python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn.functional as F def dx(inpt, dx, channel, dim, order=1, padding="zeros"): "Compute first order numerical derivatives of input tensor" var = inpt[:, channel : channel + 1, :, :] # get filter if order == 1: ddx1D = torch.Tensor( [ -0.5, 0.0, 0.5, ] ).to(inpt.device) elif order == 3: ddx1D = torch.Tensor( [ -1.0 / 60.0, 3.0 / 20.0, -3.0 / 4.0, 0.0, 3.0 / 4.0, -3.0 / 20.0, 1.0 / 60.0, ] ).to(inpt.device) ddx3D = torch.reshape(ddx1D, shape=[1, 1] + dim * [1] + [-1] + (1 - dim) * [1]) # apply convolution if padding == "zeros": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "constant", 0) elif padding == "replication": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "replicate") output = F.conv2d(var, ddx3D, padding="valid") output = (1.0 / dx) * output if dim == 0: output = output[:, :, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2] elif dim == 1: output = output[:, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2, :] return output def ddx(inpt, dx, channel, dim, order=1, padding="zeros"): "Compute second order numerical derivatives of input tensor" var = inpt[:, channel : channel + 1, :, :] # get filter if order == 1: ddx1D = torch.Tensor( [ 1.0, -2.0, 1.0, ] ).to(inpt.device) elif order == 3: ddx1D = torch.Tensor( [ 1.0 / 90.0, -3.0 / 20.0, 3.0 / 2.0, -49.0 / 18.0, 3.0 / 2.0, -3.0 / 20.0, 1.0 / 90.0, ] ).to(inpt.device) ddx3D = torch.reshape(ddx1D, shape=[1, 1] + dim * [1] + [-1] + (1 - dim) * [1]) # apply convolution if padding == "zeros": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "constant", 0) elif padding == "replication": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "replicate") output = F.conv2d(var, ddx3D, padding="valid") output = (1.0 / dx**2) * output if dim == 0: output = output[:, :, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2] elif dim == 1: output = output[:, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2, :] return output
modulus-sym-main
examples/reservoir_simulation/2D/src/ops.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from modulus.sym.hydra import to_absolute_path from modulus.sym.key import Key from NVRS import * from modulus.sym.models.fno import * import shutil import pandas as pd import scipy.io as sio import torch import yaml from multiprocessing import Lock, Value from PIL import Image import requests import concurrent.futures def read_yaml(fname): """Read Yaml file into a dict of parameters""" print(f"Read simulation plan from {fname}...") with open(fname, "r") as stream: try: data = yaml.safe_load(stream) # print(data) except yaml.YAMLError as exc: print(exc) return data def download_file_from_google_drive(id, destination): URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params={"id": id, "confirm": 1}, stream=True) token = get_confirm_token(response) if token: params = {"id": id, "confirm": token} response = session.get(URL, params=params, stream=True) save_response_content(response, destination) def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith("download_warning"): return value return None def save_response_content(response, destination): CHUNK_SIZE = 32768 with open(destination, "wb") as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) def process_chunk(chunk): chunk_results = [] for kk in chunk: result = process_step(kk) chunk_results.append(result) with lock: Runs = len(chunks) processed_chunks.value += 1 completion_percentage = (processed_chunks.value / len(chunks)) * 100 remaining_percentage = 100 - completion_percentage # print(f"Processed chunk {processed_chunks.value}. {completion_percentage:.2f}% completed. {remaining_percentage:.2f}% remaining.") progressBar = "\rPlotting Progress: " + ProgressBar( Runs, processed_chunks.value, Runs ) ShowBar(progressBar) # time.sleep(1) return chunk_results def sort_key(s): """Extract the number from the filename for sorting.""" return int(re.search(r"\d+", s).group()) def process_step(kk): f_3 = plt.figure(figsize=(20, 20), dpi=200) current_time = int((kk + 1) * dt * MAXZ) f_3 = plt.figure(figsize=(20, 20), dpi=200) look = ouut_p[0, kk, :, :] look = look * pini_alt lookf = cPress[0, kk, :, :] lookf = lookf * pini_alt diff1 = abs(look - lookf) ax1 = f_3.add_subplot(331, projection="3d") Plot_Modulus( ax1, nx, ny, nz, look, N_injw, N_pr, "pressure Modulus", injectors, producers ) ax2 = f_3.add_subplot(332, projection="3d") Plot_Modulus( ax2, nx, ny, nz, lookf, N_injw, N_pr, "pressure Numerical", injectors, producers ) ax3 = f_3.add_subplot(333, projection="3d") Plot_Modulus( ax3, nx, ny, nz, diff1, N_injw, N_pr, "pressure diff", injectors, producers ) R2p, L2p = compute_metrics(look.ravel(), lookf.ravel()) look = ouut_s[0, kk, :, :] lookf = cSat[0, kk, :, :] diff1 = abs(look - lookf) ax1 = f_3.add_subplot(334, projection="3d") Plot_Modulus( ax1, nx, ny, nz, look, N_injw, N_pr, "water Modulus", injectors, producers ) ax2 = f_3.add_subplot(335, projection="3d") Plot_Modulus( ax2, nx, ny, nz, lookf, N_injw, N_pr, "water Numerical", injectors, producers ) ax3 = f_3.add_subplot(336, projection="3d") Plot_Modulus( ax3, nx, ny, nz, diff1, N_injw, N_pr, "water diff", injectors, producers ) R2w, L2w = compute_metrics(look.ravel(), lookf.ravel()) look = 1 - ouut_s[0, kk, :, :] lookf = 1 - cSat[0, kk, :, :] diff1 = abs(look - lookf) ax1 = f_3.add_subplot(337, projection="3d") Plot_Modulus( ax1, nx, ny, nz, look, N_injw, N_pr, "oil Modulus", injectors, producers ) ax2 = f_3.add_subplot(338, projection="3d") Plot_Modulus( ax2, nx, ny, nz, lookf, N_injw, N_pr, "oil Numerical", injectors, producers ) ax3 = f_3.add_subplot(339, projection="3d") Plot_Modulus(ax3, nx, ny, nz, diff1, N_injw, N_pr, "oil diff", injectors, producers) R2o, L2o = compute_metrics(look.ravel(), lookf.ravel()) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(current_time) + " days" plt.suptitle(tita, fontsize=16) plt.savefig("Dynamic" + str(int(kk))) plt.clf() plt.close() return current_time, (R2p, L2p), (R2w, L2w), (R2o, L2o) oldfolder = os.getcwd() os.chdir(oldfolder) surrogate = None while True: surrogate = int( input( "Select surrogate method type:\n1=FNO [Modulus Implementation]\n\ 2=PINO [Modulus Implementation]\n3\3=AFNO (data driven)\n4=AFNO ( data + physics driven)\n" ) ) if (surrogate > 4) or (surrogate < 1): # raise SyntaxError('please select value between 1-2') print("") print("please try again and select value between 1-4") else: break if not os.path.exists("../COMPARE_RESULTS"): os.makedirs("../COMPARE_RESULTS") if surrogate == 1: folderr = "../COMPARE_RESULTS/FNO" if not os.path.exists("../COMPARE_RESULTS/FNO"): os.makedirs("../COMPARE_RESULTS/FNO") else: shutil.rmtree("../COMPARE_RESULTS/FNO") os.makedirs("../COMPARE_RESULTS/FNO") elif surrogate == 2: folderr = "../COMPARE_RESULTS/PINO" if not os.path.exists("../COMPARE_RESULTS/PINO"): os.makedirs("../COMPARE_RESULTS/PINO") else: shutil.rmtree("../COMPARE_RESULTS/PINO") os.makedirs("../COMPARE_RESULTS/PINO") elif surrogate == 3: folderr = "../COMPARE_RESULTS/AFNOD" if not os.path.exists("../COMPARE_RESULTS/AFNOD"): os.makedirs("../COMPARE_RESULTS/AFNOD") else: shutil.rmtree("../COMPARE_RESULTS/AFNOD") os.makedirs("../COMPARE_RESULTS/AFNOD") else: folderr = "../COMPARE_RESULTS/AFNOP" if not os.path.exists("../COMPARE_RESULTS/AFNOP"): os.makedirs("../COMPARE_RESULTS/AFNOP") else: shutil.rmtree("../COMPARE_RESULTS/AFNOP") os.makedirs("../COMPARE_RESULTS/AFNOP") if not os.path.exists("../PACKETS"): os.makedirs("../PACKETS") else: pass plan = read_yaml("conf/config_FNO.yaml") injectors = plan["custom"]["WELLSPECS"]["water_injector_wells"] producers = plan["custom"]["WELLSPECS"]["producer_wells"] N_injw = len( plan["custom"]["WELLSPECS"]["water_injector_wells"] ) # Number of water injectors N_pr = len(plan["custom"]["WELLSPECS"]["producer_wells"]) # Number of producers # Varaibles needed for NVRS nx = plan["custom"]["NVRS"]["nx"] ny = plan["custom"]["NVRS"]["ny"] nz = plan["custom"]["NVRS"]["nz"] BO = plan["custom"]["NVRS"]["BO"] # oil formation volume factor BW = plan["custom"]["NVRS"]["BW"] # Water formation volume factor UW = plan["custom"]["NVRS"]["UW"] # water viscosity in cP UO = plan["custom"]["NVRS"]["UO"] # oil viscosity in cP DX = plan["custom"]["NVRS"]["DX"] # size of pixel in x direction DY = plan["custom"]["NVRS"]["DY"] # sixze of pixel in y direction DZ = plan["custom"]["NVRS"]["DZ"] # sizze of pixel in z direction DX = cp.float32(DX) DY = cp.float32(DY) UW = cp.float32(UW) # water viscosity in cP UO = cp.float32(UO) # oil viscosity in cP SWI = cp.float32(plan["custom"]["NVRS"]["SWI"]) SWR = cp.float32(plan["custom"]["NVRS"]["SWR"]) CFO = cp.float32(plan["custom"]["NVRS"]["CFO"]) # oil compressibility in 1/psi IWSw = plan["custom"]["NVRS"]["IWSw"] # initial water saturation pini_alt = plan["custom"]["NVRS"]["pini_alt"] # print(pini_alt) P1 = cp.float32(pini_alt) # Bubble point pressure psia PB = P1 mpor, hpor = ( plan["custom"]["NVRS"]["mpor"], plan["custom"]["NVRS"]["hpor"], ) # minimum and maximum porosity BW = cp.float32(BW) # Water formation volume factor BO = cp.float32(BO) # Oil formation volume factor PATM = cp.float32(plan["custom"]["NVRS"]["PATM"]) # Atmospheric pressure in psi # training LUB, HUB = ( plan["custom"]["NVRS"]["LUB"], plan["custom"]["NVRS"]["HUB"], ) # Permeability rescale aay, bby = ( plan["custom"]["NVRS"]["aay"], plan["custom"]["NVRS"]["bby"], ) # Permeability range mD Low_K, High_K = aay, bby batch_size = plan["custom"]["NVRS"][ "batch_size" ] #'size of simulated labelled dtaa to run' timmee = plan["custom"]["NVRS"][ "timmee" ] # float(input ('Enter the time step interval duration for simulation (days): ')) max_t = plan["custom"]["NVRS"][ "max_t" ] # float(input ('Enter the maximum time in days for simulation(days): ')) MAXZ = plan["custom"]["NVRS"]["MAXZ"] # reference maximum time in days of simulation steppi = int(max_t / timmee) choice = 1 # 1= Non-Gaussian prior, 2 = Gaussian prior factorr = 0.1 # from [0 1] excluding the limits for PermZ LIR = plan["custom"]["NVRS"]["LIR"] # lower injection rate UIR = plan["custom"]["NVRS"]["UIR"] # uppwer injection rate RE = 0.2 * DX rwell = 200 # well radius skin = 0 # well deformation pwf_producer = 100 cuda = 0 input_channel = 7 # [Perm, Q,QW,Phi,dt, initial_pressure, initial_water_sat] device = torch.device(f"cuda:{cuda}" if torch.cuda.is_available() else "cpu") N_inj = 4 N_pr = 4 # tc2 = Equivalent_time(timmee,2100,timmee,max_t) tc2 = Equivalent_time(timmee, MAXZ, timmee, max_t) dt = np.diff(tc2)[0] # Time-step # 4 injector and 4 producer wells wells = np.array( [1, 24, 1, 3, 3, 1, 31, 1, 1, 31, 31, 1, 7, 9, 2, 14, 12, 2, 28, 19, 2, 14, 27, 2] ) wells = np.reshape(wells, (-1, 3), "C") bb = os.path.isfile(to_absolute_path("../PACKETS/Test4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1G4Cvg8eIObyBK0eoo7iX-0hhMTnpJktj", to_absolute_path("../PACKETS/Test4.mat") ) print("...Downlaod completed.......") print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data11 = matt["INPUT"] data_use11 = matt["OUTPUT"] else: print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data11 = matt["INPUT"] data_use11 = matt["OUTPUT"] # index = np.random.choice(X_data11.shape[0], 1, \ # replace=False) index = 253 X_data1 = X_data11[index, :, :, :][None, :, :, :] data_use1 = data_use11[index, :, :, :][None, :, :, :] # print(X_data1.shape) Ne = 1 ini_ensemble1 = np.zeros((Ne, 1, nx, ny), dtype=np.float32) ini_ensemble2 = np.zeros((Ne, 1, nx, ny), dtype=np.float32) ini_ensemble3 = np.zeros((Ne, 1, nx, ny), dtype=np.float32) ini_ensemble4 = np.zeros((Ne, 1, nx, ny), dtype=np.float32) ini_ensemble5 = np.zeros((Ne, 1, nx, ny), dtype=np.float32) ini_ensemble6 = np.zeros((Ne, 1, nx, ny), dtype=np.float32) ini_ensemble7 = np.zeros((Ne, 1, nx, ny), dtype=np.float32) cPress = np.zeros((X_data1.shape[0], steppi, nx, ny)) # Pressure cSat = np.zeros((X_data1.shape[0], steppi, nx, ny)) # Water saturation for kk in range(X_data1.shape[0]): perm = X_data1[kk, 0, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm ini_ensemble1[kk, :, :, :] = permin perm = X_data1[kk, 1, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm ini_ensemble2[kk, :, :, :] = permin perm = X_data1[kk, 2, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm ini_ensemble3[kk, :, :, :] = permin perm = X_data1[kk, 3, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm ini_ensemble4[kk, :, :, :] = permin perm = X_data1[kk, 4, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm ini_ensemble5[kk, :, :, :] = permin perm = X_data1[kk, 5, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm ini_ensemble6[kk, :, :, :] = permin perm = X_data1[kk, 6, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm ini_ensemble7[kk, :, :, :] = permin perm = data_use1[kk, :steppi, :, :] cPress[kk, :, :, :] = perm # np.clip(perm ,1/pini_alt,1.) perm = data_use1[kk, steppi:, :, :] cSat[kk, :, :, :] = perm print("") print("Finished constructing Pytorch inputs") print("*******************Load the trained Forward models*******************") if (surrogate == 1) or (surrogate == 2): decoder1 = ConvFullyConnectedArch( [Key("z", size=32)], [Key("pressure", size=steppi)] ) modelP = FNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], dimension=2, decoder_net=decoder1, ) decoder2 = ConvFullyConnectedArch( [Key("z", size=32)], [Key("water_sat", size=steppi)] ) modelS = FNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], dimension=2, decoder_net=decoder2, ) if (surrogate == 3) or (surrogate == 4): modelP = AFNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], [Key("pressure", size=steppi)], (nx, ny), patch_size=3, ) # Define AFNO model for forward model (saturation) modelS = AFNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], [Key("water_sat", size=steppi)], (nx, ny), patch_size=3, ) if surrogate == 1: print("-----------------Surrogate Model learned with FNO----------------") if not os.path.exists(("outputs/Forward_problem_FNO/ResSim/")): os.makedirs(("outputs/Forward_problem_FNO/ResSim/")) else: pass bb = os.path.isfile( "outputs/Forward_problem_FNO/ResSim/fno_forward_model_pressure.0.pth" ) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "14njayJd77pKUeuCG9Jno03MbS8SaAVbn", "outputs/Forward_problem_FNO/ResSim/fno_forward_model_pressure.0.pth", ) print("...Downlaod completed.......") os.chdir("outputs/Forward_problem_FNO/ResSim") print(" Surrogate model learned with FNO") modelP.load_state_dict(torch.load("fno_forward_model_pressure.0.pth")) modelP = modelP.to(device) modelP.eval() os.chdir(oldfolder) else: os.chdir("outputs/Forward_problem_FNO/ResSim") print(" Surrogate model learned with FNO") modelP.load_state_dict(torch.load("fno_forward_model_pressure.0.pth")) modelP = modelP.to(device) modelP.eval() os.chdir(oldfolder) bba = os.path.isfile( "outputs/Forward_problem_FNO/ResSim/fno_forward_model_saturation.0.pth" ) if bba == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1fI1whx3CJSsICcvMddF2uF1hlMekWUrF", "outputs/Forward_problem_FNO/ResSim/fno_forward_model_saturation.0.pth", ) print("...Downlaod completed.......") os.chdir("outputs/Forward_problem_FNO/ResSim") print(" Surrogate model learned with FNO") modelS.load_state_dict(torch.load("fno_forward_model_saturation.0.pth")) modelS = modelS.to(device) modelS.eval() os.chdir(oldfolder) else: os.chdir("outputs/Forward_problem_FNO/ResSim") print(" Surrogate model learned with FNO") modelS.load_state_dict(torch.load("fno_forward_model_saturation.0.pth")) modelS = modelS.to(device) modelS.eval() os.chdir(oldfolder) elif surrogate == 2: print("-----------------Surrogate Model learned with PINO----------------") if not os.path.exists(("outputs/Forward_problem_PINO/ResSim/")): os.makedirs(("outputs/Forward_problem_PINO/ResSim/")) else: pass bb = os.path.isfile( "outputs/Forward_problem_PINO/ResSim/pino_forward_model_pressure.0.pth" ) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1lmtvM8LucUU3DqSgUe7hYyYZvYS4yLnf", "outputs/Forward_problem_PINO/ResSim/pino_forward_model_pressure.0.pth", ) print("...Downlaod completed.......") os.chdir("outputs/Forward_problem_PINO/ResSim") print(" Surrogate model learned with PINO") modelP.load_state_dict(torch.load("pino_forward_model_pressure.0.pth")) modelP = modelP.to(device) modelP.eval() os.chdir(oldfolder) else: os.chdir("outputs/Forward_problem_PINO/ResSim") print(" Surrogate model learned with PINO") modelP.load_state_dict(torch.load("pino_forward_model_pressure.0.pth")) modelP = modelP.to(device) modelP.eval() os.chdir(oldfolder) bba = os.path.isfile( "outputs/Forward_problem_PINO/ResSim/pino_forward_model_saturation.0.pth" ) if bba == False: print("....Downloading Please hold.........") download_file_from_google_drive( "10n0NgdgskQbNyTtZNG53IhttB8WCpzli", "outputs/Forward_problem_PINO/ResSim/pino_forward_model_saturation.0.pth", ) print("...Downlaod completed.......") os.chdir("outputs/Forward_problem_PINO/ResSim") print(" Surrogate model learned with PINO") modelS.load_state_dict(torch.load("pino_forward_model_saturation.0.pth")) modelS = modelS.to(device) modelS.eval() os.chdir(oldfolder) else: os.chdir("outputs/Forward_problem_PINO/ResSim") print(" Surrogate model learned with PINO") modelS.load_state_dict(torch.load("pino_forward_model_saturation.0.pth")) modelS = modelS.to(device) modelS.eval() os.chdir(oldfolder) elif surrogate == 3: print( "-----------------Surrogate Model learned with AFNO (data driven)----------------" ) if not os.path.exists(("outputs/Forward_problem_AFNOD/ResSim/")): os.makedirs(("outputs/Forward_problem_AFNOD/ResSim/")) else: pass bb = os.path.isfile( "outputs/Forward_problem_AFNOD/ResSim/afno_forward_model_pressure.0.pth" ) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1JGV9vNYIRUWS1Gd6bqDcG_jRbO8wEkzX", "outputs/Forward_problem_AFNOD/ResSim/afno_forward_model_pressure.0.pth", ) print("...Downlaod completed.......") os.chdir("outputs/Forward_problem_AFNOD/ResSim") print(" Surrogate model learned with AFNO (data driven)") modelP.load_state_dict(torch.load("afno_forward_model_pressure.0.pth")) modelP = modelP.to(device) modelP.eval() os.chdir(oldfolder) else: os.chdir("outputs/Forward_problem_AFNOD/ResSim") print(" Surrogate model learned with AFNO (data-driven)") modelP.load_state_dict(torch.load("afno_forward_model_pressure.0.pth")) modelP = modelP.to(device) modelP.eval() os.chdir(oldfolder) bba = os.path.isfile( "outputs/Forward_problem_AFNOD/ResSim/afno_forward_model_saturation.0.pth" ) if bba == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1V_TKAqWlw3_kKaE1vnWGwWB7vlmk7t3s", "outputs/Forward_problem_AFNOD/ResSim/afno_forward_model_saturation.0.pth", ) print("...Downlaod completed.......") os.chdir("outputs/Forward_problem_AFNOD/ResSim") print(" Surrogate model learned with AFNO (data-driven)") modelS.load_state_dict(torch.load("afno_forward_model_saturation.0.pth")) modelS = modelS.to(device) modelS.eval() os.chdir(oldfolder) else: os.chdir("outputs/Forward_problem_AFNOD/ResSim") print(" Surrogate model learned with AFNO (data-driven)") modelS.load_state_dict(torch.load("afno_forward_model_saturation.0.pth")) modelS = modelS.to(device) modelS.eval() os.chdir(oldfolder) elif surrogate == 4: print( "-----------------Surrogate Model learned with AFNO (physics driven)----------------" ) if not os.path.exists(("outputs/Forward_problem_AFNOP/ResSim/")): os.makedirs(("outputs/Forward_problem_AFNOP/ResSim/")) else: pass bb = os.path.isfile( "outputs/Forward_problem_AFNOP/ResSim/afnop_forward_model_pressure.0.pth" ) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "18BrbHfgM3r8OWmpuMhZi9y9geUyAI8t4", "outputs/Forward_problem_AFNOP/ResSim/afnop_forward_model_pressure.0.pth", ) print("...Downlaod completed.......") os.chdir("outputs/Forward_problem_AFNOP/ResSim") print(" Surrogate model learned with AFNO (physics driven)") modelP.load_state_dict(torch.load("afnop_forward_model_pressure.0.pth")) modelP = modelP.to(device) modelP.eval() os.chdir(oldfolder) else: os.chdir("outputs/Forward_problem_AFNOP/ResSim") print(" Surrogate model learned with AFNO (physics-driven)") modelP.load_state_dict(torch.load("afnop_forward_model_pressure.0.pth")) modelP = modelP.to(device) modelP.eval() os.chdir(oldfolder) bba = os.path.isfile( "outputs/Forward_problem_AFNOP/ResSim/afnop_forward_model_saturation.0.pth" ) if bba == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1aSf4QYoU0ITuQdbSNRPWbtkQz7ZQh_Bt", "outputs/Forward_problem_AFNOP/ResSim/afnop_forward_model_saturation.0.pth", ) print("...Downlaod completed.......") os.chdir("outputs/Forward_problem_AFNOP/ResSim") print(" Surrogate model learned with AFNO (physics-driven)") modelS.load_state_dict(torch.load("afnop_forward_model_saturation.0.pth")) modelS = modelS.to(device) modelS.eval() os.chdir(oldfolder) else: os.chdir("outputs/Forward_problem_AFNOP/ResSim") print(" Surrogate model learned with AFNO (physics-driven)") modelS.load_state_dict(torch.load("afnop_forward_model_saturation.0.pth")) modelS = modelS.to(device) modelS.eval() os.chdir(oldfolder) print("********************Model Loaded*************************************") inn = { "perm": torch.from_numpy(ini_ensemble1).to(device, torch.float32), "Q": torch.from_numpy(ini_ensemble2).to(device, dtype=torch.float32), "Qw": torch.from_numpy(ini_ensemble3).to(device, dtype=torch.float32), "Phi": torch.from_numpy(ini_ensemble4).to(device, dtype=torch.float32), "Time": torch.from_numpy(ini_ensemble5).to(device, dtype=torch.float32), "Pini": torch.from_numpy(ini_ensemble6).to(device, dtype=torch.float32), "Swini": torch.from_numpy(ini_ensemble7).to(device, dtype=torch.float32), } print("") print("predicting with surrogate model") start_time_plots1 = time.time() ouut_p = modelP(inn)["pressure"].detach().cpu().numpy() ouut_s = modelS(inn)["water_sat"].detach().cpu().numpy() elapsed_time_secs = time.time() - start_time_plots1 msg = "Surrogate Reservoir simulation took: %s secs (Wall clock time)" % timedelta( seconds=round(elapsed_time_secs) ) print(msg) print("") ouut_oil = np.ones_like(ouut_s) - ouut_s print("") print("Plotting outputs") os.chdir(folderr) Runs = steppi ty = np.arange(1, Runs + 1) Time_vector = np.zeros((steppi)) Accuracy_presure = np.zeros((steppi, 2)) Accuracy_oil = np.zeros((steppi, 2)) Accuracy_water = np.zeros((steppi, 2)) lock = Lock() processed_chunks = Value("i", 0) NUM_CORES = 12 # specify the number of cores you want to use # Split the range of steps into chunks chunks = [ list(range(i, min(i + steppi // NUM_CORES, steppi))) for i in range(0, steppi, steppi // NUM_CORES) ] with concurrent.futures.ProcessPoolExecutor(max_workers=NUM_CORES) as executor: chunked_results = list(executor.map(process_chunk, chunks)) # Flatten the chunked results to get the ordered results results = [result for sublist in chunked_results for result in sublist] for kk, (current_time, acc_pressure, acc_oil, acc_water) in enumerate(results): Time_vector[kk] = current_time Accuracy_presure[kk] = acc_pressure Accuracy_oil[kk] = acc_oil Accuracy_water[kk] = acc_water fig4 = plt.figure(figsize=(20, 20), dpi=100) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=11, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=11, ) # Plot R2 accuracies plt.subplot(2, 3, 1) plt.plot( Time_vector, Accuracy_presure[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("Pressure", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) plt.subplot(2, 3, 2) plt.plot( Time_vector, Accuracy_water[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("water saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) plt.subplot(2, 3, 3) plt.plot( Time_vector, Accuracy_oil[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("oil saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) # Plot L2 accuracies plt.subplot(2, 3, 4) plt.plot( Time_vector, Accuracy_presure[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("Pressure", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.subplot(2, 3, 5) plt.plot( Time_vector, Accuracy_water[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("water saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.subplot(2, 3, 6) plt.plot( Time_vector, Accuracy_oil[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("oil saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2.png" plt.savefig(namez) plt.clf() plt.close() print("") print("Now - Creating GIF") import glob import re frames = [] imgs = sorted(glob.glob("*Dynamic*"), key=sort_key) for i in imgs: new_frame = Image.open(i) frames.append(new_frame) frames[0].save( "Evolution.gif", format="GIF", append_images=frames[1:], save_all=True, duration=500, loop=0, ) from glob import glob for f3 in glob("*Dynamic*"): os.remove(f3) print("") print("Saving prediction in CSV file") spittsbig = [ "Time(DAY)", "I1 - WBHP(PSIA)", "I2 - WBHP (PSIA)", "I3 - WBHP(PSIA)", "I4 - WBHP(PSIA)", "P1 - WOPR(BBL/DAY)", "P2 - WOPR(BBL/DAY)", "P3 - WOPR(BBL/DAY)", "P4 - WOPR(BBL/DAY)", "P1 - WWPR(BBL/DAY)", "P2 - WWPR(BBL/DAY)", "P3 - WWPR(BBL/DAY)", "P4 - WWPR(BBL/DAY)", "P1 - WWCT(%)", "P2 - WWCT(%)", "P3 - WWCT(%)", "P4 - WWCT(%)", ] see = Peaceman_well( inn, ouut_p, ouut_s, MAXZ, 1, 1e1, LUB, HUB, aay, bby, DX, steppi, pini_alt, SWI, SWR, UW, BW, DZ, rwell, skin, UO, BO, pwf_producer, dt, N_inj, N_pr, nz, ) seeTrue = Peaceman_well( inn, cPress, cSat, MAXZ, 0, 1e1, LUB, HUB, aay, bby, DX, steppi, pini_alt, SWI, SWR, UW, BW, DZ, rwell, skin, UO, BO, pwf_producer, dt, N_inj, N_pr, nz, ) seeuse = pd.DataFrame(see) seeuse.to_csv("RSM_MODULUS.csv", header=spittsbig, sep=",") seeuse.drop(columns=seeuse.columns[0], axis=1, inplace=True) seeuset = pd.DataFrame(seeTrue) seeuset.to_csv("RSM_NUMERICAL.csv", header=spittsbig, sep=",") seeuset.drop(columns=seeuset.columns[0], axis=1, inplace=True) Plot_RSM_percentile(see, seeTrue, "Compare.png") os.chdir(oldfolder) print("") print("-------------------PROGRAM EXECUTED-----------------------------------")
modulus-sym-main
examples/reservoir_simulation/2D/src/Compare_FVM_surrogate.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import os import modulus.sym import torch from modulus.sym.hydra import ModulusConfig from modulus.sym.hydra import to_absolute_path from modulus.sym.key import Key from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.utils.io.plotter import GridValidatorPlotter from NVRS import * from utilities import load_FNO_dataset2, preprocess_FNO_mat from modulus.sym.models.fno import * import shutil import cupy as cp import scipy.io as sio import requests torch.set_default_dtype(torch.float32) def download_file_from_google_drive(id, destination): URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params={"id": id, "confirm": 1}, stream=True) token = get_confirm_token(response) if token: params = {"id": id, "confirm": token} response = session.get(URL, params=params, stream=True) save_response_content(response, destination) def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith("download_warning"): return value return None def save_response_content(response, destination): CHUNK_SIZE = 32768 with open(destination, "wb") as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) from modulus.sym.utils.io.plotter import ValidatorPlotter class CustomValidatorPlotterP(ValidatorPlotter): def __init__( self, timmee, max_t, MAXZ, pini_alt, nx, ny, nz, steppi, tc2, dt, injectors, producers, N_injw, N_pr, ): self.timmee = timmee self.max_t = max_t self.MAXZ = MAXZ self.pini_alt = pini_alt self.nx = nx self.ny = ny self.nz = nz self.steppi = steppi self.tc2 = tc2 self.dt = dt self.injectors = injectors self.producers = producers self.N_injw = N_injw self.N_pr = N_pr def __call__(self, invar, true_outvar, pred_outvar): "Custom plotting function for validator" # get input variables # get and interpolate output variable pressure_true, pressure_pred = true_outvar["pressure"], pred_outvar["pressure"] # make plot f_big = [] Time_vector = np.zeros((self.steppi)) Accuracy_presure = np.zeros((self.steppi, 2)) for itt in range(self.steppi): Time_vector[itt] = int((itt + 1) * self.dt * self.MAXZ) look = (pressure_pred[0, itt, :, :]) * self.pini_alt lookf = (pressure_true[0, itt, :, :]) * self.pini_alt diff1 = abs(look - lookf) XX, YY = np.meshgrid(np.arange(self.nx), np.arange(self.ny)) f_2 = plt.figure(figsize=(10, 10), dpi=100) plt.subplot(1, 3, 1) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, look, self.N_injw, self.N_pr, "pressure Modulus", self.injectors, self.producers, ) plt.subplot(1, 3, 2) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, lookf, self.N_injw, self.N_pr, "pressure Numerical", self.injectors, self.producers, ) plt.subplot(1, 3, 3) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, diff1, self.N_injw, self.N_pr, "pressure diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" plt.suptitle(tita, fontsize=16) namez = "pressure_simulations" + str(int(itt)) yes = (f_2, namez) f_big.append(yes) # plt.clf() plt.close() R2p, L2p = compute_metrics(look.ravel(), lookf.ravel()) Accuracy_presure[itt, 0] = R2p Accuracy_presure[itt, 1] = L2p f_3 = plt.figure(figsize=(20, 20), dpi=200) ax1 = f_3.add_subplot(131, projection="3d") Plot_Modulus( ax1, self.nx, self.ny, self.nz, look, self.N_injw, self.N_pr, "pressure Modulus", self.injectors, self.producers, ) ax2 = f_3.add_subplot(132, projection="3d") Plot_Modulus( ax2, self.nx, self.ny, self.nz, lookf, self.N_injw, self.N_pr, "pressure Numerical", self.injectors, self.producers, ) ax3 = f_3.add_subplot(133, projection="3d") Plot_Modulus( ax3, self.nx, self.ny, self.nz, diff1, self.N_injw, self.N_pr, "pressure diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = ( "3D Map - Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" ) plt.suptitle(tita, fontsize=20, weight="bold") namez = "Simulations3Dp" + str(int(itt)) yes2 = (f_3, namez) f_big.append(yes2) # plt.clf() plt.close() fig4 = plt.figure(figsize=(10, 10), dpi=200) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) # Plot R2 accuracies plt.subplot(2, 1, 1) plt.plot( Time_vector, Accuracy_presure[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("Pressure", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) # Plot L2 accuracies plt.subplot(2, 1, 2) plt.plot( Time_vector, Accuracy_presure[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("Pressure", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2_pressure" yes21 = (fig4, namez) f_big.append(yes21) # plt.clf() plt.close() return f_big class CustomValidatorPlotterS(ValidatorPlotter): def __init__( self, timmee, max_t, MAXZ, pini_alt, nx, ny, nz, steppi, tc2, dt, injectors, producers, N_injw, N_pr, ): self.timmee = timmee self.max_t = max_t self.MAXZ = MAXZ self.pini_alt = pini_alt self.nx = nx self.ny = ny self.nz = nz self.steppi = steppi self.tc2 = tc2 self.dt = dt self.injectors = injectors self.producers = producers self.N_injw = N_injw self.N_pr = N_pr def __call__(self, invar, true_outvar, pred_outvar): "Custom plotting function for validator" # get input variables water_true, water_pred = true_outvar["water_sat"], pred_outvar["water_sat"] # make plot f_big = [] Accuracy_oil = np.zeros((self.steppi, 2)) Accuracy_water = np.zeros((self.steppi, 2)) Time_vector = np.zeros((self.steppi)) for itt in range(self.steppi): Time_vector[itt] = int((itt + 1) * self.dt * self.MAXZ) XX, YY = np.meshgrid(np.arange(self.nx), np.arange(self.ny)) f_2 = plt.figure(figsize=(12, 12), dpi=100) look_sat = water_pred[0, itt, :, :] # *1e-2 look_oil = 1 - look_sat lookf_sat = water_true[0, itt, :, :] # * 1e-2 lookf_oil = 1 - lookf_sat diff1_wat = abs(look_sat - lookf_sat) diff1_oil = abs(look_oil - lookf_oil) plt.subplot(2, 3, 1) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, look_sat, self.N_injw, self.N_pr, "water Modulus", self.injectors, self.producers, ) plt.subplot(2, 3, 2) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, lookf_sat, self.N_injw, self.N_pr, "water Numerical", self.injectors, self.producers, ) plt.subplot(2, 3, 3) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, diff1_wat, self.N_injw, self.N_pr, "water diff", self.injectors, self.producers, ) R2w, L2w = compute_metrics(look_sat.ravel(), lookf_sat.ravel()) Accuracy_water[itt, 0] = R2w Accuracy_water[itt, 1] = L2w plt.subplot(2, 3, 4) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, look_oil, self.N_injw, self.N_pr, "oil Modulus", self.injectors, self.producers, ) plt.subplot(2, 3, 5) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, lookf_oil, self.N_injw, self.N_pr, "oil Numerical", self.injectors, self.producers, ) plt.subplot(2, 3, 6) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, diff1_oil, self.N_injw, self.N_pr, "oil diff", self.injectors, self.producers, ) R2o, L2o = compute_metrics(look_oil.ravel(), lookf_oil.ravel()) Accuracy_oil[itt, 0] = R2o Accuracy_oil[itt, 1] = L2o plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" plt.suptitle(tita, fontsize=16) namez = "saturation_simulations" + str(int(itt)) yes = (f_2, namez) f_big.append(yes) # plt.clf() plt.close() f_3 = plt.figure(figsize=(20, 20), dpi=200) ax1 = f_3.add_subplot(231, projection="3d") Plot_Modulus( ax1, self.nx, self.ny, self.nz, look_sat, self.N_injw, self.N_pr, "water Modulus", self.injectors, self.producers, ) ax2 = f_3.add_subplot(232, projection="3d") Plot_Modulus( ax2, self.nx, self.ny, self.nz, lookf_sat, self.N_injw, self.N_pr, "water Numerical", self.injectors, self.producers, ) ax3 = f_3.add_subplot(233, projection="3d") Plot_Modulus( ax3, self.nx, self.ny, self.nz, diff1_wat, self.N_injw, self.N_pr, "water diff", self.injectors, self.producers, ) ax4 = f_3.add_subplot(234, projection="3d") Plot_Modulus( ax4, self.nx, self.ny, self.nz, look_oil, self.N_injw, self.N_pr, "oil Modulus", self.injectors, self.producers, ) ax5 = f_3.add_subplot(235, projection="3d") Plot_Modulus( ax5, self.nx, self.ny, self.nz, lookf_oil, self.N_injw, self.N_pr, "oil Numerical", self.injectors, self.producers, ) ax6 = f_3.add_subplot(236, projection="3d") Plot_Modulus( ax6, self.nx, self.ny, self.nz, diff1_oil, self.N_injw, self.N_pr, "oil diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = ( "3D Map - Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" ) plt.suptitle(tita, fontsize=20, weight="bold") namez = "Simulations3Ds" + str(int(itt)) yes2 = (f_3, namez) f_big.append(yes2) # plt.clf() plt.close() fig4 = plt.figure(figsize=(20, 20), dpi=200) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) plt.subplot(2, 2, 1) plt.plot( Time_vector, Accuracy_water[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("water_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) plt.subplot(2, 2, 2) plt.plot( Time_vector, Accuracy_oil[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("oil_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) plt.subplot(2, 2, 3) plt.plot( Time_vector, Accuracy_water[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("water_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.subplot(2, 2, 4) plt.plot( Time_vector, Accuracy_oil[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("oil_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2_saturations" yes21 = (fig4, namez) f_big.append(yes21) # plt.clf() plt.close() return f_big @modulus.sym.main(config_path="conf", config_name="config_FNO") def run(cfg: ModulusConfig) -> None: print("") print("------------------------------------------------------------------") print("") print("\n") print("|-----------------------------------------------------------------|") print("| TRAIN THE MODEL USING A 2D FNO APPROACH: |") print("|-----------------------------------------------------------------|") print("") oldfolder = os.getcwd() os.chdir(oldfolder) if not os.path.exists(to_absolute_path("../PACKETS")): os.makedirs(to_absolute_path("../PACKETS")) else: pass # Varaibles needed for NVRS nx = cfg.custom.NVRS.nx ny = cfg.custom.NVRS.ny nz = cfg.custom.NVRS.nz BO = cfg.custom.NVRS.BO # oil formation volume factor BW = cfg.custom.NVRS.BW # Water formation volume factor UW = cfg.custom.NVRS.UW # water viscosity in cP UO = cfg.custom.NVRS.UO # oil viscosity in cP DX = cfg.custom.NVRS.DX # size of pixel in x direction DY = cfg.custom.NVRS.DY # sixze of pixel in y direction DZ = cfg.custom.NVRS.DZ # sizze of pixel in z direction DX = cp.float32(DX) DY = cp.float32(DY) UW = cp.float32(UW) # water viscosity in cP UO = cp.float32(UO) # oil viscosity in cP SWI = cp.float32(cfg.custom.NVRS.SWI) SWR = cp.float32(cfg.custom.NVRS.SWR) CFO = cp.float32(cfg.custom.NVRS.CFO) # oil compressibility in 1/psi IWSw = cfg.custom.NVRS.IWSw # initial water saturation pini_alt = cfg.custom.NVRS.pini_alt P1 = cp.float32(pini_alt) # Bubble point pressure psia PB = P1 mpor = cfg.custom.NVRS.mpor hpor = cfg.custom.NVRS.hpor # minimum and maximum porosity BW = cp.float32(BW) # Water formation volume factor BO = cp.float32(BO) # Oil formation volume factor PATM = cp.float32(cfg.custom.NVRS.PATM) # Atmospheric pressure in psi # training LUB = cfg.custom.NVRS.LUB HUB = cfg.custom.NVRS.HUB # Permeability rescale aay, bby = cfg.custom.NVRS.aay, cfg.custom.NVRS.bby # Permeability range mD Low_K, High_K = aay, bby batch_size = cfg.custom.NVRS.batch_size #'size of simulated labelled data to run' timmee = ( cfg.custom.NVRS.timmee ) # float(input ('Enter the time step interval duration for simulation (days): ')) max_t = ( cfg.custom.NVRS.max_t ) # float(input ('Enter the maximum time in days for simulation(days): ')) MAXZ = cfg.custom.NVRS.MAXZ # reference maximum time in days of simulation steppi = int(max_t / timmee) factorr = cfg.custom.NVRS.factorr # from [0 1] excluding the limits for PermZ LIR = cfg.custom.NVRS.LIR # lower injection rate UIR = cfg.custom.NVRS.UIR # uppwer injection rate input_channel = ( cfg.custom.NVRS.input_channel ) # [Perm, Q,QW,Phi,dt, initial_pressure, initial_water_sat] injectors = cfg.custom.WELLSPECS.water_injector_wells producers = cfg.custom.WELLSPECS.producer_wells N_injw = len(cfg.custom.WELLSPECS.water_injector_wells) # Number of water injectors N_pr = len(cfg.custom.WELLSPECS.producer_wells) # Number of producers # tc2 = Equivalent_time(timmee,2100,timmee,max_t) tc2 = Equivalent_time(timmee, MAXZ, timmee, max_t) dt = np.diff(tc2)[0] # Time-step # 4 injector and 4 producer wells wells = np.array( [ 1, 24, 1, 3, 3, 1, 31, 1, 1, 31, 31, 1, 7, 9, 2, 14, 12, 2, 28, 19, 2, 14, 27, 2, ] ) wells = np.reshape(wells, (-1, 3), "C") bb = os.path.isfile(to_absolute_path("../PACKETS/Training4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1I-27_S53ORRFB_hIN_41r3Ntc6PpOE40", to_absolute_path("../PACKETS/Training4.mat"), ) print("...Downlaod completed.......") print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Training4.mat")) X_data1 = matt["INPUT"] data_use1 = matt["OUTPUT"] else: print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Training4.mat")) X_data1 = matt["INPUT"] data_use1 = matt["OUTPUT"] bb = os.path.isfile(to_absolute_path("../PACKETS/Test4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1G4Cvg8eIObyBK0eoo7iX-0hhMTnpJktj", to_absolute_path("../PACKETS/Test4.mat"), ) print("...Downlaod completed.......") print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data2 = matt["INPUT"] data_use2 = matt["OUTPUT"] else: print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data2 = matt["INPUT"] data_use2 = matt["OUTPUT"] cPerm = np.zeros((X_data1.shape[0], 1, nx, ny)) # Permeability cQ = np.zeros((X_data1.shape[0], 1, nx, ny)) # Overall source/sink term cQw = np.zeros((X_data1.shape[0], 1, nx, ny)) # Sink term cPhi = np.zeros((X_data1.shape[0], 1, nx, ny)) # Porosity cTime = np.zeros((X_data1.shape[0], 1, nx, ny)) # Time index cPini = np.zeros((X_data1.shape[0], 1, nx, ny)) # Initial pressure cSini = np.zeros((X_data1.shape[0], 1, nx, ny)) # Initial water saturation cPress = np.zeros((X_data1.shape[0], steppi, nx, ny)) # Pressure cSat = np.zeros((X_data1.shape[0], steppi, nx, ny)) # Water saturation for kk in range(X_data1.shape[0]): perm = X_data1[kk, 0, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPerm[kk, :, :, :] = permin perm = X_data1[kk, 1, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQ[kk, :, :, :] = permin perm = X_data1[kk, 2, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQw[kk, :, :, :] = permin perm = X_data1[kk, 3, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPhi[kk, :, :, :] = permin perm = X_data1[kk, 4, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cTime[kk, :, :, :] = permin perm = X_data1[kk, 5, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPini[kk, :, :, :] = permin perm = X_data1[kk, 6, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cSini[kk, :, :, :] = permin perm = data_use1[kk, :steppi, :, :] cPress[kk, :, :, :] = perm # np.clip(perm ,1/pini_alt,1.) perm = data_use1[kk, steppi:, :, :] cSat[kk, :, :, :] = perm sio.savemat( to_absolute_path("../PACKETS/simulationstrain.mat"), { "perm": cPerm, "Q": cQ, "Qw": cQw, "Phi": cPhi, "Time": cTime, "Pini": cPini, "Swini": cSini, "pressure": cPress, "water_sat": cSat, }, ) preprocess_FNO_mat(to_absolute_path("../PACKETS/simulationstrain.mat")) cPerm = np.zeros((X_data2.shape[0], 1, nx, ny)) # Permeability cQ = np.zeros((X_data2.shape[0], 1, nx, ny)) # Overall source/sink term cQw = np.zeros((X_data2.shape[0], 1, nx, ny)) # Sink term cPhi = np.zeros((X_data2.shape[0], 1, nx, ny)) # Porosity cTime = np.zeros((X_data2.shape[0], 1, nx, ny)) # Time index cPini = np.zeros((X_data2.shape[0], 1, nx, ny)) # Initial pressure cSini = np.zeros((X_data2.shape[0], 1, nx, ny)) # Initial water saturation cPress = np.zeros((X_data2.shape[0], steppi, nx, ny)) # Pressure cSat = np.zeros((X_data2.shape[0], steppi, nx, ny)) # Water saturation for kk in range(X_data2.shape[0]): perm = X_data2[kk, 0, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPerm[kk, :, :, :] = permin perm = X_data2[kk, 1, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQ[kk, :, :, :] = permin perm = X_data2[kk, 2, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQw[kk, :, :, :] = permin perm = X_data2[kk, 3, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPhi[kk, :, :, :] = permin perm = X_data2[kk, 4, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cTime[kk, :, :, :] = permin perm = X_data2[kk, 5, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPini[kk, :, :, :] = permin perm = X_data2[kk, 6, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cSini[kk, :, :, :] = permin perm = data_use2[kk, :steppi, :, :] cPress[kk, :, :, :] = perm # np.clip(perm ,1/pini_alt,1.) perm = data_use2[kk, steppi:, :, :] cSat[kk, :, :, :] = perm sio.savemat( to_absolute_path("../PACKETS/simulationstest.mat"), { "perm": cPerm, "Q": cQ, "Qw": cQw, "Phi": cPhi, "Time": cTime, "Pini": cPini, "Swini": cSini, "pressure": cPress, "water_sat": cSat, }, ) preprocess_FNO_mat(to_absolute_path("../PACKETS/simulationstest.mat")) # load training/ test data input_keys = [ Key("perm", scale=(3.46327e-01, 3.53179e-01)), Key("Q", scale=(1.94683e-03, 3.70558e-02)), Key("Qw", scale=(2.03866e-03, 3.70199e-02)), Key("Phi", scale=(1.73163e-01, 1.76590e-01)), Key("Time", scale=(1.66667e-02, 7.45058e-09)), Key("Pini", scale=(1.00000e00, 0.00000e00)), Key("Swini", scale=(2.00000e-01, 4.91738e-07)), ] output_keys_pressure = [Key("pressure", scale=(2.87008e-01, 1.85386e-01))] output_keys_saturation = [Key("water_sat", scale=(3.12903e-01, 1.79786e-01))] invar_train, outvar_train_pressure, outvar_train_saturation = load_FNO_dataset2( to_absolute_path("../PACKETS/simulationstrain.hdf5"), [k.name for k in input_keys], [k.name for k in output_keys_pressure], [k.name for k in output_keys_saturation], n_examples=cfg.custom.ntrain, ) invar_test, outvar_test_pressure, outvar_test_saturation = load_FNO_dataset2( to_absolute_path("../PACKETS/simulationstest.hdf5"), [k.name for k in input_keys], [k.name for k in output_keys_pressure], [k.name for k in output_keys_saturation], n_examples=cfg.custom.ntest, ) train_dataset_pressure = DictGridDataset(invar_train, outvar_train_pressure) train_dataset_saturation = DictGridDataset(invar_train, outvar_train_saturation) test_dataset_pressure = DictGridDataset(invar_test, outvar_test_pressure) test_dataset_saturation = DictGridDataset(invar_test, outvar_test_saturation) # [init-node] # Make custom Darcy residual node for PINO # Define FNO model for forward model (pressure) decoder1 = ConvFullyConnectedArch( [Key("z", size=32)], [Key("pressure", size=steppi)] ) fno_pressure = FNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], dimension=2, decoder_net=decoder1, ) # Define FNO model for forward model (saturation) decoder2 = ConvFullyConnectedArch( [Key("z", size=32)], [Key("water_sat", size=steppi)] ) fno_saturation = FNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], dimension=2, decoder_net=decoder2, ) nodes = [fno_pressure.make_node("fno_forward_model_pressure")] + [ fno_saturation.make_node("fno_forward_model_saturation") ] # [constraint] # make domain domain = Domain() # add constraints to domain supervised_pressure = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset_pressure, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised_pressure, "supervised_pressure") supervised_saturation = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset_saturation, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised_saturation, "supervised_saturation") # [constraint] # add validator # test_pressure = GridValidator( # nodes, # dataset=test_dataset_pressure, # batch_size=1, # plotter=CustomValidatorPlotterP(timmee,max_t,MAXZ,pini_alt,nx,ny,nz,\ # steppi,tc2,dt,injectors,producers,N_injw,N_pr), # requires_grad=False, # ) test_pressure = GridValidator( nodes, dataset=test_dataset_pressure, batch_size=1, requires_grad=False, ) domain.add_validator(test_pressure, "test_pressure") # test_saturation = GridValidator( # nodes, # dataset=test_dataset_saturation, # batch_size=1, # plotter=CustomValidatorPlotterS(timmee,max_t,MAXZ,pini_alt,nx,ny,nz,\ # steppi,tc2,dt,injectors,producers,N_injw,N_pr), # requires_grad=False, # ) test_saturation = GridValidator( nodes, dataset=test_dataset_saturation, batch_size=1, requires_grad=False, ) domain.add_validator(test_saturation, "test_saturation") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/reservoir_simulation/2D/src/Forward_problem_FNO.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 24 21:33:56 2023 @author: clementetienam """ import os from modulus.sym.hydra import to_absolute_path from modulus.sym.key import Key from NVRS import * from modulus.sym.models.fno import * from modulus.sym.models.afno.afno import * import shutil import pandas as pd import scipy.io as sio import torch import yaml from PIL import Image oldfolder = os.getcwd() os.chdir(oldfolder) data = [] os.chdir("../COMPARE_RESULTS/FNO") True_measurement = pd.read_csv("RSM_NUMERICAL.csv") True_measurement = True_measurement.values.astype(np.float32)[:, 1:] data.append(True_measurement) FNO = pd.read_csv("RSM_MODULUS.csv") FNO = FNO.values.astype(np.float32)[:, 1:] data.append(FNO) os.chdir(oldfolder) os.chdir("../COMPARE_RESULTS/PINO") PINO = pd.read_csv("RSM_MODULUS.csv") PINO = PINO.values.astype(np.float32)[:, 1:] data.append(PINO) os.chdir(oldfolder) os.chdir("../COMPARE_RESULTS/AFNOP") AFNOP = pd.read_csv("RSM_MODULUS.csv") AFNOP = AFNOP.values.astype(np.float32)[:, 1:] data.append(AFNOP) os.chdir(oldfolder) os.chdir("../COMPARE_RESULTS/AFNOD") AFNOD = pd.read_csv("RSM_MODULUS.csv") AFNOD = AFNOD.values.astype(np.float32)[:, 1:] data.append(AFNOD) os.chdir(oldfolder) os.chdir("../COMPARE_RESULTS") Plot_Models(data) Plot_bar(data) os.chdir(oldfolder)
modulus-sym-main
examples/reservoir_simulation/2D/src/Compare_Models.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import zipfile try: import gdown except: gdown = None import scipy.io import numpy as np import h5py from modulus.sym.hydra import to_absolute_path # list of FNO dataset url ids on drive: https://drive.google.com/drive/folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt- _FNO_datatsets_ids = { "Darcy_241": "1ViDqN7nc_VCnMackiXv_d7CHZANAFKzV", "Darcy_421": "1Z1uxG9R8AdAGJprG5STcphysjm56_0Jf", } _FNO_dataset_names = { "Darcy_241": ( "piececonst_r241_N1024_smooth1.hdf5", "piececonst_r241_N1024_smooth2.hdf5", ), "Darcy_421": ( "piececonst_r421_N1024_smooth1.hdf5", "piececonst_r421_N1024_smooth2.hdf5", ), } def load_FNO_dataset(path, input_keys, output_keys, n_examples=None): "Loads a FNO dataset" if not path.endswith(".hdf5"): raise Exception( ".hdf5 file required: please use utilities.preprocess_FNO_mat to convert .mat file" ) # load data path = to_absolute_path(path) data = h5py.File(path, "r") _ks = [k for k in data.keys() if not k.startswith("__")] print(f"loaded: {path}\navaliable keys: {_ks}") # parse data invar, outvar = dict(), dict() for d, keys in [(invar, input_keys), (outvar, output_keys)]: for k in keys: # get data x = data[k] # N, C, H, W # cut examples out if n_examples is not None: x = x[:n_examples] # print out normalisation values print(f"selected key: {k}, mean: {x.mean():.5e}, std: {x.std():.5e}") d[k] = x del data return (invar, outvar) def load_FNO_dataset2(path, input_keys, output_keys, output_keys2, n_examples=None): "Loads a FNO dataset" if not path.endswith(".hdf5"): raise Exception( ".hdf5 file required: please use utilities.preprocess_FNO_mat to convert .mat file" ) # load data path = to_absolute_path(path) data = h5py.File(path, "r") _ks = [k for k in data.keys() if not k.startswith("__")] print(f"loaded: {path}\navaliable keys: {_ks}") # parse data invar, outvar, outvar2 = dict(), dict(), dict() for d, keys in [ (invar, input_keys), (outvar, output_keys), (outvar2, output_keys2), ]: for k in keys: # get data x = data[k] # N, C, H, W # cut examples out if n_examples is not None: x = x[:n_examples] # print out normalisation values print(f"selected key: {k}, mean: {x.mean():.5e}, std: {x.std():.5e}") d[k] = x del data return (invar, outvar, outvar2) def load_FNO_dataset4(path, input_keys, n_examples=None): "Loads a FNO dataset" if not path.endswith(".hdf5"): raise Exception( ".hdf5 file required: please use utilities.preprocess_FNO_mat to convert .mat file" ) # load data path = to_absolute_path(path) data = h5py.File(path, "r") _ks = [k for k in data.keys() if not k.startswith("__")] print(f"loaded: {path}\navaliable keys: {_ks}") # parse data invar = dict() for d, keys in [(invar, input_keys)]: for k in keys: # get data x = data[k] # N, C, H, W # cut examples out if n_examples is not None: x = x[:n_examples] # print out normalisation values print(f"selected key: {k}, mean: {x.mean():.5e}, std: {x.std():.5e}") d[k] = x del data return invar def load_deeponet_dataset( path, input_keys, output_keys, n_examples=None, filter_size=8 ): "Loads a deeponet dataset" # load dataset invar, outvar = load_FNO_dataset(path, input_keys, output_keys, n_examples) # reduce shape needed for deeponet for key, value in invar.items(): invar[key] = value[:, :, ::filter_size, ::filter_size] for key, value in outvar.items(): outvar[key] = value[:, :, ::filter_size, ::filter_size] res = next(iter(invar.values())).shape[-1] nr_points_per_sample = res**2 # tile invar tiled_invar = { key: np.concatenate( [ np.tile(value[i], (nr_points_per_sample, 1, 1, 1)) for i in range(n_examples) ] ) for key, value in invar.items() } # tile outvar tiled_outvar = {key: value.flatten()[:, None] for key, value in outvar.items()} # add cord points x = np.linspace(0.0, 1.0, res) y = np.linspace(0.0, 1.0, res) x, y = [a.flatten()[:, None] for a in np.meshgrid(x, y)] tiled_invar["x"] = np.concatenate(n_examples * [x], axis=0) tiled_invar["y"] = np.concatenate(n_examples * [y], axis=0) return (tiled_invar, tiled_outvar) def download_FNO_dataset(name, outdir="datasets/"): "Tries to download FNO dataset from drive" if name not in _FNO_datatsets_ids: raise Exception( f"Error: FNO dataset {name} not recognised, select one from {list(_FNO_datatsets_ids.keys())}" ) id = _FNO_datatsets_ids[name] outdir = to_absolute_path(outdir) + "/" namedir = f"{outdir}{name}/" # skip if already exists exists = True for file_name in _FNO_dataset_names[name]: if not os.path.isfile(namedir + file_name): exists = False break if exists: return print(f"FNO dataset {name} not detected, downloading dataset") # Make sure we have gdown installed if gdown is None: raise ModuleNotFoundError("gdown package is required to download the dataset!") # get output directory os.makedirs(namedir, exist_ok=True) # download dataset zippath = f"{outdir}{name}.zip" _download_file_from_google_drive(id, zippath) # unzip with zipfile.ZipFile(zippath, "r") as f: f.extractall(namedir) os.remove(zippath) # preprocess files for file in os.listdir(namedir): if file.endswith(".mat"): matpath = f"{namedir}{file}" preprocess_FNO_mat(matpath) os.remove(matpath) def _download_file_from_google_drive(id, path): "Downloads a file from google drive" # use gdown library to download file gdown.download(id=id, output=path) def preprocess_FNO_mat(path): "Convert a FNO .mat file to a hdf5 file, adding extra dimension to data arrays" assert path.endswith(".mat") data = scipy.io.loadmat(path) ks = [k for k in data.keys() if not k.startswith("__")] with h5py.File(path[:-4] + ".hdf5", "w") as f: for k in ks: # x = np.expand_dims(data[k], axis=1) # N, C, H, W x = data[k] f.create_dataset( k, data=x, dtype="float32" ) # note h5 files larger than .mat because no compression used
modulus-sym-main
examples/reservoir_simulation/2D/src/utilities.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from typing import Dict # Import from Modulus from modulus.sym.loss.aggregator import Aggregator class CustomSum(Aggregator): """ Loss aggregation by summation """ def __init__(self, params, num_losses, weights=None): super().__init__(params, num_losses, weights) def forward(self, losses: Dict[str, torch.Tensor], step: int) -> torch.Tensor: """ Aggregates the losses by summation Parameters ---------- losses : Dict[str, torch.Tensor] A dictionary of losses step : int Optimizer step Returns ------- loss : torch.Tensor Aggregated loss """ # weigh losses losses = self.weigh_losses(losses, self.weights) # Initialize loss loss: torch.Tensor = torch.zeros_like(self.init_loss) smoothness = 0.0005 # use 0.0005 to smoothen the transition over ~10k steps step_tensor = torch.tensor(step, dtype=torch.float32) decay_weight1 = (torch.tanh((10000 - step_tensor) * smoothness) + 1.0) * 0.5 lambda_pressure = 1.0 lambda_saturation = 1.0 # # Add losses for key in losses.keys(): if "pressure" in key: loss += lambda_pressure * (1 - decay_weight1) * ((losses[key])) if "water_sat" in key: loss += lambda_saturation * (1 - decay_weight1) * ((losses[key])) return loss
modulus-sym-main
examples/reservoir_simulation/2D/src/custom_aggregator_FNO.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from typing import Dict # Import from Modulus from modulus.sym.loss.aggregator import Aggregator class CustomSum(Aggregator): """ Loss aggregation by summation """ def __init__(self, params, num_losses, weights=None): super().__init__(params, num_losses, weights) def forward(self, losses: Dict[str, torch.Tensor], step: int) -> torch.Tensor: """ Aggregates the losses by summation Parameters ---------- losses : Dict[str, torch.Tensor] A dictionary of losses step : int Optimizer step Returns ------- loss : torch.Tensor Aggregated loss """ # weigh losses losses = self.weigh_losses(losses, self.weights) # Initialize loss loss: torch.Tensor = torch.zeros_like(self.init_loss) smoothness = 0.0005 # use 0.0005 to smoothen the transition over ~10k steps step_tensor = torch.tensor(step, dtype=torch.float32) decay_weight1 = (torch.tanh((10000 - step_tensor) * smoothness) + 1.0) * 0.5 lambda_pressure = 1.0 lambda_saturation = 1.0 lambda_pressured = 0.1 lambda_saturationd = 0.1 # # Add losses for key in losses.keys(): if "pressure" in key: loss += lambda_pressure * (1 - decay_weight1) * ((losses[key])) if "water_sat" in key: loss += lambda_saturation * (1 - decay_weight1) * ((losses[key])) if "pressured" in key: loss += lambda_pressured * (1 - decay_weight1) * ((losses[key])) if "saturationd" in key: loss += lambda_saturationd * (1 - decay_weight1) * ((losses[key])) return loss
modulus-sym-main
examples/reservoir_simulation/2D/src/custom_aggregator_PINO.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import os import modulus import torch from modulus.sym.hydra import ModulusConfig from modulus.sym.hydra import to_absolute_path from modulus.sym.key import Key from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.utils.io.plotter import GridValidatorPlotter from NVRS import * from utilities import load_FNO_dataset2, preprocess_FNO_mat from modulus.sym.models.afno.afno import * import shutil import cupy as cp import scipy.io as sio import requests torch.set_default_dtype(torch.float32) def download_file_from_google_drive(id, destination): URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params={"id": id, "confirm": 1}, stream=True) token = get_confirm_token(response) if token: params = {"id": id, "confirm": token} response = session.get(URL, params=params, stream=True) save_response_content(response, destination) def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith("download_warning"): return value return None def save_response_content(response, destination): CHUNK_SIZE = 32768 with open(destination, "wb") as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) from modulus.sym.utils.io.plotter import ValidatorPlotter class CustomValidatorPlotterP(ValidatorPlotter): def __init__( self, timmee, max_t, MAXZ, pini_alt, nx, ny, nz, steppi, tc2, dt, injectors, producers, N_injw, N_pr, ): self.timmee = timmee self.max_t = max_t self.MAXZ = MAXZ self.pini_alt = pini_alt self.nx = nx self.ny = ny self.nz = nz self.steppi = steppi self.tc2 = tc2 self.dt = dt self.injectors = injectors self.producers = producers self.N_injw = N_injw self.N_pr = N_pr def __call__(self, invar, true_outvar, pred_outvar): "Custom plotting function for validator" # get input variables # get and interpolate output variable pressure_true, pressure_pred = true_outvar["pressure"], pred_outvar["pressure"] # make plot f_big = [] Time_vector = np.zeros((self.steppi)) Accuracy_presure = np.zeros((self.steppi, 2)) for itt in range(self.steppi): Time_vector[itt] = int((itt + 1) * self.dt * self.MAXZ) look = (pressure_pred[0, itt, :, :]) * self.pini_alt lookf = (pressure_true[0, itt, :, :]) * self.pini_alt diff1 = abs(look - lookf) XX, YY = np.meshgrid(np.arange(self.nx), np.arange(self.ny)) f_2 = plt.figure(figsize=(10, 10), dpi=100) plt.subplot(1, 3, 1) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, look, self.N_injw, self.N_pr, "pressure Modulus", self.injectors, self.producers, ) plt.subplot(1, 3, 2) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, lookf, self.N_injw, self.N_pr, "pressure Numerical", self.injectors, self.producers, ) plt.subplot(1, 3, 3) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, diff1, self.N_injw, self.N_pr, "pressure diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" plt.suptitle(tita, fontsize=16) namez = "pressure_simulations" + str(int(itt)) yes = (f_2, namez) f_big.append(yes) # plt.clf() plt.close() R2p, L2p = compute_metrics(look.ravel(), lookf.ravel()) Accuracy_presure[itt, 0] = R2p Accuracy_presure[itt, 1] = L2p f_3 = plt.figure(figsize=(20, 20), dpi=200) ax1 = f_3.add_subplot(131, projection="3d") Plot_Modulus( ax1, self.nx, self.ny, self.nz, look, self.N_injw, self.N_pr, "pressure Modulus", self.injectors, self.producers, ) ax2 = f_3.add_subplot(132, projection="3d") Plot_Modulus( ax2, self.nx, self.ny, self.nz, lookf, self.N_injw, self.N_pr, "pressure Numerical", self.injectors, self.producers, ) ax3 = f_3.add_subplot(133, projection="3d") Plot_Modulus( ax3, self.nx, self.ny, self.nz, diff1, self.N_injw, self.N_pr, "pressure diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = ( "3D Map - Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" ) plt.suptitle(tita, fontsize=20, weight="bold") namez = "Simulations3Dp" + str(int(itt)) yes2 = (f_3, namez) f_big.append(yes2) # plt.clf() plt.close() fig4 = plt.figure(figsize=(10, 10), dpi=200) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) # Plot R2 accuracies plt.subplot(2, 1, 1) plt.plot( Time_vector, Accuracy_presure[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("Pressure", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) # Plot L2 accuracies plt.subplot(2, 1, 2) plt.plot( Time_vector, Accuracy_presure[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("Pressure", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2_pressure" yes21 = (fig4, namez) f_big.append(yes21) # plt.clf() plt.close() return f_big class CustomValidatorPlotterS(ValidatorPlotter): def __init__( self, timmee, max_t, MAXZ, pini_alt, nx, ny, nz, steppi, tc2, dt, injectors, producers, N_injw, N_pr, ): self.timmee = timmee self.max_t = max_t self.MAXZ = MAXZ self.pini_alt = pini_alt self.nx = nx self.ny = ny self.nz = nz self.steppi = steppi self.tc2 = tc2 self.dt = dt self.injectors = injectors self.producers = producers self.N_injw = N_injw self.N_pr = N_pr def __call__(self, invar, true_outvar, pred_outvar): "Custom plotting function for validator" # get input variables water_true, water_pred = true_outvar["water_sat"], pred_outvar["water_sat"] # make plot f_big = [] Accuracy_oil = np.zeros((self.steppi, 2)) Accuracy_water = np.zeros((self.steppi, 2)) Time_vector = np.zeros((self.steppi)) for itt in range(self.steppi): Time_vector[itt] = int((itt + 1) * self.dt * self.MAXZ) XX, YY = np.meshgrid(np.arange(self.nx), np.arange(self.ny)) f_2 = plt.figure(figsize=(12, 12), dpi=100) look_sat = water_pred[0, itt, :, :] # *1e-2 look_oil = 1 - look_sat lookf_sat = water_true[0, itt, :, :] # * 1e-2 lookf_oil = 1 - lookf_sat diff1_wat = abs(look_sat - lookf_sat) diff1_oil = abs(look_oil - lookf_oil) plt.subplot(2, 3, 1) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, look_sat, self.N_injw, self.N_pr, "water Modulus", self.injectors, self.producers, ) plt.subplot(2, 3, 2) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, lookf_sat, self.N_injw, self.N_pr, "water Numerical", self.injectors, self.producers, ) plt.subplot(2, 3, 3) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, diff1_wat, self.N_injw, self.N_pr, "water diff", self.injectors, self.producers, ) R2w, L2w = compute_metrics(look_sat.ravel(), lookf_sat.ravel()) Accuracy_water[itt, 0] = R2w Accuracy_water[itt, 1] = L2w plt.subplot(2, 3, 4) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, look_oil, self.N_injw, self.N_pr, "oil Modulus", self.injectors, self.producers, ) plt.subplot(2, 3, 5) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, lookf_oil, self.N_injw, self.N_pr, "oil Numerical", self.injectors, self.producers, ) plt.subplot(2, 3, 6) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, diff1_oil, self.N_injw, self.N_pr, "oil diff", self.injectors, self.producers, ) R2o, L2o = compute_metrics(look_oil.ravel(), lookf_oil.ravel()) Accuracy_oil[itt, 0] = R2o Accuracy_oil[itt, 1] = L2o plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" plt.suptitle(tita, fontsize=16) namez = "saturation_simulations" + str(int(itt)) yes = (f_2, namez) f_big.append(yes) # plt.clf() plt.close() f_3 = plt.figure(figsize=(20, 20), dpi=200) ax1 = f_3.add_subplot(231, projection="3d") Plot_Modulus( ax1, self.nx, self.ny, self.nz, look_sat, self.N_injw, self.N_pr, "water Modulus", self.injectors, self.producers, ) ax2 = f_3.add_subplot(232, projection="3d") Plot_Modulus( ax2, self.nx, self.ny, self.nz, lookf_sat, self.N_injw, self.N_pr, "water Numerical", self.injectors, self.producers, ) ax3 = f_3.add_subplot(233, projection="3d") Plot_Modulus( ax3, self.nx, self.ny, self.nz, diff1_wat, self.N_injw, self.N_pr, "water diff", self.injectors, self.producers, ) ax4 = f_3.add_subplot(234, projection="3d") Plot_Modulus( ax4, self.nx, self.ny, self.nz, look_oil, self.N_injw, self.N_pr, "oil Modulus", self.injectors, self.producers, ) ax5 = f_3.add_subplot(235, projection="3d") Plot_Modulus( ax5, self.nx, self.ny, self.nz, lookf_oil, self.N_injw, self.N_pr, "oil Numerical", self.injectors, self.producers, ) ax6 = f_3.add_subplot(236, projection="3d") Plot_Modulus( ax6, self.nx, self.ny, self.nz, diff1_oil, self.N_injw, self.N_pr, "oil diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = ( "3D Map - Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" ) plt.suptitle(tita, fontsize=20, weight="bold") namez = "Simulations3Ds" + str(int(itt)) yes2 = (f_3, namez) f_big.append(yes2) # plt.clf() plt.close() fig4 = plt.figure(figsize=(20, 20), dpi=200) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) plt.subplot(2, 2, 1) plt.plot( Time_vector, Accuracy_water[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("water_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) plt.subplot(2, 2, 2) plt.plot( Time_vector, Accuracy_oil[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("oil_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) plt.subplot(2, 2, 3) plt.plot( Time_vector, Accuracy_water[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("water_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.subplot(2, 2, 4) plt.plot( Time_vector, Accuracy_oil[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("oil_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2_saturations" yes21 = (fig4, namez) f_big.append(yes21) # plt.clf() plt.close() return f_big @modulus.sym.main(config_path="conf", config_name="config_FNO") def run(cfg: ModulusConfig) -> None: print("") print("------------------------------------------------------------------") print("") print("\n") print("|-----------------------------------------------------------------|") print("| TRAIN THE MODEL USING A 2D DATA DRIVEN AFNO APPROACH: |") print("|-----------------------------------------------------------------|") print("") oldfolder = os.getcwd() os.chdir(oldfolder) if not os.path.exists(to_absolute_path("../PACKETS")): os.makedirs(to_absolute_path("../PACKETS")) else: pass # Varaibles needed for NVRS nx = cfg.custom.NVRS.nx ny = cfg.custom.NVRS.ny nz = cfg.custom.NVRS.nz BO = cfg.custom.NVRS.BO # oil formation volume factor BW = cfg.custom.NVRS.BW # Water formation volume factor UW = cfg.custom.NVRS.UW # water viscosity in cP UO = cfg.custom.NVRS.UO # oil viscosity in cP DX = cfg.custom.NVRS.DX # size of pixel in x direction DY = cfg.custom.NVRS.DY # sixze of pixel in y direction DZ = cfg.custom.NVRS.DZ # sizze of pixel in z direction DX = cp.float32(DX) DY = cp.float32(DY) UW = cp.float32(UW) # water viscosity in cP UO = cp.float32(UO) # oil viscosity in cP SWI = cp.float32(cfg.custom.NVRS.SWI) SWR = cp.float32(cfg.custom.NVRS.SWR) CFO = cp.float32(cfg.custom.NVRS.CFO) # oil compressibility in 1/psi IWSw = cfg.custom.NVRS.IWSw # initial water saturation pini_alt = cfg.custom.NVRS.pini_alt P1 = cp.float32(pini_alt) # Bubble point pressure psia PB = P1 mpor = cfg.custom.NVRS.mpor hpor = cfg.custom.NVRS.hpor # minimum and maximum porosity BW = cp.float32(BW) # Water formation volume factor BO = cp.float32(BO) # Oil formation volume factor PATM = cp.float32(cfg.custom.NVRS.PATM) # Atmospheric pressure in psi # training LUB = cfg.custom.NVRS.LUB HUB = cfg.custom.NVRS.HUB # Permeability rescale aay, bby = cfg.custom.NVRS.aay, cfg.custom.NVRS.bby # Permeability range mD Low_K, High_K = aay, bby batch_size = cfg.custom.NVRS.batch_size #'size of simulated labelled data to run' timmee = ( cfg.custom.NVRS.timmee ) # float(input ('Enter the time step interval duration for simulation (days): ')) max_t = ( cfg.custom.NVRS.max_t ) # float(input ('Enter the maximum time in days for simulation(days): ')) MAXZ = cfg.custom.NVRS.MAXZ # reference maximum time in days of simulation steppi = int(max_t / timmee) factorr = cfg.custom.NVRS.factorr # from [0 1] excluding the limits for PermZ LIR = cfg.custom.NVRS.LIR # lower injection rate UIR = cfg.custom.NVRS.UIR # uppwer injection rate input_channel = ( cfg.custom.NVRS.input_channel ) # [Perm, Q,QW,Phi,dt, initial_pressure, initial_water_sat] injectors = cfg.custom.WELLSPECS.water_injector_wells producers = cfg.custom.WELLSPECS.producer_wells N_injw = len(cfg.custom.WELLSPECS.water_injector_wells) # Number of water injectors N_pr = len(cfg.custom.WELLSPECS.producer_wells) # Number of producers # tc2 = Equivalent_time(timmee,2100,timmee,max_t) tc2 = Equivalent_time(timmee, MAXZ, timmee, max_t) dt = np.diff(tc2)[0] # Time-step # 4 injector and 4 producer wells wells = np.array( [ 1, 24, 1, 3, 3, 1, 31, 1, 1, 31, 31, 1, 7, 9, 2, 14, 12, 2, 28, 19, 2, 14, 27, 2, ] ) wells = np.reshape(wells, (-1, 3), "C") bb = os.path.isfile(to_absolute_path("../PACKETS/Training4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1I-27_S53ORRFB_hIN_41r3Ntc6PpOE40", to_absolute_path("../PACKETS/Training4.mat"), ) print("...Downlaod completed.......") print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Training4.mat")) X_data1 = matt["INPUT"] data_use1 = matt["OUTPUT"] else: print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Training4.mat")) X_data1 = matt["INPUT"] data_use1 = matt["OUTPUT"] bb = os.path.isfile(to_absolute_path("../PACKETS/Test4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1G4Cvg8eIObyBK0eoo7iX-0hhMTnpJktj", to_absolute_path("../PACKETS/Test4.mat"), ) print("...Downlaod completed.......") print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data2 = matt["INPUT"] data_use2 = matt["OUTPUT"] else: print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data2 = matt["INPUT"] data_use2 = matt["OUTPUT"] cPerm = np.zeros((X_data1.shape[0], 1, nx, ny)) # Permeability cQ = np.zeros((X_data1.shape[0], 1, nx, ny)) # Overall source/sink term cQw = np.zeros((X_data1.shape[0], 1, nx, ny)) # Sink term cPhi = np.zeros((X_data1.shape[0], 1, nx, ny)) # Porosity cTime = np.zeros((X_data1.shape[0], 1, nx, ny)) # Time index cPini = np.zeros((X_data1.shape[0], 1, nx, ny)) # Initial pressure cSini = np.zeros((X_data1.shape[0], 1, nx, ny)) # Initial water saturation cPress = np.zeros((X_data1.shape[0], steppi, nx, ny)) # Pressure cSat = np.zeros((X_data1.shape[0], steppi, nx, ny)) # Water saturation for kk in range(X_data1.shape[0]): perm = X_data1[kk, 0, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPerm[kk, :, :, :] = permin perm = X_data1[kk, 1, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQ[kk, :, :, :] = permin perm = X_data1[kk, 2, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQw[kk, :, :, :] = permin perm = X_data1[kk, 3, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPhi[kk, :, :, :] = permin perm = X_data1[kk, 4, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cTime[kk, :, :, :] = permin perm = X_data1[kk, 5, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPini[kk, :, :, :] = permin perm = X_data1[kk, 6, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cSini[kk, :, :, :] = permin perm = data_use1[kk, :steppi, :, :] cPress[kk, :, :, :] = perm # np.clip(perm ,1/pini_alt,1.) perm = data_use1[kk, steppi:, :, :] cSat[kk, :, :, :] = perm sio.savemat( to_absolute_path("../PACKETS/simulationstrain.mat"), { "perm": cPerm, "Q": cQ, "Qw": cQw, "Phi": cPhi, "Time": cTime, "Pini": cPini, "Swini": cSini, "pressure": cPress, "water_sat": cSat, }, ) preprocess_FNO_mat(to_absolute_path("../PACKETS/simulationstrain.mat")) cPerm = np.zeros((X_data2.shape[0], 1, nx, ny)) # Permeability cQ = np.zeros((X_data2.shape[0], 1, nx, ny)) # Overall source/sink term cQw = np.zeros((X_data2.shape[0], 1, nx, ny)) # Sink term cPhi = np.zeros((X_data2.shape[0], 1, nx, ny)) # Porosity cTime = np.zeros((X_data2.shape[0], 1, nx, ny)) # Time index cPini = np.zeros((X_data2.shape[0], 1, nx, ny)) # Initial pressure cSini = np.zeros((X_data2.shape[0], 1, nx, ny)) # Initial water saturation cPress = np.zeros((X_data2.shape[0], steppi, nx, ny)) # Pressure cSat = np.zeros((X_data2.shape[0], steppi, nx, ny)) # Water saturation for kk in range(X_data2.shape[0]): perm = X_data2[kk, 0, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPerm[kk, :, :, :] = permin perm = X_data2[kk, 1, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQ[kk, :, :, :] = permin perm = X_data2[kk, 2, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQw[kk, :, :, :] = permin perm = X_data2[kk, 3, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPhi[kk, :, :, :] = permin perm = X_data2[kk, 4, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cTime[kk, :, :, :] = permin perm = X_data2[kk, 5, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPini[kk, :, :, :] = permin perm = X_data2[kk, 6, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cSini[kk, :, :, :] = permin perm = data_use2[kk, :steppi, :, :] cPress[kk, :, :, :] = perm # np.clip(perm ,1/pini_alt,1.) perm = data_use2[kk, steppi:, :, :] cSat[kk, :, :, :] = perm sio.savemat( to_absolute_path("../PACKETS/simulationstest.mat"), { "perm": cPerm, "Q": cQ, "Qw": cQw, "Phi": cPhi, "Time": cTime, "Pini": cPini, "Swini": cSini, "pressure": cPress, "water_sat": cSat, }, ) preprocess_FNO_mat(to_absolute_path("../PACKETS/simulationstest.mat")) # load training/ test data input_keys = [ Key("perm", scale=(3.46327e-01, 3.53179e-01)), Key("Q", scale=(1.94683e-03, 3.70558e-02)), Key("Qw", scale=(2.03866e-03, 3.70199e-02)), Key("Phi", scale=(1.73163e-01, 1.76590e-01)), Key("Time", scale=(1.66667e-02, 7.45058e-09)), Key("Pini", scale=(1.00000e00, 0.00000e00)), Key("Swini", scale=(2.00000e-01, 4.91738e-07)), ] output_keys_pressure = [Key("pressure", scale=(2.87008e-01, 1.85386e-01))] output_keys_saturation = [Key("water_sat", scale=(3.12903e-01, 1.79786e-01))] invar_train, outvar_train_pressure, outvar_train_saturation = load_FNO_dataset2( to_absolute_path("../PACKETS/simulationstrain.hdf5"), [k.name for k in input_keys], [k.name for k in output_keys_pressure], [k.name for k in output_keys_saturation], n_examples=cfg.custom.ntrain, ) invar_test, outvar_test_pressure, outvar_test_saturation = load_FNO_dataset2( to_absolute_path("../PACKETS/simulationstest.hdf5"), [k.name for k in input_keys], [k.name for k in output_keys_pressure], [k.name for k in output_keys_saturation], n_examples=cfg.custom.ntest, ) train_dataset_pressure = DictGridDataset(invar_train, outvar_train_pressure) train_dataset_saturation = DictGridDataset(invar_train, outvar_train_saturation) test_dataset_pressure = DictGridDataset(invar_test, outvar_test_pressure) test_dataset_saturation = DictGridDataset(invar_test, outvar_test_saturation) # Define AFNO model for forward model (pressure) afno_pressure = AFNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], [Key("pressure", size=steppi)], (nx, ny), patch_size=3, ) # Define AFNO model for forward model (saturation) afno_saturation = AFNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], [Key("water_sat", size=steppi)], (nx, ny), patch_size=3, ) nodes = [afno_pressure.make_node("afno_forward_model_pressure")] + [ afno_saturation.make_node("afno_forward_model_saturation") ] # [constraint] # make domain domain = Domain() # add constraints to domain supervised_pressure = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset_pressure, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised_pressure, "supervised_pressure") supervised_saturation = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset_saturation, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised_saturation, "supervised_saturation") # [constraint] # add validator # [constraint] # add validator # test_pressure = GridValidator( # nodes, # dataset=test_dataset_pressure, # batch_size=1, # plotter=CustomValidatorPlotterP(timmee,max_t,MAXZ,pini_alt,nx,ny,nz,\ # steppi,tc2,dt,injectors,producers,N_injw,N_pr), # requires_grad=False, # ) test_pressure = GridValidator( nodes, dataset=test_dataset_pressure, batch_size=1, requires_grad=False, ) domain.add_validator(test_pressure, "test_pressure") # test_saturation = GridValidator( # nodes, # dataset=test_dataset_saturation, # batch_size=1, # plotter=CustomValidatorPlotterS(timmee,max_t,MAXZ,pini_alt,nx,ny,nz,\ # steppi,tc2,dt,injectors,producers,N_injw,N_pr), # requires_grad=False, # ) test_saturation = GridValidator( nodes, dataset=test_dataset_saturation, batch_size=1, requires_grad=False, ) domain.add_validator(test_saturation, "test_saturation") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/reservoir_simulation/2D/src/Forward_problem_AFNOD.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from sympy import Symbol, Eq, And import torch import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle, Circle from modulus.sym.utils.sympy.functions import parabola from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.basic import NormalDotVec @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on ns = NavierStokes(nu=0.01, rho=1.0, dim=2, time=False) normal_dot_vel = NormalDotVec(["u", "v"]) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v"), Key("p")], cfg=cfg.arch.fully_connected, ) nodes = ( ns.make_nodes() + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network")] ) # add constraints to solver # specify params channel_length = (-6.732, 6.732) channel_width = (-1.0, 1.0) cylinder_center = (0.0, 0.0) outer_cylinder_radius = 2.0 inner_cylinder_radius = 1.0 inlet_vel = 1.5 # make geometry x, y = Symbol("x"), Symbol("y") rec = Rectangle( (channel_length[0], channel_width[0]), (channel_length[1], channel_width[1]) ) outer_circle = Circle(cylinder_center, outer_cylinder_radius) inner_circle = Circle((0, 0), inner_cylinder_radius) geo = (rec + outer_circle) - inner_circle # make annular ring domain domain = Domain() # inlet inlet_sympy = parabola( y, inter_1=channel_width[0], inter_2=channel_width[1], height=inlet_vel ) inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": inlet_sympy, "v": 0}, batch_size=cfg.batch_size.inlet, criteria=Eq(x, channel_length[0]), ) domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, criteria=Eq(x, channel_length[1]), ) domain.add_constraint(outlet, "outlet") # no slip no_slip = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": 0, "v": 0}, batch_size=cfg.batch_size.no_slip, criteria=And((x > channel_length[0]), (x < channel_length[1])), ) domain.add_constraint(no_slip, "no_slip") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0}, batch_size=cfg.batch_size.interior, lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), }, ) domain.add_constraint(interior, "interior") # integral continuity integral_continuity = IntegralBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"normal_dot_vel": 2}, batch_size=1, integral_batch_size=cfg.batch_size.integral_continuity, lambda_weighting={"normal_dot_vel": 0.1}, criteria=Eq(x, channel_length[1]), ) domain.add_constraint(integral_continuity, "integral_continuity") # add validation data file_path = "../openfoam/bend_finerInternal0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"Points:0": "x", "Points:1": "y", "U:0": "u", "U:1": "v", "p": "p"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] += channel_length[0] # center OpenFoam data openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "p"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, batch_size=1024, ) domain.add_validator(openfoam_validator) # add inferencer data grid_inference = PointwiseInferencer( nodes=nodes, invar=openfoam_invar_numpy, output_names=["u", "v", "p"], batch_size=1024, ) domain.add_inferencer(grid_inference, "inf_data") else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add monitors # metric for mass and momentum imbalance global_monitor = PointwiseMonitor( geo.sample_interior(1024), output_names=["continuity", "momentum_x", "momentum_y"], metrics={ "mass_imbalance": lambda var: torch.sum( var["area"] * torch.abs(var["continuity"]) ), "momentum_imbalance": lambda var: torch.sum( var["area"] * (torch.abs(var["momentum_x"]) + torch.abs(var["momentum_y"])) ), }, nodes=nodes, requires_grad=True, ) domain.add_monitor(global_monitor) # metric for force on inner sphere force_monitor = PointwiseMonitor( inner_circle.sample_boundary(1024), output_names=["p"], metrics={ "force_x": lambda var: torch.sum(var["normal_x"] * var["area"] * var["p"]), "force_y": lambda var: torch.sum(var["normal_y"] * var["area"] * var["p"]), }, nodes=nodes, ) domain.add_monitor(force_monitor) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/annular_ring/annular_ring/annular_ring.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from sympy import Symbol, Eq, And import torch import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle, Circle from modulus.sym.utils.sympy.functions import parabola from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.basic import NormalDotVec @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on ns = NavierStokes(nu=0.01, rho=1.0, dim=2, time=False) normal_dot_vel = NormalDotVec(["u", "v"]) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v"), Key("p")], cfg=cfg.arch.fully_connected, ) nodes = ( ns.make_nodes( create_instances=2, freeze_terms={ "continuity_0": [], "momentum_x_0": [1, 2], "momentum_y_0": [1, 2], "continuity_1": [], "momentum_x_1": [3, 4], "momentum_y_1": [3, 4], }, ) + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network", jit=cfg.jit)] ) # add constraints to solver # specify params channel_length = (-6.732, 6.732) channel_width = (-1.0, 1.0) cylinder_center = (0.0, 0.0) outer_cylinder_radius = 2.0 inner_cylinder_radius = 1.0 inlet_vel = 1.5 # make geometry x, y = Symbol("x"), Symbol("y") rec = Rectangle( (channel_length[0], channel_width[0]), (channel_length[1], channel_width[1]) ) outer_circle = Circle(cylinder_center, outer_cylinder_radius) inner_circle = Circle((0, 0), inner_cylinder_radius) geo = (rec + outer_circle) - inner_circle # make annular ring domain domain = Domain() # inlet inlet_sympy = parabola( y, inter_1=channel_width[0], inter_2=channel_width[1], height=inlet_vel ) inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": inlet_sympy, "v": 0}, batch_size=cfg.batch_size.inlet, criteria=Eq(x, channel_length[0]), ) domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, criteria=Eq(x, channel_length[1]), ) domain.add_constraint(outlet, "outlet") # no slip no_slip = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": 0, "v": 0}, batch_size=cfg.batch_size.no_slip, criteria=And((x > channel_length[0]), (x < channel_length[1])), ) domain.add_constraint(no_slip, "no_slip") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={ "continuity_0": 0, "momentum_x_0": 0, "momentum_y_0": 0, "continuity_1": 0, "momentum_x_1": 0, "momentum_y_1": 0, }, batch_size=cfg.batch_size.interior, lambda_weighting={ "continuity_0": Symbol("sdf"), "momentum_x_0": Symbol("sdf"), "momentum_y_0": Symbol("sdf"), "continuity_1": Symbol("sdf"), "momentum_x_1": Symbol("sdf"), "momentum_y_1": Symbol("sdf"), }, ) domain.add_constraint(interior, "interior") # integral continuity integral_continuity = IntegralBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"normal_dot_vel": 2}, batch_size=1, integral_batch_size=cfg.batch_size.integral_continuity, lambda_weighting={"normal_dot_vel": 0.1}, criteria=Eq(x, channel_length[1]), ) domain.add_constraint(integral_continuity, "integral_continuity") # add validation data file_path = "../openfoam/bend_finerInternal0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"Points:0": "x", "Points:1": "y", "U:0": "u", "U:1": "v", "p": "p"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] += channel_length[0] # center OpenFoam data openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "p"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, batch_size=1024, ) domain.add_validator(openfoam_validator) # add inferencer data grid_inference = PointwiseInferencer( nodes=nodes, invar=openfoam_invar_numpy, output_names=["u", "v", "p"], batch_size=512, ) domain.add_inferencer(grid_inference, "inf_data") else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add monitors # metric for mass and momentum imbalance global_monitor = PointwiseMonitor( geo.sample_interior(1024), output_names=["continuity_0", "momentum_x_0", "momentum_y_0"], metrics={ "mass_imbalance_0": lambda var: torch.sum( var["area"] * torch.abs(var["continuity_0"]) ), "momentum_imbalance_0": lambda var: torch.sum( var["area"] * (torch.abs(var["momentum_x_0"]) + torch.abs(var["momentum_y_0"])) ), }, nodes=nodes, requires_grad=True, ) domain.add_monitor(global_monitor) global_monitor = PointwiseMonitor( geo.sample_interior(1024), output_names=["continuity_1", "momentum_x_1", "momentum_y_1"], metrics={ "mass_imbalance_1": lambda var: torch.sum( var["area"] * torch.abs(var["continuity_1"]) ), "momentum_imbalance_1": lambda var: torch.sum( var["area"] * (torch.abs(var["momentum_x_1"]) + torch.abs(var["momentum_y_1"])) ), }, nodes=nodes, requires_grad=True, ) domain.add_monitor(global_monitor) # metric for force on inner sphere force_monitor = PointwiseMonitor( inner_circle.sample_boundary(1024), output_names=["p"], metrics={ "force_x": lambda var: torch.sum(var["normal_x"] * var["area"] * var["p"]), "force_y": lambda var: torch.sum(var["normal_y"] * var["area"] * var["p"]), }, nodes=nodes, ) domain.add_monitor(force_monitor) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/annular_ring/annular_ring_equation_instancing/annular_ring.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from sympy import Symbol, Eq import numpy as np import torch import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry import Bounds, Parameterization, Parameter from modulus.sym.geometry.primitives_2d import Rectangle, Circle from modulus.sym.utils.sympy.functions import parabola from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.basic import NormalDotVec @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on ns = NavierStokes(nu=0.01, rho=1.0, dim=2, time=False) normal_dot_vel = NormalDotVec(["u", "v"]) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y"), Key("r")], output_keys=[Key("u"), Key("v"), Key("p")], cfg=cfg.arch.fully_connected, ) nodes = ( ns.make_nodes() + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network")] ) # add constraints to solver # specify params channel_length = (-6.732, 6.732) channel_width = (-1.0, 1.0) cylinder_center = (0.0, 0.0) outer_cylinder_radius = 2.0 inner_cylinder_radius = Parameter("r") inner_cylinder_radius_ranges = (0.75, 1.0) inlet_vel = 1.5 parameterization = Parameterization( {inner_cylinder_radius: inner_cylinder_radius_ranges} ) # make geometry x, y = Symbol("x"), Symbol("y") rec = Rectangle( (channel_length[0], channel_width[0]), (channel_length[1], channel_width[1]) ) outer_circle = Circle(cylinder_center, outer_cylinder_radius) inner_circle = Circle( (0, 0), inner_cylinder_radius, parameterization=parameterization ) geo = (rec + outer_circle) - inner_circle # make annular ring domain domain = Domain() # inlet inlet_sympy = parabola( y, inter_1=channel_width[0], inter_2=channel_width[1], height=inlet_vel ) inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": inlet_sympy, "v": 0}, batch_size=cfg.batch_size.inlet, batch_per_epoch=4000, criteria=Eq(x, channel_length[0]), ) domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, batch_per_epoch=4000, criteria=Eq(x, channel_length[1]), ) domain.add_constraint(outlet, "outlet") # no slip no_slip = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": 0, "v": 0}, batch_size=cfg.batch_size.no_slip, batch_per_epoch=4000, criteria=(x > channel_length[0]) & (x < channel_length[1]), ) domain.add_constraint(no_slip, "no_slip") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0}, batch_size=cfg.batch_size.interior, batch_per_epoch=4000, lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), }, ) domain.add_constraint(interior, "interior") # integral continuity integral_continuity = IntegralBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"normal_dot_vel": 2}, batch_size=10, integral_batch_size=cfg.batch_size.integral_continuity, lambda_weighting={"normal_dot_vel": 0.1}, criteria=Eq(x, channel_length[1]), ) domain.add_constraint(integral_continuity, "integral_continuity") # add validation data mapping = {"Points:0": "x", "Points:1": "y", "U:0": "u", "U:1": "v", "p": "p"} file_path_1 = "../openfoam/bend_finerInternal0.csv" file_path_2 = "../openfoam/annularRing_r_0.8750.csv" file_path_3 = "../openfoam/annularRing_r_0.750.csv" # r1 if os.path.exists(to_absolute_path(file_path_1)): openfoam_var_r1 = csv_to_dict(to_absolute_path(file_path_1), mapping) openfoam_var_r1["x"] += channel_length[0] # center OpenFoam data openfoam_var_r1["r"] = np.zeros_like(openfoam_var_r1["x"]) + 1.0 openfoam_invar_r1_numpy = { key: value for key, value in openfoam_var_r1.items() if key in ["x", "y", "r"] } openfoam_outvar_r1_numpy = { key: value for key, value in openfoam_var_r1.items() if key in ["u", "v", "p"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_r1_numpy, true_outvar=openfoam_outvar_r1_numpy, batch_size=1024, ) domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path_1} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # r875 if os.path.exists(to_absolute_path(file_path_2)): openfoam_var_r875 = csv_to_dict(to_absolute_path(file_path_2), mapping) openfoam_var_r875["x"] += channel_length[0] # center OpenFoam data openfoam_var_r875["r"] = np.zeros_like(openfoam_var_r875["x"]) + 0.875 openfoam_invar_r875_numpy = { key: value for key, value in openfoam_var_r875.items() if key in ["x", "y", "r"] } openfoam_outvar_r875_numpy = { key: value for key, value in openfoam_var_r875.items() if key in ["u", "v", "p"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_r875_numpy, true_outvar=openfoam_outvar_r875_numpy, batch_size=1024, ) domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path_2} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # r75 if os.path.exists(to_absolute_path(file_path_3)): openfoam_var_r75 = csv_to_dict(to_absolute_path(file_path_3), mapping) openfoam_var_r75["x"] += channel_length[0] # center OpenFoam data openfoam_var_r75["r"] = np.zeros_like(openfoam_var_r75["x"]) + 0.75 openfoam_invar_r75_numpy = { key: value for key, value in openfoam_var_r75.items() if key in ["x", "y", "r"] } openfoam_outvar_r75_numpy = { key: value for key, value in openfoam_var_r75.items() if key in ["u", "v", "p"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_r75_numpy, true_outvar=openfoam_outvar_r75_numpy, batch_size=1024, ) domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path_3} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add inferencer data for i, radius in enumerate( np.linspace( inner_cylinder_radius_ranges[0], inner_cylinder_radius_ranges[1], 10 ) ): radius = float(radius) sampled_interior = geo.sample_interior( 1024, bounds=Bounds( {x: channel_length, y: (-outer_cylinder_radius, outer_cylinder_radius)} ), parameterization={inner_cylinder_radius: radius}, ) point_cloud_inference = PointwiseInferencer( nodes=nodes, invar=sampled_interior, output_names=["u", "v", "p"], batch_size=1024, ) domain.add_inferencer(point_cloud_inference, "inf_data" + str(i).zfill(5)) # add monitors # metric for mass and momentum imbalance global_monitor = PointwiseMonitor( geo.sample_interior( 1024, bounds=Bounds( {x: channel_length, y: (-outer_cylinder_radius, outer_cylinder_radius)} ), ), output_names=["continuity", "momentum_x", "momentum_y"], metrics={ "mass_imbalance": lambda var: torch.sum( var["area"] * torch.abs(var["continuity"]) ), "momentum_imbalance": lambda var: torch.sum( var["area"] * (torch.abs(var["momentum_x"]) + torch.abs(var["momentum_y"])) ), }, nodes=nodes, requires_grad=True, ) domain.add_monitor(global_monitor) # metric for force on inner sphere for i, radius in enumerate( np.linspace(inner_cylinder_radius_ranges[0], inner_cylinder_radius_ranges[1], 3) ): radius = float(radius) force_monitor = PointwiseMonitor( inner_circle.sample_boundary( 1024, parameterization={inner_cylinder_radius: radius}, ), output_names=["p"], metrics={ "force_x_r" + str(radius): lambda var: torch.sum( var["normal_x"] * var["area"] * var["p"] ), "force_y_r" + str(radius): lambda var: torch.sum( var["normal_y"] * var["area"] * var["p"] ), }, nodes=nodes, ) domain.add_monitor(force_monitor) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/annular_ring/annular_ring_parameterized/annular_ring_parameterized.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import torch from sympy import Symbol, Eq from typing import Dict import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry import Bounds from modulus.sym.geometry.primitives_2d import Rectangle, Circle from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.basic import NormalDotVec from modulus.sym.geometry.adf import ADF class HardBC(ADF): def __init__(self): super().__init__() # domain measures self.channel_length = (-6.732, 6.732) self.channel_width = (-1.0, 1.0) self.cylinder_center = (0.0, 0.0) self.outer_cylinder_radius = 2.0 self.inner_cylinder_radius = 1.0 self.delta = 0.267949 self.center = (0.0, 0.0) self.r = self.outer_cylinder_radius self.inlet_vel = 1.5 # parameters self.eps: float = 1e-9 self.mu: float = 2.0 self.m: float = 2.0 def forward(self, invar: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Forms the solution anstaz for the annular ring example """ outvar = {} x, y = invar["x"], invar["y"] # ADFs # left line omega_0 = ADF.line_segment_adf( (x, y), (self.channel_length[0], self.channel_width[0]), (self.channel_length[0], self.channel_width[1]), ) # right line omega_1 = ADF.line_segment_adf( (x, y), (self.channel_length[1], self.channel_width[0]), (self.channel_length[1], self.channel_width[1]), ) # top left line omega_2 = ADF.line_segment_adf( (x, y), (self.channel_length[0], self.channel_width[1]), (-self.outer_cylinder_radius + self.delta, self.channel_width[1]), ) # top right line omega_3 = ADF.line_segment_adf( (x, y), (self.outer_cylinder_radius - self.delta, self.channel_width[1]), (self.channel_length[1], self.channel_width[1]), ) # bottom left line omega_4 = ADF.line_segment_adf( (x, y), (self.channel_length[0], self.channel_width[0]), (-self.outer_cylinder_radius + self.delta, self.channel_width[0]), ) # bottom right line omega_5 = ADF.line_segment_adf( (x, y), (self.outer_cylinder_radius - self.delta, self.channel_width[0]), (self.channel_length[1], self.channel_width[0]), ) # inner circle omega_6 = ADF.circle_adf((x, y), self.inner_cylinder_radius, self.center) # top arch omega_7 = ADF.trimmed_circle_adf( (x, y), (-self.outer_cylinder_radius, self.channel_width[1]), (self.outer_cylinder_radius, self.channel_width[1]), -1, self.outer_cylinder_radius, self.center, ) # bottom arch omega_8 = ADF.trimmed_circle_adf( (x, y), (-self.outer_cylinder_radius, self.channel_width[0]), (self.outer_cylinder_radius, self.channel_width[0]), 1, self.outer_cylinder_radius, self.center, ) # r equivalence omega_E_u = ADF.r_equivalence( [omega_0, omega_2, omega_3, omega_4, omega_5, omega_6, omega_7, omega_8], self.m, ) omega_E_v = ADF.r_equivalence( [omega_0, omega_2, omega_3, omega_4, omega_5, omega_6, omega_7, omega_8], self.m, ) omega_E_p = omega_1 # u BC bases = [ omega_0**self.mu, omega_2**self.mu, omega_3**self.mu, omega_4**self.mu, omega_5**self.mu, omega_6**self.mu, omega_7**self.mu, omega_8**self.mu, ] w = [ ADF.transfinite_interpolation(bases, idx, self.eps) for idx in range(len(bases)) ] dirichlet_bc = [self.inlet_vel - (3 * (y**2) / 2), 0, 0, 0, 0, 0, 0, 0] g = sum([w[i] * dirichlet_bc[i] for i in range(len(w))]) outvar["u"] = g + omega_E_u * invar["u_star"] # v BC outvar["v"] = omega_E_v * invar["v_star"] # p BC outvar["p"] = omega_E_p * invar["p_star"] return outvar @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on hard_bc = HardBC() ns = NavierStokes(nu=0.01, rho=1.0, dim=2, time=False, mixed_form=True) normal_dot_vel = NormalDotVec(["u", "v"]) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[ Key("u_star"), Key("v_star"), Key("p_star"), Key("u_x"), Key("u_y"), Key("v_x"), Key("v_y"), ], cfg=cfg.arch.fully_connected, ) nodes = ( ns.make_nodes() + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network")] + [ Node( inputs=["x", "y", "u_star", "v_star", "p_star"], outputs=["u", "v", "p"], evaluate=hard_bc, ) ] ) # add constraints to solver # specify params channel_length = hard_bc.channel_length channel_width = hard_bc.channel_width cylinder_center = hard_bc.cylinder_center outer_cylinder_radius = hard_bc.outer_cylinder_radius inner_cylinder_radius = hard_bc.inner_cylinder_radius inlet_vel = hard_bc.inlet_vel # make geometry x, y = Symbol("x"), Symbol("y") rec = Rectangle( (channel_length[0], channel_width[0]), (channel_length[1], channel_width[1]) ) outer_circle = Circle(cylinder_center, outer_cylinder_radius) inner_circle = Circle((0, 0), inner_cylinder_radius) geo = (rec + outer_circle) - inner_circle # make annular ring domain domain = Domain() # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={ "continuity": 0, "momentum_x": 0, "momentum_y": 0, "compatibility_u_x": 0, "compatibility_u_y": 0, "compatibility_v_x": 0, "compatibility_v_y": 0, }, batch_size=cfg.batch_size.interior, bounds=Bounds( {x: channel_length, y: (-outer_cylinder_radius, outer_cylinder_radius)} ), lambda_weighting={ "continuity": 5.0 * Symbol("sdf"), "momentum_x": 2.0 * Symbol("sdf"), "momentum_y": 2.0 * Symbol("sdf"), "compatibility_u_x": 0.1 * Symbol("sdf"), "compatibility_u_y": 0.1 * Symbol("sdf"), "compatibility_v_x": 0.1 * Symbol("sdf"), "compatibility_v_y": 0.1 * Symbol("sdf"), }, ) domain.add_constraint(interior, "interior") # integral continuity integral_continuity = IntegralBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"normal_dot_vel": 2}, batch_size=1, integral_batch_size=cfg.batch_size.integral_continuity, lambda_weighting={"normal_dot_vel": 0.1}, criteria=Eq(x, channel_length[1]), ) domain.add_constraint(integral_continuity, "integral_continuity") # add validation data file_path = "../openfoam/bend_finerInternal0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"Points:0": "x", "Points:1": "y", "U:0": "u", "U:1": "v", "p": "p"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] += channel_length[0] # center OpenFoam data openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "p"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, batch_size=1024, ) domain.add_validator(openfoam_validator) # add inferencer data grid_inference = PointwiseInferencer( nodes=nodes, invar=openfoam_invar_numpy, output_names=["u", "v", "p"], batch_size=1024, ) domain.add_inferencer(grid_inference, "inf_data") else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add monitors # metric for mass and momentum imbalance global_monitor = PointwiseMonitor( geo.sample_interior(1024), output_names=["continuity", "momentum_x", "momentum_y"], metrics={ "mass_imbalance": lambda var: torch.sum( var["area"] * torch.abs(var["continuity"]) ), "momentum_imbalance": lambda var: torch.sum( var["area"] * (torch.abs(var["momentum_x"]) + torch.abs(var["momentum_y"])) ), }, nodes=nodes, requires_grad=True, ) domain.add_monitor(global_monitor) # metric for force on inner sphere force_monitor = PointwiseMonitor( inner_circle.sample_boundary(1024), output_names=["p"], metrics={ "force_x": lambda var: torch.sum(var["normal_x"] * var["area"] * var["p"]), "force_y": lambda var: torch.sum(var["normal_y"] * var["area"] * var["p"]), }, nodes=nodes, ) domain.add_monitor(force_monitor) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/annular_ring/annular_ring_hardBC/annular_ring_hardBC.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ References: (1) "Son, H., Jang, J.W., Han, W.J. and Hwang, H.J., 2021. Sobolev training for the neural network solutions of pdes. arXiv preprint arXiv:2101.08932." (2) Yu, J., Lu, L., Meng, X. and Karniadakis, G.E., 2021. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems. arXiv preprint arXiv:2111.02801. """ import os import warnings from sympy import Symbol, Eq, And import torch import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry import Bounds from modulus.sym.geometry.primitives_2d import Rectangle, Circle from modulus.sym.utils.sympy.functions import parabola from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.basic import NormalDotVec from pdes.navier_stokes import NavierStokes @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on ns = NavierStokes(nu=0.01, rho=1.0, dim=2, time=False) normal_dot_vel = NormalDotVec(["u", "v"]) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v"), Key("p")], cfg=cfg.arch.fully_connected, ) nodes = ( ns.make_nodes() + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network")] ) # add constraints to solver # specify params channel_length = (-6.732, 6.732) channel_width = (-1.0, 1.0) cylinder_center = (0.0, 0.0) outer_cylinder_radius = 2.0 inner_cylinder_radius = 1.0 inlet_vel = 1.5 # make geometry x, y = Symbol("x"), Symbol("y") rec = Rectangle( (channel_length[0], channel_width[0]), (channel_length[1], channel_width[1]) ) outer_circle = Circle(cylinder_center, outer_cylinder_radius) inner_circle = Circle((0, 0), inner_cylinder_radius) geo = (rec + outer_circle) - inner_circle # make annular ring domain domain = Domain() # inlet inlet_sympy = parabola( y, inter_1=channel_width[0], inter_2=channel_width[1], height=inlet_vel ) inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": inlet_sympy, "v": 0}, lambda_weighting={"u": 1.1, "v": 1.1}, batch_size=cfg.batch_size.inlet, criteria=Eq(x, channel_length[0]), ) domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, criteria=Eq(x, channel_length[1]), ) domain.add_constraint(outlet, "outlet") # no slip no_slip = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": 0, "v": 0}, lambda_weighting={"u": 1.1, "v": 1.1}, batch_size=cfg.batch_size.no_slip, criteria=And((x > channel_length[0]), (x < channel_length[1])), ) domain.add_constraint(no_slip, "no_slip") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={ "continuity": 0, "momentum_x": 0, "momentum_y": 0, "continuity_dx": 0, "continuity_dy": 0, "momentum_x_dx": 0, "momentum_x_dy": 0, "momentum_y_dx": 0, "momentum_y_dy": 0, }, batch_size=cfg.batch_size.interior, bounds=Bounds( {x: channel_length, y: (-outer_cylinder_radius, outer_cylinder_radius)} ), lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), "continuity_dx": 0.01 * Symbol("sdf"), "continuity_dy": 0.01 * Symbol("sdf"), "momentum_x_dx": 0.01 * Symbol("sdf"), "momentum_x_dy": 0.01 * Symbol("sdf"), "momentum_y_dx": 0.01 * Symbol("sdf"), "momentum_y_dy": 0.01 * Symbol("sdf"), }, ) domain.add_constraint(interior, "interior") # integral continuity integral_continuity = IntegralBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"normal_dot_vel": 2}, batch_size=1, integral_batch_size=cfg.batch_size.integral_continuity, lambda_weighting={"normal_dot_vel": 0.11}, criteria=Eq(x, channel_length[1]), ) domain.add_constraint(integral_continuity, "integral_continuity") # add validation data file_path = "../openfoam/bend_finerInternal0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"Points:0": "x", "Points:1": "y", "U:0": "u", "U:1": "v", "p": "p"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] += channel_length[0] # center OpenFoam data openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "p"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, batch_size=1024, ) domain.add_validator(openfoam_validator) # add inferencer data grid_inference = PointwiseInferencer( nodes=nodes, invar=openfoam_invar_numpy, output_names=["u", "v", "p"], batch_size=1024, ) domain.add_inferencer(grid_inference, "inf_data") else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add monitors # metric for mass and momentum imbalance global_monitor = PointwiseMonitor( geo.sample_interior(1024), output_names=["continuity", "momentum_x", "momentum_y"], metrics={ "mass_imbalance": lambda var: torch.sum( var["area"] * torch.abs(var["continuity"]) ), "momentum_imbalance": lambda var: torch.sum( var["area"] * (torch.abs(var["momentum_x"]) + torch.abs(var["momentum_y"])) ), }, nodes=nodes, requires_grad=True, ) domain.add_monitor(global_monitor) # metric for force on inner sphere force_monitor = PointwiseMonitor( inner_circle.sample_boundary(1024), output_names=["p"], metrics={ "force_x": lambda var: torch.sum(var["normal_x"] * var["area"] * var["p"]), "force_y": lambda var: torch.sum(var["normal_y"] * var["area"] * var["p"]), }, nodes=nodes, ) domain.add_monitor(force_monitor) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/annular_ring/annular_ring_gradient_enhanced/annular_ring_gradient_enhanced.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Equations related to Navier Stokes Equations """ from sympy import Symbol, Function, Number from modulus.sym.eq.pde import PDE from modulus.sym.node import Node class NavierStokes(PDE): """ Compressible Navier Stokes equations with third-order derivatives to be used for gradient-enhanced training. Parameters ========== nu : float, Sympy Symbol/Expr, str The kinematic viscosity. If `nu` is a str then it is converted to Sympy Function of form `nu(x,y,z,t)`. If `nu` is a Sympy Symbol or Expression then this is substituted into the equation. This allows for variable viscosity. rho : float, Sympy Symbol/Expr, str The density of the fluid. If `rho` is a str then it is converted to Sympy Function of form 'rho(x,y,z,t)'. If 'rho' is a Sympy Symbol or Expression then this is substituted into the equation to allow for compressible Navier Stokes. Default is 1. dim : int Dimension of the Navier Stokes (2 or 3). Default is 3. time : bool If time-dependent equations or not. Default is True. """ name = "NavierStokes" def __init__(self, nu, rho=1, dim=3, time=True): # set params self.dim = dim self.time = time # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) if self.dim == 3: w = Function("w")(*input_variables) else: w = Number(0) # pressure p = Function("p")(*input_variables) # kinematic viscosity if isinstance(nu, str): nu = Function(nu)(*input_variables) elif isinstance(nu, (float, int)): nu = Number(nu) # density if isinstance(rho, str): rho = Function(rho)(*input_variables) elif isinstance(rho, (float, int)): rho = Number(rho) # dynamic viscosity mu = rho * nu # curl curl = Number(0) if rho.diff() == 0 else u.diff(x) + v.diff(y) + w.diff(z) # set equations self.equations = {} self.equations["continuity"] = ( rho.diff(t) + (rho * u).diff(x) + (rho * v).diff(y) + (rho * w).diff(z) ) self.equations["continuity_dx"] = ( rho.diff(t) + (rho * u).diff(x) + (rho * v).diff(y) + (rho * w).diff(z) ).diff(x) self.equations["continuity_dy"] = ( rho.diff(t) + (rho * u).diff(x) + (rho * v).diff(y) + (rho * w).diff(z) ).diff(y) self.equations["continuity_dz"] = ( rho.diff(t) + (rho * u).diff(x) + (rho * v).diff(y) + (rho * w).diff(z) ).diff(z) self.equations["momentum_x"] = ( (rho * u).diff(t) + ( u * ((rho * u).diff(x)) + v * ((rho * u).diff(y)) + w * ((rho * u).diff(z)) + rho * u * (curl) ) + p.diff(x) - (-2 / 3 * mu * (curl)).diff(x) - (mu * u.diff(x)).diff(x) - (mu * u.diff(y)).diff(y) - (mu * u.diff(z)).diff(z) - (mu * (curl).diff(x)) ) self.equations["momentum_y"] = ( (rho * v).diff(t) + ( u * ((rho * v).diff(x)) + v * ((rho * v).diff(y)) + w * ((rho * v).diff(z)) + rho * v * (curl) ) + p.diff(y) - (-2 / 3 * mu * (curl)).diff(y) - (mu * v.diff(x)).diff(x) - (mu * v.diff(y)).diff(y) - (mu * v.diff(z)).diff(z) - (mu * (curl).diff(y)) ) self.equations["momentum_z"] = ( (rho * w).diff(t) + ( u * ((rho * w).diff(x)) + v * ((rho * w).diff(y)) + w * ((rho * w).diff(z)) + rho * w * (curl) ) + p.diff(z) - (-2 / 3 * mu * (curl)).diff(z) - (mu * w.diff(x)).diff(x) - (mu * w.diff(y)).diff(y) - (mu * w.diff(z)).diff(z) - (mu * (curl).diff(z)) ) self.equations["momentum_x_dx"] = ( ( (rho * u).diff(t) + ( u * ((rho * u).diff(x)) + v * ((rho * u).diff(y)) + w * ((rho * u).diff(z)) + rho * u * (curl) ) + p.diff(x) - (-2 / 3 * mu * (curl)).diff(x) - (mu * u.diff(x)).diff(x) - (mu * u.diff(y)).diff(y) - (mu * u.diff(z)).diff(z) - (mu * (curl).diff(x)) ) ).diff(x) self.equations["momentum_x_dy"] = ( ( (rho * u).diff(t) + ( u * ((rho * u).diff(x)) + v * ((rho * u).diff(y)) + w * ((rho * u).diff(z)) + rho * u * (curl) ) + p.diff(x) - (-2 / 3 * mu * (curl)).diff(x) - (mu * u.diff(x)).diff(x) - (mu * u.diff(y)).diff(y) - (mu * u.diff(z)).diff(z) - (mu * (curl).diff(x)) ) ).diff(y) self.equations["momentum_x_dz"] = ( ( (rho * u).diff(t) + ( u * ((rho * u).diff(x)) + v * ((rho * u).diff(y)) + w * ((rho * u).diff(z)) + rho * u * (curl) ) + p.diff(x) - (-2 / 3 * mu * (curl)).diff(x) - (mu * u.diff(x)).diff(x) - (mu * u.diff(y)).diff(y) - (mu * u.diff(z)).diff(z) - (mu * (curl).diff(x)) ) ).diff(z) self.equations["momentum_y_dx"] = ( ( (rho * v).diff(t) + ( u * ((rho * v).diff(x)) + v * ((rho * v).diff(y)) + w * ((rho * v).diff(z)) + rho * v * (curl) ) + p.diff(y) - (-2 / 3 * mu * (curl)).diff(y) - (mu * v.diff(x)).diff(x) - (mu * v.diff(y)).diff(y) - (mu * v.diff(z)).diff(z) - (mu * (curl).diff(y)) ) ).diff(x) self.equations["momentum_y_dy"] = ( ( (rho * v).diff(t) + ( u * ((rho * v).diff(x)) + v * ((rho * v).diff(y)) + w * ((rho * v).diff(z)) + rho * v * (curl) ) + p.diff(y) - (-2 / 3 * mu * (curl)).diff(y) - (mu * v.diff(x)).diff(x) - (mu * v.diff(y)).diff(y) - (mu * v.diff(z)).diff(z) - (mu * (curl).diff(y)) ) ).diff(y) self.equations["momentum_y_dz"] = ( ( (rho * v).diff(t) + ( u * ((rho * v).diff(x)) + v * ((rho * v).diff(y)) + w * ((rho * v).diff(z)) + rho * v * (curl) ) + p.diff(y) - (-2 / 3 * mu * (curl)).diff(y) - (mu * v.diff(x)).diff(x) - (mu * v.diff(y)).diff(y) - (mu * v.diff(z)).diff(z) - (mu * (curl).diff(y)) ) ).diff(z) self.equations["momentum_z_dx"] = ( ( (rho * w).diff(t) + ( u * ((rho * w).diff(x)) + v * ((rho * w).diff(y)) + w * ((rho * w).diff(z)) + rho * w * (curl) ) + p.diff(z) - (-2 / 3 * mu * (curl)).diff(z) - (mu * w.diff(x)).diff(x) - (mu * w.diff(y)).diff(y) - (mu * w.diff(z)).diff(z) - (mu * (curl).diff(z)) ) ).diff(x) self.equations["momentum_z_dy"] = ( ( (rho * w).diff(t) + ( u * ((rho * w).diff(x)) + v * ((rho * w).diff(y)) + w * ((rho * w).diff(z)) + rho * w * (curl) ) + p.diff(z) - (-2 / 3 * mu * (curl)).diff(z) - (mu * w.diff(x)).diff(x) - (mu * w.diff(y)).diff(y) - (mu * w.diff(z)).diff(z) - (mu * (curl).diff(z)) ) ).diff(y) self.equations["momentum_z_dz"] = ( ( (rho * w).diff(t) + ( u * ((rho * w).diff(x)) + v * ((rho * w).diff(y)) + w * ((rho * w).diff(z)) + rho * w * (curl) ) + p.diff(z) - (-2 / 3 * mu * (curl)).diff(z) - (mu * w.diff(x)).diff(x) - (mu * w.diff(y)).diff(y) - (mu * w.diff(z)).diff(z) - (mu * (curl).diff(z)) ) ).diff(z) if self.dim == 2: self.equations.pop("momentum_z") self.equations.pop("continuity_dz") self.equations.pop("momentum_x_dz") self.equations.pop("momentum_y_dz") self.equations.pop("momentum_z_dx") self.equations.pop("momentum_z_dy") self.equations.pop("momentum_z_dz")
modulus-sym-main
examples/annular_ring/annular_ring_gradient_enhanced/pdes/navier_stokes.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import torch import numpy as np from sympy import Symbol, Eq, Or, And import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry import Bounds from modulus.sym.geometry.primitives_2d import Rectangle, Line, Channel2D from modulus.sym.eq.pdes.navier_stokes import GradNormal from modulus.sym.eq.pdes.diffusion import Diffusion, DiffusionInterface from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.models.layers import Activation from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.utils.io.plotter import ValidatorPlotter, InferencerPlotter from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.models.modified_fourier_net import ModifiedFourierNetArch @modulus.sym.main(config_path="conf_2d_solid_solid", config_name="config") def run(cfg: ModulusConfig) -> None: # add constraints to solver # simulation params channel_origin = (-2.5, -0.5) channel_dim = (5.0, 1.0) heat_sink_base_origin = (-1.0, -0.5) heat_sink_base_dim = (1.0, 0.2) fin_origin = heat_sink_base_origin fin_dim = (1.0, 0.6) total_fins = 1 box_origin = (-1.1, -0.5) box_dim = (1.2, 1.0) source_origin = (-0.7, -0.5) source_dim = (0.4, 0.0) source_length = 0.4 inlet_temp = 25.0 conductivity_I = 0.01 conductivity_II = 100.0 source_grad = 0.025 # make list of nodes to unroll graph on d_solid_I = Diffusion(T="theta_I", D=1.0, dim=2, time=False) d_solid_II = Diffusion(T="theta_II", D=1.0, dim=2, time=False) interface = DiffusionInterface( "theta_I", "theta_II", conductivity_I, conductivity_II, dim=2, time=False ) gn_solid_I = GradNormal("theta_I", dim=2, time=False) gn_solid_II = GradNormal("theta_II", dim=2, time=False) solid_I_net = ModifiedFourierNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("theta_I_star")], layer_size=128, frequencies=("gaussian", 0.2, 64), activation_fn=Activation.TANH, ) solid_II_net = ModifiedFourierNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("theta_II_star")], layer_size=128, frequencies=("gaussian", 0.2, 64), activation_fn=Activation.TANH, ) nodes = ( d_solid_I.make_nodes() + d_solid_II.make_nodes() + interface.make_nodes() + gn_solid_I.make_nodes() + gn_solid_II.make_nodes() + [ Node.from_sympy(100 * Symbol("theta_I_star") + 25.0, "theta_I") ] # Normalize the outputs + [ Node.from_sympy(Symbol("theta_II_star") + 200.0, "theta_II") ] # Normalize the outputs + [solid_I_net.make_node(name="solid_I_network")] + [solid_II_net.make_node(name="solid_II_network")] ) # define sympy variables to parametrize domain curves x, y = Symbol("x"), Symbol("y") # define geometry # channel channel = Channel2D( channel_origin, (channel_origin[0] + channel_dim[0], channel_origin[1] + channel_dim[1]), ) # heat sink heat_sink_base = Rectangle( heat_sink_base_origin, ( heat_sink_base_origin[0] + heat_sink_base_dim[0], # base of heat sink heat_sink_base_origin[1] + heat_sink_base_dim[1], ), ) fin_center = (fin_origin[0] + fin_dim[0] / 2, fin_origin[1] + fin_dim[1] / 2) fin = Rectangle( fin_origin, (fin_origin[0] + fin_dim[0], fin_origin[1] + fin_dim[1]) ) chip2d = heat_sink_base + fin # entire geometry geo = channel - chip2d # low and high resultion geo away and near the heat sink box = Rectangle( box_origin, (box_origin[0] + box_dim[0], box_origin[1] + box_dim[1]), # base of heat sink ) lr_geo = geo - box hr_geo = geo & box lr_bounds_x = (channel_origin[0], channel_origin[0] + channel_dim[0]) lr_bounds_y = (channel_origin[1], channel_origin[1] + channel_dim[1]) hr_bounds_x = (box_origin[0], box_origin[0] + box_dim[0]) hr_bounds_y = (box_origin[1], box_origin[1] + box_dim[1]) # inlet and outlet inlet = Line( channel_origin, (channel_origin[0], channel_origin[1] + channel_dim[1]), -1 ) outlet = Line( (channel_origin[0] + channel_dim[0], channel_origin[1]), (channel_origin[0] + channel_dim[0], channel_origin[1] + channel_dim[1]), 1, ) # make domain domain = Domain() # inlet inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=inlet, outvar={"theta_I": inlet_temp}, lambda_weighting={"theta_I": 10.0}, batch_size=cfg.batch_size.inlet, ) domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=outlet, outvar={"normal_gradient_theta_I": 0}, batch_size=cfg.batch_size.outlet, ) domain.add_constraint(outlet, "outlet") # channel walls insulating def walls_criteria(invar, params): sdf = chip2d.sdf(invar, params) return np.less(sdf["sdf"], -1e-5) walls = PointwiseBoundaryConstraint( nodes=nodes, geometry=channel, outvar={"normal_gradient_theta_I": 0}, batch_size=cfg.batch_size.walls, criteria=walls_criteria, ) domain.add_constraint(walls, "channel_walls") # solid I interior lr interior = PointwiseInteriorConstraint( nodes=nodes, geometry=lr_geo, outvar={"diffusion_theta_I": 0}, batch_size=cfg.batch_size.interior_lr, lambda_weighting={"diffusion_theta_I": 1.0}, ) domain.add_constraint(interior, "solid_I_interior_lr") # solid I interior hr interior = PointwiseInteriorConstraint( nodes=nodes, geometry=hr_geo, outvar={"diffusion_theta_I": 0}, batch_size=cfg.batch_size.interior_hr, lambda_weighting={"diffusion_theta_I": 1.0}, ) domain.add_constraint(interior, "solid_I_interior_hr") # solid II interior interiorS = PointwiseInteriorConstraint( nodes=nodes, geometry=chip2d, outvar={"diffusion_theta_II": 0}, batch_size=cfg.batch_size.interiorS, lambda_weighting={"diffusion_theta_II": 1.0}, ) domain.add_constraint(interiorS, "solid_II_interior") # solid-solid interface def interface_criteria(invar, params): sdf = channel.sdf(invar, params) return np.greater(sdf["sdf"], 0) interface = PointwiseBoundaryConstraint( nodes=nodes, geometry=chip2d, outvar={ "diffusion_interface_dirichlet_theta_I_theta_II": 0, "diffusion_interface_neumann_theta_I_theta_II": 0, }, batch_size=cfg.batch_size.interface, lambda_weighting={ "diffusion_interface_dirichlet_theta_I_theta_II": 10, "diffusion_interface_neumann_theta_I_theta_II": 1, }, criteria=interface_criteria, ) domain.add_constraint(interface, name="interface") # heat source heat_source = PointwiseBoundaryConstraint( nodes=nodes, geometry=chip2d, outvar={"normal_gradient_theta_II": source_grad}, batch_size=cfg.batch_size.heat_source, lambda_weighting={"normal_gradient_theta_II": 1000}, criteria=( Eq(y, source_origin[1]) & (x >= source_origin[0]) & (x <= (source_origin[0] + source_dim[0])) ), ) domain.add_constraint(heat_source, name="heat_source") # chip walls chip_walls = PointwiseBoundaryConstraint( nodes=nodes, geometry=chip2d, outvar={"normal_gradient_theta_II": 0}, batch_size=cfg.batch_size.chip_walls, # lambda_weighting={"normal_gradient_theta_II": 1000}, criteria=( Eq(y, source_origin[1]) & ((x < source_origin[0]) | (x > (source_origin[0] + source_dim[0]))) ), ) domain.add_constraint(chip_walls, name="chip_walls") # add monitor monitor = PointwiseMonitor( chip2d.sample_boundary(10000, criteria=Eq(y, source_origin[1])), output_names=["theta_II"], metrics={ "peak_temp": lambda var: torch.max(var["theta_II"]), }, nodes=nodes, ) domain.add_monitor(monitor) # add validation data file_path = "openfoam/2d_solid_solid_D1.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"Points:0": "x", "Points:1": "y", "Temperature": "theta_I"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] += channel_origin[0] # normalize pos openfoam_var["y"] += channel_origin[1] openfoam_invar_solid_I_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_solid_I_numpy = { key: value for key, value in openfoam_var.items() if key in ["theta_I"] } openfoam_validator_solid_I = PointwiseValidator( nodes=nodes, invar=openfoam_invar_solid_I_numpy, true_outvar=openfoam_outvar_solid_I_numpy, plotter=ValidatorPlotter(), ) domain.add_validator(openfoam_validator_solid_I) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) file_path = "openfoam/2d_solid_solid_D2.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"Points:0": "x", "Points:1": "y", "Temperature": "theta_II"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] += channel_origin[0] # normalize pos openfoam_var["y"] += channel_origin[1] openfoam_invar_solid_II_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_solid_II_numpy = { key: value for key, value in openfoam_var.items() if key in ["theta_II"] } openfoam_validator_solid_II = PointwiseValidator( nodes=nodes, invar=openfoam_invar_solid_II_numpy, true_outvar=openfoam_outvar_solid_II_numpy, plotter=ValidatorPlotter(), ) domain.add_validator(openfoam_validator_solid_II) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/chip_2d/chip_2d_solid_solid_heat_transfer.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import torch import numpy as np from sympy import Symbol, Eq, tanh, Or, And import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle, Line, Channel2D from modulus.sym.utils.sympy.functions import parabola from modulus.sym.eq.pdes.advection_diffusion import AdvectionDiffusion from modulus.sym.eq.pdes.navier_stokes import GradNormal from modulus.sym.eq.pdes.diffusion import Diffusion, DiffusionInterface from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.utils.io.plotter import ValidatorPlotter, InferencerPlotter from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.models.modified_fourier_net import ModifiedFourierNetArch @modulus.sym.main(config_path="conf_2d_solid_fluid", config_name="config_heat") def run(cfg: ModulusConfig) -> None: ############# # Real Params ############# fluid_kinematic_viscosity = 0.004195088 # m**2/s fluid_density = 1.1614 # kg/m**3 fluid_specific_heat = 1005 # J/(kg K) fluid_conductivity = 0.0261 # W/(m K) # copper params copper_density = 8930 # kg/m3 copper_specific_heat = 385 # J/(kg K) copper_conductivity = 385 # W/(m K) # boundary params inlet_velocity = 5.24386 # m/s inlet_temp = 25.0 # C copper_heat_flux = 51.948051948 # W / m2 ################ # Non dim params ################ length_scale = 0.04 # m time_scale = 0.007627968710072352 # s mass_scale = 7.43296e-05 # kg temp_scale = 1.0 # K velocity_scale = length_scale / time_scale # m/s pressure_scale = mass_scale / (length_scale * time_scale**2) # kg / (m s**2) density_scale = mass_scale / length_scale**3 # kg/m3 watt_scale = (mass_scale * length_scale**2) / (time_scale**3) # kg m**2 / s**3 joule_scale = (mass_scale * length_scale**2) / ( time_scale**2 ) # kg * m**2 / s**2 ############################## # Nondimensionalization Params ############################## # fluid params nd_fluid_kinematic_viscosity = fluid_kinematic_viscosity / ( length_scale**2 / time_scale ) nd_fluid_density = fluid_density / density_scale nd_fluid_specific_heat = fluid_specific_heat / ( joule_scale / (mass_scale * temp_scale) ) nd_fluid_conductivity = fluid_conductivity / ( watt_scale / (length_scale * temp_scale) ) nd_fluid_diffusivity = nd_fluid_conductivity / ( nd_fluid_specific_heat * nd_fluid_density ) # copper params nd_copper_density = copper_density / (mass_scale / length_scale**3) nd_copper_specific_heat = copper_specific_heat / ( joule_scale / (mass_scale * temp_scale) ) nd_copper_conductivity = copper_conductivity / ( watt_scale / (length_scale * temp_scale) ) nd_copper_diffusivity = nd_copper_conductivity / ( nd_copper_specific_heat * nd_copper_density ) print("nd_copper_diffusivity", nd_copper_diffusivity) # boundary params nd_inlet_velocity = inlet_velocity / (length_scale / time_scale) nd_inlet_temp = inlet_temp / temp_scale nd_copper_source_grad = copper_heat_flux * length_scale / temp_scale # make list of nodes to unroll graph on ad = AdvectionDiffusion( T="theta_f", rho=nd_fluid_density, D=nd_fluid_diffusivity, dim=2, time=False ) diff = Diffusion(T="theta_s", D=1.0, dim=2, time=False) interface = DiffusionInterface( "theta_f", "theta_s", nd_fluid_conductivity, nd_copper_conductivity, dim=2, time=False, ) gn_theta_f = GradNormal("theta_f", dim=2, time=False) gn_theta_s = GradNormal("theta_s", dim=2, time=False) flow_net = FourierNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v"), Key("p")], frequencies=("axis", [i / 5.0 for i in range(25)]), ) solid_heat_net = ModifiedFourierNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("theta_s_star")], layer_size=256, frequencies=("gaussian", 2, 128), ) fluid_heat_net = ModifiedFourierNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("theta_f_star")], layer_size=256, frequencies=("gaussian", 2, 128), ) nodes = ( ad.make_nodes(detach_names=["u", "v"]) + diff.make_nodes() + interface.make_nodes() + gn_theta_f.make_nodes() + gn_theta_s.make_nodes() + [ Node.from_sympy(Symbol("theta_s_star") + 170.0, "theta_s") ] # Normalize the outputs + [ Node.from_sympy(Symbol("theta_f_star") + 70.0, "theta_f") ] # Normalize the outputs + [flow_net.make_node(name="flow_network", optimize=False)] + [solid_heat_net.make_node(name="solid_heat_network")] + [fluid_heat_net.make_node(name="fluid_heat_network")] ) # add constraints to solver # simulation params channel_length = (-2.5, 5.0) channel_width = (-0.5, 0.5) chip_pos = -1.0 chip_height = 0.6 chip_width = 1.0 source_origin = (-0.7, -0.5) source_dim = (0.4, 0.0) source_length = 0.4 # define sympy variables to parametrize domain curves x, y = Symbol("x"), Symbol("y") # define geometry channel = Channel2D( (channel_length[0], channel_width[0]), (channel_length[1], channel_width[1]) ) inlet = Line( (channel_length[0], channel_width[0]), (channel_length[0], channel_width[1]), normal=1, ) outlet = Line( (channel_length[1], channel_width[0]), (channel_length[1], channel_width[1]), normal=1, ) rec = Rectangle( (chip_pos, channel_width[0]), (chip_pos + chip_width, channel_width[0] + chip_height), ) chip2d = rec geo = channel - rec x_pos = Symbol("x_pos") integral_line = Line((x_pos, channel_width[0]), (x_pos, channel_width[1]), 1) x_pos_range = { x_pos: lambda batch_size: np.full( (batch_size, 1), np.random.uniform(channel_length[0], channel_length[1]) ) } # make domain domain = Domain() # inlet inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=inlet, outvar={"theta_f": nd_inlet_temp}, batch_size=cfg.batch_size.inlet, lambda_weighting={"theta_f": 100.0}, ) domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=outlet, outvar={"normal_gradient_theta_f": 0}, batch_size=cfg.batch_size.outlet, criteria=Eq(x, channel_length[1]), ) domain.add_constraint(outlet, "outlet") # channel walls insulating def walls_criteria(invar, params): sdf = chip2d.sdf(invar, params) return np.less(sdf["sdf"], -1e-5) walls = PointwiseBoundaryConstraint( nodes=nodes, geometry=channel, outvar={"normal_gradient_theta_f": 0}, batch_size=cfg.batch_size.walls, criteria=walls_criteria, ) domain.add_constraint(walls, "channel_walls") # fluid interior lr interior_lr = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"advection_diffusion_theta_f": 0}, batch_size=cfg.batch_size.interior_lr, criteria=Or(x < (chip_pos - 0.25), x > (chip_pos + chip_width + 0.25)), lambda_weighting={"advection_diffusion_theta_f": 1.0}, ) domain.add_constraint(interior_lr, "fluid_interior_lr") # fluid interior hr interior_hr = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"advection_diffusion_theta_f": 0}, batch_size=cfg.batch_size.interior_hr, criteria=And(x > (chip_pos - 0.25), x < (chip_pos + chip_width + 0.25)), lambda_weighting={"advection_diffusion_theta_f": 1.0}, ) domain.add_constraint(interior_hr, "fluid_interior_hr") # solid interior interiorS = PointwiseInteriorConstraint( nodes=nodes, geometry=chip2d, outvar={"diffusion_theta_s": 0}, batch_size=cfg.batch_size.interiorS, lambda_weighting={"diffusion_theta_s": 1.0}, ) domain.add_constraint(interiorS, "solid_interior") # fluid-solid interface def interface_criteria(invar, params): sdf = channel.sdf(invar, params) return np.greater(sdf["sdf"], 0) interface = PointwiseBoundaryConstraint( nodes=nodes, geometry=chip2d, outvar={ "diffusion_interface_dirichlet_theta_f_theta_s": 0, "diffusion_interface_neumann_theta_f_theta_s": 0, }, batch_size=cfg.batch_size.interface, lambda_weighting={ "diffusion_interface_dirichlet_theta_f_theta_s": 1, "diffusion_interface_neumann_theta_f_theta_s": 1e-4, }, criteria=interface_criteria, ) domain.add_constraint(interface, name="interface") heat_source = PointwiseBoundaryConstraint( nodes=nodes, geometry=chip2d, outvar={"normal_gradient_theta_s": nd_copper_source_grad}, batch_size=cfg.batch_size.heat_source, lambda_weighting={"normal_gradient_theta_s": 100}, criteria=( Eq(y, source_origin[1]) & (x >= source_origin[0]) & (x <= (source_origin[0] + source_dim[0])) ), ) domain.add_constraint(heat_source, name="heat_source") # chip walls chip_walls = PointwiseBoundaryConstraint( nodes=nodes, geometry=chip2d, outvar={"normal_gradient_theta_s": 0}, batch_size=cfg.batch_size.chip_walls, criteria=( Eq(y, source_origin[1]) & ((x < source_origin[0]) | (x > (source_origin[0] + source_dim[0]))) ), ) domain.add_constraint(chip_walls, name="chip_walls") # add monitor monitor = PointwiseMonitor( chip2d.sample_boundary(10000, criteria=Eq(y, source_origin[1])), output_names=["theta_s"], metrics={ "peak_temp": lambda var: torch.max(var["theta_s"]), }, nodes=nodes, ) domain.add_monitor(monitor) # add validation data file_path = "openfoam/2d_real_cht_fluid.csv" if os.path.exists(to_absolute_path(file_path)): mapping = { "x-coordinate": "x", "y-coordinate": "y", "x-velocity": "u", "y-velocity": "v", "pressure": "p", "temperature": "theta_f", } openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] = openfoam_var["x"] / length_scale - 2.5 # normalize pos openfoam_var["y"] = openfoam_var["y"] / length_scale - 0.5 openfoam_var["p"] = (openfoam_var["p"] + 400.0) / pressure_scale openfoam_var["u"] = openfoam_var["u"] / velocity_scale openfoam_var["v"] = openfoam_var["v"] / velocity_scale openfoam_var["theta_f"] = openfoam_var["theta_f"] - 273.15 openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "p", "theta_f"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, plotter=ValidatorPlotter(), ) domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add solid validation data file_path = "openfoam/2d_real_cht_solid.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"x-coordinate": "x", "y-coordinate": "y", "temperature": "theta_s"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] = openfoam_var["x"] / length_scale - 2.5 # normalize pos openfoam_var["y"] = openfoam_var["y"] / length_scale - 0.5 openfoam_var["theta_s"] = openfoam_var["theta_s"] - 273.15 openfoam_solid_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_solid_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["theta_s"] } openfoam_solid_validator = PointwiseValidator( nodes=nodes, invar=openfoam_solid_invar_numpy, true_outvar=openfoam_solid_outvar_numpy, plotter=ValidatorPlotter(), ) domain.add_validator(openfoam_solid_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/chip_2d/chip_2d_solid_fluid_heat_transfer_heat.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import numpy as np from sympy import Symbol, Eq, And, Or import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle, Line, Channel2D from modulus.sym.utils.sympy.functions import parabola from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.basic import NormalDotVec from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.key import Key from modulus.sym.node import Node @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on ns = NavierStokes(nu=0.02, rho=1.0, dim=2, time=False) normal_dot_vel = NormalDotVec(["u", "v"]) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v"), Key("p")], cfg=cfg.arch.fully_connected, ) nodes = ( ns.make_nodes() + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network")] ) # add constraints to solver # simulation params channel_length = (-2.5, 2.5) channel_width = (-0.5, 0.5) chip_pos = -1.0 chip_height = 0.6 chip_width = 1.0 inlet_vel = 1.5 # define sympy variables to parametrize domain curves x, y = Symbol("x"), Symbol("y") # define geometry channel = Channel2D( (channel_length[0], channel_width[0]), (channel_length[1], channel_width[1]) ) inlet = Line( (channel_length[0], channel_width[0]), (channel_length[0], channel_width[1]), normal=1, ) outlet = Line( (channel_length[1], channel_width[0]), (channel_length[1], channel_width[1]), normal=1, ) rec = Rectangle( (chip_pos, channel_width[0]), (chip_pos + chip_width, channel_width[0] + chip_height), ) geo = channel - rec x_pos = Symbol("x_pos") integral_line = Line((x_pos, channel_width[0]), (x_pos, channel_width[1]), 1) x_pos_range = { x_pos: lambda batch_size: np.full( (batch_size, 1), np.random.uniform(channel_length[0], channel_length[1]) ) } # make domain domain = Domain() # inlet inlet_parabola = parabola(y, channel_width[0], channel_width[1], inlet_vel) inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=inlet, outvar={"u": inlet_parabola, "v": 0}, batch_size=cfg.batch_size.inlet, ) domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=outlet, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, criteria=Eq(x, channel_length[1]), ) domain.add_constraint(outlet, "outlet") # no slip no_slip = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": 0, "v": 0}, batch_size=cfg.batch_size.no_slip, ) domain.add_constraint(no_slip, "no_slip") # interior lr interior_lr = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0}, batch_size=cfg.batch_size.interior_lr, criteria=Or(x < (chip_pos - 0.25), x > (chip_pos + chip_width + 0.25)), lambda_weighting={ "continuity": 2 * Symbol("sdf"), "momentum_x": 2 * Symbol("sdf"), "momentum_y": 2 * Symbol("sdf"), }, ) domain.add_constraint(interior_lr, "interior_lr") # interior hr interior_hr = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0}, batch_size=cfg.batch_size.interior_hr, criteria=And(x > (chip_pos - 0.25), x < (chip_pos + chip_width + 0.25)), lambda_weighting={ "continuity": 2 * Symbol("sdf"), "momentum_x": 2 * Symbol("sdf"), "momentum_y": 2 * Symbol("sdf"), }, ) domain.add_constraint(interior_hr, "interior_hr") # integral continuity def integral_criteria(invar, params): sdf = geo.sdf(invar, params) return np.greater(sdf["sdf"], 0) integral_continuity = IntegralBoundaryConstraint( nodes=nodes, geometry=integral_line, outvar={"normal_dot_vel": 1}, batch_size=cfg.batch_size.num_integral_continuity, integral_batch_size=cfg.batch_size.integral_continuity, lambda_weighting={"normal_dot_vel": 1}, criteria=integral_criteria, parameterization=x_pos_range, ) domain.add_constraint(integral_continuity, "integral_continuity") # add validation data file_path = "openfoam/2D_chip_fluid0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"Points:0": "x", "Points:1": "y", "U:0": "u", "U:1": "v", "p": "p"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] -= 2.5 # normalize pos openfoam_var["y"] -= 0.5 openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "p"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, ) domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/chip_2d/chip_2d.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import numpy as np from sympy import Symbol, Eq, And, Or import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle, Line, Channel2D from modulus.sym.utils.sympy.functions import parabola from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.basic import NormalDotVec from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.models.fourier_net import FourierNetArch @modulus.sym.main(config_path="conf_2d_solid_fluid", config_name="config_flow") def run(cfg: ModulusConfig) -> None: ############# # Real Params ############# fluid_kinematic_viscosity = 0.004195088 # m**2/s fluid_density = 1.1614 # kg/m**3 fluid_specific_heat = 1005 # J/(kg K) fluid_conductivity = 0.0261 # W/(m K) # copper params copper_density = 8930 # kg/m3 copper_specific_heat = 385 # J/(kg K) copper_conductivity = 385 # W/(m K) # boundary params inlet_velocity = 5.24386 # m/s inlet_temp = 25.0 # C copper_heat_flux = 51.948051948 # W / m2 ################ # Non dim params ################ length_scale = 0.04 # m time_scale = 0.007627968710072352 # s mass_scale = 7.43296e-05 # kg temp_scale = 1.0 # K velocity_scale = length_scale / time_scale # m/s pressure_scale = mass_scale / (length_scale * time_scale**2) # kg / (m s**2) density_scale = mass_scale / length_scale**3 # kg/m3 watt_scale = (mass_scale * length_scale**2) / (time_scale**3) # kg m**2 / s**3 joule_scale = (mass_scale * length_scale**2) / ( time_scale**2 ) # kg * m**2 / s**2 ############################## # Nondimensionalization Params ############################## # fluid params nd_fluid_kinematic_viscosity = fluid_kinematic_viscosity / ( length_scale**2 / time_scale ) nd_fluid_density = fluid_density / density_scale nd_fluid_specific_heat = fluid_specific_heat / ( joule_scale / (mass_scale * temp_scale) ) nd_fluid_conductivity = fluid_conductivity / ( watt_scale / (length_scale * temp_scale) ) nd_fluid_diffusivity = nd_fluid_conductivity / ( nd_fluid_specific_heat * nd_fluid_density ) # copper params nd_copper_density = copper_density / (mass_scale / length_scale**3) nd_copper_specific_heat = copper_specific_heat / ( joule_scale / (mass_scale * temp_scale) ) nd_copper_conductivity = copper_conductivity / ( watt_scale / (length_scale * temp_scale) ) nd_copper_diffusivity = nd_copper_conductivity / ( nd_copper_specific_heat * nd_copper_density ) # boundary params nd_inlet_velocity = inlet_velocity / (length_scale / time_scale) nd_inlet_temp = inlet_temp / temp_scale nd_copper_source_grad = copper_heat_flux * length_scale / temp_scale # make list of nodes to unroll graph on ns = NavierStokes( nu=nd_fluid_kinematic_viscosity, rho=nd_fluid_density, dim=2, time=False ) normal_dot_vel = NormalDotVec(["u", "v"]) flow_net = FourierNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v"), Key("p")], frequencies=("axis", [i / 5.0 for i in range(25)]), ) nodes = ( ns.make_nodes() + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network")] ) # add constraints to solver # simulation params channel_length = (-2.5, 5.0) channel_width = (-0.5, 0.5) chip_pos = -1.0 chip_height = 0.6 chip_width = 1.0 # define sympy variables to parametrize domain curves x, y = Symbol("x"), Symbol("y") # define geometry channel = Channel2D( (channel_length[0], channel_width[0]), (channel_length[1], channel_width[1]) ) inlet = Line( (channel_length[0], channel_width[0]), (channel_length[0], channel_width[1]), normal=1, ) outlet = Line( (channel_length[1], channel_width[0]), (channel_length[1], channel_width[1]), normal=1, ) rec = Rectangle( (chip_pos, channel_width[0]), (chip_pos + chip_width, channel_width[0] + chip_height), ) geo = channel - rec x_pos = Symbol("x_pos") integral_line = Line((x_pos, channel_width[0]), (x_pos, channel_width[1]), 1) x_pos_range = { x_pos: lambda batch_size: np.full( (batch_size, 1), np.random.uniform(channel_length[0], channel_length[1]) ) } # make domain domain = Domain() # inlet inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=inlet, outvar={"u": nd_inlet_velocity, "v": 0}, batch_size=cfg.batch_size.inlet, ) domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=outlet, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, criteria=Eq(x, channel_length[1]), ) domain.add_constraint(outlet, "outlet") # no slip no_slip = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": 0, "v": 0}, batch_size=cfg.batch_size.no_slip, ) domain.add_constraint(no_slip, "no_slip") # interior lr interior_lr = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0}, batch_size=cfg.batch_size.interior_lr, criteria=Or(x < (chip_pos - 0.25), x > (chip_pos + chip_width + 0.25)), lambda_weighting={ "continuity": 2 * Symbol("sdf"), "momentum_x": 2 * Symbol("sdf"), "momentum_y": 2 * Symbol("sdf"), }, ) domain.add_constraint(interior_lr, "interior_lr") # interior hr interior_hr = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0}, batch_size=cfg.batch_size.interior_hr, criteria=And(x > (chip_pos - 0.25), x < (chip_pos + chip_width + 0.25)), lambda_weighting={ "continuity": 2 * Symbol("sdf"), "momentum_x": 2 * Symbol("sdf"), "momentum_y": 2 * Symbol("sdf"), }, ) domain.add_constraint(interior_hr, "interior_hr") # integral continuity def integral_criteria(invar, params): sdf = geo.sdf(invar, params) return np.greater(sdf["sdf"], 0) integral_continuity = IntegralBoundaryConstraint( nodes=nodes, geometry=integral_line, outvar={"normal_dot_vel": 1}, batch_size=cfg.batch_size.num_integral_continuity, integral_batch_size=cfg.batch_size.integral_continuity, lambda_weighting={"normal_dot_vel": 1}, criteria=integral_criteria, parameterization=x_pos_range, ) domain.add_constraint(integral_continuity, "integral_continuity") # add validation data file_path = "openfoam/2d_real_cht_fluid.csv" if os.path.exists(to_absolute_path(file_path)): mapping = { "x-coordinate": "x", "y-coordinate": "y", "x-velocity": "u", "y-velocity": "v", "pressure": "p", "temperature": "theta_f", } openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] = openfoam_var["x"] / length_scale - 2.5 # normalize pos openfoam_var["y"] = openfoam_var["y"] / length_scale - 0.5 openfoam_var["p"] = (openfoam_var["p"] + 400.0) / pressure_scale openfoam_var["u"] = openfoam_var["u"] / velocity_scale openfoam_var["v"] = openfoam_var["v"] / velocity_scale openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "p"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, ) domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/chip_2d/chip_2d_solid_fluid_heat_transfer_flow.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sympy import Symbol, pi, sin import os import warnings import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.wave_equation import HelmholtzEquation from modulus.sym.utils.io.plotter import ValidatorPlotter @modulus.sym.main(config_path="conf", config_name="config_ntk") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on wave = HelmholtzEquation(u="u", k=1.0, dim=2) wave_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], cfg=cfg.arch.fully_connected, ) nodes = wave.make_nodes() + [wave_net.make_node(name="wave_network")] # add constraints to solver # make geometry x, y = Symbol("x"), Symbol("y") height = 2 width = 2 rec = Rectangle((-width / 2, -height / 2), (width / 2, height / 2)) # make domain domain = Domain() # walls wall = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"u": 0}, batch_size=cfg.batch_size.wall, lambda_weighting={"u": 1.0}, ) domain.add_constraint(wall, "wall") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={ "helmholtz": -( -((pi) ** 2) * sin(pi * x) * sin(4 * pi * y) - ((4 * pi) ** 2) * sin(pi * x) * sin(4 * pi * y) + 1 * sin(pi * x) * sin(4 * pi * y) ) }, batch_size=cfg.batch_size.interior, bounds={x: (-width / 2, width / 2), y: (-height / 2, height / 2)}, lambda_weighting={ "helmholtz": 1.0, }, ) domain.add_constraint(interior, "interior") # validation data file_path = "validation/helmholtz.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"x": "x", "y": "y", "z": "u"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, batch_size=1024, plotter=ValidatorPlotter(), ) domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/helmholtz/helmholtz_ntk.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import torch import numpy as np from sympy import Symbol, pi, sin from typing import List, Tuple, Dict import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.domain.constraint import ( PointwiseInteriorConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.geometry.adf import ADF from modulus.sym.eq.pdes.wave_equation import HelmholtzEquation class HardBC(ADF): def __init__(self): super().__init__() # domain measures self.domain_height: float = 2.0 self.domain_width: float = 2.0 # boundary conditions (bottom, right, top, left) self.g: List[float] = [0.0, 0.0, 0.0, 0.0] # parameters self.eps: float = 1e-9 self.mu: float = 2.0 self.m: float = 2.0 def forward(self, invar: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Forms the solution anstaz for the Helmholtz example """ outvar = {} x, y = invar["x"], invar["y"] omega_0 = ADF.line_segment_adf( (x, y), (-self.domain_width / 2, -self.domain_height / 2), (self.domain_width / 2, -self.domain_height / 2), ) omega_1 = ADF.line_segment_adf( (x, y), (self.domain_width / 2, -self.domain_height / 2), (self.domain_width / 2, self.domain_height / 2), ) omega_2 = ADF.line_segment_adf( (x, y), (self.domain_width / 2, self.domain_height / 2), (-self.domain_width / 2, self.domain_height / 2), ) omega_3 = ADF.line_segment_adf( (x, y), (-self.domain_width / 2, self.domain_height / 2), (-self.domain_width / 2, -self.domain_height / 2), ) omega_E_u = ADF.r_equivalence([omega_0, omega_1, omega_2, omega_3], self.m) bases = [ omega_0**self.mu, omega_1**self.mu, omega_2**self.mu, omega_3**self.mu, ] w = [ ADF.transfinite_interpolation(bases, idx, self.eps) for idx in range(len(self.g)) ] g = w[0] * self.g[0] + w[1] * self.g[1] + w[2] * self.g[2] + w[3] * self.g[3] outvar["u"] = g + omega_E_u * invar["u_star"] return outvar @modulus.sym.main(config_path="conf", config_name="config_hardBC") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on wave = HelmholtzEquation(u="u", k=1.0, dim=2, mixed_form=True) hard_bc = HardBC() wave_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u_star"), Key("u_x"), Key("u_y")], cfg=cfg.arch.fully_connected, ) nodes = ( wave.make_nodes() + [Node(inputs=["x", "y", "u_star"], outputs=["u"], evaluate=hard_bc)] + [wave_net.make_node(name="wave_network")] ) # add constraints to solver # make geometry x, y = Symbol("x"), Symbol("y") height = hard_bc.domain_height width = hard_bc.domain_width rec = Rectangle((-width / 2, -height / 2), (width / 2, height / 2)) # make domain domain = Domain() # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={ "helmholtz": -( -((pi) ** 2) * sin(pi * x) * sin(4 * pi * y) - ((4 * pi) ** 2) * sin(pi * x) * sin(4 * pi * y) + 1 * sin(pi * x) * sin(4 * pi * y) ), "compatibility_u_x": 0, "compatibility_u_y": 0, }, batch_size=cfg.batch_size.interior, bounds={x: (-width / 2, width / 2), y: (-height / 2, height / 2)}, lambda_weighting={ "helmholtz": Symbol("sdf"), "compatibility_u_x": 0.5, "compatibility_u_y": 0.5, }, ) domain.add_constraint(interior, "interior") # validation data file_path = "validation/helmholtz.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"x": "x", "y": "y", "z": "u"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, batch_size=1024, ) domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/helmholtz/helmholtz_hardBC.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from sympy import Symbol, pi, sin import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.wave_equation import HelmholtzEquation @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on wave = HelmholtzEquation(u="u", k=1.0, dim=2) wave_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], cfg=cfg.arch.fully_connected, ) nodes = wave.make_nodes() + [wave_net.make_node(name="wave_network")] # add constraints to solver # make geometry x, y = Symbol("x"), Symbol("y") height = 2 width = 2 rec = Rectangle((-width / 2, -height / 2), (width / 2, height / 2)) # make domain domain = Domain() # walls wall = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"u": 0}, batch_size=cfg.batch_size.wall, ) domain.add_constraint(wall, "wall") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={ "helmholtz": -( -((pi) ** 2) * sin(pi * x) * sin(4 * pi * y) - ((4 * pi) ** 2) * sin(pi * x) * sin(4 * pi * y) + 1 * sin(pi * x) * sin(4 * pi * y) ) }, batch_size=cfg.batch_size.interior, bounds={x: (-width / 2, width / 2), y: (-height / 2, height / 2)}, lambda_weighting={ "helmholtz": Symbol("sdf"), }, ) domain.add_constraint(interior, "interior") # validation data file_path = "validation/helmholtz.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"x": "x", "y": "y", "z": "u"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, batch_size=1024, ) domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/helmholtz/helmholtz.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ NOTE: run three_fin_flow and Three_fin_thermal in "eval" mode after training to get the monitor values for different designs. """ # import Modulus library from modulus.sym.utils.io.csv_rw import dict_to_csv from modulus.sym.hydra import to_absolute_path # import other libraries import numpy as np import os, sys import csv # specify the design optimization requirements max_pressure_drop = 2.5 num_design = 10 path_flow = to_absolute_path("outputs/run_mode=eval/three_fin_flow") path_thermal = to_absolute_path("outputs/run_mode=eval/three_fin_thermal") invar_mapping = [ "fin_height_middle", "fin_height_sides", "fin_length_middle", "fin_length_sides", "fin_thickness_middle", "fin_thickness_sides", ] outvar_mapping = ["pressure_drop", "peak_temp"] # read the monitor files, and perform a design space search def DesignOpt( path_flow, path_thermal, num_design, max_pressure_drop, invar_mapping, outvar_mapping, ): path_flow += "/monitors" path_thermal += "/monitors" directory = os.path.join(os.getcwd(), path_flow) sys.path.append(path_flow) values, configs = [], [] for _, _, files in os.walk(directory): for file in files: if file.startswith("back_pressure") & file.endswith(".csv"): value = [] configs.append(file[13:-4]) # read back pressure with open(os.path.join(path_flow, file), "r") as datafile: data = [] reader = csv.reader(datafile, delimiter=",") for row in reader: columns = [row[1]] data.append(columns) last_row = float(data[-1][0]) value.append(last_row) # read front pressure with open( os.path.join(path_flow, "front_pressure" + file[13:]), "r" ) as datafile: reader = csv.reader(datafile, delimiter=",") data = [] for row in reader: columns = [row[1]] data.append(columns) last_row = float(data[-1][0]) value.append(last_row) # read temperature with open( os.path.join(path_thermal, "peak_temp" + file[13:]), "r" ) as datafile: data = [] reader = csv.reader(datafile, delimiter=",") for row in reader: columns = [row[1]] data.append(columns) last_row = float(data[-1][0]) value.append(last_row) values.append(value) # perform the design optimization values = np.array( [ [values[i][1] - values[i][0], values[i][2] * 273.15] for i in range(len(values)) ] ) indices = np.where(values[:, 0] < max_pressure_drop)[0] values = values[indices] configs = [configs[i] for i in indices] opt_design_index = values[:, 1].argsort()[0:num_design] opt_design_values = values[opt_design_index] opt_design_configs = [configs[i] for i in opt_design_index] # Save to a csv file opt_design_configs = np.array( [ np.array(opt_design_configs[i][1:].split("_")).astype(float) for i in range(num_design) ] ) opt_design_configs_dict = { key: value.reshape(-1, 1) for (key, value) in zip(invar_mapping, opt_design_configs.T) } opt_design_values_dict = { key: value.reshape(-1, 1) for (key, value) in zip(outvar_mapping, opt_design_values.T) } opt_design = {**opt_design_configs_dict, **opt_design_values_dict} dict_to_csv(opt_design, "optimal_design") print("Finished design optimization!") if __name__ == "__main__": DesignOpt( path_flow, path_thermal, num_design, max_pressure_drop, invar_mapping, outvar_mapping, )
modulus-sym-main
examples/three_fin_3d/three_fin_design.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.utils.data import DataLoader, Dataset from sympy import Symbol, Eq, Abs, tanh import numpy as np from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.geometry import Parameterization from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.key import Key from modulus.sym.node import Node # define sympy varaibles to parametize domain curves x, y, z = Symbol("x"), Symbol("y"), Symbol("z") x_pos = Symbol("x_pos") # parametric variation fin_height_m, fin_height_s = Symbol("fin_height_m"), Symbol("fin_height_s") fin_length_m, fin_length_s = Symbol("fin_length_m"), Symbol("fin_length_s") fin_thickness_m, fin_thickness_s = Symbol("fin_thickness_m"), Symbol("fin_thickness_s") height_m_range = (0.0, 0.6) height_s_range = (0.0, 0.6) length_m_range = (0.5, 1.0) length_s_range = (0.5, 1.0) thickness_m_range = (0.05, 0.15) thickness_s_range = (0.05, 0.15) param_ranges = { fin_height_m: height_m_range, fin_height_s: height_s_range, fin_length_m: length_m_range, fin_length_s: length_s_range, fin_thickness_m: thickness_m_range, fin_thickness_s: thickness_s_range, } fixed_param_ranges = { fin_height_m: 0.4, fin_height_s: 0.4, fin_length_m: 1.0, fin_length_s: 1.0, fin_thickness_m: 0.1, fin_thickness_s: 0.1, } # geometry params for domain channel_origin = (-2.5, -0.5, -0.5) channel_dim = (5.0, 1.0, 1.0) heat_sink_base_origin = (-1.0, -0.5, -0.3) heat_sink_base_dim = (1.0, 0.2, 0.6) fin_origin = (heat_sink_base_origin[0] + 0.5 - fin_length_s / 2, -0.3, -0.3) fin_dim = (fin_length_s, fin_height_s, fin_thickness_s) # two side fins total_fins = 2 # two side fins flow_box_origin = (-1.1, -0.5, -0.5) flow_box_dim = (1.6, 1.0, 1.0) source_origin = (-0.7, -0.5, -0.1) source_dim = (0.4, 0.0, 0.2) source_area = 0.08 # define geometry class ThreeFin(object): def __init__(self, parameterized: bool = False): # set param ranges if parameterized: pr = Parameterization(param_ranges) self.pr = param_ranges else: pr = Parameterization(fixed_param_ranges) self.pr = fixed_param_ranges # channel self.channel = Channel( channel_origin, ( channel_origin[0] + channel_dim[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), parameterization=pr, ) # three fin heat sink heat_sink_base = Box( heat_sink_base_origin, ( heat_sink_base_origin[0] + heat_sink_base_dim[0], # base of heat sink heat_sink_base_origin[1] + heat_sink_base_dim[1], heat_sink_base_origin[2] + heat_sink_base_dim[2], ), parameterization=pr, ) fin_center = ( fin_origin[0] + fin_dim[0] / 2, fin_origin[1] + fin_dim[1] / 2, fin_origin[2] + fin_dim[2] / 2, ) fin = Box( fin_origin, ( fin_origin[0] + fin_dim[0], fin_origin[1] + fin_dim[1], fin_origin[2] + fin_dim[2], ), parameterization=pr, ) gap = (heat_sink_base_dim[2] - fin_dim[2]) / ( total_fins - 1 ) # gap between fins fin_2 = fin.translate([0, 0, gap]) fin = fin + fin_2 three_fin = heat_sink_base + fin # parameterized center fin center_fin_origin = ( heat_sink_base_origin[0] + 0.5 - fin_length_m / 2, fin_origin[1], -fin_thickness_m / 2, ) center_fin_dim = (fin_length_m, fin_height_m, fin_thickness_m) center_fin = Box( center_fin_origin, ( center_fin_origin[0] + center_fin_dim[0], center_fin_origin[1] + center_fin_dim[1], center_fin_origin[2] + center_fin_dim[2], ), parameterization=pr, ) self.three_fin = three_fin + center_fin # entire geometry self.geo = self.channel - self.three_fin # low and high resultion geo away and near the heat sink flow_box = Box( flow_box_origin, ( flow_box_origin[0] + flow_box_dim[0], # base of heat sink flow_box_origin[1] + flow_box_dim[1], flow_box_origin[2] + flow_box_dim[2], ), ) self.lr_geo = self.geo - flow_box self.hr_geo = self.geo & flow_box lr_bounds_x = (channel_origin[0], channel_origin[0] + channel_dim[0]) lr_bounds_y = (channel_origin[1], channel_origin[1] + channel_dim[1]) lr_bounds_z = (channel_origin[2], channel_origin[2] + channel_dim[2]) self.lr_bounds = {x: lr_bounds_x, y: lr_bounds_y, z: lr_bounds_z} hr_bounds_x = (flow_box_origin[0], flow_box_origin[0] + flow_box_dim[0]) hr_bounds_y = (flow_box_origin[1], flow_box_origin[1] + flow_box_dim[1]) hr_bounds_z = (flow_box_origin[2], flow_box_origin[2] + flow_box_dim[2]) self.hr_bounds = {x: hr_bounds_x, y: hr_bounds_y, z: hr_bounds_z} # inlet and outlet self.inlet = Plane( channel_origin, ( channel_origin[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), -1, parameterization=pr, ) self.outlet = Plane( (channel_origin[0] + channel_dim[0], channel_origin[1], channel_origin[2]), ( channel_origin[0] + channel_dim[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), 1, parameterization=pr, ) # planes for integral continuity self.integral_plane = Plane( (x_pos, channel_origin[1], channel_origin[2]), ( x_pos, channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), 1, )
modulus-sym-main
examples/three_fin_3d/three_fin_geometry.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import torch from torch.utils.data import DataLoader, Dataset from sympy import Symbol, Eq, Abs, tanh, Or, And import numpy as np import itertools import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.turbulence_zero_eq import ZeroEquation from modulus.sym.eq.pdes.basic import NormalDotVec, GradNormal from modulus.sym.eq.pdes.diffusion import Diffusion, DiffusionInterface from modulus.sym.eq.pdes.advection_diffusion import AdvectionDiffusion from modulus.sym.models.fully_connected import FullyConnectedArch from three_fin_geometry import * @modulus.sym.main(config_path="conf", config_name="conf_flow") def run(cfg: ModulusConfig) -> None: # make navier stokes equations if cfg.custom.turbulent: ze = ZeroEquation(nu=0.002, dim=3, time=False, max_distance=0.5) ns = NavierStokes(nu=ze.equations["nu"], rho=1.0, dim=3, time=False) navier_stokes_nodes = ns.make_nodes() + ze.make_nodes() else: ns = NavierStokes(nu=0.01, rho=1.0, dim=3, time=False) navier_stokes_nodes = ns.make_nodes() normal_dot_vel = NormalDotVec() # make network arch if cfg.custom.parameterized: input_keys = [ Key("x"), Key("y"), Key("z"), Key("fin_height_m"), Key("fin_height_s"), Key("fin_length_m"), Key("fin_length_s"), Key("fin_thickness_m"), Key("fin_thickness_s"), ] else: input_keys = [Key("x"), Key("y"), Key("z")] flow_net = FullyConnectedArch( input_keys=input_keys, output_keys=[Key("u"), Key("v"), Key("w"), Key("p")] ) # make list of nodes to unroll graph on flow_nodes = ( navier_stokes_nodes + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network")] ) geo = ThreeFin(parameterized=cfg.custom.parameterized) # params for simulation # fluid params inlet_vel = 1.0 volumetric_flow = 1.0 # make flow domain flow_domain = Domain() # inlet u_profile = inlet_vel * tanh((0.5 - Abs(y)) / 0.02) * tanh((0.5 - Abs(z)) / 0.02) constraint_inlet = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=geo.inlet, outvar={"u": u_profile, "v": 0, "w": 0}, batch_size=cfg.batch_size.Inlet, criteria=Eq(x, channel_origin[0]), lambda_weighting={ "u": 1.0, "v": 1.0, "w": 1.0, }, # weight zero on edges parameterization=geo.pr, batch_per_epoch=5000, ) flow_domain.add_constraint(constraint_inlet, "inlet") # outlet constraint_outlet = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=geo.outlet, outvar={"p": 0}, batch_size=cfg.batch_size.Outlet, criteria=Eq(x, channel_origin[0] + channel_dim[0]), lambda_weighting={"p": 1.0}, parameterization=geo.pr, batch_per_epoch=5000, ) flow_domain.add_constraint(constraint_outlet, "outlet") # no slip for channel walls no_slip = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=geo.geo, outvar={"u": 0, "v": 0, "w": 0}, batch_size=cfg.batch_size.NoSlip, lambda_weighting={ "u": 1.0, "v": 1.0, "w": 1.0, }, # weight zero on edges parameterization=geo.pr, batch_per_epoch=5000, ) flow_domain.add_constraint(no_slip, "no_slip") # flow interior low res away from three fin lr_interior = PointwiseInteriorConstraint( nodes=flow_nodes, geometry=geo.geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0, "momentum_z": 0}, batch_size=cfg.batch_size.InteriorLR, lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), "momentum_z": Symbol("sdf"), }, compute_sdf_derivatives=True, parameterization=geo.pr, batch_per_epoch=5000, criteria=Or(x < -1.1, x > 0.5), ) flow_domain.add_constraint(lr_interior, "lr_interior") # flow interiror high res near three fin hr_interior = PointwiseInteriorConstraint( nodes=flow_nodes, geometry=geo.geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_z": 0, "momentum_y": 0}, batch_size=cfg.batch_size.InteriorLR, lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), "momentum_z": Symbol("sdf"), }, compute_sdf_derivatives=True, parameterization=geo.pr, batch_per_epoch=5000, criteria=And(x > -1.1, x < 0.5), ) flow_domain.add_constraint(hr_interior, "hr_interior") # integral continuity def integral_criteria(invar, params): sdf = geo.geo.sdf(invar, params) return np.greater(sdf["sdf"], 0) integral_continuity = IntegralBoundaryConstraint( nodes=flow_nodes, geometry=geo.integral_plane, outvar={"normal_dot_vel": volumetric_flow}, batch_size=5, integral_batch_size=cfg.batch_size.IntegralContinuity, criteria=integral_criteria, lambda_weighting={"normal_dot_vel": 1.0}, parameterization={**geo.pr, **{x_pos: (-1.1, 0.1)}}, fixed_dataset=False, num_workers=4, ) flow_domain.add_constraint(integral_continuity, "integral_continuity") # flow data file_path = "../openfoam/" if os.path.exists(to_absolute_path(file_path)): mapping = { "Points:0": "x", "Points:1": "y", "Points:2": "z", "U:0": "u", "U:1": "v", "U:2": "w", "p_rgh": "p", } if cfg.custom.turbulent: openfoam_var = csv_to_dict( to_absolute_path("openfoam/threeFin_extend_zeroEq_re500_fluid.csv"), mapping, ) else: openfoam_var = csv_to_dict( to_absolute_path("openfoam/threeFin_extend_fluid0.csv"), mapping ) openfoam_var = {key: value[0::4] for key, value in openfoam_var.items()} openfoam_var["x"] = openfoam_var["x"] + channel_origin[0] openfoam_var["y"] = openfoam_var["y"] + channel_origin[1] openfoam_var["z"] = openfoam_var["z"] + channel_origin[2] openfoam_var.update({"fin_height_m": np.full_like(openfoam_var["x"], 0.4)}) openfoam_var.update({"fin_height_s": np.full_like(openfoam_var["x"], 0.4)}) openfoam_var.update({"fin_thickness_m": np.full_like(openfoam_var["x"], 0.1)}) openfoam_var.update({"fin_thickness_s": np.full_like(openfoam_var["x"], 0.1)}) openfoam_var.update({"fin_length_m": np.full_like(openfoam_var["x"], 1.0)}) openfoam_var.update({"fin_length_s": np.full_like(openfoam_var["x"], 1.0)}) openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in [ "x", "y", "z", "fin_height_m", "fin_height_s", "fin_thickness_m", "fin_thickness_s", "fin_length_m", "fin_length_s", ] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "w", "p"] } openfoam_validator = PointwiseValidator( nodes=flow_nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, ) flow_domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add pressure monitor invar_inlet_pressure = geo.integral_plane.sample_boundary( 1024, parameterization={**fixed_param_ranges, **{x_pos: -2}} ) pressure_monitor = PointwiseMonitor( invar_inlet_pressure, output_names=["p"], metrics={"inlet_pressure": lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) flow_domain.add_monitor(pressure_monitor) # add pressure drop for design optimization # run only for parameterized cases and in eval mode if cfg.custom.parameterized and cfg.run_mode == "eval": # define candidate designs num_samples = cfg.custom.num_samples inference_param_tuple = itertools.product( np.linspace(*height_m_range, num_samples), np.linspace(*height_s_range, num_samples), np.linspace(*length_m_range, num_samples), np.linspace(*length_s_range, num_samples), np.linspace(*thickness_m_range, num_samples), np.linspace(*thickness_s_range, num_samples), ) for ( HS_height_m_, HS_height_s_, HS_length_m_, HS_length_s_, HS_thickness_m_, HS_thickness_s_, ) in inference_param_tuple: HS_height_m = float(HS_height_m_) HS_height_s = float(HS_height_s_) HS_length_m = float(HS_length_m_) HS_length_s = float(HS_length_s_) HS_thickness_m = float(HS_thickness_m_) HS_thickness_s = float(HS_thickness_s_) specific_param_ranges = { fin_height_m: HS_height_m, fin_height_s: HS_height_s, fin_length_m: HS_length_m, fin_length_s: HS_length_s, fin_thickness_m: HS_thickness_m, fin_thickness_s: HS_thickness_s, } # add metrics for front pressure plane_param_ranges = { **specific_param_ranges, **{x_pos: heat_sink_base_origin[0] - heat_sink_base_dim[0]}, } metric = ( "front_pressure" + str(HS_height_m) + "_" + str(HS_height_s) + "_" + str(HS_length_m) + "_" + str(HS_length_s) + "_" + str(HS_thickness_m) + "_" + str(HS_thickness_s) ) invar_pressure = geo.integral_plane.sample_boundary( 1024, parameterization=plane_param_ranges, ) front_pressure_monitor = PointwiseMonitor( invar_pressure, output_names=["p"], metrics={metric: lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) flow_domain.add_monitor(front_pressure_monitor) # add metrics for back pressure plane_param_ranges = { **specific_param_ranges, **{x_pos: heat_sink_base_origin[0] + 2 * heat_sink_base_dim[0]}, } metric = ( "back_pressure" + str(HS_height_m) + "_" + str(HS_height_s) + "_" + str(HS_length_m) + "_" + str(HS_length_s) + "_" + str(HS_thickness_m) + "_" + str(HS_thickness_s) ) invar_pressure = geo.integral_plane.sample_boundary( 1024, parameterization=plane_param_ranges, ) back_pressure_monitor = PointwiseMonitor( invar_pressure, output_names=["p"], metrics={metric: lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) flow_domain.add_monitor(back_pressure_monitor) # make solver flow_slv = Solver(cfg, flow_domain) # start flow solver flow_slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/three_fin_3d/three_fin_flow.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import torch from sympy import Symbol, Eq, Abs, tanh, Or, And import itertools import numpy as np import modulus.sym from modulus.sym.hydra.config import ModulusConfig from modulus.sym.hydra import to_absolute_path, instantiate_arch from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.models.fully_connected import FullyConnectedArch from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.basic import NormalDotVec, GradNormal from modulus.sym.eq.pdes.diffusion import Diffusion, DiffusionInterface from modulus.sym.eq.pdes.advection_diffusion import AdvectionDiffusion from three_fin_geometry import * @modulus.sym.main(config_path="conf", config_name="conf_thermal") def run(cfg: ModulusConfig) -> None: # make thermal equations ad = AdvectionDiffusion(T="theta_f", rho=1.0, D=0.02, dim=3, time=False) dif = Diffusion(T="theta_s", D=0.0625, dim=3, time=False) dif_inteface = DiffusionInterface("theta_f", "theta_s", 1.0, 5.0, dim=3, time=False) f_grad = GradNormal("theta_f", dim=3, time=False) s_grad = GradNormal("theta_s", dim=3, time=False) # make network arch if cfg.custom.parameterized: input_keys = [ Key("x"), Key("y"), Key("z"), Key("fin_height_m"), Key("fin_height_s"), Key("fin_length_m"), Key("fin_length_s"), Key("fin_thickness_m"), Key("fin_thickness_s"), ] else: input_keys = [Key("x"), Key("y"), Key("z")] flow_net = FullyConnectedArch( input_keys=input_keys, output_keys=[Key("u"), Key("v"), Key("w"), Key("p")], ) thermal_f_net = FullyConnectedArch( input_keys=input_keys, output_keys=[Key("theta_f")] ) thermal_s_net = FullyConnectedArch( input_keys=input_keys, output_keys=[Key("theta_s")] ) # make list of nodes to unroll graph on thermal_nodes = ( ad.make_nodes() + dif.make_nodes() + dif_inteface.make_nodes() + f_grad.make_nodes() + s_grad.make_nodes() + [flow_net.make_node(name="flow_network", optimize=False)] + [thermal_f_net.make_node(name="thermal_f_network")] + [thermal_s_net.make_node(name="thermal_s_network")] ) geo = ThreeFin(parameterized=cfg.custom.parameterized) # params for simulation # heat params inlet_t = 293.15 / 273.15 - 1.0 grad_t = 360 / 273.15 # make flow domain thermal_domain = Domain() # inlet constraint_inlet = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=geo.inlet, outvar={"theta_f": inlet_t}, batch_size=cfg.batch_size.Inlet, criteria=Eq(x, channel_origin[0]), lambda_weighting={"theta_f": 1.0}, # weight zero on edges parameterization=geo.pr, ) thermal_domain.add_constraint(constraint_inlet, "inlet") # outlet constraint_outlet = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=geo.outlet, outvar={"normal_gradient_theta_f": 0}, batch_size=cfg.batch_size.Outlet, criteria=Eq(x, channel_origin[0] + channel_dim[0]), lambda_weighting={"normal_gradient_theta_f": 1.0}, # weight zero on edges parameterization=geo.pr, ) thermal_domain.add_constraint(constraint_outlet, "outlet") # channel walls insulating def wall_criteria(invar, params): sdf = geo.three_fin.sdf(invar, params) return np.less(sdf["sdf"], -1e-5) channel_walls = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=geo.channel, outvar={"normal_gradient_theta_f": 0}, batch_size=cfg.batch_size.ChannelWalls, criteria=wall_criteria, lambda_weighting={"normal_gradient_theta_f": 1.0}, parameterization=geo.pr, ) thermal_domain.add_constraint(channel_walls, "channel_walls") # fluid solid interface def interface_criteria(invar, params): sdf = geo.channel.sdf(invar, params) return np.greater(sdf["sdf"], 0) fluid_solid_interface = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=geo.three_fin, outvar={ "diffusion_interface_dirichlet_theta_f_theta_s": 0, "diffusion_interface_neumann_theta_f_theta_s": 0, }, batch_size=cfg.batch_size.SolidInterface, criteria=interface_criteria, parameterization=geo.pr, ) thermal_domain.add_constraint(fluid_solid_interface, "fluid_solid_interface") # heat source sharpen_tanh = 60.0 source_func_xl = (tanh(sharpen_tanh * (x - source_origin[0])) + 1.0) / 2.0 source_func_xh = ( tanh(sharpen_tanh * ((source_origin[0] + source_dim[0]) - x)) + 1.0 ) / 2.0 source_func_zl = (tanh(sharpen_tanh * (z - source_origin[2])) + 1.0) / 2.0 source_func_zh = ( tanh(sharpen_tanh * ((source_origin[2] + source_dim[2]) - z)) + 1.0 ) / 2.0 gradient_normal = ( grad_t * source_func_xl * source_func_xh * source_func_zl * source_func_zh ) heat_source = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=geo.three_fin, outvar={"normal_gradient_theta_s": gradient_normal}, batch_size=cfg.batch_size.HeatSource, criteria=Eq(y, source_origin[1]), ) thermal_domain.add_constraint(heat_source, "heat_source") # flow interior low res away from three fin lr_flow_interior = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=geo.geo, outvar={"advection_diffusion_theta_f": 0}, batch_size=cfg.batch_size.InteriorLR, criteria=Or(x < -1.1, x > 0.5), ) thermal_domain.add_constraint(lr_flow_interior, "lr_flow_interior") # flow interiror high res near three fin hr_flow_interior = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=geo.geo, outvar={"advection_diffusion_theta_f": 0}, batch_size=cfg.batch_size.InteriorHR, criteria=And(x > -1.1, x < 0.5), ) thermal_domain.add_constraint(hr_flow_interior, "hr_flow_interior") # solid interior solid_interior = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=geo.three_fin, outvar={"diffusion_theta_s": 0}, batch_size=cfg.batch_size.SolidInterior, lambda_weighting={"diffusion_theta_s": 100.0}, ) thermal_domain.add_constraint(solid_interior, "solid_interior") # flow validation data file_path = "../openfoam/" if os.path.exists(to_absolute_path(file_path)): mapping = { "Points:0": "x", "Points:1": "y", "Points:2": "z", "U:0": "u", "U:1": "v", "U:2": "w", "p_rgh": "p", "T": "theta_f", } if cfg.custom.turbulent: openfoam_var = csv_to_dict( to_absolute_path("openfoam/threeFin_extend_zeroEq_re500_fluid.csv"), mapping, ) else: openfoam_var = csv_to_dict( to_absolute_path("openfoam/threeFin_extend_fluid0.csv"), mapping ) openfoam_var["theta_f"] = ( openfoam_var["theta_f"] / 273.15 - 1.0 ) # normalize heat openfoam_var["x"] = openfoam_var["x"] + channel_origin[0] openfoam_var["y"] = openfoam_var["y"] + channel_origin[1] openfoam_var["z"] = openfoam_var["z"] + channel_origin[2] openfoam_var.update({"fin_height_m": np.full_like(openfoam_var["x"], 0.4)}) openfoam_var.update({"fin_height_s": np.full_like(openfoam_var["x"], 0.4)}) openfoam_var.update({"fin_thickness_m": np.full_like(openfoam_var["x"], 0.1)}) openfoam_var.update({"fin_thickness_s": np.full_like(openfoam_var["x"], 0.1)}) openfoam_var.update({"fin_length_m": np.full_like(openfoam_var["x"], 1.0)}) openfoam_var.update({"fin_length_s": np.full_like(openfoam_var["x"], 1.0)}) openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in [ "x", "y", "z", "fin_height_m", "fin_height_s", "fin_thickness_m", "fin_thickness_s", "fin_length_m", "fin_length_s", ] } openfoam_flow_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "w", "p"] } openfoam_thermal_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "w", "p", "theta_f"] } openfoam_flow_validator = PointwiseValidator( nodes=thermal_nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_thermal_outvar_numpy, ) thermal_domain.add_validator( openfoam_flow_validator, "thermal_flow_data", ) # solid data mapping = {"Points:0": "x", "Points:1": "y", "Points:2": "z", "T": "theta_s"} if cfg.custom.turbulent: openfoam_var = csv_to_dict( to_absolute_path("openfoam/threeFin_extend_zeroEq_re500_solid.csv"), mapping, ) else: openfoam_var = csv_to_dict( to_absolute_path("openfoam/threeFin_extend_solid0.csv"), mapping ) openfoam_var["theta_s"] = ( openfoam_var["theta_s"] / 273.15 - 1.0 ) # normalize heat openfoam_var["x"] = openfoam_var["x"] + channel_origin[0] openfoam_var["y"] = openfoam_var["y"] + channel_origin[1] openfoam_var["z"] = openfoam_var["z"] + channel_origin[2] openfoam_var.update({"fin_height_m": np.full_like(openfoam_var["x"], 0.4)}) openfoam_var.update({"fin_height_s": np.full_like(openfoam_var["x"], 0.4)}) openfoam_var.update({"fin_thickness_m": np.full_like(openfoam_var["x"], 0.1)}) openfoam_var.update({"fin_thickness_s": np.full_like(openfoam_var["x"], 0.1)}) openfoam_var.update({"fin_length_m": np.full_like(openfoam_var["x"], 1.0)}) openfoam_var.update({"fin_length_s": np.full_like(openfoam_var["x"], 1.0)}) openfoam_invar_solid_numpy = { key: value for key, value in openfoam_var.items() if key in [ "x", "y", "z", "fin_height_m", "fin_height_s", "fin_thickness_m", "fin_thickness_s", "fin_length_m", "fin_length_s", ] } openfoam_outvar_solid_numpy = { key: value for key, value in openfoam_var.items() if key in ["theta_s"] } openfoam_solid_validator = PointwiseValidator( nodes=thermal_nodes, invar=openfoam_invar_solid_numpy, true_outvar=openfoam_thermal_outvar_numpy, ) thermal_domain.add_validator( openfoam_solid_validator, "thermal_solid_data", ) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add peak temp monitors for design optimization # run only for parameterized cases and in eval mode if cfg.custom.parameterized and cfg.run_mode == "eval": # define candidate designs num_samples = cfg.custom.num_samples inference_param_tuple = itertools.product( np.linspace(*height_m_range, num_samples), np.linspace(*height_s_range, num_samples), np.linspace(*length_m_range, num_samples), np.linspace(*length_s_range, num_samples), np.linspace(*thickness_m_range, num_samples), np.linspace(*thickness_s_range, num_samples), ) for ( HS_height_m_, HS_height_s_, HS_length_m_, HS_length_s_, HS_thickness_m_, HS_thickness_s_, ) in inference_param_tuple: HS_height_m = float(HS_height_m_) HS_height_s = float(HS_height_s_) HS_length_m = float(HS_length_m_) HS_length_s = float(HS_length_s_) HS_thickness_m = float(HS_thickness_m_) HS_thickness_s = float(HS_thickness_s_) specific_param_ranges = { fin_height_m: HS_height_m, fin_height_s: HS_height_s, fin_length_m: HS_length_m, fin_length_s: HS_length_s, fin_thickness_m: HS_thickness_m, fin_thickness_s: HS_thickness_s, } # add metrics for peak temperature plane_param_ranges = {**specific_param_ranges} metric = ( "peak_temp" + str(HS_height_m) + "_" + str(HS_height_s) + "_" + str(HS_length_m) + "_" + str(HS_length_s) + "_" + str(HS_thickness_m) + "_" + str(HS_thickness_s) ) invar_temp = geo.three_fin.sample_boundary( 5000, criteria=Eq(y, source_origin[1]), parameterization=plane_param_ranges, ) peak_temp_monitor = PointwiseMonitor( invar_temp, output_names=["theta_s"], metrics={metric: lambda var: torch.max(var["theta_s"])}, nodes=thermal_nodes, ) thermal_domain.add_monitor(peak_temp_monitor) # make solver thermal_slv = Solver(cfg, thermal_domain) # start thermal solver thermal_slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/three_fin_3d/three_fin_thermal.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os import numpy as np from tensorboard.backend.event_processing import event_accumulator import matplotlib.pyplot as plt def read_tensorboard_eventfiles(path): assert len(glob.glob(path + "*events*")) != 0, "No event files found" if len(glob.glob(path + "*events*")) > 1: # print("Found more than one event files") events_data = [] run_time = [] for i in glob.glob(path + "*events*"): ea = event_accumulator.EventAccumulator( i, size_guidance={event_accumulator.TENSORS: 0} ) ea.Reload() tensors_list = ea.Tags()["tensors"] tensors_list.remove("config/text_summary") event_data = {} for t in tensors_list: event_data[t] = tf_log_to_np(ea.Tensors(t)) if ( len(event_data["Train/learning_rate"]["w_time"]) != 1 ): # skip the eventfiles that have only one entry in the runtime computation run_time.append( event_data["Train/learning_rate"]["w_time"][-1] - event_data["Train/learning_rate"]["w_time"][0] ) events_data.append(event_data) run_time = sum(run_time) data = {} for t in events_data[0].keys(): combined_data = {} for k in events_data[0][t].keys(): combined_data[k] = np.concatenate( [events_data[i][t][k] for i in range(len(events_data))] ) data[t] = combined_data # sort the data idx = np.argsort(data["Train/learning_rate"]["step"]) for t in data.keys(): for k in data[t].keys(): data[t][k] = data[t][k][idx] else: data = {} # print("Found only one event file") ea = event_accumulator.EventAccumulator( glob.glob(path + "*events*")[0], size_guidance={event_accumulator.TENSORS: 0}, ) ea.Reload() tensors_list = ea.Tags()["tensors"] tensors_list.remove("config/text_summary") for t in tensors_list: data[t] = tf_log_to_np(ea.Tensors(t)) if len(data["Train/learning_rate"]["w_time"]) != 1: run_time = ( data["Train/learning_rate"]["w_time"][-1] - data["Train/learning_rate"]["w_time"][0] ) return data, run_time def tf_log_to_np(tensor_list): w_time, step, val = zip(*tensor_list) val_floats = [] for i in range(len(val)): val_floats.append(val[i].float_val) np_data = { "w_time": np.array(w_time), "step": np.array(step), "value": np.array(val_floats).flatten(), } return np_data def print_final_results(np_log_data, run_time): for key in np_log_data.keys(): print( str(key) + " at step " + str(np_log_data[key]["step"][-1]) + " is " + str(np_log_data[key]["value"][-1]) ) print("Total runtime minutes: " + str(run_time / 60)) def save_final_results(np_log_data, path): for key in np_log_data.keys(): np.savetxt( path + key[key.rfind("/") + 1 :] + ".csv", np.concatenate( ( np.reshape(np_log_data[key]["w_time"], (1, -1)), np.reshape(np_log_data[key]["step"], (1, -1)), np.reshape(np_log_data[key]["value"], (1, -1)), ), axis=0, ).T, delimiter=",", header="w_time, step, value", comments="", ) def plot_results(np_log_data, save_path): keys_list = list(np_log_data.keys()) train_keys = [key for key in keys_list if "Train" in key] validator_keys = [key for key in keys_list if "Validators" in key] train_keys.insert(0, train_keys.pop(train_keys.index("Train/learning_rate"))) train_keys.insert(1, train_keys.pop(train_keys.index("Train/loss_aggregated"))) ordered_keys_list = train_keys + validator_keys fig, axs = plt.subplots( len(ordered_keys_list), figsize=(4, 3 * len(ordered_keys_list)) ) for i in range(len(ordered_keys_list)): axs[i].plot( np_log_data[ordered_keys_list[i]]["step"], np_log_data[ordered_keys_list[i]]["value"], ) axs[i].set_yscale("log") axs[i].set_title(ordered_keys_list[i]) plt.tight_layout() plt.savefig(save_path + "/train_plots") def check_validation_error(path, threshold, save_path): os.makedirs(save_path, exist_ok=True) np_log_data, run_time = read_tensorboard_eventfiles(path) for key in np_log_data.keys(): if "Validators" in key: assert ( np_log_data[key]["value"][-1] < threshold ), "Validation error for {} is not below the specified threshold of {}".format( key, threshold ) plot_results(np_log_data, save_path) print_final_results(np_log_data, run_time) save_final_results(np_log_data, save_path)
modulus-sym-main
examples/test/tflogs_reader.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import random from termcolor import colored from collections import Counter import itertools from process import Process class Que: def __init__( self, available_gpus=(0, 1), print_type="que", exit_on_fail=True, loop_pause=10.0, clear_prints=False, ): self.pl = [] self.pl_errors = [] # Holds failed processes self.running_pl = [] self.available_gpus = list(available_gpus) self.start_time = 0 self.print_type = print_type self.exit_on_fail = exit_on_fail self.loop_pause = loop_pause self.clear_prints = clear_prints def enque_experiments(self, cmd, params, cwd="./"): cross_params = itertools.product( *[ ["--" + key + "=" + str(value) for value in params[key]] for key in params.keys() ] ) cmds = [] cwds = [] for param in cross_params: cmds.append(cmd + " " + " ".join(param)) cwds.append(cwd) self.enque_cmds(cmds, cwds) def enque_cmds(self, name, cmds, cwds): if type(cmds) is str: cmds = [cmds] cwds = [cwds] random.shuffle(cmds) for cmd, cwd in zip(cmds, cwds): self.pl.append(Process(name, cmd, cwd=cwd)) def start_next(self, gpu): for i in range(len(self.pl)): if self.pl[i].get_status() == "Not Started": print(colored(f"Starting job: {self.pl[i].name}", "yellow")) self.pl[i].start(gpu) break def find_free_gpu(self): used_gpus = [] for i in range(len(self.pl)): if self.pl[i].get_status() == "Running": used_gpus.append(self.pl[i].get_gpu()) free_gpus = list(Counter(self.available_gpus) - Counter(used_gpus)) return free_gpus def num_finished_processes(self): proc = 0 for i in range(len(self.pl)): if ( self.pl[i].get_status() == "Finished" and self.pl[i].get_return_status() == "SUCCESS" ): proc += 1 return proc def num_failed_processes(self): proc = 0 for i in range(len(self.pl)): if ( self.pl[i].get_status() == "Finished" and self.pl[i].get_return_status() == "FAIL" ): proc += 1 return proc def num_running_processes(self): proc = 0 for i in range(len(self.pl)): if self.pl[i].get_status() == "Running": proc += 1 return proc def num_unstarted_processes(self): proc = 0 for i in range(len(self.pl)): if self.pl[i].get_status() == "Not Started": proc += 1 return proc def percent_complete(self): rc = 0.0 if self.num_finished_processes() > 0: rc = self.num_finished_processes() / float(len(self.pl)) return rc * 100.0 def run_time(self): return time.time() - self.start_time def time_left(self): tl = -1 pc = self.percent_complete() if pc > 0: tl = (time.time() - self.start_time) * ( 1.0 / (pc / 100.0) ) - self.run_time() return tl def time_string(self, tl): tl = max([0, tl]) seconds = int(tl % 60) tl = (tl - seconds) / 60 mins = int(tl % 60) tl = (tl - mins) / 60 hours = int(tl % 24) days = int((tl - hours) / 24) return ( "(" + str(days).zfill(3) + ":" + str(hours).zfill(2) + ":" + str(mins).zfill(2) + ":" + str(seconds).zfill(2) + ")" ) def update_pl_status(self): for i in range(len(self.pl)): self.pl[i].update_status() def print_que_status(self): if self.clear_prints: os.system("clear") print("QUE STATUS") print( colored( "Num Finished Success: " + str(self.num_finished_processes()), "green" ) ) print( colored("Num Finished Fail: " + str(self.num_failed_processes()), "red") ) print( colored( "Num Running: " + str(self.num_running_processes()), "yellow" ) ) print( colored( "Num Left: " + str(self.num_unstarted_processes()), "blue" ) ) print( colored( "Percent Complete: {0:.1f}%".format(self.percent_complete()), "blue" ) ) print( colored( "Time Left (D:H:M:S): " + self.time_string(self.time_left()), "blue" ) ) print( colored( "Run Time (D:H:M:S): " + self.time_string(self.run_time()), "blue" ) ) for p in self.pl: if p.return_status == "FAIL" and p not in self.pl_errors: p.print_info() self.pl_errors.append(p) def start_que_runner(self): self.start_time = time.time() while True: # enqueu experiments free_gpus = self.find_free_gpu() for gpu in free_gpus: self.start_next(gpu) # print status self.update_pl_status() if self.print_type == "que": self.print_que_status() elif self.print_type == "process": if self.clear_prints: os.system("clear") for p in self.pl: p.print_info() else: raise ValueError("print type not defined: " + self.print_type) # check if finished finished = True failed = False for p in self.pl: if p.status != "Finished": finished = False if p.return_status == "FAIL": failed = True if finished: break if self.exit_on_fail and failed: raise RuntimeError("One or more experiements have failed") time.sleep(self.loop_pause)
modulus-sym-main
examples/test/que.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import os import time import glob import subprocess from termcolor import colored class Process: def __init__(self, name, cmd, cwd="./"): self.name = name self.cmd = cmd self.cwd = cwd self.status = "Not Started" self.gpu = -1 self.process = None self.return_status = "NONE" self.run_time = 0 def start(self, gpu=0): with open(os.devnull, "w") as devnull: self.process = subprocess.Popen( self.cmd.split(" "), cwd=self.cwd, stdout=devnull, stderr=subprocess.PIPE, env=dict(os.environ, CUDA_VISIBLE_DEVICES=str(gpu)), ) self.pid = self.process.pid self.status = "Running" self.start_time = time.time() self.gpu = gpu def update_status(self): if self.status == "Running": self.run_time = time.time() - self.start_time if self.process.poll() is not None: self.status = "Finished" if self.process.poll() == 0: self.return_status = "SUCCESS" else: self.return_status = "FAIL" self.return_code = self.process.returncode output, error = self.process.communicate() if not error is None: self.error = error.decode("utf-8") else: self.error = "No error message. :(" def get_pid(self): return self.pid def get_status(self): return self.status def get_gpu(self): return self.gpu def get_return_status(self): return self.return_status def print_info(self): print_string = "\n" + colored(f"Process info for: {self.name}", "blue") + "\n" print_string = print_string + colored("cmd is ", "blue") + self.cmd + "\n" print_string = print_string + (colored("cwd is ", "blue") + self.cwd + "\n") print_string = print_string + (colored("status ", "blue") + self.status + "\n") if self.return_status == "SUCCESS": print_string = print_string + ( colored("return status ", "blue") + colored(self.return_status, "green") + "\n" ) elif self.return_status == "FAIL": print_string = print_string + ( colored("return status ", "blue") + colored(self.return_status, "red") + "\n" + colored("START OF ERROR MESSAGE", "red") + "\n" + self.error + colored("END OF ERROR MESSAGE", "red") + "\n" ) else: print_string = print_string + ( colored("return status ", "blue") + colored(self.return_status, "yellow") + "\n" ) print_string = print_string + ( colored("run time ", "blue") + str(self.run_time) ) print(print_string)
modulus-sym-main
examples/test/process.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tflogs_reader import check_validation_error, plot_results if __name__ == "__main__": check_validation_error( "../helmholtz/outputs/helmholtz/", threshold=0.3, save_path="./checks/helmholtz/", ) check_validation_error( "../discontinuous_galerkin/dg/outputs/dg/", threshold=0.3, save_path="./checks/dg/", ) check_validation_error( "../anti_derivative/outputs/physics_informed/", threshold=0.3, save_path="./checks/physics_informed/", )
modulus-sym-main
examples/test/run_ci_tests.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import argparse import GPUtil import json from pathlib import Path from que import Que def get_experiments( tag: str, run_opt: str = "full", json_file: Path = Path("./experiments.json") ): """Gets dictionary of experiments to run from JSON file Parameters ---------- tag : str Tag of experiments to get run_opt : str, optional Run option, by default "full" json_file : Path, optional Filename/path to JSON file, by default Path("./experiments.json") """ assert json_file.is_file(), f"Invalid experiment JSON path {json_file}" with open("experiments.json") as json_file: data = json.load(json_file) # Run option must be present in run options field assert run_opt in data["run_opts"], f"Invalid experiment run option {run_opt}" experiments = {} for key, value in data["experiments"].items(): if tag in value["tags"]: experiments[f"{key}"] = { "path": value["path"], "run_cmd": value["run_cmd"] + "".join([f" {cmd}" for cmd in data["run_opts"][run_opt]]), } return experiments if __name__ == "__main__": # get inputs parser = argparse.ArgumentParser() parser.add_argument( "--mode", default="single_step", choices=["full", "single_step", "unit_tests"] ) parser.add_argument("--gpus", default=None) args = parser.parse_args() # get gpus if args.gpus is None: available_gpus = GPUtil.getAvailable(limit=8) else: available_gpus = [int(x) for x in args.gpus.split(",")] if not available_gpus: raise ValueError("At least 1 GPU is required to run this script") # set experiments if args.mode == "full": tags = ["first", "second"] run_opt = "full" elif args.mode == "single_step": tags = ["first", "second"] run_opt = "single" elif args.mode == "unit_tests": tags = ["unit"] run_opt = "full" for tag in tags: print(f"Collecting experiments with tag: {tag}") experiments = get_experiments(tag, run_opt) q = Que(available_gpus=available_gpus, print_type="que", exit_on_fail=False) for key, value in experiments.items(): q.enque_cmds(name=key, cmds=value["run_cmd"], cwds=value["path"]) # Run experiment queue q.start_que_runner()
modulus-sym-main
examples/test/run_experiments.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import sympy as sp import numpy as np from typing import List, Dict, Union import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.distributed import DistributedManager from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import Constraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.loss import PointwiseLossNorm from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.utils.io import grid_to_vtk from jhtdb_utils import make_jhtdb_dataset from ops import FlowOps class SuperResolutionConstraint(Constraint): def __init__( self, nodes: List[Node], invar: Dict[str, np.array], outvar: Dict[str, np.array], batch_size: int, loss_weighting: Dict[str, int], dx: float = 1.0, lambda_weighting: Dict[str, Union[np.array, sp.Basic]] = None, num_workers: int = 0, ): dataset = DictGridDataset( invar=invar, outvar=outvar, lambda_weighting=lambda_weighting ) super().__init__( nodes=nodes, dataset=dataset, loss=PointwiseLossNorm(), batch_size=batch_size, shuffle=True, drop_last=True, num_workers=num_workers, ) self.dx = dx self.ops = FlowOps().to(self.device) self.loss_weighting = {} self.fields = set("U") for key, value in loss_weighting.items(): if float(value) > 0: self.fields = set(key).union(self.fields) self.loss_weighting[key] = value def calc_flow_stats(self, data_var): output = {"U": data_var["U"]} vel_output = {} cont_output = {} vort_output = {} enst_output = {} strain_output = {} # compute derivatives if len(self.fields) > 1: grad_output = self.ops.get_velocity_grad( data_var["U"], dx=self.dx, dy=self.dx, dz=self.dx ) # compute continuity if "continuity" in self.fields: cont_output = self.ops.get_continuity_residual(grad_output) # compute vorticity if "omega" in self.fields or "enstrophy" in self.fields: vort_output = self.ops.get_vorticity(grad_output) # compute enstrophy if "enstrophy" in self.fields: enst_output = self.ops.get_enstrophy(vort_output) # compute strain rate if "strain" in self.fields: strain_output = self.ops.get_strain_rate_mag(grad_output) if "dU" in self.fields: # Add to output dictionary grad_output = torch.cat( [ grad_output[key] for key in [ "u__x", "u__y", "u__z", "v__x", "v__y", "v__z", "w__x", "w__y", "w__z", ] ], dim=1, ) vel_output = {"dU": grad_output} if "omega" in self.fields: vort_output = torch.cat( [vort_output[key] for key in ["omega_x", "omega_y", "omega_z"]], dim=1 ) vort_output = {"omega": vort_output} output.update(vel_output) output.update(cont_output) output.update(vort_output) output.update(enst_output) output.update(strain_output) return output def save_batch(self, filename): # sample batch invar, true_outvar, lambda_weighting = next(self.dataloader) invar0 = {key: value for key, value in invar.items()} invar = Constraint._set_device(invar, device=self.device, requires_grad=True) true_outvar = Constraint._set_device(true_outvar, device=self.device) # compute pred outvar if hasattr(self.model, "module"): modl = self.model.module else: modl = self.model pred_outvar = modl(invar) # Calc flow related stats pred_outvar = self.calc_flow_stats(pred_outvar) true_outvar = self.calc_flow_stats(true_outvar) named_true_outvar = {"true_" + key: value for key, value in true_outvar.items()} named_pred_outvar = {"pred_" + key: value for key, value in pred_outvar.items()} save_var = {**named_true_outvar, **named_pred_outvar} out_save_var = { key: value.cpu().detach().numpy() for key, value in save_var.items() } in_save_var = { key: value.cpu().detach().numpy() for key, value in invar0.items() } # Output both the high-res and low-res fields for b in range(min(4, next(iter(invar.values())).shape[0])): grid_to_vtk(out_save_var, filename + f"_{b}_hr", batch_index=b) grid_to_vtk(in_save_var, filename + f"_{b}_lr", batch_index=b) def load_data(self): # get lr and high resolution data from dataloader invar, target_var, _ = next(self.dataloader) self._input_vars = Constraint._set_device( invar, device=self.device, requires_grad=False ) self._target_vars = Constraint._set_device(target_var, device=self.device) def load_data_static(self): if self._input_vars is None: # Default loading if vars not allocated self.load_data() else: # get train points from dataloader invar, target_vars, _ = next(self.dataloader) # Set grads to false here for inputs, static var has allocation already invar = Constraint._set_device( invar, device=self.device, requires_grad=False ) target_vars = Constraint._set_device(target_vars, device=self.device) for key in invar.keys(): self._input_vars[key].data.copy_(invar[key]) for key in target_vars.keys(): self._target_vars[key].copy_(target_vars[key]) def forward(self): # compute forward pass of conv net self._pred_outvar = self.model(self._input_vars) def loss(self, step: int) -> Dict[str, torch.Tensor]: # Calc flow related stats pred_outvar = self.calc_flow_stats(self._pred_outvar) target_vars = self.calc_flow_stats(self._target_vars) # compute losses losses = {} for key in target_vars.keys(): mean = (target_vars[key] ** 2).mean() losses[key] = ( self.loss_weighting[key] * (((pred_outvar[key] - target_vars[key]) ** 2) / mean).mean() ) return losses class SuperResolutionValidator(GridValidator): def __init__(self, *args, log_iter: bool = False, **kwargs): super().__init__(*args, **kwargs) self.log_iter = log_iter self.device = DistributedManager().device def save_results(self, name, results_dir, writer, save_filetypes, step): invar_cpu = {key: [] for key in self.dataset.invar_keys} true_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} pred_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} # Loop through mini-batches for i, (invar0, true_outvar0, lambda_weighting) in enumerate(self.dataloader): # Move data to device (may need gradients in future, if so requires_grad=True) invar = Constraint._set_device( invar0, device=self.device, requires_grad=self.requires_grad ) true_outvar = Constraint._set_device( true_outvar0, device=self.device, requires_grad=self.requires_grad ) pred_outvar = self.forward(invar) # Collect minibatch info into cpu dictionaries invar_cpu = { key: value + [invar[key].cpu().detach()] for key, value in invar_cpu.items() } true_outvar_cpu = { key: value + [true_outvar[key].cpu().detach()] for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: value + [pred_outvar[key].cpu().detach()] for key, value in pred_outvar_cpu.items() } # Concat mini-batch tensors invar_cpu = {key: torch.cat(value) for key, value in invar_cpu.items()} true_outvar_cpu = { key: torch.cat(value) for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: torch.cat(value) for key, value in pred_outvar_cpu.items() } # compute losses on cpu losses = GridValidator._l2_relative_error(true_outvar_cpu, pred_outvar_cpu) # convert to numpy arrays invar = {k: v.numpy() for k, v in invar_cpu.items()} true_outvar = {k: v.numpy() for k, v in true_outvar_cpu.items()} pred_outvar = {k: v.numpy() for k, v in pred_outvar_cpu.items()} # save batch to vtk file named_target_outvar = {"true_" + k: v for k, v in true_outvar.items()} named_pred_outvar = {"pred_" + k: v for k, v in pred_outvar.items()} for b in range(min(4, next(iter(invar.values())).shape[0])): if self.log_iter: grid_to_vtk( {**named_target_outvar, **named_pred_outvar}, results_dir + name + f"_{b}_hr" + f"{step:06}", batch_index=b, ) else: grid_to_vtk( {**named_target_outvar, **named_pred_outvar}, results_dir + name + f"_{b}_hr", batch_index=b, ) grid_to_vtk(invar, results_dir + name + f"_{b}_lr", batch_index=b) # add tensorboard plots if self.plotter is not None: self.plotter._add_figures( name, results_dir, writer, step, invar, true_outvar, pred_outvar, ) # add tensorboard scalars for k, loss in losses.items(): writer.add_scalar("val/" + name + "/" + k, loss, step, new_style=True) @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # load jhtdb datasets invar, outvar = make_jhtdb_dataset( nr_samples=cfg.custom.jhtdb.n_train, domain_size=cfg.custom.jhtdb.domain_size, lr_factor=cfg.arch.super_res.scaling_factor, token=cfg.custom.jhtdb.access_token, data_dir=to_absolute_path("datasets/jhtdb_training"), time_range=[1, 768], dataset_seed=123, ) invar_valid, outvar_valid = make_jhtdb_dataset( nr_samples=cfg.custom.jhtdb.n_valid, domain_size=cfg.custom.jhtdb.domain_size, lr_factor=cfg.arch.super_res.scaling_factor, token=cfg.custom.jhtdb.access_token, data_dir=to_absolute_path("datasets/jhtdb_valid"), time_range=[768, 1024], dataset_seed=124, ) model = instantiate_arch( input_keys=[Key("U_lr", size=3)], output_keys=[Key("U", size=3)], cfg=cfg.arch.super_res, ) nodes = [model.make_node(name="super_res")] # make super resolution domain jhtdb_domain = Domain() # make data driven constraint jhtdb_constraint = SuperResolutionConstraint( nodes=nodes, invar=invar, outvar=outvar, batch_size=cfg.batch_size.train, loss_weighting=cfg.custom.loss_weights, lambda_weighting=None, dx=2 * np.pi / 1024.0, ) jhtdb_domain.add_constraint(jhtdb_constraint, "constraint") # make validator dataset = DictGridDataset(invar_valid, outvar_valid) jhtdb_validator = SuperResolutionValidator( dataset=dataset, nodes=nodes, batch_size=cfg.batch_size.valid, log_iter=False, ) jhtdb_domain.add_validator(jhtdb_validator, "validator") # make solver slv = Solver( cfg, domain=jhtdb_domain, ) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/super_resolution/super_resolution.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import matplotlib.pyplot as plt import torch try: import pyJHTDB import pyJHTDB.dbinfo except: raise ModuleNotFoundError( "This example requires the pyJHTDB python package for access to the JHT database.\n" + "Find out information here: https://github.com/idies/pyJHTDB" ) from tqdm import * from typing import List, Dict, Union from pathlib import Path from modulus.sym.hydra import to_absolute_path from modulus.sym.distributed.manager import DistributedManager def _pos_to_name(dataset, field, time_step, start, end, step, filter_width): return ( "jhtdb_field_" + str(field) + "_time_step_" + str(time_step) + "_start_" + str(start[0]) + "_" + str(start[1]) + "_" + str(start[2]) + "_end_" + str(end[0]) + "_" + str(end[1]) + "_" + str(end[2]) + "_step_" + str(step[0]) + "_" + str(step[1]) + "_" + str(step[2]) + "_filter_width_" + str(filter_width) ) def _name_to_pos(name): scrapted_name = name[:4].split("_") field = str(scrapted_name[3]) time_step = int(scrapted_name[6]) start = [int(x) for x in scrapted_name[7:10]] end = [int(x) for x in scrapted_name[11:14]] step = [int(x) for x in scrapted_name[15:18]] filter_width = int(scrapted_name[-1]) return field, time_step, start, end, step, filter_width def get_jhtdb( loader, data_dir: Path, dataset, field, time_step, start, end, step, filter_width ): # get filename file_name = ( _pos_to_name(dataset, field, time_step, start, end, step, filter_width) + ".npy" ) file_dir = data_dir / Path(file_name) # check if file exists and if not download it try: results = np.load(file_dir) except: # Only MPI process 0 can download data if DistributedManager().rank == 0: results = loader.getCutout( data_set=dataset, field=field, time_step=time_step, start=start, end=end, step=step, filter_width=filter_width, ) np.save(file_dir, results) # Wait for all processes to get here if DistributedManager().distributed: torch.distributed.barrier() results = np.load(file_dir) return results def make_jhtdb_dataset( nr_samples: int = 128, domain_size: int = 64, lr_factor: int = 4, token: str = "edu.jhu.pha.turbulence.testing-201311", data_dir: str = to_absolute_path("datasets/jhtdb_training"), time_range: List[int] = [1, 1024], dataset_seed: int = 123, debug: bool = False, ): # make data dir data_dir = Path(data_dir) data_dir.mkdir(parents=True, exist_ok=True) # initialize runner lJHTDB = pyJHTDB.libJHTDB() lJHTDB.initialize() lJHTDB.add_token(token) # loop to get dataset np.random.seed(dataset_seed) list_low_res_u = [] list_high_res_u = [] for i in tqdm(range(nr_samples)): # set download params dataset = "isotropic1024coarse" field = "u" time_step = int(np.random.randint(time_range[0], time_range[1])) start = np.array( [np.random.randint(1, 1024 - domain_size) for _ in range(3)], dtype=int ) end = np.array([x + domain_size - 1 for x in start], dtype=int) step = np.array(3 * [1], dtype=int) # get high res data high_res_u = get_jhtdb( lJHTDB, data_dir, dataset, field, time_step, start, end, np.array(3 * [1], dtype=int), 1, ) # get low res data low_res_u = get_jhtdb( lJHTDB, data_dir, dataset, field, time_step, start, end, np.array(3 * [lr_factor], dtype=int), lr_factor, ) # plot if debug: fig = plt.figure(figsize=(10, 5)) a = fig.add_subplot(121) a.set_axis_off() a.imshow(low_res_u[:, :, 0, 0], interpolation="none") a = fig.add_subplot(122) a.imshow(high_res_u[:, :, 0, 0], interpolation="none") plt.savefig("debug_plot_" + str(i)) plt.close() # append to list list_low_res_u.append(np.rollaxis(low_res_u, -1, 0)) list_high_res_u.append(np.rollaxis(high_res_u, -1, 0)) # concatenate to tensor dataset_low_res_u = np.stack(list_low_res_u, axis=0) dataset_high_res_u = np.stack(list_high_res_u, axis=0) return {"U_lr": dataset_low_res_u}, {"U": dataset_high_res_u}
modulus-sym-main
examples/super_resolution/jhtdb_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Code modified from https://github.com/akshaysubr/TEGAN The following license is provided from their source, Copyright 2020 Akshay Subramaniam, Man-Long Wong, Raunak Borker, Sravya Nimmagadda Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import torch import torch.nn.functional as F from torch.nn.modules.utils import _triple class FlowOps(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer( "ddx1D", torch.Tensor( [ -1.0 / 60.0, 3.0 / 20.0, -3.0 / 4.0, 0.0, 3.0 / 4.0, -3.0 / 20.0, 1.0 / 60.0, ] ), ) def ddx(self, inpt, dx, channel, dim, padding_mode="replicate"): var = inpt[:, channel : channel + 1, :, :, :] ddx3D = torch.reshape( self.ddx1D, shape=[1, 1] + dim * [1] + [-1] + (2 - dim) * [1] ) padding = _triple(3) + _triple(3) output = F.conv3d( F.pad(var, padding, mode=padding_mode), ddx3D, stride=1, padding=0, bias=None, ) output = (1.0 / dx) * output if dim == 0: output = output[ :, :, :, (self.ddx1D.shape[0] - 1) // 2 : -(self.ddx1D.shape[0] - 1) // 2, (self.ddx1D.shape[0] - 1) // 2 : -(self.ddx1D.shape[0] - 1) // 2, ] elif dim == 1: output = output[ :, :, (self.ddx1D.shape[0] - 1) // 2 : -(self.ddx1D.shape[0] - 1) // 2, :, (self.ddx1D.shape[0] - 1) // 2 : -(self.ddx1D.shape[0] - 1) // 2, ] elif dim == 2: output = output[ :, :, (self.ddx1D.shape[0] - 1) // 2 : -(self.ddx1D.shape[0] - 1) // 2, (self.ddx1D.shape[0] - 1) // 2 : -(self.ddx1D.shape[0] - 1) // 2, :, ] return output def get_velocity_grad(self, inpt, dx, dy, dz, xdim=0): output = {} output["u__x"] = self.ddx(inpt, dx, channel=0, dim=xdim) output["u__y"] = self.ddx(inpt, dy, channel=0, dim=1) output["u__z"] = self.ddx(inpt, dz, channel=0, dim=(2 - xdim)) output["v__x"] = self.ddx(inpt, dx, channel=1, dim=xdim) output["v__y"] = self.ddx(inpt, dy, channel=1, dim=1) output["v__z"] = self.ddx(inpt, dz, channel=1, dim=(2 - xdim)) output["w__x"] = self.ddx(inpt, dx, channel=2, dim=xdim) output["w__y"] = self.ddx(inpt, dy, channel=2, dim=1) output["w__z"] = self.ddx(inpt, dz, channel=2, dim=(2 - xdim)) return output def get_strain_rate_mag(self, vel_dict): output = {} output["strain"] = ( vel_dict["u__x"] ** 2 + vel_dict["v__y"] ** 2 + vel_dict["w__z"] ** 2 + 2 * ( (0.5 * (vel_dict["u__y"] + vel_dict["v__x"])) ** 2 + (0.5 * (vel_dict["u__z"] + vel_dict["w__x"])) ** 2 + (0.5 * (vel_dict["w__y"] + vel_dict["v__z"])) ** 2 ) ) return output def get_vorticity(self, vel_dict): output = {} output["omega_x"] = vel_dict["w__y"] - vel_dict["v__z"] output["omega_y"] = vel_dict["u__z"] - vel_dict["w__x"] output["omega_z"] = vel_dict["v__x"] - vel_dict["u__y"] return output def get_enstrophy(self, vort_dict): output = {} output["enstrophy"] = ( vort_dict["omega_x"] ** 2 + vort_dict["omega_y"] ** 2 + vort_dict["omega_z"] ** 2 ) return output def get_continuity_residual(self, vel_dict): output = {} output["continuity"] = vel_dict["u__x"] + vel_dict["v__y"] + vel_dict["w__z"] return output # def d2dx2(inpt, channel, dx, name=None): # var = inpt[:, channel : channel + 1, :, :, :] # ddx1D = tf.constant( # [ # 1.0 / 90.0, # -3.0 / 20.0, # 3.0 / 2.0, # -49.0 / 18.0, # 3.0 / 2.0, # -3.0 / 20.0, # 1.0 / 90.0, # ] # ).to(inpt.device) # ddx3D = torch.reshape(ddx1D, shape=[1, 1] + dim * [1] + [-1] + (2 - dim) * [1]) # output = F.conv3d(var, ddx3D, padding="valid") # output = (1.0 / dx ** 2) * output # return output # def get_TKE(inpt): # TKE = torch.square(inpt[:, 0, :, :, :]) # TKE = TKE + tf.square(inpt[:, 1, :, :, :]) # TKE = TKE + tf.square(inpt[:, 2, :, :, :]) # TKE = 0.5 * TKE # TKE = tf.expand_dims(TKE, axis=1) # return TKE
modulus-sym-main
examples/super_resolution/ops.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wave equation Reference: https://en.wikipedia.org/wiki/Wave_equation """ from sympy import Symbol, Function, Number from modulus.sym.eq.pde import PDE class WaveEquation1D(PDE): """ Wave equation 1D The equation is given as an example for implementing your own PDE. A more universal implementation of the wave equation can be found by `from modulus.sym.eq.pdes.wave_equation import WaveEquation`. Parameters ========== c : float, string Wave speed coefficient. If a string then the wave speed is input into the equation. """ name = "WaveEquation1D" def __init__(self, c=1.0): # coordinates x = Symbol("x") # time t = Symbol("t") # make input variables input_variables = {"x": x, "t": t} # make u function u = Function("u")(*input_variables) # wave speed coefficient if type(c) is str: c = Function(c)(*input_variables) elif type(c) in [float, int]: c = Number(c) # set equations self.equations = {} self.equations["wave_equation"] = u.diff(t, 2) - (c**2 * u.diff(x)).diff(x)
modulus-sym-main
examples/wave_equation/wave_equation.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from sympy import Symbol, sin import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_1d import Line1D from modulus.sym.domain.constraint import ( PointwiseConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from wave_equation import WaveEquation1D @modulus.sym.main(config_path="conf", config_name="config_inverse") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on we = WaveEquation1D(c="c") wave_net = instantiate_arch( input_keys=[Key("x"), Key("t")], output_keys=[Key("u")], cfg=cfg.arch.fully_connected, ) invert_net = instantiate_arch( input_keys=[Key("x"), Key("t")], output_keys=[Key("c")], cfg=cfg.arch.fully_connected, ) nodes = ( we.make_nodes(detach_names=["u__x", "u__x__x", "u__t__t"]) + [wave_net.make_node(name="wave_network")] + [invert_net.make_node(name="invert_network")] ) # prepare input data L = float(np.pi) deltaT = 0.01 deltaX = 0.01 x = np.arange(0, L, deltaX) t = np.arange(0, 2 * L, deltaT) X, T = np.meshgrid(x, t) X = np.expand_dims(X.flatten(), axis=-1) T = np.expand_dims(T.flatten(), axis=-1) u = np.sin(X) * (np.cos(T) + np.sin(T)) invar_numpy = {"x": X, "t": T} outvar_numpy = {"u": u} outvar_numpy["wave_equation"] = np.zeros_like(outvar_numpy["u"]) # add constraints to solver # make domain domain = Domain() # data and pde loss data = PointwiseConstraint.from_numpy( nodes=nodes, invar=invar_numpy, outvar=outvar_numpy, batch_size=cfg.batch_size.data, ) domain.add_constraint(data, "interior_data") # add monitors monitor = PointwiseMonitor( invar_numpy, output_names=["c"], metrics={"mean_c": lambda var: torch.mean(var["c"])}, nodes=nodes, ) domain.add_monitor(monitor) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/wave_equation/wave_inverse.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from sympy import Symbol, sin import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_1d import Line1D from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.key import Key from modulus.sym.node import Node from wave_equation import WaveEquation1D @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on we = WaveEquation1D(c=1.0) wave_net = instantiate_arch( input_keys=[Key("x"), Key("t")], output_keys=[Key("u")], cfg=cfg.arch.fully_connected, ) nodes = we.make_nodes() + [wave_net.make_node(name="wave_network")] # add constraints to solver # make geometry x, t_symbol = Symbol("x"), Symbol("t") L = float(np.pi) geo = Line1D(0, L) time_range = {t_symbol: (0, 2 * L)} # make domain domain = Domain() # initial condition IC = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"u": sin(x), "u__t": sin(x)}, batch_size=cfg.batch_size.IC, lambda_weighting={"u": 1.0, "u__t": 1.0}, parameterization={t_symbol: 0.0}, ) domain.add_constraint(IC, "IC") # boundary condition BC = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": 0}, batch_size=cfg.batch_size.BC, parameterization=time_range, ) domain.add_constraint(BC, "BC") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"wave_equation": 0}, batch_size=cfg.batch_size.interior, parameterization=time_range, ) domain.add_constraint(interior, "interior") # add validation data deltaT = 0.01 deltaX = 0.01 x = np.arange(0, L, deltaX) t = np.arange(0, 2 * L, deltaT) X, T = np.meshgrid(x, t) X = np.expand_dims(X.flatten(), axis=-1) T = np.expand_dims(T.flatten(), axis=-1) u = np.sin(X) * (np.cos(T) + np.sin(T)) invar_numpy = {"x": X, "t": T} outvar_numpy = {"u": u} validator = PointwiseValidator( nodes=nodes, invar=invar_numpy, true_outvar=outvar_numpy, batch_size=128 ) domain.add_validator(validator) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/wave_equation/wave_1d.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from sympy import Symbol, sin import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_1d import Line1D from modulus.sym.geometry.parameterization import OrderedParameterization from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.utils.io import ( ValidatorPlotter, ) from modulus.sym.loss.loss import CausalLossNorm from modulus.sym.key import Key from modulus.sym.node import Node from wave_equation import WaveEquation1D @modulus.sym.main(config_path="conf", config_name="config_causal") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on we = WaveEquation1D(c=1.0) wave_net = instantiate_arch( input_keys=[Key("x"), Key("t")], output_keys=[Key("u")], cfg=cfg.arch.fully_connected, ) nodes = we.make_nodes() + [wave_net.make_node(name="wave_network")] # add constraints to solver # make geometry x, t_symbol = Symbol("x"), Symbol("t") L = float(np.pi) T = 4 * L geo = Line1D( 0, L, parameterization=OrderedParameterization({t_symbol: (0, T)}, key=t_symbol) ) # make domain domain = Domain() # initial condition IC = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"u": sin(x), "u__t": sin(x)}, batch_size=cfg.batch_size.IC, lambda_weighting={"u": 100.0, "u__t": 1.0}, parameterization={t_symbol: 0.0}, ) domain.add_constraint(IC, "IC") # boundary condition BC = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": 0}, batch_size=cfg.batch_size.BC, lambda_weighting={"u": 100.0}, ) domain.add_constraint(BC, "BC") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"wave_equation": 0}, batch_size=cfg.batch_size.interior, loss=CausalLossNorm(eps=1.0), fixed_dataset=False, shuffle=False, ) domain.add_constraint(interior, "interior") # add validation data deltaT = 0.01 deltaX = 0.01 x = np.arange(0, L, deltaX) t = np.arange(0, T, deltaT) xx, tt = np.meshgrid(x, t) X_star = np.expand_dims(xx.flatten(), axis=-1) T_star = np.expand_dims(tt.flatten(), axis=-1) u = np.sin(X_star) * (np.cos(T_star) + np.sin(T_star)) invar_numpy = {"x": X_star, "t": T_star} outvar_numpy = {"u": u} validator = PointwiseValidator( nodes=nodes, invar=invar_numpy, true_outvar=outvar_numpy, batch_size=128, plotter=ValidatorPlotter(), ) domain.add_validator(validator) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/wave_equation/wave_1d_causal.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Script to train Fourcastnet on ERA5 # Ref: https://arxiv.org/abs/2202.11214 from warnings import warn warn( f"This example will be depricated soon! Please switch to the FourCastNet recipe from Modulus Launch repo.", DeprecationWarning, ) import logging import modulus.sym from modulus.sym.hydra.config import ModulusConfig from modulus.sym.key import Key from modulus.sym.domain import Domain from modulus.sym.domain.constraint import Constraint, SupervisedGridConstraint from modulus.sym.domain.constraint.constraint import InfiniteDataLoader from modulus.sym.domain.validator import GridValidator from modulus.sym.solver import Solver from modulus.sym.utils.io import GridValidatorPlotter from src.dali_dataset import ERA5HDF5GridDaliIterableDataset from src.dataset import ERA5HDF5GridDataset from src.fourcastnet import FourcastNetArch from src.loss import LpLoss logger = logging.getLogger(__name__) @modulus.sym.main(config_path="conf", config_name="config_FCN") def run(cfg: ModulusConfig) -> None: # load training/ test data channels = list(range(cfg.custom.n_channels)) train_dataset = _create_dataset( cfg.custom.train_dataset.kind, data_dir=cfg.custom.train_dataset.data_path, chans=channels, tstep=cfg.custom.tstep, n_tsteps=cfg.custom.n_tsteps, patch_size=cfg.arch.afno.patch_size, batch_size=cfg.batch_size.grid, num_workers=cfg.custom.num_workers.grid, shuffle=True, ) test_dataset = _create_dataset( cfg.custom.test_dataset.kind, data_dir=cfg.custom.test_dataset.data_path, chans=channels, tstep=cfg.custom.tstep, n_tsteps=cfg.custom.n_tsteps, patch_size=cfg.arch.afno.patch_size, n_samples_per_year=20, batch_size=cfg.batch_size.validation, num_workers=cfg.custom.num_workers.validation, ) # Dataloader factory method needs to be updated before creating any constraints. update_get_dataloader() # define input/output keys input_keys = [Key(k, size=train_dataset.nchans) for k in train_dataset.invar_keys] output_keys = [Key(k, size=train_dataset.nchans) for k in train_dataset.outvar_keys] # make list of nodes to unroll graph on model = FourcastNetArch( input_keys=input_keys, output_keys=output_keys, img_shape=test_dataset.img_shape, patch_size=cfg.arch.afno.patch_size, embed_dim=cfg.arch.afno.embed_dim, depth=cfg.arch.afno.depth, num_blocks=cfg.arch.afno.num_blocks, ) nodes = [model.make_node(name="FCN")] # make domain domain = Domain() # add constraints to domain supervised = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset, batch_size=cfg.batch_size.grid, loss=LpLoss(), num_workers=cfg.custom.num_workers.grid, ) domain.add_constraint(supervised, "supervised") # add validator val = GridValidator( nodes, dataset=test_dataset, batch_size=cfg.batch_size.validation, plotter=GridValidatorPlotter(n_examples=5), num_workers=cfg.custom.num_workers.validation, ) domain.add_validator(val, "test") # make solver slv = Solver(cfg, domain) # start solver slv.solve() def _create_dataset(dataset_kind: str, **kwargs): valid_dsets = { "default": ERA5HDF5GridDataset, "dali": ERA5HDF5GridDaliIterableDataset, } dset_cls = valid_dsets.get(dataset_kind, None) if dset_cls is None: raise ValueError( f"Expected one of {list(valid_dsets.keys())}, but got {dataset_kind}" ) logger.info(f"Dataset: {dset_cls.__name__}") return dset_cls(**kwargs) def update_get_dataloader(): """Monkey-patch Constraint.get_dataloader method. DALI has its own multi-process worker functionality, similar to PyTorch DataLoader. This function patches Constraint.get_dataloader to avoid wrapping DALI dataset with another, redundant, layer of DataLoader. """ default_get_dataloader = Constraint.get_dataloader def get_dataloader( dataset: "Union[Dataset, IterableDataset]", batch_size: int, shuffle: bool, drop_last: bool, num_workers: int, distributed: bool = None, infinite: bool = True, ): if isinstance(dataset, ERA5HDF5GridDaliIterableDataset): if infinite: dataset = InfiniteDataLoader(dataset) return dataset return default_get_dataloader( dataset=dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, distributed=distributed, infinite=infinite, ) Constraint.get_dataloader = get_dataloader if __name__ == "__main__": run()
modulus-sym-main
examples/fourcastnet/fcn_era5.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "Script to carry out Fourcastnet inference" import omegaconf import torch import logging import numpy as np from torch.utils.data import DataLoader, Sampler from modulus.sym.hydra import to_absolute_path from modulus.sym.key import Key from modulus.sym.distributed.manager import DistributedManager from src.dataset import ERA5HDF5GridDataset from src.fourcastnet import FourcastNetArch from src.metrics import Metrics logging.basicConfig(format="[%(levelname)s] - %(message)s", level=logging.INFO) var_key_dict = { 0: "u10", 1: "v10", 2: "t2m", 3: "sp", 4: "msl", 5: "t850", 6: "u1000", 7: "v1000", 8: "z1000", 9: "u850", 10: "v850", 11: "z850", 12: "u500", 13: "v500", 14: "z500", 15: "t500", 16: "z50", 17: "r500", 18: "r850", 19: "tcwv", } def to_device(tensor_dict): return { key: torch.as_tensor(value, dtype=torch.float32, device=device) for key, value in tensor_dict.items() } class SubsetSequentialBatchSampler(Sampler): """Custom subset sequential batch sampler for inferencer""" def __init__(self, subset): self.subset = subset def __iter__(self): for i in self.subset: yield [i] # batch size of 1 def __len__(self): return len(self.subset) # load configuration cfg = omegaconf.OmegaConf.load("conf/config_FCN.yaml") model_path = to_absolute_path("fcn_era5.pth") # get device device = DistributedManager().device # load test data test_dataset = ERA5HDF5GridDataset( cfg.custom.test_data_path, # Test data location e.g. /era5/20var/test chans=list(range(cfg.custom.n_channels)), tstep=cfg.custom.tstep, n_tsteps=1, # set to one for inference patch_size=cfg.arch.afno.patch_size, ) m = Metrics( test_dataset.img_shape, clim_mean_path="/era5/stats/time_means.npy", # Path to climate mean device=device, ) # define input/output keys input_keys = [Key(k, size=test_dataset.nchans) for k in test_dataset.invar_keys] output_keys = [Key(k, size=test_dataset.nchans) for k in test_dataset.outvar_keys] # create model model = FourcastNetArch( input_keys=input_keys, output_keys=output_keys, img_shape=test_dataset.img_shape, patch_size=cfg.arch.afno.patch_size, embed_dim=cfg.arch.afno.embed_dim, depth=cfg.arch.afno.depth, num_blocks=cfg.arch.afno.num_blocks, ) # load parameters model.load_state_dict(torch.load(model_path)) model.to(device) logging.info(f"Loaded model {model_path}") # define subsets of dataset to run inference nics = 180 # Number of 2 day correl time samples nsteps = 25 last = len(test_dataset) - 1 - nsteps * cfg.custom.tstep # Variable dictionary acc_recursive = {key: [] for key in var_key_dict.values()} rmse_recursive = {key: [] for key in var_key_dict.values()} # Normalization stats mu = torch.tensor(test_dataset.mu[0]).to(device) # shape [C, 1, 1] sd = torch.tensor(test_dataset.sd[0]).to(device) # shape [C, 1, 1] # run inference with torch.no_grad(): for ic in range(0, min([8 * nics + 1, last])): subset = cfg.custom.tstep * np.arange(nsteps) + ic if (ic + 1) % 8 == 0 or (ic + 1) % 36 == 0 or ic == 0: logging.info(f"Running IC at step {ic}") # get dataloader dataloader = DataLoader( dataset=test_dataset, batch_sampler=SubsetSequentialBatchSampler(subset), pin_memory=True, num_workers=1, worker_init_fn=test_dataset.worker_init_fn, ) acc_error = torch.zeros(nsteps, test_dataset.nchans) rmse_error = torch.zeros(nsteps, test_dataset.nchans) for tstep, (invar, true_outvar, _) in enumerate(dataloader): if tstep % 10 == 0: logging.info(f"ic: {ic} tstep: {tstep}/{nsteps}") # place tensors on device invar = to_device(invar) true_outvar = to_device(true_outvar) # 1. single step inference pred_outvar_single = model(invar) pred_single = sd * pred_outvar_single["x_t1"][0] # 2. recursive inference if tstep == 0: pred_outvar_recursive = model(invar) else: pred_outvar_recursive = model( {"x_t0": pred_outvar_recursive["x_t1"]} ) # get unormalised target / prediction true = sd * true_outvar["x_t1"][0] pred_recursive = sd * pred_outvar_recursive["x_t1"][0] # Calc metrics rmse_error[tstep] = m.weighted_rmse(pred_recursive, true).detach().cpu() acc_error[tstep] = m.weighted_acc(pred_recursive, true).detach().cpu() # Save fields into dictionary if (ic + 1) % 8 == 0 or (ic + 1) % 36 == 0 or ic == 0: for i, fld in var_key_dict.items(): # Fields with 9 day (36) dc time if fld == "z500" or fld == "t2m" or fld == "t850": if (ic + 1) % 36 == 0 or ic == 0: acc_recursive[fld].append(acc_error[:, i].numpy()) rmse_recursive[fld].append(rmse_error[:, i].numpy()) # Rest have regular 2 day (8) dc time else: if (ic + 1) % 8 == 0 or ic == 0: acc_recursive[fld].append(acc_error[:, i].numpy()) rmse_recursive[fld].append(rmse_error[:, i].numpy()) # Field stacking for var_dict in [acc_recursive, rmse_recursive]: for key, value in var_dict.items(): print(f"{len(value)} samples for field {key}") var_dict[key] = np.stack(value, axis=0) np.save("rmse_recursive", rmse_recursive) np.save("acc_recursive", acc_recursive)
modulus-sym-main
examples/fourcastnet/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from typing import Tuple class Metrics: """Class used for computing performance related metrics. Expects predictions / targets to be of shape [C, H, W] where H is latitude dimension and W is longitude dimension. Metrics are computed for each channel separately. Parameters ---------- img_shape : Tuple[int] Shape of input image (resolution for fourcastnet) clim_mean_path : str, optional Path to total climate mean data, needed for ACC. By default "/era5/stats/time_means.npy" device : torch.device, optional Pytorch device model is on, by default 'cpu' """ def __init__( self, img_shape: Tuple[int], clim_mean_path: str = "/era5/stats/time_means.npy", device: torch.device = "cpu", ): self.img_shape = tuple(img_shape) self.device = device # Load climate mean value self.clim_mean = torch.as_tensor(np.load(clim_mean_path)) # compute latitude weighting nlat = img_shape[0] lat = torch.linspace(90, -90, nlat) lat_weight = torch.cos(torch.pi * (lat / 180)) lat_weight = nlat * lat_weight / lat_weight.sum() self.lat_weight = lat_weight.view(1, nlat, 1) # place on device if self.device is not None: self.lat_weight = self.lat_weight.to(self.device) self.clim_mean = self.clim_mean.to(self.device) def _check_shape(self, *args): # checks for shape [C, H, W] for x in args: assert x.ndim == 3 assert tuple(x.shape[1:]) == self.img_shape def weighted_acc(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """Computes the anomaly correlation coefficient (ACC). The ACC calculation is weighted based on the latitude. Parameters ---------- pred : torch.Tensor [C, H, W] Predicted tensor target : torch.Tensor [C, H, W] Target tensor Returns ------- torch.Tensor [C] ACC values for each channel """ self._check_shape(pred, target) # subtract climate means (n_chans, img_x, img_y) = pred.shape clim_mean = self.clim_mean[0, 0:n_chans, 0:img_x] pred_hat = pred - clim_mean target_hat = target - clim_mean # Weighted mean pred_bar = torch.sum( self.lat_weight * pred_hat, dim=(1, 2), keepdim=True ) / torch.sum( self.lat_weight * torch.ones_like(pred_hat), dim=(1, 2), keepdim=True ) target_bar = torch.sum( self.lat_weight * target_hat, dim=(1, 2), keepdim=True ) / torch.sum( self.lat_weight * torch.ones_like(target_hat), dim=(1, 2), keepdim=True ) pred_diff = pred_hat - pred_bar target_diff = target_hat - target_bar # compute weighted acc # Ref: https://www.atmos.albany.edu/daes/atmclasses/atm401/spring_2016/ppts_pdfs/ECMWF_ACC_definition.pdf p1 = torch.sum(self.lat_weight * pred_diff * target_diff, dim=(1, 2)) p2 = torch.sum(self.lat_weight * pred_diff * pred_diff, dim=(1, 2)) p3 = torch.sum(self.lat_weight * target_diff * target_diff, dim=(1, 2)) m = p1 / torch.sqrt(p2 * p3) return m def weighted_rmse(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """Computes RMSE weighted based on latitude Parameters ---------- pred : torch.Tensor [C, H, W] Predicted tensor target : torch.Tensor [C, H, W] Target tensor Returns ------- torch.Tensor [C] Weighted RSME values for each channel """ self._check_shape(pred, target) # compute weighted rmse m = torch.sqrt(torch.mean(self.lat_weight * (pred - target) ** 2, dim=(1, 2))) return m
modulus-sym-main
examples/fourcastnet/src/metrics.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import tempfile from termcolor import cprint from modulus.sym.distributed import DistributedManager from src.test_dali_dataset import ( create_test_data, test_distributed_dali_loader, ) if __name__ == "__main__": DistributedManager.initialize() m = DistributedManager() if not m.distributed: print( "Please run this test in distributed mode. For example, to run on 2 GPUs:\n\n" "mpirun -np 2 python ./src/test_dali_dist.py\n" ) raise SystemExit(1) with tempfile.TemporaryDirectory("-data") as data_dir: data_path = create_test_data(Path(data_dir)) test_distributed_dali_loader(data_path) cprint("Success!", "green")
modulus-sym-main
examples/fourcastnet/src/test_dali_dist.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Iterable, List import h5py import numpy as np import torch from modulus.sym.dataset import IterableDataset from modulus.sym.distributed import DistributedManager from src.dataset import ERA5HDF5GridBaseDataset try: import nvidia.dali as dali import nvidia.dali.plugin.pytorch as dali_pth except ImportError: print( """DALI dataset requires NVIDIA DALI package to be installed. The package can be installed by running: pip install nvidia-dali-cuda110 """ ) raise SystemExit(1) class ERA5HDF5GridDaliIterableDataset(ERA5HDF5GridBaseDataset, IterableDataset): """ERA5 DALI iterable-style dataset.""" def __init__( self, data_dir: str, chans: List[int], tstep: int = 1, n_tsteps: int = 1, patch_size: int = None, n_samples_per_year: int = None, stats_dir: str = None, batch_size: int = 1, num_workers: int = 1, shuffle: bool = False, ): super().__init__( data_dir, chans, tstep, n_tsteps, patch_size, n_samples_per_year, stats_dir ) self.batch_size = batch_size self.num_workers = num_workers self.shuffle = shuffle self.pipe = self._create_pipeline() def worker_init_fn(self, iworker): super().worker_init_fn(iworker) def __iter__(self): # Reset the pipeline before creating an iterator to enable epochs. self.pipe.reset() # Create DALI PyTorch iterator. dali_iter = dali_pth.DALIGenericIterator([self.pipe], ["invar", "outvar"]) # Read batches. for batch_data in dali_iter: # Only one source is expected. assert len(batch_data) == 1 batch = batch_data[0] invar = {self.invar_keys[0]: batch["invar"]} invar = self._to_tensor_dict(invar) outvar = batch["outvar"] # Should be [N,T,C,H,W] shape. assert outvar.ndim == 5 outvar = {self.outvar_keys[t]: outvar[:, t] for t in range(self.n_tsteps)} outvar = self._to_tensor_dict(outvar) lambda_weighting = {k: torch.ones_like(v) for k, v in outvar.items()} yield invar, outvar, lambda_weighting def _create_pipeline(self) -> dali.Pipeline: # TODO: make num_threads and prefetch queue configurable? pipe = dali.Pipeline( batch_size=self.batch_size, num_threads=2, prefetch_queue_depth=2, py_num_workers=self.num_workers, device_id=DistributedManager().device.index, py_start_method="spawn", ) with pipe: source = ERA5DaliExternalSource( self.data_paths, self.length, self.chans, self.n_tsteps, self.tstep, self.n_samples_per_year, self.batch_size, self.shuffle, ) # Read current batch. invar, outvar = dali.fn.external_source( source, num_outputs=2, parallel=True, batch=False, ) # Move tensors to GPU as external_source won't do that. invar = invar.gpu() outvar = outvar.gpu() # Crop. h, w = self.img_shape invar = invar[:, :h, :w] outvar = outvar[:, :, :h, :w] # Standardize. invar = dali.fn.normalize(invar, mean=self.mu[0], stddev=self.sd[0]) outvar = dali.fn.normalize(outvar, mean=self.mu, stddev=self.sd) # Set outputs. pipe.set_outputs(invar, outvar) return pipe class ERA5DaliExternalSource: """ERA5 DALI external callable source. For more information about DALI external source operator: https://docs.nvidia.com/deeplearning/dali/archives/dali_1_13_0/user-guide/docs/examples/general/data_loading/parallel_external_source.html """ def __init__( self, data_paths: Iterable[str], num_samples: int, channels: Iterable[int], n_tsteps: int, tstep: int, n_samples_per_year: int, batch_size: int, shuffle: bool, ): self.data_paths = list(data_paths) # Will be populated later once each worker starts running in its own process. self.data_files = None self.num_samples = num_samples self.chans = list(channels) self.n_tsteps = n_tsteps self.tstep = tstep self.n_samples_per_year = n_samples_per_year self.batch_size = batch_size self.shuffle = shuffle self.last_epoch = None self.indices = np.arange(num_samples) # If running in distributed mode, select appropriate shard from indices. m = DistributedManager() if m.distributed: # Each shard will get its own subset of indices (possibly empty). self.indices = np.array_split(self.indices, m.world_size)[m.rank] # Get number of full batches, ignore possible last incomplete batch for now. # Also, DALI external source does not support incomplete batches in parallel mode. self.num_batches = len(self.indices) // self.batch_size def __call__(self, sample_info: dali.types.SampleInfo): if sample_info.iteration >= self.num_batches: raise StopIteration() if self.data_files is None: # This will be called once per worker. Workers are persistent, # so there is no need to explicitly close the files - this will be done # when corresponding pipeline/dataset is destroyed. self.data_files = [h5py.File(path, "r") for path in self.data_paths] # Shuffle before the next epoch starts. if self.shuffle and sample_info.epoch_idx != self.last_epoch: # All workers use the same rng seed so the resulting # indices are the same across workers. np.random.default_rng(seed=sample_info.epoch_idx).shuffle(self.indices) self.last_epoch = sample_info.epoch_idx # Get local indices from global index. idx = self.indices[sample_info.idx_in_epoch] year_idx = idx // self.n_samples_per_year in_idx = idx % self.n_samples_per_year # data = self.data_files[year_idx]["fields"] # Has [C,H,W] shape. invar = data[in_idx, self.chans] # Has [T,C,H,W] shape. outvar = np.empty((self.n_tsteps,) + invar.shape, dtype=invar.dtype) for i in range(self.n_tsteps): out_idx = in_idx + (i + 1) * self.tstep # If at end of dataset, just learn identity instead. if out_idx >= data.shape[0]: out_idx = in_idx outvar[i] = data[out_idx, self.chans] return invar, outvar
modulus-sym-main
examples/fourcastnet/src/dali_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import h5py import logging import numpy as np from typing import List from pathlib import Path from modulus.sym.hydra import to_absolute_path from modulus.sym.dataset import Dataset class ERA5HDF5GridBaseDataset: """Lazy-loading ERA5 dataset. Provides common implementation that is used in map- or iterable-style datasets. Parameters ---------- data_dir : str Directory where ERA5 data is stored chans : List[int] Defines which ERA5 variables to load tstep : int Defines the size of the timestep between the input and output variables n_tsteps : int, optional Defines how many timesteps are included in the output variables Default is 1 patch_size : int, optional If specified, crops input and output variables so image dimensions are divisible by patch_size Default is None n_samples_per_year : int, optional If specified, randomly selects n_samples_per_year samples from each year rather than all of the samples per year Default is None stats_dir : str, optional Directory to test data statistic numpy files that have the global mean and variance """ def __init__( self, data_dir: str, chans: List[int], tstep: int = 1, n_tsteps: int = 1, patch_size: int = None, n_samples_per_year: int = None, stats_dir: str = None, **kwargs, ): self.data_dir = Path(to_absolute_path(data_dir)) self.chans = chans self.nchans = len(self.chans) self.tstep = tstep self.n_tsteps = n_tsteps self.patch_size = patch_size self.n_samples_per_year = n_samples_per_year if stats_dir is None: self.stats_dir = self.data_dir.parent / "stats" # check root directory exists assert ( self.data_dir.is_dir() ), f"Error, data directory {self.data_dir} does not exist" assert ( self.stats_dir.is_dir() ), f"Error, stats directory {self.stats_dir} does not exist" # get all input data files self.data_paths = sorted(self.data_dir.glob("????.h5")) for data_path in self.data_paths: logging.info(f"ERA5 file found: {data_path}") self.n_years = len(self.data_paths) logging.info(f"Number of years: {self.n_years}") # get total number of examples and image shape from the first file, # assuming other files have exactly the same format. logging.info(f"Getting file stats from {self.data_paths[0]}") with h5py.File(self.data_paths[0], "r") as f: self.n_samples_per_year_all = f["fields"].shape[0] self.img_shape = f["fields"].shape[2:] logging.info(f"Number of channels available: {f['fields'].shape[1]}") # get example indices to use if self.n_samples_per_year is None: self.n_samples_per_year = self.n_samples_per_year_all self.samples = [ np.arange(self.n_samples_per_year) for _ in range(self.n_years) ] else: if self.n_samples_per_year > self.n_samples_per_year_all: raise ValueError( f"n_samples_per_year ({self.n_samples_per_year}) > number of samples available ({self.n_samples_per_year_all})!" ) self.samples = [ np.random.choice( np.arange(self.n_samples_per_year_all), self.n_samples_per_year, replace=False, ) for _ in range(self.n_years) ] logging.info(f"Number of samples/year: {self.n_samples_per_year}") # get total length self.length = self.n_years * self.n_samples_per_year # adjust image shape if patch_size defined if self.patch_size is not None: self.img_shape = [s - s % self.patch_size for s in self.img_shape] logging.info(f"Input image shape: {self.img_shape}") # load normalisation values # has shape [1, C, 1, 1] self.mu = np.load(self.stats_dir / "global_means.npy")[:, self.chans] # has shape [1, C, 1, 1] self.sd = np.load(self.stats_dir / "global_stds.npy")[:, self.chans] assert ( self.mu.shape == self.sd.shape == (1, self.nchans, 1, 1) ), "Error, normalisation arrays have wrong shape" @property def invar_keys(self): return ["x_t0"] @property def outvar_keys(self): return [f"x_t{(i+1)*self.tstep}" for i in range(self.n_tsteps)] class ERA5HDF5GridDataset(ERA5HDF5GridBaseDataset, Dataset): """Map-style ERA5 dataset.""" def __getitem__(self, idx): # get local indices from global index year_idx = int(idx / self.n_samples_per_year) local_idx = int(idx % self.n_samples_per_year) in_idx = self.samples[year_idx][local_idx] # get output indices out_idxs = [] for i in range(self.n_tsteps): out_idx = in_idx + (i + 1) * self.tstep # if at end of dataset, just learn identity instead if out_idx > (self.n_samples_per_year_all - 1): out_idx = in_idx out_idxs.append(out_idx) # get data xs = [] for idx in [in_idx] + out_idxs: # get array # has shape [C, H, W] x = self.data_files[year_idx]["fields"][idx, self.chans] assert x.ndim == 3, f"Expected 3 dimensions, but got {x.shape}" # apply input / output normalisation (broadcasted operation) x = (x - self.mu[0]) / self.sd[0] # crop data if needed if self.patch_size is not None: x = x[..., : self.img_shape[0], : self.img_shape[1]] xs.append(x) # convert to tensor dicts assert len(self.invar_keys) == 1 invar = {self.invar_keys[0]: xs[0]} assert len(self.outvar_keys) == len(xs) - 1 outvar = {self.outvar_keys[i]: x for i, x in enumerate(xs[1:])} invar = Dataset._to_tensor_dict(invar) outvar = Dataset._to_tensor_dict(outvar) lambda_weighting = Dataset._to_tensor_dict( {k: np.ones_like(v) for k, v in outvar.items()} ) return invar, outvar, lambda_weighting def __len__(self): return self.length def worker_init_fn(self, iworker): super().worker_init_fn(iworker) # open all year files at once on worker thread self.data_files = [h5py.File(path, "r") for path in self.data_paths]
modulus-sym-main
examples/fourcastnet/src/dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from typing import Dict Tensor = torch.Tensor class LpLoss(torch.nn.Module): def __init__( self, d: float = 2.0, p: float = 2.0, ): """Relative Lp loss normalized seperately in the batch dimension. Expects inputs of the shape [B, C, ...] Parameters ---------- p : float, optional Norm power, by default 2.0 """ super(LpLoss, self).__init__() # Dimension and Lp-norm type are postive assert p > 0.0 self.p = p def _rel(self, x: torch.Tensor, y: torch.Tensor) -> float: num_examples = x.size()[0] xv = x.reshape(num_examples, -1) yv = y.reshape(num_examples, -1) diff_norms = torch.linalg.norm(xv - yv, ord=self.p, dim=1) y_norms = torch.linalg.norm(yv, ord=self.p, dim=1) return torch.mean(diff_norms / y_norms) def forward( self, invar: Dict[str, Tensor], pred_outvar: Dict[str, Tensor], true_outvar: Dict[str, Tensor], lambda_weighting: Dict[str, Tensor], step: int, ) -> Dict[str, float]: losses = {} for key, value in pred_outvar.items(): losses[key] = self._rel(pred_outvar[key], true_outvar[key]) return losses
modulus-sym-main
examples/fourcastnet/src/loss.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from pathlib import Path import pytest import shutil from typing import List import h5py import numpy as np import torch from torch.utils.data import DataLoader from modulus.sym.distributed import DistributedManager from modulus.sym.domain.constraint.constraint import Constraint from src.dali_dataset import ERA5HDF5GridDaliIterableDataset from src.dataset import ERA5HDF5GridDataset # TODO: hardcoded for now. Parameterize in the future. NUM_SAMPLES = 4 NUM_CHANNELS = 3 IMG_HEIGHT = 17 IMG_WIDTH = 32 @pytest.fixture(scope="module") def test_data(tmp_path_factory): """Creates a small data sample in ERA5-like format.""" data_dir = tmp_path_factory.mktemp("data") train_dir = create_test_data(data_dir) yield train_dir # Cleanup. shutil.rmtree(data_dir) def create_test_data(data_dir: Path): """Creates a test data in ERA5 format.""" train_dir = data_dir / "train" train_dir.mkdir() stats_dir = data_dir / "stats" stats_dir.mkdir() # Create and write data. data = ( np.random.default_rng(seed=1) .normal(0.0, 1.0, (NUM_SAMPLES, NUM_CHANNELS, IMG_HEIGHT, IMG_WIDTH)) .astype(np.float32) ) with h5py.File(train_dir / "1980.h5", mode="w") as h5file: h5file["fields"] = data # Write stats. np.save( stats_dir / "global_means.npy", np.mean(data, axis=(0, 2, 3), keepdims=True) ) np.save(stats_dir / "global_stds.npy", np.std(data, axis=(0, 2, 3), keepdims=True)) return train_dir @pytest.mark.parametrize("batch_size", [1, 2]) @pytest.mark.parametrize("num_workers", [1, 2]) @pytest.mark.parametrize("n_tsteps", [1, 2]) def test_dali_dataset_basic( test_data: Path, batch_size: int, num_workers: int, n_tsteps: int ): """Basic test to verify DALI dataset functionality.""" data_path = test_data channels = list(range(NUM_CHANNELS)) tstep = 1 patch_size = 8 base_loader, base_dset = _create_default_dataloader( data_path, channels, tstep, n_tsteps, patch_size, batch_size, ) dali_loader, dali_dset = _create_dali_dataloader( data_path, channels, tstep, n_tsteps, patch_size, batch_size, num_workers, ) assert dali_dset.invar_keys == base_dset.invar_keys assert dali_dset.outvar_keys == base_dset.outvar_keys num_epochs = 2 for _ in range(num_epochs): num_iters = 0 for batch_base, batch_dali in zip(base_loader, dali_loader): invar_b, outvar_b, lw_b = batch_base invar_d, outvar_d, lw_d = ( Constraint._set_device(i, "cpu") for i in batch_dali ) # Check invars. assert torch.allclose(invar_d["x_t0"], invar_b["x_t0"]) # Check outvars. assert len(outvar_d) == len(outvar_b) assert len(lw_d) == len(lw_b) for k in outvar_d.keys(): assert torch.allclose(outvar_d[k], outvar_b[k]) # Weights are consts, so should be exactly the same. assert (lw_d[k] == lw_b[k]).all() num_iters += 1 assert num_iters == NUM_SAMPLES // batch_size @pytest.mark.parametrize("batch_size", [1, 2]) @pytest.mark.parametrize("num_workers", [1, 2]) def test_dali_shuffle(test_data: Path, batch_size: int, num_workers: int): """Checks sample random shuffling functionality.""" data_path = test_data n_tsteps = 1 channels = list(range(NUM_CHANNELS)) tstep = 1 patch_size = 8 dali_loader = partial( _create_dali_dataloader, data_path, channels, tstep, n_tsteps, patch_size, batch_size, num_workers, ) base_loader, _ = dali_loader(shuffle=False) shuf_loader, _ = dali_loader(shuffle=True) num_epochs = 3 # Shuffled indices for each epoch. epoch_indices = [ [2, 0, 1, 3], [2, 0, 1, 3], [3, 1, 2, 0], ] for epoch in range(num_epochs): base_batches = list(base_loader) shuf_batches = list(shuf_loader) # Check that shuf_batches is a permutation of the original. x_t0_base = torch.cat([b[0]["x_t0"] for b in base_batches], dim=0) assert x_t0_base.size(0) == NUM_SAMPLES x_t0_shuf = torch.cat([b[0]["x_t0"] for b in shuf_batches], dim=0) assert x_t0_shuf.size(0) == NUM_SAMPLES for i in range(NUM_SAMPLES): dst_idx = epoch_indices[epoch][i] assert ( x_t0_shuf[i] == x_t0_base[dst_idx] ).all(), f"Mismatch at epoch {epoch}, sample {i}." @pytest.mark.skip(reason="The test should be run using mpirun, not pytest.") def test_distributed_dali_loader(data_path: Path): n_tsteps = 1 channels = list(range(NUM_CHANNELS)) tstep = 1 patch_size = 8 batch_size = 1 num_workers = 1 m = DistributedManager() world_size = m.world_size # TODO: temporary restriction, remove. assert ( world_size == 2 ), "Only 2-GPU configuration is supported for now. Please run with mpirun -np 2" base_loader, _ = _create_default_dataloader( data_path, channels, tstep, n_tsteps, patch_size, batch_size, ) base_batches = list(base_loader) x_t0_base = torch.cat([b[0]["x_t0"] for b in base_batches], dim=0) # Make sure baseline contains all samples. assert x_t0_base.size(0) == NUM_SAMPLES dali_loader, _ = _create_dali_dataloader( data_path, channels, tstep, n_tsteps, patch_size, batch_size, num_workers, ) num_samples_per_rank = NUM_SAMPLES // world_size dali_batches = list(dali_loader) x_t0_dali = torch.cat([b[0]["x_t0"] for b in dali_batches], dim=0) assert x_t0_dali.size(0) == num_samples_per_rank # Check the samples are distributed across ranks properly. idx_start = num_samples_per_rank * m.rank assert torch.allclose( x_t0_base[idx_start : idx_start + num_samples_per_rank], x_t0_dali.cpu() ) def _create_default_dataloader( data_path: Path, channels: List[int], tstep: int, n_tsteps: int, patch_size: int, batch_size: int, num_workers: int = 0, shuffle: bool = False, ): dataset = ERA5HDF5GridDataset( data_path, chans=channels, tstep=tstep, n_tsteps=n_tsteps, patch_size=patch_size, ) # Similar to Constraint.get_dataloader. loader = DataLoader( dataset, batch_size=batch_size, num_workers=num_workers, shuffle=shuffle, drop_last=True, ) if num_workers == 0: dataset.worker_init_fn(0) return loader, dataset def _create_dali_dataloader( data_path: Path, channels: List[int], tstep: int, n_tsteps: int, patch_size: int, batch_size: int, num_workers: int, shuffle: bool = False, ): dataset = ERA5HDF5GridDaliIterableDataset( data_path, chans=channels, tstep=tstep, n_tsteps=n_tsteps, patch_size=patch_size, batch_size=batch_size, num_workers=num_workers, shuffle=shuffle, ) return dataset, dataset
modulus-sym-main
examples/fourcastnet/src/test_dali_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines the FCN architecture""" import logging import torch from torch import Tensor from typing import List, Tuple, Dict from modulus.sym.models.afno.afno import AFNONet from modulus.sym.models.arch import Arch from modulus.sym.key import Key class FourcastNetArch(Arch): "Defines the FourcastNet architecture" def __init__( self, input_keys: List[Key], output_keys: List[Key], img_shape: Tuple[int, int], detach_keys: List[Key] = [], patch_size: int = 16, embed_dim: int = 256, depth: int = 4, num_blocks: int = 4, ) -> None: """Fourcastnet model. This is a simple wrapper for Modulus' AFNO model. The only difference is that FourcastNet needs multi-step training. This class allows the model to auto-regressively predict multiple timesteps Parameters (Same as AFNO) ---------- input_keys : List[Key] Input key list. The key dimension size should equal the variables channel dim. output_keys : List[Key] Output key list. The key dimension size should equal the variables channel dim. img_shape : Tuple[int, int] Input image dimensions (height, width) detach_keys : List[Key], optional List of keys to detach gradients, by default [] patch_size : int, optional Size of image patchs, by default 16 embed_dim : int, optional Embedded channel size, by default 256 depth : int, optional Number of AFNO layers, by default 4 num_blocks : int, optional Number of blocks in the frequency weight matrices, by default 4 """ super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys, ) # get number of timesteps steps to unroll assert ( len(self.input_keys) == 1 ), "Error, FourcastNet only accepts one input variable (x_t0)" self.n_tsteps = len(self.output_keys) logging.info(f"Unrolling FourcastNet over {self.n_tsteps} timesteps") # get number of input/output channels in_channels = self.input_keys[0].size out_channels = self.output_keys[0].size # intialise AFNO kernel self._impl = AFNONet( in_channels=in_channels, out_channels=out_channels, patch_size=(patch_size, patch_size), img_size=img_shape, embed_dim=embed_dim, depth=depth, num_blocks=num_blocks, ) def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: # prepare input tensor x = self.prepare_input( input_variables=in_vars, mask=self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=1, input_scales=self.input_scales, ) # unroll model over multiple timesteps ys = [] for t in range(self.n_tsteps): x = self._impl(x) ys.append(x) y = torch.cat(ys, dim=1) # prepare output dict return self.prepare_output( output_tensor=y, output_var=self.output_key_dict, dim=1, output_scales=self.output_scales, )
modulus-sym-main
examples/fourcastnet/src/fourcastnet.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.utils.data import DataLoader, Dataset import numpy as np from sympy import Symbol, Eq, Abs, sin, cos import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import SequentialSolver from modulus.sym.domain import Domain from modulus.sym.loss.loss import CausalLossNorm from modulus.sym.geometry.primitives_3d import Box from modulus.sym.geometry.parameterization import OrderedParameterization from modulus.sym.models.fully_connected import FullyConnectedArch from modulus.sym.models.moving_time_window import MovingTimeWindowArch from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.inferencer import PointVTKInferencer from modulus.sym.utils.io import ( VTKUniformGrid, ) from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # time window parameters time_window_size = 1.0 t_symbol = Symbol("t") time_range = {t_symbol: (0, time_window_size)} nr_time_windows = 10 # make navier stokes equations ns = NavierStokes(nu=0.002, rho=1.0, dim=3, time=True) # define sympy variables to parametrize domain curves x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # make geometry for problem channel_length = (0.0, 2 * np.pi) channel_width = (0.0, 2 * np.pi) channel_height = (0.0, 2 * np.pi) box_bounds = {x: channel_length, y: channel_width, z: channel_height} # define geometry rec = Box( (channel_length[0], channel_width[0], channel_height[0]), (channel_length[1], channel_width[1], channel_height[1]), parameterization=OrderedParameterization(time_range, key=t_symbol), ) # make network for current step and previous step flow_net = FullyConnectedArch( input_keys=[Key("x"), Key("y"), Key("z"), Key("t")], output_keys=[Key("u"), Key("v"), Key("w"), Key("p")], periodicity={"x": channel_length, "y": channel_width, "z": channel_height}, layer_size=256, ) time_window_net = MovingTimeWindowArch(flow_net, time_window_size) # make nodes to unroll graph on nodes = ns.make_nodes() + [time_window_net.make_node(name="time_window_network")] # make initial condition domain ic_domain = Domain("initial_conditions") # make moving window domain window_domain = Domain("window") # make initial condition ic = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={ "u": sin(x) * cos(y) * cos(z), "v": -cos(x) * sin(y) * cos(z), "w": 0, "p": 1.0 / 16 * (cos(2 * x) + cos(2 * y)) * (cos(2 * z) + 2), }, batch_size=cfg.batch_size.initial_condition, bounds=box_bounds, lambda_weighting={"u": 100, "v": 100, "w": 100, "p": 100}, parameterization={t_symbol: 0}, ) ic_domain.add_constraint(ic, name="ic") # make constraint for matching previous windows initial condition ic = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={"u_prev_step_diff": 0, "v_prev_step_diff": 0, "w_prev_step_diff": 0}, batch_size=cfg.batch_size.interior, bounds=box_bounds, lambda_weighting={ "u_prev_step_diff": 100, "v_prev_step_diff": 100, "w_prev_step_diff": 100, }, parameterization={t_symbol: 0}, ) window_domain.add_constraint(ic, name="ic") # make interior constraint interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0, "momentum_z": 0}, bounds=box_bounds, batch_size=4000, loss=CausalLossNorm(eps=1.0), fixed_dataset=False, shuffle=False, ) ic_domain.add_constraint(interior, name="interior") window_domain.add_constraint(interior, name="interior") # add inference data for time slices for i, specific_time in enumerate(np.linspace(0, time_window_size, 10)): vtk_obj = VTKUniformGrid( bounds=[(0, 2 * np.pi), (0, 2 * np.pi), (0, 2 * np.pi)], npoints=[128, 128, 128], export_map={"u": ["u", "v", "w"], "p": ["p"]}, ) grid_inference = PointVTKInferencer( vtk_obj=vtk_obj, nodes=nodes, input_vtk_map={"x": "x", "y": "y", "z": "z"}, output_names=["u", "v", "w", "p"], requires_grad=False, invar={"t": np.full([128**3, 1], specific_time)}, batch_size=100000, ) ic_domain.add_inferencer(grid_inference, name="time_slice_" + str(i).zfill(4)) window_domain.add_inferencer( grid_inference, name="time_slice_" + str(i).zfill(4) ) # make solver slv = SequentialSolver( cfg, [(1, ic_domain), (nr_time_windows, window_domain)], custom_update_operation=time_window_net.move_window, ) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/taylor_green/taylor_green_causal.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import numpy as np import matplotlib.pyplot as plt from modulus.sym.utils.io import csv_to_dict import os import warnings # get list of steps window_dirs = glob.glob("./outputs/taylor_green/network_checkpoint/*") window_dirs.sort() window_dirs = [x for x in window_dirs if os.path.isdir(x)] # read each file in each dir and store tke index = 0 time_points = [] tke_points = [] for i, d in enumerate(window_dirs): # get list of slices slice_files = glob.glob(d + "/inferencers/time_slice_*.npz") slice_files.sort() for f in slice_files: predicted_data = np.load(f, allow_pickle=True)["arr_0"].item() # shift t predicted_data["t"] += i if float(predicted_data["t"][0, 0, 0]) < 10.0: # store time time_points.append(float(predicted_data["t"][0, 0, 0])) # compute tke and store tke = np.mean( predicted_data["u"] ** 2 / 2 + predicted_data["v"] ** 2 / 2 + predicted_data["w"] ** 2 / 2 ) tke_points.append(tke) index += 1 tke_points = tke_points / np.max(tke_points) # load validation tke data file_path = "validation_tke" if os.path.exists(to_absolute_path(file_path)): validation_tke_128 = csv_to_dict("validation_tke/tke_mean_Re500_N128.csv") validation_tke_256 = csv_to_dict("validation_tke/tke_mean_Re500_N256.csv") plt.plot( validation_tke_128["Time"][:, 0], validation_tke_128["TKE_mean"][:, 0], label="Spectral Solver (grid res: 128)", ) plt.plot( validation_tke_256["Time"][:, 0], validation_tke_256["TKE_mean"][:, 0], label="Spectral Solver (grid res: 256)", ) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # plot turbulent kinetic energy decay plt.plot(time_points, tke_points, label="Modulus") plt.legend() plt.title("TKE") plt.ylabel("TKE") plt.xlabel("time") plt.savefig("tke_plot.png")
modulus-sym-main
examples/taylor_green/plot_results.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.utils.data import DataLoader, Dataset import numpy as np from sympy import Symbol, Eq, Abs, sin, cos import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import SequentialSolver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box from modulus.sym.models.fully_connected import FullyConnectedArch from modulus.sym.models.moving_time_window import MovingTimeWindowArch from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.inferencer import PointVTKInferencer from modulus.sym.utils.io import ( VTKUniformGrid, ) from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # time window parameters time_window_size = 1.0 t_symbol = Symbol("t") time_range = {t_symbol: (0, time_window_size)} nr_time_windows = 10 # make navier stokes equations ns = NavierStokes(nu=0.002, rho=1.0, dim=3, time=True) # define sympy variables to parametrize domain curves x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # make geometry for problem channel_length = (0.0, 2 * np.pi) channel_width = (0.0, 2 * np.pi) channel_height = (0.0, 2 * np.pi) box_bounds = {x: channel_length, y: channel_width, z: channel_height} # define geometry rec = Box( (channel_length[0], channel_width[0], channel_height[0]), (channel_length[1], channel_width[1], channel_height[1]), ) # make network for current step and previous step flow_net = FullyConnectedArch( input_keys=[Key("x"), Key("y"), Key("z"), Key("t")], output_keys=[Key("u"), Key("v"), Key("w"), Key("p")], periodicity={"x": channel_length, "y": channel_width, "z": channel_height}, layer_size=256, ) time_window_net = MovingTimeWindowArch(flow_net, time_window_size) # make nodes to unroll graph on nodes = ns.make_nodes() + [time_window_net.make_node(name="time_window_network")] # make initial condition domain ic_domain = Domain("initial_conditions") # make moving window domain window_domain = Domain("window") # make initial condition ic = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={ "u": sin(x) * cos(y) * cos(z), "v": -cos(x) * sin(y) * cos(z), "w": 0, "p": 1.0 / 16 * (cos(2 * x) + cos(2 * y)) * (cos(2 * z) + 2), }, batch_size=cfg.batch_size.initial_condition, bounds=box_bounds, lambda_weighting={"u": 100, "v": 100, "w": 100, "p": 100}, parameterization={t_symbol: 0}, ) ic_domain.add_constraint(ic, name="ic") # make constraint for matching previous windows initial condition ic = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={"u_prev_step_diff": 0, "v_prev_step_diff": 0, "w_prev_step_diff": 0}, batch_size=cfg.batch_size.interior, bounds=box_bounds, lambda_weighting={ "u_prev_step_diff": 100, "v_prev_step_diff": 100, "w_prev_step_diff": 100, }, parameterization={t_symbol: 0}, ) window_domain.add_constraint(ic, name="ic") # make interior constraint interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0, "momentum_z": 0}, bounds=box_bounds, batch_size=4094, parameterization=time_range, ) ic_domain.add_constraint(interior, name="interior") window_domain.add_constraint(interior, name="interior") # add inference data for time slices for i, specific_time in enumerate(np.linspace(0, time_window_size, 10)): vtk_obj = VTKUniformGrid( bounds=[(0, 2 * np.pi), (0, 2 * np.pi), (0, 2 * np.pi)], npoints=[128, 128, 128], export_map={"u": ["u", "v", "w"], "p": ["p"]}, ) grid_inference = PointVTKInferencer( vtk_obj=vtk_obj, nodes=nodes, input_vtk_map={"x": "x", "y": "y", "z": "z"}, output_names=["u", "v", "w", "p"], requires_grad=False, invar={"t": np.full([128**3, 1], specific_time)}, batch_size=100000, ) ic_domain.add_inferencer(grid_inference, name="time_slice_" + str(i).zfill(4)) window_domain.add_inferencer( grid_inference, name="time_slice_" + str(i).zfill(4) ) # make solver slv = SequentialSolver( cfg, [(1, ic_domain), (nr_time_windows, window_domain)], custom_update_operation=time_window_net.move_window, ) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/taylor_green/taylor_green.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from scipy.sparse.linalg import eigsh from scipy.sparse import diags def Laplacian_1D_eig(a, b, N, eps=lambda x: np.ones_like(x), k=3): n = N - 2 h = (b - a) / (N - 1) L = diags([1, -2, 1], [-1, 0, 1], shape=(n, n)) L = -L / h**2 x = np.linspace(a, b, num=N) M = diags([eps(x[1:-1])], [0]) eigvals, eigvecs = eigsh(L, k=k, M=M, which="SM") eigvecs = np.vstack((np.zeros((1, k)), eigvecs, np.zeros((1, k)))) norm_eigvecs = np.linalg.norm(eigvecs, axis=0) eigvecs /= norm_eigvecs return eigvals.astype(np.float32), eigvecs.astype(np.float32), x.astype(np.float32)
modulus-sym-main
examples/waveguide/EM_Utilities.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from sympy import Symbol, pi, sin, Number, Eq, And import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.utils.io.plotter import InferencerPlotter from modulus.sym.key import Key from modulus.sym.eq.pdes.electromagnetic import PEC, SommerfeldBC, MaxwellFreqReal x, y, z = Symbol("x"), Symbol("y"), Symbol("z") @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # params for domain length = 2 height = 2 width = 2 eigenmode = [1] wave_number = 16.0 # wave_number = freq/c waveguide_port = Number(0) for k in eigenmode: waveguide_port += sin(k * pi * y / length) * sin(k * pi * z / height) # define geometry rec = Box((0, 0, 0), (width, length, height)) # make list of nodes to unroll graph on hm = MaxwellFreqReal(k=wave_number) pec = PEC() pml = SommerfeldBC() wave_net = instantiate_arch( input_keys=[Key("x"), Key("y"), Key("z")], output_keys=[Key("ux"), Key("uy"), Key("uz")], frequencies=("axis,diagonal", [i / 2.0 for i in range(int(wave_number) + 1)]), frequencies_params=( "axis,diagonal", [i / 2.0 for i in range(int(wave_number) + 1)], ), cfg=cfg.arch.modified_fourier, ) nodes = ( hm.make_nodes() + pec.make_nodes() + pml.make_nodes() + [wave_net.make_node(name="wave_network")] ) waveguide_domain = Domain() wall_PEC = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"PEC_x": 0.0, "PEC_y": 0.0, "PEC_z": 0.0}, batch_size=cfg.batch_size.PEC, lambda_weighting={"PEC_x": 100.0, "PEC_y": 100.0, "PEC_z": 100.0}, criteria=And(~Eq(x, 0), ~Eq(x, width)), ) waveguide_domain.add_constraint(wall_PEC, "PEC") Waveguide_port = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"uz": waveguide_port}, batch_size=cfg.batch_size.Waveguide_port, lambda_weighting={"uz": 100.0}, criteria=Eq(x, 0), ) waveguide_domain.add_constraint(Waveguide_port, "Waveguide_port") ABC = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={ "SommerfeldBC_real_x": 0.0, "SommerfeldBC_real_y": 0.0, "SommerfeldBC_real_z": 0.0, }, batch_size=cfg.batch_size.ABC, lambda_weighting={ "SommerfeldBC_real_x": 10.0, "SommerfeldBC_real_y": 10.0, "SommerfeldBC_real_z": 10.0, }, criteria=Eq(x, width), ) waveguide_domain.add_constraint(ABC, "ABC") Interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={ "Maxwell_Freq_real_x": 0, "Maxwell_Freq_real_y": 0.0, "Maxwell_Freq_real_z": 0.0, }, batch_size=cfg.batch_size.Interior, bounds={x: (0, width), y: (0, length), z: (0, height)}, lambda_weighting={ "Maxwell_Freq_real_x": 1.0 / wave_number**2, "Maxwell_Freq_real_y": 1.0 / wave_number**2, "Maxwell_Freq_real_z": 1.0 / wave_number**2, }, fixed_dataset=False, ) waveguide_domain.add_constraint(Interior, "Interior") # add inferencer data interior_points = rec.sample_interior( 10000, bounds={x: (0, width), y: (0, length), z: (0, height)} ) numpy_inference = PointwiseInferencer( nodes=nodes, invar=interior_points, output_names=["ux", "uy", "uz"], plotter=InferencerPlotter(), batch_size=2048, ) waveguide_domain.add_inferencer(numpy_inference, "Inf" + str(wave_number).zfill(4)) # make solver slv = Solver(cfg, waveguide_domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/waveguide/cavity_3D/waveguide3D.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import sys import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from sympy import Symbol, Eq, Heaviside, sqrt from sympy.logic.boolalg import And import numpy as np from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, PointwiseConstraint, ) from modulus.sym.domain.inferencer import VoxelInferencer from modulus.sym.utils.io.plotter import InferencerPlotter from modulus.sym.key import Key from modulus.sym.eq.pdes.electromagnetic import PEC, SommerfeldBC, MaxwellFreqReal x, y, z = Symbol("x"), Symbol("y"), Symbol("z") @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # params for domain length = 1 height = 1 width = 1 len_slab = 0.2 eps0 = 1.0 eps1 = 1.5 eps_sympy = sqrt( eps0 + (Heaviside(y + len_slab / 2) - Heaviside(y - len_slab / 2)) * (Heaviside(z + len_slab / 2) - Heaviside(z - len_slab / 2)) * (eps1 - eps0) ) wave_number = 16.0 # wave_number = freq/c file_path = "../validation/2Dwaveguideport.csv" if not os.path.exists(to_absolute_path(file_path)): warnings.warn( f"Directory {file_path} does not exist. Cannot continue. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) sys.exit() mapping = {"x": "x", "y": "y", **{"u" + str(k): "u" + str(k) for k in range(6)}} data_var = csv_to_dict( to_absolute_path("../validation/2Dwaveguideport.csv"), mapping ) waveguide_port_invar_numpy = { "x": np.zeros_like(data_var["x"]) - 0.5, "y": data_var["x"], "z": data_var["y"], } waveguide_port_outvar_numpy = {"uz": data_var["u0"]} # define geometry rec = Box( (-width / 2, -length / 2, -height / 2), (width / 2, length / 2, height / 2) ) # make list of nodes to unroll graph on hm = MaxwellFreqReal(k=wave_number * eps_sympy) pec = PEC() pml = SommerfeldBC() wave_net = instantiate_arch( input_keys=[Key("x"), Key("y"), Key("z")], output_keys=[Key("ux"), Key("uy"), Key("uz")], frequencies=( "axis,diagonal", [i / 2.0 for i in range(int(wave_number * np.sqrt(eps1)) * 2 + 1)], ), frequencies_params=( "axis,diagonal", [i / 2.0 for i in range(int(wave_number * np.sqrt(eps1)) * 2 + 1)], ), cfg=cfg.arch.modified_fourier, ) nodes = ( hm.make_nodes() + pec.make_nodes() + pml.make_nodes() + [wave_net.make_node(name="wave_network")] ) waveguide_domain = Domain() wall_PEC = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"PEC_x": 0.0, "PEC_y": 0.0, "PEC_z": 0.0}, batch_size=cfg.batch_size.PEC, lambda_weighting={"PEC_x": 100.0, "PEC_y": 100.0, "PEC_z": 100.0}, criteria=And(~Eq(x, -width / 2), ~Eq(x, width / 2)), fixed_dataset=False, ) waveguide_domain.add_constraint(wall_PEC, "PEC") Waveguide_port = PointwiseConstraint.from_numpy( nodes=nodes, invar=waveguide_port_invar_numpy, outvar=waveguide_port_outvar_numpy, batch_size=cfg.batch_size.Waveguide_port, lambda_weighting={"uz": np.full_like(waveguide_port_invar_numpy["x"], 0.5)}, ) waveguide_domain.add_constraint(Waveguide_port, "Waveguide_port") ABC = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={ "SommerfeldBC_real_x": 0.0, "SommerfeldBC_real_y": 0.0, "SommerfeldBC_real_z": 0.0, }, batch_size=cfg.batch_size.ABC, lambda_weighting={ "SommerfeldBC_real_x": 10.0, "SommerfeldBC_real_y": 10.0, "SommerfeldBC_real_z": 10.0, }, criteria=Eq(x, width / 2), fixed_dataset=False, ) waveguide_domain.add_constraint(ABC, "ABC") Interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={ "Maxwell_Freq_real_x": 0, "Maxwell_Freq_real_y": 0.0, "Maxwell_Freq_real_z": 0.0, }, batch_size=cfg.batch_size.Interior, lambda_weighting={ "Maxwell_Freq_real_x": 1.0 / wave_number**2, "Maxwell_Freq_real_y": 1.0 / wave_number**2, "Maxwell_Freq_real_z": 1.0 / wave_number**2, }, fixed_dataset=False, ) waveguide_domain.add_constraint(Interior, "Interior") # add inferencer data slab_inference = VoxelInferencer( bounds=[[-0.5, 0.5], [-0.5, 0.5], [-0.5, 0.5]], npoints=[128, 128, 128], nodes=nodes, output_names=["ux", "uy", "uz"], ) waveguide_domain.add_inferencer(slab_inference, "Inf" + str(int(wave_number))) # make solver slv = Solver(cfg, waveguide_domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/waveguide/slab_3D/slab_3D.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sympy import Symbol, Eq, Heaviside, sqrt from sympy.logic.boolalg import Or import numpy as np from scipy.sparse.linalg import eigsh from scipy.sparse import diags import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, PointwiseConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import VoxelInferencer from modulus.sym.utils.io.plotter import ValidatorPlotter, InferencerPlotter from modulus.sym.key import Key from modulus.sym.eq.pdes.wave_equation import HelmholtzEquation from modulus.sym.eq.pdes.navier_stokes import GradNormal x, y = Symbol("x"), Symbol("y") # helper function for computing laplacian eigen values def Laplacian_1D_eig(a, b, N, eps=lambda x: np.ones_like(x), k=3): n = N - 2 h = (b - a) / (N - 1) L = diags([1, -2, 1], [-1, 0, 1], shape=(n, n)) L = -L / h**2 x = np.linspace(a, b, num=N) M = diags([eps(x[1:-1])], [0]) eigvals, eigvecs = eigsh(L, k=k, M=M, which="SM") eigvecs = np.vstack((np.zeros((1, k)), eigvecs, np.zeros((1, k)))) norm_eigvecs = np.linalg.norm(eigvecs, axis=0) eigvecs /= norm_eigvecs return eigvals.astype(np.float32), eigvecs.astype(np.float32), x.astype(np.float32) @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # params for domain height = 2 width = 2 len_slab = 0.6 eps0 = 1.0 eps1 = 2.0 eps_numpy = lambda y: np.where( np.logical_and(y > (height - len_slab) / 2, y < (height + len_slab) / 2), eps1, eps0, ) eps_sympy = sqrt( eps0 + ( Heaviside(y - (height - len_slab) / 2) - Heaviside(y - (height + len_slab) / 2) ) * (eps1 - eps0) ) eigvals, eigvecs, yv = Laplacian_1D_eig(0, height, 1000, eps=eps_numpy, k=3) yv = yv.reshape((-1, 1)) eigenmode = [1] wave_number = 16.0 # wave_number = freq/c waveguide_port_invar_numpy = {"x": np.zeros_like(yv), "y": yv} waveguide_port_outvar_numpy = {"u": 10 * eigvecs[:, 0:1]} # define geometry rec = Rectangle((0, 0), (width, height)) # make list of nodes to unroll graph on hm = HelmholtzEquation(u="u", k=wave_number * eps_sympy, dim=2) gn = GradNormal(T="u", dim=2, time=False) wave_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], frequencies=( "axis,diagonal", [i / 2.0 for i in range(int(wave_number * np.sqrt(eps1)) * 2 + 1)], ), frequencies_params=( "axis,diagonal", [i / 2.0 for i in range(int(wave_number * np.sqrt(eps1)) * 2 + 1)], ), cfg=cfg.arch.modified_fourier, ) nodes = ( hm.make_nodes() + gn.make_nodes() + [wave_net.make_node(name="wave_network")] ) waveguide_domain = Domain() PEC = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"u": 0.0}, batch_size=cfg.batch_size.PEC, lambda_weighting={"u": 100.0}, criteria=Or(Eq(y, 0), Eq(y, height)), ) waveguide_domain.add_constraint(PEC, "PEC") Waveguide_port = PointwiseConstraint.from_numpy( nodes=nodes, invar=waveguide_port_invar_numpy, outvar=waveguide_port_outvar_numpy, batch_size=cfg.batch_size.Waveguide_port, lambda_weighting={"u": np.full_like(yv, 0.5)}, ) waveguide_domain.add_constraint(Waveguide_port, "Waveguide_port") ABC = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"normal_gradient_u": 0.0}, batch_size=cfg.batch_size.ABC, lambda_weighting={"normal_gradient_u": 10.0}, criteria=Eq(x, width), ) waveguide_domain.add_constraint(ABC, "ABC") Interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={"helmholtz": 0.0}, batch_size=cfg.batch_size.Interior, lambda_weighting={ "helmholtz": 1.0 / wave_number**2, }, ) waveguide_domain.add_constraint(Interior, "Interior") # add inferencer data slab_inference = VoxelInferencer( bounds=[[0, 2], [0, 2]], npoints=[256, 256], nodes=nodes, output_names=["u"], ) waveguide_domain.add_inferencer(slab_inference, "Inf" + str(int(wave_number))) # make solver slv = Solver(cfg, waveguide_domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/waveguide/slab_2D/slab_2D.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from sympy import Symbol, pi, sin, Number, Eq from sympy.logic.boolalg import Or import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.utils.io.plotter import ValidatorPlotter, InferencerPlotter from modulus.sym.key import Key from modulus.sym.eq.pdes.wave_equation import HelmholtzEquation from modulus.sym.eq.pdes.navier_stokes import GradNormal x, y = Symbol("x"), Symbol("y") @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # params for domain height = 2 width = 2 eigenmode = [2] wave_number = 32.0 # wave_number = freq/c waveguide_port = Number(0) for k in eigenmode: waveguide_port += sin(k * pi * y / height) # define geometry rec = Rectangle((0, 0), (width, height)) # make list of nodes to unroll graph on hm = HelmholtzEquation(u="u", k=wave_number, dim=2) gn = GradNormal(T="u", dim=2, time=False) wave_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], frequencies=( "axis,diagonal", [i / 2.0 for i in range(int(wave_number) * 2 + 1)], ), frequencies_params=( "axis,diagonal", [i / 2.0 for i in range(int(wave_number) * 2 + 1)], ), cfg=cfg.arch.modified_fourier, ) nodes = ( hm.make_nodes() + gn.make_nodes() + [wave_net.make_node(name="wave_network")] ) waveguide_domain = Domain() PEC = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"u": 0.0}, batch_size=cfg.batch_size.PEC, lambda_weighting={"u": 100.0}, criteria=Or(Eq(y, 0), Eq(y, height)), ) waveguide_domain.add_constraint(PEC, "PEC") Waveguide_port = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"u": waveguide_port}, batch_size=cfg.batch_size.Waveguide_port, lambda_weighting={"u": 100.0}, criteria=Eq(x, 0), ) waveguide_domain.add_constraint(Waveguide_port, "Waveguide_port") ABC = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"normal_gradient_u": 0.0}, batch_size=cfg.batch_size.ABC, lambda_weighting={"normal_gradient_u": 10.0}, criteria=Eq(x, width), ) waveguide_domain.add_constraint(ABC, "ABC") Interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={"helmholtz": 0.0}, batch_size=cfg.batch_size.Interior, bounds={x: (0, width), y: (0, height)}, lambda_weighting={ "helmholtz": 1.0 / wave_number**2, }, ) waveguide_domain.add_constraint(Interior, "Interior") # add validation data file_path = "../validation/2Dwaveguide_32_2.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"x": "x", "y": "y", "u": "u"} validation_var = csv_to_dict(to_absolute_path(file_path), mapping) validation_invar_numpy = { key: value for key, value in validation_var.items() if key in ["x", "y"] } validation_outvar_numpy = { key: value for key, value in validation_var.items() if key in ["u"] } csv_validator = PointwiseValidator( nodes=nodes, invar=validation_invar_numpy, true_outvar=validation_outvar_numpy, batch_size=2048, plotter=ValidatorPlotter(), ) waveguide_domain.add_validator(csv_validator) # add inferencer data csv_inference = PointwiseInferencer( nodes=nodes, invar=validation_invar_numpy, output_names=["u"], plotter=InferencerPlotter(), batch_size=2048, ) waveguide_domain.add_inferencer(csv_inference, "inf_data") else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # make solver slv = Solver(cfg, waveguide_domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/waveguide/cavity_2D/waveguide2D_TMz.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sympy import Symbol, Function, Number from modulus.sym.eq.pde import PDE class SpringMass(PDE): name = "SpringMass" def __init__(self, k=(2, 1, 1, 2), m=(1, 1, 1)): self.k = k self.m = m k1 = k[0] k2 = k[1] k3 = k[2] k4 = k[3] m1 = m[0] m2 = m[1] m3 = m[2] t = Symbol("t") input_variables = {"t": t} x1 = Function("x1")(*input_variables) x2 = Function("x2")(*input_variables) x3 = Function("x3")(*input_variables) if type(k1) is str: k1 = Function(k1)(*input_variables) elif type(k1) in [float, int]: k1 = Number(k1) if type(k2) is str: k2 = Function(k2)(*input_variables) elif type(k2) in [float, int]: k2 = Number(k2) if type(k3) is str: k3 = Function(k3)(*input_variables) elif type(k3) in [float, int]: k3 = Number(k3) if type(k4) is str: k4 = Function(k4)(*input_variables) elif type(k4) in [float, int]: k4 = Number(k4) if type(m1) is str: m1 = Function(m1)(*input_variables) elif type(m1) in [float, int]: m1 = Number(m1) if type(m2) is str: m2 = Function(m2)(*input_variables) elif type(m2) in [float, int]: m2 = Number(m2) if type(m3) is str: m3 = Function(m3)(*input_variables) elif type(m3) in [float, int]: m3 = Number(m3) self.equations = {} self.equations["ode_x1"] = m1 * (x1.diff(t)).diff(t) + k1 * x1 - k2 * (x2 - x1) self.equations["ode_x2"] = ( m2 * (x2.diff(t)).diff(t) + k2 * (x2 - x1) - k3 * (x3 - x2) ) self.equations["ode_x3"] = m3 * (x3.diff(t)).diff(t) + k3 * (x3 - x2) + k4 * x3
modulus-sym-main
examples/ode_spring_mass/spring_mass_ode.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from sympy import Symbol, Eq import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_1d import Point1D from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.key import Key from modulus.sym.node import Node from spring_mass_ode import SpringMass @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on sm = SpringMass(k=(2, 1, 1, 2), m=(1, 1, 1)) sm_net = instantiate_arch( input_keys=[Key("t")], output_keys=[Key("x1"), Key("x2"), Key("x3")], cfg=cfg.arch.fully_connected, ) nodes = sm.make_nodes() + [sm_net.make_node(name="spring_mass_network")] # add constraints to solver # make geometry geo = Point1D(0) t_max = 10.0 t_symbol = Symbol("t") x = Symbol("x") time_range = {t_symbol: (0, t_max)} # make domain domain = Domain() # initial conditions IC = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"x1": 1.0, "x2": 0, "x3": 0, "x1__t": 0, "x2__t": 0, "x3__t": 0}, batch_size=cfg.batch_size.IC, lambda_weighting={ "x1": 1.0, "x2": 1.0, "x3": 1.0, "x1__t": 1.0, "x2__t": 1.0, "x3__t": 1.0, }, parameterization={t_symbol: 0}, ) domain.add_constraint(IC, name="IC") # solve over given time period interior = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"ode_x1": 0.0, "ode_x2": 0.0, "ode_x3": 0.0}, batch_size=cfg.batch_size.interior, parameterization=time_range, ) domain.add_constraint(interior, "interior") # add validation data deltaT = 0.001 t = np.arange(0, t_max, deltaT) t = np.expand_dims(t, axis=-1) invar_numpy = {"t": t} outvar_numpy = { "x1": (1 / 6) * np.cos(t) + (1 / 2) * np.cos(np.sqrt(3) * t) + (1 / 3) * np.cos(2 * t), "x2": (2 / 6) * np.cos(t) + (0 / 2) * np.cos(np.sqrt(3) * t) - (1 / 3) * np.cos(2 * t), "x3": (1 / 6) * np.cos(t) - (1 / 2) * np.cos(np.sqrt(3) * t) + (1 / 3) * np.cos(2 * t), } validator = PointwiseValidator( nodes=nodes, invar=invar_numpy, true_outvar=outvar_numpy, batch_size=1024 ) domain.add_validator(validator) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/ode_spring_mass/spring_mass_solver.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import matplotlib.pyplot as plt base_dir = "outputs/spring_mass_solver/validators/" # plot in 1d data = np.load(base_dir + "validator.npz", allow_pickle=True) data = np.atleast_1d(data.f.arr_0)[0] plt.plot(data["t"], data["true_x1"], label="True x1") plt.plot(data["t"], data["true_x2"], label="True x2") plt.plot(data["t"], data["true_x3"], label="True x3") plt.plot(data["t"], data["pred_x1"], label="Pred x1") plt.plot(data["t"], data["pred_x2"], label="Pred x2") plt.plot(data["t"], data["pred_x3"], label="Pred x3") plt.legend() plt.savefig("comparison.png")
modulus-sym-main
examples/ode_spring_mass/plot_results_spring.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import warnings import torch import numpy as np import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig, to_yaml from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.models.fully_connected import FullyConnectedArch from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.models.deeponet import DeepONetArch from modulus.sym.domain.constraint.continuous import DeepONetConstraint from modulus.sym.domain.validator.discrete import GridValidator from modulus.sym.dataset.discrete import DictGridDataset from modulus.sym.key import Key @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # [init-model] trunk_net = FourierNetArch( input_keys=[Key("x")], output_keys=[Key("trunk", 128)], ) branch_net = FullyConnectedArch( input_keys=[Key("a", 100)], output_keys=[Key("branch", 128)], ) deeponet = DeepONetArch( output_keys=[Key("u")], branch_net=branch_net, trunk_net=trunk_net, ) nodes = [deeponet.make_node("deepo")] # [init-model] # [datasets] # load training data file_path = "data/anti_derivative.npy" if not os.path.exists(to_absolute_path(file_path)): warnings.warn( f"Directory {file_path} does not exist. Cannot continue. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) sys.exit() data = np.load(to_absolute_path(file_path), allow_pickle=True).item() x_train = data["x_train"] a_train = data["a_train"] u_train = data["u_train"] # load test data x_test = data["x_test"] a_test = data["a_test"] u_test = data["u_test"] # [datasets] # [constraint] # make domain domain = Domain() data = DeepONetConstraint.from_numpy( nodes=nodes, invar={"a": a_train, "x": x_train}, outvar={"u": u_train}, batch_size=cfg.batch_size.train, ) domain.add_constraint(data, "data") # [constraint] # [validator] # add validators for k in range(10): invar_valid = { "a": a_test[k * 100 : (k + 1) * 100], "x": x_test[k * 100 : (k + 1) * 100], } outvar_valid = {"u": u_test[k * 100 : (k + 1) * 100]} dataset = DictGridDataset(invar_valid, outvar_valid) validator = GridValidator(nodes=nodes, dataset=dataset, plotter=None) domain.add_validator(validator, "validator_{}".format(k)) # [validator] # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/anti_derivative/data_informed.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import warnings import torch import numpy as np import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.models.fully_connected import FullyConnectedArch from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.models.deeponet import DeepONetArch from modulus.sym.domain.constraint.continuous import DeepONetConstraint from modulus.sym.domain.validator.discrete import GridValidator from modulus.sym.dataset.discrete import DictGridDataset from modulus.sym.key import Key @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # [init-model] # make list of nodes to unroll graph on trunk_net = FourierNetArch( input_keys=[Key("x")], output_keys=[Key("trunk", 128)], ) branch_net = FullyConnectedArch( input_keys=[Key("a", 100)], output_keys=[Key("branch", 128)], ) deeponet = DeepONetArch( output_keys=[Key("u")], branch_net=branch_net, trunk_net=trunk_net, ) nodes = [deeponet.make_node("deepo")] # [init-model] # [datasets] # load training data file_path = "data/anti_derivative.npy" if not os.path.exists(to_absolute_path(file_path)): warnings.warn( f"Directory {file_path} does not exist. Cannot continue. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) sys.exit() data = np.load(to_absolute_path(file_path), allow_pickle=True).item() x_train = data["x_train"] a_train = data["a_train"] u_train = data["u_train"] x_r_train = data["x_r_train"] a_r_train = data["a_r_train"] u_r_train = data["u_r_train"] # load test data x_test = data["x_test"] a_test = data["a_test"] u_test = data["u_test"] # [datasets] # [constraint1] # make domain domain = Domain() # add constraints to domain IC = DeepONetConstraint.from_numpy( nodes=nodes, invar={"a": a_train, "x": np.zeros_like(x_train)}, outvar={"u": np.zeros_like(u_train)}, batch_size=cfg.batch_size.train, ) domain.add_constraint(IC, "IC") # [constraint1] # [constraint2] interior = DeepONetConstraint.from_numpy( nodes=nodes, invar={"a": a_r_train, "x": x_r_train}, outvar={"u__x": u_r_train}, batch_size=cfg.batch_size.train, ) domain.add_constraint(interior, "Residual") # [constraint2] # [validator] # add validators for k in range(10): invar_valid = { "a": a_test[k * 100 : (k + 1) * 100], "x": x_test[k * 100 : (k + 1) * 100], } outvar_valid = {"u": u_test[k * 100 : (k + 1) * 100]} dataset = DictGridDataset(invar_valid, outvar_valid) validator = GridValidator(nodes=nodes, dataset=dataset, plotter=None) domain.add_validator(validator, "validator_{}".format(k)) # [validator] # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/anti_derivative/physics_informed.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import torch import numpy as np from sympy import Symbol, sqrt, Max import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.basic import NormalDotVec from modulus.sym.utils.io import csv_to_dict from modulus.sym.geometry.tessellation import Tessellation @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # read stl files to make geometry point_path = to_absolute_path("./stl_files") inlet_mesh = Tessellation.from_stl( point_path + "/aneurysm_inlet.stl", airtight=False ) outlet_mesh = Tessellation.from_stl( point_path + "/aneurysm_outlet.stl", airtight=False ) noslip_mesh = Tessellation.from_stl( point_path + "/aneurysm_noslip.stl", airtight=False ) integral_mesh = Tessellation.from_stl( point_path + "/aneurysm_integral.stl", airtight=False ) interior_mesh = Tessellation.from_stl( point_path + "/aneurysm_closed.stl", airtight=True ) # params nu = 0.025 inlet_vel = 1.5 # inlet velocity profile def circular_parabola(x, y, z, center, normal, radius, max_vel): centered_x = x - center[0] centered_y = y - center[1] centered_z = z - center[2] distance = sqrt(centered_x**2 + centered_y**2 + centered_z**2) parabola = max_vel * Max((1 - (distance / radius) ** 2), 0) return normal[0] * parabola, normal[1] * parabola, normal[2] * parabola # normalize meshes def normalize_mesh(mesh, center, scale): mesh = mesh.translate([-c for c in center]) mesh = mesh.scale(scale) return mesh # normalize invars def normalize_invar(invar, center, scale, dims=2): invar["x"] -= center[0] invar["y"] -= center[1] invar["z"] -= center[2] invar["x"] *= scale invar["y"] *= scale invar["z"] *= scale if "area" in invar.keys(): invar["area"] *= scale**dims return invar # scale and normalize mesh and openfoam data center = (-18.40381048596882, -50.285383353981196, 12.848136936899031) scale = 0.4 inlet_mesh = normalize_mesh(inlet_mesh, center, scale) outlet_mesh = normalize_mesh(outlet_mesh, center, scale) noslip_mesh = normalize_mesh(noslip_mesh, center, scale) integral_mesh = normalize_mesh(integral_mesh, center, scale) interior_mesh = normalize_mesh(interior_mesh, center, scale) # geom params inlet_normal = (0.8526, -0.428, 0.299) inlet_area = 21.1284 * (scale**2) inlet_center = (-4.24298030045776, 4.082857101816247, -4.637790193399717) inlet_radius = np.sqrt(inlet_area / np.pi) outlet_normal = (0.33179, 0.43424, 0.83747) outlet_area = 12.0773 * (scale**2) outlet_radius = np.sqrt(outlet_area / np.pi) # make aneurysm domain domain = Domain() # make list of nodes to unroll graph on ns = NavierStokes(nu=nu * scale, rho=1.0, dim=3, time=False) normal_dot_vel = NormalDotVec(["u", "v", "w"]) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y"), Key("z")], output_keys=[Key("u"), Key("v"), Key("w"), Key("p")], cfg=cfg.arch.fully_connected, ) nodes = ( ns.make_nodes() + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network")] ) # add constraints to solver # inlet u, v, w = circular_parabola( Symbol("x"), Symbol("y"), Symbol("z"), center=inlet_center, normal=inlet_normal, radius=inlet_radius, max_vel=inlet_vel, ) inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=inlet_mesh, outvar={"u": u, "v": v, "w": w}, batch_size=cfg.batch_size.inlet, ) domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=outlet_mesh, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, ) domain.add_constraint(outlet, "outlet") # no slip no_slip = PointwiseBoundaryConstraint( nodes=nodes, geometry=noslip_mesh, outvar={"u": 0, "v": 0, "w": 0}, batch_size=cfg.batch_size.no_slip, ) domain.add_constraint(no_slip, "no_slip") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=interior_mesh, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0, "momentum_z": 0}, batch_size=cfg.batch_size.interior, ) domain.add_constraint(interior, "interior") # Integral Continuity 1 integral_continuity = IntegralBoundaryConstraint( nodes=nodes, geometry=outlet_mesh, outvar={"normal_dot_vel": 2.540}, batch_size=1, integral_batch_size=cfg.batch_size.integral_continuity, lambda_weighting={"normal_dot_vel": 0.1}, ) domain.add_constraint(integral_continuity, "integral_continuity_1") # Integral Continuity 2 integral_continuity = IntegralBoundaryConstraint( nodes=nodes, geometry=integral_mesh, outvar={"normal_dot_vel": -2.540}, batch_size=1, integral_batch_size=cfg.batch_size.integral_continuity, lambda_weighting={"normal_dot_vel": 0.1}, ) domain.add_constraint(integral_continuity, "integral_continuity_1") # add validation data file_path = "./openfoam/aneurysm_parabolicInlet_sol0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = { "Points:0": "x", "Points:1": "y", "Points:2": "z", "U:0": "u", "U:1": "v", "U:2": "w", "p": "p", } openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_invar = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "z"] } openfoam_invar = normalize_invar(openfoam_invar, center, scale, dims=3) openfoam_outvar = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "w", "p"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar, true_outvar=openfoam_outvar, batch_size=4096, ) domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add pressure monitor pressure_monitor = PointwiseMonitor( inlet_mesh.sample_boundary(16), output_names=["p"], metrics={"pressure_drop": lambda var: torch.mean(var["p"])}, nodes=nodes, ) domain.add_monitor(pressure_monitor) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/aneurysm/aneurysm.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This PDE problem was taken from, "A Physics-Informed Neural Network Framework for PDEs on 3D Surfaces: Time Independent Problems" by Zhiwei Fang and Justin Zhan. """ from sympy import Symbol, Function import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_1d import Point1D from modulus.sym.geometry.primitives_3d import Sphere from modulus.sym.geometry.parameterization import Parameterization, Parameter from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pde import PDE # define Poisson equation with sympy class SurfacePoisson(PDE): name = "SurfacePoisson" def __init__(self): # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") normal_x, normal_y, normal_z = ( Symbol("normal_x"), Symbol("normal_y"), Symbol("normal_z"), ) # u u = Function("u")(x, y, z) # set equations self.equations = {} self.equations["poisson_u"] = u.diff(x, 2) + u.diff(y, 2) + u.diff(z, 2) self.equations["flux_u"] = ( normal_x * u.diff(x) + normal_y * u.diff(y) + normal_z * u.diff(z) ) @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on sp = SurfacePoisson() poisson_net = instantiate_arch( input_keys=[Key("x"), Key("y"), Key("z")], output_keys=[Key("u")], cfg=cfg.arch.fully_connected, ) nodes = sp.make_nodes() + [poisson_net.make_node(name="poisson_network")] # add constraints to solver # make geometry x, y, z = Symbol("x"), Symbol("y"), Symbol("z") center = (0, 0, 0) radius = 1 geo = Sphere(center, radius) p = Point1D( 1, parameterization=Parameterization({Parameter("y"): 0, Parameter("z"): 0}) ) # make domain domain = Domain() # sphere surface surface = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"poisson_u": -18.0 * x * y * z, "flux_u": 0}, batch_size=cfg.batch_size.surface, lambda_weighting={"poisson_u": 1.0, "flux_u": 1.0}, ) domain.add_constraint(surface, "surface") # single point point = PointwiseBoundaryConstraint( nodes=nodes, geometry=p, outvar={"u": 0.0}, batch_size=2, lambda_weighting={"u": 1.0}, ) domain.add_constraint(point, "point") # validation data surface_points = geo.sample_boundary(10000) true_solution = { "u": surface_points["x"] * surface_points["y"] * surface_points["z"] } validator = PointwiseValidator( nodes=nodes, invar=surface_points, true_outvar=true_solution, batch_size=128 ) domain.add_validator(validator) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/surface_pde/sphere/sphere.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from sympy import Symbol, Eq, sin, cos, Min, Max, Abs, log, exp import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle, Line, Channel2D from modulus.sym.utils.sympy.functions import parabola from modulus.sym.utils.io import csv_to_dict from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.key import Key from modulus.sym.node import Node from custom_k_ep import kEpsilonInit, kEpsilon, kEpsilonStdWF @modulus.sym.main(config_path="conf_re590_k_ep", config_name="config") def run(cfg: ModulusConfig) -> None: # simulation parameters Re = 590 nu = 1 / Re y_plus = 30 karman_constant = 0.4187 resolved_y_start = y_plus * nu channel_width = (-1, 1) channel_length = (-np.pi / 2, np.pi / 2) inlet = Line( (channel_length[0], channel_width[0]), (channel_length[0], channel_width[1]), normal=1, ) outlet = Line( (channel_length[1], channel_width[0]), (channel_length[1], channel_width[1]), normal=1, ) geo_sdf = Channel2D( (channel_length[0], channel_width[0]), (channel_length[1], channel_width[1]) ) # geometry where the equations are solved geo_resolved = Channel2D( (channel_length[0], channel_width[0] + resolved_y_start), (channel_length[1], channel_width[1] - resolved_y_start), ) # make list of nodes to unroll graph on init = kEpsilonInit(nu=nu, rho=1.0) eq = kEpsilon(nu=nu, rho=1.0) wf = kEpsilonStdWF(nu=nu, rho=1.0) u_tau_net = instantiate_arch( input_keys=[Key("u_in"), Key("y_in")], output_keys=[Key("u_tau_out")], cfg=cfg.arch.fully_connected, ) flow_net = instantiate_arch( input_keys=[Key("x_sin"), Key("y")], output_keys=[Key("u"), Key("v")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) p_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("p")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) k_net = instantiate_arch( input_keys=[Key("x_sin"), Key("y")], output_keys=[Key("k_star")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) ep_net = instantiate_arch( input_keys=[Key("x_sin"), Key("y")], output_keys=[Key("ep_star")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) nodes = ( init.make_nodes() + eq.make_nodes() + wf.make_nodes() + [ Node.from_sympy( sin(2 * np.pi * Symbol("x") / (channel_length[1] - channel_length[0])), "x_sin", ) ] + [Node.from_sympy(Min(log(1 + exp(Symbol("k_star"))) + 1e-4, 20), "k")] + [Node.from_sympy(Min(log(1 + exp(Symbol("ep_star"))) + 1e-4, 180), "ep")] + [flow_net.make_node(name="flow_network")] + [p_net.make_node(name="p_network")] + [k_net.make_node(name="k_network")] + [ep_net.make_node(name="ep_network")] ) nodes_u_tau = ( [Node.from_sympy(Symbol("normal_distance"), "y_in")] + [ Node.from_sympy( ( ( Symbol("u") - ( Symbol("u") * (-Symbol("normal_x")) + Symbol("v") * (-Symbol("normal_y")) ) * (-Symbol("normal_x")) ) ** 2 + ( Symbol("v") - ( Symbol("u") * (-Symbol("normal_x")) + Symbol("v") * (-Symbol("normal_y")) ) * (-Symbol("normal_y")) ) ** 2 ) ** 0.5, "u_parallel_to_wall", ) ] + [Node.from_sympy(Symbol("u_parallel_to_wall"), "u_in")] + [Node.from_sympy(Symbol("u_tau_out"), "u_tau")] + [u_tau_net.make_node(name="u_tau_network", optimize=False)] ) # add constraints to solver p_grad = 1.0 x, y = Symbol("x"), Symbol("y") # make domain domain = Domain() # Point where wall funciton is applied wf_pt = PointwiseBoundaryConstraint( nodes=nodes + nodes_u_tau, geometry=geo_resolved, outvar={ "velocity_wall_normal_wf": 0, "velocity_wall_parallel_wf": 0, "ep_wf": 0, "k_wf": 0, "wall_shear_stress_x_wf": 0, "wall_shear_stress_y_wf": 0, }, lambda_weighting={ "velocity_wall_normal_wf": 100, "velocity_wall_parallel_wf": 100, "ep_wf": 1, "k_wf": 1, "wall_shear_stress_x_wf": 100, "wall_shear_stress_y_wf": 100, }, batch_size=cfg.batch_size.wf_pt, parameterization={"normal_distance": resolved_y_start}, ) domain.add_constraint(wf_pt, "WF") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo_resolved, outvar={ "continuity": 0, "momentum_x": 0, "momentum_y": 0, "k_equation": 0, "ep_equation": 0, }, lambda_weighting={ "continuity": 100, "momentum_x": 1000, "momentum_y": 1000, "k_equation": 10, "ep_equation": 1, }, batch_size=cfg.batch_size.interior, bounds={x: channel_length, y: channel_width}, ) domain.add_constraint(interior, "Interior") # pressure pc inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=inlet, outvar={"p": p_grad * (channel_length[1] - channel_length[0])}, lambda_weighting={"p": 10}, batch_size=cfg.batch_size.inlet, ) domain.add_constraint(inlet, "Inlet") # pressure pc outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=outlet, outvar={"p": 0}, lambda_weighting={"p": 10}, batch_size=cfg.batch_size.outlet, ) domain.add_constraint(outlet, "Outlet") # flow initialization interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo_resolved, outvar={"u_init": 0, "v_init": 0, "k_init": 0, "p_init": 0, "ep_init": 0}, batch_size=cfg.batch_size.interior_init, bounds={x: channel_length, y: channel_width}, ) domain.add_constraint(interior, "InteriorInit") # add inferencing and monitor invar_wf_pt = geo_resolved.sample_boundary( 1024, parameterization={"normal_distance": resolved_y_start} ) u_tau_monitor = PointwiseMonitor( invar_wf_pt, output_names=["u_tau"], metrics={"mean_u_tau": lambda var: torch.mean(var["u_tau"])}, nodes=nodes + nodes_u_tau, ) domain.add_monitor(u_tau_monitor) # add inferencer data inference = PointwiseInferencer( nodes=nodes, invar=geo_resolved.sample_interior( 5000, bounds={x: channel_length, y: channel_width} ), output_names=["u", "v", "p", "k", "ep"], ) domain.add_inferencer(inference, "inf_interior") inference = PointwiseInferencer( nodes=nodes + nodes_u_tau, invar=geo_resolved.sample_boundary( 10, parameterization={"normal_distance": resolved_y_start} ), output_names=["u", "v", "p", "k", "ep", "normal_distance", "u_tau"], ) domain.add_inferencer(inference, "inf_wf") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/turbulent_channel/2d_std_wf/re590_k_ep.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Equations related to Navier Stokes Equations """ from sympy import Symbol, Function, Number, log, Abs, simplify from modulus.sym.eq.pde import PDE from modulus.sym.node import Node class kEpsilonInit(PDE): def __init__(self, nu=1, rho=1): # set params nu = Number(nu) rho = Number(rho) # coordinates x = Symbol("x") y = Symbol("y") # make input variables input_variables = {"x": x, "y": y} # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) p = Function("p")(*input_variables) k = Function("k")(*input_variables) ep = Function("ep")(*input_variables) # flow initialization C_mu = 0.09 u_avg = 21 # Approx average velocity Re_d = ( u_avg * 1 / nu ) # Reynolds number based on centerline and channel hydraulic dia l = 0.038 * 2 # Approx turbulent length scale I = 0.16 * Re_d ** ( -1 / 8 ) # Turbulent intensity for a fully developed pipe flow u_init = u_avg v_init = 0 p_init = 0 k_init = 1.5 * (u_avg * I) ** 2 ep_init = (C_mu ** (3 / 4)) * (k_init ** (3 / 2)) / l # set equations self.equations = {} self.equations["u_init"] = u - u_init self.equations["v_init"] = v - v_init self.equations["p_init"] = p - p_init self.equations["k_init"] = k - k_init self.equations["ep_init"] = ep - ep_init class kEpsilon(PDE): def __init__(self, nu=1, rho=1): # set params nu = Number(nu) rho = Number(rho) # coordinates x = Symbol("x") y = Symbol("y") # make input variables input_variables = {"x": x, "y": y} # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) p = Function("p")(*input_variables) k = Function("k")(*input_variables) ep = Function("ep")(*input_variables) # Model constants sig_k = 1.0 sig_ep = 1.3 C_ep1 = 1.44 C_ep2 = 1.92 C_mu = 0.09 E = 9.793 # Turbulent Viscosity nu_t = C_mu * (k**2) / (ep + 1e-4) # Turbulent Production Term P_k = nu_t * ( 2 * (u.diff(x)) ** 2 + 2 * (v.diff(y)) ** 2 + (u.diff(y)) ** 2 + (v.diff(x)) ** 2 + 2 * u.diff(y) * v.diff(x) ) # set equations self.equations = {} self.equations["continuity"] = simplify(u.diff(x) + v.diff(y)) self.equations["momentum_x"] = simplify( u * u.diff(x) + v * u.diff(y) + p.diff(x) - ((nu + nu_t) * u.diff(x)).diff(x) - ((nu + nu_t) * u.diff(y)).diff(y) ) self.equations["momentum_y"] = simplify( u * v.diff(x) + v * v.diff(y) + p.diff(y) - ((nu + nu_t) * v.diff(x)).diff(x) - ((nu + nu_t) * v.diff(y)).diff(y) ) self.equations["k_equation"] = simplify( u * k.diff(x) + v * k.diff(y) - ((nu + nu_t / sig_k) * k.diff(x)).diff(x) - ((nu + nu_t / sig_k) * k.diff(y)).diff(y) - P_k + ep ) self.equations["ep_equation"] = simplify( u * ep.diff(x) + v * ep.diff(y) - ((nu + nu_t / sig_ep) * ep.diff(x)).diff(x) - ((nu + nu_t / sig_ep) * ep.diff(y)).diff(y) - (C_ep1 * P_k - C_ep2 * ep) * ep / (k + 1e-3) ) class kEpsilonStdWF(PDE): def __init__(self, nu=1, rho=1): # set params nu = Number(nu) rho = Number(rho) # coordinates x = Symbol("x") y = Symbol("y") # make input variables input_variables = {"x": x, "y": y} # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) k = Function("k")(*input_variables) ep = Function("ep")(*input_variables) # normals normal_x = -1 * Symbol( "normal_x" ) # Multiply by -1 to flip the direction of normal normal_y = -1 * Symbol( "normal_y" ) # Multiply by -1 to flip the direction of normal # wall distance normal_distance = Function("normal_distance")(*input_variables) # Model constants C_mu = 0.09 E = 9.793 C_k = -0.36 B_k = 8.15 karman_constant = 0.4187 # Turbulent Viscosity nu_t = C_mu * (k**2) / (ep + 1e-4) u_tau = Function("u_tau")(*input_variables) y_plus = u_tau * normal_distance / nu u_plus = log(Abs(E * y_plus)) / karman_constant ep_true = (C_mu ** (3 / 4)) * (k ** (3 / 2)) / karman_constant / normal_distance u_parallel_to_wall = [ u - (u * normal_x + v * normal_y) * normal_x, v - (u * normal_x + v * normal_y) * normal_y, ] du_parallel_to_wall_dx = [ u.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y) * normal_x, v.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y) * normal_y, ] du_parallel_to_wall_dy = [ u.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y) * normal_x, v.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y) * normal_y, ] du_dsdf = [ du_parallel_to_wall_dx[0] * normal_x + du_parallel_to_wall_dy[0] * normal_y, du_parallel_to_wall_dx[1] * normal_x + du_parallel_to_wall_dy[1] * normal_y, ] wall_shear_stress_true_x = ( u_tau * u_parallel_to_wall[0] * karman_constant / log(Abs(E * y_plus)) ) wall_shear_stress_true_y = ( u_tau * u_parallel_to_wall[1] * karman_constant / log(Abs(E * y_plus)) ) wall_shear_stress_x = (nu + nu_t) * du_dsdf[0] wall_shear_stress_y = (nu + nu_t) * du_dsdf[1] u_normal_to_wall = u * normal_x + v * normal_y u_normal_to_wall_true = 0 u_parallel_to_wall_mag = ( u_parallel_to_wall[0] ** 2 + u_parallel_to_wall[1] ** 2 ) ** 0.5 u_parallel_to_wall_true = u_plus * u_tau # k_normal_gradient = normal_x*k.diff(x) + normal_y*k.diff(y) # k_normal_gradient_true = 0 k_true = u_tau**2 / C_mu**0.5 # set equations self.equations = {} self.equations["velocity_wall_normal_wf"] = ( u_normal_to_wall - u_normal_to_wall_true ) self.equations["velocity_wall_parallel_wf"] = ( u_parallel_to_wall_mag - u_parallel_to_wall_true ) self.equations["k_wf"] = k - k_true self.equations["ep_wf"] = ep - ep_true self.equations["wall_shear_stress_x_wf"] = ( wall_shear_stress_x - wall_shear_stress_true_x ) self.equations["wall_shear_stress_y_wf"] = ( wall_shear_stress_y - wall_shear_stress_true_y )
modulus-sym-main
examples/turbulent_channel/2d_std_wf/custom_k_ep.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Import libraries import torch from torch import nn from typing import Dict, List # Import from Modulus from modulus.sym.eq.derivatives import gradient from modulus.sym.loss.aggregator import Aggregator class CustomSum(Aggregator): """ Loss aggregation by summation """ def __init__(self, params, num_losses, weights=None): super().__init__(params, num_losses, weights) def forward(self, losses: Dict[str, torch.Tensor], step: int) -> torch.Tensor: """ Aggregates the losses by summation Parameters ---------- losses : Dict[str, torch.Tensor] A dictionary of losses step : int Optimizer step Returns ------- loss : torch.Tensor Aggregated loss """ # weigh losses losses = self.weigh_losses(losses, self.weights) # Initialize loss loss: torch.Tensor = torch.zeros_like(self.init_loss) smoothness = 0.0005 # use 0.0005 to smoothen the transition over ~10k steps step_tensor = torch.tensor(step, dtype=torch.float32) decay_weight = (torch.tanh((20000 - step_tensor) * smoothness) + 1.0) * 0.5 # Add losses for key in losses.keys(): if "init" not in key: loss += (1 - decay_weight) * (losses[key]) else: loss += decay_weight * (losses[key]) return loss
modulus-sym-main
examples/turbulent_channel/2d_std_wf/custom_aggregator.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from sympy import Symbol, Eq, sin, cos, Min, Max, Abs, log, exp from scipy import optimize import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.utils.io import csv_to_dict from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, PointwiseConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.key import Key from modulus.sym.node import Node @modulus.sym.main(config_path="conf_u_tau_lookup", config_name="config") def run(cfg: ModulusConfig) -> None: u = np.linspace(1e-3, 50, num=100) y = np.linspace(1e-3, 0.5, num=100) U, Y = np.meshgrid(u, y) U = np.reshape(U, (U.size,)) Y = np.reshape(Y, (Y.size,)) Re = 590 nu = 1 / Re def f(u_tau, y, u): return u_tau * np.log(9.793 * y * u_tau / nu) - u * 0.4187 def fprime(u_tau, y, u): return 1 + np.log(9.793 * y * u_tau / nu) u_tau = [] for i in range(len(U)): u_tau_calc = optimize.newton( f, 1.0, fprime=fprime, args=(Y[i], U[i]), tol=1.48e-08, maxiter=200, fprime2=None, ) u_tau.append(u_tau_calc) # save tabulations to a csv file results = np.concatenate( ( np.reshape(U, (len(U), 1)), np.reshape(Y, (len(Y), 1)), np.reshape(u_tau, (len(u_tau), 1)), ), axis=1, ) np.savetxt("u_tau.csv", results, delimiter=",") invar = {"u_in": np.reshape(U, (len(U), 1)), "y_in": np.reshape(Y, (len(Y), 1))} outvar = {"u_tau_out": np.reshape(u_tau, (len(u_tau), 1))} u = np.random.uniform(1e-3, 50, size=100) y = np.random.uniform(1e-3, 0.5, size=100) U, Y = np.meshgrid(u, y) U = np.reshape(U, (U.size,)) Y = np.reshape(Y, (Y.size,)) u_tau_val = [] for i in range(len(U)): u_tau_calc = optimize.newton( f, 1.0, fprime=fprime, args=(Y[i], U[i]), tol=1.48e-08, maxiter=200, fprime2=None, ) u_tau_val.append(u_tau_calc) # save tabulations to a csv file results = np.concatenate( ( np.reshape(U, (len(U), 1)), np.reshape(Y, (len(Y), 1)), np.reshape(u_tau, (len(u_tau), 1)), ), axis=1, ) np.savetxt("u_tau_val.csv", results, delimiter=",") invar_val = {"u_in": np.reshape(U, (len(U), 1)), "y_in": np.reshape(Y, (len(Y), 1))} outvar_val = {"u_tau_out": np.reshape(u_tau_val, (len(u_tau_val), 1))} # make list of nodes to unroll graph on u_tau_net = instantiate_arch( input_keys=[Key("u_in"), Key("y_in")], output_keys=[Key("u_tau_out")], cfg=cfg.arch.fully_connected, ) nodes = [u_tau_net.make_node(name="u_tau_network")] # make domain domain = Domain() train = PointwiseConstraint.from_numpy( nodes=nodes, invar=invar, outvar=outvar, batch_size=10000, ) domain.add_constraint(train, "LogLawLoss") # add validation validator = PointwiseValidator(nodes=nodes, invar=invar_val, true_outvar=outvar_val) domain.add_validator(validator) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/turbulent_channel/2d_std_wf/u_tau_lookup.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Equations related to Navier Stokes Equations """ from sympy import Symbol, Function, Number, log, Abs, simplify, pi from modulus.sym.eq.pde import PDE from modulus.sym.node import Node class kOmegaInit(PDE): def __init__(self, nu=1, rho=1): # set params nu = Number(nu) rho = Number(rho) # coordinates x = Symbol("x") y = Symbol("y") # make input variables input_variables = {"x": x, "y": y} # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) p = Function("p")(*input_variables) k = Function("k")(*input_variables) om_plus = Function("om_plus")(*input_variables) # flow initialization C_mu = 0.09 u_avg = 21 # Approx average velocity Re_d = ( u_avg * 1 / nu ) # Reynolds number based on centerline and channel hydraulic dia l = 0.038 * 2 # Approx turbulent length scale I = 0.16 * Re_d ** ( -1 / 8 ) # Turbulent intensity for a fully developed pipe flow u_init = u_avg v_init = 0 p_init = pi / 2 k_init = 1.5 * (u_avg * I) ** 2 ep_init = (C_mu ** (3 / 4)) * (k_init ** (3 / 2)) / l om_plus_init = ep_init / C_mu / k_init * nu # Solving for om_plus # set equations self.equations = {} self.equations["u_init"] = u - u_init self.equations["v_init"] = v - v_init self.equations["p_init"] = p - p_init self.equations["k_init"] = k - k_init self.equations["om_plus_init"] = om_plus - om_plus_init class kOmega(PDE): def __init__(self, nu=1, rho=1): # set params nu = Number(nu) rho = Number(rho) # coordinates x = Symbol("x") y = Symbol("y") # make input variables input_variables = {"x": x, "y": y} # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) p = Function("p")(*input_variables) k = Function("k")(*input_variables) om_plus = Function("om_plus")(*input_variables) # Solving for om_plus # Model constants sig = 0.5 sig_star = 0.5 C_mu = 0.09 E = 9.793 beta = 3 / 40 alpha = 5 / 9 beta_star = 9 / 100 # Turbulent Viscosity nu_t = k * nu / (om_plus + 1e-4) # Turbulent Production Term P_k = nu_t * ( 2 * (u.diff(x)) ** 2 + 2 * (v.diff(y)) ** 2 + (u.diff(y)) ** 2 + (v.diff(x)) ** 2 + 2 * u.diff(y) * v.diff(x) ) # set equations self.equations = {} self.equations["continuity"] = simplify(u.diff(x) + v.diff(y)) self.equations["momentum_x"] = simplify( u * u.diff(x) + v * u.diff(y) + p.diff(x) - ((nu + nu_t) * u.diff(x)).diff(x) - ((nu + nu_t) * u.diff(y)).diff(y) ) self.equations["momentum_y"] = simplify( u * v.diff(x) + v * v.diff(y) + p.diff(y) - ((nu + nu_t) * v.diff(x)).diff(x) - ((nu + nu_t) * v.diff(y)).diff(y) ) self.equations["k_equation"] = simplify( u * k.diff(x) + v * k.diff(y) - ((nu + nu_t * sig_star) * k.diff(x)).diff(x) - ((nu + nu_t * sig_star) * k.diff(y)).diff(y) - P_k + beta_star * k * om_plus / nu ) self.equations["om_plus_equation"] = simplify( u * om_plus.diff(x) / nu + v * om_plus.diff(y) / nu - ((nu + nu_t * sig) * om_plus.diff(x)).diff(x) / nu - ((nu + nu_t * sig) * om_plus.diff(y)).diff(y) / nu - alpha * ( 2 * (u.diff(x)) ** 2 + 2 * (v.diff(y)) ** 2 + (u.diff(y)) ** 2 + (v.diff(x)) ** 2 + 2 * u.diff(y) * v.diff(x) ) + beta * om_plus * om_plus / nu / nu ) class kOmegaStdWF(PDE): def __init__(self, nu=1, rho=1): # set params nu = Number(nu) rho = Number(rho) # coordinates x = Symbol("x") y = Symbol("y") # make input variables input_variables = {"x": x, "y": y} # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) k = Function("k")(*input_variables) om_plus = Function("om_plus")(*input_variables) # normals normal_x = -1 * Symbol( "normal_x" ) # Multiply by -1 to flip the direction of normal normal_y = -1 * Symbol( "normal_y" ) # Multiply by -1 to flip the direction of normal # wall distance normal_distance = Function("normal_distance")(*input_variables) # Model constants C_mu = 0.09 E = 9.793 C_k = -0.36 B_k = 8.15 karman_constant = 0.4187 beta_star = 9 / 100 # Turbulent Viscosity nu_t = k * nu / (om_plus + 1e-4) u_tau = Function("u_tau")(*input_variables) y_plus = u_tau * normal_distance / nu u_plus = log(Abs(E * y_plus) + 1e-3) / karman_constant om_plus_true = ( (k**0.5) / (beta_star**0.25) / karman_constant / normal_distance ) * nu u_parallel_to_wall = [ u - (u * normal_x + v * normal_y) * normal_x, v - (u * normal_x + v * normal_y) * normal_y, ] du_parallel_to_wall_dx = [ u.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y) * normal_x, v.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y) * normal_y, ] du_parallel_to_wall_dy = [ u.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y) * normal_x, v.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y) * normal_y, ] du_dsdf = [ du_parallel_to_wall_dx[0] * normal_x + du_parallel_to_wall_dy[0] * normal_y, du_parallel_to_wall_dx[1] * normal_x + du_parallel_to_wall_dy[1] * normal_y, ] wall_shear_stress_true_x = ( u_tau * u_parallel_to_wall[0] * karman_constant / log(Abs(E * y_plus) + 1e-3) ) wall_shear_stress_true_y = ( u_tau * u_parallel_to_wall[1] * karman_constant / log(Abs(E * y_plus) + 1e-3) ) wall_shear_stress_x = (nu + nu_t) * du_dsdf[0] wall_shear_stress_y = (nu + nu_t) * du_dsdf[1] u_normal_to_wall = u * normal_x + v * normal_y u_normal_to_wall_true = 0 u_parallel_to_wall_mag = ( u_parallel_to_wall[0] ** 2 + u_parallel_to_wall[1] ** 2 ) ** 0.5 u_parallel_to_wall_true = u_plus * u_tau # k_normal_gradient = normal_x*k.diff(x) + normal_y*k.diff(y) # k_normal_gradient_true = 0 k_true = u_tau**2 / C_mu**0.5 # set equations self.equations = {} self.equations["velocity_wall_normal_wf"] = ( u_normal_to_wall - u_normal_to_wall_true ) self.equations["velocity_wall_parallel_wf"] = ( u_parallel_to_wall_mag - u_parallel_to_wall_true ) self.equations["k_wf"] = k - k_true self.equations["om_plus_wf"] = om_plus - om_plus_true self.equations["wall_shear_stress_x_wf"] = ( wall_shear_stress_x - wall_shear_stress_true_x ) self.equations["wall_shear_stress_y_wf"] = ( wall_shear_stress_y - wall_shear_stress_true_y )
modulus-sym-main
examples/turbulent_channel/2d_std_wf/custom_k_om.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import numpy as np import matplotlib.pyplot as plt from modulus.sym.utils.io import csv_to_dict # path for checkpoint checkpoint = "./outputs/re590_k_ep/network_checkpoint/" # read data to compute u_tau data = np.load(checkpoint + "inferencers/inf_wf.npz", allow_pickle=True) data = np.atleast_1d(data.f.arr_0)[0] u_tau = np.mean(data["u_tau"]) # read data to plot profiles interior_data = np.load(checkpoint + "inferencers/inf_interior.npz", allow_pickle=True) interior_data = np.atleast_1d(interior_data.f.arr_0)[0] y = interior_data["y"] u = interior_data["u"] k = interior_data["k"] nu = 1 / 590 u_plus = u / u_tau y_plus = (1 - np.abs(y)) * u_tau / nu k_plus = k / u_tau / u_tau y = 1 - np.abs(y) fig, ax = plt.subplots(2, figsize=(4.5, 9)) # read validation data # Fluent data from Turbulence lecture notes: Gianluca Iaccarino: https://web.stanford.edu/class/me469b/handouts/turbulence.pdf # DNS data from Moser et al.: https://aip.scitation.org/doi/10.1063/1.869966 file_path = "../validation_data" if os.path.exists(to_absolute_path(file_path)): mapping = {"u+": "u_plus", "y+": "y_plus"} u_dns_data = csv_to_dict("../validation_data/re590-moser-dns-u_plus.csv", mapping) u_fluent_gi_data = csv_to_dict( "../validation_data/re590-gi-fluent-u_plus.csv", mapping ) mapping = {"k+": "k_plus", "y/2H": "y"} k_dns_data = csv_to_dict("../validation_data/re590-moser-dns-k_plus.csv", mapping) k_fluent_gi_data = csv_to_dict( "../validation_data/re590-gi-fluent-k_plus.csv", mapping ) ax[0].scatter(k_dns_data["y"], k_dns_data["k_plus"], label="DNS: Moser") ax[0].scatter(k_fluent_gi_data["y"], k_fluent_gi_data["k_plus"], label="Fluent: GI") ax[1].scatter(u_dns_data["y_plus"], u_dns_data["u_plus"], label="DNS: Moser") ax[1].scatter( u_fluent_gi_data["y_plus"], u_fluent_gi_data["u_plus"], label="Fluent: GI" ) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) ax[0].scatter(y, k_plus, label="Modulus") ax[0].set(title="TKE: u_tau=" + str(round(u_tau, 3))) ax[0].set(xlabel="y", ylabel="k+") ax[0].legend() ax[1].scatter(y_plus, u_plus, label="Modulus") ax[1].set_xscale("log") ax[1].set(title="U+: u_tau=" + str(round(u_tau, 3))) ax[1].set(xlabel="y+", ylabel="u+") ax[1].legend() plt.tight_layout() plt.savefig("results_k_ep.png")
modulus-sym-main
examples/turbulent_channel/2d_std_wf/plot_results.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from sympy import Symbol, Eq, sin, cos, Min, Max, Abs, log, exp, tanh import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle, Line, Channel2D from modulus.sym.utils.sympy.functions import parabola from modulus.sym.utils.io import csv_to_dict from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.key import Key from modulus.sym.node import Node from custom_k_om import kOmegaInit, kOmega, kOmegaStdWF @modulus.sym.main(config_path="conf_re590_k_om", config_name="config") def run(cfg: ModulusConfig) -> None: # simulation parameters Re = 590 nu = 1 / Re y_plus = 30 karman_constant = 0.4187 resolved_y_start = y_plus * nu channel_width = (-1, 1) channel_length = (-np.pi / 2, np.pi / 2) inlet = Line( (channel_length[0], channel_width[0]), (channel_length[0], channel_width[1]), normal=1, ) outlet = Line( (channel_length[1], channel_width[0]), (channel_length[1], channel_width[1]), normal=1, ) geo_sdf = Channel2D( (channel_length[0], channel_width[0]), (channel_length[1], channel_width[1]) ) # geometry where the equations are solved geo_resolved = Channel2D( (channel_length[0], channel_width[0] + resolved_y_start), (channel_length[1], channel_width[1] - resolved_y_start), ) # make list of nodes to unroll graph on init = kOmegaInit(nu=nu, rho=1.0) eq = kOmega(nu=nu, rho=1.0) wf = kOmegaStdWF(nu=nu, rho=1.0) u_tau_net = instantiate_arch( input_keys=[Key("u_in"), Key("y_in")], output_keys=[Key("u_tau_out")], cfg=cfg.arch.fully_connected, ) flow_net = instantiate_arch( input_keys=[Key("x_sin"), Key("y")], output_keys=[Key("u"), Key("v")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) p_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("p")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) k_net = instantiate_arch( input_keys=[Key("x_sin"), Key("y")], output_keys=[Key("k_star")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) om_net = instantiate_arch( input_keys=[Key("x_sin"), Key("y")], output_keys=[Key("om_star")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) nodes = ( init.make_nodes() + eq.make_nodes() + wf.make_nodes() + [ Node.from_sympy( sin(2 * np.pi * Symbol("x") / (channel_length[1] - channel_length[0])), "x_sin", ) ] + [Node.from_sympy(Min(log(1 + exp(Symbol("k_star"))) + 1e-4, 20), "k")] + [Node.from_sympy(Min(log(1 + exp(Symbol("om_star"))) + 1e-4, 20), "om_plus")] + [flow_net.make_node(name="flow_network")] + [p_net.make_node(name="p_network")] + [k_net.make_node(name="k_network")] + [om_net.make_node(name="om_network")] ) nodes_u_tau = ( [Node.from_sympy(Symbol("normal_distance"), "y_in")] + [ Node.from_sympy( ( ( Symbol("u") - ( Symbol("u") * (-Symbol("normal_x")) + Symbol("v") * (-Symbol("normal_y")) ) * (-Symbol("normal_x")) ) ** 2 + ( Symbol("v") - ( Symbol("u") * (-Symbol("normal_x")) + Symbol("v") * (-Symbol("normal_y")) ) * (-Symbol("normal_y")) ) ** 2 ) ** 0.5, "u_parallel_to_wall", ) ] + [Node.from_sympy(Symbol("u_parallel_to_wall"), "u_in")] + [Node.from_sympy(Symbol("u_tau_out"), "u_tau")] + [u_tau_net.make_node(name="u_tau_network", optimize=False)] ) # add constraints to solver p_grad = 1.0 x, y = Symbol("x"), Symbol("y") # make domain domain = Domain() # Point where wall funciton is applied wf_pt = PointwiseBoundaryConstraint( nodes=nodes + nodes_u_tau, geometry=geo_resolved, outvar={ "velocity_wall_normal_wf": 0, "velocity_wall_parallel_wf": 0, "om_plus_wf": 0, "k_wf": 0, "wall_shear_stress_x_wf": 0, "wall_shear_stress_y_wf": 0, }, lambda_weighting={ "velocity_wall_normal_wf": 100, "velocity_wall_parallel_wf": 100, "om_plus_wf": 10, "k_wf": 1, "wall_shear_stress_x_wf": 100, "wall_shear_stress_y_wf": 100, }, batch_size=cfg.batch_size.wf_pt, parameterization={"normal_distance": resolved_y_start}, ) domain.add_constraint(wf_pt, "WF") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo_resolved, outvar={ "continuity": 0, "momentum_x": 0, "momentum_y": 0, "k_equation": 0, "om_plus_equation": 0, }, lambda_weighting={ "continuity": 100, "momentum_x": 1000, "momentum_y": 1000, "k_equation": 10, "om_plus_equation": 0.1, }, batch_size=cfg.batch_size.interior, bounds={x: channel_length, y: channel_width}, ) domain.add_constraint(interior, "Interior") # pressure pc inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=inlet, outvar={"p": p_grad * (channel_length[1] - channel_length[0])}, lambda_weighting={"p": 10}, batch_size=cfg.batch_size.inlet, ) domain.add_constraint(inlet, "Inlet") # pressure pc outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=outlet, outvar={"p": 0}, lambda_weighting={"p": 10}, batch_size=cfg.batch_size.outlet, ) domain.add_constraint(outlet, "Outlet") # flow initialization interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo_resolved, outvar={"u_init": 0, "v_init": 0, "k_init": 0, "p_init": 0, "om_plus_init": 0}, batch_size=cfg.batch_size.interior_init, bounds={x: channel_length, y: channel_width}, ) domain.add_constraint(interior, "InteriorInit") # add inferencing and monitor invar_wf_pt = geo_resolved.sample_boundary( 1024, parameterization={"normal_distance": resolved_y_start} ) u_tau_monitor = PointwiseMonitor( invar_wf_pt, output_names=["u_tau"], metrics={"mean_u_tau": lambda var: torch.mean(var["u_tau"])}, nodes=nodes + nodes_u_tau, ) domain.add_monitor(u_tau_monitor) # add inferencer data inference = PointwiseInferencer( nodes=nodes, invar=geo_resolved.sample_interior( 5000, bounds={x: channel_length, y: channel_width} ), output_names=["u", "v", "p", "k", "om_plus"], ) domain.add_inferencer(inference, "inf_interior") inference = PointwiseInferencer( nodes=nodes + nodes_u_tau, invar=geo_resolved.sample_boundary( 10, parameterization={"normal_distance": resolved_y_start} ), output_names=["u", "v", "p", "k", "om_plus", "normal_distance", "u_tau"], ) domain.add_inferencer(inference, "inf_wf") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/turbulent_channel/2d_std_wf/re590_k_om.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Import libraries import torch from torch import nn from typing import Dict, List # Import from Modulus from modulus.sym.eq.derivatives import gradient from modulus.sym.loss.aggregator import Aggregator class CustomSum(Aggregator): """ Loss aggregation by summation """ def __init__(self, params, num_losses, weights=None): super().__init__(params, num_losses, weights) def forward(self, losses: Dict[str, torch.Tensor], step: int) -> torch.Tensor: """ Aggregates the losses by summation Parameters ---------- losses : Dict[str, torch.Tensor] A dictionary of losses step : int Optimizer step Returns ------- loss : torch.Tensor Aggregated loss """ # weigh losses losses = self.weigh_losses(losses, self.weights) # Initialize loss loss: torch.Tensor = torch.zeros_like(self.init_loss) smoothness = 0.0005 # use 0.0005 to smoothen the transition over ~10k steps step_tensor = torch.tensor(step, dtype=torch.float32) decay_weight = (torch.tanh((20000 - step_tensor) * smoothness) + 1.0) * 0.5 # Add losses for key in losses.keys(): if "init" not in key: loss += (1 - decay_weight) * (losses[key]) else: loss += decay_weight * (losses[key]) return loss
modulus-sym-main
examples/turbulent_channel/2d/custom_aggregator.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from sympy import Symbol, Eq, sin, cos, Min, Max, Abs, log, exp import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle, Line, Channel2D from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.key import Key from modulus.sym.node import Node from custom_k_om_ls import kOmegaInit, kOmega, kOmegaLSWF @modulus.sym.main(config_path="conf_re590_k_om_LS", config_name="config") def run(cfg: ModulusConfig) -> None: # simulation parameters Re = 590 nu = 1 / Re y_plus = 30 karman_constant = 0.4187 resolved_y_start = y_plus * nu channel_width = (-1, 1) channel_length = (-np.pi / 2, np.pi / 2) inlet = Line( (channel_length[0], channel_width[0]), (channel_length[0], channel_width[1]), normal=1, ) outlet = Line( (channel_length[1], channel_width[0]), (channel_length[1], channel_width[1]), normal=1, ) geo_sdf = Channel2D( (channel_length[0], channel_width[0]), (channel_length[1], channel_width[1]) ) # geometry where the equations are solved geo_resolved = Channel2D( (channel_length[0], channel_width[0] + resolved_y_start), (channel_length[1], channel_width[1] - resolved_y_start), ) # make list of nodes to unroll graph on init = kOmegaInit(nu=nu, rho=1.0) eq = kOmega(nu=nu, rho=1.0) wf = kOmegaLSWF(nu=nu, rho=1.0) flow_net = instantiate_arch( input_keys=[Key("x_sin"), Key("y")], output_keys=[Key("u"), Key("v")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) p_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("p")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) k_net = instantiate_arch( input_keys=[Key("x_sin"), Key("y")], output_keys=[Key("k_star")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) om_net = instantiate_arch( input_keys=[Key("x_sin"), Key("y")], output_keys=[Key("om_star")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) nodes = ( init.make_nodes() + eq.make_nodes() + wf.make_nodes() + [ Node.from_sympy( sin(2 * np.pi * Symbol("x") / (channel_length[1] - channel_length[0])), "x_sin", ) ] + [Node.from_sympy(Min(log(1 + exp(Symbol("k_star"))) + 1e-4, 20), "k")] + [Node.from_sympy(Min(log(1 + exp(Symbol("om_star"))) + 1e-4, 20), "om_plus")] + [flow_net.make_node(name="flow_network")] + [p_net.make_node(name="p_network")] + [k_net.make_node(name="k_network")] + [om_net.make_node(name="om_network")] ) # add constraints to solver p_grad = 1.0 x, y = Symbol("x"), Symbol("y") # make domain domain = Domain() # Point where wall funciton is applied wf_pt = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo_resolved, outvar={ "velocity_wall_normal_wf": 0, "velocity_wall_parallel_wf": 0, "om_plus_wf": 0, "wall_shear_stress_x_wf": 0, "wall_shear_stress_y_wf": 0, }, lambda_weighting={ "velocity_wall_normal_wf": 100, "velocity_wall_parallel_wf": 100, "om_plus_wf": 10, "wall_shear_stress_x_wf": 100, "wall_shear_stress_y_wf": 100, }, batch_size=cfg.batch_size.wf_pt, parameterization={"normal_distance": resolved_y_start}, ) domain.add_constraint(wf_pt, "WF") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo_resolved, outvar={ "continuity": 0, "momentum_x": 0, "momentum_y": 0, "k_equation": 0, "om_plus_equation": 0, }, lambda_weighting={ "continuity": 100, "momentum_x": 1000, "momentum_y": 1000, "k_equation": 10, "om_plus_equation": 0.1, }, batch_size=cfg.batch_size.interior, bounds={x: channel_length, y: channel_width}, ) domain.add_constraint(interior, "Interior") # pressure pc inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=inlet, outvar={"p": p_grad * (channel_length[1] - channel_length[0])}, lambda_weighting={"p": 10}, batch_size=cfg.batch_size.inlet, ) domain.add_constraint(inlet, "Inlet") # pressure pc outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=outlet, outvar={"p": 0}, lambda_weighting={"p": 10}, batch_size=cfg.batch_size.outlet, ) domain.add_constraint(outlet, "Outlet") # flow initialization interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo_resolved, outvar={"u_init": 0, "v_init": 0, "k_init": 0, "p_init": 0, "om_plus_init": 0}, batch_size=cfg.batch_size.interior_init, bounds={x: channel_length, y: channel_width}, ) domain.add_constraint(interior, "InteriorInit") # add inferencing and monitor invar_wf_pt = geo_resolved.sample_boundary( 1024, ) u_tau_monitor = PointwiseMonitor( invar_wf_pt, output_names=["k"], metrics={ "mean_u_tau": lambda var: torch.mean((0.09**0.25) * torch.sqrt(var["k"])) }, nodes=nodes, ) domain.add_monitor(u_tau_monitor) # add inferencer data inference = PointwiseInferencer( nodes=nodes, invar=geo_resolved.sample_interior( 5000, bounds={x: channel_length, y: channel_width} ), output_names=["u", "v", "p", "k", "om_plus"], ) domain.add_inferencer(inference, "inf_interior") inference = PointwiseInferencer( nodes=nodes, invar=geo_resolved.sample_boundary( 10, parameterization={"normal_distance": resolved_y_start} ), output_names=["u", "v", "p", "k", "om_plus", "normal_distance"], ) domain.add_inferencer(inference, "inf_wf") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/turbulent_channel/2d/re590_k_om_LS.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Equations related to Navier Stokes Equations """ from sympy import Symbol, Function, Number, log, Abs, simplify, pi from modulus.sym.eq.pde import PDE from modulus.sym.node import Node class kOmegaInit(PDE): def __init__(self, nu=1, rho=1): # set params nu = Number(nu) rho = Number(rho) # coordinates x = Symbol("x") y = Symbol("y") # make input variables input_variables = {"x": x, "y": y} # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) p = Function("p")(*input_variables) k = Function("k")(*input_variables) om_plus = Function("om_plus")(*input_variables) # flow initialization C_mu = 0.09 u_avg = 21 # Approx average velocity Re_d = ( u_avg * 1 / nu ) # Reynolds number based on centerline and channel hydraulic dia l = 0.038 * 2 # Approx turbulent length scale I = 0.16 * Re_d ** ( -1 / 8 ) # Turbulent intensity for a fully developed pipe flow u_init = u_avg v_init = 0 p_init = pi / 2 k_init = 1.5 * (u_avg * I) ** 2 ep_init = (C_mu ** (3 / 4)) * (k_init ** (3 / 2)) / l om_plus_init = ep_init / C_mu / k_init * nu # Solving for om_plus # set equations self.equations = {} self.equations["u_init"] = u - u_init self.equations["v_init"] = v - v_init self.equations["p_init"] = p - p_init self.equations["k_init"] = k - k_init self.equations["om_plus_init"] = om_plus - om_plus_init class kOmega(PDE): def __init__(self, nu=1, rho=1): # set params nu = Number(nu) rho = Number(rho) # coordinates x = Symbol("x") y = Symbol("y") # make input variables input_variables = {"x": x, "y": y} # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) p = Function("p")(*input_variables) k = Function("k")(*input_variables) om_plus = Function("om_plus")(*input_variables) # Solving for om_plus # Model constants sig = 0.5 sig_star = 0.5 C_mu = 0.09 E = 9.793 beta = 3 / 40 alpha = 5 / 9 beta_star = 9 / 100 # Turbulent Viscosity nu_t = k * nu / (om_plus + 1e-4) # Turbulent Production Term P_k = nu_t * ( 2 * (u.diff(x)) ** 2 + 2 * (v.diff(y)) ** 2 + (u.diff(y)) ** 2 + (v.diff(x)) ** 2 + 2 * u.diff(y) * v.diff(x) ) # set equations self.equations = {} self.equations["continuity"] = simplify(u.diff(x) + v.diff(y)) self.equations["momentum_x"] = simplify( u * u.diff(x) + v * u.diff(y) + p.diff(x) - ((nu + nu_t) * u.diff(x)).diff(x) - ((nu + nu_t) * u.diff(y)).diff(y) ) self.equations["momentum_y"] = simplify( u * v.diff(x) + v * v.diff(y) + p.diff(y) - ((nu + nu_t) * v.diff(x)).diff(x) - ((nu + nu_t) * v.diff(y)).diff(y) ) self.equations["k_equation"] = simplify( u * k.diff(x) + v * k.diff(y) - ((nu + nu_t * sig_star) * k.diff(x)).diff(x) - ((nu + nu_t * sig_star) * k.diff(y)).diff(y) - P_k + beta_star * k * om_plus / nu ) self.equations["om_plus_equation"] = simplify( u * om_plus.diff(x) / nu + v * om_plus.diff(y) / nu - ((nu + nu_t * sig) * om_plus.diff(x)).diff(x) / nu - ((nu + nu_t * sig) * om_plus.diff(y)).diff(y) / nu - alpha * ( 2 * (u.diff(x)) ** 2 + 2 * (v.diff(y)) ** 2 + (u.diff(y)) ** 2 + (v.diff(x)) ** 2 + 2 * u.diff(y) * v.diff(x) ) + beta * om_plus * om_plus / nu / nu ) class kOmegaLSWF(PDE): def __init__(self, nu=1, rho=1): # set params nu = Number(nu) rho = Number(rho) # coordinates x = Symbol("x") y = Symbol("y") # make input variables input_variables = {"x": x, "y": y} # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) k = Function("k")(*input_variables) om_plus = Function("om_plus")(*input_variables) # normals normal_x = -1 * Symbol( "normal_x" ) # Multiply by -1 to flip the direction of normal normal_y = -1 * Symbol( "normal_y" ) # Multiply by -1 to flip the direction of normal # wall distance normal_distance = Function("normal_distance")(*input_variables) # Model constants C_mu = 0.09 E = 9.793 C_k = -0.36 B_k = 8.15 karman_constant = 0.4187 beta_star = 9 / 100 # Turbulent Viscosity nu_t = k * nu / (om_plus + 1e-4) u_tau = (C_mu**0.25) * (k**0.5) y_plus = u_tau * normal_distance / nu u_plus = log(Abs(E * y_plus) + 1e-3) / karman_constant om_plus_true = ( (k**0.5) / (beta_star**0.25) / karman_constant / normal_distance ) * nu u_parallel_to_wall = [ u - (u * normal_x + v * normal_y) * normal_x, v - (u * normal_x + v * normal_y) * normal_y, ] du_parallel_to_wall_dx = [ u.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y) * normal_x, v.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y) * normal_y, ] du_parallel_to_wall_dy = [ u.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y) * normal_x, v.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y) * normal_y, ] du_dsdf = [ du_parallel_to_wall_dx[0] * normal_x + du_parallel_to_wall_dy[0] * normal_y, du_parallel_to_wall_dx[1] * normal_x + du_parallel_to_wall_dy[1] * normal_y, ] wall_shear_stress_true_x = ( u_tau * u_parallel_to_wall[0] * karman_constant / log(Abs(E * y_plus) + 1e-3) ) wall_shear_stress_true_y = ( u_tau * u_parallel_to_wall[1] * karman_constant / log(Abs(E * y_plus) + 1e-3) ) wall_shear_stress_x = (nu + nu_t) * du_dsdf[0] wall_shear_stress_y = (nu + nu_t) * du_dsdf[1] u_normal_to_wall = u * normal_x + v * normal_y u_normal_to_wall_true = 0 u_parallel_to_wall_mag = ( u_parallel_to_wall[0] ** 2 + u_parallel_to_wall[1] ** 2 ) ** 0.5 u_parallel_to_wall_true = u_plus * u_tau k_normal_gradient = normal_x * k.diff(x) + normal_y * k.diff(y) k_normal_gradient_true = 0 # set equations self.equations = {} self.equations["velocity_wall_normal_wf"] = ( u_normal_to_wall - u_normal_to_wall_true ) self.equations["velocity_wall_parallel_wf"] = ( u_parallel_to_wall_mag - u_parallel_to_wall_true ) self.equations["om_plus_wf"] = om_plus - om_plus_true self.equations["wall_shear_stress_x_wf"] = ( wall_shear_stress_x - wall_shear_stress_true_x ) self.equations["wall_shear_stress_y_wf"] = ( wall_shear_stress_y - wall_shear_stress_true_y )
modulus-sym-main
examples/turbulent_channel/2d/custom_k_om_ls.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Equations related to Navier Stokes Equations """ from sympy import Symbol, Function, Number, log, Abs, simplify from modulus.sym.eq.pde import PDE from modulus.sym.node import Node class kEpsilonInit(PDE): def __init__(self, nu=1, rho=1): # set params nu = Number(nu) rho = Number(rho) # coordinates x = Symbol("x") y = Symbol("y") # make input variables input_variables = {"x": x, "y": y} # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) p = Function("p")(*input_variables) k = Function("k")(*input_variables) ep = Function("ep")(*input_variables) # flow initialization C_mu = 0.09 u_avg = 21 # Approx average velocity Re_d = ( u_avg * 1 / nu ) # Reynolds number based on centerline and channel hydraulic dia l = 0.038 * 2 # Approx turbulent length scale I = 0.16 * Re_d ** ( -1 / 8 ) # Turbulent intensity for a fully developed pipe flow u_init = u_avg v_init = 0 p_init = 0 k_init = 1.5 * (u_avg * I) ** 2 ep_init = (C_mu ** (3 / 4)) * (k_init ** (3 / 2)) / l # set equations self.equations = {} self.equations["u_init"] = u - u_init self.equations["v_init"] = v - v_init self.equations["p_init"] = p - p_init self.equations["k_init"] = k - k_init self.equations["ep_init"] = ep - ep_init class kEpsilon(PDE): def __init__(self, nu=1, rho=1): # set params nu = Number(nu) rho = Number(rho) # coordinates x = Symbol("x") y = Symbol("y") # make input variables input_variables = {"x": x, "y": y} # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) p = Function("p")(*input_variables) k = Function("k")(*input_variables) ep = Function("ep")(*input_variables) # Model constants sig_k = 1.0 sig_ep = 1.3 C_ep1 = 1.44 C_ep2 = 1.92 C_mu = 0.09 E = 9.793 # Turbulent Viscosity nu_t = C_mu * (k**2) / (ep + 1e-4) # Turbulent Production Term P_k = nu_t * ( 2 * (u.diff(x)) ** 2 + 2 * (v.diff(y)) ** 2 + (u.diff(y)) ** 2 + (v.diff(x)) ** 2 + 2 * u.diff(y) * v.diff(x) ) # set equations self.equations = {} self.equations["continuity"] = simplify(u.diff(x) + v.diff(y)) self.equations["momentum_x"] = simplify( u * u.diff(x) + v * u.diff(y) + p.diff(x) - ((nu + nu_t) * u.diff(x)).diff(x) - ((nu + nu_t) * u.diff(y)).diff(y) ) self.equations["momentum_y"] = simplify( u * v.diff(x) + v * v.diff(y) + p.diff(y) - ((nu + nu_t) * v.diff(x)).diff(x) - ((nu + nu_t) * v.diff(y)).diff(y) ) self.equations["k_equation"] = simplify( u * k.diff(x) + v * k.diff(y) - ((nu + nu_t / sig_k) * k.diff(x)).diff(x) - ((nu + nu_t / sig_k) * k.diff(y)).diff(y) - P_k + ep ) self.equations["ep_equation"] = simplify( u * ep.diff(x) + v * ep.diff(y) - ((nu + nu_t / sig_ep) * ep.diff(x)).diff(x) - ((nu + nu_t / sig_ep) * ep.diff(y)).diff(y) - (C_ep1 * P_k - C_ep2 * ep) * ep / (k + 1e-3) ) class kEpsilonLSWF(PDE): def __init__(self, nu=1, rho=1): # set params nu = Number(nu) rho = Number(rho) # coordinates x = Symbol("x") y = Symbol("y") # make input variables input_variables = {"x": x, "y": y} # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) k = Function("k")(*input_variables) ep = Function("ep")(*input_variables) # normals normal_x = -1 * Symbol( "normal_x" ) # Multiply by -1 to flip the direction of normal normal_y = -1 * Symbol( "normal_y" ) # Multiply by -1 to flip the direction of normal # wall distance normal_distance = Function("normal_distance")(*input_variables) # Model constants C_mu = 0.09 E = 9.793 C_k = -0.36 B_k = 8.15 karman_constant = 0.4187 # Turbulent Viscosity nu_t = C_mu * (k**2) / (ep + 1e-4) u_tau = (C_mu**0.25) * (k**0.5) y_plus = u_tau * normal_distance / nu u_plus = log(Abs(E * y_plus)) / karman_constant ep_true = (C_mu ** (3 / 4)) * (k ** (3 / 2)) / karman_constant / normal_distance u_parallel_to_wall = [ u - (u * normal_x + v * normal_y) * normal_x, v - (u * normal_x + v * normal_y) * normal_y, ] du_parallel_to_wall_dx = [ u.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y) * normal_x, v.diff(x) - (u.diff(x) * normal_x + v.diff(x) * normal_y) * normal_y, ] du_parallel_to_wall_dy = [ u.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y) * normal_x, v.diff(y) - (u.diff(y) * normal_x + v.diff(y) * normal_y) * normal_y, ] du_dsdf = [ du_parallel_to_wall_dx[0] * normal_x + du_parallel_to_wall_dy[0] * normal_y, du_parallel_to_wall_dx[1] * normal_x + du_parallel_to_wall_dy[1] * normal_y, ] wall_shear_stress_true_x = ( u_tau * u_parallel_to_wall[0] * karman_constant / log(Abs(E * y_plus)) ) wall_shear_stress_true_y = ( u_tau * u_parallel_to_wall[1] * karman_constant / log(Abs(E * y_plus)) ) wall_shear_stress_x = (nu + nu_t) * du_dsdf[0] wall_shear_stress_y = (nu + nu_t) * du_dsdf[1] u_normal_to_wall = u * normal_x + v * normal_y u_normal_to_wall_true = 0 u_parallel_to_wall_mag = ( u_parallel_to_wall[0] ** 2 + u_parallel_to_wall[1] ** 2 ) ** 0.5 u_parallel_to_wall_true = u_plus * u_tau k_normal_gradient = normal_x * k.diff(x) + normal_y * k.diff(y) k_normal_gradient_true = 0 # set equations self.equations = {} self.equations["velocity_wall_normal_wf"] = ( u_normal_to_wall - u_normal_to_wall_true ) self.equations["velocity_wall_parallel_wf"] = ( u_parallel_to_wall_mag - u_parallel_to_wall_true ) self.equations["ep_wf"] = ep - ep_true self.equations["wall_shear_stress_x_wf"] = ( wall_shear_stress_x - wall_shear_stress_true_x ) self.equations["wall_shear_stress_y_wf"] = ( wall_shear_stress_y - wall_shear_stress_true_y )
modulus-sym-main
examples/turbulent_channel/2d/custom_k_ep_ls.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import numpy as np import matplotlib.pyplot as plt from modulus.sym.utils.io import csv_to_dict # path for checkpoint checkpoint = "./outputs/re590_k_ep_LS/network_checkpoint/" # read data to compute u_tau data = np.load(checkpoint + "inferencers/inf_wf.npz", allow_pickle=True) data = np.atleast_1d(data.f.arr_0)[0] k_wf = data["k"] u_tau = np.mean((0.09**0.25) * (k_wf**0.5)) # read data to plot profiles interior_data = np.load(checkpoint + "inferencers/inf_interior.npz", allow_pickle=True) interior_data = np.atleast_1d(interior_data.f.arr_0)[0] y = interior_data["y"] u = interior_data["u"] k = interior_data["k"] nu = 1 / 590 u_plus = u / u_tau y_plus = (1 - np.abs(y)) * u_tau / nu k_plus = k / u_tau / u_tau y = 1 - np.abs(y) fig, ax = plt.subplots(2, figsize=(4.5, 9)) # read validation data # Fluent data from Turbulence lecture notes: Gianluca Iaccarino: https://web.stanford.edu/class/me469b/handouts/turbulence.pdf # DNS data from Moser et al.: https://aip.scitation.org/doi/10.1063/1.869966 file_path = "../validation_data" if os.path.exists(to_absolute_path(file_path)): mapping = {"u+": "u_plus", "y+": "y_plus"} u_dns_data = csv_to_dict("../validation_data/re590-moser-dns-u_plus.csv", mapping) u_fluent_gi_data = csv_to_dict( "../validation_data/re590-gi-fluent-u_plus.csv", mapping ) mapping = {"k+": "k_plus", "y/2H": "y"} k_dns_data = csv_to_dict("../validation_data/re590-moser-dns-k_plus.csv", mapping) k_fluent_gi_data = csv_to_dict( "../validation_data/re590-gi-fluent-k_plus.csv", mapping ) ax[0].scatter(k_dns_data["y"], k_dns_data["k_plus"], label="DNS: Moser") ax[0].scatter(k_fluent_gi_data["y"], k_fluent_gi_data["k_plus"], label="Fluent: GI") ax[1].scatter(u_dns_data["y_plus"], u_dns_data["u_plus"], label="DNS: Moser") ax[1].scatter( u_fluent_gi_data["y_plus"], u_fluent_gi_data["u_plus"], label="Fluent: GI" ) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) ax[0].scatter(y, k_plus, label="Modulus") ax[0].set(title="TKE: u_tau=" + str(round(u_tau, 3))) ax[0].set(xlabel="y", ylabel="k+") ax[0].legend() ax[1].scatter(y_plus, u_plus, label="Modulus") ax[1].set_xscale("log") ax[1].set(title="U+: u_tau=" + str(round(u_tau, 3))) ax[1].set(xlabel="y+", ylabel="u+") ax[1].legend() plt.tight_layout() plt.savefig("results_k_ep_LS.png")
modulus-sym-main
examples/turbulent_channel/2d/plot_results.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from sympy import Symbol, Eq, sin, cos, Min, Max, Abs, log, exp import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle, Line, Channel2D from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.key import Key from modulus.sym.node import Node from custom_k_ep_ls import kEpsilonInit, kEpsilon, kEpsilonLSWF @modulus.sym.main(config_path="conf_re590_k_ep_LS", config_name="config") def run(cfg: ModulusConfig) -> None: # simulation parameters Re = 590 nu = 1 / Re y_plus = 30 karman_constant = 0.4187 resolved_y_start = y_plus * nu channel_width = (-1, 1) channel_length = (-np.pi / 2, np.pi / 2) inlet = Line( (channel_length[0], channel_width[0]), (channel_length[0], channel_width[1]), normal=1, ) outlet = Line( (channel_length[1], channel_width[0]), (channel_length[1], channel_width[1]), normal=1, ) geo_sdf = Channel2D( (channel_length[0], channel_width[0]), (channel_length[1], channel_width[1]) ) # geometry where the equations are solved geo_resolved = Channel2D( (channel_length[0], channel_width[0] + resolved_y_start), (channel_length[1], channel_width[1] - resolved_y_start), ) # make list of nodes to unroll graph on init = kEpsilonInit(nu=nu, rho=1.0) eq = kEpsilon(nu=nu, rho=1.0) wf = kEpsilonLSWF(nu=nu, rho=1.0) flow_net = instantiate_arch( input_keys=[Key("x_sin"), Key("y")], output_keys=[Key("u"), Key("v")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) p_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("p")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) k_net = instantiate_arch( input_keys=[Key("x_sin"), Key("y")], output_keys=[Key("k_star")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) ep_net = instantiate_arch( input_keys=[Key("x_sin"), Key("y")], output_keys=[Key("ep_star")], frequencies=("axis", [i / 2 for i in range(8)]), frequencies_params=("axis", [i / 2 for i in range(8)]), cfg=cfg.arch.fourier, ) nodes = ( init.make_nodes() + eq.make_nodes() + wf.make_nodes() + [ Node.from_sympy( sin(2 * np.pi * Symbol("x") / (channel_length[1] - channel_length[0])), "x_sin", ) ] + [Node.from_sympy(Min(log(1 + exp(Symbol("k_star"))) + 1e-4, 20), "k")] + [Node.from_sympy(Min(log(1 + exp(Symbol("ep_star"))) + 1e-4, 180), "ep")] + [flow_net.make_node(name="flow_network")] + [p_net.make_node(name="p_network")] + [k_net.make_node(name="k_network")] + [ep_net.make_node(name="ep_network")] ) # add constraints to solver p_grad = 1.0 x, y = Symbol("x"), Symbol("y") # make domain domain = Domain() # Point where wall funciton is applied wf_pt = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo_resolved, outvar={ "velocity_wall_normal_wf": 0, "velocity_wall_parallel_wf": 0, "ep_wf": 0, "wall_shear_stress_x_wf": 0, "wall_shear_stress_y_wf": 0, }, lambda_weighting={ "velocity_wall_normal_wf": 100, "velocity_wall_parallel_wf": 100, "ep_wf": 1, "wall_shear_stress_x_wf": 100, "wall_shear_stress_y_wf": 100, }, batch_size=cfg.batch_size.wf_pt, parameterization={"normal_distance": resolved_y_start}, ) domain.add_constraint(wf_pt, "WF") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo_resolved, outvar={ "continuity": 0, "momentum_x": 0, "momentum_y": 0, "k_equation": 0, "ep_equation": 0, }, lambda_weighting={ "continuity": 100, "momentum_x": 1000, "momentum_y": 1000, "k_equation": 10, "ep_equation": 1, }, batch_size=cfg.batch_size.interior, bounds={x: channel_length, y: channel_width}, ) domain.add_constraint(interior, "Interior") # pressure pc inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=inlet, outvar={"p": p_grad * (channel_length[1] - channel_length[0])}, lambda_weighting={"p": 10}, batch_size=cfg.batch_size.inlet, ) domain.add_constraint(inlet, "Inlet") # pressure pc outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=outlet, outvar={"p": 0}, lambda_weighting={"p": 10}, batch_size=cfg.batch_size.outlet, ) domain.add_constraint(outlet, "Outlet") # flow initialization interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo_resolved, outvar={"u_init": 0, "v_init": 0, "k_init": 0, "p_init": 0, "ep_init": 0}, batch_size=cfg.batch_size.interior_init, bounds={x: channel_length, y: channel_width}, ) domain.add_constraint(interior, "InteriorInit") # add inferencing and monitor invar_wf_pt = geo_resolved.sample_boundary( 1024, ) u_tau_monitor = PointwiseMonitor( invar_wf_pt, output_names=["k"], metrics={ "mean_u_tau": lambda var: torch.mean((0.09**0.25) * torch.sqrt(var["k"])) }, nodes=nodes, ) domain.add_monitor(u_tau_monitor) # add inferencer data inference = PointwiseInferencer( nodes=nodes, invar=geo_resolved.sample_interior( 5000, bounds={x: channel_length, y: channel_width} ), output_names=["u", "v", "p", "k", "ep"], ) domain.add_inferencer(inference, "inf_interior") inference = PointwiseInferencer( nodes=nodes, invar=geo_resolved.sample_boundary( 10, parameterization={"normal_distance": resolved_y_start} ), output_names=["u", "v", "p", "k", "ep", "normal_distance"], ) domain.add_inferencer(inference, "inf_wf") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/turbulent_channel/2d/re590_k_ep_LS.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import warnings import numpy as np from sympy import Symbol, Function, Number import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, PointwiseConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.key import Key from modulus.sym.eq.pdes.wave_equation import WaveEquation from modulus.sym.eq.pde import PDE from modulus.sym.utils.io.plotter import ValidatorPlotter # Read in npz files generated using finite difference simulator Devito def read_wf_data(time, dLen): file_path = "Training_data" if not os.path.exists(to_absolute_path(file_path)): warnings.warn( f"Directory {file_path} does not exist. Cannot continue. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) sys.exit() wf_filename = to_absolute_path(f"Training_data/wf_{int(time):04d}ms.npz") wave = np.load(wf_filename)["arr_0"].astype(np.float32) mesh_y, mesh_x = np.meshgrid( np.linspace(0, dLen, wave.shape[0]), np.linspace(0, dLen, wave.shape[1]), indexing="ij", ) invar = {} invar["x"] = np.expand_dims(mesh_y.astype(np.float32).flatten(), axis=-1) invar["y"] = np.expand_dims(mesh_x.astype(np.float32).flatten(), axis=-1) invar["t"] = np.full_like(invar["x"], time * 0.001) outvar = {} outvar["u"] = np.expand_dims(wave.flatten(), axis=-1) return invar, outvar # define open boundary conditions class OpenBoundary(PDE): """ Open boundary condition for wave problems Ref: http://hplgit.github.io/wavebc/doc/pub/._wavebc_cyborg002.html Parameters ========== u : str The dependent variable. c : float, Sympy Symbol/Expr, str Wave speed coefficient. If `c` is a str then it is converted to Sympy Function of form 'c(x,y,z,t)'. If 'c' is a Sympy Symbol or Expression then this is substituted into the equation. dim : int Dimension of the wave equation (1, 2, or 3). Default is 2. time : bool If time-dependent equations or not. Default is True. """ name = "OpenBoundary" def __init__(self, u="u", c="c", dim=3, time=True): # set params self.u = u self.dim = dim self.time = time # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # normal normal_x, normal_y, normal_z = ( Symbol("normal_x"), Symbol("normal_y"), Symbol("normal_z"), ) # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # Scalar function assert type(u) == str, "u needs to be string" u = Function(u)(*input_variables) # wave speed coefficient if type(c) is str: c = Function(c)(*input_variables) elif type(c) in [float, int]: c = Number(c) # set equations self.equations = {} self.equations["open_boundary"] = ( u.diff(t) + normal_x * c * u.diff(x) + normal_y * c * u.diff(y) + normal_z * c * u.diff(z) ) class WavePlotter(ValidatorPlotter): "Define custom validator plotting class" def __call__(self, invar, true_outvar, pred_outvar): # only plot x,y dimensions invar = {k: v for k, v in invar.items() if k in ["x", "y"]} fs = super().__call__(invar, true_outvar, pred_outvar) return fs @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: """ 2d acoustic wave propagation at a domain of 2kmx2km, with a single Ricker source at the middle of the 2D domain """ # override defaults cfg.arch.fully_connected.layer_size = 128 # define PDEs we = WaveEquation(u="u", c="c", dim=2, time=True) ob = OpenBoundary(u="u", c="c", dim=2, time=True) # define networks and nodes wave_net = instantiate_arch( input_keys=[Key("x"), Key("y"), Key("t")], output_keys=[Key("u")], cfg=cfg.arch.fully_connected, ) speed_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("c")], cfg=cfg.arch.fully_connected, ) nodes = ( we.make_nodes(detach_names=["c"]) + ob.make_nodes(detach_names=["c"]) + [ wave_net.make_node(name="wave_network"), speed_net.make_node(name="speed_network"), ] ) # define geometry dLen = 2 # km rec = Rectangle((0, 0), (dLen, dLen)) # define sympy domain variables x, y, t = Symbol("x"), Symbol("y"), Symbol("t") # define time range time_length = 1 time_range = {t: (0.15, time_length)} # define target velocity model # 2.0 km/s at the bottom and 1.0 km/s at the top using tanh function mesh_x, mesh_y = np.meshgrid( np.linspace(0, 2, 512), np.linspace(0, 2, 512), indexing="ij" ) wave_speed_invar = {} wave_speed_invar["x"] = np.expand_dims(mesh_x.flatten(), axis=-1) wave_speed_invar["y"] = np.expand_dims(mesh_y.flatten(), axis=-1) wave_speed_outvar = {} wave_speed_outvar["c"] = np.tanh(80 * (wave_speed_invar["y"] - 1.0)) / 2 + 1.5 # make domain domain = Domain() # add velocity constraint velocity = PointwiseConstraint.from_numpy( nodes=nodes, invar=wave_speed_invar, outvar=wave_speed_outvar, batch_size=1024 ) domain.add_constraint(velocity, "Velocity") # add initial timesteps constraints batch_size = 1024 for i, ms in enumerate(np.linspace(150, 300, 4)): timestep_invar, timestep_outvar = read_wf_data(ms, dLen) lambda_weighting = {} lambda_weighting["u"] = np.full_like(timestep_invar["x"], 10.0 / batch_size) timestep = PointwiseConstraint.from_numpy( nodes, timestep_invar, timestep_outvar, batch_size, lambda_weighting=lambda_weighting, ) domain.add_constraint(timestep, f"BC{i:04d}") # add interior constraint interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={"wave_equation": 0}, batch_size=4096, bounds={x: (0, dLen), y: (0, dLen)}, lambda_weighting={"wave_equation": 0.0001}, parameterization=time_range, ) domain.add_constraint(interior, "Interior") # add open boundary constraint edges = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"open_boundary": 0}, batch_size=1024, lambda_weighting={"open_boundary": 0.01 * time_length}, parameterization=time_range, ) domain.add_constraint(edges, "Edges") # add validators for i, ms in enumerate(np.linspace(350, 950, 13)): val_invar, val_true_outvar = read_wf_data(ms, dLen) validator = PointwiseValidator( nodes=nodes, invar=val_invar, true_outvar=val_true_outvar, batch_size=1024, plotter=WavePlotter(), ) domain.add_validator(validator, f"VAL_{i:04d}") validator = PointwiseValidator( nodes=nodes, invar=wave_speed_invar, true_outvar=wave_speed_outvar, batch_size=1024, plotter=WavePlotter(), ) domain.add_validator(validator, "Velocity") slv = Solver(cfg, domain) slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/seismic_wave/wave_2d.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from sympy import Symbol, Eq import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.key import Key from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.dataset import DictVariationalDataset from modulus.sym.domain import Domain from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, VariationalConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.utils.io.plotter import ValidatorPlotter, InferencerPlotter from modulus.sym.loss import Loss # VPINN imports from modulus.sym.utils.vpinn.test_functions import ( Test_Function, Legendre_test, Trig_test, Vector_Test, ) from modulus.sym.utils.vpinn.integral import tensor_int x, y = Symbol("x"), Symbol("y") # parameters E = 10.0 # MPa nu = 0.2 lambda_ = nu * E / ((1 + nu) * (1 - 2 * nu)) mu = E / (2 * (1 + nu)) domain_origin = (-0.5, -0.5) domain_dim = (1, 1) # bounds bounds_x = (domain_origin[0], domain_origin[0] + domain_dim[0]) bounds_y = (domain_origin[1], domain_origin[1] + domain_dim[1]) class DGLoss(Loss): def __init__(self): super().__init__() test_fn = Test_Function( name_ord_dict={ Legendre_test: [k for k in range(10)], Trig_test: [k for k in range(10)], }, box=[ [domain_origin[0], domain_origin[1]], [domain_origin[0] + domain_dim[0], domain_origin[1] + domain_dim[1]], ], diff_list=["grad"], ) self.v = Vector_Test(test_fn, test_fn, mix=0.02) def forward( self, list_invar, list_outvar, step: int, ): torch.cuda.nvtx.range_push("Make_DGLoss") torch.cuda.nvtx.range_push("Make_DGLoss_Get_Data") # self.v.sample_vector_test() # get points on the interior x_interior = list_invar[2]["x"] y_interior = list_invar[2]["y"] area_interior = list_invar[2]["area"] # compute solution for the interior u_x_interior = list_outvar[2]["u__x"] u_y_interior = list_outvar[2]["u__y"] v_x_interior = list_outvar[2]["v__x"] v_y_interior = list_outvar[2]["v__y"] # get points on the boundary x_bottom_dir = list_invar[0]["x"] y_bottom_dir = list_invar[0]["y"] normal_x_bottom_dir = list_invar[0]["normal_x"] normal_y_bottom_dir = list_invar[0]["normal_y"] area_bottom_dir = list_invar[0]["area"] x_top_dir = list_invar[1]["x"] y_top_dir = list_invar[1]["y"] normal_x_top_dir = list_invar[1]["normal_x"] normal_y_top_dir = list_invar[1]["normal_y"] area_top_dir = list_invar[1]["area"] # compute solution for the boundary u_x_bottom_dir = list_outvar[0]["u__x"] u_y_bottom_dir = list_outvar[0]["u__y"] v_x_bottom_dir = list_outvar[0]["v__x"] v_y_bottom_dir = list_outvar[0]["v__y"] u_x_top_dir = list_outvar[1]["u__x"] u_y_top_dir = list_outvar[1]["u__y"] v_x_top_dir = list_outvar[1]["v__x"] v_y_top_dir = list_outvar[1]["v__y"] torch.cuda.nvtx.range_pop() torch.cuda.nvtx.range_push("Make_DGLoss_Test_Function") # test functions vx_x_interior, vy_x_interior = self.v.eval_test("vx", x_interior, y_interior) vx_y_interior, vy_y_interior = self.v.eval_test("vy", x_interior, y_interior) vx_bottom_dir, vy_bottom_dir = self.v.eval_test("v", x_bottom_dir, y_bottom_dir) vx_top_dir, vy_top_dir = self.v.eval_test("v", x_top_dir, y_top_dir) torch.cuda.nvtx.range_pop() torch.cuda.nvtx.range_push("Make_DGLoss_Computation") w_z_interior = -lambda_ / (lambda_ + 2 * mu) * (u_x_interior + v_y_interior) sigma_xx_interior = ( lambda_ * (u_x_interior + v_y_interior + w_z_interior) + 2 * mu * u_x_interior ) sigma_yy_interior = ( lambda_ * (u_x_interior + v_y_interior + w_z_interior) + 2 * mu * v_y_interior ) sigma_xy_interior = mu * (u_y_interior + v_x_interior) w_z_bottom_dir = ( -lambda_ / (lambda_ + 2 * mu) * (u_x_bottom_dir + v_y_bottom_dir) ) sigma_xx_bottom_dir = ( lambda_ * (u_x_bottom_dir + v_y_bottom_dir + w_z_bottom_dir) + 2 * mu * u_x_bottom_dir ) sigma_yy_bottom_dir = ( lambda_ * (u_x_bottom_dir + v_y_bottom_dir + w_z_bottom_dir) + 2 * mu * v_y_bottom_dir ) sigma_xy_bottom_dir = mu * (u_y_bottom_dir + v_x_bottom_dir) w_z_top_dir = -lambda_ / (lambda_ + 2 * mu) * (u_x_top_dir + v_y_top_dir) sigma_xx_top_dir = ( lambda_ * (u_x_top_dir + v_y_top_dir + w_z_top_dir) + 2 * mu * u_x_top_dir ) sigma_yy_top_dir = ( lambda_ * (u_x_top_dir + v_y_top_dir + w_z_top_dir) + 2 * mu * v_y_top_dir ) sigma_xy_top_dir = mu * (u_y_top_dir + v_x_top_dir) traction_x_bottom_dir = ( sigma_xx_bottom_dir * normal_x_bottom_dir + sigma_xy_bottom_dir * normal_y_bottom_dir ) traction_y_bottom_dir = ( sigma_xy_bottom_dir * normal_x_bottom_dir + sigma_yy_bottom_dir * normal_y_bottom_dir ) traction_x_top_dir = ( sigma_xx_top_dir * normal_x_top_dir + sigma_xy_top_dir * normal_y_top_dir ) traction_y_top_dir = ( sigma_xy_top_dir * normal_x_top_dir + sigma_yy_top_dir * normal_y_top_dir ) torch.cuda.nvtx.range_pop() torch.cuda.nvtx.range_push("Make_DGLoss_Integral") interior_loss = tensor_int( area_interior, sigma_xx_interior * vx_x_interior + sigma_yy_interior * vy_y_interior + sigma_xy_interior * (vx_y_interior + vy_x_interior), ) boundary_loss1 = tensor_int( area_bottom_dir, traction_x_bottom_dir * vx_bottom_dir + traction_y_bottom_dir * vy_bottom_dir, ) boundary_loss2 = tensor_int( area_top_dir, traction_x_top_dir * vx_top_dir + traction_y_top_dir * vy_top_dir, ) torch.cuda.nvtx.range_pop() torch.cuda.nvtx.range_push("Make_DGLoss_Register_Loss") losses = { "variational_plane": torch.abs( interior_loss - boundary_loss1 - boundary_loss2 ) .pow(2) .sum() } torch.cuda.nvtx.range_pop() torch.cuda.nvtx.range_pop() return losses @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on elasticity_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v")], cfg=cfg.arch.fully_connected, ) nodes = [elasticity_net.make_node(name="elasticity_net")] # domain square = Rectangle( domain_origin, (domain_origin[0] + domain_dim[0], domain_origin[1] + domain_dim[1]), ) geo = square # make domain domain = Domain() bottomBC = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": 0.0, "v": 0.0}, batch_size=cfg.batch_size.bottom, batch_per_epoch=5000, lambda_weighting={"u": 10.0, "v": 10.0}, criteria=Eq(y, domain_origin[1]), ) domain.add_constraint(bottomBC, "bottomBC_differential") topBC = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": 0.0, "v": 0.1}, batch_size=cfg.batch_size.top, batch_per_epoch=5000, lambda_weighting={"u": 10.0, "v": 10.0}, criteria=Eq(y, domain_origin[1] + domain_dim[1]) & (x <= domain_origin[0] + domain_dim[0] / 2.0), ) domain.add_constraint(topBC, "topBC_differential") # register variational data batch_per_epoch = 1 variational_datasets = {} batch_sizes = {} # bottomBC, index : 0 invar = geo.sample_boundary( batch_per_epoch * cfg.batch_size.bottom, criteria=Eq(y, domain_origin[1]), quasirandom=True, ) invar["area"] *= batch_per_epoch variational_datasets["bottom_bc"] = DictVariationalDataset( invar=invar, outvar_names=["u__x", "u__y", "v__x", "v__y"], ) batch_sizes["bottom_bc"] = cfg.batch_size.bottom # topBC, index : 1 invar = geo.sample_boundary( batch_per_epoch * cfg.batch_size.top, criteria=Eq(y, domain_origin[1] + domain_dim[1]) & (x <= domain_origin[0] + domain_dim[0] / 2.0), quasirandom=True, ) invar["area"] *= batch_per_epoch variational_datasets["top_bc"] = DictVariationalDataset( invar=invar, outvar_names=["u__x", "u__y", "v__x", "v__y"], ) batch_sizes["top_bc"] = cfg.batch_size.top # Interior, index : 2 invar = geo.sample_interior( batch_per_epoch * cfg.batch_size.interior, bounds={x: bounds_x, y: bounds_y}, quasirandom=True, ) invar["area"] *= batch_per_epoch variational_datasets["interior"] = DictVariationalDataset( invar=invar, outvar_names=["u__x", "u__y", "v__x", "v__y"], ) batch_sizes["interior"] = cfg.batch_size.interior # make variational constraints variational_constraint = VariationalConstraint( datasets=variational_datasets, batch_sizes=batch_sizes, nodes=nodes, num_workers=1, loss=DGLoss(), ) domain.add_constraint(variational_constraint, "variational") # add inferencer data inferencer = PointwiseInferencer( nodes=nodes, invar=geo.sample_interior( 2 * cfg.batch_size.interior, bounds={x: bounds_x, y: bounds_y}, ), output_names=["u", "v"], batch_size=2048, plotter=InferencerPlotter(), ) domain.add_inferencer(inferencer) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/plane_displacement/plane_displacement.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.key import Key from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.utils.io.plotter import GridValidatorPlotter from utilities import download_FNO_dataset, load_FNO_dataset @modulus.sym.main(config_path="conf", config_name="config_FNO") def run(cfg: ModulusConfig) -> None: # load training/ test data input_keys = [Key("coeff", scale=(7.48360e00, 4.49996e00))] output_keys = [Key("sol", scale=(5.74634e-03, 3.88433e-03))] download_FNO_dataset("Darcy_241", outdir="datasets/") invar_train, outvar_train = load_FNO_dataset( "datasets/Darcy_241/piececonst_r241_N1024_smooth1.hdf5", [k.name for k in input_keys], [k.name for k in output_keys], n_examples=1000, ) invar_test, outvar_test = load_FNO_dataset( "datasets/Darcy_241/piececonst_r241_N1024_smooth2.hdf5", [k.name for k in input_keys], [k.name for k in output_keys], n_examples=100, ) # make datasets train_dataset = DictGridDataset(invar_train, outvar_train) test_dataset = DictGridDataset(invar_test, outvar_test) # print out training/ test data shapes for d in (invar_train, outvar_train, invar_test, outvar_test): for k in d: print(f"{k}: {d[k].shape}") decoder_net = instantiate_arch( cfg=cfg.arch.decoder, output_keys=output_keys, ) fno = instantiate_arch( cfg=cfg.arch.fno, input_keys=input_keys, decoder_net=decoder_net, ) nodes = [fno.make_node("fno")] # make domain domain = Domain() # add constraints to domain supervised = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised, "supervised") # add validator val = GridValidator( nodes, dataset=test_dataset, batch_size=cfg.batch_size.validation, plotter=GridValidatorPlotter(n_examples=5), ) domain.add_validator(val, "test") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/darcy/darcy_FNO.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.key import Key from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import HDF5GridDataset from modulus.sym.utils.io.plotter import GridValidatorPlotter from utilities import download_FNO_dataset @modulus.sym.main(config_path="conf", config_name="config_FNO") def run(cfg: ModulusConfig) -> None: # [keys] # load training/ test data input_keys = [Key("coeff", scale=(7.48360e00, 4.49996e00))] output_keys = [Key("sol", scale=(5.74634e-03, 3.88433e-03))] download_FNO_dataset("Darcy_241", outdir="datasets/") train_path = to_absolute_path( "datasets/Darcy_241/piececonst_r241_N1024_smooth1.hdf5" ) test_path = to_absolute_path( "datasets/Darcy_241/piececonst_r241_N1024_smooth2.hdf5" ) # [keys] # [datasets] # make datasets train_dataset = HDF5GridDataset( train_path, invar_keys=["coeff"], outvar_keys=["sol"], n_examples=1000 ) test_dataset = HDF5GridDataset( test_path, invar_keys=["coeff"], outvar_keys=["sol"], n_examples=100 ) # [datasets] # [init-model] # make list of nodes to unroll graph on decoder_net = instantiate_arch( cfg=cfg.arch.decoder, output_keys=output_keys, ) fno = instantiate_arch( cfg=cfg.arch.fno, input_keys=input_keys, decoder_net=decoder_net, ) nodes = [fno.make_node("fno")] # [init-model] # [constraint] # make domain domain = Domain() # add constraints to domain supervised = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset, batch_size=cfg.batch_size.grid, num_workers=4, # number of parallel data loaders ) domain.add_constraint(supervised, "supervised") # [constraint] # [validator] # add validator val = GridValidator( nodes, dataset=test_dataset, batch_size=cfg.batch_size.validation, plotter=GridValidatorPlotter(n_examples=5), ) domain.add_validator(val, "test") # [validator] # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/darcy/darcy_FNO_lazy.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import numpy as np import torch import torch.nn.functional as F import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.key import Key from modulus.sym.models.layers.spectral_layers import fourier_derivatives from modulus.sym.node import Node from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.utils.io.plotter import GridValidatorPlotter from modulus.sym.utils.io.vtk import grid_to_vtk from utilities import download_FNO_dataset, load_FNO_dataset from ops import dx, ddx # [pde-loss] class Darcy(torch.nn.Module): "Custom Darcy PDE definition for PINO" def __init__(self, gradient_method: str = "exact"): super().__init__() self.gradient_method = str(gradient_method) def forward(self, input_var: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: # get inputs u = input_var["sol"] c = input_var["coeff"] dcdx = input_var["Kcoeff_y"] # data is reversed dcdy = input_var["Kcoeff_x"] dxf = 1.0 / u.shape[-2] dyf = 1.0 / u.shape[-1] # Compute gradients based on method # Exact first order and FDM second order if self.gradient_method == "exact": dudx_exact = input_var["sol__x"] dudy_exact = input_var["sol__y"] dduddx_exact = input_var["sol__x__x"] dduddy_exact = input_var["sol__y__y"] # compute darcy equation darcy = ( 1.0 + (dcdx * dudx_exact) + (c * dduddx_exact) + (dcdy * dudy_exact) + (c * dduddy_exact) ) # FDM gradients elif self.gradient_method == "fdm": dudx_fdm = dx(u, dx=dxf, channel=0, dim=0, order=1, padding="replication") dudy_fdm = dx(u, dx=dyf, channel=0, dim=1, order=1, padding="replication") dduddx_fdm = ddx( u, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dduddy_fdm = ddx( u, dx=dyf, channel=0, dim=1, order=1, padding="replication" ) # compute darcy equation darcy = ( 1.0 + (dcdx * dudx_fdm) + (c * dduddx_fdm) + (dcdy * dudy_fdm) + (c * dduddy_fdm) ) # Fourier derivative elif self.gradient_method == "fourier": dim_u_x = u.shape[2] dim_u_y = u.shape[3] u = F.pad( u, (0, dim_u_y - 1, 0, dim_u_x - 1), mode="reflect" ) # Constant seems to give best results f_du, f_ddu = fourier_derivatives(u, [2.0, 2.0]) dudx_fourier = f_du[:, 0:1, :dim_u_x, :dim_u_y] dudy_fourier = f_du[:, 1:2, :dim_u_x, :dim_u_y] dduddx_fourier = f_ddu[:, 0:1, :dim_u_x, :dim_u_y] dduddy_fourier = f_ddu[:, 1:2, :dim_u_x, :dim_u_y] # compute darcy equation darcy = ( 1.0 + (dcdx * dudx_fourier) + (c * dduddx_fourier) + (dcdy * dudy_fourier) + (c * dduddy_fourier) ) else: raise ValueError(f"Derivative method {self.gradient_method} not supported.") # Zero outer boundary darcy = F.pad(darcy[:, :, 2:-2, 2:-2], [2, 2, 2, 2], "constant", 0) # Return darcy output_var = { "darcy": dxf * darcy, } # weight boundary loss higher return output_var # [pde-loss] @modulus.sym.main(config_path="conf", config_name="config_PINO") def run(cfg: ModulusConfig) -> None: # [datasets] # load training/ test data input_keys = [ Key("coeff", scale=(7.48360e00, 4.49996e00)), Key("Kcoeff_x"), Key("Kcoeff_y"), ] output_keys = [ Key("sol", scale=(5.74634e-03, 3.88433e-03)), ] download_FNO_dataset("Darcy_241", outdir="datasets/") invar_train, outvar_train = load_FNO_dataset( "datasets/Darcy_241/piececonst_r241_N1024_smooth1.hdf5", [k.name for k in input_keys], [k.name for k in output_keys], n_examples=cfg.custom.ntrain, ) invar_test, outvar_test = load_FNO_dataset( "datasets/Darcy_241/piececonst_r241_N1024_smooth2.hdf5", [k.name for k in input_keys], [k.name for k in output_keys], n_examples=cfg.custom.ntest, ) # add additional constraining values for darcy variable outvar_train["darcy"] = np.zeros_like(outvar_train["sol"]) train_dataset = DictGridDataset(invar_train, outvar_train) test_dataset = DictGridDataset(invar_test, outvar_test) # [datasets] # [init-model] # Define FNO model decoder_net = instantiate_arch( cfg=cfg.arch.decoder, output_keys=output_keys, ) fno = instantiate_arch( cfg=cfg.arch.fno, input_keys=[input_keys[0]], decoder_net=decoder_net, ) if cfg.custom.gradient_method == "exact": derivatives = [ Key("sol", derivatives=[Key("x")]), Key("sol", derivatives=[Key("y")]), Key("sol", derivatives=[Key("x"), Key("x")]), Key("sol", derivatives=[Key("y"), Key("y")]), ] fno.add_pino_gradients( derivatives=derivatives, domain_length=[1.0, 1.0], ) # [init-model] # [init-node] # Make custom Darcy residual node for PINO inputs = [ "sol", "coeff", "Kcoeff_x", "Kcoeff_y", ] if cfg.custom.gradient_method == "exact": inputs += [ "sol__x", "sol__y", ] darcy_node = Node( inputs=inputs, outputs=["darcy"], evaluate=Darcy(gradient_method=cfg.custom.gradient_method), name="Darcy Node", ) nodes = [fno.make_node("fno"), darcy_node] # [init-node] # [constraint] # make domain domain = Domain() # add constraints to domain supervised = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised, "supervised") # [constraint] # add validator val = GridValidator( nodes, dataset=test_dataset, batch_size=cfg.batch_size.validation, plotter=GridValidatorPlotter(n_examples=5), requires_grad=True, ) domain.add_validator(val, "test") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/darcy/darcy_PINO.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import modulus.sym from modulus.sym.hydra import instantiate_arch from modulus.sym.hydra.config import ModulusConfig from modulus.sym.key import Key from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.solver import Solver from modulus.sym.utils.io.plotter import GridValidatorPlotter from utilities import download_FNO_dataset, load_FNO_dataset @modulus.sym.main(config_path="conf", config_name="config_AFNO") def run(cfg: ModulusConfig) -> None: # load training/ test data input_keys = [Key("coeff", scale=(7.48360e00, 4.49996e00))] output_keys = [Key("sol", scale=(5.74634e-03, 3.88433e-03))] download_FNO_dataset("Darcy_241", outdir="datasets/") invar_train, outvar_train = load_FNO_dataset( "datasets/Darcy_241/piececonst_r241_N1024_smooth1.hdf5", [k.name for k in input_keys], [k.name for k in output_keys], n_examples=1000, ) invar_test, outvar_test = load_FNO_dataset( "datasets/Darcy_241/piececonst_r241_N1024_smooth2.hdf5", [k.name for k in input_keys], [k.name for k in output_keys], n_examples=100, ) # get training image shape img_shape = [ next(iter(invar_train.values())).shape[-2], next(iter(invar_train.values())).shape[-1], ] # crop out some pixels so that img_shape is divisible by patch_size of AFNO img_shape = [s - s % cfg.arch.afno.patch_size for s in img_shape] print(f"cropped img_shape: {img_shape}") for d in (invar_train, outvar_train, invar_test, outvar_test): for k in d: d[k] = d[k][:, :, : img_shape[0], : img_shape[1]] print(f"{k}: {d[k].shape}") # make datasets train_dataset = DictGridDataset(invar_train, outvar_train) test_dataset = DictGridDataset(invar_test, outvar_test) # make list of nodes to unroll graph on model = instantiate_arch( input_keys=input_keys, output_keys=output_keys, cfg=cfg.arch.afno, img_shape=img_shape, ) nodes = [model.make_node(name="AFNO")] # make domain domain = Domain() # add constraints to domain supervised = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised, "supervised") # add validator val = GridValidator( nodes, dataset=test_dataset, batch_size=cfg.batch_size.validation, plotter=GridValidatorPlotter(n_examples=5), ) domain.add_validator(val, "test") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/darcy/darcy_AFNO.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn.functional as F def dx(inpt, dx, channel, dim, order=1, padding="zeros"): "Compute first order numerical derivatives of input tensor" var = inpt[:, channel : channel + 1, :, :] # get filter if order == 1: ddx1D = torch.Tensor( [ -0.5, 0.0, 0.5, ] ).to(inpt.device) elif order == 3: ddx1D = torch.Tensor( [ -1.0 / 60.0, 3.0 / 20.0, -3.0 / 4.0, 0.0, 3.0 / 4.0, -3.0 / 20.0, 1.0 / 60.0, ] ).to(inpt.device) ddx3D = torch.reshape(ddx1D, shape=[1, 1] + dim * [1] + [-1] + (1 - dim) * [1]) # apply convolution if padding == "zeros": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "constant", 0) elif padding == "replication": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "replicate") output = F.conv2d(var, ddx3D, padding="valid") output = (1.0 / dx) * output if dim == 0: output = output[:, :, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2] elif dim == 1: output = output[:, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2, :] return output def ddx(inpt, dx, channel, dim, order=1, padding="zeros"): "Compute second order numerical derivatives of input tensor" var = inpt[:, channel : channel + 1, :, :] # get filter if order == 1: ddx1D = torch.Tensor( [ 1.0, -2.0, 1.0, ] ).to(inpt.device) elif order == 3: ddx1D = torch.Tensor( [ 1.0 / 90.0, -3.0 / 20.0, 3.0 / 2.0, -49.0 / 18.0, 3.0 / 2.0, -3.0 / 20.0, 1.0 / 90.0, ] ).to(inpt.device) ddx3D = torch.reshape(ddx1D, shape=[1, 1] + dim * [1] + [-1] + (1 - dim) * [1]) # apply convolution if padding == "zeros": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "constant", 0) elif padding == "replication": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "replicate") output = F.conv2d(var, ddx3D, padding="valid") output = (1.0 / dx**2) * output if dim == 0: output = output[:, :, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2] elif dim == 1: output = output[:, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2, :] return output
modulus-sym-main
examples/darcy/ops.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.key import Key from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.models.deeponet import DeepONetArch from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.models.pix2pix import Pix2PixArch from modulus.sym.domain.constraint.continuous import DeepONetConstraint from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.utils.io.plotter import GridValidatorPlotter from utilities import download_FNO_dataset, load_deeponet_dataset @modulus.sym.main(config_path="conf", config_name="config_DeepO") def run(cfg: ModulusConfig) -> None: # [datasets] # load training/ test data branch_input_keys = [Key("coeff")] trunk_input_keys = [Key("x"), Key("y")] output_keys = [Key("sol")] download_FNO_dataset("Darcy_241", outdir="datasets/") invar_train, outvar_train = load_deeponet_dataset( "datasets/Darcy_241/piececonst_r241_N1024_smooth1.hdf5", [k.name for k in branch_input_keys], [k.name for k in output_keys], n_examples=1000, ) invar_test, outvar_test = load_deeponet_dataset( "datasets/Darcy_241/piececonst_r241_N1024_smooth2.hdf5", [k.name for k in branch_input_keys], [k.name for k in output_keys], n_examples=10, ) # [datasets] # [init-model] # make list of nodes to unroll graph on branch_net = instantiate_arch( cfg=cfg.arch.branch, ) trunk_net = instantiate_arch( cfg=cfg.arch.trunk, ) deeponet = instantiate_arch( cfg=cfg.arch.deeponet, branch_net=branch_net, trunk_net=trunk_net, ) nodes = [deeponet.make_node(name="deepo")] # [init-model] # [constraint] # make domain domain = Domain() # add constraint to domain data = DeepONetConstraint.from_numpy( nodes=nodes, invar=invar_train, outvar=outvar_train, batch_size=cfg.batch_size.train, ) domain.add_constraint(data, "data") # [constraint] # [validator] # add validators val = PointwiseValidator( nodes=nodes, invar=invar_test, true_outvar=outvar_test, plotter=None, ) domain.add_validator(val, "val") # [validator] # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/darcy/darcy_DeepO.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import modulus.sym from modulus.sym.hydra import instantiate_arch from modulus.sym.hydra.config import ModulusConfig from modulus.sym.key import Key from modulus.sym.distributed.manager import DistributedManager from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.solver import Solver from modulus.sym.utils.io.plotter import GridValidatorPlotter from utilities import download_FNO_dataset, load_FNO_dataset import os import torch.distributed as dist # Set model parallel size to 2 os.environ["MODEL_PARALLEL_SIZE"] = "2" @modulus.sym.main(config_path="conf", config_name="config_AFNO_MP") def run(cfg: ModulusConfig) -> None: manager = DistributedManager() # Check that world_size is a multiple of model parallel size if manager.world_size % 2 != 0: print( "WARNING: Total world size not a multiple of model parallel size (2). Exiting..." ) return # load training/ test data input_keys = [Key("coeff", scale=(7.48360e00, 4.49996e00))] output_keys = [Key("sol", scale=(5.74634e-03, 3.88433e-03))] # Only rank 0 downloads the dataset to avoid a data race if manager.rank == 0: download_FNO_dataset("Darcy_241", outdir="datasets/") dist.barrier() # All ranks can safely load the dataset once available invar_train, outvar_train = load_FNO_dataset( "datasets/Darcy_241/piececonst_r241_N1024_smooth1.hdf5", [k.name for k in input_keys], [k.name for k in output_keys], n_examples=1000, ) invar_test, outvar_test = load_FNO_dataset( "datasets/Darcy_241/piececonst_r241_N1024_smooth2.hdf5", [k.name for k in input_keys], [k.name for k in output_keys], n_examples=100, ) # get training image shape img_shape = next(iter(invar_train.values())).shape[-2:] # crop out some pixels so that img_shape is divisible by patch_size of AFNO img_shape = [s - s % cfg.arch.distributed_afno.patch_size for s in img_shape] print(f"cropped img_shape: {img_shape}") for d in (invar_train, outvar_train, invar_test, outvar_test): for k in d: d[k] = d[k][:, :, : img_shape[0], : img_shape[1]] print(f"{k}: {d[k].shape}") # make datasets train_dataset = DictGridDataset(invar_train, outvar_train) test_dataset = DictGridDataset(invar_test, outvar_test) # make list of nodes to unroll graph on model = instantiate_arch( input_keys=input_keys, output_keys=output_keys, cfg=cfg.arch.distributed_afno, img_shape=img_shape, ) nodes = [model.make_node(name="DistributedAFNO")] # make domain domain = Domain() # add constraints to domain supervised = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised, "supervised") # add validator val = GridValidator( nodes, dataset=test_dataset, batch_size=cfg.batch_size.validation, plotter=GridValidatorPlotter(n_examples=5), ) domain.add_validator(val, "test") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/darcy/darcy_AFNO_MP.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import zipfile try: import gdown except: gdown = None import scipy.io import numpy as np import h5py from modulus.sym.hydra import to_absolute_path # list of FNO dataset url ids on drive: https://drive.google.com/drive/folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt- _FNO_datatsets_ids = { "Darcy_241": "1ViDqN7nc_VCnMackiXv_d7CHZANAFKzV", "Darcy_421": "1Z1uxG9R8AdAGJprG5STcphysjm56_0Jf", } _FNO_dataset_names = { "Darcy_241": ( "piececonst_r241_N1024_smooth1.hdf5", "piececonst_r241_N1024_smooth2.hdf5", ), "Darcy_421": ( "piececonst_r421_N1024_smooth1.hdf5", "piececonst_r421_N1024_smooth2.hdf5", ), } def load_FNO_dataset(path, input_keys, output_keys, n_examples=None): "Loads a FNO dataset" if not path.endswith(".hdf5"): raise Exception( ".hdf5 file required: please use utilities.preprocess_FNO_mat to convert .mat file" ) # load data path = to_absolute_path(path) data = h5py.File(path, "r") _ks = [k for k in data.keys() if not k.startswith("__")] print(f"loaded: {path}\navaliable keys: {_ks}") # parse data invar, outvar = dict(), dict() for d, keys in [(invar, input_keys), (outvar, output_keys)]: for k in keys: # get data x = data[k] # N, C, H, W # cut examples out if n_examples is not None: x = x[:n_examples] # print out normalisation values print(f"selected key: {k}, mean: {x.mean():.5e}, std: {x.std():.5e}") d[k] = x del data return (invar, outvar) def load_deeponet_dataset( path, input_keys, output_keys, n_examples=None, filter_size=8 ): "Loads a deeponet dataset" # load dataset invar, outvar = load_FNO_dataset(path, input_keys, output_keys, n_examples) # reduce shape needed for deeponet for key, value in invar.items(): invar[key] = value[:, :, ::filter_size, ::filter_size] for key, value in outvar.items(): outvar[key] = value[:, :, ::filter_size, ::filter_size] res = next(iter(invar.values())).shape[-1] nr_points_per_sample = res**2 # tile invar tiled_invar = { key: np.concatenate( [ np.tile(value[i], (nr_points_per_sample, 1, 1, 1)) for i in range(n_examples) ] ) for key, value in invar.items() } # tile outvar tiled_outvar = {key: value.flatten()[:, None] for key, value in outvar.items()} # add cord points x = np.linspace(0.0, 1.0, res) y = np.linspace(0.0, 1.0, res) x, y = [a.flatten()[:, None] for a in np.meshgrid(x, y)] tiled_invar["x"] = np.concatenate(n_examples * [x], axis=0) tiled_invar["y"] = np.concatenate(n_examples * [y], axis=0) return (tiled_invar, tiled_outvar) def download_FNO_dataset(name, outdir="datasets/"): "Tries to download FNO dataset from drive" if name not in _FNO_datatsets_ids: raise Exception( f"Error: FNO dataset {name} not recognised, select one from {list(_FNO_datatsets_ids.keys())}" ) id = _FNO_datatsets_ids[name] outdir = to_absolute_path(outdir) + "/" namedir = f"{outdir}{name}/" # skip if already exists exists = True for file_name in _FNO_dataset_names[name]: if not os.path.isfile(namedir + file_name): exists = False break if exists: return print(f"FNO dataset {name} not detected, downloading dataset") # Make sure we have gdown installed if gdown is None: raise ModuleNotFoundError("gdown package is required to download the dataset!") # get output directory os.makedirs(namedir, exist_ok=True) # download dataset zippath = f"{outdir}{name}.zip" _download_file_from_google_drive(id, zippath) # unzip with zipfile.ZipFile(zippath, "r") as f: f.extractall(namedir) os.remove(zippath) # preprocess files for file in os.listdir(namedir): if file.endswith(".mat"): matpath = f"{namedir}{file}" preprocess_FNO_mat(matpath) os.remove(matpath) def _download_file_from_google_drive(id, path): "Downloads a file from google drive" # use gdown library to download file gdown.download(id=id, output=path) def preprocess_FNO_mat(path): "Convert a FNO .mat file to a hdf5 file, adding extra dimension to data arrays" assert path.endswith(".mat") data = scipy.io.loadmat(path) ks = [k for k in data.keys() if not k.startswith("__")] with h5py.File(path[:-4] + ".hdf5", "w") as f: for k in ks: x = np.expand_dims(data[k], axis=1) # N, C, H, W f.create_dataset( k, data=x, dtype="float32" ) # note h5 files larger than .mat because no compression used
modulus-sym-main
examples/darcy/utilities.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sympy import Symbol, Eq, tanh import numpy as np from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.geometry import Parameterization, Parameter # geometry params for domain channel_origin = (-2.5, -0.5, -0.5625) channel_dim = (5.0, 1.0, 1.125) heat_sink_base_origin = (-0.75, -0.5, -0.4375) heat_sink_base_dim = (0.65, 0.05, 0.875) fin_origin = heat_sink_base_origin fin_dim = (0.65, 0.8625, 0.0075) total_fins = 17 flow_box_origin = (-0.85, -0.5, -0.5625) flow_box_dim = (0.85, 1.0, 1.125) source_origin = (-0.55, -0.5, -0.125) source_dim = (0.25, 0.0, 0.25) # define sympy varaibles to parametize domain curves x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # define geometry # channel channel_base = Channel( channel_origin, ( channel_origin[0] + channel_dim[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), ) channel_void = Channel( (channel_origin[0], channel_origin[1], channel_origin[2] + channel_dim[2] / 2), ( channel_origin[0] + channel_dim[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), ) channel = channel_base - channel_void # fpga heat sink heat_sink_base = Box( heat_sink_base_origin, ( heat_sink_base_origin[0] + heat_sink_base_dim[0], # base of heat sink heat_sink_base_origin[1] + heat_sink_base_dim[1], heat_sink_base_origin[2] + heat_sink_base_dim[2] / 2, ), ) fin_center = ( fin_origin[0] + fin_dim[0] / 2, fin_origin[1] + fin_dim[1] / 2, fin_origin[2] + fin_dim[2] / 2, ) fin = Box( fin_origin, ( fin_origin[0] + fin_dim[0], fin_origin[1] + fin_dim[1], fin_origin[2] + fin_dim[2], ), ) gap = (heat_sink_base_dim[2] - fin_dim[2]) / (total_fins - 1) # gap between fins fin = fin.repeat( gap, repeat_lower=(0, 0, 0), repeat_higher=(0, 0, total_fins - 1), center=fin_center, ) fin_void = Box( (channel_origin[0], channel_origin[1], channel_origin[2] + channel_dim[2] / 2), ( channel_origin[0] + channel_dim[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), ) fin = fin - fin_void fpga = heat_sink_base + fin # entire geometry geo = channel - fpga # inlet and outlet inlet = Plane( channel_origin, ( channel_origin[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2] / 2, ), -1, ) outlet = Plane( (channel_origin[0] + channel_dim[0], channel_origin[1], channel_origin[2]), ( channel_origin[0] + channel_dim[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2] / 2, ), 1, ) # planes for integral continuity x_pos = Parameter("x_pos") integral_plane = Plane( (x_pos, channel_origin[1], channel_origin[2]), (x_pos, channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2]), 1, parameterization=Parameterization({x_pos: (-0.75, 0.0)}), )
modulus-sym-main
examples/fpga/laminar_symmetry/fpga_geometry.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from fpga_geometry import * import os import warnings import csv import torch import numpy as np from sympy import Symbol, Eq, Abs, tanh, And, Or import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.basic import NormalDotVec, GradNormal from modulus.sym.eq.pdes.diffusion import Diffusion, DiffusionInterface from modulus.sym.eq.pdes.advection_diffusion import AdvectionDiffusion @modulus.sym.main(config_path="conf_heat", config_name="config") def run(cfg: ModulusConfig) -> None: # params for simulation # fluid params nu = 0.02 rho = 1 # heat params k_fluid = 1.0 k_solid = 5.0 D_solid = 0.10 D_fluid = 0.02 source_grad = 1.5 source_area = source_dim[0] * source_dim[2] # make list of nodes to unroll graph on ad = AdvectionDiffusion(T="theta_f", rho=rho, D=D_fluid, dim=3, time=False) dif = Diffusion(T="theta_s", D=D_solid, dim=3, time=False) dif_inteface = DiffusionInterface( "theta_f", "theta_s", k_fluid, k_solid, dim=3, time=False ) f_grad = GradNormal("theta_f", dim=3, time=False) s_grad = GradNormal("theta_s", dim=3, time=False) # determine inputs outputs of the network input_keys = [Key("x"), Key("y"), Key("z")] output_keys = [Key("u"), Key("v"), Key("w"), Key("p")] # select the network and the specific configs if cfg.custom.arch == "FourierNetArch": flow_net = FourierNetArch(input_keys=input_keys, output_keys=output_keys) thermal_f_net = FourierNetArch( input_keys=input_keys, output_keys=[Key("theta_f")] ) thermal_s_net = FourierNetArch( input_keys=input_keys, output_keys=[Key("theta_s")] ) else: sys.exit( "Network not configured for this script. Please include the network in the script" ) thermal_nodes = ( ad.make_nodes() + dif.make_nodes() + dif_inteface.make_nodes() + f_grad.make_nodes() + s_grad.make_nodes() + [flow_net.make_node(name="flow_network", optimize=False)] + [thermal_f_net.make_node(name="thermal_f_network")] + [thermal_s_net.make_node(name="thermal_s_network")] ) # make flow domain thermal_domain = Domain() # inlet constraint_inlet = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=inlet, outvar={"theta_f": 0}, batch_size=cfg.batch_size.inlet, criteria=Eq(x, channel_origin[0]), ) thermal_domain.add_constraint(constraint_inlet, "inlet") # outlet constraint_outlet = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=outlet, outvar={"normal_gradient_theta_f": 0}, batch_size=cfg.batch_size.outlet, criteria=Eq(x, channel_origin[0] + channel_dim[0]), ) thermal_domain.add_constraint(constraint_outlet, "outlet") # channel walls insulating def channel_walls_criteria(invar, params): sdf = fpga.sdf(invar, params) return np.logical_and( np.less(sdf["sdf"], -1e-5), np.less(invar["z"], channel_origin[2] + channel_dim[2] / 2.0), ) channel_walls = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=channel, outvar={"normal_gradient_theta_f": 0}, batch_size=cfg.batch_size.channel_walls, criteria=channel_walls_criteria, ) thermal_domain.add_constraint(channel_walls, "channel_walls") # symmetry bc symmetry_fluid = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=geo, outvar={"theta_f__z": 0}, batch_size=cfg.batch_size.symmetry_fluid, criteria=Eq(z, channel_origin[2] + channel_dim[2] / 2.0), ) thermal_domain.add_constraint(symmetry_fluid, "symmetry_channel_fluid") symmetry_solid = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=fpga, outvar={"theta_s__z": 0}, batch_size=cfg.batch_size.symmetry_solid, criteria=Eq(z, channel_origin[2] + channel_dim[2] / 2.0), ) thermal_domain.add_constraint(symmetry_solid, "symmetry_channel_solid") # fluid solid interface def fpga_criteria(invar, params): sdf = channel.sdf(invar, params) return np.greater(sdf["sdf"], 0) fluid_solid_interface = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=fpga, outvar={ "diffusion_interface_dirichlet_theta_f_theta_s": 0, "diffusion_interface_neumann_theta_f_theta_s": 0, }, batch_size=cfg.batch_size.fluid_solid_interface, criteria=fpga_criteria, ) thermal_domain.add_constraint(fluid_solid_interface, "fluid_solid_interface") # heat source sharpen_tanh = 60.0 source_func_xl = (tanh(sharpen_tanh * (x - source_origin[0])) + 1.0) / 2.0 source_func_xh = ( tanh(sharpen_tanh * ((source_origin[0] + source_dim[0]) - x)) + 1.0 ) / 2.0 source_func_zl = (tanh(sharpen_tanh * (z - source_origin[2])) + 1.0) / 2.0 source_func_zh = ( tanh(sharpen_tanh * ((source_origin[2] + source_dim[2]) - z)) + 1.0 ) / 2.0 gradient_normal = ( source_grad * source_func_xl * source_func_xh * source_func_zl * source_func_zh ) heat_source = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=fpga, outvar={"normal_gradient_theta_s": gradient_normal}, batch_size=cfg.batch_size.heat_source, criteria=(Eq(y, source_origin[1])) & (z < channel_origin[2] + channel_dim[2] / 2.0), ) thermal_domain.add_constraint(heat_source, "heat_source") # flow interior low res away from fpga lr_flow_interior = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=geo, outvar={"advection_diffusion_theta_f": 0}, batch_size=cfg.batch_size.lr_flow_interior, criteria=Or(x < flow_box_origin[0], x > (flow_box_origin[0] + flow_box_dim[0])), ) thermal_domain.add_constraint(lr_flow_interior, "lr_flow_interior") # flow interiror high res near fpga hr_flow_interior = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=geo, outvar={"advection_diffusion_theta_f": 0}, batch_size=cfg.batch_size.hr_flow_interior, criteria=And( x > flow_box_origin[0], x < (flow_box_origin[0] + flow_box_dim[0]) ), ) thermal_domain.add_constraint(hr_flow_interior, "hr_flow_interior") # solid interior solid_interior = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=fpga, outvar={"diffusion_theta_s": 0}, batch_size=cfg.batch_size.solid_interior, lambda_weighting={"diffusion_theta_s": 100}, ) thermal_domain.add_constraint(solid_interior, "solid_interior") # flow validation data file_path = "../openfoam/fpga_heat_fluid0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = { "Points:0": "x", "Points:1": "y", "Points:2": "z", "U:0": "u", "U:1": "v", "U:2": "w", "p_rgh": "p", "T": "theta_f", } filename = to_absolute_path(file_path) values = np.loadtxt(filename, skiprows=1, delimiter=",", unpack=False) values = values[ values[:, -1] + channel_origin[2] <= 0.0, : ] # remove redundant data due to symmetry # get column keys csvfile = open(filename) reader = csv.reader(csvfile) first_line = next(iter(reader)) # set dictionary csv_dict = {} for i, name in enumerate(first_line): if mapping is not None: if name.strip() in mapping.keys(): csv_dict[mapping[name.strip()]] = values[:, i : i + 1] else: csv_dict[name.strip()] = values[:, i : i + 1] openfoam_var = csv_dict openfoam_var["theta_f"] = ( openfoam_var["theta_f"] / 273.15 - 1.0 ) # normalize heat openfoam_var["x"] = openfoam_var["x"] + channel_origin[0] openfoam_var["y"] = openfoam_var["y"] + channel_origin[1] openfoam_var["z"] = openfoam_var["z"] + channel_origin[2] openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "z"] } openfoam_flow_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "w", "p"] } openfoam_thermal_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "w", "p", "theta_f"] } openfoam_flow_validator = PointwiseValidator( nodes=thermal_nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_thermal_outvar_numpy, ) thermal_domain.add_validator( openfoam_flow_validator, "thermal_flow_data", ) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # solid data file_path = "../openfoam/fpga_heat_solid0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"Points:0": "x", "Points:1": "y", "Points:2": "z", "T": "theta_s"} filename = to_absolute_path(file_path) values = np.loadtxt(filename, skiprows=1, delimiter=",", unpack=False) values = values[ values[:, -1] + channel_origin[2] <= 0.0, : ] # remove redundant data due to symmetry # get column keys csvfile = open(filename) reader = csv.reader(csvfile) first_line = next(iter(reader)) # set dictionary csv_dict = {} for i, name in enumerate(first_line): if mapping is not None: if name.strip() in mapping.keys(): csv_dict[mapping[name.strip()]] = values[:, i : i + 1] else: csv_dict[name.strip()] = values[:, i : i + 1] openfoam_var = csv_dict openfoam_var["theta_s"] = ( openfoam_var["theta_s"] / 273.15 - 1.0 ) # normalize heat openfoam_var["x"] = openfoam_var["x"] + channel_origin[0] openfoam_var["y"] = openfoam_var["y"] + channel_origin[1] openfoam_var["z"] = openfoam_var["z"] + channel_origin[2] openfoam_invar_solid_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "z"] } openfoam_outvar_solid_numpy = { key: value for key, value in openfoam_var.items() if key in ["theta_s"] } openfoam_solid_validator = PointwiseValidator( nodes=thermal_nodes, invar=openfoam_invar_solid_numpy, true_outvar=openfoam_outvar_solid_numpy, ) thermal_domain.add_validator( openfoam_solid_validator, "thermal_solid_data", ) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # make solver thermal_slv = Solver(cfg, thermal_domain) # start thermal solver thermal_slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/fpga/laminar_symmetry/fpga_heat.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from fpga_geometry import * import os import warnings import csv import sys import torch import modulus.sym import numpy as np from sympy import Symbol, Eq, Abs, tanh, And, Or from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes, Curl from modulus.sym.eq.pdes.basic import NormalDotVec, GradNormal from modulus.sym.eq.pdes.diffusion import Diffusion, DiffusionInterface from modulus.sym.eq.pdes.advection_diffusion import AdvectionDiffusion @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # params for simulation # fluid params nu = 0.02 rho = 1 inlet_vel = 1.0 volumetric_flow = 1.125 / 2 # make list of nodes to unroll graph on ns = NavierStokes(nu=nu, rho=rho, dim=3, time=False) normal_dot_vel = NormalDotVec() equation_nodes = ns.make_nodes() + normal_dot_vel.make_nodes() # determine inputs outputs of the network input_keys = [Key("x"), Key("y"), Key("z")] output_keys = [Key("u"), Key("v"), Key("w"), Key("p")] # select the network and the specific configs if cfg.custom.arch == "FourierNetArch": flow_net = FourierNetArch(input_keys=input_keys, output_keys=output_keys) else: sys.exit( "Network not configured for this script. Please include the network in the script" ) flow_nodes = equation_nodes + [flow_net.make_node(name="flow_network")] # make flow domain flow_domain = Domain() # inlet def channel_sdf(x, y, z): sdf = channel.sdf({"x": x, "y": y, "z": z}, {}) return sdf["sdf"] constraint_inlet = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=inlet, outvar={"u": inlet_vel, "v": 0, "w": 0}, batch_size=cfg.batch_size.inlet, criteria=Eq(x, channel_origin[0]), lambda_weighting={"u": channel_sdf, "v": 1.0, "w": 1.0}, # weight zero on edges ) flow_domain.add_constraint(constraint_inlet, "inlet") # outlet constraint_outlet = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=outlet, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, criteria=Eq(x, channel_origin[0] + channel_dim[0]), ) flow_domain.add_constraint(constraint_outlet, "outlet") # no slip for channel walls no_slip = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=geo, outvar={"u": 0, "v": 0, "w": 0}, batch_size=cfg.batch_size.no_slip, criteria=z < channel_origin[2] + channel_dim[2] / 2.0, ) flow_domain.add_constraint(no_slip, "no_slip") # symmetry channel symmetry = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=geo, outvar={"w": 0, "u__z": 0, "v__z": 0, "p__z": 0}, batch_size=cfg.batch_size.symmetry, criteria=Eq(z, channel_origin[2] + channel_dim[2] / 2.0), ) flow_domain.add_constraint(symmetry, "symmetry") # flow interior low res away from fpga lr_interior = PointwiseInteriorConstraint( nodes=flow_nodes, geometry=geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0, "momentum_z": 0}, batch_size=cfg.batch_size.lr_interior, criteria=Or(x < flow_box_origin[0], x > (flow_box_origin[0] + flow_box_dim[0])), lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), "momentum_z": Symbol("sdf"), }, ) flow_domain.add_constraint(lr_interior, "lr_interior") # flow interiror high res near fpga hr_interior = PointwiseInteriorConstraint( nodes=flow_nodes, geometry=geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_z": 0, "momentum_y": 0}, batch_size=cfg.batch_size.hr_interior, criteria=And( x > flow_box_origin[0], x < (flow_box_origin[0] + flow_box_dim[0]) ), lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), "momentum_z": Symbol("sdf"), }, ) flow_domain.add_constraint(hr_interior, "hr_interior") # integral continuity def integral_criteria(invar, params): sdf = geo.sdf(invar, params) return np.greater(sdf["sdf"], 0) integral_continuity = IntegralBoundaryConstraint( nodes=flow_nodes, geometry=integral_plane, outvar={"normal_dot_vel": volumetric_flow}, batch_size=cfg.batch_size.num_integral_continuity, integral_batch_size=cfg.batch_size.integral_continuity, criteria=integral_criteria, lambda_weighting={"normal_dot_vel": 1.0}, ) flow_domain.add_constraint(integral_continuity, "integral_continuity") # flow data file_path = "../openfoam/fpga_heat_fluid0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = { "Points:0": "x", "Points:1": "y", "Points:2": "z", "U:0": "u", "U:1": "v", "U:2": "w", "p_rgh": "p", } filename = to_absolute_path(file_path) values = np.loadtxt(filename, skiprows=1, delimiter=",", unpack=False) values = values[ values[:, -1] + channel_origin[2] <= 0.0, : ] # remove redundant data due to symmetry # get column keys csvfile = open(filename) reader = csv.reader(csvfile) first_line = next(iter(reader)) # set dictionary csv_dict = {} for i, name in enumerate(first_line): if mapping is not None: if name.strip() in mapping.keys(): csv_dict[mapping[name.strip()]] = values[:, i : i + 1] else: csv_dict[name.strip()] = values[:, i : i + 1] openfoam_var = csv_dict openfoam_var["x"] = openfoam_var["x"] + channel_origin[0] openfoam_var["y"] = openfoam_var["y"] + channel_origin[1] openfoam_var["z"] = openfoam_var["z"] + channel_origin[2] openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "z"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "w", "p"] } openfoam_validator = PointwiseValidator( nodes=flow_nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, ) flow_domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add pressure monitor invar_front_pressure = integral_plane.sample_boundary( 1024, parameterization={ x_pos: heat_sink_base_origin[0] - heat_sink_base_dim[0], }, ) pressure_monitor = PointwiseMonitor( invar_front_pressure, output_names=["p"], metrics={"front_pressure": lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) flow_domain.add_monitor(pressure_monitor) invar_back_pressure = integral_plane.sample_boundary( 1024, parameterization={ x_pos: heat_sink_base_origin[0] + 2 * heat_sink_base_dim[0], }, ) pressure_monitor = PointwiseMonitor( invar_back_pressure, output_names=["p"], metrics={"back_pressure": lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) flow_domain.add_monitor(pressure_monitor) # make solver flow_slv = Solver(cfg, flow_domain) # start flow solver flow_slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/fpga/laminar_symmetry/fpga_flow.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sympy import Symbol, Eq, tanh import numpy as np import yaml from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.geometry import Parameterization, Parameter # check if the geometry is parameterized with open("./conf/config.yaml", "r") as file: yaml_data = yaml.safe_load(file) parameterized = yaml_data["custom"]["parameterized"] if parameterized: # geometry parameterization HS_height = Symbol("HS_height") HS_length = Symbol("HS_length") else: HS_length = 0.65 HS_height = 0.8625 # geometry params for domain channel_origin = (-2.5, -0.5, -0.5625) channel_dim = (5.0, 1.0, 1.125) heat_sink_base_origin = (-0.75, -0.5, -0.4375) heat_sink_base_dim = (HS_length, 0.05, 0.875) fin_origin = heat_sink_base_origin fin_dim = (HS_length, HS_height, 0.0075) total_fins = 17 flow_box_origin = (-0.85, -0.5, -0.5625) flow_box_dim = (0.85, 1.0, 1.125) source_origin = (-0.55, -0.5, -0.125) source_dim = (0.25, 0.0, 0.25) # define sympy varaibles to parametize domain curves x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # define geometry # channel channel = Channel( channel_origin, ( channel_origin[0] + channel_dim[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), ) # fpga heat sink heat_sink_base = Box( heat_sink_base_origin, ( heat_sink_base_origin[0] + heat_sink_base_dim[0], # base of heat sink heat_sink_base_origin[1] + heat_sink_base_dim[1], heat_sink_base_origin[2] + heat_sink_base_dim[2], ), ) fin_center = ( fin_origin[0] + fin_dim[0] / 2, fin_origin[1] + fin_dim[1] / 2, fin_origin[2] + fin_dim[2] / 2, ) fin = Box( fin_origin, ( fin_origin[0] + fin_dim[0], fin_origin[1] + fin_dim[1], fin_origin[2] + fin_dim[2], ), ) gap = (heat_sink_base_dim[2] - fin_dim[2]) / (total_fins - 1) # gap between fins fin = fin.repeat( gap, repeat_lower=(0, 0, 0), repeat_higher=(0, 0, total_fins - 1), center=fin_center, ) fpga = heat_sink_base + fin # entire geometry geo = channel - fpga # inlet and outlet inlet = Plane( channel_origin, ( channel_origin[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), -1, ) outlet = Plane( (channel_origin[0] + channel_dim[0], channel_origin[1], channel_origin[2]), ( channel_origin[0] + channel_dim[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), 1, ) # planes for integral continuity x_pos = Parameter("x_pos") x_pos_range = {x_pos: (-0.75, 0.0)} integral_plane = Plane( (x_pos, channel_origin[1], channel_origin[2]), (x_pos, channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2]), 1, parameterization=Parameterization(x_pos_range), )
modulus-sym-main
examples/fpga/turbulent/fpga_geometry.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from fpga_geometry import * import os import warnings import torch import modulus.sym from sympy import Symbol, Eq, Abs, tanh, And, Or import numpy as np import sys from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.basic import NormalDotVec, GradNormal from modulus.sym.eq.pdes.diffusion import Diffusion, DiffusionInterface from modulus.sym.eq.pdes.advection_diffusion import AdvectionDiffusion @modulus.sym.main(config_path="conf_heat", config_name="config") def run(cfg: ModulusConfig) -> None: # params for simulation ############# # Real Params ############# # fluid params fluid_viscosity = 1.84e-05 # kg/m-s fluid_density = 1.1614 # kg/m3 # boundary params length_scale = 0.04 # m inlet_velocity = 5.24386 # m/s ############################## # Nondimensionalization Params ############################## # fluid params nu = fluid_viscosity / (fluid_density * inlet_velocity * length_scale) rho = 1 normalize_inlet_vel = 1.0 # heat params k_fluid = 1.0 k_solid = 5.0 D_solid = 0.10 D_fluid = 0.02 source_grad = 1.5 source_area = source_dim[0] * source_dim[2] # make list of nodes to unroll graph on ad = AdvectionDiffusion(T="theta_f", rho=rho, D=D_fluid, dim=3, time=False) dif = Diffusion(T="theta_s", D=D_solid, dim=3, time=False) dif_inteface = DiffusionInterface( "theta_f", "theta_s", k_fluid, k_solid, dim=3, time=False ) f_grad = GradNormal("theta_f", dim=3, time=False) s_grad = GradNormal("theta_s", dim=3, time=False) # determine inputs outputs of the network input_keys = [Key("x"), Key("y"), Key("z")] if cfg.custom.parameterized: input_keys += [Key("HS_height"), Key("HS_length")] HS_height_range = (0.40625, 0.8625) HS_length_range = (0.35, 0.65) param_ranges = {HS_height: HS_height_range, HS_length: HS_length_range} validation_param_ranges = {HS_height: 0.8625, HS_length: 0.65} fixed_param_ranges = { HS_height: lambda batch_size: np.full( (batch_size, 1), np.random.uniform(*HS_height_range) ), HS_length: lambda batch_size: np.full( (batch_size, 1), np.random.uniform(*HS_length_range) ), } else: param_ranges, validation_param_ranges, fixed_param_ranges = {}, {}, {} # determine inputs outputs of the network output_keys = [Key("u"), Key("v"), Key("w"), Key("p")] # select the network and the specific configs if cfg.custom.arch == "FourierNetArch": flow_net = FourierNetArch( input_keys=input_keys, output_keys=output_keys, frequencies=("axis", [i for i in range(35)]), frequencies_params=("axis", [i for i in range(35)]), ) thermal_f_net = FourierNetArch( input_keys=input_keys, output_keys=[Key("theta_f")], frequencies=("axis", [i for i in range(35)]), frequencies_params=("axis", [i for i in range(35)]), ) thermal_s_net = FourierNetArch( input_keys=input_keys, output_keys=[Key("theta_s")], frequencies=("axis", [i for i in range(35)]), frequencies_params=("axis", [i for i in range(35)]), ) else: sys.exit( "Network not configured for this script. Please include the network in the script" ) thermal_nodes = ( ad.make_nodes() + dif.make_nodes() + dif_inteface.make_nodes() + f_grad.make_nodes() + s_grad.make_nodes() + [flow_net.make_node(name="flow_network", optimize=False)] + [thermal_f_net.make_node(name="thermal_f_network")] + [thermal_s_net.make_node(name="thermal_s_network")] ) # make flow domain thermal_domain = Domain() # inlet constraint_inlet = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=inlet, outvar={"theta_f": 0}, batch_size=cfg.batch_size.inlet, criteria=Eq(x, channel_origin[0]), parameterization=param_ranges, batch_per_epoch=5000, ) thermal_domain.add_constraint(constraint_inlet, "inlet") # outlet constraint_outlet = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=outlet, outvar={"normal_gradient_theta_f": 0}, batch_size=cfg.batch_size.outlet, criteria=Eq(x, channel_origin[0] + channel_dim[0]), parameterization=param_ranges, batch_per_epoch=5000, ) thermal_domain.add_constraint(constraint_outlet, "outlet") # channel walls insulating def channel_walls_criteria(invar, params): sdf = fpga.sdf(invar, params) return np.less(sdf["sdf"], -1e-5) channel_walls = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=channel, outvar={"normal_gradient_theta_f": 0}, batch_size=cfg.batch_size.channel_walls, criteria=channel_walls_criteria, parameterization=param_ranges, batch_per_epoch=5000, ) thermal_domain.add_constraint(channel_walls, "channel_walls") # fluid solid interface def fpga_criteria(invar, params): sdf = channel.sdf(invar, params) return np.greater(sdf["sdf"], 0) fluid_solid_interface = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=fpga, outvar={ "diffusion_interface_dirichlet_theta_f_theta_s": 0, "diffusion_interface_neumann_theta_f_theta_s": 0, }, batch_size=cfg.batch_size.fluid_solid_interface, criteria=fpga_criteria, parameterization=param_ranges, batch_per_epoch=5000, ) thermal_domain.add_constraint(fluid_solid_interface, "fluid_solid_interface") # heat source sharpen_tanh = 60.0 source_func_xl = (tanh(sharpen_tanh * (x - source_origin[0])) + 1.0) / 2.0 source_func_xh = ( tanh(sharpen_tanh * ((source_origin[0] + source_dim[0]) - x)) + 1.0 ) / 2.0 source_func_zl = (tanh(sharpen_tanh * (z - source_origin[2])) + 1.0) / 2.0 source_func_zh = ( tanh(sharpen_tanh * ((source_origin[2] + source_dim[2]) - z)) + 1.0 ) / 2.0 gradient_normal = ( source_grad * source_func_xl * source_func_xh * source_func_zl * source_func_zh ) heat_source = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=fpga, outvar={"normal_gradient_theta_s": gradient_normal}, batch_size=cfg.batch_size.heat_source, criteria=Eq(y, source_origin[1]), parameterization=param_ranges, batch_per_epoch=5000, ) thermal_domain.add_constraint(heat_source, "heat_source") # flow interior low res away from fpga lr_flow_interior = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=geo, outvar={"advection_diffusion_theta_f": 0}, batch_size=cfg.batch_size.lr_flow_interior, criteria=Or(x < flow_box_origin[0], x > (flow_box_origin[0] + flow_box_dim[0])), parameterization=param_ranges, batch_per_epoch=5000, ) thermal_domain.add_constraint(lr_flow_interior, "lr_flow_interior") # flow interiror high res near fpga hr_flow_interior = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=geo, outvar={"advection_diffusion_theta_f": 0}, batch_size=cfg.batch_size.hr_flow_interior, criteria=And( x > flow_box_origin[0], x < (flow_box_origin[0] + flow_box_dim[0]) ), parameterization=param_ranges, batch_per_epoch=5000, ) thermal_domain.add_constraint(hr_flow_interior, "hr_flow_interior") # solid interior solid_interior = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=fpga, outvar={"diffusion_theta_s": 0}, batch_size=cfg.batch_size.solid_interior, lambda_weighting={"diffusion_theta_s": 100}, parameterization=param_ranges, batch_per_epoch=5000, ) thermal_domain.add_constraint(solid_interior, "solid_interior") # flow validation data file_path = "../openfoam/FPGA_re13239.6_tanh_OF_blockMesh_fullFake.csv" if os.path.exists(to_absolute_path(file_path)): mapping = { "Points:0": "x", "Points:1": "y", "Points:2": "z", "U:0": "u", "U:1": "v", "U:2": "w", "p_rgh": "p", "T": "theta_f", } openfoam_var = csv_to_dict( to_absolute_path(file_path), mapping, ) openfoam_var["theta_f"] = ( openfoam_var["theta_f"] / 273.15 - 1.0 ) # normalize heat openfoam_var["x"] = openfoam_var["x"] / length_scale + channel_origin[0] openfoam_var["y"] = openfoam_var["y"] / length_scale + channel_origin[1] openfoam_var["z"] = openfoam_var["z"] / length_scale + channel_origin[2] openfoam_var["u"] = openfoam_var["u"] / inlet_velocity openfoam_var["v"] = openfoam_var["v"] / inlet_velocity openfoam_var["w"] = openfoam_var["w"] / inlet_velocity openfoam_var["p"] = (openfoam_var["p"]) / (inlet_velocity**2 * fluid_density) if cfg.custom.parameterized: openfoam_var["HS_height"] = ( np.ones_like(openfoam_var["x"]) * validation_param_ranges[Symbol("HS_height")] ) openfoam_var["HS_length"] = ( np.ones_like(openfoam_var["x"]) * validation_param_ranges[Symbol("HS_length")] ) openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "z", "HS_height", "HS_length"] } else: openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "z"] } openfoam_flow_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "w", "p"] } openfoam_thermal_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "w", "p", "theta_f"] } openfoam_flow_validator = PointwiseValidator( nodes=thermal_nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_thermal_outvar_numpy, ) thermal_domain.add_validator( openfoam_flow_validator, "thermal_flow_data", ) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # solid data file_path = "../openfoam/FPGA_re13239.6_tanh_OF_blockMesh_solid_fullFake.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"Points:0": "x", "Points:1": "y", "Points:2": "z", "T": "theta_s"} openfoam_var = csv_to_dict( to_absolute_path(file_path), mapping, ) openfoam_var["theta_s"] = ( openfoam_var["theta_s"] / 273.15 - 1.0 ) # normalize heat openfoam_var["x"] = openfoam_var["x"] / length_scale + channel_origin[0] openfoam_var["y"] = openfoam_var["y"] / length_scale + channel_origin[1] openfoam_var["z"] = openfoam_var["z"] / length_scale + channel_origin[2] if cfg.custom.parameterized: openfoam_var["HS_height"] = ( np.ones_like(openfoam_var["x"]) * validation_param_ranges[Symbol("HS_height")] ) openfoam_var["HS_length"] = ( np.ones_like(openfoam_var["x"]) * validation_param_ranges[Symbol("HS_length")] ) openfoam_invar_solid_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "z", "HS_height", "HS_length"] } else: openfoam_invar_solid_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "z"] } openfoam_outvar_solid_numpy = { key: value for key, value in openfoam_var.items() if key in ["theta_s"] } openfoam_solid_validator = PointwiseValidator( nodes=thermal_nodes, invar=openfoam_invar_solid_numpy, true_outvar=openfoam_outvar_solid_numpy, ) thermal_domain.add_validator( openfoam_solid_validator, "thermal_solid_data", ) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add peak temperature monitor invar_heat_source = fpga.sample_boundary( 10000, criteria=Eq(y, source_origin[1]), parameterization=fixed_param_ranges, ) temperature_monitor = PointwiseMonitor( invar_heat_source, output_names=["theta_s"], metrics={"peak_temp": lambda var: torch.max(var["theta_s"])}, nodes=thermal_nodes, ) thermal_domain.add_monitor(temperature_monitor) # make solver thermal_slv = Solver(cfg, thermal_domain) # start thermal solver thermal_slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/fpga/turbulent/fpga_heat.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from fpga_geometry import * import os import warnings import sys import torch import modulus.sym from sympy import Symbol, Eq, Abs, tanh, And, Or import numpy as np from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes, Curl from modulus.sym.eq.pdes.turbulence_zero_eq import ZeroEquation from modulus.sym.eq.pdes.basic import NormalDotVec, GradNormal from modulus.sym.eq.pdes.diffusion import Diffusion, DiffusionInterface from modulus.sym.eq.pdes.advection_diffusion import AdvectionDiffusion @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # params for simulation ############# # Real Params ############# # fluid params fluid_viscosity = 1.84e-05 # kg/m-s fluid_density = 1.1614 # kg/m3 # boundary params length_scale = 0.04 # m inlet_velocity = 5.24386 # m/s ############################## # Nondimensionalization Params ############################## # fluid params nu = fluid_viscosity / (fluid_density * inlet_velocity * length_scale) rho = 1 normalize_inlet_vel = 1.0 # heat params D_solid = 0.1 D_fluid = 0.02 inlet_T = 0 source_grad = 1.5 source_area = source_dim[0] * source_dim[2] u_profile = ( normalize_inlet_vel * tanh((0.5 - Abs(y)) / 0.02) * tanh((0.5625 - Abs(z)) / 0.02) ) volumetric_flow = 1.0668 # value via integration of inlet profile # make list of nodes to unroll graph on ze = ZeroEquation(nu=nu, dim=3, time=False, max_distance=0.5) ns = NavierStokes(nu=ze.equations["nu"], rho=rho, dim=3, time=False) normal_dot_vel = NormalDotVec() equation_nodes = ns.make_nodes() + ze.make_nodes() + normal_dot_vel.make_nodes() # determine inputs outputs of the network input_keys = [Key("x"), Key("y"), Key("z")] if cfg.custom.parameterized: input_keys += [Key("HS_height"), Key("HS_length")] HS_height_range = (0.40625, 0.8625) HS_length_range = (0.35, 0.65) param_ranges = {HS_height: HS_height_range, HS_length: HS_length_range} validation_param_ranges = {HS_height: 0.8625, HS_length: 0.65} fixed_param_ranges = { HS_height: lambda batch_size: np.full( (batch_size, 1), np.random.uniform(*HS_height_range) ), HS_length: lambda batch_size: np.full( (batch_size, 1), np.random.uniform(*HS_length_range) ), } else: param_ranges, validation_param_ranges, fixed_param_ranges = {}, {}, {} output_keys = [Key("u"), Key("v"), Key("w"), Key("p")] # select the network and the specific configs if cfg.custom.arch == "FourierNetArch": flow_net = FourierNetArch( input_keys=input_keys, output_keys=output_keys, frequencies=("axis", [i for i in range(35)]), frequencies_params=("axis", [i for i in range(35)]), ) else: sys.exit( "Network not configured for this script. Please include the network in the script" ) flow_nodes = equation_nodes + [flow_net.make_node(name="flow_network")] # make flow domain flow_domain = Domain() # inlet constraint_inlet = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=inlet, outvar={"u": u_profile, "v": 0, "w": 0}, batch_size=cfg.batch_size.inlet, criteria=Eq(x, channel_origin[0]), lambda_weighting={"u": 1.0, "v": 1.0, "w": 1.0}, batch_per_epoch=5000, ) flow_domain.add_constraint(constraint_inlet, "inlet") # outlet constraint_outlet = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=outlet, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, criteria=Eq(x, channel_origin[0] + channel_dim[0]), batch_per_epoch=5000, ) flow_domain.add_constraint(constraint_outlet, "outlet") # no slip for channel walls no_slip = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=geo, outvar={"u": 0, "v": 0, "w": 0}, batch_size=cfg.batch_size.no_slip, batch_per_epoch=5000, ) flow_domain.add_constraint(no_slip, "no_slip") # flow interior low res away from fpga lr_interior = PointwiseInteriorConstraint( nodes=flow_nodes, geometry=geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0, "momentum_z": 0}, batch_size=cfg.batch_size.lr_interior, criteria=Or(x < flow_box_origin[0], x > (flow_box_origin[0] + flow_box_dim[0])), compute_sdf_derivatives=True, lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), "momentum_z": Symbol("sdf"), }, batch_per_epoch=5000, ) flow_domain.add_constraint(lr_interior, "lr_interior") # flow interiror high res near fpga hr_interior = PointwiseInteriorConstraint( nodes=flow_nodes, geometry=geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_z": 0, "momentum_y": 0}, batch_size=cfg.batch_size.hr_interior, criteria=And( x > flow_box_origin[0], x < (flow_box_origin[0] + flow_box_dim[0]) ), compute_sdf_derivatives=True, lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), "momentum_z": Symbol("sdf"), }, batch_per_epoch=5000, ) flow_domain.add_constraint(hr_interior, "hr_interior") # integral continuity def integral_criteria(invar, params): sdf = geo.sdf(invar, params) return np.greater(sdf["sdf"], 0) integral_continuity = IntegralBoundaryConstraint( nodes=flow_nodes, geometry=integral_plane, outvar={"normal_dot_vel": volumetric_flow}, batch_size=cfg.batch_size.num_integral_continuity, integral_batch_size=cfg.batch_size.integral_continuity, criteria=integral_criteria, lambda_weighting={"normal_dot_vel": 1.0}, parameterization={**x_pos_range, **param_ranges}, batch_per_epoch=5000, ) flow_domain.add_constraint(integral_continuity, "integral_continuity") # flow data # validation data fluid file_path = "../openfoam/FPGA_re13239.6_tanh_OF_blockMesh_fullFake.csv" if os.path.exists(to_absolute_path(file_path)): mapping = { "Points:0": "x", "Points:1": "y", "Points:2": "z", "U:0": "u", "U:1": "v", "U:2": "w", "p_rgh": "p", } openfoam_var = csv_to_dict( to_absolute_path(file_path), mapping, ) # normalize values openfoam_var["x"] = openfoam_var["x"] / length_scale + channel_origin[0] openfoam_var["y"] = openfoam_var["y"] / length_scale + channel_origin[1] openfoam_var["z"] = openfoam_var["z"] / length_scale + channel_origin[2] openfoam_var["u"] = openfoam_var["u"] / inlet_velocity openfoam_var["v"] = openfoam_var["v"] / inlet_velocity openfoam_var["w"] = openfoam_var["w"] / inlet_velocity openfoam_var["p"] = (openfoam_var["p"]) / (inlet_velocity**2 * fluid_density) if cfg.custom.parameterized: openfoam_var["HS_height"] = ( np.ones_like(openfoam_var["x"]) * validation_param_ranges[Symbol("HS_height")] ) openfoam_var["HS_length"] = ( np.ones_like(openfoam_var["x"]) * validation_param_ranges[Symbol("HS_length")] ) openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "z", "HS_height", "HS_length"] } else: openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "z"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "w", "p"] } openfoam_validator = PointwiseValidator( nodes=flow_nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, ) flow_domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add pressure monitor invar_front_pressure = integral_plane.sample_boundary( 1024, parameterization={ x_pos: heat_sink_base_origin[0] - 0.65, **fixed_param_ranges, }, ) pressure_monitor = PointwiseMonitor( invar_front_pressure, output_names=["p"], metrics={"front_pressure": lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) flow_domain.add_monitor(pressure_monitor) invar_back_pressure = integral_plane.sample_boundary( 1024, parameterization={ x_pos: heat_sink_base_origin[0] + 2 * 0.65, **fixed_param_ranges, }, ) pressure_monitor = PointwiseMonitor( invar_back_pressure, output_names=["p"], metrics={"back_pressure": lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) flow_domain.add_monitor(pressure_monitor) # make solver flow_slv = Solver(cfg, flow_domain) # start flow solver flow_slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/fpga/turbulent/fpga_flow.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sympy import Symbol, Eq, tanh import numpy as np from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.geometry import Parameterization, Parameter # geometry params for domain channel_origin = (-2.5, -0.5, -0.5625) channel_dim = (5.0, 1.0, 1.125) heat_sink_base_origin = (-0.75, -0.5, -0.4375) heat_sink_base_dim = (0.65, 0.05, 0.875) fin_origin = heat_sink_base_origin fin_dim = (0.65, 0.8625, 0.0075) total_fins = 17 flow_box_origin = (-0.85, -0.5, -0.5625) flow_box_dim = (0.85, 1.0, 1.125) source_origin = (-0.55, -0.5, -0.125) source_dim = (0.25, 0.0, 0.25) # define sympy varaibles to parametize domain curves x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # define geometry # channel channel = Channel( channel_origin, ( channel_origin[0] + channel_dim[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), ) # fpga heat sink heat_sink_base = Box( heat_sink_base_origin, ( heat_sink_base_origin[0] + heat_sink_base_dim[0], # base of heat sink heat_sink_base_origin[1] + heat_sink_base_dim[1], heat_sink_base_origin[2] + heat_sink_base_dim[2], ), ) fin_center = ( fin_origin[0] + fin_dim[0] / 2, fin_origin[1] + fin_dim[1] / 2, fin_origin[2] + fin_dim[2] / 2, ) fin = Box( fin_origin, ( fin_origin[0] + fin_dim[0], fin_origin[1] + fin_dim[1], fin_origin[2] + fin_dim[2], ), ) gap = (heat_sink_base_dim[2] - fin_dim[2]) / (total_fins - 1) # gap between fins fin = fin.repeat( gap, repeat_lower=(0, 0, 0), repeat_higher=(0, 0, total_fins - 1), center=fin_center, ) fpga = heat_sink_base + fin # entire geometry geo = channel - fpga # inlet and outlet inlet = Plane( channel_origin, ( channel_origin[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), -1, ) outlet = Plane( (channel_origin[0] + channel_dim[0], channel_origin[1], channel_origin[2]), ( channel_origin[0] + channel_dim[0], channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2], ), 1, ) # planes for integral continuity x_pos = Parameter("x_pos") x_pos_range = {x_pos: (-0.75, 0.0)} integral_plane = Plane( (x_pos, channel_origin[1], channel_origin[2]), (x_pos, channel_origin[1] + channel_dim[1], channel_origin[2] + channel_dim[2]), 1, parameterization=Parameterization(x_pos_range), )
modulus-sym-main
examples/fpga/laminar/fpga_geometry.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from fpga_geometry import * import os import warnings import torch from sympy import Symbol, Eq, Abs, tanh, And, Or import numpy as np import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.basic import NormalDotVec, GradNormal from modulus.sym.eq.pdes.diffusion import Diffusion, DiffusionInterface from modulus.sym.eq.pdes.advection_diffusion import AdvectionDiffusion from modulus.sym.models.fully_connected import FullyConnectedArch from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.models.siren import SirenArch from modulus.sym.models.modified_fourier_net import ModifiedFourierNetArch from modulus.sym.models.dgm import DGMArch @modulus.sym.main(config_path="conf_heat", config_name="config") def run(cfg: ModulusConfig) -> None: # params for simulation # fluid params nu = 0.02 rho = 1 # heat params k_fluid = 1.0 k_solid = 5.0 D_solid = 0.10 D_fluid = 0.02 source_grad = 1.5 source_area = source_dim[0] * source_dim[2] # make list of nodes to unroll graph on ad = AdvectionDiffusion(T="theta_f", rho=rho, D=D_fluid, dim=3, time=False) dif = Diffusion(T="theta_s", D=D_solid, dim=3, time=False) dif_inteface = DiffusionInterface( "theta_f", "theta_s", k_fluid, k_solid, dim=3, time=False ) f_grad = GradNormal("theta_f", dim=3, time=False) s_grad = GradNormal("theta_s", dim=3, time=False) # determine inputs outputs of the network input_keys = [Key("x"), Key("y"), Key("z")] if cfg.custom.exact_continuity: c = Curl(("a", "b", "c"), ("u", "v", "w")) equation_nodes += c.make_node() output_keys = [Key("a"), Key("b"), Key("c"), Key("p")] else: output_keys = [Key("u"), Key("v"), Key("w"), Key("p")] # select the network and the specific configs if cfg.custom.arch == "FullyConnectedArch": flow_net = FullyConnectedArch( input_keys=input_keys, output_keys=output_keys, adaptive_activations=cfg.custom.adaptive_activations, ) thermal_f_net = FullyConnectedArch( input_keys=input_keys, output_keys=[Key("theta_f")], adaptive_activations=cfg.custom.adaptive_activations, ) thermal_s_net = FullyConnectedArch( input_keys=input_keys, output_keys=[Key("theta_s")], adaptive_activations=cfg.custom.adaptive_activations, ) elif cfg.custom.arch == "FourierNetArch": flow_net = FourierNetArch( input_keys=input_keys, output_keys=output_keys, adaptive_activations=cfg.custom.adaptive_activations, ) thermal_f_net = FourierNetArch( input_keys=input_keys, output_keys=[Key("theta_f")], adaptive_activations=cfg.custom.adaptive_activations, ) thermal_s_net = FourierNetArch( input_keys=input_keys, output_keys=[Key("theta_s")], adaptive_activations=cfg.custom.adaptive_activations, ) elif cfg.custom.arch == "SirenArch": flow_net = SirenArch( input_keys=input_keys, output_keys=output_keys, normalization={"x": (-2.5, 2.5), "y": (-2.5, 2.5), "z": (-2.5, 2.5)}, ) thermal_f_net = SirenArch(input_keys=input_keys, output_keys=[Key("theta_f")]) thermal_s_net = SirenArch(input_keys=input_keys, output_keys=[Key("theta_s")]) elif cfg.custom.arch == "ModifiedFourierNetArch": flow_net = ModifiedFourierNetArch( input_keys=input_keys, output_keys=output_keys, adaptive_activations=cfg.custom.adaptive_activations, ) thermal_f_net = ModifiedFourierNetArch( input_keys=input_keys, output_keys=[Key("theta_f")], adaptive_activations=cfg.custom.adaptive_activations, ) thermal_s_net = ModifiedFourierNetArch( input_keys=input_keys, output_keys=[Key("theta_s")], adaptive_activations=cfg.custom.adaptive_activations, ) elif cfg.custom.arch == "DGMArch": flow_net = DGMArch( input_keys=input_keys, output_keys=output_keys, layer_size=128, adaptive_activations=cfg.custom.adaptive_activations, ) thermal_f_net = DGMArch( input_keys=input_keys, output_keys=[Key("theta_f")], layer_size=128, adaptive_activations=cfg.custom.adaptive_activations, ) thermal_s_net = DGMArch( input_keys=input_keys, output_keys=[Key("theta_s")], layer_size=128, adaptive_activations=cfg.custom.adaptive_activations, ) else: sys.exit( "Network not configured for this script. Please include the network in the script" ) thermal_nodes = ( ad.make_nodes() + dif.make_nodes() + dif_inteface.make_nodes() + f_grad.make_nodes() + s_grad.make_nodes() + [flow_net.make_node(name="flow_network", optimize=False)] + [thermal_f_net.make_node(name="thermal_f_network")] + [thermal_s_net.make_node(name="thermal_s_network")] ) # make flow domain thermal_domain = Domain() # inlet constraint_inlet = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=inlet, outvar={"theta_f": 0}, batch_size=cfg.batch_size.inlet, criteria=Eq(x, channel_origin[0]), quasirandom=cfg.custom.quasirandom, ) thermal_domain.add_constraint(constraint_inlet, "inlet") # outlet constraint_outlet = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=outlet, outvar={"normal_gradient_theta_f": 0}, batch_size=cfg.batch_size.outlet, criteria=Eq(x, channel_origin[0] + channel_dim[0]), quasirandom=cfg.custom.quasirandom, ) thermal_domain.add_constraint(constraint_outlet, "outlet") # channel walls insulating def channel_walls_criteria(invar, params): sdf = fpga.sdf(invar, params) return np.less(sdf["sdf"], -1e-5) channel_walls = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=channel, outvar={"normal_gradient_theta_f": 0}, batch_size=cfg.batch_size.channel_walls, criteria=channel_walls_criteria, quasirandom=cfg.custom.quasirandom, ) thermal_domain.add_constraint(channel_walls, "channel_walls") # fluid solid interface def fpga_criteria(invar, params): sdf = channel.sdf(invar, params) return np.greater(sdf["sdf"], 0) fluid_solid_interface = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=fpga, outvar={ "diffusion_interface_dirichlet_theta_f_theta_s": 0, "diffusion_interface_neumann_theta_f_theta_s": 0, }, batch_size=cfg.batch_size.fluid_solid_interface, criteria=fpga_criteria, quasirandom=cfg.custom.quasirandom, ) thermal_domain.add_constraint(fluid_solid_interface, "fluid_solid_interface") # heat source sharpen_tanh = 60.0 source_func_xl = (tanh(sharpen_tanh * (x - source_origin[0])) + 1.0) / 2.0 source_func_xh = ( tanh(sharpen_tanh * ((source_origin[0] + source_dim[0]) - x)) + 1.0 ) / 2.0 source_func_zl = (tanh(sharpen_tanh * (z - source_origin[2])) + 1.0) / 2.0 source_func_zh = ( tanh(sharpen_tanh * ((source_origin[2] + source_dim[2]) - z)) + 1.0 ) / 2.0 gradient_normal = ( source_grad * source_func_xl * source_func_xh * source_func_zl * source_func_zh ) heat_source = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=fpga, outvar={"normal_gradient_theta_s": gradient_normal}, batch_size=cfg.batch_size.heat_source, criteria=Eq(y, source_origin[1]), quasirandom=cfg.custom.quasirandom, ) thermal_domain.add_constraint(heat_source, "heat_source") # flow interior low res away from fpga lr_flow_interior = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=geo, outvar={"advection_diffusion_theta_f": 0}, batch_size=cfg.batch_size.lr_flow_interior, criteria=Or(x < flow_box_origin[0], x > (flow_box_origin[0] + flow_box_dim[0])), quasirandom=cfg.custom.quasirandom, ) thermal_domain.add_constraint(lr_flow_interior, "lr_flow_interior") # flow interiror high res near fpga hr_flow_interior = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=geo, outvar={"advection_diffusion_theta_f": 0}, batch_size=cfg.batch_size.hr_flow_interior, criteria=And( x > flow_box_origin[0], x < (flow_box_origin[0] + flow_box_dim[0]) ), quasirandom=cfg.custom.quasirandom, ) thermal_domain.add_constraint(hr_flow_interior, "hr_flow_interior") # solid interior solid_interior = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=fpga, outvar={"diffusion_theta_s": 0}, batch_size=cfg.batch_size.solid_interior, lambda_weighting={"diffusion_theta_s": 100}, quasirandom=cfg.custom.quasirandom, ) thermal_domain.add_constraint(solid_interior, "solid_interior") # flow validation data file_path = "../openfoam/fpga_heat_fluid0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = { "Points:0": "x", "Points:1": "y", "Points:2": "z", "U:0": "u", "U:1": "v", "U:2": "w", "p_rgh": "p", "T": "theta_f", } openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["theta_f"] = ( openfoam_var["theta_f"] / 273.15 - 1.0 ) # normalize heat openfoam_var["x"] = openfoam_var["x"] + channel_origin[0] openfoam_var["y"] = openfoam_var["y"] + channel_origin[1] openfoam_var["z"] = openfoam_var["z"] + channel_origin[2] openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "z"] } openfoam_flow_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "w", "p"] } openfoam_thermal_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "w", "p", "theta_f"] } openfoam_flow_validator = PointwiseValidator( nodes=thermal_nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_thermal_outvar_numpy, ) thermal_domain.add_validator( openfoam_flow_validator, "thermal_flow_data", ) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # solid data file_path = "../openfoam/fpga_heat_solid0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"Points:0": "x", "Points:1": "y", "Points:2": "z", "T": "theta_s"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["theta_s"] = ( openfoam_var["theta_s"] / 273.15 - 1.0 ) # normalize heat openfoam_var["x"] = openfoam_var["x"] + channel_origin[0] openfoam_var["y"] = openfoam_var["y"] + channel_origin[1] openfoam_var["z"] = openfoam_var["z"] + channel_origin[2] openfoam_invar_solid_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "z"] } openfoam_outvar_solid_numpy = { key: value for key, value in openfoam_var.items() if key in ["theta_s"] } openfoam_solid_validator = PointwiseValidator( nodes=thermal_nodes, invar=openfoam_invar_solid_numpy, true_outvar=openfoam_outvar_solid_numpy, ) thermal_domain.add_validator( openfoam_solid_validator, "thermal_solid_data", ) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add peak temperature monitor invar_heat_source = fpga.sample_boundary(10000, criteria=Eq(y, source_origin[1])) temperature_monitor = PointwiseMonitor( invar_heat_source, output_names=["theta_s"], metrics={"peak_temp": lambda var: torch.max(var["theta_s"])}, nodes=thermal_nodes, ) thermal_domain.add_monitor(temperature_monitor) # make solver thermal_slv = Solver(cfg, thermal_domain) # start thermal solver thermal_slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/fpga/laminar/fpga_heat.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import sys import torch from sympy import Symbol, Eq, Abs, tanh, And, Or import numpy as np import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes, Curl from modulus.sym.eq.pdes.basic import NormalDotVec, GradNormal from modulus.sym.models.fully_connected import FullyConnectedArch from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.models.siren import SirenArch from modulus.sym.models.modified_fourier_net import ModifiedFourierNetArch from modulus.sym.models.dgm import DGMArch from fpga_geometry import * @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # params for simulation # fluid params nu = 0.02 rho = 1 inlet_vel = 1.0 volumetric_flow = 1.125 # make list of nodes to unroll graph on ns = NavierStokes(nu=nu, rho=rho, dim=3, time=False) normal_dot_vel = NormalDotVec() equation_nodes = ns.make_nodes() + normal_dot_vel.make_nodes() # determine inputs outputs of the network input_keys = [Key("x"), Key("y"), Key("z")] if cfg.custom.exact_continuity: c = Curl(("a", "b", "c"), ("u", "v", "w")) equation_nodes += c.make_nodes() output_keys = [Key("a"), Key("b"), Key("c"), Key("p")] else: output_keys = [Key("u"), Key("v"), Key("w"), Key("p")] # select the network and the specific configs if cfg.custom.arch == "FullyConnectedArch": flow_net = FullyConnectedArch( input_keys=input_keys, output_keys=output_keys, adaptive_activations=cfg.custom.adaptive_activations, ) elif cfg.custom.arch == "FourierNetArch": flow_net = FourierNetArch( input_keys=input_keys, output_keys=output_keys, adaptive_activations=cfg.custom.adaptive_activations, ) elif cfg.custom.arch == "SirenArch": flow_net = SirenArch( input_keys=input_keys, output_keys=output_keys, normalization={"x": (-2.5, 2.5), "y": (-2.5, 2.5), "z": (-2.5, 2.5)}, ) elif cfg.custom.arch == "ModifiedFourierNetArch": flow_net = ModifiedFourierNetArch( input_keys=input_keys, output_keys=output_keys, adaptive_activations=cfg.custom.adaptive_activations, ) elif cfg.custom.arch == "DGMArch": flow_net = DGMArch( input_keys=input_keys, output_keys=output_keys, layer_size=128, adaptive_activations=cfg.custom.adaptive_activations, ) else: sys.exit( "Network not configured for this script. Please include the network in the script" ) flow_nodes = equation_nodes + [flow_net.make_node(name="flow_network")] # make flow domain flow_domain = Domain() # inlet def channel_sdf(x, y, z): sdf = channel.sdf({"x": x, "y": y, "z": z}, {}) return sdf["sdf"] constraint_inlet = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=inlet, outvar={"u": inlet_vel, "v": 0, "w": 0}, batch_size=cfg.batch_size.inlet, criteria=Eq(x, channel_origin[0]), lambda_weighting={"u": channel_sdf, "v": 1.0, "w": 1.0}, # weight zero on edges quasirandom=cfg.custom.quasirandom, ) flow_domain.add_constraint(constraint_inlet, "inlet") # outlet constraint_outlet = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=outlet, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, criteria=Eq(x, channel_origin[0] + channel_dim[0]), quasirandom=cfg.custom.quasirandom, ) flow_domain.add_constraint(constraint_outlet, "outlet") # no slip for channel walls no_slip = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=geo, outvar={"u": 0, "v": 0, "w": 0}, batch_size=cfg.batch_size.no_slip, quasirandom=cfg.custom.quasirandom, ) flow_domain.add_constraint(no_slip, "no_slip") # flow interior low res away from fpga lr_interior = PointwiseInteriorConstraint( nodes=flow_nodes, geometry=geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0, "momentum_z": 0}, batch_size=cfg.batch_size.lr_interior, criteria=Or(x < flow_box_origin[0], x > (flow_box_origin[0] + flow_box_dim[0])), lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), "momentum_z": Symbol("sdf"), }, quasirandom=cfg.custom.quasirandom, ) flow_domain.add_constraint(lr_interior, "lr_interior") # flow interiror high res near fpga hr_interior = PointwiseInteriorConstraint( nodes=flow_nodes, geometry=geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_z": 0, "momentum_y": 0}, batch_size=cfg.batch_size.hr_interior, criteria=And( x > flow_box_origin[0], x < (flow_box_origin[0] + flow_box_dim[0]) ), lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), "momentum_z": Symbol("sdf"), }, quasirandom=cfg.custom.quasirandom, ) flow_domain.add_constraint(hr_interior, "hr_interior") # integral continuity def integral_criteria(invar, params): sdf = geo.sdf(invar, params) return np.greater(sdf["sdf"], 0) integral_continuity = IntegralBoundaryConstraint( nodes=flow_nodes, geometry=integral_plane, outvar={"normal_dot_vel": volumetric_flow}, batch_size=cfg.batch_size.num_integral_continuity, integral_batch_size=cfg.batch_size.integral_continuity, criteria=integral_criteria, lambda_weighting={"normal_dot_vel": 1.0}, quasirandom=cfg.custom.quasirandom, ) flow_domain.add_constraint(integral_continuity, "integral_continuity") # flow data file_path = "../openfoam/fpga_heat_fluid0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = { "Points:0": "x", "Points:1": "y", "Points:2": "z", "U:0": "u", "U:1": "v", "U:2": "w", "p_rgh": "p", } openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] = openfoam_var["x"] + channel_origin[0] openfoam_var["y"] = openfoam_var["y"] + channel_origin[1] openfoam_var["z"] = openfoam_var["z"] + channel_origin[2] openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "z"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "w", "p"] } openfoam_validator = PointwiseValidator( nodes=flow_nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, requires_grad=cfg.custom.exact_continuity, ) flow_domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add pressure monitor invar_front_pressure = integral_plane.sample_boundary( 1024, parameterization={x_pos: heat_sink_base_origin[0] - heat_sink_base_dim[0]}, ) pressure_monitor = PointwiseMonitor( invar_front_pressure, output_names=["p"], metrics={"front_pressure": lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) flow_domain.add_monitor(pressure_monitor) invar_back_pressure = integral_plane.sample_boundary( 1024, parameterization={ x_pos: heat_sink_base_origin[0] + 2 * heat_sink_base_dim[0], }, ) pressure_monitor = PointwiseMonitor( invar_back_pressure, output_names=["p"], metrics={"back_pressure": lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) flow_domain.add_monitor(pressure_monitor) # make solver flow_slv = Solver(cfg, flow_domain) # start flow solver flow_slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/fpga/laminar/fpga_flow.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sympy import Symbol, Eq import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle, Circle from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.linear_elasticity import LinearElasticityPlaneStress @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # specify Panel properties E = 73.0 * 10**9 # Pa nu = 0.33 lambda_ = nu * E / ((1 + nu) * (1 - 2 * nu)) # Pa mu_real = E / (2 * (1 + nu)) # Pa lambda_ = lambda_ / mu_real # Dimensionless mu = 1.0 # Dimensionless # make list of nodes to unroll graph on le = LinearElasticityPlaneStress(lambda_=lambda_, mu=mu) elasticity_net = instantiate_arch( input_keys=[Key("x"), Key("y"), Key("sigma_hoop")], output_keys=[ Key("u"), Key("v"), Key("sigma_xx"), Key("sigma_yy"), Key("sigma_xy"), ], cfg=cfg.arch.fully_connected, ) nodes = le.make_nodes() + [elasticity_net.make_node(name="elasticity_network")] # add constraints to solver # make geometry x, y, sigma_hoop = Symbol("x"), Symbol("y"), Symbol("sigma_hoop") panel_origin = (-0.5, -0.9) panel_dim = (1, 1.8) # Panel width is the characteristic length. window_origin = (-0.125, -0.2) window_dim = (0.25, 0.4) panel_aux1_origin = (-0.075, -0.2) panel_aux1_dim = (0.15, 0.4) panel_aux2_origin = (-0.125, -0.15) panel_aux2_dim = (0.25, 0.3) hr_zone_origin = (-0.2, -0.4) hr_zone_dim = (0.4, 0.8) circle_nw_center = (-0.075, 0.15) circle_ne_center = (0.075, 0.15) circle_se_center = (0.075, -0.15) circle_sw_center = (-0.075, -0.15) circle_radius = 0.05 panel = Rectangle( panel_origin, (panel_origin[0] + panel_dim[0], panel_origin[1] + panel_dim[1]) ) window = Rectangle( window_origin, (window_origin[0] + window_dim[0], window_origin[1] + window_dim[1]), ) panel_aux1 = Rectangle( panel_aux1_origin, ( panel_aux1_origin[0] + panel_aux1_dim[0], panel_aux1_origin[1] + panel_aux1_dim[1], ), ) panel_aux2 = Rectangle( panel_aux2_origin, ( panel_aux2_origin[0] + panel_aux2_dim[0], panel_aux2_origin[1] + panel_aux2_dim[1], ), ) hr_zone = Rectangle( hr_zone_origin, (hr_zone_origin[0] + hr_zone_dim[0], hr_zone_origin[1] + hr_zone_dim[1]), ) circle_nw = Circle(circle_nw_center, circle_radius) circle_ne = Circle(circle_ne_center, circle_radius) circle_se = Circle(circle_se_center, circle_radius) circle_sw = Circle(circle_sw_center, circle_radius) corners = ( window - panel_aux1 - panel_aux2 - circle_nw - circle_ne - circle_se - circle_sw ) window = window - corners geo = panel - window hr_geo = geo & hr_zone # Parameterization characteristic_length = panel_dim[0] characteristic_disp = 0.001 * window_dim[0] sigma_normalization = characteristic_length / (mu_real * characteristic_disp) sigma_hoop_lower = 46 * 10**6 * sigma_normalization sigma_hoop_upper = 56.5 * 10**6 * sigma_normalization sigma_hoop_range = (sigma_hoop_lower, sigma_hoop_upper) param_ranges = {sigma_hoop: sigma_hoop_range} inference_param_ranges = {sigma_hoop: 46 * 10**6 * sigma_normalization} # bounds bounds_x = (panel_origin[0], panel_origin[0] + panel_dim[0]) bounds_y = (panel_origin[1], panel_origin[1] + panel_dim[1]) hr_bounds_x = (hr_zone_origin[0], hr_zone_origin[0] + hr_zone_dim[0]) hr_bounds_y = (hr_zone_origin[1], hr_zone_origin[1] + hr_zone_dim[1]) # make domain domain = Domain() # left wall panel_left = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"traction_x": 0.0, "traction_y": 0.0}, batch_size=cfg.batch_size.panel_left, criteria=Eq(x, panel_origin[0]), parameterization=param_ranges, ) domain.add_constraint(panel_left, "panel_left") # right wall panel_right = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"traction_x": 0.0, "traction_y": 0.0}, batch_size=cfg.batch_size.panel_right, criteria=Eq(x, panel_origin[0] + panel_dim[0]), parameterization=param_ranges, ) domain.add_constraint(panel_right, "panel_right") # bottom wall panel_bottom = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"v": 0.0}, batch_size=cfg.batch_size.panel_bottom, criteria=Eq(y, panel_origin[1]), parameterization=param_ranges, ) domain.add_constraint(panel_bottom, "panel_bottom") # corner point panel_corner = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": 0.0}, batch_size=cfg.batch_size.panel_corner, criteria=Eq(x, panel_origin[0]) & (y > panel_origin[1]) & (y < panel_origin[1] + 1e-3), parameterization=param_ranges, ) domain.add_constraint(panel_corner, "panel_corner") # top wall panel_top = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"traction_x": 0.0, "traction_y": sigma_hoop}, batch_size=cfg.batch_size.panel_top, criteria=Eq(y, panel_origin[1] + panel_dim[1]), parameterization=param_ranges, ) domain.add_constraint(panel_top, "panel_top") # pannel window panel_window = PointwiseBoundaryConstraint( nodes=nodes, geometry=window, outvar={"traction_x": 0.0, "traction_y": 0.0}, batch_size=cfg.batch_size.panel_window, parameterization=param_ranges, ) domain.add_constraint(panel_window, "panel_window") # low-resolution interior lr_interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={ "equilibrium_x": 0.0, "equilibrium_y": 0.0, "stress_disp_xx": 0.0, "stress_disp_yy": 0.0, "stress_disp_xy": 0.0, }, batch_size=cfg.batch_size.lr_interior, bounds={x: bounds_x, y: bounds_y}, lambda_weighting={ "equilibrium_x": Symbol("sdf"), "equilibrium_y": Symbol("sdf"), "stress_disp_xx": Symbol("sdf"), "stress_disp_yy": Symbol("sdf"), "stress_disp_xy": Symbol("sdf"), }, parameterization=param_ranges, ) domain.add_constraint(lr_interior, "lr_interior") # high-resolution interior hr_interior = PointwiseInteriorConstraint( nodes=nodes, geometry=hr_geo, outvar={ "equilibrium_x": 0.0, "equilibrium_y": 0.0, "stress_disp_xx": 0.0, "stress_disp_yy": 0.0, "stress_disp_xy": 0.0, }, batch_size=cfg.batch_size.hr_interior, bounds={x: hr_bounds_x, y: hr_bounds_y}, lambda_weighting={ "equilibrium_x": Symbol("sdf"), "equilibrium_y": Symbol("sdf"), "stress_disp_xx": Symbol("sdf"), "stress_disp_yy": Symbol("sdf"), "stress_disp_xy": Symbol("sdf"), }, parameterization=param_ranges, ) domain.add_constraint(hr_interior, "hr_interior") # add inferencer data invar_numpy = geo.sample_interior( 100000, bounds={x: bounds_x, y: bounds_y}, parameterization=inference_param_ranges, ) point_cloud_inference = PointwiseInferencer( nodes=nodes, invar=invar_numpy, output_names=["u", "v", "sigma_xx", "sigma_yy", "sigma_xy"], batch_size=4096, ) domain.add_inferencer(point_cloud_inference, "inf_data") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/fuselage_panel/panel.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.geometry import Bounds from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.key import Key from modulus.sym.eq.pdes.diffusion import Diffusion from modulus.sym.utils.vpinn.test_functions import ( RBF_Function, Test_Function, Legendre_test, Trig_test, ) from modulus.sym.utils.vpinn.integral import tensor_int, Quad_Rect, Quad_Collection from modulus.sym.domain import Domain from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, VariationalConstraint, ) from modulus.sym.dataset import DictVariationalDataset from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.utils.io.plotter import ValidatorPlotter, InferencerPlotter from modulus.sym.loss import Loss from sympy import Symbol, Heaviside, Eq import numpy as np import quadpy # custom variational loss class DGLoss(Loss): def __init__(self, test_function): super().__init__() # make test function self.test_function = test_function if test_function == "rbf": self.v = RBF_Function(dim=2, diff_list=["grad"]) self.eps = 10.0 elif test_function == "legendre": self.v = Test_Function( name_ord_dict={ Legendre_test: [k for k in range(10)], Trig_test: [k for k in range(5)], }, diff_list=["grad"], ) def forward( self, list_invar, list_outvar, step: int, ): # calculate test function if self.test_function == "rbf": v_outside = self.v.eval_test( "v", x=list_invar[0]["x"], y=list_invar[0]["y"], x_center=list_invar[3]["x"], y_center=list_invar[3]["y"], eps=self.eps, ) v_center = self.v.eval_test( "v", x=list_invar[1]["x"], y=list_invar[1]["y"], x_center=list_invar[3]["x"], y_center=list_invar[3]["y"], eps=self.eps, ) v_interior = self.v.eval_test( "v", x=list_invar[2]["x"], y=list_invar[2]["y"], x_center=list_invar[3]["x"], y_center=list_invar[3]["y"], eps=self.eps, ) vx_interior = self.v.eval_test( "vx", x=list_invar[2]["x"], y=list_invar[2]["y"], x_center=list_invar[3]["x"], y_center=list_invar[3]["y"], eps=self.eps, ) vy_interior = self.v.eval_test( "vy", x=list_invar[2]["x"], y=list_invar[2]["y"], x_center=list_invar[3]["x"], y_center=list_invar[3]["y"], eps=self.eps, ) elif self.test_function == "legendre": v_outside = self.v.eval_test( "v", x=list_invar[0]["x"], y=list_invar[0]["y"] ) v_center = self.v.eval_test("v", x=list_invar[1]["x"], y=list_invar[1]["y"]) v_interior = self.v.eval_test( "v", x=list_invar[2]["x"], y=list_invar[2]["y"] ) vx_interior = self.v.eval_test( "vx", x=list_invar[2]["x"], y=list_invar[2]["y"] ) vy_interior = self.v.eval_test( "vy", x=list_invar[2]["x"], y=list_invar[2]["y"] ) # calculate du/dn on surface dudn = ( list_invar[0]["normal_x"] * list_outvar[0]["u__x"] + list_invar[0]["normal_y"] * list_outvar[0]["u__y"] ) # form integrals of interior f = -2.0 uxvx = list_outvar[2]["u__x"] * vx_interior uyvy = list_outvar[2]["u__y"] * vy_interior fv = f * v_interior # calculate integrals int_outside = tensor_int(list_invar[0]["area"], v_outside, dudn) int_center = tensor_int(list_invar[1]["area"], 2.0 * v_center) int_interior = tensor_int(list_invar[2]["area"], uxvx + uyvy - fv) losses = { "variational_poisson": torch.abs(int_interior - int_center - int_outside) .pow(2) .sum() } return losses @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on df = Diffusion(T="u", D=1.0, Q=-2.0, dim=2, time=False) dg_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], cfg=cfg.arch.fully_connected, ) nodes = df.make_nodes() + [dg_net.make_node(name="dg_net")] # add constraints to solver x, y = Symbol("x"), Symbol("y") # make geometry rec_1 = Rectangle((0, 0), (0.5, 1)) rec_2 = Rectangle((0.5, 0), (1, 1)) rec = rec_1 + rec_2 # make training domain for traditional PINN eps = 0.02 rec_pinn = Rectangle((0 + eps, 0 + eps), (0.5 - eps, 1 - eps)) + Rectangle( (0.5 + eps, 0 + eps), (1 - eps, 1 - eps) ) # make domain domain = Domain() # PINN constraint # interior = PointwiseInteriorConstraint( # nodes=nodes, # geometry=rec_pinn, # outvar={"diffusion_u": 0}, # batch_size=4000, # bounds={x: (0 + eps, 1 - eps), y: (0 + eps, 1 - eps)}, # lambda_weighting={"diffusion_u": 1.}, # ) # domain.add_constraint(interior, "interior") # exterior boundary g = ((x - 1) ** 2 * Heaviside(x - 0.5)) + (x**2 * Heaviside(-x + 0.5)) boundary = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"u": g}, batch_size=cfg.batch_size.boundary, lambda_weighting={"u": 10.0}, # weight edges to be zero criteria=~Eq(x, 0.5), ) domain.add_constraint(boundary, "boundary") batch_per_epoch = 100 variational_datasets = {} batch_sizes = {} # Middle line boundary invar = rec.sample_boundary( batch_per_epoch * cfg.batch_size.boundary, criteria=~Eq(x, 0.5) ) invar["area"] *= batch_per_epoch variational_datasets["boundary1"] = DictVariationalDataset( invar=invar, outvar_names=["u__x", "u__y"], ) batch_sizes["boundary1"] = cfg.batch_size.boundary # Middle line boundary invar = rec_1.sample_boundary( batch_per_epoch * cfg.batch_size.boundary, criteria=Eq(x, 0.5) ) invar["area"] *= batch_per_epoch variational_datasets["boundary2"] = DictVariationalDataset( invar=invar, outvar_names=["u__x"], ) batch_sizes["boundary2"] = cfg.batch_size.boundary # Interior points if cfg.training.use_quadratures: paras = [ [ [[0, 0.5], [0, 1]], 20, True, lambda n: quadpy.c2.product(quadpy.c1.gauss_legendre(n)), ], [ [[0.5, 1], [0, 1]], 20, True, lambda n: quadpy.c2.product(quadpy.c1.gauss_legendre(n)), ], ] quad_rec = Quad_Collection(Quad_Rect, paras) invar = { "x": quad_rec.points_numpy[:, 0:1], "y": quad_rec.points_numpy[:, 1:2], "area": np.expand_dims(quad_rec.weights_numpy, -1), } variational_datasets["interior"] = DictVariationalDataset( invar=invar, outvar_names=["u__x", "u__y"], ) batch_sizes["interior"] = min( [quad_rec.points_numpy.shape[0], cfg.batch_size.interior] ) else: invar = rec.sample_interior( batch_per_epoch * cfg.batch_size.interior, bounds=Bounds({x: (0.0, 1.0), y: (0.0, 1.0)}), ) invar["area"] *= batch_per_epoch variational_datasets["interior"] = DictVariationalDataset( invar=invar, outvar_names=["u__x", "u__y"], ) batch_sizes["interior"] = cfg.batch_size.interior # Add points for RBF if cfg.training.test_function == "rbf": invar = rec.sample_interior( batch_per_epoch * cfg.batch_size.rbf_functions, bounds=Bounds({x: (0.0, 1.0), y: (0.0, 1.0)}), ) invar["area"] *= batch_per_epoch variational_datasets["rbf"] = DictVariationalDataset( invar=invar, outvar_names=[], ) batch_sizes["rbf"] = cfg.batch_size.rbf_functions variational_constraint = VariationalConstraint( datasets=variational_datasets, batch_sizes=batch_sizes, nodes=nodes, num_workers=1, loss=DGLoss(cfg.training.test_function), ) domain.add_constraint(variational_constraint, "variational") # add validation data delta_x = 0.01 delta_y = 0.01 x0 = np.arange(0, 1, delta_x) y0 = np.arange(0, 1, delta_y) x_grid, y_grid = np.meshgrid(x0, y0) x_grid = np.expand_dims(x_grid.flatten(), axis=-1) y_grid = np.expand_dims(y_grid.flatten(), axis=-1) u = np.where(x_grid <= 0.5, x_grid**2, (x_grid - 1) ** 2) invar_numpy = {"x": x_grid, "y": y_grid} outvar_numpy = {"u": u} openfoam_validator = PointwiseValidator( nodes=nodes, invar=invar_numpy, true_outvar=outvar_numpy, plotter=ValidatorPlotter(), ) domain.add_validator(openfoam_validator) # add inferencer data inferencer = PointwiseInferencer( nodes=nodes, invar=invar_numpy, output_names=["u"], batch_size=2048, plotter=InferencerPlotter(), ) domain.add_inferencer(inferencer) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/discontinuous_galerkin/dg/dg.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import hydra from omegaconf import DictConfig, OmegaConf import modulus.sym from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.geometry import Bounds from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.models.fully_connected import FullyConnectedArch from modulus.sym.key import Key from modulus.sym.eq.pdes.diffusion import Diffusion from modulus.sym.utils.vpinn.test_functions import ( Test_Function, Legendre_test, Trig_test, ) from modulus.sym.utils.vpinn.integral import tensor_int, Quad_Rect, Quad_Collection from modulus.sym.domain import Domain from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, VariationalDomainConstraint, ) from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.utils.io.plotter import InferencerPlotter from modulus.sym.loss import Loss from sympy import Symbol from modulus.sym.constants import tf_dt # custom variational loss class DGLoss(Loss): def __init__(self): super().__init__() # make test function self.v = Test_Function( name_ord_dict={ Legendre_test: [k for k in range(10)], Trig_test: [k for k in range(5)], }, box=[[-0.5, -0.5], [0.5, 0.5]], diff_list=["grad"], ) def forward( self, list_invar, list_outvar, step: int, ): # calculate test function v_outside = self.v.eval_test("v", x=list_invar[0]["x"], y=list_invar[0]["y"]) vx_interior = self.v.eval_test("vx", x=list_invar[1]["x"], y=list_invar[1]["y"]) vy_interior = self.v.eval_test("vy", x=list_invar[1]["x"], y=list_invar[1]["y"]) v_source = self.v.eval_test( "v", x=torch.zeros(1, 1, device=list_invar[1]["x"].device, dtype=tf_dt), y=torch.zeros(1, 1, device=list_invar[1]["x"].device, dtype=tf_dt), ) # calculate du/dn on surface dudn = ( list_invar[0]["normal_x"] * list_outvar[0]["u__x"] + list_invar[0]["normal_y"] * list_outvar[0]["u__y"] ) # form integrals of interior uxvx = list_outvar[1]["u__x"] * vx_interior uyvy = list_outvar[1]["u__y"] * vy_interior fv = v_source # calculate integrals int_outside = tensor_int(list_invar[0]["area"], v_outside, dudn) int_interior = tensor_int(list_invar[1]["area"], uxvx + uyvy) - fv losses = { "variational_poisson": torch.abs(int_interior - int_outside).pow(2).sum() } return losses @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on df = Diffusion(T="u", D=1.0, dim=2, time=False) dg_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], cfg=cfg.arch.fully_connected, ) nodes = df.make_nodes() + [dg_net.make_node(name="dg_net")] # add constraints to solver x, y = Symbol("x"), Symbol("y") # make geometry rec = Rectangle((-0.5, -0.5), (0.5, 0.5)) # make domain domain = Domain() Wall = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"u": 0.0}, lambda_weighting={"u": 10.0}, batch_size=cfg.batch_size.boundary, fixed_dataset=False, batch_per_epoch=1, quasirandom=True, ) domain.add_constraint(Wall, name="OutsideWall") # PINN constraint interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={"diffusion_u": 0.0}, batch_size=cfg.batch_size.interior, bounds=Bounds({x: (-0.5, 0.5), y: (-0.5, 0.5)}), lambda_weighting={"diffusion_u": (x**2 + y**2)}, fixed_dataset=False, batch_per_epoch=1, quasirandom=True, ) domain.add_constraint(interior, "interior") # Variational contraint variational = VariationalDomainConstraint( nodes=nodes, geometry=rec, outvar_names=["u__x", "u__y"], boundary_batch_size=cfg.batch_size.boundary, interior_batch_size=cfg.batch_size.interior, interior_bounds=Bounds({x: (-0.5, 0.5), y: (-0.5, 0.5)}), loss=DGLoss(), batch_per_epoch=1, quasirandom=True, ) domain.add_constraint(variational, "variational") # add inferencer data inferencer = PointwiseInferencer( nodes=nodes, invar=rec.sample_interior(10000), output_names=["u"], batch_size=2048, plotter=InferencerPlotter(), ) domain.add_inferencer(inferencer) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/discontinuous_galerkin/point_source/point_source.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from sympy import Symbol, Eq, Abs import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.key import Key from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.utils.io import ( csv_to_dict, ValidatorPlotter, InferencerPlotter, ) @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on ns = NavierStokes(nu=0.01, rho=1.0, dim=2, time=False) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v"), Key("p")], cfg=cfg.arch.fully_connected, ) nodes = ns.make_nodes() + [flow_net.make_node(name="flow_network")] # add constraints to solver # make geometry height = 0.1 width = 0.1 x, y = Symbol("x"), Symbol("y") rec = Rectangle((-width / 2, -height / 2), (width / 2, height / 2)) # make ldc domain ldc_domain = Domain() # top wall top_wall = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"u": 1.0, "v": 0}, batch_size=cfg.batch_size.TopWall, lambda_weighting={"u": 1.0 - 20 * Abs(x), "v": 1.0}, # weight edges to be zero criteria=Eq(y, height / 2), ) ldc_domain.add_constraint(top_wall, "top_wall") # no slip no_slip = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"u": 0, "v": 0}, batch_size=cfg.batch_size.NoSlip, criteria=y < height / 2, ) ldc_domain.add_constraint(no_slip, "no_slip") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0}, batch_size=cfg.batch_size.Interior, lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), }, ) ldc_domain.add_constraint(interior, "interior") # add validator file_path = "openfoam/cavity_uniformVel0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"Points:0": "x", "Points:1": "y", "U:0": "u", "U:1": "v", "p": "p"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] += -width / 2 # center OpenFoam data openfoam_var["y"] += -height / 2 # center OpenFoam data openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, batch_size=1024, plotter=ValidatorPlotter(), ) ldc_domain.add_validator(openfoam_validator) # add inferencer data grid_inference = PointwiseInferencer( nodes=nodes, invar=openfoam_invar_numpy, output_names=["u", "v", "p"], batch_size=1024, plotter=InferencerPlotter(), ) ldc_domain.add_inferencer(grid_inference, "inf_data") else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # make solver slv = Solver(cfg, ldc_domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/ldc/ldc_2d.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from sympy import Symbol, Eq, Abs import torch import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.models.fully_connected import FullyConnectedArch from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.constraint import Constraint from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.key import Key from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.utils.io.plotter import ValidatorPlotter, InferencerPlotter from modulus.sym.graph import Graph @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on ns = NavierStokes(nu=0.01, rho=1.0, dim=2, time=False) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v"), Key("p")], cfg=cfg.arch.fully_connected, ) nodes = ns.make_nodes() + [flow_net.make_node(name="flow_network")] # make importance model device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") importance_model_graph = Graph( nodes, invar=[Key("x"), Key("y")], req_names=[ Key("u", derivatives=[Key("x")]), Key("u", derivatives=[Key("y")]), Key("v", derivatives=[Key("x")]), Key("v", derivatives=[Key("y")]), ], ).to(device) def importance_measure(invar): outvar = importance_model_graph( Constraint._set_device(invar, device=device, requires_grad=True) ) importance = ( outvar["u__x"] ** 2 + outvar["u__y"] ** 2 + outvar["v__x"] ** 2 + outvar["v__y"] ** 2 ) ** 0.5 + 10 return importance.cpu().detach().numpy() # add constraints to solver # make geometry height = 0.1 width = 0.1 x, y = Symbol("x"), Symbol("y") rec = Rectangle((-width / 2, -height / 2), (width / 2, height / 2)) # make ldc domain ldc_domain = Domain() # top wall top_wall = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"u": 1.0, "v": 0}, batch_size=cfg.batch_size.TopWall, lambda_weighting={"u": 1.0 - 20 * Abs(x), "v": 1.0}, # weight edges to be zero criteria=Eq(y, height / 2), importance_measure=importance_measure, ) ldc_domain.add_constraint(top_wall, "top_wall") # no slip no_slip = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"u": 0, "v": 0}, batch_size=cfg.batch_size.NoSlip, criteria=y < height / 2, importance_measure=importance_measure, ) ldc_domain.add_constraint(no_slip, "no_slip") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0}, batch_size=cfg.batch_size.Interior, lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), }, importance_measure=importance_measure, ) ldc_domain.add_constraint(interior, "interior") # add validator file_path = "openfoam/cavity_uniformVel0.csv" if os.path.exists(to_absolute_path(file_path)): mapping = {"Points:0": "x", "Points:1": "y", "U:0": "u", "U:1": "v", "p": "p"} openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] += -width / 2 # center OpenFoam data openfoam_var["y"] += -height / 2 # center OpenFoam data openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, batch_size=1024, plotter=ValidatorPlotter(), ) ldc_domain.add_validator(openfoam_validator) # add inferencer data grid_inference = PointwiseInferencer( nodes=nodes, invar=openfoam_invar_numpy, output_names=["u", "v", "p"], batch_size=1024, plotter=InferencerPlotter(), ) ldc_domain.add_inferencer(grid_inference, "inf_data") else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # make solver slv = Solver(cfg, ldc_domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/ldc/ldc_2d_importance_sampling.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from sympy import Symbol, Eq, Abs import torch import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.turbulence_zero_eq import ZeroEquation from modulus.sym.utils.io.plotter import ValidatorPlotter, InferencerPlotter from modulus.sym.key import Key @modulus.sym.main(config_path="conf_zeroEq", config_name="config") def run(cfg: ModulusConfig) -> None: # add constraints to solver # make geometry height = 0.1 width = 0.1 x, y = Symbol("x"), Symbol("y") rec = Rectangle((-width / 2, -height / 2), (width / 2, height / 2)) # make list of nodes to unroll graph on ze = ZeroEquation(nu=1e-4, dim=2, time=False, max_distance=height / 2) ns = NavierStokes(nu=ze.equations["nu"], rho=1.0, dim=2, time=False) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v"), Key("p")], cfg=cfg.arch.fully_connected, ) nodes = ( ns.make_nodes() + ze.make_nodes() + [flow_net.make_node(name="flow_network")] ) # make ldc domain ldc_domain = Domain() # top wall top_wall = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"u": 1.5, "v": 0}, batch_size=cfg.batch_size.TopWall, lambda_weighting={"u": 1.0 - 20 * Abs(x), "v": 1.0}, # weight edges to be zero criteria=Eq(y, height / 2), ) ldc_domain.add_constraint(top_wall, "top_wall") # no slip no_slip = PointwiseBoundaryConstraint( nodes=nodes, geometry=rec, outvar={"u": 0, "v": 0}, batch_size=cfg.batch_size.NoSlip, criteria=y < height / 2, ) ldc_domain.add_constraint(no_slip, "no_slip") # interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0}, batch_size=cfg.batch_size.Interior, compute_sdf_derivatives=True, lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), }, ) ldc_domain.add_constraint(interior, "interior") # add validator file_path = "openfoam/cavity_uniformVel_zeroEqn_refined.csv" if os.path.exists(to_absolute_path(file_path)): mapping = { "Points:0": "x", "Points:1": "y", "U:0": "u", "U:1": "v", "p": "p", "d": "sdf", "nuT": "nu", } openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["x"] += -width / 2 # center OpenFoam data openfoam_var["y"] += -height / 2 # center OpenFoam data openfoam_var["nu"] += 1e-4 # effective viscosity openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "sdf"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "nu"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, batch_size=1024, plotter=ValidatorPlotter(), requires_grad=True, ) ldc_domain.add_validator(openfoam_validator) # add inferencer data grid_inference = PointwiseInferencer( nodes=nodes, invar=openfoam_invar_numpy, output_names=["u", "v", "p", "nu"], batch_size=1024, plotter=InferencerPlotter(), requires_grad=True, ) ldc_domain.add_inferencer(grid_inference, "inf_data") else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # add monitors global_monitor = PointwiseMonitor( rec.sample_interior(4000), output_names=["continuity", "momentum_x", "momentum_y"], metrics={ "mass_imbalance": lambda var: torch.sum( var["area"] * torch.abs(var["continuity"]) ), "momentum_imbalance": lambda var: torch.sum( var["area"] * (torch.abs(var["momentum_x"]) + torch.abs(var["momentum_y"])) ), }, nodes=nodes, requires_grad=True, ) ldc_domain.add_monitor(global_monitor) # make solver slv = Solver(cfg, ldc_domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/ldc/ldc_2d_zeroEq.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from modulus.sym.geometry.tessellation import Tessellation from modulus.sym.geometry.primitives_3d import Plane from modulus.sym.utils.io.vtk import var_to_polyvtk if __name__ == "__main__": # number of points to sample nr_points = 100000 # make tesselated geometry from stl file geo = Tessellation.from_stl("./stl_files/tessellated_example.stl") # tesselated geometries can be combined with primitives cut_plane = Plane((0, -1, -1), (0, 1, 1)) geo = geo & cut_plane # sample geometry for plotting in Paraview s = geo.sample_boundary(nr_points=nr_points) var_to_polyvtk(s, "tessellated_boundary") print("Repeated Surface Area: {:.3f}".format(np.sum(s["area"]))) s = geo.sample_interior(nr_points=nr_points, compute_sdf_derivatives=True) var_to_polyvtk(s, "tessellated_interior") print("Repeated Volume: {:.3f}".format(np.sum(s["area"])))
modulus-sym-main
examples/geometry/tessellated_example.py