[Uout, sigmaout, Vout, outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(out) m3grads = 1.0 * tape.gradients[m3].numpy()[0] tape.zero() dx = 0.0001 fdtol = 5.0e-4 if dtype == np.float64 else 2.0e-2 for ii in range(3): for jj in range(3): m3test = 1.0 * m3.numpy() m3test[0, ii, jj] += dx wp.launch( kernel, dim=1, inputs=[wp.array(m3test, dtype=mat33, device=device)], outputs=[Uout, sigmaout, Vout, outcomponents], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) plusval = out.numpy()[0] m3test = 1.0 * m3.numpy() m3test[0, ii, jj] -= dx wp.launch( kernel, dim=1, inputs=[wp.array(m3test, dtype=mat33, device=device)], outputs=[Uout, sigmaout, Vout, outcomponents], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) minusval = out.numpy()[0] assert_np_equal((plusval - minusval) / (2 * dx), m3grads[ii, jj], tol=fdtol) def test_qr(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 2.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-6, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) def check_mat_qr( m3: wp.array(dtype=mat33), Qout: wp.array(dtype=mat33), Rout: wp.array(dtype=mat33), outcomponents: wp.array(dtype=wptype), ): Q = mat33() R = mat33() wp.qr3(m3[0], Q, R) Qout[0] = Q Rout[0] = R # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * Q[i, j] idx = idx + 1 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * R[i, j] idx = idx + 1 kernel = getkernel(check_mat_qr, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return m3 = wp.array(0.5 * (randvals([1, 3, 3], dtype) + np.eye(3)), dtype=mat33, requires_grad=True, device=device) outcomponents = wp.zeros(2 * 3 * 3, dtype=wptype, requires_grad=True, device=device) Qout = wp.zeros(1, dtype=mat33, requires_grad=True, device=device) Rout = wp.zeros(1, dtype=mat33, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[m3], outputs=[Qout, Rout, outcomponents], device=device) Qout_np = Qout.numpy()[0].astype(np.float64) Rout_np = Rout.numpy()[0].astype(np.float64) # check it's actually a q and an r: assert_np_equal(np.matmul(Qout_np.T, Qout_np), np.eye(3, dtype=np.float64), tol=tol) assert_np_equal(Rout_np[1, [0]], np.zeros(1, dtype=np.float64), tol=tol) assert_np_equal(Rout_np[2, [0, 1]], np.zeros(2, dtype=np.float64), tol=tol) # check it's a factorization: assert_np_equal(np.matmul(Qout_np, Rout_np), m3.numpy()[0].astype(np.float64), tol=30 * tol) if dtype == np.float16: # I'm not even going to bother testing the gradients for float16 # because the rounding errors are terrible... return # check gradients: out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) idx = 0 for idx in range(len(outcomponents)): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m3], outputs=[Qout, Rout, outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(out) m3grads = 1.0 * tape.gradients[m3].numpy()[0] tape.zero() dx = 0.0001 fdtol = 5.0e-4 if dtype == np.float64 else 2.0e-2 for ii in range(3): for jj in range(3): m3test = 1.0 * m3.numpy() m3test[0, ii, jj] += dx wp.launch( kernel, dim=1, inputs=[wp.array(m3test, dtype=mat33, device=device)], outputs=[Qout, Rout, outcomponents], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) plusval = out.numpy()[0] m3test = 1.0 * m3.numpy() m3test[0, ii, jj] -= dx wp.launch( kernel, dim=1, inputs=[wp.array(m3test, dtype=mat33, device=device)], outputs=[Qout, Rout, outcomponents], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) minusval = out.numpy()[0] assert_np_equal((plusval - minusval) / (2 * dx), m3grads[ii, jj], tol=fdtol) def test_eig(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 4.0e-2, np.float32: 1.0e-5, np.float64: 1.0e-5, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec3 = wp.types.vector(length=3, dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) def check_mat_eig( m3: wp.array(dtype=mat33), Qout: wp.array(dtype=mat33), dout: wp.array(dtype=vec3), outcomponents: wp.array(dtype=wptype), ): Q = mat33() d = vec3() wp.eig3(m3[0] + wp.transpose(m3[0]), Q, d) Qout[0] = Q dout[0] = d # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * Q[i, j] idx = idx + 1 for i in range(3): outcomponents[idx] = wptype(2) * d[i] idx = idx + 1 kernel = getkernel(check_mat_eig, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return m3_np = randvals([1, 3, 3], dtype) + np.eye(3, dtype=dtype) m3 = wp.array(m3_np, dtype=mat33, requires_grad=True, device=device) outcomponents = wp.zeros(3 * 3 + 3, dtype=wptype, requires_grad=True, device=device) Qout = wp.zeros(1, dtype=mat33, requires_grad=True, device=device) dout = wp.zeros(1, dtype=vec3, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[m3], outputs=[Qout, dout, outcomponents], device=device) Qout_np = Qout.numpy()[0].astype(np.float64) dout_np = dout.numpy()[0].astype(np.float64) Dout_np = np.diag(dout_np) # check Q is orthogonal: assert_np_equal(np.matmul(Qout_np.T, Qout_np), np.eye(3), tol=tol) # check Q contains eigenvectors: assert_np_equal(np.matmul(Qout_np, np.matmul(Dout_np, Qout_np.T)), (m3_np[0] + m3_np[0].transpose()), tol=tol) if dtype == np.float16: # I'm not even going to bother testing the gradients for float16 # because the rounding errors are terrible... return # check gradients: out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) idx = 0 for idx in range(len(outcomponents)): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[m3], outputs=[Qout, dout, outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(out) m3grads = 1.0 * tape.gradients[m3].numpy()[0] tape.zero() dx = 0.0001 fdtol = 5.0e-4 if dtype == np.float64 else 2.0e-2 for ii in range(3): for jj in range(3): m3test = 1.0 * m3.numpy() m3test[0, ii, jj] += dx wp.launch( kernel, dim=1, inputs=[wp.array(m3test, dtype=mat33, device=device)], outputs=[Qout, dout, outcomponents], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) plusval = out.numpy()[0] m3test = 1.0 * m3.numpy() m3test[0, ii, jj] -= dx wp.launch( kernel, dim=1, inputs=[wp.array(m3test, dtype=mat33, device=device)], outputs=[Qout, dout, outcomponents], device=device, ) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) minusval = out.numpy()[0] assert_np_equal((plusval - minusval) / (2 * dx), m3grads[ii, jj], tol=fdtol) def test_skew(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec3 = wp.types.vector(length=3, dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_skew( v3: wp.array(dtype=vec3), outcomponents: wp.array(dtype=wptype), ): m3result = wp.skew(v3[0]) # multiply outputs by 2 so we've got something to backpropagate: idx = 0 for i in range(3): for j in range(3): outcomponents[idx] = wptype(2) * m3result[i, j] idx = idx + 1 kernel = getkernel(check_mat_skew, suffix=dtype.__name__) if register_kernels: return v3 = wp.array(randvals([1, 3], dtype), dtype=vec3, requires_grad=True, device=device) outcomponents = wp.zeros(3 * 3, dtype=wptype, requires_grad=True, device=device) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[v3], outputs=[outcomponents], device=device) # make sure it gives you a cross product matrix: crossprodmat = outcomponents.numpy().reshape(3, 3) v = np.array([1, 0, 0]) assert_np_equal( np.matmul(crossprodmat, np.array([1, 0, 0])).reshape(-1), 2 * np.cross(v3.numpy()[0], np.array([1, 0, 0])), tol=tol, ) assert_np_equal( np.matmul(crossprodmat, np.array([0, 1, 0])).reshape(-1), 2 * np.cross(v3.numpy()[0], np.array([0, 1, 0])), tol=tol, ) assert_np_equal( np.matmul(crossprodmat, np.array([0, 0, 1])).reshape(-1), 2 * np.cross(v3.numpy()[0], np.array([0, 0, 1])), tol=tol, ) # check it another way: x0 = v3.numpy()[0, 0] x1 = v3.numpy()[0, 1] x2 = v3.numpy()[0, 2] crossprodmat_expected = np.array( [ [0, -x2, x1], [x2, 0, -x0], [-x1, x0, 0], ], dtype=dtype, ) assert_np_equal(crossprodmat, 2 * crossprodmat_expected, tol=tol) if dtype in np_float_types: idx = 0 out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(3): for j in range(3): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[v3], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device) tape.backward(loss=out) if i == j: assert_np_equal(tape.gradients[v3].numpy()[0], np.zeros(3)) elif [i, j] == [0, 1]: assert_np_equal(tape.gradients[v3].numpy()[0], np.array([0, 0, -2])) elif [i, j] == [1, 0]: assert_np_equal(tape.gradients[v3].numpy()[0], np.array([0, 0, 2])) elif [i, j] == [0, 2]: assert_np_equal(tape.gradients[v3].numpy()[0], np.array([0, 2, 0])) elif [i, j] == [2, 0]: assert_np_equal(tape.gradients[v3].numpy()[0], np.array([0, -2, 0])) elif [i, j] == [1, 2]: assert_np_equal(tape.gradients[v3].numpy()[0], np.array([-2, 0, 0])) elif [i, j] == [2, 1]: assert_np_equal(tape.gradients[v3].numpy()[0], np.array([2, 0, 0])) tape.zero() idx = idx + 1 def test_transform_point(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec3 = wp.types.vector(length=3, dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_transform_point( v3: wp.array(dtype=vec3), m4: wp.array(dtype=mat44), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: presult = wptype(2) * wp.transform_point(m4[0], v3[0]) outcomponents[0] = presult[0] outcomponents[1] = presult[1] outcomponents[2] = presult[2] kernel = getkernel(check_mat_transform_point, suffix=dtype.__name__) if register_kernels: return v3 = wp.array(randvals([1, 3], dtype), dtype=vec3, requires_grad=True, device=device) m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) outcomponents = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[v3, m4], outputs=[outcomponents], device=device) v3homog = np.ones(4, dtype=dtype) v3homog[:3] = v3.numpy()[0] assert_np_equal(outcomponents.numpy(), 2 * np.matmul(m4.numpy()[0], v3homog)[:3], tol=10 * tol) if dtype in np_float_types: for j in range(3): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[v3, m4], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, j], outputs=[out], device=device) tape.backward(loss=out) assert_np_equal(2 * m4.numpy()[0, j, :3], tape.gradients[v3].numpy(), tol=tol) expected = np.zeros((4, 4), dtype=dtype) expected[j, :3] = 2 * v3.numpy() expected[j, 3] = 2 assert_np_equal(tape.gradients[m4].numpy(), expected, tol=tol) tape.zero() def test_transform_vector(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] vec3 = wp.types.vector(length=3, dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) output_select_kernel = get_select_kernel(wptype) def check_mat_transform_vector( v3: wp.array(dtype=vec3), m4: wp.array(dtype=mat44), outcomponents: wp.array(dtype=wptype), ): # multiply outputs by 2 so we've got something to backpropagate: presult = wptype(2) * wp.transform_vector(m4[0], v3[0]) outcomponents[0] = presult[0] outcomponents[1] = presult[1] outcomponents[2] = presult[2] kernel = getkernel(check_mat_transform_vector, suffix=dtype.__name__) if register_kernels: return v3 = wp.array(randvals([1, 3], dtype), dtype=vec3, requires_grad=True, device=device) m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device) outcomponents = wp.zeros(3, dtype=wptype, requires_grad=True, device=device) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) wp.launch(kernel, dim=1, inputs=[v3, m4], outputs=[outcomponents], device=device) v3homog = np.zeros(4, dtype=dtype) v3homog[:3] = v3.numpy()[0] assert_np_equal(outcomponents.numpy(), 2 * np.matmul(m4.numpy()[0], v3homog)[:3], tol=10 * tol) if dtype in np_float_types: for j in range(3): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[v3, m4], outputs=[outcomponents], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, j], outputs=[out], device=device) tape.backward(loss=out) assert_np_equal(2 * m4.numpy()[0, j, :3], tape.gradients[v3].numpy(), tol=tol) expected = np.zeros((4, 4), dtype=dtype) expected[j, :3] = 2 * v3.numpy() assert_np_equal(tape.gradients[m4].numpy(), expected, tol=tol) tape.zero() def test_anon_type_instance(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def check_scalar_init( input: wp.array(dtype=wptype), output: wp.array(dtype=wptype), ): m2result = wp.matrix(input[0], shape=(2, 2)) m3result = wp.matrix(input[1], shape=(3, 3)) m4result = wp.matrix(input[2], shape=(4, 4)) m5result = wp.matrix(input[3], shape=(5, 5)) m32result = wp.matrix(input[4], shape=(3, 2)) idx = 0 for i in range(2): for j in range(2): output[idx] = wptype(2) * m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): output[idx] = wptype(2) * m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): output[idx] = wptype(2) * m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): output[idx] = wptype(2) * m5result[i, j] idx = idx + 1 for i in range(3): for j in range(2): output[idx] = wptype(2) * m32result[i, j] idx = idx + 1 def check_component_init( input: wp.array(dtype=wptype), output: wp.array(dtype=wptype), ): m2result = wp.matrix(input[0], input[1], input[2], input[3], shape=(2, 2)) m3result = wp.matrix( input[4], input[5], input[6], input[7], input[8], input[9], input[10], input[11], input[12], shape=(3, 3) ) m4result = wp.matrix( input[13], input[14], input[15], input[16], input[17], input[18], input[19], input[20], input[21], input[22], input[23], input[24], input[25], input[26], input[27], input[28], shape=(4, 4), ) m5result = wp.matrix( input[29], input[30], input[31], input[32], input[33], input[34], input[35], input[36], input[37], input[38], input[39], input[40], input[41], input[42], input[43], input[44], input[45], input[46], input[47], input[48], input[49], input[50], input[51], input[52], input[53], shape=(5, 5), ) m32result = wp.matrix(input[54], input[55], input[56], input[57], input[58], input[59], shape=(3, 2)) idx = 0 for i in range(2): for j in range(2): output[idx] = wptype(2) * m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): output[idx] = wptype(2) * m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): output[idx] = wptype(2) * m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): output[idx] = wptype(2) * m5result[i, j] idx = idx + 1 for i in range(3): for j in range(2): output[idx] = wptype(2) * m32result[i, j] idx = idx + 1 scalar_kernel = getkernel(check_scalar_init, suffix=dtype.__name__) component_kernel = getkernel(check_component_init, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return input = wp.array(randvals([5], dtype), requires_grad=True, device=device) output = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 3 * 2, dtype=wptype, requires_grad=True, device=device) wp.launch(scalar_kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy()[:4], 2 * np.array([input.numpy()[0]] * 2 * 2), tol=1.0e-6) assert_np_equal(output.numpy()[4:13], 2 * np.array([input.numpy()[1]] * 3 * 3), tol=1.0e-6) assert_np_equal(output.numpy()[13:29], 2 * np.array([input.numpy()[2]] * 4 * 4), tol=1.0e-6) assert_np_equal(output.numpy()[29:54], 2 * np.array([input.numpy()[3]] * 5 * 5), tol=1.0e-6) assert_np_equal(output.numpy()[54:], 2 * np.array([input.numpy()[4]] * 3 * 2), tol=1.0e-6) if dtype in np_float_types: out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(len(output)): tape = wp.Tape() with tape: wp.launch(scalar_kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(input.numpy()) if i < 4: expected[0] = 2 elif i < 13: expected[1] = 2 elif i < 29: expected[2] = 2 elif i < 54: expected[3] = 2 else: expected[4] = 2 assert_np_equal(tape.gradients[input].numpy(), expected, tol=tol) tape.reset() tape.zero() input = wp.array(randvals([2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 3 * 2], dtype), requires_grad=True, device=device) output = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 3 * 2, dtype=wptype, requires_grad=True, device=device) wp.launch(component_kernel, dim=1, inputs=[input], outputs=[output], device=device) assert_np_equal(output.numpy(), 2 * input.numpy(), tol=1.0e-6) if dtype in np_float_types: out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(len(output)): tape = wp.Tape() with tape: wp.launch(component_kernel, dim=1, inputs=[input], outputs=[output], device=device) wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(input.numpy()) expected[i] = 2 assert_np_equal(tape.gradients[input].numpy(), expected, tol=tol) tape.reset() tape.zero() def test_identity(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def check_identity_mat( output: wp.array(dtype=wptype), ): m2result = wp.identity(dtype=wptype, n=2) m3result = wp.identity(dtype=wptype, n=3) m4result = wp.identity(dtype=wptype, n=4) m5result = wp.identity(dtype=wptype, n=5) idx = 0 for i in range(2): for j in range(2): output[idx] = wptype(2) * m2result[i, j] idx = idx + 1 for i in range(3): for j in range(3): output[idx] = wptype(2) * m3result[i, j] idx = idx + 1 for i in range(4): for j in range(4): output[idx] = wptype(2) * m4result[i, j] idx = idx + 1 for i in range(5): for j in range(5): output[idx] = wptype(2) * m5result[i, j] idx = idx + 1 id_kernel = getkernel(check_identity_mat, suffix=dtype.__name__) if register_kernels: return output = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device) wp.launch(id_kernel, dim=1, inputs=[], outputs=[output], device=device) assert_np_equal(output.numpy()[:4], 2 * np.eye(2), tol=1.0e-6) assert_np_equal(output.numpy()[4:13], 2 * np.eye(3), tol=1.0e-6) assert_np_equal(output.numpy()[13:29], 2 * np.eye(4), tol=1.0e-6) assert_np_equal(output.numpy()[29:], 2 * np.eye(5), tol=1.0e-6) def test_equivalent_types(test, device, dtype, register_kernels=False): wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] # matrix types mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype) # matrix types equivalent to the above mat22_equiv = wp.types.matrix(shape=(2, 2), dtype=wptype) mat33_equiv = wp.types.matrix(shape=(3, 3), dtype=wptype) mat44_equiv = wp.types.matrix(shape=(4, 4), dtype=wptype) mat55_equiv = wp.types.matrix(shape=(5, 5), dtype=wptype) # declare kernel with original types def check_equivalence( m2: mat22, m3: mat33, m4: mat44, m5: mat55, ): wp.expect_eq(m2, mat22(wptype(42))) wp.expect_eq(m3, mat33(wptype(43))) wp.expect_eq(m4, mat44(wptype(44))) wp.expect_eq(m5, mat55(wptype(45))) wp.expect_eq(m2, mat22_equiv(wptype(42))) wp.expect_eq(m3, mat33_equiv(wptype(43))) wp.expect_eq(m4, mat44_equiv(wptype(44))) wp.expect_eq(m5, mat55_equiv(wptype(45))) kernel = getkernel(check_equivalence, suffix=dtype.__name__) if register_kernels: return # call kernel with equivalent types m2 = mat22_equiv(42) m3 = mat33_equiv(43) m4 = mat44_equiv(44) m5 = mat55_equiv(45) wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5], device=device) def test_conversions(test, device, dtype, register_kernels=False): def check_matrices_equal( m0: wp.mat22, m1: wp.mat22, m2: wp.mat22, m3: wp.mat22, m4: wp.mat22, m5: wp.mat22, m6: wp.mat22, ): wp.expect_eq(m1, m0) wp.expect_eq(m2, m0) wp.expect_eq(m3, m0) wp.expect_eq(m4, m0) wp.expect_eq(m5, m0) wp.expect_eq(m6, m0) kernel = getkernel(check_matrices_equal, suffix=dtype.__name__) if register_kernels: return m0 = wp.mat22(1, 2, 3, 4) # test explicit conversions - constructing matrices from different containers m1 = wp.mat22(((1, 2), (3, 4))) # nested tuples m2 = wp.mat22([[1, 2], [3, 4]]) # nested lists m3 = wp.mat22(np.array([[1, 2], [3, 4]], dtype=dtype)) # 2d array m4 = wp.mat22((1, 2, 3, 4)) # flat tuple m5 = wp.mat22([1, 2, 3, 4]) # flat list m6 = wp.mat22(np.array([1, 2, 3, 4], dtype=dtype)) # 1d array wp.launch(kernel, dim=1, inputs=[m0, m1, m2, m3, m4, m5, m6], device=device) # test implicit conversions - passing different containers as matrices to wp.launch() m1 = ((1, 2), (3, 4)) # nested tuples m2 = [[1, 2], [3, 4]] # nested lists m3 = np.array([[1, 2], [3, 4]], dtype=dtype) # 2d array m4 = (1, 2, 3, 4) # flat tuple m5 = [1, 2, 3, 4] # flat list m6 = np.array([1, 2, 3, 4], dtype=dtype) # 1d array wp.launch(kernel, dim=1, inputs=[m0, m1, m2, m3, m4, m5, m6], device=device) # Test matrix constructors using explicit type (float16) # note that these tests are specifically not using generics / closure # args to create kernels dynamically (like the rest of this file) # as those use different code paths to resolve arg types which # has lead to regressions. @wp.kernel def test_constructors_explicit_precision(): # construction for custom matrix types eye = wp.identity(dtype=wp.float16, n=2) zeros = wp.matrix(shape=(2, 2), dtype=wp.float16) custom = wp.matrix(wp.float16(0.0), wp.float16(1.0), wp.float16(2.0), wp.float16(3.0), shape=(2, 2)) for i in range(2): for j in range(2): if i == j: wp.expect_eq(eye[i, j], wp.float16(1.0)) else: wp.expect_eq(eye[i, j], wp.float16(0.0)) wp.expect_eq(zeros[i, j], wp.float16(0.0)) wp.expect_eq(custom[i, j], wp.float16(i) * wp.float16(2.0) + wp.float16(j)) # Same as above but with a default (float/int) type # which tests some different code paths that # need to ensure types are correctly canonicalized # during codegen @wp.kernel def test_constructors_default_precision(): # construction for default (float) matrix types eye = wp.identity(dtype=float, n=2) zeros = wp.matrix(shape=(2, 2), dtype=float) custom = wp.matrix(0.0, 1.0, 2.0, 3.0, shape=(2, 2)) for i in range(2): for j in range(2): if i == j: wp.expect_eq(eye[i, j], 1.0) else: wp.expect_eq(eye[i, j], 0.0) wp.expect_eq(zeros[i, j], 0.0) wp.expect_eq(custom[i, j], float(i) * 2.0 + float(j)) @wp.kernel def test_matrix_mutation(expected: wp.types.matrix(shape=(10, 3), dtype=float)): m = wp.matrix(shape=(10, 3), dtype=float) # test direct element indexing m[0, 0] = 1.0 m[0, 1] = 2.0 m[0, 2] = 3.0 # The nested indexing (matrix->vector->scalar) below does not # currently modify m because m[0] returns row vector by # value rather than reference, this is different from NumPy # which always returns by ref. Not clear how we can support # this as well as auto-diff. # m[0][1] = 2.0 # m[0][2] = 3.0 # test setting rows for i in range(1, 10): m[i] = m[i - 1] + wp.vec3(1.0, 2.0, 3.0) wp.expect_eq(m, expected) CONSTANT_SHAPE_ROWS = wp.constant(10) CONSTANT_SHAPE_COLS = wp.constant(10) # tests that we can use global constants in shape keyword argument # for matrix constructor @wp.kernel def test_constructors_constant_shape(): m = wp.matrix(shape=(CONSTANT_SHAPE_ROWS, CONSTANT_SHAPE_COLS), dtype=float) for i in range(CONSTANT_SHAPE_ROWS): for j in range(CONSTANT_SHAPE_COLS): m[i, j] = float(i * j) def register(parent): devices = get_test_devices() class TestMat(parent): pass add_kernel_test(TestMat, test_constructors_explicit_precision, dim=1, devices=devices) add_kernel_test(TestMat, test_constructors_default_precision, dim=1, devices=devices) add_kernel_test(TestMat, test_constructors_constant_shape, dim=1, devices=devices) mat103 = wp.types.matrix(shape=(10, 3), dtype=float) add_kernel_test( TestMat, test_matrix_mutation, dim=1, inputs=[ mat103( 1.0, 2.0, 3.0, 2.0, 4.0, 6.0, 3.0, 6.0, 9.0, 4.0, 8.0, 12.0, 5.0, 10.0, 15.0, 6.0, 12.0, 18.0, 7.0, 14.0, 21.0, 8.0, 16.0, 24.0, 9.0, 18.0, 27.0, 10.0, 20.0, 30.0, ) ], devices=devices, ) for dtype in np_signed_int_types + np_float_types: add_function_test_register_kernel( TestMat, f"test_negation_{dtype.__name__}", test_negation, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_subtraction_{dtype.__name__}", test_subtraction, devices=devices, dtype=dtype ) for dtype in np_scalar_types: add_function_test(TestMat, f"test_arrays_{dtype.__name__}", test_arrays, devices=devices, dtype=dtype) add_function_test(TestMat, f"test_components_{dtype.__name__}", test_components, devices=None, dtype=dtype) add_function_test_register_kernel( TestMat, f"test_constructors_{dtype.__name__}", test_constructors, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_anon_type_instance_{dtype.__name__}", test_anon_type_instance, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_identity_{dtype.__name__}", test_identity, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_indexing_{dtype.__name__}", test_indexing, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_equality_{dtype.__name__}", test_equality, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_scalar_multiplication_{dtype.__name__}", test_scalar_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestMat, f"test_matvec_multiplication_{dtype.__name__}", test_matvec_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestMat, f"test_matmat_multiplication_{dtype.__name__}", test_matmat_multiplication, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestMat, f"test_cw_multiplication_{dtype.__name__}", test_cw_multiplication, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_cw_division_{dtype.__name__}", test_cw_division, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_outer_product_{dtype.__name__}", test_outer_product, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_transpose_{dtype.__name__}", test_transpose, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_scalar_division_{dtype.__name__}", test_scalar_division, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_addition_{dtype.__name__}", test_addition, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_ddot_{dtype.__name__}", test_ddot, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_trace_{dtype.__name__}", test_trace, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_diag_{dtype.__name__}", test_diag, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_get_diag_{dtype.__name__}", test_diag, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_equivalent_types_{dtype.__name__}", test_equivalent_types, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_conversions_{dtype.__name__}", test_conversions, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_constants_{dtype.__name__}", test_constants, devices=devices, dtype=dtype ) for dtype in np_float_types: add_function_test_register_kernel( TestMat, f"test_quat_constructor_{dtype.__name__}", test_quat_constructor, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_inverse_{dtype.__name__}", test_inverse, devices=devices, dtype=dtype ) add_function_test_register_kernel(TestMat, f"test_svd_{dtype.__name__}", test_svd, devices=devices, dtype=dtype) add_function_test_register_kernel(TestMat, f"test_qr_{dtype.__name__}", test_qr, devices=devices, dtype=dtype) add_function_test_register_kernel(TestMat, f"test_eig_{dtype.__name__}", test_eig, devices=devices, dtype=dtype) add_function_test_register_kernel( TestMat, f"test_transform_point_{dtype.__name__}", test_transform_point, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_transform_vector_{dtype.__name__}", test_transform_vector, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_determinant_{dtype.__name__}", test_determinant, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestMat, f"test_skew_{dtype.__name__}", test_skew, devices=devices, dtype=dtype ) return TestMat if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2, failfast=True)
warp-main
warp/tests/test_mat.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import math import unittest from typing import Any import numpy as np import warp as wp from warp.tests.test_base import * wp.init() # types to test fabric arrays _fabric_types = [ *wp.types.scalar_types, *[wp.types.vector(2, T) for T in wp.types.scalar_types], *[wp.types.vector(3, T) for T in wp.types.scalar_types], *[wp.types.vector(4, T) for T in wp.types.scalar_types], *[wp.types.matrix((2, 2), T) for T in wp.types.scalar_types], *[wp.types.matrix((3, 3), T) for T in wp.types.scalar_types], *[wp.types.matrix((4, 4), T) for T in wp.types.scalar_types], *[wp.types.quaternion(T) for T in wp.types.float_types], ] def _warp_type_to_fabric(dtype, is_array=False): scalar_map = { wp.bool: "b", wp.int8: "i1", wp.int16: "i2", wp.int32: "i4", wp.int64: "i8", wp.uint8: "u1", wp.uint16: "u2", wp.uint32: "u4", wp.uint64: "u8", wp.float16: "f2", wp.float32: "f4", wp.float64: "f8", } if hasattr(dtype, "_wp_scalar_type_"): type_str = scalar_map[dtype._wp_scalar_type_] if len(dtype._shape_) == 1: role = "vector" else: role = "matrix" else: type_str = scalar_map[dtype] role = "" if is_array: array_depth = 1 else: array_depth = 0 return (True, type_str, dtype._length_, array_depth, role) # returns a fabric array interface constructed from a regular array def _create_fabric_array_interface(data: wp.array, attrib: str, bucket_sizes: list = None, copy=False): assert isinstance(data, wp.array) assert data.ndim == 1 assert isinstance(attrib, str) if copy: data = wp.clone(data) if bucket_sizes is not None: assert hasattr(bucket_sizes, "__len__") # verify total size total_size = 0 for bucket_size in bucket_sizes: total_size += bucket_size if total_size != data.size: raise RuntimeError("Bucket sizes don't add up to the size of data array") elif data.size > 0: # generate random bucket sizes bucket_min = 1 bucket_max = math.ceil(0.5 * data.size) total_size = data.size size_remaining = total_size bucket_sizes = [] while size_remaining >= bucket_max: bucket_size = np.random.randint(bucket_min, bucket_max) bucket_sizes.append(bucket_size) size_remaining -= bucket_size if size_remaining > 0: bucket_sizes.append(size_remaining) else: # empty data array bucket_sizes = [] dtype_size = wp.types.type_size_in_bytes(data.dtype) p = int(data.ptr) if data.ptr else 0 pointers = [] counts = [] for bucket_size in bucket_sizes: pointers.append(p) counts.append(bucket_size) p += bucket_size * dtype_size attrib_info = {} attrib_info["type"] = _warp_type_to_fabric(data.dtype) attrib_info["access"] = 2 # ReadWrite attrib_info["pointers"] = pointers attrib_info["counts"] = counts iface = {} iface["version"] = 1 iface["device"] = str(data.device) iface["attribs"] = {attrib: attrib_info} iface["_ref"] = data # backref to keep the array alive return iface # returns a fabric array array interface constructed from a list of regular arrays def _create_fabric_array_array_interface(data: list, attrib: str, bucket_sizes: list = None): # data should be a list of arrays assert isinstance(data, list) num_arrays = len(data) assert num_arrays > 0 device = data[0].device dtype = data[0].dtype assert isinstance(attrib, str) if bucket_sizes is not None: assert hasattr(bucket_sizes, "__len__") # verify total size total_size = 0 for bucket_size in bucket_sizes: total_size += bucket_size if total_size != num_arrays: raise RuntimeError("Bucket sizes don't add up to the number of given arrays") else: # generate random bucket sizes bucket_min = 1 bucket_max = math.ceil(0.5 * num_arrays) total_size = num_arrays size_remaining = total_size bucket_sizes = [] while size_remaining >= bucket_max: bucket_size = np.random.randint(bucket_min, bucket_max) bucket_sizes.append(bucket_size) size_remaining -= bucket_size if size_remaining > 0: bucket_sizes.append(size_remaining) # initialize array of pointers to arrays and their lengths _array_pointers = [] _array_lengths = [] for i in range(num_arrays): _array_pointers.append(data[i].ptr) _array_lengths.append(data[i].size) array_pointers = wp.array(_array_pointers, dtype=wp.uint64, device=device) pointer_size = wp.types.type_size_in_bytes(array_pointers.dtype) lengths = wp.array(_array_lengths, dtype=wp.uint64, device=device) length_size = wp.types.type_size_in_bytes(lengths.dtype) p_pointers = int(array_pointers.ptr) p_lengths = int(lengths.ptr) pointers = [] counts = [] array_lengths = [] for bucket_size in bucket_sizes: pointers.append(p_pointers) counts.append(bucket_size) array_lengths.append(p_lengths) p_pointers += bucket_size * pointer_size p_lengths += bucket_size * length_size attrib_info = {} attrib_info["type"] = _warp_type_to_fabric(dtype, is_array=True) attrib_info["access"] = 2 # ReadWrite attrib_info["pointers"] = pointers attrib_info["counts"] = counts attrib_info["array_lengths"] = array_lengths iface = {} iface["version"] = 1 iface["device"] = str(device) iface["attribs"] = {attrib: attrib_info} iface["_ref"] = data # backref to keep the data arrays alive iface["_ref_pointers"] = array_pointers # backref to keep the array pointers alive iface["_ref_lengths"] = lengths # backref to keep the lengths array alive return iface @wp.kernel def fa_kernel(a: wp.fabricarray(dtype=float), expected: wp.array(dtype=float)): i = wp.tid() wp.expect_eq(a[i], expected[i]) a[i] = 2.0 * a[i] wp.atomic_add(a, i, 1.0) wp.expect_eq(a[i], 2.0 * expected[i] + 1.0) @wp.kernel def fa_kernel_indexed(a: wp.indexedfabricarray(dtype=float), expected: wp.indexedarray(dtype=float)): i = wp.tid() wp.expect_eq(a[i], expected[i]) a[i] = 2.0 * a[i] wp.atomic_add(a, i, 1.0) wp.expect_eq(a[i], 2.0 * expected[i] + 1.0) def test_fabricarray_kernel(test, device): data = wp.array(data=np.arange(100, dtype=np.float32), device=device) iface = _create_fabric_array_interface(data, "foo", copy=True) fa = wp.fabricarray(data=iface, attrib="foo") test.assertEqual(fa.dtype, data.dtype) test.assertEqual(fa.ndim, 1) test.assertEqual(fa.shape, data.shape) test.assertEqual(fa.size, data.size) wp.launch(fa_kernel, dim=fa.size, inputs=[fa, data], device=device) # reset data wp.copy(fa, data) # test indexed indices = wp.array(data=np.arange(1, data.size, 2, dtype=np.int32), device=device) ifa = fa[indices] idata = data[indices] test.assertEqual(ifa.dtype, idata.dtype) test.assertEqual(ifa.ndim, 1) test.assertEqual(ifa.shape, idata.shape) test.assertEqual(ifa.size, idata.size) wp.launch(fa_kernel_indexed, dim=ifa.size, inputs=[ifa, idata], device=device) wp.synchronize_device(device) @wp.kernel def fa_generic_dtype_kernel(a: wp.fabricarray(dtype=Any), b: wp.fabricarray(dtype=Any)): i = wp.tid() b[i] = a[i] + a[i] @wp.kernel def fa_generic_dtype_kernel_indexed(a: wp.indexedfabricarray(dtype=Any), b: wp.indexedfabricarray(dtype=Any)): i = wp.tid() b[i] = a[i] + a[i] def test_fabricarray_generic_dtype(test, device): for T in _fabric_types: if hasattr(T, "_wp_scalar_type_"): nptype = wp.types.warp_type_to_np_dtype[T._wp_scalar_type_] else: nptype = wp.types.warp_type_to_np_dtype[T] data = wp.array(data=np.arange(10, dtype=nptype), device=device) data_iface = _create_fabric_array_interface(data, "foo", copy=True) fa = wp.fabricarray(data=data_iface, attrib="foo") result = wp.zeros_like(data) result_iface = _create_fabric_array_interface(result, "foo", copy=True) fb = wp.fabricarray(data=result_iface, attrib="foo") test.assertEqual(fa.dtype, fb.dtype) test.assertEqual(fa.ndim, fb.ndim) test.assertEqual(fa.shape, fb.shape) test.assertEqual(fa.size, fb.size) wp.launch(fa_generic_dtype_kernel, dim=fa.size, inputs=[fa, fb], device=device) assert_np_equal(fb.numpy(), 2 * fa.numpy()) # reset data wp.copy(fa, data) wp.copy(fb, result) # test indexed indices = wp.array(data=np.arange(1, data.size, 2, dtype=np.int32), device=device) ifa = fa[indices] ifb = fb[indices] test.assertEqual(ifa.dtype, ifb.dtype) test.assertEqual(ifa.ndim, ifb.ndim) test.assertEqual(ifa.shape, ifb.shape) test.assertEqual(ifa.size, ifb.size) wp.launch(fa_generic_dtype_kernel_indexed, dim=ifa.size, inputs=[ifa, ifb], device=device) assert_np_equal(ifb.numpy(), 2 * ifa.numpy()) @wp.kernel def fa_generic_array_kernel(a: Any, b: Any): i = wp.tid() b[i] = a[i] + a[i] def test_fabricarray_generic_array(test, device): for T in _fabric_types: if hasattr(T, "_wp_scalar_type_"): nptype = wp.types.warp_type_to_np_dtype[T._wp_scalar_type_] else: nptype = wp.types.warp_type_to_np_dtype[T] data = wp.array(data=np.arange(100, dtype=nptype), device=device) data_iface = _create_fabric_array_interface(data, "foo", copy=True) fa = wp.fabricarray(data=data_iface, attrib="foo") result = wp.zeros_like(data) result_iface = _create_fabric_array_interface(result, "foo", copy=True) fb = wp.fabricarray(data=result_iface, attrib="foo") test.assertEqual(fa.dtype, fb.dtype) test.assertEqual(fa.ndim, fb.ndim) test.assertEqual(fa.shape, fb.shape) test.assertEqual(fa.size, fb.size) wp.launch(fa_generic_array_kernel, dim=fa.size, inputs=[fa, fb], device=device) assert_np_equal(fb.numpy(), 2 * fa.numpy()) # reset data wp.copy(fa, data) wp.copy(fb, result) # test indexed indices = wp.array(data=np.arange(1, data.size, 2, dtype=np.int32), device=device) ifa = fa[indices] ifb = fb[indices] test.assertEqual(ifa.dtype, ifb.dtype) test.assertEqual(ifa.ndim, ifb.ndim) test.assertEqual(ifa.shape, ifb.shape) test.assertEqual(ifa.size, ifb.size) wp.launch(fa_generic_array_kernel, dim=ifa.size, inputs=[ifa, ifb], device=device) assert_np_equal(ifb.numpy(), 2 * ifa.numpy()) def test_fabricarray_empty(test, device): # Test whether common operations work with empty (zero-sized) indexed arrays # without throwing exceptions. def test_empty_ops(nrows, ncols, wptype, nptype): # scalar, vector, or matrix if ncols > 0: if nrows > 0: wptype = wp.types.matrix((nrows, ncols), wptype) else: wptype = wp.types.vector(ncols, wptype) dtype_shape = wptype._shape_ else: dtype_shape = () fill_value = wptype(42) # create an empty data array data = wp.empty(0, dtype=wptype, device=device) iface = _create_fabric_array_interface(data, "foo", copy=True) fa = wp.fabricarray(data=iface, attrib="foo") test.assertEqual(fa.size, 0) test.assertEqual(fa.shape, (0,)) # all of these methods should succeed with zero-sized arrays fa.zero_() fa.fill_(fill_value) fb = fa.contiguous() fb = wp.empty_like(fa) fb = wp.zeros_like(fa) fb = wp.full_like(fa, fill_value) fb = wp.clone(fa) wp.copy(fa, fb) fa.assign(fb) na = fa.numpy() test.assertEqual(na.size, 0) test.assertEqual(na.shape, (0, *dtype_shape)) test.assertEqual(na.dtype, nptype) test.assertEqual(fa.list(), []) # test indexed # create a zero-sized array of indices indices = wp.empty(0, dtype=int, device=device) ifa = fa[indices] test.assertEqual(ifa.size, 0) test.assertEqual(ifa.shape, (0,)) # all of these methods should succeed with zero-sized arrays ifa.zero_() ifa.fill_(fill_value) ifb = ifa.contiguous() ifb = wp.empty_like(ifa) ifb = wp.zeros_like(ifa) ifb = wp.full_like(ifa, fill_value) ifb = wp.clone(ifa) wp.copy(ifa, ifb) ifa.assign(ifb) na = ifa.numpy() test.assertEqual(na.size, 0) test.assertEqual(na.shape, (0, *dtype_shape)) test.assertEqual(na.dtype, nptype) test.assertEqual(ifa.list(), []) # test with scalars, vectors, and matrices for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # scalars test_empty_ops(0, 0, wptype, nptype) for ncols in [2, 3, 4, 5]: # vectors test_empty_ops(0, ncols, wptype, nptype) # square matrices (the Fabric interface only supports square matrices right now) test_empty_ops(ncols, ncols, wptype, nptype) def test_fabricarray_fill_scalar(test, device): for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # create a data array data = wp.zeros(100, dtype=wptype, device=device) iface = _create_fabric_array_interface(data, "foo", copy=True) fa = wp.fabricarray(data=iface, attrib="foo") assert_np_equal(fa.numpy(), np.zeros(fa.shape, dtype=nptype)) # fill with int value fill_value = 42 fa.fill_(fill_value) assert_np_equal(fa.numpy(), np.full(fa.shape, fill_value, dtype=nptype)) fa.zero_() assert_np_equal(fa.numpy(), np.zeros(fa.shape, dtype=nptype)) if wptype in wp.types.float_types: # fill with float value fill_value = 13.37 fa.fill_(fill_value) assert_np_equal(fa.numpy(), np.full(fa.shape, fill_value, dtype=nptype)) # fill with Warp scalar value fill_value = wptype(17) fa.fill_(fill_value) assert_np_equal(fa.numpy(), np.full(fa.shape, fill_value.value, dtype=nptype)) # reset data wp.copy(fa, data) # test indexed indices1 = wp.array(data=np.arange(1, data.size, 2, dtype=np.int32), device=device) ifa = fa[indices1] # ensure that the other indices remain unchanged indices2 = wp.array(data=np.arange(0, data.size, 2, dtype=np.int32), device=device) ifb = fa[indices2] assert_np_equal(ifa.numpy(), np.zeros(ifa.shape, dtype=nptype)) assert_np_equal(ifb.numpy(), np.zeros(ifb.shape, dtype=nptype)) # fill with int value fill_value = 42 ifa.fill_(fill_value) assert_np_equal(ifa.numpy(), np.full(ifa.shape, fill_value, dtype=nptype)) assert_np_equal(ifb.numpy(), np.zeros(ifb.shape, dtype=nptype)) ifa.zero_() assert_np_equal(ifa.numpy(), np.zeros(ifa.shape, dtype=nptype)) assert_np_equal(ifb.numpy(), np.zeros(ifb.shape, dtype=nptype)) if wptype in wp.types.float_types: # fill with float value fill_value = 13.37 ifa.fill_(fill_value) assert_np_equal(ifa.numpy(), np.full(ifa.shape, fill_value, dtype=nptype)) assert_np_equal(ifb.numpy(), np.zeros(ifb.shape, dtype=nptype)) # fill with Warp scalar value fill_value = wptype(17) ifa.fill_(fill_value) assert_np_equal(ifa.numpy(), np.full(ifa.shape, fill_value.value, dtype=nptype)) assert_np_equal(ifb.numpy(), np.zeros(ifb.shape, dtype=nptype)) def test_fabricarray_fill_vector(test, device): # test filling a vector array with scalar or vector values (vec_type, list, or numpy array) for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # vector types vector_types = [ wp.types.vector(2, wptype), wp.types.vector(3, wptype), wp.types.vector(4, wptype), wp.types.vector(5, wptype), ] for vec_type in vector_types: vec_len = vec_type._length_ data = wp.zeros(100, dtype=vec_type, device=device) iface = _create_fabric_array_interface(data, "foo", copy=True) fa = wp.fabricarray(data=iface, attrib="foo") assert_np_equal(fa.numpy(), np.zeros((*fa.shape, vec_len), dtype=nptype)) # fill with int scalar fill_value = 42 fa.fill_(fill_value) assert_np_equal(fa.numpy(), np.full((*fa.shape, vec_len), fill_value, dtype=nptype)) # test zeroing fa.zero_() assert_np_equal(fa.numpy(), np.zeros((*fa.shape, vec_len), dtype=nptype)) # vector values can be passed as a list, numpy array, or Warp vector instance fill_list = [17, 42, 99, 101, 127][:vec_len] fill_arr = np.array(fill_list, dtype=nptype) fill_vec = vec_type(fill_list) expected = np.tile(fill_arr, fa.size).reshape((*fa.shape, vec_len)) # fill with list of vector length fa.fill_(fill_list) assert_np_equal(fa.numpy(), expected) # clear fa.zero_() # fill with numpy array of vector length fa.fill_(fill_arr) assert_np_equal(fa.numpy(), expected) # clear fa.zero_() # fill with vec instance fa.fill_(fill_vec) assert_np_equal(fa.numpy(), expected) if wptype in wp.types.float_types: # fill with float scalar fill_value = 13.37 fa.fill_(fill_value) assert_np_equal(fa.numpy(), np.full((*fa.shape, vec_len), fill_value, dtype=nptype)) # fill with float list of vector length fill_list = [-2.5, -1.25, 1.25, 2.5, 5.0][:vec_len] fa.fill_(fill_list) expected = np.tile(np.array(fill_list, dtype=nptype), fa.size).reshape((*fa.shape, vec_len)) assert_np_equal(fa.numpy(), expected) # reset data wp.copy(fa, data) # test indexed indices1 = wp.array(data=np.arange(1, data.size, 2, dtype=np.int32), device=device) ifa = fa[indices1] # ensure that the other indices remain unchanged indices2 = wp.array(data=np.arange(0, data.size, 2, dtype=np.int32), device=device) ifb = fa[indices2] assert_np_equal(ifa.numpy(), np.zeros((*ifa.shape, vec_len), dtype=nptype)) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype)) # fill with int scalar fill_value = 42 ifa.fill_(fill_value) assert_np_equal(ifa.numpy(), np.full((*ifa.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype)) # test zeroing ifa.zero_() assert_np_equal(ifa.numpy(), np.zeros((*ifa.shape, vec_len), dtype=nptype)) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype)) # vector values can be passed as a list, numpy array, or Warp vector instance fill_list = [17, 42, 99, 101, 127][:vec_len] fill_arr = np.array(fill_list, dtype=nptype) fill_vec = vec_type(fill_list) expected = np.tile(fill_arr, ifa.size).reshape((*ifa.shape, vec_len)) # fill with list of vector length ifa.fill_(fill_list) assert_np_equal(ifa.numpy(), expected) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype)) # clear ifa.zero_() # fill with numpy array of vector length ifa.fill_(fill_arr) assert_np_equal(ifa.numpy(), expected) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype)) # clear ifa.zero_() # fill with vec instance ifa.fill_(fill_vec) assert_np_equal(ifa.numpy(), expected) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype)) if wptype in wp.types.float_types: # fill with float scalar fill_value = 13.37 ifa.fill_(fill_value) assert_np_equal(ifa.numpy(), np.full((*ifa.shape, vec_len), fill_value, dtype=nptype)) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype)) # fill with float list of vector length fill_list = [-2.5, -1.25, 1.25, 2.5, 5.0][:vec_len] ifa.fill_(fill_list) expected = np.tile(np.array(fill_list, dtype=nptype), ifa.size).reshape((*ifa.shape, vec_len)) assert_np_equal(ifa.numpy(), expected) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype)) def test_fabricarray_fill_matrix(test, device): # test filling a matrix array with scalar or matrix values (mat_type, nested list, or 2d numpy array) for nptype, wptype in wp.types.np_dtype_to_warp_type.items(): # matrix types matrix_types = [ # square matrices only wp.types.matrix((2, 2), wptype), wp.types.matrix((3, 3), wptype), wp.types.matrix((4, 4), wptype), wp.types.matrix((5, 5), wptype), ] for mat_type in matrix_types: mat_len = mat_type._length_ mat_shape = mat_type._shape_ data = wp.zeros(100, dtype=mat_type, device=device) iface = _create_fabric_array_interface(data, "foo", copy=True) fa = wp.fabricarray(data=iface, attrib="foo") assert_np_equal(fa.numpy(), np.zeros((*fa.shape, *mat_shape), dtype=nptype)) # fill with scalar fill_value = 42 fa.fill_(fill_value) assert_np_equal(fa.numpy(), np.full((*fa.shape, *mat_shape), fill_value, dtype=nptype)) # test zeroing fa.zero_() assert_np_equal(fa.numpy(), np.zeros((*fa.shape, *mat_shape), dtype=nptype)) # matrix values can be passed as a 1d numpy array, 2d numpy array, flat list, nested list, or Warp matrix instance if wptype != wp.bool: fill_arr1 = np.arange(mat_len, dtype=nptype) else: fill_arr1 = np.ones(mat_len, dtype=nptype) fill_arr2 = fill_arr1.reshape(mat_shape) fill_list1 = list(fill_arr1) fill_list2 = [list(row) for row in fill_arr2] fill_mat = mat_type(fill_arr1) expected = np.tile(fill_arr1, fa.size).reshape((*fa.shape, *mat_shape)) # fill with 1d numpy array fa.fill_(fill_arr1) assert_np_equal(fa.numpy(), expected) # clear fa.zero_() # fill with 2d numpy array fa.fill_(fill_arr2) assert_np_equal(fa.numpy(), expected) # clear fa.zero_() # fill with flat list fa.fill_(fill_list1) assert_np_equal(fa.numpy(), expected) # clear fa.zero_() # fill with nested list fa.fill_(fill_list2) assert_np_equal(fa.numpy(), expected) # clear fa.zero_() # fill with mat instance fa.fill_(fill_mat) assert_np_equal(fa.numpy(), expected) # reset data wp.copy(fa, data) # test indexed indices1 = wp.array(data=np.arange(1, data.size, 2, dtype=np.int32), device=device) ifa = fa[indices1] # ensure that the other indices remain unchanged indices2 = wp.array(data=np.arange(0, data.size, 2, dtype=np.int32), device=device) ifb = fa[indices2] assert_np_equal(ifa.numpy(), np.zeros((*ifa.shape, *mat_shape), dtype=nptype)) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype)) # fill with scalar fill_value = 42 ifa.fill_(fill_value) assert_np_equal(ifa.numpy(), np.full((*ifa.shape, *mat_shape), fill_value, dtype=nptype)) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype)) # test zeroing ifa.zero_() assert_np_equal(ifa.numpy(), np.zeros((*ifa.shape, *mat_shape), dtype=nptype)) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype)) # matrix values can be passed as a 1d numpy array, 2d numpy array, flat list, nested list, or Warp matrix instance if wptype != wp.bool: fill_arr1 = np.arange(mat_len, dtype=nptype) else: fill_arr1 = np.ones(mat_len, dtype=nptype) fill_arr2 = fill_arr1.reshape(mat_shape) fill_list1 = list(fill_arr1) fill_list2 = [list(row) for row in fill_arr2] fill_mat = mat_type(fill_arr1) expected = np.tile(fill_arr1, ifa.size).reshape((*ifa.shape, *mat_shape)) # fill with 1d numpy array ifa.fill_(fill_arr1) assert_np_equal(ifa.numpy(), expected) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype)) # clear ifa.zero_() # fill with 2d numpy array ifa.fill_(fill_arr2) assert_np_equal(ifa.numpy(), expected) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype)) # clear ifa.zero_() # fill with flat list ifa.fill_(fill_list1) assert_np_equal(ifa.numpy(), expected) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype)) # clear ifa.zero_() # fill with nested list ifa.fill_(fill_list2) assert_np_equal(ifa.numpy(), expected) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype)) # clear ifa.zero_() # fill with mat instance ifa.fill_(fill_mat) assert_np_equal(ifa.numpy(), expected) assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype)) @wp.kernel def fa_generic_sums_kernel(a: wp.fabricarrayarray(dtype=Any), sums: wp.array(dtype=Any)): i = wp.tid() # get sub-array using wp::view() row = a[i] # get sub-array length count = row.shape[0] # compute sub-array sum for j in range(count): sums[i] = sums[i] + row[j] @wp.kernel def fa_generic_sums_kernel_indexed(a: wp.indexedfabricarrayarray(dtype=Any), sums: wp.array(dtype=Any)): i = wp.tid() # get sub-array using wp::view() row = a[i] # get sub-array length count = row.shape[0] # compute sub-array sum for j in range(count): sums[i] = sums[i] + row[j] def test_fabricarrayarray(test, device): for T in _fabric_types: if hasattr(T, "_wp_scalar_type_"): nptype = wp.types.warp_type_to_np_dtype[T._wp_scalar_type_] else: nptype = wp.types.warp_type_to_np_dtype[T] n = 100 min_length = 1 max_length = 10 arrays = [] expected_sums = [] expected_sums_indexed = [] # generate data arrays length = min_length for i in range(n): if length > max_length: length = min_length na = np.arange(1, length + 1, dtype=nptype) arrays.append(wp.array(data=na, device=device)) expected_sums.append(na.sum()) # every second index if i % 2 == 0: expected_sums_indexed.append(na.sum()) length += 1 data_iface = _create_fabric_array_array_interface(arrays, "foo") fa = wp.fabricarrayarray(data=data_iface, attrib="foo") sums = wp.zeros_like(fa) test.assertEqual(fa.dtype, sums.dtype) test.assertEqual(fa.ndim, 2) test.assertEqual(sums.ndim, 1) test.assertEqual(fa.shape, sums.shape) test.assertEqual(fa.size, sums.size) wp.launch(fa_generic_sums_kernel, dim=fa.size, inputs=[fa, sums], device=device) assert_np_equal(sums.numpy(), np.array(expected_sums, dtype=nptype)) # test indexed indices = wp.array(data=np.arange(0, n, 2, dtype=np.int32), device=device) ifa = fa[indices] sums = wp.zeros_like(ifa) test.assertEqual(ifa.dtype, sums.dtype) test.assertEqual(ifa.ndim, 2) test.assertEqual(sums.ndim, 1) test.assertEqual(ifa.shape, sums.shape) test.assertEqual(ifa.size, sums.size) wp.launch(fa_generic_sums_kernel_indexed, dim=ifa.size, inputs=[ifa, sums], device=device) assert_np_equal(sums.numpy(), np.array(expected_sums_indexed, dtype=nptype)) # explicit kernel overloads for T in _fabric_types: wp.overload(fa_generic_dtype_kernel, [wp.fabricarray(dtype=T), wp.fabricarray(dtype=T)]) wp.overload(fa_generic_dtype_kernel_indexed, [wp.indexedfabricarray(dtype=T), wp.indexedfabricarray(dtype=T)]) wp.overload(fa_generic_array_kernel, [wp.fabricarray(dtype=T), wp.fabricarray(dtype=T)]) wp.overload(fa_generic_array_kernel, [wp.indexedfabricarray(dtype=T), wp.indexedfabricarray(dtype=T)]) wp.overload(fa_generic_sums_kernel, [wp.fabricarrayarray(dtype=T), wp.array(dtype=T)]) wp.overload(fa_generic_sums_kernel_indexed, [wp.indexedfabricarrayarray(dtype=T), wp.array(dtype=T)]) def register(parent): devices = get_test_devices() class TestFabricArray(parent): pass # fabric arrays add_function_test(TestFabricArray, "test_fabricarray_kernel", test_fabricarray_kernel, devices=devices) add_function_test(TestFabricArray, "test_fabricarray_empty", test_fabricarray_empty, devices=devices) add_function_test( TestFabricArray, "test_fabricarray_generic_dtype", test_fabricarray_generic_dtype, devices=devices ) add_function_test( TestFabricArray, "test_fabricarray_generic_array", test_fabricarray_generic_array, devices=devices ) add_function_test(TestFabricArray, "test_fabricarray_fill_scalar", test_fabricarray_fill_scalar, devices=devices) add_function_test(TestFabricArray, "test_fabricarray_fill_vector", test_fabricarray_fill_vector, devices=devices) add_function_test(TestFabricArray, "test_fabricarray_fill_matrix", test_fabricarray_fill_matrix, devices=devices) # fabric arrays of arrays add_function_test(TestFabricArray, "test_fabricarrayarray", test_fabricarrayarray, devices=devices) return TestFabricArray if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_fabricarray.py
# This file is used to test reloading module references. import warp as wp wp.init() @wp.func def more_magic(): return 2.0
warp-main
warp/tests/test_reference_reference.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp from warp.tests.test_base import * wp.init() np_signed_int_types = [ np.int8, np.int16, np.int32, np.int64, np.byte, ] np_unsigned_int_types = [ np.uint8, np.uint16, np.uint32, np.uint64, np.ubyte, ] np_int_types = np_signed_int_types + np_unsigned_int_types np_float_types = [np.float16, np.float32, np.float64] np_scalar_types = np_int_types + np_float_types def randvals(shape, dtype): if dtype in np_float_types: return np.random.randn(*shape).astype(dtype) elif dtype in [np.int8, np.uint8, np.byte, np.ubyte]: return np.random.randint(1, 3, size=shape, dtype=dtype) return np.random.randint(1, 5, size=shape, dtype=dtype) kernel_cache = dict() def getkernel(func, suffix=""): module = wp.get_module(func.__module__) key = func.__name__ + "_" + suffix if key not in kernel_cache: kernel_cache[key] = wp.Kernel(func=func, key=key, module=module) return kernel_cache[key] def get_select_kernel(dtype): def output_select_kernel_fn( input: wp.array(dtype=dtype), index: int, out: wp.array(dtype=dtype), ): out[0] = input[index] return getkernel(output_select_kernel_fn, suffix=dtype.__name__) def get_select_kernel2(dtype): def output_select_kernel2_fn( input: wp.array(dtype=dtype, ndim=2), index0: int, index1: int, out: wp.array(dtype=dtype), ): out[0] = input[index0, index1] return getkernel(output_select_kernel2_fn, suffix=dtype.__name__) def test_arrays(test, device, dtype): np.random.seed(123) tol = { np.float16: 1.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] arr_np = randvals((10, 5), dtype) arr = wp.array(arr_np, dtype=wptype, requires_grad=True, device=device) assert_np_equal(arr.numpy(), arr_np, tol=tol) def test_unary_ops(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def check_unary( inputs: wp.array(dtype=wptype, ndim=2), outputs: wp.array(dtype=wptype, ndim=2), ): for i in range(10): i0 = inputs[0, i] i1 = inputs[1, i] i2 = inputs[2, i] i3 = inputs[3, i] i4 = inputs[4, i] # multiply outputs by 2 so we've got something to backpropagate: outputs[0, i] = wptype(2.0) * (+i0) outputs[1, i] = wptype(2.0) * (-i1) outputs[2, i] = wptype(2.0) * wp.sign(i2) outputs[3, i] = wptype(2.0) * wp.abs(i3) outputs[4, i] = wptype(2.0) * wp.step(i4) kernel = getkernel(check_unary, suffix=dtype.__name__) output_select_kernel = get_select_kernel2(wptype) if register_kernels: return if dtype in np_float_types: inputs = wp.array(np.random.randn(5, 10).astype(dtype), dtype=wptype, requires_grad=True, device=device) else: inputs = wp.array( np.random.randint(-2, 3, size=(5, 10), dtype=dtype), dtype=wptype, requires_grad=True, device=device ) outputs = wp.zeros_like(inputs) wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) assert_np_equal(outputs.numpy()[0], 2 * inputs.numpy()[0], tol=tol) assert_np_equal(outputs.numpy()[1], -2 * inputs.numpy()[1], tol=tol) expected = 2 * np.sign(inputs.numpy()[2]) expected[expected == 0] = 2 assert_np_equal(outputs.numpy()[2], expected, tol=tol) assert_np_equal(outputs.numpy()[3], 2 * np.abs(inputs.numpy()[3]), tol=tol) assert_np_equal(outputs.numpy()[4], 2 * (1 - np.heaviside(inputs.numpy()[4], 1)), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) if dtype in np_float_types: for i in range(10): # grad of 2x: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 0, i], outputs=[out], device=device) tape.backward(loss=out) expected_grads = np.zeros_like(inputs.numpy()) expected_grads[0, i] = 2 assert_np_equal(tape.gradients[inputs].numpy(), expected_grads, tol=tol) tape.zero() # grad of -2x: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 1, i], outputs=[out], device=device) tape.backward(loss=out) expected_grads = np.zeros_like(inputs.numpy()) expected_grads[1, i] = -2 assert_np_equal(tape.gradients[inputs].numpy(), expected_grads, tol=tol) tape.zero() # grad of 2 * sign(x): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 2, i], outputs=[out], device=device) tape.backward(loss=out) expected_grads = np.zeros_like(inputs.numpy()) assert_np_equal(tape.gradients[inputs].numpy(), expected_grads, tol=tol) tape.zero() # grad of 2 * abs(x): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 3, i], outputs=[out], device=device) tape.backward(loss=out) expected_grads = np.zeros_like(inputs.numpy()) expected_grads[3, i] = 2 * np.sign(inputs.numpy()[3, i]) assert_np_equal(tape.gradients[inputs].numpy(), expected_grads, tol=tol) tape.zero() # grad of 2 * step(x): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 4, i], outputs=[out], device=device) tape.backward(loss=out) expected_grads = np.zeros_like(inputs.numpy()) assert_np_equal(tape.gradients[inputs].numpy(), expected_grads, tol=tol) tape.zero() def test_nonzero(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def check_nonzero( inputs: wp.array(dtype=wptype), outputs: wp.array(dtype=wptype), ): for i in range(10): i0 = inputs[i] outputs[i] = wp.nonzero(i0) kernel = getkernel(check_nonzero, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return inputs = wp.array(np.random.randint(-2, 3, size=10).astype(dtype), dtype=wptype, requires_grad=True, device=device) outputs = wp.zeros_like(inputs) wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) assert_np_equal(outputs.numpy(), (inputs.numpy() != 0)) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) if dtype in np_float_types: for i in range(10): # grad should just be zero: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, i], outputs=[out], device=device) tape.backward(loss=out) expected_grads = np.zeros_like(inputs.numpy()) assert_np_equal(tape.gradients[inputs].numpy(), expected_grads, tol=tol) tape.zero() def test_binary_ops(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def check_binary_ops( in1: wp.array(dtype=wptype, ndim=2), in2: wp.array(dtype=wptype, ndim=2), outputs: wp.array(dtype=wptype, ndim=2), ): for i in range(10): i0 = in1[0, i] i1 = in1[1, i] i2 = in1[2, i] i3 = in1[3, i] i4 = in1[4, i] i5 = in1[5, i] i6 = in1[6, i] i7 = in1[7, i] j0 = in2[0, i] j1 = in2[1, i] j2 = in2[2, i] j3 = in2[3, i] j4 = in2[4, i] j5 = in2[5, i] j6 = in2[6, i] j7 = in2[7, i] outputs[0, i] = wptype(2) * wp.mul(i0, j0) outputs[1, i] = wptype(2) * wp.div(i1, j1) outputs[2, i] = wptype(2) * wp.add(i2, j2) outputs[3, i] = wptype(2) * wp.sub(i3, j3) outputs[4, i] = wptype(2) * wp.mod(i4, j4) outputs[5, i] = wptype(2) * wp.min(i5, j5) outputs[6, i] = wptype(2) * wp.max(i6, j6) outputs[7, i] = wptype(2) * wp.floordiv(i7, j7) kernel = getkernel(check_binary_ops, suffix=dtype.__name__) output_select_kernel = get_select_kernel2(wptype) if register_kernels: return vals1 = randvals([8, 10], dtype) if dtype in [np_unsigned_int_types]: vals2 = vals1 + randvals([8, 10], dtype) else: vals2 = np.abs(randvals([8, 10], dtype)) in1 = wp.array(vals1, dtype=wptype, requires_grad=True, device=device) in2 = wp.array(vals2, dtype=wptype, requires_grad=True, device=device) outputs = wp.zeros_like(in1) wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device) assert_np_equal(outputs.numpy()[0], 2 * in1.numpy()[0] * in2.numpy()[0], tol=tol) if dtype in np_float_types: assert_np_equal(outputs.numpy()[1], 2 * in1.numpy()[1] / (in2.numpy()[1]), tol=tol) else: assert_np_equal(outputs.numpy()[1], 2 * (in1.numpy()[1] // (in2.numpy()[1])), tol=tol) assert_np_equal(outputs.numpy()[2], 2 * (in1.numpy()[2] + (in2.numpy()[2])), tol=tol) assert_np_equal(outputs.numpy()[3], 2 * (in1.numpy()[3] - (in2.numpy()[3])), tol=tol) # ...so this is actually the desired behaviour right? Looks like wp.mod doesn't behave like # python's % operator or np.mod()... assert_np_equal( outputs.numpy()[4], 2 * ( (in1.numpy()[4]) - (in2.numpy()[4]) * np.sign(in1.numpy()[4]) * np.floor(np.abs(in1.numpy()[4]) / (in2.numpy()[4])) ), tol=tol, ) assert_np_equal(outputs.numpy()[5], 2 * np.minimum(in1.numpy()[5], in2.numpy()[5]), tol=tol) assert_np_equal(outputs.numpy()[6], 2 * np.maximum(in1.numpy()[6], in2.numpy()[6]), tol=tol) assert_np_equal(outputs.numpy()[7], 2 * np.floor_divide(in1.numpy()[7], in2.numpy()[7]), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) if dtype in np_float_types: for i in range(10): # multiplication: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 0, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(in1.numpy()) expected[0, i] = 2.0 * in2.numpy()[0, i] assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol) expected[0, i] = 2.0 * in1.numpy()[0, i] assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol) tape.zero() # division: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 1, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(in1.numpy()) expected[1, i] = 2.0 / (in2.numpy()[1, i]) assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol) # y = x1/x2 # dy/dx2 = -x1/x2^2 expected[1, i] = (-2.0) * (in1.numpy()[1, i] / (in2.numpy()[1, i] ** 2)) assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol) tape.zero() # addition: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 2, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(in1.numpy()) expected[2, i] = 2.0 assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol) expected[2, i] = 2.0 assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol) tape.zero() # subtraction: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 3, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(in1.numpy()) expected[3, i] = 2.0 assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol) expected[3, i] = -2.0 assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol) tape.zero() # modulus. unless at discontinuities, # d/dx1( x1 % x2 ) == 1 # d/dx2( x1 % x2 ) == 0 tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 4, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(in1.numpy()) expected[4, i] = 2.0 assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol) expected[4, i] = 0.0 assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol) tape.zero() # min tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 5, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(in1.numpy()) expected[5, i] = 2.0 if (in1.numpy()[5, i] < in2.numpy()[5, i]) else 0.0 assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol) expected[5, i] = 2.0 if (in2.numpy()[5, i] < in1.numpy()[5, i]) else 0.0 assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol) tape.zero() # max tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 6, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(in1.numpy()) expected[6, i] = 2.0 if (in1.numpy()[6, i] > in2.numpy()[6, i]) else 0.0 assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol) expected[6, i] = 2.0 if (in2.numpy()[6, i] > in1.numpy()[6, i]) else 0.0 assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol) tape.zero() # floor_divide. Returns integers so gradient is zero tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 7, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(in1.numpy()) assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol) assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol) tape.zero() def test_special_funcs(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def check_special_funcs( inputs: wp.array(dtype=wptype, ndim=2), outputs: wp.array(dtype=wptype, ndim=2), ): # multiply outputs by 2 so we've got something to backpropagate: for i in range(10): outputs[0, i] = wptype(2) * wp.log(inputs[0, i]) outputs[1, i] = wptype(2) * wp.log2(inputs[1, i]) outputs[2, i] = wptype(2) * wp.log10(inputs[2, i]) outputs[3, i] = wptype(2) * wp.exp(inputs[3, i]) outputs[4, i] = wptype(2) * wp.atan(inputs[4, i]) outputs[5, i] = wptype(2) * wp.sin(inputs[5, i]) outputs[6, i] = wptype(2) * wp.cos(inputs[6, i]) outputs[7, i] = wptype(2) * wp.sqrt(inputs[7, i]) outputs[8, i] = wptype(2) * wp.tan(inputs[8, i]) outputs[9, i] = wptype(2) * wp.sinh(inputs[9, i]) outputs[10, i] = wptype(2) * wp.cosh(inputs[10, i]) outputs[11, i] = wptype(2) * wp.tanh(inputs[11, i]) outputs[12, i] = wptype(2) * wp.acos(inputs[12, i]) outputs[13, i] = wptype(2) * wp.asin(inputs[13, i]) kernel = getkernel(check_special_funcs, suffix=dtype.__name__) output_select_kernel = get_select_kernel2(wptype) if register_kernels: return invals = np.random.randn(14, 10).astype(dtype) invals[[0, 1, 2, 7]] = 0.1 + np.abs(invals[[0, 1, 2, 7]]) invals[12] = np.clip(invals[12], -0.9, 0.9) invals[13] = np.clip(invals[13], -0.9, 0.9) inputs = wp.array(invals, dtype=wptype, requires_grad=True, device=device) outputs = wp.zeros_like(inputs) wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) assert_np_equal(outputs.numpy()[0], 2 * np.log(inputs.numpy()[0]), tol=tol) assert_np_equal(outputs.numpy()[1], 2 * np.log2(inputs.numpy()[1]), tol=tol) assert_np_equal(outputs.numpy()[2], 2 * np.log10(inputs.numpy()[2]), tol=tol) assert_np_equal(outputs.numpy()[3], 2 * np.exp(inputs.numpy()[3]), tol=tol) assert_np_equal(outputs.numpy()[4], 2 * np.arctan(inputs.numpy()[4]), tol=tol) assert_np_equal(outputs.numpy()[5], 2 * np.sin(inputs.numpy()[5]), tol=tol) assert_np_equal(outputs.numpy()[6], 2 * np.cos(inputs.numpy()[6]), tol=tol) assert_np_equal(outputs.numpy()[7], 2 * np.sqrt(inputs.numpy()[7]), tol=tol) assert_np_equal(outputs.numpy()[8], 2 * np.tan(inputs.numpy()[8]), tol=tol) assert_np_equal(outputs.numpy()[9], 2 * np.sinh(inputs.numpy()[9]), tol=tol) assert_np_equal(outputs.numpy()[10], 2 * np.cosh(inputs.numpy()[10]), tol=tol) assert_np_equal(outputs.numpy()[11], 2 * np.tanh(inputs.numpy()[11]), tol=tol) assert_np_equal(outputs.numpy()[12], 2 * np.arccos(inputs.numpy()[12]), tol=tol) assert_np_equal(outputs.numpy()[13], 2 * np.arcsin(inputs.numpy()[13]), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) if dtype in np_float_types: for i in range(10): # log: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 0, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[0, i] = 2.0 / inputs.numpy()[0, i] assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol) tape.zero() # log2: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 1, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[1, i] = 2.0 / (inputs.numpy()[1, i] * np.log(2.0)) assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol) tape.zero() # log10: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 2, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[2, i] = 2.0 / (inputs.numpy()[2, i] * np.log(10.0)) assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol) tape.zero() # exp: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 3, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[3, i] = outputs.numpy()[3, i] assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol) tape.zero() # arctan: # looks like the autodiff formula in warp was wrong? Was (1 + x^2) rather than # 1/(1 + x^2) tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 4, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[4, i] = 2.0 / (inputs.numpy()[4, i] ** 2 + 1) assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol) tape.zero() # sin: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 5, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[5, i] = np.cos(inputs.numpy()[5, i]) * 2 assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol) tape.zero() # cos: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 6, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[6, i] = -np.sin(inputs.numpy()[6, i]) * 2.0 assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol) tape.zero() # sqrt: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 7, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[7, i] = 1.0 / (np.sqrt(inputs.numpy()[7, i])) assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol) tape.zero() # tan: # looks like there was a bug in autodiff formula here too - gradient was zero if cos(x) > 0 # (should have been "if(cosx != 0)") tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 8, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[8, i] = 2.0 / (np.cos(inputs.numpy()[8, i]) ** 2) assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=200 * tol) tape.zero() # sinh: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 9, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[9, i] = 2.0 * np.cosh(inputs.numpy()[9, i]) assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol) tape.zero() # cosh: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 10, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[10, i] = 2.0 * np.sinh(inputs.numpy()[10, i]) assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol) tape.zero() # tanh: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 11, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[11, i] = 2.0 / (np.cosh(inputs.numpy()[11, i]) ** 2) assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol) tape.zero() # arccos: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 12, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[12, i] = -2.0 / np.sqrt(1 - inputs.numpy()[12, i] ** 2) assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol) tape.zero() # arcsin: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 13, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(inputs.numpy()) expected[13, i] = 2.0 / np.sqrt(1 - inputs.numpy()[13, i] ** 2) assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=6 * tol) tape.zero() def test_special_funcs_2arg(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def check_special_funcs_2arg( in1: wp.array(dtype=wptype, ndim=2), in2: wp.array(dtype=wptype, ndim=2), outputs: wp.array(dtype=wptype, ndim=2), ): # multiply outputs by 2 so we've got something to backpropagate: for i in range(10): outputs[0, i] = wptype(2) * wp.pow(in1[0, i], in2[0, i]) outputs[1, i] = wptype(2) * wp.atan2(in1[1, i], in2[1, i]) kernel = getkernel(check_special_funcs_2arg, suffix=dtype.__name__) output_select_kernel = get_select_kernel2(wptype) if register_kernels: return in1 = wp.array(np.abs(randvals([2, 10], dtype)), dtype=wptype, requires_grad=True, device=device) in2 = wp.array(randvals([2, 10], dtype), dtype=wptype, requires_grad=True, device=device) outputs = wp.zeros_like(in1) wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device) assert_np_equal(outputs.numpy()[0], 2.0 * np.power(in1.numpy()[0], in2.numpy()[0]), tol=tol) assert_np_equal(outputs.numpy()[1], 2.0 * np.arctan2(in1.numpy()[1], in2.numpy()[1]), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) if dtype in np_float_types: for i in range(10): # pow: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 0, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(in1.numpy()) expected[0, i] = 2.0 * in2.numpy()[0, i] * np.power(in1.numpy()[0, i], in2.numpy()[0, i] - 1) assert_np_equal(tape.gradients[in1].numpy(), expected, tol=5 * tol) expected[0, i] = 2.0 * np.power(in1.numpy()[0, i], in2.numpy()[0, i]) * np.log(in1.numpy()[0, i]) assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol) tape.zero() # atan2: tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 1, i], outputs=[out], device=device) tape.backward(loss=out) expected = np.zeros_like(in1.numpy()) expected[1, i] = 2.0 * in2.numpy()[1, i] / (in1.numpy()[1, i] ** 2 + in2.numpy()[1, i] ** 2) assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol) expected[1, i] = -2.0 * in1.numpy()[1, i] / (in1.numpy()[1, i] ** 2 + in2.numpy()[1, i] ** 2) assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol) tape.zero() def test_float_to_int(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def check_float_to_int( inputs: wp.array(dtype=wptype, ndim=2), outputs: wp.array(dtype=wptype, ndim=2), ): for i in range(10): outputs[0, i] = wp.round(inputs[0, i]) outputs[1, i] = wp.rint(inputs[1, i]) outputs[2, i] = wp.trunc(inputs[2, i]) outputs[3, i] = wp.floor(inputs[3, i]) outputs[4, i] = wp.ceil(inputs[4, i]) kernel = getkernel(check_float_to_int, suffix=dtype.__name__) output_select_kernel = get_select_kernel2(wptype) if register_kernels: return inputs = wp.array(np.random.randn(5, 10).astype(dtype), dtype=wptype, requires_grad=True, device=device) outputs = wp.zeros_like(inputs) wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) assert_np_equal(outputs.numpy()[0], np.round(inputs.numpy()[0])) assert_np_equal(outputs.numpy()[1], np.rint(inputs.numpy()[1])) assert_np_equal(outputs.numpy()[2], np.trunc(inputs.numpy()[2])) assert_np_equal(outputs.numpy()[3], np.floor(inputs.numpy()[3])) assert_np_equal(outputs.numpy()[4], np.ceil(inputs.numpy()[4])) # all the gradients should be zero as these functions are piecewise constant: out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) for i in range(10): for j in range(5): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, j, i], outputs=[out], device=device) tape.backward(loss=out) assert_np_equal(tape.gradients[inputs].numpy(), np.zeros_like(inputs.numpy()), tol=tol) tape.zero() def test_interp(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 1.0e-2, np.float32: 5.0e-6, np.float64: 1.0e-8, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def check_interp( in1: wp.array(dtype=wptype, ndim=2), in2: wp.array(dtype=wptype, ndim=2), in3: wp.array(dtype=wptype, ndim=2), outputs: wp.array(dtype=wptype, ndim=2), ): # multiply outputs by 2 so we've got something to backpropagate: for i in range(10): outputs[0, i] = wptype(2) * wp.smoothstep(in1[0, i], in2[0, i], in3[0, i]) outputs[1, i] = wptype(2) * wp.lerp(in1[1, i], in2[1, i], in3[1, i]) kernel = getkernel(check_interp, suffix=dtype.__name__) output_select_kernel = get_select_kernel2(wptype) if register_kernels: return e0 = randvals([2, 10], dtype) e1 = e0 + randvals([2, 10], dtype) + 0.1 in1 = wp.array(e0, dtype=wptype, requires_grad=True, device=device) in2 = wp.array(e1, dtype=wptype, requires_grad=True, device=device) in3 = wp.array(randvals([2, 10], dtype), dtype=wptype, requires_grad=True, device=device) outputs = wp.zeros_like(in1) wp.launch(kernel, dim=1, inputs=[in1, in2, in3], outputs=[outputs], device=device) edge0 = in1.numpy()[0] edge1 = in2.numpy()[0] t_smoothstep = in3.numpy()[0] x = np.clip((t_smoothstep - edge0) / (edge1 - edge0), 0, 1) smoothstep_expected = 2.0 * x * x * (3 - 2 * x) assert_np_equal(outputs.numpy()[0], smoothstep_expected, tol=tol) a = in1.numpy()[1] b = in2.numpy()[1] t = in3.numpy()[1] assert_np_equal(outputs.numpy()[1], 2.0 * (a * (1 - t) + b * t), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) if dtype in np_float_types: for i in range(10): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[in1, in2, in3], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 0, i], outputs=[out], device=device) tape.backward(loss=out) # e0 = in1 # e1 = in2 # t = in3 # x = clamp((t - e0) / (e1 - e0), 0,1) # dx/dt = 1 / (e1 - e0) if e0 < t < e1 else 0 # y = x * x * (3 - 2 * x) # y = 3 * x * x - 2 * x * x * x # dy/dx = 6 * ( x - x^2 ) dydx = 6 * x * (1 - x) # dy/in1 = dy/dx dx/de0 de0/din1 dxde0 = (t_smoothstep - edge1) / ((edge1 - edge0) ** 2) dxde0[x == 0] = 0 dxde0[x == 1] = 0 expected_grads = np.zeros_like(in1.numpy()) expected_grads[0, i] = 2.0 * dydx[i] * dxde0[i] assert_np_equal(tape.gradients[in1].numpy(), expected_grads, tol=tol) # dy/in2 = dy/dx dx/de1 de1/din2 dxde1 = (edge0 - t_smoothstep) / ((edge1 - edge0) ** 2) dxde1[x == 0] = 0 dxde1[x == 1] = 0 expected_grads = np.zeros_like(in1.numpy()) expected_grads[0, i] = 2.0 * dydx[i] * dxde1[i] assert_np_equal(tape.gradients[in2].numpy(), expected_grads, tol=tol) # dy/in3 = dy/dx dx/dt dt/din3 dxdt = 1.0 / (edge1 - edge0) dxdt[x == 0] = 0 dxdt[x == 1] = 0 expected_grads = np.zeros_like(in1.numpy()) expected_grads[0, i] = 2.0 * dydx[i] * dxdt[i] assert_np_equal(tape.gradients[in3].numpy(), expected_grads, tol=tol) tape.zero() tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[in1, in2, in3], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, 1, i], outputs=[out], device=device) tape.backward(loss=out) # y = a*(1-t) + b*t # a = in1 # b = in2 # t = in3 # y = in1*( 1 - in3 ) + in2*in3 # dy/din1 = (1-in3) expected_grads = np.zeros_like(in1.numpy()) expected_grads[1, i] = 2.0 * (1 - in3.numpy()[1, i]) assert_np_equal(tape.gradients[in1].numpy(), expected_grads, tol=tol) # dy/din2 = in3 expected_grads = np.zeros_like(in1.numpy()) expected_grads[1, i] = 2.0 * in3.numpy()[1, i] assert_np_equal(tape.gradients[in2].numpy(), expected_grads, tol=tol) # dy/din3 = 8*in2 - 1.5*4*in1 expected_grads = np.zeros_like(in1.numpy()) expected_grads[1, i] = 2.0 * (in2.numpy()[1, i] - in1.numpy()[1, i]) assert_np_equal(tape.gradients[in3].numpy(), expected_grads, tol=tol) tape.zero() def test_clamp(test, device, dtype, register_kernels=False): np.random.seed(123) tol = { np.float16: 5.0e-3, np.float32: 1.0e-6, np.float64: 1.0e-6, }.get(dtype, 0) wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)] def check_clamp( in1: wp.array(dtype=wptype), in2: wp.array(dtype=wptype), in3: wp.array(dtype=wptype), outputs: wp.array(dtype=wptype), ): for i in range(100): # multiply output by 2 so we've got something to backpropagate: outputs[i] = wptype(2) * wp.clamp(in1[i], in2[i], in3[i]) kernel = getkernel(check_clamp, suffix=dtype.__name__) output_select_kernel = get_select_kernel(wptype) if register_kernels: return in1 = wp.array(randvals([100], dtype), dtype=wptype, requires_grad=True, device=device) starts = randvals([100], dtype) diffs = np.abs(randvals([100], dtype)) in2 = wp.array(starts, dtype=wptype, requires_grad=True, device=device) in3 = wp.array(starts + diffs, dtype=wptype, requires_grad=True, device=device) outputs = wp.zeros_like(in1) wp.launch(kernel, dim=1, inputs=[in1, in2, in3], outputs=[outputs], device=device) assert_np_equal(2 * np.clip(in1.numpy(), in2.numpy(), in3.numpy()), outputs.numpy(), tol=tol) out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device) if dtype in np_float_types: for i in range(100): tape = wp.Tape() with tape: wp.launch(kernel, dim=1, inputs=[in1, in2, in3], outputs=[outputs], device=device) wp.launch(output_select_kernel, dim=1, inputs=[outputs, i], outputs=[out], device=device) tape.backward(loss=out) t = in1.numpy()[i] lower = in2.numpy()[i] upper = in3.numpy()[i] expected = np.zeros_like(in1.numpy()) if t < lower: expected[i] = 2.0 assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol) expected[i] = 0.0 assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol) assert_np_equal(tape.gradients[in3].numpy(), expected, tol=tol) elif t > upper: expected[i] = 2.0 assert_np_equal(tape.gradients[in3].numpy(), expected, tol=tol) expected[i] = 0.0 assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol) assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol) else: expected[i] = 2.0 assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol) expected[i] = 0.0 assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol) assert_np_equal(tape.gradients[in3].numpy(), expected, tol=tol) tape.zero() def register(parent): devices = get_test_devices() class TestArithmetic(parent): pass # these unary ops only make sense for signed values: for dtype in np_signed_int_types + np_float_types: add_function_test_register_kernel( TestArithmetic, f"test_unary_ops_{dtype.__name__}", test_unary_ops, devices=devices, dtype=dtype ) for dtype in np_float_types: add_function_test_register_kernel( TestArithmetic, f"test_special_funcs_{dtype.__name__}", test_special_funcs, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestArithmetic, f"test_special_funcs_2arg_{dtype.__name__}", test_special_funcs_2arg, devices=devices, dtype=dtype, ) add_function_test_register_kernel( TestArithmetic, f"test_interp_{dtype.__name__}", test_interp, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestArithmetic, f"test_float_to_int_{dtype.__name__}", test_float_to_int, devices=devices, dtype=dtype ) for dtype in np_scalar_types: add_function_test_register_kernel( TestArithmetic, f"test_clamp_{dtype.__name__}", test_clamp, devices=devices, dtype=dtype ) add_function_test_register_kernel( TestArithmetic, f"test_nonzero_{dtype.__name__}", test_nonzero, devices=devices, dtype=dtype ) add_function_test(TestArithmetic, f"test_arrays_{dtype.__name__}", test_arrays, devices=devices, dtype=dtype) add_function_test_register_kernel( TestArithmetic, f"test_binary_ops_{dtype.__name__}", test_binary_ops, devices=devices, dtype=dtype ) return TestArithmetic if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2, failfast=False)
warp-main
warp/tests/test_arithmetic.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import unittest import os import sys import numpy as np import warp as wp # default test mode (see get_test_devices()) # "basic" - only run on CPU and first GPU device # "unique" - run on CPU and all unique GPU arches # "all" - run on all devices test_mode = "basic" def get_test_devices(mode=None): if mode is None: global test_mode mode = test_mode devices = [] # only run on CPU and first GPU device if mode == "basic": if wp.is_cpu_available(): devices.append(wp.get_device("cpu")) if wp.is_cuda_available(): devices.append(wp.get_device("cuda:0")) # run on CPU and all unique GPU arches elif mode == "unique": if wp.is_cpu_available(): devices.append(wp.get_device("cpu")) cuda_devices = wp.get_cuda_devices() unique_cuda_devices = {} for d in cuda_devices: if d.arch not in unique_cuda_devices: unique_cuda_devices[d.arch] = d devices.extend(list(unique_cuda_devices.values())) # run on all devices elif mode == "all": devices = wp.get_devices() return devices # redirects and captures all stdout output (including from C-libs) class StdOutCapture: def begin(self): # save original self.saved = sys.stdout self.target = os.dup(self.saved.fileno()) # create temporary capture stream import io, tempfile self.tempfile = io.TextIOWrapper( tempfile.TemporaryFile(buffering=0), encoding="utf-8", errors="replace", newline="", write_through=True ) os.dup2(self.tempfile.fileno(), self.saved.fileno()) sys.stdout = self.tempfile def end(self): os.dup2(self.target, self.saved.fileno()) os.close(self.target) self.tempfile.seek(0) res = self.tempfile.buffer.read() self.tempfile.close() sys.stdout = self.saved return str(res.decode("utf-8")) class CheckOutput: def __init__(self, test): self.test = test def __enter__(self): # wp.force_load() self.capture = StdOutCapture() self.capture.begin() def __exit__(self, exc_type, exc_value, traceback): # ensure any stdout output is flushed wp.synchronize() s = self.capture.end() if s != "": print(s.rstrip()) # fail if test produces unexpected output (e.g.: from wp.expect_eq() builtins) # we allow strings starting of the form "Module xxx load on device xxx" # for lazy loaded modules if s != "" and not s.startswith("Module"): self.test.fail(f"Unexpected output:\n'{s.rstrip()}'") def assert_array_equal(result, expect): a = result.numpy() b = expect.numpy() if (a == b).all() == False: raise AssertionError(f"Unexpected result, got: {a} expected: {b}") def assert_np_equal(result, expect, tol=0.0): a = result.flatten() b = expect.flatten() if tol == 0.0: if (a == b).all() == False: raise AssertionError(f"Unexpected result, got: {a} expected: {b}") else: delta = a - b err = np.max(np.abs(delta)) if err > tol: raise AssertionError( f"Maximum expected error exceeds tolerance got: {a}, expected: {b}, with err: {err} > {tol}" ) def create_test_func(func, device, **kwargs): # pass args to func def test_func(self): with CheckOutput(self): func(self, device, **kwargs) return test_func def sanitize_identifier(s): """replace all non-identifier characters with '_'""" s = str(s) if s.isidentifier(): return s else: import re return re.sub("\W|^(?=\d)", "_", s) def add_function_test(cls, name, func, devices=None, **kwargs): if devices is None: setattr(cls, name, create_test_func(func, None, **kwargs)) else: for device in devices: setattr(cls, name + "_" + sanitize_identifier(device), create_test_func(func, device, **kwargs)) def add_kernel_test(cls, kernel, dim, name=None, expect=None, inputs=None, devices=None): def test_func(self, device): args = [] if inputs: args.extend(inputs) if expect: # allocate outputs to match results result = wp.array(expect, dtype=int, device=device) output = wp.zeros_like(result) args.append(output) # force load so that we don't generate any log output during launch kernel.module.load(device) with CheckOutput(self): wp.launch(kernel, dim=dim, inputs=args, device=device) # check output values if expect: assert_array_equal(output, result) if name is None: name = kernel.key # device is required for kernel tests, so use all devices if none were given if devices is None: devices = get_test_devices() # register test func with class for the given devices for d in devices: # use a lambda to forward the device to the inner test function test_lambda = lambda test, device=d: test_func(test, device) setattr(cls, name + "_" + sanitize_identifier(d), test_lambda) # helper that first calls the test function to generate all kernel permuations # so that compilation is done in one-shot instead of per-test def add_function_test_register_kernel(cls, name, func, devices=None, **kwargs): func(None, None, **kwargs, register_kernels=True) add_function_test(cls, name, func, devices=devices, **kwargs)
warp-main
warp/tests/test_base.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import numpy as np import math import warp as wp from warp.tests.test_base import * np.random.seed(42) wp.init() @wp.kernel def sample_mesh_query( mesh: wp.uint64, query_points: wp.array(dtype=wp.vec3), query_faces: wp.array(dtype=int), query_signs: wp.array(dtype=float), query_dist: wp.array(dtype=float), ): tid = wp.tid() face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) max_dist = 10012.0 p = query_points[tid] wp.mesh_query_point(mesh, p, max_dist, sign, face_index, face_u, face_v) cp = wp.mesh_eval_position(mesh, face_index, face_u, face_v) query_signs[tid] = sign query_faces[tid] = face_index query_dist[tid] = wp.length(cp - p) @wp.kernel def sample_mesh_query_no_sign( mesh: wp.uint64, query_points: wp.array(dtype=wp.vec3), query_faces: wp.array(dtype=int), query_dist: wp.array(dtype=float), ): tid = wp.tid() face_index = int(0) face_u = float(0.0) face_v = float(0.0) max_dist = 10012.0 p = query_points[tid] wp.mesh_query_point_no_sign(mesh, p, max_dist, face_index, face_u, face_v) cp = wp.mesh_eval_position(mesh, face_index, face_u, face_v) query_faces[tid] = face_index query_dist[tid] = wp.length(cp - p) @wp.kernel def sample_mesh_query_sign_normal( mesh: wp.uint64, query_points: wp.array(dtype=wp.vec3), query_faces: wp.array(dtype=int), query_signs: wp.array(dtype=float), query_dist: wp.array(dtype=float), ): tid = wp.tid() face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) max_dist = 10012.0 p = query_points[tid] wp.mesh_query_point_sign_normal(mesh, p, max_dist, sign, face_index, face_u, face_v) cp = wp.mesh_eval_position(mesh, face_index, face_u, face_v) query_signs[tid] = sign query_faces[tid] = face_index query_dist[tid] = wp.length(cp - p) @wp.kernel def sample_mesh_query_sign_winding_number( mesh: wp.uint64, query_points: wp.array(dtype=wp.vec3), query_faces: wp.array(dtype=int), query_signs: wp.array(dtype=float), query_dist: wp.array(dtype=float), ): tid = wp.tid() face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) max_dist = 10012.0 p = query_points[tid] wp.mesh_query_point_sign_winding_number(mesh, p, max_dist, sign, face_index, face_u, face_v) cp = wp.mesh_eval_position(mesh, face_index, face_u, face_v) query_signs[tid] = sign query_faces[tid] = face_index query_dist[tid] = wp.length(cp - p) @wp.func def triangle_closest_point(a: wp.vec3, b: wp.vec3, c: wp.vec3, p: wp.vec3): ab = b - a ac = c - a ap = p - a d1 = wp.dot(ab, ap) d2 = wp.dot(ac, ap) if d1 <= 0.0 and d2 <= 0.0: return wp.vec2(1.0, 0.0) bp = p - b d3 = wp.dot(ab, bp) d4 = wp.dot(ac, bp) if d3 >= 0.0 and d4 <= d3: return wp.vec2(0.0, 1.0) vc = d1 * d4 - d3 * d2 v = d1 / (d1 - d3) if vc <= 0.0 and d1 >= 0.0 and d3 <= 0.0: return wp.vec2(1.0 - v, v) cp = p - c d5 = wp.dot(ab, cp) d6 = wp.dot(ac, cp) if d6 >= 0.0 and d5 <= d6: return wp.vec2(0.0, 0.0) vb = d5 * d2 - d1 * d6 w = d2 / (d2 - d6) if vb <= 0.0 and d2 >= 0.0 and d6 <= 0.0: return wp.vec2(1.0 - w, 0.0) va = d3 * d6 - d5 * d4 w = (d4 - d3) / ((d4 - d3) + (d5 - d6)) if va <= 0.0 and (d4 - d3) >= 0.0 and (d5 - d6) >= 0.0: return wp.vec2(0.0, 1.0 - w) denom = 1.0 / (va + vb + vc) v = vb * denom w = vc * denom u = 1.0 - v - w return wp.vec2(u, v) @wp.func def solid_angle(v0: wp.vec3, v1: wp.vec3, v2: wp.vec3, p: wp.vec3): a = v0 - p b = v1 - p c = v2 - p a_len = wp.length(a) b_len = wp.length(b) c_len = wp.length(c) det = wp.dot(a, wp.cross(b, c)) den = a_len * b_len * c_len + wp.dot(a, b) * c_len + wp.dot(b, c) * a_len + wp.dot(c, a) * b_len return 2.0 * wp.atan2(det, den) @wp.kernel def sample_mesh_brute( tri_points: wp.array(dtype=wp.vec3), tri_indices: wp.array(dtype=int), tri_count: int, query_points: wp.array(dtype=wp.vec3), query_faces: wp.array(dtype=int), query_signs: wp.array(dtype=float), query_dist: wp.array(dtype=float), ): tid = wp.tid() min_face = int(0) min_dist = float(1.0e6) sum_solid_angle = float(0.0) p = query_points[tid] for i in range(0, tri_count): a = tri_points[tri_indices[i * 3 + 0]] b = tri_points[tri_indices[i * 3 + 1]] c = tri_points[tri_indices[i * 3 + 2]] sum_solid_angle += solid_angle(a, b, c, p) bary = triangle_closest_point(a, b, c, p) u = bary[0] v = bary[1] cp = u * a + v * b + (1.0 - u - v) * c cp_dist = wp.length(cp - p) if cp_dist < min_dist: min_dist = cp_dist min_face = i # for an inside point, the sum of the solid angle should be 4PI # for an outside point, the sum should be 0 query_faces[tid] = min_face query_signs[tid] = sum_solid_angle query_dist[tid] = min_dist # constructs a grid of evenly spaced particles def particle_grid(dim_x, dim_y, dim_z, lower, radius, jitter): points = np.meshgrid(np.linspace(0, dim_x, dim_x), np.linspace(0, dim_y, dim_y), np.linspace(0, dim_z, dim_z)) points_t = np.array((points[0], points[1], points[2])).T * radius * 2.0 + np.array(lower) points_t = points_t + np.random.rand(*points_t.shape) * radius * jitter return points_t.reshape((-1, 3)) # triangulate a list of polygon face indices def triangulate(face_counts, face_indices): num_tris = np.sum(np.subtract(face_counts, 2)) num_tri_vtx = num_tris * 3 tri_indices = np.zeros(num_tri_vtx, dtype=int) ctr = 0 wedgeIdx = 0 for nb in face_counts: for i in range(nb - 2): tri_indices[ctr] = face_indices[wedgeIdx] tri_indices[ctr + 1] = face_indices[wedgeIdx + i + 1] tri_indices[ctr + 2] = face_indices[wedgeIdx + i + 2] ctr += 3 wedgeIdx += nb return tri_indices def test_mesh_query_point(test, device): from pxr import Usd, UsdGeom mesh = Usd.Stage.Open(os.path.abspath(os.path.join(os.path.dirname(__file__), "assets/spiky.usd"))) mesh_geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/Cube/Cube")) mesh_counts = mesh_geom.GetFaceVertexCountsAttr().Get() mesh_indices = mesh_geom.GetFaceVertexIndicesAttr().Get() tri_indices = triangulate(mesh_counts, mesh_indices) mesh_points = wp.array(np.array(mesh_geom.GetPointsAttr().Get()), dtype=wp.vec3, device=device) mesh_indices = wp.array(np.array(tri_indices), dtype=int, device=device) # create mesh mesh = wp.Mesh(points=mesh_points, velocities=None, indices=mesh_indices, support_winding_number=True) p = particle_grid(32, 32, 32, np.array([-1.1, -1.1, -1.1]), 0.05, 0.0) query_count = len(p) query_points = wp.array(p, dtype=wp.vec3, device=device) signs_query = wp.zeros(query_count, dtype=float, device=device) faces_query = wp.zeros(query_count, dtype=int, device=device) dist_query = wp.zeros(query_count, dtype=float, device=device) faces_query_no_sign = wp.zeros(query_count, dtype=int, device=device) dist_query_no_sign = wp.zeros(query_count, dtype=float, device=device) signs_query_normal = wp.zeros(query_count, dtype=float, device=device) faces_query_normal = wp.zeros(query_count, dtype=int, device=device) dist_query_normal = wp.zeros(query_count, dtype=float, device=device) signs_query_winding_number = wp.zeros(query_count, dtype=float, device=device) faces_query_winding_number = wp.zeros(query_count, dtype=int, device=device) dist_query_winding_number = wp.zeros(query_count, dtype=float, device=device) signs_brute = wp.zeros(query_count, dtype=float, device=device) faces_brute = wp.zeros(query_count, dtype=int, device=device) dist_brute = wp.zeros(query_count, dtype=float, device=device) wp.launch( kernel=sample_mesh_query, dim=query_count, inputs=[mesh.id, query_points, faces_query, signs_query, dist_query], device=device, ) wp.launch( kernel=sample_mesh_query_no_sign, dim=query_count, inputs=[mesh.id, query_points, faces_query_no_sign, dist_query_no_sign], device=device, ) wp.launch( kernel=sample_mesh_query_sign_normal, dim=query_count, inputs=[mesh.id, query_points, faces_query_normal, signs_query_normal, dist_query_normal], device=device, ) wp.launch( kernel=sample_mesh_query_sign_winding_number, dim=query_count, inputs=[ mesh.id, query_points, faces_query_winding_number, signs_query_winding_number, dist_query_winding_number, ], device=device, ) wp.launch( kernel=sample_mesh_brute, dim=query_count, inputs=[ mesh_points, mesh_indices, int(len(mesh_indices) / 3), query_points, faces_brute, signs_brute, dist_brute, ], device=device, ) signs_query = signs_query.numpy() faces_query = faces_query.numpy() dist_query = dist_query.numpy() faces_query_no_sign = faces_query_no_sign.numpy() dist_query_no_sign = dist_query_no_sign.numpy() signs_query_normal = signs_query_normal.numpy() faces_query_normal = faces_query_normal.numpy() dist_query_normal = dist_query_normal.numpy() signs_query_winding_number = signs_query_winding_number.numpy() faces_query_winding_number = faces_query_winding_number.numpy() dist_query_winding_number = dist_query_winding_number.numpy() signs_brute = signs_brute.numpy() faces_brute = faces_brute.numpy() dist_brute = dist_brute.numpy() query_points = query_points.numpy() inside_query = [[0.0, 0.0, 0.0]] inside_query_normal = [[0.0, 0.0, 0.0]] inside_query_winding_number = [[0.0, 0.0, 0.0]] inside_brute = [[0.0, 0.0, 0.0]] for i in range(query_count): if signs_query[i] < 0.0: inside_query.append(query_points[i].tolist()) if signs_query_normal[i] < 0.0: inside_query_normal.append(query_points[i].tolist()) if signs_query_winding_number[i] < 0.0: inside_query_winding_number.append(query_points[i].tolist()) if signs_brute[i] > math.pi * 2.0: inside_brute.append(query_points[i].tolist()) inside_query = np.array(inside_query) inside_query_normal = np.array(inside_query_normal) inside_query_winding_number = np.array(inside_query_winding_number) inside_brute = np.array(inside_brute) # import warp.render # stage = warp.render.UsdRenderer("tests/outputs/test_mesh_query_point.usd") # radius = 0.1 # stage.begin_frame(0.0) # stage.render_mesh(points=mesh_points.numpy(), indices=mesh_indices.numpy(), name="mesh") # stage.render_points(points=inside_query, radius=radius, name="query") # stage.render_points(points=inside_brute, radius=radius, name="brute") # stage.render_points(points=query_points, radius=radius, name="all") # stage.end_frame() # stage.save() test.assertTrue(len(inside_query) == len(inside_brute)) test.assertTrue(len(inside_query_normal) == len(inside_brute)) test.assertTrue(len(inside_query_winding_number) == len(inside_brute)) tolerance = 1.5e-4 dist_error = np.max(np.abs(dist_query - dist_brute)) sign_error = np.max(np.abs(inside_query - inside_brute)) test.assertTrue(dist_error < tolerance, f"mesh_query_point dist_error is {dist_error} which is >= {tolerance}") test.assertTrue(sign_error < tolerance, f"mesh_query_point sign_error is {sign_error} which is >= {tolerance}") dist_error = np.max(np.abs(dist_query_no_sign - dist_brute)) test.assertTrue( dist_error < tolerance, f"mesh_query_point_no_sign dist_error is {dist_error} which is >= {tolerance}" ) dist_error = np.max(np.abs(dist_query_normal - dist_brute)) sign_error = np.max(np.abs(inside_query_normal - inside_brute)) test.assertTrue( dist_error < tolerance, f"mesh_query_point_sign_normal dist_error is {dist_error} which is >= {tolerance}" ) test.assertTrue( sign_error < tolerance, f"mesh_query_point_sign_normal sign_error is {sign_error} which is >= {tolerance}" ) dist_error = np.max(np.abs(dist_query_winding_number - dist_brute)) sign_error = np.max(np.abs(inside_query_winding_number - inside_brute)) test.assertTrue( dist_error < tolerance, f"mesh_query_point_sign_winding_number dist_error is {dist_error} which is >= {tolerance}", ) test.assertTrue( sign_error < tolerance, f"mesh_query_point_sign_winding_number sign_error is {sign_error} which is >= {tolerance}", ) @wp.kernel def mesh_query_point_loss( mesh: wp.uint64, query_points: wp.array(dtype=wp.vec3), projected_points: wp.array(dtype=wp.vec3), loss: wp.array(dtype=float), ): tid = wp.tid() face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) max_dist = 10012.0 p = query_points[tid] wp.mesh_query_point(mesh, p, max_dist, sign, face_index, face_u, face_v) q = wp.mesh_eval_position(mesh, face_index, face_u, face_v) projected_points[tid] = q dist = wp.length(wp.sub(p, q)) loss[tid] = dist def test_adj_mesh_query_point(test, device): from pxr import Usd, UsdGeom mesh = Usd.Stage.Open(os.path.abspath(os.path.join(os.path.dirname(__file__), "assets/torus.usda"))) mesh_geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/World/Torus")) mesh_counts = mesh_geom.GetFaceVertexCountsAttr().Get() mesh_indices = mesh_geom.GetFaceVertexIndicesAttr().Get() tri_indices = triangulate(mesh_counts, mesh_indices) mesh_points = wp.array(np.array(mesh_geom.GetPointsAttr().Get()), dtype=wp.vec3, device=device) mesh_indices = wp.array(np.array(tri_indices), dtype=int, device=device) # test tri # print("Testing Single Triangle") # mesh_points = wp.array(np.array([[0.0, 0.0, 0.0], [2.0, 0.0, 0.0], [0.0, 2.0, 0.0]]), dtype=wp.vec3, device=device) # mesh_indices = wp.array(np.array([0,1,2]), dtype=int, device=device) # create mesh mesh = wp.Mesh(points=mesh_points, velocities=None, indices=mesh_indices, support_winding_number=True) # p = particle_grid(32, 32, 32, np.array([-5.0, -5.0, -5.0]), 0.1, 0.1)*100.0 p = wp.vec3(50.0, 50.0, 50.0) tape = wp.Tape() # analytic gradients with tape: query_points = wp.array(p, dtype=wp.vec3, device=device, requires_grad=True) projected_points = wp.zeros(n=1, dtype=wp.vec3, device=device) loss = wp.zeros(n=1, dtype=float, device=device, requires_grad=True) wp.launch( kernel=mesh_query_point_loss, dim=1, inputs=[mesh.id, query_points, projected_points, loss], device=device ) tape.backward(loss=loss) analytic = tape.gradients[query_points].numpy().flatten() # numeric gradients eps = 1.0e-3 loss_values = [] numeric = np.zeros(3) offset_query_points = [ wp.vec3(p[0] - eps, p[1], p[2]), wp.vec3(p[0] + eps, p[1], p[2]), wp.vec3(p[0], p[1] - eps, p[2]), wp.vec3(p[0], p[1] + eps, p[2]), wp.vec3(p[0], p[1], p[2] - eps), wp.vec3(p[0], p[1], p[2] + eps), ] for i in range(6): q = offset_query_points[i] query_points = wp.array(q, dtype=wp.vec3, device=device) projected_points = wp.zeros(n=1, dtype=wp.vec3, device=device) loss = wp.zeros(n=1, dtype=float, device=device) wp.launch( kernel=mesh_query_point_loss, dim=1, inputs=[mesh.id, query_points, projected_points, loss], device=device ) loss_values.append(loss.numpy()[0]) for i in range(3): l_0 = loss_values[i * 2] l_1 = loss_values[i * 2 + 1] gradient = (l_1 - l_0) / (2.0 * eps) numeric[i] = gradient error = ((analytic - numeric) * (analytic - numeric)).sum(axis=0) tolerance = 1.0e-3 test.assertTrue(error < tolerance, f"error is {error} which is >= {tolerance}") def register(parent): devices = get_test_devices() class TestMeshQuery(parent): pass # USD import failures should not count as a test failure try: from pxr import Usd, UsdGeom have_usd = True except: have_usd = False if have_usd: add_function_test(TestMeshQuery, "test_mesh_query_point", test_mesh_query_point, devices=devices) add_function_test(TestMeshQuery, "test_adj_mesh_query_point", test_adj_mesh_query_point, devices=devices) return TestMeshQuery if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_mesh_query_point.py
import sys import os sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) import warp as wp import numpy as np wp.config.mode = "release" wp.config.verbose = True wp.config.verify_cuda = True wp.init() n = 100000 num_runs = 16 def test_for_type(dtype, device): dtype_str = dtype.__name__ if dtype == int: values = np.random.randint(-1e6, 1e6, n, dtype=dtype) else: values = np.random.uniform(-1, 1, n) results_ref = np.cumsum(values) in_values = wp.array(values, dtype=dtype, device=device) out_values_inc = wp.zeros(len(values), dtype=dtype, device=device) out_values_exc = wp.zeros(len(values), dtype=dtype, device=device) wp.utils.array_scan(in_values, out_values_inc, True) wp.utils.array_scan(in_values, out_values_exc, False) tolerance = 0 if dtype == int else 1e-3 results_inc = out_values_inc.numpy().squeeze() results_exc = out_values_exc.numpy().squeeze() error_inc = np.max(np.abs(results_inc - results_ref)) / abs(results_ref[-1]) error_exc = max(np.max(np.abs(results_exc[1:] - results_ref[:-1])), abs(results_exc[0])) / abs(results_ref[-2]) if error_inc > tolerance: print(f"FAIL! Max error in inclusive scan for {dtype_str}: {error_inc}") else: print(f"PASS! Max error in inclusive scan for {dtype_str}: {error_inc}") if error_exc > tolerance: print(f"FAIL! Max error in exclusive scan for {dtype_str}: {error_exc}") # else: # print(f"PASS! Max error in exclusive scan for {dtype_str}: {error_exc}") np.random.seed(1008) for device in ("cuda", "cpu"): print(f"\n\nTesting {device}") for i in range(num_runs): print(f"Run: {i+1}") print("---------") test_for_type(int, device) test_for_type(float, device)
warp-main
warp/tests/test_array_scan.py
from .test_all import run ret = run() import sys sys.exit(ret)
warp-main
warp/tests/__main__.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import warp as wp from warp.tests.test_base import * wp.init() @wp.kernel def scalar_grad(x: wp.array(dtype=float), y: wp.array(dtype=float)): y[0] = x[0] ** 2.0 def test_scalar_grad(test, device): x = wp.array([3.0], dtype=float, device=device, requires_grad=True) y = wp.zeros_like(x) tape = wp.Tape() with tape: wp.launch(scalar_grad, dim=1, inputs=[x, y], device=device) tape.backward(y) assert_np_equal(tape.gradients[x].numpy(), np.array(6.0)) @wp.kernel def for_loop_grad(n: int, x: wp.array(dtype=float), s: wp.array(dtype=float)): sum = float(0.0) for i in range(n): sum = sum + x[i] * 2.0 s[0] = sum def test_for_loop_grad(test, device): n = 32 val = np.ones(n, dtype=np.float32) x = wp.array(val, device=device, requires_grad=True) sum = wp.zeros(1, dtype=wp.float32, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(for_loop_grad, dim=1, inputs=[n, x, sum], device=device) # ensure forward pass outputs correct assert_np_equal(sum.numpy(), 2.0 * np.sum(x.numpy())) tape.backward(loss=sum) # ensure forward pass outputs persist assert_np_equal(sum.numpy(), 2.0 * np.sum(x.numpy())) # ensure gradients correct assert_np_equal(tape.gradients[x].numpy(), 2.0 * val) def test_for_loop_graph_grad(test, device): n = 32 val = np.ones(n, dtype=np.float32) x = wp.array(val, device=device, requires_grad=True) sum = wp.zeros(1, dtype=wp.float32, device=device, requires_grad=True) wp.force_load() wp.capture_begin() tape = wp.Tape() with tape: wp.launch(for_loop_grad, dim=1, inputs=[n, x, sum], device=device) tape.backward(loss=sum) graph = wp.capture_end() wp.capture_launch(graph) wp.synchronize() # ensure forward pass outputs persist assert_np_equal(sum.numpy(), 2.0 * np.sum(x.numpy())) # ensure gradients correct assert_np_equal(x.grad.numpy(), 2.0 * val) wp.capture_launch(graph) wp.synchronize() @wp.kernel def for_loop_nested_if_grad(n: int, x: wp.array(dtype=float), s: wp.array(dtype=float)): sum = float(0.0) for i in range(n): if i < 16: if i < 8: sum = sum + x[i] * 2.0 else: sum = sum + x[i] * 4.0 else: if i < 24: sum = sum + x[i] * 6.0 else: sum = sum + x[i] * 8.0 s[0] = sum def test_for_loop_nested_if_grad(test, device): n = 32 val = np.ones(n, dtype=np.float32) # fmt: off expected_val = [ 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, ] expected_grad = [ 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, ] # fmt: on x = wp.array(val, device=device, requires_grad=True) sum = wp.zeros(1, dtype=wp.float32, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(for_loop_nested_if_grad, dim=1, inputs=[n, x, sum], device=device) assert_np_equal(sum.numpy(), np.sum(expected_val)) tape.backward(loss=sum) assert_np_equal(sum.numpy(), np.sum(expected_val)) assert_np_equal(tape.gradients[x].numpy(), np.array(expected_grad)) @wp.kernel def for_loop_grad_nested(n: int, x: wp.array(dtype=float), s: wp.array(dtype=float)): sum = float(0.0) for i in range(n): for j in range(n): sum = sum + x[i * n + j] * float(i * n + j) + 1.0 s[0] = sum def test_for_loop_nested_for_grad(test, device): x = wp.zeros(9, dtype=float, device=device, requires_grad=True) s = wp.zeros(1, dtype=float, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(for_loop_grad_nested, dim=1, inputs=[3, x, s], device=device) tape.backward(s) assert_np_equal(s.numpy(), np.array([9.0])) assert_np_equal(tape.gradients[x].numpy(), np.arange(0.0, 9.0, 1.0)) # differentiating thought most while loops is not supported # since doing things like i = i + 1 breaks adjointing # @wp.kernel # def while_loop_grad(n: int, # x: wp.array(dtype=float), # c: wp.array(dtype=int), # s: wp.array(dtype=float)): # tid = wp.tid() # while i < n: # s[0] = s[0] + x[i]*2.0 # i = i + 1 # def test_while_loop_grad(test, device): # n = 32 # x = wp.array(np.ones(n, dtype=np.float32), device=device, requires_grad=True) # c = wp.zeros(1, dtype=int, device=device) # sum = wp.zeros(1, dtype=wp.float32, device=device) # tape = wp.Tape() # with tape: # wp.launch(while_loop_grad, dim=1, inputs=[n, x, c, sum], device=device) # tape.backward(loss=sum) # assert_np_equal(sum.numpy(), 2.0*np.sum(x.numpy())) # assert_np_equal(tape.gradients[x].numpy(), 2.0*np.ones_like(x.numpy())) @wp.kernel def preserve_outputs( n: int, x: wp.array(dtype=float), c: wp.array(dtype=float), s1: wp.array(dtype=float), s2: wp.array(dtype=float) ): tid = wp.tid() # plain store c[tid] = x[tid] * 2.0 # atomic stores wp.atomic_add(s1, 0, x[tid] * 3.0) wp.atomic_sub(s2, 0, x[tid] * 2.0) # tests that outputs from the forward pass are # preserved by the backward pass, i.e.: stores # are omitted during the forward reply def test_preserve_outputs_grad(test, device): n = 32 val = np.ones(n, dtype=np.float32) x = wp.array(val, device=device, requires_grad=True) c = wp.zeros_like(x) s1 = wp.zeros(1, dtype=wp.float32, device=device, requires_grad=True) s2 = wp.zeros(1, dtype=wp.float32, device=device, requires_grad=True) tape = wp.Tape() with tape: wp.launch(preserve_outputs, dim=n, inputs=[n, x, c, s1, s2], device=device) # ensure forward pass results are correct assert_np_equal(x.numpy(), val) assert_np_equal(c.numpy(), val * 2.0) assert_np_equal(s1.numpy(), np.array(3.0 * n)) assert_np_equal(s2.numpy(), np.array(-2.0 * n)) # run backward on first loss tape.backward(loss=s1) # ensure inputs, copy and sum are unchanged by backwards pass assert_np_equal(x.numpy(), val) assert_np_equal(c.numpy(), val * 2.0) assert_np_equal(s1.numpy(), np.array(3.0 * n)) assert_np_equal(s2.numpy(), np.array(-2.0 * n)) # ensure gradients are correct assert_np_equal(tape.gradients[x].numpy(), 3.0 * val) # run backward on second loss tape.zero() tape.backward(loss=s2) assert_np_equal(x.numpy(), val) assert_np_equal(c.numpy(), val * 2.0) assert_np_equal(s1.numpy(), np.array(3.0 * n)) assert_np_equal(s2.numpy(), np.array(-2.0 * n)) # ensure gradients are correct assert_np_equal(tape.gradients[x].numpy(), -2.0 * val) def gradcheck(func, func_name, inputs, device, eps=1e-4, tol=1e-2): """ Checks that the gradient of the Warp kernel is correct by comparing it to the numerical gradient computed using finite differences. """ module = wp.get_module(func.__module__) kernel = wp.Kernel(func=func, key=func_name, module=module) def f(xs): # call the kernel without taping for finite differences wp_xs = [wp.array(xs[i], ndim=1, dtype=inputs[i].dtype, device=device) for i in range(len(inputs))] output = wp.zeros(1, dtype=wp.float32, device=device) wp.launch(kernel, dim=1, inputs=wp_xs, outputs=[output], device=device) return output.numpy()[0] # compute numerical gradient numerical_grad = [] np_xs = [] for i in range(len(inputs)): np_xs.append(inputs[i].numpy().flatten().copy()) numerical_grad.append(np.zeros_like(np_xs[-1])) inputs[i].requires_grad = True for i in range(len(np_xs)): for j in range(len(np_xs[i])): np_xs[i][j] += eps y1 = f(np_xs) np_xs[i][j] -= 2 * eps y2 = f(np_xs) np_xs[i][j] += eps numerical_grad[i][j] = (y1 - y2) / (2 * eps) # compute analytical gradient tape = wp.Tape() output = wp.zeros(1, dtype=wp.float32, device=device, requires_grad=True) with tape: wp.launch(kernel, dim=1, inputs=inputs, outputs=[output], device=device) tape.backward(loss=output) # compare gradients for i in range(len(inputs)): grad = tape.gradients[inputs[i]] assert_np_equal(grad.numpy(), numerical_grad[i], tol=tol) tape.zero() def test_vector_math_grad(test, device): np.random.seed(123) # test unary operations for dim, vec_type in [(2, wp.vec2), (3, wp.vec3), (4, wp.vec4), (4, wp.quat)]: def check_length(vs: wp.array(dtype=vec_type), out: wp.array(dtype=float)): out[0] = wp.length(vs[0]) def check_length_sq(vs: wp.array(dtype=vec_type), out: wp.array(dtype=float)): out[0] = wp.length_sq(vs[0]) def check_normalize(vs: wp.array(dtype=vec_type), out: wp.array(dtype=float)): out[0] = wp.length_sq(wp.normalize(vs[0])) # compress to scalar output # run the tests with 5 different random inputs for _ in range(5): x = wp.array(np.random.randn(1, dim).astype(np.float32), dtype=vec_type, device=device) gradcheck(check_length, f"check_length_{vec_type.__name__}", [x], device) gradcheck(check_length_sq, f"check_length_sq_{vec_type.__name__}", [x], device) gradcheck(check_normalize, f"check_normalize_{vec_type.__name__}", [x], device) def test_matrix_math_grad(test, device): np.random.seed(123) # test unary operations for dim, mat_type in [(2, wp.mat22), (3, wp.mat33), (4, wp.mat44)]: def check_determinant(vs: wp.array(dtype=mat_type), out: wp.array(dtype=float)): out[0] = wp.determinant(vs[0]) def check_trace(vs: wp.array(dtype=mat_type), out: wp.array(dtype=float)): out[0] = wp.trace(vs[0]) # run the tests with 5 different random inputs for _ in range(5): x = wp.array(np.random.randn(1, dim, dim).astype(np.float32), ndim=1, dtype=mat_type, device=device) gradcheck(check_determinant, f"check_length_{mat_type.__name__}", [x], device) gradcheck(check_trace, f"check_length_sq_{mat_type.__name__}", [x], device) def test_3d_math_grad(test, device): np.random.seed(123) # test binary operations def check_cross(vs: wp.array(dtype=wp.vec3), out: wp.array(dtype=float)): out[0] = wp.length(wp.cross(vs[0], vs[1])) def check_dot(vs: wp.array(dtype=wp.vec3), out: wp.array(dtype=float)): out[0] = wp.dot(vs[0], vs[1]) def check_mat33(vs: wp.array(dtype=wp.vec3), out: wp.array(dtype=float)): a = vs[0] b = vs[1] c = wp.cross(a, b) m = wp.mat33(a[0], b[0], c[0], a[1], b[1], c[1], a[2], b[2], c[2]) out[0] = wp.determinant(m) def check_trace_diagonal(vs: wp.array(dtype=wp.vec3), out: wp.array(dtype=float)): a = vs[0] b = vs[1] c = wp.cross(a, b) m = wp.mat33( 1.0 / (a[0] + 10.0), 0.0, 0.0, 0.0, 1.0 / (b[1] + 10.0), 0.0, 0.0, 0.0, 1.0 / (c[2] + 10.0), ) out[0] = wp.trace(m) def check_rot_rpy(vs: wp.array(dtype=wp.vec3), out: wp.array(dtype=float)): v = vs[0] q = wp.quat_rpy(v[0], v[1], v[2]) out[0] = wp.length(wp.quat_rotate(q, vs[1])) def check_rot_axis_angle(vs: wp.array(dtype=wp.vec3), out: wp.array(dtype=float)): v = wp.normalize(vs[0]) q = wp.quat_from_axis_angle(v, 0.5) out[0] = wp.length(wp.quat_rotate(q, vs[1])) def check_rot_quat_inv(vs: wp.array(dtype=wp.vec3), out: wp.array(dtype=float)): v = vs[0] q = wp.normalize(wp.quat(v[0], v[1], v[2], 1.0)) out[0] = wp.length(wp.quat_rotate_inv(q, vs[1])) # run the tests with 5 different random inputs for _ in range(5): x = wp.array(np.random.randn(2, 3).astype(np.float32), dtype=wp.vec3, device=device, requires_grad=True) gradcheck(check_cross, "check_cross_3d", [x], device) gradcheck(check_dot, "check_dot_3d", [x], device) gradcheck(check_mat33, "check_mat33_3d", [x], device, eps=2e-2) gradcheck(check_trace_diagonal, "check_trace_diagonal_3d", [x], device) gradcheck(check_rot_rpy, "check_rot_rpy_3d", [x], device) gradcheck(check_rot_axis_angle, "check_rot_axis_angle_3d", [x], device) gradcheck(check_rot_quat_inv, "check_rot_quat_inv_3d", [x], device) def test_multi_valued_function_grad(test, device): np.random.seed(123) @wp.func def multi_valued(x: float, y: float, z: float): return wp.sin(x), wp.cos(y) * z, wp.sqrt(z) / wp.abs(x) # test multi-valued functions def check_multi_valued(vs: wp.array(dtype=wp.vec3), out: wp.array(dtype=float)): tid = wp.tid() v = vs[tid] a, b, c = multi_valued(v[0], v[1], v[2]) out[tid] = a + b + c # run the tests with 5 different random inputs for _ in range(5): x = wp.array(np.random.randn(2, 3).astype(np.float32), dtype=wp.vec3, device=device, requires_grad=True) gradcheck(check_multi_valued, "check_multi_valued_3d", [x], device) def test_mesh_grad(test, device): pos = wp.array( [ [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0], ], dtype=wp.vec3, device=device, requires_grad=True, ) indices = wp.array( [0, 1, 2, 0, 2, 3, 0, 3, 1, 1, 3, 2], dtype=wp.int32, device=device, ) mesh = wp.Mesh(points=pos, indices=indices) @wp.func def compute_triangle_area(mesh_id: wp.uint64, tri_id: int): mesh = wp.mesh_get(mesh_id) i, j, k = mesh.indices[tri_id * 3 + 0], mesh.indices[tri_id * 3 + 1], mesh.indices[tri_id * 3 + 2] a = mesh.points[i] b = mesh.points[j] c = mesh.points[k] return wp.length(wp.cross(b - a, c - a)) * 0.5 def compute_area(mesh_id: wp.uint64, out: wp.array(dtype=wp.float32)): wp.atomic_add(out, 0, compute_triangle_area(mesh_id, wp.tid())) module = wp.get_module(compute_area.__module__) kernel = wp.Kernel(func=compute_area, key="compute_area", module=module) num_tris = int(len(indices) / 3) # compute analytical gradient tape = wp.Tape() output = wp.zeros(1, dtype=wp.float32, device=device, requires_grad=True) with tape: wp.launch(kernel, dim=num_tris, inputs=[mesh.id], outputs=[output], device=device) tape.backward(loss=output) ad_grad = mesh.points.grad.numpy() # compute finite differences eps = 1e-3 pos_np = pos.numpy() fd_grad = np.zeros_like(ad_grad) for i in range(len(pos)): for j in range(3): pos_np[i, j] += eps pos = wp.array(pos_np, dtype=wp.vec3, device=device) mesh = wp.Mesh(points=pos, indices=indices) output.zero_() wp.launch(kernel, dim=num_tris, inputs=[mesh.id], outputs=[output], device=device) f1 = output.numpy()[0] pos_np[i, j] -= 2 * eps pos = wp.array(pos_np, dtype=wp.vec3, device=device) mesh = wp.Mesh(points=pos, indices=indices) output.zero_() wp.launch(kernel, dim=num_tris, inputs=[mesh.id], outputs=[output], device=device) f2 = output.numpy()[0] pos_np[i, j] += eps fd_grad[i, j] = (f1 - f2) / (2 * eps) assert np.allclose(ad_grad, fd_grad, atol=1e-3) # atomic add function that memorizes which thread incremented the counter # so that the correct counter value per thread can be used in the replay # phase of the backward pass @wp.func def reversible_increment( counter: wp.array(dtype=int), counter_index: int, value: int, thread_values: wp.array(dtype=int), tid: int ): next_index = wp.atomic_add(counter, counter_index, value) thread_values[tid] = next_index return next_index @wp.func_replay(reversible_increment) def replay_reversible_increment( counter: wp.array(dtype=int), counter_index: int, value: int, thread_values: wp.array(dtype=int), tid: int ): return thread_values[tid] def test_custom_replay_grad(test, device): num_threads = 128 counter = wp.zeros(1, dtype=wp.int32, device=device) thread_ids = wp.zeros(num_threads, dtype=wp.int32, device=device) inputs = wp.array(np.arange(num_threads, dtype=np.float32), device=device, requires_grad=True) outputs = wp.zeros_like(inputs) @wp.kernel def run_atomic_add( input: wp.array(dtype=float), counter: wp.array(dtype=int), thread_values: wp.array(dtype=int), output: wp.array(dtype=float) ): tid = wp.tid() idx = reversible_increment(counter, 0, 1, thread_values, tid) output[idx] = input[idx] ** 2.0 tape = wp.Tape() with tape: wp.launch(run_atomic_add, dim=num_threads, inputs=[inputs, counter, thread_ids], outputs=[outputs], device=device) tape.backward(grads={outputs: wp.array(np.ones(num_threads, dtype=np.float32), device=device)}) assert_np_equal(inputs.grad.numpy(), 2.0 * inputs.numpy(), tol=1e-4) @wp.func def overload_fn(x: float, y: float): return x * 3.0 + y / 3.0, y ** 2.5 @wp.func_grad(overload_fn) def overload_fn_grad(x: float, y: float, adj_ret0: float, adj_ret1: float): wp.adjoint[x] += x * adj_ret0 * 42.0 + y * adj_ret1 * 10.0 wp.adjoint[y] += y * adj_ret1 * 3.0 @wp.struct class MyStruct: scalar: float vec: wp.vec3 @wp.func def overload_fn(x: MyStruct): return x.vec[0] * x.vec[1] * x.vec[2] * 4.0, wp.length(x.vec), x.scalar ** 0.5 @wp.func_grad(overload_fn) def overload_fn_grad(x: MyStruct, adj_ret0: float, adj_ret1: float, adj_ret2: float): wp.adjoint[x.scalar] += x.scalar * adj_ret0 * 10.0 wp.adjoint[x.vec][0] += adj_ret0 * x.vec[1] * x.vec[2] * 20.0 wp.adjoint[x.vec][1] += adj_ret1 * x.vec[0] * x.vec[2] * 30.0 wp.adjoint[x.vec][2] += adj_ret2 * x.vec[0] * x.vec[1] * 40.0 @wp.kernel def run_overload_float_fn( xs: wp.array(dtype=float), ys: wp.array(dtype=float), output0: wp.array(dtype=float), output1: wp.array(dtype=float) ): i = wp.tid() out0, out1 = overload_fn(xs[i], ys[i]) output0[i] = out0 output1[i] = out1 @wp.kernel def run_overload_struct_fn(xs: wp.array(dtype=MyStruct), output: wp.array(dtype=float)): i = wp.tid() out0, out1, out2 = overload_fn(xs[i]) output[i] = out0 + out1 + out2 def test_custom_overload_grad(test, device): dim = 3 xs_float = wp.array(np.arange(1.0, dim + 1.0), dtype=wp.float32, requires_grad=True) ys_float = wp.array(np.arange(10.0, dim + 10.0), dtype=wp.float32, requires_grad=True) out0_float = wp.zeros(dim) out1_float = wp.zeros(dim) tape = wp.Tape() with tape: wp.launch( run_overload_float_fn, dim=dim, inputs=[xs_float, ys_float], outputs=[out0_float, out1_float]) tape.backward(grads={ out0_float: wp.array(np.ones(dim), dtype=wp.float32), out1_float: wp.array(np.ones(dim), dtype=wp.float32)}) assert_np_equal(xs_float.grad.numpy(), xs_float.numpy() * 42.0 + ys_float.numpy() * 10.0) assert_np_equal(ys_float.grad.numpy(), ys_float.numpy() * 3.0) x0 = MyStruct() x0.vec = wp.vec3(1., 2., 3.) x0.scalar = 4. x1 = MyStruct() x1.vec = wp.vec3(5., 6., 7.) x1.scalar = -1.0 x2 = MyStruct() x2.vec = wp.vec3(8., 9., 10.) x2.scalar = 19.0 xs_struct = wp.array([x0, x1, x2], dtype=MyStruct, requires_grad=True) out_struct = wp.zeros(dim) tape = wp.Tape() with tape: wp.launch( run_overload_struct_fn, dim=dim, inputs=[xs_struct], outputs=[out_struct]) tape.backward(grads={out_struct: wp.array(np.ones(dim), dtype=wp.float32)}) xs_struct_np = xs_struct.numpy() struct_grads = xs_struct.grad.numpy() # fmt: off assert_np_equal( np.array([g[0] for g in struct_grads]), np.array([g[0] * 10.0 for g in xs_struct_np])) assert_np_equal( np.array([g[1][0] for g in struct_grads]), np.array([g[1][1] * g[1][2] * 20.0 for g in xs_struct_np])) assert_np_equal( np.array([g[1][1] for g in struct_grads]), np.array([g[1][0] * g[1][2] * 30.0 for g in xs_struct_np])) assert_np_equal( np.array([g[1][2] for g in struct_grads]), np.array([g[1][0] * g[1][1] * 40.0 for g in xs_struct_np])) # fmt: on def register(parent): devices = get_test_devices() class TestGrad(parent): pass # add_function_test(TestGrad, "test_while_loop_grad", test_while_loop_grad, devices=devices) add_function_test(TestGrad, "test_for_loop_nested_for_grad", test_for_loop_nested_for_grad, devices=devices) add_function_test(TestGrad, "test_scalar_grad", test_scalar_grad, devices=devices) add_function_test(TestGrad, "test_for_loop_grad", test_for_loop_grad, devices=devices) add_function_test(TestGrad, "test_for_loop_graph_grad", test_for_loop_graph_grad, devices=wp.get_cuda_devices()) add_function_test(TestGrad, "test_for_loop_nested_if_grad", test_for_loop_nested_if_grad, devices=devices) add_function_test(TestGrad, "test_preserve_outputs_grad", test_preserve_outputs_grad, devices=devices) add_function_test(TestGrad, "test_vector_math_grad", test_vector_math_grad, devices=devices) add_function_test(TestGrad, "test_matrix_math_grad", test_matrix_math_grad, devices=devices) add_function_test(TestGrad, "test_3d_math_grad", test_3d_math_grad, devices=devices) add_function_test(TestGrad, "test_multi_valued_function_grad", test_multi_valued_function_grad, devices=devices) add_function_test(TestGrad, "test_mesh_grad", test_mesh_grad, devices=devices) add_function_test(TestGrad, "test_custom_replay_grad", test_custom_replay_grad, devices=devices) add_function_test(TestGrad, "test_custom_overload_grad", test_custom_overload_grad, devices=devices) return TestGrad if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2, failfast=False)
warp-main
warp/tests/test_grad.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from dataclasses import dataclass from typing import Any import unittest import numpy as np import warp as wp from warp.tests.test_base import * @dataclass class TestData: a: Any b: Any t: float expected: Any expected_adj_a: Any = None expected_adj_b: Any = None expected_adj_t: float = None def check_backwards(self): return self.expected_adj_a is not None and self.expected_adj_b is not None and self.expected_adj_t is not None TEST_DATA = { wp.float32: ( TestData( a=1.0, b=2.0, t=1.5, expected=0.5, expected_adj_a=-0.75, expected_adj_b=-0.75, expected_adj_t=1.5, ), TestData( a=-1.0, b=2.0, t=-0.25, expected=0.15625, expected_adj_a=-0.28125, expected_adj_b=-0.09375, expected_adj_t=0.375, ), TestData( a=0.0, b=1.0, t=9.9, expected=1.0, expected_adj_a=0.0, expected_adj_b=0.0, expected_adj_t=0.0, ), TestData( a=0.0, b=1.0, t=-9.9, expected=0.0, expected_adj_a=0.0, expected_adj_b=0.0, expected_adj_t=0.0, ), ), } wp.init() def test_smoothstep(test, device): def make_kernel_fn(data_type): def fn( a: wp.array(dtype=data_type), b: wp.array(dtype=data_type), t: wp.array(dtype=float), out: wp.array(dtype=data_type), ): out[0] = wp.smoothstep(a[0], b[0], t[0]) return fn for data_type in TEST_DATA: kernel_fn = make_kernel_fn(data_type) module = wp.get_module(kernel_fn.__module__) kernel = wp.Kernel( func=kernel_fn, key=f"test_smoothstep{data_type.__name__}_kernel", module=module, ) for test_data in TEST_DATA[data_type]: a = wp.array( [test_data.a], dtype=data_type, device=device, requires_grad=True, ) b = wp.array( [test_data.b], dtype=data_type, device=device, requires_grad=True, ) t = wp.array( [test_data.t], dtype=float, device=device, requires_grad=True, ) out = wp.array( [0] * wp.types.type_length(data_type), dtype=data_type, device=device, requires_grad=True, ) tape = wp.Tape() with tape: wp.launch( kernel, dim=1, inputs=[a, b, t, out], device=device, ) assert_np_equal( out.numpy(), np.array([test_data.expected]), tol=1e-6, ) if test_data.check_backwards(): tape.backward(out) assert_np_equal( tape.gradients[a].numpy(), np.array([test_data.expected_adj_a]), tol=1e-6, ) assert_np_equal( tape.gradients[b].numpy(), np.array([test_data.expected_adj_b]), tol=1e-6, ) assert_np_equal( tape.gradients[t].numpy(), np.array([test_data.expected_adj_t]), tol=1e-6, ) def register(parent): devices = get_test_devices() class TestSmoothstep(parent): pass add_function_test(TestSmoothstep, "test_smoothstep", test_smoothstep, devices=devices) return TestSmoothstep if __name__ == "__main__": _ = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_smoothstep.py
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import NamedTuple import unittest import numpy as np import warp as wp from warp.tests.test_base import * wp.init() class ScalarFloatValues(NamedTuple): degrees: wp.float32 = None radians: wp.float32 = None @wp.kernel def scalar_float_kernel( i: int, x: wp.array(dtype=wp.float32), out: wp.array(dtype=wp.float32), ): if i == 0: out[0] = wp.degrees(x[0]) elif i == 1: out[0] = wp.radians(x[0]) def test_scalar_math(test, device): float_values = ScalarFloatValues( degrees=(0.123,), radians=(123.0,), ) float_results_expected = ScalarFloatValues( degrees=7.047381, radians=2.146755, ) adj_float_results_expected = ScalarFloatValues( degrees=57.29578, radians=0.017453, ) for i, values in enumerate(float_values): x = wp.array( [values[0]], dtype=wp.float32, device=device, requires_grad=True, ) out = wp.array( [0.0], dtype=wp.float32, device=device, requires_grad=True, ) tape = wp.Tape() with tape: wp.launch( scalar_float_kernel, dim=1, inputs=[i, x, out], device=device, ) assert_np_equal( out.numpy(), np.array([float_results_expected[i]]), tol=1e-6, ) tape.backward(out) assert_np_equal( tape.gradients[x].numpy(), np.array([adj_float_results_expected[i]]), tol=1e-6, ) def register(parent): devices = get_test_devices() class TestMath(parent): pass add_function_test(TestMath, "test_scalar_math", test_scalar_math, devices=devices) return TestMath if __name__ == "__main__": _ = register(unittest.TestCase) unittest.main(verbosity=2)
warp-main
warp/tests/test_math.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import sys import unittest import warp as wp from warp.tests.test_base import * # wp.config.mode = "debug" wp.init() @wp.kernel def test_rename(): a = 0 b = 1 a = b a = 2 wp.expect_eq(a, 2) wp.expect_eq(b, 1) @wp.kernel def test_inplace(): a = 1.0 a += 2.0 wp.expect_eq(a, 3.0) @wp.kernel def test_constant(c: float): a = 0.0 a = c + 1.0 wp.expect_eq(a, 2.0) @wp.kernel def test_dynamic_for_rename(n: int): f0 = int(0.0) f1 = int(1.0) for i in range(0, n): f = f0 + f1 f0 = f1 f1 = f wp.expect_eq(f1, 89) @wp.kernel def test_dynamic_for_inplace(n: int): a = float(0.0) for i in range(0, n): a += 1.0 wp.expect_eq(a, float(n)) @wp.kernel def test_reassign(): f0 = 1.0 f1 = f0 f1 = f1 + 2.0 wp.expect_eq(f1, 3.0) wp.expect_eq(f0, 1.0) @wp.kernel def test_dynamic_reassign(n: int): f0 = wp.vec3() f1 = f0 for i in range(0, n): f1 = f1 - wp.vec3(2.0, 0.0, 0.0) wp.expect_eq(f1, wp.vec3(-4.0, 0.0, 0.0)) wp.expect_eq(f0, wp.vec3()) @wp.kernel def test_range_static_sum(result: wp.array(dtype=int)): a = int(0) for i in range(10): a = a + 1 b = int(0) for i in range(0, 10): b = b + 1 c = int(0) for i in range(0, 20, 2): c = c + 1 result[0] = a result[1] = b result[2] = c @wp.kernel def test_range_dynamic_sum(start: int, end: int, step: int, result: wp.array(dtype=int)): a = int(0) for i in range(end): a = a + 1 b = int(0) for i in range(start, end): b = b + 1 c = int(0) for i in range(start, end * step, step): c = c + 1 d = int(0) for i in range(end * step, start, -step): d = d + 1 result[0] = a result[1] = b result[2] = c result[3] = d @wp.kernel def test_range_dynamic(start: int, end: int, step: int, result: wp.array(dtype=int)): output = int(0) for i in range(start, end, step): result[output] = i output += 1 @wp.kernel def test_range_dynamic_nested(n: int): sum1 = float(0.0) sum2 = float(0.0) sum3 = float(0.0) for i in range(n): sum1 = sum1 + 1.0 sum3 = sum3 + 1.0 for j in range(n): sum2 = sum2 + 1.0 sum3 = sum3 + 1.0 sum3 = sum3 + 1.0 wp.expect_eq(sum1, float(n)) wp.expect_eq(sum2, float(n * n)) wp.expect_eq(sum3, float(n * n + 2 * n)) @wp.kernel def test_while(n: int): i = int(0) while i < n: i = i + 1 wp.expect_eq(i, n) @wp.kernel def test_pass(n: int): i = int(0) while i < n: if False: pass else: i = i + 1 wp.expect_eq(i, n) @wp.kernel def test_break(n: int): a = int(0) for i in range(0, n): if a == 5: break a += 1 wp.expect_eq(a, 5) @wp.kernel def test_break_early(n: int): a = int(0) for i in range(0, n): if i > 5: a = 1 break wp.expect_eq(a, 1) @wp.kernel def test_break_unroll(): a = int(0) for i in range(0, 10): if i > 5: a = i break wp.expect_eq(a, 6) @wp.kernel def test_break_multiple(n: int): a = int(0) for i in range(0, n): if i == 6: a = 1 break if i == 5: a = 2 break if i == 7: a = 3 break wp.expect_eq(a, 2) @wp.kernel def test_continue(n: int): a = int(0) for i in range(0, n): if i == 5: continue a += 1 wp.expect_eq(a, n - 1) @wp.kernel def test_continue_unroll(): a = int(0) for i in range(0, 10): if i == 5: continue a += 1 wp.expect_eq(a, 9) lower = wp.constant(-3) upper = wp.constant(3) step = wp.constant(2) # test unrolling of loops with constant size params # we can't easily test if unrolling has occurred # so just verify correctness at this stage @wp.kernel def test_range_constant(): s = 0 for i in range(upper): s += i # sum [0, 3) wp.expect_eq(s, 3) s = 0 for i in range(lower, upper): s += i # sum [-3, 3) wp.expect_eq(s, -3) s = 0 for i in range(lower, upper, step): s += i # sum [-3, 3) wp.expect_eq(s, -3) N = wp.constant(3) # test a dynamic loop nested between loops expected to be unrolled. @wp.kernel def test_range_constant_dynamic_nested(m: int): s = int(0) for i in range(N): for k in range(m): for j in range(N): s += 1 wp.expect_eq(s, N * m * N) def test_unresolved_func(test, device): # kernel with unresolved function must be in a separate module, otherwise the current module would fail to load from warp.tests.test_unresolved_func import unresolved_func_kernel # ensure that an appropriate exception is raised when the bad module gets loaded with test.assertRaisesRegex(RuntimeError, "Could not find function wp.missing_func"): wp.launch(unresolved_func_kernel, dim=1, inputs=[], device=device) # remove all references to the bad module so that subsequent calls to wp.force_load() # won't try to load it unless we explicitly re-import it again del wp.context.user_modules["warp.tests.test_unresolved_func"] del sys.modules["warp.tests.test_unresolved_func"] def test_unresolved_symbol(test, device): # kernel with unresolved symbol must be in a separate module, otherwise the current module would fail to load from warp.tests.test_unresolved_symbol import unresolved_symbol_kernel # ensure that an appropriate exception is raised when the bad module gets loaded with test.assertRaisesRegex(KeyError, "Referencing undefined symbol: missing_symbol"): wp.launch(unresolved_symbol_kernel, dim=1, inputs=[], device=device) # remove all references to the bad module so that subsequent calls to wp.force_load() # won't try to load it unless we explicitly re-import it again del wp.context.user_modules["warp.tests.test_unresolved_symbol"] del sys.modules["warp.tests.test_unresolved_symbol"] def register(parent): class TestCodeGen(parent): pass devices = get_test_devices() add_kernel_test(TestCodeGen, name="test_inplace", kernel=test_inplace, dim=1, devices=devices) add_kernel_test(TestCodeGen, name="test_rename", kernel=test_rename, dim=1, devices=devices) add_kernel_test(TestCodeGen, name="test_constant", kernel=test_constant, inputs=[1.0], dim=1, devices=devices) add_kernel_test( TestCodeGen, name="test_dynamic_for_rename", kernel=test_dynamic_for_rename, inputs=[10], dim=1, devices=devices ) add_kernel_test( TestCodeGen, name="test_dynamic_for_inplace", kernel=test_dynamic_for_inplace, inputs=[10], dim=1, devices=devices, ) add_kernel_test(TestCodeGen, name="test_reassign", kernel=test_reassign, dim=1, devices=devices) add_kernel_test( TestCodeGen, name="test_dynamic_reassign", kernel=test_dynamic_reassign, inputs=[2], dim=1, devices=devices ) add_kernel_test( TestCodeGen, name="test_range_dynamic_forward", kernel=test_range_dynamic, dim=1, inputs=[0, 4, 1], expect=[0, 1, 2, 3], devices=devices, ) add_kernel_test( TestCodeGen, name="test_range_dynamic_reverse", kernel=test_range_dynamic, dim=1, inputs=[4, 0, -1], expect=[4, 3, 2, 1], devices=devices, ) add_kernel_test( TestCodeGen, name="test_range_dynamic_foward_step", kernel=test_range_dynamic, dim=1, inputs=[0, 8, 2], expect=[0, 2, 4, 6], devices=devices, ) add_kernel_test( TestCodeGen, name="test_range_dynamic_reverse_step", kernel=test_range_dynamic, dim=1, inputs=[8, 0, -2], expect=[8, 6, 4, 2], devices=devices, ) add_kernel_test( TestCodeGen, name="test_range_static_sum", kernel=test_range_static_sum, dim=1, expect=[10, 10, 10], devices=devices, ) add_kernel_test( TestCodeGen, name="test_range_dynamic_sum", kernel=test_range_dynamic_sum, dim=1, inputs=[0, 10, 2], expect=[10, 10, 10, 10], devices=devices, ) add_kernel_test( TestCodeGen, name="test_range_dynamic_sum_zero", kernel=test_range_dynamic_sum, dim=1, inputs=[0, 0, 1], expect=[0, 0, 0, 0], devices=devices, ) add_kernel_test(TestCodeGen, name="test_range_constant", kernel=test_range_constant, dim=1, devices=devices) add_kernel_test( TestCodeGen, name="test_range_constant_dynamic_nested", kernel=test_range_constant_dynamic_nested, dim=1, inputs=[10], devices=devices, ) add_kernel_test( TestCodeGen, name="test_range_dynamic_nested", kernel=test_range_dynamic_nested, dim=1, inputs=[4], devices=devices, ) add_kernel_test(TestCodeGen, name="test_while_zero", kernel=test_while, dim=1, inputs=[0], devices=devices) add_kernel_test(TestCodeGen, name="test_while_positive", kernel=test_while, dim=1, inputs=[16], devices=devices) add_kernel_test(TestCodeGen, name="test_pass", kernel=test_pass, dim=1, inputs=[16], devices=devices) add_kernel_test(TestCodeGen, name="test_break", kernel=test_break, dim=1, inputs=[10], devices=devices) add_kernel_test(TestCodeGen, name="test_break_early", kernel=test_break_early, dim=1, inputs=[10], devices=devices) add_kernel_test(TestCodeGen, name="test_break_unroll", kernel=test_break_unroll, dim=1, devices=devices) add_kernel_test( TestCodeGen, name="test_break_multiple", kernel=test_break_multiple, dim=1, inputs=[10], devices=devices ) add_kernel_test(TestCodeGen, name="test_continue", kernel=test_continue, dim=1, inputs=[10], devices=devices) add_kernel_test(TestCodeGen, name="test_continue_unroll", kernel=test_continue_unroll, dim=1, devices=devices) add_function_test(TestCodeGen, func=test_unresolved_func, name="test_unresolved_func", devices=devices) add_function_test(TestCodeGen, func=test_unresolved_symbol, name="test_unresolved_symbol", devices=devices) return TestCodeGen if __name__ == "__main__": c = register(unittest.TestCase) unittest.main(verbosity=2, failfast=True)
warp-main
warp/tests/test_codegen.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp import numpy as np import math def _usd_add_xform(prim): from pxr import UsdGeom prim = UsdGeom.Xform(prim) prim.ClearXformOpOrder() t = prim.AddTranslateOp() r = prim.AddOrientOp() s = prim.AddScaleOp() def _usd_set_xform(xform, pos: tuple, rot: tuple, scale: tuple, time): from pxr import UsdGeom, Gf xform = UsdGeom.Xform(xform) xform_ops = xform.GetOrderedXformOps() xform_ops[0].Set(Gf.Vec3d(float(pos[0]), float(pos[1]), float(pos[2])), time) xform_ops[1].Set(Gf.Quatf(float(rot[3]), float(rot[0]), float(rot[1]), float(rot[2])), time) xform_ops[2].Set(Gf.Vec3d(float(scale[0]), float(scale[1]), float(scale[2])), time) # transforms a cylinder such that it connects the two points pos0, pos1 def _compute_segment_xform(pos0, pos1): from pxr import Gf mid = (pos0 + pos1) * 0.5 height = (pos1 - pos0).GetLength() dir = (pos1 - pos0) / height rot = Gf.Rotation() rot.SetRotateInto((0.0, 0.0, 1.0), Gf.Vec3d(dir)) scale = Gf.Vec3f(1.0, 1.0, height) return (mid, Gf.Quath(rot.GetQuat()), scale) class UsdRenderer: """A USD renderer""" def __init__(self, stage, up_axis="Y", fps=60, scaling=1.0): """Construct a UsdRenderer object Args: model: A simulation model stage (str/Usd.Stage): A USD stage (either in memory or on disk) up_axis (str): The upfacing axis of the stage fps: The number of frames per second to use in the USD file scaling: Scaling factor to use for the entities in the scene """ from pxr import Usd, UsdGeom, UsdLux, Sdf, Gf if isinstance(stage, str): self.stage = stage = Usd.Stage.CreateNew(stage) elif isinstance(stage, Usd.Stage): self.stage = stage else: print("Failed to create stage in renderer. Please construct with stage path or stage object.") self.up_axis = up_axis.upper() self.fps = float(fps) self.time = 0.0 self.draw_points = True self.draw_springs = False self.draw_triangles = False self.root = UsdGeom.Xform.Define(stage, "/root") # mapping from shape ID to UsdGeom class self._shape_constructors = {} # optional scaling applied to shape instances (e.g. cubes) self._shape_custom_scale = {} # apply scaling self.root.ClearXformOpOrder() s = self.root.AddScaleOp() s.Set(Gf.Vec3d(float(scaling), float(scaling), float(scaling)), 0.0) self.stage.SetDefaultPrim(self.root.GetPrim()) self.stage.SetStartTimeCode(0.0) self.stage.SetEndTimeCode(0.0) self.stage.SetTimeCodesPerSecond(self.fps) if up_axis == "X": UsdGeom.SetStageUpAxis(self.stage, UsdGeom.Tokens.x) elif up_axis == "Y": UsdGeom.SetStageUpAxis(self.stage, UsdGeom.Tokens.y) elif up_axis == "Z": UsdGeom.SetStageUpAxis(self.stage, UsdGeom.Tokens.z) # add default lights light_0 = UsdLux.DistantLight.Define(stage, "/light_0") light_0.GetPrim().CreateAttribute("intensity", Sdf.ValueTypeNames.Float, custom=False).Set(2500.0) light_0.GetPrim().CreateAttribute("color", Sdf.ValueTypeNames.Color3f, custom=False).Set( Gf.Vec3f(0.98, 0.85, 0.7) ) UsdGeom.Xform(light_0.GetPrim()).AddRotateYOp().Set(value=(70.0)) UsdGeom.Xform(light_0.GetPrim()).AddRotateXOp().Set(value=(-45.0)) light_1 = UsdLux.DistantLight.Define(stage, "/light_1") light_1.GetPrim().CreateAttribute("intensity", Sdf.ValueTypeNames.Float, custom=False).Set(2500.0) light_1.GetPrim().CreateAttribute("color", Sdf.ValueTypeNames.Color3f, custom=False).Set( Gf.Vec3f(0.62, 0.82, 0.98) ) UsdGeom.Xform(light_1.GetPrim()).AddRotateYOp().Set(value=(-70.0)) UsdGeom.Xform(light_1.GetPrim()).AddRotateXOp().Set(value=(-45.0)) def begin_frame(self, time): self.stage.SetEndTimeCode(time * self.fps) self.time = time * self.fps def end_frame(self): pass def register_body(self, body_name): from pxr import UsdGeom xform = UsdGeom.Xform.Define(self.stage, self.root.GetPath().AppendChild(body_name)) _usd_add_xform(xform) def _resolve_path(self, name, parent_body=None, is_template=False): # resolve the path to the prim with the given name and optional parent body if is_template: return self.root.GetPath().AppendChild("_template_shapes").AppendChild(name) if parent_body is None: return self.root.GetPath().AppendChild(name) else: return self.root.GetPath().AppendChild(parent_body).AppendChild(name) def add_shape_instance( self, name: str, shape, body, pos: tuple, rot: tuple, scale: tuple = (1.0, 1.0, 1.0), color: tuple = (1.0, 1.0, 1.0), ): sdf_path = self._resolve_path(name, body) instance = self._shape_constructors[shape.name].Define(self.stage, sdf_path) instance.GetPrim().GetReferences().AddInternalReference(shape) _usd_add_xform(instance) if shape.name in self._shape_custom_scale: cs = self._shape_custom_scale[shape.name] scale = (scale[0] * cs[0], scale[1] * cs[1], scale[2] * cs[2]) _usd_set_xform(instance, pos, rot, scale, self.time) def render_plane( self, name: str, pos: tuple, rot: tuple, width: float, length: float, color: tuple = None, parent_body: str = None, is_template: bool = False, ): """ Render a plane with the given dimensions. Args: name: Name of the plane pos: Position of the plane rot: Rotation of the plane width: Width of the plane length: Length of the plane color: Color of the plane parent_body: Name of the parent body is_template: Whether the plane is a template """ from pxr import UsdGeom, Sdf if is_template: prim_path = self._resolve_path(name, parent_body, is_template) blueprint = UsdGeom.Scope.Define(self.stage, prim_path) blueprint_prim = blueprint.GetPrim() blueprint_prim.SetInstanceable(True) blueprint_prim.SetSpecifier(Sdf.SpecifierClass) plane_path = prim_path.AppendChild("plane") else: plane_path = self._resolve_path(name, parent_body) prim_path = plane_path plane = UsdGeom.Mesh.Get(self.stage, plane_path) if not plane: plane = UsdGeom.Mesh.Define(self.stage, plane_path) plane.CreateDoubleSidedAttr().Set(True) width = width if width > 0.0 else 100.0 length = length if length > 0.0 else 100.0 points = ((-width, 0.0, -length), (width, 0.0, -length), (width, 0.0, length), (-width, 0.0, length)) normals = ((0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0)) counts = (4,) indices = [0, 1, 2, 3] plane.GetPointsAttr().Set(points) plane.GetNormalsAttr().Set(normals) plane.GetFaceVertexCountsAttr().Set(counts) plane.GetFaceVertexIndicesAttr().Set(indices) _usd_add_xform(plane) self._shape_constructors[name] = UsdGeom.Mesh if not is_template: _usd_set_xform(plane, pos, rot, (1.0, 1.0, 1.0), 0.0) return prim_path def render_ground(self, size: float = 100.0): from pxr import UsdGeom mesh = UsdGeom.Mesh.Define(self.stage, self.root.GetPath().AppendChild("ground")) mesh.CreateDoubleSidedAttr().Set(True) if self.up_axis == "X": points = ((0.0, -size, -size), (0.0, size, -size), (0.0, size, size), (0.0, -size, size)) normals = ((1.0, 0.0, 0.0), (1.0, 0.0, 0.0), (1.0, 0.0, 0.0), (1.0, 0.0, 0.0)) elif self.up_axis == "Y": points = ((-size, 0.0, -size), (size, 0.0, -size), (size, 0.0, size), (-size, 0.0, size)) normals = ((0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0)) elif self.up_axis == "Z": points = ((-size, -size, 0.0), (size, -size, 0.0), (size, size, 0.0), (-size, size, 0.0)) normals = ((0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0)) counts = (4,) indices = [0, 1, 2, 3] mesh.GetPointsAttr().Set(points) mesh.GetNormalsAttr().Set(normals) mesh.GetFaceVertexCountsAttr().Set(counts) mesh.GetFaceVertexIndicesAttr().Set(indices) def render_sphere( self, name: str, pos: tuple, rot: tuple, radius: float, parent_body: str = None, is_template: bool = False ): """Debug helper to add a sphere for visualization Args: pos: The position of the sphere radius: The radius of the sphere name: A name for the USD prim on the stage """ from pxr import UsdGeom, Sdf if is_template: prim_path = self._resolve_path(name, parent_body, is_template) blueprint = UsdGeom.Scope.Define(self.stage, prim_path) blueprint_prim = blueprint.GetPrim() blueprint_prim.SetInstanceable(True) blueprint_prim.SetSpecifier(Sdf.SpecifierClass) sphere_path = prim_path.AppendChild("sphere") else: sphere_path = self._resolve_path(name, parent_body) prim_path = sphere_path sphere = UsdGeom.Sphere.Get(self.stage, sphere_path) if not sphere: sphere = UsdGeom.Sphere.Define(self.stage, sphere_path) _usd_add_xform(sphere) sphere.GetRadiusAttr().Set(radius, self.time) self._shape_constructors[name] = UsdGeom.Sphere if not is_template: _usd_set_xform(sphere, pos, rot, (1.0, 1.0, 1.0), 0.0) return prim_path def render_capsule( self, name: str, pos: tuple, rot: tuple, radius: float, half_height: float, parent_body: str = None, is_template: bool = False, ): """ Debug helper to add a capsule for visualization Args: pos: The position of the capsule radius: The radius of the capsule half_height: The half height of the capsule name: A name for the USD prim on the stage """ from pxr import UsdGeom, Sdf if is_template: prim_path = self._resolve_path(name, parent_body, is_template) blueprint = UsdGeom.Scope.Define(self.stage, prim_path) blueprint_prim = blueprint.GetPrim() blueprint_prim.SetInstanceable(True) blueprint_prim.SetSpecifier(Sdf.SpecifierClass) capsule_path = prim_path.AppendChild("capsule") else: capsule_path = self._resolve_path(name, parent_body) prim_path = capsule_path capsule = UsdGeom.Capsule.Get(self.stage, capsule_path) if not capsule: capsule = UsdGeom.Capsule.Define(self.stage, capsule_path) _usd_add_xform(capsule) capsule.GetRadiusAttr().Set(float(radius)) capsule.GetHeightAttr().Set(float(half_height * 2.0)) capsule.GetAxisAttr().Set("Y") self._shape_constructors[name] = UsdGeom.Capsule if not is_template: _usd_set_xform(capsule, pos, rot, (1.0, 1.0, 1.0), 0.0) return prim_path def render_cylinder( self, name: str, pos: tuple, rot: tuple, radius: float, half_height: float, parent_body: str = None, is_template: bool = False, ): """ Debug helper to add a cylinder for visualization Args: pos: The position of the cylinder radius: The radius of the cylinder half_height: The half height of the cylinder name: A name for the USD prim on the stage """ from pxr import UsdGeom, Sdf if is_template: prim_path = self._resolve_path(name, parent_body, is_template) blueprint = UsdGeom.Scope.Define(self.stage, prim_path) blueprint_prim = blueprint.GetPrim() blueprint_prim.SetInstanceable(True) blueprint_prim.SetSpecifier(Sdf.SpecifierClass) cylinder_path = prim_path.AppendChild("cylinder") else: cylinder_path = self._resolve_path(name, parent_body) prim_path = cylinder_path cylinder = UsdGeom.Cylinder.Get(self.stage, cylinder_path) if not cylinder: cylinder = UsdGeom.Cylinder.Define(self.stage, cylinder_path) _usd_add_xform(cylinder) cylinder.GetRadiusAttr().Set(float(radius)) cylinder.GetHeightAttr().Set(float(half_height * 2.0)) cylinder.GetAxisAttr().Set("Y") self._shape_constructors[name] = UsdGeom.Cylinder if not is_template: _usd_set_xform(cylinder, pos, rot, (1.0, 1.0, 1.0), 0.0) return prim_path def render_cone( self, name: str, pos: tuple, rot: tuple, radius: float, half_height: float, parent_body: str = None, is_template: bool = False, ): """ Debug helper to add a cone for visualization Args: pos: The position of the cone radius: The radius of the cone half_height: The half height of the cone name: A name for the USD prim on the stage """ from pxr import UsdGeom, Sdf if is_template: prim_path = self._resolve_path(name, parent_body, is_template) blueprint = UsdGeom.Scope.Define(self.stage, prim_path) blueprint_prim = blueprint.GetPrim() blueprint_prim.SetInstanceable(True) blueprint_prim.SetSpecifier(Sdf.SpecifierClass) cone_path = prim_path.AppendChild("cone") else: cone_path = self._resolve_path(name, parent_body) prim_path = cone_path cone = UsdGeom.Cone.Get(self.stage, cone_path) if not cone: cone = UsdGeom.Cone.Define(self.stage, cone_path) _usd_add_xform(cone) cone.GetRadiusAttr().Set(float(radius)) cone.GetHeightAttr().Set(float(half_height * 2.0)) cone.GetAxisAttr().Set("Y") self._shape_constructors[name] = UsdGeom.Cone if not is_template: _usd_set_xform(cone, pos, rot, (1.0, 1.0, 1.0), 0.0) return prim_path def render_box( self, name: str, pos: tuple, rot: tuple, extents: tuple, parent_body: str = None, is_template: bool = False ): """Debug helper to add a box for visualization Args: pos: The position of the sphere extents: The radius of the sphere name: A name for the USD prim on the stage """ from pxr import UsdGeom, Sdf, Gf, Vt if is_template: prim_path = self._resolve_path(name, parent_body, is_template) blueprint = UsdGeom.Scope.Define(self.stage, prim_path) blueprint_prim = blueprint.GetPrim() blueprint_prim.SetInstanceable(True) blueprint_prim.SetSpecifier(Sdf.SpecifierClass) cube_path = prim_path.AppendChild("cube") else: cube_path = self._resolve_path(name, parent_body) prim_path = cube_path cube = UsdGeom.Cube.Get(self.stage, cube_path) if not cube: cube = UsdGeom.Cube.Define(self.stage, cube_path) _usd_add_xform(cube) self._shape_constructors[name] = UsdGeom.Cube self._shape_custom_scale[name] = extents if not is_template: _usd_set_xform(cube, pos, rot, extents, 0.0) return prim_path def render_ref(self, name: str, path: str, pos: tuple, rot: tuple, scale: tuple): from pxr import UsdGeom ref_path = "/root/" + name ref = UsdGeom.Xform.Get(self.stage, ref_path) if not ref: ref = UsdGeom.Xform.Define(self.stage, ref_path) ref.GetPrim().GetReferences().AddReference(path) _usd_add_xform(ref) # update transform _usd_set_xform(ref, pos, rot, scale, self.time) def render_mesh( self, name: str, points, indices, colors=None, pos=(0.0, 0.0, 0.0), rot=(0.0, 0.0, 0.0, 1.0), scale=(1.0, 1.0, 1.0), update_topology=False, parent_body: str = None, is_template: bool = False, ): from pxr import UsdGeom, Sdf if is_template: prim_path = self._resolve_path(name, parent_body, is_template) blueprint = UsdGeom.Scope.Define(self.stage, prim_path) blueprint_prim = blueprint.GetPrim() blueprint_prim.SetInstanceable(True) blueprint_prim.SetSpecifier(Sdf.SpecifierClass) mesh_path = prim_path.AppendChild("mesh") else: mesh_path = self._resolve_path(name, parent_body) prim_path = mesh_path mesh = UsdGeom.Mesh.Get(self.stage, mesh_path) if not mesh: mesh = UsdGeom.Mesh.Define(self.stage, mesh_path) UsdGeom.Primvar(mesh.GetDisplayColorAttr()).SetInterpolation("vertex") _usd_add_xform(mesh) # force topology update on first frame update_topology = True mesh.GetPointsAttr().Set(points, self.time) if update_topology: idxs = np.array(indices).reshape(-1, 3) mesh.GetFaceVertexIndicesAttr().Set(idxs, self.time) mesh.GetFaceVertexCountsAttr().Set([3] * len(idxs), self.time) if colors: mesh.GetDisplayColorAttr().Set(colors, self.time) self._shape_constructors[name] = UsdGeom.Mesh self._shape_custom_scale[name] = scale if not is_template: _usd_set_xform(mesh, pos, rot, scale, self.time) return prim_path def render_line_list(self, name, vertices, indices, color, radius): """Debug helper to add a line list as a set of capsules Args: vertices: The vertices of the line-strip color: The color of the line time: The time to update at """ from pxr import UsdGeom, Gf num_lines = int(len(indices) / 2) if num_lines < 1: return # look up rope point instancer instancer_path = self.root.GetPath().AppendChild(name) instancer = UsdGeom.PointInstancer.Get(self.stage, instancer_path) if not instancer: instancer = UsdGeom.PointInstancer.Define(self.stage, instancer_path) instancer_capsule = UsdGeom.Capsule.Define(self.stage, instancer.GetPath().AppendChild("capsule")) instancer_capsule.GetRadiusAttr().Set(radius) instancer.CreatePrototypesRel().SetTargets([instancer_capsule.GetPath()]) # instancer.CreatePrimvar("displayColor", Sdf.ValueTypeNames.Float3Array, "constant", 1) line_positions = [] line_rotations = [] line_scales = [] for i in range(num_lines): pos0 = vertices[indices[i * 2 + 0]] pos1 = vertices[indices[i * 2 + 1]] (pos, rot, scale) = _compute_segment_xform( Gf.Vec3f(float(pos0[0]), float(pos0[1]), float(pos0[2])), Gf.Vec3f(float(pos1[0]), float(pos1[1]), float(pos1[2])), ) line_positions.append(pos) line_rotations.append(rot) line_scales.append(scale) # line_colors.append(Gf.Vec3f((float(i)/num_lines, 0.5, 0.5))) instancer.GetPositionsAttr().Set(line_positions, self.time) instancer.GetOrientationsAttr().Set(line_rotations, self.time) instancer.GetScalesAttr().Set(line_scales, self.time) instancer.GetProtoIndicesAttr().Set([0] * num_lines, self.time) # instancer.GetPrimvar("displayColor").Set(line_colors, time) def render_line_strip(self, name: str, vertices, color: tuple, radius: float = 0.01): from pxr import UsdGeom, Gf num_lines = int(len(vertices) - 1) if num_lines < 1: return # look up rope point instancer instancer_path = self.root.GetPath().AppendChild(name) instancer = UsdGeom.PointInstancer.Get(self.stage, instancer_path) if not instancer: instancer = UsdGeom.PointInstancer.Define(self.stage, instancer_path) instancer_capsule = UsdGeom.Capsule.Define(self.stage, instancer.GetPath().AppendChild("capsule")) instancer_capsule.GetRadiusAttr().Set(radius) instancer.CreatePrototypesRel().SetTargets([instancer_capsule.GetPath()]) line_positions = [] line_rotations = [] line_scales = [] for i in range(num_lines): pos0 = vertices[i] pos1 = vertices[i + 1] (pos, rot, scale) = _compute_segment_xform( Gf.Vec3f(float(pos0[0]), float(pos0[1]), float(pos0[2])), Gf.Vec3f(float(pos1[0]), float(pos1[1]), float(pos1[2])), ) line_positions.append(pos) line_rotations.append(rot) line_scales.append(scale) instancer.GetPositionsAttr().Set(line_positions, self.time) instancer.GetOrientationsAttr().Set(line_rotations, self.time) instancer.GetScalesAttr().Set(line_scales, self.time) instancer.GetProtoIndicesAttr().Set([0] * num_lines, self.time) instancer_capsule = UsdGeom.Capsule.Get(self.stage, instancer.GetPath().AppendChild("capsule")) instancer_capsule.GetDisplayColorAttr().Set([Gf.Vec3f(color)], self.time) def render_points(self, name: str, points, radius, colors=None): from pxr import UsdGeom, Gf instancer_path = self.root.GetPath().AppendChild(name) instancer = UsdGeom.PointInstancer.Get(self.stage, instancer_path) radius_is_scalar = np.isscalar(radius) if not instancer: if colors is None: instancer = UsdGeom.PointInstancer.Define(self.stage, instancer_path) instancer_sphere = UsdGeom.Sphere.Define(self.stage, instancer.GetPath().AppendChild("sphere")) if radius_is_scalar: instancer_sphere.GetRadiusAttr().Set(radius) else: instancer_sphere.GetRadiusAttr().Set(1.0) instancer.GetScalesAttr().Set(np.tile(radius, (3, 1)).T) instancer.CreatePrototypesRel().SetTargets([instancer_sphere.GetPath()]) instancer.CreateProtoIndicesAttr().Set([0] * len(points)) # set identity rotations quats = [Gf.Quath(1.0, 0.0, 0.0, 0.0)] * len(points) instancer.GetOrientationsAttr().Set(quats, self.time) else: from pxr import Sdf instancer = UsdGeom.Points.Define(self.stage, instancer_path) instancer.CreatePrimvar("displayColor", Sdf.ValueTypeNames.Float3Array, "vertex", 1) if radius_is_scalar: instancer.GetWidthsAttr().Set([radius] * len(points)) else: instancer.GetWidthsAttr().Set(radius) if colors is None: instancer.GetPositionsAttr().Set(points, self.time) else: instancer.GetPointsAttr().Set(points, self.time) instancer.GetDisplayColorAttr().Set(colors, self.time) def update_body_transforms(self, body_q): from pxr import UsdGeom, Sdf if isinstance(body_q, wp.array): body_q = body_q.numpy() with Sdf.ChangeBlock(): for b in range(self.model.body_count): node_name = self.body_names[b] node = UsdGeom.Xform(self.stage.GetPrimAtPath(self.root.GetPath().AppendChild(node_name))) # unpack rigid transform X_sb = wp.transform_expand(body_q[b]) _usd_set_xform(node, X_sb.p, X_sb.q, (1.0, 1.0, 1.0), self.time) def save(self): try: self.stage.Save() return True except: print("Failed to save USD stage") return False
warp-main
warp/render/render_usd.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from .utils import bourke_color_map from .render_usd import UsdRenderer from .render_opengl import OpenGLRenderer
warp-main
warp/render/__init__.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import Union import numpy as np import warp as wp def bourke_color_map(low, high, v): c = [1.0, 1.0, 1.0] if v < low: v = low if v > high: v = high dv = high - low if v < (low + 0.25 * dv): c[0] = 0.0 c[1] = 4.0 * (v - low) / dv elif v < (low + 0.5 * dv): c[0] = 0.0 c[2] = 1.0 + 4.0 * (low + 0.25 * dv - v) / dv elif v < (low + 0.75 * dv): c[0] = 4.0 * (v - low - 0.5 * dv) / dv c[2] = 0.0 else: c[1] = 1.0 + 4.0 * (low + 0.75 * dv - v) / dv c[2] = 0.0 return c def tab10_color_map(i): # matplotlib "tab10" colors colors = [ [31, 119, 180], [255, 127, 14], [44, 160, 44], [214, 39, 40], [148, 103, 189], [140, 86, 75], [227, 119, 194], [127, 127, 127], [188, 189, 34], [23, 190, 207], ] num_colors = len(colors) return [c / 255.0 for c in colors[i % num_colors]] # triangulate mesh around given surface with given thickness @wp.kernel def solidify_mesh_kernel( indices: wp.array(dtype=int, ndim=2), vertices: wp.array(dtype=wp.vec3, ndim=1), thickness: wp.array(dtype=float, ndim=1), # outputs out_vertices: wp.array(dtype=wp.vec3, ndim=1), out_indices: wp.array(dtype=int, ndim=2), ): tid = wp.tid() i = indices[tid, 0] j = indices[tid, 1] k = indices[tid, 2] vi = vertices[i] vj = vertices[j] vk = vertices[k] normal = wp.normalize(wp.cross(vj - vi, vk - vi)) ti = normal * thickness[i] tj = normal * thickness[j] tk = normal * thickness[k] # wedge vertices vi0 = vi + ti vi1 = vi - ti vj0 = vj + tj vj1 = vj - tj vk0 = vk + tk vk1 = vk - tk i0 = i * 2 i1 = i * 2 + 1 j0 = j * 2 j1 = j * 2 + 1 k0 = k * 2 k1 = k * 2 + 1 out_vertices[i0] = vi0 out_vertices[i1] = vi1 out_vertices[j0] = vj0 out_vertices[j1] = vj1 out_vertices[k0] = vk0 out_vertices[k1] = vk1 oid = tid * 8 out_indices[oid + 0, 0] = i0 out_indices[oid + 0, 1] = j0 out_indices[oid + 0, 2] = k0 out_indices[oid + 1, 0] = j0 out_indices[oid + 1, 1] = k1 out_indices[oid + 1, 2] = k0 out_indices[oid + 2, 0] = j0 out_indices[oid + 2, 1] = j1 out_indices[oid + 2, 2] = k1 out_indices[oid + 3, 0] = j0 out_indices[oid + 3, 1] = i1 out_indices[oid + 3, 2] = j1 out_indices[oid + 4, 0] = j0 out_indices[oid + 4, 1] = i0 out_indices[oid + 4, 2] = i1 out_indices[oid + 5, 0] = j1 out_indices[oid + 5, 1] = i1 out_indices[oid + 5, 2] = k1 out_indices[oid + 6, 0] = i1 out_indices[oid + 6, 1] = i0 out_indices[oid + 6, 2] = k0 out_indices[oid + 7, 0] = i1 out_indices[oid + 7, 1] = k0 out_indices[oid + 7, 2] = k1 def solidify_mesh(faces: np.ndarray, vertices: np.ndarray, thickness: Union[list, float]): """ Triangulate mesh around given surface with given thickness. :param faces: array of face indices (Nx3) :param vertices: array of vertex positions (Mx3) :param thickness: array of thickness values (Mx1) or single thickness value :return: tuple of (faces, vertices) """ faces = np.array(faces).reshape(-1, 3) out_faces = wp.zeros((len(faces) * 8, 3), dtype=wp.int32) out_vertices = wp.zeros(len(vertices) * 2, dtype=wp.vec3) if not isinstance(thickness, np.ndarray) and not isinstance(thickness, list): thickness = [thickness] * len(vertices) wp.launch( solidify_mesh_kernel, dim=len(faces), inputs=[wp.array(faces, dtype=int), wp.array(vertices, dtype=wp.vec3), wp.array(thickness, dtype=float)], outputs=[out_vertices, out_faces], ) faces = out_faces.numpy() vertices = out_vertices.numpy() return faces, vertices
warp-main
warp/render/utils.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import sys import time import warp as wp from .utils import tab10_color_map from collections import defaultdict from typing import List, Tuple, Union, Optional import numpy as np import ctypes Mat44 = Union[List[float], List[List[float]], np.ndarray] wp.set_module_options({"enable_backward": False}) shape_vertex_shader = """ #version 330 core layout (location = 0) in vec3 aPos; layout (location = 1) in vec3 aNormal; layout (location = 2) in vec2 aTexCoord; // column vectors of the instance transform matrix layout (location = 3) in vec4 aInstanceTransform0; layout (location = 4) in vec4 aInstanceTransform1; layout (location = 5) in vec4 aInstanceTransform2; layout (location = 6) in vec4 aInstanceTransform3; // colors to use for the checkerboard pattern layout (location = 7) in vec3 aObjectColor1; layout (location = 8) in vec3 aObjectColor2; uniform mat4 view; uniform mat4 model; uniform mat4 projection; out vec3 Normal; out vec3 FragPos; out vec2 TexCoord; out vec3 ObjectColor1; out vec3 ObjectColor2; void main() { mat4 transform = model * mat4(aInstanceTransform0, aInstanceTransform1, aInstanceTransform2, aInstanceTransform3); vec4 worldPos = transform * vec4(aPos, 1.0); gl_Position = projection * view * worldPos; FragPos = vec3(worldPos); Normal = mat3(transpose(inverse(transform))) * aNormal; TexCoord = aTexCoord; ObjectColor1 = aObjectColor1; ObjectColor2 = aObjectColor2; } """ shape_fragment_shader = """ #version 330 core out vec4 FragColor; in vec3 Normal; in vec3 FragPos; in vec2 TexCoord; in vec3 ObjectColor1; in vec3 ObjectColor2; uniform vec3 viewPos; uniform vec3 lightColor; uniform vec3 sunDirection; void main() { float ambientStrength = 0.3; vec3 ambient = ambientStrength * lightColor; vec3 norm = normalize(Normal); float diff = max(dot(norm, sunDirection), 0.0); vec3 diffuse = diff * lightColor; vec3 lightDir2 = normalize(vec3(1.0, 0.3, -0.3)); diff = max(dot(norm, lightDir2), 0.0); diffuse += diff * lightColor * 0.3; float specularStrength = 0.5; vec3 viewDir = normalize(viewPos - FragPos); vec3 reflectDir = reflect(-sunDirection, norm); float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32); vec3 specular = specularStrength * spec * lightColor; reflectDir = reflect(-lightDir2, norm); spec = pow(max(dot(viewDir, reflectDir), 0.0), 64); specular += specularStrength * spec * lightColor * 0.3; // checkerboard pattern float u = TexCoord.x; float v = TexCoord.y; // blend the checkerboard pattern dependent on the gradient of the texture coordinates // to void Moire patterns vec2 grad = abs(dFdx(TexCoord)) + abs(dFdy(TexCoord)); float blendRange = 1.5; float blendFactor = max(grad.x, grad.y) * blendRange; float scale = 2.0; float checker = mod(floor(u * scale) + floor(v * scale), 2.0); checker = mix(checker, 0.5, smoothstep(0.0, 1.0, blendFactor)); vec3 checkerColor = mix(ObjectColor1, ObjectColor2, checker); vec3 result = (ambient + diffuse + specular) * checkerColor; FragColor = vec4(result, 1.0); } """ grid_vertex_shader = """ #version 330 core uniform mat4 view; uniform mat4 model; uniform mat4 projection; in vec3 position; void main() { gl_Position = projection * view * model * vec4(position, 1.0); } """ # Fragment shader source code grid_fragment_shader = """ #version 330 core out vec4 outColor; void main() { outColor = vec4(0.5, 0.5, 0.5, 1.0); } """ sky_vertex_shader = """ #version 330 core layout (location = 0) in vec3 aPos; layout (location = 1) in vec3 aNormal; layout (location = 2) in vec2 aTexCoord; uniform mat4 view; uniform mat4 model; uniform mat4 projection; uniform vec3 viewPos; out vec3 FragPos; out vec2 TexCoord; void main() { vec4 worldPos = vec4(aPos + viewPos, 1.0); gl_Position = projection * view * worldPos; FragPos = vec3(worldPos); TexCoord = aTexCoord; } """ sky_fragment_shader = """ #version 330 core out vec4 FragColor; in vec3 FragPos; in vec2 TexCoord; uniform vec3 color1; uniform vec3 color2; uniform vec3 sunDirection; void main() { float y = tanh(FragPos.y*0.01)*0.5+0.5; float height = sqrt(1.0-y); float s = pow(0.5, 1.0 / 10.0); s = 1.0 - clamp(s, 0.75, 1.0); vec3 haze = mix(vec3(1.0), color2 * 1.3, s); vec3 sky = mix(color1, haze, height / 1.3); float diff = max(dot(sunDirection, normalize(FragPos)), 0.0); vec3 sun = pow(diff, 32) * vec3(1.0, 0.8, 0.6) * 0.5; FragColor = vec4(sky + sun, 1.0); } """ frame_vertex_shader = """ #version 330 core layout (location = 0) in vec3 aPos; layout (location = 1) in vec2 aTexCoord; out vec2 TexCoord; void main() { gl_Position = vec4(aPos, 1.0); TexCoord = aTexCoord; } """ frame_fragment_shader = """ #version 330 core in vec2 TexCoord; out vec4 FragColor; uniform sampler2D textureSampler; void main() { FragColor = texture(textureSampler, TexCoord); } """ @wp.kernel def update_vbo_transforms( instance_id: wp.array(dtype=int), instance_body: wp.array(dtype=int), instance_transforms: wp.array(dtype=wp.transform), instance_scalings: wp.array(dtype=wp.vec3), body_q: wp.array(dtype=wp.transform), # outputs vbo_transforms: wp.array(dtype=wp.mat44), ): tid = wp.tid() i = instance_id[tid] X_ws = instance_transforms[i] if instance_body: body = instance_body[i] if body >= 0: if body_q: X_ws = body_q[body] * X_ws else: return p = wp.transform_get_translation(X_ws) q = wp.transform_get_rotation(X_ws) s = instance_scalings[i] rot = wp.quat_to_matrix(q) # transposed definition vbo_transforms[tid] = wp.mat44( rot[0, 0] * s[0], rot[1, 0] * s[0], rot[2, 0] * s[0], 0.0, rot[0, 1] * s[1], rot[1, 1] * s[1], rot[2, 1] * s[1], 0.0, rot[0, 2] * s[2], rot[1, 2] * s[2], rot[2, 2] * s[2], 0.0, p[0], p[1], p[2], 1.0, ) @wp.kernel def update_vbo_vertices( points: wp.array(dtype=wp.vec3), # outputs vbo_vertices: wp.array(dtype=float, ndim=2), ): tid = wp.tid() p = points[tid] vbo_vertices[tid, 0] = p[0] vbo_vertices[tid, 1] = p[1] vbo_vertices[tid, 2] = p[2] @wp.kernel def update_points_positions( instance_positions: wp.array(dtype=wp.vec3), instance_scalings: wp.array(dtype=wp.vec3), # outputs vbo_transforms: wp.array(dtype=wp.mat44), ): tid = wp.tid() p = instance_positions[tid] s = wp.vec3(1.0) if instance_scalings: s = instance_scalings[tid] # transposed definition # fmt: off vbo_transforms[tid] = wp.mat44( s[0], 0.0, 0.0, 0.0, 0.0, s[1], 0.0, 0.0, 0.0, 0.0, s[2], 0.0, p[0], p[1], p[2], 1.0) # fmt: on @wp.kernel def update_line_transforms( lines: wp.array(dtype=wp.vec3, ndim=2), # outputs vbo_transforms: wp.array(dtype=wp.mat44), ): tid = wp.tid() p0 = lines[tid, 0] p1 = lines[tid, 1] p = 0.5 * (p0 + p1) d = p1 - p0 s = wp.length(d) axis = wp.normalize(d) y_up = wp.vec3(0.0, 1.0, 0.0) angle = wp.acos(wp.dot(axis, y_up)) axis = wp.normalize(wp.cross(axis, y_up)) q = wp.quat_from_axis_angle(axis, -angle) rot = wp.quat_to_matrix(q) # transposed definition # fmt: off vbo_transforms[tid] = wp.mat44( rot[0, 0], rot[1, 0], rot[2, 0], 0.0, s * rot[0, 1], s * rot[1, 1], s * rot[2, 1], 0.0, rot[0, 2], rot[1, 2], rot[2, 2], 0.0, p[0], p[1], p[2], 1.0, ) # fmt: on @wp.kernel def compute_gfx_vertices( indices: wp.array(dtype=int, ndim=2), vertices: wp.array(dtype=wp.vec3, ndim=1), # outputs gfx_vertices: wp.array(dtype=float, ndim=2), ): tid = wp.tid() v0 = vertices[indices[tid, 0]] v1 = vertices[indices[tid, 1]] v2 = vertices[indices[tid, 2]] i = tid * 3 j = i + 1 k = i + 2 gfx_vertices[i, 0] = v0[0] gfx_vertices[i, 1] = v0[1] gfx_vertices[i, 2] = v0[2] gfx_vertices[j, 0] = v1[0] gfx_vertices[j, 1] = v1[1] gfx_vertices[j, 2] = v1[2] gfx_vertices[k, 0] = v2[0] gfx_vertices[k, 1] = v2[1] gfx_vertices[k, 2] = v2[2] n = wp.normalize(wp.cross(v1 - v0, v2 - v0)) gfx_vertices[i, 3] = n[0] gfx_vertices[i, 4] = n[1] gfx_vertices[i, 5] = n[2] gfx_vertices[j, 3] = n[0] gfx_vertices[j, 4] = n[1] gfx_vertices[j, 5] = n[2] gfx_vertices[k, 3] = n[0] gfx_vertices[k, 4] = n[1] gfx_vertices[k, 5] = n[2] @wp.kernel def compute_average_normals( indices: wp.array(dtype=int, ndim=2), vertices: wp.array(dtype=wp.vec3), # outputs normals: wp.array(dtype=wp.vec3), faces_per_vertex: wp.array(dtype=int), ): tid = wp.tid() i = indices[tid, 0] j = indices[tid, 1] k = indices[tid, 2] v0 = vertices[i] v1 = vertices[j] v2 = vertices[k] n = wp.normalize(wp.cross(v1 - v0, v2 - v0)) wp.atomic_add(normals, i, n) wp.atomic_add(faces_per_vertex, i, 1) wp.atomic_add(normals, j, n) wp.atomic_add(faces_per_vertex, j, 1) wp.atomic_add(normals, k, n) wp.atomic_add(faces_per_vertex, k, 1) @wp.kernel def assemble_gfx_vertices( vertices: wp.array(dtype=wp.vec3, ndim=1), normals: wp.array(dtype=wp.vec3), faces_per_vertex: wp.array(dtype=int), # outputs gfx_vertices: wp.array(dtype=float, ndim=2), ): tid = wp.tid() v = vertices[tid] n = normals[tid] / float(faces_per_vertex[tid]) gfx_vertices[tid, 0] = v[0] gfx_vertices[tid, 1] = v[1] gfx_vertices[tid, 2] = v[2] gfx_vertices[tid, 3] = n[0] gfx_vertices[tid, 4] = n[1] gfx_vertices[tid, 5] = n[2] @wp.kernel def copy_frame( input_img: wp.array(dtype=wp.uint8), width: int, height: int, # outputs output_img: wp.array(dtype=float, ndim=3), ): w, v = wp.tid() pixel = v * width + w pixel *= 3 r = float(input_img[pixel + 0]) g = float(input_img[pixel + 1]) b = float(input_img[pixel + 2]) # flip vertically (OpenGL coordinates start at bottom) v = height - v - 1 output_img[v, w, 0] = r / 255.0 output_img[v, w, 1] = g / 255.0 output_img[v, w, 2] = b / 255.0 @wp.kernel def copy_frame_tiles( input_img: wp.array(dtype=wp.uint8), positions: wp.array(dtype=int, ndim=2), screen_width: int, screen_height: int, tile_height: int, # outputs output_img: wp.array(dtype=float, ndim=4), ): tile, x, y = wp.tid() p = positions[tile] qx = x + p[0] qy = y + p[1] pixel = qy * screen_width + qx # flip vertically (OpenGL coordinates start at bottom) y = tile_height - y - 1 if qx >= screen_width or qy >= screen_height: output_img[tile, y, x, 0] = 0.0 output_img[tile, y, x, 1] = 0.0 output_img[tile, y, x, 2] = 0.0 return # prevent out-of-bounds access pixel *= 3 r = float(input_img[pixel + 0]) g = float(input_img[pixel + 1]) b = float(input_img[pixel + 2]) output_img[tile, y, x, 0] = r / 255.0 output_img[tile, y, x, 1] = g / 255.0 output_img[tile, y, x, 2] = b / 255.0 @wp.kernel def copy_frame_tile( input_img: wp.array(dtype=wp.uint8), offset_x: int, offset_y: int, screen_width: int, screen_height: int, tile_height: int, # outputs output_img: wp.array(dtype=float, ndim=4), ): tile, x, y = wp.tid() qx = x + offset_x qy = y + offset_y pixel = qy * screen_width + qx # flip vertically (OpenGL coordinates start at bottom) y = tile_height - y - 1 if qx >= screen_width or qy >= screen_height: output_img[tile, y, x, 0] = 0.0 output_img[tile, y, x, 1] = 0.0 output_img[tile, y, x, 2] = 0.0 return # prevent out-of-bounds access pixel *= 3 r = float(input_img[pixel + 0]) g = float(input_img[pixel + 1]) b = float(input_img[pixel + 2]) output_img[tile, y, x, 0] = r / 255.0 output_img[tile, y, x, 1] = g / 255.0 output_img[tile, y, x, 2] = b / 255.0 def check_gl_error(): from pyglet import gl error = gl.glGetError() if error != gl.GL_NO_ERROR: print(f"OpenGL error: {error}") class ShapeInstancer: """ Handles instanced rendering for a mesh. Note the vertices must be in the 8-dimensional format: [3D point, 3D normal, UV texture coordinates] """ def __init__(self, shape_shader, device): self.shape_shader = shape_shader self.device = device self.face_count = 0 self.vao = None self.instance_transform_gl_buffer = None self.instance_color1_buffer = None self.instance_color2_buffer = None self.color1 = (1.0, 1.0, 1.0) self.color2 = (0.0, 0.0, 0.0) self.num_instances = 0 self.transforms = None self.scalings = None self._instance_transform_cuda_buffer = None def __del__(self): from pyglet import gl if self.instance_transform_gl_buffer is not None: try: gl.glDeleteBuffers(1, self.instance_transform_gl_buffer) gl.glDeleteBuffers(1, self.instance_color1_buffer) gl.glDeleteBuffers(1, self.instance_color2_buffer) except gl.GLException: pass if self.vao is not None: try: gl.glDeleteVertexArrays(1, self.vao) gl.glDeleteBuffers(1, self.vbo) gl.glDeleteBuffers(1, self.ebo) except gl.GLException: pass def register_shape(self, vertices, indices, color1=(1.0, 1.0, 1.0), color2=(0.0, 0.0, 0.0)): from pyglet import gl if color1 is not None and color2 is None: color2 = np.clip(np.array(color1) + 0.25, 0.0, 1.0) self.color1 = color1 self.color2 = color2 gl.glUseProgram(self.shape_shader.id) # Create VAO, VBO, and EBO self.vao = gl.GLuint() gl.glGenVertexArrays(1, self.vao) gl.glBindVertexArray(self.vao) self.vbo = gl.GLuint() gl.glGenBuffers(1, self.vbo) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self.vbo) gl.glBufferData(gl.GL_ARRAY_BUFFER, vertices.nbytes, vertices.ctypes.data, gl.GL_STATIC_DRAW) self.ebo = gl.GLuint() gl.glGenBuffers(1, self.ebo) gl.glBindBuffer(gl.GL_ELEMENT_ARRAY_BUFFER, self.ebo) gl.glBufferData(gl.GL_ELEMENT_ARRAY_BUFFER, indices.nbytes, indices.ctypes.data, gl.GL_STATIC_DRAW) # Set up vertex attributes vertex_stride = vertices.shape[1] * vertices.itemsize # positions gl.glVertexAttribPointer(0, 3, gl.GL_FLOAT, gl.GL_FALSE, vertex_stride, ctypes.c_void_p(0)) gl.glEnableVertexAttribArray(0) # normals gl.glVertexAttribPointer(1, 3, gl.GL_FLOAT, gl.GL_FALSE, vertex_stride, ctypes.c_void_p(3 * vertices.itemsize)) gl.glEnableVertexAttribArray(1) # uv coordinates gl.glVertexAttribPointer(2, 2, gl.GL_FLOAT, gl.GL_FALSE, vertex_stride, ctypes.c_void_p(6 * vertices.itemsize)) gl.glEnableVertexAttribArray(2) gl.glBindVertexArray(0) self.face_count = len(indices) def allocate_instances(self, positions, rotations=None, colors1=None, colors2=None, scalings=None): from pyglet import gl gl.glBindVertexArray(self.vao) self.num_instances = len(positions) # Create instance buffer and bind it as an instanced array if self.instance_transform_gl_buffer is None: self.instance_transform_gl_buffer = gl.GLuint() gl.glGenBuffers(1, self.instance_transform_gl_buffer) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self.instance_transform_gl_buffer) self.instance_ids = wp.array(np.arange(self.num_instances), dtype=wp.int32, device=self.device) if rotations is None: self.instance_transforms = wp.array( [(*pos, 0.0, 0.0, 0.0, 1.0) for pos in positions], dtype=wp.transform, device=self.device ) else: self.instance_transforms = wp.array( [(*pos, *rot) for pos, rot in zip(positions, rotations)], dtype=wp.transform, device=self.device ) if scalings is None: self.instance_scalings = wp.array( np.tile((1.0, 1.0, 1.0), (self.num_instances, 1)), dtype=wp.vec3, device=self.device ) else: self.instance_scalings = wp.array(scalings, dtype=wp.vec3, device=self.device) vbo_transforms = wp.zeros(dtype=wp.mat44, shape=(self.num_instances,), device=self.device) wp.launch( update_vbo_transforms, dim=self.num_instances, inputs=[ self.instance_ids, None, self.instance_transforms, self.instance_scalings, None, ], outputs=[ vbo_transforms, ], device=self.device, ) vbo_transforms = vbo_transforms.numpy() gl.glBufferData(gl.GL_ARRAY_BUFFER, vbo_transforms.nbytes, vbo_transforms.ctypes.data, gl.GL_DYNAMIC_DRAW) # Create CUDA buffer for instance transforms self._instance_transform_cuda_buffer = wp.RegisteredGLBuffer( int(self.instance_transform_gl_buffer.value), self.device ) if colors1 is None: colors1 = np.tile(self.color1, (self.num_instances, 1)) if colors2 is None: colors2 = np.tile(self.color2, (self.num_instances, 1)) colors1 = np.array(colors1, dtype=np.float32) colors2 = np.array(colors2, dtype=np.float32) # create buffer for checkerboard colors if self.instance_color1_buffer is None: self.instance_color1_buffer = gl.GLuint() gl.glGenBuffers(1, self.instance_color1_buffer) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self.instance_color1_buffer) gl.glBufferData(gl.GL_ARRAY_BUFFER, colors1.nbytes, colors1.ctypes.data, gl.GL_STATIC_DRAW) if self.instance_color2_buffer is None: self.instance_color2_buffer = gl.GLuint() gl.glGenBuffers(1, self.instance_color2_buffer) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self.instance_color2_buffer) gl.glBufferData(gl.GL_ARRAY_BUFFER, colors2.nbytes, colors2.ctypes.data, gl.GL_STATIC_DRAW) # Set up instance attribute pointers matrix_size = vbo_transforms[0].nbytes gl.glBindVertexArray(self.vao) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self.instance_transform_gl_buffer) # we can only send vec4s to the shader, so we need to split the instance transforms matrix into its column vectors for i in range(4): gl.glVertexAttribPointer( 3 + i, 4, gl.GL_FLOAT, gl.GL_FALSE, matrix_size, ctypes.c_void_p(i * matrix_size // 4) ) gl.glEnableVertexAttribArray(3 + i) gl.glVertexAttribDivisor(3 + i, 1) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self.instance_color1_buffer) gl.glVertexAttribPointer(7, 3, gl.GL_FLOAT, gl.GL_FALSE, colors1[0].nbytes, ctypes.c_void_p(0)) gl.glEnableVertexAttribArray(7) gl.glVertexAttribDivisor(7, 1) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self.instance_color2_buffer) gl.glVertexAttribPointer(8, 3, gl.GL_FLOAT, gl.GL_FALSE, colors2[0].nbytes, ctypes.c_void_p(0)) gl.glEnableVertexAttribArray(8) gl.glVertexAttribDivisor(8, 1) gl.glBindVertexArray(0) def update_instances(self, transforms: wp.array = None, scalings: wp.array = None, colors1=None, colors2=None): from pyglet import gl if transforms is not None: if transforms.device.is_cuda: wp_transforms = transforms else: wp_transforms = transforms.to(self.device) self.transforms = wp_transforms if scalings is not None: if transforms.device.is_cuda: wp_scalings = scalings else: wp_scalings = scalings.to(self.device) self.scalings = wp_scalings if transforms is not None or scalings is not None: gl.glBindVertexArray(self.vao) vbo_transforms = self._instance_transform_cuda_buffer.map(dtype=wp.mat44, shape=(self.num_instances,)) wp.launch( update_vbo_transforms, dim=self.num_instances, inputs=[ self.instance_ids, None, self.instance_transforms, self.instance_scalings, None, ], outputs=[ vbo_transforms, ], device=self.device, ) self._instance_transform_cuda_buffer.unmap() def render(self): from pyglet import gl gl.glUseProgram(self.shape_shader.id) gl.glBindVertexArray(self.vao) gl.glDrawElementsInstanced(gl.GL_TRIANGLES, self.face_count, gl.GL_UNSIGNED_INT, None, self.num_instances) gl.glBindVertexArray(0) # scope exposes VBO transforms to be set directly by a warp kernel def __enter__(self): from pyglet import gl gl.glBindVertexArray(self.vao) self.vbo_transforms = self._instance_transform_cuda_buffer.map(dtype=wp.mat44, shape=(self.num_instances,)) return self def __exit__(self, exc_type, exc_value, traceback): self._instance_transform_cuda_buffer.unmap() def str_buffer(string: str): return ctypes.c_char_p(string.encode("utf-8")) def arr_pointer(arr: np.ndarray): return arr.astype(np.float32).ctypes.data_as(ctypes.POINTER(ctypes.c_float)) class OpenGLRenderer: """ OpenGLRenderer is a simple OpenGL renderer for rendering 3D shapes and meshes. """ # number of segments to use for rendering spheres, capsules, cones and cylinders default_num_segments = 32 def __init__( self, title="Warp sim", scaling=1.0, fps=60, up_axis="Y", screen_width=1024, screen_height=768, near_plane=0.01, far_plane=1000.0, camera_fov=45.0, background_color=(0.53, 0.8, 0.92), draw_grid=True, draw_sky=True, draw_axis=True, show_info=True, render_wireframe=False, axis_scale=1.0, vsync=False, headless=False, enable_backface_culling=True, ): try: import pyglet # disable error checking for performance pyglet.options["debug_gl"] = False from pyglet import gl from pyglet.math import Vec3 as PyVec3 from pyglet.graphics.shader import Shader, ShaderProgram except ImportError: raise Exception("OpenGLRenderer requires pyglet (version >= 2.0) to be installed.") self.camera_near_plane = near_plane self.camera_far_plane = far_plane self.camera_fov = camera_fov self.background_color = background_color self.draw_grid = draw_grid self.draw_sky = draw_sky self.draw_axis = draw_axis self.show_info = show_info self.render_wireframe = render_wireframe self.enable_backface_culling = enable_backface_culling self._device = wp.get_cuda_device() self._title = title self.window = pyglet.window.Window( width=screen_width, height=screen_height, caption=title, resizable=True, vsync=vsync, visible=not headless ) self.app = pyglet.app # making window current opengl rendering context self.window.switch_to() self.screen_width, self.screen_height = self.window.get_framebuffer_size() self._camera_pos = PyVec3(0.0, 2.0, 10.0) self._camera_front = PyVec3(0.0, 0.0, -1.0) self._camera_up = PyVec3(0.0, 1.0, 0.0) self._camera_speed = 0.04 if isinstance(up_axis, int): self._camera_axis = up_axis else: self._camera_axis = "XYZ".index(up_axis.upper()) self._yaw, self._pitch = -90.0, 0.0 self._last_x, self._last_y = self.screen_width // 2, self.screen_height // 2 self._first_mouse = True self._left_mouse_pressed = False self._keys_pressed = defaultdict(bool) self.update_view_matrix() self.update_projection_matrix() self._frame_dt = 1.0 / fps self.time = 0.0 self._start_time = time.time() self.clock_time = 0.0 self._paused = False self._frame_speed = 0.0 self.skip_rendering = False self._skip_frame_counter = 0 self._fps_update = 0.0 self._fps_render = 0.0 self._fps_alpha = 0.1 # low pass filter rate to update FPS stats self._body_name = {} self._shapes = [] self._shape_geo_hash = {} self._shape_gl_buffers = {} self._shape_instances = defaultdict(list) self._instances = {} self._instance_shape = {} self._instance_gl_buffers = {} self._instance_transform_gl_buffer = None self._instance_transform_cuda_buffer = None self._instance_color1_buffer = None self._instance_color2_buffer = None self._instance_count = 0 self._wp_instance_ids = None self._instance_ids = None self._inverse_instance_ids = None self._wp_instance_transforms = None self._wp_instance_scalings = None self._wp_instance_bodies = None self._update_shape_instances = False self._add_shape_instances = False # additional shape instancer used for points and line rendering self._shape_instancers = {} # instancer for the arrow shapes sof the coordinate system axes self._axis_instancer = None # toggle tiled rendering self._tiled_rendering = False self._tile_instances = None self._tile_ncols = 0 self._tile_nrows = 0 self._tile_width = 0 self._tile_height = 0 self._tile_viewports = None self._tile_view_matrices = None self._tile_projection_matrices = None self._frame_texture = None self._frame_fbo = None self._frame_pbo = None self.window.push_handlers(on_draw=self._draw) self.window.push_handlers(on_resize=self._window_resize_callback) self.window.push_handlers(on_key_press=self._key_press_callback) self._key_handler = pyglet.window.key.KeyStateHandler() self.window.push_handlers(self._key_handler) self.window.on_mouse_scroll = self._scroll_callback self.window.on_mouse_drag = self._mouse_drag_callback gl.glClearColor(*self.background_color, 1) gl.glEnable(gl.GL_DEPTH_TEST) self._shape_shader = ShaderProgram( Shader(shape_vertex_shader, "vertex"), Shader(shape_fragment_shader, "fragment") ) self._grid_shader = ShaderProgram( Shader(grid_vertex_shader, "vertex"), Shader(grid_fragment_shader, "fragment") ) self._sun_direction = np.array((-0.2, 0.8, 0.3)) self._sun_direction /= np.linalg.norm(self._sun_direction) with self._shape_shader: gl.glUniform3f( gl.glGetUniformLocation(self._shape_shader.id, str_buffer("sunDirection")), *self._sun_direction ) gl.glUniform3f(gl.glGetUniformLocation(self._shape_shader.id, str_buffer("lightColor")), 1, 1, 1) self._loc_shape_model = gl.glGetUniformLocation(self._shape_shader.id, str_buffer("model")) self._loc_shape_view = gl.glGetUniformLocation(self._shape_shader.id, str_buffer("view")) self._loc_shape_projection = gl.glGetUniformLocation(self._shape_shader.id, str_buffer("projection")) self._loc_shape_view_pos = gl.glGetUniformLocation(self._shape_shader.id, str_buffer("viewPos")) gl.glUniform3f(self._loc_shape_view_pos, 0, 0, 10) # create grid data limit = 10.0 ticks = np.linspace(-limit, limit, 21) grid_vertices = [] for i in ticks: if self._camera_axis == 0: grid_vertices.extend([0, -limit, i, 0, limit, i]) grid_vertices.extend([0, i, -limit, 0, i, limit]) elif self._camera_axis == 1: grid_vertices.extend([-limit, 0, i, limit, 0, i]) grid_vertices.extend([i, 0, -limit, i, 0, limit]) elif self._camera_axis == 2: grid_vertices.extend([-limit, i, 0, limit, i, 0]) grid_vertices.extend([i, -limit, 0, i, limit, 0]) grid_vertices = np.array(grid_vertices, dtype=np.float32) self._grid_vertex_count = len(grid_vertices) // 3 with self._grid_shader: self._grid_vao = gl.GLuint() gl.glGenVertexArrays(1, self._grid_vao) gl.glBindVertexArray(self._grid_vao) self._grid_vbo = gl.GLuint() gl.glGenBuffers(1, self._grid_vbo) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self._grid_vbo) gl.glBufferData(gl.GL_ARRAY_BUFFER, grid_vertices.nbytes, grid_vertices.ctypes.data, gl.GL_STATIC_DRAW) self._loc_grid_view = gl.glGetUniformLocation(self._grid_shader.id, str_buffer("view")) self._loc_grid_model = gl.glGetUniformLocation(self._grid_shader.id, str_buffer("model")) self._loc_grid_projection = gl.glGetUniformLocation(self._grid_shader.id, str_buffer("projection")) self._loc_grid_pos_attribute = gl.glGetAttribLocation(self._grid_shader.id, str_buffer("position")) gl.glVertexAttribPointer(self._loc_grid_pos_attribute, 3, gl.GL_FLOAT, gl.GL_FALSE, 0, None) gl.glEnableVertexAttribArray(self._loc_grid_pos_attribute) # create sky data self._sky_shader = ShaderProgram(Shader(sky_vertex_shader, "vertex"), Shader(sky_fragment_shader, "fragment")) with self._sky_shader: self._loc_sky_view = gl.glGetUniformLocation(self._sky_shader.id, str_buffer("view")) self._loc_sky_model = gl.glGetUniformLocation(self._sky_shader.id, str_buffer("model")) self._loc_sky_projection = gl.glGetUniformLocation(self._sky_shader.id, str_buffer("projection")) self._loc_sky_color1 = gl.glGetUniformLocation(self._sky_shader.id, str_buffer("color1")) self._loc_sky_color2 = gl.glGetUniformLocation(self._sky_shader.id, str_buffer("color2")) gl.glUniform3f(self._loc_sky_color1, *background_color) # glUniform3f(self._loc_sky_color2, *np.clip(np.array(background_color)+0.5, 0.0, 1.0)) gl.glUniform3f(self._loc_sky_color2, 0.8, 0.4, 0.05) self._loc_sky_view_pos = gl.glGetUniformLocation(self._sky_shader.id, str_buffer("viewPos")) gl.glUniform3f( gl.glGetUniformLocation(self._sky_shader.id, str_buffer("sunDirection")), *self._sun_direction ) # Create VAO, VBO, and EBO self._sky_vao = gl.GLuint() gl.glGenVertexArrays(1, self._sky_vao) gl.glBindVertexArray(self._sky_vao) vertices, indices = self._create_sphere_mesh(self.camera_far_plane * 0.9, 32, 32, reverse_winding=True) self._sky_tri_count = len(indices) self._sky_vbo = gl.GLuint() gl.glGenBuffers(1, self._sky_vbo) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self._sky_vbo) gl.glBufferData(gl.GL_ARRAY_BUFFER, vertices.nbytes, vertices.ctypes.data, gl.GL_STATIC_DRAW) self._sky_ebo = gl.GLuint() gl.glGenBuffers(1, self._sky_ebo) gl.glBindBuffer(gl.GL_ELEMENT_ARRAY_BUFFER, self._sky_ebo) gl.glBufferData(gl.GL_ELEMENT_ARRAY_BUFFER, indices.nbytes, indices.ctypes.data, gl.GL_STATIC_DRAW) # Set up vertex attributes vertex_stride = vertices.shape[1] * vertices.itemsize # positions gl.glVertexAttribPointer(0, 3, gl.GL_FLOAT, gl.GL_FALSE, vertex_stride, ctypes.c_void_p(0)) gl.glEnableVertexAttribArray(0) # normals gl.glVertexAttribPointer(1, 3, gl.GL_FLOAT, gl.GL_FALSE, vertex_stride, ctypes.c_void_p(3 * vertices.itemsize)) gl.glEnableVertexAttribArray(1) # uv coordinates gl.glVertexAttribPointer(2, 2, gl.GL_FLOAT, gl.GL_FALSE, vertex_stride, ctypes.c_void_p(6 * vertices.itemsize)) gl.glEnableVertexAttribArray(2) gl.glBindVertexArray(0) self._last_time = time.time() self._last_begin_frame_time = self._last_time self._last_end_frame_time = self._last_time # create arrow shapes for the coordinate system axes vertices, indices = self._create_arrow_mesh( base_radius=0.02 * axis_scale, base_height=0.85 * axis_scale, cap_height=0.15 * axis_scale ) self._axis_instancer = ShapeInstancer(self._shape_shader, self._device) self._axis_instancer.register_shape(vertices, indices) sqh = np.sqrt(0.5) self._axis_instancer.allocate_instances( positions=[(0.0, 0.0, 0.0), (0.0, 0.0, 0.0), (0.0, 0.0, 0.0)], rotations=[(0.0, 0.0, 0.0, 1.0), (0.0, 0.0, -sqh, sqh), (sqh, 0.0, 0.0, sqh)], colors1=[(0.0, 1.0, 0.0), (1.0, 0.0, 0.0), (0.0, 0.0, 1.0)], colors2=[(0.0, 1.0, 0.0), (1.0, 0.0, 0.0), (0.0, 0.0, 1.0)], ) # create frame buffer for rendering to a texture self._frame_texture = None self._frame_fbo = None self._setup_framebuffer() # fmt: off # set up VBO for the quad that is rendered to the user window with the texture self._frame_vertices = np.array([ # Positions TexCoords -1.0, -1.0, 0.0, 0.0, 1.0, -1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 0.0, 1.0 ], dtype=np.float32) # fmt: on self._frame_indices = np.array([0, 1, 2, 2, 3, 0], dtype=np.uint32) self._frame_vao = gl.GLuint() gl.glGenVertexArrays(1, self._frame_vao) gl.glBindVertexArray(self._frame_vao) self._frame_vbo = gl.GLuint() gl.glGenBuffers(1, self._frame_vbo) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self._frame_vbo) gl.glBufferData( gl.GL_ARRAY_BUFFER, self._frame_vertices.nbytes, self._frame_vertices.ctypes.data, gl.GL_STATIC_DRAW ) self._frame_ebo = gl.GLuint() gl.glGenBuffers(1, self._frame_ebo) gl.glBindBuffer(gl.GL_ELEMENT_ARRAY_BUFFER, self._frame_ebo) gl.glBufferData( gl.GL_ELEMENT_ARRAY_BUFFER, self._frame_indices.nbytes, self._frame_indices.ctypes.data, gl.GL_STATIC_DRAW ) gl.glVertexAttribPointer(0, 2, gl.GL_FLOAT, gl.GL_FALSE, 4 * self._frame_vertices.itemsize, ctypes.c_void_p(0)) gl.glEnableVertexAttribArray(0) gl.glVertexAttribPointer( 1, 2, gl.GL_FLOAT, gl.GL_FALSE, 4 * self._frame_vertices.itemsize, ctypes.c_void_p(2 * vertices.itemsize) ) gl.glEnableVertexAttribArray(1) self._frame_shader = ShaderProgram( Shader(frame_vertex_shader, "vertex"), Shader(frame_fragment_shader, "fragment") ) gl.glUseProgram(self._frame_shader.id) self._frame_loc_texture = gl.glGetUniformLocation(self._frame_shader.id, str_buffer("textureSampler")) # Unbind the VBO and VAO gl.glBindBuffer(gl.GL_ARRAY_BUFFER, 0) gl.glBindVertexArray(0) # update model matrix self.scaling = scaling check_gl_error() # create text to render stats on the screen self._info_label = pyglet.text.Label( "", font_name="Arial", font_size=12, color=(255, 255, 255, 255), x=10, y=10, anchor_x="left", anchor_y="top", multiline=True, width=400, ) # set up our own event handling so we can synchronously render frames # by calling update() in a loop from pyglet.window import Window Window._enable_event_queue = False self.window.switch_to() self.window.dispatch_pending_events() platform_event_loop = self.app.platform_event_loop platform_event_loop.start() # start event loop self.app.event_loop.dispatch_event("on_enter") @property def paused(self): return self._paused @paused.setter def paused(self, value): self._paused = value if value: self.window.set_caption(f"{self._title} (paused)") else: self.window.set_caption(self._title) @property def has_exit(self): return self.app.event_loop.has_exit def clear(self): from pyglet import gl self.app.event_loop.dispatch_event("on_exit") self.app.platform_event_loop.stop() if self._instance_transform_gl_buffer is not None: try: gl.glDeleteBuffers(1, self._instance_transform_gl_buffer) gl.glDeleteBuffers(1, self._instance_color1_buffer) gl.glDeleteBuffers(1, self._instance_color2_buffer) except gl.GLException: pass for vao, vbo, ebo, _, vertex_cuda_buffer in self._shape_gl_buffers.values(): try: gl.glDeleteVertexArrays(1, vao) gl.glDeleteBuffers(1, vbo) gl.glDeleteBuffers(1, ebo) except gl.GLException: pass self._body_name.clear() self._shapes.clear() self._shape_geo_hash.clear() self._shape_gl_buffers.clear() self._shape_instances.clear() self._instances.clear() self._instance_shape.clear() self._instance_gl_buffers.clear() self._instance_transform_gl_buffer = None self._instance_transform_cuda_buffer = None self._instance_color1_buffer = None self._instance_color2_buffer = None self._wp_instance_ids = None self._wp_instance_transforms = None self._wp_instance_scalings = None self._wp_instance_bodies = None self._update_shape_instances = False @property def tiled_rendering(self): return self._tiled_rendering @tiled_rendering.setter def tiled_rendering(self, value): if value: assert self._tile_instances is not None, "Tiled rendering is not set up. Call setup_tiled_rendering first." self._tiled_rendering = value def setup_tiled_rendering( self, instances: List[List[int]], rescale_window: bool = False, tile_width: Optional[int] = None, tile_height: Optional[int] = None, tile_ncols: Optional[int] = None, tile_nrows: Optional[int] = None, tile_positions: Optional[List[Tuple[int]]] = None, tile_sizes: Optional[List[Tuple[int]]] = None, projection_matrices: Optional[List[Mat44]] = None, view_matrices: Optional[List[Mat44]] = None, ): """ Set up tiled rendering where the render buffer is split into multiple tiles that can visualize different shape instances of the scene with different view and projection matrices. See `get_pixels` which allows to retrieve the pixels of for each tile. :param instances: A list of lists of shape instance ids. Each list of shape instance ids will be rendered into a separate tile. :param rescale_window: If True, the window will be resized to fit the tiles. :param tile_width: The width of each tile in pixels (optional). :param tile_height: The height of each tile in pixels (optional). :param tile_ncols: The number of tiles rendered horizontally (optional). Will be considered if `tile_width` is set to compute the tile positions, unless `tile_positions` is defined. :param tile_positions: A list of (x, y) tuples specifying the position of each tile in pixels. If None, the tiles will be arranged in a square grid, or, if `tile_ncols` and `tile_nrows` is set, in a grid with the specified number of columns and rows. :param tile_sizes: A list of (width, height) tuples specifying the size of each tile in pixels. If None, the tiles will have the same size as specified by `tile_width` and `tile_height`. :param projection_matrices: A list of projection matrices for each tile (each view matrix is either a flattened 16-dimensional array or a 4x4 matrix). If the entire array is None, or only a view instances, the projection matrices for all, or these instances, respectively, will be derived from the current render settings. :param view_matrices: A list of view matrices for each tile (each view matrix is either a flattened 16-dimensional array or a 4x4 matrix). If the entire array is None, or only a view instances, the view matrices for all, or these instances, respectively, will be derived from the current camera settings and be updated when the camera is moved. """ assert len(instances) > 0 and all(isinstance(i, list) for i in instances), "Invalid tile instances." self._tile_instances = instances n = len(self._tile_instances) if tile_positions is None or tile_sizes is None: if tile_ncols is None or tile_nrows is None: # try to fit the tiles into a square self._tile_ncols = int(np.ceil(np.sqrt(n))) self._tile_nrows = int(np.ceil(n / float(self._tile_ncols))) else: self._tile_ncols = tile_ncols self._tile_nrows = tile_nrows self._tile_width = tile_width or max(32, self.screen_width // self._tile_ncols) self._tile_height = tile_height or max(32, self.screen_height // self._tile_nrows) self._tile_viewports = [ (i * self._tile_width, j * self._tile_height, self._tile_width, self._tile_height) for i in range(self._tile_ncols) for j in range(self._tile_nrows) ] if rescale_window: self.window.set_size(self._tile_width * self._tile_ncols, self._tile_height * self._tile_nrows) else: assert ( len(tile_positions) == n and len(tile_sizes) == n ), "Number of tiles does not match number of instances." self._tile_ncols = None self._tile_nrows = None self._tile_width = None self._tile_height = None if all([tile_sizes[i][0] == tile_sizes[0][0] for i in range(n)]): # tiles all have the same width self._tile_width = tile_sizes[0][0] if all([tile_sizes[i][1] == tile_sizes[0][1] for i in range(n)]): # tiles all have the same height self._tile_height = tile_sizes[0][1] self._tile_viewports = [(x, y, w, h) for (x, y), (w, h) in zip(tile_positions, tile_sizes)] if projection_matrices is None: projection_matrices = [None] * n self._tile_projection_matrices = [] for i, p in enumerate(projection_matrices): if p is None: w, h = self._tile_viewports[i][2:] self._tile_projection_matrices.append( self.compute_projection_matrix( self.camera_fov, w / h, self.camera_near_plane, self.camera_far_plane ) ) else: self._tile_projection_matrices.append(np.array(p).flatten()) if view_matrices is None: self._tile_view_matrices = [None] * n else: self._tile_view_matrices = [np.array(m).flatten() for m in view_matrices] self._tiled_rendering = True def update_tile( self, tile_id, instances: Optional[List[int]] = None, projection_matrix: Optional[Mat44] = None, view_matrix: Optional[Mat44] = None, tile_size: Optional[Tuple[int]] = None, tile_position: Optional[Tuple[int]] = None, ): """ Update the shape instances, projection matrix, view matrix, tile size, or tile position for a given tile given its index. :param tile_id: The index of the tile to update. :param instances: A list of shape instance ids (optional). :param projection_matrix: A projection matrix (optional). :param view_matrix: A view matrix (optional). :param tile_size: A (width, height) tuple specifying the size of the tile in pixels (optional). :param tile_position: A (x, y) tuple specifying the position of the tile in pixels (optional). """ assert self._tile_instances is not None, "Tiled rendering is not set up. Call setup_tiled_rendering first." assert tile_id < len(self._tile_instances), "Invalid tile id." if instances is not None: self._tile_instances[tile_id] = instances if projection_matrix is not None: self._tile_projection_matrices[tile_id] = np.array(projection_matrix).flatten() if view_matrix is not None: self._tile_view_matrices[tile_id] = np.array(view_matrix).flatten() (x, y, w, h) = self._tile_viewports[tile_id] if tile_size is not None: w, h = tile_size if tile_position is not None: x, y = tile_position self._tile_viewports[tile_id] = (x, y, w, h) def _setup_framebuffer(self): from pyglet import gl if self._frame_texture is None: self._frame_texture = gl.GLuint() gl.glGenTextures(1, self._frame_texture) gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, 0) gl.glBindBuffer(gl.GL_PIXEL_UNPACK_BUFFER, 0) gl.glBindTexture(gl.GL_TEXTURE_2D, self._frame_texture) gl.glTexImage2D( gl.GL_TEXTURE_2D, 0, gl.GL_RGB, self.screen_width, self.screen_height, 0, gl.GL_RGB, gl.GL_UNSIGNED_BYTE, None, ) gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR) gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_LINEAR) gl.glBindTexture(gl.GL_TEXTURE_2D, 0) # create a framebuffer object (FBO) if self._frame_fbo is None: self._frame_fbo = gl.GLuint() gl.glGenFramebuffers(1, self._frame_fbo) gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, self._frame_fbo) # attach the texture to the FBO as its color attachment gl.glFramebufferTexture2D( gl.GL_FRAMEBUFFER, gl.GL_COLOR_ATTACHMENT0, gl.GL_TEXTURE_2D, self._frame_texture, 0 ) self._frame_depth_renderbuffer = gl.GLuint() gl.glGenRenderbuffers(1, self._frame_depth_renderbuffer) gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, self._frame_depth_renderbuffer) gl.glRenderbufferStorage(gl.GL_RENDERBUFFER, gl.GL_DEPTH_COMPONENT, self.screen_width, self.screen_height) # attach the depth renderbuffer to the FBO gl.glFramebufferRenderbuffer( gl.GL_FRAMEBUFFER, gl.GL_DEPTH_ATTACHMENT, gl.GL_RENDERBUFFER, self._frame_depth_renderbuffer ) if gl.glCheckFramebufferStatus(gl.GL_FRAMEBUFFER) != gl.GL_FRAMEBUFFER_COMPLETE: print("Framebuffer is not complete!") gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, 0) sys.exit(1) gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, 0) else: # rescale framebuffer gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, self._frame_depth_renderbuffer) gl.glRenderbufferStorage(gl.GL_RENDERBUFFER, gl.GL_DEPTH_COMPONENT, self.screen_width, self.screen_height) gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, 0) # unbind the FBO (switch back to the default framebuffer) gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, 0) if self._frame_pbo is None: self._frame_pbo = gl.GLuint() gl.glGenBuffers(1, self._frame_pbo) # generate 1 buffer reference gl.glBindBuffer(gl.GL_PIXEL_PACK_BUFFER, self._frame_pbo) # binding to this buffer # allocate memory for PBO pixels = np.zeros((self.screen_height, self.screen_width, 3), dtype=np.uint8) gl.glBufferData(gl.GL_PIXEL_PACK_BUFFER, pixels.nbytes, pixels.ctypes.data, gl.GL_DYNAMIC_DRAW) gl.glBindBuffer(gl.GL_PIXEL_PACK_BUFFER, 0) @staticmethod def compute_projection_matrix( fov: float, aspect_ratio: float, near_plane: float, far_plane: float, ) -> Mat44: """ Compute a projection matrix given the field of view, aspect ratio, near plane, and far plane. :param fov: The field of view in degrees. :param aspect_ratio: The aspect ratio (width / height). :param near_plane: The near plane. :param far_plane: The far plane. :return: A projection matrix. """ from pyglet.math import Mat4 as PyMat4 return np.array(PyMat4.perspective_projection(aspect_ratio, near_plane, far_plane, fov)) def update_projection_matrix(self): if self.screen_height == 0: return aspect_ratio = self.screen_width / self.screen_height self._projection_matrix = self.compute_projection_matrix( self.camera_fov, aspect_ratio, self.camera_near_plane, self.camera_far_plane ) def update_view_matrix(self): from pyglet.math import Mat4 as PyMat4 cam_pos = self._camera_pos self._view_matrix = np.array(PyMat4.look_at(cam_pos, cam_pos + self._camera_front, self._camera_up)) def update_model_matrix(self): from pyglet import gl # fmt: off if self._camera_axis == 0: self._model_matrix = np.array(( 0, 0, self._scaling, 0, self._scaling, 0, 0, 0, 0, self._scaling, 0, 0, 0, 0, 0, 1 )) elif self._camera_axis == 2: self._model_matrix = np.array(( -self._scaling, 0, 0, 0, 0, 0, self._scaling, 0, 0, self._scaling, 0, 0, 0, 0, 0, 1 )) else: self._model_matrix = np.array(( self._scaling, 0, 0, 0, 0, self._scaling, 0, 0, 0, 0, self._scaling, 0, 0, 0, 0, 1 )) # fmt: on ptr = arr_pointer(self._model_matrix) gl.glUseProgram(self._shape_shader.id) gl.glUniformMatrix4fv(self._loc_shape_model, 1, gl.GL_FALSE, ptr) gl.glUseProgram(self._grid_shader.id) gl.glUniformMatrix4fv(self._loc_grid_model, 1, gl.GL_FALSE, ptr) gl.glUseProgram(self._sky_shader.id) gl.glUniformMatrix4fv(self._loc_sky_model, 1, gl.GL_FALSE, ptr) @property def num_tiles(self): return len(self._tile_instances) @property def tile_width(self): return self._tile_width @property def tile_height(self): return self._tile_height @property def num_shapes(self): return len(self._shapes) @property def num_instances(self): return self._instance_count @property def scaling(self): return self._scaling @scaling.setter def scaling(self, scaling): self._scaling = scaling self.update_model_matrix() def begin_frame(self, t: float = None): self._last_begin_frame_time = time.time() self.time = t or self.clock_time def end_frame(self): self._last_end_frame_time = time.time() if self._add_shape_instances: self.allocate_shape_instances() if self._update_shape_instances: self.update_shape_instances() self.update() while self.paused and self.is_running(): self.update() def update(self): self.clock_time = time.time() - self._start_time update_duration = self.clock_time - self._last_time frame_duration = self._last_end_frame_time - self._last_begin_frame_time self._last_time = self.clock_time self._frame_speed = update_duration * 100.0 # self.app.event_loop.idle() self.app.platform_event_loop.step(self._frame_dt * 1e-3) if not self.skip_rendering: self._skip_frame_counter += 1 if self._skip_frame_counter > 100: self._skip_frame_counter = 0 if frame_duration > 0.0: if self._fps_update is None: self._fps_update = 1.0 / frame_duration else: update = 1.0 / frame_duration self._fps_update = (1.0 - self._fps_alpha) * self._fps_update + self._fps_alpha * update if update_duration > 0.0: if self._fps_render is None: self._fps_render = 1.0 / update_duration else: update = 1.0 / update_duration self._fps_render = (1.0 - self._fps_alpha) * self._fps_render + self._fps_alpha * update self.app.event_loop._redraw_windows(self._frame_dt * 1e-3) def _draw(self): from pyglet import gl # catch key hold events self._process_inputs() if self.enable_backface_culling: gl.glEnable(gl.GL_CULL_FACE) else: gl.glDisable(gl.GL_CULL_FACE) if self._frame_fbo is not None: gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, self._frame_fbo) gl.glBindBuffer(gl.GL_PIXEL_UNPACK_BUFFER, self._frame_fbo) gl.glClearColor(*self.background_color, 1) gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT) gl.glBindVertexArray(0) if not self._tiled_rendering: if self.draw_grid: self._draw_grid() if self.draw_sky: self._draw_sky() view_mat_ptr = arr_pointer(self._view_matrix) projection_mat_ptr = arr_pointer(self._projection_matrix) gl.glUseProgram(self._shape_shader.id) gl.glUniformMatrix4fv(self._loc_shape_view, 1, gl.GL_FALSE, view_mat_ptr) gl.glUniform3f(self._loc_shape_view_pos, *self._camera_pos) gl.glUniformMatrix4fv(self._loc_shape_view, 1, gl.GL_FALSE, view_mat_ptr) gl.glUniformMatrix4fv(self._loc_shape_projection, 1, gl.GL_FALSE, projection_mat_ptr) if self.render_wireframe: gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_LINE) if self._tiled_rendering: self._render_scene_tiled() else: self._render_scene() gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_FILL) gl.glBindBuffer(gl.GL_PIXEL_UNPACK_BUFFER, 0) gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, 0) gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT) gl.glViewport(0, 0, self.screen_width, self.screen_height) # render frame buffer texture to screen if self._frame_fbo is not None: with self._frame_shader: gl.glActiveTexture(gl.GL_TEXTURE0) gl.glBindTexture(gl.GL_TEXTURE_2D, self._frame_texture) gl.glUniform1i(self._frame_loc_texture, 0) gl.glBindVertexArray(self._frame_vao) gl.glDrawElements(gl.GL_TRIANGLES, len(self._frame_indices), gl.GL_UNSIGNED_INT, None) gl.glBindVertexArray(0) gl.glBindTexture(gl.GL_TEXTURE_2D, 0) # check for OpenGL errors # check_gl_error() if self.show_info: gl.glClear(gl.GL_DEPTH_BUFFER_BIT) gl.glBlendFunc(gl.GL_SRC_ALPHA, gl.GL_ONE_MINUS_SRC_ALPHA) gl.glEnable(gl.GL_BLEND) text = f"""Sim Time: {self.time:.1f} Update FPS: {self._fps_update:.1f} Render FPS: {self._fps_render:.1f} Shapes: {len(self._shapes)} Instances: {len(self._instances)}""" if self.paused: text += "\nPaused (press space to resume)" self._info_label.text = text self._info_label.y = self.screen_height - 5 self._info_label.draw() def _draw_grid(self, is_tiled=False): from pyglet import gl if not is_tiled: gl.glUseProgram(self._grid_shader.id) gl.glUniformMatrix4fv(self._loc_grid_view, 1, gl.GL_FALSE, arr_pointer(self._view_matrix)) gl.glUniformMatrix4fv(self._loc_grid_projection, 1, gl.GL_FALSE, arr_pointer(self._projection_matrix)) gl.glBindVertexArray(self._grid_vao) gl.glDrawArrays(gl.GL_LINES, 0, self._grid_vertex_count) gl.glBindVertexArray(0) def _draw_sky(self, is_tiled=False): from pyglet import gl if not is_tiled: gl.glUseProgram(self._sky_shader.id) gl.glUniformMatrix4fv(self._loc_sky_view, 1, gl.GL_FALSE, arr_pointer(self._view_matrix)) gl.glUniformMatrix4fv(self._loc_sky_projection, 1, gl.GL_FALSE, arr_pointer(self._projection_matrix)) gl.glUniform3f(self._loc_sky_view_pos, *self._camera_pos) gl.glBindVertexArray(self._sky_vao) gl.glDrawElements(gl.GL_TRIANGLES, self._sky_tri_count, gl.GL_UNSIGNED_INT, None) gl.glBindVertexArray(0) def _render_scene(self): from pyglet import gl start_instance_idx = 0 for shape, (vao, _, _, tri_count, _) in self._shape_gl_buffers.items(): num_instances = len(self._shape_instances[shape]) gl.glBindVertexArray(vao) gl.glDrawElementsInstancedBaseInstance( gl.GL_TRIANGLES, tri_count, gl.GL_UNSIGNED_INT, None, num_instances, start_instance_idx ) start_instance_idx += num_instances if self.draw_axis: self._axis_instancer.render() for instancer in self._shape_instancers.values(): instancer.render() gl.glBindVertexArray(0) def _render_scene_tiled(self): from pyglet import gl for i, viewport in enumerate(self._tile_viewports): projection_matrix_ptr = arr_pointer(self._tile_projection_matrices[i]) view_matrix_ptr = arr_pointer(self._tile_view_matrices[i] or self._view_matrix) gl.glViewport(*viewport) if self.draw_grid: gl.glUseProgram(self._grid_shader.id) gl.glUniformMatrix4fv(self._loc_grid_projection, 1, gl.GL_FALSE, projection_matrix_ptr) gl.glUniformMatrix4fv(self._loc_grid_view, 1, gl.GL_FALSE, view_matrix_ptr) self._draw_grid(is_tiled=True) if self.draw_sky: gl.glUseProgram(self._sky_shader.id) gl.glUniformMatrix4fv(self._loc_sky_projection, 1, gl.GL_FALSE, projection_matrix_ptr) gl.glUniformMatrix4fv(self._loc_sky_view, 1, gl.GL_FALSE, view_matrix_ptr) self._draw_sky(is_tiled=True) gl.glUseProgram(self._shape_shader.id) gl.glUniformMatrix4fv(self._loc_shape_projection, 1, gl.GL_FALSE, projection_matrix_ptr) gl.glUniformMatrix4fv(self._loc_shape_view, 1, gl.GL_FALSE, view_matrix_ptr) instances = self._tile_instances[i] for instance in instances: shape = self._instance_shape[instance] vao, _, _, tri_count, _ = self._shape_gl_buffers[shape] start_instance_idx = self._inverse_instance_ids[instance] gl.glBindVertexArray(vao) gl.glDrawElementsInstancedBaseInstance( gl.GL_TRIANGLES, tri_count, gl.GL_UNSIGNED_INT, None, 1, start_instance_idx ) if self.draw_axis: self._axis_instancer.render() for instancer in self._shape_instancers.values(): instancer.render() gl.glBindVertexArray(0) def _mouse_drag_callback(self, x, y, dx, dy, buttons, modifiers): import pyglet if buttons & pyglet.window.mouse.LEFT: sensitivity = 0.1 dx *= sensitivity dy *= sensitivity self._yaw += dx self._pitch += dy self._pitch = max(min(self._pitch, 89.0), -89.0) self._camera_front.x = np.cos(np.deg2rad(self._yaw)) * np.cos(np.deg2rad(self._pitch)) self._camera_front.y = np.sin(np.deg2rad(self._pitch)) self._camera_front.z = np.sin(np.deg2rad(self._yaw)) * np.cos(np.deg2rad(self._pitch)) self._camera_front = self._camera_front.normalize() self.update_view_matrix() def _scroll_callback(self, x, y, scroll_x, scroll_y): self.camera_fov -= scroll_y self.camera_fov = max(min(self.camera_fov, 90.0), 15.0) self.update_projection_matrix() def _process_inputs(self): import pyglet from pyglet.math import Vec3 as PyVec3 if self._key_handler[pyglet.window.key.W] or self._key_handler[pyglet.window.key.UP]: self._camera_pos += self._camera_front * (self._camera_speed * self._frame_speed) self.update_view_matrix() if self._key_handler[pyglet.window.key.S] or self._key_handler[pyglet.window.key.DOWN]: self._camera_pos -= self._camera_front * (self._camera_speed * self._frame_speed) self.update_view_matrix() if self._key_handler[pyglet.window.key.A] or self._key_handler[pyglet.window.key.LEFT]: camera_side = PyVec3.cross(self._camera_front, self._camera_up).normalize() self._camera_pos -= camera_side * (self._camera_speed * self._frame_speed) self.update_view_matrix() if self._key_handler[pyglet.window.key.D] or self._key_handler[pyglet.window.key.RIGHT]: camera_side = PyVec3.cross(self._camera_front, self._camera_up).normalize() self._camera_pos += camera_side * (self._camera_speed * self._frame_speed) self.update_view_matrix() def _key_press_callback(self, symbol, modifiers): import pyglet if symbol == pyglet.window.key.ESCAPE: self.window.close() if symbol == pyglet.window.key.SPACE: self.paused = not self.paused if symbol == pyglet.window.key.TAB: self.skip_rendering = not self.skip_rendering if symbol == pyglet.window.key.C: self.draw_axis = not self.draw_axis if symbol == pyglet.window.key.G: self.draw_grid = not self.draw_grid if symbol == pyglet.window.key.I: self.show_info = not self.show_info if symbol == pyglet.window.key.X: self.render_wireframe = not self.render_wireframe if symbol == pyglet.window.key.B: self.enable_backface_culling = not self.enable_backface_culling def _window_resize_callback(self, width, height): self._first_mouse = True self.screen_width, self.screen_height = self.window.get_framebuffer_size() self.update_projection_matrix() self._setup_framebuffer() def register_shape(self, geo_hash, vertices, indices, color1=None, color2=None): from pyglet import gl shape = len(self._shapes) if color1 is None: color1 = tab10_color_map(len(self._shape_geo_hash)) if color2 is None: color2 = np.clip(np.array(color1) + 0.25, 0.0, 1.0) # TODO check if we actually need to store the shape data self._shapes.append((vertices, indices, color1, color2, geo_hash)) self._shape_geo_hash[geo_hash] = shape gl.glUseProgram(self._shape_shader.id) # Create VAO, VBO, and EBO vao = gl.GLuint() gl.glGenVertexArrays(1, vao) gl.glBindVertexArray(vao) vbo = gl.GLuint() gl.glGenBuffers(1, vbo) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, vbo) gl.glBufferData(gl.GL_ARRAY_BUFFER, vertices.nbytes, vertices.ctypes.data, gl.GL_STATIC_DRAW) vertex_cuda_buffer = wp.RegisteredGLBuffer(int(vbo.value), self._device) ebo = gl.GLuint() gl.glGenBuffers(1, ebo) gl.glBindBuffer(gl.GL_ELEMENT_ARRAY_BUFFER, ebo) gl.glBufferData(gl.GL_ELEMENT_ARRAY_BUFFER, indices.nbytes, indices.ctypes.data, gl.GL_STATIC_DRAW) # Set up vertex attributes vertex_stride = vertices.shape[1] * vertices.itemsize # positions gl.glVertexAttribPointer(0, 3, gl.GL_FLOAT, gl.GL_FALSE, vertex_stride, ctypes.c_void_p(0)) gl.glEnableVertexAttribArray(0) # normals gl.glVertexAttribPointer(1, 3, gl.GL_FLOAT, gl.GL_FALSE, vertex_stride, ctypes.c_void_p(3 * vertices.itemsize)) gl.glEnableVertexAttribArray(1) # uv coordinates gl.glVertexAttribPointer(2, 2, gl.GL_FLOAT, gl.GL_FALSE, vertex_stride, ctypes.c_void_p(6 * vertices.itemsize)) gl.glEnableVertexAttribArray(2) gl.glBindVertexArray(0) self._shape_gl_buffers[shape] = (vao, vbo, ebo, len(indices), vertex_cuda_buffer) return shape def add_shape_instance( self, name: str, shape: int, body, pos, rot, scale=(1.0, 1.0, 1.0), color1=None, color2=None ): if color1 is None: color1 = self._shapes[shape][2] if color2 is None: color2 = self._shapes[shape][3] instance = len(self._instances) self._shape_instances[shape].append(instance) body = self._resolve_body_id(body) self._instances[name] = (instance, body, shape, [*pos, *rot], scale, color1, color2) self._instance_shape[instance] = shape self._add_shape_instances = True self._instance_count = len(self._instances) return instance def allocate_shape_instances(self): from pyglet import gl self._add_shape_instances = False self._wp_instance_transforms = wp.array( [instance[3] for instance in self._instances.values()], dtype=wp.transform, device=self._device ) self._wp_instance_scalings = wp.array( [instance[4] for instance in self._instances.values()], dtype=wp.vec3, device=self._device ) self._wp_instance_bodies = wp.array( [instance[1] for instance in self._instances.values()], dtype=wp.int32, device=self._device ) gl.glUseProgram(self._shape_shader.id) if self._instance_transform_gl_buffer is not None: gl.glDeleteBuffers(1, self._instance_transform_gl_buffer) gl.glDeleteBuffers(1, self._instance_color1_buffer) gl.glDeleteBuffers(1, self._instance_color2_buffer) # Create instance buffer and bind it as an instanced array self._instance_transform_gl_buffer = gl.GLuint() gl.glGenBuffers(1, self._instance_transform_gl_buffer) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self._instance_transform_gl_buffer) transforms = np.tile(np.diag(np.ones(4, dtype=np.float32)), (len(self._instances), 1, 1)) gl.glBufferData(gl.GL_ARRAY_BUFFER, transforms.nbytes, transforms.ctypes.data, gl.GL_DYNAMIC_DRAW) # Create CUDA buffer for instance transforms self._instance_transform_cuda_buffer = wp.RegisteredGLBuffer( int(self._instance_transform_gl_buffer.value), self._device ) colors1, colors2 = [], [] all_instances = list(self._instances.values()) for shape, instances in self._shape_instances.items(): for i in instances: if i >= len(all_instances): continue instance = all_instances[i] colors1.append(instance[5]) colors2.append(instance[6]) colors1 = np.array(colors1, dtype=np.float32) colors2 = np.array(colors2, dtype=np.float32) # create buffer for checkerboard colors self._instance_color1_buffer = gl.GLuint() gl.glGenBuffers(1, self._instance_color1_buffer) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self._instance_color1_buffer) gl.glBufferData(gl.GL_ARRAY_BUFFER, colors1.nbytes, colors1.ctypes.data, gl.GL_STATIC_DRAW) self._instance_color2_buffer = gl.GLuint() gl.glGenBuffers(1, self._instance_color2_buffer) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self._instance_color2_buffer) gl.glBufferData(gl.GL_ARRAY_BUFFER, colors2.nbytes, colors2.ctypes.data, gl.GL_STATIC_DRAW) # Set up instance attribute pointers matrix_size = transforms[0].nbytes instance_ids = [] inverse_instance_ids = {} instance_count = 0 for shape, (vao, vbo, ebo, tri_count, vertex_cuda_buffer) in self._shape_gl_buffers.items(): gl.glBindVertexArray(vao) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self._instance_transform_gl_buffer) # we can only send vec4s to the shader, so we need to split the instance transforms matrix into its column vectors for i in range(4): gl.glVertexAttribPointer( 3 + i, 4, gl.GL_FLOAT, gl.GL_FALSE, matrix_size, ctypes.c_void_p(i * matrix_size // 4) ) gl.glEnableVertexAttribArray(3 + i) gl.glVertexAttribDivisor(3 + i, 1) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self._instance_color1_buffer) gl.glVertexAttribPointer(7, 3, gl.GL_FLOAT, gl.GL_FALSE, colors1[0].nbytes, ctypes.c_void_p(0)) gl.glEnableVertexAttribArray(7) gl.glVertexAttribDivisor(7, 1) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self._instance_color2_buffer) gl.glVertexAttribPointer(8, 3, gl.GL_FLOAT, gl.GL_FALSE, colors2[0].nbytes, ctypes.c_void_p(0)) gl.glEnableVertexAttribArray(8) gl.glVertexAttribDivisor(8, 1) instance_ids.extend(self._shape_instances[shape]) for i in self._shape_instances[shape]: inverse_instance_ids[i] = instance_count instance_count += 1 # trigger update to the instance transforms self._update_shape_instances = True self._wp_instance_ids = wp.array(instance_ids, dtype=wp.int32, device=self._device) self._instance_ids = instance_ids self._inverse_instance_ids = inverse_instance_ids gl.glBindVertexArray(0) def update_shape_instance(self, name, pos, rot, color1=None, color2=None): """Update the instance transform of the shape Args: name: The name of the shape pos: The position of the shape rot: The rotation of the shape """ if name in self._instances: i, body, shape, _, scale, old_color1, old_color2 = self._instances[name] self._instances[name] = (i, body, shape, [*pos, *rot], scale, color1 or old_color1, color2 or old_color2) self._update_shape_instances = True return True return False def update_shape_instances(self): with self._shape_shader: self._update_shape_instances = False self._wp_instance_transforms = wp.array( [instance[3] for instance in self._instances.values()], dtype=wp.transform, device=self._device ) self.update_body_transforms(None) def update_body_transforms(self, body_tf: wp.array): if self._instance_transform_cuda_buffer is None: return body_q = None if body_tf is not None: if body_tf.device.is_cuda: body_q = body_tf else: body_q = body_tf.to(self._device) vbo_transforms = self._instance_transform_cuda_buffer.map(dtype=wp.mat44, shape=(self._instance_count,)) wp.launch( update_vbo_transforms, dim=self._instance_count, inputs=[ self._wp_instance_ids, self._wp_instance_bodies, self._wp_instance_transforms, self._wp_instance_scalings, body_q, ], outputs=[ vbo_transforms, ], device=self._device, ) self._instance_transform_cuda_buffer.unmap() def register_body(self, name): # register body name and return its ID if name not in self._body_name: self._body_name[name] = len(self._body_name) return self._body_name[name] def _resolve_body_id(self, body): if body is None: return -1 if isinstance(body, int): return body return self._body_name[body] def is_running(self): return not self.app.event_loop.has_exit def save(self): # save just keeps the window open to allow the user to interact with the scene while not self.app.event_loop.has_exit: self.update() if self.app.event_loop.has_exit: self.clear() self.app.event_loop.exit() def get_pixels(self, target_image: wp.array, split_up_tiles=True): from pyglet import gl if split_up_tiles: assert ( self._tile_width is not None and self._tile_height is not None ), "Tile width and height are not set, tiles must all have the same size" assert all( vp[2] == self._tile_width for vp in self._tile_viewports ), "Tile widths do not all equal global tile_width, use `get_tile_pixels` instead to retrieve pixels for a single tile" assert all( vp[3] == self._tile_height for vp in self._tile_viewports ), "Tile heights do not all equal global tile_height, use `get_tile_pixels` instead to retrieve pixels for a single tile" assert target_image.shape == ( self.num_tiles, self._tile_height, self._tile_width, 3, ), f"Shape of `target_image` array does not match {self.num_tiles} x {self.screen_height} x {self.screen_width} x 3" else: assert target_image.shape == ( self.screen_height, self.screen_width, 3, ), f"Shape of `target_image` array does not match {self.screen_height} x {self.screen_width} x 3" gl.glBindBuffer(gl.GL_PIXEL_PACK_BUFFER, self._frame_pbo) gl.glBindTexture(gl.GL_TEXTURE_2D, self._frame_texture) try: # read screen texture into PBO gl.glGetTexImage(gl.GL_TEXTURE_2D, 0, gl.GL_RGB, gl.GL_UNSIGNED_BYTE, ctypes.c_void_p(0)) except gl.GLException: # this can happen if the window is closed/being moved to a different display gl.glBindTexture(gl.GL_TEXTURE_2D, 0) gl.glBindBuffer(gl.GL_PIXEL_PACK_BUFFER, 0) return False gl.glBindTexture(gl.GL_TEXTURE_2D, 0) gl.glBindBuffer(gl.GL_PIXEL_PACK_BUFFER, 0) pbo_buffer = wp.RegisteredGLBuffer( int(self._frame_pbo.value), self._device, wp.RegisteredGLBuffer.WRITE_DISCARD ) screen_size = self.screen_height * self.screen_width img = pbo_buffer.map(dtype=wp.uint8, shape=(screen_size * 3)) img = img.to(target_image.device) if split_up_tiles: positions = wp.array(self._tile_viewports, ndim=2, dtype=wp.int32, device=target_image.device) wp.launch( copy_frame_tiles, dim=(self.num_tiles, self._tile_width, self._tile_height), inputs=[img, positions, self.screen_width, self.screen_height, self._tile_height], outputs=[target_image], device=target_image.device, ) else: wp.launch( copy_frame, dim=(self.screen_width, self.screen_height), inputs=[img, self.screen_width, self.screen_height], outputs=[target_image], device=target_image.device, ) pbo_buffer.unmap() return True def get_tile_pixels(self, tile_id: int, target_image: wp.array): from pyglet import gl viewport = self._tile_viewports[tile_id] assert target_image.shape == ( viewport[3], viewport[2], 3, ), f"Shape of `target_image` array does not match {viewport[3]} x {viewport[2]} x 3" gl.glBindBuffer(gl.GL_PIXEL_PACK_BUFFER, self._frame_pbo) gl.glBindTexture(gl.GL_TEXTURE_2D, self._frame_texture) try: # read screen texture into PBO gl.glGetTexImage(gl.GL_TEXTURE_2D, 0, gl.GL_RGB, gl.GL_UNSIGNED_BYTE, ctypes.c_void_p(0)) except gl.GLException: # this can happen if the window is closed/being moved to a different display gl.glBindTexture(gl.GL_TEXTURE_2D, 0) gl.glBindBuffer(gl.GL_PIXEL_PACK_BUFFER, 0) return False gl.glBindTexture(gl.GL_TEXTURE_2D, 0) gl.glBindBuffer(gl.GL_PIXEL_PACK_BUFFER, 0) pbo_buffer = wp.RegisteredGLBuffer( int(self._frame_pbo.value), self._device, wp.RegisteredGLBuffer.WRITE_DISCARD ) screen_size = self.screen_height * self.screen_width img = pbo_buffer.map(dtype=wp.uint8, shape=(screen_size * 3)) img = img.to(target_image.device) wp.launch( copy_frame_tiles, dim=(self.num_tiles, self._tile_width, self._tile_height), inputs=[img, viewport[0], viewport[1], self.screen_width, self.screen_height, self._tile_height], outputs=[target_image], device=target_image.device, ) pbo_buffer.unmap() return True # def create_image_texture(self, file_path): # from PIL import Image # img = Image.open(file_path) # img_data = np.array(list(img.getdata()), np.uint8) # texture = glGenTextures(1) # glBindTexture(GL_TEXTURE_2D, texture) # glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img.width, img.height, 0, GL_RGB, GL_UNSIGNED_BYTE, img_data) # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT) # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT) # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR) # return texture # def create_check_texture(self, color1=(0, 0.5, 1.0), color2=None, width=default_texture_size, height=default_texture_size): # if width == 1 and height == 1: # pixels = np.array([np.array(color1)*255], dtype=np.uint8) # else: # pixels = np.zeros((width, height, 3), dtype=np.uint8) # half_w = width // 2 # half_h = height // 2 # color1 = np.array(np.array(color1)*255, dtype=np.uint8) # pixels[0:half_w, 0:half_h] = color1 # pixels[half_w:width, half_h:height] = color1 # if color2 is None: # color2 = np.array(np.clip(np.array(color1, dtype=np.float32) + 50, 0, 255), dtype=np.uint8) # else: # color2 = np.array(np.array(color2)*255, dtype=np.uint8) # pixels[half_w:width, 0:half_h] = color2 # pixels[0:half_w, half_h:height] = color2 # texture = glGenTextures(1) # glBindTexture(GL_TEXTURE_2D, texture) # glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, pixels.flatten()) # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT) # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT) # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR) # return texture def render_plane( self, name: str, pos: tuple, rot: tuple, width: float, length: float, color: tuple = (1.0, 1.0, 1.0), color2=None, parent_body: str = None, is_template: bool = False, u_scaling=1.0, v_scaling=1.0, ): """Add a plane for visualization Args: name: The name of the plane pos: The position of the plane rot: The rotation of the plane width: The width of the plane length: The length of the plane color: The color of the plane texture: The texture of the plane (optional) """ geo_hash = hash(("plane", width, length)) if geo_hash in self._shape_geo_hash: shape = self._shape_geo_hash[geo_hash] if self.update_shape_instance(name, pos, rot): return shape else: faces = np.array([0, 1, 2, 2, 3, 0], dtype=np.uint32) normal = (0.0, 1.0, 0.0) width = width if width > 0.0 else 100.0 length = length if length > 0.0 else 100.0 aspect = width / length u = width * aspect * u_scaling v = length * v_scaling gfx_vertices = np.array( [ [-width, 0.0, -length, *normal, 0.0, 0.0], [-width, 0.0, length, *normal, 0.0, v], [width, 0.0, length, *normal, u, v], [width, 0.0, -length, *normal, u, 0.0], ], dtype=np.float32, ) shape = self.register_shape(geo_hash, gfx_vertices, faces, color1=color, color2=color2) if not is_template: body = self._resolve_body_id(parent_body) self.add_shape_instance(name, shape, body, pos, rot) return shape def render_ground(self, size: float = 100.0): """Add a ground plane for visualization Args: size: The size of the ground plane """ color1 = (200 / 255, 200 / 255, 200 / 255) color2 = (150 / 255, 150 / 255, 150 / 255) sqh = np.sqrt(0.5) if self._camera_axis == 0: q = (0.0, 0.0, -sqh, sqh) elif self._camera_axis == 1: q = (0.0, 0.0, 0.0, 1.0) elif self._camera_axis == 2: q = (sqh, 0.0, 0.0, sqh) return self.render_plane( "ground", (0.0, 0.0, 0.0), q, size, size, color1, color2=color2, u_scaling=1.0, v_scaling=1.0, ) def render_sphere( self, name: str, pos: tuple, rot: tuple, radius: float, parent_body: str = None, is_template: bool = False ): """Add a sphere for visualization Args: pos: The position of the sphere radius: The radius of the sphere name: A name for the USD prim on the stage """ geo_hash = hash(("sphere", radius)) if geo_hash in self._shape_geo_hash: shape = self._shape_geo_hash[geo_hash] if self.update_shape_instance(name, pos, rot): return shape else: vertices, indices = self._create_sphere_mesh(radius) shape = self.register_shape(geo_hash, vertices, indices) if not is_template: body = self._resolve_body_id(parent_body) self.add_shape_instance(name, shape, body, pos, rot) return shape def render_capsule( self, name: str, pos: tuple, rot: tuple, radius: float, half_height: float, parent_body: str = None, is_template: bool = False, up_axis: int = 1, ): """Add a capsule for visualization Args: pos: The position of the capsule radius: The radius of the capsule half_height: The half height of the capsule name: A name for the USD prim on the stage up_axis: The axis of the capsule that points up (0: x, 1: y, 2: z) """ geo_hash = hash(("capsule", radius, half_height)) if geo_hash in self._shape_geo_hash: shape = self._shape_geo_hash[geo_hash] if self.update_shape_instance(name, pos, rot): return shape else: vertices, indices = self._create_capsule_mesh(radius, half_height, up_axis=up_axis) shape = self.register_shape(geo_hash, vertices, indices) if not is_template: body = self._resolve_body_id(parent_body) self.add_shape_instance(name, shape, body, pos, rot) return shape def render_cylinder( self, name: str, pos: tuple, rot: tuple, radius: float, half_height: float, parent_body: str = None, is_template: bool = False, up_axis: int = 1, ): """Add a cylinder for visualization Args: pos: The position of the cylinder radius: The radius of the cylinder half_height: The half height of the cylinder name: A name for the USD prim on the stage up_axis: The axis of the cylinder that points up (0: x, 1: y, 2: z) """ geo_hash = hash(("cylinder", radius, half_height)) if geo_hash in self._shape_geo_hash: shape = self._shape_geo_hash[geo_hash] if self.update_shape_instance(name, pos, rot): return shape else: vertices, indices = self._create_cylinder_mesh(radius, half_height, up_axis=up_axis) shape = self.register_shape(geo_hash, vertices, indices) if not is_template: body = self._resolve_body_id(parent_body) self.add_shape_instance(name, shape, body, pos, rot) return shape def render_cone( self, name: str, pos: tuple, rot: tuple, radius: float, half_height: float, parent_body: str = None, is_template: bool = False, up_axis: int = 1, ): """Add a cone for visualization Args: pos: The position of the cone radius: The radius of the cone half_height: The half height of the cone name: A name for the USD prim on the stage up_axis: The axis of the cone that points up (0: x, 1: y, 2: z) """ geo_hash = hash(("cone", radius, half_height)) if geo_hash in self._shape_geo_hash: shape = self._shape_geo_hash[geo_hash] if self.update_shape_instance(name, pos, rot): return shape else: vertices, indices = self._create_cone_mesh(radius, half_height, up_axis=up_axis) shape = self.register_shape(geo_hash, vertices, indices) if not is_template: body = self._resolve_body_id(parent_body) self.add_shape_instance(name, shape, body, pos, rot) return shape def render_box( self, name: str, pos: tuple, rot: tuple, extents: tuple, parent_body: str = None, is_template: bool = False ): """Add a box for visualization Args: pos: The position of the box extents: The extents of the box name: A name for the USD prim on the stage """ geo_hash = hash(("box", tuple(extents))) if geo_hash in self._shape_geo_hash: shape = self._shape_geo_hash[geo_hash] if self.update_shape_instance(name, pos, rot): return shape else: vertices, indices = self._create_box_mesh(extents) shape = self.register_shape(geo_hash, vertices, indices) if not is_template: body = self._resolve_body_id(parent_body) self.add_shape_instance(name, shape, body, pos, rot) return shape def render_mesh( self, name: str, points, indices, colors=None, pos=(0.0, 0.0, 0.0), rot=(0.0, 0.0, 0.0, 1.0), scale=(1.0, 1.0, 1.0), update_topology=False, parent_body: str = None, is_template: bool = False, smooth_shading: bool = True, ): """Add a mesh for visualization Args: points: The points of the mesh indices: The indices of the mesh colors: The colors of the mesh pos: The position of the mesh rot: The rotation of the mesh scale: The scale of the mesh name: A name for the USD prim on the stage smooth_shading: Whether to average face normals at each vertex or introduce additional vertices for each face """ if colors is None: colors = np.ones((len(points), 3), dtype=np.float32) else: colors = np.array(colors, dtype=np.float32) points = np.array(points, dtype=np.float32) * np.array(scale, dtype=np.float32) indices = np.array(indices, dtype=np.int32).reshape((-1, 3)) if name in self._instances: self.update_shape_instance(name, pos, rot) shape = self._instances[name][2] self.update_shape_vertices(shape, points) return geo_hash = hash((points.tobytes(), indices.tobytes(), colors.tobytes())) if geo_hash in self._shape_geo_hash: shape = self._shape_geo_hash[geo_hash] if self.update_shape_instance(name, pos, rot): return shape else: if smooth_shading: normals = wp.zeros(len(points), dtype=wp.vec3) vertices = wp.array(points, dtype=wp.vec3) faces_per_vertex = wp.zeros(len(points), dtype=int) wp.launch( compute_average_normals, dim=len(indices), inputs=[wp.array(indices, dtype=int), vertices], outputs=[normals, faces_per_vertex], ) gfx_vertices = wp.zeros((len(points), 8), dtype=float) wp.launch( assemble_gfx_vertices, dim=len(points), inputs=[vertices, normals, faces_per_vertex], outputs=[gfx_vertices], ) gfx_vertices = gfx_vertices.numpy() gfx_indices = indices.flatten() else: gfx_vertices = wp.zeros((len(indices) * 3, 8), dtype=float) wp.launch( compute_gfx_vertices, dim=len(indices), inputs=[wp.array(indices, dtype=int), wp.array(points, dtype=wp.vec3)], outputs=[gfx_vertices], ) gfx_vertices = gfx_vertices.numpy() gfx_indices = np.arange(len(indices) * 3) shape = self.register_shape(geo_hash, gfx_vertices, gfx_indices) if not is_template: body = self._resolve_body_id(parent_body) self.add_shape_instance(name, shape, body, pos, rot) return shape def render_arrow( self, name: str, pos: tuple, rot: tuple, base_radius: float, base_height: float, cap_radius: float = None, cap_height: float = None, parent_body: str = None, is_template: bool = False, up_axis: int = 1, color: Tuple[float, float, float] = None, ): """Add a arrow for visualization Args: pos: The position of the arrow base_radius: The radius of the cylindrical base of the arrow base_height: The height of the cylindrical base of the arrow cap_radius: The radius of the conical cap of the arrow cap_height: The height of the conical cap of the arrow name: A name for the USD prim on the stage up_axis: The axis of the arrow that points up (0: x, 1: y, 2: z) """ geo_hash = hash(("arrow", base_radius, base_height, cap_radius, cap_height)) if geo_hash in self._shape_geo_hash: shape = self._shape_geo_hash[geo_hash] if self.update_shape_instance(name, pos, rot): return shape else: vertices, indices = self._create_arrow_mesh( base_radius, base_height, cap_radius, cap_height, up_axis=up_axis ) shape = self.register_shape(geo_hash, vertices, indices) if not is_template: body = self._resolve_body_id(parent_body) self.add_shape_instance(name, shape, body, pos, rot, color1=color, color2=color) return shape def render_ref(self, name: str, path: str, pos: tuple, rot: tuple, scale: tuple): """ Create a reference (instance) with the given name to the given path. """ if path in self._instances: _, body, shape, _, original_scale, color1, color2 = self._instances[path] self.add_shape_instance(name, shape, body, pos, rot, scale or original_scale, color1, color2) return raise Exception("Cannot create reference to path: " + path) def render_points(self, name: str, points, radius, colors=None): """Add a set of points Args: points: The points to render radius: The radius of the points (scalar or list) colors: The colors of the points name: A name for the USD prim on the stage """ if len(points) == 0: return if isinstance(points, wp.array): wp_points = points else: wp_points = wp.array(points, dtype=wp.vec3, device=self._device) if name not in self._shape_instancers: np_points = points.numpy() if isinstance(points, wp.array) else points instancer = ShapeInstancer(self._shape_shader, self._device) radius_is_scalar = np.isscalar(radius) if radius_is_scalar: vertices, indices = self._create_sphere_mesh(radius) else: vertices, indices = self._create_sphere_mesh(1.0) if colors is None: color = tab10_color_map(len(self._shape_geo_hash)) else: color = colors[0] instancer.register_shape(vertices, indices, color, color) scalings = None if radius_is_scalar else np.tile(radius, (3, 1)).T instancer.allocate_instances(np_points, colors1=colors, colors2=colors, scalings=scalings) self._shape_instancers[name] = instancer else: instancer = self._shape_instancers[name] if len(points) != instancer.num_instances: np_points = points.numpy() if isinstance(points, wp.array) else points instancer.allocate_instances(np_points) with instancer: wp.launch( update_points_positions, dim=len(points), inputs=[wp_points, instancer.instance_scalings], outputs=[instancer.vbo_transforms], device=self._device, ) def _render_lines(self, name: str, lines, color: tuple, radius: float = 0.01): if len(lines) == 0: return if name not in self._shape_instancers: instancer = ShapeInstancer(self._shape_shader, self._device) vertices, indices = self._create_capsule_mesh(radius, 0.5) if color is None or isinstance(color, list): color = tab10_color_map(len(self._shape_geo_hash)) instancer.register_shape(vertices, indices, color, color) instancer.allocate_instances(np.zeros((len(lines), 3))) self._shape_instancers[name] = instancer else: instancer = self._shape_instancers[name] if len(lines) != instancer.num_instances: instancer.allocate_instances(np.zeros((len(lines), 3))) lines_wp = wp.array(lines, dtype=wp.vec3, ndim=2, device=self._device) with instancer: wp.launch( update_line_transforms, dim=len(lines), inputs=[lines_wp], outputs=[instancer.vbo_transforms], device=self._device, ) def render_line_list(self, name, vertices, indices, color, radius): """Add a line list as a set of capsules Args: vertices: The vertices of the line-list indices: The indices of the line-list color: The color of the line radius: The radius of the line """ lines = [] for i in range(len(indices) // 2): lines.append((vertices[indices[2 * i]], vertices[indices[2 * i + 1]])) lines = np.array(lines) self._render_lines(name, lines, color, radius) def render_line_strip(self, name: str, vertices, color: tuple, radius: float = 0.01): """Add a line strip as a set of capsules Args: vertices: The vertices of the line-strip color: The color of the line radius: The radius of the line """ lines = [] for i in range(len(vertices) - 1): lines.append((vertices[i], vertices[i + 1])) lines = np.array(lines) self._render_lines(name, lines, color, radius) def update_shape_vertices(self, shape, points): if isinstance(points, wp.array): wp_points = points.to(self._device) else: wp_points = wp.array(points, dtype=wp.vec3, device=self._device) cuda_buffer = self._shape_gl_buffers[shape][4] vertices_shape = self._shapes[shape][0].shape vbo_vertices = cuda_buffer.map(dtype=wp.float32, shape=vertices_shape) wp.launch( update_vbo_vertices, dim=vertices_shape[0], inputs=[wp_points], outputs=[vbo_vertices], device=self._device, ) cuda_buffer.unmap() @staticmethod def _create_sphere_mesh(radius=1.0, num_latitudes=default_num_segments, num_longitudes=default_num_segments, reverse_winding=False): vertices = [] indices = [] for i in range(num_latitudes + 1): theta = i * np.pi / num_latitudes sin_theta = np.sin(theta) cos_theta = np.cos(theta) for j in range(num_longitudes + 1): phi = j * 2 * np.pi / num_longitudes sin_phi = np.sin(phi) cos_phi = np.cos(phi) x = cos_phi * sin_theta y = cos_theta z = sin_phi * sin_theta u = float(j) / num_longitudes v = float(i) / num_latitudes vertices.append([x * radius, y * radius, z * radius, x, y, z, u, v]) for i in range(num_latitudes): for j in range(num_longitudes): first = i * (num_longitudes + 1) + j second = first + num_longitudes + 1 if reverse_winding: indices.extend([first, second, first + 1, second, second + 1, first + 1]) else: indices.extend([first, first + 1, second, second, first + 1, second + 1]) return np.array(vertices, dtype=np.float32), np.array(indices, dtype=np.uint32) @staticmethod def _create_capsule_mesh(radius, half_height, up_axis=1, segments=default_num_segments): vertices = [] indices = [] x_dir, y_dir, z_dir = ((1, 2, 0), (2, 0, 1), (0, 1, 2))[up_axis] up_vector = np.zeros(3) up_vector[up_axis] = half_height for i in range(segments + 1): theta = i * np.pi / segments sin_theta = np.sin(theta) cos_theta = np.cos(theta) for j in range(segments + 1): phi = j * 2 * np.pi / segments sin_phi = np.sin(phi) cos_phi = np.cos(phi) z = cos_phi * sin_theta y = cos_theta x = sin_phi * sin_theta u = cos_theta * 0.5 + 0.5 v = cos_phi * sin_theta * 0.5 + 0.5 xyz = x, y, z x, y, z = xyz[x_dir], xyz[y_dir], xyz[z_dir] xyz = np.array((x, y, z), dtype=np.float32) * radius if j < segments // 2: xyz += up_vector else: xyz -= up_vector vertices.append([*xyz, x, y, z, u, v]) nv = len(vertices) for i in range(segments + 1): for j in range(segments + 1): first = (i * (segments + 1) + j) % nv second = (first + segments + 1) % nv indices.extend([first, second, (first + 1) % nv, second, (second + 1) % nv, (first + 1) % nv]) vertex_data = np.array(vertices, dtype=np.float32) index_data = np.array(indices, dtype=np.uint32) return vertex_data, index_data @staticmethod def _create_cone_mesh(radius, half_height, up_axis=1, segments=default_num_segments): # render it as a cylinder with zero top radius so we get correct normals on the sides return OpenGLRenderer._create_cylinder_mesh(radius, half_height, up_axis, segments, 0.0) @staticmethod def _create_cylinder_mesh(radius, half_height, up_axis=1, segments=default_num_segments, top_radius=None): if up_axis not in (0, 1, 2): raise ValueError("up_axis must be between 0 and 2") x_dir, y_dir, z_dir = ( (1, 2, 0), (0, 1, 2), (2, 0, 1), )[up_axis] indices = [] cap_vertices = [] side_vertices = [] # create center cap vertices position = np.array([0, -half_height, 0])[[x_dir, y_dir, z_dir]] normal = np.array([0, -1, 0])[[x_dir, y_dir, z_dir]] cap_vertices.append([*position, *normal, 0.5, 0.5]) cap_vertices.append([*-position, *-normal, 0.5, 0.5]) if top_radius is None: top_radius = radius side_slope = -np.arctan2(top_radius - radius, 2 * half_height) # Create the cylinder base and top vertices for j in (-1, 1): center_index = max(j, 0) if j == 1: radius = top_radius for i in range(segments): theta = 2 * np.pi * i / segments cos_theta = np.cos(theta) sin_theta = np.sin(theta) x = cos_theta y = j * half_height z = sin_theta position = np.array([radius * x, y, radius * z]) normal = np.array([x, side_slope, z]) normal = normal / np.linalg.norm(normal) uv = (i / (segments - 1), (j + 1) / 2) vertex = np.hstack([position[[x_dir, y_dir, z_dir]], normal[[x_dir, y_dir, z_dir]], uv]) side_vertices.append(vertex) normal = np.array([0, j, 0]) uv = (cos_theta * 0.5 + 0.5, sin_theta * 0.5 + 0.5) vertex = np.hstack([position[[x_dir, y_dir, z_dir]], normal[[x_dir, y_dir, z_dir]], uv]) cap_vertices.append(vertex) indices.extend( [center_index, i + center_index * segments + 2, (i + 1) % segments + center_index * segments + 2][::-j] ) # Create the cylinder side indices for i in range(segments): index1 = len(cap_vertices) + i + segments index2 = len(cap_vertices) + ((i + 1) % segments) + segments index3 = len(cap_vertices) + i index4 = len(cap_vertices) + ((i + 1) % segments) indices.extend([index1, index2, index3, index2, index4, index3]) vertex_data = np.array(np.vstack((cap_vertices, side_vertices)), dtype=np.float32) index_data = np.array(indices, dtype=np.uint32) return vertex_data, index_data @staticmethod def _create_arrow_mesh( base_radius, base_height, cap_radius=None, cap_height=None, up_axis=1, segments=default_num_segments ): if up_axis not in (0, 1, 2): raise ValueError("up_axis must be between 0 and 2") if cap_radius is None: cap_radius = base_radius * 1.8 if cap_height is None: cap_height = base_height * 0.18 up_vector = np.array([0, 0, 0]) up_vector[up_axis] = 1 base_vertices, base_indices = OpenGLRenderer._create_cylinder_mesh( base_radius, base_height / 2, up_axis, segments ) cap_vertices, cap_indices = OpenGLRenderer._create_cone_mesh(cap_radius, cap_height / 2, up_axis, segments) base_vertices[:, :3] += base_height / 2 * up_vector # move cap slightly lower to avoid z-fighting cap_vertices[:, :3] += (base_height + cap_height / 2 - 1e-3 * base_height) * up_vector vertex_data = np.vstack((base_vertices, cap_vertices)) index_data = np.hstack((base_indices, cap_indices + len(base_vertices))) return vertex_data, index_data @staticmethod def _create_box_mesh(extents): x_extent, y_extent, z_extent = extents vertices = [ # Position Normal UV [-x_extent, -y_extent, -z_extent, -1, 0, 0, 0, 0], [-x_extent, -y_extent, z_extent, -1, 0, 0, 1, 0], [-x_extent, y_extent, z_extent, -1, 0, 0, 1, 1], [-x_extent, y_extent, -z_extent, -1, 0, 0, 0, 1], [x_extent, -y_extent, -z_extent, 1, 0, 0, 0, 0], [x_extent, -y_extent, z_extent, 1, 0, 0, 1, 0], [x_extent, y_extent, z_extent, 1, 0, 0, 1, 1], [x_extent, y_extent, -z_extent, 1, 0, 0, 0, 1], [-x_extent, -y_extent, -z_extent, 0, -1, 0, 0, 0], [-x_extent, -y_extent, z_extent, 0, -1, 0, 1, 0], [x_extent, -y_extent, z_extent, 0, -1, 0, 1, 1], [x_extent, -y_extent, -z_extent, 0, -1, 0, 0, 1], [-x_extent, y_extent, -z_extent, 0, 1, 0, 0, 0], [-x_extent, y_extent, z_extent, 0, 1, 0, 1, 0], [x_extent, y_extent, z_extent, 0, 1, 0, 1, 1], [x_extent, y_extent, -z_extent, 0, 1, 0, 0, 1], [-x_extent, -y_extent, -z_extent, 0, 0, -1, 0, 0], [-x_extent, y_extent, -z_extent, 0, 0, -1, 1, 0], [x_extent, y_extent, -z_extent, 0, 0, -1, 1, 1], [x_extent, -y_extent, -z_extent, 0, 0, -1, 0, 1], [-x_extent, -y_extent, z_extent, 0, 0, 1, 0, 0], [-x_extent, y_extent, z_extent, 0, 0, 1, 1, 0], [x_extent, y_extent, z_extent, 0, 0, 1, 1, 1], [x_extent, -y_extent, z_extent, 0, 0, 1, 0, 1], ] # fmt: off indices = [ 0, 1, 2, 0, 2, 3, 4, 6, 5, 4, 7, 6, 8, 10, 9, 8, 11, 10, 12, 13, 14, 12, 14, 15, 16, 17, 18, 16, 18, 19, 20, 22, 21, 20, 23, 22, ] # fmt: on return np.array(vertices, dtype=np.float32), np.array(indices, dtype=np.uint32) if __name__ == "__main__": wp.init() renderer = OpenGLRenderer()
warp-main
warp/render/render_opengl.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from typing import Any @wp.kernel def sgd_step_kernel( g: wp.array(dtype=Any), b: wp.array(dtype=Any), lr: float, weight_decay: float, momentum: float, damping: float, nesterov: int, t: int, params: wp.array(dtype=Any), ): i = wp.tid() gt = g[i] if weight_decay != 0.0: gt += weight_decay * params[i] if momentum != 0.0: bt = b[i] if t > 0: bt = momentum * bt + (1.0 - damping) * gt else: bt = gt if nesterov == 1: gt += momentum * bt else: gt = bt b[i] = bt params[i] = params[i] - lr * gt class SGD: """An implementation of the Stochastic Gradient Descent Optimizer It is designed to mimic Pytorch's version. https://pytorch.org/docs/stable/generated/torch.optim.SGD.html """ def __init__(self, params=None, lr=0.001, momentum=0.0, dampening=0.0, weight_decay=0.0, nesterov=False): self.b = [] # momentum buffer self.set_params(params) self.lr = lr self.momentum = momentum self.dampening = dampening self.weight_decay = weight_decay self.nesterov = nesterov self.t = 0 def set_params(self, params): self.params = params if params is not None and type(params) == list and len(params) > 0: if len(self.b) != len(params): self.b = [None] * len(params) for i in range(len(params)): param = params[i] if self.b[i] is None or self.b[i].shape != param.shape or self.b[i].dtype != param.dtype: self.b[i] = wp.zeros_like(param) def reset_internal_state(self): for b_i in self.b: b_i.zero_() self.t = 0 def step(self, grad): assert self.params is not None for i in range(len(self.params)): SGD.step_detail( grad[i], self.b[i], self.lr, self.momentum, self.dampening, self.weight_decay, self.nesterov, self.t, self.params[i] ) self.t = self.t + 1 @staticmethod def step_detail(g, b, lr, momentum, dampening, weight_decay, nesterov, t, params): assert params.dtype == g.dtype assert params.dtype == b.dtype assert params.shape == g.shape kernel_inputs = [g, b, lr, momentum, dampening, weight_decay, int(nesterov), t, params] wp.launch( kernel=sgd_step_kernel, dim=len(params), inputs=kernel_inputs, device=params.device, )
warp-main
warp/optim/sgd.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from .adam import Adam from .sgd import SGD
warp-main
warp/optim/__init__.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp @wp.kernel def adam_step_kernel_vec3( g: wp.array(dtype=wp.vec3), m: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), lr: float, beta1: float, beta2: float, t: float, eps: float, params: wp.array(dtype=wp.vec3), ): i = wp.tid() m[i] = beta1 * m[i] + (1.0 - beta1) * g[i] v[i] = beta2 * v[i] + (1.0 - beta2) * wp.cw_mul(g[i], g[i]) mhat = m[i] / (1.0 - wp.pow(beta1, (t + 1.0))) vhat = v[i] / (1.0 - wp.pow(beta2, (t + 1.0))) sqrt_vhat = wp.vec3(wp.sqrt(vhat[0]), wp.sqrt(vhat[1]), wp.sqrt(vhat[2])) eps_vec3 = wp.vec3(eps, eps, eps) params[i] = params[i] - lr * wp.cw_div(mhat, (sqrt_vhat + eps_vec3)) @wp.kernel def adam_step_kernel_float( g: wp.array(dtype=float), m: wp.array(dtype=float), v: wp.array(dtype=float), lr: float, beta1: float, beta2: float, t: float, eps: float, params: wp.array(dtype=float), ): i = wp.tid() m[i] = beta1 * m[i] + (1.0 - beta1) * g[i] v[i] = beta2 * v[i] + (1.0 - beta2) * g[i] * g[i] mhat = m[i] / (1.0 - wp.pow(beta1, (t + 1.0))) vhat = v[i] / (1.0 - wp.pow(beta2, (t + 1.0))) params[i] = params[i] - lr * mhat / (wp.sqrt(vhat) + eps) class Adam: """An implementation of the Adam Optimizer It is designed to mimic Pytorch's version. https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam """ def __init__(self, params=None, lr=0.001, betas=(0.9, 0.999), eps=1e-08): self.m = [] # first moment self.v = [] # second moment self.set_params(params) self.lr = lr self.beta1 = betas[0] self.beta2 = betas[1] self.eps = eps self.t = 0 def set_params(self, params): self.params = params if params != None and type(params) == list and len(params) > 0: if len(self.m) != len(params): self.m = [None] * len(params) # reset first moment if len(self.v) != len(params): self.v = [None] * len(params) # reset second moment for i in range(len(params)): param = params[i] if self.m[i] == None or self.m[i].shape != param.shape or self.m[i].dtype != param.dtype: self.m[i] = wp.zeros_like(param) if self.v[i] == None or self.v[i].shape != param.shape or self.v[i].dtype != param.dtype: self.v[i] = wp.zeros_like(param) def reset_internal_state(self): for m_i in self.m: m_i.zero_() for v_i in self.v: v_i.zero_() self.t = 0 def step(self, grad): assert self.params != None for i in range(len(self.params)): Adam.step_detail( grad[i], self.m[i], self.v[i], self.lr, self.beta1, self.beta2, self.t, self.eps, self.params[i] ) self.t = self.t + 1 @staticmethod def step_detail(g, m, v, lr, beta1, beta2, t, eps, params): assert params.dtype == g.dtype assert params.dtype == m.dtype assert params.dtype == v.dtype assert params.shape == g.shape kernel_inputs = [g, m, v, lr, beta1, beta2, t, eps, params] if params.dtype == wp.types.float32: wp.launch( kernel=adam_step_kernel_float, dim=len(params), inputs=kernel_inputs, device=params.device, ) elif params.dtype == wp.types.vec3: wp.launch( kernel=adam_step_kernel_vec3, dim=len(params), inputs=kernel_inputs, device=params.device, ) else: raise RuntimeError("Params data type not supported in Adam step kernels.")
warp-main
warp/optim/adam.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """This module contains time-integration objects for simulating models + state forward in time. """ import warp as wp from .collide import triangle_closest_point_barycentric from .model import PARTICLE_FLAG_ACTIVE, ModelShapeGeometry, ModelShapeMaterials from .optimizer import Optimizer from .particles import eval_particle_forces from .utils import quat_decompose, quat_twist @wp.kernel def integrate_particles( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), f: wp.array(dtype=wp.vec3), w: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), gravity: wp.vec3, dt: float, v_max: float, x_new: wp.array(dtype=wp.vec3), v_new: wp.array(dtype=wp.vec3), ): tid = wp.tid() if (particle_flags[tid] & PARTICLE_FLAG_ACTIVE) == 0: return x0 = x[tid] v0 = v[tid] f0 = f[tid] inv_mass = w[tid] # simple semi-implicit Euler. v1 = v0 + a dt, x1 = x0 + v1 dt v1 = v0 + (f0 * inv_mass + gravity * wp.step(0.0 - inv_mass)) * dt # enforce velocity limit to prevent instability v1_mag = wp.length(v1) if v1_mag > v_max: v1 *= v_max / v1_mag x1 = x0 + v1 * dt x_new[tid] = x1 v_new[tid] = v1 # semi-implicit Euler integration @wp.kernel def integrate_bodies( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_f: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), m: wp.array(dtype=float), I: wp.array(dtype=wp.mat33), inv_m: wp.array(dtype=float), inv_I: wp.array(dtype=wp.mat33), gravity: wp.vec3, angular_damping: float, dt: float, # outputs body_q_new: wp.array(dtype=wp.transform), body_qd_new: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() # positions q = body_q[tid] qd = body_qd[tid] f = body_f[tid] # masses mass = m[tid] inv_mass = inv_m[tid] # 1 / mass inertia = I[tid] inv_inertia = inv_I[tid] # inverse of 3x3 inertia matrix # unpack transform x0 = wp.transform_get_translation(q) r0 = wp.transform_get_rotation(q) # unpack spatial twist w0 = wp.spatial_top(qd) v0 = wp.spatial_bottom(qd) # unpack spatial wrench t0 = wp.spatial_top(f) f0 = wp.spatial_bottom(f) x_com = x0 + wp.quat_rotate(r0, body_com[tid]) # linear part v1 = v0 + (f0 * inv_mass + gravity * wp.nonzero(inv_mass)) * dt x1 = x_com + v1 * dt # angular part (compute in body frame) wb = wp.quat_rotate_inv(r0, w0) tb = wp.quat_rotate_inv(r0, t0) - wp.cross(wb, inertia * wb) # coriolis forces w1 = wp.quat_rotate(r0, wb + inv_inertia * tb * dt) r1 = wp.normalize(r0 + wp.quat(w1, 0.0) * r0 * 0.5 * dt) # angular damping w1 *= 1.0 - angular_damping * dt body_q_new[tid] = wp.transform(x1 - wp.quat_rotate(r1, body_com[tid]), r1) body_qd_new[tid] = wp.spatial_vector(w1, v1) @wp.kernel def eval_springs( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), spring_indices: wp.array(dtype=int), spring_rest_lengths: wp.array(dtype=float), spring_stiffness: wp.array(dtype=float), spring_damping: wp.array(dtype=float), f: wp.array(dtype=wp.vec3), ): tid = wp.tid() i = spring_indices[tid * 2 + 0] j = spring_indices[tid * 2 + 1] ke = spring_stiffness[tid] kd = spring_damping[tid] rest = spring_rest_lengths[tid] xi = x[i] xj = x[j] vi = v[i] vj = v[j] xij = xi - xj vij = vi - vj l = wp.length(xij) l_inv = 1.0 / l # normalized spring direction dir = xij * l_inv c = l - rest dcdt = wp.dot(dir, vij) # damping based on relative velocity. fs = dir * (ke * c + kd * dcdt) wp.atomic_sub(f, i, fs) wp.atomic_add(f, j, fs) @wp.kernel def eval_triangles( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), indices: wp.array2d(dtype=int), pose: wp.array(dtype=wp.mat22), activation: wp.array(dtype=float), materials: wp.array2d(dtype=float), f: wp.array(dtype=wp.vec3), ): tid = wp.tid() k_mu = materials[tid, 0] k_lambda = materials[tid, 1] k_damp = materials[tid, 2] k_drag = materials[tid, 3] k_lift = materials[tid, 4] i = indices[tid, 0] j = indices[tid, 1] k = indices[tid, 2] x0 = x[i] # point zero x1 = x[j] # point one x2 = x[k] # point two v0 = v[i] # vel zero v1 = v[j] # vel one v2 = v[k] # vel two x10 = x1 - x0 # barycentric coordinates (centered at p) x20 = x2 - x0 v10 = v1 - v0 v20 = v2 - v0 Dm = pose[tid] inv_rest_area = wp.determinant(Dm) * 2.0 # 1 / det(A) = det(A^-1) rest_area = 1.0 / inv_rest_area # scale stiffness coefficients to account for area k_mu = k_mu * rest_area k_lambda = k_lambda * rest_area k_damp = k_damp * rest_area # F = Xs*Xm^-1 F1 = x10 * Dm[0, 0] + x20 * Dm[1, 0] F2 = x10 * Dm[0, 1] + x20 * Dm[1, 1] # dFdt = Vs*Xm^-1 dFdt1 = v10 * Dm[0, 0] + v20 * Dm[1, 0] dFdt2 = v10 * Dm[0, 1] + v20 * Dm[1, 1] # deviatoric PK1 + damping term P1 = F1 * k_mu + dFdt1 * k_damp P2 = F2 * k_mu + dFdt2 * k_damp # ----------------------------- # St. Venant-Kirchoff # # Green strain, F'*F-I # e00 = dot(f1, f1) - 1.0 # e10 = dot(f2, f1) # e01 = dot(f1, f2) # e11 = dot(f2, f2) - 1.0 # E = wp.mat22(e00, e01, # e10, e11) # # local forces (deviatoric part) # T = wp.mul(E, wp.transpose(Dm)) # # spatial forces, F*T # fq = (f1*T[0,0] + f2*T[1,0])*k_mu*2.0 # fr = (f1*T[0,1] + f2*T[1,1])*k_mu*2.0 # alpha = 1.0 # ----------------------------- # Baraff & Witkin, note this model is not isotropic # c1 = length(f1) - 1.0 # c2 = length(f2) - 1.0 # f1 = normalize(f1)*c1*k1 # f2 = normalize(f2)*c2*k1 # fq = f1*Dm[0,0] + f2*Dm[0,1] # fr = f1*Dm[1,0] + f2*Dm[1,1] # ----------------------------- # Neo-Hookean (with rest stability) # force = P*Dm' f1 = P1 * Dm[0, 0] + P2 * Dm[0, 1] f2 = P1 * Dm[1, 0] + P2 * Dm[1, 1] alpha = 1.0 + k_mu / k_lambda # ----------------------------- # Area Preservation n = wp.cross(x10, x20) area = wp.length(n) * 0.5 # actuation act = activation[tid] # J-alpha c = area * inv_rest_area - alpha + act # dJdx n = wp.normalize(n) dcdq = wp.cross(x20, n) * inv_rest_area * 0.5 dcdr = wp.cross(n, x10) * inv_rest_area * 0.5 f_area = k_lambda * c # ----------------------------- # Area Damping dcdt = dot(dcdq, v1) + dot(dcdr, v2) - dot(dcdq + dcdr, v0) f_damp = k_damp * dcdt f1 = f1 + dcdq * (f_area + f_damp) f2 = f2 + dcdr * (f_area + f_damp) f0 = f1 + f2 # ----------------------------- # Lift + Drag vmid = (v0 + v1 + v2) * 0.3333 vdir = wp.normalize(vmid) f_drag = vmid * (k_drag * area * wp.abs(wp.dot(n, vmid))) f_lift = n * (k_lift * area * (1.57079 - wp.acos(wp.dot(n, vdir)))) * dot(vmid, vmid) # note reversed sign due to atomic_add below.. need to write the unary op - f0 = f0 - f_drag - f_lift f1 = f1 + f_drag + f_lift f2 = f2 + f_drag + f_lift # apply forces wp.atomic_add(f, i, f0) wp.atomic_sub(f, j, f1) wp.atomic_sub(f, k, f2) # @wp.func # def triangle_closest_point(a: wp.vec3, b: wp.vec3, c: wp.vec3, p: wp.vec3): # ab = b - a # ac = c - a # ap = p - a # d1 = wp.dot(ab, ap) # d2 = wp.dot(ac, ap) # if (d1 <= 0.0 and d2 <= 0.0): # return a # bp = p - b # d3 = wp.dot(ab, bp) # d4 = wp.dot(ac, bp) # if (d3 >= 0.0 and d4 <= d3): # return b # vc = d1 * d4 - d3 * d2 # v = d1 / (d1 - d3) # if (vc <= 0.0 and d1 >= 0.0 and d3 <= 0.0): # return a + ab * v # cp = p - c # d5 = dot(ab, cp) # d6 = dot(ac, cp) # if (d6 >= 0.0 and d5 <= d6): # return c # vb = d5 * d2 - d1 * d6 # w = d2 / (d2 - d6) # if (vb <= 0.0 and d2 >= 0.0 and d6 <= 0.0): # return a + ac * w # va = d3 * d6 - d5 * d4 # w = (d4 - d3) / ((d4 - d3) + (d5 - d6)) # if (va <= 0.0 and (d4 - d3) >= 0.0 and (d5 - d6) >= 0.0): # return b + (c - b) * w # denom = 1.0 / (va + vb + vc) # v = vb * denom # w = vc * denom # return a + ab * v + ac * w @wp.kernel def eval_triangles_contact( # idx : wp.array(dtype=int), # list of indices for colliding particles num_particles: int, # size of particles x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), indices: wp.array2d(dtype=int), pose: wp.array(dtype=wp.mat22), activation: wp.array(dtype=float), materials: wp.array2d(dtype=float), f: wp.array(dtype=wp.vec3), ): tid = wp.tid() face_no = tid // num_particles # which face particle_no = tid % num_particles # which particle k_mu = materials[face_no, 0] k_lambda = materials[face_no, 1] k_damp = materials[face_no, 2] k_drag = materials[face_no, 3] k_lift = materials[face_no, 4] # at the moment, just one particle pos = x[particle_no] i = indices[face_no, 0] j = indices[face_no, 1] k = indices[face_no, 2] if i == particle_no or j == particle_no or k == particle_no: return p = x[i] # point zero q = x[j] # point one r = x[k] # point two # vp = v[i] # vel zero # vq = v[j] # vel one # vr = v[k] # vel two # qp = q-p # barycentric coordinates (centered at p) # rp = r-p bary = triangle_closest_point_barycentric(p, q, r, pos) closest = p * bary[0] + q * bary[1] + r * bary[2] diff = pos - closest dist = wp.dot(diff, diff) n = wp.normalize(diff) c = wp.min(dist - 0.01, 0.0) # 0 unless within 0.01 of surface # c = wp.leaky_min(dot(n, x0)-0.01, 0.0, 0.0) fn = n * c * 1e5 wp.atomic_sub(f, particle_no, fn) # # apply forces (could do - f / 3 here) wp.atomic_add(f, i, fn * bary[0]) wp.atomic_add(f, j, fn * bary[1]) wp.atomic_add(f, k, fn * bary[2]) @wp.kernel def eval_triangles_body_contacts( num_particles: int, # number of particles (size of contact_point) x: wp.array(dtype=wp.vec3), # position of particles v: wp.array(dtype=wp.vec3), indices: wp.array(dtype=int), # triangle indices body_x: wp.array(dtype=wp.vec3), # body body positions body_r: wp.array(dtype=wp.quat), body_v: wp.array(dtype=wp.vec3), body_w: wp.array(dtype=wp.vec3), contact_body: wp.array(dtype=int), contact_point: wp.array(dtype=wp.vec3), # position of contact points relative to body contact_dist: wp.array(dtype=float), contact_mat: wp.array(dtype=int), materials: wp.array(dtype=float), # body_f : wp.array(dtype=wp.vec3), # body_t : wp.array(dtype=wp.vec3), tri_f: wp.array(dtype=wp.vec3), ): tid = wp.tid() face_no = tid // num_particles # which face particle_no = tid % num_particles # which particle # ----------------------- # load body body point c_body = contact_body[particle_no] c_point = contact_point[particle_no] c_dist = contact_dist[particle_no] c_mat = contact_mat[particle_no] # hard coded surface parameter tensor layout (ke, kd, kf, mu) ke = materials[c_mat * 4 + 0] # restitution coefficient kd = materials[c_mat * 4 + 1] # damping coefficient kf = materials[c_mat * 4 + 2] # friction coefficient mu = materials[c_mat * 4 + 3] # coulomb friction x0 = body_x[c_body] # position of colliding body r0 = body_r[c_body] # orientation of colliding body v0 = body_v[c_body] w0 = body_w[c_body] # transform point to world space pos = x0 + wp.quat_rotate(r0, c_point) # use x0 as center, everything is offset from center of mass # moment arm r = pos - x0 # basically just c_point in the new coordinates rhat = wp.normalize(r) pos = pos + rhat * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule # contact point velocity dpdt = v0 + wp.cross(w0, r) # this is body velocity cross offset, so it's the velocity of the contact point. # ----------------------- # load triangle i = indices[face_no * 3 + 0] j = indices[face_no * 3 + 1] k = indices[face_no * 3 + 2] p = x[i] # point zero q = x[j] # point one r = x[k] # point two vp = v[i] # vel zero vq = v[j] # vel one vr = v[k] # vel two bary = triangle_closest_point_barycentric(p, q, r, pos) closest = p * bary[0] + q * bary[1] + r * bary[2] diff = pos - closest # vector from tri to point dist = wp.dot(diff, diff) # squared distance n = wp.normalize(diff) # points into the object c = wp.min(dist - 0.05, 0.0) # 0 unless within 0.05 of surface # c = wp.leaky_min(dot(n, x0)-0.01, 0.0, 0.0) # fn = n * c * 1e6 # points towards cloth (both n and c are negative) # wp.atomic_sub(tri_f, particle_no, fn) fn = c * ke # normal force (restitution coefficient * how far inside for ground) (negative) vtri = vp * bary[0] + vq * bary[1] + vr * bary[2] # bad approximation for centroid velocity vrel = vtri - dpdt vn = dot(n, vrel) # velocity component of body in negative normal direction vt = vrel - n * vn # velocity component not in normal direction # contact damping fd = 0.0 - wp.max(vn, 0.0) * kd * wp.step(c) # again, negative, into the ground # # viscous friction # ft = vt*kf # Coulomb friction (box) lower = mu * (fn + fd) upper = 0.0 - lower # workaround because no unary ops yet nx = cross(n, vec3(0.0, 0.0, 1.0)) # basis vectors for tangent nz = cross(n, vec3(1.0, 0.0, 0.0)) vx = wp.clamp(dot(nx * kf, vt), lower, upper) vz = wp.clamp(dot(nz * kf, vt), lower, upper) ft = (nx * vx + nz * vz) * (0.0 - wp.step(c)) # wp.vec3(vx, 0.0, vz)*wp.step(c) # # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) # #ft = wp.normalize(vt)*wp.min(kf*wp.length(vt), 0.0 - mu*c*ke) f_total = n * (fn + fd) + ft wp.atomic_add(tri_f, i, f_total * bary[0]) wp.atomic_add(tri_f, j, f_total * bary[1]) wp.atomic_add(tri_f, k, f_total * bary[2]) @wp.kernel def eval_bending( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), indices: wp.array2d(dtype=int), rest: wp.array(dtype=float), bending_properties: wp.array2d(dtype=float), f: wp.array(dtype=wp.vec3), ): tid = wp.tid() ke = bending_properties[tid, 0] kd = bending_properties[tid, 1] i = indices[tid, 0] j = indices[tid, 1] k = indices[tid, 2] l = indices[tid, 3] rest_angle = rest[tid] x1 = x[i] x2 = x[j] x3 = x[k] x4 = x[l] v1 = v[i] v2 = v[j] v3 = v[k] v4 = v[l] n1 = wp.cross(x3 - x1, x4 - x1) # normal to face 1 n2 = wp.cross(x4 - x2, x3 - x2) # normal to face 2 n1_length = wp.length(n1) n2_length = wp.length(n2) if n1_length < 1.0e-6 or n2_length < 1.0e-6: return rcp_n1 = 1.0 / n1_length rcp_n2 = 1.0 / n2_length cos_theta = wp.dot(n1, n2) * rcp_n1 * rcp_n2 n1 = n1 * rcp_n1 * rcp_n1 n2 = n2 * rcp_n2 * rcp_n2 e = x4 - x3 e_hat = wp.normalize(e) e_length = wp.length(e) s = wp.sign(wp.dot(wp.cross(n2, n1), e_hat)) angle = wp.acos(cos_theta) * s d1 = n1 * e_length d2 = n2 * e_length d3 = n1 * wp.dot(x1 - x4, e_hat) + n2 * wp.dot(x2 - x4, e_hat) d4 = n1 * wp.dot(x3 - x1, e_hat) + n2 * wp.dot(x3 - x2, e_hat) # elastic f_elastic = ke * (angle - rest_angle) # damping f_damp = kd * (wp.dot(d1, v1) + wp.dot(d2, v2) + wp.dot(d3, v3) + wp.dot(d4, v4)) # total force, proportional to edge length f_total = 0.0 - e_length * (f_elastic + f_damp) wp.atomic_add(f, i, d1 * f_total) wp.atomic_add(f, j, d2 * f_total) wp.atomic_add(f, k, d3 * f_total) wp.atomic_add(f, l, d4 * f_total) @wp.kernel def eval_tetrahedra( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), indices: wp.array2d(dtype=int), pose: wp.array(dtype=wp.mat33), activation: wp.array(dtype=float), materials: wp.array2d(dtype=float), f: wp.array(dtype=wp.vec3), ): tid = wp.tid() i = indices[tid, 0] j = indices[tid, 1] k = indices[tid, 2] l = indices[tid, 3] act = activation[tid] k_mu = materials[tid, 0] k_lambda = materials[tid, 1] k_damp = materials[tid, 2] x0 = x[i] x1 = x[j] x2 = x[k] x3 = x[l] v0 = v[i] v1 = v[j] v2 = v[k] v3 = v[l] x10 = x1 - x0 x20 = x2 - x0 x30 = x3 - x0 v10 = v1 - v0 v20 = v2 - v0 v30 = v3 - v0 Ds = wp.mat33(x10, x20, x30) Dm = pose[tid] inv_rest_volume = wp.determinant(Dm) * 6.0 rest_volume = 1.0 / inv_rest_volume alpha = 1.0 + k_mu / k_lambda - k_mu / (4.0 * k_lambda) # scale stiffness coefficients to account for area k_mu = k_mu * rest_volume k_lambda = k_lambda * rest_volume k_damp = k_damp * rest_volume # F = Xs*Xm^-1 F = Ds * Dm dFdt = wp.mat33(v10, v20, v30) * Dm col1 = wp.vec3(F[0, 0], F[1, 0], F[2, 0]) col2 = wp.vec3(F[0, 1], F[1, 1], F[2, 1]) col3 = wp.vec3(F[0, 2], F[1, 2], F[2, 2]) # ----------------------------- # Neo-Hookean (with rest stability [Smith et al 2018]) Ic = dot(col1, col1) + dot(col2, col2) + dot(col3, col3) # deviatoric part P = F * k_mu * (1.0 - 1.0 / (Ic + 1.0)) + dFdt * k_damp H = P * wp.transpose(Dm) f1 = wp.vec3(H[0, 0], H[1, 0], H[2, 0]) f2 = wp.vec3(H[0, 1], H[1, 1], H[2, 1]) f3 = wp.vec3(H[0, 2], H[1, 2], H[2, 2]) # ----------------------------- # C_sqrt # alpha = 1.0 # r_s = wp.sqrt(wp.abs(dot(col1, col1) + dot(col2, col2) + dot(col3, col3) - 3.0)) # f1 = wp.vec3() # f2 = wp.vec3() # f3 = wp.vec3() # if (r_s > 0.0): # r_s_inv = 1.0/r_s # C = r_s # dCdx = F*wp.transpose(Dm)*r_s_inv*wp.sign(r_s) # grad1 = vec3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = vec3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = vec3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # f1 = grad1*C*k_mu # f2 = grad2*C*k_mu # f3 = grad3*C*k_mu # ----------------------------- # C_spherical # alpha = 1.0 # r_s = wp.sqrt(dot(col1, col1) + dot(col2, col2) + dot(col3, col3)) # r_s_inv = 1.0/r_s # C = r_s - wp.sqrt(3.0) # dCdx = F*wp.transpose(Dm)*r_s_inv # grad1 = vec3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = vec3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = vec3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # f1 = grad1*C*k_mu # f2 = grad2*C*k_mu # f3 = grad3*C*k_mu # ---------------------------- # C_D # alpha = 1.0 # r_s = wp.sqrt(dot(col1, col1) + dot(col2, col2) + dot(col3, col3)) # C = r_s*r_s - 3.0 # dCdx = F*wp.transpose(Dm)*2.0 # grad1 = vec3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = vec3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = vec3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # f1 = grad1*C*k_mu # f2 = grad2*C*k_mu # f3 = grad3*C*k_mu # ---------------------------- # Hookean # alpha = 1.0 # I = wp.mat33(wp.vec3(1.0, 0.0, 0.0), # wp.vec3(0.0, 1.0, 0.0), # wp.vec3(0.0, 0.0, 1.0)) # P = (F + wp.transpose(F) + I*(0.0-2.0))*k_mu # H = P * wp.transpose(Dm) # f1 = wp.vec3(H[0, 0], H[1, 0], H[2, 0]) # f2 = wp.vec3(H[0, 1], H[1, 1], H[2, 1]) # f3 = wp.vec3(H[0, 2], H[1, 2], H[2, 2]) # hydrostatic part J = wp.determinant(F) # print(J) s = inv_rest_volume / 6.0 dJdx1 = wp.cross(x20, x30) * s dJdx2 = wp.cross(x30, x10) * s dJdx3 = wp.cross(x10, x20) * s f_volume = (J - alpha + act) * k_lambda f_damp = (wp.dot(dJdx1, v1) + wp.dot(dJdx2, v2) + wp.dot(dJdx3, v3)) * k_damp f_total = f_volume + f_damp f1 = f1 + dJdx1 * f_total f2 = f2 + dJdx2 * f_total f3 = f3 + dJdx3 * f_total f0 = (f1 + f2 + f3) * (0.0 - 1.0) # apply forces wp.atomic_sub(f, i, f0) wp.atomic_sub(f, j, f1) wp.atomic_sub(f, k, f2) wp.atomic_sub(f, l, f3) @wp.kernel def eval_particle_ground_contacts( particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), ke: float, kd: float, kf: float, mu: float, ground: wp.array(dtype=float), # outputs f: wp.array(dtype=wp.vec3), ): tid = wp.tid() if (particle_flags[tid] & PARTICLE_FLAG_ACTIVE) == 0: return x = particle_x[tid] v = particle_v[tid] radius = particle_radius[tid] n = wp.vec3(ground[0], ground[1], ground[2]) c = wp.min(wp.dot(n, x) + ground[3] - radius, 0.0) vn = wp.dot(n, v) jn = c * ke if c >= 0.0: return jd = min(vn, 0.0) * kd # contact force fn = jn + jd # friction force vt = v - n * vn vs = wp.length(vt) if vs > 0.0: vt = vt / vs # Coulomb condition ft = wp.min(vs * kf, mu * wp.abs(fn)) # total force f[tid] = f[tid] - n * fn - vt * ft @wp.kernel def eval_particle_contacts( particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), body_com: wp.array(dtype=wp.vec3), shape_body: wp.array(dtype=int), shape_materials: ModelShapeMaterials, particle_ke: float, particle_kd: float, particle_kf: float, particle_mu: float, particle_ka: float, contact_count: wp.array(dtype=int), contact_particle: wp.array(dtype=int), contact_shape: wp.array(dtype=int), contact_body_pos: wp.array(dtype=wp.vec3), contact_body_vel: wp.array(dtype=wp.vec3), contact_normal: wp.array(dtype=wp.vec3), contact_max: int, # outputs particle_f: wp.array(dtype=wp.vec3), body_f: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() count = min(contact_max, contact_count[0]) if tid >= count: return shape_index = contact_shape[tid] body_index = shape_body[shape_index] particle_index = contact_particle[tid] if (particle_flags[particle_index] & PARTICLE_FLAG_ACTIVE) == 0: return px = particle_x[particle_index] pv = particle_v[particle_index] X_wb = wp.transform_identity() X_com = wp.vec3() body_v_s = wp.spatial_vector() if body_index >= 0: X_wb = body_q[body_index] X_com = body_com[body_index] body_v_s = body_qd[body_index] # body position in world space bx = wp.transform_point(X_wb, contact_body_pos[tid]) r = bx - wp.transform_point(X_wb, X_com) n = contact_normal[tid] c = wp.dot(n, px - bx) - particle_radius[tid] if c > particle_ka: return # take average material properties of shape and particle parameters ke = 0.5 * (particle_ke + shape_materials.ke[shape_index]) kd = 0.5 * (particle_kd + shape_materials.kd[shape_index]) kf = 0.5 * (particle_kf + shape_materials.kf[shape_index]) mu = 0.5 * (particle_mu + shape_materials.mu[shape_index]) body_w = wp.spatial_top(body_v_s) body_v = wp.spatial_bottom(body_v_s) # compute the body velocity at the particle position bv = body_v + wp.cross(body_w, r) + wp.transform_vector(X_wb, contact_body_vel[tid]) # relative velocity v = pv - bv # decompose relative velocity vn = wp.dot(n, v) vt = v - n * vn # contact elastic fn = n * c * ke # contact damping fd = n * wp.min(vn, 0.0) * kd # viscous friction # ft = vt*kf # Coulomb friction (box) # lower = mu * c * ke # upper = 0.0 - lower # vx = wp.clamp(wp.dot(wp.vec3(kf, 0.0, 0.0), vt), lower, upper) # vz = wp.clamp(wp.dot(wp.vec3(0.0, 0.0, kf), vt), lower, upper) # ft = wp.vec3(vx, 0.0, vz) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) ft = wp.normalize(vt) * wp.min(kf * wp.length(vt), abs(mu * c * ke)) f_total = fn + (fd + ft) t_total = wp.cross(r, f_total) wp.atomic_sub(particle_f, particle_index, f_total) if body_index >= 0: wp.atomic_add(body_f, body_index, wp.spatial_vector(t_total, f_total)) @wp.kernel def eval_rigid_contacts( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), shape_materials: ModelShapeMaterials, geo: ModelShapeGeometry, contact_count: wp.array(dtype=int), contact_body0: wp.array(dtype=int), contact_body1: wp.array(dtype=int), contact_point0: wp.array(dtype=wp.vec3), contact_point1: wp.array(dtype=wp.vec3), contact_normal: wp.array(dtype=wp.vec3), contact_shape0: wp.array(dtype=int), contact_shape1: wp.array(dtype=int), # outputs body_f: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() if contact_shape0[tid] == contact_shape1[tid]: return count = contact_count[0] if tid >= count: return # retrieve contact thickness, compute average contact material properties ke = 0.0 # restitution coefficient kd = 0.0 # damping coefficient kf = 0.0 # friction coefficient mu = 0.0 # coulomb friction mat_nonzero = 0 thickness_a = 0.0 thickness_b = 0.0 shape_a = contact_shape0[tid] shape_b = contact_shape1[tid] if shape_a >= 0: mat_nonzero += 1 ke += shape_materials.ke[shape_a] kd += shape_materials.kd[shape_a] kf += shape_materials.kf[shape_a] mu += shape_materials.mu[shape_a] thickness_a = geo.thickness[shape_a] if shape_b >= 0: mat_nonzero += 1 ke += shape_materials.ke[shape_b] kd += shape_materials.kd[shape_b] kf += shape_materials.kf[shape_b] mu += shape_materials.mu[shape_b] thickness_b = geo.thickness[shape_b] if mat_nonzero > 0: ke = ke / float(mat_nonzero) kd = kd / float(mat_nonzero) kf = kf / float(mat_nonzero) mu = mu / float(mat_nonzero) body_a = contact_body0[tid] body_b = contact_body1[tid] # body position in world space n = contact_normal[tid] bx_a = contact_point0[tid] bx_b = contact_point1[tid] if body_a >= 0: X_wb_a = body_q[body_a] X_com_a = body_com[body_a] bx_a = wp.transform_point(X_wb_a, bx_a) - thickness_a * n r_a = bx_a - wp.transform_point(X_wb_a, X_com_a) if body_b >= 0: X_wb_b = body_q[body_b] X_com_b = body_com[body_b] bx_b = wp.transform_point(X_wb_b, bx_b) + thickness_b * n r_b = bx_b - wp.transform_point(X_wb_b, X_com_b) d = wp.dot(n, bx_a - bx_b) if d >= 0.0: return # compute contact point velocity bv_a = wp.vec3(0.0) bv_b = wp.vec3(0.0) if body_a >= 0: body_v_s_a = body_qd[body_a] body_w_a = wp.spatial_top(body_v_s_a) body_v_a = wp.spatial_bottom(body_v_s_a) bv_a = body_v_a + wp.cross(body_w_a, r_a) if body_b >= 0: body_v_s_b = body_qd[body_b] body_w_b = wp.spatial_top(body_v_s_b) body_v_b = wp.spatial_bottom(body_v_s_b) bv_b = body_v_b + wp.cross(body_w_b, r_b) # relative velocity v = bv_a - bv_b # print(v) # decompose relative velocity vn = wp.dot(n, v) vt = v - n * vn # contact elastic fn = d * ke # contact damping fd = wp.min(vn, 0.0) * kd * wp.step(d) # viscous friction # ft = vt*kf # Coulomb friction (box) # lower = mu * d * ke # upper = 0.0 - lower # vx = wp.clamp(wp.dot(wp.vec3(kf, 0.0, 0.0), vt), lower, upper) # vz = wp.clamp(wp.dot(wp.vec3(0.0, 0.0, kf), vt), lower, upper) # ft = wp.vec3(vx, 0.0, vz) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) # ft = wp.normalize(vt)*wp.min(kf*wp.length(vt), abs(mu*d*ke)) ft = wp.normalize(vt) * wp.min(kf * wp.length(vt), 0.0 - mu * (fn + fd)) # f_total = fn + (fd + ft) f_total = n * (fn + fd) + ft # t_total = wp.cross(r, f_total) # print("apply contact force") # print(f_total) if body_a >= 0: wp.atomic_sub(body_f, body_a, wp.spatial_vector(wp.cross(r_a, f_total), f_total)) if body_b >= 0: wp.atomic_add(body_f, body_b, wp.spatial_vector(wp.cross(r_b, f_total), f_total)) @wp.func def eval_joint_force( q: float, qd: float, target: float, target_ke: float, target_kd: float, act: float, limit_lower: float, limit_upper: float, limit_ke: float, limit_kd: float, axis: wp.vec3, ): limit_f = 0.0 # compute limit forces, damping only active when limit is violated if q < limit_lower: limit_f = limit_ke * (limit_lower - q) - limit_kd * min(qd, 0.0) if q > limit_upper: limit_f = limit_ke * (limit_upper - q) - limit_kd * max(qd, 0.0) # joint dynamics total_f = (target_ke * (q - target) + target_kd * qd + act - limit_f) * axis return total_f @wp.kernel def eval_body_joints( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), joint_q_start: wp.array(dtype=int), joint_qd_start: wp.array(dtype=int), joint_type: wp.array(dtype=int), joint_enabled: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), joint_axis: wp.array(dtype=wp.vec3), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), joint_target: wp.array(dtype=float), joint_act: wp.array(dtype=float), joint_target_ke: wp.array(dtype=float), joint_target_kd: wp.array(dtype=float), joint_limit_lower: wp.array(dtype=float), joint_limit_upper: wp.array(dtype=float), joint_limit_ke: wp.array(dtype=float), joint_limit_kd: wp.array(dtype=float), joint_attach_ke: float, joint_attach_kd: float, body_f: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() type = joint_type[tid] # early out for free joints if joint_enabled[tid] == 0 or type == wp.sim.JOINT_FREE: return c_child = joint_child[tid] c_parent = joint_parent[tid] X_pj = joint_X_p[tid] X_cj = joint_X_c[tid] X_wp = X_pj r_p = wp.vec3() w_p = wp.vec3() v_p = wp.vec3() # parent transform and moment arm if c_parent >= 0: X_wp = body_q[c_parent] * X_wp r_p = wp.transform_get_translation(X_wp) - wp.transform_point(body_q[c_parent], body_com[c_parent]) twist_p = body_qd[c_parent] w_p = wp.spatial_top(twist_p) v_p = wp.spatial_bottom(twist_p) + wp.cross(w_p, r_p) # child transform and moment arm X_wc = body_q[c_child] * X_cj r_c = wp.transform_get_translation(X_wc) - wp.transform_point(body_q[c_child], body_com[c_child]) twist_c = body_qd[c_child] w_c = wp.spatial_top(twist_c) v_c = wp.spatial_bottom(twist_c) + wp.cross(w_c, r_c) # joint properties (for 1D joints) q_start = joint_q_start[tid] qd_start = joint_qd_start[tid] axis_start = joint_axis_start[tid] target = joint_target[axis_start] target_ke = joint_target_ke[axis_start] target_kd = joint_target_kd[axis_start] limit_ke = joint_limit_ke[axis_start] limit_kd = joint_limit_kd[axis_start] limit_lower = joint_limit_lower[axis_start] limit_upper = joint_limit_upper[axis_start] act = joint_act[qd_start] x_p = wp.transform_get_translation(X_wp) x_c = wp.transform_get_translation(X_wc) q_p = wp.transform_get_rotation(X_wp) q_c = wp.transform_get_rotation(X_wc) # translational error x_err = x_c - x_p r_err = wp.quat_inverse(q_p) * q_c v_err = v_c - v_p w_err = w_c - w_p # total force/torque on the parent t_total = wp.vec3() f_total = wp.vec3() # reduce angular damping stiffness for stability angular_damping_scale = 0.01 if type == wp.sim.JOINT_FIXED: ang_err = wp.normalize(wp.vec3(r_err[0], r_err[1], r_err[2])) * wp.acos(r_err[3]) * 2.0 f_total += x_err * joint_attach_ke + v_err * joint_attach_kd t_total += ( wp.transform_vector(X_wp, ang_err) * joint_attach_ke + w_err * joint_attach_kd * angular_damping_scale ) if type == wp.sim.JOINT_PRISMATIC: axis = joint_axis[axis_start] # world space joint axis axis_p = wp.transform_vector(X_wp, axis) # evaluate joint coordinates q = wp.dot(x_err, axis_p) qd = wp.dot(v_err, axis_p) f_total = eval_joint_force( q, qd, target, target_ke, target_kd, act, limit_lower, limit_upper, limit_ke, limit_kd, axis_p ) # attachment dynamics ang_err = wp.normalize(wp.vec3(r_err[0], r_err[1], r_err[2])) * wp.acos(r_err[3]) * 2.0 # project off any displacement along the joint axis f_total += (x_err - q * axis_p) * joint_attach_ke + (v_err - qd * axis_p) * joint_attach_kd t_total += ( wp.transform_vector(X_wp, ang_err) * joint_attach_ke + w_err * joint_attach_kd * angular_damping_scale ) if type == wp.sim.JOINT_REVOLUTE: axis = joint_axis[axis_start] axis_p = wp.transform_vector(X_wp, axis) axis_c = wp.transform_vector(X_wc, axis) # swing twist decomposition twist = quat_twist(axis, r_err) q = wp.acos(twist[3]) * 2.0 * wp.sign(wp.dot(axis, wp.vec3(twist[0], twist[1], twist[2]))) qd = wp.dot(w_err, axis_p) t_total = eval_joint_force( q, qd, target, target_ke, target_kd, act, limit_lower, limit_upper, limit_ke, limit_kd, axis_p ) # attachment dynamics swing_err = wp.cross(axis_p, axis_c) f_total += x_err * joint_attach_ke + v_err * joint_attach_kd t_total += swing_err * joint_attach_ke + (w_err - qd * axis_p) * joint_attach_kd * angular_damping_scale if type == wp.sim.JOINT_BALL: ang_err = wp.normalize(wp.vec3(r_err[0], r_err[1], r_err[2])) * wp.acos(r_err[3]) * 2.0 # todo: joint limits t_total += target_kd * w_err + target_ke * wp.transform_vector(X_wp, ang_err) f_total += x_err * joint_attach_ke + v_err * joint_attach_kd if type == wp.sim.JOINT_COMPOUND: q_pc = wp.quat_inverse(q_p) * q_c # decompose to a compound rotation each axis angles = quat_decompose(q_pc) # reconstruct rotation axes axis_0 = wp.vec3(1.0, 0.0, 0.0) q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) axis_1 = wp.quat_rotate(q_0, wp.vec3(0.0, 1.0, 0.0)) q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) axis_2 = wp.quat_rotate(q_1 * q_0, wp.vec3(0.0, 0.0, 1.0)) q_2 = wp.quat_from_axis_angle(axis_2, angles[2]) q_w = q_p axis_0 = wp.transform_vector(X_wp, axis_0) axis_1 = wp.transform_vector(X_wp, axis_1) axis_2 = wp.transform_vector(X_wp, axis_2) # joint dynamics t_total = wp.vec3() # # TODO remove wp.quat_rotate(q_w, ...)? # t_total += eval_joint_force(angles[0], wp.dot(wp.quat_rotate(q_w, axis_0), w_err), joint_target[axis_start+0], joint_target_ke[axis_start+0],joint_target_kd[axis_start+0], joint_act[axis_start+0], joint_limit_lower[axis_start+0], joint_limit_upper[axis_start+0], joint_limit_ke[axis_start+0], joint_limit_kd[axis_start+0], wp.quat_rotate(q_w, axis_0)) # t_total += eval_joint_force(angles[1], wp.dot(wp.quat_rotate(q_w, axis_1), w_err), joint_target[axis_start+1], joint_target_ke[axis_start+1],joint_target_kd[axis_start+1], joint_act[axis_start+1], joint_limit_lower[axis_start+1], joint_limit_upper[axis_start+1], joint_limit_ke[axis_start+1], joint_limit_kd[axis_start+1], wp.quat_rotate(q_w, axis_1)) # t_total += eval_joint_force(angles[2], wp.dot(wp.quat_rotate(q_w, axis_2), w_err), joint_target[axis_start+2], joint_target_ke[axis_start+2],joint_target_kd[axis_start+2], joint_act[axis_start+2], joint_limit_lower[axis_start+2], joint_limit_upper[axis_start+2], joint_limit_ke[axis_start+2], joint_limit_kd[axis_start+2], wp.quat_rotate(q_w, axis_2)) t_total += eval_joint_force( angles[0], wp.dot(axis_0, w_err), joint_target[axis_start + 0], joint_target_ke[axis_start + 0], joint_target_kd[axis_start + 0], joint_act[axis_start + 0], joint_limit_lower[axis_start + 0], joint_limit_upper[axis_start + 0], joint_limit_ke[axis_start + 0], joint_limit_kd[axis_start + 0], axis_0, ) t_total += eval_joint_force( angles[1], wp.dot(axis_1, w_err), joint_target[axis_start + 1], joint_target_ke[axis_start + 1], joint_target_kd[axis_start + 1], joint_act[axis_start + 1], joint_limit_lower[axis_start + 1], joint_limit_upper[axis_start + 1], joint_limit_ke[axis_start + 1], joint_limit_kd[axis_start + 1], axis_1, ) t_total += eval_joint_force( angles[2], wp.dot(axis_2, w_err), joint_target[axis_start + 2], joint_target_ke[axis_start + 2], joint_target_kd[axis_start + 2], joint_act[axis_start + 2], joint_limit_lower[axis_start + 2], joint_limit_upper[axis_start + 2], joint_limit_ke[axis_start + 2], joint_limit_kd[axis_start + 2], axis_2, ) f_total += x_err * joint_attach_ke + v_err * joint_attach_kd if type == wp.sim.JOINT_UNIVERSAL: q_pc = wp.quat_inverse(q_p) * q_c # decompose to a compound rotation each axis angles = quat_decompose(q_pc) # reconstruct rotation axes axis_0 = wp.vec3(1.0, 0.0, 0.0) q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) axis_1 = wp.quat_rotate(q_0, wp.vec3(0.0, 1.0, 0.0)) q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) axis_2 = wp.quat_rotate(q_1 * q_0, wp.vec3(0.0, 0.0, 1.0)) q_2 = wp.quat_from_axis_angle(axis_2, angles[2]) q_w = q_p axis_0 = wp.transform_vector(X_wp, axis_0) axis_1 = wp.transform_vector(X_wp, axis_1) axis_2 = wp.transform_vector(X_wp, axis_2) # joint dynamics t_total = wp.vec3() # free axes # # TODO remove wp.quat_rotate(q_w, ...)? # t_total += eval_joint_force(angles[0], wp.dot(wp.quat_rotate(q_w, axis_0), w_err), joint_target[axis_start+0], joint_target_ke[axis_start+0],joint_target_kd[axis_start+0], joint_act[axis_start+0], joint_limit_lower[axis_start+0], joint_limit_upper[axis_start+0], joint_limit_ke[axis_start+0], joint_limit_kd[axis_start+0], wp.quat_rotate(q_w, axis_0)) # t_total += eval_joint_force(angles[1], wp.dot(wp.quat_rotate(q_w, axis_1), w_err), joint_target[axis_start+1], joint_target_ke[axis_start+1],joint_target_kd[axis_start+1], joint_act[axis_start+1], joint_limit_lower[axis_start+1], joint_limit_upper[axis_start+1], joint_limit_ke[axis_start+1], joint_limit_kd[axis_start+1], wp.quat_rotate(q_w, axis_1)) # # last axis (fixed) # t_total += eval_joint_force(angles[2], wp.dot(wp.quat_rotate(q_w, axis_2), w_err), 0.0, joint_attach_ke, joint_attach_kd*angular_damping_scale, 0.0, 0.0, 0.0, 0.0, 0.0, wp.quat_rotate(q_w, axis_2)) # TODO remove wp.quat_rotate(q_w, ...)? t_total += eval_joint_force( angles[0], wp.dot(axis_0, w_err), joint_target[axis_start + 0], joint_target_ke[axis_start + 0], joint_target_kd[axis_start + 0], joint_act[axis_start + 0], joint_limit_lower[axis_start + 0], joint_limit_upper[axis_start + 0], joint_limit_ke[axis_start + 0], joint_limit_kd[axis_start + 0], axis_0, ) t_total += eval_joint_force( angles[1], wp.dot(axis_1, w_err), joint_target[axis_start + 1], joint_target_ke[axis_start + 1], joint_target_kd[axis_start + 1], joint_act[axis_start + 1], joint_limit_lower[axis_start + 1], joint_limit_upper[axis_start + 1], joint_limit_ke[axis_start + 1], joint_limit_kd[axis_start + 1], axis_1, ) # last axis (fixed) t_total += eval_joint_force( angles[2], wp.dot(axis_2, w_err), 0.0, joint_attach_ke, joint_attach_kd * angular_damping_scale, 0.0, 0.0, 0.0, 0.0, 0.0, axis_2, ) f_total += x_err * joint_attach_ke + v_err * joint_attach_kd # write forces if c_parent >= 0: wp.atomic_add(body_f, c_parent, wp.spatial_vector(t_total + wp.cross(r_p, f_total), f_total)) wp.atomic_sub(body_f, c_child, wp.spatial_vector(t_total + wp.cross(r_c, f_total), f_total)) @wp.func def compute_muscle_force( i: int, body_X_s: wp.array(dtype=wp.transform), body_v_s: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), muscle_links: wp.array(dtype=int), muscle_points: wp.array(dtype=wp.vec3), muscle_activation: float, body_f_s: wp.array(dtype=wp.spatial_vector), ): link_0 = muscle_links[i] link_1 = muscle_links[i + 1] if link_0 == link_1: return 0 r_0 = muscle_points[i] r_1 = muscle_points[i + 1] xform_0 = body_X_s[link_0] xform_1 = body_X_s[link_1] pos_0 = wp.transform_point(xform_0, r_0 - body_com[link_0]) pos_1 = wp.transform_point(xform_1, r_1 - body_com[link_1]) n = wp.normalize(pos_1 - pos_0) # todo: add passive elastic and viscosity terms f = n * muscle_activation wp.atomic_sub(body_f_s, link_0, wp.spatial_vector(f, wp.cross(pos_0, f))) wp.atomic_add(body_f_s, link_1, wp.spatial_vector(f, wp.cross(pos_1, f))) return 0 @wp.kernel def eval_muscles( body_X_s: wp.array(dtype=wp.transform), body_v_s: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), muscle_start: wp.array(dtype=int), muscle_params: wp.array(dtype=float), muscle_links: wp.array(dtype=int), muscle_points: wp.array(dtype=wp.vec3), muscle_activation: wp.array(dtype=float), # output body_f_s: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() m_start = muscle_start[tid] m_end = muscle_start[tid + 1] - 1 activation = muscle_activation[tid] for i in range(m_start, m_end): compute_muscle_force(i, body_X_s, body_v_s, body_com, muscle_links, muscle_points, activation, body_f_s) def compute_forces(model, state, particle_f, body_f, requires_grad): # damped springs if model.spring_count: wp.launch( kernel=eval_springs, dim=model.spring_count, inputs=[ state.particle_q, state.particle_qd, model.spring_indices, model.spring_rest_length, model.spring_stiffness, model.spring_damping, ], outputs=[particle_f], device=model.device, ) # particle-particle interactions if model.particle_count: eval_particle_forces(model, state, particle_f) # triangle elastic and lift/drag forces if model.tri_count: wp.launch( kernel=eval_triangles, dim=model.tri_count, inputs=[ state.particle_q, state.particle_qd, model.tri_indices, model.tri_poses, model.tri_activations, model.tri_materials, ], outputs=[particle_f], device=model.device, ) # triangle/triangle contacts if model.enable_tri_collisions and model.tri_count: wp.launch( kernel=eval_triangles_contact, dim=model.tri_count * model.particle_count, inputs=[ model.particle_count, state.particle_q, state.particle_qd, model.tri_indices, model.tri_poses, model.tri_activations, model.tri_materials, ], outputs=[particle_f], device=model.device, ) # triangle bending if model.edge_count: wp.launch( kernel=eval_bending, dim=model.edge_count, inputs=[ state.particle_q, state.particle_qd, model.edge_indices, model.edge_rest_angle, model.edge_bending_properties, ], outputs=[particle_f], device=model.device, ) # particle ground contact if model.ground and model.particle_count: wp.launch( kernel=eval_particle_ground_contacts, dim=model.particle_count, inputs=[ state.particle_q, state.particle_qd, model.particle_radius, model.particle_flags, model.soft_contact_ke, model.soft_contact_kd, model.soft_contact_kf, model.soft_contact_mu, model.ground_plane, ], outputs=[particle_f], device=model.device, ) # tetrahedral FEM if model.tet_count: wp.launch( kernel=eval_tetrahedra, dim=model.tet_count, inputs=[ state.particle_q, state.particle_qd, model.tet_indices, model.tet_poses, model.tet_activations, model.tet_materials, ], outputs=[particle_f], device=model.device, ) if model.rigid_contact_max and ( model.ground and model.shape_ground_contact_pair_count or model.shape_contact_pair_count ): wp.launch( kernel=eval_rigid_contacts, dim=model.rigid_contact_max, inputs=[ state.body_q, state.body_qd, model.body_com, model.shape_materials, model.shape_geo, model.rigid_contact_count, model.rigid_contact_body0, model.rigid_contact_body1, model.rigid_contact_point0, model.rigid_contact_point1, model.rigid_contact_normal, model.rigid_contact_shape0, model.rigid_contact_shape1, ], outputs=[body_f], device=model.device, ) if model.joint_count: wp.launch( kernel=eval_body_joints, dim=model.joint_count, inputs=[ state.body_q, state.body_qd, model.body_com, model.joint_q_start, model.joint_qd_start, model.joint_type, model.joint_enabled, model.joint_child, model.joint_parent, model.joint_X_p, model.joint_X_c, model.joint_axis, model.joint_axis_start, model.joint_axis_dim, model.joint_target, model.joint_act, model.joint_target_ke, model.joint_target_kd, model.joint_limit_lower, model.joint_limit_upper, model.joint_limit_ke, model.joint_limit_kd, model.joint_attach_ke, model.joint_attach_kd, ], outputs=[body_f], device=model.device, ) # particle shape contact if model.particle_count and model.shape_count > 1: wp.launch( kernel=eval_particle_contacts, dim=model.soft_contact_max, inputs=[ state.particle_q, state.particle_qd, state.body_q, state.body_qd, model.particle_radius, model.particle_flags, model.body_com, model.shape_body, model.shape_materials, model.soft_contact_ke, model.soft_contact_kd, model.soft_contact_kf, model.soft_contact_mu, model.particle_adhesion, model.soft_contact_count, model.soft_contact_particle, model.soft_contact_shape, model.soft_contact_body_pos, model.soft_contact_body_vel, model.soft_contact_normal, model.soft_contact_max, ], # outputs outputs=[particle_f, body_f], device=model.device, ) # evaluate muscle actuation if False and model.muscle_count: wp.launch( kernel=eval_muscles, dim=model.muscle_count, inputs=[ state.body_q, state.body_qd, model.body_com, model.muscle_start, model.muscle_params, model.muscle_bodies, model.muscle_points, model.muscle_activation, ], outputs=[body_f], device=model.device, ) # if (model.articulation_count): # # evaluate joint torques # wp.launch( # kernel=eval_body_tau, # dim=model.articulation_count, # inputs=[ # model.articulation_joint_start, # model.joint_type, # model.joint_parent, # model.joint_q_start, # model.joint_qd_start, # state.joint_q, # state.joint_qd, # state.joint_act, # model.joint_target, # model.joint_target_ke, # model.joint_target_kd, # model.joint_limit_lower, # model.joint_limit_upper, # model.joint_limit_ke, # model.joint_limit_kd, # model.joint_axis, # state.joint_S_s, # state.body_f_s # ], # outputs=[ # state.body_ft_s, # state.joint_tau # ], # device=model.device, # preserve_output=True) state.particle_f = particle_f state.body_f = body_f class SemiImplicitIntegrator: """A semi-implicit integrator using symplectic Euler After constructing `Model` and `State` objects this time-integrator may be used to advance the simulation state forward in time. Semi-implicit time integration is a variational integrator that preserves energy, however it not unconditionally stable, and requires a time-step small enough to support the required stiffness and damping forces. See: https://en.wikipedia.org/wiki/Semi-implicit_Euler_method Example ------- .. code-block:: python integrator = wp.SemiImplicitIntegrator() # simulation loop for i in range(100): state = integrator.simulate(model, state_in, state_out, dt) """ def __init__(self, angular_damping=0.05): self.angular_damping = angular_damping def simulate(self, model, state_in, state_out, dt, requires_grad=False): with wp.ScopedTimer("simulate", False): particle_f = None body_f = None if state_in.particle_count: particle_f = state_in.particle_f if state_in.body_count: body_f = state_in.body_f compute_forces(model, state_in, particle_f, body_f, requires_grad=requires_grad) # ------------------------------------- # integrate bodies if model.body_count: wp.launch( kernel=integrate_bodies, dim=model.body_count, inputs=[ state_in.body_q, state_in.body_qd, state_in.body_f, model.body_com, model.body_mass, model.body_inertia, model.body_inv_mass, model.body_inv_inertia, model.gravity, self.angular_damping, dt, ], outputs=[state_out.body_q, state_out.body_qd], device=model.device, ) # ---------------------------- # integrate particles if model.particle_count: wp.launch( kernel=integrate_particles, dim=model.particle_count, inputs=[ state_in.particle_q, state_in.particle_qd, state_in.particle_f, model.particle_inv_mass, model.particle_flags, model.gravity, dt, model.particle_max_velocity, ], outputs=[state_out.particle_q, state_out.particle_qd], device=model.device, ) return state_out @wp.kernel def compute_particle_residual( particle_qd_0: wp.array(dtype=wp.vec3), particle_qd_1: wp.array(dtype=wp.vec3), particle_f: wp.array(dtype=wp.vec3), particle_m: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), gravity: wp.vec3, dt: float, residual: wp.array(dtype=wp.vec3), ): tid = wp.tid() if (particle_flags[tid] & PARTICLE_FLAG_ACTIVE) == 0: return m = particle_m[tid] v1 = particle_qd_1[tid] v0 = particle_qd_0[tid] f = particle_f[tid] err = wp.vec3() if m > 0.0: err = (v1 - v0) * m - f * dt - gravity * dt * m residual[tid] = err @wp.kernel def update_particle_position( particle_q_0: wp.array(dtype=wp.vec3), particle_q_1: wp.array(dtype=wp.vec3), particle_qd_1: wp.array(dtype=wp.vec3), x: wp.array(dtype=wp.vec3), particle_flags: wp.array(dtype=wp.uint32), dt: float, ): tid = wp.tid() if (particle_flags[tid] & PARTICLE_FLAG_ACTIVE) == 0: return qd_1 = x[tid] q_0 = particle_q_0[tid] q_1 = q_0 + qd_1 * dt particle_q_1[tid] = q_1 particle_qd_1[tid] = qd_1 def compute_residual(model, state_in, state_out, particle_f, residual, dt): wp.launch( kernel=compute_particle_residual, dim=model.particle_count, inputs=[ state_in.particle_qd, state_out.particle_qd, particle_f, model.particle_mass, model.particle_flags, model.gravity, dt, residual.astype(dtype=wp.vec3), ], device=model.device, ) def init_state(model, state_in, state_out, dt): wp.launch( kernel=integrate_particles, dim=model.particle_count, inputs=[ state_in.particle_q, state_in.particle_qd, state_in.particle_f, model.particle_inv_mass, model.particle_flags, model.gravity, dt, model.particle_max_velocity, ], outputs=[state_out.particle_q, state_out.particle_qd], device=model.device, ) # compute the final positions given output velocity (x) def update_state(model, state_in, state_out, x, dt): wp.launch( kernel=update_particle_position, dim=model.particle_count, inputs=[state_in.particle_q, state_out.particle_q, state_out.particle_qd, x, model.particle_flags, dt], device=model.device, ) class VariationalImplicitIntegrator: def __init__(self, model, solver="gd", alpha=0.1, max_iters=32, report=False): self.solver = solver self.alpha = alpha self.max_iters = max_iters self.report = report self.opt = Optimizer(model.particle_count * 3, mode=self.solver, device=model.device) # allocate temporary space for evaluating particle forces self.particle_f = wp.zeros(model.particle_count, dtype=wp.vec3, device=model.device) def simulate(self, model, state_in, state_out, dt, requires_grad=False): if state_in is state_out: raise RuntimeError("Implicit integrators require state objects to not alias each other") with wp.ScopedTimer("simulate", False): # alloc particle force buffer if model.particle_count: def residual_func(x, dfdx): self.particle_f.zero_() update_state(model, state_in, state_out, x.astype(wp.vec3), dt) compute_forces(model, state_out, self.particle_f, None) compute_residual(model, state_in, state_out, self.particle_f, dfdx, dt) # initialize output state using the input velocity to create 'predicted state' init_state(model, state_in, state_out, dt) # our optimization variable x = state_out.particle_qd.astype(dtype=float) self.opt.solve( x=x, grad_func=residual_func, max_iters=self.max_iters, alpha=self.alpha, report=self.report ) # final update to output state with solved velocity update_state(model, state_in, state_out, x.astype(wp.vec3), dt) return state_out
warp-main
warp/sim/integrator_euler.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import os import re import xml.etree.ElementTree as ET import numpy as np import warp as wp def parse_mjcf( mjcf_filename, builder, xform=wp.transform(), density=1000.0, stiffness=0.0, damping=0.0, contact_ke=1000.0, contact_kd=100.0, contact_kf=100.0, contact_mu=0.5, contact_restitution=0.5, limit_ke=100.0, limit_kd=10.0, scale=1.0, armature=0.0, armature_scale=1.0, parse_meshes=True, enable_self_collisions=False, up_axis="Z", ignore_classes=[], collapse_fixed_joints=False, ): """ Parses MuJoCo XML (MJCF) file and adds the bodies and joints to the given ModelBuilder. Args: mjcf_filename (str): The filename of the MuJoCo file to parse. builder (ModelBuilder): The :class:`ModelBuilder` to add the bodies and joints to. xform (wp.transform): The transform to apply to the imported mechanism. density (float): The density of the shapes in kg/m^3 which will be used to calculate the body mass and inertia. stiffness (float): The stiffness of the joints. damping (float): The damping of the joints. contact_ke (float): The stiffness of the shape contacts (used by SemiImplicitIntegrator). contact_kd (float): The damping of the shape contacts (used by SemiImplicitIntegrator). contact_kf (float): The friction stiffness of the shape contacts (used by SemiImplicitIntegrator). contact_mu (float): The friction coefficient of the shape contacts. contact_restitution (float): The restitution coefficient of the shape contacts. limit_ke (float): The stiffness of the joint limits (used by SemiImplicitIntegrator). limit_kd (float): The damping of the joint limits (used by SemiImplicitIntegrator). scale (float): The scaling factor to apply to the imported mechanism. armature (float): Default joint armature to use if `armature` has not been defined for a joint in the MJCF. armature_scale (float): Scaling factor to apply to the MJCF-defined joint armature values. parse_meshes (bool): Whether geometries of type `"mesh"` should be parsed. If False, geometries of type `"mesh"` are ignored. enable_self_collisions (bool): If True, self-collisions are enabled. up_axis (str): The up axis of the mechanism. Can be either `"X"`, `"Y"` or `"Z"`. The default is `"Z"`. ignore_classes (List[str]): A list of regular expressions. Bodies and joints with a class matching one of the regular expressions will be ignored. collapse_fixed_joints (bool): If True, fixed joints are removed and the respective bodies are merged. Note: The inertia and masses of the bodies are calculated from the shape geometry and the given density. The values defined in the MJCF are not respected at the moment. The handling of advanced features, such as MJCF classes, is still experimental. """ mjcf_dirname = os.path.dirname(mjcf_filename) file = ET.parse(mjcf_filename) root = file.getroot() use_degrees = True # angles are in degrees by default euler_seq = [1, 2, 3] # XYZ by default compiler = root.find("compiler") if compiler is not None: use_degrees = compiler.attrib.get("angle", "degree").lower() == "degree" euler_seq = ["xyz".index(c) + 1 for c in compiler.attrib.get("eulerseq", "xyz").lower()] mesh_dir = compiler.attrib.get("meshdir", ".") mesh_assets = {} for asset in root.findall("asset"): for mesh in asset.findall("mesh"): if "file" in mesh.attrib: fname = os.path.join(mesh_dir, mesh.attrib["file"]) # handle stl relative paths if not os.path.isabs(fname): fname = os.path.abspath(os.path.join(mjcf_dirname, fname)) if "name" in mesh.attrib: mesh_assets[mesh.attrib["name"]] = fname else: name = ".".join(os.path.basename(fname).split(".")[:-1]) mesh_assets[name] = fname class_parent = {} class_children = {} class_defaults = {"__all__": {}} def get_class(element): return element.get("class", "__all__") def parse_default(node, parent): nonlocal class_parent nonlocal class_children nonlocal class_defaults class_name = "__all__" if "class" in node.attrib: class_name = node.attrib["class"] class_parent[class_name] = parent parent = parent or "__all__" if parent not in class_children: class_children[parent] = [] class_children[parent].append(class_name) if class_name not in class_defaults: class_defaults[class_name] = {} for child in node: if child.tag == "default": parse_default(child, node.get("class")) else: class_defaults[class_name][child.tag] = child.attrib for default in root.findall("default"): parse_default(default, None) def merge_attrib(default_attrib: dict, incoming_attrib: dict): attrib = default_attrib.copy() attrib.update(incoming_attrib) return attrib if isinstance(up_axis, str): up_axis = "XYZ".index(up_axis.upper()) sqh = np.sqrt(0.5) if up_axis == 0: xform = wp.transform(xform.p, wp.quat(0.0, 0.0, -sqh, sqh) * xform.q) elif up_axis == 2: xform = wp.transform(xform.p, wp.quat(sqh, 0.0, 0.0, -sqh) * xform.q) # do not apply scaling to the root transform xform = wp.transform(np.array(xform.p) / scale, xform.q) def parse_float(attrib, key, default): if key in attrib: return float(attrib[key]) else: return default def parse_vec(attrib, key, default): if key in attrib: return np.fromstring(attrib[key], sep=" ") else: return np.array(default) def parse_orientation(attrib): if "quat" in attrib: wxyz = np.fromstring(attrib["quat"], sep=" ") return wp.normalize(wp.quat(*wxyz[1:], wxyz[0])) if "euler" in attrib: euler = np.fromstring(attrib["euler"], sep=" ") if use_degrees: euler *= np.pi / 180 return wp.quat_from_euler(euler, *euler_seq) if "axisangle" in attrib: axisangle = np.fromstring(attrib["axisangle"], sep=" ") angle = axisangle[3] if use_degrees: angle *= np.pi / 180 axis = wp.normalize(wp.vec3(*axisangle[:3])) return wp.quat_from_axis_angle(axis, angle) if "xyaxes" in attrib: xyaxes = np.fromstring(attrib["xyaxes"], sep=" ") xaxis = wp.normalize(wp.vec3(*xyaxes[:3])) zaxis = wp.normalize(wp.vec3(*xyaxes[3:])) yaxis = wp.normalize(wp.cross(zaxis, xaxis)) rot_matrix = np.array([xaxis, yaxis, zaxis]).T return wp.quat_from_matrix(rot_matrix) if "zaxis" in attrib: zaxis = np.fromstring(attrib["zaxis"], sep=" ") zaxis = wp.normalize(wp.vec3(*zaxis)) xaxis = wp.normalize(wp.cross(wp.vec3(0, 0, 1), zaxis)) yaxis = wp.normalize(wp.cross(zaxis, xaxis)) rot_matrix = np.array([xaxis, yaxis, zaxis]).T return wp.quat_from_matrix(rot_matrix) return wp.quat_identity() def parse_mesh(geom): import trimesh faces = [] vertices = [] stl_file = mesh_assets[geom["mesh"]] m = trimesh.load(stl_file) for v in m.vertices: vertices.append(np.array(v) * scale) for f in m.faces: faces.append(int(f[0])) faces.append(int(f[1])) faces.append(int(f[2])) return wp.sim.Mesh(vertices, faces), m.scale def parse_body(body, parent, incoming_defaults: dict): body_class = body.get("childclass") if body_class is None: defaults = incoming_defaults else: for pattern in ignore_classes: if re.match(pattern, body_class): return defaults = merge_attrib(incoming_defaults, class_defaults[body_class]) if "body" in defaults: body_attrib = merge_attrib(defaults["body"], body.attrib) else: body_attrib = body.attrib body_name = body_attrib["name"] body_pos = parse_vec(body_attrib, "pos", (0.0, 0.0, 0.0)) body_ori = parse_orientation(body_attrib) if parent == -1: body_pos = wp.transform_point(xform, body_pos) body_ori = xform.q * body_ori body_pos *= scale joint_armature = [] joint_name = [] joint_pos = [] linear_axes = [] angular_axes = [] joint_type = None joints = body.findall("joint") for i, joint in enumerate(joints): if "joint" in defaults: joint_attrib = merge_attrib(defaults["joint"], joint.attrib) else: joint_attrib = joint.attrib # default to hinge if not specified joint_type_str = joint_attrib.get("type", "hinge") joint_name.append(joint_attrib["name"]) joint_pos.append(parse_vec(joint_attrib, "pos", (0.0, 0.0, 0.0)) * scale) joint_range = parse_vec(joint_attrib, "range", (-3.0, 3.0)) joint_armature.append(parse_float(joint_attrib, "armature", armature) * armature_scale) if joint_type_str == "free": joint_type = wp.sim.JOINT_FREE break if joint_type_str == "fixed": joint_type = wp.sim.JOINT_FIXED break is_angular = joint_type_str == "hinge" mode = wp.sim.JOINT_MODE_LIMIT if stiffness > 0.0 or "stiffness" in joint_attrib: mode = wp.sim.JOINT_MODE_TARGET_POSITION axis_vec = parse_vec(joint_attrib, "axis", (0.0, 0.0, 0.0)) ax = wp.sim.model.JointAxis( axis=axis_vec, limit_lower=(np.deg2rad(joint_range[0]) if is_angular and use_degrees else joint_range[0]), limit_upper=(np.deg2rad(joint_range[1]) if is_angular and use_degrees else joint_range[1]), target_ke=parse_float(joint_attrib, "stiffness", stiffness), target_kd=parse_float(joint_attrib, "damping", damping), limit_ke=limit_ke, limit_kd=limit_kd, mode=mode, ) if is_angular: angular_axes.append(ax) else: linear_axes.append(ax) link = builder.add_body( origin=wp.transform(body_pos, body_ori), # will be evaluated in fk() armature=joint_armature[0] if len(joint_armature) > 0 else armature, name=body_name, ) if joint_type is None: if len(linear_axes) == 0: if len(angular_axes) == 0: joint_type = wp.sim.JOINT_FIXED elif len(angular_axes) == 1: joint_type = wp.sim.JOINT_REVOLUTE elif len(angular_axes) == 2: joint_type = wp.sim.JOINT_UNIVERSAL elif len(angular_axes) == 3: joint_type = wp.sim.JOINT_COMPOUND elif len(linear_axes) == 1 and len(angular_axes) == 0: joint_type = wp.sim.JOINT_PRISMATIC else: joint_type = wp.sim.JOINT_D6 joint_pos = joint_pos[0] if len(joint_pos) > 0 else (0.0, 0.0, 0.0) builder.add_joint( joint_type, parent, link, linear_axes, angular_axes, name="_".join(joint_name), parent_xform=wp.transform(body_pos + joint_pos, body_ori), child_xform=wp.transform(joint_pos, wp.quat_identity()), ) # ----------------- # add shapes for geo_count, geom in enumerate(body.findall("geom")): geom_defaults = defaults if "class" in geom.attrib: geom_class = geom.attrib["class"] ignore_geom = False for pattern in ignore_classes: if re.match(pattern, geom_class): ignore_geom = True break if ignore_geom: continue if geom_class in class_defaults: geom_defaults = merge_attrib(defaults, class_defaults[geom_class]) if "geom" in geom_defaults: geom_attrib = merge_attrib(geom_defaults["geom"], geom.attrib) else: geom_attrib = geom.attrib geom_name = geom_attrib.get("name", f"{body_name}_geom_{geo_count}") geom_type = geom_attrib.get("type", "sphere") if "mesh" in geom_attrib: geom_type = "mesh" geom_size = parse_vec(geom_attrib, "size", [1.0, 1.0, 1.0]) * scale geom_pos = parse_vec(geom_attrib, "pos", (0.0, 0.0, 0.0)) * scale geom_rot = parse_orientation(geom_attrib) geom_density = parse_float(geom_attrib, "density", density) if geom_type == "sphere": builder.add_shape_sphere( link, pos=geom_pos, rot=geom_rot, radius=geom_size[0], density=geom_density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu, restitution=contact_restitution, ) elif geom_type == "box": builder.add_shape_box( link, pos=geom_pos, rot=geom_rot, hx=geom_size[0], hy=geom_size[1], hz=geom_size[2], density=geom_density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu, restitution=contact_restitution, ) elif geom_type == "mesh" and parse_meshes: mesh, _ = parse_mesh(geom_attrib) if "mesh" in defaults: mesh_scale = parse_vec(defaults["mesh"], "scale", [1.0, 1.0, 1.0]) else: mesh_scale = [1.0, 1.0, 1.0] # as per the Mujoco XML reference, ignore geom size attribute assert len(geom_size) == 3, "need to specify size for mesh geom" builder.add_shape_mesh( body=link, pos=geom_pos, rot=geom_rot, mesh=mesh, scale=mesh_scale, density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu, ) elif geom_type in {"capsule", "cylinder"}: if "fromto" in geom_attrib: geom_fromto = parse_vec(geom_attrib, "fromto", (0.0, 0.0, 0.0, 1.0, 0.0, 0.0)) start = geom_fromto[0:3] * scale end = geom_fromto[3:6] * scale # compute rotation to align the Warp capsule (along x-axis), with mjcf fromto direction axis = wp.normalize(end - start) angle = math.acos(np.dot(axis, (0.0, 1.0, 0.0))) axis = wp.normalize(np.cross(axis, (0.0, 1.0, 0.0))) geom_pos = (start + end) * 0.5 geom_rot = wp.quat_from_axis_angle(axis, -angle) geom_radius = geom_size[0] geom_height = np.linalg.norm(end - start) * 0.5 geom_up_axis = 1 else: geom_radius = geom_size[0] geom_height = geom_size[1] geom_up_axis = up_axis if geom_type == "cylinder": builder.add_shape_cylinder( link, pos=geom_pos, rot=geom_rot, radius=geom_radius, half_height=geom_height, density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu, restitution=contact_restitution, up_axis=geom_up_axis, ) else: builder.add_shape_capsule( link, pos=geom_pos, rot=geom_rot, radius=geom_radius, half_height=geom_height, density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu, restitution=contact_restitution, up_axis=geom_up_axis, ) else: print(f"MJCF parsing shape {geom_name} issue: geom type {geom_type} is unsupported") # ----------------- # recurse for child in body.findall("body"): parse_body(child, link, defaults) # ----------------- # start articulation start_shape_count = len(builder.shape_geo_type) builder.add_articulation() world = root.find("worldbody") world_class = get_class(world) world_defaults = merge_attrib(class_defaults["__all__"], class_defaults.get(world_class, {})) for body in world.findall("body"): parse_body(body, -1, world_defaults) end_shape_count = len(builder.shape_geo_type) if not enable_self_collisions: for i in range(start_shape_count, end_shape_count): for j in range(i + 1, end_shape_count): builder.shape_collision_filter_pairs.add((i, j)) if collapse_fixed_joints: builder.collapse_fixed_joints()
warp-main
warp/sim/import_mjcf.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp import warp.sim import warp.render from collections import defaultdict import numpy as np from warp.render.utils import solidify_mesh, tab10_color_map # TODO allow NaNs in Warp kernels NAN = wp.constant(-1.0e8) @wp.kernel def compute_contact_points( body_q: wp.array(dtype=wp.transform), shape_body: wp.array(dtype=int), contact_shape0: wp.array(dtype=int), contact_shape1: wp.array(dtype=int), contact_point0: wp.array(dtype=wp.vec3), contact_point1: wp.array(dtype=wp.vec3), # outputs contact_pos0: wp.array(dtype=wp.vec3), contact_pos1: wp.array(dtype=wp.vec3), ): tid = wp.tid() shape_a = contact_shape0[tid] shape_b = contact_shape1[tid] if shape_a == shape_b: contact_pos0[tid] = wp.vec3(NAN, NAN, NAN) contact_pos1[tid] = wp.vec3(NAN, NAN, NAN) return body_a = shape_body[shape_a] body_b = shape_body[shape_b] X_wb_a = wp.transform_identity() X_wb_b = wp.transform_identity() if body_a >= 0: X_wb_a = body_q[body_a] if body_b >= 0: X_wb_b = body_q[body_b] contact_pos0[tid] = wp.transform_point(X_wb_a, contact_point0[tid]) contact_pos1[tid] = wp.transform_point(X_wb_b, contact_point1[tid]) def CreateSimRenderer(renderer): class SimRenderer(renderer): use_unique_colors = True def __init__( self, model: warp.sim.Model, path, scaling=1.0, fps=60, up_axis="Y", show_rigid_contact_points=False, contact_points_radius=1e-3, show_joints=False, **render_kwargs, ): # create USD stage super().__init__(path, scaling=scaling, fps=fps, up_axis=up_axis, **render_kwargs) self.scaling = scaling self.cam_axis = "XYZ".index(up_axis.upper()) self.show_rigid_contact_points = show_rigid_contact_points self.show_joints = show_joints self.contact_points_radius = contact_points_radius self.populate(model) def populate(self, model: warp.sim.Model): self.skip_rendering = False self.model = model self.num_envs = model.num_envs self.body_names = [] if self.show_rigid_contact_points and model.rigid_contact_max: self.contact_points0 = wp.array( np.zeros((model.rigid_contact_max, 3)), dtype=wp.vec3, device=model.device ) self.contact_points1 = wp.array( np.zeros((model.rigid_contact_max, 3)), dtype=wp.vec3, device=model.device ) self.contact_points0_colors = [(1.0, 0.5, 0.0)] * model.rigid_contact_max self.contact_points1_colors = [(0.0, 0.5, 1.0)] * model.rigid_contact_max self.body_env = [] # mapping from body index to its environment index env_id = 0 self.bodies_per_env = model.body_count // self.num_envs # create rigid body nodes for b in range(model.body_count): body_name = f"body_{b}_{self.model.body_name[b].replace(' ', '_')}" self.body_names.append(body_name) self.register_body(body_name) if b > 0 and b % self.bodies_per_env == 0: env_id += 1 self.body_env.append(env_id) # create rigid shape children if self.model.shape_count: # mapping from hash of geometry to shape ID self.geo_shape = {} self.instance_count = 0 self.body_name = {} # mapping from body name to its body ID self.body_shapes = defaultdict(list) # mapping from body index to its shape IDs shape_body = model.shape_body.numpy() shape_geo_src = model.shape_geo_src shape_geo_type = model.shape_geo.type.numpy() shape_geo_scale = model.shape_geo.scale.numpy() shape_geo_thickness = model.shape_geo.thickness.numpy() shape_geo_is_solid = model.shape_geo.is_solid.numpy() shape_transform = model.shape_transform.numpy() p = np.zeros(3, dtype=np.float32) q = np.array([0.0, 0.0, 0.0, 1.0], dtype=np.float32) scale = np.ones(3) color = np.ones(3) # loop over shapes excluding the ground plane for s in range(model.shape_count - 1): geo_type = shape_geo_type[s] geo_scale = [float(v) for v in shape_geo_scale[s]] geo_thickness = float(shape_geo_thickness[s]) geo_is_solid = bool(shape_geo_is_solid[s]) geo_src = shape_geo_src[s] if self.use_unique_colors: color = self._get_new_color() name = f"shape_{s}" # shape transform in body frame body = int(shape_body[s]) if body >= 0 and body < len(self.body_names): body = self.body_names[body] else: body = None # shape transform in body frame X_bs = wp.transform_expand(shape_transform[s]) # check whether we can instance an already created shape with the same geometry geo_hash = hash((int(geo_type), geo_src, *geo_scale, geo_thickness, geo_is_solid)) if geo_hash in self.geo_shape: shape = self.geo_shape[geo_hash] else: if geo_type == warp.sim.GEO_PLANE: if s == model.shape_count - 1 and not model.ground: continue # hide ground plane # plane mesh width = geo_scale[0] if geo_scale[0] > 0.0 else 100.0 length = geo_scale[1] if geo_scale[1] > 0.0 else 100.0 shape = self.render_plane( name, p, q, width, length, color, parent_body=body, is_template=True ) elif geo_type == warp.sim.GEO_SPHERE: shape = self.render_sphere(name, p, q, geo_scale[0], parent_body=body, is_template=True) elif geo_type == warp.sim.GEO_CAPSULE: shape = self.render_capsule( name, p, q, geo_scale[0], geo_scale[1], parent_body=body, is_template=True ) elif geo_type == warp.sim.GEO_CYLINDER: shape = self.render_cylinder( name, p, q, geo_scale[0], geo_scale[1], parent_body=body, is_template=True ) elif geo_type == warp.sim.GEO_CONE: shape = self.render_cone( name, p, q, geo_scale[0], geo_scale[1], parent_body=body, is_template=True ) elif geo_type == warp.sim.GEO_BOX: shape = self.render_box(name, p, q, geo_scale, parent_body=body, is_template=True) elif geo_type == warp.sim.GEO_MESH: if not geo_is_solid: faces, vertices = solidify_mesh(geo_src.indices, geo_src.vertices, geo_thickness) else: faces, vertices = geo_src.indices, geo_src.vertices shape = self.render_mesh( name, vertices, faces, pos=p, rot=q, scale=geo_scale, colors=[color], parent_body=body, is_template=True, ) elif geo_type == warp.sim.GEO_SDF: continue self.geo_shape[geo_hash] = shape self.add_shape_instance(name, shape, body, X_bs.p, X_bs.q, scale) self.instance_count += 1 if self.show_joints and model.joint_count: joint_type = model.joint_type.numpy() joint_axis = model.joint_axis.numpy() joint_axis_start = model.joint_axis_start.numpy() joint_axis_dim = model.joint_axis_dim.numpy() joint_parent = model.joint_parent.numpy() joint_child = model.joint_child.numpy() joint_tf = model.joint_X_p.numpy() shape_collision_radius = model.shape_collision_radius.numpy() y_axis = wp.vec3(0., 1., 0.) color = (1., 0., 1.) shape = self.render_arrow( "joint_arrow", None, None, base_radius=0.01, base_height=0.4, cap_radius=0.02, cap_height=0.1, parent_body=None, is_template=True, color=color ) for i, t in enumerate(joint_type): if t not in { warp.sim.JOINT_REVOLUTE, # warp.sim.JOINT_PRISMATIC, warp.sim.JOINT_UNIVERSAL, warp.sim.JOINT_COMPOUND, warp.sim.JOINT_D6, }: continue tf = joint_tf[i] body = int(joint_parent[i]) # if body == -1: # continue num_linear_axes = int(joint_axis_dim[i][0]) num_angular_axes = int(joint_axis_dim[i][1]) # find a good scale for the arrow based on the average radius # of the shapes attached to the joint child body scale = np.ones(3) child = int(joint_child[i]) if child >= 0: radii = [] for s in model.body_shapes[child]: radii.append(shape_collision_radius[s]) if len(radii) > 0: scale *= np.mean(radii) * 2.0 for a in range(num_linear_axes, num_linear_axes + num_angular_axes): index = joint_axis_start[i] + a axis = joint_axis[index] if np.linalg.norm(axis) < 1e-6: continue p = wp.vec3(tf[:3]) q = wp.quat(tf[3:]) # compute rotation between axis and y axis = axis / np.linalg.norm(axis) q = q * wp.quat_between_vectors(wp.vec3(*axis), y_axis) name = f"joint_{i}_{a}" self.add_shape_instance(name, shape, body, p, q, scale, color1=color, color2=color) self.instance_count += 1 if model.ground: self.render_ground() if hasattr(self, "complete_setup"): self.complete_setup() def _get_new_color(self): return tab10_color_map(self.instance_count) def render(self, state: warp.sim.State): if self.skip_rendering: return if self.model.particle_count: particle_q = state.particle_q.numpy() # render particles self.render_points("particles", particle_q, radius=self.model.particle_radius.numpy()) # render tris if self.model.tri_count: self.render_mesh("surface", particle_q, self.model.tri_indices.numpy().flatten()) # render springs if self.model.spring_count: self.render_line_list("springs", particle_q, self.model.spring_indices.numpy().flatten(), [], 0.05) # render muscles if self.model.muscle_count: body_q = state.body_q.numpy() muscle_start = self.model.muscle_start.numpy() muscle_links = self.model.muscle_bodies.numpy() muscle_points = self.model.muscle_points.numpy() muscle_activation = self.model.muscle_activation.numpy() # for s in self.skeletons: # # for mesh, link in s.mesh_map.items(): # # if link != -1: # # X_sc = wp.transform_expand(self.state.body_X_sc[link].tolist()) # # #self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) # # self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) for m in range(self.model.muscle_count): start = int(muscle_start[m]) end = int(muscle_start[m + 1]) points = [] for w in range(start, end): link = muscle_links[w] point = muscle_points[w] X_sc = wp.transform_expand(body_q[link][0]) points.append(wp.transform_point(X_sc, point).tolist()) self.render_line_strip( name=f"muscle_{m}", vertices=points, radius=0.0075, color=(muscle_activation[m], 0.2, 0.5) ) # update bodies if self.model.body_count: self.update_body_transforms(state.body_q) if self.show_rigid_contact_points and self.model.rigid_contact_max: wp.launch( kernel=compute_contact_points, dim=self.model.rigid_contact_max, inputs=[ state.body_q, self.model.shape_body, self.model.rigid_contact_shape0, self.model.rigid_contact_shape1, self.model.rigid_contact_point0, self.model.rigid_contact_point1, ], outputs=[ self.contact_points0, self.contact_points1, ], device=self.model.device, ) self.render_points( "contact_points0", self.contact_points0.numpy(), radius=self.contact_points_radius * self.scaling, colors=self.contact_points0_colors, ) self.render_points( "contact_points1", self.contact_points1.numpy(), radius=self.contact_points_radius * self.scaling, colors=self.contact_points1_colors, ) return SimRenderer SimRendererUsd = CreateSimRenderer(wp.render.UsdRenderer) SimRendererOpenGL = CreateSimRenderer(wp.render.OpenGLRenderer) SimRenderer = SimRendererUsd
warp-main
warp/sim/render.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from .model import ( PARTICLE_FLAG_ACTIVE, ModelShapeMaterials, JOINT_MODE_TARGET_POSITION, JOINT_MODE_TARGET_VELOCITY, JOINT_MODE_LIMIT, ) from .utils import velocity_at_point, vec_min, vec_max, vec_abs from .integrator_euler import integrate_bodies, integrate_particles @wp.kernel def solve_particle_ground_contacts( particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), invmass: wp.array(dtype=float), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), ke: float, kd: float, kf: float, mu: float, ground: wp.array(dtype=float), dt: float, relaxation: float, delta: wp.array(dtype=wp.vec3), ): tid = wp.tid() if (particle_flags[tid] & PARTICLE_FLAG_ACTIVE) == 0: return wi = invmass[tid] if wi == 0.0: return x = particle_x[tid] v = particle_v[tid] n = wp.vec3(ground[0], ground[1], ground[2]) c = wp.min(wp.dot(n, x) + ground[3] - particle_radius[tid], 0.0) if c > 0.0: return # normal lambda_n = c delta_n = n * lambda_n # friction vn = wp.dot(n, v) vt = v - n * vn lambda_f = wp.max(mu * lambda_n, 0.0 - wp.length(vt) * dt) delta_f = wp.normalize(vt) * lambda_f wp.atomic_add(delta, tid, (delta_f - delta_n) / wi * relaxation) @wp.kernel def apply_soft_restitution_ground( particle_x_new: wp.array(dtype=wp.vec3), particle_v_new: wp.array(dtype=wp.vec3), particle_x_old: wp.array(dtype=wp.vec3), particle_v_old: wp.array(dtype=wp.vec3), invmass: wp.array(dtype=float), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), restitution: float, ground: wp.array(dtype=float), dt: float, relaxation: float, particle_v_out: wp.array(dtype=wp.vec3), ): tid = wp.tid() if (particle_flags[tid] & PARTICLE_FLAG_ACTIVE) == 0: return wi = invmass[tid] if wi == 0.0: return # x_new = particle_x_new[tid] v_new = particle_v_new[tid] x_old = particle_x_old[tid] v_old = particle_v_old[tid] n = wp.vec3(ground[0], ground[1], ground[2]) c = wp.dot(n, x_old) + ground[3] - particle_radius[tid] if c > 0.0: return rel_vel_old = wp.dot(n, v_old) rel_vel_new = wp.dot(n, v_new) dv = n * wp.max(-rel_vel_new + wp.max(-restitution * rel_vel_old, 0.0), 0.0) wp.atomic_add(particle_v_out, tid, dv / wi * relaxation) @wp.kernel def solve_particle_shape_contacts( particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), particle_invmass: wp.array(dtype=float), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), body_m_inv: wp.array(dtype=float), body_I_inv: wp.array(dtype=wp.mat33), shape_body: wp.array(dtype=int), shape_materials: ModelShapeMaterials, particle_mu: float, particle_ka: float, contact_count: wp.array(dtype=int), contact_particle: wp.array(dtype=int), contact_shape: wp.array(dtype=int), contact_body_pos: wp.array(dtype=wp.vec3), contact_body_vel: wp.array(dtype=wp.vec3), contact_normal: wp.array(dtype=wp.vec3), contact_max: int, dt: float, relaxation: float, # outputs delta: wp.array(dtype=wp.vec3), body_delta: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() if (particle_flags[tid] & PARTICLE_FLAG_ACTIVE) == 0: return count = min(contact_max, contact_count[0]) if tid >= count: return shape_index = contact_shape[tid] body_index = shape_body[shape_index] particle_index = contact_particle[tid] px = particle_x[particle_index] pv = particle_v[particle_index] X_wb = wp.transform_identity() X_com = wp.vec3() if body_index >= 0: X_wb = body_q[body_index] X_com = body_com[body_index] # body position in world space bx = wp.transform_point(X_wb, contact_body_pos[tid]) r = bx - wp.transform_point(X_wb, X_com) n = contact_normal[tid] c = wp.dot(n, px - bx) - particle_radius[tid] if c > particle_ka: return # take average material properties of shape and particle parameters mu = 0.5 * (particle_mu + shape_materials.mu[shape_index]) # body velocity body_v_s = wp.spatial_vector() if body_index >= 0: body_v_s = body_qd[body_index] body_w = wp.spatial_top(body_v_s) body_v = wp.spatial_bottom(body_v_s) # compute the body velocity at the particle position bv = body_v + wp.cross(body_w, r) + wp.transform_vector(X_wb, contact_body_vel[tid]) # relative velocity v = pv - bv # normal lambda_n = c delta_n = n * lambda_n # friction vn = wp.dot(n, v) vt = v - n * vn # compute inverse masses w1 = particle_invmass[particle_index] w2 = 0.0 if body_index >= 0: angular = wp.cross(r, n) q = wp.transform_get_rotation(X_wb) rot_angular = wp.quat_rotate_inv(q, angular) I_inv = body_I_inv[body_index] w2 = body_m_inv[body_index] + wp.dot(rot_angular, I_inv * rot_angular) denom = w1 + w2 if denom == 0.0: return lambda_f = wp.max(mu * lambda_n, -wp.length(vt) * dt) delta_f = wp.normalize(vt) * lambda_f delta_total = (delta_f - delta_n) / denom * relaxation wp.atomic_add(delta, particle_index, delta_total) if body_index >= 0: delta_t = wp.cross(r, delta_total) wp.atomic_sub(body_delta, body_index, wp.spatial_vector(delta_t, delta_total)) @wp.kernel def solve_particle_particle_contacts( grid: wp.uint64, particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), particle_invmass: wp.array(dtype=float), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), k_mu: float, k_cohesion: float, max_radius: float, dt: float, relaxation: float, # outputs deltas: wp.array(dtype=wp.vec3), ): tid = wp.tid() # order threads by cell i = wp.hash_grid_point_id(grid, tid) if i == -1: # hash grid has not been built yet return if (particle_flags[i] & PARTICLE_FLAG_ACTIVE) == 0: return x = particle_x[i] v = particle_v[i] radius = particle_radius[i] w1 = particle_invmass[i] # particle contact query = wp.hash_grid_query(grid, x, radius + max_radius + k_cohesion) index = int(0) delta = wp.vec3(0.0) while wp.hash_grid_query_next(query, index): if (particle_flags[index] & PARTICLE_FLAG_ACTIVE) != 0 and index != i: # compute distance to point n = x - particle_x[index] d = wp.length(n) err = d - radius - particle_radius[index] # compute inverse masses w2 = particle_invmass[index] denom = w1 + w2 if err <= k_cohesion and denom > 0.0: n = n / d vrel = v - particle_v[index] # normal lambda_n = err delta_n = n * lambda_n # friction vn = wp.dot(n, vrel) vt = v - n * vn lambda_f = wp.max(k_mu * lambda_n, -wp.length(vt) * dt) delta_f = wp.normalize(vt) * lambda_f delta += (delta_f - delta_n) / denom wp.atomic_add(deltas, i, delta * relaxation) @wp.kernel def solve_springs( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), invmass: wp.array(dtype=float), spring_indices: wp.array(dtype=int), spring_rest_lengths: wp.array(dtype=float), spring_stiffness: wp.array(dtype=float), spring_damping: wp.array(dtype=float), dt: float, lambdas: wp.array(dtype=float), delta: wp.array(dtype=wp.vec3), ): tid = wp.tid() i = spring_indices[tid * 2 + 0] j = spring_indices[tid * 2 + 1] ke = spring_stiffness[tid] kd = spring_damping[tid] rest = spring_rest_lengths[tid] xi = x[i] xj = x[j] vi = v[i] vj = v[j] xij = xi - xj vij = vi - vj l = wp.length(xij) if l == 0.0: return n = xij / l c = l - rest grad_c_xi = n grad_c_xj = -1.0 * n wi = invmass[i] wj = invmass[j] denom = wi + wj # Note strict inequality for damping -- 0 damping is ok if denom <= 0.0 or ke <= 0.0 or kd < 0.0: return alpha= 1.0 / (ke * dt * dt) gamma = kd / (ke * dt) grad_c_dot_v = dt * wp.dot(grad_c_xi, vij) # Note: dt because from the paper we want x_i - x^n, not v... dlambda = -1.0 * (c + alpha* lambdas[tid] + gamma * grad_c_dot_v) / ((1.0 + gamma) * denom + alpha) dxi = wi * dlambda * grad_c_xi dxj = wj * dlambda * grad_c_xj lambdas[tid] = lambdas[tid] + dlambda wp.atomic_add(delta, i, dxi) wp.atomic_add(delta, j, dxj) @wp.kernel def bending_constraint( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), invmass: wp.array(dtype=float), indices: wp.array2d(dtype=int), rest: wp.array(dtype=float), bending_properties: wp.array2d(dtype=float), dt: float, lambdas: wp.array(dtype=float), delta: wp.array(dtype=wp.vec3), ): tid = wp.tid() eps = 1.0e-6 ke = bending_properties[tid, 0] kd = bending_properties[tid, 1] i = indices[tid, 0] j = indices[tid, 1] k = indices[tid, 2] l = indices[tid, 3] if i == -1 or j == -1 or k == -1 or l == -1: return rest_angle = rest[tid] x1 = x[i] x2 = x[j] x3 = x[k] x4 = x[l] v1 = v[i] v2 = v[j] v3 = v[k] v4 = v[l] w1 = invmass[i] w2 = invmass[j] w3 = invmass[k] w4 = invmass[l] n1 = wp.cross(x3 - x1, x4 - x1) # normal to face 1 n2 = wp.cross(x4 - x2, x3 - x2) # normal to face 2 n1_length = wp.length(n1) n2_length = wp.length(n2) if n1_length < eps or n2_length < eps: return n1 /= n1_length n2 /= n2_length cos_theta = wp.dot(n1, n2) e = x4 - x3 e_hat = wp.normalize(e) e_length = wp.length(e) derivative_flip = wp.sign(wp.dot(wp.cross(n1, n2), e)) derivative_flip *= -1.0 angle = wp.acos(cos_theta) grad_x1 = n1 * e_length * derivative_flip grad_x2 = n2 * e_length * derivative_flip grad_x3 = (n1 * wp.dot(x1 - x4, e_hat) + n2 * wp.dot(x2 - x4, e_hat)) * derivative_flip grad_x4 = (n1 * wp.dot(x3 - x1, e_hat) + n2 * wp.dot(x3 - x2, e_hat)) * derivative_flip c = angle - rest_angle denominator = (w1 * wp.length_sq(grad_x1) + w2 * wp.length_sq(grad_x2) + w3 * wp.length_sq(grad_x3) + w4 * wp.length_sq(grad_x4)) # Note strict inequality for damping -- 0 damping is ok if denominator <= 0.0 or ke <= 0.0 or kd < 0.0: return alpha = 1.0 / (ke * dt * dt) gamma = kd / (ke * dt) grad_dot_v = dt * (wp.dot(grad_x1, v1) + wp.dot(grad_x2, v2) + wp.dot(grad_x3, v3) + wp.dot(grad_x4, v4)) dlambda = -1.0 * (c + alpha * lambdas[tid] + gamma * grad_dot_v) / ((1.0 + gamma) * denominator + alpha) delta0 = w1 * dlambda * grad_x1 delta1 = w2 * dlambda * grad_x2 delta2 = w3 * dlambda * grad_x3 delta3 = w4 * dlambda * grad_x4 lambdas[tid] = lambdas[tid] + dlambda wp.atomic_add(delta, i, delta0) wp.atomic_add(delta, j, delta1) wp.atomic_add(delta, k, delta2) wp.atomic_add(delta, l, delta3) @wp.kernel def solve_tetrahedra( x: wp.array(dtype=wp.vec3), v: wp.array(dtype=wp.vec3), inv_mass: wp.array(dtype=float), indices: wp.array(dtype=int, ndim=2), pose: wp.array(dtype=wp.mat33), activation: wp.array(dtype=float), materials: wp.array(dtype=float, ndim=2), dt: float, relaxation: float, delta: wp.array(dtype=wp.vec3), ): tid = wp.tid() i = indices[tid, 0] j = indices[tid, 1] k = indices[tid, 2] l = indices[tid, 3] act = activation[tid] k_mu = materials[tid, 0] k_lambda = materials[tid, 1] k_damp = materials[tid, 2] x0 = x[i] x1 = x[j] x2 = x[k] x3 = x[l] v0 = v[i] v1 = v[j] v2 = v[k] v3 = v[l] w0 = inv_mass[i] w1 = inv_mass[j] w2 = inv_mass[k] w3 = inv_mass[l] x10 = x1 - x0 x20 = x2 - x0 x30 = x3 - x0 v10 = v1 - v0 v20 = v2 - v0 v30 = v3 - v0 Ds = wp.mat33(x10, x20, x30) Dm = pose[tid] inv_rest_volume = wp.determinant(Dm) * 6.0 rest_volume = 1.0 / inv_rest_volume # F = Xs*Xm^-1 F = Ds * Dm f1 = wp.vec3(F[0, 0], F[1, 0], F[2, 0]) f2 = wp.vec3(F[0, 1], F[1, 1], F[2, 1]) f3 = wp.vec3(F[0, 2], F[1, 2], F[2, 2]) # C_sqrt # tr = wp.dot(f1, f1) + wp.dot(f2, f2) + wp.dot(f3, f3) # r_s = wp.sqrt(abs(tr - 3.0)) # C = r_s # if (r_s == 0.0): # return # if (tr < 3.0): # r_s = 0.0 - r_s # dCdx = F*wp.transpose(Dm)*(1.0/r_s) # alpha = 1.0 + k_mu / k_lambda # C_Neo r_s = wp.sqrt(wp.dot(f1, f1) + wp.dot(f2, f2) + wp.dot(f3, f3)) if r_s == 0.0: return # tr = wp.dot(f1, f1) + wp.dot(f2, f2) + wp.dot(f3, f3) # if (tr < 3.0): # r_s = -r_s r_s_inv = 1.0 / r_s C = r_s dCdx = F * wp.transpose(Dm) * r_s_inv alpha = 1.0 + k_mu / k_lambda # C_Spherical # r_s = wp.sqrt(wp.dot(f1, f1) + wp.dot(f2, f2) + wp.dot(f3, f3)) # r_s_inv = 1.0/r_s # C = r_s - wp.sqrt(3.0) # dCdx = F*wp.transpose(Dm)*r_s_inv # alpha = 1.0 # C_D # r_s = wp.sqrt(wp.dot(f1, f1) + wp.dot(f2, f2) + wp.dot(f3, f3)) # C = r_s*r_s - 3.0 # dCdx = F*wp.transpose(Dm)*2.0 # alpha = 1.0 grad1 = wp.vec3(dCdx[0, 0], dCdx[1, 0], dCdx[2, 0]) grad2 = wp.vec3(dCdx[0, 1], dCdx[1, 1], dCdx[2, 1]) grad3 = wp.vec3(dCdx[0, 2], dCdx[1, 2], dCdx[2, 2]) grad0 = (grad1 + grad2 + grad3) * (0.0 - 1.0) denom = ( wp.dot(grad0, grad0) * w0 + wp.dot(grad1, grad1) * w1 + wp.dot(grad2, grad2) * w2 + wp.dot(grad3, grad3) * w3 ) multiplier = C / (denom + 1.0 / (k_mu * dt * dt * rest_volume)) delta0 = grad0 * multiplier delta1 = grad1 * multiplier delta2 = grad2 * multiplier delta3 = grad3 * multiplier # hydrostatic part J = wp.determinant(F) C_vol = J - alpha # dCdx = wp.mat33(wp.cross(f2, f3), wp.cross(f3, f1), wp.cross(f1, f2))*wp.transpose(Dm) # grad1 = wp.vec3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = wp.vec3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = wp.vec3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0) s = inv_rest_volume / 6.0 grad1 = wp.cross(x20, x30) * s grad2 = wp.cross(x30, x10) * s grad3 = wp.cross(x10, x20) * s grad0 = -(grad1 + grad2 + grad3) denom = ( wp.dot(grad0, grad0) * w0 + wp.dot(grad1, grad1) * w1 + wp.dot(grad2, grad2) * w2 + wp.dot(grad3, grad3) * w3 ) multiplier = C_vol / (denom + 1.0 / (k_lambda * dt * dt * rest_volume)) delta0 += grad0 * multiplier delta1 += grad1 * multiplier delta2 += grad2 * multiplier delta3 += grad3 * multiplier # apply forces wp.atomic_sub(delta, i, delta0 * w0 * relaxation) wp.atomic_sub(delta, j, delta1 * w1 * relaxation) wp.atomic_sub(delta, k, delta2 * w2 * relaxation) wp.atomic_sub(delta, l, delta3 * w3 * relaxation) @wp.kernel def apply_particle_deltas( x_orig: wp.array(dtype=wp.vec3), x_pred: wp.array(dtype=wp.vec3), particle_flags: wp.array(dtype=wp.uint32), delta: wp.array(dtype=wp.vec3), dt: float, v_max: float, x_out: wp.array(dtype=wp.vec3), v_out: wp.array(dtype=wp.vec3), ): tid = wp.tid() if (particle_flags[tid] & PARTICLE_FLAG_ACTIVE) == 0: return x0 = x_orig[tid] xp = x_pred[tid] # constraint deltas d = delta[tid] x_new = xp + d v_new = (x_new - x0) / dt # enforce velocity limit to prevent instability v_new_mag = wp.length(v_new) if v_new_mag > v_max: v_new *= v_max / v_new_mag x_out[tid] = x_new v_out[tid] = v_new @wp.kernel def apply_body_deltas( q_in: wp.array(dtype=wp.transform), qd_in: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), body_I: wp.array(dtype=wp.mat33), body_inv_m: wp.array(dtype=float), body_inv_I: wp.array(dtype=wp.mat33), deltas: wp.array(dtype=wp.spatial_vector), constraint_inv_weights: wp.array(dtype=float), dt: float, # outputs q_out: wp.array(dtype=wp.transform), qd_out: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() inv_m = body_inv_m[tid] if inv_m == 0.0: q_out[tid] = q_in[tid] qd_out[tid] = qd_in[tid] return inv_I = body_inv_I[tid] tf = q_in[tid] delta = deltas[tid] p0 = wp.transform_get_translation(tf) q0 = wp.transform_get_rotation(tf) weight = 1.0 if constraint_inv_weights: if constraint_inv_weights[tid] > 0.0: weight = 1.0 / constraint_inv_weights[tid] dp = wp.spatial_bottom(delta) * (inv_m * weight) dq = wp.spatial_top(delta) * weight dq = wp.quat_rotate(q0, inv_I * wp.quat_rotate_inv(q0, dq)) # update orientation q1 = q0 + 0.5 * wp.quat(dq * dt * dt, 0.0) * q0 q1 = wp.normalize(q1) # update position com = body_com[tid] x_com = p0 + wp.quat_rotate(q0, com) p1 = x_com + dp * dt * dt p1 -= wp.quat_rotate(q1, com) q_out[tid] = wp.transform(p1, q1) v0 = wp.spatial_bottom(qd_in[tid]) w0 = wp.spatial_top(qd_in[tid]) # update linear and angular velocity v1 = v0 + dp * dt # angular part (compute in body frame) wb = wp.quat_rotate_inv(q0, w0 + dq * dt) tb = -wp.cross(wb, body_I[tid] * wb) # coriolis forces w1 = wp.quat_rotate(q0, wb + inv_I * tb * dt) qd_out[tid] = wp.spatial_vector(w1, v1) @wp.kernel def apply_body_delta_velocities( qd_in: wp.array(dtype=wp.spatial_vector), deltas: wp.array(dtype=wp.spatial_vector), qd_out: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() qd_out[tid] = qd_in[tid] + deltas[tid] @wp.kernel def apply_joint_torques( body_q: wp.array(dtype=wp.transform), body_com: wp.array(dtype=wp.vec3), joint_q_start: wp.array(dtype=int), joint_qd_start: wp.array(dtype=int), joint_type: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), joint_axis: wp.array(dtype=wp.vec3), joint_act: wp.array(dtype=float), body_f: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() type = joint_type[tid] if type == wp.sim.JOINT_FIXED: return if type == wp.sim.JOINT_FREE: return if type == wp.sim.JOINT_DISTANCE: return if type == wp.sim.JOINT_BALL: return # rigid body indices of the child and parent id_c = joint_child[tid] id_p = joint_parent[tid] X_pj = joint_X_p[tid] X_cj = joint_X_c[tid] X_wp = X_pj pose_p = X_pj com_p = wp.vec3(0.0) # parent transform and moment arm if id_p >= 0: pose_p = body_q[id_p] X_wp = pose_p * X_wp com_p = body_com[id_p] r_p = wp.transform_get_translation(X_wp) - wp.transform_point(pose_p, com_p) # child transform and moment arm pose_c = body_q[id_c] X_wc = pose_c com_c = body_com[id_c] r_c = wp.transform_get_translation(X_wc) - wp.transform_point(pose_c, com_c) # local joint rotations q_p = wp.transform_get_rotation(X_wp) q_c = wp.transform_get_rotation(X_wc) # joint properties (for 1D joints) q_start = joint_q_start[tid] qd_start = joint_qd_start[tid] axis_start = joint_axis_start[tid] lin_axis_count = joint_axis_dim[tid, 0] ang_axis_count = joint_axis_dim[tid, 1] # total force/torque on the parent t_total = wp.vec3() f_total = wp.vec3() # handle angular constraints if type == wp.sim.JOINT_REVOLUTE: axis = joint_axis[axis_start] act = joint_act[qd_start] a_p = wp.transform_vector(X_wp, axis) t_total += act * a_p elif type == wp.sim.JOINT_PRISMATIC: axis = joint_axis[axis_start] act = joint_act[qd_start] a_p = wp.transform_vector(X_wp, axis) f_total += act * a_p elif type == wp.sim.JOINT_COMPOUND: # q_off = wp.transform_get_rotation(X_cj) # q_pc = wp.quat_inverse(q_off)*wp.quat_inverse(q_p)*q_c*q_off # # decompose to a compound rotation each axis # angles = quat_decompose(q_pc) # # reconstruct rotation axes # axis_0 = wp.vec3(1.0, 0.0, 0.0) # q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) # axis_1 = wp.quat_rotate(q_0, wp.vec3(0.0, 1.0, 0.0)) # q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) # axis_2 = wp.quat_rotate(q_1*q_0, wp.vec3(0.0, 0.0, 1.0)) # q_w = q_p*q_off # t_total += joint_act[qd_start+0] * wp.quat_rotate(q_w, axis_0) # t_total += joint_act[qd_start+1] * wp.quat_rotate(q_w, axis_1) # t_total += joint_act[qd_start+2] * wp.quat_rotate(q_w, axis_2) axis_0 = joint_axis[axis_start + 0] axis_1 = joint_axis[axis_start + 1] axis_2 = joint_axis[axis_start + 2] t_total += joint_act[qd_start + 0] * wp.transform_vector(X_wp, axis_0) t_total += joint_act[qd_start + 1] * wp.transform_vector(X_wp, axis_1) t_total += joint_act[qd_start + 2] * wp.transform_vector(X_wp, axis_2) elif type == wp.sim.JOINT_UNIVERSAL: # q_off = wp.transform_get_rotation(X_cj) # q_pc = wp.quat_inverse(q_off)*wp.quat_inverse(q_p)*q_c*q_off # # decompose to a compound rotation each axis # angles = quat_decompose(q_pc) # # reconstruct rotation axes # axis_0 = wp.vec3(1.0, 0.0, 0.0) # q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) # axis_1 = wp.quat_rotate(q_0, wp.vec3(0.0, 1.0, 0.0)) # q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) # axis_2 = wp.quat_rotate(q_1*q_0, wp.vec3(0.0, 0.0, 1.0)) # q_w = q_p*q_off # free axes # t_total += joint_act[qd_start+0] * wp.quat_rotate(q_w, axis_0) # t_total += joint_act[qd_start+1] * wp.quat_rotate(q_w, axis_1) axis_0 = joint_axis[axis_start + 0] axis_1 = joint_axis[axis_start + 1] t_total += joint_act[qd_start + 0] * wp.transform_vector(X_wp, axis_0) t_total += joint_act[qd_start + 1] * wp.transform_vector(X_wp, axis_1) elif type == wp.sim.JOINT_D6: # unroll for loop to ensure joint actions remain differentiable # (since differentiating through a dynamic for loop that updates a local variable is not supported) if lin_axis_count > 0: axis = joint_axis[axis_start + 0] act = joint_act[qd_start + 0] a_p = wp.transform_vector(X_wp, axis) f_total += act * a_p if lin_axis_count > 1: axis = joint_axis[axis_start + 1] act = joint_act[qd_start + 1] a_p = wp.transform_vector(X_wp, axis) f_total += act * a_p if lin_axis_count > 2: axis = joint_axis[axis_start + 2] act = joint_act[qd_start + 2] a_p = wp.transform_vector(X_wp, axis) f_total += act * a_p if ang_axis_count > 0: axis = joint_axis[axis_start + lin_axis_count + 0] act = joint_act[qd_start + lin_axis_count + 0] a_p = wp.transform_vector(X_wp, axis) t_total += act * a_p if ang_axis_count > 1: axis = joint_axis[axis_start + lin_axis_count + 1] act = joint_act[qd_start + lin_axis_count + 1] a_p = wp.transform_vector(X_wp, axis) t_total += act * a_p if ang_axis_count > 2: axis = joint_axis[axis_start + lin_axis_count + 2] act = joint_act[qd_start + lin_axis_count + 2] a_p = wp.transform_vector(X_wp, axis) t_total += act * a_p else: print("joint type not handled in apply_joint_torques") # write forces if id_p >= 0: wp.atomic_add(body_f, id_p, wp.spatial_vector(t_total + wp.cross(r_p, f_total), f_total)) wp.atomic_sub(body_f, id_c, wp.spatial_vector(t_total + wp.cross(r_c, f_total), f_total)) @wp.func def update_joint_axis_mode(mode: wp.uint8, axis: wp.vec3, input_axis_mode: wp.vec3ub): # update the 3D axis mode flags given the axis vector and mode of this axis mode_x = wp.max(wp.uint8(wp.nonzero(axis[0])) * mode, input_axis_mode[0]) mode_y = wp.max(wp.uint8(wp.nonzero(axis[1])) * mode, input_axis_mode[1]) mode_z = wp.max(wp.uint8(wp.nonzero(axis[2])) * mode, input_axis_mode[2]) return wp.vec3ub(mode_x, mode_y, mode_z) @wp.func def update_joint_axis_limits(axis: wp.vec3, limit_lower: float, limit_upper: float, input_limits: wp.spatial_vector): # update the 3D linear/angular limits (spatial_vector [lower, upper]) given the axis vector and limits lo_temp = axis * limit_lower up_temp = axis * limit_upper lo = vec_min(lo_temp, up_temp) up = vec_max(lo_temp, up_temp) input_lower = wp.spatial_top(input_limits) input_upper = wp.spatial_bottom(input_limits) lower = vec_min(input_lower, lo) upper = vec_max(input_upper, up) return wp.spatial_vector(lower, upper) @wp.func def update_joint_axis_target_ke_kd( axis: wp.vec3, target: float, target_ke: float, target_kd: float, input_target_ke_kd: wp.mat33 ): # update the 3D linear/angular target, target_ke, and target_kd (mat33 [target, ke, kd]) given the axis vector and target, target_ke, target_kd axis_target = input_target_ke_kd[0] axis_ke = input_target_ke_kd[1] axis_kd = input_target_ke_kd[2] stiffness = axis * target_ke axis_target += stiffness * target # weighted target (to be normalized later by sum of target_ke) axis_ke += vec_abs(stiffness) axis_kd += vec_abs(axis * target_kd) return wp.mat33( axis_target[0], axis_target[1], axis_target[2], axis_ke[0], axis_ke[1], axis_ke[2], axis_kd[0], axis_kd[1], axis_kd[2], ) @wp.kernel def solve_body_joints( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), body_inv_m: wp.array(dtype=float), body_inv_I: wp.array(dtype=wp.mat33), joint_type: wp.array(dtype=int), joint_enabled: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), joint_limit_lower: wp.array(dtype=float), joint_limit_upper: wp.array(dtype=float), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), joint_axis_mode: wp.array(dtype=wp.uint8), joint_axis: wp.array(dtype=wp.vec3), joint_target: wp.array(dtype=float), joint_target_ke: wp.array(dtype=float), joint_target_kd: wp.array(dtype=float), joint_linear_compliance: wp.array(dtype=float), joint_angular_compliance: wp.array(dtype=float), angular_relaxation: float, linear_relaxation: float, dt: float, deltas: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() type = joint_type[tid] if joint_enabled[tid] == 0 or type == wp.sim.JOINT_FREE: return # rigid body indices of the child and parent id_c = joint_child[tid] id_p = joint_parent[tid] X_pj = joint_X_p[tid] X_cj = joint_X_c[tid] X_wp = X_pj m_inv_p = 0.0 I_inv_p = wp.mat33(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) pose_p = X_pj com_p = wp.vec3(0.0) vel_p = wp.vec3(0.0) omega_p = wp.vec3(0.0) # parent transform and moment arm if id_p >= 0: pose_p = body_q[id_p] X_wp = pose_p * X_wp com_p = body_com[id_p] m_inv_p = body_inv_m[id_p] I_inv_p = body_inv_I[id_p] vel_p = wp.spatial_bottom(body_qd[id_p]) omega_p = wp.spatial_top(body_qd[id_p]) # child transform and moment arm pose_c = body_q[id_c] X_wc = pose_c * X_cj com_c = body_com[id_c] m_inv_c = body_inv_m[id_c] I_inv_c = body_inv_I[id_c] vel_c = wp.spatial_bottom(body_qd[id_c]) omega_c = wp.spatial_top(body_qd[id_c]) if m_inv_p == 0.0 and m_inv_c == 0.0: # connection between two immovable bodies return # accumulate constraint deltas lin_delta_p = wp.vec3(0.0) ang_delta_p = wp.vec3(0.0) lin_delta_c = wp.vec3(0.0) ang_delta_c = wp.vec3(0.0) rel_pose = wp.transform_inverse(X_wp) * X_wc rel_p = wp.transform_get_translation(rel_pose) # joint connection points # x_p = wp.transform_get_translation(X_wp) x_c = wp.transform_get_translation(X_wc) linear_compliance = joint_linear_compliance[tid] angular_compliance = joint_angular_compliance[tid] axis_start = joint_axis_start[tid] lin_axis_count = joint_axis_dim[tid, 0] ang_axis_count = joint_axis_dim[tid, 1] world_com_p = wp.transform_point(pose_p, com_p) world_com_c = wp.transform_point(pose_c, com_c) # handle positional constraints if type == wp.sim.JOINT_DISTANCE: r_p = wp.transform_get_translation(X_wp) - world_com_p r_c = wp.transform_get_translation(X_wc) - world_com_c lower = joint_limit_lower[axis_start] upper = joint_limit_upper[axis_start] if lower < 0.0 and upper < 0.0: # no limits return d = wp.length(rel_p) err = 0.0 if lower >= 0.0 and d < lower: err = d - lower # use a more descriptive direction vector for the constraint # in case the joint parent and child anchors are very close rel_p = err * wp.normalize(world_com_c - world_com_p) elif upper >= 0.0 and d > upper: err = d - upper if wp.abs(err) > 1e-9: # compute gradients linear_c = rel_p linear_p = -linear_c r_c = x_c - world_com_c angular_p = -wp.cross(r_p, linear_c) angular_c = wp.cross(r_c, linear_c) # constraint time derivative derr = ( wp.dot(linear_p, vel_p) + wp.dot(linear_c, vel_c) + wp.dot(angular_p, omega_p) + wp.dot(angular_c, omega_c) ) lambda_in = 0.0 compliance = linear_compliance ke = joint_target_ke[axis_start] if ke > 0.0: compliance = 1.0 / ke damping = joint_target_kd[axis_start] d_lambda = compute_positional_correction( err, derr, pose_p, pose_c, m_inv_p, m_inv_c, I_inv_p, I_inv_c, linear_p, linear_c, angular_p, angular_c, lambda_in, compliance, damping, dt, ) lin_delta_p += linear_p * (d_lambda * linear_relaxation) ang_delta_p += angular_p * (d_lambda * angular_relaxation) lin_delta_c += linear_c * (d_lambda * linear_relaxation) ang_delta_c += angular_c * (d_lambda * angular_relaxation) else: # compute joint target, stiffness, damping ke_sum = float(0.0) axis_limits = wp.spatial_vector(0.0, 0.0, 0.0, 0.0, 0.0, 0.0) axis_mode = wp.vec3ub(wp.uint8(0), wp.uint8(0), wp.uint8(0)) axis_target_ke_kd = wp.mat33(0.0) # avoid a for loop here since local variables would need to be modified which is not yet differentiable if lin_axis_count > 0: axis = joint_axis[axis_start] lo_temp = axis * joint_limit_lower[axis_start] up_temp = axis * joint_limit_upper[axis_start] axis_limits = wp.spatial_vector(vec_min(lo_temp, up_temp), vec_max(lo_temp, up_temp)) mode = joint_axis_mode[axis_start] if mode != JOINT_MODE_LIMIT: # position or velocity target ke = joint_target_ke[axis_start] kd = joint_target_kd[axis_start] target = joint_target[axis_start] axis_mode = update_joint_axis_mode(mode, axis, axis_mode) axis_target_ke_kd = update_joint_axis_target_ke_kd(axis, target, ke, kd, axis_target_ke_kd) ke_sum += ke if lin_axis_count > 1: axis_idx = axis_start + 1 axis = joint_axis[axis_idx] lower = joint_limit_lower[axis_idx] upper = joint_limit_upper[axis_idx] axis_limits = update_joint_axis_limits(axis, lower, upper, axis_limits) mode = joint_axis_mode[axis_idx] if mode != JOINT_MODE_LIMIT: # position or velocity target ke = joint_target_ke[axis_idx] kd = joint_target_kd[axis_idx] target = joint_target[axis_idx] axis_mode = update_joint_axis_mode(mode, axis, axis_mode) axis_target_ke_kd = update_joint_axis_target_ke_kd(axis, target, ke, kd, axis_target_ke_kd) ke_sum += ke if lin_axis_count > 2: axis_idx = axis_start + 2 axis = joint_axis[axis_idx] lower = joint_limit_lower[axis_idx] upper = joint_limit_upper[axis_idx] axis_limits = update_joint_axis_limits(axis, lower, upper, axis_limits) mode = joint_axis_mode[axis_idx] if mode != JOINT_MODE_LIMIT: # position or velocity target ke = joint_target_ke[axis_idx] kd = joint_target_kd[axis_idx] target = joint_target[axis_idx] axis_mode = update_joint_axis_mode(mode, axis, axis_mode) axis_target_ke_kd = update_joint_axis_target_ke_kd(axis, target, ke, kd, axis_target_ke_kd) ke_sum += ke axis_target = axis_target_ke_kd[0] axis_stiffness = axis_target_ke_kd[1] axis_damping = axis_target_ke_kd[2] if ke_sum > 0.0: axis_target /= ke_sum axis_limits_lower = wp.spatial_top(axis_limits) axis_limits_upper = wp.spatial_bottom(axis_limits) frame_p = wp.quat_to_matrix(wp.transform_get_rotation(X_wp)) # note that x_c appearing in both is correct r_p = x_c - world_com_p r_c = x_c - wp.transform_point(pose_c, com_c) # for loop will be unrolled, so we can modify local variables for dim in range(3): e = rel_p[dim] mode = axis_mode[dim] # compute gradients linear_c = wp.vec3(frame_p[0, dim], frame_p[1, dim], frame_p[2, dim]) linear_p = -linear_c angular_p = -wp.cross(r_p, linear_c) angular_c = wp.cross(r_c, linear_c) # constraint time derivative derr = ( wp.dot(linear_p, vel_p) + wp.dot(linear_c, vel_c) + wp.dot(angular_p, omega_p) + wp.dot(angular_c, omega_c) ) err = 0.0 compliance = linear_compliance damping = 0.0 # consider joint limits irrespective of axis mode lower = axis_limits_lower[dim] upper = axis_limits_upper[dim] if e < lower: err = e - lower compliance = linear_compliance damping = 0.0 elif e > upper: err = e - upper compliance = linear_compliance damping = 0.0 else: target = axis_target[dim] if mode == JOINT_MODE_TARGET_POSITION: target = wp.clamp(target, lower, upper) if axis_stiffness[dim] > 0.0: err = e - target compliance = 1.0 / axis_stiffness[dim] damping = axis_damping[dim] elif mode == JOINT_MODE_TARGET_VELOCITY: if axis_stiffness[dim] > 0.0: err = (derr - target) * dt compliance = 1.0 / axis_stiffness[dim] damping = axis_damping[dim] if wp.abs(err) > 1e-9: lambda_in = 0.0 d_lambda = compute_positional_correction( err, derr, pose_p, pose_c, m_inv_p, m_inv_c, I_inv_p, I_inv_c, linear_p, linear_c, angular_p, angular_c, lambda_in, compliance, damping, dt, ) lin_delta_p += linear_p * (d_lambda * linear_relaxation) ang_delta_p += angular_p * (d_lambda * angular_relaxation) lin_delta_c += linear_c * (d_lambda * linear_relaxation) ang_delta_c += angular_c * (d_lambda * angular_relaxation) if ( type == wp.sim.JOINT_FIXED or type == wp.sim.JOINT_PRISMATIC or type == wp.sim.JOINT_REVOLUTE or type == wp.sim.JOINT_UNIVERSAL or type == wp.sim.JOINT_COMPOUND or type == wp.sim.JOINT_D6 ): # handle angular constraints # local joint rotations q_p = wp.transform_get_rotation(X_wp) q_c = wp.transform_get_rotation(X_wc) # make quats lie in same hemisphere if wp.dot(q_p, q_c) < 0.0: q_c *= -1.0 rel_q = wp.quat_inverse(q_p) * q_c qtwist = wp.normalize(wp.quat(rel_q[0], 0.0, 0.0, rel_q[3])) qswing = rel_q * wp.quat_inverse(qtwist) # decompose to a compound rotation each axis s = wp.sqrt(rel_q[0] * rel_q[0] + rel_q[3] * rel_q[3]) invs = 1.0 / s invscube = invs * invs * invs # handle axis-angle joints # rescale twist from quaternion space to angular err_0 = 2.0 * wp.asin(wp.clamp(qtwist[0], -1.0, 1.0)) err_1 = qswing[1] err_2 = qswing[2] # analytic gradients of swing-twist decomposition grad_0 = wp.quat(invs - rel_q[0] * rel_q[0] * invscube, 0.0, 0.0, -(rel_q[3] * rel_q[0]) * invscube) grad_1 = wp.quat( -rel_q[3] * (rel_q[3] * rel_q[2] + rel_q[0] * rel_q[1]) * invscube, rel_q[3] * invs, -rel_q[0] * invs, rel_q[0] * (rel_q[3] * rel_q[2] + rel_q[0] * rel_q[1]) * invscube, ) grad_2 = wp.quat( rel_q[3] * (rel_q[3] * rel_q[1] - rel_q[0] * rel_q[2]) * invscube, rel_q[0] * invs, rel_q[3] * invs, rel_q[0] * (rel_q[2] * rel_q[0] - rel_q[3] * rel_q[1]) * invscube, ) grad_0 *= 2.0 / wp.abs(qtwist[3]) # grad_0 *= 2.0 / wp.sqrt(1.0-qtwist[0]*qtwist[0]) # derivative of asin(x) = 1/sqrt(1-x^2) # rescale swing swing_sq = qswing[3] * qswing[3] # if swing axis magnitude close to zero vector, just treat in quaternion space angularEps = 1.0e-4 if swing_sq + angularEps < 1.0: d = wp.sqrt(1.0 - qswing[3] * qswing[3]) theta = 2.0 * wp.acos(wp.clamp(qswing[3], -1.0, 1.0)) scale = theta / d err_1 *= scale err_2 *= scale grad_1 *= scale grad_2 *= scale errs = wp.vec3(err_0, err_1, err_2) grad_x = wp.vec3(grad_0[0], grad_1[0], grad_2[0]) grad_y = wp.vec3(grad_0[1], grad_1[1], grad_2[1]) grad_z = wp.vec3(grad_0[2], grad_1[2], grad_2[2]) grad_w = wp.vec3(grad_0[3], grad_1[3], grad_2[3]) # compute joint target, stiffness, damping ke_sum = float(0.0) axis_limits = wp.spatial_vector(0.0, 0.0, 0.0, 0.0, 0.0, 0.0) axis_mode = wp.vec3ub(wp.uint8(0), wp.uint8(0), wp.uint8(0)) axis_target_ke_kd = wp.mat33(0.0) # avoid a for loop here since local variables would need to be modified which is not yet differentiable if ang_axis_count > 0: axis_idx = axis_start + lin_axis_count axis = joint_axis[axis_idx] lo_temp = axis * joint_limit_lower[axis_idx] up_temp = axis * joint_limit_upper[axis_idx] axis_limits = wp.spatial_vector(vec_min(lo_temp, up_temp), vec_max(lo_temp, up_temp)) mode = joint_axis_mode[axis_idx] if mode != JOINT_MODE_LIMIT: # position or velocity target ke = joint_target_ke[axis_idx] kd = joint_target_kd[axis_idx] target = joint_target[axis_idx] axis_mode = update_joint_axis_mode(mode, axis, axis_mode) axis_target_ke_kd = update_joint_axis_target_ke_kd(axis, target, ke, kd, axis_target_ke_kd) ke_sum += ke if ang_axis_count > 1: axis_idx = axis_start + lin_axis_count + 1 axis = joint_axis[axis_idx] lower = joint_limit_lower[axis_idx] upper = joint_limit_upper[axis_idx] axis_limits = update_joint_axis_limits(axis, lower, upper, axis_limits) mode = joint_axis_mode[axis_idx] if mode != JOINT_MODE_LIMIT: # position or velocity target ke = joint_target_ke[axis_idx] kd = joint_target_kd[axis_idx] target = joint_target[axis_idx] axis_mode = update_joint_axis_mode(mode, axis, axis_mode) axis_target_ke_kd = update_joint_axis_target_ke_kd(axis, target, ke, kd, axis_target_ke_kd) ke_sum += ke if ang_axis_count > 2: axis_idx = axis_start + lin_axis_count + 2 axis = joint_axis[axis_idx] lower = joint_limit_lower[axis_idx] upper = joint_limit_upper[axis_idx] axis_limits = update_joint_axis_limits(axis, lower, upper, axis_limits) mode = joint_axis_mode[axis_idx] if mode != JOINT_MODE_LIMIT: # position or velocity target ke = joint_target_ke[axis_idx] kd = joint_target_kd[axis_idx] target = joint_target[axis_idx] axis_mode = update_joint_axis_mode(mode, axis, axis_mode) axis_target_ke_kd = update_joint_axis_target_ke_kd(axis, target, ke, kd, axis_target_ke_kd) ke_sum += ke axis_target = axis_target_ke_kd[0] axis_stiffness = axis_target_ke_kd[1] axis_damping = axis_target_ke_kd[2] if ke_sum > 0.0: axis_target /= ke_sum axis_limits_lower = wp.spatial_top(axis_limits) axis_limits_upper = wp.spatial_bottom(axis_limits) # if type == wp.sim.JOINT_D6: # wp.printf("axis_target: %f %f %f\t axis_stiffness: %f %f %f\t axis_damping: %f %f %f\t axis_limits_lower: %f %f %f \t axis_limits_upper: %f %f %f\n", # axis_target[0], axis_target[1], axis_target[2], # axis_stiffness[0], axis_stiffness[1], axis_stiffness[2], # axis_damping[0], axis_damping[1], axis_damping[2], # axis_limits_lower[0], axis_limits_lower[1], axis_limits_lower[2], # axis_limits_upper[0], axis_limits_upper[1], axis_limits_upper[2]) # # wp.printf("wp.sqrt(1.0-qtwist[0]*qtwist[0]) = %f\n", wp.sqrt(1.0-qtwist[0]*qtwist[0])) for dim in range(3): e = errs[dim] mode = axis_mode[dim] # analytic gradients of swing-twist decomposition grad = wp.quat(grad_x[dim], grad_y[dim], grad_z[dim], grad_w[dim]) quat_c = 0.5 * q_p * grad * wp.quat_inverse(q_c) angular_c = wp.vec3(quat_c[0], quat_c[1], quat_c[2]) angular_p = -angular_c # time derivative of the constraint derr = wp.dot(angular_p, omega_p) + wp.dot(angular_c, omega_c) err = 0.0 compliance = angular_compliance damping = 0.0 # consider joint limits irrespective of mode lower = axis_limits_lower[dim] upper = axis_limits_upper[dim] if e < lower: err = e - lower compliance = angular_compliance damping = 0.0 elif e > upper: err = e - upper compliance = angular_compliance damping = 0.0 else: target = axis_target[dim] if mode == JOINT_MODE_TARGET_POSITION: target = wp.clamp(target, lower, upper) if axis_stiffness[dim] > 0.0: err = e - target compliance = 1.0 / axis_stiffness[dim] damping = axis_damping[dim] elif mode == JOINT_MODE_TARGET_VELOCITY: if axis_stiffness[dim] > 0.0: err = (derr - target) * dt compliance = 1.0 / axis_stiffness[dim] damping = axis_damping[dim] d_lambda = ( compute_angular_correction( err, derr, pose_p, pose_c, I_inv_p, I_inv_c, angular_p, angular_c, 0.0, compliance, damping, dt ) * angular_relaxation ) # update deltas ang_delta_p += angular_p * d_lambda ang_delta_c += angular_c * d_lambda if id_p >= 0: wp.atomic_add(deltas, id_p, wp.spatial_vector(ang_delta_p, lin_delta_p)) if id_c >= 0: wp.atomic_add(deltas, id_c, wp.spatial_vector(ang_delta_c, lin_delta_c)) @wp.func def compute_contact_constraint_delta( err: float, tf_a: wp.transform, tf_b: wp.transform, m_inv_a: float, m_inv_b: float, I_inv_a: wp.mat33, I_inv_b: wp.mat33, linear_a: wp.vec3, linear_b: wp.vec3, angular_a: wp.vec3, angular_b: wp.vec3, relaxation: float, dt: float, ) -> float: denom = 0.0 denom += wp.length_sq(linear_a) * m_inv_a denom += wp.length_sq(linear_b) * m_inv_b q1 = wp.transform_get_rotation(tf_a) q2 = wp.transform_get_rotation(tf_b) # Eq. 2-3 (make sure to project into the frame of the body) rot_angular_a = wp.quat_rotate_inv(q1, angular_a) rot_angular_b = wp.quat_rotate_inv(q2, angular_b) denom += wp.dot(rot_angular_a, I_inv_a * rot_angular_a) denom += wp.dot(rot_angular_b, I_inv_b * rot_angular_b) deltaLambda = -err if denom > 0.0: deltaLambda /= dt * dt * denom return deltaLambda * relaxation @wp.func def compute_positional_correction( err: float, derr: float, tf_a: wp.transform, tf_b: wp.transform, m_inv_a: float, m_inv_b: float, I_inv_a: wp.mat33, I_inv_b: wp.mat33, linear_a: wp.vec3, linear_b: wp.vec3, angular_a: wp.vec3, angular_b: wp.vec3, lambda_in: float, compliance: float, damping: float, dt: float, ) -> float: denom = 0.0 denom += wp.length_sq(linear_a) * m_inv_a denom += wp.length_sq(linear_b) * m_inv_b q1 = wp.transform_get_rotation(tf_a) q2 = wp.transform_get_rotation(tf_b) # Eq. 2-3 (make sure to project into the frame of the body) rot_angular_a = wp.quat_rotate_inv(q1, angular_a) rot_angular_b = wp.quat_rotate_inv(q2, angular_b) denom += wp.dot(rot_angular_a, I_inv_a * rot_angular_a) denom += wp.dot(rot_angular_b, I_inv_b * rot_angular_b) alpha = compliance gamma = compliance * damping deltaLambda = -(err + alpha * lambda_in + gamma * derr) if denom + alpha > 0.0: deltaLambda /= dt * (dt + gamma) * denom + alpha return deltaLambda @wp.func def compute_angular_correction( err: float, derr: float, tf_a: wp.transform, tf_b: wp.transform, I_inv_a: wp.mat33, I_inv_b: wp.mat33, angular_a: wp.vec3, angular_b: wp.vec3, lambda_in: float, compliance: float, damping: float, dt: float, ) -> float: denom = 0.0 q1 = wp.transform_get_rotation(tf_a) q2 = wp.transform_get_rotation(tf_b) # Eq. 2-3 (make sure to project into the frame of the body) rot_angular_a = wp.quat_rotate_inv(q1, angular_a) rot_angular_b = wp.quat_rotate_inv(q2, angular_b) denom += wp.dot(rot_angular_a, I_inv_a * rot_angular_a) denom += wp.dot(rot_angular_b, I_inv_b * rot_angular_b) alpha = compliance gamma = compliance * damping deltaLambda = -(err + alpha * lambda_in + gamma * derr) if denom + alpha > 0.0: deltaLambda /= dt * (dt + gamma) * denom + alpha return deltaLambda @wp.kernel def solve_body_contact_positions( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), body_m_inv: wp.array(dtype=float), body_I_inv: wp.array(dtype=wp.mat33), contact_count: wp.array(dtype=int), contact_body0: wp.array(dtype=int), contact_body1: wp.array(dtype=int), contact_point0: wp.array(dtype=wp.vec3), contact_point1: wp.array(dtype=wp.vec3), contact_offset0: wp.array(dtype=wp.vec3), contact_offset1: wp.array(dtype=wp.vec3), contact_normal: wp.array(dtype=wp.vec3), contact_thickness: wp.array(dtype=float), contact_shape0: wp.array(dtype=int), contact_shape1: wp.array(dtype=int), shape_materials: ModelShapeMaterials, relaxation: float, dt: float, contact_torsional_friction: float, contact_rolling_friction: float, # outputs deltas: wp.array(dtype=wp.spatial_vector), active_contact_point0: wp.array(dtype=wp.vec3), active_contact_point1: wp.array(dtype=wp.vec3), active_contact_distance: wp.array(dtype=float), contact_inv_weight: wp.array(dtype=float), ): tid = wp.tid() count = contact_count[0] if tid >= count: return body_a = contact_body0[tid] body_b = contact_body1[tid] if body_a == body_b: return if contact_shape0[tid] == contact_shape1[tid]: return # find body to world transform X_wb_a = wp.transform_identity() X_wb_b = wp.transform_identity() if body_a >= 0: X_wb_a = body_q[body_a] if body_b >= 0: X_wb_b = body_q[body_b] # compute body position in world space bx_a = wp.transform_point(X_wb_a, contact_point0[tid]) bx_b = wp.transform_point(X_wb_b, contact_point1[tid]) active_contact_point0[tid] = bx_a active_contact_point1[tid] = bx_b thickness = contact_thickness[tid] n = -contact_normal[tid] d = wp.dot(n, bx_b - bx_a) - thickness active_contact_distance[tid] = d if d >= 0.0: return m_inv_a = 0.0 m_inv_b = 0.0 I_inv_a = wp.mat33(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) I_inv_b = wp.mat33(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) # center of mass in body frame com_a = wp.vec3(0.0) com_b = wp.vec3(0.0) # body to world transform X_wb_a = wp.transform_identity() X_wb_b = wp.transform_identity() # angular velocities omega_a = wp.vec3(0.0) omega_b = wp.vec3(0.0) # contact offset in body frame offset_a = contact_offset0[tid] offset_b = contact_offset1[tid] if body_a >= 0: X_wb_a = body_q[body_a] com_a = body_com[body_a] m_inv_a = body_m_inv[body_a] I_inv_a = body_I_inv[body_a] omega_a = wp.spatial_top(body_qd[body_a]) if body_b >= 0: X_wb_b = body_q[body_b] com_b = body_com[body_b] m_inv_b = body_m_inv[body_b] I_inv_b = body_I_inv[body_b] omega_b = wp.spatial_top(body_qd[body_b]) # use average contact material properties mat_nonzero = 0 mu = 0.0 shape_a = contact_shape0[tid] shape_b = contact_shape1[tid] if shape_a >= 0: mat_nonzero += 1 mu += shape_materials.mu[shape_a] if shape_b >= 0: mat_nonzero += 1 mu += shape_materials.mu[shape_b] if mat_nonzero > 0: mu /= float(mat_nonzero) r_a = bx_a - wp.transform_point(X_wb_a, com_a) r_b = bx_b - wp.transform_point(X_wb_b, com_b) angular_a = -wp.cross(r_a, n) angular_b = wp.cross(r_b, n) if contact_inv_weight: if body_a >= 0: wp.atomic_add(contact_inv_weight, body_a, 1.0) if body_b >= 0: wp.atomic_add(contact_inv_weight, body_b, 1.0) lambda_n = compute_contact_constraint_delta( d, X_wb_a, X_wb_b, m_inv_a, m_inv_b, I_inv_a, I_inv_b, -n, n, angular_a, angular_b, relaxation, dt ) lin_delta_a = -n * lambda_n lin_delta_b = n * lambda_n ang_delta_a = angular_a * lambda_n ang_delta_b = angular_b * lambda_n # linear friction if mu > 0.0: # add on displacement from surface offsets, this ensures we include any rotational effects due to thickness from feature # need to use the current rotation to account for friction due to angular effects (e.g.: slipping contact) bx_a += wp.transform_vector(X_wb_a, offset_a) bx_b += wp.transform_vector(X_wb_b, offset_b) # update delta delta = bx_b - bx_a friction_delta = delta - wp.dot(n, delta) * n perp = wp.normalize(friction_delta) r_a = bx_a - wp.transform_point(X_wb_a, com_a) r_b = bx_b - wp.transform_point(X_wb_b, com_b) angular_a = -wp.cross(r_a, perp) angular_b = wp.cross(r_b, perp) err = wp.length(friction_delta) if err > 0.0: lambda_fr = compute_contact_constraint_delta( err, X_wb_a, X_wb_b, m_inv_a, m_inv_b, I_inv_a, I_inv_b, -perp, perp, angular_a, angular_b, 1.0, dt ) # limit friction based on incremental normal force, good approximation to limiting on total force lambda_fr = wp.max(lambda_fr, -lambda_n * mu) lin_delta_a -= perp * lambda_fr lin_delta_b += perp * lambda_fr ang_delta_a += angular_a * lambda_fr ang_delta_b += angular_b * lambda_fr torsional_friction = mu * contact_torsional_friction delta_omega = omega_b - omega_a if torsional_friction > 0.0: err = wp.dot(delta_omega, n) * dt if wp.abs(err) > 0.0: lin = wp.vec3(0.0) lambda_torsion = compute_contact_constraint_delta( err, X_wb_a, X_wb_b, m_inv_a, m_inv_b, I_inv_a, I_inv_b, lin, lin, -n, n, 1.0, dt ) lambda_torsion = wp.clamp(lambda_torsion, -lambda_n * torsional_friction, lambda_n * torsional_friction) ang_delta_a -= n * lambda_torsion ang_delta_b += n * lambda_torsion rolling_friction = mu * contact_rolling_friction if rolling_friction > 0.0: delta_omega -= wp.dot(n, delta_omega) * n err = wp.length(delta_omega) * dt if err > 0.0: lin = wp.vec3(0.0) roll_n = wp.normalize(delta_omega) lambda_roll = compute_contact_constraint_delta( err, X_wb_a, X_wb_b, m_inv_a, m_inv_b, I_inv_a, I_inv_b, lin, lin, -roll_n, roll_n, 1.0, dt ) lambda_roll = wp.max(lambda_roll, -lambda_n * rolling_friction) ang_delta_a -= roll_n * lambda_roll ang_delta_b += roll_n * lambda_roll if body_a >= 0: wp.atomic_add(deltas, body_a, wp.spatial_vector(ang_delta_a, lin_delta_a)) if body_b >= 0: wp.atomic_add(deltas, body_b, wp.spatial_vector(ang_delta_b, lin_delta_b)) @wp.kernel def update_body_velocities( poses: wp.array(dtype=wp.transform), poses_prev: wp.array(dtype=wp.transform), body_com: wp.array(dtype=wp.vec3), dt: float, qd_out: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() pose = poses[tid] pose_prev = poses_prev[tid] x = wp.transform_get_translation(pose) x_prev = wp.transform_get_translation(pose_prev) q = wp.transform_get_rotation(pose) q_prev = wp.transform_get_rotation(pose_prev) # Update body velocities according to Alg. 2 # XXX we consider the body COM as the origin of the body frame x_com = x + wp.quat_rotate(q, body_com[tid]) x_com_prev = x_prev + wp.quat_rotate(q_prev, body_com[tid]) # XXX consider the velocity of the COM v = (x_com - x_com_prev) / dt dq = q * wp.quat_inverse(q_prev) omega = 2.0 / dt * wp.vec3(dq[0], dq[1], dq[2]) if dq[3] < 0.0: omega = -omega qd_out[tid] = wp.spatial_vector(omega, v) @wp.kernel def apply_rigid_restitution( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_q_prev: wp.array(dtype=wp.transform), body_qd_prev: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), body_m_inv: wp.array(dtype=float), body_I_inv: wp.array(dtype=wp.mat33), contact_count: wp.array(dtype=int), contact_body0: wp.array(dtype=int), contact_body1: wp.array(dtype=int), contact_normal: wp.array(dtype=wp.vec3), contact_shape0: wp.array(dtype=int), contact_shape1: wp.array(dtype=int), shape_materials: ModelShapeMaterials, active_contact_distance: wp.array(dtype=float), active_contact_point0: wp.array(dtype=wp.vec3), active_contact_point1: wp.array(dtype=wp.vec3), contact_inv_weight: wp.array(dtype=float), gravity: wp.vec3, dt: float, # outputs deltas: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() count = contact_count[0] if tid >= count: return d = active_contact_distance[tid] if d >= 0.0: return # use average contact material properties mat_nonzero = 0 restitution = 0.0 shape_a = contact_shape0[tid] shape_b = contact_shape1[tid] if shape_a >= 0: mat_nonzero += 1 restitution += shape_materials.restitution[shape_a] if shape_b >= 0: mat_nonzero += 1 restitution += shape_materials.restitution[shape_b] if mat_nonzero > 0: restitution /= float(mat_nonzero) body_a = contact_body0[tid] body_b = contact_body1[tid] m_inv_a = 0.0 m_inv_b = 0.0 I_inv_a = wp.mat33(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) I_inv_b = wp.mat33(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) # body to world transform X_wb_a_prev = wp.transform_identity() X_wb_b_prev = wp.transform_identity() # center of mass in body frame com_a = wp.vec3(0.0) com_b = wp.vec3(0.0) # previous velocity at contact points v_a = wp.vec3(0.0) v_b = wp.vec3(0.0) # new velocity at contact points v_a_new = wp.vec3(0.0) v_b_new = wp.vec3(0.0) # inverse mass used to compute the impulse inv_mass = 0.0 if body_a >= 0: X_wb_a_prev = body_q_prev[body_a] X_wb_a = body_q[body_a] m_inv_a = body_m_inv[body_a] I_inv_a = body_I_inv[body_a] com_a = body_com[body_a] if body_b >= 0: X_wb_b_prev = body_q_prev[body_b] X_wb_b = body_q[body_b] m_inv_b = body_m_inv[body_b] I_inv_b = body_I_inv[body_b] com_b = body_com[body_b] bx_a = active_contact_point0[tid] bx_b = active_contact_point1[tid] r_a = bx_a - wp.transform_point(X_wb_a, com_a) r_b = bx_b - wp.transform_point(X_wb_b, com_b) n = contact_normal[tid] if body_a >= 0: v_a = velocity_at_point(body_qd_prev[body_a], r_a) + gravity * dt v_a_new = velocity_at_point(body_qd[body_a], r_a) q_a = wp.transform_get_rotation(X_wb_a_prev) rxn = wp.quat_rotate_inv(q_a, wp.cross(r_a, n)) # Eq. 2 inv_mass_a = m_inv_a + wp.dot(rxn, I_inv_a * rxn) # if (contact_inv_weight): # if (contact_inv_weight[body_a] > 0.0): # inv_mass_a *= contact_inv_weight[body_a] inv_mass += inv_mass_a # inv_mass += m_inv_a + wp.dot(rxn, I_inv_a * rxn) if body_b >= 0: v_b = velocity_at_point(body_qd_prev[body_b], r_b) + gravity * dt v_b_new = velocity_at_point(body_qd[body_b], r_b) q_b = wp.transform_get_rotation(X_wb_b_prev) rxn = wp.quat_rotate_inv(q_b, wp.cross(r_b, n)) # Eq. 3 inv_mass_b = m_inv_b + wp.dot(rxn, I_inv_b * rxn) # if (contact_inv_weight): # if (contact_inv_weight[body_b] > 0.0): # inv_mass_b *= contact_inv_weight[body_b] inv_mass += inv_mass_b # inv_mass += m_inv_b + wp.dot(rxn, I_inv_b * rxn) if inv_mass == 0.0: return # Eq. 29 rel_vel_old = wp.dot(n, v_a - v_b) rel_vel_new = wp.dot(n, v_a_new - v_b_new) # Eq. 34 (Eq. 33 from the ACM paper, note the max operation) dv = n * (-rel_vel_new + wp.max(-restitution * rel_vel_old, 0.0)) # Eq. 33 p = dv / inv_mass if body_a >= 0: p_a = p if contact_inv_weight: if contact_inv_weight[body_a] > 0.0: p_a /= contact_inv_weight[body_a] q_a = wp.transform_get_rotation(X_wb_a) rxp = wp.quat_rotate_inv(q_a, wp.cross(r_a, p_a)) dq = wp.quat_rotate(q_a, I_inv_a * rxp) wp.atomic_add(deltas, body_a, wp.spatial_vector(dq, p_a * m_inv_a)) if body_b >= 0: p_b = p if contact_inv_weight: if contact_inv_weight[body_b] > 0.0: p_b /= contact_inv_weight[body_b] q_b = wp.transform_get_rotation(X_wb_b) rxp = wp.quat_rotate_inv(q_b, wp.cross(r_b, p_b)) dq = wp.quat_rotate(q_b, I_inv_b * rxp) wp.atomic_sub(deltas, body_b, wp.spatial_vector(dq, p_b * m_inv_b)) class XPBDIntegrator: """A implicit integrator using XPBD After constructing `Model` and `State` objects this time-integrator may be used to advance the simulation state forward in time. Example ------- .. code-block:: python integrator = wp.SemiImplicitIntegrator() # simulation loop for i in range(100): state = integrator.simulate(model, state_in, state_out, dt) """ def __init__( self, iterations=2, soft_body_relaxation=0.9, soft_contact_relaxation=0.9, joint_linear_relaxation=0.7, joint_angular_relaxation=0.4, rigid_contact_relaxation=0.8, rigid_contact_con_weighting=True, angular_damping=0.0, enable_restitution=False, ): self.iterations = iterations self.soft_body_relaxation = soft_body_relaxation self.soft_contact_relaxation = soft_contact_relaxation self.joint_linear_relaxation = joint_linear_relaxation self.joint_angular_relaxation = joint_angular_relaxation self.rigid_contact_relaxation = rigid_contact_relaxation self.rigid_contact_con_weighting = rigid_contact_con_weighting self.angular_damping = angular_damping self.enable_restitution = enable_restitution def simulate(self, model, state_in, state_out, dt, requires_grad=False): with wp.ScopedTimer("simulate", False): particle_q = None particle_qd = None if model.particle_count: if requires_grad: particle_q = wp.zeros_like(state_in.particle_q) particle_qd = wp.zeros_like(state_in.particle_qd) else: particle_q = state_out.particle_q particle_qd = state_out.particle_qd wp.launch( kernel=integrate_particles, dim=model.particle_count, inputs=[ state_in.particle_q, state_in.particle_qd, state_in.particle_f, model.particle_inv_mass, model.particle_flags, model.gravity, dt, model.particle_max_velocity, ], outputs=[particle_q, particle_qd], device=model.device, ) if model.body_count: if model.joint_count: wp.launch( kernel=apply_joint_torques, dim=model.joint_count, inputs=[ state_in.body_q, model.body_com, model.joint_q_start, model.joint_qd_start, model.joint_type, model.joint_parent, model.joint_child, model.joint_X_p, model.joint_X_c, model.joint_axis_start, model.joint_axis_dim, model.joint_axis, model.joint_act, ], outputs=[state_in.body_f], device=model.device, ) wp.launch( kernel=integrate_bodies, dim=model.body_count, inputs=[ state_in.body_q, state_in.body_qd, state_in.body_f, model.body_com, model.body_mass, model.body_inertia, model.body_inv_mass, model.body_inv_inertia, model.gravity, self.angular_damping, dt, ], outputs=[state_out.body_q, state_out.body_qd], device=model.device, ) if model.spring_count: model.spring_constraint_lambdas.zero_() if model.edge_count: model.edge_constraint_lambdas.zero_() for i in range(self.iterations): # print(f"### iteration {i} / {self.iterations-1}") if model.body_count: if requires_grad: out_body_q = wp.clone(state_out.body_q) out_body_qd = wp.clone(state_out.body_qd) state_out.body_deltas = wp.zeros_like(state_out.body_deltas) else: out_body_q = state_out.body_q out_body_qd = state_out.body_qd state_out.body_deltas.zero_() else: out_body_q = None out_body_qd = None # ---------------------------- # handle particles if model.particle_count: if requires_grad: deltas = wp.zeros_like(state_out.particle_f) else: deltas = state_out.particle_f deltas.zero_() # particle ground contact if model.ground: wp.launch( kernel=solve_particle_ground_contacts, dim=model.particle_count, inputs=[ particle_q, particle_qd, model.particle_inv_mass, model.particle_radius, model.particle_flags, model.soft_contact_ke, model.soft_contact_kd, model.soft_contact_kf, model.soft_contact_mu, model.ground_plane, dt, self.soft_contact_relaxation, ], outputs=[deltas], device=model.device, ) # particle - rigid body contacts (besides ground plane) if model.shape_count > 1: wp.launch( kernel=solve_particle_shape_contacts, dim=model.soft_contact_max, inputs=[ particle_q, particle_qd, model.particle_inv_mass, model.particle_radius, model.particle_flags, out_body_q, out_body_qd, model.body_com, model.body_inv_mass, model.body_inv_inertia, model.shape_body, model.shape_materials, model.soft_contact_mu, model.particle_adhesion, model.soft_contact_count, model.soft_contact_particle, model.soft_contact_shape, model.soft_contact_body_pos, model.soft_contact_body_vel, model.soft_contact_normal, model.soft_contact_max, dt, self.soft_contact_relaxation, ], # outputs outputs=[deltas, state_out.body_deltas], device=model.device, ) if model.particle_max_radius > 0.0: wp.launch( kernel=solve_particle_particle_contacts, dim=model.particle_count, inputs=[ model.particle_grid.id, particle_q, particle_qd, model.particle_inv_mass, model.particle_radius, model.particle_flags, model.particle_mu, model.particle_cohesion, model.particle_max_radius, dt, self.soft_contact_relaxation, ], outputs=[deltas], device=model.device, ) # distance constraints if model.spring_count: wp.launch( kernel=solve_springs, dim=model.spring_count, inputs=[ particle_q, particle_qd, model.particle_inv_mass, model.spring_indices, model.spring_rest_length, model.spring_stiffness, model.spring_damping, dt, model.spring_constraint_lambdas, ], outputs=[deltas], device=model.device, ) # bending constraints if model.edge_count: wp.launch( kernel=bending_constraint, dim=model.edge_count, inputs=[ particle_q, particle_qd, model.particle_inv_mass, model.edge_indices, model.edge_rest_angle, model.edge_bending_properties, dt, model.edge_constraint_lambdas, ], outputs=[deltas], device=model.device, ) # tetrahedral FEM if model.tet_count: wp.launch( kernel=solve_tetrahedra, dim=model.tet_count, inputs=[ particle_q, particle_qd, model.particle_inv_mass, model.tet_indices, model.tet_poses, model.tet_activations, model.tet_materials, dt, self.soft_body_relaxation, ], outputs=[deltas], device=model.device, ) # apply particle deltas if requires_grad: new_particle_q = wp.clone(particle_q) new_particle_qd = wp.clone(particle_qd) else: new_particle_q = particle_q new_particle_qd = particle_qd wp.launch( kernel=apply_particle_deltas, dim=model.particle_count, inputs=[ state_in.particle_q, particle_q, model.particle_flags, deltas, dt, model.particle_max_velocity, ], outputs=[new_particle_q, new_particle_qd], device=model.device, ) if requires_grad: particle_q.assign(new_particle_q) particle_qd.assign(new_particle_qd) else: particle_q = new_particle_q particle_qd = new_particle_qd # handle rigid bodies # ---------------------------- if model.joint_count: wp.launch( kernel=solve_body_joints, dim=model.joint_count, inputs=[ state_out.body_q, state_out.body_qd, model.body_com, model.body_inv_mass, model.body_inv_inertia, model.joint_type, model.joint_enabled, model.joint_parent, model.joint_child, model.joint_X_p, model.joint_X_c, model.joint_limit_lower, model.joint_limit_upper, model.joint_axis_start, model.joint_axis_dim, model.joint_axis_mode, model.joint_axis, model.joint_target, model.joint_target_ke, model.joint_target_kd, model.joint_linear_compliance, model.joint_angular_compliance, self.joint_angular_relaxation, self.joint_linear_relaxation, dt, ], outputs=[state_out.body_deltas], device=model.device, ) # apply updates wp.launch( kernel=apply_body_deltas, dim=model.body_count, inputs=[ state_out.body_q, state_out.body_qd, model.body_com, model.body_inertia, model.body_inv_mass, model.body_inv_inertia, state_out.body_deltas, None, dt, ], outputs=[ out_body_q, out_body_qd, ], device=model.device, ) if model.body_count and requires_grad: # update state state_out.body_q.assign(out_body_q) state_out.body_qd.assign(out_body_qd) # Solve rigid contact constraints if model.rigid_contact_max and ( model.ground and model.shape_ground_contact_pair_count or model.shape_contact_pair_count ): rigid_contact_inv_weight = None if requires_grad: body_deltas = wp.zeros_like(state_out.body_deltas) rigid_active_contact_distance = wp.zeros_like(model.rigid_active_contact_distance) rigid_active_contact_point0 = wp.empty_like( model.rigid_active_contact_point0, requires_grad=True ) rigid_active_contact_point1 = wp.empty_like( model.rigid_active_contact_point1, requires_grad=True ) if self.rigid_contact_con_weighting: rigid_contact_inv_weight = wp.zeros_like(model.rigid_contact_inv_weight) else: body_deltas = state_out.body_deltas body_deltas.zero_() rigid_active_contact_distance = model.rigid_active_contact_distance rigid_active_contact_point0 = model.rigid_active_contact_point0 rigid_active_contact_point1 = model.rigid_active_contact_point1 rigid_active_contact_distance.zero_() if self.rigid_contact_con_weighting: rigid_contact_inv_weight = model.rigid_contact_inv_weight rigid_contact_inv_weight.zero_() wp.launch( kernel=solve_body_contact_positions, dim=model.rigid_contact_max, inputs=[ state_out.body_q, state_out.body_qd, model.body_com, model.body_inv_mass, model.body_inv_inertia, model.rigid_contact_count, model.rigid_contact_body0, model.rigid_contact_body1, model.rigid_contact_point0, model.rigid_contact_point1, model.rigid_contact_offset0, model.rigid_contact_offset1, model.rigid_contact_normal, model.rigid_contact_thickness, model.rigid_contact_shape0, model.rigid_contact_shape1, model.shape_materials, self.rigid_contact_relaxation, dt, model.rigid_contact_torsional_friction, model.rigid_contact_rolling_friction, ], outputs=[ body_deltas, rigid_active_contact_point0, rigid_active_contact_point1, rigid_active_contact_distance, rigid_contact_inv_weight, ], device=model.device, ) if self.enable_restitution and i == 0: # remember the contacts from the first iteration if requires_grad: model.rigid_active_contact_distance_prev = wp.clone(rigid_active_contact_distance) model.rigid_active_contact_point0_prev = wp.clone(rigid_active_contact_point0) model.rigid_active_contact_point1_prev = wp.clone(rigid_active_contact_point1) if self.rigid_contact_con_weighting: model.rigid_contact_inv_weight_prev = wp.clone(rigid_contact_inv_weight) else: model.rigid_contact_inv_weight_prev = None else: model.rigid_active_contact_distance_prev.assign(rigid_active_contact_distance) model.rigid_active_contact_point0_prev.assign(rigid_active_contact_point0) model.rigid_active_contact_point1_prev.assign(rigid_active_contact_point1) if self.rigid_contact_con_weighting: model.rigid_contact_inv_weight_prev.assign(rigid_contact_inv_weight) else: model.rigid_contact_inv_weight_prev = None if requires_grad: model.rigid_active_contact_distance = rigid_active_contact_distance model.rigid_active_contact_point0 = rigid_active_contact_point0 model.rigid_active_contact_point1 = rigid_active_contact_point1 body_q = wp.clone(state_out.body_q) body_qd = wp.clone(state_out.body_qd) else: body_q = state_out.body_q body_qd = state_out.body_qd # apply updates wp.launch( kernel=apply_body_deltas, dim=model.body_count, inputs=[ state_out.body_q, state_out.body_qd, model.body_com, model.body_inertia, model.body_inv_mass, model.body_inv_inertia, body_deltas, rigid_contact_inv_weight, dt, ], outputs=[ body_q, body_qd, ], device=model.device, ) if requires_grad: state_out.body_q = body_q state_out.body_qd = body_qd # update body velocities from position changes if model.body_count and not requires_grad: # causes gradient issues (probably due to numerical problems # when computing velocities from position changes) if requires_grad: out_body_qd = wp.clone(state_out.body_qd) else: out_body_qd = state_out.body_qd # update body velocities wp.launch( kernel=update_body_velocities, dim=model.body_count, inputs=[state_out.body_q, state_in.body_q, model.body_com, dt], outputs=[out_body_qd], device=model.device, ) if requires_grad: state_out.body_qd.assign(out_body_qd) if self.enable_restitution: if model.particle_count: if requires_grad: new_particle_qd = wp.clone(particle_qd) else: new_particle_qd = particle_qd wp.launch( kernel=apply_soft_restitution_ground, dim=model.particle_count, inputs=[ particle_q, particle_qd, state_in.particle_q, state_in.particle_qd, model.particle_inv_mass, model.particle_radius, model.particle_flags, model.soft_contact_restitution, model.ground_plane, dt, self.soft_contact_relaxation, ], outputs=[new_particle_qd], device=model.device, ) if requires_grad: particle_qd.assign(new_particle_qd) else: particle_qd = new_particle_qd if model.body_count: if requires_grad: state_out.body_deltas = wp.zeros_like(state_out.body_deltas) else: state_out.body_deltas.zero_() wp.launch( kernel=apply_rigid_restitution, dim=model.rigid_contact_max, inputs=[ state_out.body_q, state_out.body_qd, state_in.body_q, state_in.body_qd, model.body_com, model.body_inv_mass, model.body_inv_inertia, model.rigid_contact_count, model.rigid_contact_body0, model.rigid_contact_body1, model.rigid_contact_normal, model.rigid_contact_shape0, model.rigid_contact_shape1, model.shape_materials, model.rigid_active_contact_distance_prev, model.rigid_active_contact_point0_prev, model.rigid_active_contact_point1_prev, model.rigid_contact_inv_weight_prev, model.gravity, dt, ], outputs=[ state_out.body_deltas, ], device=model.device, ) wp.launch( kernel=apply_body_delta_velocities, dim=model.body_count, inputs=[ state_out.body_qd, state_out.body_deltas, ], outputs=[state_out.body_qd], device=model.device, ) if model.particle_count: # update particle state state_out.particle_q.assign(particle_q) state_out.particle_qd.assign(particle_qd) return state_out
warp-main
warp/sim/integrator_xpbd.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Helper functions for computing rigid body inertia properties. """ import warp as wp import numpy as np import math from typing import List, Union @wp.func def triangle_inertia( p: wp.vec3, q: wp.vec3, r: wp.vec3, density: float, com: wp.vec3, # outputs mass: wp.array(dtype=float, ndim=1), inertia: wp.array(dtype=wp.mat33, ndim=1), ): pcom = p - com qcom = q - com rcom = r - com Dm = wp.mat33(pcom[0], qcom[0], rcom[0], pcom[1], qcom[1], rcom[1], pcom[2], qcom[2], rcom[2]) volume = wp.determinant(Dm) / 6.0 # accumulate mass wp.atomic_add(mass, 0, 4.0 * density * volume) alpha = wp.sqrt(5.0) / 5.0 mid = (com + p + q + r) / 4.0 off_mid = mid - com # displacement of quadrature point from COM d0 = alpha * (p - mid) + off_mid d1 = alpha * (q - mid) + off_mid d2 = alpha * (r - mid) + off_mid d3 = alpha * (com - mid) + off_mid # accumulate inertia identity = wp.mat33(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0) I = wp.dot(d0, d0) * identity - wp.outer(d0, d0) I += wp.dot(d1, d1) * identity - wp.outer(d1, d1) I += wp.dot(d2, d2) * identity - wp.outer(d2, d2) I += wp.dot(d3, d3) * identity - wp.outer(d3, d3) wp.atomic_add(inertia, 0, (density * volume) * I) return volume @wp.kernel def compute_solid_mesh_inertia( # inputs com: wp.vec3, weight: float, indices: wp.array(dtype=int, ndim=1), vertices: wp.array(dtype=wp.vec3, ndim=1), # outputs mass: wp.array(dtype=float, ndim=1), inertia: wp.array(dtype=wp.mat33, ndim=1), volume: wp.array(dtype=float, ndim=1), ): i = wp.tid() p = vertices[indices[i * 3 + 0]] q = vertices[indices[i * 3 + 1]] r = vertices[indices[i * 3 + 2]] vol = triangle_inertia(p, q, r, weight, com, mass, inertia) wp.atomic_add(volume, 0, vol) @wp.kernel def compute_hollow_mesh_inertia( # inputs com: wp.vec3, density: float, indices: wp.array(dtype=int, ndim=1), vertices: wp.array(dtype=wp.vec3, ndim=1), thickness: wp.array(dtype=float, ndim=1), # outputs mass: wp.array(dtype=float, ndim=1), inertia: wp.array(dtype=wp.mat33, ndim=1), volume: wp.array(dtype=float, ndim=1), ): tid = wp.tid() i = indices[tid * 3 + 0] j = indices[tid * 3 + 1] k = indices[tid * 3 + 2] vi = vertices[i] vj = vertices[j] vk = vertices[k] normal = -wp.normalize(wp.cross(vj - vi, vk - vi)) ti = normal * thickness[i] tj = normal * thickness[j] tk = normal * thickness[k] # wedge vertices vi0 = vi - ti vi1 = vi + ti vj0 = vj - tj vj1 = vj + tj vk0 = vk - tk vk1 = vk + tk triangle_inertia(vi0, vj0, vk0, density, com, mass, inertia) triangle_inertia(vj0, vk1, vk0, density, com, mass, inertia) triangle_inertia(vj0, vj1, vk1, density, com, mass, inertia) triangle_inertia(vj0, vi1, vj1, density, com, mass, inertia) triangle_inertia(vj0, vi0, vi1, density, com, mass, inertia) triangle_inertia(vj1, vi1, vk1, density, com, mass, inertia) triangle_inertia(vi1, vi0, vk0, density, com, mass, inertia) triangle_inertia(vi1, vk0, vk1, density, com, mass, inertia) # compute volume a = wp.length(wp.cross(vj - vi, vk - vi)) * 0.5 vol = a * (thickness[i] + thickness[j] + thickness[k]) / 3.0 wp.atomic_add(volume, 0, vol) def compute_sphere_inertia(density: float, r: float) -> tuple: """Helper to compute mass and inertia of a solid sphere Args: density: The sphere density r: The sphere radius Returns: A tuple of (mass, inertia) with inertia specified around the origin """ v = 4.0 / 3.0 * math.pi * r * r * r m = density * v Ia = 2.0 / 5.0 * m * r * r I = np.array([[Ia, 0.0, 0.0], [0.0, Ia, 0.0], [0.0, 0.0, Ia]]) return (m, np.zeros(3), I) def compute_capsule_inertia(density: float, r: float, h: float) -> tuple: """Helper to compute mass and inertia of a solid capsule extending along the y-axis Args: density: The capsule density r: The capsule radius h: The capsule height (full height of the interior cylinder) Returns: A tuple of (mass, inertia) with inertia specified around the origin """ ms = density * (4.0 / 3.0) * math.pi * r * r * r mc = density * math.pi * r * r * h # total mass m = ms + mc # adapted from ODE Ia = mc * (0.25 * r * r + (1.0 / 12.0) * h * h) + ms * (0.4 * r * r + 0.375 * r * h + 0.25 * h * h) Ib = (mc * 0.5 + ms * 0.4) * r * r I = np.array([[Ia, 0.0, 0.0], [0.0, Ib, 0.0], [0.0, 0.0, Ia]]) return (m, np.zeros(3), I) def compute_cylinder_inertia(density: float, r: float, h: float) -> tuple: """Helper to compute mass and inertia of a solid cylinder extending along the y-axis Args: density: The cylinder density r: The cylinder radius h: The cylinder height (extent along the y-axis) Returns: A tuple of (mass, inertia) with inertia specified around the origin """ m = density * math.pi * r * r * h Ia = 1 / 12 * m * (3 * r * r + h * h) Ib = 1 / 2 * m * r * r I = np.array([[Ia, 0.0, 0.0], [0.0, Ib, 0.0], [0.0, 0.0, Ia]]) return (m, np.zeros(3), I) def compute_cone_inertia(density: float, r: float, h: float) -> tuple: """Helper to compute mass and inertia of a solid cone extending along the y-axis Args: density: The cone density r: The cone radius h: The cone height (extent along the y-axis) Returns: A tuple of (mass, inertia) with inertia specified around the origin """ m = density * math.pi * r * r * h / 3.0 Ia = 1 / 20 * m * (3 * r * r + 2 * h * h) Ib = 3 / 10 * m * r * r I = np.array([[Ia, 0.0, 0.0], [0.0, Ib, 0.0], [0.0, 0.0, Ia]]) return (m, np.zeros(3), I) def compute_box_inertia(density: float, w: float, h: float, d: float) -> tuple: """Helper to compute mass and inertia of a solid box Args: density: The box density w: The box width along the x-axis h: The box height along the y-axis d: The box depth along the z-axis Returns: A tuple of (mass, inertia) with inertia specified around the origin """ v = w * h * d m = density * v Ia = 1.0 / 12.0 * m * (h * h + d * d) Ib = 1.0 / 12.0 * m * (w * w + d * d) Ic = 1.0 / 12.0 * m * (w * w + h * h) I = np.array([[Ia, 0.0, 0.0], [0.0, Ib, 0.0], [0.0, 0.0, Ic]]) return (m, np.zeros(3), I) def compute_mesh_inertia( density: float, vertices: list, indices: list, is_solid: bool = True, thickness: Union[List[float], float] = 0.001 ) -> tuple: """Computes mass, center of mass, 3x3 inertia matrix, and volume for a mesh.""" com = np.mean(vertices, 0) com_warp = wp.vec3(com[0], com[1], com[2]) num_tris = len(indices) // 3 # compute signed inertia for each tetrahedron # formed with the interior point, using an order-2 # quadrature: https://www.sciencedirect.com/science/article/pii/S0377042712001604#br000040 # Allocating for mass and inertia I_warp = wp.zeros(1, dtype=wp.mat33) mass_warp = wp.zeros(1, dtype=float) vol_warp = wp.zeros(1, dtype=float) if is_solid: weight = 0.25 alpha = math.sqrt(5.0) / 5.0 wp.launch( kernel=compute_solid_mesh_inertia, dim=num_tris, inputs=[ com_warp, weight, wp.array(indices, dtype=int), wp.array(vertices, dtype=wp.vec3), ], outputs=[mass_warp, I_warp, vol_warp], ) else: weight = 0.25 * density if isinstance(thickness, float): thickness = [thickness] * len(vertices) wp.launch( kernel=compute_hollow_mesh_inertia, dim=num_tris, inputs=[ com_warp, weight, wp.array(indices, dtype=int), wp.array(vertices, dtype=wp.vec3), wp.array(thickness, dtype=float), ], outputs=[mass_warp, I_warp, vol_warp], ) # Extract mass and inertia and save to class attributes. mass = mass_warp.numpy()[0] * density I = I_warp.numpy()[0] * density volume = vol_warp.numpy()[0] return mass, com, I, volume def transform_inertia(m, I, p, q): R = np.array(wp.quat_to_matrix(q)).reshape(3, 3) # Steiner's theorem return R @ I @ R.T + m * (np.dot(p, p) * np.eye(3) - np.outer(p, p))
warp-main
warp/sim/inertia.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from .model import State, Model, ModelBuilder, Mesh, SDF from .model import GEO_SPHERE from .model import GEO_BOX from .model import GEO_CAPSULE from .model import GEO_CYLINDER from .model import GEO_CONE from .model import GEO_MESH from .model import GEO_SDF from .model import GEO_PLANE from .model import GEO_NONE from .model import ModelShapeGeometry from .model import JOINT_MODE_LIMIT from .model import JOINT_MODE_TARGET_POSITION from .model import JOINT_MODE_TARGET_VELOCITY from .model import JointAxis from .model import ModelShapeMaterials from .model import JOINT_PRISMATIC from .model import JOINT_REVOLUTE from .model import JOINT_BALL from .model import JOINT_FIXED from .model import JOINT_FREE from .model import JOINT_COMPOUND from .model import JOINT_UNIVERSAL from .model import JOINT_DISTANCE from .model import JOINT_D6 from .integrator_euler import SemiImplicitIntegrator from .integrator_euler import VariationalImplicitIntegrator from .integrator_xpbd import XPBDIntegrator from .collide import collide from .articulation import eval_fk, eval_ik from .import_mjcf import parse_mjcf from .import_urdf import parse_urdf from .import_snu import parse_snu from .import_usd import parse_usd
warp-main
warp/sim/__init__.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import xml.etree.ElementTree as ET from typing import Union import numpy as np import warp as wp from warp.sim.model import Mesh def parse_urdf( urdf_filename, builder, xform=wp.transform(), floating=False, base_joint: Union[dict, str] = None, density=1000.0, stiffness=100.0, damping=10.0, armature=0.0, shape_ke=1.0e4, shape_kd=1.0e3, shape_kf=1.0e2, shape_mu=0.25, shape_restitution=0.5, shape_thickness=0.0, limit_ke=100.0, limit_kd=10.0, scale=1.0, parse_visuals_as_colliders=False, enable_self_collisions=True, ignore_inertial_definitions=True, ensure_nonstatic_links=True, static_link_mass=1e-2, collapse_fixed_joints=False, ): """ Parses a URDF file and adds the bodies and joints to the given ModelBuilder. Args: urdf_filename (str): The filename of the URDF file to parse. builder (ModelBuilder): The :class:`ModelBuilder` to add the bodies and joints to. xform (wp.transform): The transform to apply to the root body. floating (bool): If True, the root body is a free joint. If False, the root body is connected via a fixed joint to the world, unless a `base_joint` is defined. base_joint (Union[str, dict]): The joint by which the root body is connected to the world. This can be either a string defining the joint axes of a D6 joint with comma-separated positional and angular axis names (e.g. "px,py,rz" for a D6 joint with linear axes in x, y and an angular axis in z) or a dict with joint parameters (see :meth:`ModelBuilder.add_joint`). density (float): The density of the shapes in kg/m^3 which will be used to calculate the body mass and inertia. stiffness (float): The stiffness of the joints. damping (float): The damping of the joints. armature (float): The armature of the joints (bias to add to the inertia diagonals that may stabilize the simulation). shape_ke (float): The stiffness of the shape contacts (used by SemiImplicitIntegrator). shape_kd (float): The damping of the shape contacts (used by SemiImplicitIntegrator). shape_kf (float): The friction stiffness of the shape contacts (used by SemiImplicitIntegrator). shape_mu (float): The friction coefficient of the shape contacts. shape_restitution (float): The restitution coefficient of the shape contacts. shape_thickness (float): The thickness to add to the shape geometry. limit_ke (float): The stiffness of the joint limits (used by SemiImplicitIntegrator). limit_kd (float): The damping of the joint limits (used by SemiImplicitIntegrator). scale (float): The scaling factor to apply to the imported mechanism. parse_visuals_as_colliders (bool): If True, the geometry defined under the `<visual>` tags is used for collision handling instead of the `<collision>` geoemtries. enable_self_collisions (bool): If True, self-collisions are enabled. ignore_inertial_definitions (bool): If True, the inertial parameters defined in the URDF are ignored and the inertia is calculated from the shape geometry. ensure_nonstatic_links (bool): If True, links with zero mass are given a small mass (see `static_link_mass`) to ensure they are dynamic. static_link_mass (float): The mass to assign to links with zero mass (if `ensure_nonstatic_links` is set to True). collapse_fixed_joints (bool): If True, fixed joints are removed and the respective bodies are merged. """ file = ET.parse(urdf_filename) root = file.getroot() def parse_transform(element): if element is None or element.find("origin") is None: return wp.transform() origin = element.find("origin") xyz = origin.get("xyz") or "0 0 0" rpy = origin.get("rpy") or "0 0 0" xyz = [float(x) * scale for x in xyz.split()] rpy = [float(x) for x in rpy.split()] return wp.transform(xyz, wp.quat_rpy(*rpy)) def parse_shapes(link, collisions, density, incoming_xform=None): # add geometry for collision in collisions: geo = collision.find("geometry") if geo is None: continue tf = parse_transform(collision) if incoming_xform is not None: tf = incoming_xform * tf for box in geo.findall("box"): size = box.get("size") or "1 1 1" size = [float(x) for x in size.split()] builder.add_shape_box( body=link, pos=tf.p, rot=tf.q, hx=size[0] * 0.5 * scale, hy=size[1] * 0.5 * scale, hz=size[2] * 0.5 * scale, density=density, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu, restitution=shape_restitution, thickness=shape_thickness, ) for sphere in geo.findall("sphere"): builder.add_shape_sphere( body=link, pos=tf.p, rot=tf.q, radius=float(sphere.get("radius") or "1") * scale, density=density, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu, restitution=shape_restitution, thickness=shape_thickness, ) for cylinder in geo.findall("cylinder"): builder.add_shape_capsule( body=link, pos=tf.p, rot=tf.q, radius=float(cylinder.get("radius") or "1") * scale, half_height=float(cylinder.get("length") or "1") * 0.5 * scale, density=density, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu, up_axis=2, # cylinders in URDF are aligned with z-axis restitution=shape_restitution, thickness=shape_thickness, ) for mesh in geo.findall("mesh"): filename = mesh.get("filename") if filename is None: continue if filename.startswith("http://") or filename.startswith("https://"): # download mesh import shutil import tempfile import requests with tempfile.TemporaryDirectory() as tmpdir: # get filename extension extension = os.path.splitext(filename)[1] tmpfile = os.path.join(tmpdir, "mesh" + extension) with requests.get(filename, stream=True) as r: with open(tmpfile, "wb") as f: shutil.copyfileobj(r.raw, f) filename = tmpfile else: filename = os.path.join(os.path.dirname(urdf_filename), filename) if not os.path.exists(filename): wp.utils.warn(f"Warning: mesh file {filename} does not exist") continue import trimesh m = trimesh.load_mesh(filename) scaling = mesh.get("scale") or "1 1 1" scaling = np.array([float(x) * scale for x in scaling.split()]) if hasattr(m, "geometry"): # multiple meshes are contained in a scene for geom in m.geometry.values(): vertices = np.array(geom.vertices, dtype=np.float32) * scaling faces = np.array(geom.faces, dtype=np.int32) mesh = Mesh(vertices, faces) builder.add_shape_mesh( body=link, pos=tf.p, rot=tf.q, mesh=mesh, density=density, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu, restitution=shape_restitution, thickness=shape_thickness, ) else: # a single mesh vertices = np.array(m.vertices, dtype=np.float32) * scaling faces = np.array(m.faces, dtype=np.int32) mesh = Mesh(vertices, faces) builder.add_shape_mesh( body=link, pos=tf.p, rot=tf.q, mesh=mesh, density=density, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu, restitution=shape_restitution, thickness=shape_thickness, ) # maps from link name -> link index link_index = {} builder.add_articulation() start_shape_count = len(builder.shape_geo_type) # add links for i, urdf_link in enumerate(root.findall("link")): if parse_visuals_as_colliders: colliders = urdf_link.findall("visual") else: colliders = urdf_link.findall("collision") name = urdf_link.get("name") link = builder.add_body(origin=wp.transform_identity(), armature=armature, name=name) # add ourselves to the index link_index[name] = link parse_shapes(link, colliders, density=density) m = builder.body_mass[link] if not ignore_inertial_definitions and urdf_link.find("inertial") is not None: # overwrite inertial parameters if defined inertial = urdf_link.find("inertial") inertial_frame = parse_transform(inertial) com = inertial_frame.p I_m = np.zeros((3, 3)) I_m[0, 0] = float(inertial.find("inertia").get("ixx") or "0") * scale**2 I_m[1, 1] = float(inertial.find("inertia").get("iyy") or "0") * scale**2 I_m[2, 2] = float(inertial.find("inertia").get("izz") or "0") * scale**2 I_m[0, 1] = float(inertial.find("inertia").get("ixy") or "0") * scale**2 I_m[0, 2] = float(inertial.find("inertia").get("ixz") or "0") * scale**2 I_m[1, 2] = float(inertial.find("inertia").get("iyz") or "0") * scale**2 I_m[1, 0] = I_m[0, 1] I_m[2, 0] = I_m[0, 2] I_m[2, 1] = I_m[1, 2] rot = wp.quat_to_matrix(inertial_frame.q) I_m = rot @ I_m m = float(inertial.find("mass").get("value") or "0") builder.body_mass[link] = m builder.body_inv_mass[link] = 1.0 / m builder.body_com[link] = com builder.body_inertia[link] = I_m builder.body_inv_inertia[link] = np.linalg.inv(I_m) if m == 0.0 and ensure_nonstatic_links: # set the mass to something nonzero to ensure the body is dynamic m = static_link_mass # cube with side length 0.5 I_m = np.eye(3) * m / 12.0 * (0.5 * scale) ** 2 * 2.0 builder.body_mass[link] = m builder.body_inv_mass[link] = 1.0 / m builder.body_inertia[link] = I_m builder.body_inv_inertia[link] = np.linalg.inv(I_m) end_shape_count = len(builder.shape_geo_type) # find joints per body body_children = {name: [] for name in link_index.keys()} # mapping from parent, child link names to joint parent_child_joint = {} joints = [] for joint in root.findall("joint"): parent = joint.find("parent").get("link") child = joint.find("child").get("link") body_children[parent].append(child) joint_data = { "name": joint.get("name"), "parent": parent, "child": child, "type": joint.get("type"), "origin": parse_transform(joint), "damping": damping, "friction": 0.0, "limit_lower": -1.0e6, "limit_upper": 1.0e6, } if joint.find("axis") is not None: joint_data["axis"] = joint.find("axis").get("xyz") joint_data["axis"] = np.array([float(x) for x in joint_data["axis"].split()]) if joint.find("dynamics") is not None: dynamics = joint.find("dynamics") joint_data["damping"] = float(dynamics.get("damping") or str(damping)) joint_data["friction"] = float(dynamics.get("friction") or "0") if joint.find("limit") is not None: limit = joint.find("limit") joint_data["limit_lower"] = float(limit.get("lower") or "-1e6") joint_data["limit_upper"] = float(limit.get("upper") or "1e6") if joint.find("mimic") is not None: mimic = joint.find("mimic") joint_data["mimic_joint"] = mimic.get("joint") joint_data["mimic_multiplier"] = float(mimic.get("multiplier") or "1") joint_data["mimic_offset"] = float(mimic.get("offset") or "0") parent_child_joint[(parent, child)] = joint_data joints.append(joint_data) # topological sorting of joints because the FK solver will resolve body transforms # in joint order and needs the parent link transform to be resolved before the child visited = {name: False for name in link_index.keys()} sorted_joints = [] # depth-first search def dfs(joint): link = joint["child"] if visited[link]: return visited[link] = True for child in body_children[link]: if not visited[child]: dfs(parent_child_joint[(link, child)]) sorted_joints.insert(0, joint) # start DFS from each unvisited joint for joint in joints: if not visited[joint["parent"]]: dfs(joint) # add base joint if len(sorted_joints) > 0: base_link_name = sorted_joints[0]["parent"] else: base_link_name = next(iter(link_index.keys())) root = link_index[base_link_name] if base_joint is not None: # in case of a given base joint, the position is applied first, the rotation only # after the base joint itself to not rotate its axis base_parent_xform = wp.transform(xform.p, wp.quat_identity()) base_child_xform = wp.transform((0.0, 0.0, 0.0), wp.quat_inverse(xform.q)) if isinstance(base_joint, str): axes = base_joint.lower().split(",") axes = [ax.strip() for ax in axes] linear_axes = [ax[-1] for ax in axes if ax[0] in {"l", "p"}] angular_axes = [ax[-1] for ax in axes if ax[0] in {"a", "r"}] axes = { "x": [1.0, 0.0, 0.0], "y": [0.0, 1.0, 0.0], "z": [0.0, 0.0, 1.0], } builder.add_joint_d6( linear_axes=[wp.sim.JointAxis(axes[a]) for a in linear_axes], angular_axes=[wp.sim.JointAxis(axes[a]) for a in angular_axes], parent_xform=base_parent_xform, child_xform=base_child_xform, parent=-1, child=root, name="base_joint", ) elif isinstance(base_joint, dict): base_joint["parent"] = -1 base_joint["child"] = root base_joint["parent_xform"] = base_parent_xform base_joint["child_xform"] = base_child_xform base_joint["name"] = "base_joint" builder.add_joint(**base_joint) else: raise ValueError( "base_joint must be a comma-separated string of joint axes or a dict with joint parameters" ) elif floating: builder.add_joint_free(root, name="floating_base") # set dofs to transform start = builder.joint_q_start[root] builder.joint_q[start + 0] = xform.p[0] builder.joint_q[start + 1] = xform.p[1] builder.joint_q[start + 2] = xform.p[2] builder.joint_q[start + 3] = xform.q[0] builder.joint_q[start + 4] = xform.q[1] builder.joint_q[start + 5] = xform.q[2] builder.joint_q[start + 6] = xform.q[3] else: builder.add_joint_fixed(-1, root, parent_xform=xform, name="fixed_base") # add joints, in topological order starting from root body for joint in sorted_joints: parent = link_index[joint["parent"]] child = link_index[joint["child"]] if child == -1: # we skipped the insertion of the child body continue lower = joint["limit_lower"] upper = joint["limit_upper"] joint_damping = joint["damping"] parent_xform = joint["origin"] child_xform = wp.transform_identity() joint_mode = wp.sim.JOINT_MODE_LIMIT if stiffness > 0.0: joint_mode = wp.sim.JOINT_MODE_TARGET_POSITION joint_params = dict( parent=parent, child=child, parent_xform=parent_xform, child_xform=child_xform, name=joint["name"], ) if joint["type"] == "revolute" or joint["type"] == "continuous": builder.add_joint_revolute( axis=joint["axis"], target_ke=stiffness, target_kd=joint_damping, limit_lower=lower, limit_upper=upper, limit_ke=limit_ke, limit_kd=limit_kd, mode=joint_mode, **joint_params, ) elif joint["type"] == "prismatic": builder.add_joint_prismatic( axis=joint["axis"], target_ke=stiffness, target_kd=joint_damping, limit_lower=lower * scale, limit_upper=upper * scale, limit_ke=limit_ke, limit_kd=limit_kd, mode=joint_mode, **joint_params, ) elif joint["type"] == "fixed": builder.add_joint_fixed(**joint_params) elif joint["type"] == "floating": builder.add_joint_free(**joint_params) elif joint["type"] == "planar": # find plane vectors perpendicular to axis axis = np.array(joint["axis"]) axis /= np.linalg.norm(axis) # create helper vector that is not parallel to the axis helper = np.array([1, 0, 0]) if np.allclose(axis, [0, 1, 0]) else np.array([0, 1, 0]) u = np.cross(helper, axis) u /= np.linalg.norm(u) v = np.cross(axis, u) v /= np.linalg.norm(v) builder.add_joint_d6( linear_axes=[ wp.sim.JointAxis( u, limit_lower=lower * scale, limit_upper=upper * scale, limit_ke=limit_ke, limit_kd=limit_kd ), wp.sim.JointAxis( v, limit_lower=lower * scale, limit_upper=upper * scale, limit_ke=limit_ke, limit_kd=limit_kd ), ], **joint_params, ) else: raise Exception("Unsupported joint type: " + joint["type"]) if not enable_self_collisions: for i in range(start_shape_count, end_shape_count): for j in range(i + 1, end_shape_count): builder.shape_collision_filter_pairs.add((i, j)) if collapse_fixed_joints: builder.collapse_fixed_joints()
warp-main
warp/sim/import_urdf.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """ Collision handling functions and kernels. """ import warp as wp from .model import PARTICLE_FLAG_ACTIVE, ModelShapeGeometry @wp.func def triangle_closest_point_barycentric(a: wp.vec3, b: wp.vec3, c: wp.vec3, p: wp.vec3): ab = b - a ac = c - a ap = p - a d1 = wp.dot(ab, ap) d2 = wp.dot(ac, ap) if d1 <= 0.0 and d2 <= 0.0: return wp.vec3(1.0, 0.0, 0.0) bp = p - b d3 = wp.dot(ab, bp) d4 = wp.dot(ac, bp) if d3 >= 0.0 and d4 <= d3: return wp.vec3(0.0, 1.0, 0.0) vc = d1 * d4 - d3 * d2 v = d1 / (d1 - d3) if vc <= 0.0 and d1 >= 0.0 and d3 <= 0.0: return wp.vec3(1.0 - v, v, 0.0) cp = p - c d5 = wp.dot(ab, cp) d6 = wp.dot(ac, cp) if d6 >= 0.0 and d5 <= d6: return wp.vec3(0.0, 0.0, 1.0) vb = d5 * d2 - d1 * d6 w = d2 / (d2 - d6) if vb <= 0.0 and d2 >= 0.0 and d6 <= 0.0: return wp.vec3(1.0 - w, 0.0, w) va = d3 * d6 - d5 * d4 w = (d4 - d3) / ((d4 - d3) + (d5 - d6)) if va <= 0.0 and (d4 - d3) >= 0.0 and (d5 - d6) >= 0.0: return wp.vec3(0.0, w, 1.0 - w) denom = 1.0 / (va + vb + vc) v = vb * denom w = vc * denom return wp.vec3(1.0 - v - w, v, w) @wp.func def sphere_sdf(center: wp.vec3, radius: float, p: wp.vec3): return wp.length(p - center) - radius @wp.func def sphere_sdf_grad(center: wp.vec3, radius: float, p: wp.vec3): return wp.normalize(p - center) @wp.func def box_sdf(upper: wp.vec3, p: wp.vec3): # adapted from https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm qx = abs(p[0]) - upper[0] qy = abs(p[1]) - upper[1] qz = abs(p[2]) - upper[2] e = wp.vec3(wp.max(qx, 0.0), wp.max(qy, 0.0), wp.max(qz, 0.0)) return wp.length(e) + wp.min(wp.max(qx, wp.max(qy, qz)), 0.0) @wp.func def box_sdf_grad(upper: wp.vec3, p: wp.vec3): qx = abs(p[0]) - upper[0] qy = abs(p[1]) - upper[1] qz = abs(p[2]) - upper[2] # exterior case if qx > 0.0 or qy > 0.0 or qz > 0.0: x = wp.clamp(p[0], -upper[0], upper[0]) y = wp.clamp(p[1], -upper[1], upper[1]) z = wp.clamp(p[2], -upper[2], upper[2]) return wp.normalize(p - wp.vec3(x, y, z)) sx = wp.sign(p[0]) sy = wp.sign(p[1]) sz = wp.sign(p[2]) # x projection if qx > qy and qx > qz or qy == 0.0 and qz == 0.0: return wp.vec3(sx, 0.0, 0.0) # y projection if qy > qx and qy > qz or qx == 0.0 and qz == 0.0: return wp.vec3(0.0, sy, 0.0) # z projection return wp.vec3(0.0, 0.0, sz) @wp.func def capsule_sdf(radius: float, half_height: float, p: wp.vec3): if p[1] > half_height: return wp.length(wp.vec3(p[0], p[1] - half_height, p[2])) - radius if p[1] < -half_height: return wp.length(wp.vec3(p[0], p[1] + half_height, p[2])) - radius return wp.length(wp.vec3(p[0], 0.0, p[2])) - radius @wp.func def capsule_sdf_grad(radius: float, half_height: float, p: wp.vec3): if p[1] > half_height: return wp.normalize(wp.vec3(p[0], p[1] - half_height, p[2])) if p[1] < -half_height: return wp.normalize(wp.vec3(p[0], p[1] + half_height, p[2])) return wp.normalize(wp.vec3(p[0], 0.0, p[2])) @wp.func def cylinder_sdf(radius: float, half_height: float, p: wp.vec3): dx = wp.length(wp.vec3(p[0], 0.0, p[2])) - radius dy = wp.abs(p[1]) - half_height return wp.min(wp.max(dx, dy), 0.0) + wp.length(wp.vec2(wp.max(dx, 0.0), wp.max(dy, 0.0))) @wp.func def cylinder_sdf_grad(radius: float, half_height: float, p: wp.vec3): dx = wp.length(wp.vec3(p[0], 0.0, p[2])) - radius dy = wp.abs(p[1]) - half_height if dx > dy: return wp.normalize(wp.vec3(p[0], 0.0, p[2])) return wp.vec3(0.0, wp.sign(p[1]), 0.0) @wp.func def cone_sdf(radius: float, half_height: float, p: wp.vec3): dx = wp.length(wp.vec3(p[0], 0.0, p[2])) - radius * (p[1] + half_height) / (2.0 * half_height) dy = wp.abs(p[1]) - half_height return wp.min(wp.max(dx, dy), 0.0) + wp.length(wp.vec2(wp.max(dx, 0.0), wp.max(dy, 0.0))) @wp.func def cone_sdf_grad(radius: float, half_height: float, p: wp.vec3): dx = wp.length(wp.vec3(p[0], 0.0, p[2])) - radius * (p[1] + half_height) / (2.0 * half_height) dy = wp.abs(p[1]) - half_height if dy < 0.0 or dx == 0.0: return wp.vec3(0.0, wp.sign(p[1]), 0.0) return wp.normalize(wp.vec3(p[0], 0.0, p[2])) + wp.vec3(0.0, radius / (2.0 * half_height), 0.0) @wp.func def plane_sdf(width: float, length: float, p: wp.vec3): # SDF for a quad in the xz plane if width > 0.0 and length > 0.0: d = wp.max(wp.abs(p[0]) - width, wp.abs(p[2]) - length) return wp.max(d, wp.abs(p[1])) return p[1] @wp.func def closest_point_plane(width: float, length: float, point: wp.vec3): # projects the point onto the quad in the xz plane (if width and length > 0.0, otherwise the plane is infinite) if width > 0.0: x = wp.clamp(point[0], -width, width) else: x = point[0] if length > 0.0: z = wp.clamp(point[2], -length, length) else: z = point[2] return wp.vec3(x, 0.0, z) @wp.func def closest_point_line_segment(a: wp.vec3, b: wp.vec3, point: wp.vec3): ab = b - a ap = point - a t = wp.dot(ap, ab) / wp.dot(ab, ab) t = wp.clamp(t, 0.0, 1.0) return a + t * ab @wp.func def closest_point_box(upper: wp.vec3, point: wp.vec3): # closest point to box surface x = wp.clamp(point[0], -upper[0], upper[0]) y = wp.clamp(point[1], -upper[1], upper[1]) z = wp.clamp(point[2], -upper[2], upper[2]) if wp.abs(point[0]) <= upper[0] and wp.abs(point[1]) <= upper[1] and wp.abs(point[2]) <= upper[2]: # the point is inside, find closest face sx = wp.abs(wp.abs(point[0]) - upper[0]) sy = wp.abs(wp.abs(point[1]) - upper[1]) sz = wp.abs(wp.abs(point[2]) - upper[2]) # return closest point on closest side, handle corner cases if sx < sy and sx < sz or sy == 0.0 and sz == 0.0: x = wp.sign(point[0]) * upper[0] elif sy < sx and sy < sz or sx == 0.0 and sz == 0.0: y = wp.sign(point[1]) * upper[1] else: z = wp.sign(point[2]) * upper[2] return wp.vec3(x, y, z) @wp.func def get_box_vertex(point_id: int, upper: wp.vec3): # get the vertex of the box given its ID (0-7) sign_x = float(point_id % 2) * 2.0 - 1.0 sign_y = float((point_id // 2) % 2) * 2.0 - 1.0 sign_z = float((point_id // 4) % 2) * 2.0 - 1.0 return wp.vec3(sign_x * upper[0], sign_y * upper[1], sign_z * upper[2]) @wp.func def get_box_edge(edge_id: int, upper: wp.vec3): # get the edge of the box given its ID (0-11) if edge_id < 4: # edges along x: 0-1, 2-3, 4-5, 6-7 i = edge_id * 2 j = i + 1 return wp.spatial_vector(get_box_vertex(i, upper), get_box_vertex(j, upper)) elif edge_id < 8: # edges along y: 0-2, 1-3, 4-6, 5-7 edge_id -= 4 i = edge_id % 2 + edge_id // 2 * 4 j = i + 2 return wp.spatial_vector(get_box_vertex(i, upper), get_box_vertex(j, upper)) # edges along z: 0-4, 1-5, 2-6, 3-7 edge_id -= 8 i = edge_id j = i + 4 return wp.spatial_vector(get_box_vertex(i, upper), get_box_vertex(j, upper)) @wp.func def get_plane_edge(edge_id: int, plane_width: float, plane_length: float): # get the edge of the plane given its ID (0-3) p0x = (2.0 * float(edge_id % 2) - 1.0) * plane_width p0z = (2.0 * float(edge_id // 2) - 1.0) * plane_length if edge_id == 0 or edge_id == 3: p1x = p0x p1z = -p0z else: p1x = -p0x p1z = p0z return wp.spatial_vector(wp.vec3(p0x, 0.0, p0z), wp.vec3(p1x, 0.0, p1z)) @wp.func def closest_edge_coordinate_box(upper: wp.vec3, edge_a: wp.vec3, edge_b: wp.vec3, max_iter: int): # find point on edge closest to box, return its barycentric edge coordinate # Golden-section search a = float(0.0) b = float(1.0) h = b - a invphi = 0.61803398875 # 1 / phi invphi2 = 0.38196601125 # 1 / phi^2 c = a + invphi2 * h d = a + invphi * h query = (1.0 - c) * edge_a + c * edge_b yc = box_sdf(upper, query) query = (1.0 - d) * edge_a + d * edge_b yd = box_sdf(upper, query) for k in range(max_iter): if yc < yd: # yc > yd to find the maximum b = d d = c yd = yc h = invphi * h c = a + invphi2 * h query = (1.0 - c) * edge_a + c * edge_b yc = box_sdf(upper, query) else: a = c c = d yc = yd h = invphi * h d = a + invphi * h query = (1.0 - d) * edge_a + d * edge_b yd = box_sdf(upper, query) if yc < yd: return 0.5 * (a + d) return 0.5 * (c + b) @wp.func def closest_edge_coordinate_plane( plane_width: float, plane_length: float, edge_a: wp.vec3, edge_b: wp.vec3, max_iter: int, ): # find point on edge closest to plane, return its barycentric edge coordinate # Golden-section search a = float(0.0) b = float(1.0) h = b - a invphi = 0.61803398875 # 1 / phi invphi2 = 0.38196601125 # 1 / phi^2 c = a + invphi2 * h d = a + invphi * h query = (1.0 - c) * edge_a + c * edge_b yc = plane_sdf(plane_width, plane_length, query) query = (1.0 - d) * edge_a + d * edge_b yd = plane_sdf(plane_width, plane_length, query) for k in range(max_iter): if yc < yd: # yc > yd to find the maximum b = d d = c yd = yc h = invphi * h c = a + invphi2 * h query = (1.0 - c) * edge_a + c * edge_b yc = plane_sdf(plane_width, plane_length, query) else: a = c c = d yc = yd h = invphi * h d = a + invphi * h query = (1.0 - d) * edge_a + d * edge_b yd = plane_sdf(plane_width, plane_length, query) if yc < yd: return 0.5 * (a + d) return 0.5 * (c + b) @wp.func def closest_edge_coordinate_capsule(radius: float, half_height: float, edge_a: wp.vec3, edge_b: wp.vec3, max_iter: int): # find point on edge closest to capsule, return its barycentric edge coordinate # Golden-section search a = float(0.0) b = float(1.0) h = b - a invphi = 0.61803398875 # 1 / phi invphi2 = 0.38196601125 # 1 / phi^2 c = a + invphi2 * h d = a + invphi * h query = (1.0 - c) * edge_a + c * edge_b yc = capsule_sdf(radius, half_height, query) query = (1.0 - d) * edge_a + d * edge_b yd = capsule_sdf(radius, half_height, query) for k in range(max_iter): if yc < yd: # yc > yd to find the maximum b = d d = c yd = yc h = invphi * h c = a + invphi2 * h query = (1.0 - c) * edge_a + c * edge_b yc = capsule_sdf(radius, half_height, query) else: a = c c = d yc = yd h = invphi * h d = a + invphi * h query = (1.0 - d) * edge_a + d * edge_b yd = capsule_sdf(radius, half_height, query) if yc < yd: return 0.5 * (a + d) return 0.5 * (c + b) @wp.func def mesh_sdf(mesh: wp.uint64, point: wp.vec3, max_dist: float): face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) res = wp.mesh_query_point_sign_normal(mesh, point, max_dist, sign, face_index, face_u, face_v) if res: closest = wp.mesh_eval_position(mesh, face_index, face_u, face_v) return wp.length(point - closest) * sign return max_dist @wp.func def closest_point_mesh(mesh: wp.uint64, point: wp.vec3, max_dist: float): face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) res = wp.mesh_query_point_sign_normal(mesh, point, max_dist, sign, face_index, face_u, face_v) if res: return wp.mesh_eval_position(mesh, face_index, face_u, face_v) # return arbitrary point from mesh return wp.mesh_eval_position(mesh, 0, 0.0, 0.0) @wp.func def closest_edge_coordinate_mesh(mesh: wp.uint64, edge_a: wp.vec3, edge_b: wp.vec3, max_iter: int, max_dist: float): # find point on edge closest to mesh, return its barycentric edge coordinate # Golden-section search a = float(0.0) b = float(1.0) h = b - a invphi = 0.61803398875 # 1 / phi invphi2 = 0.38196601125 # 1 / phi^2 c = a + invphi2 * h d = a + invphi * h query = (1.0 - c) * edge_a + c * edge_b yc = mesh_sdf(mesh, query, max_dist) query = (1.0 - d) * edge_a + d * edge_b yd = mesh_sdf(mesh, query, max_dist) for k in range(max_iter): if yc < yd: # yc > yd to find the maximum b = d d = c yd = yc h = invphi * h c = a + invphi2 * h query = (1.0 - c) * edge_a + c * edge_b yc = mesh_sdf(mesh, query, max_dist) else: a = c c = d yc = yd h = invphi * h d = a + invphi * h query = (1.0 - d) * edge_a + d * edge_b yd = mesh_sdf(mesh, query, max_dist) if yc < yd: return 0.5 * (a + d) return 0.5 * (c + b) @wp.func def volume_grad(volume: wp.uint64, p: wp.vec3): eps = 0.05 # TODO make this a parameter q = wp.volume_world_to_index(volume, p) # compute gradient of the SDF using finite differences dx = wp.volume_sample_f(volume, q + wp.vec3(eps, 0.0, 0.0), wp.Volume.LINEAR) - wp.volume_sample_f( volume, q - wp.vec3(eps, 0.0, 0.0), wp.Volume.LINEAR ) dy = wp.volume_sample_f(volume, q + wp.vec3(0.0, eps, 0.0), wp.Volume.LINEAR) - wp.volume_sample_f( volume, q - wp.vec3(0.0, eps, 0.0), wp.Volume.LINEAR ) dz = wp.volume_sample_f(volume, q + wp.vec3(0.0, 0.0, eps), wp.Volume.LINEAR) - wp.volume_sample_f( volume, q - wp.vec3(0.0, 0.0, eps), wp.Volume.LINEAR ) return wp.normalize(wp.vec3(dx, dy, dz)) @wp.kernel def create_soft_contacts( particle_x: wp.array(dtype=wp.vec3), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), body_X_wb: wp.array(dtype=wp.transform), shape_X_bs: wp.array(dtype=wp.transform), shape_body: wp.array(dtype=int), geo: ModelShapeGeometry, margin: float, soft_contact_max: int, # outputs soft_contact_count: wp.array(dtype=int), soft_contact_particle: wp.array(dtype=int), soft_contact_shape: wp.array(dtype=int), soft_contact_body_pos: wp.array(dtype=wp.vec3), soft_contact_body_vel: wp.array(dtype=wp.vec3), soft_contact_normal: wp.array(dtype=wp.vec3), ): particle_index, shape_index = wp.tid() if (particle_flags[particle_index] & PARTICLE_FLAG_ACTIVE) == 0: return rigid_index = shape_body[shape_index] px = particle_x[particle_index] radius = particle_radius[particle_index] X_wb = wp.transform_identity() if rigid_index >= 0: X_wb = body_X_wb[rigid_index] X_bs = shape_X_bs[shape_index] X_ws = wp.transform_multiply(X_wb, X_bs) X_sw = wp.transform_inverse(X_ws) # transform particle position to shape local space x_local = wp.transform_point(X_sw, px) # geo description geo_type = geo.type[shape_index] geo_scale = geo.scale[shape_index] # evaluate shape sdf d = 1.0e6 n = wp.vec3() v = wp.vec3() if geo_type == wp.sim.GEO_SPHERE: d = sphere_sdf(wp.vec3(), geo_scale[0], x_local) n = sphere_sdf_grad(wp.vec3(), geo_scale[0], x_local) if geo_type == wp.sim.GEO_BOX: d = box_sdf(geo_scale, x_local) n = box_sdf_grad(geo_scale, x_local) if geo_type == wp.sim.GEO_CAPSULE: d = capsule_sdf(geo_scale[0], geo_scale[1], x_local) n = capsule_sdf_grad(geo_scale[0], geo_scale[1], x_local) if geo_type == wp.sim.GEO_CYLINDER: d = cylinder_sdf(geo_scale[0], geo_scale[1], x_local) n = cylinder_sdf_grad(geo_scale[0], geo_scale[1], x_local) if geo_type == wp.sim.GEO_CONE: d = cone_sdf(geo_scale[0], geo_scale[1], x_local) n = cone_sdf_grad(geo_scale[0], geo_scale[1], x_local) if geo_type == wp.sim.GEO_MESH: mesh = geo.source[shape_index] face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) if wp.mesh_query_point_sign_normal( mesh, wp.cw_div(x_local, geo_scale), margin + radius, sign, face_index, face_u, face_v ): shape_p = wp.mesh_eval_position(mesh, face_index, face_u, face_v) shape_v = wp.mesh_eval_velocity(mesh, face_index, face_u, face_v) shape_p = wp.cw_mul(shape_p, geo_scale) shape_v = wp.cw_mul(shape_v, geo_scale) delta = x_local - shape_p d = wp.length(delta) * sign n = wp.normalize(delta) * sign v = shape_v if geo_type == wp.sim.GEO_SDF: volume = geo.source[shape_index] xpred_local = wp.volume_world_to_index(volume, wp.cw_div(x_local, geo_scale)) nn = wp.vec3(0.0, 0.0, 0.0) d = wp.volume_sample_grad_f(volume, xpred_local, wp.Volume.LINEAR, nn) n = wp.normalize(nn) if geo_type == wp.sim.GEO_PLANE: d = plane_sdf(geo_scale[0], geo_scale[1], x_local) n = wp.vec3(0.0, 1.0, 0.0) if d < margin + radius: index = wp.atomic_add(soft_contact_count, 0, 1) if index < soft_contact_max: # compute contact point in body local space body_pos = wp.transform_point(X_bs, x_local - n * d) body_vel = wp.transform_vector(X_bs, v) world_normal = wp.transform_vector(X_ws, n) soft_contact_shape[index] = shape_index soft_contact_body_pos[index] = body_pos soft_contact_body_vel[index] = body_vel soft_contact_particle[index] = particle_index soft_contact_normal[index] = world_normal @wp.kernel def count_contact_points( contact_pairs: wp.array(dtype=int, ndim=2), geo: ModelShapeGeometry, # outputs contact_count: wp.array(dtype=int), ): tid = wp.tid() shape_a = contact_pairs[tid, 0] shape_b = contact_pairs[tid, 1] if shape_b == -1: actual_type_a = geo.type[shape_a] # ground plane actual_type_b = wp.sim.GEO_PLANE else: type_a = geo.type[shape_a] type_b = geo.type[shape_b] # unique ordering of shape pairs if type_a < type_b: actual_shape_a = shape_a actual_shape_b = shape_b actual_type_a = type_a actual_type_b = type_b else: actual_shape_a = shape_b actual_shape_b = shape_a actual_type_a = type_b actual_type_b = type_a # determine how many contact points need to be evaluated num_contacts = 0 if actual_type_a == wp.sim.GEO_SPHERE: num_contacts = 1 elif actual_type_a == wp.sim.GEO_CAPSULE: if actual_type_b == wp.sim.GEO_PLANE: if geo.scale[actual_shape_b][0] == 0.0 and geo.scale[actual_shape_b][1] == 0.0: num_contacts = 2 # vertex-based collision for infinite plane else: num_contacts = 2 + 4 # vertex-based collision + plane edges elif actual_type_b == wp.sim.GEO_MESH: num_contacts_a = 2 mesh_b = wp.mesh_get(geo.source[actual_shape_b]) num_contacts_b = mesh_b.points.shape[0] num_contacts = num_contacts_a + num_contacts_b else: num_contacts = 2 elif actual_type_a == wp.sim.GEO_BOX: if actual_type_b == wp.sim.GEO_BOX: num_contacts = 24 elif actual_type_b == wp.sim.GEO_MESH: num_contacts_a = 8 mesh_b = wp.mesh_get(geo.source[actual_shape_b]) num_contacts_b = mesh_b.points.shape[0] num_contacts = num_contacts_a + num_contacts_b elif actual_type_b == wp.sim.GEO_PLANE: if geo.scale[actual_shape_b][0] == 0.0 and geo.scale[actual_shape_b][1] == 0.0: num_contacts = 8 # vertex-based collision else: num_contacts = 8 + 4 # vertex-based collision + plane edges else: num_contacts = 8 elif actual_type_a == wp.sim.GEO_MESH: mesh_a = wp.mesh_get(geo.source[actual_shape_a]) num_contacts_a = mesh_a.points.shape[0] if actual_type_b == wp.sim.GEO_MESH: mesh_b = wp.mesh_get(geo.source[actual_shape_b]) num_contacts_b = mesh_b.points.shape[0] else: num_contacts_b = 0 num_contacts = num_contacts_a + num_contacts_b elif actual_type_a == wp.sim.GEO_PLANE: return # no plane-plane contacts else: print("count_contact_points: unsupported geometry type") print(actual_type_a) print(actual_type_b) wp.atomic_add(contact_count, 0, num_contacts) @wp.kernel def broadphase_collision_pairs( contact_pairs: wp.array(dtype=int, ndim=2), body_q: wp.array(dtype=wp.transform), shape_X_bs: wp.array(dtype=wp.transform), shape_body: wp.array(dtype=int), geo: ModelShapeGeometry, collision_radius: wp.array(dtype=float), rigid_contact_max: int, rigid_contact_margin: float, # outputs contact_count: wp.array(dtype=int), contact_shape0: wp.array(dtype=int), contact_shape1: wp.array(dtype=int), contact_point_id: wp.array(dtype=int), ): tid = wp.tid() shape_a = contact_pairs[tid, 0] shape_b = contact_pairs[tid, 1] rigid_a = shape_body[shape_a] if rigid_a == -1: X_ws_a = shape_X_bs[shape_a] else: X_ws_a = wp.transform_multiply(body_q[rigid_a], shape_X_bs[shape_a]) rigid_b = shape_body[shape_b] if rigid_b == -1: X_ws_b = shape_X_bs[shape_b] else: X_ws_b = wp.transform_multiply(body_q[rigid_b], shape_X_bs[shape_b]) type_a = geo.type[shape_a] type_b = geo.type[shape_b] # unique ordering of shape pairs if type_a < type_b: actual_shape_a = shape_a actual_shape_b = shape_b actual_type_a = type_a actual_type_b = type_b actual_X_ws_a = X_ws_a actual_X_ws_b = X_ws_b else: actual_shape_a = shape_b actual_shape_b = shape_a actual_type_a = type_b actual_type_b = type_a actual_X_ws_a = X_ws_b actual_X_ws_b = X_ws_a p_a = wp.transform_get_translation(actual_X_ws_a) if actual_type_b == wp.sim.GEO_PLANE: if actual_type_a == wp.sim.GEO_PLANE: return query_b = wp.transform_point(wp.transform_inverse(actual_X_ws_b), p_a) scale = geo.scale[actual_shape_b] closest = closest_point_plane(scale[0], scale[1], query_b) d = wp.length(query_b - closest) r_a = collision_radius[actual_shape_a] if d > r_a + rigid_contact_margin: return else: p_b = wp.transform_get_translation(actual_X_ws_b) d = wp.length(p_a - p_b) * 0.5 - 0.1 r_a = collision_radius[actual_shape_a] r_b = collision_radius[actual_shape_b] if d > r_a + r_b + rigid_contact_margin: return # determine how many contact points need to be evaluated num_contacts = 0 if actual_type_a == wp.sim.GEO_SPHERE: num_contacts = 1 elif actual_type_a == wp.sim.GEO_CAPSULE: if actual_type_b == wp.sim.GEO_PLANE: if geo.scale[actual_shape_b][0] == 0.0 and geo.scale[actual_shape_b][1] == 0.0: num_contacts = 2 # vertex-based collision for infinite plane else: num_contacts = 2 + 4 # vertex-based collision + plane edges elif actual_type_b == wp.sim.GEO_MESH: num_contacts_a = 2 mesh_b = wp.mesh_get(geo.source[actual_shape_b]) num_contacts_b = mesh_b.points.shape[0] num_contacts = num_contacts_a + num_contacts_b index = wp.atomic_add(contact_count, 0, num_contacts) if index + num_contacts - 1 >= rigid_contact_max: print("Number of rigid contacts exceeded limit. Increase Model.rigid_contact_max.") return # allocate contact points from capsule A against mesh B for i in range(num_contacts_a): contact_shape0[index + i] = actual_shape_a contact_shape1[index + i] = actual_shape_b contact_point_id[index + i] = i # allocate contact points from mesh B against capsule A for i in range(num_contacts_b): contact_shape0[index + num_contacts_a + i] = actual_shape_b contact_shape1[index + num_contacts_a + i] = actual_shape_a contact_point_id[index + num_contacts_a + i] = i return else: num_contacts = 2 elif actual_type_a == wp.sim.GEO_BOX: if actual_type_b == wp.sim.GEO_BOX: index = wp.atomic_add(contact_count, 0, 24) if index + 23 >= rigid_contact_max: print("Number of rigid contacts exceeded limit. Increase Model.rigid_contact_max.") return # allocate contact points from box A against B for i in range(12): # 12 edges contact_shape0[index + i] = shape_a contact_shape1[index + i] = shape_b contact_point_id[index + i] = i # allocate contact points from box B against A for i in range(12): contact_shape0[index + 12 + i] = shape_b contact_shape1[index + 12 + i] = shape_a contact_point_id[index + 12 + i] = i return elif actual_type_b == wp.sim.GEO_MESH: num_contacts_a = 8 mesh_b = wp.mesh_get(geo.source[actual_shape_b]) num_contacts_b = mesh_b.points.shape[0] num_contacts = num_contacts_a + num_contacts_b index = wp.atomic_add(contact_count, 0, num_contacts) if index + num_contacts - 1 >= rigid_contact_max: print("Number of rigid contacts exceeded limit. Increase Model.rigid_contact_max.") return # allocate contact points from box A against mesh B for i in range(num_contacts_a): contact_shape0[index + i] = actual_shape_a contact_shape1[index + i] = actual_shape_b contact_point_id[index + i] = i # allocate contact points from mesh B against box A for i in range(num_contacts_b): contact_shape0[index + num_contacts_a + i] = actual_shape_b contact_shape1[index + num_contacts_a + i] = actual_shape_a contact_point_id[index + num_contacts_a + i] = i return elif actual_type_b == wp.sim.GEO_PLANE: if geo.scale[actual_shape_b][0] == 0.0 and geo.scale[actual_shape_b][1] == 0.0: num_contacts = 8 # vertex-based collision else: num_contacts = 8 + 4 # vertex-based collision + plane edges else: num_contacts = 8 elif actual_type_a == wp.sim.GEO_MESH: mesh_a = wp.mesh_get(geo.source[actual_shape_a]) num_contacts_a = mesh_a.points.shape[0] num_contacts_b = 0 if actual_type_b == wp.sim.GEO_MESH: mesh_b = wp.mesh_get(geo.source[actual_shape_b]) num_contacts_b = mesh_b.points.shape[0] elif actual_type_b != wp.sim.GEO_PLANE: print("broadphase_collision_pairs: unsupported geometry type for mesh collision") return num_contacts = num_contacts_a + num_contacts_b if num_contacts > 0: index = wp.atomic_add(contact_count, 0, num_contacts) if index + num_contacts - 1 >= rigid_contact_max: print("Mesh contact: Number of rigid contacts exceeded limit. Increase Model.rigid_contact_max.") return # allocate contact points from mesh A against B for i in range(num_contacts_a): contact_shape0[index + i] = actual_shape_a contact_shape1[index + i] = actual_shape_b contact_point_id[index + i] = i # allocate contact points from mesh B against A for i in range(num_contacts_b): contact_shape0[index + num_contacts_a + i] = actual_shape_b contact_shape1[index + num_contacts_a + i] = actual_shape_a contact_point_id[index + num_contacts_a + i] = i return elif actual_type_a == wp.sim.GEO_PLANE: return # no plane-plane contacts else: print("broadphase_collision_pairs: unsupported geometry type") if num_contacts > 0: index = wp.atomic_add(contact_count, 0, num_contacts) if index + num_contacts - 1 >= rigid_contact_max: print("Number of rigid contacts exceeded limit. Increase Model.rigid_contact_max.") return # allocate contact points for i in range(num_contacts): contact_shape0[index + i] = actual_shape_a contact_shape1[index + i] = actual_shape_b contact_point_id[index + i] = i @wp.kernel def handle_contact_pairs( body_q: wp.array(dtype=wp.transform), shape_X_bs: wp.array(dtype=wp.transform), shape_body: wp.array(dtype=int), geo: ModelShapeGeometry, rigid_contact_margin: float, body_com: wp.array(dtype=wp.vec3), contact_shape0: wp.array(dtype=int), contact_shape1: wp.array(dtype=int), contact_point_id: wp.array(dtype=int), rigid_contact_count: wp.array(dtype=int), edge_sdf_iter: int, # outputs contact_body0: wp.array(dtype=int), contact_body1: wp.array(dtype=int), contact_point0: wp.array(dtype=wp.vec3), contact_point1: wp.array(dtype=wp.vec3), contact_offset0: wp.array(dtype=wp.vec3), contact_offset1: wp.array(dtype=wp.vec3), contact_normal: wp.array(dtype=wp.vec3), contact_thickness: wp.array(dtype=float), ): tid = wp.tid() if tid >= rigid_contact_count[0]: return shape_a = contact_shape0[tid] shape_b = contact_shape1[tid] if shape_a == shape_b: return point_id = contact_point_id[tid] rigid_a = shape_body[shape_a] X_wb_a = wp.transform_identity() if rigid_a >= 0: X_wb_a = body_q[rigid_a] X_bs_a = shape_X_bs[shape_a] X_ws_a = wp.transform_multiply(X_wb_a, X_bs_a) X_sw_a = wp.transform_inverse(X_ws_a) X_bw_a = wp.transform_inverse(X_wb_a) geo_type_a = geo.type[shape_a] geo_scale_a = geo.scale[shape_a] min_scale_a = min(geo_scale_a) thickness_a = geo.thickness[shape_a] # is_solid_a = geo.is_solid[shape_a] rigid_b = shape_body[shape_b] X_wb_b = wp.transform_identity() if rigid_b >= 0: X_wb_b = body_q[rigid_b] X_bs_b = shape_X_bs[shape_b] X_ws_b = wp.transform_multiply(X_wb_b, X_bs_b) X_sw_b = wp.transform_inverse(X_ws_b) X_bw_b = wp.transform_inverse(X_wb_b) geo_type_b = geo.type[shape_b] geo_scale_b = geo.scale[shape_b] min_scale_b = min(geo_scale_b) thickness_b = geo.thickness[shape_b] # is_solid_b = geo.is_solid[shape_b] # fill in contact rigid body ids contact_body0[tid] = rigid_a contact_body1[tid] = rigid_b distance = 1.0e6 u = float(0.0) if geo_type_a == wp.sim.GEO_SPHERE: p_a_world = wp.transform_get_translation(X_ws_a) if geo_type_b == wp.sim.GEO_SPHERE: p_b_world = wp.transform_get_translation(X_ws_b) elif geo_type_b == wp.sim.GEO_BOX: # contact point in frame of body B p_a_body = wp.transform_point(X_sw_b, p_a_world) p_b_body = closest_point_box(geo_scale_b, p_a_body) p_b_world = wp.transform_point(X_ws_b, p_b_body) elif geo_type_b == wp.sim.GEO_CAPSULE: half_height_b = geo_scale_b[1] # capsule B A_b = wp.transform_point(X_ws_b, wp.vec3(0.0, half_height_b, 0.0)) B_b = wp.transform_point(X_ws_b, wp.vec3(0.0, -half_height_b, 0.0)) p_b_world = closest_point_line_segment(A_b, B_b, p_a_world) elif geo_type_b == wp.sim.GEO_MESH: mesh_b = geo.source[shape_b] query_b_local = wp.transform_point(X_sw_b, p_a_world) face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) max_dist = (thickness_a + thickness_b + rigid_contact_margin) / geo_scale_b[0] res = wp.mesh_query_point_sign_normal( mesh_b, wp.cw_div(query_b_local, geo_scale_b), max_dist, sign, face_index, face_u, face_v ) if res: shape_p = wp.mesh_eval_position(mesh_b, face_index, face_u, face_v) shape_p = wp.cw_mul(shape_p, geo_scale_b) p_b_world = wp.transform_point(X_ws_b, shape_p) else: contact_shape0[tid] = -1 contact_shape1[tid] = -1 return elif geo_type_b == wp.sim.GEO_PLANE: p_b_body = closest_point_plane(geo_scale_b[0], geo_scale_b[1], wp.transform_point(X_sw_b, p_a_world)) p_b_world = wp.transform_point(X_ws_b, p_b_body) else: print("Unsupported geometry type in sphere collision handling") print(geo_type_b) return diff = p_a_world - p_b_world normal = wp.normalize(diff) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_BOX and geo_type_b == wp.sim.GEO_BOX: # edge-based box contact edge = get_box_edge(point_id, geo_scale_a) edge0_world = wp.transform_point(X_ws_a, wp.spatial_top(edge)) edge1_world = wp.transform_point(X_ws_a, wp.spatial_bottom(edge)) edge0_b = wp.transform_point(X_sw_b, edge0_world) edge1_b = wp.transform_point(X_sw_b, edge1_world) max_iter = edge_sdf_iter u = closest_edge_coordinate_box(geo_scale_b, edge0_b, edge1_b, max_iter) p_a_world = (1.0 - u) * edge0_world + u * edge1_world # find closest point + contact normal on box B query_b = wp.transform_point(X_sw_b, p_a_world) p_b_body = closest_point_box(geo_scale_b, query_b) p_b_world = wp.transform_point(X_ws_b, p_b_body) diff = p_a_world - p_b_world # use center of box A to query normal to make sure we are not inside B query_b = wp.transform_point(X_sw_b, wp.transform_get_translation(X_ws_a)) normal = wp.transform_vector(X_ws_b, box_sdf_grad(geo_scale_b, query_b)) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_BOX and geo_type_b == wp.sim.GEO_CAPSULE: half_height_b = geo_scale_b[1] # capsule B # depending on point id, we query an edge from 0 to 0.5 or 0.5 to 1 e0 = wp.vec3(0.0, -half_height_b * float(point_id % 2), 0.0) e1 = wp.vec3(0.0, half_height_b * float((point_id + 1) % 2), 0.0) edge0_world = wp.transform_point(X_ws_b, e0) edge1_world = wp.transform_point(X_ws_b, e1) edge0_a = wp.transform_point(X_sw_a, edge0_world) edge1_a = wp.transform_point(X_sw_a, edge1_world) max_iter = edge_sdf_iter u = closest_edge_coordinate_box(geo_scale_a, edge0_a, edge1_a, max_iter) p_b_world = (1.0 - u) * edge0_world + u * edge1_world # find closest point + contact normal on box A query_a = wp.transform_point(X_sw_a, p_b_world) p_a_body = closest_point_box(geo_scale_a, query_a) p_a_world = wp.transform_point(X_ws_a, p_a_body) diff = p_a_world - p_b_world # the contact point inside the capsule should already be outside the box normal = -wp.transform_vector(X_ws_a, box_sdf_grad(geo_scale_a, query_a)) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_BOX and geo_type_b == wp.sim.GEO_PLANE: plane_width = geo_scale_b[0] plane_length = geo_scale_b[1] if point_id < 8: # vertex-based contact p_a_body = get_box_vertex(point_id, geo_scale_a) p_a_world = wp.transform_point(X_ws_a, p_a_body) query_b = wp.transform_point(X_sw_b, p_a_world) p_b_body = closest_point_plane(plane_width, plane_length, query_b) p_b_world = wp.transform_point(X_ws_b, p_b_body) diff = p_a_world - p_b_world normal = wp.transform_vector(X_ws_b, wp.vec3(0.0, 1.0, 0.0)) if plane_width > 0.0 and plane_length > 0.0: if wp.abs(query_b[0]) > plane_width or wp.abs(query_b[2]) > plane_length: # skip, we will evaluate the plane edge contact with the box later contact_shape0[tid] = -1 contact_shape1[tid] = -1 return # check whether the COM is above the plane # sign = wp.sign(wp.dot(wp.transform_get_translation(X_ws_a) - p_b_world, normal)) # if sign < 0.0: # # the entire box is most likely below the plane # contact_shape0[tid] = -1 # contact_shape1[tid] = -1 # return # the contact point is within plane boundaries distance = wp.dot(diff, normal) else: # contact between box A and edges of finite plane B edge = get_plane_edge(point_id - 8, plane_width, plane_length) edge0_world = wp.transform_point(X_ws_b, wp.spatial_top(edge)) edge1_world = wp.transform_point(X_ws_b, wp.spatial_bottom(edge)) edge0_a = wp.transform_point(X_sw_a, edge0_world) edge1_a = wp.transform_point(X_sw_a, edge1_world) max_iter = edge_sdf_iter u = closest_edge_coordinate_box(geo_scale_a, edge0_a, edge1_a, max_iter) p_b_world = (1.0 - u) * edge0_world + u * edge1_world # find closest point + contact normal on box A query_a = wp.transform_point(X_sw_a, p_b_world) p_a_body = closest_point_box(geo_scale_a, query_a) p_a_world = wp.transform_point(X_ws_a, p_a_body) query_b = wp.transform_point(X_sw_b, p_a_world) if wp.abs(query_b[0]) > plane_width or wp.abs(query_b[2]) > plane_length: # ensure that the closest point is actually inside the plane contact_shape0[tid] = -1 contact_shape1[tid] = -1 return diff = p_a_world - p_b_world com_a = wp.transform_get_translation(X_ws_a) query_b = wp.transform_point(X_sw_b, com_a) if wp.abs(query_b[0]) > plane_width or wp.abs(query_b[2]) > plane_length: # the COM is outside the plane normal = wp.normalize(com_a - p_b_world) else: normal = wp.transform_vector(X_ws_b, wp.vec3(0.0, 1.0, 0.0)) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_CAPSULE and geo_type_b == wp.sim.GEO_CAPSULE: # find closest edge coordinate to capsule SDF B half_height_a = geo_scale_a[1] half_height_b = geo_scale_b[1] # edge from capsule A # depending on point id, we query an edge from 0 to 0.5 or 0.5 to 1 e0 = wp.vec3(0.0, half_height_a * float(point_id % 2), 0.0) e1 = wp.vec3(0.0, -half_height_a * float((point_id + 1) % 2), 0.0) edge0_world = wp.transform_point(X_ws_a, e0) edge1_world = wp.transform_point(X_ws_a, e1) edge0_b = wp.transform_point(X_sw_b, edge0_world) edge1_b = wp.transform_point(X_sw_b, edge1_world) max_iter = edge_sdf_iter u = closest_edge_coordinate_capsule(geo_scale_b[0], geo_scale_b[1], edge0_b, edge1_b, max_iter) p_a_world = (1.0 - u) * edge0_world + u * edge1_world p0_b_world = wp.transform_point(X_ws_b, wp.vec3(0.0, half_height_b, 0.0)) p1_b_world = wp.transform_point(X_ws_b, wp.vec3(0.0, -half_height_b, 0.0)) p_b_world = closest_point_line_segment(p0_b_world, p1_b_world, p_a_world) diff = p_a_world - p_b_world normal = wp.normalize(diff) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_CAPSULE and geo_type_b == wp.sim.GEO_MESH: # find closest edge coordinate to mesh SDF B half_height_a = geo_scale_a[1] # edge from capsule A # depending on point id, we query an edge from -h to 0 or 0 to h e0 = wp.vec3(0.0, -half_height_a * float(point_id % 2), 0.0) e1 = wp.vec3(0.0, half_height_a * float((point_id + 1) % 2), 0.0) edge0_world = wp.transform_point(X_ws_a, e0) edge1_world = wp.transform_point(X_ws_a, e1) edge0_b = wp.transform_point(X_sw_b, edge0_world) edge1_b = wp.transform_point(X_sw_b, edge1_world) max_iter = edge_sdf_iter max_dist = (rigid_contact_margin + thickness_a + thickness_b) / min_scale_b mesh_b = geo.source[shape_b] u = closest_edge_coordinate_mesh( mesh_b, wp.cw_div(edge0_b, geo_scale_b), wp.cw_div(edge1_b, geo_scale_b), max_iter, max_dist ) p_a_world = (1.0 - u) * edge0_world + u * edge1_world query_b_local = wp.transform_point(X_sw_b, p_a_world) mesh_b = geo.source[shape_b] face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) res = wp.mesh_query_point_sign_normal( mesh_b, wp.cw_div(query_b_local, geo_scale_b), max_dist, sign, face_index, face_u, face_v ) if res: shape_p = wp.mesh_eval_position(mesh_b, face_index, face_u, face_v) shape_p = wp.cw_mul(shape_p, geo_scale_b) p_b_world = wp.transform_point(X_ws_b, shape_p) p_a_world = closest_point_line_segment(edge0_world, edge1_world, p_b_world) # contact direction vector in world frame diff = p_a_world - p_b_world normal = wp.normalize(diff) distance = wp.dot(diff, normal) else: contact_shape0[tid] = -1 contact_shape1[tid] = -1 return elif geo_type_a == wp.sim.GEO_MESH and geo_type_b == wp.sim.GEO_CAPSULE: # vertex-based contact mesh = wp.mesh_get(geo.source[shape_a]) body_a_pos = wp.cw_mul(mesh.points[point_id], geo_scale_a) p_a_world = wp.transform_point(X_ws_a, body_a_pos) # find closest point + contact normal on capsule B half_height_b = geo_scale_b[1] A_b = wp.transform_point(X_ws_b, wp.vec3(0.0, half_height_b, 0.0)) B_b = wp.transform_point(X_ws_b, wp.vec3(0.0, -half_height_b, 0.0)) p_b_world = closest_point_line_segment(A_b, B_b, p_a_world) diff = p_a_world - p_b_world # this is more reliable in practice than using the SDF gradient normal = wp.normalize(diff) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_CAPSULE and geo_type_b == wp.sim.GEO_PLANE: plane_width = geo_scale_b[0] plane_length = geo_scale_b[1] if point_id < 2: # vertex-based collision half_height_a = geo_scale_a[1] side = float(point_id) * 2.0 - 1.0 p_a_world = wp.transform_point(X_ws_a, wp.vec3(0.0, side * half_height_a, 0.0)) query_b = wp.transform_point(X_sw_b, p_a_world) p_b_body = closest_point_plane(geo_scale_b[0], geo_scale_b[1], query_b) p_b_world = wp.transform_point(X_ws_b, p_b_body) diff = p_a_world - p_b_world if geo_scale_b[0] > 0.0 and geo_scale_b[1] > 0.0: normal = wp.normalize(diff) else: normal = wp.transform_vector(X_ws_b, wp.vec3(0.0, 1.0, 0.0)) distance = wp.dot(diff, normal) else: # contact between capsule A and edges of finite plane B plane_width = geo_scale_b[0] plane_length = geo_scale_b[1] edge = get_plane_edge(point_id - 2, plane_width, plane_length) edge0_world = wp.transform_point(X_ws_b, wp.spatial_top(edge)) edge1_world = wp.transform_point(X_ws_b, wp.spatial_bottom(edge)) edge0_a = wp.transform_point(X_sw_a, edge0_world) edge1_a = wp.transform_point(X_sw_a, edge1_world) max_iter = edge_sdf_iter u = closest_edge_coordinate_capsule(geo_scale_a[0], geo_scale_a[1], edge0_a, edge1_a, max_iter) p_b_world = (1.0 - u) * edge0_world + u * edge1_world # find closest point + contact normal on capsule A half_height_a = geo_scale_a[1] p0_a_world = wp.transform_point(X_ws_a, wp.vec3(0.0, half_height_a, 0.0)) p1_a_world = wp.transform_point(X_ws_a, wp.vec3(0.0, -half_height_a, 0.0)) p_a_world = closest_point_line_segment(p0_a_world, p1_a_world, p_b_world) diff = p_a_world - p_b_world # normal = wp.transform_vector(X_ws_b, wp.vec3(0.0, 1.0, 0.0)) normal = wp.normalize(diff) distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_MESH and geo_type_b == wp.sim.GEO_BOX: # vertex-based contact mesh = wp.mesh_get(geo.source[shape_a]) body_a_pos = wp.cw_mul(mesh.points[point_id], geo_scale_a) p_a_world = wp.transform_point(X_ws_a, body_a_pos) # find closest point + contact normal on box B query_b = wp.transform_point(X_sw_b, p_a_world) p_b_body = closest_point_box(geo_scale_b, query_b) p_b_world = wp.transform_point(X_ws_b, p_b_body) diff = p_a_world - p_b_world # this is more reliable in practice than using the SDF gradient normal = wp.normalize(diff) if box_sdf(geo_scale_b, query_b) < 0.0: normal = -normal distance = wp.dot(diff, normal) elif geo_type_a == wp.sim.GEO_BOX and geo_type_b == wp.sim.GEO_MESH: # vertex-based contact query_a = get_box_vertex(point_id, geo_scale_a) p_a_world = wp.transform_point(X_ws_a, query_a) query_b_local = wp.transform_point(X_sw_b, p_a_world) mesh_b = geo.source[shape_b] max_dist = (rigid_contact_margin + thickness_a + thickness_b) / min_scale_b face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) res = wp.mesh_query_point_sign_normal( mesh_b, wp.cw_div(query_b_local, geo_scale_b), max_dist, sign, face_index, face_u, face_v ) if res: shape_p = wp.mesh_eval_position(mesh_b, face_index, face_u, face_v) shape_p = wp.cw_mul(shape_p, geo_scale_b) p_b_world = wp.transform_point(X_ws_b, shape_p) # contact direction vector in world frame diff_b = p_a_world - p_b_world normal = wp.normalize(diff_b) * sign distance = wp.dot(diff_b, normal) else: contact_shape0[tid] = -1 contact_shape1[tid] = -1 return elif geo_type_a == wp.sim.GEO_MESH and geo_type_b == wp.sim.GEO_MESH: # vertex-based contact mesh = wp.mesh_get(geo.source[shape_a]) mesh_b = geo.source[shape_b] body_a_pos = wp.cw_mul(mesh.points[point_id], geo_scale_a) p_a_world = wp.transform_point(X_ws_a, body_a_pos) query_b_local = wp.transform_point(X_sw_b, p_a_world) face_index = int(0) face_u = float(0.0) face_v = float(0.0) sign = float(0.0) min_scale = min(min_scale_a, min_scale_b) max_dist = (rigid_contact_margin + thickness_a + thickness_b) / min_scale res = wp.mesh_query_point_sign_normal( mesh_b, wp.cw_div(query_b_local, geo_scale_b), max_dist, sign, face_index, face_u, face_v ) if res: shape_p = wp.mesh_eval_position(mesh_b, face_index, face_u, face_v) shape_p = wp.cw_mul(shape_p, geo_scale_b) p_b_world = wp.transform_point(X_ws_b, shape_p) # contact direction vector in world frame diff_b = p_a_world - p_b_world normal = wp.normalize(diff_b) * sign distance = wp.dot(diff_b, normal) else: contact_shape0[tid] = -1 contact_shape1[tid] = -1 return elif geo_type_a == wp.sim.GEO_MESH and geo_type_b == wp.sim.GEO_PLANE: # vertex-based contact mesh = wp.mesh_get(geo.source[shape_a]) body_a_pos = wp.cw_mul(mesh.points[point_id], geo_scale_a) p_a_world = wp.transform_point(X_ws_a, body_a_pos) query_b = wp.transform_point(X_sw_b, p_a_world) p_b_body = closest_point_plane(geo_scale_b[0], geo_scale_b[1], query_b) p_b_world = wp.transform_point(X_ws_b, p_b_body) diff = p_a_world - p_b_world normal = wp.transform_vector(X_ws_b, wp.vec3(0.0, 1.0, 0.0)) distance = wp.length(diff) # if the plane is infinite or the point is within the plane we fix the normal to prevent intersections if ( geo_scale_b[0] == 0.0 and geo_scale_b[1] == 0.0 or wp.abs(query_b[0]) < geo_scale_b[0] and wp.abs(query_b[2]) < geo_scale_b[1] ): normal = wp.transform_vector(X_ws_b, wp.vec3(0.0, 1.0, 0.0)) else: normal = wp.normalize(diff) distance = wp.dot(diff, normal) # ignore extreme penetrations (e.g. when mesh is below the plane) if distance < -rigid_contact_margin: contact_shape0[tid] = -1 contact_shape1[tid] = -1 return else: print("Unsupported geometry pair in collision handling") return thickness = thickness_a + thickness_b d = distance - thickness if d < rigid_contact_margin: # transform from world into body frame (so the contact point includes the shape transform) contact_point0[tid] = wp.transform_point(X_bw_a, p_a_world) contact_point1[tid] = wp.transform_point(X_bw_b, p_b_world) contact_offset0[tid] = wp.transform_vector(X_bw_a, -thickness_a * normal) contact_offset1[tid] = wp.transform_vector(X_bw_b, thickness_b * normal) contact_normal[tid] = normal contact_thickness[tid] = thickness # wp.printf("distance: %f\tnormal: %.3f %.3f %.3f\tp_a_world: %.3f %.3f %.3f\tp_b_world: %.3f %.3f %.3f\n", distance, normal[0], normal[1], normal[2], p_a_world[0], p_a_world[1], p_a_world[2], p_b_world[0], p_b_world[1], p_b_world[2]) else: contact_shape0[tid] = -1 contact_shape1[tid] = -1 def collide(model, state, edge_sdf_iter: int = 10): """ Generates contact points for the particles and rigid bodies in the model, to be used in the contact dynamics kernel of the integrator. Args: model: the model to be simulated state: the state of the model edge_sdf_iter: number of search iterations for finding closest contact points between edges and SDF """ # generate soft contacts for particles and shapes except ground plane (last shape) if model.particle_count and model.shape_count > 1: # clear old count model.soft_contact_count.zero_() wp.launch( kernel=create_soft_contacts, dim=(model.particle_count, model.shape_count - 1), inputs=[ state.particle_q, model.particle_radius, model.particle_flags, state.body_q, model.shape_transform, model.shape_body, model.shape_geo, model.soft_contact_margin, model.soft_contact_max, ], outputs=[ model.soft_contact_count, model.soft_contact_particle, model.soft_contact_shape, model.soft_contact_body_pos, model.soft_contact_body_vel, model.soft_contact_normal, ], device=model.device, ) # clear old count model.rigid_contact_count.zero_() if model.shape_contact_pair_count: wp.launch( kernel=broadphase_collision_pairs, dim=model.shape_contact_pair_count, inputs=[ model.shape_contact_pairs, state.body_q, model.shape_transform, model.shape_body, model.shape_geo, model.shape_collision_radius, model.rigid_contact_max, model.rigid_contact_margin, ], outputs=[ model.rigid_contact_count, model.rigid_contact_shape0, model.rigid_contact_shape1, model.rigid_contact_point_id, ], device=model.device, record_tape=False, ) if model.ground and model.shape_ground_contact_pair_count: wp.launch( kernel=broadphase_collision_pairs, dim=model.shape_ground_contact_pair_count, inputs=[ model.shape_ground_contact_pairs, state.body_q, model.shape_transform, model.shape_body, model.shape_geo, model.shape_collision_radius, model.rigid_contact_max, model.rigid_contact_margin, ], outputs=[ model.rigid_contact_count, model.rigid_contact_shape0, model.rigid_contact_shape1, model.rigid_contact_point_id, ], device=model.device, record_tape=False, ) if model.shape_contact_pair_count or model.ground and model.shape_ground_contact_pair_count: wp.launch( kernel=handle_contact_pairs, dim=model.rigid_contact_max, inputs=[ state.body_q, model.shape_transform, model.shape_body, model.shape_geo, model.rigid_contact_margin, model.body_com, model.rigid_contact_shape0, model.rigid_contact_shape1, model.rigid_contact_point_id, model.rigid_contact_count, edge_sdf_iter, ], outputs=[ model.rigid_contact_body0, model.rigid_contact_body1, model.rigid_contact_point0, model.rigid_contact_point1, model.rigid_contact_offset0, model.rigid_contact_offset1, model.rigid_contact_normal, model.rigid_contact_thickness, ], device=model.device, )
warp-main
warp/sim/collide.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from .model import PARTICLE_FLAG_ACTIVE @wp.func def particle_force(n: wp.vec3, v: wp.vec3, c: float, k_n: float, k_d: float, k_f: float, k_mu: float): vn = wp.dot(n, v) jn = c * k_n jd = min(vn, 0.0) * k_d # contact force fn = jn + jd # friction force vt = v - n * vn vs = wp.length(vt) if vs > 0.0: vt = vt / vs # Coulomb condition ft = wp.min(vs * k_f, k_mu * wp.abs(fn)) # total force return -n * fn - vt * ft @wp.kernel def eval_particle_forces_kernel( grid: wp.uint64, particle_x: wp.array(dtype=wp.vec3), particle_v: wp.array(dtype=wp.vec3), particle_radius: wp.array(dtype=float), particle_flags: wp.array(dtype=wp.uint32), k_contact: float, k_damp: float, k_friction: float, k_mu: float, k_cohesion: float, max_radius: float, # outputs particle_f: wp.array(dtype=wp.vec3), ): tid = wp.tid() # order threads by cell i = wp.hash_grid_point_id(grid, tid) if i == -1: # hash grid has not been built yet return if (particle_flags[i] & PARTICLE_FLAG_ACTIVE) == 0: return x = particle_x[i] v = particle_v[i] radius = particle_radius[i] f = wp.vec3() # particle contact query = wp.hash_grid_query(grid, x, radius + max_radius + k_cohesion) index = int(0) count = int(0) while wp.hash_grid_query_next(query, index): if (particle_flags[index] & PARTICLE_FLAG_ACTIVE) != 0 and index != i: # compute distance to point n = x - particle_x[index] d = wp.length(n) err = d - radius - particle_radius[index] count += 1 if err <= k_cohesion: n = n / d vrel = v - particle_v[index] f = f + particle_force(n, vrel, err, k_contact, k_damp, k_friction, k_mu) particle_f[i] = f def eval_particle_forces(model, state, forces): if model.particle_max_radius > 0.0: wp.launch( kernel=eval_particle_forces_kernel, dim=model.particle_count, inputs=[ model.particle_grid.id, state.particle_q, state.particle_qd, model.particle_radius, model.particle_flags, model.particle_ke, model.particle_kd, model.particle_kf, model.particle_mu, model.particle_cohesion, model.particle_max_radius, ], outputs=[forces], device=model.device, )
warp-main
warp/sim/particles.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """A module for building simulation models and state. """ import copy import math from typing import List, Optional, Tuple import numpy as np import warp as wp from .inertia import ( compute_box_inertia, compute_capsule_inertia, compute_cone_inertia, compute_cylinder_inertia, compute_mesh_inertia, compute_sphere_inertia, transform_inertia, ) Vec3 = List[float] Vec4 = List[float] Quat = List[float] Mat33 = List[float] Transform = Tuple[Vec3, Quat] # Particle flags PARTICLE_FLAG_ACTIVE = wp.constant(wp.uint32(1 << 0)) # Shape geometry types GEO_SPHERE = wp.constant(0) GEO_BOX = wp.constant(1) GEO_CAPSULE = wp.constant(2) GEO_CYLINDER = wp.constant(3) GEO_CONE = wp.constant(4) GEO_MESH = wp.constant(5) GEO_SDF = wp.constant(6) GEO_PLANE = wp.constant(7) GEO_NONE = wp.constant(8) # Types of joints linking rigid bodies JOINT_PRISMATIC = wp.constant(0) JOINT_REVOLUTE = wp.constant(1) JOINT_BALL = wp.constant(2) JOINT_FIXED = wp.constant(3) JOINT_FREE = wp.constant(4) JOINT_COMPOUND = wp.constant(5) JOINT_UNIVERSAL = wp.constant(6) JOINT_DISTANCE = wp.constant(7) JOINT_D6 = wp.constant(8) # Joint axis mode types JOINT_MODE_LIMIT = wp.constant(0) JOINT_MODE_TARGET_POSITION = wp.constant(1) JOINT_MODE_TARGET_VELOCITY = wp.constant(2) def flag_to_int(flag): """Converts a flag to an integer.""" if type(flag) in wp.types.int_types: return flag.value return int(flag) # Material properties pertaining to rigid shape contact dynamics @wp.struct class ModelShapeMaterials: ke: wp.array(dtype=float) # The contact elastic stiffness (only used by Euler integrator) kd: wp.array(dtype=float) # The contact damping stiffness (only used by Euler integrator) kf: wp.array(dtype=float) # The contact friction stiffness (only used by Euler integrator) mu: wp.array(dtype=float) # The coefficient of friction restitution: wp.array(dtype=float) # The coefficient of restitution (only used by XPBD integrator) # Shape properties of geometry @wp.struct class ModelShapeGeometry: type: wp.array(dtype=wp.int32) # The type of geometry (GEO_SPHERE, GEO_BOX, etc.) is_solid: wp.array(dtype=wp.uint8) # Indicates whether the shape is solid or hollow thickness: wp.array( dtype=float ) # The thickness of the shape (used for collision detection, and inertia computation of hollow shapes) source: wp.array(dtype=wp.uint64) # Pointer to the source geometry (in case of a mesh, zero otherwise) scale: wp.array(dtype=wp.vec3) # The 3D scale of the shape # Axis (linear or angular) of a joint that can have bounds and be driven towards a target class JointAxis: """ Describes a joint axis that can have limits and be driven towards a target. Attributes: axis (3D vector): The axis that this JointAxis object describes limit_lower (float): The lower limit of the joint axis limit_upper (float): The upper limit of the joint axis limit_ke (float): The elastic stiffness of the joint axis limits, only respected by SemiImplicitIntegrator limit_kd (float): The damping stiffness of the joint axis limits, only respected by SemiImplicitIntegrator target (float): The target position or velocity (depending on the mode, see `Joint modes`_) of the joint axis target_ke (float): The proportional gain of the joint axis target drive PD controller target_kd (float): The derivative gain of the joint axis target drive PD controller mode (int): The mode of the joint axis, see `Joint modes`_ """ def __init__( self, axis, limit_lower=-np.inf, limit_upper=np.inf, limit_ke=100.0, limit_kd=10.0, target=None, target_ke=0.0, target_kd=0.0, mode=JOINT_MODE_TARGET_POSITION, ): self.axis = np.array(wp.normalize(np.array(axis, dtype=np.float32))) self.limit_lower = limit_lower self.limit_upper = limit_upper self.limit_ke = limit_ke self.limit_kd = limit_kd if target is not None: self.target = target elif limit_lower > 0.0 or limit_upper < 0.0: self.target = 0.5 * (limit_lower + limit_upper) else: self.target = 0.0 self.target_ke = target_ke self.target_kd = target_kd self.mode = mode class SDF: # Describes a signed distance field for simulation # # Attributes: # # Either a NanoVDB file name or a numpy array # def __init__(self, volume=None, I=np.eye(3, dtype=np.float32), mass=1.0, com=np.array((0.0, 0.0, 0.0))): self.volume = volume # Need to specify these for now self.has_inertia = True self.is_solid = True self.mass = mass self.com = com self.I = I def finalize(self, device=None): return self.volume.id def __hash__(self): return hash((self.volume.id)) class Mesh: """Describes a triangle collision mesh for simulation Attributes: vertices (List[Vec3]): Mesh vertices indices (List[int]): Mesh indices I (Mat33): Inertia tensor of the mesh assuming density of 1.0 (around the center of mass) mass (float): The total mass of the body assuming density of 1.0 com (Vec3): The center of mass of the body """ def __init__(self, vertices: List[Vec3], indices: List[int], compute_inertia=True, is_solid=True): """Construct a Mesh object from a triangle mesh The mesh center of mass and inertia tensor will automatically be calculated using a density of 1.0. This computation is only valid if the mesh is closed (two-manifold). Args: vertices: List of vertices in the mesh indices: List of triangle indices, 3 per-element compute_inertia: If True, the mass, inertia tensor and center of mass will be computed assuming density of 1.0 is_solid: If True, the mesh is assumed to be a solid during inertia computation, otherwise it is assumed to be a hollow surface """ self.vertices = np.array(vertices).reshape(-1, 3) self.indices = np.array(indices, dtype=np.int32).flatten() self.is_solid = is_solid self.has_inertia = compute_inertia if compute_inertia: self.mass, self.com, self.I, _ = compute_mesh_inertia(1.0, vertices, indices, is_solid=is_solid) else: self.I = np.eye(3, dtype=np.float32) self.mass = 1.0 self.com = np.array((0.0, 0.0, 0.0)) # construct simulation ready buffers from points def finalize(self, device=None): with wp.ScopedDevice(device): pos = wp.array(self.vertices, dtype=wp.vec3) vel = wp.zeros_like(pos) indices = wp.array(self.indices, dtype=wp.int32) self.mesh = wp.Mesh(points=pos, velocities=vel, indices=indices) return self.mesh.id def __hash__(self): return hash((tuple(np.array(self.vertices).flatten()), tuple(np.array(self.indices).flatten()), self.is_solid)) class State: """The State object holds all *time-varying* data for a model. Time-varying data includes particle positions, velocities, rigid body states, and anything that is output from the integrator as derived data, e.g.: forces. The exact attributes depend on the contents of the model. State objects should generally be created using the :func:`Model.state()` function. Attributes: particle_count (int): Number of particles body_count (int): Number of rigid bodies particle_q (wp.array): Tensor of particle positions particle_qd (wp.array): Tensor of particle velocities particle_f (wp.array): Tensor of particle forces body_q (wp.array): Tensor of body coordinates body_qd (wp.array): Tensor of body velocities body_f (wp.array): Tensor of body forces """ def __init__(self): self.particle_count = 0 self.body_count = 0 self.particle_q = None self.particle_qd = None self.particle_f = None self.body_q = None self.body_qd = None self.body_f = None def clear_forces(self): if self.particle_count: self.particle_f.zero_() if self.body_count: self.body_f.zero_() def flatten(self): wp.utils.warn( "Model.flatten() will be removed in a future Warp version.", DeprecationWarning, stacklevel=2, ) arrays = [] # build a list of all tensor attributes for attr, value in self.__dict__.items(): if isinstance(value, wp.array): arrays.append(value) return arrays def compute_shape_mass(type, scale, src, density, is_solid, thickness): if density == 0.0 or type == GEO_PLANE: # zero density means fixed return 0.0, np.zeros(3), np.zeros((3, 3)) if type == GEO_SPHERE: solid = compute_sphere_inertia(density, scale[0]) if is_solid: return solid else: hollow = compute_sphere_inertia(density, scale[0] - thickness) return solid[0] - hollow[0], solid[1], solid[2] - hollow[2] elif type == GEO_BOX: w, h, d = np.array(scale[:3]) * 2.0 solid = compute_box_inertia(density, w, h, d) if is_solid: return solid else: hollow = compute_box_inertia(density, w - thickness, h - thickness, d - thickness) return solid[0] - hollow[0], solid[1], solid[2] - hollow[2] elif type == GEO_CAPSULE: r, h = scale[0], scale[1] * 2.0 solid = compute_capsule_inertia(density, r, h) if is_solid: return solid else: hollow = compute_capsule_inertia(density, r - thickness, h - 2.0 * thickness) return solid[0] - hollow[0], solid[1], solid[2] - hollow[2] elif type == GEO_CYLINDER: r, h = scale[0], scale[1] * 2.0 solid = compute_cylinder_inertia(density, r, h) if is_solid: return solid else: hollow = compute_cylinder_inertia(density, r - thickness, h - 2.0 * thickness) return solid[0] - hollow[0], solid[1], solid[2] - hollow[2] elif type == GEO_CONE: r, h = scale[0], scale[1] * 2.0 solid = compute_cone_inertia(density, r, h) if is_solid: return solid else: hollow = compute_cone_inertia(density, r - thickness, h - 2.0 * thickness) return solid[0] - hollow[0], solid[1], solid[2] - hollow[2] elif type == GEO_MESH or type == GEO_SDF: if src.has_inertia and src.mass > 0.0 and src.is_solid == is_solid: m, c, I = src.mass, src.com, src.I s = np.array(scale[:3]) sx, sy, sz = s mass_ratio = sx * sy * sz * density m_new = m * mass_ratio c_new = c * s Ixx = I[0, 0] * (sy**2 + sz**2) / 2 * mass_ratio Iyy = I[1, 1] * (sx**2 + sz**2) / 2 * mass_ratio Izz = I[2, 2] * (sx**2 + sy**2) / 2 * mass_ratio Ixy = I[0, 1] * sx * sy * mass_ratio Ixz = I[0, 2] * sx * sz * mass_ratio Iyz = I[1, 2] * sy * sz * mass_ratio I_new = np.array([[Ixx, Ixy, Ixz], [Ixy, Iyy, Iyz], [Ixz, Iyz, Izz]]) return m_new, c_new, I_new elif type == GEO_MESH: # fall back to computing inertia from mesh geometry vertices = np.array(src.vertices) * np.array(scale[:3]) m, c, I, vol = compute_mesh_inertia(density, vertices, src.indices, is_solid, thickness) return m, c, I raise ValueError("Unsupported shape type: {}".format(type)) class Model: """Holds the definition of the simulation model This class holds the non-time varying description of the system, i.e.: all geometry, constraints, and parameters used to describe the simulation. Attributes: requires_grad (float): Indicates whether the model was finalized with gradient computation enabled num_envs (int): Number of articulation environments that were added to the ModelBuilder via `add_builder` particle_q (wp.array): Particle positions, shape [particle_count, 3], float particle_qd (wp.array): Particle velocities, shape [particle_count, 3], float particle_mass (wp.array): Particle mass, shape [particle_count], float particle_inv_mass (wp.array): Particle inverse mass, shape [particle_count], float particle_radius (wp.array): Particle radius, shape [particle_count], float particle_max_radius (float): Maximum particle radius (useful for HashGrid construction) particle_ke (wp.array): Particle normal contact stiffness (used by SemiImplicitIntegrator), shape [particle_count], float particle_kd (wp.array): Particle normal contact damping (used by SemiImplicitIntegrator), shape [particle_count], float particle_kf (wp.array): Particle friction force stiffness (used by SemiImplicitIntegrator), shape [particle_count], float particle_mu (wp.array): Particle friction coefficient, shape [particle_count], float particle_cohesion (wp.array): Particle cohesion strength, shape [particle_count], float particle_adhesion (wp.array): Particle adhesion strength, shape [particle_count], float particle_grid (HashGrid): HashGrid instance used for accelerated simulation of particle interactions particle_flags (wp.array): Particle enabled state, shape [particle_count], bool particle_max_velocity (float): Maximum particle velocity (to prevent instability) shape_transform (wp.array): Rigid shape transforms, shape [shape_count, 7], float shape_body (wp.array): Rigid shape body index, shape [shape_count], int body_shapes (dict): Mapping from body index to list of attached shape indices shape_materials (ModelShapeMaterials): Rigid shape contact materials, shape [shape_count], float shape_shape_geo (ModelShapeGeometry): Shape geometry properties (geo type, scale, thickness, etc.), shape [shape_count, 3], float shape_geo_src (list): List of `wp.Mesh` instances used for rendering of mesh geometry shape_collision_group (list): Collision group of each shape, shape [shape_count], int shape_collision_group_map (dict): Mapping from collision group to list of shape indices shape_collision_filter_pairs (set): Pairs of shape indices that should not collide shape_collision_radius (wp.array): Collision radius of each shape used for bounding sphere broadphase collision checking, shape [shape_count], float shape_ground_collision (list): Indicates whether each shape should collide with the ground, shape [shape_count], bool shape_contact_pairs (wp.array): Pairs of shape indices that may collide, shape [contact_pair_count, 2], int shape_ground_contact_pairs (wp.array): Pairs of shape, ground indices that may collide, shape [ground_contact_pair_count, 2], int spring_indices (wp.array): Particle spring indices, shape [spring_count*2], int spring_rest_length (wp.array): Particle spring rest length, shape [spring_count], float spring_stiffness (wp.array): Particle spring stiffness, shape [spring_count], float spring_damping (wp.array): Particle spring damping, shape [spring_count], float spring_control (wp.array): Particle spring activation, shape [spring_count], float tri_indices (wp.array): Triangle element indices, shape [tri_count*3], int tri_poses (wp.array): Triangle element rest pose, shape [tri_count, 2, 2], float tri_activations (wp.array): Triangle element activations, shape [tri_count], float tri_materials (wp.array): Triangle element materials, shape [tri_count, 5], float edge_indices (wp.array): Bending edge indices, shape [edge_count*4], int edge_rest_angle (wp.array): Bending edge rest angle, shape [edge_count], float edge_bending_properties (wp.array): Bending edge stiffness and damping parameters, shape [edge_count, 2], float tet_indices (wp.array): Tetrahedral element indices, shape [tet_count*4], int tet_poses (wp.array): Tetrahedral rest poses, shape [tet_count, 3, 3], float tet_activations (wp.array): Tetrahedral volumetric activations, shape [tet_count], float tet_materials (wp.array): Tetrahedral elastic parameters in form :math:`k_{mu}, k_{lambda}, k_{damp}`, shape [tet_count, 3] body_q (wp.array): Poses of rigid bodies used for state initialization, shape [body_count, 7], float body_qd (wp.array): Velocities of rigid bodies used for state initialization, shape [body_count, 6], float body_com (wp.array): Rigid body center of mass (in local frame), shape [body_count, 7], float body_inertia (wp.array): Rigid body inertia tensor (relative to COM), shape [body_count, 3, 3], float body_inv_inertia (wp.array): Rigid body inverse inertia tensor (relative to COM), shape [body_count, 3, 3], float body_mass (wp.array): Rigid body mass, shape [body_count], float body_inv_mass (wp.array): Rigid body inverse mass, shape [body_count], float body_name (list): Rigid body names, shape [body_count], str joint_q (wp.array): Generalized joint positions used for state initialization, shape [joint_coord_count], float joint_qd (wp.array): Generalized joint velocities used for state initialization, shape [joint_dof_count], float joint_act (wp.array): Generalized joint actuation force, shape [joint_dof_count], float joint_type (wp.array): Joint type, shape [joint_count], int joint_parent (wp.array): Joint parent body indices, shape [joint_count], int joint_child (wp.array): Joint child body indices, shape [joint_count], int joint_X_p (wp.array): Joint transform in parent frame, shape [joint_count, 7], float joint_X_c (wp.array): Joint mass frame in child frame, shape [joint_count, 7], float joint_axis (wp.array): Joint axis in child frame, shape [joint_axis_count, 3], float joint_armature (wp.array): Armature for each joint, shape [joint_count], float joint_target (wp.array): Joint target position/velocity (depending on joint axis mode), shape [joint_axis_count], float joint_target_ke (wp.array): Joint stiffness, shape [joint_axis_count], float joint_target_kd (wp.array): Joint damping, shape [joint_axis_count], float joint_axis_start (wp.array): Start index of the first axis per joint, shape [joint_count], int joint_axis_dim (wp.array): Number of linear and angular axes per joint, shape [joint_count, 2], int joint_axis_mode (wp.array): Joint axis mode, shape [joint_axis_count], int joint_linear_compliance (wp.array): Joint linear compliance, shape [joint_count], float joint_angular_compliance (wp.array): Joint linear compliance, shape [joint_count], float joint_enabled (wp.array): Joint enabled, shape [joint_count], int joint_limit_lower (wp.array): Joint lower position limits, shape [joint_count], float joint_limit_upper (wp.array): Joint upper position limits, shape [joint_count], float joint_limit_ke (wp.array): Joint position limit stiffness (used by SemiImplicitIntegrator), shape [joint_count], float joint_limit_kd (wp.array): Joint position limit damping (used by SemiImplicitIntegrator), shape [joint_count], float joint_twist_lower (wp.array): Joint lower twist limit, shape [joint_count], float joint_twist_upper (wp.array): Joint upper twist limit, shape [joint_count], float joint_q_start (wp.array): Start index of the first position coordinate per joint, shape [joint_count], int joint_qd_start (wp.array): Start index of the first velocity coordinate per joint, shape [joint_count], int articulation_start (wp.array): Articulation start index, shape [articulation_count], int joint_name (list): Joint names, shape [joint_count], str joint_attach_ke (float): Joint attachment force stiffness (used by SemiImplicitIntegrator) joint_attach_kd (float): Joint attachment force damping (used by SemiImplicitIntegrator) soft_contact_margin (float): Contact margin for generation of soft contacts soft_contact_ke (float): Stiffness of soft contacts (used by SemiImplicitIntegrator) soft_contact_kd (float): Damping of soft contacts (used by SemiImplicitIntegrator) soft_contact_kf (float): Stiffness of friction force in soft contacts (used by SemiImplicitIntegrator) soft_contact_mu (float): Friction coefficient of soft contacts soft_contact_restitution (float): Restitution coefficient of soft contacts (used by XPBDIntegrator) rigid_contact_margin (float): Contact margin for generation of rigid body contacts rigid_contact_torsional_friction (float): Torsional friction coefficient for rigid body contacts (used by XPBDIntegrator) rigid_contact_rolling_friction (float): Rolling friction coefficient for rigid body contacts (used by XPBDIntegrator) ground (bool): Whether the ground plane and ground contacts are enabled ground_plane (wp.array): Ground plane 3D normal and offset, shape [4], float up_vector (np.ndarray): Up vector of the world, shape [3], float up_axis (int): Up axis, 0 for x, 1 for y, 2 for z gravity (np.ndarray): Gravity vector, shape [3], float particle_count (int): Total number of particles in the system body_count (int): Total number of bodies in the system shape_count (int): Total number of shapes in the system joint_count (int): Total number of joints in the system tri_count (int): Total number of triangles in the system tet_count (int): Total number of tetrahedra in the system edge_count (int): Total number of edges in the system spring_count (int): Total number of springs in the system contact_count (int): Total number of contacts in the system muscle_count (int): Total number of muscles in the system articulation_count (int): Total number of articulations in the system joint_dof_count (int): Total number of velocity degrees of freedom of all joints in the system joint_coord_count (int): Total number of position degrees of freedom of all joints in the system device (wp.Device): Device on which the Model was allocated Note: It is strongly recommended to use the ModelBuilder to construct a simulation rather than creating your own Model object directly, however it is possible to do so if desired. """ def __init__(self, device=None): self.requires_grad = False self.num_envs = 0 self.particle_q = None self.particle_qd = None self.particle_mass = None self.particle_inv_mass = None self._particle_radius = None self.particle_max_radius = 0.0 self.particle_ke = 1.0e3 self.particle_kd = 1.0e2 self.particle_kf = 1.0e2 self.particle_mu = 0.5 self.particle_cohesion = 0.0 self.particle_adhesion = 0.0 self.particle_grid = None self.particle_flags = None self.particle_max_velocity = 1e5 self.shape_transform = None self.shape_body = None self.body_shapes = {} self.shape_materials = ModelShapeMaterials() self.shape_geo = ModelShapeGeometry() self.shape_geo_src = None self.shape_collision_group = None self.shape_collision_group_map = None self.shape_collision_filter_pairs = None self.shape_collision_radius = None self.shape_ground_collision = None self.shape_contact_pairs = None self.shape_ground_contact_pairs = None self.spring_indices = None self.spring_rest_length = None self.spring_stiffness = None self.spring_damping = None self.spring_control = None self.tri_indices = None self.tri_poses = None self.tri_activations = None self.tri_materials = None self.edge_indices = None self.edge_rest_angle = None self.edge_bending_properties = None self.tet_indices = None self.tet_poses = None self.tet_activations = None self.tet_materials = None self.body_q = None self.body_qd = None self.body_com = None self.body_inertia = None self.body_inv_inertia = None self.body_mass = None self.body_inv_mass = None self.body_name = None self.joint_q = None self.joint_qd = None self.joint_act = None self.joint_type = None self.joint_parent = None self.joint_child = None self.joint_X_p = None self.joint_X_c = None self.joint_axis = None self.joint_armature = None self.joint_target = None self.joint_target_ke = None self.joint_target_kd = None self.joint_axis_start = None self.joint_axis_dim = None self.joint_axis_mode = None self.joint_linear_compliance = None self.joint_angular_compliance = None self.joint_enabled = None self.joint_limit_lower = None self.joint_limit_upper = None self.joint_limit_ke = None self.joint_limit_kd = None self.joint_twist_lower = None self.joint_twist_upper = None self.joint_q_start = None self.joint_qd_start = None self.articulation_start = None self.joint_name = None # todo: per-joint values? self.joint_attach_ke = 1.0e3 self.joint_attach_kd = 1.0e2 self.soft_contact_margin = 0.2 self.soft_contact_ke = 1.0e3 self.soft_contact_kd = 10.0 self.soft_contact_kf = 1.0e3 self.soft_contact_mu = 0.5 self.soft_contact_restitution = 0.0 self.rigid_contact_margin = None self.rigid_contact_torsional_friction = None self.rigid_contact_rolling_friction = None # toggles ground contact for all shapes self.ground = True self.ground_plane = None self.up_vector = np.array((0.0, 1.0, 0.0)) self.up_axis = 1 self.gravity = np.array((0.0, -9.81, 0.0)) self.particle_count = 0 self.body_count = 0 self.shape_count = 0 self.joint_count = 0 self.joint_axis_count = 0 self.tri_count = 0 self.tet_count = 0 self.edge_count = 0 self.spring_count = 0 self.muscle_count = 0 self.articulation_count = 0 self.joint_dof_count = 0 self.joint_coord_count = 0 self.device = wp.get_device(device) def state(self, requires_grad=None) -> State: """Returns a state object for the model The returned state will be initialized with the initial configuration given in the model description. """ s = State() if requires_grad is None: requires_grad = self.requires_grad s.particle_count = self.particle_count s.body_count = self.body_count # -------------------------------- # dynamic state (input, output) # particles if self.particle_count: s.particle_q = wp.clone(self.particle_q) s.particle_qd = wp.clone(self.particle_qd) s.particle_f = wp.zeros_like(self.particle_qd) s.particle_q.requires_grad = requires_grad s.particle_qd.requires_grad = requires_grad s.particle_f.requires_grad = requires_grad # articulations if self.body_count: s.body_q = wp.clone(self.body_q) s.body_qd = wp.clone(self.body_qd) s.body_f = wp.zeros_like(self.body_qd) s.body_deltas = wp.zeros( self.body_count, dtype=wp.spatial_vector, device=s.body_q.device, requires_grad=requires_grad ) s.body_q.requires_grad = requires_grad s.body_qd.requires_grad = requires_grad s.body_f.requires_grad = requires_grad return s def allocate_soft_contacts(self, count, requires_grad=False): self.soft_contact_count = wp.zeros(1, dtype=wp.int32, device=self.device) self.soft_contact_particle = wp.zeros(count, dtype=int, device=self.device) self.soft_contact_shape = wp.zeros(count, dtype=int, device=self.device) self.soft_contact_body_pos = wp.zeros(count, dtype=wp.vec3, device=self.device, requires_grad=requires_grad) self.soft_contact_body_vel = wp.zeros(count, dtype=wp.vec3, device=self.device, requires_grad=requires_grad) self.soft_contact_normal = wp.zeros(count, dtype=wp.vec3, device=self.device, requires_grad=requires_grad) def find_shape_contact_pairs(self): # find potential contact pairs based on collision groups and collision mask (pairwise filtering) import copy import itertools filters = copy.copy(self.shape_collision_filter_pairs) for a, b in self.shape_collision_filter_pairs: filters.add((b, a)) contact_pairs = [] # iterate over collision groups (islands) for group, shapes in self.shape_collision_group_map.items(): for shape_a, shape_b in itertools.product(shapes, shapes): if shape_a < shape_b and (shape_a, shape_b) not in filters: contact_pairs.append((shape_a, shape_b)) if group != -1 and -1 in self.shape_collision_group_map: # shapes with collision group -1 collide with all other shapes for shape_a, shape_b in itertools.product(shapes, self.shape_collision_group_map[-1]): if shape_a < shape_b and (shape_a, shape_b) not in filters: contact_pairs.append((shape_a, shape_b)) self.shape_contact_pairs = wp.array(np.array(contact_pairs), dtype=wp.int32, device=self.device) self.shape_contact_pair_count = len(contact_pairs) # find ground contact pairs ground_contact_pairs = [] ground_id = self.shape_count - 1 for i in range(ground_id): if self.shape_ground_collision[i]: ground_contact_pairs.append((i, ground_id)) self.shape_ground_contact_pairs = wp.array(np.array(ground_contact_pairs), dtype=wp.int32, device=self.device) self.shape_ground_contact_pair_count = len(ground_contact_pairs) def count_contact_points(self): """ Counts the maximum number of contact points that need to be allocated. """ from .collide import count_contact_points # calculate the potential number of shape pair contact points contact_count = wp.zeros(1, dtype=wp.int32, device=self.device) wp.launch( kernel=count_contact_points, dim=self.shape_contact_pair_count, inputs=[ self.shape_contact_pairs, self.shape_geo, ], outputs=[contact_count], device=self.device, record_tape=False, ) # count ground contacts wp.launch( kernel=count_contact_points, dim=self.shape_ground_contact_pair_count, inputs=[ self.shape_ground_contact_pairs, self.shape_geo, ], outputs=[contact_count], device=self.device, record_tape=False, ) count = contact_count.numpy()[0] return int(count) def allocate_rigid_contacts(self, count=None, requires_grad=False): if count is not None: self.rigid_contact_max = count # serves as counter of the number of active contact points self.rigid_contact_count = wp.zeros(1, dtype=wp.int32, device=self.device) # contact point ID within the (shape_a, shape_b) contact pair self.rigid_contact_point_id = wp.zeros(self.rigid_contact_max, dtype=wp.int32, device=self.device) # ID of first rigid body self.rigid_contact_body0 = wp.zeros(self.rigid_contact_max, dtype=wp.int32, device=self.device) # ID of second rigid body self.rigid_contact_body1 = wp.zeros(self.rigid_contact_max, dtype=wp.int32, device=self.device) # position of contact point in body 0's frame before the integration step self.rigid_contact_point0 = wp.zeros( self.rigid_contact_max, dtype=wp.vec3, device=self.device, requires_grad=requires_grad ) # position of contact point in body 1's frame before the integration step self.rigid_contact_point1 = wp.zeros( self.rigid_contact_max, dtype=wp.vec3, device=self.device, requires_grad=requires_grad ) # moment arm before the integration step resulting from thickness displacement added to contact point 0 in body 0's frame (used in XPBD contact friction handling) self.rigid_contact_offset0 = wp.zeros( self.rigid_contact_max, dtype=wp.vec3, device=self.device, requires_grad=requires_grad ) # moment arm before the integration step resulting from thickness displacement added to contact point 1 in body 1's frame (used in XPBD contact friction handling) self.rigid_contact_offset1 = wp.zeros( self.rigid_contact_max, dtype=wp.vec3, device=self.device, requires_grad=requires_grad ) # contact normal in world frame self.rigid_contact_normal = wp.zeros( self.rigid_contact_max, dtype=wp.vec3, device=self.device, requires_grad=requires_grad ) # combined thickness of both shapes self.rigid_contact_thickness = wp.zeros( self.rigid_contact_max, dtype=wp.float32, device=self.device, requires_grad=requires_grad ) # ID of the first shape in the contact pair self.rigid_contact_shape0 = wp.zeros(self.rigid_contact_max, dtype=wp.int32, device=self.device) # ID of the second shape in the contact pair self.rigid_contact_shape1 = wp.zeros(self.rigid_contact_max, dtype=wp.int32, device=self.device) # temporary variables used during the XPBD solver iterations: # world space position of contact point resulting from applying current body 0 transform to its point0 self.rigid_active_contact_point0 = wp.zeros( self.rigid_contact_max, dtype=wp.vec3, device=self.device, requires_grad=requires_grad ) # world space position of contact point resulting from applying current body 1 transform to its point1 self.rigid_active_contact_point1 = wp.zeros( self.rigid_contact_max, dtype=wp.vec3, device=self.device, requires_grad=requires_grad ) # current contact distance (negative penetration depth) self.rigid_active_contact_distance = wp.zeros( self.rigid_contact_max, dtype=wp.float32, device=self.device, requires_grad=requires_grad ) # contact distance before the solver iterations self.rigid_active_contact_distance_prev = wp.zeros( self.rigid_contact_max, dtype=wp.float32, device=self.device, requires_grad=requires_grad ) # world space position of point0 before the solver iterations self.rigid_active_contact_point0_prev = wp.zeros( self.rigid_contact_max, dtype=wp.vec3, device=self.device, requires_grad=requires_grad ) # world space position of point1 before the solver iterations self.rigid_active_contact_point1_prev = wp.zeros( self.rigid_contact_max, dtype=wp.vec3, device=self.device, requires_grad=requires_grad ) # number of contact constraints per rigid body (used for scaling the constraint contributions, a basic version of mass splitting) self.rigid_contact_inv_weight = wp.zeros( len(self.body_q), dtype=wp.float32, device=self.device, requires_grad=requires_grad ) # number of contact constraints before the solver iterations self.rigid_contact_inv_weight_prev = wp.zeros( len(self.body_q), dtype=wp.float32, device=self.device, requires_grad=requires_grad ) def flatten(self): """Returns a list of Tensors stored by the model This function is intended to be used internal-only but can be used to obtain a set of all tensors owned by the model. """ tensors = [] # build a list of all tensor attributes for attr, value in self.__dict__.items(): if wp.is_tensor(value): tensors.append(value) return tensors def collide(self, state: State): wp.utils.warn( "Model.collide() is not needed anymore and will be removed in a future Warp version.", DeprecationWarning, stacklevel=2, ) @property def soft_contact_max(self): """Maximum number of soft contacts that can be registered""" return len(self.soft_contact_particle) @property def soft_contact_distance(self): wp.utils.warn( "Model.soft_contact_distance is deprecated and will be removed in a future Warp version. " "Particles now have individual radii, returning `Model.particle_max_radius`.", DeprecationWarning, stacklevel=2, ) return self.particle_max_radius @soft_contact_distance.setter def soft_contact_distance(self, value): wp.utils.warn( "Model.soft_contact_distance is deprecated and will be removed in a future Warp version. " "Particles now have individual radii, see `Model.particle_radius`.", DeprecationWarning, stacklevel=2, ) @property def particle_radius(self): """Array of per-particle radii""" return self._particle_radius @particle_radius.setter def particle_radius(self, value): if isinstance(value, float): wp.utils.warn( "Model.particle_radius is an array of per-particle radii, assigning with a scalar value " "is deprecated and will be removed in a future Warp version.", PendingDeprecationWarning, stacklevel=2, ) self._particle_radius.fill_(value) self.particle_max_radius = value else: self._particle_radius = value # TODO implement max radius update to be compatible with graph capture device = wp.get_device(self.device) if not device.is_capturing: self.particle_max_radius = self._particle_radius.numpy().max() class ModelBuilder: """A helper class for building simulation models at runtime. Use the ModelBuilder to construct a simulation scene. The ModelBuilder and builds the scene representation using standard Python data structures (lists), this means it is not differentiable. Once :func:`finalize()` has been called the ModelBuilder transfers all data to Warp tensors and returns an object that may be used for simulation. Example ------- .. code-block:: python import warp as wp import warp.sim builder = wp.sim.ModelBuilder() # anchor point (zero mass) builder.add_particle((0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) # build chain for i in range(1,10): builder.add_particle((i, 1.0, 0.0), (0.0, 0.0, 0.0), 1.0) builder.add_spring(i-1, i, 1.e+3, 0.0, 0) # create model model = builder.finalize("cuda") state = model.state() integrator = wp.sim.SemiImplicitIntegrator() for i in range(100): state.clear_forces() integrator.simulate(model, state, state, dt=1.0/60.0) Note: It is strongly recommended to use the ModelBuilder to construct a simulation rather than creating your own Model object directly, however it is possible to do so if desired. """ # Default particle settings default_particle_radius = 0.1 # Default triangle soft mesh settings default_tri_ke = 100.0 default_tri_ka = 100.0 default_tri_kd = 10.0 default_tri_drag = 0.0 default_tri_lift = 0.0 # Default distance constraint properties default_spring_ke = 100.0 default_spring_kd = 0.0 # Default edge bending properties default_edge_ke = 100.0 default_edge_kd = 0.0 # Default rigid shape contact material properties default_shape_ke = 1.0e5 default_shape_kd = 1000.0 default_shape_kf = 1000.0 default_shape_mu = 0.5 default_shape_restitution = 0.0 default_shape_density = 1000.0 # Default joint settings default_joint_limit_ke = 100.0 default_joint_limit_kd = 1.0 # Default geo settings default_geo_thickness = 1e-5 def __init__(self, up_vector=(0.0, 1.0, 0.0), gravity=-9.80665): self.num_envs = 0 # particles self.particle_q = [] self.particle_qd = [] self.particle_mass = [] self.particle_radius = [] self.particle_flags = [] self.particle_max_velocity = 1e5 # shapes (each shape has an entry in these arrays) # transform from shape to body self.shape_transform = [] # maps from shape index to body index self.shape_body = [] self.shape_geo_type = [] self.shape_geo_scale = [] self.shape_geo_src = [] self.shape_geo_is_solid = [] self.shape_geo_thickness = [] self.shape_material_ke = [] self.shape_material_kd = [] self.shape_material_kf = [] self.shape_material_mu = [] self.shape_material_restitution = [] # collision groups within collisions are handled self.shape_collision_group = [] self.shape_collision_group_map = {} self.last_collision_group = 0 # radius to use for broadphase collision checking self.shape_collision_radius = [] # whether the shape collides with the ground self.shape_ground_collision = [] # filtering to ignore certain collision pairs self.shape_collision_filter_pairs = set() # geometry self.geo_meshes = [] self.geo_sdfs = [] # springs self.spring_indices = [] self.spring_rest_length = [] self.spring_stiffness = [] self.spring_damping = [] self.spring_control = [] # triangles self.tri_indices = [] self.tri_poses = [] self.tri_activations = [] self.tri_materials = [] # edges (bending) self.edge_indices = [] self.edge_rest_angle = [] self.edge_bending_properties = [] # tetrahedra self.tet_indices = [] self.tet_poses = [] self.tet_activations = [] self.tet_materials = [] # muscles self.muscle_start = [] self.muscle_params = [] self.muscle_activation = [] self.muscle_bodies = [] self.muscle_points = [] # rigid bodies self.body_mass = [] self.body_inertia = [] self.body_inv_mass = [] self.body_inv_inertia = [] self.body_com = [] self.body_q = [] self.body_qd = [] self.body_name = [] self.body_shapes = {} # mapping from body to shapes # rigid joints self.joint = {} self.joint_parent = [] # index of the parent body (constant) self.joint_parents = {} # mapping from joint to parent bodies self.joint_child = [] # index of the child body (constant) self.joint_axis = [] # joint axis in child joint frame (constant) self.joint_X_p = [] # frame of joint in parent (constant) self.joint_X_c = [] # frame of child com (in child coordinates) (constant) self.joint_q = [] self.joint_qd = [] self.joint_type = [] self.joint_name = [] self.joint_armature = [] self.joint_target = [] self.joint_target_ke = [] self.joint_target_kd = [] self.joint_axis_mode = [] self.joint_limit_lower = [] self.joint_limit_upper = [] self.joint_limit_ke = [] self.joint_limit_kd = [] self.joint_act = [] self.joint_twist_lower = [] self.joint_twist_upper = [] self.joint_linear_compliance = [] self.joint_angular_compliance = [] self.joint_enabled = [] self.joint_q_start = [] self.joint_qd_start = [] self.joint_axis_start = [] self.joint_axis_dim = [] self.articulation_start = [] self.joint_dof_count = 0 self.joint_coord_count = 0 self.joint_axis_total_count = 0 self.up_vector = np.array(up_vector) self.up_axis = np.argmax(np.abs(up_vector)) self.gravity = gravity # indicates whether a ground plane has been created self._ground_created = False # constructor parameters for ground plane shape self._ground_params = dict( plane=(*up_vector, 0.0), width=0.0, length=0.0, ke=self.default_shape_ke, kd=self.default_shape_kd, kf=self.default_shape_kf, mu=self.default_shape_mu, restitution=self.default_shape_restitution, ) # Maximum number of soft contacts that can be registered self.soft_contact_max = 64 * 1024 # contacts to be generated within the given distance margin to be generated at # every simulation substep (can be 0 if only one PBD solver iteration is used) self.rigid_contact_margin = 0.1 # torsional friction coefficient (only considered by XPBD so far) self.rigid_contact_torsional_friction = 0.5 # rolling friction coefficient (only considered by XPBD so far) self.rigid_contact_rolling_friction = 0.001 # number of rigid contact points to allocate in the model during self.finalize() per environment # if setting is None, the number of worst-case number of contacts will be calculated in self.finalize() self.num_rigid_contacts_per_env = None @property def shape_count(self): return len(self.shape_geo_type) @property def body_count(self): return len(self.body_q) @property def joint_count(self): return len(self.joint_type) @property def joint_axis_count(self): return len(self.joint_axis) @property def particle_count(self): return len(self.particle_q) @property def tri_count(self): return len(self.tri_poses) @property def tet_count(self): return len(self.tet_poses) @property def edge_count(self): return len(self.edge_rest_angle) @property def spring_count(self): return len(self.spring_rest_length) @property def muscle_count(self): return len(self.muscle_start) @property def articulation_count(self): return len(self.articulation_start) # an articulation is a set of contiguous bodies bodies from articulation_start[i] to articulation_start[i+1] # these are used for computing forward kinematics e.g.: # # model.eval_articulation_fk() # model.eval_articulation_j() # model.eval_articulation_m() # # articulations are automatically 'closed' when calling finalize def add_articulation(self): self.articulation_start.append(self.joint_count) def add_builder(self, articulation, xform=None, update_num_env_count=True, separate_collision_group=True): """Copies a rigid articulation from `articulation`, another `ModelBuilder`. Args: articulation: a model builder to add rigid articulation from. xform: offset transform applied to root bodies. update_num_env_count: if True, the number of environments is incremented by 1. separate_collision_group: if True, the shapes from the articulation will all be put into a single new collision group, otherwise, only the shapes in collision group > -1 will be moved to a new group. """ start_body_idx = self.body_count start_shape_idx = self.shape_count for s, b in enumerate(articulation.shape_body): if b > -1: new_b = b + start_body_idx self.shape_body.append(new_b) self.shape_transform.append(articulation.shape_transform[s]) else: self.shape_body.append(-1) # apply offset transform to root bodies if xform is not None: self.shape_transform.append(xform * articulation.shape_transform[s]) for b, shapes in articulation.body_shapes.items(): self.body_shapes[b + start_body_idx] = [s + start_shape_idx for s in shapes] if articulation.joint_count: joint_X_p = copy.deepcopy(articulation.joint_X_p) joint_q = copy.deepcopy(articulation.joint_q) if xform is not None: for i in range(len(joint_X_p)): if articulation.joint_type[i] == wp.sim.JOINT_FREE: qi = articulation.joint_q_start[i] xform_prev = wp.transform(joint_q[qi : qi + 3], joint_q[qi + 3 : qi + 7]) tf = xform * xform_prev joint_q[qi : qi + 3] = tf.p joint_q[qi + 3 : qi + 7] = tf.q elif articulation.joint_parent[i] == -1: joint_X_p[i] = xform * joint_X_p[i] self.joint_X_p.extend(joint_X_p) self.joint_q.extend(joint_q) self.add_articulation() # offset the indices self.joint_parent.extend([p + self.joint_count if p != -1 else -1 for p in articulation.joint_parent]) self.joint_child.extend([c + self.joint_count for c in articulation.joint_child]) self.joint_q_start.extend([c + self.joint_coord_count for c in articulation.joint_q_start]) self.joint_qd_start.extend([c + self.joint_dof_count for c in articulation.joint_qd_start]) self.joint_axis_start.extend([a + self.joint_axis_total_count for a in articulation.joint_axis_start]) joint_children = set(articulation.joint_child) for i in range(articulation.body_count): if xform is not None and i not in joint_children: # rigid body is not attached to a joint, so apply input transform directly self.body_q.append(xform * articulation.body_q[i]) else: self.body_q.append(articulation.body_q[i]) # apply collision group if separate_collision_group: self.shape_collision_group.extend( [self.last_collision_group + 1 for _ in articulation.shape_collision_group] ) else: self.shape_collision_group.extend( [(g + self.last_collision_group if g > -1 else -1) for g in articulation.shape_collision_group] ) shape_count = self.shape_count for i, j in articulation.shape_collision_filter_pairs: self.shape_collision_filter_pairs.add((i + shape_count, j + shape_count)) for group, shapes in articulation.shape_collision_group_map.items(): if separate_collision_group: group = self.last_collision_group + 1 else: group = group + self.last_collision_group if group > -1 else -1 if group not in self.shape_collision_group_map: self.shape_collision_group_map[group] = [] self.shape_collision_group_map[group].extend([s + shape_count for s in shapes]) # update last collision group counter if separate_collision_group: self.last_collision_group += 1 elif articulation.last_collision_group > -1: self.last_collision_group += articulation.last_collision_group rigid_articulation_attrs = [ "body_inertia", "body_mass", "body_inv_inertia", "body_inv_mass", "body_com", "body_qd", "body_name", "joint_type", "joint_enabled", "joint_X_c", "joint_armature", "joint_axis", "joint_axis_dim", "joint_axis_mode", "joint_name", "joint_qd", "joint_act", "joint_limit_lower", "joint_limit_upper", "joint_limit_ke", "joint_limit_kd", "joint_target", "joint_target_ke", "joint_target_kd", "joint_linear_compliance", "joint_angular_compliance", "shape_geo_type", "shape_geo_scale", "shape_geo_src", "shape_geo_is_solid", "shape_geo_thickness", "shape_material_ke", "shape_material_kd", "shape_material_kf", "shape_material_mu", "shape_material_restitution", "shape_collision_radius", "shape_ground_collision", ] for attr in rigid_articulation_attrs: getattr(self, attr).extend(getattr(articulation, attr)) self.joint_dof_count += articulation.joint_dof_count self.joint_coord_count += articulation.joint_coord_count self.joint_axis_total_count += articulation.joint_axis_total_count self.up_vector = articulation.up_vector self.gravity = articulation.gravity if update_num_env_count: self.num_envs += 1 # register a rigid body and return its index. def add_body( self, origin: Transform = wp.transform(), armature: float = 0.0, com: Vec3 = np.zeros(3), I_m: Mat33 = np.zeros((3, 3)), m: float = 0.0, name: str = None, ) -> int: """Adds a rigid body to the model. Args: origin: The location of the body in the world frame armature: Artificial inertia added to the body com: The center of mass of the body w.r.t its origin I_m: The 3x3 inertia tensor of the body (specified relative to the center of mass) m: Mass of the body name: Name of the body (optional) Returns: The index of the body in the model Note: If the mass (m) is zero then the body is treated as kinematic with no dynamics """ body_id = len(self.body_mass) # body data inertia = I_m + np.eye(3) * armature self.body_inertia.append(inertia) self.body_mass.append(m) self.body_com.append(com) if m > 0.0: self.body_inv_mass.append(1.0 / m) else: self.body_inv_mass.append(0.0) if inertia.any(): self.body_inv_inertia.append(np.linalg.inv(inertia)) else: self.body_inv_inertia.append(inertia) self.body_q.append(origin) self.body_qd.append(wp.spatial_vector()) self.body_name.append(name or f"body {body_id}") self.body_shapes[body_id] = [] return body_id def add_joint( self, joint_type: wp.constant, parent: int, child: int, linear_axes: List[JointAxis] = [], angular_axes: List[JointAxis] = [], name: str = None, parent_xform: wp.transform = wp.transform(), child_xform: wp.transform = wp.transform(), linear_compliance: float = 0.0, angular_compliance: float = 0.0, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """ Generic method to add any type of joint to this ModelBuilder. Args: joint_type: The type of joint to add (see `Joint types`_) parent: The index of the parent body (-1 is the world) child: The index of the child body linear_axes: The linear axes (see :class:`JointAxis`) of the joint angular_axes: The angular axes (see :class:`JointAxis`) of the joint name: The name of the joint parent_xform: The transform of the joint in the parent body's local frame child_xform: The transform of the joint in the child body's local frame linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the child body """ self.joint_type.append(joint_type) self.joint_parent.append(parent) if child not in self.joint_parents: self.joint_parents[child] = [parent] else: self.joint_parents[child].append(parent) self.joint_child.append(child) self.joint_X_p.append([*parent_xform]) self.joint_X_c.append([*child_xform]) self.joint_name.append(name or f"joint {self.joint_count}") self.joint_axis_start.append(len(self.joint_axis)) self.joint_axis_dim.append((len(linear_axes), len(angular_axes))) self.joint_axis_total_count += len(linear_axes) + len(angular_axes) self.joint_linear_compliance.append(linear_compliance) self.joint_angular_compliance.append(angular_compliance) self.joint_enabled.append(enabled) def add_axis_dim(dim): self.joint_axis.append(dim.axis) self.joint_axis_mode.append(dim.mode) self.joint_target.append(dim.target) self.joint_target_ke.append(dim.target_ke) self.joint_target_kd.append(dim.target_kd) self.joint_limit_ke.append(dim.limit_ke) self.joint_limit_kd.append(dim.limit_kd) if np.isfinite(dim.limit_lower): self.joint_limit_lower.append(dim.limit_lower) else: self.joint_limit_lower.append(-1e6) if np.isfinite(dim.limit_upper): self.joint_limit_upper.append(dim.limit_upper) else: self.joint_limit_upper.append(1e6) # self.joint_limit_lower.append(dim.limit_lower) # self.joint_limit_upper.append(dim.limit_upper) for dim in linear_axes: add_axis_dim(dim) for dim in angular_axes: add_axis_dim(dim) if joint_type == JOINT_PRISMATIC: dof_count = 1 coord_count = 1 elif joint_type == JOINT_REVOLUTE: dof_count = 1 coord_count = 1 elif joint_type == JOINT_BALL: dof_count = 3 coord_count = 4 elif joint_type == JOINT_FREE: dof_count = 6 coord_count = 7 elif joint_type == JOINT_FIXED: dof_count = 0 coord_count = 0 elif joint_type == JOINT_UNIVERSAL: dof_count = 2 coord_count = 2 elif joint_type == JOINT_COMPOUND: dof_count = 3 coord_count = 3 elif joint_type == JOINT_DISTANCE: # todo use free joint dofs? dof_count = 0 coord_count = 0 elif joint_type == JOINT_D6: dof_count = len(linear_axes) + len(angular_axes) coord_count = dof_count for i in range(coord_count): self.joint_q.append(0.0) for i in range(dof_count): self.joint_qd.append(0.0) self.joint_act.append(0.0) if joint_type == JOINT_FREE or joint_type == JOINT_BALL: # ensure that a valid quaternion is used for the angular dofs self.joint_q[-1] = 1.0 self.joint_q_start.append(self.joint_coord_count) self.joint_qd_start.append(self.joint_dof_count) self.joint_dof_count += dof_count self.joint_coord_count += coord_count if collision_filter_parent and parent > -1: for child_shape in self.body_shapes[child]: for parent_shape in self.body_shapes[parent]: self.shape_collision_filter_pairs.add((parent_shape, child_shape)) return self.joint_count - 1 def add_joint_revolute( self, parent: int, child: int, parent_xform: wp.transform, child_xform: wp.transform, axis: Vec3, target: float = 0.0, target_ke: float = 0.0, target_kd: float = 0.0, mode: int = JOINT_MODE_TARGET_POSITION, limit_lower: float = -2 * math.pi, limit_upper: float = 2 * math.pi, limit_ke: float = default_joint_limit_ke, limit_kd: float = default_joint_limit_kd, linear_compliance: float = 0.0, angular_compliance: float = 0.0, name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a revolute joint to the model Args: parent: The index of the parent body child: The index of the child body parent_xform: The transform of the joint in the parent body's local frame child_xform: The transform of the joint in the child body's local frame axis: The axis of rotation in the parent body's local frame target: The target angle (in radians) of the joint target_ke: The stiffness of the joint target target_kd: The damping of the joint target limit_lower: The lower limit of the joint limit_upper: The upper limit of the joint limit_ke: The stiffness of the joint limit limit_kd: The damping of the joint limit linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the child body """ ax = JointAxis( axis=axis, limit_lower=limit_lower, limit_upper=limit_upper, target=target, target_ke=target_ke, target_kd=target_kd, mode=mode, limit_ke=limit_ke, limit_kd=limit_kd, ) return self.add_joint( JOINT_REVOLUTE, parent, child, parent_xform=parent_xform, child_xform=child_xform, angular_axes=[ax], linear_compliance=linear_compliance, angular_compliance=angular_compliance, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_prismatic( self, parent: int, child: int, parent_xform: wp.transform, child_xform: wp.transform, axis: Vec3, target: float = 0.0, target_ke: float = 0.0, target_kd: float = 0.0, mode: int = JOINT_MODE_TARGET_POSITION, limit_lower: float = -1e4, limit_upper: float = 1e4, limit_ke: float = default_joint_limit_ke, limit_kd: float = default_joint_limit_kd, linear_compliance: float = 0.0, angular_compliance: float = 0.0, name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a prismatic joint to the model Args: parent: The index of the parent body child: The index of the child body parent_xform: The transform of the joint in the parent body's local frame child_xform: The transform of the joint in the child body's local frame axis: The axis of rotation in the parent body's local frame target: The target position of the joint target_ke: The stiffness of the joint target target_kd: The damping of the joint target limit_lower: The lower limit of the joint limit_upper: The upper limit of the joint limit_ke: The stiffness of the joint limit limit_kd: The damping of the joint limit linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the child body """ ax = JointAxis( axis=axis, limit_lower=limit_lower, limit_upper=limit_upper, target=target, target_ke=target_ke, target_kd=target_kd, mode=mode, limit_ke=limit_ke, limit_kd=limit_kd, ) return self.add_joint( JOINT_PRISMATIC, parent, child, parent_xform=parent_xform, child_xform=child_xform, linear_axes=[ax], linear_compliance=linear_compliance, angular_compliance=angular_compliance, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_ball( self, parent: int, child: int, parent_xform: wp.transform = wp.transform(), child_xform: wp.transform = wp.transform(), linear_compliance: float = 0.0, angular_compliance: float = 0.0, name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a ball joint to the model Args: parent: The index of the parent body child: The index of the child body parent_xform: The transform of the joint in the parent body's local frame xform: The transform of the joint in the child body's local frame linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the child body """ return self.add_joint( JOINT_BALL, parent, child, parent_xform=parent_xform, child_xform=child_xform, linear_compliance=linear_compliance, angular_compliance=angular_compliance, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_fixed( self, parent: int, child: int, parent_xform: wp.transform = wp.transform(), child_xform: wp.transform = wp.transform(), linear_compliance: float = 0.0, angular_compliance: float = 0.0, name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a fixed joint to the model Args: parent: The index of the parent body child: The index of the child body parent_xform: The transform of the joint in the parent body's local frame xform: The transform of the joint in the child body's local frame linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the child body """ return self.add_joint( JOINT_FIXED, parent, child, parent_xform=parent_xform, child_xform=child_xform, linear_compliance=linear_compliance, angular_compliance=angular_compliance, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_free( self, child: int, parent_xform: wp.transform = wp.transform(), child_xform: wp.transform = wp.transform(), parent: int = -1, name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a free joint to the model Args: parent: The index of the parent body child: The index of the child body parent_xform: The transform of the joint in the parent body's local frame xform: The transform of the joint in the child body's local frame name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the child body """ return self.add_joint( JOINT_FREE, parent, child, parent_xform=parent_xform, child_xform=child_xform, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_distance( self, parent: int, child: int, parent_xform: wp.transform = wp.transform(), child_xform: wp.transform = wp.transform(), min_distance: float = -1.0, max_distance: float = 1.0, compliance: float = 0.0, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a distance joint to the model Args: parent: The index of the parent body child: The index of the child body parent_xform: The transform of the joint in the parent body's local frame xform: The transform of the joint in the child body's local frame min_distance: The minimum distance between the bodies (no limit if negative) max_distance: The maximum distance between the bodies (no limit if negative) compliance: The compliance of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the child body """ ax = JointAxis( axis=(1.0, 0.0, 0.0), limit_lower=min_distance, limit_upper=max_distance, ) return self.add_joint( JOINT_DISTANCE, parent, child, parent_xform=parent_xform, child_xform=child_xform, linear_axes=[ax], linear_compliance=compliance, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_universal( self, parent: int, child: int, axis_0: JointAxis, axis_1: JointAxis, parent_xform: wp.transform = wp.transform(), child_xform: wp.transform = wp.transform(), linear_compliance: float = 0.0, angular_compliance: float = 0.0, name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a universal joint to the model Args: parent: The index of the parent body child: The index of the child body axis_0: The first axis of the joint axis_1: The second axis of the joint parent_xform: The transform of the joint in the parent body's local frame xform: The transform of the joint in the child body's local frame linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the child body """ return self.add_joint( JOINT_UNIVERSAL, parent, child, angular_axes=[axis_0, axis_1], parent_xform=parent_xform, child_xform=child_xform, linear_compliance=linear_compliance, angular_compliance=angular_compliance, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_compound( self, parent: int, child: int, axis_0: JointAxis, axis_1: JointAxis, axis_2: JointAxis, parent_xform: wp.transform = wp.transform(), child_xform: wp.transform = wp.transform(), name: str = None, collision_filter_parent: bool = True, enabled: bool = True, ) -> int: """Adds a compound joint to the model Args: parent: The index of the parent body child: The index of the child body axis_0: The first axis of the joint axis_1: The second axis of the joint axis_2: The third axis of the joint parent_xform: The transform of the joint in the parent body's local frame xform: The transform of the joint in the child body's local frame name: The name of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the child body """ return self.add_joint( JOINT_COMPOUND, parent, child, angular_axes=[axis_0, axis_1, axis_2], parent_xform=parent_xform, child_xform=child_xform, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def add_joint_d6( self, parent: int, child: int, linear_axes: List[JointAxis] = [], angular_axes: List[JointAxis] = [], name: str = None, parent_xform: wp.transform = wp.transform(), child_xform: wp.transform = wp.transform(), linear_compliance: float = 0.0, angular_compliance: float = 0.0, collision_filter_parent: bool = True, enabled: bool = True, ): """Adds a generic joint with custom linear and angular axes. Args: parent: The index of the parent body child: The index of the child body linear_axes: A list of linear axes angular_axes: A list of angular axes name: The name of the joint parent_xform: The transform of the joint in the parent body's local frame xform: The transform of the joint in the child body's local frame linear_compliance: The linear compliance of the joint angular_compliance: The angular compliance of the joint collision_filter_parent: Whether to filter collisions between shapes of the parent and child bodies enabled: Whether the joint is enabled Returns: The index of the child body """ return self.add_joint( JOINT_D6, parent, child, parent_xform=parent_xform, child_xform=child_xform, linear_axes=linear_axes, angular_axes=angular_axes, linear_compliance=linear_compliance, angular_compliance=angular_compliance, name=name, collision_filter_parent=collision_filter_parent, enabled=enabled, ) def collapse_fixed_joints(self, verbose=wp.config.verbose): """Removes fixed joints from the model and merges the bodies they connect.""" body_data = {} body_children = {-1: []} visited = {} for i in range(self.body_count): name = self.body_name[i] body_data[i] = { "shapes": self.body_shapes[i], "q": self.body_q[i], "qd": self.body_qd[i], "mass": self.body_mass[i], "inertia": self.body_inertia[i], "inv_mass": self.body_inv_mass[i], "inv_inertia": self.body_inv_inertia[i], "com": self.body_com[i], "name": name, "original_id": i, } visited[i] = False body_children[i] = [] joint_data = {} for i in range(self.joint_count): name = self.joint_name[i] parent = self.joint_parent[i] child = self.joint_child[i] body_children[parent].append(child) q_start = self.joint_q_start[i] qd_start = self.joint_qd_start[i] if i < self.joint_count - 1: q_dim = self.joint_q_start[i + 1] - q_start qd_dim = self.joint_qd_start[i + 1] - qd_start else: q_dim = len(self.joint_q) - q_start qd_dim = len(self.joint_qd) - qd_start data = { "type": self.joint_type[i], # 'armature': self.joint_armature[i], "q": self.joint_q[q_start : q_start + q_dim], "qd": self.joint_qd[qd_start : qd_start + qd_dim], "act": self.joint_act[qd_start : qd_start + qd_dim], "q_start": q_start, "qd_start": qd_start, "linear_compliance": self.joint_linear_compliance[i], "angular_compliance": self.joint_angular_compliance[i], "name": name, "parent_xform": wp.transform_expand(self.joint_X_p[i]), "child_xform": wp.transform_expand(self.joint_X_c[i]), "enabled": self.joint_enabled[i], "axes": [], "axis_dim": self.joint_axis_dim[i], "parent": parent, "child": child, "original_id": i, } num_lin_axes, num_ang_axes = self.joint_axis_dim[i] start_ax = self.joint_axis_start[i] for j in range(start_ax, start_ax + num_lin_axes + num_ang_axes): data["axes"].append( { "axis": self.joint_axis[j], "axis_mode": self.joint_axis_mode[j], "target": self.joint_target[j], "target_ke": self.joint_target_ke[j], "target_kd": self.joint_target_kd[j], "limit_ke": self.joint_limit_ke[j], "limit_kd": self.joint_limit_kd[j], "limit_lower": self.joint_limit_lower[j], "limit_upper": self.joint_limit_upper[j], } ) joint_data[(parent, child)] = data # sort body children so we traverse the tree in the same order as the bodies are listed for children in body_children.values(): children.sort(key=lambda x: body_data[x]["original_id"]) retained_joints = [] retained_bodies = [] body_remap = {-1: -1} # depth first search over the joint graph def dfs(parent_body: int, child_body: int, incoming_xform: wp.transform, last_dynamic_body: int): nonlocal visited nonlocal retained_joints nonlocal retained_bodies nonlocal body_data nonlocal body_remap joint = joint_data[(parent_body, child_body)] if joint["type"] == JOINT_FIXED: joint_xform = joint["parent_xform"] * wp.transform_inverse(joint["child_xform"]) incoming_xform = incoming_xform * joint_xform parent_name = self.body_name[parent_body] if parent_body > -1 else "world" child_name = self.body_name[child_body] last_dynamic_body_name = self.body_name[last_dynamic_body] if last_dynamic_body > -1 else "world" if verbose: print( f'Remove fixed joint {joint["name"]} between {parent_name} and {child_name}, ' f"merging {child_name} into {last_dynamic_body_name}" ) child_id = body_data[child_body]["original_id"] for shape in self.body_shapes[child_id]: self.shape_transform[shape] = incoming_xform * self.shape_transform[shape] if verbose: print( f" Shape {shape} moved to body {last_dynamic_body_name} with transform {self.shape_transform[shape]}" ) if last_dynamic_body > -1: self.shape_body[shape] = body_data[last_dynamic_body]["id"] # add inertia to last_dynamic_body m = body_data[child_body]["mass"] com = body_data[child_body]["com"] inertia = body_data[child_body]["inertia"] body_data[last_dynamic_body]["inertia"] += wp.sim.transform_inertia( m, inertia, incoming_xform.p, incoming_xform.q ) body_data[last_dynamic_body]["mass"] += m source_m = body_data[last_dynamic_body]["mass"] source_com = body_data[last_dynamic_body]["com"] body_data[last_dynamic_body]["com"] = (m * com + source_m * source_com) / (m + source_m) body_data[last_dynamic_body]["shapes"].append(shape) # indicate to recompute inverse mass, inertia for this body body_data[last_dynamic_body]["inv_mass"] = None else: self.shape_body[shape] = -1 else: joint["parent_xform"] = incoming_xform * joint["parent_xform"] joint["parent"] = last_dynamic_body last_dynamic_body = child_body incoming_xform = wp.transform() retained_joints.append(joint) new_id = len(retained_bodies) body_data[child_body]["id"] = new_id retained_bodies.append(child_body) for shape in body_data[child_body]["shapes"]: self.shape_body[shape] = new_id visited[parent_body] = True if visited[child_body] or child_body not in body_children: return for child in body_children[child_body]: if not visited[child]: dfs(child_body, child, incoming_xform, last_dynamic_body) for body in body_children[-1]: if not visited[body]: dfs(-1, body, wp.transform(), -1) # repopulate the model self.body_name.clear() self.body_q.clear() self.body_qd.clear() self.body_mass.clear() self.body_inertia.clear() self.body_com.clear() self.body_inv_mass.clear() self.body_inv_inertia.clear() self.body_shapes.clear() for i in retained_bodies: body = body_data[i] new_id = len(self.body_name) body_remap[body["original_id"]] = new_id self.body_name.append(body["name"]) self.body_q.append(list(body["q"])) self.body_qd.append(list(body["qd"])) m = body["mass"] inertia = body["inertia"] self.body_mass.append(m) self.body_inertia.append(inertia) self.body_com.append(body["com"]) if body["inv_mass"] is None: # recompute inverse mass and inertia if m > 0.0: self.body_inv_mass.append(1.0 / m) self.body_inv_inertia.append(np.linalg.inv(inertia)) else: self.body_inv_mass.append(0.0) self.body_inv_inertia.append(np.zeros((3, 3))) else: self.body_inv_mass.append(body["inv_mass"]) self.body_inv_inertia.append(body["inv_inertia"]) self.body_shapes[new_id] = body["shapes"] body_remap[body["original_id"]] = new_id # sort joints so they appear in the same order as before retained_joints.sort(key=lambda x: x["original_id"]) self.joint_name.clear() self.joint_type.clear() self.joint_parent.clear() self.joint_child.clear() self.joint_q.clear() self.joint_qd.clear() self.joint_q_start.clear() self.joint_qd_start.clear() self.joint_enabled.clear() self.joint_linear_compliance.clear() self.joint_angular_compliance.clear() self.joint_X_p.clear() self.joint_X_c.clear() self.joint_axis.clear() self.joint_axis_mode.clear() self.joint_target.clear() self.joint_target_ke.clear() self.joint_target_kd.clear() self.joint_limit_lower.clear() self.joint_limit_upper.clear() self.joint_limit_ke.clear() self.joint_limit_kd.clear() self.joint_axis_dim.clear() self.joint_axis_start.clear() self.joint_act.clear() for joint in retained_joints: self.joint_name.append(joint["name"]) self.joint_type.append(joint["type"]) self.joint_parent.append(body_remap[joint["parent"]]) self.joint_child.append(body_remap[joint["child"]]) self.joint_q_start.append(len(self.joint_q)) self.joint_qd_start.append(len(self.joint_qd)) self.joint_q.extend(joint["q"]) self.joint_qd.extend(joint["qd"]) self.joint_act.extend(joint["act"]) self.joint_enabled.append(joint["enabled"]) self.joint_linear_compliance.append(joint["linear_compliance"]) self.joint_angular_compliance.append(joint["angular_compliance"]) self.joint_X_p.append(list(joint["parent_xform"])) self.joint_X_c.append(list(joint["child_xform"])) self.joint_axis_dim.append(joint["axis_dim"]) self.joint_axis_start.append(len(self.joint_axis)) for axis in joint["axes"]: self.joint_axis.append(axis["axis"]) self.joint_axis_mode.append(axis["axis_mode"]) self.joint_target.append(axis["target"]) self.joint_target_ke.append(axis["target_ke"]) self.joint_target_kd.append(axis["target_kd"]) self.joint_limit_lower.append(axis["limit_lower"]) self.joint_limit_upper.append(axis["limit_upper"]) self.joint_limit_ke.append(axis["limit_ke"]) self.joint_limit_kd.append(axis["limit_kd"]) # muscles def add_muscle( self, bodies: List[int], positions: List[Vec3], f0: float, lm: float, lt: float, lmax: float, pen: float ) -> float: """Adds a muscle-tendon activation unit Args: bodies: A list of body indices for each waypoint positions: A list of positions of each waypoint in the body's local frame f0: Force scaling lm: Muscle length lt: Tendon length lmax: Maximally efficient muscle length Returns: The index of the muscle in the model """ n = len(bodies) self.muscle_start.append(len(self.muscle_bodies)) self.muscle_params.append((f0, lm, lt, lmax, pen)) self.muscle_activation.append(0.0) for i in range(n): self.muscle_bodies.append(bodies[i]) self.muscle_points.append(positions[i]) # return the index of the muscle return len(self.muscle_start) - 1 # shapes def add_shape_plane( self, plane: Vec4 = (0.0, 1.0, 0.0, 0.0), pos: Vec3 = None, rot: Quat = None, width: float = 10.0, length: float = 10.0, body: int = -1, ke: float = default_shape_ke, kd: float = default_shape_kd, kf: float = default_shape_kf, mu: float = default_shape_mu, restitution: float = default_shape_restitution, thickness: float = 0.0, has_ground_collision: bool = False, ): """ Adds a plane collision shape. If pos and rot are defined, the plane is assumed to have its normal as (0, 1, 0). Otherwise, the plane equation is used. Args: plane: The plane equation in form a*x + b*y + c*z + d = 0 pos: The position of the plane in world coordinates rot: The rotation of the plane in world coordinates width: The extent along x of the plane (infinite if 0) length: The extent along z of the plane (infinite if 0) body: The body index to attach the shape to (-1 by default to keep the plane static) ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction restitution: The coefficient of restitution thickness: The thickness of the plane (0 by default) for collision handling has_ground_collision: If True, the mesh will collide with the ground plane if `Model.ground` is True """ if pos is None or rot is None: # compute position and rotation from plane equation normal = np.array(plane[:3]) normal /= np.linalg.norm(normal) pos = plane[3] * normal if np.allclose(normal, (0.0, 1.0, 0.0)): # no rotation necessary rot = (0.0, 0.0, 0.0, 1.0) else: c = np.cross(normal, (0.0, 1.0, 0.0)) angle = np.arcsin(np.linalg.norm(c)) axis = c / np.linalg.norm(c) rot = wp.quat_from_axis_angle(axis, angle) scale = (width, length, 0.0) return self._add_shape( body, pos, rot, GEO_PLANE, scale, None, 0.0, ke, kd, kf, mu, restitution, thickness, has_ground_collision=has_ground_collision, ) def add_shape_sphere( self, body, pos: Vec3 = (0.0, 0.0, 0.0), rot: Quat = (0.0, 0.0, 0.0, 1.0), radius: float = 1.0, density: float = default_shape_density, ke: float = default_shape_ke, kd: float = default_shape_kd, kf: float = default_shape_kf, mu: float = default_shape_mu, restitution: float = default_shape_restitution, is_solid: bool = True, thickness: float = default_geo_thickness, has_ground_collision: bool = True, ): """Adds a sphere collision shape to a body. Args: body: The index of the parent body this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the sphere density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction restitution: The coefficient of restitution is_solid: Whether the sphere is solid or hollow thickness: Thickness to use for computing inertia of a hollow sphere, and for collision handling has_ground_collision: If True, the mesh will collide with the ground plane if `Model.ground` is True """ return self._add_shape( body, pos, rot, GEO_SPHERE, (radius, 0.0, 0.0, 0.0), None, density, ke, kd, kf, mu, restitution, thickness + radius, is_solid, has_ground_collision=has_ground_collision, ) def add_shape_box( self, body: int, pos: Vec3 = (0.0, 0.0, 0.0), rot: Quat = (0.0, 0.0, 0.0, 1.0), hx: float = 0.5, hy: float = 0.5, hz: float = 0.5, density: float = default_shape_density, ke: float = default_shape_ke, kd: float = default_shape_kd, kf: float = default_shape_kf, mu: float = default_shape_mu, restitution: float = default_shape_restitution, is_solid: bool = True, thickness: float = default_geo_thickness, has_ground_collision: bool = True, ): """Adds a box collision shape to a body. Args: body: The index of the parent body this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame hx: The half-extent along the x-axis hy: The half-extent along the y-axis hz: The half-extent along the z-axis density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction restitution: The coefficient of restitution is_solid: Whether the box is solid or hollow thickness: Thickness to use for computing inertia of a hollow box, and for collision handling has_ground_collision: If True, the mesh will collide with the ground plane if `Model.ground` is True """ return self._add_shape( body, pos, rot, GEO_BOX, (hx, hy, hz, 0.0), None, density, ke, kd, kf, mu, restitution, thickness, is_solid, has_ground_collision=has_ground_collision, ) def add_shape_capsule( self, body: int, pos: Vec3 = (0.0, 0.0, 0.0), rot: Quat = (0.0, 0.0, 0.0, 1.0), radius: float = 1.0, half_height: float = 0.5, up_axis: int = 1, density: float = default_shape_density, ke: float = default_shape_ke, kd: float = default_shape_kd, kf: float = default_shape_kf, mu: float = default_shape_mu, restitution: float = default_shape_restitution, is_solid: bool = True, thickness: float = default_geo_thickness, has_ground_collision: bool = True, ): """Adds a capsule collision shape to a body. Args: body: The index of the parent body this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the capsule half_height: The half length of the center cylinder along the up axis up_axis: The axis along which the capsule is aligned (0=x, 1=y, 2=z) density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction restitution: The coefficient of restitution is_solid: Whether the capsule is solid or hollow thickness: Thickness to use for computing inertia of a hollow capsule, and for collision handling has_ground_collision: If True, the mesh will collide with the ground plane if `Model.ground` is True """ q = rot sqh = math.sqrt(0.5) if up_axis == 0: q = wp.mul(rot, wp.quat(0.0, 0.0, -sqh, sqh)) elif up_axis == 2: q = wp.mul(rot, wp.quat(sqh, 0.0, 0.0, sqh)) return self._add_shape( body, pos, q, GEO_CAPSULE, (radius, half_height, 0.0, 0.0), None, density, ke, kd, kf, mu, restitution, thickness + radius, is_solid, has_ground_collision=has_ground_collision, ) def add_shape_cylinder( self, body: int, pos: Vec3 = (0.0, 0.0, 0.0), rot: Quat = (0.0, 0.0, 0.0, 1.0), radius: float = 1.0, half_height: float = 0.5, up_axis: int = 1, density: float = default_shape_density, ke: float = default_shape_ke, kd: float = default_shape_kd, kf: float = default_shape_kf, mu: float = default_shape_mu, restitution: float = default_shape_restitution, is_solid: bool = True, thickness: float = default_geo_thickness, has_ground_collision: bool = True, ): """Adds a cylinder collision shape to a body. Args: body: The index of the parent body this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the cylinder half_height: The half length of the cylinder along the up axis up_axis: The axis along which the cylinder is aligned (0=x, 1=y, 2=z) density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction restitution: The coefficient of restitution is_solid: Whether the cylinder is solid or hollow thickness: Thickness to use for computing inertia of a hollow cylinder, and for collision handling has_ground_collision: If True, the mesh will collide with the ground plane if `Model.ground` is True """ q = rot sqh = math.sqrt(0.5) if up_axis == 0: q = wp.mul(rot, wp.quat(0.0, 0.0, -sqh, sqh)) elif up_axis == 2: q = wp.mul(rot, wp.quat(sqh, 0.0, 0.0, sqh)) return self._add_shape( body, pos, q, GEO_CYLINDER, (radius, half_height, 0.0, 0.0), None, density, ke, kd, kf, mu, restitution, thickness, is_solid, has_ground_collision=has_ground_collision, ) def add_shape_cone( self, body: int, pos: Vec3 = (0.0, 0.0, 0.0), rot: Quat = (0.0, 0.0, 0.0, 1.0), radius: float = 1.0, half_height: float = 0.5, up_axis: int = 1, density: float = default_shape_density, ke: float = default_shape_ke, kd: float = default_shape_kd, kf: float = default_shape_kf, mu: float = default_shape_mu, restitution: float = default_shape_restitution, is_solid: bool = True, thickness: float = default_geo_thickness, has_ground_collision: bool = True, ): """Adds a cone collision shape to a body. Args: body: The index of the parent body this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the cone half_height: The half length of the cone along the up axis up_axis: The axis along which the cone is aligned (0=x, 1=y, 2=z) density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction restitution: The coefficient of restitution is_solid: Whether the cone is solid or hollow thickness: Thickness to use for computing inertia of a hollow cone, and for collision handling has_ground_collision: If True, the mesh will collide with the ground plane if `Model.ground` is True """ q = rot sqh = math.sqrt(0.5) if up_axis == 0: q = wp.mul(rot, wp.quat(0.0, 0.0, -sqh, sqh)) elif up_axis == 2: q = wp.mul(rot, wp.quat(sqh, 0.0, 0.0, sqh)) return self._add_shape( body, pos, q, GEO_CONE, (radius, half_height, 0.0, 0.0), None, density, ke, kd, kf, mu, restitution, thickness, is_solid, has_ground_collision=has_ground_collision, ) def add_shape_mesh( self, body: int, pos: Vec3 = (0.0, 0.0, 0.0), rot: Quat = (0.0, 0.0, 0.0, 1.0), mesh: Mesh = None, scale: Vec3 = (1.0, 1.0, 1.0), density: float = default_shape_density, ke: float = default_shape_ke, kd: float = default_shape_kd, kf: float = default_shape_kf, mu: float = default_shape_mu, restitution: float = default_shape_restitution, is_solid: bool = True, thickness: float = default_geo_thickness, has_ground_collision: bool = True, ): """Adds a triangle mesh collision shape to a body. Args: body: The index of the parent body this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame mesh: The mesh object scale: Scale to use for the collider density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction restitution: The coefficient of restitution is_solid: If True, the mesh is solid, otherwise it is a hollow surface with the given wall thickness thickness: Thickness to use for computing inertia of a hollow mesh, and for collision handling has_ground_collision: If True, the mesh will collide with the ground plane if `Model.ground` is True """ return self._add_shape( body, pos, rot, GEO_MESH, (scale[0], scale[1], scale[2], 0.0), mesh, density, ke, kd, kf, mu, restitution, thickness, is_solid, has_ground_collision=has_ground_collision, ) def add_shape_sdf( self, body: int, pos: Vec3 = (0.0, 0.0, 0.0), rot: Quat = (0.0, 0.0, 0.0, 1.0), sdf: SDF = None, scale: Vec3 = (1.0, 1.0, 1.0), density: float = default_shape_density, ke: float = default_shape_ke, kd: float = default_shape_kd, kf: float = default_shape_kf, mu: float = default_shape_mu, restitution: float = default_shape_restitution, is_solid: bool = True, thickness: float = default_geo_thickness, ): """Adds SDF collision shape to a body. Args: body: The index of the parent body this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame sdf: The sdf object scale: Scale to use for the collider density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction restitution: The coefficient of restitution is_solid: If True, the mesh is solid, otherwise it is a hollow surface with the given wall thickness thickness: Thickness to use for computing inertia of a hollow mesh, and for collision handling has_ground_collision: If True, the mesh will collide with the ground plane if `Model.ground` is True """ return self._add_shape( body, pos, rot, GEO_SDF, (scale[0], scale[1], scale[2], 0.0), sdf, density, ke, kd, kf, mu, restitution, thickness, is_solid, ) def _shape_radius(self, type, scale, src): """ Calculates the radius of a sphere that encloses the shape, used for broadphase collision detection. """ if type == GEO_SPHERE: return scale[0] elif type == GEO_BOX: return np.linalg.norm(scale) elif type == GEO_CAPSULE or type == GEO_CYLINDER or type == GEO_CONE: return scale[0] + scale[1] elif type == GEO_MESH: vmax = np.max(np.abs(src.vertices), axis=0) * np.max(scale) return np.linalg.norm(vmax) elif type == GEO_PLANE: if scale[0] > 0.0 and scale[1] > 0.0: # finite plane return np.linalg.norm(scale) else: return 1.0e6 else: return 10.0 def _add_shape( self, body, pos, rot, type, scale, src, density, ke, kd, kf, mu, restitution, thickness=default_geo_thickness, is_solid=True, collision_group=-1, collision_filter_parent=True, has_ground_collision=True, ): self.shape_body.append(body) shape = self.shape_count if body in self.body_shapes: # no contacts between shapes of the same body for same_body_shape in self.body_shapes[body]: self.shape_collision_filter_pairs.add((same_body_shape, shape)) self.body_shapes[body].append(shape) else: self.body_shapes[body] = [shape] self.shape_transform.append(wp.transform(pos, rot)) self.shape_geo_type.append(type) self.shape_geo_scale.append((scale[0], scale[1], scale[2])) self.shape_geo_src.append(src) self.shape_geo_thickness.append(thickness) self.shape_geo_is_solid.append(is_solid) self.shape_material_ke.append(ke) self.shape_material_kd.append(kd) self.shape_material_kf.append(kf) self.shape_material_mu.append(mu) self.shape_material_restitution.append(restitution) self.shape_collision_group.append(collision_group) if collision_group not in self.shape_collision_group_map: self.shape_collision_group_map[collision_group] = [] self.last_collision_group = max(self.last_collision_group, collision_group) self.shape_collision_group_map[collision_group].append(shape) self.shape_collision_radius.append(self._shape_radius(type, scale, src)) if collision_filter_parent and body > -1 and body in self.joint_parents: for parent_body in self.joint_parents[body]: if parent_body > -1: for parent_shape in self.body_shapes[parent_body]: self.shape_collision_filter_pairs.add((parent_shape, shape)) if body == -1: has_ground_collision = False self.shape_ground_collision.append(has_ground_collision) (m, c, I) = compute_shape_mass(type, scale, src, density, is_solid, thickness) self._update_body_mass(body, m, I, np.array(pos) + c, np.array(rot)) return shape # particles def add_particle( self, pos: Vec3, vel: Vec3, mass: float, radius: float = None, flags: wp.uint32 = PARTICLE_FLAG_ACTIVE ) -> int: """Adds a single particle to the model Args: pos: The initial position of the particle vel: The initial velocity of the particle mass: The mass of the particle flags: The flags that control the dynamical behavior of the particle, see PARTICLE_FLAG_* constants radius: The radius of the particle used in collision handling. If None, the radius is set to the default value (default_particle_radius). Note: Set the mass equal to zero to create a 'kinematic' particle that does is not subject to dynamics. Returns: The index of the particle in the system """ self.particle_q.append(pos) self.particle_qd.append(vel) self.particle_mass.append(mass) if radius is None: radius = self.default_particle_radius self.particle_radius.append(radius) self.particle_flags.append(flags) return len(self.particle_q) - 1 def add_spring(self, i: int, j, ke: float, kd: float, control: float): """Adds a spring between two particles in the system Args: i: The index of the first particle j: The index of the second particle ke: The elastic stiffness of the spring kd: The damping stiffness of the spring control: The actuation level of the spring Note: The spring is created with a rest-length based on the distance between the particles in their initial configuration. """ self.spring_indices.append(i) self.spring_indices.append(j) self.spring_stiffness.append(ke) self.spring_damping.append(kd) self.spring_control.append(control) # compute rest length p = self.particle_q[i] q = self.particle_q[j] delta = np.subtract(p, q) l = np.sqrt(np.dot(delta, delta)) self.spring_rest_length.append(l) def add_triangle( self, i: int, j: int, k: int, tri_ke: float = default_tri_ke, tri_ka: float = default_tri_ka, tri_kd: float = default_tri_kd, tri_drag: float = default_tri_drag, tri_lift: float = default_tri_lift, ) -> float: """Adds a triangular FEM element between three particles in the system. Triangles are modeled as viscoelastic elements with elastic stiffness and damping Parameters specified on the model. See model.tri_ke, model.tri_kd. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle Return: The area of the triangle Note: The triangle is created with a rest-length based on the distance between the particles in their initial configuration. Todo: * Expose elastic parameters on a per-element basis """ # compute basis for 2D rest pose p = np.array(self.particle_q[i]) q = np.array(self.particle_q[j]) r = np.array(self.particle_q[k]) qp = q - p rp = r - p # construct basis aligned with the triangle n = wp.normalize(wp.cross(qp, rp)) e1 = wp.normalize(qp) e2 = wp.normalize(wp.cross(n, e1)) R = np.array((e1, e2)) M = np.array((qp, rp)) D = R @ M.T area = np.linalg.det(D) / 2.0 if area <= 0.0: print("inverted or degenerate triangle element") return 0.0 else: inv_D = np.linalg.inv(D) self.tri_indices.append((i, j, k)) self.tri_poses.append(inv_D.tolist()) self.tri_activations.append(0.0) self.tri_materials.append((tri_ke, tri_ka, tri_kd, tri_drag, tri_lift)) return area def add_triangles( self, i: List[int], j: List[int], k: List[int], tri_ke: Optional[List[float]] = None, tri_ka: Optional[List[float]] = None, tri_kd: Optional[List[float]] = None, tri_drag: Optional[List[float]] = None, tri_lift: Optional[List[float]] = None, ) -> List[float]: """Adds triangular FEM elements between groups of three particles in the system. Triangles are modeled as viscoelastic elements with elastic stiffness and damping Parameters specified on the model. See model.tri_ke, model.tri_kd. Args: i: The indices of the first particle j: The indices of the second particle k: The indices of the third particle Return: The areas of the triangles Note: A triangle is created with a rest-length based on the distance between the particles in their initial configuration. """ # compute basis for 2D rest pose p = np.array(self.particle_q)[i] q = np.array(self.particle_q)[j] r = np.array(self.particle_q)[k] qp = q - p rp = r - p def normalized(a): l = np.linalg.norm(a, axis=-1, keepdims=True) l[l == 0] = 1.0 return a / l n = normalized(np.cross(qp, rp)) e1 = normalized(qp) e2 = normalized(np.cross(n, e1)) R = np.concatenate((e1[..., None], e2[..., None]), axis=-1) M = np.concatenate((qp[..., None], rp[..., None]), axis=-1) D = np.matmul(R.transpose(0, 2, 1), M) areas = np.linalg.det(D) / 2.0 areas[areas < 0.0] = 0.0 valid_inds = (areas > 0.0).nonzero()[0] if len(valid_inds) < len(areas): print("inverted or degenerate triangle elements") D[areas == 0.0] = np.eye(2)[None, ...] inv_D = np.linalg.inv(D) inds = np.concatenate((i[valid_inds, None], j[valid_inds, None], k[valid_inds, None]), axis=-1) self.tri_indices.extend(inds.tolist()) self.tri_poses.extend(inv_D[valid_inds].tolist()) self.tri_activations.extend([0.0] * len(valid_inds)) def init_if_none(arr, defaultValue): if arr is None: return [defaultValue] * len(areas) return arr tri_ke = init_if_none(tri_ke, self.default_tri_ke) tri_ka = init_if_none(tri_ka, self.default_tri_ka) tri_kd = init_if_none(tri_kd, self.default_tri_kd) tri_drag = init_if_none(tri_drag, self.default_tri_drag) tri_lift = init_if_none(tri_lift, self.default_tri_lift) self.tri_materials.extend( zip( np.array(tri_ke)[valid_inds], np.array(tri_ka)[valid_inds], np.array(tri_kd)[valid_inds], np.array(tri_drag)[valid_inds], np.array(tri_lift)[valid_inds], ) ) return areas.tolist() def add_tetrahedron( self, i: int, j: int, k: int, l: int, k_mu: float = 1.0e3, k_lambda: float = 1.0e3, k_damp: float = 0.0 ) -> float: """Adds a tetrahedral FEM element between four particles in the system. Tetrahedra are modeled as viscoelastic elements with a NeoHookean energy density based on [Smith et al. 2018]. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle l: The index of the fourth particle k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The element's damping stiffness Return: The volume of the tetrahedron Note: The tetrahedron is created with a rest-pose based on the particle's initial configruation """ # compute basis for 2D rest pose p = np.array(self.particle_q[i]) q = np.array(self.particle_q[j]) r = np.array(self.particle_q[k]) s = np.array(self.particle_q[l]) qp = q - p rp = r - p sp = s - p Dm = np.array((qp, rp, sp)).T volume = np.linalg.det(Dm) / 6.0 if volume <= 0.0: print("inverted tetrahedral element") else: inv_Dm = np.linalg.inv(Dm) self.tet_indices.append((i, j, k, l)) self.tet_poses.append(inv_Dm.tolist()) self.tet_activations.append(0.0) self.tet_materials.append((k_mu, k_lambda, k_damp)) return volume def add_edge( self, i: int, j: int, k: int, l: int, rest: float = None, edge_ke: float = default_edge_ke, edge_kd: float = default_edge_kd, ): """Adds a bending edge element between four particles in the system. Bending elements are designed to be between two connected triangles. Then bending energy is based of [Bridson et al. 2002]. Bending stiffness is controlled by the `model.tri_kb` parameter. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle l: The index of the fourth particle rest: The rest angle across the edge in radians, if not specified it will be computed Note: The edge lies between the particles indexed by 'k' and 'l' parameters with the opposing vertices indexed by 'i' and 'j'. This defines two connected triangles with counter clockwise winding: (i, k, l), (j, l, k). """ # compute rest angle if rest is None: x1 = np.array(self.particle_q[i]) x2 = np.array(self.particle_q[j]) x3 = np.array(self.particle_q[k]) x4 = np.array(self.particle_q[l]) n1 = wp.normalize(np.cross(x3 - x1, x4 - x1)) n2 = wp.normalize(np.cross(x4 - x2, x3 - x2)) e = wp.normalize(x4 - x3) d = np.clip(np.dot(n2, n1), -1.0, 1.0) angle = math.acos(d) sign = np.sign(np.dot(np.cross(n2, n1), e)) rest = angle * sign self.edge_indices.append((i, j, k, l)) self.edge_rest_angle.append(rest) self.edge_bending_properties.append((edge_ke, edge_kd)) def add_edges( self, i, j, k, l, rest: Optional[List[float]] = None, edge_ke: Optional[List[float]] = None, edge_kd: Optional[List[float]] = None, ): """Adds bending edge elements between groups of four particles in the system. Bending elements are designed to be between two connected triangles. Then bending energy is based of [Bridson et al. 2002]. Bending stiffness is controlled by the `model.tri_kb` parameter. Args: i: The indices of the first particle j: The indices of the second particle k: The indices of the third particle l: The indices of the fourth particle rest: The rest angles across the edges in radians, if not specified they will be computed Note: The edge lies between the particles indexed by 'k' and 'l' parameters with the opposing vertices indexed by 'i' and 'j'. This defines two connected triangles with counter clockwise winding: (i, k, l), (j, l, k). """ if rest is None: # compute rest angle x1 = np.array(self.particle_q)[i] x2 = np.array(self.particle_q)[j] x3 = np.array(self.particle_q)[k] x4 = np.array(self.particle_q)[l] def normalized(a): l = np.linalg.norm(a, axis=-1, keepdims=True) l[l == 0] = 1.0 return a / l n1 = normalized(np.cross(x3 - x1, x4 - x1)) n2 = normalized(np.cross(x4 - x2, x3 - x2)) e = normalized(x4 - x3) def dot(a, b): return (a * b).sum(axis=-1) d = np.clip(dot(n2, n1), -1.0, 1.0) angle = np.arccos(d) sign = np.sign(dot(np.cross(n2, n1), e)) rest = angle * sign inds = np.concatenate((i[:, None], j[:, None], k[:, None], l[:, None]), axis=-1) self.edge_indices.extend(inds.tolist()) self.edge_rest_angle.extend(rest.tolist()) def init_if_none(arr, defaultValue): if arr is None: return [defaultValue] * len(i) return arr edge_ke = init_if_none(edge_ke, self.default_edge_ke) edge_kd = init_if_none(edge_kd, self.default_edge_kd) self.edge_bending_properties.extend(zip(edge_ke, edge_kd)) def add_cloth_grid( self, pos: Vec3, rot: Quat, vel: Vec3, dim_x: int, dim_y: int, cell_x: float, cell_y: float, mass: float, reverse_winding: bool = False, fix_left: bool = False, fix_right: bool = False, fix_top: bool = False, fix_bottom: bool = False, tri_ke: float = default_tri_ke, tri_ka: float = default_tri_ka, tri_kd: float = default_tri_kd, tri_drag: float = default_tri_drag, tri_lift: float = default_tri_lift, edge_ke: float = default_edge_ke, edge_kd: float = default_edge_kd, add_springs: bool = False, spring_ke: float = default_spring_ke, spring_kd: float = default_spring_kd, ): """Helper to create a regular planar cloth grid Creates a rectangular grid of particles with FEM triangles and bending elements automatically. Args: pos: The position of the cloth in world space rot: The orientation of the cloth in world space vel: The velocity of the cloth in world space dim_x_: The number of rectangular cells along the x-axis dim_y: The number of rectangular cells along the y-axis cell_x: The width of each cell in the x-direction cell_y: The width of each cell in the y-direction mass: The mass of each particle reverse_winding: Flip the winding of the mesh fix_left: Make the left-most edge of particles kinematic (fixed in place) fix_right: Make the right-most edge of particles kinematic fix_top: Make the top-most edge of particles kinematic fix_bottom: Make the bottom-most edge of particles kinematic """ def grid_index(x, y, dim_x): return y * dim_x + x start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) for y in range(0, dim_y + 1): for x in range(0, dim_x + 1): g = np.array((x * cell_x, y * cell_y, 0.0)) p = np.array(wp.quat_rotate(rot, g)) + pos m = mass if x == 0 and fix_left: m = 0.0 elif x == dim_x and fix_right: m = 0.0 elif y == 0 and fix_bottom: m = 0.0 elif y == dim_y and fix_top: m = 0.0 self.add_particle(p, vel, m) if x > 0 and y > 0: if reverse_winding: tri1 = ( start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1), ) tri2 = ( start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1), ) self.add_triangle(*tri1, tri_ke, tri_ka, tri_kd, tri_drag, tri_lift) self.add_triangle(*tri2, tri_ke, tri_ka, tri_kd, tri_drag, tri_lift) else: tri1 = ( start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1), ) tri2 = ( start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1), ) self.add_triangle(*tri1, tri_ke, tri_ka, tri_kd, tri_drag, tri_lift) self.add_triangle(*tri2, tri_ke, tri_ka, tri_kd, tri_drag, tri_lift) end_vertex = len(self.particle_q) end_tri = len(self.tri_indices) # bending constraints, could create these explicitly for a grid but this # is a good test of the adjacency structure adj = wp.utils.MeshAdjacency(self.tri_indices[start_tri:end_tri], end_tri - start_tri) spring_indices = set() for k, e in adj.edges.items(): # skip open edges if e.f0 == -1 or e.f1 == -1: continue self.add_edge( e.o0, e.o1, e.v0, e.v1, edge_ke=edge_ke, edge_kd=edge_kd ) # opposite 0, opposite 1, vertex 0, vertex 1 spring_indices.add((min(e.o0, e.o1), max(e.o0, e.o1))) spring_indices.add((min(e.o0, e.v0), max(e.o0, e.v0))) spring_indices.add((min(e.o0, e.v1), max(e.o0, e.v1))) spring_indices.add((min(e.o1, e.v0), max(e.o1, e.v0))) spring_indices.add((min(e.o1, e.v1), max(e.o1, e.v1))) spring_indices.add((min(e.v0, e.v1), max(e.v0, e.v1))) if add_springs: for i, j in spring_indices: self.add_spring(i, j, spring_ke, spring_kd, control=0.0) def add_cloth_mesh( self, pos: Vec3, rot: Quat, scale: float, vel: Vec3, vertices: List[Vec3], indices: List[int], density: float, edge_callback=None, face_callback=None, tri_ke: float = default_tri_ke, tri_ka: float = default_tri_ka, tri_kd: float = default_tri_kd, tri_drag: float = default_tri_drag, tri_lift: float = default_tri_lift, edge_ke: float = default_edge_ke, edge_kd: float = default_edge_kd, add_springs: bool = False, spring_ke: float = default_spring_ke, spring_kd: float = default_spring_kd, ): """Helper to create a cloth model from a regular triangle mesh Creates one FEM triangle element and one bending element for every face and edge in the input triangle mesh Args: pos: The position of the cloth in world space rot: The orientation of the cloth in world space vel: The velocity of the cloth in world space vertices: A list of vertex positions indices: A list of triangle indices, 3 entries per-face density: The density per-area of the mesh edge_callback: A user callback when an edge is created face_callback: A user callback when a face is created Note: The mesh should be two manifold. """ num_tris = int(len(indices) / 3) start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) # particles for v in vertices: p = np.array(wp.quat_rotate(rot, v * scale)) + pos self.add_particle(p, vel, 0.0) # triangles inds = start_vertex + np.array(indices) inds = inds.reshape(-1, 3) areas = self.add_triangles( inds[:, 0], inds[:, 1], inds[:, 2], [tri_ke] * num_tris, [tri_ka] * num_tris, [tri_kd] * num_tris, [tri_drag] * num_tris, [tri_lift] * num_tris, ) for t in range(num_tris): area = areas[t] self.particle_mass[inds[t, 0]] += density * area / 3.0 self.particle_mass[inds[t, 1]] += density * area / 3.0 self.particle_mass[inds[t, 2]] += density * area / 3.0 end_tri = len(self.tri_indices) adj = wp.utils.MeshAdjacency(self.tri_indices[start_tri:end_tri], end_tri - start_tri) edgeinds = np.fromiter( (x for e in adj.edges.values() if e.f0 != -1 and e.f1 != -1 for x in (e.o0, e.o1, e.v0, e.v1)), int, ).reshape(-1, 4) self.add_edges( edgeinds[:, 0], edgeinds[:, 1], edgeinds[:, 2], edgeinds[:, 0], edge_ke=[edge_ke] * len(edgeinds), edge_kd=[edge_kd] * len(edgeinds), ) if add_springs: spring_indices = set() for i, j, k, l in edgeinds: spring_indices.add((min(i, j), max(i, j))) spring_indices.add((min(i, k), max(i, k))) spring_indices.add((min(i, l), max(i, l))) spring_indices.add((min(j, k), max(j, k))) spring_indices.add((min(j, l), max(j, l))) spring_indices.add((min(k, l), max(k, l))) for i, j in spring_indices: self.add_spring(i, j, spring_ke, spring_kd, control=0.0) def add_particle_grid( self, pos: Vec3, rot: Quat, vel: Vec3, dim_x: int, dim_y: int, dim_z: int, cell_x: float, cell_y: float, cell_z: float, mass: float, jitter: float, radius_mean: float = default_particle_radius, radius_std: float = 0.0, ): for z in range(dim_z): for y in range(dim_y): for x in range(dim_x): v = np.array((x * cell_x, y * cell_y, z * cell_z)) m = mass p = np.array(wp.quat_rotate(rot, v)) + pos + np.random.rand(3) * jitter if radius_std > 0.0: r = radius_mean + np.random.randn() * radius_std else: r = radius_mean self.add_particle(p, vel, m, r) def add_soft_grid( self, pos: Vec3, rot: Quat, vel: Vec3, dim_x: int, dim_y: int, dim_z: int, cell_x: float, cell_y: float, cell_z: float, density: float, k_mu: float, k_lambda: float, k_damp: float, fix_left: bool = False, fix_right: bool = False, fix_top: bool = False, fix_bottom: bool = False, tri_ke: float = default_tri_ke, tri_ka: float = default_tri_ka, tri_kd: float = default_tri_kd, tri_drag: float = default_tri_drag, tri_lift: float = default_tri_lift, ): """Helper to create a rectangular tetrahedral FEM grid Creates a regular grid of FEM tetrahedra and surface triangles. Useful for example to create beams and sheets. Each hexahedral cell is decomposed into 5 tetrahedral elements. Args: pos: The position of the solid in world space rot: The orientation of the solid in world space vel: The velocity of the solid in world space dim_x_: The number of rectangular cells along the x-axis dim_y: The number of rectangular cells along the y-axis dim_z: The number of rectangular cells along the z-axis cell_x: The width of each cell in the x-direction cell_y: The width of each cell in the y-direction cell_z: The width of each cell in the z-direction density: The density of each particle k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The damping stiffness fix_left: Make the left-most edge of particles kinematic (fixed in place) fix_right: Make the right-most edge of particles kinematic fix_top: Make the top-most edge of particles kinematic fix_bottom: Make the bottom-most edge of particles kinematic """ start_vertex = len(self.particle_q) mass = cell_x * cell_y * cell_z * density for z in range(dim_z + 1): for y in range(dim_y + 1): for x in range(dim_x + 1): v = np.array((x * cell_x, y * cell_y, z * cell_z)) m = mass if fix_left and x == 0: m = 0.0 if fix_right and x == dim_x: m = 0.0 if fix_top and y == dim_y: m = 0.0 if fix_bottom and y == 0: m = 0.0 p = np.array(wp.quat_rotate(rot, v)) + pos self.add_particle(p, vel, m) # dict of open faces faces = {} def add_face(i: int, j: int, k: int): key = tuple(sorted((i, j, k))) if key not in faces: faces[key] = (i, j, k) else: del faces[key] def add_tet(i: int, j: int, k: int, l: int): self.add_tetrahedron(i, j, k, l, k_mu, k_lambda, k_damp) add_face(i, k, j) add_face(j, k, l) add_face(i, j, l) add_face(i, l, k) def grid_index(x, y, z): return (dim_x + 1) * (dim_y + 1) * z + (dim_x + 1) * y + x for z in range(dim_z): for y in range(dim_y): for x in range(dim_x): v0 = grid_index(x, y, z) + start_vertex v1 = grid_index(x + 1, y, z) + start_vertex v2 = grid_index(x + 1, y, z + 1) + start_vertex v3 = grid_index(x, y, z + 1) + start_vertex v4 = grid_index(x, y + 1, z) + start_vertex v5 = grid_index(x + 1, y + 1, z) + start_vertex v6 = grid_index(x + 1, y + 1, z + 1) + start_vertex v7 = grid_index(x, y + 1, z + 1) + start_vertex if (x & 1) ^ (y & 1) ^ (z & 1): add_tet(v0, v1, v4, v3) add_tet(v2, v3, v6, v1) add_tet(v5, v4, v1, v6) add_tet(v7, v6, v3, v4) add_tet(v4, v1, v6, v3) else: add_tet(v1, v2, v5, v0) add_tet(v3, v0, v7, v2) add_tet(v4, v7, v0, v5) add_tet(v6, v5, v2, v7) add_tet(v5, v2, v7, v0) # add triangles for k, v in faces.items(): self.add_triangle(v[0], v[1], v[2], tri_ke, tri_ka, tri_kd, tri_drag, tri_lift) def add_soft_mesh( self, pos: Vec3, rot: Quat, scale: float, vel: Vec3, vertices: List[Vec3], indices: List[int], density: float, k_mu: float, k_lambda: float, k_damp: float, tri_ke: float = default_tri_ke, tri_ka: float = default_tri_ka, tri_kd: float = default_tri_kd, tri_drag: float = default_tri_drag, tri_lift: float = default_tri_lift, ): """Helper to create a tetrahedral model from an input tetrahedral mesh Args: pos: The position of the solid in world space rot: The orientation of the solid in world space vel: The velocity of the solid in world space vertices: A list of vertex positions indices: A list of tetrahedron indices, 4 entries per-element density: The density per-area of the mesh k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The damping stiffness """ num_tets = int(len(indices) / 4) start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) # dict of open faces faces = {} def add_face(i, j, k): key = tuple(sorted((i, j, k))) if key not in faces: faces[key] = (i, j, k) else: del faces[key] # add particles for v in vertices: p = wp.quat_rotate(rot, v * scale) + np.array(pos) self.add_particle(p, vel, 0.0) # add tetrahedra for t in range(num_tets): v0 = start_vertex + indices[t * 4 + 0] v1 = start_vertex + indices[t * 4 + 1] v2 = start_vertex + indices[t * 4 + 2] v3 = start_vertex + indices[t * 4 + 3] volume = self.add_tetrahedron(v0, v1, v2, v3, k_mu, k_lambda, k_damp) # distribute volume fraction to particles if volume > 0.0: self.particle_mass[v0] += density * volume / 4.0 self.particle_mass[v1] += density * volume / 4.0 self.particle_mass[v2] += density * volume / 4.0 self.particle_mass[v3] += density * volume / 4.0 # build open faces add_face(v0, v2, v1) add_face(v1, v2, v3) add_face(v0, v1, v3) add_face(v0, v3, v2) # add triangles for k, v in faces.items(): try: self.add_triangle(v[0], v[1], v[2], tri_ke, tri_ka, tri_kd, tri_drag, tri_lift) except np.linalg.LinAlgError: continue # incrementally updates rigid body mass with additional mass and inertia expressed at a local to the body def _update_body_mass(self, i, m, I, p, q): if i == -1: return # find new COM new_mass = self.body_mass[i] + m if new_mass == 0.0: # no mass return new_com = (self.body_com[i] * self.body_mass[i] + p * m) / new_mass # shift inertia to new COM com_offset = new_com - self.body_com[i] shape_offset = new_com - p new_inertia = transform_inertia( self.body_mass[i], self.body_inertia[i], com_offset, wp.quat_identity() ) + transform_inertia(m, I, shape_offset, q) self.body_mass[i] = new_mass self.body_inertia[i] = new_inertia self.body_com[i] = new_com if new_mass > 0.0: self.body_inv_mass[i] = 1.0 / new_mass else: self.body_inv_mass[i] = 0.0 if new_inertia.any(): self.body_inv_inertia[i] = np.linalg.inv(new_inertia) else: self.body_inv_inertia[i] = new_inertia def set_ground_plane( self, normal=None, offset=0.0, ke: float = default_shape_ke, kd: float = default_shape_kd, kf: float = default_shape_kf, mu: float = default_shape_mu, restitution: float = default_shape_restitution, ): """ Creates a ground plane for the world. If the normal is not specified, the up_vector of the ModelBuilder is used. """ if normal is None: normal = self.up_vector self._ground_params = dict( plane=(*normal, offset), width=0.0, length=0.0, ke=ke, kd=kd, kf=kf, mu=mu, restitution=restitution ) def _create_ground_plane(self): ground_id = self.add_shape_plane(**self._ground_params) self._ground_created = True # disable ground collisions as they will be treated separately for i in range(self.shape_count - 1): self.shape_collision_filter_pairs.add((i, ground_id)) def finalize(self, device=None, requires_grad=False) -> Model: """Convert this builder object to a concrete model for simulation. After building simulation elements this method should be called to transfer all data to device memory ready for simulation. Args: device: The simulation device to use, e.g.: 'cpu', 'cuda' requires_grad: Whether to enable gradient computation for the model Returns: A model object. """ # ensure the env count is set correctly self.num_envs = max(1, self.num_envs) # add ground plane if not already created if not self._ground_created: self._create_ground_plane() # construct particle inv masses particle_inv_mass = [] for m in self.particle_mass: if m > 0.0: particle_inv_mass.append(1.0 / m) else: particle_inv_mass.append(0.0) with wp.ScopedDevice(device): # ------------------------------------- # construct Model (non-time varying) data m = Model(device) m.requires_grad = requires_grad m.num_envs = self.num_envs # --------------------- # particles # state (initial) m.particle_q = wp.array(self.particle_q, dtype=wp.vec3, requires_grad=requires_grad) m.particle_qd = wp.array(self.particle_qd, dtype=wp.vec3, requires_grad=requires_grad) m.particle_mass = wp.array(self.particle_mass, dtype=wp.float32, requires_grad=requires_grad) m.particle_inv_mass = wp.array(particle_inv_mass, dtype=wp.float32, requires_grad=requires_grad) m._particle_radius = wp.array(self.particle_radius, dtype=wp.float32, requires_grad=requires_grad) m.particle_flags = wp.array([flag_to_int(f) for f in self.particle_flags], dtype=wp.uint32) m.particle_max_radius = np.max(self.particle_radius) if len(self.particle_radius) > 0 else 0.0 m.particle_max_velocity = self.particle_max_velocity # hash-grid for particle interactions m.particle_grid = wp.HashGrid(128, 128, 128) # --------------------- # collision geometry m.shape_transform = wp.array(self.shape_transform, dtype=wp.transform, requires_grad=requires_grad) m.shape_body = wp.array(self.shape_body, dtype=wp.int32) m.body_shapes = self.body_shapes # build list of ids for geometry sources (meshes, sdfs) geo_sources = [] finalized_meshes = {} # do not duplicate meshes for geo in self.shape_geo_src: geo_hash = hash(geo) # avoid repeated hash computations if geo: if geo_hash not in finalized_meshes: finalized_meshes[geo_hash] = geo.finalize(device=device) geo_sources.append(finalized_meshes[geo_hash]) else: # add null pointer geo_sources.append(0) m.shape_geo.type = wp.array(self.shape_geo_type, dtype=wp.int32) m.shape_geo.source = wp.array(geo_sources, dtype=wp.uint64) m.shape_geo.scale = wp.array(self.shape_geo_scale, dtype=wp.vec3, requires_grad=requires_grad) m.shape_geo.is_solid = wp.array(self.shape_geo_is_solid, dtype=wp.uint8) m.shape_geo.thickness = wp.array(self.shape_geo_thickness, dtype=wp.float32, requires_grad=requires_grad) m.shape_geo_src = self.shape_geo_src # used for rendering m.shape_materials.ke = wp.array(self.shape_material_ke, dtype=wp.float32, requires_grad=requires_grad) m.shape_materials.kd = wp.array(self.shape_material_kd, dtype=wp.float32, requires_grad=requires_grad) m.shape_materials.kf = wp.array(self.shape_material_kf, dtype=wp.float32, requires_grad=requires_grad) m.shape_materials.mu = wp.array(self.shape_material_mu, dtype=wp.float32, requires_grad=requires_grad) m.shape_materials.restitution = wp.array( self.shape_material_restitution, dtype=wp.float32, requires_grad=requires_grad ) m.shape_collision_filter_pairs = self.shape_collision_filter_pairs m.shape_collision_group = self.shape_collision_group m.shape_collision_group_map = self.shape_collision_group_map m.shape_collision_radius = wp.array( self.shape_collision_radius, dtype=wp.float32, requires_grad=requires_grad ) m.shape_ground_collision = self.shape_ground_collision # --------------------- # springs m.spring_indices = wp.array(self.spring_indices, dtype=wp.int32) m.spring_rest_length = wp.array(self.spring_rest_length, dtype=wp.float32, requires_grad=requires_grad) m.spring_stiffness = wp.array(self.spring_stiffness, dtype=wp.float32, requires_grad=requires_grad) m.spring_damping = wp.array(self.spring_damping, dtype=wp.float32, requires_grad=requires_grad) m.spring_control = wp.array(self.spring_control, dtype=wp.float32, requires_grad=requires_grad) m.spring_constraint_lambdas = wp.array( shape=len(self.spring_rest_length), dtype=wp.float32, requires_grad=requires_grad ) # --------------------- # triangles m.tri_indices = wp.array(self.tri_indices, dtype=wp.int32) m.tri_poses = wp.array(self.tri_poses, dtype=wp.mat22, requires_grad=requires_grad) m.tri_activations = wp.array(self.tri_activations, dtype=wp.float32, requires_grad=requires_grad) m.tri_materials = wp.array(self.tri_materials, dtype=wp.float32, requires_grad=requires_grad) # --------------------- # edges m.edge_indices = wp.array(self.edge_indices, dtype=wp.int32) m.edge_rest_angle = wp.array(self.edge_rest_angle, dtype=wp.float32, requires_grad=requires_grad) m.edge_bending_properties = wp.array( self.edge_bending_properties, dtype=wp.float32, requires_grad=requires_grad ) m.edge_constraint_lambdas = wp.array( shape=len(self.edge_rest_angle), dtype=wp.float32, requires_grad=requires_grad ) # --------------------- # tetrahedra m.tet_indices = wp.array(self.tet_indices, dtype=wp.int32) m.tet_poses = wp.array(self.tet_poses, dtype=wp.mat33, requires_grad=requires_grad) m.tet_activations = wp.array(self.tet_activations, dtype=wp.float32, requires_grad=requires_grad) m.tet_materials = wp.array(self.tet_materials, dtype=wp.float32, requires_grad=requires_grad) # ----------------------- # muscles # close the muscle waypoint indices muscle_start = copy.copy(self.muscle_start) muscle_start.append(len(self.muscle_bodies)) m.muscle_start = wp.array(muscle_start, dtype=wp.int32) m.muscle_params = wp.array(self.muscle_params, dtype=wp.float32, requires_grad=requires_grad) m.muscle_bodies = wp.array(self.muscle_bodies, dtype=wp.int32) m.muscle_points = wp.array(self.muscle_points, dtype=wp.vec3, requires_grad=requires_grad) m.muscle_activation = wp.array(self.muscle_activation, dtype=wp.float32, requires_grad=requires_grad) # -------------------------------------- # rigid bodies m.body_q = wp.array(self.body_q, dtype=wp.transform, requires_grad=requires_grad) m.body_qd = wp.array(self.body_qd, dtype=wp.spatial_vector, requires_grad=requires_grad) m.body_inertia = wp.array(self.body_inertia, dtype=wp.mat33, requires_grad=requires_grad) m.body_inv_inertia = wp.array(self.body_inv_inertia, dtype=wp.mat33, requires_grad=requires_grad) m.body_mass = wp.array(self.body_mass, dtype=wp.float32, requires_grad=requires_grad) m.body_inv_mass = wp.array(self.body_inv_mass, dtype=wp.float32, requires_grad=requires_grad) m.body_com = wp.array(self.body_com, dtype=wp.vec3, requires_grad=requires_grad) m.body_name = self.body_name # joints m.joint_count = self.joint_count m.joint_axis_count = self.joint_axis_count m.joint_type = wp.array(self.joint_type, dtype=wp.int32) m.joint_parent = wp.array(self.joint_parent, dtype=wp.int32) m.joint_child = wp.array(self.joint_child, dtype=wp.int32) m.joint_X_p = wp.array(self.joint_X_p, dtype=wp.transform, requires_grad=requires_grad) m.joint_X_c = wp.array(self.joint_X_c, dtype=wp.transform, requires_grad=requires_grad) m.joint_axis_start = wp.array(self.joint_axis_start, dtype=wp.int32) m.joint_axis_dim = wp.array(np.array(self.joint_axis_dim), dtype=wp.int32, ndim=2) m.joint_axis = wp.array(self.joint_axis, dtype=wp.vec3, requires_grad=requires_grad) m.joint_q = wp.array(self.joint_q, dtype=wp.float32, requires_grad=requires_grad) m.joint_qd = wp.array(self.joint_qd, dtype=wp.float32, requires_grad=requires_grad) m.joint_name = self.joint_name # dynamics properties # TODO unused joint_armature m.joint_armature = wp.array(self.joint_armature, dtype=wp.float32, requires_grad=requires_grad) m.joint_target = wp.array(self.joint_target, dtype=wp.float32, requires_grad=requires_grad) m.joint_target_ke = wp.array(self.joint_target_ke, dtype=wp.float32, requires_grad=requires_grad) m.joint_target_kd = wp.array(self.joint_target_kd, dtype=wp.float32, requires_grad=requires_grad) m.joint_axis_mode = wp.array(self.joint_axis_mode, dtype=wp.uint8) m.joint_act = wp.array(self.joint_act, dtype=wp.float32, requires_grad=requires_grad) m.joint_limit_lower = wp.array(self.joint_limit_lower, dtype=wp.float32, requires_grad=requires_grad) m.joint_limit_upper = wp.array(self.joint_limit_upper, dtype=wp.float32, requires_grad=requires_grad) m.joint_limit_ke = wp.array(self.joint_limit_ke, dtype=wp.float32, requires_grad=requires_grad) m.joint_limit_kd = wp.array(self.joint_limit_kd, dtype=wp.float32, requires_grad=requires_grad) m.joint_linear_compliance = wp.array( self.joint_linear_compliance, dtype=wp.float32, requires_grad=requires_grad ) m.joint_angular_compliance = wp.array( self.joint_angular_compliance, dtype=wp.float32, requires_grad=requires_grad ) m.joint_enabled = wp.array(self.joint_enabled, dtype=wp.int32) # 'close' the start index arrays with a sentinel value joint_q_start = copy.copy(self.joint_q_start) joint_q_start.append(self.joint_coord_count) joint_qd_start = copy.copy(self.joint_qd_start) joint_qd_start.append(self.joint_dof_count) articulation_start = copy.copy(self.articulation_start) articulation_start.append(self.joint_count) m.joint_q_start = wp.array(joint_q_start, dtype=wp.int32) m.joint_qd_start = wp.array(joint_qd_start, dtype=wp.int32) m.articulation_start = wp.array(articulation_start, dtype=wp.int32) # counts m.particle_count = len(self.particle_q) m.body_count = len(self.body_q) m.shape_count = len(self.shape_geo_type) m.tri_count = len(self.tri_poses) m.tet_count = len(self.tet_poses) m.edge_count = len(self.edge_rest_angle) m.spring_count = len(self.spring_rest_length) m.muscle_count = len(self.muscle_start) m.articulation_count = len(self.articulation_start) # contacts if m.particle_count: m.allocate_soft_contacts(self.soft_contact_max, requires_grad=requires_grad) m.find_shape_contact_pairs() if self.num_rigid_contacts_per_env is None: contact_count = m.count_contact_points() else: contact_count = self.num_rigid_contacts_per_env * self.num_envs if wp.config.verbose: print(f"Allocating {contact_count} rigid contacts.") m.allocate_rigid_contacts(contact_count, requires_grad=requires_grad) m.rigid_contact_margin = self.rigid_contact_margin m.rigid_contact_torsional_friction = self.rigid_contact_torsional_friction m.rigid_contact_rolling_friction = self.rigid_contact_rolling_friction m.joint_dof_count = self.joint_dof_count m.joint_coord_count = self.joint_coord_count # store refs to geometry m.geo_meshes = self.geo_meshes m.geo_sdfs = self.geo_sdfs # enable ground plane m.ground_plane = wp.array(self._ground_params["plane"], dtype=wp.float32, requires_grad=requires_grad) m.gravity = np.array(self.up_vector) * self.gravity m.enable_tri_collisions = False return m
warp-main
warp/sim/model.py
import warp as wp PI = wp.constant(3.14159265359) PI_2 = wp.constant(1.57079632679) @wp.func def velocity_at_point(qd: wp.spatial_vector, r: wp.vec3): """ Returns the velocity of a point relative to the frame with the given spatial velocity. """ return wp.cross(wp.spatial_top(qd), r) + wp.spatial_bottom(qd) @wp.func def quat_twist(axis: wp.vec3, q: wp.quat): """ Returns the twist around an axis. """ # project imaginary part onto axis a = wp.vec3(q[0], q[1], q[2]) proj = wp.dot(a, axis) a = proj * axis # if proj < 0.0: # # ensure twist points in same direction as axis # a = -a return wp.normalize(wp.quat(a[0], a[1], a[2], q[3])) @wp.func def quat_twist_angle(axis: wp.vec3, q: wp.quat): """ Returns the angle of the twist around an axis. """ return 2.0 * wp.acos(quat_twist(axis, q)[3]) @wp.func def quat_decompose(q: wp.quat): """ Decompose a quaternion into a sequence of 3 rotations around x,y',z' respectively, i.e.: q = q_z''q_y'q_x. """ R = wp.mat33( wp.quat_rotate(q, wp.vec3(1.0, 0.0, 0.0)), wp.quat_rotate(q, wp.vec3(0.0, 1.0, 0.0)), wp.quat_rotate(q, wp.vec3(0.0, 0.0, 1.0)), ) # https://www.sedris.org/wg8home/Documents/WG80485.pdf phi = wp.atan2(R[1, 2], R[2, 2]) sinp = -R[0, 2] if wp.abs(sinp) >= 1.0: theta = 1.57079632679 * wp.sign(sinp) else: theta = wp.asin(-R[0, 2]) psi = wp.atan2(R[0, 1], R[0, 0]) return -wp.vec3(phi, theta, psi) @wp.func def quat_to_rpy(q: wp.quat): """ Convert a quaternion into euler angles (roll, pitch, yaw) roll is rotation around x in radians (counterclockwise) pitch is rotation around y in radians (counterclockwise) yaw is rotation around z in radians (counterclockwise) """ x = q[0] y = q[1] z = q[2] w = q[3] t0 = 2.0 * (w * x + y * z) t1 = 1.0 - 2.0 * (x * x + y * y) roll_x = wp.atan2(t0, t1) t2 = 2.0 * (w * y - z * x) t2 = wp.clamp(t2, -1.0, 1.0) pitch_y = wp.asin(t2) t3 = 2.0 * (w * z + x * y) t4 = 1.0 - 2.0 * (y * y + z * z) yaw_z = wp.atan2(t3, t4) return wp.vec3(roll_x, pitch_y, yaw_z) @wp.func def quat_to_euler(q: wp.quat, i: int, j: int, k: int) -> wp.vec3: """ Convert a quaternion into euler angles i, j, k are the indices in [1,2,3] of the axes to use (i != j, j != k) """ # https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276302 not_proper = True if i == k: not_proper = False k = 6 - i - j # because i + j + k = 1 + 2 + 3 = 6 e = float((i - j) * (j - k) * (k - i)) / 2.0 # Levi-Civita symbol a = q[0] b = q[i] c = q[j] d = q[k] * e if not_proper: a -= q[j] b += q[k] * e c += q[0] d -= q[i] t2 = wp.acos(2.0 * (a * a + b * b) / (a * a + b * b + c * c + d * d) - 1.0) tp = wp.atan2(b, a) tm = wp.atan2(d, c) t1 = 0.0 t3 = 0.0 if wp.abs(t2) < 1e-6: t3 = 2.0 * tp - t1 elif wp.abs(t2 - PI_2) < 1e-6: t3 = 2.0 * tm + t1 else: t1 = tp - tm t3 = tp + tm if not_proper: t2 -= PI_2 t3 *= e return wp.vec3(t1, t2, t3) @wp.func def transform_twist(t: wp.transform, x: wp.spatial_vector): # Frank & Park definition 3.20, pg 100 q = wp.transform_get_rotation(t) p = wp.transform_get_translation(t) w = wp.spatial_top(x) v = wp.spatial_bottom(x) w = wp.quat_rotate(q, w) v = wp.quat_rotate(q, v) + wp.cross(p, w) return wp.spatial_vector(w, v) @wp.func def transform_wrench(t: wp.transform, x: wp.spatial_vector): q = wp.transform_get_rotation(t) p = wp.transform_get_translation(t) w = wp.spatial_top(x) v = wp.spatial_bottom(x) v = wp.quat_rotate(q, v) w = wp.quat_rotate(q, w) + wp.cross(p, v) return wp.spatial_vector(w, v) @wp.func def transform_inertia(t: wp.transform, I: wp.spatial_matrix): """ Computes adj_t^-T*I*adj_t^-1 (tensor change of coordinates). (Frank & Park, section 8.2.3, pg 290) """ t_inv = wp.transform_inverse(t) q = wp.transform_get_rotation(t_inv) p = wp.transform_get_translation(t_inv) r1 = wp.quat_rotate(q, wp.vec3(1.0, 0.0, 0.0)) r2 = wp.quat_rotate(q, wp.vec3(0.0, 1.0, 0.0)) r3 = wp.quat_rotate(q, wp.vec3(0.0, 0.0, 1.0)) R = wp.mat33(r1, r2, r3) S = wp.mul(wp.skew(p), R) T = wp.spatial_adjoint(R, S) return wp.mul(wp.mul(wp.transpose(T), I), T) @wp.func def vec_min(a: wp.vec3, b: wp.vec3): return wp.vec3(wp.min(a[0], b[0]), wp.min(a[1], b[1]), wp.min(a[2], b[2])) @wp.func def vec_max(a: wp.vec3, b: wp.vec3): return wp.vec3(wp.max(a[0], b[0]), wp.max(a[1], b[1]), wp.max(a[2], b[2])) @wp.func def vec_abs(a: wp.vec3): return wp.vec3(wp.abs(a[0]), wp.abs(a[1]), wp.abs(a[2]))
warp-main
warp/sim/utils.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from warp.context import synchronize import warp as wp import numpy as np @wp.kernel def gd_step(arr_x: wp.array(dtype=float), arr_dfdx: wp.array(dtype=float), alpha: float): tid = wp.tid() x = arr_x[tid] dfdx = arr_dfdx[tid] x = x - dfdx * alpha arr_x[tid] = x @wp.kernel def nesterov1(beta: float, x: wp.array(dtype=float), x_prev: wp.array(dtype=float), y: wp.array(dtype=float)): tid = wp.tid() y[tid] = x[tid] + beta * (x[tid] - x_prev[tid]) @wp.kernel def nesterov2( alpha: float, beta: wp.array(dtype=float), eta: wp.array(dtype=float), x: wp.array(dtype=float), x_prev: wp.array(dtype=float), y: wp.array(dtype=float), dfdx: wp.array(dtype=float), ): # if (eta > 0.0): # # adaptive restart # x_prev = x # b = 0 # else: # # nesterov update # x_prev = x # x = y - alpha*dfdx tid = wp.tid() x_prev[tid] = x[tid] x[tid] = y[tid] - alpha * dfdx[tid] def inner(a, b, out): from warp.utils import array_inner array_inner(a, b, out) class Optimizer: def __init__(self, n, mode, device): self.n = n self.mode = mode self.device = device # allocate space for residual buffers self.dfdx = wp.zeros(n, dtype=float, device=device) if mode == "nesterov": self.x_prev = wp.zeros(n, dtype=float, device=device) self.y = wp.zeros(n, dtype=float, device=device) self.eta = wp.zeros(1, dtype=float, device=device) self.eta_prev = wp.zeros(1, dtype=float, device=device) self.beta = wp.zeros(1, dtype=int, device=device) def solve(self, x, grad_func, max_iters=20, alpha=0.01, report=False): if report: stats = {} # reset stats stats["evals"] = 0 stats["residual"] = [] if self.mode == "gd": for i in range(max_iters): # compute residual grad_func(x, self.dfdx) # gradient step wp.launch(kernel=gd_step, dim=self.n, inputs=[x, self.dfdx, alpha], device=self.device) if report: stats["evals"] += 1 r = np.linalg.norm(self.dfdx.to("cpu").numpy()) stats["residual"].append(r) elif self.mode == "nesterov": wp.copy(self.x_prev, x) # momentum index (reset after restart) b = 0 for iter in range(max_iters): beta = (b - 1.0) / (b + 2.0) b += 1 # y = x + beta*(x - x_prev) wp.launch(kernel=nesterov1, dim=self.n, inputs=[beta, x, self.x_prev, self.y], device=self.device) # grad grad_func(self.y, self.dfdx) # inner() # np.dot(dfdx, x - x_prev) # x = y - alpha*dfdx wp.launch( kernel=nesterov2, dim=self.n, inputs=[alpha, None, None, x, self.x_prev, self.y, self.dfdx], device=self.device, ) if report: stats["evals"] += 1 r = np.linalg.norm(self.dfdx.to("cpu").numpy()) stats["residual"].append(r) else: raise RuntimeError("Unknown optimizer") if report: print(stats)
warp-main
warp/sim/optimizer.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import numpy as np import os import xml.etree.ElementTree as ET import warp as wp # SNU file format parser class MuscleUnit: def __init__(self): self.name = "" self.bones = [] self.points = [] class Skeleton: def __init__(self, root_xform, skeleton_file, muscle_file, builder, filter, armature=0.0): self.parse_skeleton(skeleton_file, builder, filter, root_xform, armature) self.parse_muscles(muscle_file, builder) def parse_skeleton(self, filename, builder, filter, root_xform, armature): file = ET.parse(filename) root = file.getroot() self.node_map = {} # map node names to link indices self.xform_map = {} # map node names to parent transforms self.mesh_map = {} # map mesh names to link indices objects self.coord_start = builder.joint_coord_count self.dof_start = builder.joint_dof_count type_map = { "Ball": wp.sim.JOINT_BALL, "Revolute": wp.sim.JOINT_REVOLUTE, "Prismatic": wp.sim.JOINT_PRISMATIC, "Free": wp.sim.JOINT_FREE, "Fixed": wp.sim.JOINT_FIXED, } builder.add_articulation() for child in root: if child.tag == "Node": body = child.find("Body") joint = child.find("Joint") name = child.attrib["name"] parent = child.attrib["parent"] parent_X_s = wp.transform_identity() if parent in self.node_map: parent_link = self.node_map[parent] parent_X_s = self.xform_map[parent] else: parent_link = -1 body_xform = body.find("Transformation") joint_xform = joint.find("Transformation") body_mesh = body.attrib["obj"] body_size = np.fromstring(body.attrib["size"], sep=" ") body_type = body.attrib["type"] body_mass = body.attrib["mass"] body_R_s = np.fromstring(body_xform.attrib["linear"], sep=" ").reshape((3, 3)) body_t_s = np.fromstring(body_xform.attrib["translation"], sep=" ") joint_R_s = np.fromstring(joint_xform.attrib["linear"], sep=" ").reshape((3, 3)) joint_t_s = np.fromstring(joint_xform.attrib["translation"], sep=" ") joint_type = type_map[joint.attrib["type"]] joint_lower = np.array([-1.0e3]) joint_upper = np.array([1.0e3]) try: joint_lower = np.fromstring(joint.attrib["lower"], sep=" ") joint_upper = np.fromstring(joint.attrib["upper"], sep=" ") except: pass if "axis" in joint.attrib: joint_axis = np.fromstring(joint.attrib["axis"], sep=" ") else: joint_axis = np.array((0.0, 0.0, 0.0)) body_X_s = wp.transform(body_t_s, wp.quat_from_matrix(body_R_s)) joint_X_s = wp.transform(joint_t_s, wp.quat_from_matrix(joint_R_s)) mesh_base = os.path.splitext(body_mesh)[0] mesh_file = mesh_base + ".usd" # ----------------------------------- # one time conversion, put meshes into local body space (and meter units) # stage = Usd.Stage.Open("./assets/snu/OBJ/" + mesh_file) # geom = UsdGeom.Mesh.Get(stage, "/" + mesh_base + "_obj/defaultobject/defaultobject") # body_X_bs = wp.transform_inverse(body_X_s) # joint_X_bs = wp.transform_inverse(joint_X_s) # points = geom.GetPointsAttr().Get() # for i in range(len(points)): # p = wp.transform_point(joint_X_bs, points[i]*0.01) # points[i] = Gf.Vec3f(p.tolist()) # cm -> meters # geom.GetPointsAttr().Set(points) # extent = UsdGeom.Boundable.ComputeExtentFromPlugins(geom, 0.0) # geom.GetExtentAttr().Set(extent) # stage.Save() # -------------------------------------- link = -1 if len(filter) == 0 or name in filter: joint_X_p = wp.transform_multiply(wp.transform_inverse(parent_X_s), joint_X_s) body_X_c = wp.transform_multiply(wp.transform_inverse(joint_X_s), body_X_s) if parent_link == -1: joint_X_p = wp.transform_identity() # add link link = builder.add_body( parent=parent_link, origin=wp.transform_multiply(root_xform, joint_X_s), joint_xform=joint_X_p, joint_axis=joint_axis, joint_type=joint_type, joint_target_ke=5.0, joint_target_kd=2.0, joint_limit_lower=joint_lower[0], joint_limit_upper=joint_upper[0], joint_limit_ke=1.0e3, joint_limit_kd=1.0e2, joint_armature=armature, ) # add shape shape = builder.add_shape_box( body=link, pos=body_X_c.p, rot=body_X_c.q, hx=body_size[0] * 0.5, hy=body_size[1] * 0.5, hz=body_size[2] * 0.5, ke=1.0e3 * 5.0, kd=1.0e2 * 2.0, kf=1.0e3, mu=0.5, ) # add lookup in name->link map # save parent transform self.xform_map[name] = joint_X_s self.node_map[name] = link self.mesh_map[mesh_base] = link def parse_muscles(self, filename, builder): # list of MuscleUnits muscles = [] file = ET.parse(filename) root = file.getroot() self.muscle_start = len(builder.muscle_activation) for child in root: if child.tag == "Unit": unit_name = child.attrib["name"] unit_f0 = float(child.attrib["f0"]) unit_lm = float(child.attrib["lm"]) unit_lt = float(child.attrib["lt"]) unit_lmax = float(child.attrib["lmax"]) unit_pen = float(child.attrib["pen_angle"]) m = MuscleUnit() m.name = unit_name incomplete = False for waypoint in child.iter("Waypoint"): way_bone = waypoint.attrib["body"] way_link = self.node_map[way_bone] way_loc = np.fromstring(waypoint.attrib["p"], sep=" ", dtype=np.float32) if way_link == -1: incomplete = True break # transform loc to joint local space joint_X_s = self.xform_map[way_bone] way_loc = wp.transform_point(wp.transform_inverse(joint_X_s), way_loc) m.bones.append(way_link) m.points.append(way_loc) if not incomplete: muscles.append(m) builder.add_muscle( m.bones, m.points, f0=unit_f0, lm=unit_lm, lt=unit_lt, lmax=unit_lmax, pen=unit_pen ) self.muscles = muscles def parse_snu(root_xform, skeleton_file, muscle_file, builder, filter, armature=0.0): return Skeleton(root_xform, skeleton_file, muscle_file, builder, filter, armature=0.0)
warp-main
warp/sim/import_snu.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import re import warp as wp from . import ModelBuilder def parse_usd( filename, builder: ModelBuilder, default_density=1.0e3, only_load_enabled_rigid_bodies=False, only_load_enabled_joints=True, default_ke=1e5, default_kd=250.0, default_kf=500.0, default_mu=0.0, default_restitution=0.0, default_thickness=0.0, joint_limit_ke=100.0, joint_limit_kd=10.0, verbose=False, ignore_paths=[], export_usda=False, ): """ Parses a USD file containing UsdPhysics schema definitions for rigid-body articulations and adds the bodies, shapes and joints to the given ModelBuilder. Args: filename (str): The file path or URL to the USD file to parse. builder (ModelBuilder): The :class:`ModelBuilder` to add the bodies and joints to. default_density (float): The default density to use for bodies without a density attribute. only_load_enabled_rigid_bodies (bool): If True, only rigid bodies which do not have `physics:rigidBodyEnabled` set to False are loaded. only_load_enabled_joints (bool): If True, only joints which do not have `physics:jointEnabled` set to False are loaded. default_ke (float): The default contact stiffness to use, only considered by SemiImplicitIntegrator. default_kd (float): The default contact damping to use, only considered by SemiImplicitIntegrator. default_kf (float): The default friction stiffness to use, only considered by SemiImplicitIntegrator. default_mu (float): The default friction coefficient to use if a shape has not friction coefficient defined. default_restitution (float): The default coefficient of restitution to use if a shape has not coefficient of restitution defined. default_thickness (float): The thickness to add to the shape geometry. joint_limit_ke (float): The default stiffness to use for joint limits, only considered by SemiImplicitIntegrator. joint_limit_kd (float): The default damping to use for joint limits, only considered by SemiImplicitIntegrator. verbose (bool): If True, print additional information about the parsed USD file. ignore_paths (List[str]): A list of regular expressions matching prim paths to ignore. export_usda (bool): If True and the filename is a URL, export the downloaded USD file to a USDA file. Returns: dict: Dictionary with the following entries: "fps": USD stage frames per second. "duration": Difference between end time code and start time code of the USD stage. "up_axis": Upper-case string of the stage up axis. Note: This importer is experimental and only supports a subset of the USD Physics schema. Please report any issues you encounter. """ try: from pxr import Usd, UsdGeom, UsdPhysics except ImportError: raise ImportError("Failed to import pxr. Please install USD.") if filename.startswith("http://") or filename.startswith("https://"): # download file import requests import os import datetime response = requests.get(filename, allow_redirects=True) if response.status_code != 200: raise RuntimeError(f"Failed to download USD file. Status code: {response.status_code}") file = response.content dot = os.path.extsep base = os.path.basename(filename) url_folder = os.path.dirname(filename) base_name = dot.join(base.split(dot)[:-1]) timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") folder_name = os.path.join(".usd_cache", f"{base_name}_{timestamp}") os.makedirs(folder_name, exist_ok=True) target_filename = os.path.join(folder_name, base) with open(target_filename, "wb") as f: f.write(file) stage = Usd.Stage.Open(target_filename, Usd.Stage.LoadNone) stage_str = stage.GetRootLayer().ExportToString() print(f"Downloaded USD file to {target_filename}.") if export_usda: usda_filename = os.path.join(folder_name, base_name + ".usda") with open(usda_filename, "w") as f: f.write(stage_str) print(f"Exported USDA file to {usda_filename}.") # parse referenced USD files like `references = @./franka_collisions.usd@` downloaded = set() for match in re.finditer(r"references.=.@(.*?)@", stage_str): refname = match.group(1) if refname.startswith("./"): refname = refname[2:] if refname in downloaded: continue try: response = requests.get(f"{url_folder}/{refname}", allow_redirects=True) if response.status_code != 200: print(f"Failed to download reference {refname}. Status code: {response.status_code}") continue file = response.content refdir = os.path.dirname(refname) if refdir: os.makedirs(os.path.join(folder_name, refdir), exist_ok=True) ref_filename = os.path.join(folder_name, refname) with open(ref_filename, "wb") as f: f.write(file) downloaded.add(refname) print(f"Downloaded USD reference {refname} to {ref_filename}.") if export_usda: ref_stage = Usd.Stage.Open(ref_filename, Usd.Stage.LoadNone) ref_stage_str = ref_stage.GetRootLayer().ExportToString() base = os.path.basename(ref_filename) base_name = dot.join(base.split(dot)[:-1]) usda_filename = os.path.join(folder_name, base_name + ".usda") with open(usda_filename, "w") as f: f.write(ref_stage_str) print(f"Exported USDA file to {usda_filename}.") except Exception: print(f"Failed to download {refname}.") filename = target_filename def get_attribute(prim, name): if "*" in name: regex = name.replace("*", ".*") for attr in prim.GetAttributes(): if re.match(regex, attr.GetName()): return attr else: return prim.GetAttribute(name) def has_attribute(prim, name): attr = get_attribute(prim, name) return attr.IsValid() and attr.HasAuthoredValue() def parse_float(prim, name, default=None): attr = get_attribute(prim, name) if not attr or not attr.HasAuthoredValue(): return default val = attr.Get() if np.isfinite(val): return val return default def parse_quat(prim, name, default=None): attr = get_attribute(prim, name) if not attr or not attr.HasAuthoredValue(): return default val = attr.Get() quat = wp.quat(*val.imaginary, val.real) l = wp.length(quat) if np.isfinite(l) and l > 0.0: return quat return default def parse_vec(prim, name, default=None): attr = get_attribute(prim, name) if not attr or not attr.HasAuthoredValue(): return default val = attr.Get() if np.isfinite(val).all(): return np.array(val, dtype=np.float32) return default def parse_generic(prim, name, default=None): attr = get_attribute(prim, name) if not attr or not attr.HasAuthoredValue(): return default return attr.Get() def str2axis(s: str) -> np.ndarray: axis = np.zeros(3, dtype=np.float32) axis["XYZ".index(s.upper())] = 1.0 return axis stage = Usd.Stage.Open(filename, Usd.Stage.LoadAll) if UsdPhysics.StageHasAuthoredKilogramsPerUnit(stage): mass_unit = UsdPhysics.GetStageKilogramsPerUnit(stage) else: mass_unit = 1.0 if UsdGeom.StageHasAuthoredMetersPerUnit(stage): linear_unit = UsdGeom.GetStageMetersPerUnit(stage) else: linear_unit = 1.0 def parse_xform(prim): xform = UsdGeom.Xform(prim) mat = np.array(xform.GetLocalTransformation(), dtype=np.float32) rot = wp.quat_from_matrix(wp.mat33(mat[:3, :3].flatten())) pos = mat[3, :3] * linear_unit scale = np.ones(3, dtype=np.float32) for op in xform.GetOrderedXformOps(): if op.GetOpType() == UsdGeom.XformOp.TypeScale: scale = np.array(op.Get(), dtype=np.float32) return wp.transform(pos, rot), scale def parse_axis(prim, type, joint_data, is_angular, axis=None): # parse joint axis data schemas = prim.GetAppliedSchemas() schemas_str = "".join(schemas) if f"DriveAPI:{type}" not in schemas_str and f"PhysicsLimitAPI:{type}" not in schemas_str: return drive_type = parse_generic(prim, f"drive:{type}:physics:type", "force") if drive_type != "force": print(f"Warning: only force drive type is supported, ignoring drive:{type} for joint {path}") return stiffness = parse_float(prim, f"drive:{type}:physics:stiffness", 0.0) damping = parse_float(prim, f"drive:{type}:physics:damping", 0.0) low = parse_float(prim, f"limit:{type}:physics:low") high = parse_float(prim, f"limit:{type}:physics:high") target_pos = parse_float(prim, f"drive:{type}:physics:targetPosition") target_vel = parse_float(prim, f"drive:{type}:physics:targetVelocity") if is_angular: stiffness *= mass_unit * linear_unit**2 stiffness = np.deg2rad(stiffness) damping *= mass_unit * linear_unit**2 damping = np.deg2rad(damping) if target_pos is not None: target_pos = np.deg2rad(target_pos) if target_vel is not None: target_vel = np.deg2rad(target_vel) if low is None: low = joint_data["lowerLimit"] else: low = np.deg2rad(low) if high is None: high = joint_data["upperLimit"] else: high = np.deg2rad(high) else: stiffness *= mass_unit damping *= mass_unit if target_pos is not None: target_pos *= linear_unit if target_vel is not None: target_vel *= linear_unit if low is None: low = joint_data["lowerLimit"] else: low *= linear_unit if high is None: high = joint_data["upperLimit"] else: high *= linear_unit mode = wp.sim.JOINT_MODE_LIMIT if f"DriveAPI:{type}" in schemas_str: if target_vel is not None and target_vel != 0.0: mode = wp.sim.JOINT_MODE_TARGET_VELOCITY else: mode = wp.sim.JOINT_MODE_TARGET_POSITION if low > high: low = (low + high) / 2 high = low axis = wp.sim.JointAxis( axis=(axis or joint_data["axis"]), limit_lower=low, limit_upper=high, target=(target_pos or target_vel or (low + high) / 2), target_ke=stiffness, target_kd=damping, mode=mode, limit_ke=joint_limit_ke, limit_kd=joint_limit_kd, ) if is_angular: joint_data["angular_axes"].append(axis) else: joint_data["linear_axes"].append(axis) upaxis = str2axis(UsdGeom.GetStageUpAxis(stage)) shape_types = {"Cube", "Sphere", "Mesh", "Capsule", "Plane", "Cylinder", "Cone"} path_body_map = {} path_shape_map = {} # maps prim path name to its world transform path_world_poses = {} # transform from body frame to where the actual joint child frame is # so that the link's children will use the right parent tf for the joint prim_joint_xforms = {} path_collision_filters = set() no_collision_shapes = set() body_density = {} # mapping from body ID to defined density # first find all joints and materials joint_data = {} # mapping from path of child link to joint USD settings materials = {} # mapping from material path to material USD settings joint_parents = set() # paths of joint parents for prim in stage.Traverse(): type_name = str(prim.GetTypeName()) path = str(prim.GetPath()) # if verbose: # print(path, type_name) if type_name.endswith("Joint"): # the type name can sometimes be "DistancePhysicsJoint" or "PhysicsDistanceJoint" ... type_name = type_name.replace("Physics", "").replace("Joint", "") child = str(prim.GetRelationship("physics:body1").GetTargets()[0]) pos0 = parse_vec(prim, "physics:localPos0", np.zeros(3, dtype=np.float32)) * linear_unit pos1 = parse_vec(prim, "physics:localPos1", np.zeros(3, dtype=np.float32)) * linear_unit rot0 = parse_quat(prim, "physics:localRot0", wp.quat_identity()) rot1 = parse_quat(prim, "physics:localRot1", wp.quat_identity()) joint_data[child] = { "type": type_name, "name": str(prim.GetName()), "parent_tf": wp.transform(pos0, rot0), "child_tf": wp.transform(pos1, rot1), "enabled": parse_generic(prim, "physics:jointEnabled", True), "collisionEnabled": parse_generic(prim, "physics:collisionEnabled", False), "excludeFromArticulation": parse_generic(prim, "physics:excludeFromArticulation", False), "axis": str2axis(parse_generic(prim, "physics:axis", "X")), "breakForce": parse_float(prim, "physics:breakForce", np.inf), "breakTorque": parse_float(prim, "physics:breakTorque", np.inf), "linear_axes": [], "angular_axes": [], } if only_load_enabled_joints and not joint_data[child]["enabled"]: print("Skipping disabled joint", path) continue # parse joint limits lower = parse_float(prim, "physics:lowerLimit", -np.inf) upper = parse_float(prim, "physics:upperLimit", np.inf) if type_name == "Distance": # if distance is negative the joint is not limited joint_data[child]["lowerLimit"] = parse_float(prim, "physics:minDistance", -1.0) * linear_unit joint_data[child]["upperLimit"] = parse_float(prim, "physics:maxDistance", -1.0) * linear_unit elif type_name == "Prismatic": joint_data[child]["lowerLimit"] = lower * linear_unit joint_data[child]["upperLimit"] = upper * linear_unit else: joint_data[child]["lowerLimit"] = np.deg2rad(lower) if np.isfinite(lower) else lower joint_data[child]["upperLimit"] = np.deg2rad(upper) if np.isfinite(upper) else upper if joint_data[child]["lowerLimit"] > joint_data[child]["upperLimit"]: joint_data[child]["lowerLimit"] = ( joint_data[child]["lowerLimit"] + joint_data[child]["upperLimit"] ) / 2 joint_data[child]["upperLimit"] = joint_data[child]["lowerLimit"] parents = prim.GetRelationship("physics:body0").GetTargets() if len(parents) > 0: parent_path = str(parents[0]) joint_data[child]["parent"] = parent_path joint_parents.add(parent_path) else: joint_data[child]["parent"] = None # parse joint drive parse_axis(prim, "angular", joint_data[child], is_angular=True) parse_axis(prim, "rotX", joint_data[child], is_angular=True, axis=(1.0, 0.0, 0.0)) parse_axis(prim, "rotY", joint_data[child], is_angular=True, axis=(0.0, 1.0, 0.0)) parse_axis(prim, "rotZ", joint_data[child], is_angular=True, axis=(0.0, 0.0, 1.0)) parse_axis(prim, "linear", joint_data[child], is_angular=False) parse_axis(prim, "transX", joint_data[child], is_angular=False, axis=(1.0, 0.0, 0.0)) parse_axis(prim, "transY", joint_data[child], is_angular=False, axis=(0.0, 1.0, 0.0)) parse_axis(prim, "transZ", joint_data[child], is_angular=False, axis=(0.0, 0.0, 1.0)) elif type_name == "Material": material = {} if has_attribute(prim, "physics:density"): material["density"] = parse_float(prim, "physics:density") * mass_unit # / (linear_unit**3) if has_attribute(prim, "physics:restitution"): material["restitution"] = parse_float(prim, "physics:restitution", default_restitution) if has_attribute(prim, "physics:staticFriction"): material["staticFriction"] = parse_float(prim, "physics:staticFriction", default_mu) if has_attribute(prim, "physics:dynamicFriction"): material["dynamicFriction"] = parse_float(prim, "physics:dynamicFriction", default_mu) materials[path] = material elif type_name == "PhysicsScene": scene = UsdPhysics.Scene(prim) g_vec = scene.GetGravityDirectionAttr() g_mag = scene.GetGravityMagnitudeAttr() if g_mag.HasAuthoredValue() and np.isfinite(g_mag.Get()): builder.gravity = g_mag.Get() * linear_unit if g_vec.HasAuthoredValue() and np.linalg.norm(g_vec.Get()) > 0.0: builder.up_vector = np.array(g_vec.Get(), dtype=np.float32) # TODO flip sign? else: builder.up_vector = upaxis def parse_prim(prim, incoming_xform, incoming_scale, parent_body: int = -1): nonlocal builder nonlocal joint_data nonlocal path_body_map nonlocal path_shape_map nonlocal path_world_poses nonlocal prim_joint_xforms nonlocal path_collision_filters nonlocal no_collision_shapes nonlocal body_density path = str(prim.GetPath()) for pattern in ignore_paths: if re.match(pattern, path): return type_name = str(prim.GetTypeName()) if ( type_name.endswith("Joint") or type_name.endswith("Light") or type_name.endswith("Scene") or type_name.endswith("Material") ): return schemas = set(prim.GetAppliedSchemas()) children_refs = prim.GetChildren() prim_joint_xforms[path] = wp.transform() local_xform, scale = parse_xform(prim) scale = incoming_scale * scale xform = wp.mul(incoming_xform, local_xform) path_world_poses[path] = xform geo_tf = local_xform body_id = parent_body is_rigid_body = "PhysicsRigidBodyAPI" in schemas and parent_body == -1 create_rigid_body = is_rigid_body or path in joint_parents if create_rigid_body: body_id = builder.add_body( origin=xform, name=prim.GetName(), ) path_body_map[path] = body_id body_density[body_id] = 0.0 parent_body = body_id geo_tf = wp.transform() # set up joints between rigid bodies after the children have been added if path in joint_data: joint = joint_data[path] joint_params = dict( child=body_id, linear_axes=joint["linear_axes"], angular_axes=joint["angular_axes"], name=joint["name"], enabled=joint["enabled"], parent_xform=joint["parent_tf"], child_xform=joint["child_tf"], ) parent_path = joint["parent"] if parent_path is None: joint_params["parent"] = -1 parent_tf = wp.transform() else: joint_params["parent"] = path_body_map[parent_path] parent_tf = path_world_poses[parent_path] # the joint to which we are connected will transform this body already geo_tf = wp.transform() if verbose: print(f"Adding joint {joint['name']} between {joint['parent']} and {path}") print(" parent_xform", joint["parent_tf"]) print(" child_xform ", joint["child_tf"]) print(" parent_tf ", parent_tf) print(f" geo_tf at {path} = {geo_tf} (xform was {xform})") if joint["type"] == "Revolute": joint_params["joint_type"] = wp.sim.JOINT_REVOLUTE if len(joint_params["angular_axes"]) == 0: joint_params["angular_axes"].append( wp.sim.JointAxis( joint["axis"], limit_lower=joint["lowerLimit"], limit_upper=joint["upperLimit"], limit_ke=joint_limit_ke, limit_kd=joint_limit_kd, ) ) elif joint["type"] == "Prismatic": joint_params["joint_type"] = wp.sim.JOINT_PRISMATIC if len(joint_params["linear_axes"]) == 0: joint_params["linear_axes"].append( wp.sim.JointAxis( joint["axis"], limit_lower=joint["lowerLimit"], limit_upper=joint["upperLimit"], limit_ke=joint_limit_ke, limit_kd=joint_limit_kd, ) ) elif joint["type"] == "Spherical": joint_params["joint_type"] = wp.sim.JOINT_BALL elif joint["type"] == "Fixed": joint_params["joint_type"] = wp.sim.JOINT_FIXED elif joint["type"] == "Distance": joint_params["joint_type"] = wp.sim.JOINT_DISTANCE # we have to add a dummy linear X axis to define the joint limits joint_params["linear_axes"].append( wp.sim.JointAxis( (1.0, 0.0, 0.0), limit_lower=joint["lowerLimit"], limit_upper=joint["upperLimit"], limit_ke=joint_limit_ke, limit_kd=joint_limit_kd, ) ) elif joint["type"] == "": joint_params["joint_type"] = wp.sim.JOINT_D6 else: print(f"Warning: unsupported joint type {joint['type']} for {path}") builder.add_joint(**joint_params) elif is_rigid_body: builder.add_joint_free(child=body_id) # free joint; we set joint_q/qd, not body_q/qd since eval_fk is used after model creation builder.joint_q[-4:] = xform.q builder.joint_q[-7:-4] = xform.p linear_vel = parse_vec(prim, "physics:velocity", np.zeros(3, dtype=np.float32)) * linear_unit angular_vel = parse_vec(prim, "physics:angularVelocity", np.zeros(3, dtype=np.float32)) * linear_unit builder.joint_qd[-6:-3] = angular_vel builder.joint_qd[-3:] = linear_vel if verbose: print(f"added {type_name} body {body_id} ({path}) at {xform}") density = None material = None if prim.HasRelationship("material:binding:physics"): other_paths = prim.GetRelationship("material:binding:physics").GetTargets() if len(other_paths) > 0: material = materials[str(other_paths[0])] if material is not None: if "density" in material: density = material["density"] if has_attribute(prim, "physics:density"): d = parse_float(prim, "physics:density") density = d * mass_unit # / (linear_unit**3) # assert prim.GetAttribute('orientation').Get() == "rightHanded", "Only right-handed orientations are supported." enabled = parse_generic(prim, "physics:rigidBodyEnabled", True) if only_load_enabled_rigid_bodies and not enabled: if verbose: print("Skipping disabled rigid body", path) return mass = parse_float(prim, "physics:mass") if is_rigid_body: if density is None: density = default_density body_density[body_id] = density elif density is None: if body_id >= 0: density = body_density[body_id] else: density = 0.0 com = parse_vec(prim, "physics:centerOfMass", np.zeros(3, dtype=np.float32)) i_diag = parse_vec(prim, "physics:diagonalInertia", np.zeros(3, dtype=np.float32)) i_rot = parse_quat(prim, "physics:principalAxes", wp.quat_identity()) # parse children if type_name == "Xform": if prim.IsInstance(): proto = prim.GetPrototype() for child in proto.GetChildren(): parse_prim(child, xform, scale, parent_body) else: for child in children_refs: parse_prim(child, xform, scale, parent_body) elif type_name == "Scope": for child in children_refs: parse_prim(child, incoming_xform, incoming_scale, parent_body) elif type_name in shape_types: # parse shapes shape_params = dict( ke=default_ke, kd=default_kd, kf=default_kf, mu=default_mu, restitution=default_restitution ) if material is not None: if "restitution" in material: shape_params["restitution"] = material["restitution"] if "dynamicFriction" in material: shape_params["mu"] = material["dynamicFriction"] if has_attribute(prim, "doubleSided") and not prim.GetAttribute("doubleSided").Get(): print(f"Warning: treating {path} as double-sided because single-sided collisions are not supported.") if type_name == "Cube": size = parse_float(prim, "size", 2.0) if has_attribute(prim, "extents"): extents = parse_vec(prim, "extents") * scale # TODO position geom at extents center? geo_pos = 0.5 * (extents[0] + extents[1]) extents = extents[1] - extents[0] else: extents = scale * size shape_id = builder.add_shape_box( body_id, geo_tf.p, geo_tf.q, hx=extents[0] / 2, hy=extents[1] / 2, hz=extents[2] / 2, density=density, thickness=default_thickness, **shape_params, ) elif type_name == "Sphere": if not (scale[0] == scale[1] == scale[2]): print("Warning: Non-uniform scaling of spheres is not supported.") if has_attribute(prim, "extents"): extents = parse_vec(prim, "extents") * scale # TODO position geom at extents center? geo_pos = 0.5 * (extents[0] + extents[1]) extents = extents[1] - extents[0] if not (extents[0] == extents[1] == extents[2]): print("Warning: Non-uniform extents of spheres are not supported.") radius = extents[0] else: radius = parse_float(prim, "radius", 1.0) * scale[0] shape_id = builder.add_shape_sphere( body_id, geo_tf.p, geo_tf.q, radius, density=density, **shape_params ) elif type_name == "Plane": normal_str = parse_generic(prim, "axis", "Z").upper() geo_rot = geo_tf.q if normal_str != "Y": normal = str2axis(normal_str) c = np.cross(normal, (0.0, 1.0, 0.0)) angle = np.arcsin(np.linalg.norm(c)) axis = c / np.linalg.norm(c) geo_rot = wp.mul(geo_rot, wp.quat_from_axis_angle(axis, angle)) width = parse_float(prim, "width", 0.0) * scale[0] length = parse_float(prim, "length", 0.0) * scale[1] shape_id = builder.add_shape_plane( body=body_id, pos=geo_tf.p, rot=geo_rot, width=width, length=length, thickness=default_thickness, **shape_params, ) elif type_name == "Capsule": axis_str = parse_generic(prim, "axis", "Z").upper() radius = parse_float(prim, "radius", 0.5) * scale[0] half_height = parse_float(prim, "height", 2.0) / 2 * scale[1] assert not has_attribute(prim, "extents"), "Capsule extents are not supported." shape_id = builder.add_shape_capsule( body_id, geo_tf.p, geo_tf.q, radius, half_height, density=density, up_axis="XYZ".index(axis_str), **shape_params, ) elif type_name == "Cylinder": axis_str = parse_generic(prim, "axis", "Z").upper() radius = parse_float(prim, "radius", 0.5) * scale[0] half_height = parse_float(prim, "height", 2.0) / 2 * scale[1] assert not has_attribute(prim, "extents"), "Cylinder extents are not supported." shape_id = builder.add_shape_cylinder( body_id, geo_tf.p, geo_tf.q, radius, half_height, density=density, up_axis="XYZ".index(axis_str), **shape_params, ) elif type_name == "Cone": axis_str = parse_generic(prim, "axis", "Z").upper() radius = parse_float(prim, "radius", 0.5) * scale[0] half_height = parse_float(prim, "height", 2.0) / 2 * scale[1] assert not has_attribute(prim, "extents"), "Cone extents are not supported." shape_id = builder.add_shape_cone( body_id, geo_tf.p, geo_tf.q, radius, half_height, density=density, up_axis="XYZ".index(axis_str), **shape_params, ) elif type_name == "Mesh": mesh = UsdGeom.Mesh(prim) points = np.array(mesh.GetPointsAttr().Get(), dtype=np.float32) indices = np.array(mesh.GetFaceVertexIndicesAttr().Get(), dtype=np.float32) counts = mesh.GetFaceVertexCountsAttr().Get() faces = [] face_id = 0 for count in counts: if count == 3: faces.append(indices[face_id : face_id + 3]) elif count == 4: faces.append(indices[face_id : face_id + 3]) faces.append(indices[[face_id, face_id + 2, face_id + 3]]) else: # assert False, f"Error while parsing USD mesh {path}: encountered polygon with {count} vertices, but only triangles and quads are supported." continue face_id += count m = wp.sim.Mesh(points, np.array(faces, dtype=np.int32).flatten()) shape_id = builder.add_shape_mesh( body_id, geo_tf.p, geo_tf.q, scale=scale, mesh=m, density=density, thickness=default_thickness, **shape_params, ) else: print(f"Warning: Unsupported geometry type {type_name} at {path}.") return path_body_map[path] = body_id path_shape_map[path] = shape_id if prim.HasRelationship("physics:filteredPairs"): other_paths = prim.GetRelationship("physics:filteredPairs").GetTargets() for other_path in other_paths: path_collision_filters.add((path, str(other_path))) if "PhysicsCollisionAPI" not in schemas or not parse_generic(prim, "physics:collisionEnabled", True): no_collision_shapes.add(shape_id) else: print(f"Warning: encountered unsupported prim type {type_name}") # update mass properties of rigid bodies in cases where properties are defined with higher precedence if body_id >= 0: com = parse_vec(prim, "physics:centerOfMass") if com is not None: # overwrite COM builder.body_com[body_id] = com * scale if mass is not None and not (is_rigid_body and mass == 0.0): mass_ratio = mass / builder.body_mass[body_id] # mass has precedence over density, so we overwrite the mass computed from density builder.body_mass[body_id] = mass * mass_unit if mass > 0.0: builder.body_inv_mass[body_id] = 1.0 / builder.body_mass[body_id] else: builder.body_inv_mass[body_id] = 0.0 # update inertia builder.body_inertia[body_id] *= mass_ratio if builder.body_inertia[body_id].any(): builder.body_inv_inertia[body_id] = np.linalg.inv(builder.body_inertia[body_id]) else: builder.body_inv_inertia[body_id] = np.zeros((3, 3), dtype=np.float32) if np.linalg.norm(i_diag) > 0.0: rot = np.array(wp.quat_to_matrix(i_rot), dtype=np.float32).reshape(3, 3) inertia = rot @ np.diag(i_diag) @ rot.T builder.body_inertia[body_id] = inertia if inertia.any(): builder.body_inv_inertia[body_id] = np.linalg.inv(inertia) else: builder.body_inv_inertia[body_id] = np.zeros((3, 3), dtype=np.float32) parse_prim( stage.GetDefaultPrim(), incoming_xform=wp.transform(), incoming_scale=np.ones(3, dtype=np.float32) * linear_unit ) shape_count = len(builder.shape_geo_type) # apply collision filters now that we have added all shapes for path1, path2 in path_collision_filters: shape1 = path_shape_map[path1] shape2 = path_shape_map[path2] builder.shape_collision_filter_pairs.add((shape1, shape2)) # apply collision filters to all shapes that have no collision for shape_id in no_collision_shapes: for other_shape_id in range(shape_count): if other_shape_id != shape_id: builder.shape_collision_filter_pairs.add((shape_id, other_shape_id)) # return stage parameters return { "fps": stage.GetFramesPerSecond(), "duration": stage.GetEndTimeCode() - stage.GetStartTimeCode(), "up_axis": UsdGeom.GetStageUpAxis(stage).upper(), }
warp-main
warp/sim/import_usd.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import warp as wp from .utils import quat_decompose, quat_twist, quat_twist_angle @wp.kernel def eval_articulation_fk( articulation_start: wp.array(dtype=int), articulation_mask: wp.array( dtype=int ), # used to enable / disable FK for an articulation, if None then treat all as enabled joint_q: wp.array(dtype=float), joint_qd: wp.array(dtype=float), joint_q_start: wp.array(dtype=int), joint_qd_start: wp.array(dtype=int), joint_type: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), joint_axis: wp.array(dtype=wp.vec3), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), body_com: wp.array(dtype=wp.vec3), # outputs body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), ): tid = wp.tid() # early out if disabling FK for this articulation if articulation_mask: if articulation_mask[tid] == 0: return joint_start = articulation_start[tid] joint_end = articulation_start[tid + 1] for i in range(joint_start, joint_end): parent = joint_parent[i] child = joint_child[i] X_wp = wp.transform_identity() v_wp = wp.spatial_vector() if parent >= 0: X_wp = body_q[parent] v_wp = body_qd[parent] # compute transform across the joint type = joint_type[i] X_pj = joint_X_p[i] X_cj = joint_X_c[i] q_start = joint_q_start[i] qd_start = joint_qd_start[i] axis_start = joint_axis_start[i] lin_axis_count = joint_axis_dim[i, 0] ang_axis_count = joint_axis_dim[i, 1] X_jc = wp.transform_identity() v_jc = wp.spatial_vector(wp.vec3(), wp.vec3()) if type == wp.sim.JOINT_PRISMATIC: axis = joint_axis[axis_start] q = joint_q[q_start] qd = joint_qd[qd_start] X_jc = wp.transform(axis * q, wp.quat_identity()) v_jc = wp.spatial_vector(wp.vec3(), axis * qd) if type == wp.sim.JOINT_REVOLUTE: axis = joint_axis[axis_start] q = joint_q[q_start] qd = joint_qd[qd_start] X_jc = wp.transform(wp.vec3(), wp.quat_from_axis_angle(axis, q)) v_jc = wp.spatial_vector(axis * qd, wp.vec3()) if type == wp.sim.JOINT_BALL: r = wp.quat(joint_q[q_start + 0], joint_q[q_start + 1], joint_q[q_start + 2], joint_q[q_start + 3]) w = wp.vec3(joint_qd[qd_start + 0], joint_qd[qd_start + 1], joint_qd[qd_start + 2]) # print(r) X_jc = wp.transform(wp.vec3(), r) v_jc = wp.spatial_vector(w, wp.vec3()) if type == wp.sim.JOINT_FREE: t = wp.transform( wp.vec3(joint_q[q_start + 0], joint_q[q_start + 1], joint_q[q_start + 2]), wp.quat(joint_q[q_start + 3], joint_q[q_start + 4], joint_q[q_start + 5], joint_q[q_start + 6]), ) v = wp.spatial_vector( wp.vec3(joint_qd[qd_start + 0], joint_qd[qd_start + 1], joint_qd[qd_start + 2]), wp.vec3(joint_qd[qd_start + 3], joint_qd[qd_start + 4], joint_qd[qd_start + 5]), ) X_jc = t v_jc = v if type == wp.sim.JOINT_COMPOUND: axis = joint_axis[axis_start] # reconstruct rotation axes, todo: can probably use fact that rz'*ry'*rx' == rx*ry*rz to avoid some work here axis_0 = axis q_0 = wp.quat_from_axis_angle(axis_0, joint_q[q_start + 0]) axis_1 = joint_axis[axis_start + 1] q_1 = wp.quat_from_axis_angle(axis_1, joint_q[q_start + 1]) axis_2 = joint_axis[axis_start + 2] q_2 = wp.quat_from_axis_angle(axis_2, joint_q[q_start + 2]) t = wp.transform(wp.vec3(), q_2 * q_1 * q_0) v = wp.spatial_vector( axis_0 * joint_qd[qd_start + 0] + axis_1 * joint_qd[qd_start + 1] + axis_2 * joint_qd[qd_start + 2], wp.vec3(), ) X_jc = t v_jc = v if type == wp.sim.JOINT_UNIVERSAL: # reconstruct rotation axes axis_0 = joint_axis[axis_start] q_0 = wp.quat_from_axis_angle(axis_0, joint_q[q_start + 0]) axis_1 = joint_axis[axis_start + 1] q_1 = wp.quat_from_axis_angle(axis_1, joint_q[q_start + 1]) t = wp.transform(wp.vec3(), q_1 * q_0) v = wp.spatial_vector(axis_0 * joint_qd[qd_start + 0] + axis_1 * joint_qd[qd_start + 1], wp.vec3()) X_jc = t v_jc = v if type == wp.sim.JOINT_D6: pos = wp.vec3(0.0) rot = wp.quat_identity() vel_v = wp.vec3(0.0) vel_w = wp.vec3(0.0) # unroll for loop to ensure joint actions remain differentiable # (since differentiating through a for loop that updates a local variable is not supported) if lin_axis_count > 0: axis = joint_axis[axis_start + 0] pos += axis * joint_q[q_start + 0] vel_v += axis * joint_qd[qd_start + 0] if lin_axis_count > 1: axis = joint_axis[axis_start + 1] pos += axis * joint_q[q_start + 1] vel_v += axis * joint_qd[qd_start + 1] if lin_axis_count > 2: axis = joint_axis[axis_start + 2] pos += axis * joint_q[q_start + 2] vel_v += axis * joint_qd[qd_start + 2] if ang_axis_count > 0: axis = joint_axis[axis_start + lin_axis_count + 0] qi = wp.quat_from_axis_angle(axis, joint_q[q_start + lin_axis_count + 0]) rot = qi * rot vel_w += joint_qd[qd_start + lin_axis_count + 0] * axis if ang_axis_count > 1: axis = joint_axis[axis_start + lin_axis_count + 1] qi = wp.quat_from_axis_angle(axis, joint_q[q_start + lin_axis_count + 1]) rot = qi * rot vel_w += joint_qd[qd_start + lin_axis_count + 1] * axis if ang_axis_count > 2: axis = joint_axis[axis_start + lin_axis_count + 2] qi = wp.quat_from_axis_angle(axis, joint_q[q_start + lin_axis_count + 2]) rot = qi * rot vel_w += joint_qd[qd_start + lin_axis_count + 2] * axis X_jc = wp.transform(pos, rot) v_jc = wp.spatial_vector(vel_w, vel_v) X_wj = X_wp * X_pj X_wc = X_wj * X_jc X_wc *= wp.transform_inverse(X_cj) # transform velocity across the joint to world space angular_vel = wp.transform_vector(X_wj, wp.spatial_top(v_jc)) linear_vel = wp.transform_vector(X_wj, wp.spatial_bottom(v_jc)) v_wc = v_wp + wp.spatial_vector(angular_vel, linear_vel + wp.cross(angular_vel, body_com[i])) body_q[child] = X_wc body_qd[child] = v_wc # updates state body information based on joint coordinates def eval_fk(model, joint_q, joint_qd, mask, state): wp.launch( kernel=eval_articulation_fk, dim=model.articulation_count, inputs=[ model.articulation_start, mask, joint_q, joint_qd, model.joint_q_start, model.joint_qd_start, model.joint_type, model.joint_parent, model.joint_child, model.joint_X_p, model.joint_X_c, model.joint_axis, model.joint_axis_start, model.joint_axis_dim, model.body_com, ], outputs=[ state.body_q, state.body_qd, ], device=model.device, ) @wp.kernel def eval_articulation_ik( body_q: wp.array(dtype=wp.transform), body_qd: wp.array(dtype=wp.spatial_vector), body_com: wp.array(dtype=wp.vec3), joint_type: wp.array(dtype=int), joint_parent: wp.array(dtype=int), joint_child: wp.array(dtype=int), joint_X_p: wp.array(dtype=wp.transform), joint_X_c: wp.array(dtype=wp.transform), joint_axis: wp.array(dtype=wp.vec3), joint_axis_start: wp.array(dtype=int), joint_axis_dim: wp.array(dtype=int, ndim=2), joint_q_start: wp.array(dtype=int), joint_qd_start: wp.array(dtype=int), joint_q: wp.array(dtype=float), joint_qd: wp.array(dtype=float), ): tid = wp.tid() c_parent = joint_parent[tid] c_child = joint_child[tid] X_pj = joint_X_p[tid] X_cj = joint_X_c[tid] X_wp = X_pj r_p = wp.vec3() w_p = wp.vec3() v_p = wp.vec3() # parent transform and moment arm if c_parent >= 0: X_wp = body_q[c_parent] * X_wp r_wp = wp.transform_get_translation(X_wp) - wp.transform_point(body_q[c_parent], body_com[c_parent]) twist_p = body_qd[c_parent] w_p = wp.spatial_top(twist_p) v_p = wp.spatial_bottom(twist_p) + wp.cross(w_p, r_wp) # child transform and moment arm X_wc = body_q[c_child] * joint_X_c[tid] r_c = wp.transform_get_translation(X_wc) - wp.transform_point(body_q[c_child], body_com[c_child]) twist_c = body_qd[c_child] w_c = wp.spatial_top(twist_c) v_c = wp.spatial_bottom(twist_c) + wp.cross(w_c, r_c) # joint properties type = joint_type[tid] x_p = wp.transform_get_translation(X_wp) x_c = wp.transform_get_translation(X_wc) q_p = wp.transform_get_rotation(X_wp) q_c = wp.transform_get_rotation(X_wc) # translational error x_err = x_c - x_p v_err = v_c - v_p w_err = w_c - w_p q_start = joint_q_start[tid] qd_start = joint_qd_start[tid] axis_start = joint_axis_start[tid] lin_axis_count = joint_axis_dim[tid, 0] ang_axis_count = joint_axis_dim[tid, 1] if type == wp.sim.JOINT_PRISMATIC: axis = joint_axis[axis_start] # world space joint axis axis_p = wp.transform_vector(X_wp, axis) # evaluate joint coordinates q = wp.dot(x_err, axis_p) qd = wp.dot(v_err, axis_p) joint_q[q_start] = q joint_qd[qd_start] = qd return if type == wp.sim.JOINT_REVOLUTE: axis = joint_axis[axis_start] axis_p = wp.transform_vector(X_wp, axis) axis_c = wp.transform_vector(X_wc, axis) # swing twist decomposition q_pc = wp.quat_inverse(q_p) * q_c twist = quat_twist(axis, q_pc) q = wp.acos(twist[3]) * 2.0 * wp.sign(wp.dot(axis, wp.vec3(twist[0], twist[1], twist[2]))) qd = wp.dot(w_err, axis_p) joint_q[q_start] = q joint_qd[qd_start] = qd return if type == wp.sim.JOINT_BALL: q_pc = wp.quat_inverse(q_p) * q_c joint_q[q_start + 0] = q_pc[0] joint_q[q_start + 1] = q_pc[1] joint_q[q_start + 2] = q_pc[2] joint_q[q_start + 3] = q_pc[3] joint_qd[qd_start + 0] = w_err[0] joint_qd[qd_start + 1] = w_err[1] joint_qd[qd_start + 2] = w_err[2] return if type == wp.sim.JOINT_FIXED: return if type == wp.sim.JOINT_FREE: q_pc = wp.quat_inverse(q_p) * q_c joint_q[q_start + 0] = x_err[0] joint_q[q_start + 1] = x_err[1] joint_q[q_start + 2] = x_err[2] joint_q[q_start + 3] = q_pc[0] joint_q[q_start + 4] = q_pc[1] joint_q[q_start + 5] = q_pc[2] joint_q[q_start + 6] = q_pc[3] joint_qd[qd_start + 0] = w_err[0] joint_qd[qd_start + 1] = w_err[1] joint_qd[qd_start + 2] = w_err[2] joint_qd[qd_start + 3] = v_err[0] joint_qd[qd_start + 4] = v_err[1] joint_qd[qd_start + 5] = v_err[2] if type == wp.sim.JOINT_COMPOUND: q_off = wp.transform_get_rotation(X_cj) q_pc = wp.quat_inverse(q_off) * wp.quat_inverse(q_p) * q_c * q_off # decompose to a compound rotation each axis angles = quat_decompose(q_pc) # reconstruct rotation axes axis_0 = wp.vec3(1.0, 0.0, 0.0) q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) axis_1 = wp.quat_rotate(q_0, wp.vec3(0.0, 1.0, 0.0)) q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) axis_2 = wp.quat_rotate(q_1 * q_0, wp.vec3(0.0, 0.0, 1.0)) q_2 = wp.quat_from_axis_angle(axis_2, angles[2]) q_w = q_p * q_off joint_q[q_start + 0] = angles[0] joint_q[q_start + 1] = angles[1] joint_q[q_start + 2] = angles[2] joint_qd[qd_start + 0] = wp.dot(wp.quat_rotate(q_w, axis_0), w_err) joint_qd[qd_start + 1] = wp.dot(wp.quat_rotate(q_w, axis_1), w_err) joint_qd[qd_start + 2] = wp.dot(wp.quat_rotate(q_w, axis_2), w_err) return if type == wp.sim.JOINT_UNIVERSAL: q_off = wp.transform_get_rotation(X_cj) q_pc = wp.quat_inverse(q_off) * wp.quat_inverse(q_p) * q_c * q_off # decompose to a compound rotation each axis angles = quat_decompose(q_pc) # reconstruct rotation axes axis_0 = wp.vec3(1.0, 0.0, 0.0) q_0 = wp.quat_from_axis_angle(axis_0, angles[0]) axis_1 = wp.quat_rotate(q_0, wp.vec3(0.0, 1.0, 0.0)) q_1 = wp.quat_from_axis_angle(axis_1, angles[1]) q_w = q_p * q_off joint_q[q_start + 0] = angles[0] joint_q[q_start + 1] = angles[1] joint_qd[qd_start + 0] = wp.dot(wp.quat_rotate(q_w, axis_0), w_err) joint_qd[qd_start + 1] = wp.dot(wp.quat_rotate(q_w, axis_1), w_err) return if type == wp.sim.JOINT_D6: if lin_axis_count > 0: axis = wp.transform_vector(X_wp, joint_axis[axis_start + 0]) joint_q[q_start + 0] = wp.dot(x_err, axis) joint_qd[qd_start + 0] = wp.dot(v_err, axis) if lin_axis_count > 1: axis = wp.transform_vector(X_wp, joint_axis[axis_start + 1]) joint_q[q_start + 1] = wp.dot(x_err, axis) joint_qd[qd_start + 1] = wp.dot(v_err, axis) if lin_axis_count > 2: axis = wp.transform_vector(X_wp, joint_axis[axis_start + 2]) joint_q[q_start + 2] = wp.dot(x_err, axis) joint_qd[qd_start + 2] = wp.dot(v_err, axis) q_pc = wp.quat_inverse(q_p) * q_c if ang_axis_count > 0: axis = wp.transform_vector(X_wp, joint_axis[axis_start + lin_axis_count + 0]) joint_q[q_start + lin_axis_count + 0] = quat_twist_angle(axis, q_pc) joint_qd[qd_start + lin_axis_count + 0] = wp.dot(w_err, axis) if ang_axis_count > 1: axis = wp.transform_vector(X_wp, joint_axis[axis_start + lin_axis_count + 1]) joint_q[q_start + lin_axis_count + 1] = quat_twist_angle(axis, q_pc) joint_qd[qd_start + lin_axis_count + 1] = wp.dot(w_err, axis) if ang_axis_count > 2: axis = wp.transform_vector(X_wp, joint_axis[axis_start + lin_axis_count + 2]) joint_q[q_start + lin_axis_count + 2] = quat_twist_angle(axis, q_pc) joint_qd[qd_start + lin_axis_count + 2] = wp.dot(w_err, axis) return # given maximal coordinate model computes ik (closest point projection) def eval_ik(model, state, joint_q, joint_qd): wp.launch( kernel=eval_articulation_ik, dim=model.joint_count, inputs=[ state.body_q, state.body_qd, model.body_com, model.joint_type, model.joint_parent, model.joint_child, model.joint_X_p, model.joint_X_c, model.joint_axis, model.joint_axis_start, model.joint_axis_dim, model.joint_q_start, model.joint_qd_start, ], outputs=[joint_q, joint_qd], device=model.device, )
warp-main
warp/sim/articulation.py
import ctypes _c_str_dltensor = b"dltensor" class DLDeviceType(ctypes.c_int): """The enum that encodes the type of the device where DLTensor memory is allocated. """ kDLCPU = 1 kDLCUDA = 2 kDLCUDAHost = 3 kDLOpenCL = 4 kDLVulkan = 7 kDLMetal = 8 kDLVPI = 9 kDLROCM = 10 kDLROCMHost = 11 kDLCUDAManaged = 13 kDLOneAPI = 14 def __str__(self): return { self.kDLCPU: "CPU", self.kDLCUDA: "CUDA", self.kDLCUDAHost: "CUDAHost", self.kDLOpenCL: "OpenCL", self.kDLVulkan: "Vulkan", self.kDLMetal: "Metal", self.kDLVPI: "VPI", self.kDLROCM: "ROCM", self.kDLROCMHost: "ROMCHost", self.kDLCUDAManaged: "CUDAManaged", self.kDLOneAPI: "oneAPI", }[self.value] class DLDevice(ctypes.Structure): """Represents the device where DLTensor memory is allocated. The device is represented by the pair of fields: device_type: DLDeviceType device_id: c_int """ _fields_ = [ ("device_type", DLDeviceType), ("device_id", ctypes.c_int), ] class DLDataTypeCode(ctypes.c_uint8): """An integer that encodes the category of DLTensor elements' data type.""" kDLInt = 0 kDLUInt = 1 kDLFloat = 2 kDLOpaquePointer = 3 kDLBfloat = 4 kDLComplex = 5 def __str__(self): return { self.kDLInt: "int", self.kDLUInt: "uint", self.kDLFloat: "float", self.kDLBfloat: "bfloat", self.kDLComplex: "complex", self.kDLOpaquePointer: "void_p", }[self.value] class DLDataType(ctypes.Structure): """Descriptor of data type for elements of DLTensor. The data type is described by a triple, `DLDataType.type_code`, `DLDataType.bits`, and `DLDataType.lanes`. The element is understood as packed `lanes` repetitions of elements from `type_code` data-category of width `bits`. """ _fields_ = [ ("type_code", DLDataTypeCode), ("bits", ctypes.c_uint8), ("lanes", ctypes.c_uint16), ] TYPE_MAP = { "bool": (DLDataTypeCode.kDLUInt, 1, 1), "int8": (DLDataTypeCode.kDLInt, 8, 1), "int16": (DLDataTypeCode.kDLInt, 16, 1), "int32": (DLDataTypeCode.kDLInt, 32, 1), "int64": (DLDataTypeCode.kDLInt, 64, 1), "uint8": (DLDataTypeCode.kDLUInt, 8, 1), "uint16": (DLDataTypeCode.kDLUInt, 16, 1), "uint32": (DLDataTypeCode.kDLUInt, 32, 1), "uint64": (DLDataTypeCode.kDLUInt, 64, 1), "float16": (DLDataTypeCode.kDLFloat, 16, 1), "float32": (DLDataTypeCode.kDLFloat, 32, 1), "float64": (DLDataTypeCode.kDLFloat, 64, 1), "complex64": (DLDataTypeCode.kDLComplex, 64, 1), "complex128": (DLDataTypeCode.kDLComplex, 128, 1), } class DLTensor(ctypes.Structure): """Structure describing strided layout of DLTensor. Fields are: data: void pointer device: DLDevice ndim: number of indices needed to reference an element of the tensor dtype: data type descriptor shape: tuple with lengths of the corresponding tensor dimensions strides: tuple of numbers of array elements to step in each dimension when traversing the tensor byte_offset: data + byte_offset gives the address of tensor element with index (0,) * ndim """ _fields_ = [ ("data", ctypes.c_void_p), ("device", DLDevice), ("ndim", ctypes.c_int), ("dtype", DLDataType), ("shape", ctypes.POINTER(ctypes.c_int64)), ("strides", ctypes.POINTER(ctypes.c_int64)), ("byte_offset", ctypes.c_uint64), ] class DLManagedTensor(ctypes.Structure): """Structure storing the pointer to the tensor descriptor, deleter callable for the tensor descriptor, and pointer to some additional data. These are stored in fields `dl_tensor`, `deleter`, and `manager_ctx`.""" _fields_ = [ ("dl_tensor", DLTensor), ("manager_ctx", ctypes.c_void_p), ("deleter", ctypes.CFUNCTYPE(None, ctypes.c_void_p)), ]
warp-main
warp/thirdparty/dlpack.py
warp-main
warp/thirdparty/__init__.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2005-2010 ActiveState Software Inc. # Copyright (c) 2013 Eddy Petrișor """Utilities for determining application-specific dirs. See <http://github.com/ActiveState/appdirs> for details and usage. """ # Dev Notes: # - MSDN on where to store app data files: # http://support.microsoft.com/default.aspx?scid=kb;en-us;310294#XSLTH3194121123120121120120 # - Mac OS X: http://developer.apple.com/documentation/MacOSX/Conceptual/BPFileSystem/index.html # - XDG spec for Un*x: http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html __version__ = "1.4.4" __version_info__ = tuple(int(segment) for segment in __version__.split(".")) import sys import os PY3 = sys.version_info[0] == 3 if PY3: unicode = str if sys.platform.startswith("java"): import platform os_name = platform.java_ver()[3][0] if os_name.startswith("Windows"): # "Windows XP", "Windows 7", etc. system = "win32" elif os_name.startswith("Mac"): # "Mac OS X", etc. system = "darwin" else: # "Linux", "SunOS", "FreeBSD", etc. # Setting this to "linux2" is not ideal, but only Windows or Mac # are actually checked for and the rest of the module expects # *sys.platform* style strings. system = "linux2" else: system = sys.platform def user_data_dir(appname=None, appauthor=None, version=None, roaming=False): r"""Return full path to the user-specific data dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "roaming" (boolean, default False) can be set True to use the Windows roaming appdata directory. That means that for users on a Windows network setup for roaming profiles, this user data will be sync'd on login. See <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx> for a discussion of issues. Typical user data directories are: Mac OS X: ~/Library/Application Support/<AppName> Unix: ~/.local/share/<AppName> # or in $XDG_DATA_HOME, if defined Win XP (not roaming): C:\Documents and Settings\<username>\Application Data\<AppAuthor>\<AppName> Win XP (roaming): C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName> Win 7 (not roaming): C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName> Win 7 (roaming): C:\Users\<username>\AppData\Roaming\<AppAuthor>\<AppName> For Unix, we follow the XDG spec and support $XDG_DATA_HOME. That means, by default "~/.local/share/<AppName>". """ if system == "win32": if appauthor is None: appauthor = appname const = roaming and "CSIDL_APPDATA" or "CSIDL_LOCAL_APPDATA" path = os.path.normpath(_get_win_folder(const)) if appname: if appauthor is not False: path = os.path.join(path, appauthor, appname) else: path = os.path.join(path, appname) elif system == "darwin": path = os.path.expanduser("~/Library/Application Support/") if appname: path = os.path.join(path, appname) else: path = os.getenv("XDG_DATA_HOME", os.path.expanduser("~/.local/share")) if appname: path = os.path.join(path, appname) if appname and version: path = os.path.join(path, version) return path def site_data_dir(appname=None, appauthor=None, version=None, multipath=False): r"""Return full path to the user-shared data dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "multipath" is an optional parameter only applicable to *nix which indicates that the entire list of data dirs should be returned. By default, the first item from XDG_DATA_DIRS is returned, or '/usr/local/share/<AppName>', if XDG_DATA_DIRS is not set Typical site data directories are: Mac OS X: /Library/Application Support/<AppName> Unix: /usr/local/share/<AppName> or /usr/share/<AppName> Win XP: C:\Documents and Settings\All Users\Application Data\<AppAuthor>\<AppName> Vista: (Fail! "C:\ProgramData" is a hidden *system* directory on Vista.) Win 7: C:\ProgramData\<AppAuthor>\<AppName> # Hidden, but writeable on Win 7. For Unix, this is using the $XDG_DATA_DIRS[0] default. WARNING: Do not use this on Windows. See the Vista-Fail note above for why. """ if system == "win32": if appauthor is None: appauthor = appname path = os.path.normpath(_get_win_folder("CSIDL_COMMON_APPDATA")) if appname: if appauthor is not False: path = os.path.join(path, appauthor, appname) else: path = os.path.join(path, appname) elif system == "darwin": path = os.path.expanduser("/Library/Application Support") if appname: path = os.path.join(path, appname) else: # XDG default for $XDG_DATA_DIRS # only first, if multipath is False path = os.getenv("XDG_DATA_DIRS", os.pathsep.join(["/usr/local/share", "/usr/share"])) pathlist = [os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)] if appname: if version: appname = os.path.join(appname, version) pathlist = [os.sep.join([x, appname]) for x in pathlist] if multipath: path = os.pathsep.join(pathlist) else: path = pathlist[0] return path if appname and version: path = os.path.join(path, version) return path def user_config_dir(appname=None, appauthor=None, version=None, roaming=False): r"""Return full path to the user-specific config dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "roaming" (boolean, default False) can be set True to use the Windows roaming appdata directory. That means that for users on a Windows network setup for roaming profiles, this user data will be sync'd on login. See <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx> for a discussion of issues. Typical user config directories are: Mac OS X: same as user_data_dir Unix: ~/.config/<AppName> # or in $XDG_CONFIG_HOME, if defined Win *: same as user_data_dir For Unix, we follow the XDG spec and support $XDG_CONFIG_HOME. That means, by default "~/.config/<AppName>". """ if system in ["win32", "darwin"]: path = user_data_dir(appname, appauthor, None, roaming) else: path = os.getenv("XDG_CONFIG_HOME", os.path.expanduser("~/.config")) if appname: path = os.path.join(path, appname) if appname and version: path = os.path.join(path, version) return path def site_config_dir(appname=None, appauthor=None, version=None, multipath=False): r"""Return full path to the user-shared data dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "multipath" is an optional parameter only applicable to *nix which indicates that the entire list of config dirs should be returned. By default, the first item from XDG_CONFIG_DIRS is returned, or '/etc/xdg/<AppName>', if XDG_CONFIG_DIRS is not set Typical site config directories are: Mac OS X: same as site_data_dir Unix: /etc/xdg/<AppName> or $XDG_CONFIG_DIRS[i]/<AppName> for each value in $XDG_CONFIG_DIRS Win *: same as site_data_dir Vista: (Fail! "C:\ProgramData" is a hidden *system* directory on Vista.) For Unix, this is using the $XDG_CONFIG_DIRS[0] default, if multipath=False WARNING: Do not use this on Windows. See the Vista-Fail note above for why. """ if system in ["win32", "darwin"]: path = site_data_dir(appname, appauthor) if appname and version: path = os.path.join(path, version) else: # XDG default for $XDG_CONFIG_DIRS # only first, if multipath is False path = os.getenv("XDG_CONFIG_DIRS", "/etc/xdg") pathlist = [os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)] if appname: if version: appname = os.path.join(appname, version) pathlist = [os.sep.join([x, appname]) for x in pathlist] if multipath: path = os.pathsep.join(pathlist) else: path = pathlist[0] return path def user_cache_dir(appname=None, appauthor=None, version=None, opinion=True): r"""Return full path to the user-specific cache dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "opinion" (boolean) can be False to disable the appending of "Cache" to the base app data dir for Windows. See discussion below. Typical user cache directories are: Mac OS X: ~/Library/Caches/<AppName> Unix: ~/.cache/<AppName> (XDG default) Win XP: C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>\Cache Vista: C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>\Cache On Windows the only suggestion in the MSDN docs is that local settings go in the `CSIDL_LOCAL_APPDATA` directory. This is identical to the non-roaming app data dir (the default returned by `user_data_dir` above). Apps typically put cache data somewhere *under* the given dir here. Some examples: ...\Mozilla\Firefox\Profiles\<ProfileName>\Cache ...\Acme\SuperApp\Cache\1.0 OPINION: This function appends "Cache" to the `CSIDL_LOCAL_APPDATA` value. This can be disabled with the `opinion=False` option. """ if system == "win32": if appauthor is None: appauthor = appname path = os.path.normpath(_get_win_folder("CSIDL_LOCAL_APPDATA")) if appname: if appauthor is not False: path = os.path.join(path, appauthor, appname) else: path = os.path.join(path, appname) if opinion: path = os.path.join(path, "Cache") elif system == "darwin": path = os.path.expanduser("~/Library/Caches") if appname: path = os.path.join(path, appname) else: path = os.getenv("XDG_CACHE_HOME", os.path.expanduser("~/.cache")) if appname: path = os.path.join(path, appname) if appname and version: path = os.path.join(path, version) return path def user_state_dir(appname=None, appauthor=None, version=None, roaming=False): r"""Return full path to the user-specific state dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "roaming" (boolean, default False) can be set True to use the Windows roaming appdata directory. That means that for users on a Windows network setup for roaming profiles, this user data will be sync'd on login. See <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx> for a discussion of issues. Typical user state directories are: Mac OS X: same as user_data_dir Unix: ~/.local/state/<AppName> # or in $XDG_STATE_HOME, if defined Win *: same as user_data_dir For Unix, we follow this Debian proposal <https://wiki.debian.org/XDGBaseDirectorySpecification#state> to extend the XDG spec and support $XDG_STATE_HOME. That means, by default "~/.local/state/<AppName>". """ if system in ["win32", "darwin"]: path = user_data_dir(appname, appauthor, None, roaming) else: path = os.getenv("XDG_STATE_HOME", os.path.expanduser("~/.local/state")) if appname: path = os.path.join(path, appname) if appname and version: path = os.path.join(path, version) return path def user_log_dir(appname=None, appauthor=None, version=None, opinion=True): r"""Return full path to the user-specific log dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "opinion" (boolean) can be False to disable the appending of "Logs" to the base app data dir for Windows, and "log" to the base cache dir for Unix. See discussion below. Typical user log directories are: Mac OS X: ~/Library/Logs/<AppName> Unix: ~/.cache/<AppName>/log # or under $XDG_CACHE_HOME if defined Win XP: C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>\Logs Vista: C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>\Logs On Windows the only suggestion in the MSDN docs is that local settings go in the `CSIDL_LOCAL_APPDATA` directory. (Note: I'm interested in examples of what some windows apps use for a logs dir.) OPINION: This function appends "Logs" to the `CSIDL_LOCAL_APPDATA` value for Windows and appends "log" to the user cache dir for Unix. This can be disabled with the `opinion=False` option. """ if system == "darwin": path = os.path.join(os.path.expanduser("~/Library/Logs"), appname) elif system == "win32": path = user_data_dir(appname, appauthor, version) version = False if opinion: path = os.path.join(path, "Logs") else: path = user_cache_dir(appname, appauthor, version) version = False if opinion: path = os.path.join(path, "log") if appname and version: path = os.path.join(path, version) return path class AppDirs(object): """Convenience wrapper for getting application dirs.""" def __init__(self, appname=None, appauthor=None, version=None, roaming=False, multipath=False): self.appname = appname self.appauthor = appauthor self.version = version self.roaming = roaming self.multipath = multipath @property def user_data_dir(self): return user_data_dir(self.appname, self.appauthor, version=self.version, roaming=self.roaming) @property def site_data_dir(self): return site_data_dir(self.appname, self.appauthor, version=self.version, multipath=self.multipath) @property def user_config_dir(self): return user_config_dir(self.appname, self.appauthor, version=self.version, roaming=self.roaming) @property def site_config_dir(self): return site_config_dir(self.appname, self.appauthor, version=self.version, multipath=self.multipath) @property def user_cache_dir(self): return user_cache_dir(self.appname, self.appauthor, version=self.version) @property def user_state_dir(self): return user_state_dir(self.appname, self.appauthor, version=self.version) @property def user_log_dir(self): return user_log_dir(self.appname, self.appauthor, version=self.version) # ---- internal support stuff def _get_win_folder_from_registry(csidl_name): """This is a fallback technique at best. I'm not sure if using the registry for this guarantees us the correct answer for all CSIDL_* names. """ if PY3: import winreg as _winreg else: import _winreg shell_folder_name = { "CSIDL_APPDATA": "AppData", "CSIDL_COMMON_APPDATA": "Common AppData", "CSIDL_LOCAL_APPDATA": "Local AppData", }[csidl_name] key = _winreg.OpenKey( _winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders" ) dir, type = _winreg.QueryValueEx(key, shell_folder_name) return dir def _get_win_folder_with_pywin32(csidl_name): from win32com.shell import shellcon, shell dir = shell.SHGetFolderPath(0, getattr(shellcon, csidl_name), 0, 0) # Try to make this a unicode path because SHGetFolderPath does # not return unicode strings when there is unicode data in the # path. try: dir = unicode(dir) # Downgrade to short path name if have highbit chars. See # <http://bugs.activestate.com/show_bug.cgi?id=85099>. has_high_char = False for c in dir: if ord(c) > 255: has_high_char = True break if has_high_char: try: import win32api dir = win32api.GetShortPathName(dir) except ImportError: pass except UnicodeError: pass return dir def _get_win_folder_with_ctypes(csidl_name): import ctypes csidl_const = { "CSIDL_APPDATA": 26, "CSIDL_COMMON_APPDATA": 35, "CSIDL_LOCAL_APPDATA": 28, }[csidl_name] buf = ctypes.create_unicode_buffer(1024) ctypes.windll.shell32.SHGetFolderPathW(None, csidl_const, None, 0, buf) # Downgrade to short path name if have highbit chars. See # <http://bugs.activestate.com/show_bug.cgi?id=85099>. has_high_char = False for c in buf: if ord(c) > 255: has_high_char = True break if has_high_char: buf2 = ctypes.create_unicode_buffer(1024) if ctypes.windll.kernel32.GetShortPathNameW(buf.value, buf2, 1024): buf = buf2 return buf.value def _get_win_folder_with_jna(csidl_name): import array from com.sun import jna from com.sun.jna.platform import win32 buf_size = win32.WinDef.MAX_PATH * 2 buf = array.zeros("c", buf_size) shell = win32.Shell32.INSTANCE shell.SHGetFolderPath(None, getattr(win32.ShlObj, csidl_name), None, win32.ShlObj.SHGFP_TYPE_CURRENT, buf) dir = jna.Native.toString(buf.tostring()).rstrip("\0") # Downgrade to short path name if have highbit chars. See # <http://bugs.activestate.com/show_bug.cgi?id=85099>. has_high_char = False for c in dir: if ord(c) > 255: has_high_char = True break if has_high_char: buf = array.zeros("c", buf_size) kernel = win32.Kernel32.INSTANCE if kernel.GetShortPathName(dir, buf, buf_size): dir = jna.Native.toString(buf.tostring()).rstrip("\0") return dir if system == "win32": try: import win32com.shell _get_win_folder = _get_win_folder_with_pywin32 except ImportError: try: from ctypes import windll _get_win_folder = _get_win_folder_with_ctypes except ImportError: try: import com.sun.jna _get_win_folder = _get_win_folder_with_jna except ImportError: _get_win_folder = _get_win_folder_from_registry # ---- self test code if __name__ == "__main__": appname = "MyApp" appauthor = "MyCompany" props = ( "user_data_dir", "user_config_dir", "user_cache_dir", "user_state_dir", "user_log_dir", "site_data_dir", "site_config_dir", ) print("-- app dirs %s --" % __version__) print("-- app dirs (with optional 'version')") dirs = AppDirs(appname, appauthor, version="1.0") for prop in props: print("%s: %s" % (prop, getattr(dirs, prop))) print("\n-- app dirs (without optional 'version')") dirs = AppDirs(appname, appauthor) for prop in props: print("%s: %s" % (prop, getattr(dirs, prop))) print("\n-- app dirs (without optional 'appauthor')") dirs = AppDirs(appname) for prop in props: print("%s: %s" % (prop, getattr(dirs, prop))) print("\n-- app dirs (with disabled 'appauthor')") dirs = AppDirs(appname, appauthor=False) for prop in props: print("%s: %s" % (prop, getattr(dirs, prop)))
warp-main
warp/thirdparty/appdirs.py
#!/usr/bin/python3 # # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # @file converter.py # @author Nikolaus Binder, NVIDIA # @description Converts a matlab data file to a binary file that can be used # with the loader in binary_file_reader.h # Requires sio, numpy, and scipy from array import array import scipy.io as sio import sys import numpy if len(sys.argv) < 2: print("Usage: converter.py [file1.mat] [file2.mat] ...") exit(1) else: input_files = sys.argv input_files.pop(0) def get_sizes(data): lengths = [] lengths.append(len(data)) if hasattr(data[0], "__len__"): lengths += get_sizes(data[0]) elif isinstance(data[0], complex) or isinstance(data[0], numpy.complex64): lengths += [2] return lengths def print_data(m, output_file): if hasattr(m, "__len__"): for i in m: print_data(i, output_file) elif isinstance(m, complex) or isinstance(m, numpy.complex64): array('f', [float(m.real), float(m.imag)]).tofile(output_file) else: array('f', [m]).tofile(output_file) for input_filename in input_files: output_filename = input_filename.replace('.mat', '.bin') input_data = sio.loadmat(input_filename) items = [] for key, item in input_data.items(): if not key.startswith("__"): sizes = get_sizes(input_data[key]) items.append((key, sizes)) print(items) with open(output_filename, 'wb') as output_file: array('i', [len(items)]).tofile(output_file) # number of keys for item in items: key_bytes = array('b') key_bytes.frombytes(item[0].encode()) array('i', [len(key_bytes)]).tofile(output_file) key_bytes.tofile(output_file) for item in items: array('i', [len(item[1])]).tofile(output_file) array('i', item[1]).tofile(output_file) print_data(input_data[item[0]], output_file)
nsight-training-master
cuda/2021_gtc/x-ac-03-v1/task1/task/ncu/apsm/cpp/lib/binary/converter.py
from conans import ConanFile class ArgparseConan(ConanFile): name = "argparse" version = "1.0" exports_sources = "include/argparse.hpp" no_copy_source = True def package(self): self.copy("argparse.hpp")
nsight-training-master
cuda/2021_gtc/x-ac-03-v1/task1/task/ncu/apsm/cpp/external/argparse/conanfile.py
# BSD 3-Clause License # # Copyright (c) 2021, NVIDIA CORPORATION # Copyright (c) 2017, # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import print_function import argparse import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) if args.dry_run: break def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=1.0, metavar='LR', help='learning rate (default: 1.0)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") train_kwargs = {'batch_size': args.batch_size} test_kwargs = {'batch_size': args.test_batch_size} if use_cuda: cuda_kwargs = {'num_workers': 1, 'shuffle': True} train_kwargs.update(cuda_kwargs) test_kwargs.update(cuda_kwargs) transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) scriptPath = os.path.dirname(os.path.realpath(__file__)) dataDir = os.path.join(scriptPath, 'data') dataset1 = datasets.MNIST(dataDir, train=True, download=True, transform=transform) dataset2 = datasets.MNIST(dataDir, train=False, transform=transform) train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) model = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) for epoch in range(1, args.epochs + 1): # Start profiling from 2nd epoch if epoch == 2: torch.cuda.cudart().cudaProfilerStart() train(args, model, device, train_loader, optimizer, epoch) test(model, device, test_loader) scheduler.step() # Stop profiling at the end of 2nd epoch if epoch == 2: torch.cuda.cudart().cudaProfilerStop() if args.save_model: torch.save(model.state_dict(), "mnist_cnn.pt") if __name__ == '__main__': main()
nsight-training-master
cuda/2021_gtc/x-ac-03-v1/task1/task/nsys/application/main_baseline.py
# BSD 3-Clause License # # Copyright (c) 2021, NVIDIA CORPORATION # Copyright (c) 2017, # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import print_function import argparse import os import multiprocessing import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR from torch.cuda import nvtx class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(args, model, device, train_loader, optimizer, epoch): model.train() with torch.autograd.profiler.emit_nvtx(): nvtx.range_push("Data loading"); for batch_idx, (data, target) in enumerate(train_loader): nvtx.range_pop();# Data loading nvtx.range_push("Batch " + str(batch_idx)) nvtx.range_push("Copy to device") data, target = data.to(device), target.to(device) nvtx.range_pop() # Copy to device nvtx.range_push("Forward pass") optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) nvtx.range_pop() # Forward pass nvtx.range_push("Backward pass") loss.backward() optimizer.step() nvtx.range_pop() # Backward pass nvtx.range_pop() # Batch if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) if args.dry_run: break nvtx.range_push("Data loading"); nvtx.range_pop(); # Data loading def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: nvtx.range_push("Copy to device") data, target = data.to(device), target.to(device) nvtx.range_pop(); # Copy to device nvtx.range_push("Test forward pass") output = model(data) nvtx.range_pop() # Test forward pass test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=1.0, metavar='LR', help='learning rate (default: 1.0)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") train_kwargs = {'batch_size': args.batch_size} test_kwargs = {'batch_size': args.test_batch_size} if use_cuda: cuda_kwargs = {'num_workers': multiprocessing.cpu_count(), 'pin_memory': True, 'shuffle': True} train_kwargs.update(cuda_kwargs) test_kwargs.update(cuda_kwargs) transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) scriptPath = os.path.dirname(os.path.realpath(__file__)) dataDir = os.path.join(scriptPath, 'data') dataset1 = datasets.MNIST(dataDir, train=True, download=True, transform=transform) dataset2 = datasets.MNIST(dataDir, train=False, transform=transform) train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) model = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) for epoch in range(1, args.epochs + 1): # Start profiling from 2nd epoch if epoch == 2: torch.cuda.cudart().cudaProfilerStart() nvtx.range_push("Epoch " + str(epoch)) nvtx.range_push("Train") train(args, model, device, train_loader, optimizer, epoch) nvtx.range_pop() # Train nvtx.range_push("Test") test(model, device, test_loader) nvtx.range_pop() # Test scheduler.step() nvtx.range_pop() # Epoch # Stop profiling at the end of 2nd epoch if epoch == 2: torch.cuda.cudart().cudaProfilerStop() if args.save_model: torch.save(model.state_dict(), "mnist_cnn.pt") if __name__ == '__main__': main()
nsight-training-master
cuda/2021_gtc/x-ac-03-v1/task1/task/nsys/application/main_opt2.py
# BSD 3-Clause License # # Copyright (c) 2021, NVIDIA CORPORATION # Copyright (c) 2017, # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import print_function import argparse import os import multiprocessing import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR from torch.cuda import nvtx class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(args, model, device, train_loader, optimizer, epoch): model.train() with torch.autograd.profiler.emit_nvtx(): nvtx.range_push("Data loading"); for batch_idx, (data, target) in enumerate(train_loader): nvtx.range_pop();# Data loading nvtx.range_push("Batch " + str(batch_idx)) nvtx.range_push("Copy to device") data, target = data.to(device), target.to(device) nvtx.range_pop() # Copy to device nvtx.range_push("Forward pass") optimizer.zero_grad() # Enables autocasting for the forward pass with torch.cuda.amp.autocast(enabled=True): output = model(data) loss = F.nll_loss(output, target) nvtx.range_pop() # Forward pass nvtx.range_push("Backward pass") loss.backward() optimizer.step() nvtx.range_pop() # Backward pass nvtx.range_pop() # Batch if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) if args.dry_run: break nvtx.range_push("Data loading"); nvtx.range_pop(); # Data loading def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: nvtx.range_push("Copy to device") data, target = data.to(device), target.to(device) nvtx.range_pop(); # Copy to device nvtx.range_push("Test forward pass") output = model(data) nvtx.range_pop() # Test forward pass test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=1.0, metavar='LR', help='learning rate (default: 1.0)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") train_kwargs = {'batch_size': args.batch_size} test_kwargs = {'batch_size': args.test_batch_size} if use_cuda: cuda_kwargs = {'num_workers': multiprocessing.cpu_count(), 'pin_memory': True, 'shuffle': True} train_kwargs.update(cuda_kwargs) test_kwargs.update(cuda_kwargs) transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) scriptPath = os.path.dirname(os.path.realpath(__file__)) dataDir = os.path.join(scriptPath, 'data') dataset1 = datasets.MNIST(dataDir, train=True, download=True, transform=transform) dataset2 = datasets.MNIST(dataDir, train=False, transform=transform) train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) model = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) for epoch in range(1, args.epochs + 1): # Start profiling from 2nd epoch if epoch == 2: torch.cuda.cudart().cudaProfilerStart() nvtx.range_push("Epoch " + str(epoch)) nvtx.range_push("Train") train(args, model, device, train_loader, optimizer, epoch) nvtx.range_pop() # Train nvtx.range_push("Test") test(model, device, test_loader) nvtx.range_pop() # Test scheduler.step() nvtx.range_pop() # Epoch # Stop profiling at the end of 2nd epoch if epoch == 2: torch.cuda.cudart().cudaProfilerStop() if args.save_model: torch.save(model.state_dict(), "mnist_cnn.pt") if __name__ == '__main__': main()
nsight-training-master
cuda/2021_gtc/x-ac-03-v1/task1/task/nsys/application/main_opt3.py
# BSD 3-Clause License # # Copyright (c) 2021, NVIDIA CORPORATION # Copyright (c) 2017, # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import print_function import argparse import os import multiprocessing import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR from torch.cuda import nvtx class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(args, model, device, train_loader, optimizer, epoch): model.train() with torch.autograd.profiler.emit_nvtx(): nvtx.range_push("Data loading"); for batch_idx, (data, target) in enumerate(train_loader): nvtx.range_pop();# Data loading nvtx.range_push("Batch " + str(batch_idx)) nvtx.range_push("Copy to device") data, target = data.to(device), target.to(device) nvtx.range_pop() # Copy to device nvtx.range_push("Forward pass") optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) nvtx.range_pop() # Forward pass nvtx.range_push("Backward pass") loss.backward() optimizer.step() nvtx.range_pop() # Backward pass nvtx.range_pop() # Batch if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) if args.dry_run: break nvtx.range_push("Data loading"); nvtx.range_pop(); # Data loading def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: nvtx.range_push("Copy to device") data, target = data.to(device), target.to(device) nvtx.range_pop(); # Copy to device nvtx.range_push("Test forward pass") output = model(data) nvtx.range_pop() # Test forward pass test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=1.0, metavar='LR', help='learning rate (default: 1.0)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") train_kwargs = {'batch_size': args.batch_size} test_kwargs = {'batch_size': args.test_batch_size} if use_cuda: cuda_kwargs = {'num_workers': multiprocessing.cpu_count(), 'shuffle': True} train_kwargs.update(cuda_kwargs) test_kwargs.update(cuda_kwargs) transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) scriptPath = os.path.dirname(os.path.realpath(__file__)) dataDir = os.path.join(scriptPath, 'data') dataset1 = datasets.MNIST(dataDir, train=True, download=True, transform=transform) dataset2 = datasets.MNIST(dataDir, train=False, transform=transform) train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) model = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) for epoch in range(1, args.epochs + 1): # Start profiling from 2nd epoch if epoch == 2: torch.cuda.cudart().cudaProfilerStart() nvtx.range_push("Epoch " + str(epoch)) nvtx.range_push("Train") train(args, model, device, train_loader, optimizer, epoch) nvtx.range_pop() # Train nvtx.range_push("Test") test(model, device, test_loader) nvtx.range_pop() # Test scheduler.step() nvtx.range_pop() # Epoch # Stop profiling at the end of 2nd epoch if epoch == 2: torch.cuda.cudart().cudaProfilerStop() if args.save_model: torch.save(model.state_dict(), "mnist_cnn.pt") if __name__ == '__main__': main()
nsight-training-master
cuda/2021_gtc/x-ac-03-v1/task1/task/nsys/application/main_opt1.py
# BSD 3-Clause License # # Copyright (c) 2021, NVIDIA CORPORATION # Copyright (c) 2017, # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import print_function import argparse import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR from torch.cuda import nvtx class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(args, model, device, train_loader, optimizer, epoch): model.train() with torch.autograd.profiler.emit_nvtx(): nvtx.range_push("Data loading"); for batch_idx, (data, target) in enumerate(train_loader): nvtx.range_pop();# Data loading nvtx.range_push("Batch " + str(batch_idx)) nvtx.range_push("Copy to device") data, target = data.to(device), target.to(device) nvtx.range_pop() # Copy to device nvtx.range_push("Forward pass") optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) nvtx.range_pop() # Forward pass nvtx.range_push("Backward pass") loss.backward() optimizer.step() nvtx.range_pop() # Backward pass nvtx.range_pop() # Batch if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) if args.dry_run: break nvtx.range_push("Data loading"); nvtx.range_pop(); # Data loading def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: nvtx.range_push("Copy to device") data, target = data.to(device), target.to(device) nvtx.range_pop(); # Copy to device nvtx.range_push("Test forward pass") output = model(data) nvtx.range_pop() # Test forward pass test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=1.0, metavar='LR', help='learning rate (default: 1.0)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") train_kwargs = {'batch_size': args.batch_size} test_kwargs = {'batch_size': args.test_batch_size} if use_cuda: cuda_kwargs = {'num_workers': 1, 'shuffle': True} train_kwargs.update(cuda_kwargs) test_kwargs.update(cuda_kwargs) transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) scriptPath = os.path.dirname(os.path.realpath(__file__)) dataDir = os.path.join(scriptPath, 'data') dataset1 = datasets.MNIST(dataDir, train=True, download=True, transform=transform) dataset2 = datasets.MNIST(dataDir, train=False, transform=transform) train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) model = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) for epoch in range(1, args.epochs + 1): # Start profiling from 2nd epoch if epoch == 2: torch.cuda.cudart().cudaProfilerStart() nvtx.range_push("Epoch " + str(epoch)) nvtx.range_push("Train") train(args, model, device, train_loader, optimizer, epoch) nvtx.range_pop() # Train nvtx.range_push("Test") test(model, device, test_loader) nvtx.range_pop() # Test scheduler.step() nvtx.range_pop() # Epoch # Stop profiling at the end of 2nd epoch if epoch == 2: torch.cuda.cudart().cudaProfilerStop() if args.save_model: torch.save(model.state_dict(), "mnist_cnn.pt") if __name__ == '__main__': main()
nsight-training-master
cuda/2021_gtc/x-ac-03-v1/task1/task/nsys/application/main_baseline_nvtx.py
#!/usr/bin/python import argparse import os import shutil import sys skipped_steps = [2] class SourceFile: def __init__(self, src, dst_name=None): self.src = src self.dst_name = dst_name def copy(self, dst, step): if not os.path.isfile(self.src): print("Failed to find src file " + self.src) return False if self.dst_name == None: dst_file = os.path.basename(self.src) else: dst_file = self.dst_name.replace("VAR(STEP)", str(step)) dst_loc = dst + "/" + dst_file print("Copying " + self.src + " to " + dst_loc) shutil.copyfile(self.src, dst_loc) return True class TemplateFile: def __init__(self, src, dst): self.src = src self.dst = dst self.template = [] def load(self): if not os.path.isfile(self.src): print("Failed to find template file " + self.src) return False with open(self.src) as f: for line in f: self.template.append(line) return True def write(self, path, step, platform, src_dir): with open(path + "/" + self.dst, "w") as f: for line in self.template: tmp = line tmp = tmp.replace("VAR(STEP)", step) tmp = tmp.replace("VAR(PLATFORM)", platform) tmp = tmp.replace("VAR(DST_DIR)", path) tmp = tmp.replace("VAR(SRC_DIR)", "SRC_DIR=" + src_dir) f.write(tmp) def parse_command_line(): parser = argparse.ArgumentParser() parser.add_argument("--src", help="Lab content directory") parser.add_argument("--dst", help="Project destination directory") parser.add_argument("--steps", help="Number of steps to generate, starting with 0") parser.add_argument("--force", action="store_true", help="Force overwrite") return parser.parse_args() def main(): args = parse_command_line() if args.src == None: args.src = "../code" if args.steps == None: args.steps = 7 if not args.dst: print("Missing --dst flag") return 1 # create projects in workspace src_files = [ SourceFile(os.path.abspath(args.src + "/imgserver.cu"), "imgserver_VAR(STEP).cu"), SourceFile(os.path.abspath(args.src + "/Makefile")), SourceFile(os.path.abspath(args.src + "/findgllib.mk")), ] templates = [TemplateFile("project.template", ".project"), TemplateFile("cproject.template", ".cproject")] for template in templates: if not template.load(): print("Failed to load " + template.src) return 1 platform = "desktop=1" arch = "x86_64" compute_proj_ext = "nsight-cuproj" for step in range(0, int(args.steps) + 1): if step in skipped_steps: print("Skipping step " + str(step)) continue dst_dir = args.dst + "/step_" + str(step) print("Creating " + dst_dir) if os.path.exists(dst_dir): if not args.force: print("Target directory " + dst_dir + " exists, use --force to overwrite") return 1 shutil.rmtree(dst_dir) os.mkdir(dst_dir) for src_file in src_files: src_file.copy(dst_dir, step) for template in templates: template.write(dst_dir, str(step), platform, os.path.abspath(args.src) + "/") # create launch config for this project print("Creating launch config") launch_config = TemplateFile("launch_{0}.launch".format(arch), "launch_step_{0}.launch".format(step)) if not launch_config.load(): print("Failed to load " + launch_config) return 1 launch_config.write(args.dst, str(step), platform, os.path.abspath(args.src) + "/") # copy nsight systems/compute projects to workspace perf_proj_templates = [TemplateFile("nsight_compute_" + arch + "." + compute_proj_ext, "nsight_compute." + compute_proj_ext)] for template in perf_proj_templates: if not template.load(): print("Failed to load " + template.src) return 1 template.write(args.dst, str(step), platform, os.path.abspath(args.src) + "/") # copy image resources to workspace img_dir = args.dst + "/img" print("Copying img dir to " + img_dir) if os.path.exists(img_dir): if not args.force: print("Target directory " + img_dir + " exists, use --force to overwrite") return 1 shutil.rmtree(img_dir) shutil.copytree(os.path.abspath(args.src + "/../img"), img_dir) print("done") return 0 if __name__ == "__main__": sys.exit(main())
nsight-training-master
cuda/2020_gtc/projects/generate_nsightee_projects.py
##Basic mcq from ipywidgets import widgets, Layout, Box, GridspecLayout def create_multipleChoice_widget(description, options, correct_answer, tip): if correct_answer not in options: options.append(correct_answer) correct_answer_index = options.index(correct_answer) radio_options = [(words, i) for i, words in enumerate(options)] alternativ = widgets.RadioButtons( options = radio_options, description = '', disabled = False, indent = False, align = 'center', ) description_out = widgets.Output(layout=Layout(width='auto')) with description_out: print(description) feedback_out = widgets.Output() def check_selection(b): a = int(alternativ.value) if a==correct_answer_index: s = '\x1b[6;30;42m' + "correct" + '\x1b[0m' +"\n" else: s = '\x1b[5;30;41m' + "try again" + '\x1b[0m' +"\n" with feedback_out: feedback_out.clear_output() print(s) return check = widgets.Button(description="check") check.on_click(check_selection) tip_out = widgets.Output() def tip_selection(b): with tip_out: print(tip) with feedback_out: feedback_out.clear_output() print(tip) tipbutton = widgets.Button(description="tip") tipbutton.on_click(tip_selection) return widgets.VBox([description_out, alternativ, widgets.HBox([tipbutton, check]), feedback_out], layout=Layout(display='flex', flex_flow='column', align_items='stretch', width='auto'))
nsight-training-master
grfx/2021_gtc/x-gd-01-v1/task1/lab/task/graphics/mcq.py
#!/usr/bin/python import ctypes from cuda import cudart from datetime import datetime as dt from glob import glob import numpy as np import os import sys import tensorrt as trt from calibrator import DecoderCalibrator basePath = "./" onnxFile = sorted(glob(basePath + "decoderV*.onnx"))[-1] trtFile = basePath + "decoder.plan" isForSubmit = True isConvertToStaticNetwork = False isPrintNetwork = False additionOutput = [] useInt8 = False calibrationDataFile = "/workspace/data/calibration.npz" int8CacheFile = basePath + "encoder-int8.cache" strictTypeLayer = [] useTimeCache = True timeCacheFile = "./decoder.cache" nTestBS = 4 nTestSL = 64 logger = trt.Logger(trt.Logger.ERROR) trt.init_libnvinfer_plugins(logger, '') for soFile in glob(basePath + "*.so"): ctypes.cdll.LoadLibrary(soFile) timeCache = b"" if useTimeCache and os.path.isfile(timeCacheFile): with open(timeCacheFile, 'rb') as f: timeCache = f.read() if timeCache == None: print("Failed getting serialized timing cache!") exit() print("Succeeded getting serialized timing cache!") if os.path.isfile(trtFile): print("Engine existed!") with open(trtFile, 'rb') as f: engineString = f.read() else: builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() config = builder.create_builder_config() if useTimeCache: cache = config.create_timing_cache(timeCache) config.set_timing_cache(cache, False) if isForSubmit: config.max_workspace_size = 22 << 30 config.flags = 1 << int(trt.BuilderFlag.FP16) config.flags = config.flags & ~(1 << int(trt.BuilderFlag.TF32)) if useInt8: config.flags = config.flags | (1 << int(trt.BuilderFlag.INT8)) config.int8_calibrator = DecoderCalibrator(calibrationDataFile, int8CacheFile, 16, 64) else: config.max_workspace_size = 6 << 30 config.flags = config.flags & ~(1 << int(trt.BuilderFlag.TF32)) config.flags = config.flags | (1 << int(trt.BuilderFlag.DEBUG)) config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED if useInt8: config.flags = config.flags | (1 << int(trt.BuilderFlag.INT8)) config.int8_calibrator = DecoderCalibrator(calibrationDataFile, int8CacheFile, 16, 64) parser = trt.OnnxParser(network, logger) if not os.path.exists(onnxFile): print("Failed finding ONNX file!") exit() print("Succeeded finding ONNX file!") with open(onnxFile, 'rb') as model: if not parser.parse(model.read()): print("Failed parsing ONNX file!") for error in range(parser.num_errors): print(parser.get_error(error)) exit() print("Succeeded parsing ONNX file!") if isForSubmit: inputT0 = network.get_input(0) inputT0.shape = [-1, -1, 256] profile.set_shape(inputT0.name, (1, 16, 256), (64, 1024, 256), (64, 1024, 256)) inputT1 = network.get_input(1) inputT1.shape = [-1] profile.set_shape(inputT1.name, (1, ), (64, ), (64, )) inputT2 = network.get_input(2) #inputT2.shape = [-1,10,-1] #profile.set_shape(inputT2.name, (1,10,32), (4,10,64), (16,10,128)) inputT2.shape = [-1, 10, 64] profile.set_shape(inputT2.name, (1, 10, 64), (64, 10, 64), (64, 10, 64)) inputT3 = network.get_input(3) inputT3.shape = [-1, 10] profile.set_shape(inputT3.name, (1, 10), (64, 10), (64, 10)) inputT4 = network.get_input(4) inputT4.shape = [-1, 10] profile.set_shape(inputT4.name, (1, 10), (64, 10), (64, 10)) config.add_optimization_profile(profile) else: if isConvertToStaticNetwork: inputT0 = network.get_input(0) inputT0.shape = [3, 17, 256] inputT1 = network.get_input(1) inputT1.shape = [3] inputT2 = network.get_input(2) inputT2.shape = [3, 10, 64] inputT3 = network.get_input(3) inputT3.shape = [3, 10] inputT4 = network.get_input(4) inputT4.shape = [3, 10] else: inputT0 = network.get_input(0) inputT0.shape = [-1, -1, 256] profile.set_shape(inputT0.name, (1, 16, 256), (4, 64, 256), (4, 64, 256)) inputT1 = network.get_input(1) inputT1.shape = [-1] profile.set_shape(inputT1.name, (1, ), (4, ), (4, )) inputT2 = network.get_input(2) inputT2.shape = [-1, 10, 64] profile.set_shape(inputT2.name, (1, 10, 64), (4, 10, 64), (4, 10, 64)) inputT3 = network.get_input(3) inputT3.shape = [-1, 10] profile.set_shape(inputT3.name, (1, 10), (4, 10), (4, 10)) inputT4 = network.get_input(4) inputT4.shape = [-1, 10] profile.set_shape(inputT4.name, (1, 10), (4, 10), (4, 10)) config.add_optimization_profile(profile) if isPrintNetwork: for i in range(network.num_layers): layer = network.get_layer(i) print(i, "%s,in=%d,out=%d,%s" % (str(layer.type)[10:], layer.num_inputs, layer.num_outputs, layer.name)) for j in range(layer.num_inputs): tensor = layer.get_input(j) if tensor == None: print("\tInput %2d:" % j, "None") else: print("\tInput %2d:%s,%s,%s" % (j, tensor.shape, str(tensor.dtype)[9:], tensor.name)) for j in range(layer.num_outputs): tensor = layer.get_output(j) if tensor == None: print("\tOutput %2d:" % j, "None") else: print("\tOutput %2d:%s,%s,%s" % (j, tensor.shape, str(tensor.dtype)[9:], tensor.name)) exit() if len(strictTypeLayer) > 0: for index in strictTypeLayer: layer = network.get_layer(i) layer.precision = trt.float32 layer.get_output(0).dtype = trt.float32 if len(additionOutput) > 0: for index in additionOutput: network.mark_output(network.get_layer(index).get_output(0)) #network.mark_output(network.get_layer(index).get_input(0)) engineString = builder.build_serialized_network(network, config) if engineString == None: print("Failed building engine!") exit() if useTimeCache and not os.path.isfile(timeCacheFile): timeCache = config.get_timing_cache() timeCacheString = timeCache.serialize() with open(timeCacheFile, 'wb') as f: f.write(timeCacheString) print("Succeeded saving .cache file!") print("Succeeded building engine!") with open(trtFile, 'wb') as f: f.write(engineString) ''' engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() context.set_binding_shape(0, [nTestBS,nTestSL,256]) context.set_binding_shape(1, [nTestBS]) context.set_binding_shape(2, [nTestBS,10,64]) context.set_binding_shape(3, [nTestBS,10]) context.set_binding_shape(4, [nTestBS,10]) nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput for i in range(nInput): print("Bind[%2d]:i[%2d]->" % (i, i), engine.get_binding_dtype(i), engine.get_binding_shape(i), context.get_binding_shape(i), engine.get_binding_name(i)) for i in range(nInput,nInput+nOutput): print("Bind[%2d]:o[%2d]->" % (i, i - nInput), engine.get_binding_dtype(i), engine.get_binding_shape(i), context.get_binding_shape(i), engine.get_binding_name(i)) dd = np.load("/workspace/data/decoder-%d-%d.npz"%(nTestBS,nTestSL)) bufferH = [] bufferH.append(np.ascontiguousarray(dd['encoder_out'][:nTestBS,:nTestSL].reshape(-1))) bufferH.append(np.ascontiguousarray(dd['encoder_out_lens'][:nTestBS].reshape(-1))) #bufferH.append(np.ascontiguousarray(np.array([2,3,4],dtype=np.int32).reshape(-1))) bufferH.append(np.ascontiguousarray(dd['hyps_pad_sos_eos'][:nTestBS].reshape(-1))) bufferH.append(np.ascontiguousarray(dd['hyps_lens_sos'][:nTestBS].reshape(-1))) bufferH.append(np.ascontiguousarray(dd['ctc_score'][:nTestBS].reshape(-1))) for i in range(nInput, nInput + nOutput): bufferH.append(np.empty(context.get_binding_shape(i), dtype=trt.nptype(engine.get_binding_dtype(i)))) bufferD = [] for i in range(nInput + nOutput): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nInput, nInput + nOutput): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) out={} for i in range(nInput + nOutput): print(engine.get_binding_name(i)) print(bufferH[i].reshape(context.get_binding_shape(i))) out[str(i)] = bufferH[i] np.savez('decoderOut.npz',**out) for b in bufferD: cudart.cudaFree(b) print("Finished building Decoder engine!") '''
trt-samples-for-hackathon-cn-master
Hackathon2022/code/decoder.py
from collections import OrderedDict from copy import deepcopy import numpy as np import onnx import onnx_graphsurgeon as gs onnxFilePath = "/workspace/" #onnxFilePath = "./" # local host sourceOnnx = "./decoderV2.onnx" destinationOnnx = "./decoderV3.onnx" bConvertToStaticNetwork = False bDebug = False nWili = 0 bNot = False nNot = 0 bLayerNormPlugin = True nLayerNormPlugin = 0 bShapeOperation = True nShapeOperation = 0 b2DMM = True n2DMM = 0 #graph = gs.import_onnx(onnx.load(sourceOnnx)) graph = gs.import_onnx(onnx.shape_inference.infer_shapes(onnx.load(sourceOnnx))) if bConvertToStaticNetwork: graph.inputs[0].shape = [3, 17, 256] graph.inputs[1].shape = [3] graph.inputs[2].shape = [3, 10, 64] graph.inputs[3].shape = [3, 10] graph.inputs[4].shape = [3, 10] else: graph.inputs[0].shape = ['B', 'T', 256] graph.inputs[1].shape = ['B'] graph.inputs[2].shape = ['B', 10, 64] #graph.inputs[2].shape = ['B',10,'T2'] # Round 0: ceate useful constant tensor or collect useful shape tensor wiliConstant0 = gs.Constant("wiliConstant0", np.ascontiguousarray(np.array([0], dtype=np.int64))) # MUST use np.ascontiguousarray, or TRT will regard the shape of this Constant as (0) !!! wiliConstant1 = gs.Constant("wiliConstant1", np.ascontiguousarray(np.array([1], dtype=np.int64))) wiliConstant10 = gs.Constant("wiliConstant10", np.ascontiguousarray(np.array([10], dtype=np.int64))) wiliConstant63 = gs.Constant("wiliConstant63", np.ascontiguousarray(np.array([63], dtype=np.int64))) wiliConstant64 = gs.Constant("wiliConstant64", np.ascontiguousarray(np.array([64], dtype=np.int64))) wiliConstant256 = gs.Constant("wiliConstant256", np.ascontiguousarray(np.array([256], dtype=np.int64))) wiliConstant4233 = gs.Constant("wiliConstant4233", np.ascontiguousarray(np.array([4233], dtype=np.int64))) wiliConstantS0 = gs.Constant("wiliConstantS0", np.array(0, dtype=np.int64)).to_variable(np.dtype(np.int64), []).to_constant(np.array(0, dtype=np.dtype(np.int64))) wiliConstantS1 = gs.Constant("wiliConstantS1", np.array(1, dtype=np.int64)).to_variable(np.dtype(np.int64), []).to_constant(np.array(1, dtype=np.dtype(np.int64))) wiliConstantS63 = gs.Constant("wiliConstantS63", np.array(63, dtype=np.int64)).to_variable(np.dtype(np.int64), []).to_constant(np.array(63, dtype=np.dtype(np.int64))) wiliConstantRange63 = gs.Constant("wiliConstantRange63", np.ascontiguousarray(np.arange(63, dtype=np.int64).reshape(1, 63))) data = np.ones([1, 63, 63], dtype=np.int32) for i in range(63): data[0, i, :(i + 1)] = 0 wiliConstant1x63x63 = gs.Constant("wiliConstant1x63x63", np.ascontiguousarray(data.astype(bool))) wiliShapeV = gs.Variable("wiliShapeV-" + str(nWili), np.dtype(np.int64), [3]) wiliShapeN = gs.Node("Shape", "wiliShapeN-" + str(nWili), inputs=[graph.inputs[0]], outputs=[wiliShapeV]) graph.nodes.append(wiliShapeN) nWili += 1 # shape = [], value = ['B'] bTensorScalar = gs.Variable("bTensorScalar", np.dtype(np.int64), []) wiliGatherN = gs.Node("Gather", "wiliGatherN-" + str(nWili), inputs=[wiliShapeV, wiliConstantS0], outputs=[bTensorScalar], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliGatherN) nWili += 1 # shape = [1,], value = ['B'] bTensor = gs.Variable("bTensor", np.dtype(np.int64), [1]) wiliUnsqueezeN = gs.Node("Unsqueeze", "wiliUnsqueezeN-" + str(nWili), inputs=[bTensorScalar, wiliConstant0], outputs=[bTensor]) graph.nodes.append(wiliUnsqueezeN) nWili += 1 # shape = [], value = ['T'] tTensorScalar = gs.Variable("tTensorScalar", np.dtype(np.int64), []) wiliGatherN = gs.Node("Gather", "wiliGatherN-" + str(nWili), inputs=[wiliShapeV, wiliConstantS1], outputs=[tTensorScalar], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliGatherN) nWili += 1 # shape = [1,], value = ['T'] tTensor = gs.Variable("tTensor", np.dtype(np.int64), [1]) wiliUnsqueezeN = gs.Node("Unsqueeze", "wiliUnsqueezeN-" + str(nWili), inputs=[tTensorScalar, wiliConstant0], outputs=[tTensor]) graph.nodes.append(wiliUnsqueezeN) nWili += 1 # shape = [2,], value = ['B','T'] bCommaTTensor = gs.Variable("bCommaTTensor", np.dtype(np.int64), [2]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[bTensor, tTensor], outputs=[bCommaTTensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # shape = [1,], value = ['B'* 10] b10Tensor = gs.Variable("b10Tensor", np.dtype(np.int64), [1]) wiliMulN = gs.Node("Mul", "wiliMulN-" + str(nWili), inputs=[bTensor, wiliConstant10], outputs=[b10Tensor]) graph.nodes.append(wiliMulN) nWili += 1 # shape = [3,], value = ['B'*10,'T',256] b10CommaTComma256Tensor = gs.Variable("b10CommaTComma256Tensor", np.dtype(np.int64), [3]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[b10Tensor, tTensor, wiliConstant256], outputs=[b10CommaTComma256Tensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # shape = [2,], value = ['B',10] bComma10Tensor = gs.Variable("bComma10Tensor", np.dtype(np.int64), [2]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[bTensor, wiliConstant10], outputs=[bComma10Tensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # shape = [2,], value = ['B'*10,63] b10Comma63Tensor = gs.Variable("b10Comma63Tensor", np.dtype(np.int64), [2]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[b10Tensor, wiliConstant63], outputs=[b10Comma63Tensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # shape = [2,], value = ['B'*10,64] b10Comma64Tensor = gs.Variable("b10Comma64Tensor", np.dtype(np.int64), [2]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[b10Tensor, wiliConstant64], outputs=[b10Comma64Tensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # shape = [1,], value = ['B'*10*63] b1063Tensor = gs.Variable("b1063Tensor", np.dtype(np.int64), [1]) wiliMulN = gs.Node("Mul", "wiliMulN-" + str(nWili), inputs=[b10Tensor, wiliConstant63], outputs=[b1063Tensor]) graph.nodes.append(wiliMulN) nWili += 1 # shape = [4,], value = ['B'*10,1,1,'T'] b10Comma1Comma1CommaTTensor = gs.Variable("b10Comma1Comma1CommaTTensor", np.dtype(np.int64), [4]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[b10Tensor, wiliConstant1, wiliConstant1, tTensor], outputs=[b10Comma1Comma1CommaTTensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # shape = [4,], value = ['B',10,63,4233] bComma10Comma63Comma4233Tensor = gs.Variable("bComma10Comma63Comma4233Tensor", np.dtype(np.int64), [4]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[bTensor, wiliConstant10, wiliConstant63, wiliConstant4233], outputs=[bComma10Comma63Comma4233Tensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # shape = [2,], value = ['B'*10*63,256] b1063Comma256Tensor = gs.Variable("b1063Comma256Tensor", np.dtype(np.int64), [2]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[b1063Tensor, wiliConstant256], outputs=[b1063Comma256Tensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # shape = [3,], value = ['B'*10,63,256] b10Comma63Comma256Tensor = gs.Variable("b10Comma63Comma256Tensor", np.dtype(np.int64), [3]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[b10Tensor, wiliConstant63, wiliConstant256], outputs=[b10Comma63Comma256Tensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # Round 1: Not if bNot: for node in graph.nodes: if "Not" in node.name: castV = gs.Variable("castV-" + str(5000 + nNot), np.dtype(bool), None) castN = gs.Node("Cast", "CastN-" + str(6000 + nNot), inputs=[node.inputs[0]], outputs=[castV], attrs=OrderedDict([('to', onnx.TensorProto.BOOL)])) graph.nodes.append(castN) nNot += 1 node.inputs = [castV] continue # Round 2: Layer Normalization if bLayerNormPlugin: for node in graph.nodes: if node.op == 'ReduceMean' and \ node.o().op == 'Sub' and node.o().inputs[0] == node.inputs[0] and \ node.o().o(0).op =='Pow' and node.o().o(1).op =='Div' and \ node.o().o(0).o().op == 'ReduceMean' and \ node.o().o(0).o().o().op == 'Add' and \ node.o().o(0).o().o().o().op == 'Sqrt' and \ node.o().o(0).o().o().o().o().op == 'Div' and node.o().o(0).o().o().o().o() == node.o().o(1) and \ node.o().o(0).o().o().o().o().o().op == 'Mul' and \ node.o().o(0).o().o().o().o().o().o().op == 'Add': inputTensor = node.inputs[0] lastMultipyNode = node.o().o(0).o().o().o().o().o() index = ['weight' in i.name for i in lastMultipyNode.inputs].index(True) b = np.array(deepcopy(lastMultipyNode.inputs[index].values.tolist()), dtype=np.float32) constantB = gs.Constant("LayerNormB-" + str(nLayerNormPlugin), np.ascontiguousarray(b.reshape(-1))) # MUST use np.ascontiguousarray, or TRT will regard the shape of this Constant as (0) !!! lastAddNode = node.o().o(0).o().o().o().o().o().o() index = ['bias' in i.name for i in lastAddNode.inputs].index(True) a = np.array(deepcopy(lastAddNode.inputs[index].values.tolist()), dtype=np.float32) constantA = gs.Constant("LayerNormA-" + str(nLayerNormPlugin), np.ascontiguousarray(a.reshape(-1))) inputList = [inputTensor, constantB, constantA] layerNormV = gs.Variable("LayerNormV-" + str(nLayerNormPlugin), np.dtype(np.float32), None) layerNormN = gs.Node("LayerNorm", "LayerNormN-" + str(nLayerNormPlugin), inputs=inputList, outputs=[layerNormV]) graph.nodes.append(layerNormN) nLayerNormPlugin += 1 for n in graph.nodes: if lastAddNode.outputs[0] in n.inputs: index = n.inputs.index(lastAddNode.outputs[0]) n.inputs[index] = layerNormN.outputs[0] lastAddNode.outputs = [] continue # Round 3: Shape operation if bShapeOperation: for node in graph.nodes: if node.op == 'Expand' and node.name == 'Expand_111': node.inputs[0] = wiliConstantRange63 node.inputs[1] = b10Comma63Tensor nShapeOperation += 2 if node.op == 'And' and node.name == 'And_152': node.op = 'Or' node.name = 'wiliOr-' + str(nShapeOperation) nShapeOperation += 1 node.inputs[0] = node.i().i().i().i().outputs[0] # Remove Not node.inputs[1] = wiliConstant1x63x63 outTensor = node.o().outputs[0] node.o().outputs = [] unsqueezeV = gs.Variable("wiliUnsqueezeV-" + str(nShapeOperation), np.dtype(bool), None) unsqueezeN = gs.Node("Unsqueeze", "wiliUnsqueezeN-" + str(nShapeOperation), inputs=[node.outputs[0], wiliConstant1], outputs=[outTensor]) graph.nodes.append(unsqueezeN) nShapeOperation += 1 for node in graph.nodes: if node.op == "Softmax" and node.name in ['Softmax_217', 'Softmax_358', 'Softmax_499', 'Softmax_640', 'Softmax_781', 'Softmax_922']: node.i().inputs[0] = outTensor node.o().inputs[0] = outTensor nShapeOperation += 2 continue if node.op == "Not" and node.name == "Not_1064": for oldNode in graph.nodes: if oldNode.op == "GreaterOrEqual" and oldNode.name == "GreaterOrEqual_115": node.inputs[0] = oldNode.outputs[0] if node.op == 'Expand' and node.name == 'Expand_43': node.inputs[1] = bCommaTTensor nShapeOperation += 1 if node.op == 'Reshape' and node.name == 'Reshape_60': node.i().inputs[0] = node.i().i().i().inputs[0] # Remove Not and Expand node.inputs[1] = b10Comma1Comma1CommaTTensor outTensor = node.outputs[0] for node in graph.nodes: if node.op == "Softmax" and node.name in ['Softmax_279', 'Softmax_420', 'Softmax_561', 'Softmax_702', 'Softmax_843', 'Softmax_984']: node.i().inputs[0] = outTensor node.o().inputs[0] = outTensor nShapeOperation += 2 continue if node.op == 'Reshape' and node.name == 'Reshape_1087': node.inputs[1] = bComma10Tensor if node.op == 'Reshape' and node.name == 'Reshape_73': node.inputs[1] = b10Comma64Tensor if node.op == 'Reshape' and node.name == 'Reshape_77': node.inputs[1] = b10Tensor if node.op == 'Range' and node.name == 'Range_27': node.inputs[1] = tTensorScalar if node.op == 'Gather' and node.name == 'Gather_154': value = node.inputs[0].values wiliConstantGather154 = gs.Constant("wiliConstantGather154", np.ascontiguousarray(value * 16)) node.inputs[0] = wiliConstantGather154 node.o(1).o().inputs[0] = node.outputs[0] if node.op == 'Slice' and node.name == 'Slice_164': node.inputs[2] = wiliConstant63 if node.op == 'Reshape' and node.name == 'Reshape_1038': node.o().inputs[0] = node.inputs[0] node.inputs[1] = bComma10Comma63Comma4233Tensor graph.outputs[0].name = 'deprecated[decoder_out]' node.outputs[0].name = 'decoder_out' graph.outputs[0] = node.outputs[0] if node.op == 'Reshape' and node.name == 'Reshape_22': node.i().inputs[0] = graph.inputs[0] node.inputs[1] = b10CommaTComma256Tensor ''' # Error operation but keep output correct! if node.op == 'ArgMax' and node.name == 'ArgMax_1091': node.inputs[0] = node.i().inputs[0] ''' # Round 4: 2D Matrix multiplication if b2DMM: for node in graph.nodes: if node.op == 'LayerNorm' and node.name in ['LayerNormN-' + str(i) for i in range(2, 18, 3)]: reshape1V = gs.Variable("wiliReshape1V-" + str(n2DMM), np.dtype(np.float32), ['B*10*63', 256]) reshape1N = gs.Node("Reshape", "wiliReshape1N-" + str(n2DMM), inputs=[node.outputs[0], b1063Comma256Tensor], outputs=[reshape1V]) graph.nodes.append(reshape1N) n2DMM += 1 lastNode = node.o().o().o().o().o() # Add outputTensor = lastNode.outputs[0] reshape2V = gs.Variable("wiliReshape2V-" + str(n2DMM), np.dtype(np.float32), ['B*10', 63, 256]) reshape2N = gs.Node("Reshape", "wiliReshape2N-" + str(n2DMM), inputs=[reshape2V, b10Comma63Comma256Tensor], outputs=[outputTensor]) graph.nodes.append(reshape2N) n2DMM += 1 lastNode.outputs[0] = reshape2V node.o().inputs[0] = reshape1V # for debug if bDebug: for node in graph.nodes: if node.name == "LayerNormN-2": #graph.outputs.append( node.inputs[0] ) graph.outputs.append(node.outputs[0]) #graph.outputs = [node.outputs[0]] graph.cleanup() onnx.save(gs.export_onnx(graph), destinationOnnx) print("finish decoder onnx-graphsurgeon!") print("%4d Not" % (nNot)) print("%4d LayerNormPlugin" % nLayerNormPlugin) print("%4d ShapeOperation" % nShapeOperation) print("%4d 2DMM" % n2DMM)
trt-samples-for-hackathon-cn-master
Hackathon2022/code/decoder-surgeonV3.py
from collections import OrderedDict from copy import deepcopy import numpy as np import onnx import onnx_graphsurgeon as gs sourceOnnx = "./encoderV2.onnx" destinationOnnx = "./encoderV3.onnx" bConvertToStaticNetwork = False debugNodeList = [] nWili = 0 bSimplifyOutput = True bNotV3 = True nNotV3 = 0 bLayerNormPlugin = True nLayerNormPlugin = 0 bConstantFold = True nConstantFold = 0 bReshapeMatmulToConv = True nReshapeMatmulToConv = 0 bExpand = True nExpand = 0 b2DMM = True n2DMM = 0 bAttentionMM = False nAttentionMM = 0 bAttentionPlugin = True nAttentionPlugin = 0 #graph = gs.import_onnx(onnx.load(sourceOnnx)) graph = gs.import_onnx(onnx.shape_inference.infer_shapes(onnx.load(sourceOnnx))) if bConvertToStaticNetwork: graph.inputs[0].shape = [3, 17, 256] graph.inputs[1].shape = [3] else: graph.inputs[0].shape = ['B', 'T', 80] graph.inputs[1].shape = ['B'] # Round 0: ceate useful constant tensor or collect useful shape tensor wiliConstant0 = gs.Constant("wiliConstant0", np.ascontiguousarray(np.array([0], dtype=np.int64))) # MUST use np.ascontiguousarray, or TRT will regard the shape of this Constant as (0) !!! wiliConstant1 = gs.Constant("wiliConstant1", np.ascontiguousarray(np.array([1], dtype=np.int64))) wiliConstant3 = gs.Constant("wiliConstant3", np.ascontiguousarray(np.array([3], dtype=np.int64))) wiliConstant4 = gs.Constant("wiliConstant4", np.ascontiguousarray(np.array([4], dtype=np.int64))) wiliConstantM4 = gs.Constant("wiliConstantM4", np.ascontiguousarray(np.array([-4], dtype=np.int64))) # minus four wiliConstant64 = gs.Constant("wiliConstant64", np.ascontiguousarray(np.array([64], dtype=np.int64))) wiliConstant256 = gs.Constant("wiliConstant256", np.ascontiguousarray(np.array([256], dtype=np.int64))) wiliConstantS0 = gs.Constant("wiliConstantS0", np.array(0, dtype=np.int64)).to_variable(np.dtype(np.int64), []).to_constant(np.array(0, dtype=np.dtype(np.int64))) wiliConstantS1 = gs.Constant("wiliConstantS1", np.array(1, dtype=np.int64)).to_variable(np.dtype(np.int64), []).to_constant(np.array(1, dtype=np.dtype(np.int64))) wiliConstantS2 = gs.Constant("wiliConstantS2", np.array(2, dtype=np.int64)).to_variable(np.dtype(np.int64), []).to_constant(np.array(2, dtype=np.dtype(np.int64))) wiliShapeV = gs.Variable("wiliShapeV-" + str(nWili), np.dtype(np.int64), [3]) wiliShapeN = gs.Node("Shape", "wiliShapeN-" + str(nWili), inputs=[graph.inputs[0]], outputs=[wiliShapeV]) graph.nodes.append(wiliShapeN) nWili += 1 # shape = [], value = ['B'] bTensorScalar = gs.Variable("bTensorScalar", np.dtype(np.int64), []) wiliGatherN = gs.Node("Gather", "wiliGatherN-" + str(nWili), inputs=[wiliShapeV, wiliConstantS0], outputs=[bTensorScalar], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliGatherN) nWili += 1 # shape = [1,], value = ['B'] bTensor = gs.Variable("bTensor", np.dtype(np.int64), [1]) wiliUnsqueezeN = gs.Node("Unsqueeze", "wiliUnsqueezeN-" + str(nWili), inputs=[bTensorScalar, wiliConstant0], outputs=[bTensor]) graph.nodes.append(wiliUnsqueezeN) nWili += 1 # shape = [], value = ['T'] tTensorScalar = gs.Variable("tTensorScalar", np.dtype(np.int64), []) wiliGatherN = gs.Node("Gather", "wiliGatherN-" + str(nWili), inputs=[wiliShapeV, wiliConstantS1], outputs=[tTensorScalar], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliGatherN) nWili += 1 # shape = [1,], value = ['T'] tTensor = gs.Variable("tTensor", np.dtype(np.int64), [1]) wiliUnsqueezeN = gs.Node("Unsqueeze", "wiliUnsqueezeN-" + str(nWili), inputs=[tTensorScalar, wiliConstant0], outputs=[tTensor]) graph.nodes.append(wiliUnsqueezeN) nWili += 1 # shape = [1,], value = ['t4'], t4 = floor('T'/4) - 1 for node in graph.nodes: if node.op == 'Relu' and node.name == 'Relu_38': shapeV = gs.Variable("wiliShapeV-" + str(nWili), np.dtype(np.int64), [4]) shapeN = gs.Node("Shape", "wiliShapeN-" + str(nWili), inputs=[node.outputs[0]], outputs=[shapeV]) graph.nodes.append(shapeN) nWili += 1 t4TensorScalar = gs.Variable("t4TensorScalar", np.dtype(np.int64), []) gatherN = gs.Node("Gather", "wiliGatherN-" + str(nWili), inputs=[shapeV, wiliConstantS2], outputs=[t4TensorScalar], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(gatherN) nWili += 1 t4Tensor = gs.Variable("t4Tensor", np.dtype(np.int64), [1]) unsqueezeN = gs.Node("Unsqueeze", "wiliUnsqueezeN-" + str(nWili), inputs=[t4TensorScalar, wiliConstant0], outputs=[t4Tensor]) graph.nodes.append(unsqueezeN) nWili += 1 # shape = [1,], value = ['B'*'t4'] bt4Tensor = gs.Variable("bt4Tensor-" + str(nWili), np.dtype(np.int64), [1]) wiliMulN = gs.Node("Mul", "wiliMulN-" + str(nWili), inputs=[bTensor, t4Tensor], outputs=[bt4Tensor]) graph.nodes.append(wiliMulN) nWili += 1 # shape = [2,], value = ['B'*'t4',256] bt4Comma256Tensor = gs.Variable("bt4Comma256Tensor-" + str(nWili), np.dtype(np.int64), [2]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[bt4Tensor, wiliConstant256], outputs=[bt4Comma256Tensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # shape = [3,], value = ['B','t4',256] bCommat4Comma64Tensor = gs.Variable("bCommat4Comma64Tensor-" + str(nWili), np.dtype(np.int64), [3]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[bTensor, t4Tensor, wiliConstant256], outputs=[bCommat4Comma64Tensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # shape = [4,], value = ['B','t4',4,64] bCommat4Comma4Comma64Tensor = gs.Variable("bCommat4Comma4Comma64Tensor-" + str(nWili), np.dtype(np.int64), [4]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[bTensor, t4Tensor, wiliConstant4, wiliConstant64], outputs=[bCommat4Comma4Comma64Tensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # Round 0.5: output tensor if bSimplifyOutput: for node in graph.nodes: graph.outputs[0].name = 'deprecated[encoder_out]' graph.outputs[1].name = 'deprecated[encoder_out_lens]' graph.outputs = graph.outputs[:2] wiliAddV0 = gs.Variable("wiliAddV-0", np.dtype(np.int32), ['B']) wiliAddN0 = gs.Node("Add", "wiliAddN-0", inputs=[graph.inputs[1], wiliConstant3], outputs=[wiliAddV0]) graph.nodes.append(wiliAddN0) wiliDivV0 = gs.Variable("wiliDevV-0", np.dtype(np.int32), ['B']) wiliDivN0 = gs.Node("Div", "wiliDivN-0", inputs=[wiliAddV0, wiliConstant4], outputs=[wiliDivV0]) graph.nodes.append(wiliDivN0) wiliMinV0 = gs.Variable("encoder_out_lens", np.dtype(np.int32), ['B']) wiliMinN0 = gs.Node("Min", "wiliMinN-0", inputs=[wiliDivV0, t4Tensor], outputs=[wiliMinV0]) graph.nodes.append(wiliMinN0) graph.outputs[1] = wiliMinV0 # Round 1: Not version 3, adjust Not to fit Attention Plugin if bNotV3: for node in graph.nodes: if node.op == 'Slice' and node.name == 'Slice_79': # adjust node before Slice_79 greaterOrEqualNode = node.i().i().i() greaterOrEqualNode.op = 'Less' greaterOrEqualNode.name = 'LessN-' + str(nNotV3) nNotV3 += 1 castV = gs.Variable("wiliCastV-" + str(nNotV3), np.dtype(np.int32), None) castN = gs.Node("Cast", "wiliCastN-" + str(nNotV3), inputs=[greaterOrEqualNode.outputs[0]], outputs=[castV], attrs=OrderedDict([('to', onnx.TensorProto.INT32)])) graph.nodes.append(castN) nNotV3 += 1 # adjust Slice_79 node.inputs[0] = castV node.inputs[2] = wiliConstantM4 # end node.inputs[3] = wiliConstant1 # axes node.inputs[4] = wiliConstant4 # step slice84Node = node.o() tensor613 = slice84Node.outputs[0] tensor613.dtype = np.dtype(np.int32) unsqueezeTo3DN = gs.Node("Unsqueeze", "wiliUnsqueezeTo3DN-" + str(nNotV3), inputs=[node.outputs[0], wiliConstant1], outputs=[tensor613]) graph.nodes.append(unsqueezeTo3DN) nNotV3 += 1 slice84Node.outputs = [] continue if node.op == 'Not' and node.name != 'Not_30': castV = gs.Variable("castV-" + str(nNotV3), np.dtype(bool), None) castN = gs.Node("Cast", "CastN-" + str(nNotV3), inputs=[node.inputs[0]], outputs=[castV], attrs=OrderedDict([('to', onnx.TensorProto.BOOL)])) graph.nodes.append(castN) nNotV3 += 1 node.inputs = [castV] continue # Round 2: Layer Normalization if bLayerNormPlugin: for node in graph.nodes: if node.op == 'ReduceMean' and \ node.o().op == 'Sub' and node.o().inputs[0] == node.inputs[0] and \ node.o().o(0).op =='Pow' and node.o().o(1).op =='Div' and \ node.o().o(0).o().op == 'ReduceMean' and \ node.o().o(0).o().o().op == 'Add' and \ node.o().o(0).o().o().o().op == 'Sqrt' and \ node.o().o(0).o().o().o().o().op == 'Div' and node.o().o(0).o().o().o().o() == node.o().o(1) and \ node.o().o(0).o().o().o().o().o().op == 'Mul' and \ node.o().o(0).o().o().o().o().o().o().op == 'Add': inputTensor = node.inputs[0] lastMultipyNode = node.o().o(0).o().o().o().o().o() index = ['weight' in i.name for i in lastMultipyNode.inputs].index(True) b = np.array(deepcopy(lastMultipyNode.inputs[index].values.tolist()), dtype=np.float32) constantB = gs.Constant("LayerNormB-" + str(nLayerNormPlugin), np.ascontiguousarray(b.reshape(-1))) # MUST use np.ascontiguousarray, or TRT will regard the shape of this Constant as (0) !!! lastAddNode = node.o().o(0).o().o().o().o().o().o() index = ['bias' in i.name for i in lastAddNode.inputs].index(True) a = np.array(deepcopy(lastAddNode.inputs[index].values.tolist()), dtype=np.float32) constantA = gs.Constant("LayerNormA-" + str(nLayerNormPlugin), np.ascontiguousarray(a.reshape(-1))) inputList = [inputTensor, constantB, constantA] layerNormV = gs.Variable("LayerNormV-" + str(nLayerNormPlugin), np.dtype(np.float32), None) layerNormN = gs.Node("LayerNorm", "LayerNormN-" + str(nLayerNormPlugin), inputs=inputList, outputs=[layerNormV]) graph.nodes.append(layerNormN) if lastAddNode.outputs[0] in graph.outputs: # the last LayerNorm provide one of the graph's output, and do not unsqueeze to 4 dimension # oldLastAdd -> graph.outputs[0] ===> LayerNorm -> Squeeze -> graph.outputs[0] layerNormN.outputs[0].name = 'encoder_out' index = graph.outputs.index(lastAddNode.outputs[0]) graph.outputs[index] = layerNormN.outputs[0] else: # other LayerNorm contain the subsequent Squeeze operation for n in graph.nodes: if lastAddNode.outputs[0] in n.inputs: index = n.inputs.index(lastAddNode.outputs[0]) n.inputs[index] = layerNormN.outputs[0] lastAddNode.outputs = [] nLayerNormPlugin += 1 continue # Round 3: constant fold, removed for adopting Attention plugin if bConstantFold: for node in graph.nodes: if node.op == 'Slice' and node.name == 'Slice_74': node.inputs[0].values = node.inputs[0].values[:, :256, :] nConstantFold += 1 break # Round 4: Reshape + Matmul -> Convolution, by Hongwei if bReshapeMatmulToConv: for node in graph.nodes: if node.op == "Relu" and node.name == 'Relu_38': matmulNode = node.o(2).o().o() addNode = matmulNode.o() mulNode = addNode.o() convKernel = matmulNode.inputs[1].values.transpose(1, 0).reshape(256, 256, 1, 19).astype(np.float32) convKernelV = gs.Constant("wiliConvKernelV-" + str(nReshapeMatmulToConv), np.ascontiguousarray(convKernel)) nReshapeMatmulToConv += 1 convBias = addNode.inputs[0].values convBiasV = gs.Constant("wiliConvBiasV-" + str(nReshapeMatmulToConv), np.ascontiguousarray(convBias)) nReshapeMatmulToConv += 1 convV = gs.Variable("wiliConvV-" + str(nReshapeMatmulToConv), np.dtype(np.float32), ['B', 256, 't4', 1]) convN = gs.Node("Conv", "wiliConvN-" + str(nReshapeMatmulToConv), inputs=[node.outputs[0], convKernelV, convBiasV], outputs=[convV]) convN.attrs = OrderedDict([ ('dilations', [1, 1]), ('kernel_shape', [1, 19]), ('pads', [0, 0, 0, 0]), ('strides', [1, 1]), ]) graph.nodes.append(convN) nReshapeMatmulToConv += 1 squeezeV = gs.Variable("wiliSqueezeV-" + str(nReshapeMatmulToConv), np.dtype(np.float32), ['B', 256, 't4']) squeezeN = gs.Node("Squeeze", "wiliSqueezeN-" + str(nReshapeMatmulToConv), inputs=[convV, wiliConstant3], outputs=[squeezeV]) graph.nodes.append(squeezeN) nReshapeMatmulToConv += 1 transposeV = gs.Variable("wiliTransposeV-" + str(nReshapeMatmulToConv), np.dtype(np.float32), ['B', 't4', 256]) transposeN = gs.Node("Transpose", "wiliTransposeN-" + str(nReshapeMatmulToConv), inputs=[squeezeV], outputs=[transposeV], attrs=OrderedDict([('perm', [0, 2, 1])])) graph.nodes.append(transposeN) nReshapeMatmulToConv += 1 mulNode.inputs[0] = transposeV # Round 5: Expand_23 if bExpand: for node in graph.nodes: if node.op == 'Expand' and node.name == 'Expand_23': node.i().i().inputs[1] = tTensorScalar concatV = gs.Variable("wiliConcatV-" + str(nExpand), np.dtype(np.int64), [2]) concatN = gs.Node("Concat", "wiliConcatN-" + str(nExpand), inputs=[bTensor, tTensor], outputs=[concatV], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(concatN) nExpand += 1 node.inputs[1] = concatV # Round 6: 2D Matrix multiplication if b2DMM: for node in graph.nodes: if node.op == 'MatMul' and node.name != 'MatMul_61' and \ node.o().op == 'Add' and \ node.o().o().op == 'Sigmoid' and \ node.o().o().o().op == 'Mul' and \ node.o().o().o().o().op == 'MatMul' and \ node.o().o().o().o().o().op == 'Add' and \ node.o().o().o().o().o().o().op == 'Mul': reshape1V = gs.Variable("wiliReshape1V-" + str(n2DMM), np.dtype(np.float32), ['B*t4', 256]) reshape1N = gs.Node("Reshape", "wiliReshape1N-" + str(n2DMM), inputs=[node.inputs[0], bt4Comma256Tensor], outputs=[reshape1V]) graph.nodes.append(reshape1N) n2DMM += 1 node.inputs[0] = reshape1V lastNode = node.o().o().o().o().o().o() # Mul[0.5] reshape2V = gs.Variable("wiliReshape2V-" + str(n2DMM), np.dtype(np.float32), ['B', 't4', 256]) reshape2N = gs.Node("Reshape", "wiliReshape2N-" + str(n2DMM), inputs=[lastNode.inputs[0], bCommat4Comma64Tensor], outputs=[reshape2V]) graph.nodes.append(reshape2N) n2DMM += 1 lastNode.inputs[0] = reshape2V if bAttentionMM: for node in graph.nodes: if node.op == 'LayerNorm' and node.name == int(node.name[11:]) % 5 == 1: qM = node.o(1).inputs[1].values qB = node.o(1).o().inputs[0].values kM = node.o(2).inputs[1].values kB = node.o(2).o().inputs[0].values vM = node.o(3).inputs[1].values vB = node.o(3).o().inputs[0].values bigFactor = np.concatenate([qM, kM, vM], axis=1) bigBias = np.concatenate([qB, kB, vB], axis=0) bigFactorTensor = gs.Constant("bigFactorTensor" + str(nAttentionMM), np.ascontiguousarray(bigFactor)) bigBiasTensor = gs.Constant("bigBiasTensor" + str(nAttentionMM), np.ascontiguousarray(bigBias)) nAttentionMM += 1 qReshapeN = node.o(1).o().o() kReshapeN = node.o(2).o().o() vReshapeN = node.o(3).o().o() matMulV = gs.Variable("wiliMatMul1V-" + str(nAttentionMM), np.dtype(np.float32), ['B*t4', 256 * 3]) matMulN = gs.Node("MatMul", "wiliMatMulN-" + str(nAttentionMM), inputs=[node.outputs[0], bigFactorTensor], outputs=[matMulV]) graph.nodes.append(matMulN) nAttentionMM += 1 addV = gs.Variable("wiliAddV-" + str(nAttentionMM), np.dtype(np.float32), ['B*t4', 256 * 3]) addN = gs.Node("Add", "wiliAddN-" + str(nAttentionMM), inputs=[matMulV, bigBiasTensor], outputs=[addV]) graph.nodes.append(addN) nAttentionMM += 1 split0V = gs.Variable("wiliSplit0V-" + str(nAttentionMM), np.dtype(np.float32), ['B*t4', 256]) split1V = gs.Variable("wiliSplit1V-" + str(nAttentionMM), np.dtype(np.float32), ['B*t4', 256]) split2V = gs.Variable("wiliSplit2V-" + str(nAttentionMM), np.dtype(np.float32), ['B*t4', 256]) splitN = gs.Node("Split", "wiliSplitN-" + str(nAttentionMM), inputs=[addV], outputs=[split0V, split1V, split2V], attrs=OrderedDict([('axis', 1)])) graph.nodes.append(splitN) nAttentionMM += 1 qReshapeN.inputs[0] = split0V qReshapeN.inputs[1] = bCommat4Comma4Comma64Tensor kReshapeN.inputs[0] = split1V kReshapeN.inputs[1] = bCommat4Comma4Comma64Tensor vReshapeN.inputs[0] = split2V vReshapeN.inputs[1] = bCommat4Comma4Comma64Tensor # Round 7: Attention Plugin, by Xuewei Li if bAttentionPlugin: tensorTable = graph.tensors() para = {} inputTable = {} outputTable = {} for name in tensorTable: if "self_attn.pos_bias_u" in name: para[name] = np.array(deepcopy(tensorTable[name].values.tolist()), dtype=np.float32) if "self_attn.pos_bias_v" in name: para[name] = np.array(deepcopy(tensorTable[name].values.tolist()), dtype=np.float32) tensor = tensorTable[name] test = tensor.outputs[0].o().o().i(1, 0).i(0).i(0) if test.op == "MatMul": t = test.inputs[1] para[name[:len(name) - 20] + "self_attn.linear_pos.weight"] = np.array(deepcopy(t.values.tolist()), dtype=np.float32) else: raise Exception("not correct!") if "self_attn.linear_q.bias" in name or "self_attn.linear_k.bias" in name\ or "self_attn.linear_v.bias" in name or "self_attn.linear_out.bias" in name: tensor = tensorTable[name] para[name] = np.array(deepcopy(tensor.values.tolist()), dtype=np.float32) weight_node = tensor.outputs[0].i(1, 0) if weight_node.op == "MatMul": para[name[:-4] + "weight"] = np.array(deepcopy(weight_node.inputs[1].values.tolist()), dtype=np.float32) if "self_attn.linear_out.bias" in name: ot = weight_node.inputs[0] ot_node = ot.inputs[0] outputTable[name[:-25]] = ot.name outputTable[name[:-25] + "node"] = ot_node if "self_attn.linear_q.bias" in name: it = weight_node.inputs[0] inputTable[name[:-23]] = it.name else: raise Exception("not correct!") input1 = tensorTable["603"] mask = tensorTable["613"] test = tensorTable["551"] input2 = gs.Variable("CastVariable-", np.dtype(np.int32), None) castN = gs.Node("Cast", "CastnNode-", inputs=[mask], outputs=[input2], attrs=OrderedDict([('to', 1)])) graph.nodes.append(castN) index = 0 for name in inputTable: input0 = tensorTable[inputTable[name]] inputList = [input0, input1, input2] temp = para[name + 'self_attn.pos_bias_u'] inputList.append(gs.Constant(name + "-pos_bias_u", np.ascontiguousarray(para[name + 'self_attn.pos_bias_u'].reshape(-1)))) inputList.append(gs.Constant(name + "-pos_bias_v", np.ascontiguousarray(para[name + 'self_attn.pos_bias_v'].reshape(-1)))) q_weight = para[name + 'self_attn.linear_q.weight'] k_weight = para[name + 'self_attn.linear_k.weight'] v_weight = para[name + 'self_attn.linear_v.weight'] qkv_weight = np.stack((q_weight, k_weight, v_weight)) inputList.append(gs.Constant(name + "-linear_qkv_weight", np.ascontiguousarray(qkv_weight.reshape(-1)))) inputList.append(gs.Constant(name + "-linear_q_bias", np.ascontiguousarray(para[name + 'self_attn.linear_q.bias'].reshape(-1)))) inputList.append(gs.Constant(name + "-linear_k_bias", np.ascontiguousarray(para[name + 'self_attn.linear_k.bias'].reshape(-1)))) inputList.append(gs.Constant(name + "-linear_v_bias", np.ascontiguousarray(para[name + 'self_attn.linear_v.bias'].reshape(-1)))) inputList.append(gs.Constant(name + "-linear_out_weight", np.ascontiguousarray(para[name + 'self_attn.linear_out.weight'].reshape(-1)))) inputList.append(gs.Constant(name + "-linear_out_bias", np.ascontiguousarray(para[name + 'self_attn.linear_out.bias'].reshape(-1)))) inputList.append(gs.Constant(name + "-linear_pos_weight", np.ascontiguousarray(para[name + 'self_attn.linear_pos.weight'].reshape(-1)))) ForwardAttentionN = gs.Node("Attention", "Attention" + name, inputs=inputList, outputs=[tensorTable[outputTable[name]]]) # ForwardAttentionN.inputs[0].dtype = np.dtype(np.float32) # ForwardAttentionN.inputs[1].dtype = np.dtype(np.float32) # ForwardAttentionN.inputs[2].dtype = np.dtype(np.int32) graph.nodes.append(ForwardAttentionN) outputTable[name + "node"].outputs = [] index = index + 1 nAttentionPlugin += 1 # for debug if len(debugNodeList) > 0: for node in graph.nodes: if node.name in debugNodeList: #graph.outputs.append( node.inputs[0] ) graph.outputs.append(node.outputs[0]) #graph.outputs = [node.outputs[0]] graph.cleanup() onnx.save(gs.export_onnx(graph), destinationOnnx) print("finish encoder onnx-graphsurgeon!") print("%4d NotV3" % nNotV3) print("%4d LayerNormPlugin" % nLayerNormPlugin) print("%4d ConstantFold" % nConstantFold) print("%4d ReshapeMatmulToConv" % nReshapeMatmulToConv) print("%4d Expand" % nExpand) print("%4d 2DMM" % n2DMM) print("%4d Wili" % nWili) print("%4d AttentionMM" % nAttentionMM) print("%4d AttentionPlugin" % nAttentionPlugin)
trt-samples-for-hackathon-cn-master
Hackathon2022/code/encoder-surgeonV6.py
#!/usr/bin/python import ctypes from cuda import cudart from datetime import datetime as dt from glob import glob import numpy as np import os import sys import tensorrt as trt from calibrator import EncoderCalibrator #basePath = "/target/" basePath = "./" onnxFile = sorted(glob(basePath + "encoderV*.onnx"))[-1] trtFile = basePath + "encoder.plan" isForSubmit = True isConvertToStaticNetwork = False isPrintNetwork = False additionOutput = [] useInt8 = False calibrationDataFile = "/workspace/data/calibration.npz" int8CacheFile = basePath + "encoder-int8.cache" strictTypeLayer = [] useTimeCache = True timeCacheFile = "./encoder.cache" nTestBS = 4 nTestSL = 64 logger = trt.Logger(trt.Logger.ERROR) trt.init_libnvinfer_plugins(logger, '') for soFile in glob(basePath + "*.so"): ctypes.cdll.LoadLibrary(soFile) timeCache = b"" if useTimeCache and os.path.isfile(timeCacheFile): with open(timeCacheFile, 'rb') as f: timeCache = f.read() if timeCache == None: print("Failed getting serialized timing cache!") exit() print("Succeeded getting serialized timing cache!") if os.path.isfile(trtFile): print("Engine existed!") with open(trtFile, 'rb') as f: engineString = f.read() else: builder = trt.Builder(logger) network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) profile = builder.create_optimization_profile() config = builder.create_builder_config() if useTimeCache: cache = config.create_timing_cache(timeCache) config.set_timing_cache(cache, False) if isForSubmit: config.max_workspace_size = 22 << 30 config.flags = 1 << int(trt.BuilderFlag.FP16) config.flags = config.flags & ~(1 << int(trt.BuilderFlag.TF32)) if useInt8: config.flags = config.flags | (1 << int(trt.BuilderFlag.INT8)) config.int8_calibrator = EncoderCalibrator(calibrationDataFile, int8CacheFile, 16, 256) else: config.max_workspace_size = 6 << 30 config.flags = config.flags & ~(1 << int(trt.BuilderFlag.TF32)) config.flags = config.flags | (1 << int(trt.BuilderFlag.DEBUG)) config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED if useInt8: config.flags = config.flags | (1 << int(trt.BuilderFlag.INT8)) config.int8_calibrator = EncoderCalibrator(calibrationDataFile, int8CacheFile, 16, 64) parser = trt.OnnxParser(network, logger) if not os.path.exists(onnxFile): print("Failed finding ONNX file!") exit() print("Succeeded finding ONNX file!") with open(onnxFile, 'rb') as model: if not parser.parse(model.read()): print("Failed parsing ONNX file!") for error in range(parser.num_errors): print(parser.get_error(error)) exit() print("Succeeded parsing ONNX file!") if isForSubmit: inputT0 = network.get_input(0) inputT0.shape = [-1, -1, 80] profile.set_shape(inputT0.name, (1, 16, 80), (64, 1024, 80), (64, 1024, 80)) inputT1 = network.get_input(1) inputT1.shape = [-1] profile.set_shape(inputT1.name, (1, ), (64, ), (64, )) config.add_optimization_profile(profile) else: if isConvertToStaticNetwork: inputT0 = network.get_input(0) inputT0.shape = [3, 17, 80] inputT1 = network.get_input(1) inputT1.shape = [3] else: inputT0 = network.get_input(0) inputT0.shape = [-1, -1, 80] profile.set_shape(inputT0.name, (1, 4, 80), (4, 16, 80), (4, 16, 80)) inputT1 = network.get_input(1) inputT1.shape = [-1] profile.set_shape(inputT1.name, (1, ), (4, ), (4, )) config.add_optimization_profile(profile) if isPrintNetwork: for i in range(network.num_layers): layer = network.get_layer(i) print(i, "%s,in=%d,out=%d,%s" % (str(layer.type)[10:], layer.num_inputs, layer.num_outputs, layer.name)) for j in range(layer.num_inputs): tensor = layer.get_input(j) if tensor == None: print("\tInput %2d:" % j, "None") else: print("\tInput %2d:%s,%s,%s" % (j, tensor.shape, str(tensor.dtype)[9:], tensor.name)) for j in range(layer.num_outputs): tensor = layer.get_output(j) if tensor == None: print("\tOutput %2d:" % j, "None") else: print("\tOutput %2d:%s,%s,%s" % (j, tensor.shape, str(tensor.dtype)[9:], tensor.name)) exit() if len(strictTypeLayer) > 0: for index in strictTypeLayer: layer = network.get_layer(i) layer.precision = trt.float32 layer.get_output(0).dtype = trt.float32 if len(additionOutput) > 0: for index in additionOutput: network.mark_output(network.get_layer(index).get_output(0)) #network.mark_output(network.get_layer(index).get_input(0)) engineString = builder.build_serialized_network(network, config) if engineString == None: print("Failed building engine!") exit() if useTimeCache and not os.path.isfile(timeCacheFile): timeCache = config.get_timing_cache() timeCacheString = timeCache.serialize() with open(timeCacheFile, 'wb') as f: f.write(timeCacheString) print("Succeeded saving .cache file!") print("Succeeded building engine!") with open(trtFile, 'wb') as f: f.write(engineString) ''' engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() context.set_binding_shape(0, [nTestBS,nTestSL,80]) context.set_binding_shape(1, [nTestBS]) nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput for i in range(nInput): print("Bind[%2d]:i[%2d]->" % (i, i), engine.get_binding_dtype(i), engine.get_binding_shape(i), context.get_binding_shape(i), engine.get_binding_name(i)) for i in range(nInput,nInput+nOutput): print("Bind[%2d]:o[%2d]->" % (i, i - nInput), engine.get_binding_dtype(i), engine.get_binding_shape(i), context.get_binding_shape(i), engine.get_binding_name(i)) dd = np.load("/workspace/data/encoder-%d-%d.npz"%(nTestBS,nTestSL)) bufferH = [] bufferH.append(np.ascontiguousarray(dd['speech'].reshape(-1))) bufferH.append(np.ascontiguousarray(dd['speech_lengths'].reshape(-1))) for i in range(nInput, nInput + nOutput): bufferH.append(np.empty(context.get_binding_shape(i), dtype=trt.nptype(engine.get_binding_dtype(i)))) bufferD = [] for i in range(nInput + nOutput): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nInput, nInput + nOutput): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) out={} for i in range(nInput + nOutput): print(engine.get_binding_name(i)) print(bufferH[i].reshape(context.get_binding_shape(i))) out[str(i)] = bufferH[i] np.savez('encoderOut.npz',**out) for b in bufferD: cudart.cudaFree(b) print("Finished building Encoder engine!") '''
trt-samples-for-hackathon-cn-master
Hackathon2022/code/encoder.py
import os import numpy as np from cuda import cudart import tensorrt as trt class EncoderCalibrator(trt.IInt8EntropyCalibrator2): def __init__(self, npzFile, cacheFile, nBS, nSL): # BatchSize,SequenceLength,Calibration trt.IInt8EntropyCalibrator2.__init__(self) self.data = np.load(npzFile) self.cacheFile = cacheFile self.nBS = nBS self.nSL = nSL self.iB = 0 self.keyName0 = "speech-" + str(nSL) self.keyName1 = "speech_lengths-" + str(nSL) self.bufferSize0 = np.zeros([nBS, nSL, 80], dtype=np.float32).nbytes self.bufferSize1 = np.zeros([nBS], dtype=np.int32).nbytes self.bufferD = [] self.bufferD.append(cudart.cudaMalloc(self.bufferSize0)[1]) self.bufferD.append(cudart.cudaMalloc(self.bufferSize1)[1]) print("> Encoder calibrator constructor") def __del__(self): cudart.cudaFree(self.bufferD[0]) cudart.cudaFree(self.bufferD[1]) def get_batch_size(self): # do NOT change name return self.nBS def get_batch(self, nameList=None, inputNodeName=None): # do NOT change name print("> Calibration: %d/%d" % (self.iB, 100 // self.nBS)) if (self.iB + 1) * self.nBS > 100: return None batchData0 = self.data[self.keyName0][self.iB * self.nBS:(self.iB + 1) * self.nBS] batchData1 = self.data[self.keyName1][self.iB * self.nBS:(self.iB + 1) * self.nBS] cudart.cudaMemcpy(self.bufferD[0], batchData0.ctypes.data, self.bufferSize0, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) cudart.cudaMemcpy(self.bufferD[1], batchData1.ctypes.data, self.bufferSize1, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) self.iB += 1 return self.bufferD def read_calibration_cache(self): # do NOT change name if os.path.exists(self.cacheFile): print("Succeed finding int8 cahce: %s" % (self.cacheFile)) with open(self.cacheFile, "rb") as f: cache = f.read() return cache else: print("Failed finding int8 cache!") return None def write_calibration_cache(self, cache): # do NOT change name with open(self.cacheFile, "wb") as f: f.write(cache) print("Succeed saving int8 cache: %s" % (self.cacheFile)) class DecoderCalibrator(trt.IInt8EntropyCalibrator2): def __init__(self, npzFile, cacheFile, nBS, nSL): # BatchSize,SequenceLength,Calibration trt.IInt8EntropyCalibrator2.__init__(self) self.data = np.load(npzFile) self.cacheFile = cacheFile self.nBS = nBS self.nSL = nSL self.iB = 0 self.keyName0 = "encoder_out-" + str(nSL) self.keyName1 = "encoder_out_lens-" + str(nSL) self.keyName2 = "hyps_pad_sos_eos-" + str(nSL) self.keyName3 = "hyps_lens_sos-" + str(nSL) self.keyName4 = "ctc_score-" + str(nSL) self.bufferSize0 = np.zeros([nBS, nSL, 256], dtype=np.float32).nbytes self.bufferSize1 = np.zeros([nBS], dtype=np.int32).nbytes self.bufferSize2 = np.zeros([nBS, 10, 64], dtype=np.int32).nbytes self.bufferSize3 = np.zeros([nBS, 10], dtype=np.int32).nbytes self.bufferSize4 = np.zeros([nBS, 10], dtype=np.float32).nbytes self.bufferD = [] self.bufferD.append(cudart.cudaMalloc(self.bufferSize0)[1]) self.bufferD.append(cudart.cudaMalloc(self.bufferSize1)[1]) self.bufferD.append(cudart.cudaMalloc(self.bufferSize2)[1]) self.bufferD.append(cudart.cudaMalloc(self.bufferSize3)[1]) self.bufferD.append(cudart.cudaMalloc(self.bufferSize4)[1]) print("> Decoder calibrator constructor") def __del__(self): for i in range(5): cudart.cudaFree(self.bufferD[i]) def get_batch_size(self): # do NOT change name return self.nBS def get_batch(self, nameList=None, inputNodeName=None): # do NOT change name print("> Calibration: %d/%d" % (self.iB, 100 // self.nBS)) if (self.iB + 1) * self.nBS > 100: return None batchData0 = self.data[self.keyName0][self.iB * self.nBS:(self.iB + 1) * self.nBS] batchData1 = self.data[self.keyName1][self.iB * self.nBS:(self.iB + 1) * self.nBS] batchData2 = self.data[self.keyName2][self.iB * self.nBS:(self.iB + 1) * self.nBS] batchData3 = self.data[self.keyName3][self.iB * self.nBS:(self.iB + 1) * self.nBS] batchData4 = self.data[self.keyName4][self.iB * self.nBS:(self.iB + 1) * self.nBS] cudart.cudaMemcpy(self.bufferD[0], batchData0.ctypes.data, self.bufferSize0, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) cudart.cudaMemcpy(self.bufferD[1], batchData1.ctypes.data, self.bufferSize1, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) cudart.cudaMemcpy(self.bufferD[2], batchData2.ctypes.data, self.bufferSize2, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) cudart.cudaMemcpy(self.bufferD[3], batchData3.ctypes.data, self.bufferSize3, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) cudart.cudaMemcpy(self.bufferD[4], batchData4.ctypes.data, self.bufferSize4, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) self.iB += 1 return self.bufferD def read_calibration_cache(self): # do NOT change name if os.path.exists(self.cacheFile): print("Succeed finding int8 cahce: %s" % (self.cacheFile)) with open(self.cacheFile, "rb") as f: cache = f.read() return cache else: print("Failed finding int8 cache!") return None def write_calibration_cache(self, cache): # do NOT change name with open(self.cacheFile, "wb") as f: f.write(cache) print("Succeed saving int8 cache: %s" % (self.cacheFile)) if __name__ == "__main__": cudart.cudaDeviceSynchronize() nBS = 4 nSL = 64 m = EncoderCalibrator("/workspace/data/calibration.npz", "./testCalibrator.cache", nBS, nSL) for i in range((100 + nBS - 1) // nBS + 1): print("%2d->" % i, m.get_batch("FakeNameList")) m = DecoderCalibrator("/workspace/data/calibration.npz", "./testCalibrator.cache", nBS, nSL) for i in range((100 + nBS - 1) // nBS + 1): print("%2d->" % i, m.get_batch("FakeNameList"))
trt-samples-for-hackathon-cn-master
Hackathon2022/code/calibrator.py
from collections import OrderedDict from copy import deepcopy import numpy as np import onnx import onnx_graphsurgeon as gs sourceOnnx = "./encoderV2.onnx" destinationOnnx = "./encoderV3.onnx" bConvertToStaticNetwork = False debugNodeList = [] nWili = 0 bSimplifyOutput = True bNot = False nNot = 0 bNotV2 = True nNotV2 = 0 bMaskPlugin = False nMaskPlugin = 0 bLayerNormPlugin = True nLayerNormPlugin = 0 bConstantFold = True nConstantFold = 0 bReshapeMatmulToConv = True nReshapeMatmulToConv = 0 bExpand = True nExpand = 0 b2DMM = True n2DMM = 0 bAttentionMM = False nAttentionMM = 0 #graph = gs.import_onnx(onnx.load(sourceOnnx)) graph = gs.import_onnx(onnx.shape_inference.infer_shapes(onnx.load(sourceOnnx))) if bConvertToStaticNetwork: graph.inputs[0].shape = [3, 17, 256] graph.inputs[1].shape = [3] else: graph.inputs[0].shape = ['B', 'T', 80] graph.inputs[1].shape = ['B'] # Round 0: ceate useful constant tensor or collect useful shape tensor wiliConstant0 = gs.Constant("wiliConstant0", np.ascontiguousarray(np.array([0], dtype=np.int64))) # MUST use np.ascontiguousarray, or TRT will regard the shape of this Constant as (0) !!! wiliConstant1 = gs.Constant("wiliConstant1", np.ascontiguousarray(np.array([1], dtype=np.int64))) wiliConstant3 = gs.Constant("wiliConstant3", np.ascontiguousarray(np.array([3], dtype=np.int64))) wiliConstant4 = gs.Constant("wiliConstant4", np.ascontiguousarray(np.array([4], dtype=np.int64))) wiliConstantM4 = gs.Constant("wiliConstantM4", np.ascontiguousarray(np.array([-4], dtype=np.int64))) # minus four wiliConstant64 = gs.Constant("wiliConstant64", np.ascontiguousarray(np.array([64], dtype=np.int64))) wiliConstant256 = gs.Constant("wiliConstant256", np.ascontiguousarray(np.array([256], dtype=np.int64))) wiliConstantS0 = gs.Constant("wiliConstantS0", np.array(0, dtype=np.int64)).to_variable(np.dtype(np.int64), []).to_constant(np.array(0, dtype=np.dtype(np.int64))) wiliConstantS1 = gs.Constant("wiliConstantS1", np.array(1, dtype=np.int64)).to_variable(np.dtype(np.int64), []).to_constant(np.array(1, dtype=np.dtype(np.int64))) wiliConstantS2 = gs.Constant("wiliConstantS2", np.array(2, dtype=np.int64)).to_variable(np.dtype(np.int64), []).to_constant(np.array(2, dtype=np.dtype(np.int64))) wiliShapeV = gs.Variable("wiliShapeV-" + str(nWili), np.dtype(np.int64), [3]) wiliShapeN = gs.Node("Shape", "wiliShapeN-" + str(nWili), inputs=[graph.inputs[0]], outputs=[wiliShapeV]) graph.nodes.append(wiliShapeN) nWili += 1 # shape = [], value = ['B'] bTensorScalar = gs.Variable("bTensorScalar", np.dtype(np.int64), []) wiliGatherN = gs.Node("Gather", "wiliGatherN-" + str(nWili), inputs=[wiliShapeV, wiliConstantS0], outputs=[bTensorScalar], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliGatherN) nWili += 1 # shape = [1,], value = ['B'] bTensor = gs.Variable("bTensor", np.dtype(np.int64), [1]) wiliUnsqueezeN = gs.Node("Unsqueeze", "wiliUnsqueezeN-" + str(nWili), inputs=[bTensorScalar, wiliConstant0], outputs=[bTensor]) graph.nodes.append(wiliUnsqueezeN) nWili += 1 # shape = [], value = ['T'] tTensorScalar = gs.Variable("tTensorScalar", np.dtype(np.int64), []) wiliGatherN = gs.Node("Gather", "wiliGatherN-" + str(nWili), inputs=[wiliShapeV, wiliConstantS1], outputs=[tTensorScalar], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliGatherN) nWili += 1 # shape = [1,], value = ['T'] tTensor = gs.Variable("tTensor", np.dtype(np.int64), [1]) wiliUnsqueezeN = gs.Node("Unsqueeze", "wiliUnsqueezeN-" + str(nWili), inputs=[tTensorScalar, wiliConstant0], outputs=[tTensor]) graph.nodes.append(wiliUnsqueezeN) nWili += 1 # shape = [1,], value = ['t4'], t4 = floor('T'/4) - 1 for node in graph.nodes: if node.op == 'Relu' and node.name == 'Relu_38': shapeV = gs.Variable("wiliShapeV-" + str(nWili), np.dtype(np.int64), [4]) shapeN = gs.Node("Shape", "wiliShapeN-" + str(nWili), inputs=[node.outputs[0]], outputs=[shapeV]) graph.nodes.append(shapeN) nWili += 1 t4TensorScalar = gs.Variable("t4TensorScalar", np.dtype(np.int64), []) gatherN = gs.Node("Gather", "wiliGatherN-" + str(nWili), inputs=[shapeV, wiliConstantS2], outputs=[t4TensorScalar], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(gatherN) nWili += 1 t4Tensor = gs.Variable("t4Tensor", np.dtype(np.int64), [1]) unsqueezeN = gs.Node("Unsqueeze", "wiliUnsqueezeN-" + str(nWili), inputs=[t4TensorScalar, wiliConstant0], outputs=[t4Tensor]) graph.nodes.append(unsqueezeN) nWili += 1 ''' # Old method to get t4Tensor for node in graph.nodes: if node.op == 'Unsqueeze' and node.name == 'Unsqueeze_56': t4Tensor = node.outputs[0] # shape = [1,], value = ['t4'], t4 = floor('T'/4) - 1 # Error method to get t4Tensor t4_Tensor = gs.Variable("t4_Tensor", np.dtype(np.int64), [1]) wiliT4_N = gs.Node("Div","wiliDivN-"+str(nWili), inputs = [tTensor, wiliConstant4],outputs=[t4_Tensor]) graph.nodes.append(wiliT4_N) nWili += 1 t4Tensor = gs.Variable("t4Tensor", np.dtype(np.int64), [1]) # shape = [1,], value = ['t4'], t4 = floor('T'/4) - 1 wiliT4N = gs.Node("Sub","wiliSubN-"+str(nWili), inputs = [t4_Tensor, wiliConstant1],outputs=[t4Tensor]) graph.nodes.append(wiliT4N) nWili += 1 ''' # shape = [1,], value = ['B'*'t4'] bt4Tensor = gs.Variable("bt4Tensor-" + str(nWili), np.dtype(np.int64), [1]) wiliMulN = gs.Node("Mul", "wiliMulN-" + str(nWili), inputs=[bTensor, t4Tensor], outputs=[bt4Tensor]) graph.nodes.append(wiliMulN) nWili += 1 # shape = [2,], value = ['B'*'t4',256] bt4Comma256Tensor = gs.Variable("bt4Comma256Tensor-" + str(nWili), np.dtype(np.int64), [2]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[bt4Tensor, wiliConstant256], outputs=[bt4Comma256Tensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # shape = [3,], value = ['B','t4',256] bCommat4Comma64Tensor = gs.Variable("bCommat4Comma64Tensor-" + str(nWili), np.dtype(np.int64), [3]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[bTensor, t4Tensor, wiliConstant256], outputs=[bCommat4Comma64Tensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # shape = [4,], value = ['B','t4',4,64] bCommat4Comma4Comma64Tensor = gs.Variable("bCommat4Comma4Comma64Tensor-" + str(nWili), np.dtype(np.int64), [4]) wiliConcatN = gs.Node("Concat", "wiliConcatN-" + str(nWili), inputs=[bTensor, t4Tensor, wiliConstant4, wiliConstant64], outputs=[bCommat4Comma4Comma64Tensor], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(wiliConcatN) nWili += 1 # Round 0.5: output tensor if bSimplifyOutput: for node in graph.nodes: graph.outputs[0].name = 'deprecated[encoder_out]' graph.outputs[1].name = 'deprecated[encoder_out_lens]' graph.outputs = graph.outputs[:2] ''' wiliDivV0 = gs.Variable("wiliDevV-0", np.dtype(np.int32), ['B']) wiliDivN0 = gs.Node("Div", "wiliDivN-0", inputs=[graph.inputs[1], wiliConstant4], outputs=[wiliDivV0]) graph.nodes.append(wiliDivN0) wiliAddV0 = gs.Variable("wiliAddV-0", np.dtype(np.int32), ['B']) wiliAddN0 = gs.Node("Add", "wiliAddN-0", inputs=[wiliDivV0, wiliConstant1], outputs=[wiliAddV0]) graph.nodes.append(wiliAddN0) ''' wiliAddV0 = gs.Variable("wiliAddV-0", np.dtype(np.int32), ['B']) wiliAddN0 = gs.Node("Add", "wiliAddN-0", inputs=[graph.inputs[1], wiliConstant3], outputs=[wiliAddV0]) graph.nodes.append(wiliAddN0) wiliDivV0 = gs.Variable("wiliDevV-0", np.dtype(np.int32), ['B']) wiliDivN0 = gs.Node("Div", "wiliDivN-0", inputs=[wiliAddV0, wiliConstant4], outputs=[wiliDivV0]) graph.nodes.append(wiliDivN0) wiliMinV0 = gs.Variable("encoder_out_lens", np.dtype(np.int32), ['B']) wiliMinN0 = gs.Node("Min", "wiliMinN-0", inputs=[wiliDivV0, t4Tensor], outputs=[wiliMinV0]) graph.nodes.append(wiliMinN0) graph.outputs[1] = wiliMinV0 # Round 1: Not, deprecated since V4 if bNot: for node in graph.nodes: if node.name == 'Not_30': castV = gs.Variable("wiliCastV-" + str(nNot), np.dtype(bool), None) castN = gs.Node("Cast", "wiliCastN-" + str(nNot), inputs=[node.i().outputs[0]], outputs=[castV], attrs=OrderedDict([('to', onnx.TensorProto.BOOL)])) graph.nodes.append(castN) nNot += 1 node.inputs = [castV] castV = gs.Variable("wiliCastV-" + str(nNot), np.dtype(np.int32), None) castN = gs.Node("Cast", "wiliCastN-" + str(nNot), inputs=node.outputs, outputs=[castV], attrs=OrderedDict([('to', onnx.TensorProto.INT32)])) graph.nodes.append(castN) nNot += 1 node.o().inputs[0] = castV node.o().o().outputs[0].dtype = np.dtype(np.int32) node.o().o().o().outputs[0].dtype = np.dtype(np.int32) continue if node.op == 'Not' and node.name != 'Not_30': castV = gs.Variable("wiliCastV-" + str(nNot), np.dtype(bool), None) castN = gs.Node("Cast", "wiliCastN-" + str(nNot), inputs=[node.inputs[0]], outputs=[castV], attrs=OrderedDict([('to', onnx.TensorProto.BOOL)])) graph.nodes.append(castN) nNot += 1 node.inputs = [castV] continue # Round 1.1: Not version 2 if bNotV2: for node in graph.nodes: if node.op == 'Slice' and node.name == 'Slice_79': # adjust node before Slice_79 greaterOrEqualNode = node.i().i().i() greaterOrEqualNode.op = 'Less' greaterOrEqualNode.name = 'LessN-' + str(nNotV2) nNotV2 += 1 castV = gs.Variable("wiliCastV-" + str(nNotV2), np.dtype(np.int32), None) castN = gs.Node("Cast", "wiliCastN-" + str(nNotV2), inputs=[greaterOrEqualNode.outputs[0]], outputs=[castV], attrs=OrderedDict([('to', onnx.TensorProto.INT32)])) graph.nodes.append(castN) nNotV2 += 1 # adjust Slice_79 node.inputs[0] = castV node.inputs[2] = wiliConstantM4 # end node.inputs[3] = wiliConstant1 # axes node.inputs[4] = wiliConstant4 # step slice84Node = node.o() tensor613 = slice84Node.outputs[0] tensor613.dtype = np.dtype(np.int32) unsqueezeTo3DN = gs.Node("Unsqueeze", "wiliUnsqueezeTo3DN-" + str(nNotV2), inputs=[node.outputs[0], wiliConstant1], outputs=[tensor613]) graph.nodes.append(unsqueezeTo3DN) nNotV2 += 1 slice84Node.outputs = [] continue if node.op == 'Not' and node.name != 'Not_30': castV = gs.Variable("castV-" + str(nNotV2), np.dtype(bool), None) castN = gs.Node("Cast", "CastN-" + str(nNotV2), inputs=[node.inputs[0]], outputs=[castV], attrs=OrderedDict([('to', onnx.TensorProto.BOOL)])) graph.nodes.append(castN) nNotV2 += 1 node.inputs = [castV] continue # Round 1.2: Not version 2, adjust node after Slice_79 if bNotV2: for node in graph.nodes: if node.op == 'Unsqueeze' and node.name == 'wiliUnsqueezeTo3DN-2': castV0 = node.o(0).o().o().o().outputs[0] castV1 = node.o(12 + 1).o().o().outputs[0] for node in graph.nodes: if node.op == "Where" and node.o().op == 'Softmax': # unknown reason to make the output be correct only #node.inputs[0] = castV0 #nNotV2 += 1 continue if node.op == "Where" and node.i(2).op == 'Softmax': node.inputs[0] = castV0 nNotV2 += 1 continue if node.op == "Where" and node.o().op == 'Conv': node.inputs[0] = castV1 nNotV2 += 1 continue if node.op == "Where" and node.i(2).op == 'Conv': node.inputs[0] = castV1 nNotV2 += 1 continue # Round 1.9: Mask Plugin - Bad Performance if bMaskPlugin: if (True): # one output maskV0 = gs.Variable("wiliMaskV0-" + str(nMaskPlugin), np.dtype(np.int32), ['B', 1, 't4']) # 0 / 1 maskN = gs.Node("Mask", "wiliMaskN-" + str(nMaskPlugin), inputs=[graph.inputs[0], graph.inputs[1]], outputs=[maskV0]) graph.nodes.append(maskN) nMaskPlugin += 1 maskV1 = gs.Variable("wiliMaskV1-" + str(nMaskPlugin), np.dtype(bool), ['B', 1, 't4']) # 0 / 1 castN = gs.Node("Equal", "wiliEqualN-" + str(nMaskPlugin), inputs=[maskV0, wiliConstant1], outputs=[maskV1]) graph.nodes.append(castN) nMaskPlugin += 1 maskV2 = gs.Variable("wiliMaskV2-" + str(nMaskPlugin), np.dtype(bool), ['B', 1, 1, 't4']) # 1 / 0 unsqueezeN = gs.Node("Unsqueeze", "wiliUnsqueezeN-" + str(nMaskPlugin), inputs=[maskV1, wiliConstant1], outputs=[maskV2]) graph.nodes.append(unsqueezeN) nMaskPlugin += 1 for node in graph.nodes: if node.op == "Where" and node.o().op == 'Softmax': node.inputs[0] = maskV2 nMaskPlugin += 1 continue if node.op == "Where" and node.i(2).op == 'Softmax': node.inputs[0] = maskV2 nMaskPlugin += 1 continue if node.op == "Where" and node.o().op == 'Conv': node.inputs[0] = maskV1 nMaskPlugin += 1 continue if node.op == "Where" and node.i(2).op == 'Conv': node.inputs[0] = maskV1 nMaskPlugin += 1 continue else: # two output maskV0 = gs.Variable("wiliMaskV0", np.dtype(np.float32), ['B', 1, 1, 't4']) # 0 / -6e6 maskV1 = gs.Variable("wiliMaskV1", np.dtype(np.float32), ['B', 1, 1, 't4']) # 1 / 0 maskN = gs.Node("Mask", "wiliMaskN-" + str(nMaskPlugin), inputs=[graph.inputs[0], graph.inputs[1]], outputs=[maskV0, maskV1]) graph.nodes.append(maskN) squeezeAfterMaskV = gs.Variable("wiliSqueezeAfterMaskV", np.dtype(np.float32), ['B', 1, 't4']) SqueezeAfterMaskN = gs.Node("Squeeze", "wiliSqueezeAfterMaskN", inputs=[maskV1, wiliConstant1], outputs=[squeezeAfterMaskV]) graph.nodes.append(SqueezeAfterMaskN) for node in graph.nodes: if node.op == "Where" and node.o().op == 'Softmax': node.i().outputs = [] node.op = "Add" node.inputs = [maskV0, node.inputs[2]] nMaskPlugin += 1 if node.op == "Where" and node.i(2).op == 'Softmax': node.i().outputs = [] node.op = "Mul" node.inputs = [maskV1, node.inputs[2]] nMaskPlugin += 1 if node.op == "Where" and node.o().op == 'Conv': node.i().outputs = [] node.op = "Mul" node.inputs = [squeezeAfterMaskV, node.inputs[2]] nMaskPlugin += 1 if node.op == "Where" and node.i(2).op == 'Conv': node.i().outputs = [] node.op = "Mul" node.inputs = [squeezeAfterMaskV, node.inputs[2]] nMaskPlugin += 1 # Round 2: Layer Normalization if bLayerNormPlugin: for node in graph.nodes: if node.op == 'ReduceMean' and \ node.o().op == 'Sub' and node.o().inputs[0] == node.inputs[0] and \ node.o().o(0).op =='Pow' and node.o().o(1).op =='Div' and \ node.o().o(0).o().op == 'ReduceMean' and \ node.o().o(0).o().o().op == 'Add' and \ node.o().o(0).o().o().o().op == 'Sqrt' and \ node.o().o(0).o().o().o().o().op == 'Div' and node.o().o(0).o().o().o().o() == node.o().o(1) and \ node.o().o(0).o().o().o().o().o().op == 'Mul' and \ node.o().o(0).o().o().o().o().o().o().op == 'Add': inputTensor = node.inputs[0] lastMultipyNode = node.o().o(0).o().o().o().o().o() index = ['weight' in i.name for i in lastMultipyNode.inputs].index(True) b = np.array(deepcopy(lastMultipyNode.inputs[index].values.tolist()), dtype=np.float32) constantB = gs.Constant("LayerNormB-" + str(nLayerNormPlugin), np.ascontiguousarray(b.reshape(-1))) # MUST use np.ascontiguousarray, or TRT will regard the shape of this Constant as (0) !!! lastAddNode = node.o().o(0).o().o().o().o().o().o() index = ['bias' in i.name for i in lastAddNode.inputs].index(True) a = np.array(deepcopy(lastAddNode.inputs[index].values.tolist()), dtype=np.float32) constantA = gs.Constant("LayerNormA-" + str(nLayerNormPlugin), np.ascontiguousarray(a.reshape(-1))) inputList = [inputTensor, constantB, constantA] layerNormV = gs.Variable("LayerNormV-" + str(nLayerNormPlugin), np.dtype(np.float32), None) layerNormN = gs.Node("LayerNorm", "LayerNormN-" + str(nLayerNormPlugin), inputs=inputList, outputs=[layerNormV]) graph.nodes.append(layerNormN) if lastAddNode.outputs[0] in graph.outputs: # the last LayerNorm provide one of the graph's output, and do not unsqueeze to 4 dimension # oldLastAdd -> graph.outputs[0] ===> LayerNorm -> Squeeze -> graph.outputs[0] layerNormN.outputs[0].name = 'encoder_out' index = graph.outputs.index(lastAddNode.outputs[0]) graph.outputs[index] = layerNormN.outputs[0] else: # other LayerNorm contain the subsequent Squeeze operation for n in graph.nodes: if lastAddNode.outputs[0] in n.inputs: index = n.inputs.index(lastAddNode.outputs[0]) n.inputs[index] = layerNormN.outputs[0] lastAddNode.outputs = [] nLayerNormPlugin += 1 continue # Round 3: constant fold if bConstantFold: for node in graph.nodes: if node.op == 'Slice' and node.name == 'Slice_74': node.inputs[2] = t4Tensor nConstantFold += 1 table5000x256 = node.inputs[0].values[0] for i in range(1, 24, 2): trashNode = node.o(i).o().o() # Transpose factor256x256 = node.o(i).inputs[1].values newTable = np.matmul(table5000x256, factor256x256).transpose().reshape(1, 4, 64, 5000)[:, :, :, :256] constantData = gs.Constant("wiliConstant-" + str(nConstantFold), np.ascontiguousarray(newTable)) sliceV = gs.Variable("wiliSliceV-" + str(nConstantFold), np.dtype(np.float32), [1, 4, 64, 't4']) sliceN = gs.Node( "Slice", "wiliSliceN-" + str(nConstantFold), inputs=[ constantData, # data wiliConstant0, # start=0 t4Tensor, # end wiliConstant3, # axes=3 wiliConstant1, # step=1 ], outputs=[sliceV] ) graph.nodes.append(sliceN) node.o(i).o().o().o().inputs[1] = sliceV trashNode.outputs = [] nConstantFold += 1 continue # Round 4: Reshape + Matmul -> Convolution, by Hongwei if bReshapeMatmulToConv: for node in graph.nodes: if node.op == "Relu" and node.name == 'Relu_38': matmulNode = node.o(2).o().o() addNode = matmulNode.o() mulNode = addNode.o() convKernel = matmulNode.inputs[1].values.transpose(1, 0).reshape(256, 256, 1, 19).astype(np.float32) convKernelV = gs.Constant("wiliConvKernelV-" + str(nReshapeMatmulToConv), np.ascontiguousarray(convKernel)) nReshapeMatmulToConv += 1 convBias = addNode.inputs[0].values convBiasV = gs.Constant("wiliConvBiasV-" + str(nReshapeMatmulToConv), np.ascontiguousarray(convBias)) nReshapeMatmulToConv += 1 convV = gs.Variable("wiliConvV-" + str(nReshapeMatmulToConv), np.dtype(np.float32), ['B', 256, 't4', 1]) convN = gs.Node("Conv", "wiliConvN-" + str(nReshapeMatmulToConv), inputs=[node.outputs[0], convKernelV, convBiasV], outputs=[convV]) convN.attrs = OrderedDict([ ('dilations', [1, 1]), ('kernel_shape', [1, 19]), ('pads', [0, 0, 0, 0]), ('strides', [1, 1]), ]) graph.nodes.append(convN) nReshapeMatmulToConv += 1 squeezeV = gs.Variable("wiliSqueezeV-" + str(nReshapeMatmulToConv), np.dtype(np.float32), ['B', 256, 't4']) squeezeN = gs.Node("Squeeze", "wiliSqueezeN-" + str(nReshapeMatmulToConv), inputs=[convV, wiliConstant3], outputs=[squeezeV]) graph.nodes.append(squeezeN) nReshapeMatmulToConv += 1 transposeV = gs.Variable("wiliTransposeV-" + str(nReshapeMatmulToConv), np.dtype(np.float32), ['B', 't4', 256]) transposeN = gs.Node("Transpose", "wiliTransposeN-" + str(nReshapeMatmulToConv), inputs=[squeezeV], outputs=[transposeV], attrs=OrderedDict([('perm', [0, 2, 1])])) graph.nodes.append(transposeN) nReshapeMatmulToConv += 1 mulNode.inputs[0] = transposeV # Round 5: Expand_23 if bExpand: for node in graph.nodes: if node.op == 'Expand' and node.name == 'Expand_23': node.i().i().inputs[1] = tTensorScalar concatV = gs.Variable("wiliConcatV-" + str(nExpand), np.dtype(np.int64), [2]) concatN = gs.Node("Concat", "wiliConcatN-" + str(nExpand), inputs=[bTensor, tTensor], outputs=[concatV], attrs=OrderedDict([('axis', 0)])) graph.nodes.append(concatN) nExpand += 1 node.inputs[1] = concatV # Round 6: 2D Matrix multiplication if b2DMM: for node in graph.nodes: if node.op == 'MatMul' and node.name != 'MatMul_61' and \ node.o().op == 'Add' and \ node.o().o().op == 'Sigmoid' and \ node.o().o().o().op == 'Mul' and \ node.o().o().o().o().op == 'MatMul' and \ node.o().o().o().o().o().op == 'Add' and \ node.o().o().o().o().o().o().op == 'Mul': reshape1V = gs.Variable("wiliReshape1V-" + str(n2DMM), np.dtype(np.float32), ['B*t4', 256]) reshape1N = gs.Node("Reshape", "wiliReshape1N-" + str(n2DMM), inputs=[node.inputs[0], bt4Comma256Tensor], outputs=[reshape1V]) graph.nodes.append(reshape1N) n2DMM += 1 node.inputs[0] = reshape1V lastNode = node.o().o().o().o().o().o() # Mul[0.5] reshape2V = gs.Variable("wiliReshape2V-" + str(n2DMM), np.dtype(np.float32), ['B', 't4', 256]) reshape2N = gs.Node("Reshape", "wiliReshape2N-" + str(n2DMM), inputs=[lastNode.inputs[0], bCommat4Comma64Tensor], outputs=[reshape2V]) graph.nodes.append(reshape2N) n2DMM += 1 lastNode.inputs[0] = reshape2V ''' # reshape within Attention, worse performance for node in graph.nodes: if node.op == 'Reshape' and node.i(0).op == 'Add' and node.i(1).op == 'Concat' and node.o().op != "Mul": node.inputs[1] = shape3V if node.o().op == 'Add': LayerNormN = node.i().i(1).i() layerNormTensor = node.i().i(1).i().outputs[0] reshapeV = gs.Variable("reshapeV-"+str(n2DMM), np.dtype(np.float32), ['B','t4',256]) reshapeN = gs.Node("Reshape","wiliReshapeN-"+str(n2DMM), inputs = [reshapeV, bt4Comma256Tensor],outputs=[layerNormTensor]) graph.nodes.append(reshapeN) n2DMM += 1 LayerNormN.outputs[0] = reshapeV ''' if bAttentionMM: for node in graph.nodes: if node.op == 'LayerNorm' and node.name == int(node.name[11:]) % 5 == 1: qM = node.o(1).inputs[1].values qB = node.o(1).o().inputs[0].values kM = node.o(2).inputs[1].values kB = node.o(2).o().inputs[0].values vM = node.o(3).inputs[1].values vB = node.o(3).o().inputs[0].values bigFactor = np.concatenate([qM, kM, vM], axis=1) bigBias = np.concatenate([qB, kB, vB], axis=0) bigFactorTensor = gs.Constant("bigFactorTensor" + str(nAttentionMM), np.ascontiguousarray(bigFactor)) bigBiasTensor = gs.Constant("bigBiasTensor" + str(nAttentionMM), np.ascontiguousarray(bigBias)) nAttentionMM += 1 qReshapeN = node.o(1).o().o() kReshapeN = node.o(2).o().o() vReshapeN = node.o(3).o().o() matMulV = gs.Variable("wiliMatMul1V-" + str(nAttentionMM), np.dtype(np.float32), ['B*t4', 256 * 3]) matMulN = gs.Node("MatMul", "wiliMatMulN-" + str(nAttentionMM), inputs=[node.outputs[0], bigFactorTensor], outputs=[matMulV]) graph.nodes.append(matMulN) nAttentionMM += 1 addV = gs.Variable("wiliAddV-" + str(nAttentionMM), np.dtype(np.float32), ['B*t4', 256 * 3]) addN = gs.Node("Add", "wiliAddN-" + str(nAttentionMM), inputs=[matMulV, bigBiasTensor], outputs=[addV]) graph.nodes.append(addN) nAttentionMM += 1 split0V = gs.Variable("wiliSplit0V-" + str(nAttentionMM), np.dtype(np.float32), ['B*t4', 256]) split1V = gs.Variable("wiliSplit1V-" + str(nAttentionMM), np.dtype(np.float32), ['B*t4', 256]) split2V = gs.Variable("wiliSplit2V-" + str(nAttentionMM), np.dtype(np.float32), ['B*t4', 256]) splitN = gs.Node("Split", "wiliSplitN-" + str(nAttentionMM), inputs=[addV], outputs=[split0V, split1V, split2V], attrs=OrderedDict([('axis', 1)])) graph.nodes.append(splitN) nAttentionMM += 1 qReshapeN.inputs[0] = split0V qReshapeN.inputs[1] = bCommat4Comma4Comma64Tensor kReshapeN.inputs[0] = split1V kReshapeN.inputs[1] = bCommat4Comma4Comma64Tensor vReshapeN.inputs[0] = split2V vReshapeN.inputs[1] = bCommat4Comma4Comma64Tensor # for debug if len(debugNodeList) > 0: for node in graph.nodes: if node.name in debugNodeList: #graph.outputs.append( node.inputs[0] ) graph.outputs.append(node.outputs[0]) #graph.outputs = [node.outputs[0]] graph.cleanup() onnx.save(gs.export_onnx(graph), destinationOnnx) print("finish encoder onnx-graphsurgeon!") print("%4d Not" % nNot) print("%4d NotV2" % nNotV2) print("%4d mask" % nMaskPlugin) print("%4d LayerNormPlugin" % nLayerNormPlugin) print("%4d ConstantFold" % nConstantFold) print("%4d ReshapeMatmulToConv" % nReshapeMatmulToConv) print("%4d Expand" % nExpand) print("%4d 2DMM" % n2DMM) print("%4d Wili" % nWili) print("%4d AttentionMM" % nAttentionMM)
trt-samples-for-hackathon-cn-master
Hackathon2022/code/encoder-surgeonV5.py
#!/usr/bin/python import numpy as np np.random.seed(97) for bs in [1, 4, 16, 64]: for sl in [16, 64, 256, 1024]: fileName = "./data/encoder-%d-%d.npz" % (bs, sl) data = {} data['speech'] = np.random.rand(bs * sl * 80).astype(np.float32).reshape(bs, sl, 80) * 2 - 1 data['speech_lengths'] = np.random.randint(1, sl, [bs]).astype(np.int32) data['encoder_out'] = np.random.rand(bs * (sl // 4 - 1) * 256).astype(np.float32).reshape(bs, (sl // 4 - 1), 256) * 2 - 1 data['encoder_out_lens'] = np.random.randint(1, sl, [bs, 1, (sl // 4 - 1)]).astype(bool).reshape(bs, 1, (sl // 4 - 1)) np.savez(fileName, **data) for bs in [1, 4, 16, 64]: for sl in [16, 64, 256, 1024]: fileName = "./data/decoder-%d-%d.npz" % (bs, sl) data = {} data['encoder_out'] = np.random.rand(bs * sl * 256).astype(np.float32).reshape(bs, sl, 256) * 2 - 1 data['encoder_out_lens'] = np.random.randint(1, sl, [bs]).astype(np.int32) #data['hyps_pad_sos_eos'] = np.random.randint(0,10,[bs,10,sl]).astype(np.int32) data['hyps_pad_sos_eos'] = np.random.randint(0, 10, [bs, 10, 64]).astype(np.int32) data['hyps_lens_sos'] = np.random.randint(0, 10, [bs, 10]).astype(np.int32) data['ctc_score'] = np.random.rand(bs * 10).astype(np.float32).reshape(bs, 10) * 2 - 1 #data['decoder_out'] = np.random.rand(bs*10*(sl-1)*4233).astype(np.float32).reshape(bs,10,sl-1,4233) * 2 - 1 data['decoder_out'] = np.random.rand(bs * 10 * (64 - 1) * 4233).astype(np.float32).reshape(bs, 10, (64 - 1), 4233) * 2 - 1 data['best_index'] = np.random.randint(0, 10, [bs]).astype(np.int32) np.savez(fileName, **data) print("Finish!")
trt-samples-for-hackathon-cn-master
Hackathon2022/code/createFakeIOData.py
#!/usr/bin/python import os import sys import ctypes import numpy as np from glob import glob from time import time_ns from datetime import datetime as dt from cuda import cudart import tensorrt as trt dataFilePath = "./data/" planFilePath = "" encoderPlanFile = planFilePath + "encoder.plan" encoderScoreFile = planFilePath + "encoderScore.txt" decoderPlanFile = planFilePath + "decoder.plan" decoderScoreFile = planFilePath + "decoderScore.txt" soFileList = glob("./*.so") tableHead = \ """ bs: Batch Size sl: Sequence Length lt: Latency (ms) tp: throughput (word/s) a0: maximum of absolute difference of output 0 r0: median of relative difference of output 0 a1: maximum of absolute difference of output 1 r1: median of relative difference of output 1 ----+----+--------+---------+---------+---------+---------+---------+------------- bs| sl| lt| tp| a0| r0| a1| r1| output check ----+----+--------+---------+---------+---------+---------+---------+------------- """ def printArrayInfo(x, description=""): print( '%s: %s\n Mean=%.5e,SumAbs=%.5e,Var=%.5e,Max=%.5f,Min=%.5f,SAD=%.5e'%( \ description,str(x.shape),np.mean(x),np.sum(abs(x)),np.var(x),np.max(x),np.min(x),np.sum(np.abs(np.diff(x.reshape(-1)))) )) print("\t", x.reshape(-1)[:10]) def check(a, b, weak=False, epsilon=1e-5): if weak: res = np.all(np.abs(a - b) < epsilon) else: res = np.all(a == b) diff0 = np.max(np.abs(a - b)) diff1 = np.median(np.abs(a - b) / (np.abs(b) + epsilon)) #print("check:",res,diff0,diff1) return res, diff0, diff1 #------------------------------------------------------------------------------- logger = trt.Logger(trt.Logger.ERROR) trt.init_libnvinfer_plugins(logger, '') if len(soFileList) > 0: print("Find Plugin %s!" % soFileList) else: print("No Plugin!") for soFile in soFileList: ctypes.cdll.LoadLibrary(soFile) #------------------------------------------------------------------------------- def testEncoder(): print("Test Encoder Part!") with open(encoderScoreFile, 'w') as f: if os.path.isfile(encoderPlanFile): with open(encoderPlanFile, 'rb') as encoderF: engine = trt.Runtime(logger).deserialize_cuda_engine(encoderF.read()) if engine is None: print("Failed loading %s" % encoderPlanFile) return print("Succeeded loading %s" % encoderPlanFile) else: print("Failed finding %s" % encoderPlanFile) return nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput context = engine.create_execution_context() print(tableHead) # for standard output #test = sorted(glob("/data/attention_from_hackthon/test_data" + "/encoder-*.npz")) test = sorted(glob("/data/attention_from_hackthon/test_data" + "/encoder-*.npz")) #for ioFile in sorted(glob("/data/attention_from_hackthon/test_data" + "/encoder-*.npz")): for ioFile in sorted(glob("./data/encoder-*.npz")): ioData = np.load(ioFile) speech = ioData['speech'] speech_lengths = ioData['speech_lengths'] batchSize, sequenceLength, _ = speech.shape # if batchSize != 1 or sequenceLength != 64: # continue context.set_binding_shape(0, speech.shape) context.set_binding_shape(1, speech_lengths.shape) #for i in range(nInput + nOutput): # print("Input ->" if engine.binding_is_input(i) else "Output->", engine.get_binding_dtype(i), engine.get_binding_shape(i), context.get_binding_shape(i), engine.get_binding_dtype(i), engine.get_binding_name(i)) #print("Finish all input binding: %s"%context.all_binding_shapes_specified) bufferH = [] bufferH.append(speech.astype(np.float32).reshape(-1)) bufferH.append(speech_lengths.astype(np.int32).reshape(-1)) for i in range(nInput, nInput + nOutput): bufferH.append(np.empty(context.get_binding_shape(i), dtype=trt.nptype(engine.get_binding_dtype(i)))) bufferD = [] for i in range(nInput + nOutput): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nInput, nInput + nOutput): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) # warm up for i in range(2): context.execute_v2(bufferD) # test infernece time t0 = time_ns() for i in range(2): context.execute_v2(bufferD) t1 = time_ns() timePerInference = (t1 - t0) / 1000 / 1000 / 2 indexEncoderOut = engine.get_binding_index('encoder_out') indexEncoderOutLens = engine.get_binding_index('encoder_out_lens') check0 = check(bufferH[indexEncoderOut], ioData['encoder_out'], True, 5e-5) check1 = check(bufferH[indexEncoderOutLens], np.sum(ioData['encoder_out_lens'].astype(np.int32), axis=2)[:, 0], True) string = "%4d,%4d,%8.3f,%9.3e,%9.3e,%9.3e,%9.3e,%9.3e, %s" % (batchSize, sequenceLength, timePerInference, batchSize * sequenceLength / timePerInference * 1000, check0[1], check0[2], check1[1], check1[2], "Good" if check0[1] < 3.5e-2 and check0[2] < 2e-3 and check1[2] < 1e-1 else "Bad") print(string) f.write(string + "\n") for i in range(nInput + nOutput): cudart.cudaFree(bufferD[i]) #------------------------------------------------------------------------------- def testDecoder(): print("Test Decoder Part!") with open(decoderScoreFile, 'w') as f: if os.path.isfile(decoderPlanFile): with open(decoderPlanFile, 'rb') as decoderF: engine = trt.Runtime(logger).deserialize_cuda_engine(decoderF.read()) if engine is None: print("Failed loading %s" % decoderPlanFile) return print("Succeeded loading %s" % decoderPlanFile) else: print("Failed finding %s" % decoderPlanFile) return nInput = np.sum([engine.binding_is_input(i) for i in range(engine.num_bindings)]) nOutput = engine.num_bindings - nInput context = engine.create_execution_context() print(tableHead) # for standard output for ioFile in sorted(glob(dataFilePath + "./decoder-*.npz")): ioData = np.load(ioFile) encoder_out = ioData['encoder_out'] encoder_out_lens = ioData['encoder_out_lens'] hyps_pad_sos_eos = ioData['hyps_pad_sos_eos'] hyps_lens_sos = ioData['hyps_lens_sos'] ctc_score = ioData['ctc_score'] batchSize, sequenceLength, _ = encoder_out.shape #if batchSize > 16 or sequenceLength > 256: # continue context.set_binding_shape(0, encoder_out.shape) context.set_binding_shape(1, encoder_out_lens.shape) context.set_binding_shape(2, hyps_pad_sos_eos.shape) context.set_binding_shape(3, hyps_lens_sos.shape) context.set_binding_shape(4, ctc_score.shape) #for i in range(nInput + nOutput): # print("Input ->" if engine.binding_is_input(i) else "Output->", engine.get_binding_dtype(i), engine.get_binding_shape(i), context.get_binding_shape(i), engine.get_binding_dtype(i), engine.get_binding_name(i)) #print("Finish all input binding: %s"%context.all_binding_shapes_specified) bufferH = [] bufferH.append(encoder_out.astype(np.float32).reshape(-1)) bufferH.append(encoder_out_lens.astype(np.int32).reshape(-1)) bufferH.append(hyps_pad_sos_eos.astype(np.int32).reshape(-1)) bufferH.append(hyps_lens_sos.astype(np.int32).reshape(-1)) bufferH.append(ctc_score.astype(np.float32).reshape(-1)) for i in range(nInput, nInput + nOutput): bufferH.append(np.empty(context.get_binding_shape(i), dtype=trt.nptype(engine.get_binding_dtype(i)))) bufferD = [] for i in range(nInput + nOutput): bufferD.append(cudart.cudaMalloc(bufferH[i].nbytes)[1]) for i in range(nInput): cudart.cudaMemcpy(bufferD[i], bufferH[i].ctypes.data, bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice) context.execute_v2(bufferD) for i in range(nInput, nInput + nOutput): cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost) # warm up for i in range(10): context.execute_v2(bufferD) # test infernece time t0 = time_ns() for i in range(30): context.execute_v2(bufferD) t1 = time_ns() timePerInference = (t1 - t0) / 1000 / 1000 / 30 indexDecoderOut = engine.get_binding_index('decoder_out') indexBestIndex = engine.get_binding_index('best_index') check0 = check( bufferH[indexDecoderOut], ioData['decoder_out'], True, ) check1 = check(bufferH[indexBestIndex], ioData['best_index'], True) string = "%4d,%4d,%8.3f,%9.3e,%9.3e,%9.3e,%9.3e,%9.3e, %s" % (batchSize, sequenceLength, timePerInference, batchSize * sequenceLength / timePerInference * 1000, check0[1], check0[2], check1[1], check1[2], "Good" if check0[1] < 4e-1 and check0[2] < 2e-4 and check1[2] < 1e-1 else "Bad") print(string) f.write(string + "\n") for i in range(nInput + nOutput): cudart.cudaFree(bufferD[i]) if __name__ == "__main__": testEncoder() testDecoder()
trt-samples-for-hackathon-cn-master
Hackathon2022/code/testEncoderAndDecoder.py
import os import ctypes import numpy as np #from time import time_ns import tensorrt as trt import pycuda.autoinit import pycuda.driver as cuda useFile = False ipnutDataFile = '/workspace/data/encoder-16-64.npz' soFilePath = './Mask.so' epsilon = 1e-6 negInf = -6e6 np.random.seed(97) npToTRT = {np.int8:trt.int8,np.float16:trt.float16,np.int32:trt.int32,np.float32:trt.float32} npToPFT = {np.int8:trt.PluginFieldType.INT8,np.float16:trt.PluginFieldType.FLOAT16, np.int32:trt.PluginFieldType.INT32,np.float32:trt.PluginFieldType.FLOAT32} def check(a, b, weak = False): if weak: return np.all( np.abs(a - b) < epsilon) else: return np.all( a == b ) def maskCPU(bufferHList): input0 = bufferHList[0] input1 = bufferHList[1] b = input0.shape[-0] t4 = input0.shape[1] // 4 - 1 output0 = np.zeros([b,1,1,t4],dtype=np.float32) + negInf output1 = np.zeros([b,1,1,t4],dtype=np.float32) for i in range(b): output0[i,0,0,:input1[i]] = 0 output1[i,0,0,:input1[i]] = 1 return output0, output1 def getMaskPlugin(): for c in trt.get_plugin_registry().plugin_creator_list: #print(c.name) if c.name == 'Mask': return c.create_plugin(c.name, trt.PluginFieldCollection([])) return None def run(nBS,nSL): testCase = "test<bs=%d,sl=%d>"%(nBS,nSL) logger = trt.Logger(trt.Logger.ERROR) trt.init_libnvinfer_plugins(logger, '') ctypes.cdll.LoadLibrary(soFilePath) builder = trt.Builder(logger) network = builder.create_network(1<<0) config = builder.create_builder_config() config.max_workspace_size = 6 << 30 config.flags = 0 #1<<int(trt.BuilderFlag.FP16) inputTensorList = [] inputTensorList.append( network.add_input('inputT0', trt.float32, [-1,-1,80]) ) inputTensorList.append( network.add_input('inputT1', trt.int32, [-1]) ) profile = builder.create_optimization_profile() profile.set_shape('inputT0',[1,16,80],[4,64,80],[16,256,80]) profile.set_shape('inputT1',[1],[4],[16]) config.add_optimization_profile(profile) pluginLayer = network.add_plugin_v2(inputTensorList, getMaskPlugin()) pluginLayer.get_output(0).dtype = trt.float32 #trt.float16 network.mark_output(pluginLayer.get_output(0)) network.mark_output(pluginLayer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() context.set_binding_shape(0,[nBS,nSL,80]) context.set_binding_shape(1,[nBS]) print("Binding all? %s"%(["No","Yes"][int(context.all_binding_shapes_specified)])) stream = cuda.Stream() nInput = np.sum([ engine.binding_is_input(i) for i in range(engine.num_bindings) ]) nOutput = engine.num_bindings - nInput for i in range(engine.num_bindings): print("input ->" if engine.binding_is_input(i) else "output->",engine.get_binding_dtype(i),engine.get_binding_shape(i),context.get_binding_shape(i)) bufferH = [] bufferH.append( np.random.rand(nBS,nSL,80).astype(np.float32).reshape(nBS,nSL,80) ) bufferH.append( np.arange(1,1+nBS).astype(np.int32) ) bufferH.append(np.empty(context.get_binding_shape(2),dtype=trt.nptype(engine.get_binding_dtype(2)))) bufferH.append(np.empty(context.get_binding_shape(3),dtype=trt.nptype(engine.get_binding_dtype(3)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append( cuda.mem_alloc(bufferH[i].nbytes) ) for i in range(nInput): cuda.memcpy_htod_async(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)), stream) context.execute_async_v2(bufferD, stream.handle) stream.synchronize() for i in range(nOutput): cuda.memcpy_dtoh_async(bufferH[nInput+i], bufferD[nInput+i], stream) stream.synchronize() for i in range(nInput): temp = bufferH[i] print("inputH%d"%i, temp.shape,np.sum(abs(temp)),np.var(temp),np.max(temp),np.min(temp),np.sum(np.abs(np.diff(temp.reshape(-1))))) print(temp) for i in range(nOutput): temp = bufferH[nInput+i] print("outputH%d"%i, temp.shape,np.sum(abs(temp)),np.var(temp),np.max(temp),np.min(temp),np.sum(np.abs(np.diff(temp.reshape(-1))))) print(temp) print("check result:") temp1 = bufferH[-1] temp2 = maskCPU(bufferH[:2]) print(check(temp1,temp2,True), "max diff=%f"%(np.max(np.abs(temp1 - temp2))) ) if __name__ == '__main__': os.system("rm -f ./*.trt") np.set_printoptions(precision = 4, linewidth = 200, suppress = True) #cuda.Device(0).make_context() run(16,16) #cuda.Context.pop() #print("test all finish!")
trt-samples-for-hackathon-cn-master
Hackathon2022/code/MaskPlugin-1output/testMaskPlugin.py
import os import ctypes import numpy as np #from time import time_ns import tensorrt as trt import pycuda.autoinit import pycuda.driver as cuda useFile = False ipnutDataFile = '/workspace/data/encoder-16-64.npz' soFilePath = './Mask.so' epsilon = 1e-6 negInf = -6e6 np.random.seed(97) npToTRT = {np.int8:trt.int8,np.float16:trt.float16,np.int32:trt.int32,np.float32:trt.float32} npToPFT = {np.int8:trt.PluginFieldType.INT8,np.float16:trt.PluginFieldType.FLOAT16, np.int32:trt.PluginFieldType.INT32,np.float32:trt.PluginFieldType.FLOAT32} def check(a, b, weak = False): if weak: return np.all( np.abs(a - b) < epsilon) else: return np.all( a == b ) def maskCPU(bufferHList): input0 = bufferHList[0] input1 = bufferHList[1] b = input0.shape[-0] t4 = input0.shape[1] // 4 - 1 output0 = np.zeros([b,1,1,t4],dtype=np.float32) + negInf output1 = np.zeros([b,1,1,t4],dtype=np.float32) for i in range(b): output0[i,0,0,:input1[i]] = 0 output1[i,0,0,:input1[i]] = 1 return output0, output1 def getMaskPlugin(): for c in trt.get_plugin_registry().plugin_creator_list: #print(c.name) if c.name == 'Mask': return c.create_plugin(c.name, trt.PluginFieldCollection([])) return None def run(nBS,nSL): testCase = "test<bs=%d,sl=%d>"%(nBS,nSL) logger = trt.Logger(trt.Logger.ERROR) trt.init_libnvinfer_plugins(logger, '') ctypes.cdll.LoadLibrary(soFilePath) builder = trt.Builder(logger) network = builder.create_network(1<<0) config = builder.create_builder_config() config.max_workspace_size = 6 << 30 config.flags = 0 #1<<int(trt.BuilderFlag.FP16) inputTensorList = [] inputTensorList.append( network.add_input('inputT0', trt.float32, [-1,-1,80]) ) inputTensorList.append( network.add_input('inputT1', trt.int32, [-1]) ) profile = builder.create_optimization_profile() profile.set_shape('inputT0',[1,16,80],[4,64,80],[16,256,80]) profile.set_shape('inputT1',[1],[4],[16]) config.add_optimization_profile(profile) pluginLayer = network.add_plugin_v2(inputTensorList, getMaskPlugin()) pluginLayer.get_output(0).dtype = trt.float32 #trt.float16 network.mark_output(pluginLayer.get_output(0)) network.mark_output(pluginLayer.get_output(1)) engineString = builder.build_serialized_network(network, config) engine = trt.Runtime(logger).deserialize_cuda_engine(engineString) context = engine.create_execution_context() context.set_binding_shape(0,[nBS,nSL,80]) context.set_binding_shape(1,[nBS]) print("Binding all? %s"%(["No","Yes"][int(context.all_binding_shapes_specified)])) stream = cuda.Stream() nInput = np.sum([ engine.binding_is_input(i) for i in range(engine.num_bindings) ]) nOutput = engine.num_bindings - nInput for i in range(engine.num_bindings): print("input ->" if engine.binding_is_input(i) else "output->",engine.get_binding_dtype(i),engine.get_binding_shape(i),context.get_binding_shape(i)) bufferH = [] bufferH.append( np.random.rand(nBS,nSL,80).astype(np.float32).reshape(nBS,nSL,80) ) bufferH.append( np.arange(1,1+nBS).astype(np.int32) ) bufferH.append(np.empty(context.get_binding_shape(2),dtype=trt.nptype(engine.get_binding_dtype(2)))) bufferH.append(np.empty(context.get_binding_shape(3),dtype=trt.nptype(engine.get_binding_dtype(3)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append( cuda.mem_alloc(bufferH[i].nbytes) ) for i in range(nInput): cuda.memcpy_htod_async(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)), stream) context.execute_async_v2(bufferD, stream.handle) stream.synchronize() for i in range(nOutput): cuda.memcpy_dtoh_async(bufferH[nInput+i], bufferD[nInput+i], stream) stream.synchronize() for i in range(nInput): temp = bufferH[i] print("inputH%d"%i, temp.shape,np.sum(abs(temp)),np.var(temp),np.max(temp),np.min(temp),np.sum(np.abs(np.diff(temp.reshape(-1))))) print(temp) for i in range(nOutput): temp = bufferH[nInput+i] print("outputH%d"%i, temp.shape,np.sum(abs(temp)),np.var(temp),np.max(temp),np.min(temp),np.sum(np.abs(np.diff(temp.reshape(-1))))) print(temp) print("check result:") temp1 = bufferH[-1] temp2 = maskCPU(bufferH[:2]) print(check(temp1,temp2,True), "max diff=%f"%(np.max(np.abs(temp1 - temp2))) ) if __name__ == '__main__': os.system("rm -f ./*.trt") np.set_printoptions(precision = 4, linewidth = 200, suppress = True) #cuda.Device(0).make_context() run(16,16) #cuda.Context.pop() #print("test all finish!")
trt-samples-for-hackathon-cn-master
Hackathon2022/code/MaskPlugin-2output/testMaskPlugin.py
import os import ctypes import numpy as np from time import time_ns import tensorrt as trt import pycuda.autoinit import pycuda.driver as cuda useFile = False ipnutDataFile = './layerNormIO-bs64.npz' soFilePath = './LayerNorm.so' nBS = 1024 nSL = 256 nEmbedding = 256 nTime = 100 epsilon = 1e-6 np.random.seed(97) npToTRT = {np.int8:trt.int8,np.float16:trt.float16,np.int32:trt.int32,np.float32:trt.float32} npToPFT = {np.int8:trt.PluginFieldType.INT8,np.float16:trt.PluginFieldType.FLOAT16, np.int32:trt.PluginFieldType.INT32,np.float32:trt.PluginFieldType.FLOAT32} def check(a, b, weak = False): if weak: return np.all( np.abs(a - b) < epsilon) else: return np.all( a == b ) def layerNormCPU(bufferH): _x,b,a = bufferH nEmbed = bufferH[0].shape[2] _0 = np.mean(_x,2)[:,:,np.newaxis] _1 = _x - _0 _2 = _1 * _1 _3 = np.mean(_2,2)[:,:,np.newaxis] _4 = np.array(1e-12,dtype=np.float32) _5 = _4.reshape(1,1,1) _6 = _3 + _5 _7 = np.sqrt(_6) _8 = 1 / _7 # 1/sqrt(...) _9 = b _10 = _9.reshape(1,1,nEmbed) _11 = _8 * _10 # b/sqrt(...) _12 = _0 * _11 # bμ/sqrt(...) _13 = a _14 = _13.reshape(1,1,nEmbed) _15 = _14 - _12 # a-bμ/sqrt(...) _16 = _x * _11 # bx/sqrt(...) _17 = _15 + _16 # b(x-μ)/sqrt(...)+a _18 = _17.reshape(bufferH[0].shape[0],bufferH[0].shape[1],bufferH[0].shape[2]) return _18 def testLayerNormCPU(): print("test LayerNormCPU!") bufferH = [] io = np.load(ipnutDataFile) bufferH.append( io['encoder1_inputs:0'] ) bufferH.append( io['(Unnamed Layer* 9) [Constant]_output'] ) bufferH.append( io['(Unnamed Layer* 13) [Constant]_output'] ) temp1 = layerNormCPU(bufferH) print( 'outputCPU: %s,SumAbs=%.5e,Var=%.5f,Max=%.5f,Min=%.5f,SAD=%.5f'%( \ str(temp1.shape),np.sum(abs(temp1)),np.var(temp1),np.max(temp1),np.min(temp1),np.sum(np.abs(np.diff(temp1.reshape(-1)))) )) #print(temp1) temp2 = io['seq2seq/encoder_1/layer_0/multi_head/conv1d/conv1d/ExpandDims:0'] print( 'outputRef: %s,SumAbs=%.5e,Var=%.5f,Max=%.5f,Min=%.5f,SAD=%.5f'%( \ str(temp2.shape),np.sum(abs(temp2)),np.var(temp2),np.max(temp2),np.min(temp2),np.sum(np.abs(np.diff(temp2.reshape(-1)))) )) #print(temp2) print("check result:") print(check( temp1, temp2, True )) #temp = temp1 - temp2 #print("diff", temp.shape,np.sum(abs(temp)),np.var(temp),np.max(temp),np.min(temp),np.sum(np.abs(np.diff(temp.reshape(-1))))) #print(temp) print("test layerNormCPU finish!") def getLayerNormPlugin(): for c in trt.get_plugin_registry().plugin_creator_list: #print(c.name) if c.name == 'LayerNorm': return c.create_plugin(c.name, trt.PluginFieldCollection([])) return None def run(): testCase = "test<fp%s,bs=%d,sl=%d,nEmbed=%d>"%(['32','16'][0],nBS,nSL,nEmbedding) logger = trt.Logger(trt.Logger.ERROR) trt.init_libnvinfer_plugins(logger, '') ctypes.cdll.LoadLibrary(soFilePath) builder = trt.Builder(logger) network = builder.create_network(1<<0) config = builder.create_builder_config() config.max_workspace_size = 6 << 30 config.flags = [0,1<<int(trt.BuilderFlag.FP16)][0] inputTensorList = [] inputTensorList.append( network.add_input('inputT', trt.float32, [-1,-1,256]) ) inputTensorList.append( network.add_input('inputB', trt.float32, [256]) ) inputTensorList.append( network.add_input('inputA', trt.float32, [256]) ) profile = builder.create_optimization_profile() profile.set_shape('inputT',[1,4,256],[1024,256,256],[1024,256,256]) config.add_optimization_profile(profile) pluginLayer = network.add_plugin_v2(inputTensorList, getLayerNormPlugin()) pluginLayer.get_output(0).dtype = [trt.float32,trt.float16][0] network.mark_output(pluginLayer.get_output(0)) engine = builder.build_engine(network, config) context = engine.create_execution_context() context.set_binding_shape(0,[nBS,nSL,nEmbedding]) context.set_binding_shape(1,[nEmbedding]) context.set_binding_shape(2,[nEmbedding]) print("Binding all? %s"%(["No","Yes"][int(context.all_binding_shapes_specified)])) stream = cuda.Stream() nInput = np.sum([ engine.binding_is_input(i) for i in range(engine.num_bindings) ]) nOutput = engine.num_bindings - nInput for i in range(engine.num_bindings): print("input ->" if engine.binding_is_input(i) else "output->",engine.get_binding_dtype(i),engine.get_binding_shape(i),context.get_binding_shape(i)) bufferH = [] bufferH.append( np.random.rand(nBS,nSL,nEmbedding).astype(np.float32).reshape(nBS,nSL,nEmbedding) * 2 - 1) bufferH.append( np.ones(nEmbedding).astype(np.float32) ) bufferH.append( np.zeros(nEmbedding).astype(np.float32) ) bufferH.append(np.empty(context.get_binding_shape(3),dtype=trt.nptype(engine.get_binding_dtype(3)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append( cuda.mem_alloc(bufferH[i].nbytes) ) for i in range(nInput): cuda.memcpy_htod_async(bufferD[i], np.ascontiguousarray(bufferH[i].reshape(-1)), stream) context.execute_async_v2(bufferD, stream.handle) stream.synchronize() for i in range(nOutput): cuda.memcpy_dtoh_async(bufferH[nInput+i], bufferD[nInput+i], stream) stream.synchronize() for i in range(nInput): temp = bufferH[i] print("inputH%d"%i, temp.shape,np.sum(abs(temp)),np.var(temp),np.max(temp),np.min(temp),np.sum(np.abs(np.diff(temp.reshape(-1))))) print(temp.reshape(-1)[:10]) #print(temp) for i in range(nOutput): temp = bufferH[nInput+i] print("outputH%d"%i, temp.shape,np.sum(abs(temp)),np.var(temp),np.max(temp),np.min(temp),np.sum(np.abs(np.diff(temp.reshape(-1))))) #print(temp) for i in range(10): context.execute_async_v2(bufferD, stream.handle) stream.synchronize() time0 = time_ns() for i in range(nTime): context.execute_async_v2(bufferD, stream.handle) stream.synchronize() time1 = time_ns() print(testCase+"average %fms per inference\n"%((time1-time0)/nTime/1000000)) print("check result:") temp1 = bufferH[-1] temp2 = layerNormCPU(bufferH[:3]) print(check(temp1,temp2,True), "max diff=%f"%(np.max(np.abs(temp1 - temp2))) ) if __name__ == '__main__': os.system("rm -f ./*.trt") np.set_printoptions(precision = 4, linewidth = 200, suppress = True) run() #print("test all finish!")
trt-samples-for-hackathon-cn-master
Hackathon2022/code/LayerNormPlugin/testLayerNormPlugin.py
import os import ctypes from glob import glob from time import time import numpy as np import tensorrt as trt import pycuda.autoinit import pycuda.driver as cuda useDataFromFile = True ipnutDataFile = './output.npz' parameterFile = './para.npz' soFilePath = './Attention.so' nTime = 30 nHead = 4#8or4 nDimPerHead = 64#64or32 nHDim = nHead * nDimPerHead seq = 15 np.random.seed(97) npToTRT = {np.int8:trt.int8,np.float16:trt.float16,np.int32:trt.int32,np.float32:trt.float32} npToPFT = {np.int8:trt.PluginFieldType.INT8,np.float16:trt.PluginFieldType.FLOAT16, np.int32:trt.PluginFieldType.INT32,np.float32:trt.PluginFieldType.FLOAT32} def getAttentionPlugin(useFP16): for c in trt.get_plugin_registry().plugin_creator_list: #print(c.name) if c.name == 'Attention': # p0 = trt.PluginField("useFP16", np.array([int(useFP16)],dtype=np.int32), trt.PluginFieldType.INT32) return c.create_plugin(c.name, trt.PluginFieldCollection([])) return None def buildEngine(logger,datatype): builder = trt.Builder(logger) network = builder.create_network(1<<0) config = builder.create_builder_config() config.max_workspace_size = 6 << 30 config.flags = [0,1<<int(trt.BuilderFlag.FP16)][int(datatype == np.float16)] inputTensorList = [] inputTensorList.append( network.add_input('q_x', npToTRT[datatype], [-1,-1,nHDim]) ) inputTensorList.append( network.add_input('pos_emb', npToTRT[datatype], [-1,-1,nHDim]) ) inputTensorList.append( network.add_input('mask', npToTRT[datatype], [-1, 1, -1]) ) inputTensorList.append( network.add_input('pos_bias_u', npToTRT[datatype], [nHead,nDimPerHead]) ) inputTensorList.append( network.add_input('pos_bias_v', npToTRT[datatype], [nHead,nDimPerHead]) ) inputTensorList.append( network.add_input('linear_qkv_weight', npToTRT[datatype], [3, nHDim,nHDim]) ) inputTensorList.append( network.add_input('linear_q_bias', npToTRT[datatype], [nHDim]) ) inputTensorList.append( network.add_input('linear_k_bias', npToTRT[datatype], [nHDim]) ) inputTensorList.append( network.add_input('linear_v_bias', npToTRT[datatype], [nHDim]) ) inputTensorList.append( network.add_input('linear_out_weight', npToTRT[datatype], [nHDim,nHDim]) ) inputTensorList.append( network.add_input('linear_out_bias', npToTRT[datatype], [nHDim]) ) inputTensorList.append( network.add_input('linear_pos_weight', npToTRT[datatype], [nHDim,nHDim]) ) profile = builder.create_optimization_profile() profile.set_shape('q_x', [1,seq,nHDim],[16,seq,nHDim],[32,seq,nHDim]) profile.set_shape('pos_emb',[1,seq,nHDim],[1,seq,nHDim],[1,seq,nHDim]) profile.set_shape('mask', [1,1,seq], [16,1,seq], [32,1,seq]) config.add_optimization_profile(profile) pluginLayer = network.add_plugin_v2(inputTensorList, getAttentionPlugin(int(datatype == np.float16))) pluginLayer.get_output(0).dtype = [trt.float32,trt.float16][int(datatype == np.float16)] network.mark_output(pluginLayer.get_output(0)) return builder.build_engine(network, config) def run(datatype,batchSize,sequenceLength): testCase = "test<bs=%d,sl=%d,fp%s>"%(batchSize,sequenceLength,['32','16'][int(datatype == np.float16)]) #print(testCase+"start!") logger = trt.Logger(trt.Logger.ERROR) trt.init_libnvinfer_plugins(logger, '') ctypes.cdll.LoadLibrary(soFilePath) trtFile = 'engine-fp' + ['32','16'][int(datatype == np.float16)] +'.trt' # if os.path.isfile(trtFile): # with open(trtFile, 'rb') as f: # engineStr = f.read() # engine = trt.Runtime(logger).deserialize_cuda_engine(engineStr) # if engine == None: # print("Failed loading engine!") # return # print("Succeeded loading engine!") # else: engine = buildEngine(logger,datatype) if engine == None: print("Failed building engine!") return print("succeeded building engine!") with open(trtFile, 'wb') as f: f.write( engine.serialize() ) context = engine.create_execution_context() context.set_binding_shape( 0,[batchSize,sequenceLength,nHDim]) context.set_binding_shape( 1,[1,sequenceLength,nHDim]) context.set_binding_shape( 2,[batchSize,1,sequenceLength]) print("Binding all? %s"%(["No","Yes"][int(context.all_binding_shapes_specified)])) stream = cuda.Stream() nInput = np.sum([ engine.binding_is_input(i) for i in range(engine.num_bindings) ]) nOutput = engine.num_bindings - nInput for i in range(engine.num_bindings): print("input ->" if engine.binding_is_input(i) else "output->",engine.get_binding_dtype(i),engine.get_binding_shape(i),context.get_binding_shape(i)) bufferH = [] data = np.load(ipnutDataFile) para = np.load(parameterFile) if useDataFromFile: bufferH.append(np.ascontiguousarray( data['856'].astype(datatype).reshape(-1) )) bufferH.append(np.ascontiguousarray( data['603'].astype(datatype).reshape(-1) )) bufferH.append(np.ascontiguousarray( data['613'].astype(datatype).reshape(-1) )) bufferH.append(np.ascontiguousarray( para['encoder.encoders.1.self_attn.pos_bias_u'].astype(datatype).reshape(-1) )) bufferH.append(np.ascontiguousarray( para['encoder.encoders.1.self_attn.pos_bias_v'].astype(datatype).reshape(-1) )) q_weight = para['encoder.encoders.1.self_attn.linear_q.weight'] k_weight = para['encoder.encoders.1.self_attn.linear_k.weight'] v_weight = para['encoder.encoders.1.self_attn.linear_v.weight'] qkv_weight = np.stack([q_weight, k_weight, v_weight]) bufferH.append(np.ascontiguousarray( qkv_weight.astype(datatype).reshape(-1) )) bufferH.append(np.ascontiguousarray( para['encoder.encoders.1.self_attn.linear_q.bias'].astype(datatype).reshape(-1) )) # bufferH.append(np.ascontiguousarray( para['encoder.encoders.1.self_attn.linear_k.weight'].astype(datatype).reshape(-1) )) bufferH.append(np.ascontiguousarray( para['encoder.encoders.1.self_attn.linear_k.bias'].astype(datatype).reshape(-1) )) # bufferH.append(np.ascontiguousarray( para['encoder.encoders.1.self_attn.linear_v.weight'].astype(datatype).reshape(-1) )) bufferH.append(np.ascontiguousarray( para['encoder.encoders.1.self_attn.linear_v.bias'].astype(datatype).reshape(-1) )) bufferH.append(np.ascontiguousarray( para['encoder.encoders.1.self_attn.linear_out.weight'].astype(datatype).reshape(-1) )) bufferH.append(np.ascontiguousarray( para['encoder.encoders.1.self_attn.linear_out.bias'].astype(datatype).reshape(-1) )) bufferH.append(np.ascontiguousarray( para['encoder.encoders.1.self_attn.linear_pos.weight'].astype(datatype).reshape(-1) )) print("test") else: bufferH.append(np.ascontiguousarray( np.random.rand(batchSize,sequenceLength,nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.random.rand(batchSize,sequenceLength,nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.random.rand(batchSize,sequenceLength,nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.random.rand(batchSize,sequenceLength,nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.ones([batchSize,1,sequenceLength]))) bufferH.append(np.ascontiguousarray( np.random.rand(nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.random.rand(nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.random.rand(nHDim*nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.random.rand(nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.random.rand(nHDim*nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.random.rand(nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.random.rand(nHDim*nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.random.rand(nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.random.rand(nHDim*nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.random.rand(nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.ascontiguousarray( np.random.rand(nHDim*nHDim).astype(datatype).reshape(-1)*2-1 )) bufferH.append(np.empty(context.get_binding_shape(12),dtype=trt.nptype(engine.get_binding_dtype(12)))) bufferD = [] for i in range(engine.num_bindings): bufferD.append( cuda.mem_alloc(bufferH[i].nbytes) ) for i in range(nInput): cuda.memcpy_htod_async(bufferD[i], bufferH[i], stream) context.execute_async_v2(bufferD, stream.handle) stream.synchronize() time0 = time() for i in range(nTime): context.execute_async_v2(bufferD, stream.handle) stream.synchronize() time1 = time() print(testCase+"average %fms per inference\n"%((time1-time0)/nTime*1000)) for i in range(nOutput): cuda.memcpy_dtoh_async(bufferH[nInput+i], bufferD[nInput+i], stream) stream.synchronize() print("res=") #print(bufferH[-1]) temp1 = bufferH[-1] data = np.load(ipnutDataFile) temp4 = data["964"] tt = np.max(np.abs(temp1-temp4)) print("test", tt) ''' print("ref=") print(data['att']) ''' #print(testCase+"finish!") if __name__ == '__main__': #os.system("rm -f ./*.trt") np.set_printoptions(precision = 4, linewidth = 200, suppress = True) #cuda.Device(0).make_context() run(np.float32,16,seq) ''' run(np.float32,16,256) run(np.float32,16,512) run(np.float32,32,128) run(np.float32,32,256) run(np.float32,32,512) ''' ''' run(np.float16,16,128) run(np.float16,16,256) run(np.float16,16,512) run(np.float16,32,128) run(np.float16,32,256) run(np.float16,32,512) ''' #cuda.Context.pop() #print("test all finish!")
trt-samples-for-hackathon-cn-master
Hackathon2022/code/AttentionPlugin/testAttentionPlugin.py
from share import * import config import cv2 import einops import gradio as gr import numpy as np import torch import random from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from annotator.mlsd import MLSDdetector from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler apply_mlsd = MLSDdetector() model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict('./models/control_sd15_mlsd.pth', location='cuda')) model = model.cuda() ddim_sampler = DDIMSampler(model) def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, value_threshold, distance_threshold): with torch.no_grad(): input_image = HWC3(input_image) detected_map = apply_mlsd(resize_image(input_image, detect_resolution), value_threshold, distance_threshold) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if config.save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [255 - cv2.dilate(detected_map, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)] + results block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Control Stable Diffusion with Hough Line Maps") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") prompt = gr.Textbox(label="Prompt") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox(label='Guess Mode', value=False) detect_resolution = gr.Slider(label="Hough Resolution", minimum=128, maximum=1024, value=512, step=1) value_threshold = gr.Slider(label="Hough value threshold (MLSD)", minimum=0.01, maximum=2.0, value=0.1, step=0.01) distance_threshold = gr.Slider(label="Hough distance threshold (MLSD)", minimum=0.01, maximum=20.0, value=0.1, step=0.01) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = gr.Number(label="eta (DDIM)", value=0.0) a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, value_threshold, distance_threshold] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(server_name='0.0.0.0')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/gradio_hough2image.py
path_sd15 = './models/v1-5-pruned.ckpt' path_sd15_with_control = './models/control_sd15_openpose.pth' path_input = './models/anything-v3-full.safetensors' path_output = './models/control_any3_openpose.pth' import os assert os.path.exists(path_sd15), 'Input path_sd15 does not exists!' assert os.path.exists(path_sd15_with_control), 'Input path_sd15_with_control does not exists!' assert os.path.exists(path_input), 'Input path_input does not exists!' assert os.path.exists(os.path.dirname(path_output)), 'Output folder not exists!' import torch from share import * from cldm.model import load_state_dict sd15_state_dict = load_state_dict(path_sd15) sd15_with_control_state_dict = load_state_dict(path_sd15_with_control) input_state_dict = load_state_dict(path_input) def get_node_name(name, parent_name): if len(name) <= len(parent_name): return False, '' p = name[:len(parent_name)] if p != parent_name: return False, '' return True, name[len(parent_name):] keys = sd15_with_control_state_dict.keys() final_state_dict = {} for key in keys: is_first_stage, _ = get_node_name(key, 'first_stage_model') is_cond_stage, _ = get_node_name(key, 'cond_stage_model') if is_first_stage or is_cond_stage: final_state_dict[key] = input_state_dict[key] continue p = sd15_with_control_state_dict[key] is_control, node_name = get_node_name(key, 'control_') if is_control: sd15_key_name = 'model.diffusion_' + node_name else: sd15_key_name = key if sd15_key_name in input_state_dict: p_new = p + input_state_dict[sd15_key_name] - sd15_state_dict[sd15_key_name] # print(f'Offset clone from [{sd15_key_name}] to [{key}]') else: p_new = p # print(f'Direct clone to [{key}]') final_state_dict[key] = p_new torch.save(final_state_dict, path_output) print('Transferred model saved at ' + path_output)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/tool_transfer_control.py
save_memory = False
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/config.py
from share import * import config import cv2 import einops import gradio as gr import numpy as np import torch import random from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from annotator.midas import MidasDetector from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler apply_midas = MidasDetector() model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict('./models/control_sd15_depth.pth', location='cuda')) model = model.cuda() ddim_sampler = DDIMSampler(model) def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): with torch.no_grad(): input_image = HWC3(input_image) detected_map, _ = apply_midas(resize_image(input_image, detect_resolution)) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if config.save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [detected_map] + results block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Control Stable Diffusion with Depth Maps") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") prompt = gr.Textbox(label="Prompt") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox(label='Guess Mode', value=False) detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384, step=1) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = gr.Number(label="eta (DDIM)", value=0.0) a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(server_name='0.0.0.0')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/gradio_depth2image.py
from share import * import config import cv2 import einops import gradio as gr import numpy as np import torch import random import os import tensorrt as trt from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from annotator.canny import CannyDetector from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler from ldm.util import log_txt_as_img, exists, instantiate_from_config class hackathon(): def initialize(self): self.apply_canny = CannyDetector() self.model = create_model('./models/cldm_v15.yaml').cpu() self.model.load_state_dict(load_state_dict('/home/player/ControlNet/models/control_sd15_canny.pth', location='cuda')) self.model = self.model.cuda() self.ddim_sampler = DDIMSampler(self.model) self.trt_logger = trt.Logger(trt.Logger.WARNING) trt.init_libnvinfer_plugins(self.trt_logger, '') H = 256 W = 384 control_model = self.model.control_model if not os.path.isfile("sd_control_fp16.engine"): x_in = torch.randn(1, 4, H//8, W //8, dtype=torch.float32).to("cuda") h_in = torch.randn(1, 3, H, W, dtype=torch.float32).to("cuda") t_in = torch.zeros(1, dtype=torch.int64).to("cuda") c_in = torch.randn(1, 77, 768, dtype=torch.float32).to("cuda") controls = control_model(x=x_in, hint=h_in, timesteps=t_in, context=c_in) output_names = [] for i in range(13): output_names.append("out_"+ str(i)) dynamic_table = {'x_in' : {0 : 'bs', 2 : 'H', 3 : 'W'}, 'h_in' : {0 : 'bs', 2 : '8H', 3 : '8W'}, 't_in' : {0 : 'bs'}, 'c_in' : {0 : 'bs'}} for i in range(13): dynamic_table[output_names[i]] = {0 : "bs"} torch.onnx.export(control_model, (x_in, h_in, t_in, c_in), "./sd_control_test.onnx", export_params=True, opset_version=16, do_constant_folding=True, keep_initializers_as_inputs=True, input_names = ['x_in', "h_in", "t_in", "c_in"], output_names = output_names, dynamic_axes = dynamic_table) os.system("trtexec --onnx=sd_control_test.onnx --saveEngine=sd_control_fp16.engine --fp16 --optShapes=x_in:1x4x32x48,h_in:1x3x256x384,t_in:1,c_in:1x77x768") with open("./sd_control_fp16.engine", 'rb') as f: engine_str = f.read() control_engine = trt.Runtime(self.trt_logger).deserialize_cuda_engine(engine_str) control_context = control_engine.create_execution_context() control_context.set_binding_shape(0, (1, 4, H // 8, W // 8)) control_context.set_binding_shape(1, (1, 3, H, W)) control_context.set_binding_shape(2, (1,)) control_context.set_binding_shape(3, (1, 77, 768)) self.model.control_context = control_context print("finished") def process(self, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold): with torch.no_grad(): img = resize_image(HWC3(input_image), image_resolution) H, W, C = img.shape detected_map = self.apply_canny(img, low_threshold, high_threshold) detected_map = HWC3(detected_map) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if config.save_memory: self.model.low_vram_shift(is_diffusing=True) self.model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = self.ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return results
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/canny2image_TRT.py
import sys import os assert len(sys.argv) == 3, 'Args are wrong.' input_path = sys.argv[1] output_path = sys.argv[2] assert os.path.exists(input_path), 'Input model does not exist.' assert not os.path.exists(output_path), 'Output filename already exists.' assert os.path.exists(os.path.dirname(output_path)), 'Output path is not valid.' import torch from share import * from cldm.model import create_model def get_node_name(name, parent_name): if len(name) <= len(parent_name): return False, '' p = name[:len(parent_name)] if p != parent_name: return False, '' return True, name[len(parent_name):] model = create_model(config_path='./models/cldm_v21.yaml') pretrained_weights = torch.load(input_path) if 'state_dict' in pretrained_weights: pretrained_weights = pretrained_weights['state_dict'] scratch_dict = model.state_dict() target_dict = {} for k in scratch_dict.keys(): is_control, name = get_node_name(k, 'control_') if is_control: copy_k = 'model.diffusion_' + name else: copy_k = k if copy_k in pretrained_weights: target_dict[k] = pretrained_weights[copy_k].clone() else: target_dict[k] = scratch_dict[k].clone() print(f'These weights are newly added: {k}') model.load_state_dict(target_dict, strict=True) torch.save(model.state_dict(), output_path) print('Done.')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/tool_add_control_sd21.py
from share import * import config import cv2 import einops import gradio as gr import numpy as np import torch import random from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from annotator.uniformer import UniformerDetector from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler apply_uniformer = UniformerDetector() model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict('./models/control_sd15_seg.pth', location='cuda')) model = model.cuda() ddim_sampler = DDIMSampler(model) def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): with torch.no_grad(): input_image = HWC3(input_image) detected_map = apply_uniformer(resize_image(input_image, detect_resolution)) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if config.save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [detected_map] + results block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Control Stable Diffusion with Segmentation Maps") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") prompt = gr.Textbox(label="Prompt") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox(label='Guess Mode', value=False) detect_resolution = gr.Slider(label="Segmentation Resolution", minimum=128, maximum=1024, value=512, step=1) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = gr.Number(label="eta (DDIM)", value=0.0) a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(server_name='0.0.0.0')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/gradio_seg2image.py
import numpy as np from pytorch_fid import fid_score from pytorch_fid.inception import InceptionV3 import cv2 import datetime from canny2image_TRT import hackathon block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048] model = InceptionV3([block_idx]).to("cuda") def PD(base_img, new_img): inception_feature_ref, _ = fid_score.calculate_activation_statistics([base_img], model, batch_size = 1, device="cuda") inception_feature, _ = fid_score.calculate_activation_statistics([new_img], model, batch_size = 1, device="cuda") pd_value = np.linalg.norm(inception_feature - inception_feature_ref) pd_string = F"Perceptual distance to: {pd_value:.2f}" print(pd_string) return pd_value scores = [] latencys = [] hk = hackathon() hk.initialize() for i in range(20): path = "/home/player/pictures_croped/bird_"+ str(i) + ".jpg" img = cv2.imread(path) start = datetime.datetime.now().timestamp() new_img = hk.process(img, "a bird", "best quality, extremely detailed", "longbody, lowres, bad anatomy, bad hands, missing fingers", 1, 256, 20, False, 1, 9, 2946901, 0.0, 100, 200) end = datetime.datetime.now().timestamp() print("time cost is: ", (end-start)*1000) new_path = "./bird_"+ str(i) + ".jpg" cv2.imwrite(new_path, new_img[0]) # generate the base_img by running the pytorch fp32 pipeline (origin code in canny2image_TRT.py) # base_path = "base_img.jpg" # score = PD(base_path, new_path) # print("score is: ", score)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/compute_score.py