python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
from share import * import config import cv2 import einops import gradio as gr import numpy as np import torch import random from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from annotator.midas import MidasDetector from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler apply_midas = MidasDetector() model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict('./models/control_sd15_normal.pth', location='cuda')) model = model.cuda() ddim_sampler = DDIMSampler(model) def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, bg_threshold): with torch.no_grad(): input_image = HWC3(input_image) _, detected_map = apply_midas(resize_image(input_image, detect_resolution), bg_th=bg_threshold) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) control = torch.from_numpy(detected_map[:, :, ::-1].copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if config.save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [detected_map] + results block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Control Stable Diffusion with Normal Maps") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") prompt = gr.Textbox(label="Prompt") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox(label='Guess Mode', value=False) detect_resolution = gr.Slider(label="Normal Resolution", minimum=128, maximum=1024, value=384, step=1) bg_threshold = gr.Slider(label="Normal background threshold", minimum=0.0, maximum=1.0, value=0.4, step=0.01) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = gr.Number(label="eta (DDIM)", value=0.0) a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, bg_threshold] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(server_name='0.0.0.0')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/gradio_normal2image.py
from tutorial_dataset import MyDataset dataset = MyDataset() print(len(dataset)) item = dataset[1234] jpg = item['jpg'] txt = item['txt'] hint = item['hint'] print(txt) print(jpg.shape) print(hint.shape)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/tutorial_dataset_test.py
from share import * import pytorch_lightning as pl from torch.utils.data import DataLoader from tutorial_dataset import MyDataset from cldm.logger import ImageLogger from cldm.model import create_model, load_state_dict # Configs resume_path = './models/control_sd15_ini.ckpt' batch_size = 4 logger_freq = 300 learning_rate = 1e-5 sd_locked = True only_mid_control = False # First use cpu to load models. Pytorch Lightning will automatically move it to GPUs. model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict(resume_path, location='cpu')) model.learning_rate = learning_rate model.sd_locked = sd_locked model.only_mid_control = only_mid_control # Misc dataset = MyDataset() dataloader = DataLoader(dataset, num_workers=0, batch_size=batch_size, shuffle=True) logger = ImageLogger(batch_frequency=logger_freq) trainer = pl.Trainer(gpus=1, precision=32, callbacks=[logger]) # Train! trainer.fit(model, dataloader)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/tutorial_train.py
import sys import os assert len(sys.argv) == 3, 'Args are wrong.' input_path = sys.argv[1] output_path = sys.argv[2] assert os.path.exists(input_path), 'Input model does not exist.' assert not os.path.exists(output_path), 'Output filename already exists.' assert os.path.exists(os.path.dirname(output_path)), 'Output path is not valid.' import torch from share import * from cldm.model import create_model def get_node_name(name, parent_name): if len(name) <= len(parent_name): return False, '' p = name[:len(parent_name)] if p != parent_name: return False, '' return True, name[len(parent_name):] model = create_model(config_path='./models/cldm_v15.yaml') pretrained_weights = torch.load(input_path) if 'state_dict' in pretrained_weights: pretrained_weights = pretrained_weights['state_dict'] scratch_dict = model.state_dict() target_dict = {} for k in scratch_dict.keys(): is_control, name = get_node_name(k, 'control_') if is_control: copy_k = 'model.diffusion_' + name else: copy_k = k if copy_k in pretrained_weights: target_dict[k] = pretrained_weights[copy_k].clone() else: target_dict[k] = scratch_dict[k].clone() print(f'These weights are newly added: {k}') model.load_state_dict(target_dict, strict=True) torch.save(model.state_dict(), output_path) print('Done.')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/tool_add_control.py
import gradio as gr from annotator.util import resize_image, HWC3 model_canny = None def canny(img, res, l, h): img = resize_image(HWC3(img), res) global model_canny if model_canny is None: from annotator.canny import CannyDetector model_canny = CannyDetector() result = model_canny(img, l, h) return [result] model_hed = None def hed(img, res): img = resize_image(HWC3(img), res) global model_hed if model_hed is None: from annotator.hed import HEDdetector model_hed = HEDdetector() result = model_hed(img) return [result] model_mlsd = None def mlsd(img, res, thr_v, thr_d): img = resize_image(HWC3(img), res) global model_mlsd if model_mlsd is None: from annotator.mlsd import MLSDdetector model_mlsd = MLSDdetector() result = model_mlsd(img, thr_v, thr_d) return [result] model_midas = None def midas(img, res, a): img = resize_image(HWC3(img), res) global model_midas if model_midas is None: from annotator.midas import MidasDetector model_midas = MidasDetector() results = model_midas(img, a) return results model_openpose = None def openpose(img, res, has_hand): img = resize_image(HWC3(img), res) global model_openpose if model_openpose is None: from annotator.openpose import OpenposeDetector model_openpose = OpenposeDetector() result, _ = model_openpose(img, has_hand) return [result] model_uniformer = None def uniformer(img, res): img = resize_image(HWC3(img), res) global model_uniformer if model_uniformer is None: from annotator.uniformer import UniformerDetector model_uniformer = UniformerDetector() result = model_uniformer(img) return [result] block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Canny Edge") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") low_threshold = gr.Slider(label="low_threshold", minimum=1, maximum=255, value=100, step=1) high_threshold = gr.Slider(label="high_threshold", minimum=1, maximum=255, value=200, step=1) resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64) run_button = gr.Button(label="Run") with gr.Column(): gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto") run_button.click(fn=canny, inputs=[input_image, resolution, low_threshold, high_threshold], outputs=[gallery]) with gr.Row(): gr.Markdown("## HED Edge") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64) run_button = gr.Button(label="Run") with gr.Column(): gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto") run_button.click(fn=hed, inputs=[input_image, resolution], outputs=[gallery]) with gr.Row(): gr.Markdown("## MLSD Edge") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") value_threshold = gr.Slider(label="value_threshold", minimum=0.01, maximum=2.0, value=0.1, step=0.01) distance_threshold = gr.Slider(label="distance_threshold", minimum=0.01, maximum=20.0, value=0.1, step=0.01) resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64) run_button = gr.Button(label="Run") with gr.Column(): gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto") run_button.click(fn=mlsd, inputs=[input_image, resolution, value_threshold, distance_threshold], outputs=[gallery]) with gr.Row(): gr.Markdown("## MIDAS Depth and Normal") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") alpha = gr.Slider(label="alpha", minimum=0.1, maximum=20.0, value=6.2, step=0.01) resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64) run_button = gr.Button(label="Run") with gr.Column(): gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto") run_button.click(fn=midas, inputs=[input_image, resolution, alpha], outputs=[gallery]) with gr.Row(): gr.Markdown("## Openpose") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") hand = gr.Checkbox(label='detect hand', value=False) resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64) run_button = gr.Button(label="Run") with gr.Column(): gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto") run_button.click(fn=openpose, inputs=[input_image, resolution, hand], outputs=[gallery]) with gr.Row(): gr.Markdown("## Uniformer Segmentation") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64) run_button = gr.Button(label="Run") with gr.Column(): gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto") run_button.click(fn=uniformer, inputs=[input_image, resolution], outputs=[gallery]) block.launch(server_name='0.0.0.0')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/gradio_annotator.py
from share import * import config import cv2 import einops import gradio as gr import numpy as np import torch import random from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict('./models/control_sd15_scribble.pth', location='cuda')) model = model.cuda() ddim_sampler = DDIMSampler(model) def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): with torch.no_grad(): img = resize_image(HWC3(input_image), image_resolution) H, W, C = img.shape detected_map = np.zeros_like(img, dtype=np.uint8) detected_map[np.min(img, axis=2) < 127] = 255 control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if config.save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [255 - detected_map] + results block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Control Stable Diffusion with Scribble Maps") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") prompt = gr.Textbox(label="Prompt") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox(label='Guess Mode', value=False) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = gr.Number(label="eta (DDIM)", value=0.0) a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(server_name='0.0.0.0')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/gradio_scribble2image.py
from share import * import pytorch_lightning as pl from torch.utils.data import DataLoader from tutorial_dataset import MyDataset from cldm.logger import ImageLogger from cldm.model import create_model, load_state_dict # Configs resume_path = './models/control_sd21_ini.ckpt' batch_size = 4 logger_freq = 300 learning_rate = 1e-5 sd_locked = True only_mid_control = False # First use cpu to load models. Pytorch Lightning will automatically move it to GPUs. model = create_model('./models/cldm_v21.yaml').cpu() model.load_state_dict(load_state_dict(resume_path, location='cpu')) model.learning_rate = learning_rate model.sd_locked = sd_locked model.only_mid_control = only_mid_control # Misc dataset = MyDataset() dataloader = DataLoader(dataset, num_workers=0, batch_size=batch_size, shuffle=True) logger = ImageLogger(batch_frequency=logger_freq) trainer = pl.Trainer(gpus=1, precision=32, callbacks=[logger]) # Train! trainer.fit(model, dataloader)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/tutorial_train_sd21.py
import config from cldm.hack import disable_verbosity, enable_sliced_attention disable_verbosity() if config.save_memory: enable_sliced_attention()
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/share.py
from share import * import config import cv2 import einops import gradio as gr import numpy as np import torch import random from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from annotator.hed import HEDdetector from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler apply_hed = HEDdetector() model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict('./models/control_sd15_hed.pth', location='cuda')) model = model.cuda() ddim_sampler = DDIMSampler(model) def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): with torch.no_grad(): input_image = HWC3(input_image) detected_map = apply_hed(resize_image(input_image, detect_resolution)) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if config.save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [detected_map] + results block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Control Stable Diffusion with HED Maps") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") prompt = gr.Textbox(label="Prompt") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox(label='Guess Mode', value=False) detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512, step=1) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = gr.Number(label="eta (DDIM)", value=0.0) a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(server_name='0.0.0.0')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/gradio_hed2image.py
from share import * import config import cv2 import einops import gradio as gr import numpy as np import torch import random from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict('./models/control_sd15_scribble.pth', location='cuda')) model = model.cuda() ddim_sampler = DDIMSampler(model) def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): with torch.no_grad(): img = resize_image(HWC3(input_image['mask'][:, :, 0]), image_resolution) H, W, C = img.shape detected_map = np.zeros_like(img, dtype=np.uint8) detected_map[np.min(img, axis=2) > 127] = 255 control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if config.save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [255 - detected_map] + results def create_canvas(w, h): return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255 block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Control Stable Diffusion with Interactive Scribbles") with gr.Row(): with gr.Column(): canvas_width = gr.Slider(label="Canvas Width", minimum=256, maximum=1024, value=512, step=1) canvas_height = gr.Slider(label="Canvas Height", minimum=256, maximum=1024, value=512, step=1) create_button = gr.Button(label="Start", value='Open drawing canvas!') input_image = gr.Image(source='upload', type='numpy', tool='sketch') gr.Markdown(value='Do not forget to change your brush width to make it thinner. (Gradio do not allow developers to set brush width so you need to do it manually.) ' 'Just click on the small pencil icon in the upper right corner of the above block.') create_button.click(fn=create_canvas, inputs=[canvas_width, canvas_height], outputs=[input_image]) prompt = gr.Textbox(label="Prompt") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox(label='Guess Mode', value=False) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = gr.Number(label="eta (DDIM)", value=0.0) a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(server_name='0.0.0.0')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/gradio_scribble2image_interactive.py
from share import * import config import cv2 import einops import gradio as gr import numpy as np import torch import random from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from annotator.canny import CannyDetector from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler apply_canny = CannyDetector() model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict('./models/control_sd15_canny.pth', location='cuda')) model = model.cuda() ddim_sampler = DDIMSampler(model) def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold): with torch.no_grad(): img = resize_image(HWC3(input_image), image_resolution) H, W, C = img.shape detected_map = apply_canny(img, low_threshold, high_threshold) detected_map = HWC3(detected_map) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if config.save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [255 - detected_map] + results block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Control Stable Diffusion with Canny Edge Maps") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") prompt = gr.Textbox(label="Prompt") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox(label='Guess Mode', value=False) low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1) high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = gr.Number(label="eta (DDIM)", value=0.0) a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(server_name='0.0.0.0')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/gradio_canny2image.py
import json import cv2 import numpy as np from torch.utils.data import Dataset class MyDataset(Dataset): def __init__(self): self.data = [] with open('./training/fill50k/prompt.json', 'rt') as f: for line in f: self.data.append(json.loads(line)) def __len__(self): return len(self.data) def __getitem__(self, idx): item = self.data[idx] source_filename = item['source'] target_filename = item['target'] prompt = item['prompt'] source = cv2.imread('./training/fill50k/' + source_filename) target = cv2.imread('./training/fill50k/' + target_filename) # Do not forget that OpenCV read images in BGR order. source = cv2.cvtColor(source, cv2.COLOR_BGR2RGB) target = cv2.cvtColor(target, cv2.COLOR_BGR2RGB) # Normalize source images to [0, 1]. source = source.astype(np.float32) / 255.0 # Normalize target images to [-1, 1]. target = (target.astype(np.float32) / 127.5) - 1.0 return dict(jpg=target, txt=prompt, hint=source)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/tutorial_dataset.py
from share import * import config import cv2 import einops import gradio as gr import numpy as np import torch import random from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from annotator.openpose import OpenposeDetector from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler apply_openpose = OpenposeDetector() model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict('./models/control_sd15_openpose.pth', location='cuda')) model = model.cuda() ddim_sampler = DDIMSampler(model) def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): with torch.no_grad(): input_image = HWC3(input_image) detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution)) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if config.save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [detected_map] + results block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Control Stable Diffusion with Human Pose") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") prompt = gr.Textbox(label="Prompt") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox(label='Guess Mode', value=False) detect_resolution = gr.Slider(label="OpenPose Resolution", minimum=128, maximum=1024, value=512, step=1) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = gr.Number(label="eta (DDIM)", value=0.0) a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(server_name='0.0.0.0')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/gradio_pose2image.py
from share import * import config import cv2 import einops import gradio as gr import numpy as np import torch import random from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from annotator.hed import HEDdetector, nms from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler apply_hed = HEDdetector() model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict('./models/control_sd15_scribble.pth', location='cuda')) model = model.cuda() ddim_sampler = DDIMSampler(model) def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): with torch.no_grad(): input_image = HWC3(input_image) detected_map = apply_hed(resize_image(input_image, detect_resolution)) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) detected_map = nms(detected_map, 127, 3.0) detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) detected_map[detected_map > 4] = 255 detected_map[detected_map < 255] = 0 control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if config.save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [255 - detected_map] + results block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Control Stable Diffusion with Fake Scribble Maps") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") prompt = gr.Textbox(label="Prompt") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = gr.Checkbox(label='Guess Mode', value=False) detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512, step=1) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = gr.Number(label="eta (DDIM)", value=0.0) a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(server_name='0.0.0.0')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/gradio_fake_scribble2image.py
import einops import torch import torch as th import torch.nn as nn from ldm.modules.diffusionmodules.util import ( conv_nd, linear, zero_module, timestep_embedding, ) from einops import rearrange, repeat from torchvision.utils import make_grid from ldm.modules.attention import SpatialTransformer from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock from ldm.models.diffusion.ddpm import LatentDiffusion from ldm.util import log_txt_as_img, exists, instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler class ControlledUnetModel(UNetModel): def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs): hs = [] with torch.no_grad(): t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) emb = self.time_embed(t_emb) h = x.type(self.dtype) for module in self.input_blocks: h = module(h, emb, context) hs.append(h) h = self.middle_block(h, emb, context) if control is not None: h += control.pop() for i, module in enumerate(self.output_blocks): if only_mid_control or control is None: h = torch.cat([h, hs.pop()], dim=1) else: h = torch.cat([h, hs.pop() + control.pop()], dim=1) h = module(h, emb, context) h = h.type(x.dtype) return self.out(h) class ControlNet(nn.Module): def __init__( self, image_size, in_channels, model_channels, hint_channels, num_res_blocks, attention_resolutions, dropout=0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, use_checkpoint=False, use_fp16=False, num_heads=-1, num_head_channels=-1, num_heads_upsample=-1, use_scale_shift_norm=False, resblock_updown=False, use_new_attention_order=False, use_spatial_transformer=False, # custom transformer support transformer_depth=1, # custom transformer support context_dim=None, # custom transformer support n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model legacy=True, disable_self_attentions=None, num_attention_blocks=None, disable_middle_self_attn=False, use_linear_in_transformer=False, ): super().__init__() if use_spatial_transformer: assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' if context_dim is not None: assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' from omegaconf.listconfig import ListConfig if type(context_dim) == ListConfig: context_dim = list(context_dim) if num_heads_upsample == -1: num_heads_upsample = num_heads if num_heads == -1: assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' if num_head_channels == -1: assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' self.dims = dims self.image_size = image_size self.in_channels = in_channels self.model_channels = model_channels if isinstance(num_res_blocks, int): self.num_res_blocks = len(channel_mult) * [num_res_blocks] else: if len(num_res_blocks) != len(channel_mult): raise ValueError("provide num_res_blocks either as an int (globally constant) or " "as a list/tuple (per-level) with the same length as channel_mult") self.num_res_blocks = num_res_blocks if disable_self_attentions is not None: # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not assert len(disable_self_attentions) == len(channel_mult) if num_attention_blocks is not None: assert len(num_attention_blocks) == len(self.num_res_blocks) assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " f"This option has LESS priority than attention_resolutions {attention_resolutions}, " f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " f"attention will still not be set.") self.attention_resolutions = attention_resolutions self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.use_checkpoint = use_checkpoint self.dtype = th.float16 if use_fp16 else th.float32 self.num_heads = num_heads self.num_head_channels = num_head_channels self.num_heads_upsample = num_heads_upsample self.predict_codebook_ids = n_embed is not None time_embed_dim = model_channels * 4 self.time_embed = nn.Sequential( linear(model_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) self.input_blocks = nn.ModuleList( [ TimestepEmbedSequential( conv_nd(dims, in_channels, model_channels, 3, padding=1) ) ] ) self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) self.input_hint_block = TimestepEmbedSequential( conv_nd(dims, hint_channels, 16, 3, padding=1), nn.SiLU(), conv_nd(dims, 16, 16, 3, padding=1), nn.SiLU(), conv_nd(dims, 16, 32, 3, padding=1, stride=2), nn.SiLU(), conv_nd(dims, 32, 32, 3, padding=1), nn.SiLU(), conv_nd(dims, 32, 96, 3, padding=1, stride=2), nn.SiLU(), conv_nd(dims, 96, 96, 3, padding=1), nn.SiLU(), conv_nd(dims, 96, 256, 3, padding=1, stride=2), nn.SiLU(), zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) ) self._feature_size = model_channels input_block_chans = [model_channels] ch = model_channels ds = 1 for level, mult in enumerate(channel_mult): for nr in range(self.num_res_blocks[level]): layers = [ ResBlock( ch, time_embed_dim, dropout, out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = mult * model_channels if ds in attention_resolutions: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if legacy: # num_heads = 1 dim_head = ch // num_heads if use_spatial_transformer else num_head_channels if exists(disable_self_attentions): disabled_sa = disable_self_attentions[level] else: disabled_sa = False if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: layers.append( AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=dim_head, use_new_attention_order=use_new_attention_order, ) if not use_spatial_transformer else SpatialTransformer( ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint ) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) self.zero_convs.append(self.make_zero_conv(ch)) self._feature_size += ch input_block_chans.append(ch) if level != len(channel_mult) - 1: out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, down=True, ) if resblock_updown else Downsample( ch, conv_resample, dims=dims, out_channels=out_ch ) ) ) ch = out_ch input_block_chans.append(ch) self.zero_convs.append(self.make_zero_conv(ch)) ds *= 2 self._feature_size += ch if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if legacy: # num_heads = 1 dim_head = ch // num_heads if use_spatial_transformer else num_head_channels self.middle_block = TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=dim_head, use_new_attention_order=use_new_attention_order, ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint ), ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), ) self.middle_block_out = self.make_zero_conv(ch) self._feature_size += ch def make_zero_conv(self, channels): return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) def forward(self, x, hint, timesteps, context, **kwargs): t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) emb = self.time_embed(t_emb) guided_hint = self.input_hint_block(hint, emb, context) outs = [] h = x.type(self.dtype) for module, zero_conv in zip(self.input_blocks, self.zero_convs): if guided_hint is not None: h = module(h, emb, context) h += guided_hint guided_hint = None else: h = module(h, emb, context) outs.append(zero_conv(h, emb, context)) h = self.middle_block(h, emb, context) outs.append(self.middle_block_out(h, emb, context)) return outs class ControlLDM(LatentDiffusion): def __init__(self, control_stage_config, control_key, only_mid_control, *args, **kwargs): super().__init__(*args, **kwargs) self.control_model = instantiate_from_config(control_stage_config) self.control_key = control_key self.only_mid_control = only_mid_control self.control_scales = [1.0] * 13 @torch.no_grad() def get_input(self, batch, k, bs=None, *args, **kwargs): x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs) control = batch[self.control_key] if bs is not None: control = control[:bs] control = control.to(self.device) control = einops.rearrange(control, 'b h w c -> b c h w') control = control.to(memory_format=torch.contiguous_format).float() return x, dict(c_crossattn=[c], c_concat=[control]) def apply_model(self, x_noisy, t, cond, *args, **kwargs): assert isinstance(cond, dict) diffusion_model = self.model.diffusion_model cond_txt = torch.cat(cond['c_crossattn'], 1) if cond['c_concat'] is None: eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control) else: # control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt) hint_in = torch.cat(cond['c_concat'], 1) b, c, h, w = x_noisy.shape buffer_device = [] buffer_device.append(x_noisy.reshape(-1).data_ptr()) buffer_device.append(hint_in.reshape(-1).data_ptr()) buffer_device.append(t.reshape(-1).data_ptr()) buffer_device.append(cond_txt.reshape(-1).data_ptr()) control_out = [] for i in range(3): temp = torch.zeros(b, 320, h, w, dtype=torch.float32).to("cuda") control_out.append(temp) buffer_device.append(temp.reshape(-1).data_ptr()) temp = torch.zeros(b, 320, h//2, w//2, dtype=torch.float32).to("cuda") control_out.append(temp) buffer_device.append(temp.reshape(-1).data_ptr()) for i in range(2): temp = torch.zeros(b, 640, h//2, w//2, dtype=torch.float32).to("cuda") control_out.append(temp) buffer_device.append(temp.reshape(-1).data_ptr()) temp = torch.zeros(b, 640, h//4, w//4, dtype=torch.float32).to("cuda") control_out.append(temp) buffer_device.append(temp.reshape(-1).data_ptr()) for i in range(2): temp = torch.zeros(b, 1280, h//4, w//4, dtype=torch.float32).to("cuda") control_out.append(temp) buffer_device.append(temp.reshape(-1).data_ptr()) for i in range(4): temp = torch.zeros(b, 1280, h//8, w//8, dtype=torch.float32).to("cuda") control_out.append(temp) buffer_device.append(temp.reshape(-1).data_ptr()) self.control_context.execute_v2(buffer_device) control = [c * scale for c, scale in zip(control_out, self.control_scales)] eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control) return eps @torch.no_grad() def get_unconditional_conditioning(self, N): return self.get_learned_conditioning([""] * N) @torch.no_grad() def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None, quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None, use_ema_scope=True, **kwargs): use_ddim = ddim_steps is not None log = dict() z, c = self.get_input(batch, self.first_stage_key, bs=N) c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N] N = min(z.shape[0], N) n_row = min(z.shape[0], n_row) log["reconstruction"] = self.decode_first_stage(z) log["control"] = c_cat * 2.0 - 1.0 log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16) if plot_diffusion_rows: # get diffusion row diffusion_row = list() z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: t = repeat(torch.tensor([t]), '1 -> b', b=n_row) t = t.to(self.device).long() noise = torch.randn_like(z_start) z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) diffusion_row.append(self.decode_first_stage(z_noisy)) diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) log["diffusion_row"] = diffusion_grid if sample: # get denoise row samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, batch_size=N, ddim=use_ddim, ddim_steps=ddim_steps, eta=ddim_eta) x_samples = self.decode_first_stage(samples) log["samples"] = x_samples if plot_denoise_rows: denoise_grid = self._get_denoise_row_from_list(z_denoise_row) log["denoise_row"] = denoise_grid if unconditional_guidance_scale > 1.0: uc_cross = self.get_unconditional_conditioning(N) uc_cat = c_cat # torch.zeros_like(c_cat) uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]} samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, batch_size=N, ddim=use_ddim, ddim_steps=ddim_steps, eta=ddim_eta, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=uc_full, ) x_samples_cfg = self.decode_first_stage(samples_cfg) log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg return log @torch.no_grad() def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs): ddim_sampler = DDIMSampler(self) b, c, h, w = cond["c_concat"][0].shape shape = (self.channels, h // 8, w // 8) samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs) return samples, intermediates def configure_optimizers(self): lr = self.learning_rate params = list(self.control_model.parameters()) if not self.sd_locked: params += list(self.model.diffusion_model.output_blocks.parameters()) params += list(self.model.diffusion_model.out.parameters()) opt = torch.optim.AdamW(params, lr=lr) return opt def low_vram_shift(self, is_diffusing): if is_diffusing: self.model = self.model.cuda() self.control_model = self.control_model.cuda() self.first_stage_model = self.first_stage_model.cpu() self.cond_stage_model = self.cond_stage_model.cpu() else: self.model = self.model.cpu() self.control_model = self.control_model.cpu() self.first_stage_model = self.first_stage_model.cuda() self.cond_stage_model = self.cond_stage_model.cuda()
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/cldm/cldm.py
import torch import einops import ldm.modules.encoders.modules import ldm.modules.attention from transformers import logging from ldm.modules.attention import default def disable_verbosity(): logging.set_verbosity_error() print('logging improved.') return def enable_sliced_attention(): ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward print('Enabled sliced_attention.') return def hack_everything(clip_skip=0): disable_verbosity() ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip print('Enabled clip hacks.') return # Written by Lvmin def _hacked_clip_forward(self, text): PAD = self.tokenizer.pad_token_id EOS = self.tokenizer.eos_token_id BOS = self.tokenizer.bos_token_id def tokenize(t): return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"] def transformer_encode(t): if self.clip_skip > 1: rt = self.transformer(input_ids=t, output_hidden_states=True) return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip]) else: return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state def split(x): return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3] def pad(x, p, i): return x[:i] if len(x) >= i else x + [p] * (i - len(x)) raw_tokens_list = tokenize(text) tokens_list = [] for raw_tokens in raw_tokens_list: raw_tokens_123 = split(raw_tokens) raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123] raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123] tokens_list.append(raw_tokens_123) tokens_list = torch.IntTensor(tokens_list).to(self.device) feed = einops.rearrange(tokens_list, 'b f i -> (b f) i') y = transformer_encode(feed) z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3) return z # Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py def _hacked_sliced_attentin_forward(self, x, context=None, mask=None): h = self.heads q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) del context, x q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) limit = k.shape[0] att_step = 1 q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0)) k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0)) v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0)) q_chunks.reverse() k_chunks.reverse() v_chunks.reverse() sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) del k, q, v for i in range(0, limit, att_step): q_buffer = q_chunks.pop() k_buffer = k_chunks.pop() v_buffer = v_chunks.pop() sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale del k_buffer, q_buffer # attention, what we cannot get enough of, by chunks sim_buffer = sim_buffer.softmax(dim=-1) sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer) del v_buffer sim[i:i + att_step, :, :] = sim_buffer del sim_buffer sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h) return self.to_out(sim)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/cldm/hack.py
import os import numpy as np import torch import torchvision from PIL import Image from pytorch_lightning.callbacks import Callback from pytorch_lightning.utilities.distributed import rank_zero_only class ImageLogger(Callback): def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True, rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False, log_images_kwargs=None): super().__init__() self.rescale = rescale self.batch_freq = batch_frequency self.max_images = max_images if not increase_log_steps: self.log_steps = [self.batch_freq] self.clamp = clamp self.disabled = disabled self.log_on_batch_idx = log_on_batch_idx self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {} self.log_first_step = log_first_step @rank_zero_only def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx): root = os.path.join(save_dir, "image_log", split) for k in images: grid = torchvision.utils.make_grid(images[k], nrow=4) if self.rescale: grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) grid = grid.numpy() grid = (grid * 255).astype(np.uint8) filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx) path = os.path.join(root, filename) os.makedirs(os.path.split(path)[0], exist_ok=True) Image.fromarray(grid).save(path) def log_img(self, pl_module, batch, batch_idx, split="train"): check_idx = batch_idx # if self.log_on_batch_idx else pl_module.global_step if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0 hasattr(pl_module, "log_images") and callable(pl_module.log_images) and self.max_images > 0): logger = type(pl_module.logger) is_train = pl_module.training if is_train: pl_module.eval() with torch.no_grad(): images = pl_module.log_images(batch, split=split, **self.log_images_kwargs) for k in images: N = min(images[k].shape[0], self.max_images) images[k] = images[k][:N] if isinstance(images[k], torch.Tensor): images[k] = images[k].detach().cpu() if self.clamp: images[k] = torch.clamp(images[k], -1., 1.) self.log_local(pl_module.logger.save_dir, split, images, pl_module.global_step, pl_module.current_epoch, batch_idx) if is_train: pl_module.train() def check_frequency(self, check_idx): return check_idx % self.batch_freq == 0 def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): if not self.disabled: self.log_img(pl_module, batch, batch_idx, split="train")
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/cldm/logger.py
import os import torch from omegaconf import OmegaConf from ldm.util import instantiate_from_config def get_state_dict(d): return d.get('state_dict', d) def load_state_dict(ckpt_path, location='cpu'): _, extension = os.path.splitext(ckpt_path) if extension.lower() == ".safetensors": import safetensors.torch state_dict = safetensors.torch.load_file(ckpt_path, device=location) else: state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location))) state_dict = get_state_dict(state_dict) print(f'Loaded state_dict from [{ckpt_path}]') return state_dict def create_model(config_path): config = OmegaConf.load(config_path) model = instantiate_from_config(config.model).cpu() print(f'Loaded model config from [{config_path}]') return model
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/cldm/model.py
"""SAMPLING ONLY.""" import torch import numpy as np from tqdm import tqdm from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor class DDIMSampler(object): def __init__(self, model, schedule="linear", **kwargs): super().__init__() self.model = model self.ddpm_num_timesteps = model.num_timesteps self.schedule = schedule def register_buffer(self, name, attr): if type(attr) == torch.Tensor: if attr.device != torch.device("cuda"): attr = attr.to(torch.device("cuda")) setattr(self, name, attr) def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) alphas_cumprod = self.model.alphas_cumprod assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) self.register_buffer('betas', to_torch(self.model.betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) # ddim sampling parameters ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), ddim_timesteps=self.ddim_timesteps, eta=ddim_eta,verbose=verbose) self.register_buffer('ddim_sigmas', ddim_sigmas) self.register_buffer('ddim_alphas', ddim_alphas) self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) @torch.no_grad() def sample(self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1., unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... dynamic_threshold=None, ucg_schedule=None, **kwargs ): if conditioning is not None: if isinstance(conditioning, dict): ctmp = conditioning[list(conditioning.keys())[0]] while isinstance(ctmp, list): ctmp = ctmp[0] cbs = ctmp.shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") elif isinstance(conditioning, list): for ctmp in conditioning: if ctmp.shape[0] != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") else: if conditioning.shape[0] != batch_size: print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) # sampling C, H, W = shape size = (batch_size, C, H, W) print(f'Data shape for DDIM sampling is {size}, eta {eta}') samples, intermediates = self.ddim_sampling(conditioning, size, callback=callback, img_callback=img_callback, quantize_denoised=quantize_x0, mask=mask, x0=x0, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_T=x_T, log_every_t=log_every_t, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, dynamic_threshold=dynamic_threshold, ucg_schedule=ucg_schedule ) return samples, intermediates @torch.no_grad() def ddim_sampling(self, cond, shape, x_T=None, ddim_use_original_steps=False, callback=None, timesteps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, log_every_t=100, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None, ucg_schedule=None): device = self.model.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device) else: img = x_T if timesteps is None: timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps elif timesteps is not None and not ddim_use_original_steps: subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 timesteps = self.ddim_timesteps[:subset_end] intermediates = {'x_inter': [img], 'pred_x0': [img]} time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] print(f"Running DDIM Sampling with {total_steps} timesteps") iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((b,), step, device=device, dtype=torch.long) if mask is not None: assert x0 is not None img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? img = img_orig * mask + (1. - mask) * img if ucg_schedule is not None: assert len(ucg_schedule) == len(time_range) unconditional_guidance_scale = ucg_schedule[i] outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, quantize_denoised=quantize_denoised, temperature=temperature, noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, dynamic_threshold=dynamic_threshold) img, pred_x0 = outs if callback: callback(i) if img_callback: img_callback(pred_x0, i) if index % log_every_t == 0 or index == total_steps - 1: intermediates['x_inter'].append(img) intermediates['pred_x0'].append(pred_x0) return img, intermediates @torch.no_grad() def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None): b, *_, device = *x.shape, x.device if unconditional_conditioning is None or unconditional_guidance_scale == 1.: model_output = self.model.apply_model(x, t, c) else: model_t = self.model.apply_model(x, t, c) model_uncond = self.model.apply_model(x, t, unconditional_conditioning) model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond) if self.model.parameterization == "v": e_t = self.model.predict_eps_from_z_and_v(x, t, model_output) else: e_t = model_output if score_corrector is not None: assert self.model.parameterization == "eps", 'not implemented' e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas # select parameters corresponding to the currently considered timestep a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) # current prediction for x_0 if self.model.parameterization != "v": pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() else: pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) if quantize_denoised: pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) if dynamic_threshold is not None: raise NotImplementedError() # direction pointing to x_t dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0 @torch.no_grad() def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None, unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None): timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps num_reference_steps = timesteps.shape[0] assert t_enc <= num_reference_steps num_steps = t_enc if use_original_steps: alphas_next = self.alphas_cumprod[:num_steps] alphas = self.alphas_cumprod_prev[:num_steps] else: alphas_next = self.ddim_alphas[:num_steps] alphas = torch.tensor(self.ddim_alphas_prev[:num_steps]) x_next = x0 intermediates = [] inter_steps = [] for i in tqdm(range(num_steps), desc='Encoding Image'): t = torch.full((x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long) if unconditional_guidance_scale == 1.: noise_pred = self.model.apply_model(x_next, t, c) else: assert unconditional_conditioning is not None e_t_uncond, noise_pred = torch.chunk( self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)), torch.cat((unconditional_conditioning, c))), 2) noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond) xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next weighted_noise_pred = alphas_next[i].sqrt() * ( (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred x_next = xt_weighted + weighted_noise_pred if return_intermediates and i % ( num_steps // return_intermediates) == 0 and i < num_steps - 1: intermediates.append(x_next) inter_steps.append(i) elif return_intermediates and i >= num_steps - 2: intermediates.append(x_next) inter_steps.append(i) if callback: callback(i) out = {'x_encoded': x_next, 'intermediate_steps': inter_steps} if return_intermediates: out.update({'intermediates': intermediates}) return x_next, out @torch.no_grad() def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): # fast, but does not allow for exact reconstruction # t serves as an index to gather the correct alphas if use_original_steps: sqrt_alphas_cumprod = self.sqrt_alphas_cumprod sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod else: sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas if noise is None: noise = torch.randn_like(x0) return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) @torch.no_grad() def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, use_original_steps=False, callback=None): timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps timesteps = timesteps[:t_start] time_range = np.flip(timesteps) total_steps = timesteps.shape[0] print(f"Running DDIM Sampling with {total_steps} timesteps") iterator = tqdm(time_range, desc='Decoding image', total=total_steps) x_dec = x_latent for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning) if callback: callback(i) return x_dec
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/cldm/ddim_hacked.py
import numpy as np import cv2 import os annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts') def HWC3(x): assert x.dtype == np.uint8 if x.ndim == 2: x = x[:, :, None] assert x.ndim == 3 H, W, C = x.shape assert C == 1 or C == 3 or C == 4 if C == 3: return x if C == 1: return np.concatenate([x, x, x], axis=2) if C == 4: color = x[:, :, 0:3].astype(np.float32) alpha = x[:, :, 3:4].astype(np.float32) / 255.0 y = color * alpha + 255.0 * (1.0 - alpha) y = y.clip(0, 255).astype(np.uint8) return y def resize_image(input_image, resolution): H, W, C = input_image.shape H = float(H) W = float(W) k = float(resolution) / min(H, W) H *= k W *= k H = int(np.round(H / 64.0)) * 64 W = int(np.round(W / 64.0)) * 64 img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) return img
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/util.py
# Uniformer # From https://github.com/Sense-X/UniFormer # # Apache-2.0 license import os from annotator.uniformer.mmseg.apis import init_segmentor, inference_segmentor, show_result_pyplot from annotator.uniformer.mmseg.core.evaluation import get_palette from annotator.util import annotator_ckpts_path checkpoint_file = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/upernet_global_small.pth" class UniformerDetector: def __init__(self): modelpath = os.path.join(annotator_ckpts_path, "upernet_global_small.pth") if not os.path.exists(modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(checkpoint_file, model_dir=annotator_ckpts_path) config_file = os.path.join(os.path.dirname(annotator_ckpts_path), "uniformer", "exp", "upernet_global_small", "config.py") self.model = init_segmentor(config_file, modelpath).cuda() def __call__(self, img): result = inference_segmentor(self.model, img) res_img = show_result_pyplot(self.model, img, result, get_palette('ade'), opacity=1) return res_img
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/__init__.py
from .inference import inference_segmentor, init_segmentor, show_result_pyplot from .test import multi_gpu_test, single_gpu_test from .train import get_root_logger, set_random_seed, train_segmentor __all__ = [ 'get_root_logger', 'set_random_seed', 'train_segmentor', 'init_segmentor', 'inference_segmentor', 'multi_gpu_test', 'single_gpu_test', 'show_result_pyplot' ]
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/apis/__init__.py
import os.path as osp import pickle import shutil import tempfile import annotator.uniformer.mmcv as mmcv import numpy as np import torch import torch.distributed as dist from annotator.uniformer.mmcv.image import tensor2imgs from annotator.uniformer.mmcv.runner import get_dist_info def np2tmp(array, temp_file_name=None): """Save ndarray to local numpy file. Args: array (ndarray): Ndarray to save. temp_file_name (str): Numpy file name. If 'temp_file_name=None', this function will generate a file name with tempfile.NamedTemporaryFile to save ndarray. Default: None. Returns: str: The numpy file name. """ if temp_file_name is None: temp_file_name = tempfile.NamedTemporaryFile( suffix='.npy', delete=False).name np.save(temp_file_name, array) return temp_file_name def single_gpu_test(model, data_loader, show=False, out_dir=None, efficient_test=False, opacity=0.5): """Test with single GPU. Args: model (nn.Module): Model to be tested. data_loader (utils.data.Dataloader): Pytorch data loader. show (bool): Whether show results during inference. Default: False. out_dir (str, optional): If specified, the results will be dumped into the directory to save output results. efficient_test (bool): Whether save the results as local numpy files to save CPU memory during evaluation. Default: False. opacity(float): Opacity of painted segmentation map. Default 0.5. Must be in (0, 1] range. Returns: list: The prediction results. """ model.eval() results = [] dataset = data_loader.dataset prog_bar = mmcv.ProgressBar(len(dataset)) for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, **data) if show or out_dir: img_tensor = data['img'][0] img_metas = data['img_metas'][0].data[0] imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] ori_h, ori_w = img_meta['ori_shape'][:-1] img_show = mmcv.imresize(img_show, (ori_w, ori_h)) if out_dir: out_file = osp.join(out_dir, img_meta['ori_filename']) else: out_file = None model.module.show_result( img_show, result, palette=dataset.PALETTE, show=show, out_file=out_file, opacity=opacity) if isinstance(result, list): if efficient_test: result = [np2tmp(_) for _ in result] results.extend(result) else: if efficient_test: result = np2tmp(result) results.append(result) batch_size = len(result) for _ in range(batch_size): prog_bar.update() return results def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False, efficient_test=False): """Test model with multiple gpus. This method tests model with multiple gpus and collects the results under two different modes: gpu and cpu modes. By setting 'gpu_collect=True' it encodes results to gpu tensors and use gpu communication for results collection. On cpu mode it saves the results on different gpus to 'tmpdir' and collects them by the rank 0 worker. Args: model (nn.Module): Model to be tested. data_loader (utils.data.Dataloader): Pytorch data loader. tmpdir (str): Path of directory to save the temporary results from different gpus under cpu mode. gpu_collect (bool): Option to use either gpu or cpu to collect results. efficient_test (bool): Whether save the results as local numpy files to save CPU memory during evaluation. Default: False. Returns: list: The prediction results. """ model.eval() results = [] dataset = data_loader.dataset rank, world_size = get_dist_info() if rank == 0: prog_bar = mmcv.ProgressBar(len(dataset)) for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) if isinstance(result, list): if efficient_test: result = [np2tmp(_) for _ in result] results.extend(result) else: if efficient_test: result = np2tmp(result) results.append(result) if rank == 0: batch_size = data['img'][0].size(0) for _ in range(batch_size * world_size): prog_bar.update() # collect results from all ranks if gpu_collect: results = collect_results_gpu(results, len(dataset)) else: results = collect_results_cpu(results, len(dataset), tmpdir) return results def collect_results_cpu(result_part, size, tmpdir=None): """Collect results with CPU.""" rank, world_size = get_dist_info() # create a tmp dir if it is not specified if tmpdir is None: MAX_LEN = 512 # 32 is whitespace dir_tensor = torch.full((MAX_LEN, ), 32, dtype=torch.uint8, device='cuda') if rank == 0: tmpdir = tempfile.mkdtemp() tmpdir = torch.tensor( bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') dir_tensor[:len(tmpdir)] = tmpdir dist.broadcast(dir_tensor, 0) tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() else: mmcv.mkdir_or_exist(tmpdir) # dump the part result to the dir mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank))) dist.barrier() # collect all parts if rank != 0: return None else: # load results of all parts from tmp dir part_list = [] for i in range(world_size): part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i)) part_list.append(mmcv.load(part_file)) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] # remove tmp dir shutil.rmtree(tmpdir) return ordered_results def collect_results_gpu(result_part, size): """Collect results with GPU.""" rank, world_size = get_dist_info() # dump result part to tensor with pickle part_tensor = torch.tensor( bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda') # gather all result part tensor shape shape_tensor = torch.tensor(part_tensor.shape, device='cuda') shape_list = [shape_tensor.clone() for _ in range(world_size)] dist.all_gather(shape_list, shape_tensor) # padding result part tensor to max length shape_max = torch.tensor(shape_list).max() part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda') part_send[:shape_tensor[0]] = part_tensor part_recv_list = [ part_tensor.new_zeros(shape_max) for _ in range(world_size) ] # gather all result part dist.all_gather(part_recv_list, part_send) if rank == 0: part_list = [] for recv, shape in zip(part_recv_list, shape_list): part_list.append( pickle.loads(recv[:shape[0]].cpu().numpy().tobytes())) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] return ordered_results
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/apis/test.py
import random import warnings import numpy as np import torch from annotator.uniformer.mmcv.parallel import MMDataParallel, MMDistributedDataParallel from annotator.uniformer.mmcv.runner import build_optimizer, build_runner from annotator.uniformer.mmseg.core import DistEvalHook, EvalHook from annotator.uniformer.mmseg.datasets import build_dataloader, build_dataset from annotator.uniformer.mmseg.utils import get_root_logger def set_random_seed(seed, deterministic=False): """Set random seed. Args: seed (int): Seed to be used. deterministic (bool): Whether to set the deterministic option for CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` to True and `torch.backends.cudnn.benchmark` to False. Default: False. """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if deterministic: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def train_segmentor(model, dataset, cfg, distributed=False, validate=False, timestamp=None, meta=None): """Launch segmentor training.""" logger = get_root_logger(cfg.log_level) # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.samples_per_gpu, cfg.data.workers_per_gpu, # cfg.gpus will be ignored if distributed len(cfg.gpu_ids), dist=distributed, seed=cfg.seed, drop_last=True) for ds in dataset ] # put model on gpus if distributed: find_unused_parameters = cfg.get('find_unused_parameters', False) # Sets the `find_unused_parameters` parameter in # torch.nn.parallel.DistributedDataParallel model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False, find_unused_parameters=find_unused_parameters) else: model = MMDataParallel( model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids) # build runner optimizer = build_optimizer(model, cfg.optimizer) if cfg.get('runner') is None: cfg.runner = {'type': 'IterBasedRunner', 'max_iters': cfg.total_iters} warnings.warn( 'config is now expected to have a `runner` section, ' 'please set `runner` in your config.', UserWarning) runner = build_runner( cfg.runner, default_args=dict( model=model, batch_processor=None, optimizer=optimizer, work_dir=cfg.work_dir, logger=logger, meta=meta)) # register hooks runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config, cfg.checkpoint_config, cfg.log_config, cfg.get('momentum_config', None)) # an ugly walkaround to make the .log and .log.json filenames the same runner.timestamp = timestamp # register eval hooks if validate: val_dataset = build_dataset(cfg.data.val, dict(test_mode=True)) val_dataloader = build_dataloader( val_dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) eval_cfg = cfg.get('evaluation', {}) eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner' eval_hook = DistEvalHook if distributed else EvalHook runner.register_hook(eval_hook(val_dataloader, **eval_cfg), priority='LOW') if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/apis/train.py
import matplotlib.pyplot as plt import annotator.uniformer.mmcv as mmcv import torch from annotator.uniformer.mmcv.parallel import collate, scatter from annotator.uniformer.mmcv.runner import load_checkpoint from annotator.uniformer.mmseg.datasets.pipelines import Compose from annotator.uniformer.mmseg.models import build_segmentor def init_segmentor(config, checkpoint=None, device='cuda:0'): """Initialize a segmentor from config file. Args: config (str or :obj:`mmcv.Config`): Config file path or the config object. checkpoint (str, optional): Checkpoint path. If left as None, the model will not load any weights. device (str, optional) CPU/CUDA device option. Default 'cuda:0'. Use 'cpu' for loading model on CPU. Returns: nn.Module: The constructed segmentor. """ if isinstance(config, str): config = mmcv.Config.fromfile(config) elif not isinstance(config, mmcv.Config): raise TypeError('config must be a filename or Config object, ' 'but got {}'.format(type(config))) config.model.pretrained = None config.model.train_cfg = None model = build_segmentor(config.model, test_cfg=config.get('test_cfg')) if checkpoint is not None: checkpoint = load_checkpoint(model, checkpoint, map_location='cpu') model.CLASSES = checkpoint['meta']['CLASSES'] model.PALETTE = checkpoint['meta']['PALETTE'] model.cfg = config # save the config in the model for convenience model.to(device) model.eval() return model class LoadImage: """A simple pipeline to load image.""" def __call__(self, results): """Call function to load images into results. Args: results (dict): A result dict contains the file name of the image to be read. Returns: dict: ``results`` will be returned containing loaded image. """ if isinstance(results['img'], str): results['filename'] = results['img'] results['ori_filename'] = results['img'] else: results['filename'] = None results['ori_filename'] = None img = mmcv.imread(results['img']) results['img'] = img results['img_shape'] = img.shape results['ori_shape'] = img.shape return results def inference_segmentor(model, img): """Inference image(s) with the segmentor. Args: model (nn.Module): The loaded segmentor. imgs (str/ndarray or list[str/ndarray]): Either image files or loaded images. Returns: (list[Tensor]): The segmentation result. """ cfg = model.cfg device = next(model.parameters()).device # model device # build the data pipeline test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:] test_pipeline = Compose(test_pipeline) # prepare data data = dict(img=img) data = test_pipeline(data) data = collate([data], samples_per_gpu=1) if next(model.parameters()).is_cuda: # scatter to specified GPU data = scatter(data, [device])[0] else: data['img_metas'] = [i.data[0] for i in data['img_metas']] # forward the model with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) return result def show_result_pyplot(model, img, result, palette=None, fig_size=(15, 10), opacity=0.5, title='', block=True): """Visualize the segmentation results on the image. Args: model (nn.Module): The loaded segmentor. img (str or np.ndarray): Image filename or loaded image. result (list): The segmentation result. palette (list[list[int]]] | None): The palette of segmentation map. If None is given, random palette will be generated. Default: None fig_size (tuple): Figure size of the pyplot figure. opacity(float): Opacity of painted segmentation map. Default 0.5. Must be in (0, 1] range. title (str): The title of pyplot figure. Default is ''. block (bool): Whether to block the pyplot figure. Default is True. """ if hasattr(model, 'module'): model = model.module img = model.show_result( img, result, palette=palette, show=False, opacity=opacity) # plt.figure(figsize=fig_size) # plt.imshow(mmcv.bgr2rgb(img)) # plt.title(title) # plt.tight_layout() # plt.show(block=block) return mmcv.bgr2rgb(img)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/apis/inference.py
from .evaluation import * # noqa: F401, F403 from .seg import * # noqa: F401, F403 from .utils import * # noqa: F401, F403
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/core/__init__.py
def add_prefix(inputs, prefix): """Add prefix for dict. Args: inputs (dict): The input dict with str keys. prefix (str): The prefix to add. Returns: dict: The dict with keys updated with ``prefix``. """ outputs = dict() for name, value in inputs.items(): outputs[f'{prefix}.{name}'] = value return outputs
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/core/utils/misc.py
from .misc import add_prefix __all__ = ['add_prefix']
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/core/utils/__init__.py
from collections import OrderedDict import annotator.uniformer.mmcv as mmcv import numpy as np import torch def f_score(precision, recall, beta=1): """calcuate the f-score value. Args: precision (float | torch.Tensor): The precision value. recall (float | torch.Tensor): The recall value. beta (int): Determines the weight of recall in the combined score. Default: False. Returns: [torch.tensor]: The f-score value. """ score = (1 + beta**2) * (precision * recall) / ( (beta**2 * precision) + recall) return score def intersect_and_union(pred_label, label, num_classes, ignore_index, label_map=dict(), reduce_zero_label=False): """Calculate intersection and Union. Args: pred_label (ndarray | str): Prediction segmentation map or predict result filename. label (ndarray | str): Ground truth segmentation map or label filename. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. label_map (dict): Mapping old labels to new labels. The parameter will work only when label is str. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. The parameter will work only when label is str. Default: False. Returns: torch.Tensor: The intersection of prediction and ground truth histogram on all classes. torch.Tensor: The union of prediction and ground truth histogram on all classes. torch.Tensor: The prediction histogram on all classes. torch.Tensor: The ground truth histogram on all classes. """ if isinstance(pred_label, str): pred_label = torch.from_numpy(np.load(pred_label)) else: pred_label = torch.from_numpy((pred_label)) if isinstance(label, str): label = torch.from_numpy( mmcv.imread(label, flag='unchanged', backend='pillow')) else: label = torch.from_numpy(label) if label_map is not None: for old_id, new_id in label_map.items(): label[label == old_id] = new_id if reduce_zero_label: label[label == 0] = 255 label = label - 1 label[label == 254] = 255 mask = (label != ignore_index) pred_label = pred_label[mask] label = label[mask] intersect = pred_label[pred_label == label] area_intersect = torch.histc( intersect.float(), bins=(num_classes), min=0, max=num_classes - 1) area_pred_label = torch.histc( pred_label.float(), bins=(num_classes), min=0, max=num_classes - 1) area_label = torch.histc( label.float(), bins=(num_classes), min=0, max=num_classes - 1) area_union = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def total_intersect_and_union(results, gt_seg_maps, num_classes, ignore_index, label_map=dict(), reduce_zero_label=False): """Calculate Total Intersection and Union. Args: results (list[ndarray] | list[str]): List of prediction segmentation maps or list of prediction result filenames. gt_seg_maps (list[ndarray] | list[str]): list of ground truth segmentation maps or list of label filenames. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: ndarray: The intersection of prediction and ground truth histogram on all classes. ndarray: The union of prediction and ground truth histogram on all classes. ndarray: The prediction histogram on all classes. ndarray: The ground truth histogram on all classes. """ num_imgs = len(results) assert len(gt_seg_maps) == num_imgs total_area_intersect = torch.zeros((num_classes, ), dtype=torch.float64) total_area_union = torch.zeros((num_classes, ), dtype=torch.float64) total_area_pred_label = torch.zeros((num_classes, ), dtype=torch.float64) total_area_label = torch.zeros((num_classes, ), dtype=torch.float64) for i in range(num_imgs): area_intersect, area_union, area_pred_label, area_label = \ intersect_and_union( results[i], gt_seg_maps[i], num_classes, ignore_index, label_map, reduce_zero_label) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, \ total_area_label def mean_iou(results, gt_seg_maps, num_classes, ignore_index, nan_to_num=None, label_map=dict(), reduce_zero_label=False): """Calculate Mean Intersection and Union (mIoU) Args: results (list[ndarray] | list[str]): List of prediction segmentation maps or list of prediction result filenames. gt_seg_maps (list[ndarray] | list[str]): list of ground truth segmentation maps or list of label filenames. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: dict[str, float | ndarray]: <aAcc> float: Overall accuracy on all images. <Acc> ndarray: Per category accuracy, shape (num_classes, ). <IoU> ndarray: Per category IoU, shape (num_classes, ). """ iou_result = eval_metrics( results=results, gt_seg_maps=gt_seg_maps, num_classes=num_classes, ignore_index=ignore_index, metrics=['mIoU'], nan_to_num=nan_to_num, label_map=label_map, reduce_zero_label=reduce_zero_label) return iou_result def mean_dice(results, gt_seg_maps, num_classes, ignore_index, nan_to_num=None, label_map=dict(), reduce_zero_label=False): """Calculate Mean Dice (mDice) Args: results (list[ndarray] | list[str]): List of prediction segmentation maps or list of prediction result filenames. gt_seg_maps (list[ndarray] | list[str]): list of ground truth segmentation maps or list of label filenames. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: dict[str, float | ndarray]: Default metrics. <aAcc> float: Overall accuracy on all images. <Acc> ndarray: Per category accuracy, shape (num_classes, ). <Dice> ndarray: Per category dice, shape (num_classes, ). """ dice_result = eval_metrics( results=results, gt_seg_maps=gt_seg_maps, num_classes=num_classes, ignore_index=ignore_index, metrics=['mDice'], nan_to_num=nan_to_num, label_map=label_map, reduce_zero_label=reduce_zero_label) return dice_result def mean_fscore(results, gt_seg_maps, num_classes, ignore_index, nan_to_num=None, label_map=dict(), reduce_zero_label=False, beta=1): """Calculate Mean Intersection and Union (mIoU) Args: results (list[ndarray] | list[str]): List of prediction segmentation maps or list of prediction result filenames. gt_seg_maps (list[ndarray] | list[str]): list of ground truth segmentation maps or list of label filenames. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. beta (int): Determines the weight of recall in the combined score. Default: False. Returns: dict[str, float | ndarray]: Default metrics. <aAcc> float: Overall accuracy on all images. <Fscore> ndarray: Per category recall, shape (num_classes, ). <Precision> ndarray: Per category precision, shape (num_classes, ). <Recall> ndarray: Per category f-score, shape (num_classes, ). """ fscore_result = eval_metrics( results=results, gt_seg_maps=gt_seg_maps, num_classes=num_classes, ignore_index=ignore_index, metrics=['mFscore'], nan_to_num=nan_to_num, label_map=label_map, reduce_zero_label=reduce_zero_label, beta=beta) return fscore_result def eval_metrics(results, gt_seg_maps, num_classes, ignore_index, metrics=['mIoU'], nan_to_num=None, label_map=dict(), reduce_zero_label=False, beta=1): """Calculate evaluation metrics Args: results (list[ndarray] | list[str]): List of prediction segmentation maps or list of prediction result filenames. gt_seg_maps (list[ndarray] | list[str]): list of ground truth segmentation maps or list of label filenames. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. metrics (list[str] | str): Metrics to be evaluated, 'mIoU' and 'mDice'. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: float: Overall accuracy on all images. ndarray: Per category accuracy, shape (num_classes, ). ndarray: Per category evaluation metrics, shape (num_classes, ). """ if isinstance(metrics, str): metrics = [metrics] allowed_metrics = ['mIoU', 'mDice', 'mFscore'] if not set(metrics).issubset(set(allowed_metrics)): raise KeyError('metrics {} is not supported'.format(metrics)) total_area_intersect, total_area_union, total_area_pred_label, \ total_area_label = total_intersect_and_union( results, gt_seg_maps, num_classes, ignore_index, label_map, reduce_zero_label) all_acc = total_area_intersect.sum() / total_area_label.sum() ret_metrics = OrderedDict({'aAcc': all_acc}) for metric in metrics: if metric == 'mIoU': iou = total_area_intersect / total_area_union acc = total_area_intersect / total_area_label ret_metrics['IoU'] = iou ret_metrics['Acc'] = acc elif metric == 'mDice': dice = 2 * total_area_intersect / ( total_area_pred_label + total_area_label) acc = total_area_intersect / total_area_label ret_metrics['Dice'] = dice ret_metrics['Acc'] = acc elif metric == 'mFscore': precision = total_area_intersect / total_area_pred_label recall = total_area_intersect / total_area_label f_value = torch.tensor( [f_score(x[0], x[1], beta) for x in zip(precision, recall)]) ret_metrics['Fscore'] = f_value ret_metrics['Precision'] = precision ret_metrics['Recall'] = recall ret_metrics = { metric: value.numpy() for metric, value in ret_metrics.items() } if nan_to_num is not None: ret_metrics = OrderedDict({ metric: np.nan_to_num(metric_value, nan=nan_to_num) for metric, metric_value in ret_metrics.items() }) return ret_metrics
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/core/evaluation/metrics.py
import annotator.uniformer.mmcv as mmcv def cityscapes_classes(): """Cityscapes class names for external use.""" return [ 'road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle' ] def ade_classes(): """ADE20K class names for external use.""" return [ 'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'bed ', 'windowpane', 'grass', 'cabinet', 'sidewalk', 'person', 'earth', 'door', 'table', 'mountain', 'plant', 'curtain', 'chair', 'car', 'water', 'painting', 'sofa', 'shelf', 'house', 'sea', 'mirror', 'rug', 'field', 'armchair', 'seat', 'fence', 'desk', 'rock', 'wardrobe', 'lamp', 'bathtub', 'railing', 'cushion', 'base', 'box', 'column', 'signboard', 'chest of drawers', 'counter', 'sand', 'sink', 'skyscraper', 'fireplace', 'refrigerator', 'grandstand', 'path', 'stairs', 'runway', 'case', 'pool table', 'pillow', 'screen door', 'stairway', 'river', 'bridge', 'bookcase', 'blind', 'coffee table', 'toilet', 'flower', 'book', 'hill', 'bench', 'countertop', 'stove', 'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'bar', 'arcade machine', 'hovel', 'bus', 'towel', 'light', 'truck', 'tower', 'chandelier', 'awning', 'streetlight', 'booth', 'television receiver', 'airplane', 'dirt track', 'apparel', 'pole', 'land', 'bannister', 'escalator', 'ottoman', 'bottle', 'buffet', 'poster', 'stage', 'van', 'ship', 'fountain', 'conveyer belt', 'canopy', 'washer', 'plaything', 'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', 'tent', 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', 'step', 'tank', 'trade name', 'microwave', 'pot', 'animal', 'bicycle', 'lake', 'dishwasher', 'screen', 'blanket', 'sculpture', 'hood', 'sconce', 'vase', 'traffic light', 'tray', 'ashcan', 'fan', 'pier', 'crt screen', 'plate', 'monitor', 'bulletin board', 'shower', 'radiator', 'glass', 'clock', 'flag' ] def voc_classes(): """Pascal VOC class names for external use.""" return [ 'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ] def cityscapes_palette(): """Cityscapes palette for external use.""" return [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32]] def ade_palette(): """ADE20K palette for external use.""" return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]] def voc_palette(): """Pascal VOC palette for external use.""" return [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] dataset_aliases = { 'cityscapes': ['cityscapes'], 'ade': ['ade', 'ade20k'], 'voc': ['voc', 'pascal_voc', 'voc12', 'voc12aug'] } def get_classes(dataset): """Get class names of a dataset.""" alias2name = {} for name, aliases in dataset_aliases.items(): for alias in aliases: alias2name[alias] = name if mmcv.is_str(dataset): if dataset in alias2name: labels = eval(alias2name[dataset] + '_classes()') else: raise ValueError(f'Unrecognized dataset: {dataset}') else: raise TypeError(f'dataset must a str, but got {type(dataset)}') return labels def get_palette(dataset): """Get class palette (RGB) of a dataset.""" alias2name = {} for name, aliases in dataset_aliases.items(): for alias in aliases: alias2name[alias] = name if mmcv.is_str(dataset): if dataset in alias2name: labels = eval(alias2name[dataset] + '_palette()') else: raise ValueError(f'Unrecognized dataset: {dataset}') else: raise TypeError(f'dataset must a str, but got {type(dataset)}') return labels
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/core/evaluation/class_names.py
import os.path as osp from annotator.uniformer.mmcv.runner import DistEvalHook as _DistEvalHook from annotator.uniformer.mmcv.runner import EvalHook as _EvalHook class EvalHook(_EvalHook): """Single GPU EvalHook, with efficient test support. Args: by_epoch (bool): Determine perform evaluation by epoch or by iteration. If set to True, it will perform by epoch. Otherwise, by iteration. Default: False. efficient_test (bool): Whether save the results as local numpy files to save CPU memory during evaluation. Default: False. Returns: list: The prediction results. """ greater_keys = ['mIoU', 'mAcc', 'aAcc'] def __init__(self, *args, by_epoch=False, efficient_test=False, **kwargs): super().__init__(*args, by_epoch=by_epoch, **kwargs) self.efficient_test = efficient_test def after_train_iter(self, runner): """After train epoch hook. Override default ``single_gpu_test``. """ if self.by_epoch or not self.every_n_iters(runner, self.interval): return from annotator.uniformer.mmseg.apis import single_gpu_test runner.log_buffer.clear() results = single_gpu_test( runner.model, self.dataloader, show=False, efficient_test=self.efficient_test) self.evaluate(runner, results) def after_train_epoch(self, runner): """After train epoch hook. Override default ``single_gpu_test``. """ if not self.by_epoch or not self.every_n_epochs(runner, self.interval): return from annotator.uniformer.mmseg.apis import single_gpu_test runner.log_buffer.clear() results = single_gpu_test(runner.model, self.dataloader, show=False) self.evaluate(runner, results) class DistEvalHook(_DistEvalHook): """Distributed EvalHook, with efficient test support. Args: by_epoch (bool): Determine perform evaluation by epoch or by iteration. If set to True, it will perform by epoch. Otherwise, by iteration. Default: False. efficient_test (bool): Whether save the results as local numpy files to save CPU memory during evaluation. Default: False. Returns: list: The prediction results. """ greater_keys = ['mIoU', 'mAcc', 'aAcc'] def __init__(self, *args, by_epoch=False, efficient_test=False, **kwargs): super().__init__(*args, by_epoch=by_epoch, **kwargs) self.efficient_test = efficient_test def after_train_iter(self, runner): """After train epoch hook. Override default ``multi_gpu_test``. """ if self.by_epoch or not self.every_n_iters(runner, self.interval): return from annotator.uniformer.mmseg.apis import multi_gpu_test runner.log_buffer.clear() results = multi_gpu_test( runner.model, self.dataloader, tmpdir=osp.join(runner.work_dir, '.eval_hook'), gpu_collect=self.gpu_collect, efficient_test=self.efficient_test) if runner.rank == 0: print('\n') self.evaluate(runner, results) def after_train_epoch(self, runner): """After train epoch hook. Override default ``multi_gpu_test``. """ if not self.by_epoch or not self.every_n_epochs(runner, self.interval): return from annotator.uniformer.mmseg.apis import multi_gpu_test runner.log_buffer.clear() results = multi_gpu_test( runner.model, self.dataloader, tmpdir=osp.join(runner.work_dir, '.eval_hook'), gpu_collect=self.gpu_collect) if runner.rank == 0: print('\n') self.evaluate(runner, results)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/core/evaluation/eval_hooks.py
from .class_names import get_classes, get_palette from .eval_hooks import DistEvalHook, EvalHook from .metrics import eval_metrics, mean_dice, mean_fscore, mean_iou __all__ = [ 'EvalHook', 'DistEvalHook', 'mean_dice', 'mean_iou', 'mean_fscore', 'eval_metrics', 'get_classes', 'get_palette' ]
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/core/evaluation/__init__.py
from .builder import build_pixel_sampler from .sampler import BasePixelSampler, OHEMPixelSampler __all__ = ['build_pixel_sampler', 'BasePixelSampler', 'OHEMPixelSampler']
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/core/seg/__init__.py
from annotator.uniformer.mmcv.utils import Registry, build_from_cfg PIXEL_SAMPLERS = Registry('pixel sampler') def build_pixel_sampler(cfg, **default_args): """Build pixel sampler for segmentation map.""" return build_from_cfg(cfg, PIXEL_SAMPLERS, default_args)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/core/seg/builder.py
from abc import ABCMeta, abstractmethod class BasePixelSampler(metaclass=ABCMeta): """Base class of pixel sampler.""" def __init__(self, **kwargs): pass @abstractmethod def sample(self, seg_logit, seg_label): """Placeholder for sample function."""
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/core/seg/sampler/base_pixel_sampler.py
from .base_pixel_sampler import BasePixelSampler from .ohem_pixel_sampler import OHEMPixelSampler __all__ = ['BasePixelSampler', 'OHEMPixelSampler']
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/core/seg/sampler/__init__.py
import torch import torch.nn.functional as F from ..builder import PIXEL_SAMPLERS from .base_pixel_sampler import BasePixelSampler @PIXEL_SAMPLERS.register_module() class OHEMPixelSampler(BasePixelSampler): """Online Hard Example Mining Sampler for segmentation. Args: context (nn.Module): The context of sampler, subclass of :obj:`BaseDecodeHead`. thresh (float, optional): The threshold for hard example selection. Below which, are prediction with low confidence. If not specified, the hard examples will be pixels of top ``min_kept`` loss. Default: None. min_kept (int, optional): The minimum number of predictions to keep. Default: 100000. """ def __init__(self, context, thresh=None, min_kept=100000): super(OHEMPixelSampler, self).__init__() self.context = context assert min_kept > 1 self.thresh = thresh self.min_kept = min_kept def sample(self, seg_logit, seg_label): """Sample pixels that have high loss or with low prediction confidence. Args: seg_logit (torch.Tensor): segmentation logits, shape (N, C, H, W) seg_label (torch.Tensor): segmentation label, shape (N, 1, H, W) Returns: torch.Tensor: segmentation weight, shape (N, H, W) """ with torch.no_grad(): assert seg_logit.shape[2:] == seg_label.shape[2:] assert seg_label.shape[1] == 1 seg_label = seg_label.squeeze(1).long() batch_kept = self.min_kept * seg_label.size(0) valid_mask = seg_label != self.context.ignore_index seg_weight = seg_logit.new_zeros(size=seg_label.size()) valid_seg_weight = seg_weight[valid_mask] if self.thresh is not None: seg_prob = F.softmax(seg_logit, dim=1) tmp_seg_label = seg_label.clone().unsqueeze(1) tmp_seg_label[tmp_seg_label == self.context.ignore_index] = 0 seg_prob = seg_prob.gather(1, tmp_seg_label).squeeze(1) sort_prob, sort_indices = seg_prob[valid_mask].sort() if sort_prob.numel() > 0: min_threshold = sort_prob[min(batch_kept, sort_prob.numel() - 1)] else: min_threshold = 0.0 threshold = max(min_threshold, self.thresh) valid_seg_weight[seg_prob[valid_mask] < threshold] = 1. else: losses = self.context.loss_decode( seg_logit, seg_label, weight=None, ignore_index=self.context.ignore_index, reduction_override='none') # faster than topk according to https://github.com/pytorch/pytorch/issues/22812 # noqa _, sort_indices = losses[valid_mask].sort(descending=True) valid_seg_weight[sort_indices[:batch_kept]] = 1. seg_weight[valid_mask] = valid_seg_weight return seg_weight
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/core/seg/sampler/ohem_pixel_sampler.py
import os.path as osp import tempfile import annotator.uniformer.mmcv as mmcv import numpy as np from annotator.uniformer.mmcv.utils import print_log from PIL import Image from .builder import DATASETS from .custom import CustomDataset @DATASETS.register_module() class CityscapesDataset(CustomDataset): """Cityscapes dataset. The ``img_suffix`` is fixed to '_leftImg8bit.png' and ``seg_map_suffix`` is fixed to '_gtFine_labelTrainIds.png' for Cityscapes dataset. """ CLASSES = ('road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle') PALETTE = [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32]] def __init__(self, **kwargs): super(CityscapesDataset, self).__init__( img_suffix='_leftImg8bit.png', seg_map_suffix='_gtFine_labelTrainIds.png', **kwargs) @staticmethod def _convert_to_label_id(result): """Convert trainId to id for cityscapes.""" if isinstance(result, str): result = np.load(result) import cityscapesscripts.helpers.labels as CSLabels result_copy = result.copy() for trainId, label in CSLabels.trainId2label.items(): result_copy[result == trainId] = label.id return result_copy def results2img(self, results, imgfile_prefix, to_label_id): """Write the segmentation results to images. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. imgfile_prefix (str): The filename prefix of the png files. If the prefix is "somepath/xxx", the png files will be named "somepath/xxx.png". to_label_id (bool): whether convert output to label_id for submission Returns: list[str: str]: result txt files which contains corresponding semantic segmentation images. """ mmcv.mkdir_or_exist(imgfile_prefix) result_files = [] prog_bar = mmcv.ProgressBar(len(self)) for idx in range(len(self)): result = results[idx] if to_label_id: result = self._convert_to_label_id(result) filename = self.img_infos[idx]['filename'] basename = osp.splitext(osp.basename(filename))[0] png_filename = osp.join(imgfile_prefix, f'{basename}.png') output = Image.fromarray(result.astype(np.uint8)).convert('P') import cityscapesscripts.helpers.labels as CSLabels palette = np.zeros((len(CSLabels.id2label), 3), dtype=np.uint8) for label_id, label in CSLabels.id2label.items(): palette[label_id] = label.color output.putpalette(palette) output.save(png_filename) result_files.append(png_filename) prog_bar.update() return result_files def format_results(self, results, imgfile_prefix=None, to_label_id=True): """Format the results into dir (standard format for Cityscapes evaluation). Args: results (list): Testing results of the dataset. imgfile_prefix (str | None): The prefix of images files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. to_label_id (bool): whether convert output to label_id for submission. Default: False Returns: tuple: (result_files, tmp_dir), result_files is a list containing the image paths, tmp_dir is the temporal directory created for saving json/png files when img_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: ' f'{len(results)} != {len(self)}') if imgfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() imgfile_prefix = tmp_dir.name else: tmp_dir = None result_files = self.results2img(results, imgfile_prefix, to_label_id) return result_files, tmp_dir def evaluate(self, results, metric='mIoU', logger=None, imgfile_prefix=None, efficient_test=False): """Evaluation in Cityscapes/default protocol. Args: results (list): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. logger (logging.Logger | None | str): Logger used for printing related information during evaluation. Default: None. imgfile_prefix (str | None): The prefix of output image file, for cityscapes evaluation only. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If results are evaluated with cityscapes protocol, it would be the prefix of output png files. The output files would be png images under folder "a/b/prefix/xxx.png", where "xxx" is the image name of cityscapes. If not specified, a temp file will be created for evaluation. Default: None. Returns: dict[str, float]: Cityscapes/default metrics. """ eval_results = dict() metrics = metric.copy() if isinstance(metric, list) else [metric] if 'cityscapes' in metrics: eval_results.update( self._evaluate_cityscapes(results, logger, imgfile_prefix)) metrics.remove('cityscapes') if len(metrics) > 0: eval_results.update( super(CityscapesDataset, self).evaluate(results, metrics, logger, efficient_test)) return eval_results def _evaluate_cityscapes(self, results, logger, imgfile_prefix): """Evaluation in Cityscapes protocol. Args: results (list): Testing results of the dataset. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. imgfile_prefix (str | None): The prefix of output image file Returns: dict[str: float]: Cityscapes evaluation results. """ try: import cityscapesscripts.evaluation.evalPixelLevelSemanticLabeling as CSEval # noqa except ImportError: raise ImportError('Please run "pip install cityscapesscripts" to ' 'install cityscapesscripts first.') msg = 'Evaluating in Cityscapes style' if logger is None: msg = '\n' + msg print_log(msg, logger=logger) result_files, tmp_dir = self.format_results(results, imgfile_prefix) if tmp_dir is None: result_dir = imgfile_prefix else: result_dir = tmp_dir.name eval_results = dict() print_log(f'Evaluating results under {result_dir} ...', logger=logger) CSEval.args.evalInstLevelScore = True CSEval.args.predictionPath = osp.abspath(result_dir) CSEval.args.evalPixelAccuracy = True CSEval.args.JSONOutput = False seg_map_list = [] pred_list = [] # when evaluating with official cityscapesscripts, # **_gtFine_labelIds.png is used for seg_map in mmcv.scandir( self.ann_dir, 'gtFine_labelIds.png', recursive=True): seg_map_list.append(osp.join(self.ann_dir, seg_map)) pred_list.append(CSEval.getPrediction(CSEval.args, seg_map)) eval_results.update( CSEval.evaluateImgLists(pred_list, seg_map_list, CSEval.args)) if tmp_dir is not None: tmp_dir.cleanup() return eval_results
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/cityscapes.py
import os.path as osp from .builder import DATASETS from .custom import CustomDataset @DATASETS.register_module() class PascalContextDataset(CustomDataset): """PascalContext dataset. In segmentation map annotation for PascalContext, 0 stands for background, which is included in 60 categories. ``reduce_zero_label`` is fixed to False. The ``img_suffix`` is fixed to '.jpg' and ``seg_map_suffix`` is fixed to '.png'. Args: split (str): Split txt file for PascalContext. """ CLASSES = ('background', 'aeroplane', 'bag', 'bed', 'bedclothes', 'bench', 'bicycle', 'bird', 'boat', 'book', 'bottle', 'building', 'bus', 'cabinet', 'car', 'cat', 'ceiling', 'chair', 'cloth', 'computer', 'cow', 'cup', 'curtain', 'dog', 'door', 'fence', 'floor', 'flower', 'food', 'grass', 'ground', 'horse', 'keyboard', 'light', 'motorbike', 'mountain', 'mouse', 'person', 'plate', 'platform', 'pottedplant', 'road', 'rock', 'sheep', 'shelves', 'sidewalk', 'sign', 'sky', 'snow', 'sofa', 'table', 'track', 'train', 'tree', 'truck', 'tvmonitor', 'wall', 'water', 'window', 'wood') PALETTE = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255]] def __init__(self, split, **kwargs): super(PascalContextDataset, self).__init__( img_suffix='.jpg', seg_map_suffix='.png', split=split, reduce_zero_label=False, **kwargs) assert osp.exists(self.img_dir) and self.split is not None @DATASETS.register_module() class PascalContextDataset59(CustomDataset): """PascalContext dataset. In segmentation map annotation for PascalContext, 0 stands for background, which is included in 60 categories. ``reduce_zero_label`` is fixed to False. The ``img_suffix`` is fixed to '.jpg' and ``seg_map_suffix`` is fixed to '.png'. Args: split (str): Split txt file for PascalContext. """ CLASSES = ('aeroplane', 'bag', 'bed', 'bedclothes', 'bench', 'bicycle', 'bird', 'boat', 'book', 'bottle', 'building', 'bus', 'cabinet', 'car', 'cat', 'ceiling', 'chair', 'cloth', 'computer', 'cow', 'cup', 'curtain', 'dog', 'door', 'fence', 'floor', 'flower', 'food', 'grass', 'ground', 'horse', 'keyboard', 'light', 'motorbike', 'mountain', 'mouse', 'person', 'plate', 'platform', 'pottedplant', 'road', 'rock', 'sheep', 'shelves', 'sidewalk', 'sign', 'sky', 'snow', 'sofa', 'table', 'track', 'train', 'tree', 'truck', 'tvmonitor', 'wall', 'water', 'window', 'wood') PALETTE = [[180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255]] def __init__(self, split, **kwargs): super(PascalContextDataset59, self).__init__( img_suffix='.jpg', seg_map_suffix='.png', split=split, reduce_zero_label=True, **kwargs) assert osp.exists(self.img_dir) and self.split is not None
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/pascal_context.py
from .builder import DATASETS from .custom import CustomDataset @DATASETS.register_module() class ADE20KDataset(CustomDataset): """ADE20K dataset. In segmentation map annotation for ADE20K, 0 stands for background, which is not included in 150 categories. ``reduce_zero_label`` is fixed to True. The ``img_suffix`` is fixed to '.jpg' and ``seg_map_suffix`` is fixed to '.png'. """ CLASSES = ( 'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'bed ', 'windowpane', 'grass', 'cabinet', 'sidewalk', 'person', 'earth', 'door', 'table', 'mountain', 'plant', 'curtain', 'chair', 'car', 'water', 'painting', 'sofa', 'shelf', 'house', 'sea', 'mirror', 'rug', 'field', 'armchair', 'seat', 'fence', 'desk', 'rock', 'wardrobe', 'lamp', 'bathtub', 'railing', 'cushion', 'base', 'box', 'column', 'signboard', 'chest of drawers', 'counter', 'sand', 'sink', 'skyscraper', 'fireplace', 'refrigerator', 'grandstand', 'path', 'stairs', 'runway', 'case', 'pool table', 'pillow', 'screen door', 'stairway', 'river', 'bridge', 'bookcase', 'blind', 'coffee table', 'toilet', 'flower', 'book', 'hill', 'bench', 'countertop', 'stove', 'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'bar', 'arcade machine', 'hovel', 'bus', 'towel', 'light', 'truck', 'tower', 'chandelier', 'awning', 'streetlight', 'booth', 'television receiver', 'airplane', 'dirt track', 'apparel', 'pole', 'land', 'bannister', 'escalator', 'ottoman', 'bottle', 'buffet', 'poster', 'stage', 'van', 'ship', 'fountain', 'conveyer belt', 'canopy', 'washer', 'plaything', 'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', 'tent', 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', 'step', 'tank', 'trade name', 'microwave', 'pot', 'animal', 'bicycle', 'lake', 'dishwasher', 'screen', 'blanket', 'sculpture', 'hood', 'sconce', 'vase', 'traffic light', 'tray', 'ashcan', 'fan', 'pier', 'crt screen', 'plate', 'monitor', 'bulletin board', 'shower', 'radiator', 'glass', 'clock', 'flag') PALETTE = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]] def __init__(self, **kwargs): super(ADE20KDataset, self).__init__( img_suffix='.jpg', seg_map_suffix='.png', reduce_zero_label=True, **kwargs)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/ade.py
import os import os.path as osp from collections import OrderedDict from functools import reduce import annotator.uniformer.mmcv as mmcv import numpy as np from annotator.uniformer.mmcv.utils import print_log from prettytable import PrettyTable from torch.utils.data import Dataset from annotator.uniformer.mmseg.core import eval_metrics from annotator.uniformer.mmseg.utils import get_root_logger from .builder import DATASETS from .pipelines import Compose @DATASETS.register_module() class CustomDataset(Dataset): """Custom dataset for semantic segmentation. An example of file structure is as followed. .. code-block:: none ├── data │ ├── my_dataset │ │ ├── img_dir │ │ │ ├── train │ │ │ │ ├── xxx{img_suffix} │ │ │ │ ├── yyy{img_suffix} │ │ │ │ ├── zzz{img_suffix} │ │ │ ├── val │ │ ├── ann_dir │ │ │ ├── train │ │ │ │ ├── xxx{seg_map_suffix} │ │ │ │ ├── yyy{seg_map_suffix} │ │ │ │ ├── zzz{seg_map_suffix} │ │ │ ├── val The img/gt_semantic_seg pair of CustomDataset should be of the same except suffix. A valid img/gt_semantic_seg filename pair should be like ``xxx{img_suffix}`` and ``xxx{seg_map_suffix}`` (extension is also included in the suffix). If split is given, then ``xxx`` is specified in txt file. Otherwise, all files in ``img_dir/``and ``ann_dir`` will be loaded. Please refer to ``docs/tutorials/new_dataset.md`` for more details. Args: pipeline (list[dict]): Processing pipeline img_dir (str): Path to image directory img_suffix (str): Suffix of images. Default: '.jpg' ann_dir (str, optional): Path to annotation directory. Default: None seg_map_suffix (str): Suffix of segmentation maps. Default: '.png' split (str, optional): Split txt file. If split is specified, only file with suffix in the splits will be loaded. Otherwise, all images in img_dir/ann_dir will be loaded. Default: None data_root (str, optional): Data root for img_dir/ann_dir. Default: None. test_mode (bool): If test_mode=True, gt wouldn't be loaded. ignore_index (int): The label index to be ignored. Default: 255 reduce_zero_label (bool): Whether to mark label zero as ignored. Default: False classes (str | Sequence[str], optional): Specify classes to load. If is None, ``cls.CLASSES`` will be used. Default: None. palette (Sequence[Sequence[int]]] | np.ndarray | None): The palette of segmentation map. If None is given, and self.PALETTE is None, random palette will be generated. Default: None """ CLASSES = None PALETTE = None def __init__(self, pipeline, img_dir, img_suffix='.jpg', ann_dir=None, seg_map_suffix='.png', split=None, data_root=None, test_mode=False, ignore_index=255, reduce_zero_label=False, classes=None, palette=None): self.pipeline = Compose(pipeline) self.img_dir = img_dir self.img_suffix = img_suffix self.ann_dir = ann_dir self.seg_map_suffix = seg_map_suffix self.split = split self.data_root = data_root self.test_mode = test_mode self.ignore_index = ignore_index self.reduce_zero_label = reduce_zero_label self.label_map = None self.CLASSES, self.PALETTE = self.get_classes_and_palette( classes, palette) # join paths if data_root is specified if self.data_root is not None: if not osp.isabs(self.img_dir): self.img_dir = osp.join(self.data_root, self.img_dir) if not (self.ann_dir is None or osp.isabs(self.ann_dir)): self.ann_dir = osp.join(self.data_root, self.ann_dir) if not (self.split is None or osp.isabs(self.split)): self.split = osp.join(self.data_root, self.split) # load annotations self.img_infos = self.load_annotations(self.img_dir, self.img_suffix, self.ann_dir, self.seg_map_suffix, self.split) def __len__(self): """Total number of samples of data.""" return len(self.img_infos) def load_annotations(self, img_dir, img_suffix, ann_dir, seg_map_suffix, split): """Load annotation from directory. Args: img_dir (str): Path to image directory img_suffix (str): Suffix of images. ann_dir (str|None): Path to annotation directory. seg_map_suffix (str|None): Suffix of segmentation maps. split (str|None): Split txt file. If split is specified, only file with suffix in the splits will be loaded. Otherwise, all images in img_dir/ann_dir will be loaded. Default: None Returns: list[dict]: All image info of dataset. """ img_infos = [] if split is not None: with open(split) as f: for line in f: img_name = line.strip() img_info = dict(filename=img_name + img_suffix) if ann_dir is not None: seg_map = img_name + seg_map_suffix img_info['ann'] = dict(seg_map=seg_map) img_infos.append(img_info) else: for img in mmcv.scandir(img_dir, img_suffix, recursive=True): img_info = dict(filename=img) if ann_dir is not None: seg_map = img.replace(img_suffix, seg_map_suffix) img_info['ann'] = dict(seg_map=seg_map) img_infos.append(img_info) print_log(f'Loaded {len(img_infos)} images', logger=get_root_logger()) return img_infos def get_ann_info(self, idx): """Get annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ return self.img_infos[idx]['ann'] def pre_pipeline(self, results): """Prepare results dict for pipeline.""" results['seg_fields'] = [] results['img_prefix'] = self.img_dir results['seg_prefix'] = self.ann_dir if self.custom_classes: results['label_map'] = self.label_map def __getitem__(self, idx): """Get training/test data after pipeline. Args: idx (int): Index of data. Returns: dict: Training/test data (with annotation if `test_mode` is set False). """ if self.test_mode: return self.prepare_test_img(idx) else: return self.prepare_train_img(idx) def prepare_train_img(self, idx): """Get training data and annotations after pipeline. Args: idx (int): Index of data. Returns: dict: Training data and annotation after pipeline with new keys introduced by pipeline. """ img_info = self.img_infos[idx] ann_info = self.get_ann_info(idx) results = dict(img_info=img_info, ann_info=ann_info) self.pre_pipeline(results) return self.pipeline(results) def prepare_test_img(self, idx): """Get testing data after pipeline. Args: idx (int): Index of data. Returns: dict: Testing data after pipeline with new keys introduced by pipeline. """ img_info = self.img_infos[idx] results = dict(img_info=img_info) self.pre_pipeline(results) return self.pipeline(results) def format_results(self, results, **kwargs): """Place holder to format result to dataset specific output.""" def get_gt_seg_maps(self, efficient_test=False): """Get ground truth segmentation maps for evaluation.""" gt_seg_maps = [] for img_info in self.img_infos: seg_map = osp.join(self.ann_dir, img_info['ann']['seg_map']) if efficient_test: gt_seg_map = seg_map else: gt_seg_map = mmcv.imread( seg_map, flag='unchanged', backend='pillow') gt_seg_maps.append(gt_seg_map) return gt_seg_maps def get_classes_and_palette(self, classes=None, palette=None): """Get class names of current dataset. Args: classes (Sequence[str] | str | None): If classes is None, use default CLASSES defined by builtin dataset. If classes is a string, take it as a file name. The file contains the name of classes where each line contains one class name. If classes is a tuple or list, override the CLASSES defined by the dataset. palette (Sequence[Sequence[int]]] | np.ndarray | None): The palette of segmentation map. If None is given, random palette will be generated. Default: None """ if classes is None: self.custom_classes = False return self.CLASSES, self.PALETTE self.custom_classes = True if isinstance(classes, str): # take it as a file path class_names = mmcv.list_from_file(classes) elif isinstance(classes, (tuple, list)): class_names = classes else: raise ValueError(f'Unsupported type {type(classes)} of classes.') if self.CLASSES: if not set(classes).issubset(self.CLASSES): raise ValueError('classes is not a subset of CLASSES.') # dictionary, its keys are the old label ids and its values # are the new label ids. # used for changing pixel labels in load_annotations. self.label_map = {} for i, c in enumerate(self.CLASSES): if c not in class_names: self.label_map[i] = -1 else: self.label_map[i] = classes.index(c) palette = self.get_palette_for_custom_classes(class_names, palette) return class_names, palette def get_palette_for_custom_classes(self, class_names, palette=None): if self.label_map is not None: # return subset of palette palette = [] for old_id, new_id in sorted( self.label_map.items(), key=lambda x: x[1]): if new_id != -1: palette.append(self.PALETTE[old_id]) palette = type(self.PALETTE)(palette) elif palette is None: if self.PALETTE is None: palette = np.random.randint(0, 255, size=(len(class_names), 3)) else: palette = self.PALETTE return palette def evaluate(self, results, metric='mIoU', logger=None, efficient_test=False, **kwargs): """Evaluate the dataset. Args: results (list): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. 'mIoU', 'mDice' and 'mFscore' are supported. logger (logging.Logger | None | str): Logger used for printing related information during evaluation. Default: None. Returns: dict[str, float]: Default metrics. """ if isinstance(metric, str): metric = [metric] allowed_metrics = ['mIoU', 'mDice', 'mFscore'] if not set(metric).issubset(set(allowed_metrics)): raise KeyError('metric {} is not supported'.format(metric)) eval_results = {} gt_seg_maps = self.get_gt_seg_maps(efficient_test) if self.CLASSES is None: num_classes = len( reduce(np.union1d, [np.unique(_) for _ in gt_seg_maps])) else: num_classes = len(self.CLASSES) ret_metrics = eval_metrics( results, gt_seg_maps, num_classes, self.ignore_index, metric, label_map=self.label_map, reduce_zero_label=self.reduce_zero_label) if self.CLASSES is None: class_names = tuple(range(num_classes)) else: class_names = self.CLASSES # summary table ret_metrics_summary = OrderedDict({ ret_metric: np.round(np.nanmean(ret_metric_value) * 100, 2) for ret_metric, ret_metric_value in ret_metrics.items() }) # each class table ret_metrics.pop('aAcc', None) ret_metrics_class = OrderedDict({ ret_metric: np.round(ret_metric_value * 100, 2) for ret_metric, ret_metric_value in ret_metrics.items() }) ret_metrics_class.update({'Class': class_names}) ret_metrics_class.move_to_end('Class', last=False) # for logger class_table_data = PrettyTable() for key, val in ret_metrics_class.items(): class_table_data.add_column(key, val) summary_table_data = PrettyTable() for key, val in ret_metrics_summary.items(): if key == 'aAcc': summary_table_data.add_column(key, [val]) else: summary_table_data.add_column('m' + key, [val]) print_log('per class results:', logger) print_log('\n' + class_table_data.get_string(), logger=logger) print_log('Summary:', logger) print_log('\n' + summary_table_data.get_string(), logger=logger) # each metric dict for key, value in ret_metrics_summary.items(): if key == 'aAcc': eval_results[key] = value / 100.0 else: eval_results['m' + key] = value / 100.0 ret_metrics_class.pop('Class', None) for key, value in ret_metrics_class.items(): eval_results.update({ key + '.' + str(name): value[idx] / 100.0 for idx, name in enumerate(class_names) }) if mmcv.is_list_of(results, str): for file_name in results: os.remove(file_name) return eval_results
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/custom.py
import os.path as osp from .builder import DATASETS from .custom import CustomDataset @DATASETS.register_module() class HRFDataset(CustomDataset): """HRF dataset. In segmentation map annotation for HRF, 0 stands for background, which is included in 2 categories. ``reduce_zero_label`` is fixed to False. The ``img_suffix`` is fixed to '.png' and ``seg_map_suffix`` is fixed to '.png'. """ CLASSES = ('background', 'vessel') PALETTE = [[120, 120, 120], [6, 230, 230]] def __init__(self, **kwargs): super(HRFDataset, self).__init__( img_suffix='.png', seg_map_suffix='.png', reduce_zero_label=False, **kwargs) assert osp.exists(self.img_dir)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/hrf.py
from .ade import ADE20KDataset from .builder import DATASETS, PIPELINES, build_dataloader, build_dataset from .chase_db1 import ChaseDB1Dataset from .cityscapes import CityscapesDataset from .custom import CustomDataset from .dataset_wrappers import ConcatDataset, RepeatDataset from .drive import DRIVEDataset from .hrf import HRFDataset from .pascal_context import PascalContextDataset, PascalContextDataset59 from .stare import STAREDataset from .voc import PascalVOCDataset __all__ = [ 'CustomDataset', 'build_dataloader', 'ConcatDataset', 'RepeatDataset', 'DATASETS', 'build_dataset', 'PIPELINES', 'CityscapesDataset', 'PascalVOCDataset', 'ADE20KDataset', 'PascalContextDataset', 'PascalContextDataset59', 'ChaseDB1Dataset', 'DRIVEDataset', 'HRFDataset', 'STAREDataset' ]
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/__init__.py
import os.path as osp from .builder import DATASETS from .custom import CustomDataset @DATASETS.register_module() class ChaseDB1Dataset(CustomDataset): """Chase_db1 dataset. In segmentation map annotation for Chase_db1, 0 stands for background, which is included in 2 categories. ``reduce_zero_label`` is fixed to False. The ``img_suffix`` is fixed to '.png' and ``seg_map_suffix`` is fixed to '_1stHO.png'. """ CLASSES = ('background', 'vessel') PALETTE = [[120, 120, 120], [6, 230, 230]] def __init__(self, **kwargs): super(ChaseDB1Dataset, self).__init__( img_suffix='.png', seg_map_suffix='_1stHO.png', reduce_zero_label=False, **kwargs) assert osp.exists(self.img_dir)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/chase_db1.py
import copy import platform import random from functools import partial import numpy as np from annotator.uniformer.mmcv.parallel import collate from annotator.uniformer.mmcv.runner import get_dist_info from annotator.uniformer.mmcv.utils import Registry, build_from_cfg from annotator.uniformer.mmcv.utils.parrots_wrapper import DataLoader, PoolDataLoader from torch.utils.data import DistributedSampler if platform.system() != 'Windows': # https://github.com/pytorch/pytorch/issues/973 import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) hard_limit = rlimit[1] soft_limit = min(4096, hard_limit) resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) DATASETS = Registry('dataset') PIPELINES = Registry('pipeline') def _concat_dataset(cfg, default_args=None): """Build :obj:`ConcatDataset by.""" from .dataset_wrappers import ConcatDataset img_dir = cfg['img_dir'] ann_dir = cfg.get('ann_dir', None) split = cfg.get('split', None) num_img_dir = len(img_dir) if isinstance(img_dir, (list, tuple)) else 1 if ann_dir is not None: num_ann_dir = len(ann_dir) if isinstance(ann_dir, (list, tuple)) else 1 else: num_ann_dir = 0 if split is not None: num_split = len(split) if isinstance(split, (list, tuple)) else 1 else: num_split = 0 if num_img_dir > 1: assert num_img_dir == num_ann_dir or num_ann_dir == 0 assert num_img_dir == num_split or num_split == 0 else: assert num_split == num_ann_dir or num_ann_dir <= 1 num_dset = max(num_split, num_img_dir) datasets = [] for i in range(num_dset): data_cfg = copy.deepcopy(cfg) if isinstance(img_dir, (list, tuple)): data_cfg['img_dir'] = img_dir[i] if isinstance(ann_dir, (list, tuple)): data_cfg['ann_dir'] = ann_dir[i] if isinstance(split, (list, tuple)): data_cfg['split'] = split[i] datasets.append(build_dataset(data_cfg, default_args)) return ConcatDataset(datasets) def build_dataset(cfg, default_args=None): """Build datasets.""" from .dataset_wrappers import ConcatDataset, RepeatDataset if isinstance(cfg, (list, tuple)): dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) elif cfg['type'] == 'RepeatDataset': dataset = RepeatDataset( build_dataset(cfg['dataset'], default_args), cfg['times']) elif isinstance(cfg.get('img_dir'), (list, tuple)) or isinstance( cfg.get('split', None), (list, tuple)): dataset = _concat_dataset(cfg, default_args) else: dataset = build_from_cfg(cfg, DATASETS, default_args) return dataset def build_dataloader(dataset, samples_per_gpu, workers_per_gpu, num_gpus=1, dist=True, shuffle=True, seed=None, drop_last=False, pin_memory=True, dataloader_type='PoolDataLoader', **kwargs): """Build PyTorch DataLoader. In distributed training, each GPU/process has a dataloader. In non-distributed training, there is only one dataloader for all GPUs. Args: dataset (Dataset): A PyTorch dataset. samples_per_gpu (int): Number of training samples on each GPU, i.e., batch size of each GPU. workers_per_gpu (int): How many subprocesses to use for data loading for each GPU. num_gpus (int): Number of GPUs. Only used in non-distributed training. dist (bool): Distributed training/test or not. Default: True. shuffle (bool): Whether to shuffle the data at every epoch. Default: True. seed (int | None): Seed to be used. Default: None. drop_last (bool): Whether to drop the last incomplete batch in epoch. Default: False pin_memory (bool): Whether to use pin_memory in DataLoader. Default: True dataloader_type (str): Type of dataloader. Default: 'PoolDataLoader' kwargs: any keyword argument to be used to initialize DataLoader Returns: DataLoader: A PyTorch dataloader. """ rank, world_size = get_dist_info() if dist: sampler = DistributedSampler( dataset, world_size, rank, shuffle=shuffle) shuffle = False batch_size = samples_per_gpu num_workers = workers_per_gpu else: sampler = None batch_size = num_gpus * samples_per_gpu num_workers = num_gpus * workers_per_gpu init_fn = partial( worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None assert dataloader_type in ( 'DataLoader', 'PoolDataLoader'), f'unsupported dataloader {dataloader_type}' if dataloader_type == 'PoolDataLoader': dataloader = PoolDataLoader elif dataloader_type == 'DataLoader': dataloader = DataLoader data_loader = dataloader( dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), pin_memory=pin_memory, shuffle=shuffle, worker_init_fn=init_fn, drop_last=drop_last, **kwargs) return data_loader def worker_init_fn(worker_id, num_workers, rank, seed): """Worker init func for dataloader. The seed of each worker equals to num_worker * rank + worker_id + user_seed Args: worker_id (int): Worker id. num_workers (int): Number of workers. rank (int): The rank of current process. seed (int): The random seed to use. """ worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/builder.py
import os.path as osp from .builder import DATASETS from .custom import CustomDataset @DATASETS.register_module() class PascalVOCDataset(CustomDataset): """Pascal VOC dataset. Args: split (str): Split txt file for Pascal VOC. """ CLASSES = ('background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') PALETTE = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] def __init__(self, split, **kwargs): super(PascalVOCDataset, self).__init__( img_suffix='.jpg', seg_map_suffix='.png', split=split, **kwargs) assert osp.exists(self.img_dir) and self.split is not None
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/voc.py
from torch.utils.data.dataset import ConcatDataset as _ConcatDataset from .builder import DATASETS @DATASETS.register_module() class ConcatDataset(_ConcatDataset): """A wrapper of concatenated dataset. Same as :obj:`torch.utils.data.dataset.ConcatDataset`, but concat the group flag for image aspect ratio. Args: datasets (list[:obj:`Dataset`]): A list of datasets. """ def __init__(self, datasets): super(ConcatDataset, self).__init__(datasets) self.CLASSES = datasets[0].CLASSES self.PALETTE = datasets[0].PALETTE @DATASETS.register_module() class RepeatDataset(object): """A wrapper of repeated dataset. The length of repeated dataset will be `times` larger than the original dataset. This is useful when the data loading time is long but the dataset is small. Using RepeatDataset can reduce the data loading time between epochs. Args: dataset (:obj:`Dataset`): The dataset to be repeated. times (int): Repeat times. """ def __init__(self, dataset, times): self.dataset = dataset self.times = times self.CLASSES = dataset.CLASSES self.PALETTE = dataset.PALETTE self._ori_len = len(self.dataset) def __getitem__(self, idx): """Get item from original dataset.""" return self.dataset[idx % self._ori_len] def __len__(self): """The length is multiplied by ``times``""" return self.times * self._ori_len
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/dataset_wrappers.py
import os.path as osp from .builder import DATASETS from .custom import CustomDataset @DATASETS.register_module() class STAREDataset(CustomDataset): """STARE dataset. In segmentation map annotation for STARE, 0 stands for background, which is included in 2 categories. ``reduce_zero_label`` is fixed to False. The ``img_suffix`` is fixed to '.png' and ``seg_map_suffix`` is fixed to '.ah.png'. """ CLASSES = ('background', 'vessel') PALETTE = [[120, 120, 120], [6, 230, 230]] def __init__(self, **kwargs): super(STAREDataset, self).__init__( img_suffix='.png', seg_map_suffix='.ah.png', reduce_zero_label=False, **kwargs) assert osp.exists(self.img_dir)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/stare.py
import os.path as osp from .builder import DATASETS from .custom import CustomDataset @DATASETS.register_module() class DRIVEDataset(CustomDataset): """DRIVE dataset. In segmentation map annotation for DRIVE, 0 stands for background, which is included in 2 categories. ``reduce_zero_label`` is fixed to False. The ``img_suffix`` is fixed to '.png' and ``seg_map_suffix`` is fixed to '_manual1.png'. """ CLASSES = ('background', 'vessel') PALETTE = [[120, 120, 120], [6, 230, 230]] def __init__(self, **kwargs): super(DRIVEDataset, self).__init__( img_suffix='.png', seg_map_suffix='_manual1.png', reduce_zero_label=False, **kwargs) assert osp.exists(self.img_dir)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/drive.py
import annotator.uniformer.mmcv as mmcv import numpy as np from annotator.uniformer.mmcv.utils import deprecated_api_warning, is_tuple_of from numpy import random from ..builder import PIPELINES @PIPELINES.register_module() class Resize(object): """Resize images & seg. This transform resizes the input image to some scale. If the input dict contains the key "scale", then the scale in the input dict is used, otherwise the specified scale in the init method is used. ``img_scale`` can be None, a tuple (single-scale) or a list of tuple (multi-scale). There are 4 multiscale modes: - ``ratio_range is not None``: 1. When img_scale is None, img_scale is the shape of image in results (img_scale = results['img'].shape[:2]) and the image is resized based on the original size. (mode 1) 2. When img_scale is a tuple (single-scale), randomly sample a ratio from the ratio range and multiply it with the image scale. (mode 2) - ``ratio_range is None and multiscale_mode == "range"``: randomly sample a scale from the a range. (mode 3) - ``ratio_range is None and multiscale_mode == "value"``: randomly sample a scale from multiple scales. (mode 4) Args: img_scale (tuple or list[tuple]): Images scales for resizing. multiscale_mode (str): Either "range" or "value". ratio_range (tuple[float]): (min_ratio, max_ratio) keep_ratio (bool): Whether to keep the aspect ratio when resizing the image. """ def __init__(self, img_scale=None, multiscale_mode='range', ratio_range=None, keep_ratio=True): if img_scale is None: self.img_scale = None else: if isinstance(img_scale, list): self.img_scale = img_scale else: self.img_scale = [img_scale] assert mmcv.is_list_of(self.img_scale, tuple) if ratio_range is not None: # mode 1: given img_scale=None and a range of image ratio # mode 2: given a scale and a range of image ratio assert self.img_scale is None or len(self.img_scale) == 1 else: # mode 3 and 4: given multiple scales or a range of scales assert multiscale_mode in ['value', 'range'] self.multiscale_mode = multiscale_mode self.ratio_range = ratio_range self.keep_ratio = keep_ratio @staticmethod def random_select(img_scales): """Randomly select an img_scale from given candidates. Args: img_scales (list[tuple]): Images scales for selection. Returns: (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, where ``img_scale`` is the selected image scale and ``scale_idx`` is the selected index in the given candidates. """ assert mmcv.is_list_of(img_scales, tuple) scale_idx = np.random.randint(len(img_scales)) img_scale = img_scales[scale_idx] return img_scale, scale_idx @staticmethod def random_sample(img_scales): """Randomly sample an img_scale when ``multiscale_mode=='range'``. Args: img_scales (list[tuple]): Images scale range for sampling. There must be two tuples in img_scales, which specify the lower and upper bound of image scales. Returns: (tuple, None): Returns a tuple ``(img_scale, None)``, where ``img_scale`` is sampled scale and None is just a placeholder to be consistent with :func:`random_select`. """ assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 img_scale_long = [max(s) for s in img_scales] img_scale_short = [min(s) for s in img_scales] long_edge = np.random.randint( min(img_scale_long), max(img_scale_long) + 1) short_edge = np.random.randint( min(img_scale_short), max(img_scale_short) + 1) img_scale = (long_edge, short_edge) return img_scale, None @staticmethod def random_sample_ratio(img_scale, ratio_range): """Randomly sample an img_scale when ``ratio_range`` is specified. A ratio will be randomly sampled from the range specified by ``ratio_range``. Then it would be multiplied with ``img_scale`` to generate sampled scale. Args: img_scale (tuple): Images scale base to multiply with ratio. ratio_range (tuple[float]): The minimum and maximum ratio to scale the ``img_scale``. Returns: (tuple, None): Returns a tuple ``(scale, None)``, where ``scale`` is sampled ratio multiplied with ``img_scale`` and None is just a placeholder to be consistent with :func:`random_select`. """ assert isinstance(img_scale, tuple) and len(img_scale) == 2 min_ratio, max_ratio = ratio_range assert min_ratio <= max_ratio ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) return scale, None def _random_scale(self, results): """Randomly sample an img_scale according to ``ratio_range`` and ``multiscale_mode``. If ``ratio_range`` is specified, a ratio will be sampled and be multiplied with ``img_scale``. If multiple scales are specified by ``img_scale``, a scale will be sampled according to ``multiscale_mode``. Otherwise, single scale will be used. Args: results (dict): Result dict from :obj:`dataset`. Returns: dict: Two new keys 'scale` and 'scale_idx` are added into ``results``, which would be used by subsequent pipelines. """ if self.ratio_range is not None: if self.img_scale is None: h, w = results['img'].shape[:2] scale, scale_idx = self.random_sample_ratio((w, h), self.ratio_range) else: scale, scale_idx = self.random_sample_ratio( self.img_scale[0], self.ratio_range) elif len(self.img_scale) == 1: scale, scale_idx = self.img_scale[0], 0 elif self.multiscale_mode == 'range': scale, scale_idx = self.random_sample(self.img_scale) elif self.multiscale_mode == 'value': scale, scale_idx = self.random_select(self.img_scale) else: raise NotImplementedError results['scale'] = scale results['scale_idx'] = scale_idx def _resize_img(self, results): """Resize images with ``results['scale']``.""" if self.keep_ratio: img, scale_factor = mmcv.imrescale( results['img'], results['scale'], return_scale=True) # the w_scale and h_scale has minor difference # a real fix should be done in the mmcv.imrescale in the future new_h, new_w = img.shape[:2] h, w = results['img'].shape[:2] w_scale = new_w / w h_scale = new_h / h else: img, w_scale, h_scale = mmcv.imresize( results['img'], results['scale'], return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) results['img'] = img results['img_shape'] = img.shape results['pad_shape'] = img.shape # in case that there is no padding results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio def _resize_seg(self, results): """Resize semantic segmentation map with ``results['scale']``.""" for key in results.get('seg_fields', []): if self.keep_ratio: gt_seg = mmcv.imrescale( results[key], results['scale'], interpolation='nearest') else: gt_seg = mmcv.imresize( results[key], results['scale'], interpolation='nearest') results[key] = gt_seg def __call__(self, results): """Call function to resize images, bounding boxes, masks, semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', 'keep_ratio' keys are added into result dict. """ if 'scale' not in results: self._random_scale(results) self._resize_img(results) self._resize_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(img_scale={self.img_scale}, ' f'multiscale_mode={self.multiscale_mode}, ' f'ratio_range={self.ratio_range}, ' f'keep_ratio={self.keep_ratio})') return repr_str @PIPELINES.register_module() class RandomFlip(object): """Flip the image & seg. If the input dict contains the key "flip", then the flag will be used, otherwise it will be randomly decided by a ratio specified in the init method. Args: prob (float, optional): The flipping probability. Default: None. direction(str, optional): The flipping direction. Options are 'horizontal' and 'vertical'. Default: 'horizontal'. """ @deprecated_api_warning({'flip_ratio': 'prob'}, cls_name='RandomFlip') def __init__(self, prob=None, direction='horizontal'): self.prob = prob self.direction = direction if prob is not None: assert prob >= 0 and prob <= 1 assert direction in ['horizontal', 'vertical'] def __call__(self, results): """Call function to flip bounding boxes, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Flipped results, 'flip', 'flip_direction' keys are added into result dict. """ if 'flip' not in results: flip = True if np.random.rand() < self.prob else False results['flip'] = flip if 'flip_direction' not in results: results['flip_direction'] = self.direction if results['flip']: # flip image results['img'] = mmcv.imflip( results['img'], direction=results['flip_direction']) # flip segs for key in results.get('seg_fields', []): # use copy() to make numpy stride positive results[key] = mmcv.imflip( results[key], direction=results['flip_direction']).copy() return results def __repr__(self): return self.__class__.__name__ + f'(prob={self.prob})' @PIPELINES.register_module() class Pad(object): """Pad the image & mask. There are two padding modes: (1) pad to a fixed size and (2) pad to the minimum size that is divisible by some number. Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor", Args: size (tuple, optional): Fixed padding size. size_divisor (int, optional): The divisor of padded size. pad_val (float, optional): Padding value. Default: 0. seg_pad_val (float, optional): Padding value of segmentation map. Default: 255. """ def __init__(self, size=None, size_divisor=None, pad_val=0, seg_pad_val=255): self.size = size self.size_divisor = size_divisor self.pad_val = pad_val self.seg_pad_val = seg_pad_val # only one of size and size_divisor should be valid assert size is not None or size_divisor is not None assert size is None or size_divisor is None def _pad_img(self, results): """Pad images according to ``self.size``.""" if self.size is not None: padded_img = mmcv.impad( results['img'], shape=self.size, pad_val=self.pad_val) elif self.size_divisor is not None: padded_img = mmcv.impad_to_multiple( results['img'], self.size_divisor, pad_val=self.pad_val) results['img'] = padded_img results['pad_shape'] = padded_img.shape results['pad_fixed_size'] = self.size results['pad_size_divisor'] = self.size_divisor def _pad_seg(self, results): """Pad masks according to ``results['pad_shape']``.""" for key in results.get('seg_fields', []): results[key] = mmcv.impad( results[key], shape=results['pad_shape'][:2], pad_val=self.seg_pad_val) def __call__(self, results): """Call function to pad images, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Updated result dict. """ self._pad_img(results) self._pad_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(size={self.size}, size_divisor={self.size_divisor}, ' \ f'pad_val={self.pad_val})' return repr_str @PIPELINES.register_module() class Normalize(object): """Normalize the image. Added key is "img_norm_cfg". Args: mean (sequence): Mean values of 3 channels. std (sequence): Std values of 3 channels. to_rgb (bool): Whether to convert the image from BGR to RGB, default is true. """ def __init__(self, mean, std, to_rgb=True): self.mean = np.array(mean, dtype=np.float32) self.std = np.array(std, dtype=np.float32) self.to_rgb = to_rgb def __call__(self, results): """Call function to normalize images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Normalized results, 'img_norm_cfg' key is added into result dict. """ results['img'] = mmcv.imnormalize(results['img'], self.mean, self.std, self.to_rgb) results['img_norm_cfg'] = dict( mean=self.mean, std=self.std, to_rgb=self.to_rgb) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(mean={self.mean}, std={self.std}, to_rgb=' \ f'{self.to_rgb})' return repr_str @PIPELINES.register_module() class Rerange(object): """Rerange the image pixel value. Args: min_value (float or int): Minimum value of the reranged image. Default: 0. max_value (float or int): Maximum value of the reranged image. Default: 255. """ def __init__(self, min_value=0, max_value=255): assert isinstance(min_value, float) or isinstance(min_value, int) assert isinstance(max_value, float) or isinstance(max_value, int) assert min_value < max_value self.min_value = min_value self.max_value = max_value def __call__(self, results): """Call function to rerange images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Reranged results. """ img = results['img'] img_min_value = np.min(img) img_max_value = np.max(img) assert img_min_value < img_max_value # rerange to [0, 1] img = (img - img_min_value) / (img_max_value - img_min_value) # rerange to [min_value, max_value] img = img * (self.max_value - self.min_value) + self.min_value results['img'] = img return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(min_value={self.min_value}, max_value={self.max_value})' return repr_str @PIPELINES.register_module() class CLAHE(object): """Use CLAHE method to process the image. See `ZUIDERVELD,K. Contrast Limited Adaptive Histogram Equalization[J]. Graphics Gems, 1994:474-485.` for more information. Args: clip_limit (float): Threshold for contrast limiting. Default: 40.0. tile_grid_size (tuple[int]): Size of grid for histogram equalization. Input image will be divided into equally sized rectangular tiles. It defines the number of tiles in row and column. Default: (8, 8). """ def __init__(self, clip_limit=40.0, tile_grid_size=(8, 8)): assert isinstance(clip_limit, (float, int)) self.clip_limit = clip_limit assert is_tuple_of(tile_grid_size, int) assert len(tile_grid_size) == 2 self.tile_grid_size = tile_grid_size def __call__(self, results): """Call function to Use CLAHE method process images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Processed results. """ for i in range(results['img'].shape[2]): results['img'][:, :, i] = mmcv.clahe( np.array(results['img'][:, :, i], dtype=np.uint8), self.clip_limit, self.tile_grid_size) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(clip_limit={self.clip_limit}, '\ f'tile_grid_size={self.tile_grid_size})' return repr_str @PIPELINES.register_module() class RandomCrop(object): """Random crop the image & seg. Args: crop_size (tuple): Expected size after cropping, (h, w). cat_max_ratio (float): The maximum ratio that single category could occupy. """ def __init__(self, crop_size, cat_max_ratio=1., ignore_index=255): assert crop_size[0] > 0 and crop_size[1] > 0 self.crop_size = crop_size self.cat_max_ratio = cat_max_ratio self.ignore_index = ignore_index def get_crop_bbox(self, img): """Randomly get a crop bounding box.""" margin_h = max(img.shape[0] - self.crop_size[0], 0) margin_w = max(img.shape[1] - self.crop_size[1], 0) offset_h = np.random.randint(0, margin_h + 1) offset_w = np.random.randint(0, margin_w + 1) crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0] crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1] return crop_y1, crop_y2, crop_x1, crop_x2 def crop(self, img, crop_bbox): """Crop from ``img``""" crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] return img def __call__(self, results): """Call function to randomly crop images, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Randomly cropped results, 'img_shape' key in result dict is updated according to crop size. """ img = results['img'] crop_bbox = self.get_crop_bbox(img) if self.cat_max_ratio < 1.: # Repeat 10 times for _ in range(10): seg_temp = self.crop(results['gt_semantic_seg'], crop_bbox) labels, cnt = np.unique(seg_temp, return_counts=True) cnt = cnt[labels != self.ignore_index] if len(cnt) > 1 and np.max(cnt) / np.sum( cnt) < self.cat_max_ratio: break crop_bbox = self.get_crop_bbox(img) # crop the image img = self.crop(img, crop_bbox) img_shape = img.shape results['img'] = img results['img_shape'] = img_shape # crop semantic seg for key in results.get('seg_fields', []): results[key] = self.crop(results[key], crop_bbox) return results def __repr__(self): return self.__class__.__name__ + f'(crop_size={self.crop_size})' @PIPELINES.register_module() class RandomRotate(object): """Rotate the image & seg. Args: prob (float): The rotation probability. degree (float, tuple[float]): Range of degrees to select from. If degree is a number instead of tuple like (min, max), the range of degree will be (``-degree``, ``+degree``) pad_val (float, optional): Padding value of image. Default: 0. seg_pad_val (float, optional): Padding value of segmentation map. Default: 255. center (tuple[float], optional): Center point (w, h) of the rotation in the source image. If not specified, the center of the image will be used. Default: None. auto_bound (bool): Whether to adjust the image size to cover the whole rotated image. Default: False """ def __init__(self, prob, degree, pad_val=0, seg_pad_val=255, center=None, auto_bound=False): self.prob = prob assert prob >= 0 and prob <= 1 if isinstance(degree, (float, int)): assert degree > 0, f'degree {degree} should be positive' self.degree = (-degree, degree) else: self.degree = degree assert len(self.degree) == 2, f'degree {self.degree} should be a ' \ f'tuple of (min, max)' self.pal_val = pad_val self.seg_pad_val = seg_pad_val self.center = center self.auto_bound = auto_bound def __call__(self, results): """Call function to rotate image, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Rotated results. """ rotate = True if np.random.rand() < self.prob else False degree = np.random.uniform(min(*self.degree), max(*self.degree)) if rotate: # rotate image results['img'] = mmcv.imrotate( results['img'], angle=degree, border_value=self.pal_val, center=self.center, auto_bound=self.auto_bound) # rotate segs for key in results.get('seg_fields', []): results[key] = mmcv.imrotate( results[key], angle=degree, border_value=self.seg_pad_val, center=self.center, auto_bound=self.auto_bound, interpolation='nearest') return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob}, ' \ f'degree={self.degree}, ' \ f'pad_val={self.pal_val}, ' \ f'seg_pad_val={self.seg_pad_val}, ' \ f'center={self.center}, ' \ f'auto_bound={self.auto_bound})' return repr_str @PIPELINES.register_module() class RGB2Gray(object): """Convert RGB image to grayscale image. This transform calculate the weighted mean of input image channels with ``weights`` and then expand the channels to ``out_channels``. When ``out_channels`` is None, the number of output channels is the same as input channels. Args: out_channels (int): Expected number of output channels after transforming. Default: None. weights (tuple[float]): The weights to calculate the weighted mean. Default: (0.299, 0.587, 0.114). """ def __init__(self, out_channels=None, weights=(0.299, 0.587, 0.114)): assert out_channels is None or out_channels > 0 self.out_channels = out_channels assert isinstance(weights, tuple) for item in weights: assert isinstance(item, (float, int)) self.weights = weights def __call__(self, results): """Call function to convert RGB image to grayscale image. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with grayscale image. """ img = results['img'] assert len(img.shape) == 3 assert img.shape[2] == len(self.weights) weights = np.array(self.weights).reshape((1, 1, -1)) img = (img * weights).sum(2, keepdims=True) if self.out_channels is None: img = img.repeat(weights.shape[2], axis=2) else: img = img.repeat(self.out_channels, axis=2) results['img'] = img results['img_shape'] = img.shape return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(out_channels={self.out_channels}, ' \ f'weights={self.weights})' return repr_str @PIPELINES.register_module() class AdjustGamma(object): """Using gamma correction to process the image. Args: gamma (float or int): Gamma value used in gamma correction. Default: 1.0. """ def __init__(self, gamma=1.0): assert isinstance(gamma, float) or isinstance(gamma, int) assert gamma > 0 self.gamma = gamma inv_gamma = 1.0 / gamma self.table = np.array([(i / 255.0)**inv_gamma * 255 for i in np.arange(256)]).astype('uint8') def __call__(self, results): """Call function to process the image with gamma correction. Args: results (dict): Result dict from loading pipeline. Returns: dict: Processed results. """ results['img'] = mmcv.lut_transform( np.array(results['img'], dtype=np.uint8), self.table) return results def __repr__(self): return self.__class__.__name__ + f'(gamma={self.gamma})' @PIPELINES.register_module() class SegRescale(object): """Rescale semantic segmentation maps. Args: scale_factor (float): The scale factor of the final output. """ def __init__(self, scale_factor=1): self.scale_factor = scale_factor def __call__(self, results): """Call function to scale the semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with semantic segmentation map scaled. """ for key in results.get('seg_fields', []): if self.scale_factor != 1: results[key] = mmcv.imrescale( results[key], self.scale_factor, interpolation='nearest') return results def __repr__(self): return self.__class__.__name__ + f'(scale_factor={self.scale_factor})' @PIPELINES.register_module() class PhotoMetricDistortion(object): """Apply photometric distortion to image sequentially, every transformation is applied with a probability of 0.5. The position of random contrast is in second or second to last. 1. random brightness 2. random contrast (mode 0) 3. convert color from BGR to HSV 4. random saturation 5. random hue 6. convert color from HSV to BGR 7. random contrast (mode 1) Args: brightness_delta (int): delta of brightness. contrast_range (tuple): range of contrast. saturation_range (tuple): range of saturation. hue_delta (int): delta of hue. """ def __init__(self, brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18): self.brightness_delta = brightness_delta self.contrast_lower, self.contrast_upper = contrast_range self.saturation_lower, self.saturation_upper = saturation_range self.hue_delta = hue_delta def convert(self, img, alpha=1, beta=0): """Multiple with alpha and add beat with clip.""" img = img.astype(np.float32) * alpha + beta img = np.clip(img, 0, 255) return img.astype(np.uint8) def brightness(self, img): """Brightness distortion.""" if random.randint(2): return self.convert( img, beta=random.uniform(-self.brightness_delta, self.brightness_delta)) return img def contrast(self, img): """Contrast distortion.""" if random.randint(2): return self.convert( img, alpha=random.uniform(self.contrast_lower, self.contrast_upper)) return img def saturation(self, img): """Saturation distortion.""" if random.randint(2): img = mmcv.bgr2hsv(img) img[:, :, 1] = self.convert( img[:, :, 1], alpha=random.uniform(self.saturation_lower, self.saturation_upper)) img = mmcv.hsv2bgr(img) return img def hue(self, img): """Hue distortion.""" if random.randint(2): img = mmcv.bgr2hsv(img) img[:, :, 0] = (img[:, :, 0].astype(int) + random.randint(-self.hue_delta, self.hue_delta)) % 180 img = mmcv.hsv2bgr(img) return img def __call__(self, results): """Call function to perform photometric distortion on images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with images distorted. """ img = results['img'] # random brightness img = self.brightness(img) # mode == 0 --> do random contrast first # mode == 1 --> do random contrast last mode = random.randint(2) if mode == 1: img = self.contrast(img) # random saturation img = self.saturation(img) # random hue img = self.hue(img) # random contrast if mode == 0: img = self.contrast(img) results['img'] = img return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(brightness_delta={self.brightness_delta}, ' f'contrast_range=({self.contrast_lower}, ' f'{self.contrast_upper}), ' f'saturation_range=({self.saturation_lower}, ' f'{self.saturation_upper}), ' f'hue_delta={self.hue_delta})') return repr_str
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/pipelines/transforms.py
import warnings import annotator.uniformer.mmcv as mmcv from ..builder import PIPELINES from .compose import Compose @PIPELINES.register_module() class MultiScaleFlipAug(object): """Test-time augmentation with multiple scales and flipping. An example configuration is as followed: .. code-block:: img_scale=(2048, 1024), img_ratios=[0.5, 1.0], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ] After MultiScaleFLipAug with above configuration, the results are wrapped into lists of the same length as followed: .. code-block:: dict( img=[...], img_shape=[...], scale=[(1024, 512), (1024, 512), (2048, 1024), (2048, 1024)] flip=[False, True, False, True] ... ) Args: transforms (list[dict]): Transforms to apply in each augmentation. img_scale (None | tuple | list[tuple]): Images scales for resizing. img_ratios (float | list[float]): Image ratios for resizing flip (bool): Whether apply flip augmentation. Default: False. flip_direction (str | list[str]): Flip augmentation directions, options are "horizontal" and "vertical". If flip_direction is list, multiple flip augmentations will be applied. It has no effect when flip == False. Default: "horizontal". """ def __init__(self, transforms, img_scale, img_ratios=None, flip=False, flip_direction='horizontal'): self.transforms = Compose(transforms) if img_ratios is not None: img_ratios = img_ratios if isinstance(img_ratios, list) else [img_ratios] assert mmcv.is_list_of(img_ratios, float) if img_scale is None: # mode 1: given img_scale=None and a range of image ratio self.img_scale = None assert mmcv.is_list_of(img_ratios, float) elif isinstance(img_scale, tuple) and mmcv.is_list_of( img_ratios, float): assert len(img_scale) == 2 # mode 2: given a scale and a range of image ratio self.img_scale = [(int(img_scale[0] * ratio), int(img_scale[1] * ratio)) for ratio in img_ratios] else: # mode 3: given multiple scales self.img_scale = img_scale if isinstance(img_scale, list) else [img_scale] assert mmcv.is_list_of(self.img_scale, tuple) or self.img_scale is None self.flip = flip self.img_ratios = img_ratios self.flip_direction = flip_direction if isinstance( flip_direction, list) else [flip_direction] assert mmcv.is_list_of(self.flip_direction, str) if not self.flip and self.flip_direction != ['horizontal']: warnings.warn( 'flip_direction has no effect when flip is set to False') if (self.flip and not any([t['type'] == 'RandomFlip' for t in transforms])): warnings.warn( 'flip has no effect when RandomFlip is not in transforms') def __call__(self, results): """Call function to apply test time augment transforms on results. Args: results (dict): Result dict contains the data to transform. Returns: dict[str: list]: The augmented data, where each value is wrapped into a list. """ aug_data = [] if self.img_scale is None and mmcv.is_list_of(self.img_ratios, float): h, w = results['img'].shape[:2] img_scale = [(int(w * ratio), int(h * ratio)) for ratio in self.img_ratios] else: img_scale = self.img_scale flip_aug = [False, True] if self.flip else [False] for scale in img_scale: for flip in flip_aug: for direction in self.flip_direction: _results = results.copy() _results['scale'] = scale _results['flip'] = flip _results['flip_direction'] = direction data = self.transforms(_results) aug_data.append(data) # list of dict to dict of list aug_data_dict = {key: [] for key in aug_data[0]} for data in aug_data: for key, val in data.items(): aug_data_dict[key].append(val) return aug_data_dict def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(transforms={self.transforms}, ' repr_str += f'img_scale={self.img_scale}, flip={self.flip})' repr_str += f'flip_direction={self.flip_direction}' return repr_str
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/pipelines/test_time_aug.py
import os.path as osp import annotator.uniformer.mmcv as mmcv import numpy as np from ..builder import PIPELINES @PIPELINES.register_module() class LoadImageFromFile(object): """Load an image from file. Required keys are "img_prefix" and "img_info" (a dict that must contain the key "filename"). Added or updated keys are "filename", "img", "img_shape", "ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`), "scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1). Args: to_float32 (bool): Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False. color_type (str): The flag argument for :func:`mmcv.imfrombytes`. Defaults to 'color'. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmcv.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default: 'cv2' """ def __init__(self, to_float32=False, color_type='color', file_client_args=dict(backend='disk'), imdecode_backend='cv2'): self.to_float32 = to_float32 self.color_type = color_type self.file_client_args = file_client_args.copy() self.file_client = None self.imdecode_backend = imdecode_backend def __call__(self, results): """Call functions to load image and get image meta information. Args: results (dict): Result dict from :obj:`mmseg.CustomDataset`. Returns: dict: The dict contains loaded image and meta information. """ if self.file_client is None: self.file_client = mmcv.FileClient(**self.file_client_args) if results.get('img_prefix') is not None: filename = osp.join(results['img_prefix'], results['img_info']['filename']) else: filename = results['img_info']['filename'] img_bytes = self.file_client.get(filename) img = mmcv.imfrombytes( img_bytes, flag=self.color_type, backend=self.imdecode_backend) if self.to_float32: img = img.astype(np.float32) results['filename'] = filename results['ori_filename'] = results['img_info']['filename'] results['img'] = img results['img_shape'] = img.shape results['ori_shape'] = img.shape # Set initial values for default meta_keys results['pad_shape'] = img.shape results['scale_factor'] = 1.0 num_channels = 1 if len(img.shape) < 3 else img.shape[2] results['img_norm_cfg'] = dict( mean=np.zeros(num_channels, dtype=np.float32), std=np.ones(num_channels, dtype=np.float32), to_rgb=False) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(to_float32={self.to_float32},' repr_str += f"color_type='{self.color_type}'," repr_str += f"imdecode_backend='{self.imdecode_backend}')" return repr_str @PIPELINES.register_module() class LoadAnnotations(object): """Load annotations for semantic segmentation. Args: reduce_zero_label (bool): Whether reduce all label value by 1. Usually used for datasets where 0 is background label. Default: False. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmcv.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default: 'pillow' """ def __init__(self, reduce_zero_label=False, file_client_args=dict(backend='disk'), imdecode_backend='pillow'): self.reduce_zero_label = reduce_zero_label self.file_client_args = file_client_args.copy() self.file_client = None self.imdecode_backend = imdecode_backend def __call__(self, results): """Call function to load multiple types annotations. Args: results (dict): Result dict from :obj:`mmseg.CustomDataset`. Returns: dict: The dict contains loaded semantic segmentation annotations. """ if self.file_client is None: self.file_client = mmcv.FileClient(**self.file_client_args) if results.get('seg_prefix', None) is not None: filename = osp.join(results['seg_prefix'], results['ann_info']['seg_map']) else: filename = results['ann_info']['seg_map'] img_bytes = self.file_client.get(filename) gt_semantic_seg = mmcv.imfrombytes( img_bytes, flag='unchanged', backend=self.imdecode_backend).squeeze().astype(np.uint8) # modify if custom classes if results.get('label_map', None) is not None: for old_id, new_id in results['label_map'].items(): gt_semantic_seg[gt_semantic_seg == old_id] = new_id # reduce zero_label if self.reduce_zero_label: # avoid using underflow conversion gt_semantic_seg[gt_semantic_seg == 0] = 255 gt_semantic_seg = gt_semantic_seg - 1 gt_semantic_seg[gt_semantic_seg == 254] = 255 results['gt_semantic_seg'] = gt_semantic_seg results['seg_fields'].append('gt_semantic_seg') return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(reduce_zero_label={self.reduce_zero_label},' repr_str += f"imdecode_backend='{self.imdecode_backend}')" return repr_str
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/pipelines/loading.py
import collections from annotator.uniformer.mmcv.utils import build_from_cfg from ..builder import PIPELINES @PIPELINES.register_module() class Compose(object): """Compose multiple transforms sequentially. Args: transforms (Sequence[dict | callable]): Sequence of transform object or config dict to be composed. """ def __init__(self, transforms): assert isinstance(transforms, collections.abc.Sequence) self.transforms = [] for transform in transforms: if isinstance(transform, dict): transform = build_from_cfg(transform, PIPELINES) self.transforms.append(transform) elif callable(transform): self.transforms.append(transform) else: raise TypeError('transform must be callable or a dict') def __call__(self, data): """Call function to apply transforms sequentially. Args: data (dict): A result dict contains the data to transform. Returns: dict: Transformed data. """ for t in self.transforms: data = t(data) if data is None: return None return data def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += f' {t}' format_string += '\n)' return format_string
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/pipelines/compose.py
from .compose import Compose from .formating import (Collect, ImageToTensor, ToDataContainer, ToTensor, Transpose, to_tensor) from .loading import LoadAnnotations, LoadImageFromFile from .test_time_aug import MultiScaleFlipAug from .transforms import (CLAHE, AdjustGamma, Normalize, Pad, PhotoMetricDistortion, RandomCrop, RandomFlip, RandomRotate, Rerange, Resize, RGB2Gray, SegRescale) __all__ = [ 'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'Collect', 'LoadAnnotations', 'LoadImageFromFile', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'Pad', 'RandomCrop', 'Normalize', 'SegRescale', 'PhotoMetricDistortion', 'RandomRotate', 'AdjustGamma', 'CLAHE', 'Rerange', 'RGB2Gray' ]
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/pipelines/__init__.py
from collections.abc import Sequence import annotator.uniformer.mmcv as mmcv import numpy as np import torch from annotator.uniformer.mmcv.parallel import DataContainer as DC from ..builder import PIPELINES def to_tensor(data): """Convert objects of various python types to :obj:`torch.Tensor`. Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, :class:`Sequence`, :class:`int` and :class:`float`. Args: data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to be converted. """ if isinstance(data, torch.Tensor): return data elif isinstance(data, np.ndarray): return torch.from_numpy(data) elif isinstance(data, Sequence) and not mmcv.is_str(data): return torch.tensor(data) elif isinstance(data, int): return torch.LongTensor([data]) elif isinstance(data, float): return torch.FloatTensor([data]) else: raise TypeError(f'type {type(data)} cannot be converted to tensor.') @PIPELINES.register_module() class ToTensor(object): """Convert some results to :obj:`torch.Tensor` by given keys. Args: keys (Sequence[str]): Keys that need to be converted to Tensor. """ def __init__(self, keys): self.keys = keys def __call__(self, results): """Call function to convert data in results to :obj:`torch.Tensor`. Args: results (dict): Result dict contains the data to convert. Returns: dict: The result dict contains the data converted to :obj:`torch.Tensor`. """ for key in self.keys: results[key] = to_tensor(results[key]) return results def __repr__(self): return self.__class__.__name__ + f'(keys={self.keys})' @PIPELINES.register_module() class ImageToTensor(object): """Convert image to :obj:`torch.Tensor` by given keys. The dimension order of input image is (H, W, C). The pipeline will convert it to (C, H, W). If only 2 dimension (H, W) is given, the output would be (1, H, W). Args: keys (Sequence[str]): Key of images to be converted to Tensor. """ def __init__(self, keys): self.keys = keys def __call__(self, results): """Call function to convert image in results to :obj:`torch.Tensor` and transpose the channel order. Args: results (dict): Result dict contains the image data to convert. Returns: dict: The result dict contains the image converted to :obj:`torch.Tensor` and transposed to (C, H, W) order. """ for key in self.keys: img = results[key] if len(img.shape) < 3: img = np.expand_dims(img, -1) results[key] = to_tensor(img.transpose(2, 0, 1)) return results def __repr__(self): return self.__class__.__name__ + f'(keys={self.keys})' @PIPELINES.register_module() class Transpose(object): """Transpose some results by given keys. Args: keys (Sequence[str]): Keys of results to be transposed. order (Sequence[int]): Order of transpose. """ def __init__(self, keys, order): self.keys = keys self.order = order def __call__(self, results): """Call function to convert image in results to :obj:`torch.Tensor` and transpose the channel order. Args: results (dict): Result dict contains the image data to convert. Returns: dict: The result dict contains the image converted to :obj:`torch.Tensor` and transposed to (C, H, W) order. """ for key in self.keys: results[key] = results[key].transpose(self.order) return results def __repr__(self): return self.__class__.__name__ + \ f'(keys={self.keys}, order={self.order})' @PIPELINES.register_module() class ToDataContainer(object): """Convert results to :obj:`mmcv.DataContainer` by given fields. Args: fields (Sequence[dict]): Each field is a dict like ``dict(key='xxx', **kwargs)``. The ``key`` in result will be converted to :obj:`mmcv.DataContainer` with ``**kwargs``. Default: ``(dict(key='img', stack=True), dict(key='gt_semantic_seg'))``. """ def __init__(self, fields=(dict(key='img', stack=True), dict(key='gt_semantic_seg'))): self.fields = fields def __call__(self, results): """Call function to convert data in results to :obj:`mmcv.DataContainer`. Args: results (dict): Result dict contains the data to convert. Returns: dict: The result dict contains the data converted to :obj:`mmcv.DataContainer`. """ for field in self.fields: field = field.copy() key = field.pop('key') results[key] = DC(results[key], **field) return results def __repr__(self): return self.__class__.__name__ + f'(fields={self.fields})' @PIPELINES.register_module() class DefaultFormatBundle(object): """Default formatting bundle. It simplifies the pipeline of formatting common fields, including "img" and "gt_semantic_seg". These fields are formatted as follows. - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True) - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, (3)to DataContainer (stack=True) """ def __call__(self, results): """Call function to transform and format common fields in results. Args: results (dict): Result dict contains the data to convert. Returns: dict: The result dict contains the data that is formatted with default bundle. """ if 'img' in results: img = results['img'] if len(img.shape) < 3: img = np.expand_dims(img, -1) img = np.ascontiguousarray(img.transpose(2, 0, 1)) results['img'] = DC(to_tensor(img), stack=True) if 'gt_semantic_seg' in results: # convert to long results['gt_semantic_seg'] = DC( to_tensor(results['gt_semantic_seg'][None, ...].astype(np.int64)), stack=True) return results def __repr__(self): return self.__class__.__name__ @PIPELINES.register_module() class Collect(object): """Collect data from the loader relevant to the specific task. This is usually the last stage of the data loader pipeline. Typically keys is set to some subset of "img", "gt_semantic_seg". The "img_meta" item is always populated. The contents of the "img_meta" dictionary depends on "meta_keys". By default this includes: - "img_shape": shape of the image input to the network as a tuple (h, w, c). Note that images may be zero padded on the bottom/right if the batch tensor is larger than this shape. - "scale_factor": a float indicating the preprocessing scale - "flip": a boolean indicating if image flip transform was used - "filename": path to the image file - "ori_shape": original shape of the image as a tuple (h, w, c) - "pad_shape": image shape after padding - "img_norm_cfg": a dict of normalization information: - mean - per channel mean subtraction - std - per channel std divisor - to_rgb - bool indicating if bgr was converted to rgb Args: keys (Sequence[str]): Keys of results to be collected in ``data``. meta_keys (Sequence[str], optional): Meta keys to be converted to ``mmcv.DataContainer`` and collected in ``data[img_metas]``. Default: ``('filename', 'ori_filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction', 'img_norm_cfg')`` """ def __init__(self, keys, meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction', 'img_norm_cfg')): self.keys = keys self.meta_keys = meta_keys def __call__(self, results): """Call function to collect keys in results. The keys in ``meta_keys`` will be converted to :obj:mmcv.DataContainer. Args: results (dict): Result dict contains the data to collect. Returns: dict: The result dict contains the following keys - keys in``self.keys`` - ``img_metas`` """ data = {} img_meta = {} for key in self.meta_keys: img_meta[key] = results[key] data['img_metas'] = DC(img_meta, cpu_only=True) for key in self.keys: data[key] = results[key] return data def __repr__(self): return self.__class__.__name__ + \ f'(keys={self.keys}, meta_keys={self.meta_keys})'
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/datasets/pipelines/formating.py
from annotator.uniformer.mmcv.utils import collect_env as collect_base_env from annotator.uniformer.mmcv.utils import get_git_hash import annotator.uniformer.mmseg as mmseg def collect_env(): """Collect the information of the running environments.""" env_info = collect_base_env() env_info['MMSegmentation'] = f'{mmseg.__version__}+{get_git_hash()[:7]}' return env_info if __name__ == '__main__': for name, val in collect_env().items(): print('{}: {}'.format(name, val))
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/utils/collect_env.py
from .collect_env import collect_env from .logger import get_root_logger __all__ = ['get_root_logger', 'collect_env']
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/utils/__init__.py
import logging from annotator.uniformer.mmcv.utils import get_logger def get_root_logger(log_file=None, log_level=logging.INFO): """Get the root logger. The logger will be initialized if it has not been initialized. By default a StreamHandler will be added. If `log_file` is specified, a FileHandler will also be added. The name of the root logger is the top-level package name, e.g., "mmseg". Args: log_file (str | None): The log filename. If specified, a FileHandler will be added to the root logger. log_level (int): The root logger level. Note that only the process of rank 0 is affected, while other processes will set the level to "Error" and be silent most of the time. Returns: logging.Logger: The root logger. """ logger = get_logger(name='mmseg', log_file=log_file, log_level=log_level) return logger
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/utils/logger.py
from .backbones import * # noqa: F401,F403 from .builder import (BACKBONES, HEADS, LOSSES, SEGMENTORS, build_backbone, build_head, build_loss, build_segmentor) from .decode_heads import * # noqa: F401,F403 from .losses import * # noqa: F401,F403 from .necks import * # noqa: F401,F403 from .segmentors import * # noqa: F401,F403 __all__ = [ 'BACKBONES', 'HEADS', 'LOSSES', 'SEGMENTORS', 'build_backbone', 'build_head', 'build_loss', 'build_segmentor' ]
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/__init__.py
import warnings from annotator.uniformer.mmcv.cnn import MODELS as MMCV_MODELS from annotator.uniformer.mmcv.utils import Registry MODELS = Registry('models', parent=MMCV_MODELS) BACKBONES = MODELS NECKS = MODELS HEADS = MODELS LOSSES = MODELS SEGMENTORS = MODELS def build_backbone(cfg): """Build backbone.""" return BACKBONES.build(cfg) def build_neck(cfg): """Build neck.""" return NECKS.build(cfg) def build_head(cfg): """Build head.""" return HEADS.build(cfg) def build_loss(cfg): """Build loss.""" return LOSSES.build(cfg) def build_segmentor(cfg, train_cfg=None, test_cfg=None): """Build segmentor.""" if train_cfg is not None or test_cfg is not None: warnings.warn( 'train_cfg and test_cfg is deprecated, ' 'please specify them in model', UserWarning) assert cfg.get('train_cfg') is None or train_cfg is None, \ 'train_cfg specified in both outer field and model field ' assert cfg.get('test_cfg') is None or test_cfg is None, \ 'test_cfg specified in both outer field and model field ' return SEGMENTORS.build( cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg))
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/builder.py
"""Modified from https://github.com/LikeLy-Journey/SegmenTron/blob/master/ segmentron/solver/loss.py (Apache-2.0 License)""" import torch import torch.nn as nn import torch.nn.functional as F from ..builder import LOSSES from .utils import get_class_weight, weighted_loss @weighted_loss def dice_loss(pred, target, valid_mask, smooth=1, exponent=2, class_weight=None, ignore_index=255): assert pred.shape[0] == target.shape[0] total_loss = 0 num_classes = pred.shape[1] for i in range(num_classes): if i != ignore_index: dice_loss = binary_dice_loss( pred[:, i], target[..., i], valid_mask=valid_mask, smooth=smooth, exponent=exponent) if class_weight is not None: dice_loss *= class_weight[i] total_loss += dice_loss return total_loss / num_classes @weighted_loss def binary_dice_loss(pred, target, valid_mask, smooth=1, exponent=2, **kwards): assert pred.shape[0] == target.shape[0] pred = pred.reshape(pred.shape[0], -1) target = target.reshape(target.shape[0], -1) valid_mask = valid_mask.reshape(valid_mask.shape[0], -1) num = torch.sum(torch.mul(pred, target) * valid_mask, dim=1) * 2 + smooth den = torch.sum(pred.pow(exponent) + target.pow(exponent), dim=1) + smooth return 1 - num / den @LOSSES.register_module() class DiceLoss(nn.Module): """DiceLoss. This loss is proposed in `V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_. Args: loss_type (str, optional): Binary or multi-class loss. Default: 'multi_class'. Options are "binary" and "multi_class". smooth (float): A float number to smooth loss, and avoid NaN error. Default: 1 exponent (float): An float number to calculate denominator value: \\sum{x^exponent} + \\sum{y^exponent}. Default: 2. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". This parameter only works when per_image is True. Default: 'mean'. class_weight (list[float] | str, optional): Weight of each class. If in str format, read them from a file. Defaults to None. loss_weight (float, optional): Weight of the loss. Default to 1.0. ignore_index (int | None): The label index to be ignored. Default: 255. """ def __init__(self, smooth=1, exponent=2, reduction='mean', class_weight=None, loss_weight=1.0, ignore_index=255, **kwards): super(DiceLoss, self).__init__() self.smooth = smooth self.exponent = exponent self.reduction = reduction self.class_weight = get_class_weight(class_weight) self.loss_weight = loss_weight self.ignore_index = ignore_index def forward(self, pred, target, avg_factor=None, reduction_override=None, **kwards): assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if self.class_weight is not None: class_weight = pred.new_tensor(self.class_weight) else: class_weight = None pred = F.softmax(pred, dim=1) num_classes = pred.shape[1] one_hot_target = F.one_hot( torch.clamp(target.long(), 0, num_classes - 1), num_classes=num_classes) valid_mask = (target != self.ignore_index).long() loss = self.loss_weight * dice_loss( pred, one_hot_target, valid_mask=valid_mask, reduction=reduction, avg_factor=avg_factor, smooth=self.smooth, exponent=self.exponent, class_weight=class_weight, ignore_index=self.ignore_index) return loss
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/losses/dice_loss.py
from .accuracy import Accuracy, accuracy from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .dice_loss import DiceLoss from .lovasz_loss import LovaszLoss from .utils import reduce_loss, weight_reduce_loss, weighted_loss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'LovaszLoss', 'DiceLoss' ]
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/losses/__init__.py
import functools import annotator.uniformer.mmcv as mmcv import numpy as np import torch.nn.functional as F def get_class_weight(class_weight): """Get class weight for loss function. Args: class_weight (list[float] | str | None): If class_weight is a str, take it as a file name and read from it. """ if isinstance(class_weight, str): # take it as a file path if class_weight.endswith('.npy'): class_weight = np.load(class_weight) else: # pkl, json or yaml class_weight = mmcv.load(class_weight) return class_weight def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) # none: 0, elementwise_mean:1, sum: 2 if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Avarage factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ # if weight is specified, apply element-wise weight if weight is not None: assert weight.dim() == loss.dim() if weight.dim() > 1: assert weight.size(1) == 1 or weight.size(1) == loss.size(1) loss = loss * weight # if avg_factor is not specified, just reduce the loss if avg_factor is None: loss = reduce_loss(loss, reduction) else: # if reduction is mean, then average the loss by avg_factor if reduction == 'mean': loss = loss.sum() / avg_factor # if reduction is 'none', then do nothing, otherwise raise an error elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> import torch >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs): # get element-wise loss loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/losses/utils.py
import torch import torch.nn as nn import torch.nn.functional as F from ..builder import LOSSES from .utils import get_class_weight, weight_reduce_loss def cross_entropy(pred, label, weight=None, class_weight=None, reduction='mean', avg_factor=None, ignore_index=-100): """The wrapper function for :func:`F.cross_entropy`""" # class_weight is a manual rescaling weight given to each class. # If given, has to be a Tensor of size C element-wise losses loss = F.cross_entropy( pred, label, weight=class_weight, reduction='none', ignore_index=ignore_index) # apply weights and do the reduction if weight is not None: weight = weight.float() loss = weight_reduce_loss( loss, weight=weight, reduction=reduction, avg_factor=avg_factor) return loss def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index): """Expand onehot labels to match the size of prediction.""" bin_labels = labels.new_zeros(target_shape) valid_mask = (labels >= 0) & (labels != ignore_index) inds = torch.nonzero(valid_mask, as_tuple=True) if inds[0].numel() > 0: if labels.dim() == 3: bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1 else: bin_labels[inds[0], labels[valid_mask]] = 1 valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float() if label_weights is None: bin_label_weights = valid_mask else: bin_label_weights = label_weights.unsqueeze(1).expand(target_shape) bin_label_weights *= valid_mask return bin_labels, bin_label_weights def binary_cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None, class_weight=None, ignore_index=255): """Calculate the binary CrossEntropy loss. Args: pred (torch.Tensor): The prediction with shape (N, 1). label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (int | None): The label index to be ignored. Default: 255 Returns: torch.Tensor: The calculated loss """ if pred.dim() != label.dim(): assert (pred.dim() == 2 and label.dim() == 1) or ( pred.dim() == 4 and label.dim() == 3), \ 'Only pred shape [N, C], label shape [N] or pred shape [N, C, ' \ 'H, W], label shape [N, H, W] are supported' label, weight = _expand_onehot_labels(label, weight, pred.shape, ignore_index) # weighted element-wise losses if weight is not None: weight = weight.float() loss = F.binary_cross_entropy_with_logits( pred, label.float(), pos_weight=class_weight, reduction='none') # do the reduction for the weighted loss loss = weight_reduce_loss( loss, weight, reduction=reduction, avg_factor=avg_factor) return loss def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None, class_weight=None, ignore_index=None): """Calculate the CrossEntropy loss for masks. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes. target (torch.Tensor): The learning label of the prediction. label (torch.Tensor): ``label`` indicates the class label of the mask' corresponding object. This will be used to select the mask in the of the class which the object belongs to when the mask prediction if not class-agnostic. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (None): Placeholder, to be consistent with other loss. Default: None. Returns: torch.Tensor: The calculated loss """ assert ignore_index is None, 'BCE loss does not support ignore_index' # TODO: handle these two reserved arguments assert reduction == 'mean' and avg_factor is None num_rois = pred.size()[0] inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) pred_slice = pred[inds, label].squeeze(1) return F.binary_cross_entropy_with_logits( pred_slice, target, weight=class_weight, reduction='mean')[None] @LOSSES.register_module() class CrossEntropyLoss(nn.Module): """CrossEntropyLoss. Args: use_sigmoid (bool, optional): Whether the prediction uses sigmoid of softmax. Defaults to False. use_mask (bool, optional): Whether to use mask cross entropy loss. Defaults to False. reduction (str, optional): . Defaults to 'mean'. Options are "none", "mean" and "sum". class_weight (list[float] | str, optional): Weight of each class. If in str format, read them from a file. Defaults to None. loss_weight (float, optional): Weight of the loss. Defaults to 1.0. """ def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean', class_weight=None, loss_weight=1.0): super(CrossEntropyLoss, self).__init__() assert (use_sigmoid is False) or (use_mask is False) self.use_sigmoid = use_sigmoid self.use_mask = use_mask self.reduction = reduction self.loss_weight = loss_weight self.class_weight = get_class_weight(class_weight) if self.use_sigmoid: self.cls_criterion = binary_cross_entropy elif self.use_mask: self.cls_criterion = mask_cross_entropy else: self.cls_criterion = cross_entropy def forward(self, cls_score, label, weight=None, avg_factor=None, reduction_override=None, **kwargs): """Forward function.""" assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if self.class_weight is not None: class_weight = cls_score.new_tensor(self.class_weight) else: class_weight = None loss_cls = self.loss_weight * self.cls_criterion( cls_score, label, weight, class_weight=class_weight, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_cls
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/losses/cross_entropy_loss.py
import torch.nn as nn def accuracy(pred, target, topk=1, thresh=None): """Calculate accuracy according to the prediction and target. Args: pred (torch.Tensor): The model prediction, shape (N, num_class, ...) target (torch.Tensor): The target of each prediction, shape (N, , ...) topk (int | tuple[int], optional): If the predictions in ``topk`` matches the target, the predictions will be regarded as correct ones. Defaults to 1. thresh (float, optional): If not None, predictions with scores under this threshold are considered incorrect. Default to None. Returns: float | tuple[float]: If the input ``topk`` is a single integer, the function will return a single float as accuracy. If ``topk`` is a tuple containing multiple integers, the function will return a tuple containing accuracies of each ``topk`` number. """ assert isinstance(topk, (int, tuple)) if isinstance(topk, int): topk = (topk, ) return_single = True else: return_single = False maxk = max(topk) if pred.size(0) == 0: accu = [pred.new_tensor(0.) for i in range(len(topk))] return accu[0] if return_single else accu assert pred.ndim == target.ndim + 1 assert pred.size(0) == target.size(0) assert maxk <= pred.size(1), \ f'maxk {maxk} exceeds pred dimension {pred.size(1)}' pred_value, pred_label = pred.topk(maxk, dim=1) # transpose to shape (maxk, N, ...) pred_label = pred_label.transpose(0, 1) correct = pred_label.eq(target.unsqueeze(0).expand_as(pred_label)) if thresh is not None: # Only prediction values larger than thresh are counted as correct correct = correct & (pred_value > thresh).t() res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / target.numel())) return res[0] if return_single else res class Accuracy(nn.Module): """Accuracy calculation module.""" def __init__(self, topk=(1, ), thresh=None): """Module to calculate the accuracy. Args: topk (tuple, optional): The criterion used to calculate the accuracy. Defaults to (1,). thresh (float, optional): If not None, predictions with scores under this threshold are considered incorrect. Default to None. """ super().__init__() self.topk = topk self.thresh = thresh def forward(self, pred, target): """Forward function to calculate accuracy. Args: pred (torch.Tensor): Prediction of models. target (torch.Tensor): Target for each prediction. Returns: tuple[float]: The accuracies under different topk criterions. """ return accuracy(pred, target, self.topk, self.thresh)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/losses/accuracy.py
"""Modified from https://github.com/bermanmaxim/LovaszSoftmax/blob/master/pytor ch/lovasz_losses.py Lovasz-Softmax and Jaccard hinge loss in PyTorch Maxim Berman 2018 ESAT-PSI KU Leuven (MIT License)""" import annotator.uniformer.mmcv as mmcv import torch import torch.nn as nn import torch.nn.functional as F from ..builder import LOSSES from .utils import get_class_weight, weight_reduce_loss def lovasz_grad(gt_sorted): """Computes gradient of the Lovasz extension w.r.t sorted errors. See Alg. 1 in paper. """ p = len(gt_sorted) gts = gt_sorted.sum() intersection = gts - gt_sorted.float().cumsum(0) union = gts + (1 - gt_sorted).float().cumsum(0) jaccard = 1. - intersection / union if p > 1: # cover 1-pixel case jaccard[1:p] = jaccard[1:p] - jaccard[0:-1] return jaccard def flatten_binary_logits(logits, labels, ignore_index=None): """Flattens predictions in the batch (binary case) Remove labels equal to 'ignore_index'.""" logits = logits.view(-1) labels = labels.view(-1) if ignore_index is None: return logits, labels valid = (labels != ignore_index) vlogits = logits[valid] vlabels = labels[valid] return vlogits, vlabels def flatten_probs(probs, labels, ignore_index=None): """Flattens predictions in the batch.""" if probs.dim() == 3: # assumes output of a sigmoid layer B, H, W = probs.size() probs = probs.view(B, 1, H, W) B, C, H, W = probs.size() probs = probs.permute(0, 2, 3, 1).contiguous().view(-1, C) # B*H*W, C=P,C labels = labels.view(-1) if ignore_index is None: return probs, labels valid = (labels != ignore_index) vprobs = probs[valid.nonzero().squeeze()] vlabels = labels[valid] return vprobs, vlabels def lovasz_hinge_flat(logits, labels): """Binary Lovasz hinge loss. Args: logits (torch.Tensor): [P], logits at each prediction (between -infty and +infty). labels (torch.Tensor): [P], binary ground truth labels (0 or 1). Returns: torch.Tensor: The calculated loss. """ if len(labels) == 0: # only void pixels, the gradients should be 0 return logits.sum() * 0. signs = 2. * labels.float() - 1. errors = (1. - logits * signs) errors_sorted, perm = torch.sort(errors, dim=0, descending=True) perm = perm.data gt_sorted = labels[perm] grad = lovasz_grad(gt_sorted) loss = torch.dot(F.relu(errors_sorted), grad) return loss def lovasz_hinge(logits, labels, classes='present', per_image=False, class_weight=None, reduction='mean', avg_factor=None, ignore_index=255): """Binary Lovasz hinge loss. Args: logits (torch.Tensor): [B, H, W], logits at each pixel (between -infty and +infty). labels (torch.Tensor): [B, H, W], binary ground truth masks (0 or 1). classes (str | list[int], optional): Placeholder, to be consistent with other loss. Default: None. per_image (bool, optional): If per_image is True, compute the loss per image instead of per batch. Default: False. class_weight (list[float], optional): Placeholder, to be consistent with other loss. Default: None. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". This parameter only works when per_image is True. Default: 'mean'. avg_factor (int, optional): Average factor that is used to average the loss. This parameter only works when per_image is True. Default: None. ignore_index (int | None): The label index to be ignored. Default: 255. Returns: torch.Tensor: The calculated loss. """ if per_image: loss = [ lovasz_hinge_flat(*flatten_binary_logits( logit.unsqueeze(0), label.unsqueeze(0), ignore_index)) for logit, label in zip(logits, labels) ] loss = weight_reduce_loss( torch.stack(loss), None, reduction, avg_factor) else: loss = lovasz_hinge_flat( *flatten_binary_logits(logits, labels, ignore_index)) return loss def lovasz_softmax_flat(probs, labels, classes='present', class_weight=None): """Multi-class Lovasz-Softmax loss. Args: probs (torch.Tensor): [P, C], class probabilities at each prediction (between 0 and 1). labels (torch.Tensor): [P], ground truth labels (between 0 and C - 1). classes (str | list[int], optional): Classes chosen to calculate loss. 'all' for all classes, 'present' for classes present in labels, or a list of classes to average. Default: 'present'. class_weight (list[float], optional): The weight for each class. Default: None. Returns: torch.Tensor: The calculated loss. """ if probs.numel() == 0: # only void pixels, the gradients should be 0 return probs * 0. C = probs.size(1) losses = [] class_to_sum = list(range(C)) if classes in ['all', 'present'] else classes for c in class_to_sum: fg = (labels == c).float() # foreground for class c if (classes == 'present' and fg.sum() == 0): continue if C == 1: if len(classes) > 1: raise ValueError('Sigmoid output possible only with 1 class') class_pred = probs[:, 0] else: class_pred = probs[:, c] errors = (fg - class_pred).abs() errors_sorted, perm = torch.sort(errors, 0, descending=True) perm = perm.data fg_sorted = fg[perm] loss = torch.dot(errors_sorted, lovasz_grad(fg_sorted)) if class_weight is not None: loss *= class_weight[c] losses.append(loss) return torch.stack(losses).mean() def lovasz_softmax(probs, labels, classes='present', per_image=False, class_weight=None, reduction='mean', avg_factor=None, ignore_index=255): """Multi-class Lovasz-Softmax loss. Args: probs (torch.Tensor): [B, C, H, W], class probabilities at each prediction (between 0 and 1). labels (torch.Tensor): [B, H, W], ground truth labels (between 0 and C - 1). classes (str | list[int], optional): Classes chosen to calculate loss. 'all' for all classes, 'present' for classes present in labels, or a list of classes to average. Default: 'present'. per_image (bool, optional): If per_image is True, compute the loss per image instead of per batch. Default: False. class_weight (list[float], optional): The weight for each class. Default: None. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". This parameter only works when per_image is True. Default: 'mean'. avg_factor (int, optional): Average factor that is used to average the loss. This parameter only works when per_image is True. Default: None. ignore_index (int | None): The label index to be ignored. Default: 255. Returns: torch.Tensor: The calculated loss. """ if per_image: loss = [ lovasz_softmax_flat( *flatten_probs( prob.unsqueeze(0), label.unsqueeze(0), ignore_index), classes=classes, class_weight=class_weight) for prob, label in zip(probs, labels) ] loss = weight_reduce_loss( torch.stack(loss), None, reduction, avg_factor) else: loss = lovasz_softmax_flat( *flatten_probs(probs, labels, ignore_index), classes=classes, class_weight=class_weight) return loss @LOSSES.register_module() class LovaszLoss(nn.Module): """LovaszLoss. This loss is proposed in `The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks <https://arxiv.org/abs/1705.08790>`_. Args: loss_type (str, optional): Binary or multi-class loss. Default: 'multi_class'. Options are "binary" and "multi_class". classes (str | list[int], optional): Classes chosen to calculate loss. 'all' for all classes, 'present' for classes present in labels, or a list of classes to average. Default: 'present'. per_image (bool, optional): If per_image is True, compute the loss per image instead of per batch. Default: False. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". This parameter only works when per_image is True. Default: 'mean'. class_weight (list[float] | str, optional): Weight of each class. If in str format, read them from a file. Defaults to None. loss_weight (float, optional): Weight of the loss. Defaults to 1.0. """ def __init__(self, loss_type='multi_class', classes='present', per_image=False, reduction='mean', class_weight=None, loss_weight=1.0): super(LovaszLoss, self).__init__() assert loss_type in ('binary', 'multi_class'), "loss_type should be \ 'binary' or 'multi_class'." if loss_type == 'binary': self.cls_criterion = lovasz_hinge else: self.cls_criterion = lovasz_softmax assert classes in ('all', 'present') or mmcv.is_list_of(classes, int) if not per_image: assert reduction == 'none', "reduction should be 'none' when \ per_image is False." self.classes = classes self.per_image = per_image self.reduction = reduction self.loss_weight = loss_weight self.class_weight = get_class_weight(class_weight) def forward(self, cls_score, label, weight=None, avg_factor=None, reduction_override=None, **kwargs): """Forward function.""" assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if self.class_weight is not None: class_weight = cls_score.new_tensor(self.class_weight) else: class_weight = None # if multi-class loss, transform logits to probs if self.cls_criterion == lovasz_softmax: cls_score = F.softmax(cls_score, dim=1) loss_cls = self.loss_weight * self.cls_criterion( cls_score, label, self.classes, self.per_image, class_weight=class_weight, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_cls
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/losses/lovasz_loss.py
import torch.nn as nn import torch.nn.functional as F from annotator.uniformer.mmcv.cnn import ConvModule from ..builder import NECKS @NECKS.register_module() class MultiLevelNeck(nn.Module): """MultiLevelNeck. A neck structure connect vit backbone and decoder_heads. Args: in_channels (List[int]): Number of input channels per scale. out_channels (int): Number of output channels (used at each scale). scales (List[int]): Scale factors for each input feature map. norm_cfg (dict): Config dict for normalization layer. Default: None. act_cfg (dict): Config dict for activation layer in ConvModule. Default: None. """ def __init__(self, in_channels, out_channels, scales=[0.5, 1, 2, 4], norm_cfg=None, act_cfg=None): super(MultiLevelNeck, self).__init__() assert isinstance(in_channels, list) self.in_channels = in_channels self.out_channels = out_channels self.scales = scales self.num_outs = len(scales) self.lateral_convs = nn.ModuleList() self.convs = nn.ModuleList() for in_channel in in_channels: self.lateral_convs.append( ConvModule( in_channel, out_channels, kernel_size=1, norm_cfg=norm_cfg, act_cfg=act_cfg)) for _ in range(self.num_outs): self.convs.append( ConvModule( out_channels, out_channels, kernel_size=3, padding=1, stride=1, norm_cfg=norm_cfg, act_cfg=act_cfg)) def forward(self, inputs): assert len(inputs) == len(self.in_channels) print(inputs[0].shape) inputs = [ lateral_conv(inputs[i]) for i, lateral_conv in enumerate(self.lateral_convs) ] # for len(inputs) not equal to self.num_outs if len(inputs) == 1: inputs = [inputs[0] for _ in range(self.num_outs)] outs = [] for i in range(self.num_outs): x_resize = F.interpolate( inputs[i], scale_factor=self.scales[i], mode='bilinear') outs.append(self.convs[i](x_resize)) return tuple(outs)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/necks/multilevel_neck.py
import torch.nn as nn import torch.nn.functional as F from annotator.uniformer.mmcv.cnn import ConvModule, xavier_init from ..builder import NECKS @NECKS.register_module() class FPN(nn.Module): """Feature Pyramid Network. This is an implementation of - Feature Pyramid Networks for Object Detection (https://arxiv.org/abs/1612.03144) Args: in_channels (List[int]): Number of input channels per scale. out_channels (int): Number of output channels (used at each scale) num_outs (int): Number of output scales. start_level (int): Index of the start input backbone level used to build the feature pyramid. Default: 0. end_level (int): Index of the end input backbone level (exclusive) to build the feature pyramid. Default: -1, which means the last level. add_extra_convs (bool | str): If bool, it decides whether to add conv layers on top of the original feature maps. Default to False. If True, its actual mode is specified by `extra_convs_on_inputs`. If str, it specifies the source feature map of the extra convs. Only the following options are allowed - 'on_input': Last feat map of neck inputs (i.e. backbone feature). - 'on_lateral': Last feature map after lateral convs. - 'on_output': The last output feature map after fpn convs. extra_convs_on_inputs (bool, deprecated): Whether to apply extra convs on the original feature from the backbone. If True, it is equivalent to `add_extra_convs='on_input'`. If False, it is equivalent to set `add_extra_convs='on_output'`. Default to True. relu_before_extra_convs (bool): Whether to apply relu before the extra conv. Default: False. no_norm_on_lateral (bool): Whether to apply norm on lateral. Default: False. conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Config dict for normalization layer. Default: None. act_cfg (str): Config dict for activation layer in ConvModule. Default: None. upsample_cfg (dict): Config dict for interpolate layer. Default: `dict(mode='nearest')` Example: >>> import torch >>> in_channels = [2, 3, 5, 7] >>> scales = [340, 170, 84, 43] >>> inputs = [torch.rand(1, c, s, s) ... for c, s in zip(in_channels, scales)] >>> self = FPN(in_channels, 11, len(in_channels)).eval() >>> outputs = self.forward(inputs) >>> for i in range(len(outputs)): ... print(f'outputs[{i}].shape = {outputs[i].shape}') outputs[0].shape = torch.Size([1, 11, 340, 340]) outputs[1].shape = torch.Size([1, 11, 170, 170]) outputs[2].shape = torch.Size([1, 11, 84, 84]) outputs[3].shape = torch.Size([1, 11, 43, 43]) """ def __init__(self, in_channels, out_channels, num_outs, start_level=0, end_level=-1, add_extra_convs=False, extra_convs_on_inputs=False, relu_before_extra_convs=False, no_norm_on_lateral=False, conv_cfg=None, norm_cfg=None, act_cfg=None, upsample_cfg=dict(mode='nearest')): super(FPN, self).__init__() assert isinstance(in_channels, list) self.in_channels = in_channels self.out_channels = out_channels self.num_ins = len(in_channels) self.num_outs = num_outs self.relu_before_extra_convs = relu_before_extra_convs self.no_norm_on_lateral = no_norm_on_lateral self.fp16_enabled = False self.upsample_cfg = upsample_cfg.copy() if end_level == -1: self.backbone_end_level = self.num_ins assert num_outs >= self.num_ins - start_level else: # if end_level < inputs, no extra level is allowed self.backbone_end_level = end_level assert end_level <= len(in_channels) assert num_outs == end_level - start_level self.start_level = start_level self.end_level = end_level self.add_extra_convs = add_extra_convs assert isinstance(add_extra_convs, (str, bool)) if isinstance(add_extra_convs, str): # Extra_convs_source choices: 'on_input', 'on_lateral', 'on_output' assert add_extra_convs in ('on_input', 'on_lateral', 'on_output') elif add_extra_convs: # True if extra_convs_on_inputs: # For compatibility with previous release # TODO: deprecate `extra_convs_on_inputs` self.add_extra_convs = 'on_input' else: self.add_extra_convs = 'on_output' self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() for i in range(self.start_level, self.backbone_end_level): l_conv = ConvModule( in_channels[i], out_channels, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg if not self.no_norm_on_lateral else None, act_cfg=act_cfg, inplace=False) fpn_conv = ConvModule( out_channels, out_channels, 3, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, inplace=False) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) # add extra conv layers (e.g., RetinaNet) extra_levels = num_outs - self.backbone_end_level + self.start_level if self.add_extra_convs and extra_levels >= 1: for i in range(extra_levels): if i == 0 and self.add_extra_convs == 'on_input': in_channels = self.in_channels[self.backbone_end_level - 1] else: in_channels = out_channels extra_fpn_conv = ConvModule( in_channels, out_channels, 3, stride=2, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, inplace=False) self.fpn_convs.append(extra_fpn_conv) # default init_weights for conv(msra) and norm in ConvModule def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): xavier_init(m, distribution='uniform') def forward(self, inputs): assert len(inputs) == len(self.in_channels) # build laterals laterals = [ lateral_conv(inputs[i + self.start_level]) for i, lateral_conv in enumerate(self.lateral_convs) ] # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): # In some cases, fixing `scale factor` (e.g. 2) is preferred, but # it cannot co-exist with `size` in `F.interpolate`. if 'scale_factor' in self.upsample_cfg: laterals[i - 1] += F.interpolate(laterals[i], **self.upsample_cfg) else: prev_shape = laterals[i - 1].shape[2:] laterals[i - 1] += F.interpolate( laterals[i], size=prev_shape, **self.upsample_cfg) # build outputs # part 1: from original levels outs = [ self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels) ] # part 2: add extra levels if self.num_outs > len(outs): # use max pool to get more levels on top of outputs # (e.g., Faster R-CNN, Mask R-CNN) if not self.add_extra_convs: for i in range(self.num_outs - used_backbone_levels): outs.append(F.max_pool2d(outs[-1], 1, stride=2)) # add conv layers on top of original feature maps (RetinaNet) else: if self.add_extra_convs == 'on_input': extra_source = inputs[self.backbone_end_level - 1] elif self.add_extra_convs == 'on_lateral': extra_source = laterals[-1] elif self.add_extra_convs == 'on_output': extra_source = outs[-1] else: raise NotImplementedError outs.append(self.fpn_convs[used_backbone_levels](extra_source)) for i in range(used_backbone_levels + 1, self.num_outs): if self.relu_before_extra_convs: outs.append(self.fpn_convs[i](F.relu(outs[-1]))) else: outs.append(self.fpn_convs[i](outs[-1])) return tuple(outs)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/necks/fpn.py
from .fpn import FPN from .multilevel_neck import MultiLevelNeck __all__ = ['FPN', 'MultiLevelNeck']
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/necks/__init__.py
import annotator.uniformer.mmcv as mmcv import torch.nn as nn from annotator.uniformer.mmcv.cnn import ConvModule from .make_divisible import make_divisible class SELayer(nn.Module): """Squeeze-and-Excitation Module. Args: channels (int): The input (and output) channels of the SE layer. ratio (int): Squeeze ratio in SELayer, the intermediate channel will be ``int(channels/ratio)``. Default: 16. conv_cfg (None or dict): Config dict for convolution layer. Default: None, which means using conv2d. act_cfg (dict or Sequence[dict]): Config dict for activation layer. If act_cfg is a dict, two activation layers will be configured by this dict. If act_cfg is a sequence of dicts, the first activation layer will be configured by the first dict and the second activation layer will be configured by the second dict. Default: (dict(type='ReLU'), dict(type='HSigmoid', bias=3.0, divisor=6.0)). """ def __init__(self, channels, ratio=16, conv_cfg=None, act_cfg=(dict(type='ReLU'), dict(type='HSigmoid', bias=3.0, divisor=6.0))): super(SELayer, self).__init__() if isinstance(act_cfg, dict): act_cfg = (act_cfg, act_cfg) assert len(act_cfg) == 2 assert mmcv.is_tuple_of(act_cfg, dict) self.global_avgpool = nn.AdaptiveAvgPool2d(1) self.conv1 = ConvModule( in_channels=channels, out_channels=make_divisible(channels // ratio, 8), kernel_size=1, stride=1, conv_cfg=conv_cfg, act_cfg=act_cfg[0]) self.conv2 = ConvModule( in_channels=make_divisible(channels // ratio, 8), out_channels=channels, kernel_size=1, stride=1, conv_cfg=conv_cfg, act_cfg=act_cfg[1]) def forward(self, x): out = self.global_avgpool(x) out = self.conv1(out) out = self.conv2(out) return x * out
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/utils/se_layer.py
from annotator.uniformer.mmcv.cnn import ConvModule from torch import nn from torch.utils import checkpoint as cp from .se_layer import SELayer class InvertedResidual(nn.Module): """InvertedResidual block for MobileNetV2. Args: in_channels (int): The input channels of the InvertedResidual block. out_channels (int): The output channels of the InvertedResidual block. stride (int): Stride of the middle (first) 3x3 convolution. expand_ratio (int): Adjusts number of channels of the hidden layer in InvertedResidual by this amount. dilation (int): Dilation rate of depthwise conv. Default: 1 conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU6'). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. Returns: Tensor: The output tensor. """ def __init__(self, in_channels, out_channels, stride, expand_ratio, dilation=1, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU6'), with_cp=False): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2], f'stride must in [1, 2]. ' \ f'But received {stride}.' self.with_cp = with_cp self.use_res_connect = self.stride == 1 and in_channels == out_channels hidden_dim = int(round(in_channels * expand_ratio)) layers = [] if expand_ratio != 1: layers.append( ConvModule( in_channels=in_channels, out_channels=hidden_dim, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) layers.extend([ ConvModule( in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=hidden_dim, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg), ConvModule( in_channels=hidden_dim, out_channels=out_channels, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None) ]) self.conv = nn.Sequential(*layers) def forward(self, x): def _inner_forward(x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out class InvertedResidualV3(nn.Module): """Inverted Residual Block for MobileNetV3. Args: in_channels (int): The input channels of this Module. out_channels (int): The output channels of this Module. mid_channels (int): The input channels of the depthwise convolution. kernel_size (int): The kernel size of the depthwise convolution. Default: 3. stride (int): The stride of the depthwise convolution. Default: 1. se_cfg (dict): Config dict for se layer. Default: None, which means no se layer. with_expand_conv (bool): Use expand conv or not. If set False, mid_channels must be the same with in_channels. Default: True. conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU'). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. Returns: Tensor: The output tensor. """ def __init__(self, in_channels, out_channels, mid_channels, kernel_size=3, stride=1, se_cfg=None, with_expand_conv=True, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), with_cp=False): super(InvertedResidualV3, self).__init__() self.with_res_shortcut = (stride == 1 and in_channels == out_channels) assert stride in [1, 2] self.with_cp = with_cp self.with_se = se_cfg is not None self.with_expand_conv = with_expand_conv if self.with_se: assert isinstance(se_cfg, dict) if not self.with_expand_conv: assert mid_channels == in_channels if self.with_expand_conv: self.expand_conv = ConvModule( in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1, padding=0, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.depthwise_conv = ConvModule( in_channels=mid_channels, out_channels=mid_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=mid_channels, conv_cfg=dict( type='Conv2dAdaptivePadding') if stride == 2 else conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) if self.with_se: self.se = SELayer(**se_cfg) self.linear_conv = ConvModule( in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None) def forward(self, x): def _inner_forward(x): out = x if self.with_expand_conv: out = self.expand_conv(out) out = self.depthwise_conv(out) if self.with_se: out = self.se(out) out = self.linear_conv(out) if self.with_res_shortcut: return x + out else: return out if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/utils/inverted_residual.py
from annotator.uniformer.mmcv.cnn import build_conv_layer, build_norm_layer from torch import nn as nn class ResLayer(nn.Sequential): """ResLayer to build ResNet style backbone. Args: block (nn.Module): block used to build ResLayer. inplanes (int): inplanes of block. planes (int): planes of block. num_blocks (int): number of blocks. stride (int): stride of the first block. Default: 1 avg_down (bool): Use AvgPool instead of stride conv when downsampling in the bottleneck. Default: False conv_cfg (dict): dictionary to construct and config conv layer. Default: None norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='BN') multi_grid (int | None): Multi grid dilation rates of last stage. Default: None contract_dilation (bool): Whether contract first dilation of each layer Default: False """ def __init__(self, block, inplanes, planes, num_blocks, stride=1, dilation=1, avg_down=False, conv_cfg=None, norm_cfg=dict(type='BN'), multi_grid=None, contract_dilation=False, **kwargs): self.block = block downsample = None if stride != 1 or inplanes != planes * block.expansion: downsample = [] conv_stride = stride if avg_down: conv_stride = 1 downsample.append( nn.AvgPool2d( kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False)) downsample.extend([ build_conv_layer( conv_cfg, inplanes, planes * block.expansion, kernel_size=1, stride=conv_stride, bias=False), build_norm_layer(norm_cfg, planes * block.expansion)[1] ]) downsample = nn.Sequential(*downsample) layers = [] if multi_grid is None: if dilation > 1 and contract_dilation: first_dilation = dilation // 2 else: first_dilation = dilation else: first_dilation = multi_grid[0] layers.append( block( inplanes=inplanes, planes=planes, stride=stride, dilation=first_dilation, downsample=downsample, conv_cfg=conv_cfg, norm_cfg=norm_cfg, **kwargs)) inplanes = planes * block.expansion for i in range(1, num_blocks): layers.append( block( inplanes=inplanes, planes=planes, stride=1, dilation=dilation if multi_grid is None else multi_grid[i], conv_cfg=conv_cfg, norm_cfg=norm_cfg, **kwargs)) super(ResLayer, self).__init__(*layers)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/utils/res_layer.py
import torch import torch.nn as nn from annotator.uniformer.mmcv.cnn import ConvModule, build_upsample_layer class UpConvBlock(nn.Module): """Upsample convolution block in decoder for UNet. This upsample convolution block consists of one upsample module followed by one convolution block. The upsample module expands the high-level low-resolution feature map and the convolution block fuses the upsampled high-level low-resolution feature map and the low-level high-resolution feature map from encoder. Args: conv_block (nn.Sequential): Sequential of convolutional layers. in_channels (int): Number of input channels of the high-level skip_channels (int): Number of input channels of the low-level high-resolution feature map from encoder. out_channels (int): Number of output channels. num_convs (int): Number of convolutional layers in the conv_block. Default: 2. stride (int): Stride of convolutional layer in conv_block. Default: 1. dilation (int): Dilation rate of convolutional layer in conv_block. Default: 1. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. conv_cfg (dict | None): Config dict for convolution layer. Default: None. norm_cfg (dict | None): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict | None): Config dict for activation layer in ConvModule. Default: dict(type='ReLU'). upsample_cfg (dict): The upsample config of the upsample module in decoder. Default: dict(type='InterpConv'). If the size of high-level feature map is the same as that of skip feature map (low-level feature map from encoder), it does not need upsample the high-level feature map and the upsample_cfg is None. dcn (bool): Use deformable convolution in convolutional layer or not. Default: None. plugins (dict): plugins for convolutional layers. Default: None. """ def __init__(self, conv_block, in_channels, skip_channels, out_channels, num_convs=2, stride=1, dilation=1, with_cp=False, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), upsample_cfg=dict(type='InterpConv'), dcn=None, plugins=None): super(UpConvBlock, self).__init__() assert dcn is None, 'Not implemented yet.' assert plugins is None, 'Not implemented yet.' self.conv_block = conv_block( in_channels=2 * skip_channels, out_channels=out_channels, num_convs=num_convs, stride=stride, dilation=dilation, with_cp=with_cp, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, dcn=None, plugins=None) if upsample_cfg is not None: self.upsample = build_upsample_layer( cfg=upsample_cfg, in_channels=in_channels, out_channels=skip_channels, with_cp=with_cp, norm_cfg=norm_cfg, act_cfg=act_cfg) else: self.upsample = ConvModule( in_channels, skip_channels, kernel_size=1, stride=1, padding=0, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) def forward(self, skip, x): """Forward function.""" x = self.upsample(x) out = torch.cat([skip, x], dim=1) out = self.conv_block(out) return out
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/utils/up_conv_block.py
from .drop import DropPath from .inverted_residual import InvertedResidual, InvertedResidualV3 from .make_divisible import make_divisible from .res_layer import ResLayer from .se_layer import SELayer from .self_attention_block import SelfAttentionBlock from .up_conv_block import UpConvBlock from .weight_init import trunc_normal_ __all__ = [ 'ResLayer', 'SelfAttentionBlock', 'make_divisible', 'InvertedResidual', 'UpConvBlock', 'InvertedResidualV3', 'SELayer', 'DropPath', 'trunc_normal_' ]
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/utils/__init__.py
import torch from annotator.uniformer.mmcv.cnn import ConvModule, constant_init from torch import nn as nn from torch.nn import functional as F class SelfAttentionBlock(nn.Module): """General self-attention block/non-local block. Please refer to https://arxiv.org/abs/1706.03762 for details about key, query and value. Args: key_in_channels (int): Input channels of key feature. query_in_channels (int): Input channels of query feature. channels (int): Output channels of key/query transform. out_channels (int): Output channels. share_key_query (bool): Whether share projection weight between key and query projection. query_downsample (nn.Module): Query downsample module. key_downsample (nn.Module): Key downsample module. key_query_num_convs (int): Number of convs for key/query projection. value_num_convs (int): Number of convs for value projection. matmul_norm (bool): Whether normalize attention map with sqrt of channels with_out (bool): Whether use out projection. conv_cfg (dict|None): Config of conv layers. norm_cfg (dict|None): Config of norm layers. act_cfg (dict|None): Config of activation layers. """ def __init__(self, key_in_channels, query_in_channels, channels, out_channels, share_key_query, query_downsample, key_downsample, key_query_num_convs, value_out_num_convs, key_query_norm, value_out_norm, matmul_norm, with_out, conv_cfg, norm_cfg, act_cfg): super(SelfAttentionBlock, self).__init__() if share_key_query: assert key_in_channels == query_in_channels self.key_in_channels = key_in_channels self.query_in_channels = query_in_channels self.out_channels = out_channels self.channels = channels self.share_key_query = share_key_query self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.key_project = self.build_project( key_in_channels, channels, num_convs=key_query_num_convs, use_conv_module=key_query_norm, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) if share_key_query: self.query_project = self.key_project else: self.query_project = self.build_project( query_in_channels, channels, num_convs=key_query_num_convs, use_conv_module=key_query_norm, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.value_project = self.build_project( key_in_channels, channels if with_out else out_channels, num_convs=value_out_num_convs, use_conv_module=value_out_norm, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) if with_out: self.out_project = self.build_project( channels, out_channels, num_convs=value_out_num_convs, use_conv_module=value_out_norm, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) else: self.out_project = None self.query_downsample = query_downsample self.key_downsample = key_downsample self.matmul_norm = matmul_norm self.init_weights() def init_weights(self): """Initialize weight of later layer.""" if self.out_project is not None: if not isinstance(self.out_project, ConvModule): constant_init(self.out_project, 0) def build_project(self, in_channels, channels, num_convs, use_conv_module, conv_cfg, norm_cfg, act_cfg): """Build projection layer for key/query/value/out.""" if use_conv_module: convs = [ ConvModule( in_channels, channels, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) ] for _ in range(num_convs - 1): convs.append( ConvModule( channels, channels, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) else: convs = [nn.Conv2d(in_channels, channels, 1)] for _ in range(num_convs - 1): convs.append(nn.Conv2d(channels, channels, 1)) if len(convs) > 1: convs = nn.Sequential(*convs) else: convs = convs[0] return convs def forward(self, query_feats, key_feats): """Forward function.""" batch_size = query_feats.size(0) query = self.query_project(query_feats) if self.query_downsample is not None: query = self.query_downsample(query) query = query.reshape(*query.shape[:2], -1) query = query.permute(0, 2, 1).contiguous() key = self.key_project(key_feats) value = self.value_project(key_feats) if self.key_downsample is not None: key = self.key_downsample(key) value = self.key_downsample(value) key = key.reshape(*key.shape[:2], -1) value = value.reshape(*value.shape[:2], -1) value = value.permute(0, 2, 1).contiguous() sim_map = torch.matmul(query, key) if self.matmul_norm: sim_map = (self.channels**-.5) * sim_map sim_map = F.softmax(sim_map, dim=-1) context = torch.matmul(sim_map, value) context = context.permute(0, 2, 1).contiguous() context = context.reshape(batch_size, -1, *query_feats.shape[2:]) if self.out_project is not None: context = self.out_project(context) return context
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/utils/self_attention_block.py
def make_divisible(value, divisor, min_value=None, min_ratio=0.9): """Make divisible function. This function rounds the channel number to the nearest value that can be divisible by the divisor. It is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by divisor. It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py # noqa Args: value (int): The original channel number. divisor (int): The divisor to fully divide the channel number. min_value (int): The minimum value of the output channel. Default: None, means that the minimum value equal to the divisor. min_ratio (float): The minimum ratio of the rounded channel number to the original channel number. Default: 0.9. Returns: int: The modified output channel number. """ if min_value is None: min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than (1-min_ratio). if new_value < min_ratio * value: new_value += divisor return new_value
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/utils/make_divisible.py
"""Modified from https://github.com/rwightman/pytorch-image- models/blob/master/timm/models/layers/drop.py.""" import torch from torch import nn class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Args: drop_prob (float): Drop rate for paths of model. Dropout rate has to be between 0 and 1. Default: 0. """ def __init__(self, drop_prob=0.): super(DropPath, self).__init__() self.drop_prob = drop_prob self.keep_prob = 1 - drop_prob def forward(self, x): if self.drop_prob == 0. or not self.training: return x shape = (x.shape[0], ) + (1, ) * ( x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = self.keep_prob + torch.rand( shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(self.keep_prob) * random_tensor return output
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/utils/drop.py
"""Modified from https://github.com/rwightman/pytorch-image- models/blob/master/timm/models/layers/drop.py.""" import math import warnings import torch def _no_grad_trunc_normal_(tensor, mean, std, a, b): """Reference: https://people.sc.fsu.edu/~jburkardt/presentations /truncated_normal.pdf""" def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. ' 'The distribution of values may be incorrect.', stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values lower_bound = norm_cdf((a - mean) / std) upper_bound = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * lower_bound - 1, 2 * upper_bound - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor (``torch.Tensor``): an n-dimensional `torch.Tensor` mean (float): the mean of the normal distribution std (float): the standard deviation of the normal distribution a (float): the minimum cutoff value b (float): the maximum cutoff value """ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/utils/weight_init.py
import torch.nn as nn from annotator.uniformer.mmcv.cnn import (build_conv_layer, build_norm_layer, constant_init, kaiming_init) from annotator.uniformer.mmcv.runner import load_checkpoint from annotator.uniformer.mmcv.utils.parrots_wrapper import _BatchNorm from annotator.uniformer.mmseg.ops import Upsample, resize from annotator.uniformer.mmseg.utils import get_root_logger from ..builder import BACKBONES from .resnet import BasicBlock, Bottleneck class HRModule(nn.Module): """High-Resolution Module for HRNet. In this module, every branch has 4 BasicBlocks/Bottlenecks. Fusion/Exchange is in this module. """ def __init__(self, num_branches, blocks, num_blocks, in_channels, num_channels, multiscale_output=True, with_cp=False, conv_cfg=None, norm_cfg=dict(type='BN', requires_grad=True)): super(HRModule, self).__init__() self._check_branches(num_branches, num_blocks, in_channels, num_channels) self.in_channels = in_channels self.num_branches = num_branches self.multiscale_output = multiscale_output self.norm_cfg = norm_cfg self.conv_cfg = conv_cfg self.with_cp = with_cp self.branches = self._make_branches(num_branches, blocks, num_blocks, num_channels) self.fuse_layers = self._make_fuse_layers() self.relu = nn.ReLU(inplace=False) def _check_branches(self, num_branches, num_blocks, in_channels, num_channels): """Check branches configuration.""" if num_branches != len(num_blocks): error_msg = f'NUM_BRANCHES({num_branches}) <> NUM_BLOCKS(' \ f'{len(num_blocks)})' raise ValueError(error_msg) if num_branches != len(num_channels): error_msg = f'NUM_BRANCHES({num_branches}) <> NUM_CHANNELS(' \ f'{len(num_channels)})' raise ValueError(error_msg) if num_branches != len(in_channels): error_msg = f'NUM_BRANCHES({num_branches}) <> NUM_INCHANNELS(' \ f'{len(in_channels)})' raise ValueError(error_msg) def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): """Build one branch.""" downsample = None if stride != 1 or \ self.in_channels[branch_index] != \ num_channels[branch_index] * block.expansion: downsample = nn.Sequential( build_conv_layer( self.conv_cfg, self.in_channels[branch_index], num_channels[branch_index] * block.expansion, kernel_size=1, stride=stride, bias=False), build_norm_layer(self.norm_cfg, num_channels[branch_index] * block.expansion)[1]) layers = [] layers.append( block( self.in_channels[branch_index], num_channels[branch_index], stride, downsample=downsample, with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg)) self.in_channels[branch_index] = \ num_channels[branch_index] * block.expansion for i in range(1, num_blocks[branch_index]): layers.append( block( self.in_channels[branch_index], num_channels[branch_index], with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg)) return nn.Sequential(*layers) def _make_branches(self, num_branches, block, num_blocks, num_channels): """Build multiple branch.""" branches = [] for i in range(num_branches): branches.append( self._make_one_branch(i, block, num_blocks, num_channels)) return nn.ModuleList(branches) def _make_fuse_layers(self): """Build fuse layer.""" if self.num_branches == 1: return None num_branches = self.num_branches in_channels = self.in_channels fuse_layers = [] num_out_branches = num_branches if self.multiscale_output else 1 for i in range(num_out_branches): fuse_layer = [] for j in range(num_branches): if j > i: fuse_layer.append( nn.Sequential( build_conv_layer( self.conv_cfg, in_channels[j], in_channels[i], kernel_size=1, stride=1, padding=0, bias=False), build_norm_layer(self.norm_cfg, in_channels[i])[1], # we set align_corners=False for HRNet Upsample( scale_factor=2**(j - i), mode='bilinear', align_corners=False))) elif j == i: fuse_layer.append(None) else: conv_downsamples = [] for k in range(i - j): if k == i - j - 1: conv_downsamples.append( nn.Sequential( build_conv_layer( self.conv_cfg, in_channels[j], in_channels[i], kernel_size=3, stride=2, padding=1, bias=False), build_norm_layer(self.norm_cfg, in_channels[i])[1])) else: conv_downsamples.append( nn.Sequential( build_conv_layer( self.conv_cfg, in_channels[j], in_channels[j], kernel_size=3, stride=2, padding=1, bias=False), build_norm_layer(self.norm_cfg, in_channels[j])[1], nn.ReLU(inplace=False))) fuse_layer.append(nn.Sequential(*conv_downsamples)) fuse_layers.append(nn.ModuleList(fuse_layer)) return nn.ModuleList(fuse_layers) def forward(self, x): """Forward function.""" if self.num_branches == 1: return [self.branches[0](x[0])] for i in range(self.num_branches): x[i] = self.branches[i](x[i]) x_fuse = [] for i in range(len(self.fuse_layers)): y = 0 for j in range(self.num_branches): if i == j: y += x[j] elif j > i: y = y + resize( self.fuse_layers[i][j](x[j]), size=x[i].shape[2:], mode='bilinear', align_corners=False) else: y += self.fuse_layers[i][j](x[j]) x_fuse.append(self.relu(y)) return x_fuse @BACKBONES.register_module() class HRNet(nn.Module): """HRNet backbone. High-Resolution Representations for Labeling Pixels and Regions arXiv: https://arxiv.org/abs/1904.04514 Args: extra (dict): detailed configuration for each stage of HRNet. in_channels (int): Number of input image channels. Normally 3. conv_cfg (dict): dictionary to construct and config conv layer. norm_cfg (dict): dictionary to construct and config norm layer. norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. zero_init_residual (bool): whether to use zero init for last norm layer in resblocks to let them behave as identity. Example: >>> from annotator.uniformer.mmseg.models import HRNet >>> import torch >>> extra = dict( >>> stage1=dict( >>> num_modules=1, >>> num_branches=1, >>> block='BOTTLENECK', >>> num_blocks=(4, ), >>> num_channels=(64, )), >>> stage2=dict( >>> num_modules=1, >>> num_branches=2, >>> block='BASIC', >>> num_blocks=(4, 4), >>> num_channels=(32, 64)), >>> stage3=dict( >>> num_modules=4, >>> num_branches=3, >>> block='BASIC', >>> num_blocks=(4, 4, 4), >>> num_channels=(32, 64, 128)), >>> stage4=dict( >>> num_modules=3, >>> num_branches=4, >>> block='BASIC', >>> num_blocks=(4, 4, 4, 4), >>> num_channels=(32, 64, 128, 256))) >>> self = HRNet(extra, in_channels=1) >>> self.eval() >>> inputs = torch.rand(1, 1, 32, 32) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 32, 8, 8) (1, 64, 4, 4) (1, 128, 2, 2) (1, 256, 1, 1) """ blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck} def __init__(self, extra, in_channels=3, conv_cfg=None, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=False, with_cp=False, zero_init_residual=False): super(HRNet, self).__init__() self.extra = extra self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.norm_eval = norm_eval self.with_cp = with_cp self.zero_init_residual = zero_init_residual # stem net self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1) self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2) self.conv1 = build_conv_layer( self.conv_cfg, in_channels, 64, kernel_size=3, stride=2, padding=1, bias=False) self.add_module(self.norm1_name, norm1) self.conv2 = build_conv_layer( self.conv_cfg, 64, 64, kernel_size=3, stride=2, padding=1, bias=False) self.add_module(self.norm2_name, norm2) self.relu = nn.ReLU(inplace=True) # stage 1 self.stage1_cfg = self.extra['stage1'] num_channels = self.stage1_cfg['num_channels'][0] block_type = self.stage1_cfg['block'] num_blocks = self.stage1_cfg['num_blocks'][0] block = self.blocks_dict[block_type] stage1_out_channels = num_channels * block.expansion self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) # stage 2 self.stage2_cfg = self.extra['stage2'] num_channels = self.stage2_cfg['num_channels'] block_type = self.stage2_cfg['block'] block = self.blocks_dict[block_type] num_channels = [channel * block.expansion for channel in num_channels] self.transition1 = self._make_transition_layer([stage1_out_channels], num_channels) self.stage2, pre_stage_channels = self._make_stage( self.stage2_cfg, num_channels) # stage 3 self.stage3_cfg = self.extra['stage3'] num_channels = self.stage3_cfg['num_channels'] block_type = self.stage3_cfg['block'] block = self.blocks_dict[block_type] num_channels = [channel * block.expansion for channel in num_channels] self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) self.stage3, pre_stage_channels = self._make_stage( self.stage3_cfg, num_channels) # stage 4 self.stage4_cfg = self.extra['stage4'] num_channels = self.stage4_cfg['num_channels'] block_type = self.stage4_cfg['block'] block = self.blocks_dict[block_type] num_channels = [channel * block.expansion for channel in num_channels] self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) self.stage4, pre_stage_channels = self._make_stage( self.stage4_cfg, num_channels) @property def norm1(self): """nn.Module: the normalization layer named "norm1" """ return getattr(self, self.norm1_name) @property def norm2(self): """nn.Module: the normalization layer named "norm2" """ return getattr(self, self.norm2_name) def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): """Make transition layer.""" num_branches_cur = len(num_channels_cur_layer) num_branches_pre = len(num_channels_pre_layer) transition_layers = [] for i in range(num_branches_cur): if i < num_branches_pre: if num_channels_cur_layer[i] != num_channels_pre_layer[i]: transition_layers.append( nn.Sequential( build_conv_layer( self.conv_cfg, num_channels_pre_layer[i], num_channels_cur_layer[i], kernel_size=3, stride=1, padding=1, bias=False), build_norm_layer(self.norm_cfg, num_channels_cur_layer[i])[1], nn.ReLU(inplace=True))) else: transition_layers.append(None) else: conv_downsamples = [] for j in range(i + 1 - num_branches_pre): in_channels = num_channels_pre_layer[-1] out_channels = num_channels_cur_layer[i] \ if j == i - num_branches_pre else in_channels conv_downsamples.append( nn.Sequential( build_conv_layer( self.conv_cfg, in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False), build_norm_layer(self.norm_cfg, out_channels)[1], nn.ReLU(inplace=True))) transition_layers.append(nn.Sequential(*conv_downsamples)) return nn.ModuleList(transition_layers) def _make_layer(self, block, inplanes, planes, blocks, stride=1): """Make each layer.""" downsample = None if stride != 1 or inplanes != planes * block.expansion: downsample = nn.Sequential( build_conv_layer( self.conv_cfg, inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), build_norm_layer(self.norm_cfg, planes * block.expansion)[1]) layers = [] layers.append( block( inplanes, planes, stride, downsample=downsample, with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg)) inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block( inplanes, planes, with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg)) return nn.Sequential(*layers) def _make_stage(self, layer_config, in_channels, multiscale_output=True): """Make each stage.""" num_modules = layer_config['num_modules'] num_branches = layer_config['num_branches'] num_blocks = layer_config['num_blocks'] num_channels = layer_config['num_channels'] block = self.blocks_dict[layer_config['block']] hr_modules = [] for i in range(num_modules): # multi_scale_output is only used for the last module if not multiscale_output and i == num_modules - 1: reset_multiscale_output = False else: reset_multiscale_output = True hr_modules.append( HRModule( num_branches, block, num_blocks, in_channels, num_channels, reset_multiscale_output, with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg)) return nn.Sequential(*hr_modules), in_channels def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) if self.zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): constant_init(m.norm3, 0) elif isinstance(m, BasicBlock): constant_init(m.norm2, 0) else: raise TypeError('pretrained must be a str or None') def forward(self, x): """Forward function.""" x = self.conv1(x) x = self.norm1(x) x = self.relu(x) x = self.conv2(x) x = self.norm2(x) x = self.relu(x) x = self.layer1(x) x_list = [] for i in range(self.stage2_cfg['num_branches']): if self.transition1[i] is not None: x_list.append(self.transition1[i](x)) else: x_list.append(x) y_list = self.stage2(x_list) x_list = [] for i in range(self.stage3_cfg['num_branches']): if self.transition2[i] is not None: x_list.append(self.transition2[i](y_list[-1])) else: x_list.append(y_list[i]) y_list = self.stage3(x_list) x_list = [] for i in range(self.stage4_cfg['num_branches']): if self.transition3[i] is not None: x_list.append(self.transition3[i](y_list[-1])) else: x_list.append(y_list[i]) y_list = self.stage4(x_list) return y_list def train(self, mode=True): """Convert the model into training mode will keeping the normalization layer freezed.""" super(HRNet, self).train(mode) if mode and self.norm_eval: for m in self.modules(): # trick: eval have effect on BatchNorm only if isinstance(m, _BatchNorm): m.eval()
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/backbones/hrnet.py
import torch import torch.nn as nn import torch.utils.checkpoint as cp from annotator.uniformer.mmcv.cnn import (ConvModule, build_conv_layer, build_norm_layer, constant_init, kaiming_init) from annotator.uniformer.mmcv.runner import load_checkpoint from annotator.uniformer.mmcv.utils.parrots_wrapper import _BatchNorm from annotator.uniformer.mmseg.utils import get_root_logger from ..builder import BACKBONES class GlobalContextExtractor(nn.Module): """Global Context Extractor for CGNet. This class is employed to refine the joint feature of both local feature and surrounding context. Args: channel (int): Number of input feature channels. reduction (int): Reductions for global context extractor. Default: 16. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. """ def __init__(self, channel, reduction=16, with_cp=False): super(GlobalContextExtractor, self).__init__() self.channel = channel self.reduction = reduction assert reduction >= 1 and channel >= reduction self.with_cp = with_cp self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid()) def forward(self, x): def _inner_forward(x): num_batch, num_channel = x.size()[:2] y = self.avg_pool(x).view(num_batch, num_channel) y = self.fc(y).view(num_batch, num_channel, 1, 1) return x * y if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out class ContextGuidedBlock(nn.Module): """Context Guided Block for CGNet. This class consists of four components: local feature extractor, surrounding feature extractor, joint feature extractor and global context extractor. Args: in_channels (int): Number of input feature channels. out_channels (int): Number of output feature channels. dilation (int): Dilation rate for surrounding context extractor. Default: 2. reduction (int): Reduction for global context extractor. Default: 16. skip_connect (bool): Add input to output or not. Default: True. downsample (bool): Downsample the input to 1/2 or not. Default: False. conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN', requires_grad=True). act_cfg (dict): Config dict for activation layer. Default: dict(type='PReLU'). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. """ def __init__(self, in_channels, out_channels, dilation=2, reduction=16, skip_connect=True, downsample=False, conv_cfg=None, norm_cfg=dict(type='BN', requires_grad=True), act_cfg=dict(type='PReLU'), with_cp=False): super(ContextGuidedBlock, self).__init__() self.with_cp = with_cp self.downsample = downsample channels = out_channels if downsample else out_channels // 2 if 'type' in act_cfg and act_cfg['type'] == 'PReLU': act_cfg['num_parameters'] = channels kernel_size = 3 if downsample else 1 stride = 2 if downsample else 1 padding = (kernel_size - 1) // 2 self.conv1x1 = ConvModule( in_channels, channels, kernel_size, stride, padding, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.f_loc = build_conv_layer( conv_cfg, channels, channels, kernel_size=3, padding=1, groups=channels, bias=False) self.f_sur = build_conv_layer( conv_cfg, channels, channels, kernel_size=3, padding=dilation, groups=channels, dilation=dilation, bias=False) self.bn = build_norm_layer(norm_cfg, 2 * channels)[1] self.activate = nn.PReLU(2 * channels) if downsample: self.bottleneck = build_conv_layer( conv_cfg, 2 * channels, out_channels, kernel_size=1, bias=False) self.skip_connect = skip_connect and not downsample self.f_glo = GlobalContextExtractor(out_channels, reduction, with_cp) def forward(self, x): def _inner_forward(x): out = self.conv1x1(x) loc = self.f_loc(out) sur = self.f_sur(out) joi_feat = torch.cat([loc, sur], 1) # the joint feature joi_feat = self.bn(joi_feat) joi_feat = self.activate(joi_feat) if self.downsample: joi_feat = self.bottleneck(joi_feat) # channel = out_channels # f_glo is employed to refine the joint feature out = self.f_glo(joi_feat) if self.skip_connect: return x + out else: return out if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out class InputInjection(nn.Module): """Downsampling module for CGNet.""" def __init__(self, num_downsampling): super(InputInjection, self).__init__() self.pool = nn.ModuleList() for i in range(num_downsampling): self.pool.append(nn.AvgPool2d(3, stride=2, padding=1)) def forward(self, x): for pool in self.pool: x = pool(x) return x @BACKBONES.register_module() class CGNet(nn.Module): """CGNet backbone. A Light-weight Context Guided Network for Semantic Segmentation arXiv: https://arxiv.org/abs/1811.08201 Args: in_channels (int): Number of input image channels. Normally 3. num_channels (tuple[int]): Numbers of feature channels at each stages. Default: (32, 64, 128). num_blocks (tuple[int]): Numbers of CG blocks at stage 1 and stage 2. Default: (3, 21). dilations (tuple[int]): Dilation rate for surrounding context extractors at stage 1 and stage 2. Default: (2, 4). reductions (tuple[int]): Reductions for global context extractors at stage 1 and stage 2. Default: (8, 16). conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN', requires_grad=True). act_cfg (dict): Config dict for activation layer. Default: dict(type='PReLU'). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: False. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. """ def __init__(self, in_channels=3, num_channels=(32, 64, 128), num_blocks=(3, 21), dilations=(2, 4), reductions=(8, 16), conv_cfg=None, norm_cfg=dict(type='BN', requires_grad=True), act_cfg=dict(type='PReLU'), norm_eval=False, with_cp=False): super(CGNet, self).__init__() self.in_channels = in_channels self.num_channels = num_channels assert isinstance(self.num_channels, tuple) and len( self.num_channels) == 3 self.num_blocks = num_blocks assert isinstance(self.num_blocks, tuple) and len(self.num_blocks) == 2 self.dilations = dilations assert isinstance(self.dilations, tuple) and len(self.dilations) == 2 self.reductions = reductions assert isinstance(self.reductions, tuple) and len(self.reductions) == 2 self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg if 'type' in self.act_cfg and self.act_cfg['type'] == 'PReLU': self.act_cfg['num_parameters'] = num_channels[0] self.norm_eval = norm_eval self.with_cp = with_cp cur_channels = in_channels self.stem = nn.ModuleList() for i in range(3): self.stem.append( ConvModule( cur_channels, num_channels[0], 3, 2 if i == 0 else 1, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) cur_channels = num_channels[0] self.inject_2x = InputInjection(1) # down-sample for Input, factor=2 self.inject_4x = InputInjection(2) # down-sample for Input, factor=4 cur_channels += in_channels self.norm_prelu_0 = nn.Sequential( build_norm_layer(norm_cfg, cur_channels)[1], nn.PReLU(cur_channels)) # stage 1 self.level1 = nn.ModuleList() for i in range(num_blocks[0]): self.level1.append( ContextGuidedBlock( cur_channels if i == 0 else num_channels[1], num_channels[1], dilations[0], reductions[0], downsample=(i == 0), conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, with_cp=with_cp)) # CG block cur_channels = 2 * num_channels[1] + in_channels self.norm_prelu_1 = nn.Sequential( build_norm_layer(norm_cfg, cur_channels)[1], nn.PReLU(cur_channels)) # stage 2 self.level2 = nn.ModuleList() for i in range(num_blocks[1]): self.level2.append( ContextGuidedBlock( cur_channels if i == 0 else num_channels[2], num_channels[2], dilations[1], reductions[1], downsample=(i == 0), conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, with_cp=with_cp)) # CG block cur_channels = 2 * num_channels[2] self.norm_prelu_2 = nn.Sequential( build_norm_layer(norm_cfg, cur_channels)[1], nn.PReLU(cur_channels)) def forward(self, x): output = [] # stage 0 inp_2x = self.inject_2x(x) inp_4x = self.inject_4x(x) for layer in self.stem: x = layer(x) x = self.norm_prelu_0(torch.cat([x, inp_2x], 1)) output.append(x) # stage 1 for i, layer in enumerate(self.level1): x = layer(x) if i == 0: down1 = x x = self.norm_prelu_1(torch.cat([x, down1, inp_4x], 1)) output.append(x) # stage 2 for i, layer in enumerate(self.level2): x = layer(x) if i == 0: down2 = x x = self.norm_prelu_2(torch.cat([down2, x], 1)) output.append(x) return output def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, (nn.Conv2d, nn.Linear)): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) elif isinstance(m, nn.PReLU): constant_init(m, 0) else: raise TypeError('pretrained must be a str or None') def train(self, mode=True): """Convert the model into training mode will keeping the normalization layer freezed.""" super(CGNet, self).train(mode) if mode and self.norm_eval: for m in self.modules(): # trick: eval have effect on BatchNorm only if isinstance(m, _BatchNorm): m.eval()
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/backbones/cgnet.py
import torch.nn as nn import torch.utils.checkpoint as cp from annotator.uniformer.mmcv.cnn import (UPSAMPLE_LAYERS, ConvModule, build_activation_layer, build_norm_layer, constant_init, kaiming_init) from annotator.uniformer.mmcv.runner import load_checkpoint from annotator.uniformer.mmcv.utils.parrots_wrapper import _BatchNorm from annotator.uniformer.mmseg.utils import get_root_logger from ..builder import BACKBONES from ..utils import UpConvBlock class BasicConvBlock(nn.Module): """Basic convolutional block for UNet. This module consists of several plain convolutional layers. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. num_convs (int): Number of convolutional layers. Default: 2. stride (int): Whether use stride convolution to downsample the input feature map. If stride=2, it only uses stride convolution in the first convolutional layer to downsample the input feature map. Options are 1 or 2. Default: 1. dilation (int): Whether use dilated convolution to expand the receptive field. Set dilation rate of each convolutional layer and the dilation rate of the first convolutional layer is always 1. Default: 1. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. conv_cfg (dict | None): Config dict for convolution layer. Default: None. norm_cfg (dict | None): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict | None): Config dict for activation layer in ConvModule. Default: dict(type='ReLU'). dcn (bool): Use deformable convolution in convolutional layer or not. Default: None. plugins (dict): plugins for convolutional layers. Default: None. """ def __init__(self, in_channels, out_channels, num_convs=2, stride=1, dilation=1, with_cp=False, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), dcn=None, plugins=None): super(BasicConvBlock, self).__init__() assert dcn is None, 'Not implemented yet.' assert plugins is None, 'Not implemented yet.' self.with_cp = with_cp convs = [] for i in range(num_convs): convs.append( ConvModule( in_channels=in_channels if i == 0 else out_channels, out_channels=out_channels, kernel_size=3, stride=stride if i == 0 else 1, dilation=1 if i == 0 else dilation, padding=1 if i == 0 else dilation, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) self.convs = nn.Sequential(*convs) def forward(self, x): """Forward function.""" if self.with_cp and x.requires_grad: out = cp.checkpoint(self.convs, x) else: out = self.convs(x) return out @UPSAMPLE_LAYERS.register_module() class DeconvModule(nn.Module): """Deconvolution upsample module in decoder for UNet (2X upsample). This module uses deconvolution to upsample feature map in the decoder of UNet. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. norm_cfg (dict | None): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict | None): Config dict for activation layer in ConvModule. Default: dict(type='ReLU'). kernel_size (int): Kernel size of the convolutional layer. Default: 4. """ def __init__(self, in_channels, out_channels, with_cp=False, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), *, kernel_size=4, scale_factor=2): super(DeconvModule, self).__init__() assert (kernel_size - scale_factor >= 0) and\ (kernel_size - scale_factor) % 2 == 0,\ f'kernel_size should be greater than or equal to scale_factor '\ f'and (kernel_size - scale_factor) should be even numbers, '\ f'while the kernel size is {kernel_size} and scale_factor is '\ f'{scale_factor}.' stride = scale_factor padding = (kernel_size - scale_factor) // 2 self.with_cp = with_cp deconv = nn.ConvTranspose2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) norm_name, norm = build_norm_layer(norm_cfg, out_channels) activate = build_activation_layer(act_cfg) self.deconv_upsamping = nn.Sequential(deconv, norm, activate) def forward(self, x): """Forward function.""" if self.with_cp and x.requires_grad: out = cp.checkpoint(self.deconv_upsamping, x) else: out = self.deconv_upsamping(x) return out @UPSAMPLE_LAYERS.register_module() class InterpConv(nn.Module): """Interpolation upsample module in decoder for UNet. This module uses interpolation to upsample feature map in the decoder of UNet. It consists of one interpolation upsample layer and one convolutional layer. It can be one interpolation upsample layer followed by one convolutional layer (conv_first=False) or one convolutional layer followed by one interpolation upsample layer (conv_first=True). Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. norm_cfg (dict | None): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict | None): Config dict for activation layer in ConvModule. Default: dict(type='ReLU'). conv_cfg (dict | None): Config dict for convolution layer. Default: None. conv_first (bool): Whether convolutional layer or interpolation upsample layer first. Default: False. It means interpolation upsample layer followed by one convolutional layer. kernel_size (int): Kernel size of the convolutional layer. Default: 1. stride (int): Stride of the convolutional layer. Default: 1. padding (int): Padding of the convolutional layer. Default: 1. upsample_cfg (dict): Interpolation config of the upsample layer. Default: dict( scale_factor=2, mode='bilinear', align_corners=False). """ def __init__(self, in_channels, out_channels, with_cp=False, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), *, conv_cfg=None, conv_first=False, kernel_size=1, stride=1, padding=0, upsample_cfg=dict( scale_factor=2, mode='bilinear', align_corners=False)): super(InterpConv, self).__init__() self.with_cp = with_cp conv = ConvModule( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) upsample = nn.Upsample(**upsample_cfg) if conv_first: self.interp_upsample = nn.Sequential(conv, upsample) else: self.interp_upsample = nn.Sequential(upsample, conv) def forward(self, x): """Forward function.""" if self.with_cp and x.requires_grad: out = cp.checkpoint(self.interp_upsample, x) else: out = self.interp_upsample(x) return out @BACKBONES.register_module() class UNet(nn.Module): """UNet backbone. U-Net: Convolutional Networks for Biomedical Image Segmentation. https://arxiv.org/pdf/1505.04597.pdf Args: in_channels (int): Number of input image channels. Default" 3. base_channels (int): Number of base channels of each stage. The output channels of the first stage. Default: 64. num_stages (int): Number of stages in encoder, normally 5. Default: 5. strides (Sequence[int 1 | 2]): Strides of each stage in encoder. len(strides) is equal to num_stages. Normally the stride of the first stage in encoder is 1. If strides[i]=2, it uses stride convolution to downsample in the correspondence encoder stage. Default: (1, 1, 1, 1, 1). enc_num_convs (Sequence[int]): Number of convolutional layers in the convolution block of the correspondence encoder stage. Default: (2, 2, 2, 2, 2). dec_num_convs (Sequence[int]): Number of convolutional layers in the convolution block of the correspondence decoder stage. Default: (2, 2, 2, 2). downsamples (Sequence[int]): Whether use MaxPool to downsample the feature map after the first stage of encoder (stages: [1, num_stages)). If the correspondence encoder stage use stride convolution (strides[i]=2), it will never use MaxPool to downsample, even downsamples[i-1]=True. Default: (True, True, True, True). enc_dilations (Sequence[int]): Dilation rate of each stage in encoder. Default: (1, 1, 1, 1, 1). dec_dilations (Sequence[int]): Dilation rate of each stage in decoder. Default: (1, 1, 1, 1). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. conv_cfg (dict | None): Config dict for convolution layer. Default: None. norm_cfg (dict | None): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict | None): Config dict for activation layer in ConvModule. Default: dict(type='ReLU'). upsample_cfg (dict): The upsample config of the upsample module in decoder. Default: dict(type='InterpConv'). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: False. dcn (bool): Use deformable convolution in convolutional layer or not. Default: None. plugins (dict): plugins for convolutional layers. Default: None. Notice: The input image size should be divisible by the whole downsample rate of the encoder. More detail of the whole downsample rate can be found in UNet._check_input_divisible. """ def __init__(self, in_channels=3, base_channels=64, num_stages=5, strides=(1, 1, 1, 1, 1), enc_num_convs=(2, 2, 2, 2, 2), dec_num_convs=(2, 2, 2, 2), downsamples=(True, True, True, True), enc_dilations=(1, 1, 1, 1, 1), dec_dilations=(1, 1, 1, 1), with_cp=False, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), upsample_cfg=dict(type='InterpConv'), norm_eval=False, dcn=None, plugins=None): super(UNet, self).__init__() assert dcn is None, 'Not implemented yet.' assert plugins is None, 'Not implemented yet.' assert len(strides) == num_stages, \ 'The length of strides should be equal to num_stages, '\ f'while the strides is {strides}, the length of '\ f'strides is {len(strides)}, and the num_stages is '\ f'{num_stages}.' assert len(enc_num_convs) == num_stages, \ 'The length of enc_num_convs should be equal to num_stages, '\ f'while the enc_num_convs is {enc_num_convs}, the length of '\ f'enc_num_convs is {len(enc_num_convs)}, and the num_stages is '\ f'{num_stages}.' assert len(dec_num_convs) == (num_stages-1), \ 'The length of dec_num_convs should be equal to (num_stages-1), '\ f'while the dec_num_convs is {dec_num_convs}, the length of '\ f'dec_num_convs is {len(dec_num_convs)}, and the num_stages is '\ f'{num_stages}.' assert len(downsamples) == (num_stages-1), \ 'The length of downsamples should be equal to (num_stages-1), '\ f'while the downsamples is {downsamples}, the length of '\ f'downsamples is {len(downsamples)}, and the num_stages is '\ f'{num_stages}.' assert len(enc_dilations) == num_stages, \ 'The length of enc_dilations should be equal to num_stages, '\ f'while the enc_dilations is {enc_dilations}, the length of '\ f'enc_dilations is {len(enc_dilations)}, and the num_stages is '\ f'{num_stages}.' assert len(dec_dilations) == (num_stages-1), \ 'The length of dec_dilations should be equal to (num_stages-1), '\ f'while the dec_dilations is {dec_dilations}, the length of '\ f'dec_dilations is {len(dec_dilations)}, and the num_stages is '\ f'{num_stages}.' self.num_stages = num_stages self.strides = strides self.downsamples = downsamples self.norm_eval = norm_eval self.base_channels = base_channels self.encoder = nn.ModuleList() self.decoder = nn.ModuleList() for i in range(num_stages): enc_conv_block = [] if i != 0: if strides[i] == 1 and downsamples[i - 1]: enc_conv_block.append(nn.MaxPool2d(kernel_size=2)) upsample = (strides[i] != 1 or downsamples[i - 1]) self.decoder.append( UpConvBlock( conv_block=BasicConvBlock, in_channels=base_channels * 2**i, skip_channels=base_channels * 2**(i - 1), out_channels=base_channels * 2**(i - 1), num_convs=dec_num_convs[i - 1], stride=1, dilation=dec_dilations[i - 1], with_cp=with_cp, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, upsample_cfg=upsample_cfg if upsample else None, dcn=None, plugins=None)) enc_conv_block.append( BasicConvBlock( in_channels=in_channels, out_channels=base_channels * 2**i, num_convs=enc_num_convs[i], stride=strides[i], dilation=enc_dilations[i], with_cp=with_cp, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, dcn=None, plugins=None)) self.encoder.append((nn.Sequential(*enc_conv_block))) in_channels = base_channels * 2**i def forward(self, x): self._check_input_divisible(x) enc_outs = [] for enc in self.encoder: x = enc(x) enc_outs.append(x) dec_outs = [x] for i in reversed(range(len(self.decoder))): x = self.decoder[i](enc_outs[i], x) dec_outs.append(x) return dec_outs def train(self, mode=True): """Convert the model into training mode while keep normalization layer freezed.""" super(UNet, self).train(mode) if mode and self.norm_eval: for m in self.modules(): # trick: eval have effect on BatchNorm only if isinstance(m, _BatchNorm): m.eval() def _check_input_divisible(self, x): h, w = x.shape[-2:] whole_downsample_rate = 1 for i in range(1, self.num_stages): if self.strides[i] == 2 or self.downsamples[i - 1]: whole_downsample_rate *= 2 assert (h % whole_downsample_rate == 0) \ and (w % whole_downsample_rate == 0),\ f'The input image size {(h, w)} should be divisible by the whole '\ f'downsample rate {whole_downsample_rate}, when num_stages is '\ f'{self.num_stages}, strides is {self.strides}, and downsamples '\ f'is {self.downsamples}.' def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) else: raise TypeError('pretrained must be a str or None')
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/backbones/unet.py
import math import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from annotator.uniformer.mmcv.cnn import build_conv_layer, build_norm_layer from ..builder import BACKBONES from ..utils import ResLayer from .resnet import Bottleneck as _Bottleneck from .resnet import ResNetV1d class RSoftmax(nn.Module): """Radix Softmax module in ``SplitAttentionConv2d``. Args: radix (int): Radix of input. groups (int): Groups of input. """ def __init__(self, radix, groups): super().__init__() self.radix = radix self.groups = groups def forward(self, x): batch = x.size(0) if self.radix > 1: x = x.view(batch, self.groups, self.radix, -1).transpose(1, 2) x = F.softmax(x, dim=1) x = x.reshape(batch, -1) else: x = torch.sigmoid(x) return x class SplitAttentionConv2d(nn.Module): """Split-Attention Conv2d in ResNeSt. Args: in_channels (int): Same as nn.Conv2d. out_channels (int): Same as nn.Conv2d. kernel_size (int | tuple[int]): Same as nn.Conv2d. stride (int | tuple[int]): Same as nn.Conv2d. padding (int | tuple[int]): Same as nn.Conv2d. dilation (int | tuple[int]): Same as nn.Conv2d. groups (int): Same as nn.Conv2d. radix (int): Radix of SpltAtConv2d. Default: 2 reduction_factor (int): Reduction factor of inter_channels. Default: 4. conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: None. dcn (dict): Config dict for DCN. Default: None. """ def __init__(self, in_channels, channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, radix=2, reduction_factor=4, conv_cfg=None, norm_cfg=dict(type='BN'), dcn=None): super(SplitAttentionConv2d, self).__init__() inter_channels = max(in_channels * radix // reduction_factor, 32) self.radix = radix self.groups = groups self.channels = channels self.with_dcn = dcn is not None self.dcn = dcn fallback_on_stride = False if self.with_dcn: fallback_on_stride = self.dcn.pop('fallback_on_stride', False) if self.with_dcn and not fallback_on_stride: assert conv_cfg is None, 'conv_cfg must be None for DCN' conv_cfg = dcn self.conv = build_conv_layer( conv_cfg, in_channels, channels * radix, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups * radix, bias=False) self.norm0_name, norm0 = build_norm_layer( norm_cfg, channels * radix, postfix=0) self.add_module(self.norm0_name, norm0) self.relu = nn.ReLU(inplace=True) self.fc1 = build_conv_layer( None, channels, inter_channels, 1, groups=self.groups) self.norm1_name, norm1 = build_norm_layer( norm_cfg, inter_channels, postfix=1) self.add_module(self.norm1_name, norm1) self.fc2 = build_conv_layer( None, inter_channels, channels * radix, 1, groups=self.groups) self.rsoftmax = RSoftmax(radix, groups) @property def norm0(self): """nn.Module: the normalization layer named "norm0" """ return getattr(self, self.norm0_name) @property def norm1(self): """nn.Module: the normalization layer named "norm1" """ return getattr(self, self.norm1_name) def forward(self, x): x = self.conv(x) x = self.norm0(x) x = self.relu(x) batch, rchannel = x.shape[:2] batch = x.size(0) if self.radix > 1: splits = x.view(batch, self.radix, -1, *x.shape[2:]) gap = splits.sum(dim=1) else: gap = x gap = F.adaptive_avg_pool2d(gap, 1) gap = self.fc1(gap) gap = self.norm1(gap) gap = self.relu(gap) atten = self.fc2(gap) atten = self.rsoftmax(atten).view(batch, -1, 1, 1) if self.radix > 1: attens = atten.view(batch, self.radix, -1, *atten.shape[2:]) out = torch.sum(attens * splits, dim=1) else: out = atten * x return out.contiguous() class Bottleneck(_Bottleneck): """Bottleneck block for ResNeSt. Args: inplane (int): Input planes of this block. planes (int): Middle planes of this block. groups (int): Groups of conv2. width_per_group (int): Width per group of conv2. 64x4d indicates ``groups=64, width_per_group=4`` and 32x8d indicates ``groups=32, width_per_group=8``. radix (int): Radix of SpltAtConv2d. Default: 2 reduction_factor (int): Reduction factor of inter_channels in SplitAttentionConv2d. Default: 4. avg_down_stride (bool): Whether to use average pool for stride in Bottleneck. Default: True. kwargs (dict): Key word arguments for base class. """ expansion = 4 def __init__(self, inplanes, planes, groups=1, base_width=4, base_channels=64, radix=2, reduction_factor=4, avg_down_stride=True, **kwargs): """Bottleneck block for ResNeSt.""" super(Bottleneck, self).__init__(inplanes, planes, **kwargs) if groups == 1: width = self.planes else: width = math.floor(self.planes * (base_width / base_channels)) * groups self.avg_down_stride = avg_down_stride and self.conv2_stride > 1 self.norm1_name, norm1 = build_norm_layer( self.norm_cfg, width, postfix=1) self.norm3_name, norm3 = build_norm_layer( self.norm_cfg, self.planes * self.expansion, postfix=3) self.conv1 = build_conv_layer( self.conv_cfg, self.inplanes, width, kernel_size=1, stride=self.conv1_stride, bias=False) self.add_module(self.norm1_name, norm1) self.with_modulated_dcn = False self.conv2 = SplitAttentionConv2d( width, width, kernel_size=3, stride=1 if self.avg_down_stride else self.conv2_stride, padding=self.dilation, dilation=self.dilation, groups=groups, radix=radix, reduction_factor=reduction_factor, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, dcn=self.dcn) delattr(self, self.norm2_name) if self.avg_down_stride: self.avd_layer = nn.AvgPool2d(3, self.conv2_stride, padding=1) self.conv3 = build_conv_layer( self.conv_cfg, width, self.planes * self.expansion, kernel_size=1, bias=False) self.add_module(self.norm3_name, norm3) def forward(self, x): def _inner_forward(x): identity = x out = self.conv1(x) out = self.norm1(out) out = self.relu(out) if self.with_plugins: out = self.forward_plugin(out, self.after_conv1_plugin_names) out = self.conv2(out) if self.avg_down_stride: out = self.avd_layer(out) if self.with_plugins: out = self.forward_plugin(out, self.after_conv2_plugin_names) out = self.conv3(out) out = self.norm3(out) if self.with_plugins: out = self.forward_plugin(out, self.after_conv3_plugin_names) if self.downsample is not None: identity = self.downsample(x) out += identity return out if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) out = self.relu(out) return out @BACKBONES.register_module() class ResNeSt(ResNetV1d): """ResNeSt backbone. Args: groups (int): Number of groups of Bottleneck. Default: 1 base_width (int): Base width of Bottleneck. Default: 4 radix (int): Radix of SpltAtConv2d. Default: 2 reduction_factor (int): Reduction factor of inter_channels in SplitAttentionConv2d. Default: 4. avg_down_stride (bool): Whether to use average pool for stride in Bottleneck. Default: True. kwargs (dict): Keyword arguments for ResNet. """ arch_settings = { 50: (Bottleneck, (3, 4, 6, 3)), 101: (Bottleneck, (3, 4, 23, 3)), 152: (Bottleneck, (3, 8, 36, 3)), 200: (Bottleneck, (3, 24, 36, 3)) } def __init__(self, groups=1, base_width=4, radix=2, reduction_factor=4, avg_down_stride=True, **kwargs): self.groups = groups self.base_width = base_width self.radix = radix self.reduction_factor = reduction_factor self.avg_down_stride = avg_down_stride super(ResNeSt, self).__init__(**kwargs) def make_res_layer(self, **kwargs): """Pack all blocks in a stage into a ``ResLayer``.""" return ResLayer( groups=self.groups, base_width=self.base_width, base_channels=self.base_channels, radix=self.radix, reduction_factor=self.reduction_factor, avg_down_stride=self.avg_down_stride, **kwargs)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/backbones/resnest.py
import logging import torch.nn as nn from annotator.uniformer.mmcv.cnn import ConvModule, constant_init, kaiming_init from annotator.uniformer.mmcv.runner import load_checkpoint from torch.nn.modules.batchnorm import _BatchNorm from ..builder import BACKBONES from ..utils import InvertedResidual, make_divisible @BACKBONES.register_module() class MobileNetV2(nn.Module): """MobileNetV2 backbone. Args: widen_factor (float): Width multiplier, multiply number of channels in each layer by this amount. Default: 1.0. strides (Sequence[int], optional): Strides of the first block of each layer. If not specified, default config in ``arch_setting`` will be used. dilations (Sequence[int]): Dilation of each layer. out_indices (None or Sequence[int]): Output from which stages. Default: (7, ). frozen_stages (int): Stages to be frozen (all param fixed). Default: -1, which means not freezing any parameters. conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU6'). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: False. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. """ # Parameters to build layers. 3 parameters are needed to construct a # layer, from left to right: expand_ratio, channel, num_blocks. arch_settings = [[1, 16, 1], [6, 24, 2], [6, 32, 3], [6, 64, 4], [6, 96, 3], [6, 160, 3], [6, 320, 1]] def __init__(self, widen_factor=1., strides=(1, 2, 2, 2, 1, 2, 1), dilations=(1, 1, 1, 1, 1, 1, 1), out_indices=(1, 2, 4, 6), frozen_stages=-1, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU6'), norm_eval=False, with_cp=False): super(MobileNetV2, self).__init__() self.widen_factor = widen_factor self.strides = strides self.dilations = dilations assert len(strides) == len(dilations) == len(self.arch_settings) self.out_indices = out_indices for index in out_indices: if index not in range(0, 7): raise ValueError('the item in out_indices must in ' f'range(0, 8). But received {index}') if frozen_stages not in range(-1, 7): raise ValueError('frozen_stages must be in range(-1, 7). ' f'But received {frozen_stages}') self.out_indices = out_indices self.frozen_stages = frozen_stages self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.norm_eval = norm_eval self.with_cp = with_cp self.in_channels = make_divisible(32 * widen_factor, 8) self.conv1 = ConvModule( in_channels=3, out_channels=self.in_channels, kernel_size=3, stride=2, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.layers = [] for i, layer_cfg in enumerate(self.arch_settings): expand_ratio, channel, num_blocks = layer_cfg stride = self.strides[i] dilation = self.dilations[i] out_channels = make_divisible(channel * widen_factor, 8) inverted_res_layer = self.make_layer( out_channels=out_channels, num_blocks=num_blocks, stride=stride, dilation=dilation, expand_ratio=expand_ratio) layer_name = f'layer{i + 1}' self.add_module(layer_name, inverted_res_layer) self.layers.append(layer_name) def make_layer(self, out_channels, num_blocks, stride, dilation, expand_ratio): """Stack InvertedResidual blocks to build a layer for MobileNetV2. Args: out_channels (int): out_channels of block. num_blocks (int): Number of blocks. stride (int): Stride of the first block. dilation (int): Dilation of the first block. expand_ratio (int): Expand the number of channels of the hidden layer in InvertedResidual by this ratio. """ layers = [] for i in range(num_blocks): layers.append( InvertedResidual( self.in_channels, out_channels, stride if i == 0 else 1, expand_ratio=expand_ratio, dilation=dilation if i == 0 else 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, with_cp=self.with_cp)) self.in_channels = out_channels return nn.Sequential(*layers) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) else: raise TypeError('pretrained must be a str or None') def forward(self, x): x = self.conv1(x) outs = [] for i, layer_name in enumerate(self.layers): layer = getattr(self, layer_name) x = layer(x) if i in self.out_indices: outs.append(x) if len(outs) == 1: return outs[0] else: return tuple(outs) def _freeze_stages(self): if self.frozen_stages >= 0: for param in self.conv1.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): layer = getattr(self, f'layer{i}') layer.eval() for param in layer.parameters(): param.requires_grad = False def train(self, mode=True): super(MobileNetV2, self).train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): if isinstance(m, _BatchNorm): m.eval()
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/backbones/mobilenet_v2.py
from .cgnet import CGNet # from .fast_scnn import FastSCNN from .hrnet import HRNet from .mobilenet_v2 import MobileNetV2 from .mobilenet_v3 import MobileNetV3 from .resnest import ResNeSt from .resnet import ResNet, ResNetV1c, ResNetV1d from .resnext import ResNeXt from .unet import UNet from .vit import VisionTransformer from .uniformer import UniFormer __all__ = [ 'ResNet', 'ResNetV1c', 'ResNetV1d', 'ResNeXt', 'HRNet', 'ResNeSt', 'MobileNetV2', 'UNet', 'CGNet', 'MobileNetV3', 'VisionTransformer', 'UniFormer' ]
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/backbones/__init__.py
import logging import annotator.uniformer.mmcv as mmcv import torch.nn as nn from annotator.uniformer.mmcv.cnn import ConvModule, constant_init, kaiming_init from annotator.uniformer.mmcv.cnn.bricks import Conv2dAdaptivePadding from annotator.uniformer.mmcv.runner import load_checkpoint from torch.nn.modules.batchnorm import _BatchNorm from ..builder import BACKBONES from ..utils import InvertedResidualV3 as InvertedResidual @BACKBONES.register_module() class MobileNetV3(nn.Module): """MobileNetV3 backbone. This backbone is the improved implementation of `Searching for MobileNetV3 <https://ieeexplore.ieee.org/document/9008835>`_. Args: arch (str): Architecture of mobilnetv3, from {'small', 'large'}. Default: 'small'. conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). out_indices (tuple[int]): Output from which layer. Default: (0, 1, 12). frozen_stages (int): Stages to be frozen (all param fixed). Default: -1, which means not freezing any parameters. norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: False. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. """ # Parameters to build each block: # [kernel size, mid channels, out channels, with_se, act type, stride] arch_settings = { 'small': [[3, 16, 16, True, 'ReLU', 2], # block0 layer1 os=4 [3, 72, 24, False, 'ReLU', 2], # block1 layer2 os=8 [3, 88, 24, False, 'ReLU', 1], [5, 96, 40, True, 'HSwish', 2], # block2 layer4 os=16 [5, 240, 40, True, 'HSwish', 1], [5, 240, 40, True, 'HSwish', 1], [5, 120, 48, True, 'HSwish', 1], # block3 layer7 os=16 [5, 144, 48, True, 'HSwish', 1], [5, 288, 96, True, 'HSwish', 2], # block4 layer9 os=32 [5, 576, 96, True, 'HSwish', 1], [5, 576, 96, True, 'HSwish', 1]], 'large': [[3, 16, 16, False, 'ReLU', 1], # block0 layer1 os=2 [3, 64, 24, False, 'ReLU', 2], # block1 layer2 os=4 [3, 72, 24, False, 'ReLU', 1], [5, 72, 40, True, 'ReLU', 2], # block2 layer4 os=8 [5, 120, 40, True, 'ReLU', 1], [5, 120, 40, True, 'ReLU', 1], [3, 240, 80, False, 'HSwish', 2], # block3 layer7 os=16 [3, 200, 80, False, 'HSwish', 1], [3, 184, 80, False, 'HSwish', 1], [3, 184, 80, False, 'HSwish', 1], [3, 480, 112, True, 'HSwish', 1], # block4 layer11 os=16 [3, 672, 112, True, 'HSwish', 1], [5, 672, 160, True, 'HSwish', 2], # block5 layer13 os=32 [5, 960, 160, True, 'HSwish', 1], [5, 960, 160, True, 'HSwish', 1]] } # yapf: disable def __init__(self, arch='small', conv_cfg=None, norm_cfg=dict(type='BN'), out_indices=(0, 1, 12), frozen_stages=-1, reduction_factor=1, norm_eval=False, with_cp=False): super(MobileNetV3, self).__init__() assert arch in self.arch_settings assert isinstance(reduction_factor, int) and reduction_factor > 0 assert mmcv.is_tuple_of(out_indices, int) for index in out_indices: if index not in range(0, len(self.arch_settings[arch]) + 2): raise ValueError( 'the item in out_indices must in ' f'range(0, {len(self.arch_settings[arch])+2}). ' f'But received {index}') if frozen_stages not in range(-1, len(self.arch_settings[arch]) + 2): raise ValueError('frozen_stages must be in range(-1, ' f'{len(self.arch_settings[arch])+2}). ' f'But received {frozen_stages}') self.arch = arch self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.out_indices = out_indices self.frozen_stages = frozen_stages self.reduction_factor = reduction_factor self.norm_eval = norm_eval self.with_cp = with_cp self.layers = self._make_layer() def _make_layer(self): layers = [] # build the first layer (layer0) in_channels = 16 layer = ConvModule( in_channels=3, out_channels=in_channels, kernel_size=3, stride=2, padding=1, conv_cfg=dict(type='Conv2dAdaptivePadding'), norm_cfg=self.norm_cfg, act_cfg=dict(type='HSwish')) self.add_module('layer0', layer) layers.append('layer0') layer_setting = self.arch_settings[self.arch] for i, params in enumerate(layer_setting): (kernel_size, mid_channels, out_channels, with_se, act, stride) = params if self.arch == 'large' and i >= 12 or self.arch == 'small' and \ i >= 8: mid_channels = mid_channels // self.reduction_factor out_channels = out_channels // self.reduction_factor if with_se: se_cfg = dict( channels=mid_channels, ratio=4, act_cfg=(dict(type='ReLU'), dict(type='HSigmoid', bias=3.0, divisor=6.0))) else: se_cfg = None layer = InvertedResidual( in_channels=in_channels, out_channels=out_channels, mid_channels=mid_channels, kernel_size=kernel_size, stride=stride, se_cfg=se_cfg, with_expand_conv=(in_channels != mid_channels), conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=dict(type=act), with_cp=self.with_cp) in_channels = out_channels layer_name = 'layer{}'.format(i + 1) self.add_module(layer_name, layer) layers.append(layer_name) # build the last layer # block5 layer12 os=32 for small model # block6 layer16 os=32 for large model layer = ConvModule( in_channels=in_channels, out_channels=576 if self.arch == 'small' else 960, kernel_size=1, stride=1, dilation=4, padding=0, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=dict(type='HSwish')) layer_name = 'layer{}'.format(len(layer_setting) + 1) self.add_module(layer_name, layer) layers.append(layer_name) # next, convert backbone MobileNetV3 to a semantic segmentation version if self.arch == 'small': self.layer4.depthwise_conv.conv.stride = (1, 1) self.layer9.depthwise_conv.conv.stride = (1, 1) for i in range(4, len(layers)): layer = getattr(self, layers[i]) if isinstance(layer, InvertedResidual): modified_module = layer.depthwise_conv.conv else: modified_module = layer.conv if i < 9: modified_module.dilation = (2, 2) pad = 2 else: modified_module.dilation = (4, 4) pad = 4 if not isinstance(modified_module, Conv2dAdaptivePadding): # Adjust padding pad *= (modified_module.kernel_size[0] - 1) // 2 modified_module.padding = (pad, pad) else: self.layer7.depthwise_conv.conv.stride = (1, 1) self.layer13.depthwise_conv.conv.stride = (1, 1) for i in range(7, len(layers)): layer = getattr(self, layers[i]) if isinstance(layer, InvertedResidual): modified_module = layer.depthwise_conv.conv else: modified_module = layer.conv if i < 13: modified_module.dilation = (2, 2) pad = 2 else: modified_module.dilation = (4, 4) pad = 4 if not isinstance(modified_module, Conv2dAdaptivePadding): # Adjust padding pad *= (modified_module.kernel_size[0] - 1) // 2 modified_module.padding = (pad, pad) return layers def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, nn.BatchNorm2d): constant_init(m, 1) else: raise TypeError('pretrained must be a str or None') def forward(self, x): outs = [] for i, layer_name in enumerate(self.layers): layer = getattr(self, layer_name) x = layer(x) if i in self.out_indices: outs.append(x) return outs def _freeze_stages(self): for i in range(self.frozen_stages + 1): layer = getattr(self, f'layer{i}') layer.eval() for param in layer.parameters(): param.requires_grad = False def train(self, mode=True): super(MobileNetV3, self).train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): if isinstance(m, _BatchNorm): m.eval()
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/backbones/mobilenet_v3.py
import torch import torch.nn as nn from annotator.uniformer.mmcv.cnn import (ConvModule, DepthwiseSeparableConvModule, constant_init, kaiming_init) from torch.nn.modules.batchnorm import _BatchNorm from annotator.uniformer.mmseg.models.decode_heads.psp_head import PPM from annotator.uniformer.mmseg.ops import resize from ..builder import BACKBONES from ..utils.inverted_residual import InvertedResidual class LearningToDownsample(nn.Module): """Learning to downsample module. Args: in_channels (int): Number of input channels. dw_channels (tuple[int]): Number of output channels of the first and the second depthwise conv (dwconv) layers. out_channels (int): Number of output channels of the whole 'learning to downsample' module. conv_cfg (dict | None): Config of conv layers. Default: None norm_cfg (dict | None): Config of norm layers. Default: dict(type='BN') act_cfg (dict): Config of activation layers. Default: dict(type='ReLU') """ def __init__(self, in_channels, dw_channels, out_channels, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU')): super(LearningToDownsample, self).__init__() self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg dw_channels1 = dw_channels[0] dw_channels2 = dw_channels[1] self.conv = ConvModule( in_channels, dw_channels1, 3, stride=2, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.dsconv1 = DepthwiseSeparableConvModule( dw_channels1, dw_channels2, kernel_size=3, stride=2, padding=1, norm_cfg=self.norm_cfg) self.dsconv2 = DepthwiseSeparableConvModule( dw_channels2, out_channels, kernel_size=3, stride=2, padding=1, norm_cfg=self.norm_cfg) def forward(self, x): x = self.conv(x) x = self.dsconv1(x) x = self.dsconv2(x) return x class GlobalFeatureExtractor(nn.Module): """Global feature extractor module. Args: in_channels (int): Number of input channels of the GFE module. Default: 64 block_channels (tuple[int]): Tuple of ints. Each int specifies the number of output channels of each Inverted Residual module. Default: (64, 96, 128) out_channels(int): Number of output channels of the GFE module. Default: 128 expand_ratio (int): Adjusts number of channels of the hidden layer in InvertedResidual by this amount. Default: 6 num_blocks (tuple[int]): Tuple of ints. Each int specifies the number of times each Inverted Residual module is repeated. The repeated Inverted Residual modules are called a 'group'. Default: (3, 3, 3) strides (tuple[int]): Tuple of ints. Each int specifies the downsampling factor of each 'group'. Default: (2, 2, 1) pool_scales (tuple[int]): Tuple of ints. Each int specifies the parameter required in 'global average pooling' within PPM. Default: (1, 2, 3, 6) conv_cfg (dict | None): Config of conv layers. Default: None norm_cfg (dict | None): Config of norm layers. Default: dict(type='BN') act_cfg (dict): Config of activation layers. Default: dict(type='ReLU') align_corners (bool): align_corners argument of F.interpolate. Default: False """ def __init__(self, in_channels=64, block_channels=(64, 96, 128), out_channels=128, expand_ratio=6, num_blocks=(3, 3, 3), strides=(2, 2, 1), pool_scales=(1, 2, 3, 6), conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), align_corners=False): super(GlobalFeatureExtractor, self).__init__() self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg assert len(block_channels) == len(num_blocks) == 3 self.bottleneck1 = self._make_layer(in_channels, block_channels[0], num_blocks[0], strides[0], expand_ratio) self.bottleneck2 = self._make_layer(block_channels[0], block_channels[1], num_blocks[1], strides[1], expand_ratio) self.bottleneck3 = self._make_layer(block_channels[1], block_channels[2], num_blocks[2], strides[2], expand_ratio) self.ppm = PPM( pool_scales, block_channels[2], block_channels[2] // 4, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, align_corners=align_corners) self.out = ConvModule( block_channels[2] * 2, out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) def _make_layer(self, in_channels, out_channels, blocks, stride=1, expand_ratio=6): layers = [ InvertedResidual( in_channels, out_channels, stride, expand_ratio, norm_cfg=self.norm_cfg) ] for i in range(1, blocks): layers.append( InvertedResidual( out_channels, out_channels, 1, expand_ratio, norm_cfg=self.norm_cfg)) return nn.Sequential(*layers) def forward(self, x): x = self.bottleneck1(x) x = self.bottleneck2(x) x = self.bottleneck3(x) x = torch.cat([x, *self.ppm(x)], dim=1) x = self.out(x) return x class FeatureFusionModule(nn.Module): """Feature fusion module. Args: higher_in_channels (int): Number of input channels of the higher-resolution branch. lower_in_channels (int): Number of input channels of the lower-resolution branch. out_channels (int): Number of output channels. conv_cfg (dict | None): Config of conv layers. Default: None norm_cfg (dict | None): Config of norm layers. Default: dict(type='BN') act_cfg (dict): Config of activation layers. Default: dict(type='ReLU') align_corners (bool): align_corners argument of F.interpolate. Default: False """ def __init__(self, higher_in_channels, lower_in_channels, out_channels, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), align_corners=False): super(FeatureFusionModule, self).__init__() self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.align_corners = align_corners self.dwconv = ConvModule( lower_in_channels, out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.conv_lower_res = ConvModule( out_channels, out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=None) self.conv_higher_res = ConvModule( higher_in_channels, out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=None) self.relu = nn.ReLU(True) def forward(self, higher_res_feature, lower_res_feature): lower_res_feature = resize( lower_res_feature, size=higher_res_feature.size()[2:], mode='bilinear', align_corners=self.align_corners) lower_res_feature = self.dwconv(lower_res_feature) lower_res_feature = self.conv_lower_res(lower_res_feature) higher_res_feature = self.conv_higher_res(higher_res_feature) out = higher_res_feature + lower_res_feature return self.relu(out) @BACKBONES.register_module() class FastSCNN(nn.Module): """Fast-SCNN Backbone. Args: in_channels (int): Number of input image channels. Default: 3. downsample_dw_channels (tuple[int]): Number of output channels after the first conv layer & the second conv layer in Learning-To-Downsample (LTD) module. Default: (32, 48). global_in_channels (int): Number of input channels of Global Feature Extractor(GFE). Equal to number of output channels of LTD. Default: 64. global_block_channels (tuple[int]): Tuple of integers that describe the output channels for each of the MobileNet-v2 bottleneck residual blocks in GFE. Default: (64, 96, 128). global_block_strides (tuple[int]): Tuple of integers that describe the strides (downsampling factors) for each of the MobileNet-v2 bottleneck residual blocks in GFE. Default: (2, 2, 1). global_out_channels (int): Number of output channels of GFE. Default: 128. higher_in_channels (int): Number of input channels of the higher resolution branch in FFM. Equal to global_in_channels. Default: 64. lower_in_channels (int): Number of input channels of the lower resolution branch in FFM. Equal to global_out_channels. Default: 128. fusion_out_channels (int): Number of output channels of FFM. Default: 128. out_indices (tuple): Tuple of indices of list [higher_res_features, lower_res_features, fusion_output]. Often set to (0,1,2) to enable aux. heads. Default: (0, 1, 2). conv_cfg (dict | None): Config of conv layers. Default: None norm_cfg (dict | None): Config of norm layers. Default: dict(type='BN') act_cfg (dict): Config of activation layers. Default: dict(type='ReLU') align_corners (bool): align_corners argument of F.interpolate. Default: False """ def __init__(self, in_channels=3, downsample_dw_channels=(32, 48), global_in_channels=64, global_block_channels=(64, 96, 128), global_block_strides=(2, 2, 1), global_out_channels=128, higher_in_channels=64, lower_in_channels=128, fusion_out_channels=128, out_indices=(0, 1, 2), conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), align_corners=False): super(FastSCNN, self).__init__() if global_in_channels != higher_in_channels: raise AssertionError('Global Input Channels must be the same \ with Higher Input Channels!') elif global_out_channels != lower_in_channels: raise AssertionError('Global Output Channels must be the same \ with Lower Input Channels!') self.in_channels = in_channels self.downsample_dw_channels1 = downsample_dw_channels[0] self.downsample_dw_channels2 = downsample_dw_channels[1] self.global_in_channels = global_in_channels self.global_block_channels = global_block_channels self.global_block_strides = global_block_strides self.global_out_channels = global_out_channels self.higher_in_channels = higher_in_channels self.lower_in_channels = lower_in_channels self.fusion_out_channels = fusion_out_channels self.out_indices = out_indices self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.align_corners = align_corners self.learning_to_downsample = LearningToDownsample( in_channels, downsample_dw_channels, global_in_channels, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.global_feature_extractor = GlobalFeatureExtractor( global_in_channels, global_block_channels, global_out_channels, strides=self.global_block_strides, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, align_corners=self.align_corners) self.feature_fusion = FeatureFusionModule( higher_in_channels, lower_in_channels, fusion_out_channels, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, align_corners=self.align_corners) def init_weights(self, pretrained=None): for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) def forward(self, x): higher_res_features = self.learning_to_downsample(x) lower_res_features = self.global_feature_extractor(higher_res_features) fusion_output = self.feature_fusion(higher_res_features, lower_res_features) outs = [higher_res_features, lower_res_features, fusion_output] outs = [outs[i] for i in self.out_indices] return tuple(outs)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/backbones/fast_scnn.py
import math from annotator.uniformer.mmcv.cnn import build_conv_layer, build_norm_layer from ..builder import BACKBONES from ..utils import ResLayer from .resnet import Bottleneck as _Bottleneck from .resnet import ResNet class Bottleneck(_Bottleneck): """Bottleneck block for ResNeXt. If style is "pytorch", the stride-two layer is the 3x3 conv layer, if it is "caffe", the stride-two layer is the first 1x1 conv layer. """ def __init__(self, inplanes, planes, groups=1, base_width=4, base_channels=64, **kwargs): super(Bottleneck, self).__init__(inplanes, planes, **kwargs) if groups == 1: width = self.planes else: width = math.floor(self.planes * (base_width / base_channels)) * groups self.norm1_name, norm1 = build_norm_layer( self.norm_cfg, width, postfix=1) self.norm2_name, norm2 = build_norm_layer( self.norm_cfg, width, postfix=2) self.norm3_name, norm3 = build_norm_layer( self.norm_cfg, self.planes * self.expansion, postfix=3) self.conv1 = build_conv_layer( self.conv_cfg, self.inplanes, width, kernel_size=1, stride=self.conv1_stride, bias=False) self.add_module(self.norm1_name, norm1) fallback_on_stride = False self.with_modulated_dcn = False if self.with_dcn: fallback_on_stride = self.dcn.pop('fallback_on_stride', False) if not self.with_dcn or fallback_on_stride: self.conv2 = build_conv_layer( self.conv_cfg, width, width, kernel_size=3, stride=self.conv2_stride, padding=self.dilation, dilation=self.dilation, groups=groups, bias=False) else: assert self.conv_cfg is None, 'conv_cfg must be None for DCN' self.conv2 = build_conv_layer( self.dcn, width, width, kernel_size=3, stride=self.conv2_stride, padding=self.dilation, dilation=self.dilation, groups=groups, bias=False) self.add_module(self.norm2_name, norm2) self.conv3 = build_conv_layer( self.conv_cfg, width, self.planes * self.expansion, kernel_size=1, bias=False) self.add_module(self.norm3_name, norm3) @BACKBONES.register_module() class ResNeXt(ResNet): """ResNeXt backbone. Args: depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. in_channels (int): Number of input image channels. Normally 3. num_stages (int): Resnet stages, normally 4. groups (int): Group of resnext. base_width (int): Base width of resnext. strides (Sequence[int]): Strides of the first block of each stage. dilations (Sequence[int]): Dilation of each stage. out_indices (Sequence[int]): Output from which stages. style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two layer is the 3x3 conv layer, otherwise the stride-two layer is the first 1x1 conv layer. frozen_stages (int): Stages to be frozen (all param fixed). -1 means not freezing any parameters. norm_cfg (dict): dictionary to construct and config norm layer. norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. zero_init_residual (bool): whether to use zero init for last norm layer in resblocks to let them behave as identity. Example: >>> from annotator.uniformer.mmseg.models import ResNeXt >>> import torch >>> self = ResNeXt(depth=50) >>> self.eval() >>> inputs = torch.rand(1, 3, 32, 32) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 256, 8, 8) (1, 512, 4, 4) (1, 1024, 2, 2) (1, 2048, 1, 1) """ arch_settings = { 50: (Bottleneck, (3, 4, 6, 3)), 101: (Bottleneck, (3, 4, 23, 3)), 152: (Bottleneck, (3, 8, 36, 3)) } def __init__(self, groups=1, base_width=4, **kwargs): self.groups = groups self.base_width = base_width super(ResNeXt, self).__init__(**kwargs) def make_res_layer(self, **kwargs): """Pack all blocks in a stage into a ``ResLayer``""" return ResLayer( groups=self.groups, base_width=self.base_width, base_channels=self.base_channels, **kwargs)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/backbones/resnext.py
"""Modified from https://github.com/rwightman/pytorch-image- models/blob/master/timm/models/vision_transformer.py.""" import math import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from annotator.uniformer.mmcv.cnn import (Conv2d, Linear, build_activation_layer, build_norm_layer, constant_init, kaiming_init, normal_init) from annotator.uniformer.mmcv.runner import _load_checkpoint from annotator.uniformer.mmcv.utils.parrots_wrapper import _BatchNorm from annotator.uniformer.mmseg.utils import get_root_logger from ..builder import BACKBONES from ..utils import DropPath, trunc_normal_ class Mlp(nn.Module): """MLP layer for Encoder block. Args: in_features(int): Input dimension for the first fully connected layer. hidden_features(int): Output dimension for the first fully connected layer. out_features(int): Output dementsion for the second fully connected layer. act_cfg(dict): Config dict for activation layer. Default: dict(type='GELU'). drop(float): Drop rate for the dropout layer. Dropout rate has to be between 0 and 1. Default: 0. """ def __init__(self, in_features, hidden_features=None, out_features=None, act_cfg=dict(type='GELU'), drop=0.): super(Mlp, self).__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = Linear(in_features, hidden_features) self.act = build_activation_layer(act_cfg) self.fc2 = Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): """Attention layer for Encoder block. Args: dim (int): Dimension for the input vector. num_heads (int): Number of parallel attention heads. qkv_bias (bool): Enable bias for qkv if True. Default: False. qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. attn_drop (float): Drop rate for attention output weights. Default: 0. proj_drop (float): Drop rate for output weights. Default: 0. """ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super(Attention, self).__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): b, n, c = x.shape qkv = self.qkv(x).reshape(b, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(b, n, c) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): """Implements encoder block with residual connection. Args: dim (int): The feature dimension. num_heads (int): Number of parallel attention heads. mlp_ratio (int): Ratio of mlp hidden dim to embedding dim. qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. drop (float): Drop rate for mlp output weights. Default: 0. attn_drop (float): Drop rate for attention output weights. Default: 0. proj_drop (float): Drop rate for attn layer output weights. Default: 0. drop_path (float): Drop rate for paths of model. Default: 0. act_cfg (dict): Config dict for activation layer. Default: dict(type='GELU'). norm_cfg (dict): Config dict for normalization layer. Default: dict(type='LN', requires_grad=True). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. """ def __init__(self, dim, num_heads, mlp_ratio=4, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., proj_drop=0., drop_path=0., act_cfg=dict(type='GELU'), norm_cfg=dict(type='LN', eps=1e-6), with_cp=False): super(Block, self).__init__() self.with_cp = with_cp _, self.norm1 = build_norm_layer(norm_cfg, dim) self.attn = Attention(dim, num_heads, qkv_bias, qk_scale, attn_drop, proj_drop) self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() _, self.norm2 = build_norm_layer(norm_cfg, dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_cfg=act_cfg, drop=drop) def forward(self, x): def _inner_forward(x): out = x + self.drop_path(self.attn(self.norm1(x))) out = out + self.drop_path(self.mlp(self.norm2(out))) return out if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out class PatchEmbed(nn.Module): """Image to Patch Embedding. Args: img_size (int | tuple): Input image size. default: 224. patch_size (int): Width and height for a patch. default: 16. in_channels (int): Input channels for images. Default: 3. embed_dim (int): The embedding dimension. Default: 768. """ def __init__(self, img_size=224, patch_size=16, in_channels=3, embed_dim=768): super(PatchEmbed, self).__init__() if isinstance(img_size, int): self.img_size = (img_size, img_size) elif isinstance(img_size, tuple): self.img_size = img_size else: raise TypeError('img_size must be type of int or tuple') h, w = self.img_size self.patch_size = (patch_size, patch_size) self.num_patches = (h // patch_size) * (w // patch_size) self.proj = Conv2d( in_channels, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): return self.proj(x).flatten(2).transpose(1, 2) @BACKBONES.register_module() class VisionTransformer(nn.Module): """Vision transformer backbone. A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 Args: img_size (tuple): input image size. Default: (224, 224). patch_size (int, tuple): patch size. Default: 16. in_channels (int): number of input channels. Default: 3. embed_dim (int): embedding dimension. Default: 768. depth (int): depth of transformer. Default: 12. num_heads (int): number of attention heads. Default: 12. mlp_ratio (int): ratio of mlp hidden dim to embedding dim. Default: 4. out_indices (list | tuple | int): Output from which stages. Default: -1. qkv_bias (bool): enable bias for qkv if True. Default: True. qk_scale (float): override default qk scale of head_dim ** -0.5 if set. drop_rate (float): dropout rate. Default: 0. attn_drop_rate (float): attention dropout rate. Default: 0. drop_path_rate (float): Rate of DropPath. Default: 0. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='LN', eps=1e-6, requires_grad=True). act_cfg (dict): Config dict for activation layer. Default: dict(type='GELU'). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: False. final_norm (bool): Whether to add a additional layer to normalize final feature map. Default: False. interpolate_mode (str): Select the interpolate mode for position embeding vector resize. Default: bicubic. with_cls_token (bool): If concatenating class token into image tokens as transformer input. Default: True. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. """ def __init__(self, img_size=(224, 224), patch_size=16, in_channels=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, out_indices=11, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_cfg=dict(type='LN', eps=1e-6, requires_grad=True), act_cfg=dict(type='GELU'), norm_eval=False, final_norm=False, with_cls_token=True, interpolate_mode='bicubic', with_cp=False): super(VisionTransformer, self).__init__() self.img_size = img_size self.patch_size = patch_size self.features = self.embed_dim = embed_dim self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim) self.with_cls_token = with_cls_token self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) self.pos_embed = nn.Parameter( torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) if isinstance(out_indices, int): self.out_indices = [out_indices] elif isinstance(out_indices, list) or isinstance(out_indices, tuple): self.out_indices = out_indices else: raise TypeError('out_indices must be type of int, list or tuple') dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth) ] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=dpr[i], attn_drop=attn_drop_rate, act_cfg=act_cfg, norm_cfg=norm_cfg, with_cp=with_cp) for i in range(depth) ]) self.interpolate_mode = interpolate_mode self.final_norm = final_norm if final_norm: _, self.norm = build_norm_layer(norm_cfg, embed_dim) self.norm_eval = norm_eval self.with_cp = with_cp def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = get_root_logger() checkpoint = _load_checkpoint(pretrained, logger=logger) if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] else: state_dict = checkpoint if 'pos_embed' in state_dict.keys(): if self.pos_embed.shape != state_dict['pos_embed'].shape: logger.info(msg=f'Resize the pos_embed shape from \ {state_dict["pos_embed"].shape} to {self.pos_embed.shape}') h, w = self.img_size pos_size = int( math.sqrt(state_dict['pos_embed'].shape[1] - 1)) state_dict['pos_embed'] = self.resize_pos_embed( state_dict['pos_embed'], (h, w), (pos_size, pos_size), self.patch_size, self.interpolate_mode) self.load_state_dict(state_dict, False) elif pretrained is None: # We only implement the 'jax_impl' initialization implemented at # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353 # noqa: E501 trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) for n, m in self.named_modules(): if isinstance(m, Linear): trunc_normal_(m.weight, std=.02) if m.bias is not None: if 'mlp' in n: normal_init(m.bias, std=1e-6) else: constant_init(m.bias, 0) elif isinstance(m, Conv2d): kaiming_init(m.weight, mode='fan_in') if m.bias is not None: constant_init(m.bias, 0) elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)): constant_init(m.bias, 0) constant_init(m.weight, 1.0) else: raise TypeError('pretrained must be a str or None') def _pos_embeding(self, img, patched_img, pos_embed): """Positiong embeding method. Resize the pos_embed, if the input image size doesn't match the training size. Args: img (torch.Tensor): The inference image tensor, the shape must be [B, C, H, W]. patched_img (torch.Tensor): The patched image, it should be shape of [B, L1, C]. pos_embed (torch.Tensor): The pos_embed weighs, it should be shape of [B, L2, c]. Return: torch.Tensor: The pos encoded image feature. """ assert patched_img.ndim == 3 and pos_embed.ndim == 3, \ 'the shapes of patched_img and pos_embed must be [B, L, C]' x_len, pos_len = patched_img.shape[1], pos_embed.shape[1] if x_len != pos_len: if pos_len == (self.img_size[0] // self.patch_size) * ( self.img_size[1] // self.patch_size) + 1: pos_h = self.img_size[0] // self.patch_size pos_w = self.img_size[1] // self.patch_size else: raise ValueError( 'Unexpected shape of pos_embed, got {}.'.format( pos_embed.shape)) pos_embed = self.resize_pos_embed(pos_embed, img.shape[2:], (pos_h, pos_w), self.patch_size, self.interpolate_mode) return self.pos_drop(patched_img + pos_embed) @staticmethod def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size, mode): """Resize pos_embed weights. Resize pos_embed using bicubic interpolate method. Args: pos_embed (torch.Tensor): pos_embed weights. input_shpae (tuple): Tuple for (input_h, intput_w). pos_shape (tuple): Tuple for (pos_h, pos_w). patch_size (int): Patch size. Return: torch.Tensor: The resized pos_embed of shape [B, L_new, C] """ assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]' input_h, input_w = input_shpae pos_h, pos_w = pos_shape cls_token_weight = pos_embed[:, 0] pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):] pos_embed_weight = pos_embed_weight.reshape( 1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2) pos_embed_weight = F.interpolate( pos_embed_weight, size=[input_h // patch_size, input_w // patch_size], align_corners=False, mode=mode) cls_token_weight = cls_token_weight.unsqueeze(1) pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2) pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1) return pos_embed def forward(self, inputs): B = inputs.shape[0] x = self.patch_embed(inputs) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) x = self._pos_embeding(inputs, x, self.pos_embed) if not self.with_cls_token: # Remove class token for transformer input x = x[:, 1:] outs = [] for i, blk in enumerate(self.blocks): x = blk(x) if i == len(self.blocks) - 1: if self.final_norm: x = self.norm(x) if i in self.out_indices: if self.with_cls_token: # Remove class token and reshape token for decoder head out = x[:, 1:] else: out = x B, _, C = out.shape out = out.reshape(B, inputs.shape[2] // self.patch_size, inputs.shape[3] // self.patch_size, C).permute(0, 3, 1, 2) outs.append(out) return tuple(outs) def train(self, mode=True): super(VisionTransformer, self).train(mode) if mode and self.norm_eval: for m in self.modules(): if isinstance(m, nn.LayerNorm): m.eval()
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/backbones/vit.py
import torch.nn as nn import torch.utils.checkpoint as cp from annotator.uniformer.mmcv.cnn import (build_conv_layer, build_norm_layer, build_plugin_layer, constant_init, kaiming_init) from annotator.uniformer.mmcv.runner import load_checkpoint from annotator.uniformer.mmcv.utils.parrots_wrapper import _BatchNorm from annotator.uniformer.mmseg.utils import get_root_logger from ..builder import BACKBONES from ..utils import ResLayer class BasicBlock(nn.Module): """Basic block for ResNet.""" expansion = 1 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, style='pytorch', with_cp=False, conv_cfg=None, norm_cfg=dict(type='BN'), dcn=None, plugins=None): super(BasicBlock, self).__init__() assert dcn is None, 'Not implemented yet.' assert plugins is None, 'Not implemented yet.' self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1) self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2) self.conv1 = build_conv_layer( conv_cfg, inplanes, planes, 3, stride=stride, padding=dilation, dilation=dilation, bias=False) self.add_module(self.norm1_name, norm1) self.conv2 = build_conv_layer( conv_cfg, planes, planes, 3, padding=1, bias=False) self.add_module(self.norm2_name, norm2) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.dilation = dilation self.with_cp = with_cp @property def norm1(self): """nn.Module: normalization layer after the first convolution layer""" return getattr(self, self.norm1_name) @property def norm2(self): """nn.Module: normalization layer after the second convolution layer""" return getattr(self, self.norm2_name) def forward(self, x): """Forward function.""" def _inner_forward(x): identity = x out = self.conv1(x) out = self.norm1(out) out = self.relu(out) out = self.conv2(out) out = self.norm2(out) if self.downsample is not None: identity = self.downsample(x) out += identity return out if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) out = self.relu(out) return out class Bottleneck(nn.Module): """Bottleneck block for ResNet. If style is "pytorch", the stride-two layer is the 3x3 conv layer, if it is "caffe", the stride-two layer is the first 1x1 conv layer. """ expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, style='pytorch', with_cp=False, conv_cfg=None, norm_cfg=dict(type='BN'), dcn=None, plugins=None): super(Bottleneck, self).__init__() assert style in ['pytorch', 'caffe'] assert dcn is None or isinstance(dcn, dict) assert plugins is None or isinstance(plugins, list) if plugins is not None: allowed_position = ['after_conv1', 'after_conv2', 'after_conv3'] assert all(p['position'] in allowed_position for p in plugins) self.inplanes = inplanes self.planes = planes self.stride = stride self.dilation = dilation self.style = style self.with_cp = with_cp self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.dcn = dcn self.with_dcn = dcn is not None self.plugins = plugins self.with_plugins = plugins is not None if self.with_plugins: # collect plugins for conv1/conv2/conv3 self.after_conv1_plugins = [ plugin['cfg'] for plugin in plugins if plugin['position'] == 'after_conv1' ] self.after_conv2_plugins = [ plugin['cfg'] for plugin in plugins if plugin['position'] == 'after_conv2' ] self.after_conv3_plugins = [ plugin['cfg'] for plugin in plugins if plugin['position'] == 'after_conv3' ] if self.style == 'pytorch': self.conv1_stride = 1 self.conv2_stride = stride else: self.conv1_stride = stride self.conv2_stride = 1 self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1) self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2) self.norm3_name, norm3 = build_norm_layer( norm_cfg, planes * self.expansion, postfix=3) self.conv1 = build_conv_layer( conv_cfg, inplanes, planes, kernel_size=1, stride=self.conv1_stride, bias=False) self.add_module(self.norm1_name, norm1) fallback_on_stride = False if self.with_dcn: fallback_on_stride = dcn.pop('fallback_on_stride', False) if not self.with_dcn or fallback_on_stride: self.conv2 = build_conv_layer( conv_cfg, planes, planes, kernel_size=3, stride=self.conv2_stride, padding=dilation, dilation=dilation, bias=False) else: assert self.conv_cfg is None, 'conv_cfg must be None for DCN' self.conv2 = build_conv_layer( dcn, planes, planes, kernel_size=3, stride=self.conv2_stride, padding=dilation, dilation=dilation, bias=False) self.add_module(self.norm2_name, norm2) self.conv3 = build_conv_layer( conv_cfg, planes, planes * self.expansion, kernel_size=1, bias=False) self.add_module(self.norm3_name, norm3) self.relu = nn.ReLU(inplace=True) self.downsample = downsample if self.with_plugins: self.after_conv1_plugin_names = self.make_block_plugins( planes, self.after_conv1_plugins) self.after_conv2_plugin_names = self.make_block_plugins( planes, self.after_conv2_plugins) self.after_conv3_plugin_names = self.make_block_plugins( planes * self.expansion, self.after_conv3_plugins) def make_block_plugins(self, in_channels, plugins): """make plugins for block. Args: in_channels (int): Input channels of plugin. plugins (list[dict]): List of plugins cfg to build. Returns: list[str]: List of the names of plugin. """ assert isinstance(plugins, list) plugin_names = [] for plugin in plugins: plugin = plugin.copy() name, layer = build_plugin_layer( plugin, in_channels=in_channels, postfix=plugin.pop('postfix', '')) assert not hasattr(self, name), f'duplicate plugin {name}' self.add_module(name, layer) plugin_names.append(name) return plugin_names def forward_plugin(self, x, plugin_names): """Forward function for plugins.""" out = x for name in plugin_names: out = getattr(self, name)(x) return out @property def norm1(self): """nn.Module: normalization layer after the first convolution layer""" return getattr(self, self.norm1_name) @property def norm2(self): """nn.Module: normalization layer after the second convolution layer""" return getattr(self, self.norm2_name) @property def norm3(self): """nn.Module: normalization layer after the third convolution layer""" return getattr(self, self.norm3_name) def forward(self, x): """Forward function.""" def _inner_forward(x): identity = x out = self.conv1(x) out = self.norm1(out) out = self.relu(out) if self.with_plugins: out = self.forward_plugin(out, self.after_conv1_plugin_names) out = self.conv2(out) out = self.norm2(out) out = self.relu(out) if self.with_plugins: out = self.forward_plugin(out, self.after_conv2_plugin_names) out = self.conv3(out) out = self.norm3(out) if self.with_plugins: out = self.forward_plugin(out, self.after_conv3_plugin_names) if self.downsample is not None: identity = self.downsample(x) out += identity return out if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) out = self.relu(out) return out @BACKBONES.register_module() class ResNet(nn.Module): """ResNet backbone. Args: depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. in_channels (int): Number of input image channels. Default" 3. stem_channels (int): Number of stem channels. Default: 64. base_channels (int): Number of base channels of res layer. Default: 64. num_stages (int): Resnet stages, normally 4. strides (Sequence[int]): Strides of the first block of each stage. dilations (Sequence[int]): Dilation of each stage. out_indices (Sequence[int]): Output from which stages. style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two layer is the 3x3 conv layer, otherwise the stride-two layer is the first 1x1 conv layer. deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv avg_down (bool): Use AvgPool instead of stride conv when downsampling in the bottleneck. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. norm_cfg (dict): Dictionary to construct and config norm layer. norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. plugins (list[dict]): List of plugins for stages, each dict contains: - cfg (dict, required): Cfg dict to build plugin. - position (str, required): Position inside block to insert plugin, options: 'after_conv1', 'after_conv2', 'after_conv3'. - stages (tuple[bool], optional): Stages to apply plugin, length should be same as 'num_stages' multi_grid (Sequence[int]|None): Multi grid dilation rates of last stage. Default: None contract_dilation (bool): Whether contract first dilation of each layer Default: False with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. zero_init_residual (bool): Whether to use zero init for last norm layer in resblocks to let them behave as identity. Example: >>> from annotator.uniformer.mmseg.models import ResNet >>> import torch >>> self = ResNet(depth=18) >>> self.eval() >>> inputs = torch.rand(1, 3, 32, 32) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 64, 8, 8) (1, 128, 4, 4) (1, 256, 2, 2) (1, 512, 1, 1) """ arch_settings = { 18: (BasicBlock, (2, 2, 2, 2)), 34: (BasicBlock, (3, 4, 6, 3)), 50: (Bottleneck, (3, 4, 6, 3)), 101: (Bottleneck, (3, 4, 23, 3)), 152: (Bottleneck, (3, 8, 36, 3)) } def __init__(self, depth, in_channels=3, stem_channels=64, base_channels=64, num_stages=4, strides=(1, 2, 2, 2), dilations=(1, 1, 1, 1), out_indices=(0, 1, 2, 3), style='pytorch', deep_stem=False, avg_down=False, frozen_stages=-1, conv_cfg=None, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=False, dcn=None, stage_with_dcn=(False, False, False, False), plugins=None, multi_grid=None, contract_dilation=False, with_cp=False, zero_init_residual=True): super(ResNet, self).__init__() if depth not in self.arch_settings: raise KeyError(f'invalid depth {depth} for resnet') self.depth = depth self.stem_channels = stem_channels self.base_channels = base_channels self.num_stages = num_stages assert num_stages >= 1 and num_stages <= 4 self.strides = strides self.dilations = dilations assert len(strides) == len(dilations) == num_stages self.out_indices = out_indices assert max(out_indices) < num_stages self.style = style self.deep_stem = deep_stem self.avg_down = avg_down self.frozen_stages = frozen_stages self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.with_cp = with_cp self.norm_eval = norm_eval self.dcn = dcn self.stage_with_dcn = stage_with_dcn if dcn is not None: assert len(stage_with_dcn) == num_stages self.plugins = plugins self.multi_grid = multi_grid self.contract_dilation = contract_dilation self.zero_init_residual = zero_init_residual self.block, stage_blocks = self.arch_settings[depth] self.stage_blocks = stage_blocks[:num_stages] self.inplanes = stem_channels self._make_stem_layer(in_channels, stem_channels) self.res_layers = [] for i, num_blocks in enumerate(self.stage_blocks): stride = strides[i] dilation = dilations[i] dcn = self.dcn if self.stage_with_dcn[i] else None if plugins is not None: stage_plugins = self.make_stage_plugins(plugins, i) else: stage_plugins = None # multi grid is applied to last layer only stage_multi_grid = multi_grid if i == len( self.stage_blocks) - 1 else None planes = base_channels * 2**i res_layer = self.make_res_layer( block=self.block, inplanes=self.inplanes, planes=planes, num_blocks=num_blocks, stride=stride, dilation=dilation, style=self.style, avg_down=self.avg_down, with_cp=with_cp, conv_cfg=conv_cfg, norm_cfg=norm_cfg, dcn=dcn, plugins=stage_plugins, multi_grid=stage_multi_grid, contract_dilation=contract_dilation) self.inplanes = planes * self.block.expansion layer_name = f'layer{i+1}' self.add_module(layer_name, res_layer) self.res_layers.append(layer_name) self._freeze_stages() self.feat_dim = self.block.expansion * base_channels * 2**( len(self.stage_blocks) - 1) def make_stage_plugins(self, plugins, stage_idx): """make plugins for ResNet 'stage_idx'th stage . Currently we support to insert 'context_block', 'empirical_attention_block', 'nonlocal_block' into the backbone like ResNet/ResNeXt. They could be inserted after conv1/conv2/conv3 of Bottleneck. An example of plugins format could be : >>> plugins=[ ... dict(cfg=dict(type='xxx', arg1='xxx'), ... stages=(False, True, True, True), ... position='after_conv2'), ... dict(cfg=dict(type='yyy'), ... stages=(True, True, True, True), ... position='after_conv3'), ... dict(cfg=dict(type='zzz', postfix='1'), ... stages=(True, True, True, True), ... position='after_conv3'), ... dict(cfg=dict(type='zzz', postfix='2'), ... stages=(True, True, True, True), ... position='after_conv3') ... ] >>> self = ResNet(depth=18) >>> stage_plugins = self.make_stage_plugins(plugins, 0) >>> assert len(stage_plugins) == 3 Suppose 'stage_idx=0', the structure of blocks in the stage would be: conv1-> conv2->conv3->yyy->zzz1->zzz2 Suppose 'stage_idx=1', the structure of blocks in the stage would be: conv1-> conv2->xxx->conv3->yyy->zzz1->zzz2 If stages is missing, the plugin would be applied to all stages. Args: plugins (list[dict]): List of plugins cfg to build. The postfix is required if multiple same type plugins are inserted. stage_idx (int): Index of stage to build Returns: list[dict]: Plugins for current stage """ stage_plugins = [] for plugin in plugins: plugin = plugin.copy() stages = plugin.pop('stages', None) assert stages is None or len(stages) == self.num_stages # whether to insert plugin into current stage if stages is None or stages[stage_idx]: stage_plugins.append(plugin) return stage_plugins def make_res_layer(self, **kwargs): """Pack all blocks in a stage into a ``ResLayer``.""" return ResLayer(**kwargs) @property def norm1(self): """nn.Module: the normalization layer named "norm1" """ return getattr(self, self.norm1_name) def _make_stem_layer(self, in_channels, stem_channels): """Make stem layer for ResNet.""" if self.deep_stem: self.stem = nn.Sequential( build_conv_layer( self.conv_cfg, in_channels, stem_channels // 2, kernel_size=3, stride=2, padding=1, bias=False), build_norm_layer(self.norm_cfg, stem_channels // 2)[1], nn.ReLU(inplace=True), build_conv_layer( self.conv_cfg, stem_channels // 2, stem_channels // 2, kernel_size=3, stride=1, padding=1, bias=False), build_norm_layer(self.norm_cfg, stem_channels // 2)[1], nn.ReLU(inplace=True), build_conv_layer( self.conv_cfg, stem_channels // 2, stem_channels, kernel_size=3, stride=1, padding=1, bias=False), build_norm_layer(self.norm_cfg, stem_channels)[1], nn.ReLU(inplace=True)) else: self.conv1 = build_conv_layer( self.conv_cfg, in_channels, stem_channels, kernel_size=7, stride=2, padding=3, bias=False) self.norm1_name, norm1 = build_norm_layer( self.norm_cfg, stem_channels, postfix=1) self.add_module(self.norm1_name, norm1) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) def _freeze_stages(self): """Freeze stages param and norm stats.""" if self.frozen_stages >= 0: if self.deep_stem: self.stem.eval() for param in self.stem.parameters(): param.requires_grad = False else: self.norm1.eval() for m in [self.conv1, self.norm1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, f'layer{i}') m.eval() for param in m.parameters(): param.requires_grad = False def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) if self.dcn is not None: for m in self.modules(): if isinstance(m, Bottleneck) and hasattr( m, 'conv2_offset'): constant_init(m.conv2_offset, 0) if self.zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): constant_init(m.norm3, 0) elif isinstance(m, BasicBlock): constant_init(m.norm2, 0) else: raise TypeError('pretrained must be a str or None') def forward(self, x): """Forward function.""" if self.deep_stem: x = self.stem(x) else: x = self.conv1(x) x = self.norm1(x) x = self.relu(x) x = self.maxpool(x) outs = [] for i, layer_name in enumerate(self.res_layers): res_layer = getattr(self, layer_name) x = res_layer(x) if i in self.out_indices: outs.append(x) return tuple(outs) def train(self, mode=True): """Convert the model into training mode while keep normalization layer freezed.""" super(ResNet, self).train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): # trick: eval have effect on BatchNorm only if isinstance(m, _BatchNorm): m.eval() @BACKBONES.register_module() class ResNetV1c(ResNet): """ResNetV1c variant described in [1]_. Compared with default ResNet(ResNetV1b), ResNetV1c replaces the 7x7 conv in the input stem with three 3x3 convs. References: .. [1] https://arxiv.org/pdf/1812.01187.pdf """ def __init__(self, **kwargs): super(ResNetV1c, self).__init__( deep_stem=True, avg_down=False, **kwargs) @BACKBONES.register_module() class ResNetV1d(ResNet): """ResNetV1d variant described in [1]_. Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in the input stem with three 3x3 convs. And in the downsampling block, a 2x2 avg_pool with stride 2 is added before conv, whose stride is changed to 1. """ def __init__(self, **kwargs): super(ResNetV1d, self).__init__( deep_stem=True, avg_down=True, **kwargs)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/backbones/resnet.py
# -------------------------------------------------------- # UniFormer # Copyright (c) 2022 SenseTime X-Lab # Licensed under The MIT License [see LICENSE for details] # Written by Kunchang Li # -------------------------------------------------------- from collections import OrderedDict import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint import numpy as np from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from annotator.uniformer.mmcv_custom import load_checkpoint from annotator.uniformer.mmseg.utils import get_root_logger from ..builder import BACKBONES class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class CMlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class CBlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) self.norm1 = nn.BatchNorm2d(dim) self.conv1 = nn.Conv2d(dim, dim, 1) self.conv2 = nn.Conv2d(dim, dim, 1) self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = nn.BatchNorm2d(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.pos_embed(x) x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x))))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class SABlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.pos_embed(x) B, N, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) x = x.transpose(1, 2).reshape(B, N, H, W) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class SABlock_Windows(nn.Module): def __init__(self, dim, num_heads, window_size=14, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.window_size=window_size self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.pos_embed(x) x = x.permute(0, 2, 3, 1) B, H, W, C = x.shape shortcut = x x = self.norm1(x) pad_l = pad_t = 0 pad_r = (self.window_size - W % self.window_size) % self.window_size pad_b = (self.window_size - H % self.window_size) % self.window_size x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) _, Hp, Wp, _ = x.shape x_windows = window_partition(x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C # reverse cyclic shift if pad_r > 0 or pad_b > 0: x = x[:, :H, :W, :].contiguous() x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) x = x.permute(0, 3, 1, 2).reshape(B, C, H, W) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.norm = nn.LayerNorm(embed_dim) self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, _, H, W = x.shape x = self.proj(x) B, _, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() return x @BACKBONES.register_module() class UniFormer(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__(self, layers=[3, 4, 8, 3], img_size=224, in_chans=3, num_classes=80, embed_dim=[64, 128, 320, 512], head_dim=64, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), pretrained_path=None, use_checkpoint=False, checkpoint_num=[0, 0, 0, 0], windows=False, hybrid=False, window_size=14): """ Args: layer (list): number of block in each layer img_size (int, tuple): input image size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension head_dim (int): dimension of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate norm_layer (nn.Module): normalization layer pretrained_path (str): path of pretrained model use_checkpoint (bool): whether use checkpoint checkpoint_num (list): index for using checkpoint in every stage windows (bool): whether use window MHRA hybrid (bool): whether use hybrid MHRA window_size (int): size of window (>14) """ super().__init__() self.num_classes = num_classes self.use_checkpoint = use_checkpoint self.checkpoint_num = checkpoint_num self.windows = windows print(f'Use Checkpoint: {self.use_checkpoint}') print(f'Checkpoint Number: {self.checkpoint_num}') self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.patch_embed1 = PatchEmbed( img_size=img_size, patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0]) self.patch_embed2 = PatchEmbed( img_size=img_size // 4, patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1]) self.patch_embed3 = PatchEmbed( img_size=img_size // 8, patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2]) self.patch_embed4 = PatchEmbed( img_size=img_size // 16, patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3]) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(layers))] # stochastic depth decay rule num_heads = [dim // head_dim for dim in embed_dim] self.blocks1 = nn.ModuleList([ CBlock( dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(layers[0])]) self.norm1=norm_layer(embed_dim[0]) self.blocks2 = nn.ModuleList([ CBlock( dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]], norm_layer=norm_layer) for i in range(layers[1])]) self.norm2 = norm_layer(embed_dim[1]) if self.windows: print('Use local window for all blocks in stage3') self.blocks3 = nn.ModuleList([ SABlock_Windows( dim=embed_dim[2], num_heads=num_heads[2], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer) for i in range(layers[2])]) elif hybrid: print('Use hybrid window for blocks in stage3') block3 = [] for i in range(layers[2]): if (i + 1) % 4 == 0: block3.append(SABlock( dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer)) else: block3.append(SABlock_Windows( dim=embed_dim[2], num_heads=num_heads[2], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer)) self.blocks3 = nn.ModuleList(block3) else: print('Use global window for all blocks in stage3') self.blocks3 = nn.ModuleList([ SABlock( dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer) for i in range(layers[2])]) self.norm3 = norm_layer(embed_dim[2]) self.blocks4 = nn.ModuleList([ SABlock( dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]+layers[2]], norm_layer=norm_layer) for i in range(layers[3])]) self.norm4 = norm_layer(embed_dim[3]) # Representation layer if representation_size: self.num_features = representation_size self.pre_logits = nn.Sequential(OrderedDict([ ('fc', nn.Linear(embed_dim, representation_size)), ('act', nn.Tanh()) ])) else: self.pre_logits = nn.Identity() self.apply(self._init_weights) self.init_weights(pretrained=pretrained_path) def init_weights(self, pretrained): if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger) print(f'Load pretrained model from {pretrained}') def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): out = [] x = self.patch_embed1(x) x = self.pos_drop(x) for i, blk in enumerate(self.blocks1): if self.use_checkpoint and i < self.checkpoint_num[0]: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x_out = self.norm1(x.permute(0, 2, 3, 1)) out.append(x_out.permute(0, 3, 1, 2).contiguous()) x = self.patch_embed2(x) for i, blk in enumerate(self.blocks2): if self.use_checkpoint and i < self.checkpoint_num[1]: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x_out = self.norm2(x.permute(0, 2, 3, 1)) out.append(x_out.permute(0, 3, 1, 2).contiguous()) x = self.patch_embed3(x) for i, blk in enumerate(self.blocks3): if self.use_checkpoint and i < self.checkpoint_num[2]: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x_out = self.norm3(x.permute(0, 2, 3, 1)) out.append(x_out.permute(0, 3, 1, 2).contiguous()) x = self.patch_embed4(x) for i, blk in enumerate(self.blocks4): if self.use_checkpoint and i < self.checkpoint_num[3]: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x_out = self.norm4(x.permute(0, 2, 3, 1)) out.append(x_out.permute(0, 3, 1, 2).contiguous()) return tuple(out) def forward(self, x): x = self.forward_features(x) return x
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/backbones/uniformer.py
import torch import torch.nn as nn import torch.nn.functional as F from annotator.uniformer.mmseg.core import add_prefix from annotator.uniformer.mmseg.ops import resize from .. import builder from ..builder import SEGMENTORS from .base import BaseSegmentor @SEGMENTORS.register_module() class EncoderDecoder(BaseSegmentor): """Encoder Decoder segmentors. EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. Note that auxiliary_head is only used for deep supervision during training, which could be dumped during inference. """ def __init__(self, backbone, decode_head, neck=None, auxiliary_head=None, train_cfg=None, test_cfg=None, pretrained=None): super(EncoderDecoder, self).__init__() self.backbone = builder.build_backbone(backbone) if neck is not None: self.neck = builder.build_neck(neck) self._init_decode_head(decode_head) self._init_auxiliary_head(auxiliary_head) self.train_cfg = train_cfg self.test_cfg = test_cfg self.init_weights(pretrained=pretrained) assert self.with_decode_head def _init_decode_head(self, decode_head): """Initialize ``decode_head``""" self.decode_head = builder.build_head(decode_head) self.align_corners = self.decode_head.align_corners self.num_classes = self.decode_head.num_classes def _init_auxiliary_head(self, auxiliary_head): """Initialize ``auxiliary_head``""" if auxiliary_head is not None: if isinstance(auxiliary_head, list): self.auxiliary_head = nn.ModuleList() for head_cfg in auxiliary_head: self.auxiliary_head.append(builder.build_head(head_cfg)) else: self.auxiliary_head = builder.build_head(auxiliary_head) def init_weights(self, pretrained=None): """Initialize the weights in backbone and heads. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ super(EncoderDecoder, self).init_weights(pretrained) self.backbone.init_weights(pretrained=pretrained) self.decode_head.init_weights() if self.with_auxiliary_head: if isinstance(self.auxiliary_head, nn.ModuleList): for aux_head in self.auxiliary_head: aux_head.init_weights() else: self.auxiliary_head.init_weights() def extract_feat(self, img): """Extract features from images.""" x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def encode_decode(self, img, img_metas): """Encode images with backbone and decode into a semantic segmentation map of the same size as input.""" x = self.extract_feat(img) out = self._decode_head_forward_test(x, img_metas) out = resize( input=out, size=img.shape[2:], mode='bilinear', align_corners=self.align_corners) return out def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg): """Run forward function and calculate loss for decode head in training.""" losses = dict() loss_decode = self.decode_head.forward_train(x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_decode, 'decode')) return losses def _decode_head_forward_test(self, x, img_metas): """Run forward function and calculate loss for decode head in inference.""" seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg) return seg_logits def _auxiliary_head_forward_train(self, x, img_metas, gt_semantic_seg): """Run forward function and calculate loss for auxiliary head in training.""" losses = dict() if isinstance(self.auxiliary_head, nn.ModuleList): for idx, aux_head in enumerate(self.auxiliary_head): loss_aux = aux_head.forward_train(x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_aux, f'aux_{idx}')) else: loss_aux = self.auxiliary_head.forward_train( x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_aux, 'aux')) return losses def forward_dummy(self, img): """Dummy forward function.""" seg_logit = self.encode_decode(img, None) return seg_logit def forward_train(self, img, img_metas, gt_semantic_seg): """Forward function for training. Args: img (Tensor): Input images. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. gt_semantic_seg (Tensor): Semantic segmentation masks used if the architecture supports semantic segmentation task. Returns: dict[str, Tensor]: a dictionary of loss components """ x = self.extract_feat(img) losses = dict() loss_decode = self._decode_head_forward_train(x, img_metas, gt_semantic_seg) losses.update(loss_decode) if self.with_auxiliary_head: loss_aux = self._auxiliary_head_forward_train( x, img_metas, gt_semantic_seg) losses.update(loss_aux) return losses # TODO refactor def slide_inference(self, img, img_meta, rescale): """Inference by sliding-window with overlap. If h_crop > h_img or w_crop > w_img, the small patch will be used to decode without padding. """ h_stride, w_stride = self.test_cfg.stride h_crop, w_crop = self.test_cfg.crop_size batch_size, _, h_img, w_img = img.size() num_classes = self.num_classes h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 preds = img.new_zeros((batch_size, num_classes, h_img, w_img)) count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) for h_idx in range(h_grids): for w_idx in range(w_grids): y1 = h_idx * h_stride x1 = w_idx * w_stride y2 = min(y1 + h_crop, h_img) x2 = min(x1 + w_crop, w_img) y1 = max(y2 - h_crop, 0) x1 = max(x2 - w_crop, 0) crop_img = img[:, :, y1:y2, x1:x2] crop_seg_logit = self.encode_decode(crop_img, img_meta) preds += F.pad(crop_seg_logit, (int(x1), int(preds.shape[3] - x2), int(y1), int(preds.shape[2] - y2))) count_mat[:, :, y1:y2, x1:x2] += 1 assert (count_mat == 0).sum() == 0 if torch.onnx.is_in_onnx_export(): # cast count_mat to constant while exporting to ONNX count_mat = torch.from_numpy( count_mat.cpu().detach().numpy()).to(device=img.device) preds = preds / count_mat if rescale: preds = resize( preds, size=img_meta[0]['ori_shape'][:2], mode='bilinear', align_corners=self.align_corners, warning=False) return preds def whole_inference(self, img, img_meta, rescale): """Inference with full image.""" seg_logit = self.encode_decode(img, img_meta) if rescale: # support dynamic shape for onnx if torch.onnx.is_in_onnx_export(): size = img.shape[2:] else: size = img_meta[0]['ori_shape'][:2] seg_logit = resize( seg_logit, size=size, mode='bilinear', align_corners=self.align_corners, warning=False) return seg_logit def inference(self, img, img_meta, rescale): """Inference with slide/whole style. Args: img (Tensor): The input image of shape (N, 3, H, W). img_meta (dict): Image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. rescale (bool): Whether rescale back to original shape. Returns: Tensor: The output segmentation map. """ assert self.test_cfg.mode in ['slide', 'whole'] ori_shape = img_meta[0]['ori_shape'] assert all(_['ori_shape'] == ori_shape for _ in img_meta) if self.test_cfg.mode == 'slide': seg_logit = self.slide_inference(img, img_meta, rescale) else: seg_logit = self.whole_inference(img, img_meta, rescale) output = F.softmax(seg_logit, dim=1) flip = img_meta[0]['flip'] if flip: flip_direction = img_meta[0]['flip_direction'] assert flip_direction in ['horizontal', 'vertical'] if flip_direction == 'horizontal': output = output.flip(dims=(3, )) elif flip_direction == 'vertical': output = output.flip(dims=(2, )) return output def simple_test(self, img, img_meta, rescale=True): """Simple test with single image.""" seg_logit = self.inference(img, img_meta, rescale) seg_pred = seg_logit.argmax(dim=1) if torch.onnx.is_in_onnx_export(): # our inference backend only support 4D output seg_pred = seg_pred.unsqueeze(0) return seg_pred seg_pred = seg_pred.cpu().numpy() # unravel batch dim seg_pred = list(seg_pred) return seg_pred def aug_test(self, imgs, img_metas, rescale=True): """Test with augmentations. Only rescale=True is supported. """ # aug_test rescale all imgs back to ori_shape for now assert rescale # to save memory, we get augmented seg logit inplace seg_logit = self.inference(imgs[0], img_metas[0], rescale) for i in range(1, len(imgs)): cur_seg_logit = self.inference(imgs[i], img_metas[i], rescale) seg_logit += cur_seg_logit seg_logit /= len(imgs) seg_pred = seg_logit.argmax(dim=1) seg_pred = seg_pred.cpu().numpy() # unravel batch dim seg_pred = list(seg_pred) return seg_pred
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/segmentors/encoder_decoder.py
from .base import BaseSegmentor from .cascade_encoder_decoder import CascadeEncoderDecoder from .encoder_decoder import EncoderDecoder __all__ = ['BaseSegmentor', 'EncoderDecoder', 'CascadeEncoderDecoder']
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/segmentors/__init__.py
from torch import nn from annotator.uniformer.mmseg.core import add_prefix from annotator.uniformer.mmseg.ops import resize from .. import builder from ..builder import SEGMENTORS from .encoder_decoder import EncoderDecoder @SEGMENTORS.register_module() class CascadeEncoderDecoder(EncoderDecoder): """Cascade Encoder Decoder segmentors. CascadeEncoderDecoder almost the same as EncoderDecoder, while decoders of CascadeEncoderDecoder are cascaded. The output of previous decoder_head will be the input of next decoder_head. """ def __init__(self, num_stages, backbone, decode_head, neck=None, auxiliary_head=None, train_cfg=None, test_cfg=None, pretrained=None): self.num_stages = num_stages super(CascadeEncoderDecoder, self).__init__( backbone=backbone, decode_head=decode_head, neck=neck, auxiliary_head=auxiliary_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained) def _init_decode_head(self, decode_head): """Initialize ``decode_head``""" assert isinstance(decode_head, list) assert len(decode_head) == self.num_stages self.decode_head = nn.ModuleList() for i in range(self.num_stages): self.decode_head.append(builder.build_head(decode_head[i])) self.align_corners = self.decode_head[-1].align_corners self.num_classes = self.decode_head[-1].num_classes def init_weights(self, pretrained=None): """Initialize the weights in backbone and heads. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ self.backbone.init_weights(pretrained=pretrained) for i in range(self.num_stages): self.decode_head[i].init_weights() if self.with_auxiliary_head: if isinstance(self.auxiliary_head, nn.ModuleList): for aux_head in self.auxiliary_head: aux_head.init_weights() else: self.auxiliary_head.init_weights() def encode_decode(self, img, img_metas): """Encode images with backbone and decode into a semantic segmentation map of the same size as input.""" x = self.extract_feat(img) out = self.decode_head[0].forward_test(x, img_metas, self.test_cfg) for i in range(1, self.num_stages): out = self.decode_head[i].forward_test(x, out, img_metas, self.test_cfg) out = resize( input=out, size=img.shape[2:], mode='bilinear', align_corners=self.align_corners) return out def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg): """Run forward function and calculate loss for decode head in training.""" losses = dict() loss_decode = self.decode_head[0].forward_train( x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_decode, 'decode_0')) for i in range(1, self.num_stages): # forward test again, maybe unnecessary for most methods. prev_outputs = self.decode_head[i - 1].forward_test( x, img_metas, self.test_cfg) loss_decode = self.decode_head[i].forward_train( x, prev_outputs, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_decode, f'decode_{i}')) return losses
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/segmentors/cascade_encoder_decoder.py
import logging import warnings from abc import ABCMeta, abstractmethod from collections import OrderedDict import annotator.uniformer.mmcv as mmcv import numpy as np import torch import torch.distributed as dist import torch.nn as nn from annotator.uniformer.mmcv.runner import auto_fp16 class BaseSegmentor(nn.Module): """Base class for segmentors.""" __metaclass__ = ABCMeta def __init__(self): super(BaseSegmentor, self).__init__() self.fp16_enabled = False @property def with_neck(self): """bool: whether the segmentor has neck""" return hasattr(self, 'neck') and self.neck is not None @property def with_auxiliary_head(self): """bool: whether the segmentor has auxiliary head""" return hasattr(self, 'auxiliary_head') and self.auxiliary_head is not None @property def with_decode_head(self): """bool: whether the segmentor has decode head""" return hasattr(self, 'decode_head') and self.decode_head is not None @abstractmethod def extract_feat(self, imgs): """Placeholder for extract features from images.""" pass @abstractmethod def encode_decode(self, img, img_metas): """Placeholder for encode images with backbone and decode into a semantic segmentation map of the same size as input.""" pass @abstractmethod def forward_train(self, imgs, img_metas, **kwargs): """Placeholder for Forward function for training.""" pass @abstractmethod def simple_test(self, img, img_meta, **kwargs): """Placeholder for single image test.""" pass @abstractmethod def aug_test(self, imgs, img_metas, **kwargs): """Placeholder for augmentation test.""" pass def init_weights(self, pretrained=None): """Initialize the weights in segmentor. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ if pretrained is not None: logger = logging.getLogger() logger.info(f'load model from: {pretrained}') def forward_test(self, imgs, img_metas, **kwargs): """ Args: imgs (List[Tensor]): the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains all images in the batch. img_metas (List[List[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. """ for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]: if not isinstance(var, list): raise TypeError(f'{name} must be a list, but got ' f'{type(var)}') num_augs = len(imgs) if num_augs != len(img_metas): raise ValueError(f'num of augmentations ({len(imgs)}) != ' f'num of image meta ({len(img_metas)})') # all images in the same aug batch all of the same ori_shape and pad # shape for img_meta in img_metas: ori_shapes = [_['ori_shape'] for _ in img_meta] assert all(shape == ori_shapes[0] for shape in ori_shapes) img_shapes = [_['img_shape'] for _ in img_meta] assert all(shape == img_shapes[0] for shape in img_shapes) pad_shapes = [_['pad_shape'] for _ in img_meta] assert all(shape == pad_shapes[0] for shape in pad_shapes) if num_augs == 1: return self.simple_test(imgs[0], img_metas[0], **kwargs) else: return self.aug_test(imgs, img_metas, **kwargs) @auto_fp16(apply_to=('img', )) def forward(self, img, img_metas, return_loss=True, **kwargs): """Calls either :func:`forward_train` or :func:`forward_test` depending on whether ``return_loss`` is ``True``. Note this setting will change the expected inputs. When ``return_loss=True``, img and img_meta are single-nested (i.e. Tensor and List[dict]), and when ``resturn_loss=False``, img and img_meta should be double nested (i.e. List[Tensor], List[List[dict]]), with the outer list indicating test time augmentations. """ if return_loss: return self.forward_train(img, img_metas, **kwargs) else: return self.forward_test(img, img_metas, **kwargs) def train_step(self, data_batch, optimizer, **kwargs): """The iteration step during training. This method defines an iteration step during training, except for the back propagation and optimizer updating, which are done in an optimizer hook. Note that in some complicated cases or models, the whole process including back propagation and optimizer updating is also defined in this method, such as GAN. Args: data (dict): The output of dataloader. optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of runner is passed to ``train_step()``. This argument is unused and reserved. Returns: dict: It should contain at least 3 keys: ``loss``, ``log_vars``, ``num_samples``. ``loss`` is a tensor for back propagation, which can be a weighted sum of multiple losses. ``log_vars`` contains all the variables to be sent to the logger. ``num_samples`` indicates the batch size (when the model is DDP, it means the batch size on each GPU), which is used for averaging the logs. """ losses = self(**data_batch) loss, log_vars = self._parse_losses(losses) outputs = dict( loss=loss, log_vars=log_vars, num_samples=len(data_batch['img_metas'])) return outputs def val_step(self, data_batch, **kwargs): """The iteration step during validation. This method shares the same signature as :func:`train_step`, but used during val epochs. Note that the evaluation after training epochs is not implemented with this method, but an evaluation hook. """ output = self(**data_batch, **kwargs) return output @staticmethod def _parse_losses(losses): """Parse the raw outputs (losses) of the network. Args: losses (dict): Raw output of the network, which usually contain losses and other necessary information. Returns: tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor which may be a weighted sum of all losses, log_vars contains all the variables to be sent to the logger. """ log_vars = OrderedDict() for loss_name, loss_value in losses.items(): if isinstance(loss_value, torch.Tensor): log_vars[loss_name] = loss_value.mean() elif isinstance(loss_value, list): log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) else: raise TypeError( f'{loss_name} is not a tensor or list of tensors') loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key) log_vars['loss'] = loss for loss_name, loss_value in log_vars.items(): # reduce loss when distributed training if dist.is_available() and dist.is_initialized(): loss_value = loss_value.data.clone() dist.all_reduce(loss_value.div_(dist.get_world_size())) log_vars[loss_name] = loss_value.item() return loss, log_vars def show_result(self, img, result, palette=None, win_name='', show=False, wait_time=0, out_file=None, opacity=0.5): """Draw `result` over `img`. Args: img (str or Tensor): The image to be displayed. result (Tensor): The semantic segmentation results to draw over `img`. palette (list[list[int]]] | np.ndarray | None): The palette of segmentation map. If None is given, random palette will be generated. Default: None win_name (str): The window name. wait_time (int): Value of waitKey param. Default: 0. show (bool): Whether to show the image. Default: False. out_file (str or None): The filename to write the image. Default: None. opacity(float): Opacity of painted segmentation map. Default 0.5. Must be in (0, 1] range. Returns: img (Tensor): Only if not `show` or `out_file` """ img = mmcv.imread(img) img = img.copy() seg = result[0] if palette is None: if self.PALETTE is None: palette = np.random.randint( 0, 255, size=(len(self.CLASSES), 3)) else: palette = self.PALETTE palette = np.array(palette) assert palette.shape[0] == len(self.CLASSES) assert palette.shape[1] == 3 assert len(palette.shape) == 2 assert 0 < opacity <= 1.0 color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) for label, color in enumerate(palette): color_seg[seg == label, :] = color # convert to BGR color_seg = color_seg[..., ::-1] img = img * (1 - opacity) + color_seg * opacity img = img.astype(np.uint8) # if out_file specified, do not show image in window if out_file is not None: show = False if show: mmcv.imshow(img, win_name, wait_time) if out_file is not None: mmcv.imwrite(img, out_file) if not (show or out_file): warnings.warn('show==False and out_file is not specified, only ' 'result image will be returned') return img
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/segmentors/base.py
import torch import torch.nn as nn from annotator.uniformer.mmcv.cnn import ConvModule from annotator.uniformer.mmseg.ops import resize from ..builder import HEADS from .decode_head import BaseDecodeHead from .psp_head import PPM @HEADS.register_module() class UPerHead(BaseDecodeHead): """Unified Perceptual Parsing for Scene Understanding. This head is the implementation of `UPerNet <https://arxiv.org/abs/1807.10221>`_. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module applied on the last feature. Default: (1, 2, 3, 6). """ def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs): super(UPerHead, self).__init__( input_transform='multiple_select', **kwargs) # PSP Module self.psp_modules = PPM( pool_scales, self.in_channels[-1], self.channels, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, align_corners=self.align_corners) self.bottleneck = ConvModule( self.in_channels[-1] + len(pool_scales) * self.channels, self.channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) # FPN Module self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer l_conv = ConvModule( in_channels, self.channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, inplace=False) fpn_conv = ConvModule( self.channels, self.channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, inplace=False) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) self.fpn_bottleneck = ConvModule( len(self.in_channels) * self.channels, self.channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) def psp_forward(self, inputs): """Forward function of PSP module.""" x = inputs[-1] psp_outs = [x] psp_outs.extend(self.psp_modules(x)) psp_outs = torch.cat(psp_outs, dim=1) output = self.bottleneck(psp_outs) return output def forward(self, inputs): """Forward function.""" inputs = self._transform_inputs(inputs) # build laterals laterals = [ lateral_conv(inputs[i]) for i, lateral_conv in enumerate(self.lateral_convs) ] laterals.append(self.psp_forward(inputs)) # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): prev_shape = laterals[i - 1].shape[2:] laterals[i - 1] += resize( laterals[i], size=prev_shape, mode='bilinear', align_corners=self.align_corners) # build outputs fpn_outs = [ self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1) ] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1, 0, -1): fpn_outs[i] = resize( fpn_outs[i], size=fpn_outs[0].shape[2:], mode='bilinear', align_corners=self.align_corners) fpn_outs = torch.cat(fpn_outs, dim=1) output = self.fpn_bottleneck(fpn_outs) output = self.cls_seg(output) return output
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/decode_heads/uper_head.py
import math import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from annotator.uniformer.mmcv.cnn import ConvModule from ..builder import HEADS from .decode_head import BaseDecodeHead def reduce_mean(tensor): """Reduce mean when distributed training.""" if not (dist.is_available() and dist.is_initialized()): return tensor tensor = tensor.clone() dist.all_reduce(tensor.div_(dist.get_world_size()), op=dist.ReduceOp.SUM) return tensor class EMAModule(nn.Module): """Expectation Maximization Attention Module used in EMANet. Args: channels (int): Channels of the whole module. num_bases (int): Number of bases. num_stages (int): Number of the EM iterations. """ def __init__(self, channels, num_bases, num_stages, momentum): super(EMAModule, self).__init__() assert num_stages >= 1, 'num_stages must be at least 1!' self.num_bases = num_bases self.num_stages = num_stages self.momentum = momentum bases = torch.zeros(1, channels, self.num_bases) bases.normal_(0, math.sqrt(2. / self.num_bases)) # [1, channels, num_bases] bases = F.normalize(bases, dim=1, p=2) self.register_buffer('bases', bases) def forward(self, feats): """Forward function.""" batch_size, channels, height, width = feats.size() # [batch_size, channels, height*width] feats = feats.view(batch_size, channels, height * width) # [batch_size, channels, num_bases] bases = self.bases.repeat(batch_size, 1, 1) with torch.no_grad(): for i in range(self.num_stages): # [batch_size, height*width, num_bases] attention = torch.einsum('bcn,bck->bnk', feats, bases) attention = F.softmax(attention, dim=2) # l1 norm attention_normed = F.normalize(attention, dim=1, p=1) # [batch_size, channels, num_bases] bases = torch.einsum('bcn,bnk->bck', feats, attention_normed) # l2 norm bases = F.normalize(bases, dim=1, p=2) feats_recon = torch.einsum('bck,bnk->bcn', bases, attention) feats_recon = feats_recon.view(batch_size, channels, height, width) if self.training: bases = bases.mean(dim=0, keepdim=True) bases = reduce_mean(bases) # l2 norm bases = F.normalize(bases, dim=1, p=2) self.bases = (1 - self.momentum) * self.bases + self.momentum * bases return feats_recon @HEADS.register_module() class EMAHead(BaseDecodeHead): """Expectation Maximization Attention Networks for Semantic Segmentation. This head is the implementation of `EMANet <https://arxiv.org/abs/1907.13426>`_. Args: ema_channels (int): EMA module channels num_bases (int): Number of bases. num_stages (int): Number of the EM iterations. concat_input (bool): Whether concat the input and output of convs before classification layer. Default: True momentum (float): Momentum to update the base. Default: 0.1. """ def __init__(self, ema_channels, num_bases, num_stages, concat_input=True, momentum=0.1, **kwargs): super(EMAHead, self).__init__(**kwargs) self.ema_channels = ema_channels self.num_bases = num_bases self.num_stages = num_stages self.concat_input = concat_input self.momentum = momentum self.ema_module = EMAModule(self.ema_channels, self.num_bases, self.num_stages, self.momentum) self.ema_in_conv = ConvModule( self.in_channels, self.ema_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) # project (0, inf) -> (-inf, inf) self.ema_mid_conv = ConvModule( self.ema_channels, self.ema_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=None, act_cfg=None) for param in self.ema_mid_conv.parameters(): param.requires_grad = False self.ema_out_conv = ConvModule( self.ema_channels, self.ema_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=None) self.bottleneck = ConvModule( self.ema_channels, self.channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) if self.concat_input: self.conv_cat = ConvModule( self.in_channels + self.channels, self.channels, kernel_size=3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) def forward(self, inputs): """Forward function.""" x = self._transform_inputs(inputs) feats = self.ema_in_conv(x) identity = feats feats = self.ema_mid_conv(feats) recon = self.ema_module(feats) recon = F.relu(recon, inplace=True) recon = self.ema_out_conv(recon) output = F.relu(identity + recon, inplace=True) output = self.bottleneck(output) if self.concat_input: output = self.conv_cat(torch.cat([x, output], dim=1)) output = self.cls_seg(output) return output
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/decode_heads/ema_head.py
import torch import torch.nn as nn from annotator.uniformer.mmcv import is_tuple_of from annotator.uniformer.mmcv.cnn import ConvModule from annotator.uniformer.mmseg.ops import resize from ..builder import HEADS from .decode_head import BaseDecodeHead @HEADS.register_module() class LRASPPHead(BaseDecodeHead): """Lite R-ASPP (LRASPP) head is proposed in Searching for MobileNetV3. This head is the improved implementation of `Searching for MobileNetV3 <https://ieeexplore.ieee.org/document/9008835>`_. Args: branch_channels (tuple[int]): The number of output channels in every each branch. Default: (32, 64). """ def __init__(self, branch_channels=(32, 64), **kwargs): super(LRASPPHead, self).__init__(**kwargs) if self.input_transform != 'multiple_select': raise ValueError('in Lite R-ASPP (LRASPP) head, input_transform ' f'must be \'multiple_select\'. But received ' f'\'{self.input_transform}\'') assert is_tuple_of(branch_channels, int) assert len(branch_channels) == len(self.in_channels) - 1 self.branch_channels = branch_channels self.convs = nn.Sequential() self.conv_ups = nn.Sequential() for i in range(len(branch_channels)): self.convs.add_module( f'conv{i}', nn.Conv2d( self.in_channels[i], branch_channels[i], 1, bias=False)) self.conv_ups.add_module( f'conv_up{i}', ConvModule( self.channels + branch_channels[i], self.channels, 1, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, bias=False)) self.conv_up_input = nn.Conv2d(self.channels, self.channels, 1) self.aspp_conv = ConvModule( self.in_channels[-1], self.channels, 1, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, bias=False) self.image_pool = nn.Sequential( nn.AvgPool2d(kernel_size=49, stride=(16, 20)), ConvModule( self.in_channels[2], self.channels, 1, act_cfg=dict(type='Sigmoid'), bias=False)) def forward(self, inputs): """Forward function.""" inputs = self._transform_inputs(inputs) x = inputs[-1] x = self.aspp_conv(x) * resize( self.image_pool(x), size=x.size()[2:], mode='bilinear', align_corners=self.align_corners) x = self.conv_up_input(x) for i in range(len(self.branch_channels) - 1, -1, -1): x = resize( x, size=inputs[i].size()[2:], mode='bilinear', align_corners=self.align_corners) x = torch.cat([x, self.convs[i](inputs[i])], 1) x = self.conv_ups[i](x) return self.cls_seg(x)
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/decode_heads/lraspp_head.py
import torch import torch.nn as nn import torch.nn.functional as F from annotator.uniformer.mmcv.cnn import ConvModule from annotator.uniformer.mmseg.ops import resize from ..builder import HEADS from ..utils import SelfAttentionBlock as _SelfAttentionBlock from .cascade_decode_head import BaseCascadeDecodeHead class SpatialGatherModule(nn.Module): """Aggregate the context features according to the initial predicted probability distribution. Employ the soft-weighted method to aggregate the context. """ def __init__(self, scale): super(SpatialGatherModule, self).__init__() self.scale = scale def forward(self, feats, probs): """Forward function.""" batch_size, num_classes, height, width = probs.size() channels = feats.size(1) probs = probs.view(batch_size, num_classes, -1) feats = feats.view(batch_size, channels, -1) # [batch_size, height*width, num_classes] feats = feats.permute(0, 2, 1) # [batch_size, channels, height*width] probs = F.softmax(self.scale * probs, dim=2) # [batch_size, channels, num_classes] ocr_context = torch.matmul(probs, feats) ocr_context = ocr_context.permute(0, 2, 1).contiguous().unsqueeze(3) return ocr_context class ObjectAttentionBlock(_SelfAttentionBlock): """Make a OCR used SelfAttentionBlock.""" def __init__(self, in_channels, channels, scale, conv_cfg, norm_cfg, act_cfg): if scale > 1: query_downsample = nn.MaxPool2d(kernel_size=scale) else: query_downsample = None super(ObjectAttentionBlock, self).__init__( key_in_channels=in_channels, query_in_channels=in_channels, channels=channels, out_channels=in_channels, share_key_query=False, query_downsample=query_downsample, key_downsample=None, key_query_num_convs=2, key_query_norm=True, value_out_num_convs=1, value_out_norm=True, matmul_norm=True, with_out=True, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.bottleneck = ConvModule( in_channels * 2, in_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) def forward(self, query_feats, key_feats): """Forward function.""" context = super(ObjectAttentionBlock, self).forward(query_feats, key_feats) output = self.bottleneck(torch.cat([context, query_feats], dim=1)) if self.query_downsample is not None: output = resize(query_feats) return output @HEADS.register_module() class OCRHead(BaseCascadeDecodeHead): """Object-Contextual Representations for Semantic Segmentation. This head is the implementation of `OCRNet <https://arxiv.org/abs/1909.11065>`_. Args: ocr_channels (int): The intermediate channels of OCR block. scale (int): The scale of probability map in SpatialGatherModule in Default: 1. """ def __init__(self, ocr_channels, scale=1, **kwargs): super(OCRHead, self).__init__(**kwargs) self.ocr_channels = ocr_channels self.scale = scale self.object_context_block = ObjectAttentionBlock( self.channels, self.ocr_channels, self.scale, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.spatial_gather_module = SpatialGatherModule(self.scale) self.bottleneck = ConvModule( self.in_channels, self.channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) def forward(self, inputs, prev_output): """Forward function.""" x = self._transform_inputs(inputs) feats = self.bottleneck(x) context = self.spatial_gather_module(feats, prev_output) object_context = self.object_context_block(feats, context) output = self.cls_seg(object_context) return output
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/decode_heads/ocr_head.py
import torch import torch.nn as nn import torch.nn.functional as F from annotator.uniformer.mmcv.cnn import ConvModule, build_activation_layer, build_norm_layer from ..builder import HEADS from .decode_head import BaseDecodeHead class DCM(nn.Module): """Dynamic Convolutional Module used in DMNet. Args: filter_size (int): The filter size of generated convolution kernel used in Dynamic Convolutional Module. fusion (bool): Add one conv to fuse DCM output feature. in_channels (int): Input channels. channels (int): Channels after modules, before conv_seg. conv_cfg (dict | None): Config of conv layers. norm_cfg (dict | None): Config of norm layers. act_cfg (dict): Config of activation layers. """ def __init__(self, filter_size, fusion, in_channels, channels, conv_cfg, norm_cfg, act_cfg): super(DCM, self).__init__() self.filter_size = filter_size self.fusion = fusion self.in_channels = in_channels self.channels = channels self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.filter_gen_conv = nn.Conv2d(self.in_channels, self.channels, 1, 1, 0) self.input_redu_conv = ConvModule( self.in_channels, self.channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) if self.norm_cfg is not None: self.norm = build_norm_layer(self.norm_cfg, self.channels)[1] else: self.norm = None self.activate = build_activation_layer(self.act_cfg) if self.fusion: self.fusion_conv = ConvModule( self.channels, self.channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) def forward(self, x): """Forward function.""" generated_filter = self.filter_gen_conv( F.adaptive_avg_pool2d(x, self.filter_size)) x = self.input_redu_conv(x) b, c, h, w = x.shape # [1, b * c, h, w], c = self.channels x = x.view(1, b * c, h, w) # [b * c, 1, filter_size, filter_size] generated_filter = generated_filter.view(b * c, 1, self.filter_size, self.filter_size) pad = (self.filter_size - 1) // 2 if (self.filter_size - 1) % 2 == 0: p2d = (pad, pad, pad, pad) else: p2d = (pad + 1, pad, pad + 1, pad) x = F.pad(input=x, pad=p2d, mode='constant', value=0) # [1, b * c, h, w] output = F.conv2d(input=x, weight=generated_filter, groups=b * c) # [b, c, h, w] output = output.view(b, c, h, w) if self.norm is not None: output = self.norm(output) output = self.activate(output) if self.fusion: output = self.fusion_conv(output) return output @HEADS.register_module() class DMHead(BaseDecodeHead): """Dynamic Multi-scale Filters for Semantic Segmentation. This head is the implementation of `DMNet <https://openaccess.thecvf.com/content_ICCV_2019/papers/\ He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_\ ICCV_2019_paper.pdf>`_. Args: filter_sizes (tuple[int]): The size of generated convolutional filters used in Dynamic Convolutional Module. Default: (1, 3, 5, 7). fusion (bool): Add one conv to fuse DCM output feature. """ def __init__(self, filter_sizes=(1, 3, 5, 7), fusion=False, **kwargs): super(DMHead, self).__init__(**kwargs) assert isinstance(filter_sizes, (list, tuple)) self.filter_sizes = filter_sizes self.fusion = fusion dcm_modules = [] for filter_size in self.filter_sizes: dcm_modules.append( DCM(filter_size, self.fusion, self.in_channels, self.channels, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg)) self.dcm_modules = nn.ModuleList(dcm_modules) self.bottleneck = ConvModule( self.in_channels + len(filter_sizes) * self.channels, self.channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) def forward(self, inputs): """Forward function.""" x = self._transform_inputs(inputs) dcm_outs = [x] for dcm_module in self.dcm_modules: dcm_outs.append(dcm_module(x)) dcm_outs = torch.cat(dcm_outs, dim=1) output = self.bottleneck(dcm_outs) output = self.cls_seg(output) return output
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/decode_heads/dm_head.py
import torch from annotator.uniformer.mmcv.cnn import ContextBlock from ..builder import HEADS from .fcn_head import FCNHead @HEADS.register_module() class GCHead(FCNHead): """GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond. This head is the implementation of `GCNet <https://arxiv.org/abs/1904.11492>`_. Args: ratio (float): Multiplier of channels ratio. Default: 1/4. pooling_type (str): The pooling type of context aggregation. Options are 'att', 'avg'. Default: 'avg'. fusion_types (tuple[str]): The fusion type for feature fusion. Options are 'channel_add', 'channel_mul'. Default: ('channel_add',) """ def __init__(self, ratio=1 / 4., pooling_type='att', fusion_types=('channel_add', ), **kwargs): super(GCHead, self).__init__(num_convs=2, **kwargs) self.ratio = ratio self.pooling_type = pooling_type self.fusion_types = fusion_types self.gc_block = ContextBlock( in_channels=self.channels, ratio=self.ratio, pooling_type=self.pooling_type, fusion_types=self.fusion_types) def forward(self, inputs): """Forward function.""" x = self._transform_inputs(inputs) output = self.convs[0](x) output = self.gc_block(output) output = self.convs[1](output) if self.concat_input: output = self.conv_cat(torch.cat([x, output], dim=1)) output = self.cls_seg(output) return output
trt-samples-for-hackathon-cn-master
Hackathon2023/controlnet/annotator/uniformer/mmseg/models/decode_heads/gc_head.py