python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Union, Callable from pathlib import Path import inspect import torch import numpy as np from modulus.sym.domain.inferencer import PointVTKInferencer from modulus.sym.domain.constraint import Constraint from modulus.sym.graph import Graph from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.distributed import DistributedManager from modulus.sym.utils.io import InferencerPlotter from modulus.sym.utils.io.vtk import var_to_polyvtk, VTKBase, VTKUniformGrid from modulus.sym.dataset import DictInferencePointwiseDataset class VoxelInferencer(PointVTKInferencer): """ Inferencer for creating volex representations. This inferencer works bu creating a uniform mesh of voxels and masking out the ones defined by a callable function. The result is a voxel based representation of any complex geometery at any resolution. Parameters ---------- bounds : List[List[int]] List of domain bounds to form uniform rectangular domain npoints : List[int] Resolution of voxels in each domain nodes : List[Node] List of Modulus Nodes to unroll graph with. output_names : List[str] List of desired outputs. export_map : Dict[str, List[str]], optional Export map dictionary with keys that are VTK variables names and values that are lists of output variables. Will use 1:1 mapping if none is provided, by default None invar : Dict[str, np.array], optional Dictionary of additional numpy arrays as input, by default {} mask_fn : Union[Callable, None], optional Masking function to remove points from inferencing, by default None mask_value : float, optional Value to assign masked points, by default Nan plotter : Plotter, optional Modulus `Plotter` for showing results in tensorboard., by default None requires_grad : bool, optional If automatic differentiation is needed for computing results., by default True log_iter : bool, optional Save results to different file each call, by default False """ def __init__( self, bounds: List[List[int]], npoints: List[int], nodes: List[Node], output_names: List[str], export_map: Union[None, Dict[str, List[str]]] = None, invar: Dict[str, np.array] = {}, # Additional inputs batch_size: int = 1024, mask_fn: Union[Callable, None] = None, mask_value: float = np.nan, plotter=None, requires_grad: bool = False, log_iter: bool = False, model=None, ): # No export map means one to one with outvars self.npoints = npoints if export_map is None: export_map = {name: name for name in output_names} coords = ["x", "y", "z"] input_vtk_map = {coords[i]: coords[i] for i in range(len(bounds))} # Create uniform grid dataset vtk_obj = VTKUniformGrid( bounds=bounds, npoints=npoints, export_map=export_map, ) super().__init__( vtk_obj, nodes, input_vtk_map=input_vtk_map, output_names=output_names, invar=invar, # Additional inputs batch_size=batch_size, mask_fn=mask_fn, mask_value=mask_value, plotter=plotter, requires_grad=requires_grad, log_iter=log_iter, model=model, ) def _write_results( self, invar, predvar, name, results_dir, writer, save_filetypes, step ): # Save batch to vtk/np files if "np" in save_filetypes: # Reshape into grid numpy arrays [cin, xdim, ydim, zdim] np_vars = {} for key, value in {**invar, **predvar}.items(): shape = self.npoints + [value.shape[1]] np_vars[key] = np.moveaxis(np.reshape(value, (shape)), -1, 0) np.savez(results_dir + name, np_vars) if "vtk" in save_filetypes: self.vtk_obj.file_dir = Path(results_dir) self.vtk_obj.file_name = Path(name).stem if self.log_iter: self.vtk_obj.var_to_vtk(data_vars={**invar, **predvar}, step=step) else: self.vtk_obj.var_to_vtk(data_vars={**invar, **predvar}) # Add tensorboard plots if self.plotter is not None: self.plotter._add_figures( "Inferencers", name, results_dir, writer, step, invar, predvar )
modulus-sym-main
modulus/sym/domain/inferencer/voxel.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Union, Callable from pathlib import Path import inspect import torch import numpy as np from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.domain.constraint import Constraint from modulus.sym.graph import Graph from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.distributed import DistributedManager from modulus.sym.utils.io import InferencerPlotter from modulus.sym.utils.io.vtk import var_to_polyvtk, VTKBase, VTKUniformGrid from modulus.sym.dataset import DictInferencePointwiseDataset class PointVTKInferencer(PointwiseInferencer): """ Pointwise inferencer using mesh points of VTK object Parameters ---------- vtk_obj : VTKBase Modulus VTK object to use point locations from nodes : List[Node] List of Modulus Nodes to unroll graph with. input_vtk_map : Dict[str, List[str]] Dictionary mapping from Modulus input variables to VTK variable names {"modulus.sym.name": ["vtk name"]}. Use colons to denote components of multi-dimensional VTK arrays ("name":# ) output_names : List[str] List of desired outputs. invar : Dict[str, np.array], optional Dictionary of additional numpy arrays as input, by default {} batch_size : int Batch size used when running inference mask_fn : Union[Callable, None], optional Masking function to remove points from inferencing, by default None mask_value : float, optional Value to assign masked points, by default Nan plotter : Plotter, optional Modulus `Plotter` for showing results in tensorboard., by default None requires_grad : bool, optional If automatic differentiation is needed for computing results., by default True log_iter : bool, optional Save results to different file each call, by default False """ def __init__( self, vtk_obj: VTKBase, nodes: List[Node], input_vtk_map: Dict[str, List[str]], output_names: List[str], invar: Dict[str, np.array] = {}, # Additional inputs batch_size: int = 1024, mask_fn: Union[Callable, None] = None, mask_value: float = np.nan, plotter=None, requires_grad: bool = False, log_iter: bool = False, model=None, ): # Set VTK file save dir and file name self.vtk_obj = vtk_obj self.vtk_obj.file_dir = "./inferencers" self.vtk_obj.file_name = "inferencer" # Set up input dict invar_vtk = self.vtk_obj.get_data_from_map(input_vtk_map) invar.update(invar_vtk) # If mask set up mask indexes self.mask_value = mask_value self.mask_index = None if mask_fn is not None: args, _, _, _ = inspect.getargspec(mask_fn) # Fall back np_lambdify does not supply arguement names # Ideally np_lambdify should allow input names to be queried if len(args) == 0: args = list(invar.keys()) # Hope your inputs all go into the mask mask_input = {key: invar[key] for key in args if key in invar} mask = np.squeeze(mask_fn(**mask_input).astype(np.bool_)) # True points get masked while False get kept, flip for index self.mask_index = np.logical_not(mask) # Mask out to only masked points (only inference here) for key, value in invar.items(): invar[key] = value[self.mask_index] # set plotter self.plotter = plotter self.log_iter = log_iter # initialize inferencer super().__init__( nodes=nodes, invar=invar, output_names=output_names, batch_size=batch_size, plotter=plotter, requires_grad=requires_grad, model=model, ) def save_results(self, name, results_dir, writer, save_filetypes, step): # Compute results invar, predvar = self._compute_results() # Reconstruct full array if mask was applied if self.mask_index is not None: invar, predvar = self._mask_results(invar, predvar) # Write results to file self._write_results( invar, predvar, name, results_dir, writer, save_filetypes, step ) def save_stream( self, name, results_dir, writer, step, save_results, save_filetypes, to_cpu ): if not to_cpu: raise NotImplementedError("to_cpu=False not supported.") # Compute results invar, predvar = self._compute_results() # Reconstruct full array if mask was applied if self.mask_index is not None: invar, predvar = self._mask_results(invar, predvar) # Write results to file if save_results: self._write_results( invar, predvar, name, results_dir, writer, save_filetypes, step ) return {**invar, **predvar} def _compute_results(self): invar_cpu = {key: [] for key in self.dataset.invar_keys} predvar_cpu = {key: [] for key in self.dataset.outvar_keys} # Loop through mini-batches for i, (invar0,) in enumerate(self.dataloader): # Move data to device invar = Constraint._set_device( invar0, device=self.device, requires_grad=self.requires_grad ) pred_outvar = self.forward(invar) invar_cpu = {key: value + [invar0[key]] for key, value in invar_cpu.items()} predvar_cpu = { key: value + [pred_outvar[key].cpu().detach().numpy()] for key, value in predvar_cpu.items() } # Concat mini-batch arrays invar = {key: np.concatenate(value) for key, value in invar_cpu.items()} predvar = {key: np.concatenate(value) for key, value in predvar_cpu.items()} return invar, predvar def _mask_results(self, invar, predvar): # Reconstruct full array if mask was applied for key, value in invar.items(): full_array = np.full( (self.mask_index.shape[0], value.shape[1]), self.mask_value, dtype=value.dtype, ) full_array[self.mask_index] = value invar[key] = full_array for key, value in predvar.items(): full_array = np.full( (self.mask_index.shape[0], value.shape[1]), self.mask_value, dtype=value.dtype, ) full_array[self.mask_index] = value predvar[key] = full_array return invar, predvar def _write_results( self, invar, predvar, name, results_dir, writer, save_filetypes, step ): # Save batch to vtk/np files if "np" in save_filetypes: np.savez(results_dir + name, {**invar, **predvar}) if "vtk" in save_filetypes: self.vtk_obj.file_dir = Path(results_dir) self.vtk_obj.file_name = Path(name).stem if self.log_iter: self.vtk_obj.var_to_vtk(data_vars={**invar, **predvar}, step=step) else: self.vtk_obj.var_to_vtk(data_vars={**invar, **predvar}) # Add tensorboard plots if self.plotter is not None: self.plotter._add_figures( "Inferencers", name, results_dir, writer, step, invar, predvar )
modulus-sym-main
modulus/sym/domain/inferencer/vtkpointwise.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Union, Callable from pathlib import Path import inspect import torch import numpy as np from modulus.sym.domain.inferencer import Inferencer from modulus.sym.domain.constraint import Constraint from modulus.sym.graph import Graph from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.distributed import DistributedManager from modulus.sym.utils.io import InferencerPlotter from modulus.sym.utils.io.vtk import var_to_polyvtk, VTKBase, VTKUniformGrid from modulus.sym.dataset import DictInferencePointwiseDataset class PointwiseInferencer(Inferencer): """ Pointwise Inferencer that allows inferencing on pointwise data Parameters ---------- nodes : List[Node] List of Modulus Nodes to unroll graph with. invar : Dict[str, np.ndarray (N, 1)] Dictionary of numpy arrays as input. output_names : List[str] List of desired outputs. batch_size : int, optional Batch size used when running validation, by default 1024 plotter : InferencerPlotter Modulus plotter for showing results in tensorboard. requires_grad : bool = False If automatic differentiation is needed for computing results. """ def __init__( self, nodes: List[Node], invar: Dict[str, np.array], output_names: List[str], batch_size: int = 1024, plotter: InferencerPlotter = None, requires_grad: bool = False, model=None, ): # get dataset and dataloader self.dataset = DictInferencePointwiseDataset( invar=invar, output_names=output_names ) self.dataloader = Constraint.get_dataloader( dataset=self.dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=0, distributed=False, infinite=False, ) # construct model from nodes if model is None: self.model = Graph( nodes, Key.convert_list(self.dataset.invar_keys), Key.convert_list(self.dataset.outvar_keys), ) else: self.model = model self.manager = DistributedManager() self.device = self.manager.device self.model.to(self.device) # set foward method self.requires_grad = requires_grad self.forward = self.forward_grad if requires_grad else self.forward_nograd # set plotter self.plotter = plotter def eval_epoch(self): invar_cpu = {key: [] for key in self.dataset.invar_keys} predvar_cpu = {key: [] for key in self.dataset.outvar_keys} # Loop through mini-batches for i, (invar0,) in enumerate(self.dataloader): # Move data to device invar = Constraint._set_device( invar0, device=self.device, requires_grad=self.requires_grad ) pred_outvar = self.forward(invar) invar_cpu = {key: value + [invar0[key]] for key, value in invar_cpu.items()} predvar_cpu = { key: value + [pred_outvar[key].cpu().detach().numpy()] for key, value in predvar_cpu.items() } # Concat mini-batch arrays invar = {key: np.concatenate(value) for key, value in invar_cpu.items()} predvar = {key: np.concatenate(value) for key, value in predvar_cpu.items()} return invar, predvar def save_results(self, name, results_dir, writer, save_filetypes, step): # evaluate on entire dataset invar, predvar = self.eval_epoch() # save batch to vtk/np files TODO clean this up after graph unroll stuff if "np" in save_filetypes: np.savez(results_dir + name, {**invar, **predvar}) if "vtk" in save_filetypes: var_to_polyvtk({**invar, **predvar}, results_dir + name) # add tensorboard plots if self.plotter is not None: self.plotter._add_figures( "Inferencers", name, results_dir, writer, step, invar, predvar )
modulus-sym-main
modulus/sym/domain/inferencer/pointwise.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union, List import torch import logging from torch.utils.data import DataLoader, BatchSampler, SequentialSampler, RandomSampler from torch.utils.data.distributed import DistributedSampler from torch.nn.parallel import DistributedDataParallel from typing import Union, List from modulus.sym.node import Node from modulus.sym.constants import tf_dt from modulus.sym.distributed.manager import DistributedManager from modulus.sym.dataset import Dataset, IterableDataset from modulus.sym.loss import Loss from modulus.sym.graph import Graph from modulus.sym.key import Key logger = logging.getLogger(__name__) Tensor = torch.Tensor class Constraint: """Base class for constraints""" def __init__( self, nodes: List[Node], dataset: Union[Dataset, IterableDataset], loss: Loss, batch_size: int, shuffle: bool, drop_last: bool, num_workers: int, ): # Get DDP manager self.manager = DistributedManager() self.device = self.manager.device if not drop_last and self.manager.cuda_graphs: logger.info("drop_last must be true when using cuda graphs") drop_last = True # get dataset and dataloader self.dataset = dataset self.dataloader = iter( Constraint.get_dataloader( dataset=self.dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, ) ) # construct model from nodes self.model = Graph( nodes, Key.convert_list(self.dataset.invar_keys), Key.convert_list(self.dataset.outvar_keys), ) self.model.to(self.device) if self.manager.distributed: # https://pytorch.org/docs/master/notes/cuda.html#id5 s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): self.model = DistributedDataParallel( self.model, device_ids=[self.manager.local_rank], output_device=self.device, broadcast_buffers=self.manager.broadcast_buffers, find_unused_parameters=self.manager.find_unused_parameters, process_group=self.manager.group( "data_parallel" ), # None by default ) torch.cuda.current_stream().wait_stream(s) self._input_names = Key.convert_list(dataset.invar_keys) self._output_names = Key.convert_list(dataset.outvar_keys) self._input_vars = None self._target_vars = None self._lambda_weighting = None # put loss on device self._loss = loss.to(self.device) @property def input_names(self) -> List[Key]: return self._input_names @property def output_names(self) -> List[Key]: return self._output_names def load_data(self): raise NotImplementedError("Subclass of Constraint needs to implement this") def load_data_static(self): raise NotImplementedError("Subclass of Constraint needs to implement this") def loss(self, step: int): raise NotImplementedError("Subclass of Constraint needs to implement this") def save_batch(self, filename: str): raise NotImplementedError("Subclass of Constraint needs to implement this") @staticmethod def _set_device(tensor_dict, device=None, requires_grad=False): # convert np to torch if needed tensor_dict = { key: torch.as_tensor(value, dtype=tf_dt, device=device) for key, value in tensor_dict.items() } # set requires_grad if needed if requires_grad: tensor_dict = { key: value.requires_grad_(requires_grad) for key, value in tensor_dict.items() } return tensor_dict @staticmethod def get_dataloader( dataset: Union[Dataset, IterableDataset], batch_size: int, shuffle: bool, drop_last: bool, num_workers: int, distributed: bool = None, infinite: bool = True, ): "Return an appropriate dataloader given a dataset" assert isinstance(dataset, Dataset) or isinstance( dataset, IterableDataset ), "error, dataset must be a subclass of Dataset or IterableDataset" manager = DistributedManager() # use persistent workers # this is important for small datasets - torch would otherwise spend a lot of CPU overhead spawning workers each epoch persistent_workers = True if num_workers > 0 else False # map-style if isinstance(dataset, Dataset): assert batch_size is not None, "error, batch_size must be specified" assert shuffle is not None, "error, shuffle must be specified" assert drop_last is not None, "error, drop_last must be specified" # if distributed, use distributed sampler if distributed is not False and manager.distributed: sampler = DistributedSampler( dataset, num_replicas=manager.group_size("data_parallel"), rank=manager.group_rank("data_parallel"), shuffle=shuffle, drop_last=drop_last, ) # otherwise use standard sampler else: if shuffle: sampler = RandomSampler(dataset) else: sampler = SequentialSampler(dataset) # get batch sampler batch_sampler = BatchSampler(sampler, batch_size, drop_last) # if the dataset does auto collation, turn off automatic batching in dataloader # this passes batched indices directly to dataset # i.e. the dataloader yields default_convert(dataset[idx]) # see https://github.com/pytorch/pytorch/blob/master/torch/utils/data/_utils/fetch.py # note: may need to use torch.set_num_threads if array indexing tensors in dataset to avoid excessive threading if dataset.auto_collation: dataloader = DataLoader( dataset, batch_size=None, sampler=batch_sampler, pin_memory=True, num_workers=num_workers, worker_init_fn=dataset.worker_init_fn, persistent_workers=persistent_workers, ) # otherwise turn on automatic batching in dataloader # this passes single indices to the dataset # i.e. the dataloader yields default_collate([dataset[i] for i in idx]) else: dataloader = DataLoader( dataset, batch_sampler=batch_sampler, pin_memory=True, num_workers=num_workers, worker_init_fn=dataset.worker_init_fn, persistent_workers=persistent_workers, ) # iterable-style elif isinstance(dataset, IterableDataset): # for iterable datasets, must do batching/sampling within dataset dataloader = DataLoader( dataset, batch_size=None, pin_memory=True, num_workers=num_workers, worker_init_fn=dataset.worker_init_fn, persistent_workers=persistent_workers, ) # make dataloader infinite if infinite: dataloader = InfiniteDataLoader(dataloader) # initialise dataset if on main thread if num_workers == 0: dataset.worker_init_fn(0) return dataloader class InfiniteDataLoader: "An infinite dataloader, for use with map-style datasets to avoid StopIteration after each epoch" def __init__(self, dataloader): self.dataloader = dataloader self.epoch = 0 def __iter__(self): while True: dataloader = iter(self.dataloader) for batch in dataloader: yield batch self.epoch += 1
modulus-sym-main
modulus/sym/domain/constraint/constraint.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Continuous type constraints """ import logging from typing import Dict, List, Union import torch from torch.nn.parallel import DistributedDataParallel import numpy as np from modulus.sym.domain.constraint import Constraint from modulus.sym.graph import Graph from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.loss import Loss, PointwiseLossNorm from modulus.sym.distributed import DistributedManager from modulus.sym.utils.io.vtk import grid_to_vtk from modulus.sym.dataset import Dataset, IterableDataset, DictGridDataset logger = logging.getLogger(__name__) class SupervisedGridConstraint(Constraint): """Data-driven grid field constraint Parameters ---------- nodes : List[Node] List of Modulus Nodes to unroll graph with. dataset: Union[Dataset, IterableDataset] dataset which supplies invar and outvar examples Must be a subclass of Dataset or IterableDataset loss : Loss, optional Modulus `Loss` function, by default PointwiseLossNorm() batch_size : int, optional Batch size used when running constraint, must be specified if Dataset used Not used if IterableDataset used shuffle : bool, optional Randomly shuffle examples in dataset every epoch, by default True Not used if IterableDataset used drop_last : bool, optional Drop last mini-batch if dataset not fully divisible but batch_size, by default False Not used if IterableDataset used num_workers : int, optional Number of dataloader workers, by default 0 """ def __init__( self, nodes: List[Node], dataset: Union[Dataset, IterableDataset], loss: Loss = PointwiseLossNorm(), batch_size: int = None, shuffle: bool = True, drop_last: bool = True, num_workers: int = 0, ): super().__init__( nodes=nodes, dataset=dataset, loss=loss, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, ) def save_batch(self, filename): # sample batch invar, true_outvar, lambda_weighting = next(self.dataloader) invar0 = {key: value for key, value in invar.items()} invar = Constraint._set_device(invar, device=self.device, requires_grad=True) true_outvar = Constraint._set_device(true_outvar, device=self.device) lambda_weighting = Constraint._set_device(lambda_weighting, device=self.device) # If using DDP, strip out collective stuff to prevent deadlocks # This only works either when one process alone calls in to save_batch # or when multiple processes independently save data if hasattr(self.model, "module"): modl = self.model.module else: modl = self.model # compute pred outvar pred_outvar = modl(invar) # rename values and save batch to vtk file TODO clean this up after graph unroll stuff named_true_outvar = {"true_" + key: value for key, value in true_outvar.items()} named_pred_outvar = {"pred_" + key: value for key, value in pred_outvar.items()} save_var = { **{key: value for key, value in invar0.items()}, **named_true_outvar, **named_pred_outvar, } save_var = { key: value.cpu().detach().numpy() for key, value in save_var.items() } model_parallel_rank = ( self.manager.group_rank("model_parallel") if self.manager.distributed else 0 ) # Using - as delimiter here since vtk ignores anything after . grid_to_vtk(save_var, filename + f"-{model_parallel_rank}") def load_data(self): # get train points from dataloader invar, true_outvar, lambda_weighting = next(self.dataloader) self._input_vars = Constraint._set_device( invar, device=self.device, requires_grad=True ) self._target_vars = Constraint._set_device(true_outvar, device=self.device) self._lambda_weighting = Constraint._set_device( lambda_weighting, device=self.device ) def load_data_static(self): if self._input_vars is None: # Default loading if vars not allocated self.load_data() else: # get train points from dataloader invar, true_outvar, lambda_weighting = next(self.dataloader) # Set grads to false here for inputs, static var has allocation already input_vars = Constraint._set_device( invar, device=self.device, requires_grad=False ) target_vars = Constraint._set_device(true_outvar, device=self.device) lambda_weighting = Constraint._set_device( lambda_weighting, device=self.device ) for key in input_vars.keys(): self._input_vars[key].data.copy_(input_vars[key]) for key in target_vars.keys(): self._target_vars[key].copy_(target_vars[key]) for key in lambda_weighting.keys(): self._lambda_weighting[key].copy_(lambda_weighting[key]) def forward(self): # compute pred outvar self._output_vars = self.model(self._input_vars) def loss(self, step: int) -> Dict[str, torch.Tensor]: if self._output_vars is None: logger.warn("Calling loss without forward call") return {} losses = self._loss( self._input_vars, self._output_vars, self._target_vars, self._lambda_weighting, step, ) return losses class _DeepONetConstraint(Constraint): def __init__( self, nodes: List[Node], invar_branch: Dict[str, np.array], invar_trunk: Dict[str, np.array], outvar: Dict[str, np.array], batch_size: int, lambda_weighting: Dict[str, np.array], loss: Loss, shuffle: bool, drop_last: bool, num_workers: int, ): # TODO: add support for other datasets (like SupervisedGridConstraint) # get dataset and dataloader self.dataset = DictGridDataset( invar=invar_branch, outvar=outvar, lambda_weighting=lambda_weighting ) # Get DDP manager self.manager = DistributedManager() self.device = self.manager.device if not drop_last and self.manager.cuda_graphs: logger.info("drop_last must be true when using cuda graphs") drop_last = True self.dataloader = iter( Constraint.get_dataloader( dataset=self.dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, ) ) # construct model from nodes self.model = Graph( nodes, Key.convert_list(invar_branch.keys()) + Key.convert_list(invar_trunk.keys()), Key.convert_list(outvar.keys()), ) self.model.to(self.device) if self.manager.distributed: # https://pytorch.org/docs/master/notes/cuda.html#id5 s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): self.model = DistributedDataParallel( self.model, device_ids=[self.manager.local_rank], output_device=self.device, broadcast_buffers=self.manager.broadcast_buffers, find_unused_parameters=self.manager.find_unused_parameters, process_group=self.manager.group( "data_parallel" ), # None by default ) torch.cuda.current_stream().wait_stream(s) self._input_names = Key.convert_list(self.dataset.invar_keys) self._output_names = Key.convert_list(self.dataset.outvar_keys) self._input_vars_branch = None self._target_vars = None self._lambda_weighting = None # put loss on device self._loss = loss.to(self.device) def save_batch(self, filename): # sample batch invar, true_outvar, lambda_weighting = next(self.dataloader) invar0 = {key: value for key, value in invar.items()} invar = Constraint._set_device(invar, device=self.device, requires_grad=True) true_outvar = Constraint._set_device(true_outvar, device=self.device) lambda_weighting = Constraint._set_device(lambda_weighting, device=self.device) # If using DDP, strip out collective stuff to prevent deadlocks # This only works either when one process alone calls in to save_batch # or when multiple processes independently save data if hasattr(self.model, "module"): modl = self.model.module else: modl = self.model # compute pred outvar pred_outvar = modl({**invar, **self._input_vars_trunk}) # rename values and save batch to vtk file TODO clean this up after graph unroll stuff named_lambda_weighting = { "lambda_" + key: value for key, value in lambda_weighting.items() } named_true_outvar = {"true_" + key: value for key, value in true_outvar.items()} named_pred_outvar = {"pred_" + key: value for key, value in pred_outvar.items()} save_var = { **{key: value for key, value in invar0.items()}, **named_true_outvar, **named_pred_outvar, **named_lambda_weighting, } save_var = { key: value.cpu().detach().numpy() for key, value in save_var.items() } model_parallel_rank = ( self.manager.group_rank("model_parallel") if self.manager.distributed else 0 ) np.savez_compressed(filename + f".{model_parallel_rank}.npz", **save_var) def load_data(self): # get train points from dataloader invar, true_outvar, lambda_weighting = next(self.dataloader) self._input_vars_branch = Constraint._set_device( invar, device=self.device, requires_grad=True ) self._target_vars = Constraint._set_device(true_outvar, device=self.device) self._lambda_weighting = Constraint._set_device( lambda_weighting, device=self.device ) def load_data_static(self): if self._input_vars_branch is None: # Default loading if vars not allocated self.load_data() else: # get train points from dataloader invar, true_outvar, lambda_weighting = next(self.dataloader) # Set grads to false here for inputs, static var has allocation already input_vars = Constraint._set_device( invar, device=self.device, requires_grad=False ) target_vars = Constraint._set_device(true_outvar, device=self.device) lambda_weighting = Constraint._set_device( lambda_weighting, device=self.device ) for key in input_vars.keys(): self._input_vars_branch[key].data.copy_(input_vars[key]) for key in target_vars.keys(): self._target_vars[key].copy_(target_vars[key]) for key in lambda_weighting.keys(): self._lambda_weighting[key].copy_(lambda_weighting[key]) def forward(self): # compute pred outvar self._output_vars = self.model( {**self._input_vars_branch, **self._input_vars_trunk} ) class DeepONetConstraint_Data(_DeepONetConstraint): def __init__( self, nodes: List[Node], invar_branch: Dict[str, np.array], invar_trunk: Dict[str, np.array], outvar: Dict[str, np.array], batch_size: int, lambda_weighting: Dict[str, np.array] = None, loss: Loss = PointwiseLossNorm(), shuffle: bool = True, drop_last: bool = True, num_workers: int = 0, ): super().__init__( nodes=nodes, invar_branch=invar_branch, invar_trunk=invar_trunk, outvar=outvar, batch_size=batch_size, lambda_weighting=lambda_weighting, loss=loss, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, ) self._input_vars_trunk = Constraint._set_device( invar_trunk, device=self.device, requires_grad=True ) def loss(self, step: int): # compute loss losses = self._loss( self._input_vars_trunk, self._output_vars, self._target_vars, self._lambda_weighting, step, ) return losses class DeepONetConstraint_Physics(_DeepONetConstraint): def __init__( self, nodes: List[Node], invar_branch: Dict[str, np.array], invar_trunk: Dict[str, np.array], outvar: Dict[str, np.array], batch_size: int, lambda_weighting: Dict[str, np.array] = None, loss: Loss = PointwiseLossNorm(), shuffle: bool = True, drop_last: bool = True, num_workers: int = 0, tile_trunk_input: bool = True, ): super().__init__( nodes=nodes, invar_branch=invar_branch, invar_trunk=invar_trunk, outvar=outvar, batch_size=batch_size, lambda_weighting=lambda_weighting, loss=loss, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, ) if tile_trunk_input: for k, v in invar_trunk.items(): invar_trunk[k] = np.tile(v, (batch_size, 1)) self._input_vars_trunk = Constraint._set_device( invar_trunk, device=self.device, requires_grad=True ) def loss(self, step: int): target_vars = { k: torch.reshape(v, (-1, 1)) for k, v in self._target_vars.items() } lambda_weighting = { k: torch.reshape(v, (-1, 1)) for k, v in self._lambda_weighting.items() } # compute loss losses = self._loss( self._input_vars_trunk, self._output_vars, target_vars, lambda_weighting, step, ) return losses
modulus-sym-main
modulus/sym/domain/constraint/discrete.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .constraint import Constraint from .continuous import ( PointwiseConstraint, PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, VariationalConstraint, VariationalDomainConstraint, ) from .discrete import ( SupervisedGridConstraint, DeepONetConstraint_Data, DeepONetConstraint_Physics, )
modulus-sym-main
modulus/sym/domain/constraint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from modulus.sym.utils.sympy import np_lambdify def _compute_outvar(invar, outvar_sympy): outvar = {} for key in outvar_sympy.keys(): outvar[key] = np_lambdify(outvar_sympy[key], {**invar})(**invar) return outvar def _compute_lambda_weighting(invar, outvar, lambda_weighting_sympy): lambda_weighting = {} if lambda_weighting_sympy is None: for key in outvar.keys(): lambda_weighting[key] = np.ones_like(next(iter(invar.values()))) else: for key in outvar.keys(): lambda_weighting[key] = np_lambdify( lambda_weighting_sympy[key], {**invar, **outvar} )(**invar, **outvar) return lambda_weighting
modulus-sym-main
modulus/sym/domain/constraint/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Continuous type constraints """ import torch from torch.nn.parallel import DistributedDataParallel import numpy as np from typing import Dict, List, Union, Tuple, Callable import sympy as sp import logging import torch from .constraint import Constraint from .utils import _compute_outvar, _compute_lambda_weighting from modulus.sym.utils.io.vtk import var_to_polyvtk from modulus.sym.graph import Graph from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.loss import Loss, PointwiseLossNorm, IntegralLossNorm from modulus.sym.distributed import DistributedManager from modulus.sym.utils.sympy import np_lambdify from modulus.sym.geometry import Geometry from modulus.sym.geometry.helper import _sympy_criteria_to_criteria from modulus.sym.geometry.parameterization import Parameterization, Bounds from modulus.sym.dataset import ( DictPointwiseDataset, ListIntegralDataset, ContinuousPointwiseIterableDataset, ContinuousIntegralIterableDataset, DictImportanceSampledPointwiseIterableDataset, DictVariationalDataset, ) Tensor = torch.Tensor logger = logging.getLogger(__name__) class PointwiseConstraint(Constraint): """ Base class for all Pointwise Constraints """ def save_batch(self, filename): # sample batch invar, true_outvar, lambda_weighting = next(self.dataloader) invar = Constraint._set_device(invar, device=self.device, requires_grad=True) true_outvar = Constraint._set_device(true_outvar, device=self.device) lambda_weighting = Constraint._set_device(lambda_weighting, device=self.device) # If using DDP, strip out collective stuff to prevent deadlocks # This only works either when one process alone calls in to save_batch # or when multiple processes independently save data if hasattr(self.model, "module"): modl = self.model.module else: modl = self.model # compute pred outvar pred_outvar = modl(invar) # rename values and save batch to vtk file TODO clean this up after graph unroll stuff named_lambda_weighting = { "lambda_" + key: value for key, value in lambda_weighting.items() } named_true_outvar = {"true_" + key: value for key, value in true_outvar.items()} named_pred_outvar = {"pred_" + key: value for key, value in pred_outvar.items()} save_var = { **{key: value for key, value in invar.items()}, **named_true_outvar, **named_pred_outvar, **named_lambda_weighting, } save_var = { key: value.cpu().detach().numpy() for key, value in save_var.items() } var_to_polyvtk(save_var, filename) def load_data(self): # get train points from dataloader invar, true_outvar, lambda_weighting = next(self.dataloader) self._input_vars = Constraint._set_device( invar, device=self.device, requires_grad=True ) self._target_vars = Constraint._set_device(true_outvar, device=self.device) self._lambda_weighting = Constraint._set_device( lambda_weighting, device=self.device ) def load_data_static(self): if self._input_vars is None: # Default loading if vars not allocated self.load_data() else: # get train points from dataloader invar, true_outvar, lambda_weighting = next(self.dataloader) # Set grads to false here for inputs, static var has allocation already input_vars = Constraint._set_device( invar, device=self.device, requires_grad=False ) target_vars = Constraint._set_device(true_outvar, device=self.device) lambda_weighting = Constraint._set_device( lambda_weighting, device=self.device ) for key in input_vars.keys(): self._input_vars[key].data.copy_(input_vars[key]) for key in target_vars.keys(): self._target_vars[key].copy_(target_vars[key]) for key in lambda_weighting.keys(): self._lambda_weighting[key].copy_(lambda_weighting[key]) def forward(self): # compute pred outvar self._output_vars = self.model(self._input_vars) def loss(self, step: int) -> Dict[str, torch.Tensor]: if self._output_vars is None: logger.warn("Calling loss without forward call") return {} losses = self._loss( self._input_vars, self._output_vars, self._target_vars, self._lambda_weighting, step, ) return losses @classmethod def from_numpy( cls, nodes: List[Node], invar: Dict[str, np.ndarray], outvar: Dict[str, np.ndarray], batch_size: int, lambda_weighting: Dict[str, np.ndarray] = None, loss: Loss = PointwiseLossNorm(), shuffle: bool = True, drop_last: bool = True, num_workers: int = 0, ): """ Create custom pointwise constraint from numpy arrays. Parameters ---------- nodes : List[Node] List of Modulus Nodes to unroll graph with. invar : Dict[str, np.ndarray (N, 1)] Dictionary of numpy arrays as input. outvar : Dict[str, np.ndarray (N, 1)] Dictionary of numpy arrays to enforce constraint on. batch_size : int Batch size used in training. lambda_weighting : Dict[str, np.ndarray (N, 1)] Dictionary of numpy arrays to pointwise weight losses. Default is ones. loss : Loss Modulus `Loss` module that defines the loss type, (e.g. L2, L1, ...). shuffle : bool, optional Randomly shuffle examples in dataset every epoch, by default True drop_last : bool, optional Drop last mini-batch if dataset not fully divisible but batch_size, by default False num_workers : int Number of worker used in fetching data. """ if "area" not in invar: invar["area"] = np.ones_like(next(iter(invar.values()))) # TODO: better area definition? # no need to lambdify: outvar / lambda_weighting already contain np arrays # make point dataset dataset = DictPointwiseDataset( invar=invar, outvar=outvar, lambda_weighting=lambda_weighting, ) return cls( nodes=nodes, dataset=dataset, loss=loss, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, ) class PointwiseBoundaryConstraint(PointwiseConstraint): """ Pointwise Constraint applied to boundary/perimeter/surface of geometry. For example, in 3D this will create a constraint on the surface of the given geometry. Parameters ---------- nodes : List[Node] List of Modulus Nodes to unroll graph with. geometry : Geometry Modulus `Geometry` to apply the constraint with. outvar : Dict[str, Union[int, float, sp.Basic]] A dictionary of SymPy Symbols/Expr, floats or int. This is used to describe the constraint. For example, `outvar={'u': 0}` would specify `'u'` to be zero everywhere on the constraint. batch_size : int Batch size used in training. criteria : Union[sp.Basic, True] SymPy criteria function specifies to only apply constraint to areas that satisfy this criteria. For example, if `criteria=sympy.Symbol('x')>0` then only areas that have positive `'x'` values will have the constraint applied to them. lambda_weighting : Dict[str, Union[int, float, sp.Basic]] = None The spatial pointwise weighting of the constraint. For example, `lambda_weighting={'lambda_u': 2.0*sympy.Symbol('x')}` would apply a pointwise weighting to the loss of `2.0 * x`. parameterization : Union[Parameterization, None], optional This allows adding parameterization or additional inputs. fixed_dataset : bool = True If True then the points sampled for this constraint are done right when initialized and fixed. If false then the points are continually resampled. compute_sdf_derivatives: bool, optional Compute SDF derivatives when sampling geometery importance_measure : Union[Callable, None] = None A callable function that computes a scalar importance measure. This importance measure is then used in the constraint when sampling points. Areas with higher importance are sampled more frequently according to Monte Carlo importance sampling, https://en.wikipedia.org/wiki/Monte_Carlo_integration. batch_per_epoch : int = 1000 If `fixed_dataset=True` then the total number of points generated to apply constraint on is `total_nr_points=batch_per_epoch*batch_size`. quasirandom : bool = False If true then sample the points using the Halton sequence. num_workers : int Number of worker used in fetching data. loss : Loss Modulus `Loss` module that defines the loss type, (e.g. L2, L1, ...). shuffle : bool, optional Randomly shuffle examples in dataset every epoch, by default True """ def __init__( self, nodes: List[Node], geometry: Geometry, outvar: Dict[str, Union[int, float, sp.Basic]], batch_size: int, criteria: Union[sp.Basic, Callable, None] = None, lambda_weighting: Dict[str, Union[int, float, sp.Basic]] = None, parameterization: Union[Parameterization, None] = None, fixed_dataset: bool = True, importance_measure: Union[Callable, None] = None, batch_per_epoch: int = 1000, quasirandom: bool = False, num_workers: int = 0, loss: Loss = PointwiseLossNorm(), shuffle: bool = True, ): # assert that not using importance measure with continuous dataset assert not ( (not fixed_dataset) and (importance_measure is not None) ), "Using Importance measure with continuous dataset is not supported" # if fixed dataset then sample points and fix for all of training if fixed_dataset: # sample boundary invar = geometry.sample_boundary( batch_size * batch_per_epoch, criteria=criteria, parameterization=parameterization, quasirandom=quasirandom, ) # compute outvar outvar = _compute_outvar(invar, outvar) # set lambda weighting lambda_weighting = _compute_lambda_weighting( invar, outvar, lambda_weighting ) # make point dataset if importance_measure is None: invar["area"] *= batch_per_epoch # TODO find better way to do this dataset = DictPointwiseDataset( invar=invar, outvar=outvar, lambda_weighting=lambda_weighting, ) else: dataset = DictImportanceSampledPointwiseIterableDataset( invar=invar, outvar=outvar, batch_size=batch_size, importance_measure=importance_measure, lambda_weighting=lambda_weighting, shuffle=shuffle, ) # else sample points every batch else: # invar function invar_fn = lambda: geometry.sample_boundary( batch_size, criteria=criteria, parameterization=parameterization, quasirandom=quasirandom, ) # outvar function outvar_fn = lambda invar: _compute_outvar(invar, outvar) # lambda weighting function lambda_weighting_fn = lambda invar, outvar: _compute_lambda_weighting( invar, outvar, lambda_weighting ) # make point dataloader dataset = ContinuousPointwiseIterableDataset( invar_fn=invar_fn, outvar_fn=outvar_fn, lambda_weighting_fn=lambda_weighting_fn, ) # initialize constraint super().__init__( nodes=nodes, dataset=dataset, loss=loss, batch_size=batch_size, shuffle=shuffle, drop_last=True, num_workers=num_workers, ) class PointwiseInteriorConstraint(PointwiseConstraint): """ Pointwise Constraint applied to interior of geometry. For example, in 3D this will create a constraint on the interior volume of the given geometry. Parameters ---------- nodes : List[Node] List of Modulus Nodes to unroll graph with. geometry : Geometry Modulus `Geometry` to apply the constraint with. outvar : Dict[str, Union[int, float, sp.Basic]] A dictionary of SymPy Symbols/Expr, floats or int. This is used to describe the constraint. For example, `outvar={'u': 0}` would specify `'u'` to be zero everywhere in the constraint. batch_size : int Batch size used in training. bounds : Dict[sp.Basic, Tuple[float, float]] = None Bounds of the given geometry, (e.g. `bounds={sympy.Symbol('x'): (0, 1), sympy.Symbol('y'): (0, 1)}). criteria : Union[sp.basic, True] SymPy criteria function specifies to only apply constraint to areas that satisfy this criteria. For example, if `criteria=sympy.Symbol('x')>0` then only areas that have positive `'x'` values will have the constraint applied to them. lambda_weighting : Dict[str, Union[int, float, sp.Basic]] = None The spatial pointwise weighting of the constraint. For example, `lambda_weighting={'lambda_u': 2.0*sympy.Symbol('x')}` would apply a pointwise weighting to the loss of `2.0 * x`. parameterization: Union[Parameterization, None] = {} This allows adding parameterization or additional inputs. fixed_dataset : bool = True If True then the points sampled for this constraint are done right when initialized and fixed. If false then the points are continually resampled. importance_measure : Union[Callable, None] = None A callable function that computes a scalar importance measure. This importance measure is then used in the constraint when sampling points. Areas with higher importance are sampled more frequently according to Monte Carlo importance sampling, https://en.wikipedia.org/wiki/Monte_Carlo_integration. batch_per_epoch : int = 1000 If `fixed_dataset=True` then the total number of points generated to apply constraint on is `total_nr_points=batch_per_epoch*batch_size`. quasirandom : bool = False If true then sample the points using the Halton sequence. num_workers : int Number of worker used in fetching data. loss : Loss Modulus `Loss` module that defines the loss type, (e.g. L2, L1, ...). shuffle : bool, optional Randomly shuffle examples in dataset every epoch, by default True """ def __init__( self, nodes: List[Node], geometry: Geometry, outvar: Dict[str, Union[int, float, sp.Basic]], batch_size: int, bounds: Dict[sp.Basic, Tuple[float, float]] = None, criteria: Union[sp.Basic, Callable, None] = None, lambda_weighting: Dict[str, Union[int, float, sp.Basic]] = None, parameterization: Union[Parameterization, None] = None, fixed_dataset: bool = True, compute_sdf_derivatives: bool = False, importance_measure: Union[Callable, None] = None, batch_per_epoch: int = 1000, quasirandom: bool = False, num_workers: int = 0, loss: Loss = PointwiseLossNorm(), shuffle: bool = True, ): # assert that not using importance measure with continuous dataset assert not ( (not fixed_dataset) and (importance_measure is not None) ), "Using Importance measure with continuous dataset is not supported" # if fixed dataset then sample points and fix for all of training if fixed_dataset: # sample interior invar = geometry.sample_interior( batch_size * batch_per_epoch, bounds=bounds, criteria=criteria, parameterization=parameterization, quasirandom=quasirandom, compute_sdf_derivatives=compute_sdf_derivatives, ) # compute outvar outvar = _compute_outvar(invar, outvar) # set lambda weighting lambda_weighting = _compute_lambda_weighting( invar, outvar, lambda_weighting ) # make point dataset if importance_measure is None: invar["area"] *= batch_per_epoch # TODO find better way to do this dataset = DictPointwiseDataset( invar=invar, outvar=outvar, lambda_weighting=lambda_weighting, ) else: dataset = DictImportanceSampledPointwiseIterableDataset( invar=invar, outvar=outvar, batch_size=batch_size, importance_measure=importance_measure, lambda_weighting=lambda_weighting, shuffle=shuffle, ) # else sample points every batch else: # invar function invar_fn = lambda: geometry.sample_interior( batch_size, bounds=bounds, criteria=criteria, parameterization=parameterization, quasirandom=quasirandom, compute_sdf_derivatives=compute_sdf_derivatives, ) # outvar function outvar_fn = lambda invar: _compute_outvar(invar, outvar) # lambda weighting function lambda_weighting_fn = lambda invar, outvar: _compute_lambda_weighting( invar, outvar, lambda_weighting ) # make point dataloader dataset = ContinuousPointwiseIterableDataset( invar_fn=invar_fn, outvar_fn=outvar_fn, lambda_weighting_fn=lambda_weighting_fn, ) # initialize constraint super().__init__( nodes=nodes, dataset=dataset, loss=loss, batch_size=batch_size, shuffle=shuffle, drop_last=True, num_workers=num_workers, ) class IntegralConstraint(Constraint): """ Base class for all Integral Constraints """ def save_batch(self, filename): pass # sample batch invar, true_outvar, lambda_weighting = next(self.dataloader) invar = Constraint._set_device(invar, device=self.device, requires_grad=True) # rename values and save batch to vtk file TODO clean this up after graph unroll stuff for i in range(self.batch_size): save_var = { key: value[i].cpu().detach().numpy() for key, value in invar.items() } var_to_polyvtk(save_var, filename + "_batch_" + str(i)) def load_data(self): # get train points from dataloader invar, true_outvar, lambda_weighting = next(self.dataloader) self._input_vars = Constraint._set_device( invar, device=self.device, requires_grad=True ) self._target_vars = Constraint._set_device(true_outvar, device=self.device) self._lambda_weighting = Constraint._set_device( lambda_weighting, device=self.device ) def load_data_static(self): if self._input_vars is None: # Default loading if vars not allocated self.load_data() else: # get train points from dataloader invar, true_outvar, lambda_weighting = next(self.dataloader) # Set grads to false here for inputs, static var has allocation already input_vars = Constraint._set_device( invar, device=self.device, requires_grad=False ) target_vars = Constraint._set_device(true_outvar, device=self.device) lambda_weighting = Constraint._set_device( lambda_weighting, device=self.device ) for key in input_vars.keys(): self._input_vars[key].data.copy_(input_vars[key]) for key in target_vars.keys(): self._target_vars[key].copy_(target_vars[key]) for key in lambda_weighting.keys(): self._lambda_weighting[key].copy_(lambda_weighting[key]) @property def output_vars(self) -> Dict[str, Tensor]: return self._output_vars @output_vars.setter def output_vars(self, data: Dict[str, Tensor]): self._output_vars = {} for output in self.output_names: self._output_vars[str(output)] = data[str(output)] def forward(self): # compute pred outvar self._output_vars = self.model(self._input_vars) def loss(self, step: int) -> Dict[str, torch.Tensor]: if self._output_vars is None: logger.warn("Calling loss without forward call") return {} # split for individual integration list_invar, list_pred_outvar, list_true_outvar, list_lambda_weighting = ( [], [], [], [], ) for i in range(self.batch_size): list_invar.append( {key: value[i] for key, value in self._input_vars.items()} ) list_pred_outvar.append( {key: value[i] for key, value in self._output_vars.items()} ) list_true_outvar.append( {key: value[i] for key, value in self._target_vars.items()} ) list_lambda_weighting.append( {key: value[i] for key, value in self._lambda_weighting.items()} ) # compute integral losses losses = self._loss( list_invar, list_pred_outvar, list_true_outvar, list_lambda_weighting, step ) return losses class IntegralBoundaryConstraint(IntegralConstraint): """ Integral Constraint applied to boundary/perimeter/surface of geometry. For example, in 3D this will create a constraint on the surface of the given geometry. Parameters ---------- nodes : List[Node] List of Modulus Nodes to unroll graph with. geometry : Geometry Modulus `Geometry` to apply the constraint with. outvar : Dict[str, Union[int, float, sp.Basic]] A dictionary of SymPy Symbols/Expr, floats or int. This is used to describe the constraint. For example, `outvar={'u': 0}` would specify the integral of `'u'` to be zero. batch_size : int Number of integrals to apply. integral_batch_size : int Batch sized used in the Monte Carlo integration to compute the integral. criteria : Union[sp.basic, True] SymPy criteria function specifies to only integrate areas that satisfy this criteria. For example, if `criteria=sympy.Symbol('x')>0` then only areas that have positive `'x'` values will be integrated. lambda_weighting : Dict[str, Union[int, float, sp.Basic]] = None The weighting of the constraint. For example, `lambda_weighting={'lambda_u': 2.0}` would weight the integral constraint by `2.0`. parameterization : Union[Parameterization, None] This allows adding parameterization or additional inputs. fixed_dataset : bool = True If True then the points sampled for this constraint are done right when initialized and fixed. If false then the points are continually resampled. batch_per_epoch : int = 100 If `fixed_dataset=True` then the total number of integrals generated to apply constraint on is `total_nr_integrals=batch_per_epoch*batch_size`. quasirandom : bool = False If true then sample the points using the Halton sequence. num_workers : int Number of worker used in fetching data. loss : Loss Modulus `Loss` module that defines the loss type, (e.g. L2, L1, ...). shuffle : bool, optional Randomly shuffle examples in dataset every epoch, by default True """ def __init__( self, nodes: List[Node], geometry: Geometry, outvar: Dict[str, Union[int, float, sp.Basic]], batch_size: int, integral_batch_size: int, criteria: Union[sp.Basic, Callable, None] = None, lambda_weighting: Dict[str, Union[int, float, sp.Basic]] = None, parameterization: Union[Parameterization, None] = None, fixed_dataset: bool = True, batch_per_epoch: int = 100, quasirandom: bool = False, num_workers: int = 0, loss: Loss = IntegralLossNorm(), shuffle: bool = True, ): # convert dict to parameterization if needed if parameterization is None: parameterization = geometry.parameterization elif isinstance(parameterization, dict): parameterization = Parameterization(parameterization) # Fixed number of integral examples if fixed_dataset: # sample geometry to generate integral batchs list_invar = [] list_outvar = [] list_lambda_weighting = [] for i in range(batch_size * batch_per_epoch): # sample parameter ranges if parameterization: specific_param_ranges = parameterization.sample(1) else: specific_param_ranges = {} # sample boundary invar = geometry.sample_boundary( integral_batch_size, criteria=criteria, parameterization=Parameterization( { sp.Symbol(key): float(value) for key, value in specific_param_ranges.items() } ), quasirandom=quasirandom, ) # compute outvar if ( not specific_param_ranges ): # TODO this can be removed after a np_lambdify rewrite specific_param_ranges = {"_": next(iter(invar.values()))[0:1]} outvar_star = _compute_outvar(specific_param_ranges, outvar) # set lambda weighting lambda_weighting_star = _compute_lambda_weighting( specific_param_ranges, outvar, lambda_weighting ) # store samples list_invar.append(invar) list_outvar.append(outvar_star) list_lambda_weighting.append(lambda_weighting_star) # make dataset of integral planes dataset = ListIntegralDataset( list_invar=list_invar, list_outvar=list_outvar, list_lambda_weighting=list_lambda_weighting, ) # Continuous sampling else: # sample parameter ranges if parameterization: param_ranges_fn = lambda: parameterization.sample(1) else: param_ranges_fn = lambda: {} # invar function invar_fn = lambda param_range: geometry.sample_boundary( integral_batch_size, criteria=criteria, parameterization=Parameterization( {sp.Symbol(key): float(value) for key, value in param_range.items()} ), quasirandom=quasirandom, ) # outvar function outvar_fn = lambda param_range: _compute_outvar(param_range, outvar) # lambda weighting function lambda_weighting_fn = lambda param_range, outvar: _compute_lambda_weighting( param_range, outvar, lambda_weighting ) # make dataset of integral planes dataset = ContinuousIntegralIterableDataset( invar_fn=invar_fn, outvar_fn=outvar_fn, batch_size=batch_size, lambda_weighting_fn=lambda_weighting_fn, param_ranges_fn=param_ranges_fn, ) self.batch_size = batch_size # initialize constraint super().__init__( nodes=nodes, dataset=dataset, loss=loss, batch_size=batch_size, shuffle=shuffle, drop_last=True, num_workers=num_workers, ) class VariationalConstraint(Constraint): """ Base class for all Variational Constraints. B(u, v, g, dom) = \\int_{dom} (F(u, v) - g*v) dx = 0, where F is an operator, g is a given function/data, v is the test function. loss of variational = B1(u1, v1, g1, dom1) + B2(u2, v2, g2, dom2) + ... """ def __init__( self, nodes: List[Node], datasets: Dict[str, DictVariationalDataset], batch_sizes: Dict[str, int], loss: Loss = PointwiseLossNorm(), shuffle: bool = True, drop_last: bool = True, num_workers: int = 0, ): # Get DDP manager self.manager = DistributedManager() self.device = self.manager.device if not drop_last and self.manager.cuda_graphs: logger.info("drop_last must be true when using cuda graphs") drop_last = True # make dataloader from dataset self.data_loaders = {} invar_keys = [] outvar_keys = [] for name in datasets: self.data_loaders[name] = iter( Constraint.get_dataloader( dataset=datasets[name], batch_size=batch_sizes[name], shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, ) ) invar_keys = invar_keys + datasets[name].invar_keys outvar_keys = outvar_keys + datasets[name].outvar_keys # construct model from nodes self.model = Graph( nodes, Key.convert_list(list(set(invar_keys))), Key.convert_list(list(set(outvar_keys))), ) self.manager = DistributedManager() self.device = self.manager.device self.model.to(self.device) if self.manager.distributed: # https://pytorch.org/docs/master/notes/cuda.html#id5 s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): self.model = DistributedDataParallel( self.model, device_ids=[self.manager.local_rank], output_device=self.device, broadcast_buffers=self.manager.broadcast_buffers, find_unused_parameters=self.manager.find_unused_parameters, process_group=self.manager.group( "data_parallel" ), # None by default ) torch.cuda.current_stream().wait_stream(s) self._input_names = Key.convert_list(list(set(invar_keys))) self._output_names = Key.convert_list(list(set(outvar_keys))) self._input_vars = None self._target_vars = None self._lambda_weighting = None # put loss on device self._loss = loss.to(self.device) def save_batch(self, filename): # sample batch for name, data_loader in self.data_loaders.items(): invar = Constraint._set_device( next(data_loader), device=self.device, requires_grad=True ) # If using DDP, strip out collective stuff to prevent deadlocks # This only works either when one process alone calls in to save_batch # or when multiple processes independently save data if hasattr(self.model, "module"): modl = self.model.module else: modl = self.model # compute pred outvar outvar = modl(invar) named_outvar = { "pred_" + key: value.cpu().detach().numpy() for key, value in outvar.items() } save_var = { **{key: value.cpu().detach().numpy() for key, value in invar.items()}, **named_outvar, } var_to_polyvtk(save_var, filename + "_" + name) def load_data(self): self._input_vars = {} self._output_vars = {} for name, data_loader in self.data_loaders.items(): # get train points from dataloader invar = next(data_loader) self._input_vars[name] = Constraint._set_device( invar, device=self.device, requires_grad=True ) def load_data_static(self): if self._input_vars is None: # Default loading if vars not allocated self.load_data() else: for name, data_loader in self.data_loaders.items(): # get train points from dataloader invar = next(data_loader) # Set grads to false here for inputs, static var has allocation already input_vars = Constraint._set_device( invar, device=self.device, requires_grad=False ) for key in input_vars.keys(): self._input_vars[name][key].data.copy_(input_vars[key]) self._input_vars[name] = Constraint._set_device( invar, device=self.device, requires_grad=True ) def forward(self): # compute pred outvar for name in self._input_vars.keys(): self._output_vars[name] = self.model(self._input_vars[name]) def loss(self, step): # compute loss losses = self._loss( list(self._input_vars.values()), list(self._output_vars.values()), step ) return losses class VariationalDomainConstraint(VariationalConstraint): """ Simple Variational Domain Constraint with a single geometry that represents the domain. TODO add comprehensive doc string after refactor """ def __init__( self, nodes: List[Node], geometry: Geometry, outvar_names: List[str], boundary_batch_size: int, interior_batch_size: int, interior_bounds: Dict[sp.Basic, Tuple[float, float]] = None, boundary_criteria: Union[sp.Basic, Callable, None] = None, interior_criteria: Union[sp.Basic, Callable, None] = None, parameterization: Union[Parameterization, None] = None, batch_per_epoch: int = 1000, quasirandom: bool = False, num_workers: int = 0, loss: Loss = PointwiseLossNorm(), shuffle: bool = True, ): # sample boundary invar = geometry.sample_boundary( boundary_batch_size * batch_per_epoch, criteria=boundary_criteria, parameterization=parameterization, quasirandom=quasirandom, ) invar["area"] *= batch_per_epoch # make variational boundary dataset dataset_boundary = DictVariationalDataset( invar=invar, outvar_names=outvar_names, ) # sample interior invar = geometry.sample_interior( interior_batch_size * batch_per_epoch, bounds=interior_bounds, criteria=interior_criteria, parameterization=parameterization, quasirandom=quasirandom, ) invar["area"] *= batch_per_epoch # make variational interior dataset dataset_interior = DictVariationalDataset( invar=invar, outvar_names=outvar_names, ) datasets = {"boundary": dataset_boundary, "interior": dataset_interior} batch_sizes = {"boundary": boundary_batch_size, "interior": interior_batch_size} # initialize constraint super().__init__( nodes=nodes, datasets=datasets, batch_sizes=batch_sizes, loss=loss, shuffle=shuffle, drop_last=True, num_workers=num_workers, ) class DeepONetConstraint(PointwiseConstraint): """ Base DeepONet Constraint class for all DeepONets """ def save_batch(self, filename): # sample batch invar, true_outvar, lambda_weighting = next(self.dataloader) invar = Constraint._set_device(invar, device=self.device, requires_grad=True) true_outvar = Constraint._set_device(true_outvar, device=self.device) lambda_weighting = Constraint._set_device(lambda_weighting, device=self.device) # If using DDP, strip out collective stuff to prevent deadlocks # This only works either when one process alone calls in to save_batch # or when multiple processes independently save data if hasattr(self.model, "module"): modl = self.model.module else: modl = self.model # compute pred outvar pred_outvar = modl(invar) # rename values and save batch to vtk file TODO clean this up after graph unroll stuff named_lambda_weighting = { "lambda_" + key: value for key, value in lambda_weighting.items() } named_true_outvar = {"true_" + key: value for key, value in true_outvar.items()} named_pred_outvar = {"pred_" + key: value for key, value in pred_outvar.items()} save_var = { **{key: value for key, value in invar.items()}, **named_true_outvar, **named_pred_outvar, **named_lambda_weighting, } save_var = { key: value.cpu().detach().numpy() for key, value in save_var.items() } np.savez_compressed(filename + ".npz", **save_var) @classmethod def from_numpy( cls, nodes: List[Node], invar: Dict[str, np.ndarray], outvar: Dict[str, np.ndarray], batch_size: int, lambda_weighting: Dict[str, np.ndarray] = None, loss: Loss = PointwiseLossNorm(), shuffle: bool = True, drop_last: bool = True, num_workers: int = 0, ): """ Create custom DeepONet constraint from numpy arrays. Parameters ---------- nodes : List[Node] List of Modulus Nodes to unroll graph with. invar : Dict[str, np.ndarray (N, 1)] Dictionary of numpy arrays as input. outvar : Dict[str, np.ndarray (N, 1)] Dictionary of numpy arrays to enforce constraint on. batch_size : int Batch size used in training. lambda_weighting : Dict[str, np.ndarray (N, 1)] Dictionary of numpy arrays to pointwise weight losses. Default is ones. loss : Loss Modulus `Loss` module that defines the loss type, (e.g. L2, L1, ...). shuffle : bool, optional Randomly shuffle examples in dataset every epoch, by default True drop_last : bool, optional Drop last mini-batch if dataset not fully divisible but batch_size, by default False num_workers : int Number of worker used in fetching data. """ # make point dataset dataset = DictPointwiseDataset( invar=invar, outvar=outvar, lambda_weighting=lambda_weighting, ) return cls( nodes=nodes, dataset=dataset, loss=loss, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, )
modulus-sym-main
modulus/sym/domain/constraint/continuous.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Modulus main config """ from platform import architecture import torch import logging from dataclasses import dataclass, field from hydra.core.config_store import ConfigStore from hydra.conf import RunDir, HydraConf from omegaconf import MISSING, SI from typing import List, Any from modulus.sym.constants import JIT_PYTORCH_VERSION from packaging import version from .loss import LossConf from .optimizer import OptimizerConf from .pde import PDEConf from .scheduler import SchedulerConf from .training import TrainingConf, StopCriterionConf from .profiler import ProfilerConf from .hydra import default_hydra logger = logging.getLogger(__name__) @dataclass class ModulusConfig: # General parameters network_dir: str = "." initialization_network_dir: str = "" save_filetypes: str = "vtk" summary_histograms: bool = False jit: bool = version.parse(torch.__version__) >= version.parse(JIT_PYTORCH_VERSION) jit_use_nvfuser: bool = True jit_arch_mode: str = "only_activation" jit_autograd_nodes: bool = False cuda_graphs: bool = True cuda_graph_warmup: int = 20 find_unused_parameters: bool = False broadcast_buffers: bool = False device: str = "" debug: bool = False run_mode: str = "train" arch: Any = MISSING models: Any = MISSING # List of models training: TrainingConf = MISSING stop_criterion: StopCriterionConf = MISSING loss: LossConf = MISSING optimizer: OptimizerConf = MISSING scheduler: SchedulerConf = MISSING batch_size: Any = MISSING profiler: ProfilerConf = MISSING hydra: Any = field(default_factory=lambda: default_hydra) # User custom parameters that are not used internally in modulus custom: Any = MISSING default_defaults = [ {"training": "default_training"}, {"graph": "default"}, {"stop_criterion": "default_stop_criterion"}, {"profiler": "nvtx"}, {"override hydra/job_logging": "info_logging"}, {"override hydra/launcher": "basic"}, {"override hydra/help": "modulus_help"}, {"override hydra/callbacks": "default_callback"}, ] @dataclass class DefaultModulusConfig(ModulusConfig): # Core defaults # Can over-ride default with "override" hydra command defaults: List[Any] = field(default_factory=lambda: default_defaults) # Modulus config for debugging debug_defaults = [ {"training": "default_training"}, {"graph": "default"}, {"stop_criterion": "default_stop_criterion"}, {"profiler": "nvtx"}, {"override hydra/job_logging": "debug_logging"}, {"override hydra/help": "modulus_help"}, {"override hydra/callbacks": "default_callback"}, ] @dataclass class DebugModulusConfig(ModulusConfig): # Core defaults # Can over-ride default with "override" hydra command defaults: List[Any] = field(default_factory=lambda: debug_defaults) debug: bool = True # Modulus config with experimental features (use caution) experimental_defaults = [ {"training": "default_training"}, {"graph": "default"}, {"stop_criterion": "default_stop_criterion"}, {"profiler": "nvtx"}, {"override hydra/job_logging": "info_logging"}, {"override hydra/launcher": "basic"}, {"override hydra/help": "modulus_help"}, {"override hydra/callbacks": "default_callback"}, ] @dataclass class ExperimentalModulusConfig(ModulusConfig): # Core defaults # Can over-ride default with "override" hydra command defaults: List[Any] = field(default_factory=lambda: experimental_defaults) pde: PDEConf = MISSING def register_modulus_configs() -> None: if not torch.__version__ == JIT_PYTORCH_VERSION: logger.warn( f"TorchScript default is being turned off due to PyTorch version mismatch." ) cs = ConfigStore.instance() cs.store( name="modulus_default", node=DefaultModulusConfig, ) cs.store( name="modulus_debug", node=DebugModulusConfig, ) cs.store( name="modulus_experimental", node=ExperimentalModulusConfig, )
modulus-sym-main
modulus/sym/hydra/config.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Supported Modulus graph configs """ import torch from dataclasses import dataclass from hydra.core.config_store import ConfigStore from omegaconf import MISSING @dataclass class GraphConf: func_arch: bool = MISSING func_arch_allow_partial_hessian: bool = MISSING @dataclass class DefaultGraphConf(GraphConf): func_arch: bool = False func_arch_allow_partial_hessian: bool = True def register_graph_configs() -> None: cs = ConfigStore.instance() cs.store( group="graph", name="default", node=DefaultGraphConf, )
modulus-sym-main
modulus/sym/hydra/graph.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Architecture/Model configs """ from dataclasses import dataclass, field from hydra.core.config_store import ConfigStore from omegaconf import MISSING, SI, II from typing import Any, Union, List, Dict, Tuple @dataclass class ModelConf: arch_type: str = MISSING input_keys: Any = MISSING output_keys: Any = MISSING detach_keys: Any = MISSING scaling: Any = None @dataclass class AFNOConf(ModelConf): arch_type: str = "afno" img_shape: Tuple[int] = MISSING patch_size: int = 16 embed_dim: int = 256 depth: int = 4 num_blocks: int = 8 @dataclass class DistributedAFNOConf(ModelConf): arch_type: str = "distributed_afno" img_shape: Tuple[int] = MISSING patch_size: int = 16 embed_dim: int = 256 depth: int = 4 num_blocks: int = 8 channel_parallel_inputs: bool = False channel_parallel_outputs: bool = False @dataclass class DeepOConf(ModelConf): arch_type: str = "deeponet" # branch_net: Union[Arch, str], # trunk_net: Union[Arch, str], trunk_dim: Any = None # Union[None, int] branch_dim: Any = None # Union[None, int] @dataclass class FNOConf(ModelConf): arch_type: str = "fno" dimension: int = MISSING # decoder_net: Arch nr_fno_layers: int = 4 fno_modes: Any = 16 # Union[int, List[int]] padding: int = 8 padding_type: str = "constant" activation_fn: str = "gelu" coord_features: bool = True @dataclass class FourierConf(ModelConf): arch_type: str = "fourier" frequencies: Any = "('axis', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" frequencies_params: Any = "('axis', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" activation_fn: str = "silu" layer_size: int = 512 nr_layers: int = 6 skip_connections: bool = False weight_norm: bool = True adaptive_activations: bool = False @dataclass class FullyConnectedConf(ModelConf): arch_type: str = "fully_connected" layer_size: int = 512 nr_layers: int = 6 skip_connections: bool = False activation_fn: str = "silu" adaptive_activations: bool = False weight_norm: bool = True @dataclass class ConvFullyConnectedConf(ModelConf): arch_type: str = "conv_fully_connected" layer_size: int = 512 nr_layers: int = 6 skip_connections: bool = False activation_fn: str = "silu" adaptive_activations: bool = False weight_norm: bool = True @dataclass class FusedMLPConf(ModelConf): arch_type: str = "fused_fully_connected" layer_size: int = 128 nr_layers: int = 6 activation_fn: str = "sigmoid" @dataclass class FusedFourierNetConf(ModelConf): arch_type: str = "fused_fourier" layer_size: int = 128 nr_layers: int = 6 activation_fn: str = "sigmoid" n_frequencies: int = 12 @dataclass class FusedGridEncodingNetConf(ModelConf): arch_type: str = "fused_hash_encoding" layer_size: int = 128 nr_layers: int = 6 activation_fn: str = "sigmoid" indexing: str = "Hash" n_levels: int = 16 n_features_per_level: int = 2 log2_hashmap_size: int = 19 base_resolution: int = 16 per_level_scale: float = 2.0 interpolation: str = "Smoothstep" @dataclass class MultiresolutionHashNetConf(ModelConf): arch_type: str = "hash_encoding" layer_size: int = 64 nr_layers: int = 3 skip_connections: bool = False weight_norm: bool = True adaptive_activations: bool = False bounds: Any = "[(1.0, 1.0), (1.0, 1.0)]" nr_levels: int = 16 nr_features_per_level: int = 2 log2_hashmap_size: int = 19 base_resolution: int = 2 finest_resolution: int = 32 @dataclass class HighwayFourierConf(ModelConf): arch_type: str = "highway_fourier" frequencies: Any = "('axis', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" frequencies_params: Any = "('axis', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" activation_fn: str = "silu" layer_size: int = 512 nr_layers: int = 6 skip_connections: bool = False weight_norm: bool = True adaptive_activations: bool = False transform_fourier_features: bool = True project_fourier_features: bool = False @dataclass class ModifiedFourierConf(ModelConf): arch_type: str = "modified_fourier" frequencies: Any = "('axis', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" frequencies_params: Any = "('axis', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" activation_fn: str = "silu" layer_size: int = 512 nr_layers: int = 6 skip_connections: bool = False weight_norm: bool = True adaptive_activations: bool = False @dataclass class MultiplicativeFilterConf(ModelConf): arch_type: str = "multiplicative_fourier" layer_size: int = 512 nr_layers: int = 6 skip_connections: bool = False activation_fn: str = "identity" filter_type: str = "fourier" weight_norm: bool = True input_scale: float = 10.0 gabor_alpha: float = 6.0 gabor_beta: float = 1.0 normalization: Any = ( None # Change to Union[None, Dict[str, Tuple[float, float]]] when supported ) @dataclass class MultiscaleFourierConf(ModelConf): arch_type: str = "multiscale_fourier" frequencies: Any = field(default_factory=lambda: [32]) frequencies_params: Any = None activation_fn: str = "silu" layer_size: int = 512 nr_layers: int = 6 skip_connections: bool = False weight_norm: bool = True adaptive_activations: bool = False @dataclass class Pix2PixConf(ModelConf): arch_type: str = "pix2pix" dimension: int = MISSING conv_layer_size: int = 64 n_downsampling: int = 3 n_blocks: int = 3 scaling_factor: int = 1 batch_norm: bool = True padding_type: str = "reflect" activation_fn: str = "relu" @dataclass class SirenConf(ModelConf): arch_type: str = "siren" layer_size: int = 512 nr_layers: int = 6 first_omega: float = 30.0 omega: float = 30.0 normalization: Any = ( None # Change to Union[None, Dict[str, Tuple[float, float]]] when supported ) @dataclass class SRResConf(ModelConf): arch_type: str = "super_res" large_kernel_size: int = 7 small_kernel_size: int = 3 conv_layer_size: int = 32 n_resid_blocks: int = 8 scaling_factor: int = 8 activation_fn: str = "prelu" def register_arch_configs() -> None: # Information regarding multiple config groups # https://hydra.cc/docs/next/patterns/select_multiple_configs_from_config_group/ cs = ConfigStore.instance() cs.store( group="arch", name="fused_fully_connected", node={"fused_fully_connected": FusedMLPConf()}, ) cs.store( group="arch", name="fused_fourier", node={"fused_fourier": FusedFourierNetConf()}, ) cs.store( group="arch", name="fused_hash_encoding", node={"fused_hash_encoding": FusedGridEncodingNetConf()}, ) cs.store( group="arch", name="fully_connected", node={"fully_connected": FullyConnectedConf()}, ) cs.store( group="arch", name="conv_fully_connected", node={"conv_fully_connected": ConvFullyConnectedConf()}, ) cs.store( group="arch", name="fourier", node={"fourier": FourierConf()}, ) cs.store( group="arch", name="highway_fourier", node={"highway_fourier": HighwayFourierConf()}, ) cs.store( group="arch", name="modified_fourier", node={"modified_fourier": ModifiedFourierConf()}, ) cs.store( group="arch", name="multiplicative_fourier", node={"multiplicative_fourier": MultiplicativeFilterConf()}, ) cs.store( group="arch", name="multiscale_fourier", node={"multiscale_fourier": MultiscaleFourierConf()}, ) cs.store( group="arch", name="siren", node={"siren": SirenConf()}, ) cs.store( group="arch", name="hash_encoding", node={"hash_encoding": MultiresolutionHashNetConf()}, ) cs.store( group="arch", name="fno", node={"fno": FNOConf()}, ) cs.store( group="arch", name="afno", node={"afno": AFNOConf()}, ) cs.store( group="arch", name="distributed_afno", node={"distributed_afno": DistributedAFNOConf()}, ) cs.store( group="arch", name="deeponet", node={"deeponet": DeepOConf()}, ) cs.store( group="arch", name="super_res", node={"super_res": SRResConf()}, ) cs.store( group="arch", name="pix2pix", node={"pix2pix": Pix2PixConf()}, ) # Schemas for extending models # Info: https://hydra.cc/docs/next/patterns/extending_configs/ cs.store( group="arch", name="fully_connected_cfg", node=FullyConnectedConf, ) cs.store( group="arch", name="conv_fully_connected_cfg", node=ConvFullyConnectedConf, ) cs.store( group="arch", name="fused_mlp_cfg", node=FusedMLPConf, ) cs.store( group="arch", name="fused_fourier_net_cfg", node=FusedFourierNetConf, ) cs.store( group="arch", name="fused_grid_encoding_net_cfg", node=FusedGridEncodingNetConf, ) cs.store( group="arch", name="fourier_cfg", node=FourierConf, ) cs.store( group="arch", name="highway_fourier_cfg", node=HighwayFourierConf, ) cs.store( group="arch", name="modified_fourier_cfg", node=ModifiedFourierConf, ) cs.store( group="arch", name="multiplicative_fourier_cfg", node=MultiplicativeFilterConf, ) cs.store( group="arch", name="multiscale_fourier_cfg", node=MultiscaleFourierConf, ) cs.store( group="arch", name="siren_cfg", node=SirenConf, ) cs.store( group="arch", name="hash_net_cfg", node=MultiresolutionHashNetConf, ) cs.store( group="arch", name="fno_cfg", node=FNOConf, ) cs.store( group="arch", name="afno_cfg", node=AFNOConf, ) cs.store( group="arch", name="distributed_afno_cfg", node=DistributedAFNOConf, ) cs.store( group="arch", name="deeponet_cfg", node=DeepOConf, ) cs.store( group="arch", name="super_res_cfg", node=SRResConf, ) cs.store( group="arch", name="pix2pix_cfg", node=Pix2PixConf, )
modulus-sym-main
modulus/sym/hydra/arch.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .utils import ( instantiate_arch, instantiate_optim, instantiate_agg, instantiate_sched, to_yaml, add_hydra_run_path, to_absolute_path, ) from .config import ModulusConfig
modulus-sym-main
modulus/sym/hydra/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Hydra related configs """ import pathlib from dataclasses import dataclass, field from hydra.core.config_store import ConfigStore from hydra.conf import RunDir from omegaconf import OmegaConf, MISSING, SI, II from typing import Any, Union, List, Dict @dataclass class SimpleFormat: format: str = "[%(asctime)s] - %(message)s" datefmt: str = "%H:%M:%S" @dataclass class DebugFormat: format: str = "[%(levelname)s][%(asctime)s][%(module)s] - %(message)s" datefmt: str = "%Y-%m-%d %H:%M:%S" info_console_handler = { "class": "logging.StreamHandler", "formatter": "simple", "stream": "ext://sys.stdout", } @dataclass class DefaultLogging: version: int = 1 formatters: Any = field(default_factory=lambda: {"simple": SimpleFormat}) handlers: Any = field(default_factory=lambda: {"console": info_console_handler}) root: Any = field(default_factory=lambda: {"handlers": ["console"]}) disable_existing_loggers: bool = False level: int = ( 20 # CRITICAL: 50, ERROR: 40, WARNING: 30, INFO: 20, DEBUG: 10, NOTSET: 0 ) debug_console_handler = { "class": "logging.StreamHandler", "formatter": "debug", "stream": "ext://sys.stdout", } @dataclass class DebugLogging: version: int = 1 formatters: Any = field(default_factory=lambda: {"debug": DebugFormat}) handlers: Any = field(default_factory=lambda: {"console": debug_console_handler}) root: Any = field(default_factory=lambda: {"handlers": ["console"]}) disable_existing_loggers: bool = False level: int = ( 0 # CRITICAL: 50, ERROR: 40, WARNING: 30, INFO: 20, DEBUG: 10, NOTSET: 0 ) # Hydra defaults group parameters for modulus file_path = pathlib.Path(__file__).parent.resolve() modulus_help = OmegaConf.load(file_path / "help.yaml") # Standard Hydra parameters default_hydra = { "run": {"dir": SI("outputs/${hydra:job.override_dirname}/${hydra:job.name}")}, "sweep": {"dir": "multirun", "subdir": SI("${hydra.job.override_dirname}")}, "verbose": SI("${debug}"), } def register_hydra_configs() -> None: cs = ConfigStore.instance() cs.store( group="hydra/job_logging", name="info_logging", node=DefaultLogging, ) cs.store( group="hydra/job_logging", name="debug_logging", node=DebugLogging, ) cs.store( group="hydra/help", name="modulus_help", node=modulus_help, )
modulus-sym-main
modulus/sym/hydra/hydra.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Place holder for evaluation metrics """ def register_metric_configs() -> None: pass
modulus-sym-main
modulus/sym/hydra/metric.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PDE configs for here Architecture params need to be updated to more primative focused This file is largely a place folder right now """ from dataclasses import dataclass, field from hydra.core.config_store import ConfigStore from omegaconf import MISSING, SI, II from typing import Any, Union, List, Dict @dataclass class PDEConf: _target_: str = MISSING @dataclass class AdvectionDiffusionConf(PDEConf): _target_: str = "modulus.sym.eq.pdes.advection_diffusion.AdvectionDiffusion" T: str = "T" D: str = "D" Q: int = 0 rho: str = "rho" dim: int = 3 time: bool = False @dataclass class DiffusionConf(PDEConf): _target_: str = "modulus.sym.eq.pdes.diffusion.Diffusion" T: str = "T" D: str = "D" Q: int = 0 dim: int = 3 time: bool = False @dataclass class MaxwellFreqRealConf(PDEConf): _target_: str = "modulus.sym.eq.pdes.electromagnetic.MaxwellFreqReal" ux: str = "ux" uy: str = "uy" uz: str = "uz" k: float = 1.0 @dataclass class EnergyFluidConf(PDEConf): _target_: str = "modulus.sym.eq.pdes.energy_equation.EnergyFluid" cp: str = "cp" kappa: str = "kappa" rho: str = "rho" nu: str = "nu" visc_heating: bool = False dim: int = 3 time: bool = False @dataclass class LinearElasticityConf(PDEConf): _target_: str = "modulus.sym.eq.pdes.linear_elasticity.LinearElasticity" E = 10 nu = 0.3 lambda_ = None mu = None rho: int = 1 dim: int = 3 time: bool = False @dataclass class LinearElasticityPlaneConf(PDEConf): _target_: str = "modulus.sym.eq.pdes.linear_elasticity.LinearElasticityPlaneStress" E = 10 nu = 0.3 lambda_ = None mu = None rho: int = 1 time: bool = False @dataclass class NavierStokesConf(PDEConf): _target_: str = "modulus.sym.eq.pdes.navier_stokes.NavierStokes" nu = MISSING rho: float = 1 dim: int = 3 time: bool = True @dataclass class ZeroEquationConf(PDEConf): _target_: str = "modulus.sym.eq.pdes.turbulence_zero_eq.ZeroEquation" nu = MISSING rho: float = 1 dim: int = 3 time: bool = True @dataclass class WaveEquationConf(PDEConf): _target_: str = "modulus.sym.eq.pdes.wave_equation.WaveEquation" u = "u" c = "c" dim: int = 3 time: bool = True @dataclass class HelmholtzEquationConf(PDEConf): _target_: str = "modulus.sym.eq.pdes.wave_equation.HelmholtzEquation" u = MISSING K = MISSING dim: int = 3 def register_pde_configs() -> None: # TODO: Allow multiple pdes via multiple config groups # https://hydra.cc/docs/next/patterns/select_multiple_configs_from_config_group/ cs = ConfigStore.instance() cs.store( group="pde", name="advection-diffusion", node=AdvectionDiffusionConf, ) cs.store( group="pde", name="diffusion", node=DiffusionConf, ) cs.store( group="pde", name="maxwell-real", node=MaxwellFreqRealConf, ) cs.store( group="pde", name="energy-fluid", node=EnergyFluidConf, ) cs.store( group="pde", name="linear-elasticity", node=LinearElasticityConf, ) cs.store( group="pde", name="linear-elasticity-plane", node=LinearElasticityPlaneConf, ) cs.store( group="pde", name="navier-stokes", node=NavierStokesConf, ) cs.store( group="pde", name="zero-eq-turbulence", node=ZeroEquationConf, ) cs.store( group="pde", name="wave", node=WaveEquationConf, ) cs.store( group="pde", name="helmholtz", node=HelmholtzEquationConf, )
modulus-sym-main
modulus/sym/hydra/pde.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Supported Modulus loss aggregator configs """ import torch from dataclasses import dataclass from hydra.core.config_store import ConfigStore from omegaconf import MISSING from typing import Any @dataclass class LossConf: _target_: str = MISSING weights: Any = None @dataclass class AggregatorSumConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.Sum" @dataclass class AggregatorGradNormConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.GradNorm" alpha: float = 1.0 @dataclass class AggregatorResNormConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.ResNorm" alpha: float = 1.0 @dataclass class AggregatorHomoscedasticConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.HomoscedasticUncertainty" @dataclass class AggregatorLRAnnealingConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.LRAnnealing" update_freq: int = 1 alpha: float = 0.01 ref_key: Any = None # Change to Union[None, str] when supported by hydra eps: float = 1e-8 @dataclass class AggregatorSoftAdaptConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.SoftAdapt" eps: float = 1e-8 @dataclass class AggregatorRelobraloConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.Relobralo" alpha: float = 0.95 beta: float = 0.99 tau: float = 1.0 eps: float = 1e-8 @dataclass class NTKConf: use_ntk: bool = False save_name: Any = None # Union[str, None] run_freq: int = 1000 def register_loss_configs() -> None: cs = ConfigStore.instance() cs.store( group="loss", name="sum", node=AggregatorSumConf, ) cs.store( group="loss", name="grad_norm", node=AggregatorGradNormConf, ) cs.store( group="loss", name="res_norm", node=AggregatorResNormConf, ) cs.store( group="loss", name="homoscedastic", node=AggregatorHomoscedasticConf, ) cs.store( group="loss", name="lr_annealing", node=AggregatorLRAnnealingConf, ) cs.store( group="loss", name="soft_adapt", node=AggregatorSoftAdaptConf, ) cs.store( group="loss", name="relobralo", node=AggregatorRelobraloConf, )
modulus-sym-main
modulus/sym/hydra/loss.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import hydra import os import torch import logging import copy import pprint from termcolor import colored from pathlib import Path from omegaconf import DictConfig, OmegaConf, MISSING from typing import Optional, Any, Union, List from hydra._internal.utils import _run_hydra, get_args_parser from hydra.core.hydra_config import HydraConfig from hydra.utils import get_original_cwd from modulus.sym.key import Key from modulus.sym.models.arch import Arch from modulus.sym.distributed import DistributedManager from modulus.sym.models.utils import ModulusModels from modulus.sym.models.layers import Activation from .arch import ModelConf from .config import register_modulus_configs, ModulusConfig from .hydra import register_hydra_configs from .loss import register_loss_configs from .metric import register_metric_configs from .arch import register_arch_configs from .optimizer import register_optimizer_configs from .pde import register_pde_configs from .profiler import register_profiler_configs from .scheduler import register_scheduler_configs from .training import register_training_configs from .callbacks import register_callbacks_configs from .graph import register_graph_configs logger = logging.getLogger(__name__) def main(config_path: str, config_name: str = "config"): """Modified decorator for loading hydra configs in modulus See: https://github.com/facebookresearch/hydra/blob/main/hydra/main.py """ def register_decorator(func): @functools.wraps(func) def func_decorated(cfg_passthrough: Optional[DictConfig] = None) -> Any: # Register all modulus groups before calling hydra main register_hydra_configs() register_callbacks_configs() register_loss_configs() register_metric_configs() register_arch_configs() register_optimizer_configs() register_pde_configs() register_profiler_configs() register_scheduler_configs() register_training_configs() register_modulus_configs() register_graph_configs() # Set number of intraop torch CPU threads torch.set_num_threads(1) # TODO: define this as a hydra config somehow # Setup distributed process config DistributedManager.initialize() # Create model parallel process group model_parallel_size = os.getenv( "MODEL_PARALLEL_SIZE" ) # TODO: get this from config instead if model_parallel_size: # Create model parallel process group DistributedManager.create_process_subgroup( "model_parallel", int(model_parallel_size), verbose=True ) # Create data parallel process group for DDP allreduce DistributedManager.create_orthogonal_process_group( "data_parallel", "model_parallel", verbose=True ) # Pass through dict config if cfg_passthrough is not None: return func(cfg_passthrough) else: args_parser = get_args_parser() args = args_parser.parse_args() # multiple times (--multirun) _run_hydra( args=args_parser.parse_args(), args_parser=args_parser, task_function=func, config_path=config_path, config_name=config_name, ) return func_decorated return register_decorator def compose( config_name: Optional[str] = None, config_path: Optional[str] = None, overrides: List[str] = [], return_hydra_config: bool = False, job_name: Optional[str] = "app", caller_stack_depth: int = 2, ) -> DictConfig: """Internal Modulus config initializer and compose function. This is an alternative for initializing a Hydra config which should be used as a last ditch effort in cases where @modulus.main() cannot work. For more info see: https://hydra.cc/docs/advanced/compose_api/ Parameters ---------- config_name : str Modulus config name config_path : str Path to config file relative to the caller at location caller_stack_depth overrides : list of strings List of overrides return_hydra_config : bool Return the hydra options in the dict config job_name : string Name of program run instance caller_stack_depth : int Stack depth of this function call (needed for finding config relative to python). """ # Clear already initialized hydra hydra.core.global_hydra.GlobalHydra.instance().clear() hydra.initialize( config_path, job_name, caller_stack_depth, ) register_hydra_configs() register_callbacks_configs() register_loss_configs() register_metric_configs() register_arch_configs() register_optimizer_configs() register_pde_configs() register_profiler_configs() register_scheduler_configs() register_training_configs() register_modulus_configs() register_graph_configs() cfg = hydra.compose( config_name=config_name, overrides=overrides, return_hydra_config=return_hydra_config, ) return cfg def instantiate_arch( cfg: ModelConf, input_keys: Union[List[Key], None] = None, output_keys: Union[List[Key], None] = None, detach_keys: Union[List[Key], None] = None, verbose: bool = False, **kwargs, ) -> Arch: # Function for instantiating a modulus architecture with hydra assert hasattr( cfg, "arch_type" ), "Model configs are required to have an arch_type defined. \ Improper architecture supplied, please make sure config \ provided is a single arch config NOT the full hydra config!" try: # Convert to python dictionary model_cfg = OmegaConf.to_container(cfg, resolve=True) # Get model class beased on arch type modulus_models = ModulusModels() model_arch = modulus_models[model_cfg["arch_type"]] del model_cfg["arch_type"] # Add keys if present if not input_keys is None: model_cfg["input_keys"] = input_keys if not output_keys is None: model_cfg["output_keys"] = output_keys if not detach_keys is None: model_cfg["detach_keys"] = detach_keys # Add any additional kwargs for key, value in kwargs.items(): model_cfg[key] = value # Init model from config dictionary model, param = model_arch.from_config(model_cfg) # Verbose printing if verbose: pp = pprint.PrettyPrinter(indent=4) logger.info(f"Initialized models with parameters: \n") pp.pprint(param) except Exception as e: fail = colored(f"Failed to initialize architecture.\n {model_cfg}", "red") raise Exception(fail) from e return model def instantiate_optim( cfg: DictConfig, model: torch.nn.Module, verbose: bool = False ) -> torch.optim.Optimizer: # Function for instantiating an optimizer with hydra # Remove custom parameters used internally in modulus optim_cfg = copy.deepcopy(cfg.optimizer) del optim_cfg._params_ try: optimizer = hydra.utils.instantiate(optim_cfg, params=model.parameters()) except Exception as e: fail = colored("Failed to initialize optimizer: \n", "red") logger.error(fail + to_yaml(optim_cfg)) raise Exception(fail) from e if verbose: pp = pprint.PrettyPrinter(indent=4) logger.info(f"Initialized optimizer: \n") pp.pprint(optimizer) return optimizer def instantiate_sched( cfg: DictConfig, optimizer: torch.optim ) -> torch.optim.lr_scheduler: # Function for instantiating a scheduler with hydra sched_cfg = copy.deepcopy(cfg.scheduler) # Default is no scheduler, so just make fixed LR if sched_cfg is MISSING: sched_cfg = { "_target_": "torch.optim.lr_scheduler.ConstantLR", "factor": 1.0, } # Handle custom cases if sched_cfg._target_ == "custom": if "tf.ExponentialLR" in sched_cfg._name_: sched_cfg = { "_target_": "torch.optim.lr_scheduler.ExponentialLR", "gamma": sched_cfg.decay_rate ** (1.0 / sched_cfg.decay_steps), } else: logger.warn("Detected unsupported custom scheduler", sched_cfg) try: scheduler = hydra.utils.instantiate(sched_cfg, optimizer=optimizer) except Exception as e: fail = colored("Failed to initialize scheduler: \n", "red") logger.error(fail + to_yaml(sched_cfg)) raise Exception(fail) from e return scheduler def instantiate_agg(cfg: DictConfig, model: torch.nn.Module, num_losses: int = 1): # Function for instantiating a loss aggregator with hydra try: aggregator = hydra.utils.instantiate( cfg.loss, model, num_losses, _convert_="all", ) except Exception as e: fail = colored("Failed to initialize loss aggregator: \n", "red") logger.error(fail + to_yaml(cfg.loss)) raise Exception(fail) from e return aggregator def to_yaml(cfg: DictConfig): """Converges dict config into a YML string""" return OmegaConf.to_yaml(cfg) def add_hydra_run_path(path: Union[str, Path]) -> Path: """Prepends current hydra run path""" working_dir = Path(os.getcwd()) # Working directory only present with @modulus.main() if HydraConfig.initialized(): org_dir = Path(get_original_cwd()) hydra_dir = working_dir.relative_to(org_dir) / Path(path) else: hydra_dir = working_dir / Path(path) if isinstance(path, str): hydra_dir = str(hydra_dir) return hydra_dir def to_absolute_path(*args: Union[str, Path]): """Converts file path to absolute path based on run file location Modified from: https://github.com/facebookresearch/hydra/blob/main/hydra/utils.py """ out = () for path in args: p = Path(path) if not HydraConfig.initialized(): base = Path(os.getcwd()) else: ret = HydraConfig.get().runtime.cwd base = Path(ret) if p.is_absolute(): ret = p else: ret = base / p if isinstance(path, str): out = out + (str(ret),) else: out = out + (ret,) if len(args) == 1: out = out[0] return out
modulus-sym-main
modulus/sym/hydra/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Supported Modulus callback configs """ import torch import logging from dataclasses import dataclass from omegaconf import DictConfig from hydra.core.config_store import ConfigStore from hydra.experimental.callback import Callback from typing import Any from omegaconf import DictConfig, OmegaConf from modulus.sym.distributed import DistributedManager from modulus.sym.manager import JitManager, JitArchMode, GraphManager logger = logging.getLogger(__name__) class ModulusCallback(Callback): def on_job_start(self, config: DictConfig, **kwargs: Any) -> None: # Update dist manager singleton with config parameters manager = DistributedManager() manager.broadcast_buffers = config.broadcast_buffers manager.find_unused_parameters = config.find_unused_parameters manager.cuda_graphs = config.cuda_graphs # jit manager jit_manager = JitManager() jit_manager.init( config.jit, config.jit_arch_mode, config.jit_use_nvfuser, config.jit_autograd_nodes, ) # graph manager graph_manager = GraphManager() graph_manager.init( config.graph.func_arch, config.graph.func_arch_allow_partial_hessian, config.debug, ) # The FuncArch does not work with TorchScript at all, so we raise # a warning and disabled it. if config.graph.func_arch and jit_manager.enabled: jit_manager.enabled = False logger.warning("Disabling JIT because functorch does not work with it.") logger.info(jit_manager) logger.info(graph_manager) DefaultCallbackConfigs = DictConfig( { "modulus_callback": OmegaConf.create( { "_target_": "modulus.sym.hydra.callbacks.ModulusCallback", } ) } ) def register_callbacks_configs() -> None: cs = ConfigStore.instance() cs.store( group="hydra/callbacks", name="default_callback", node=DefaultCallbackConfigs, )
modulus-sym-main
modulus/sym/hydra/callbacks.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Supported optimizer configs """ import torch from dataclasses import dataclass, field from hydra.core.config_store import ConfigStore from typing import List, Any from omegaconf import MISSING @dataclass class OptimizerConf: _target_ = MISSING _params_: Any = field( default_factory=lambda: { "compute_gradients": "adam_compute_gradients", "apply_gradients": "adam_apply_gradients", } ) @dataclass class AdamConf(OptimizerConf): _target_: str = "torch.optim.Adam" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1e-8 weight_decay: float = 0 amsgrad: bool = False @dataclass class SGDConf(OptimizerConf): _target_: str = "torch.optim.SGD" lr: float = 1.0e-3 momentum: float = 1.0e-2 dampening: float = 0 weight_decay: float = 0 nesterov: bool = False @dataclass class AdahessianConf(OptimizerConf): _target_: str = "torch_optimizer.Adahessian" lr: float = 1.0e-1 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1e-4 weight_decay: float = 0.0 hessian_power: float = 1.0 _params_: Any = field( default_factory=lambda: { "compute_gradients": "adahess_compute_gradients", "apply_gradients": "adahess_apply_gradients", } ) @dataclass class BFGSConf(OptimizerConf): _target_: str = "torch.optim.LBFGS" lr: float = 1.0 max_iter: int = 1000 max_eval: Any = None tolerance_grad: float = 1e-7 tolerance_change: float = 1e-9 history_size: int = 100 line_search_fn: Any = None # Union[None, str] _params_: Any = field( default_factory=lambda: { "compute_gradients": "bfgs_compute_gradients", "apply_gradients": "bfgs_apply_gradients", } ) @dataclass class AdadeltaConf(OptimizerConf): _target_: str = "torch.optim.Adadelta" lr: float = 1.0 rho: float = 0.9 eps: float = 1e-6 weight_decay: float = 0 @dataclass class AdagradConf(OptimizerConf): _target_: str = "torch.optim.Adagrad" lr: float = 1.0e-2 lr_decay: float = 0 weight_decay: float = 0 initial_accumulator_value: float = 0 eps: float = 1e-10 @dataclass class AdamWConf(OptimizerConf): _target_: str = "torch.optim.AdamW" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1e-8 weight_decay: float = 0.01 amsgrad: bool = False @dataclass class SparseAdamConf(OptimizerConf): _target_: str = "torch.optim.SparseAdam" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1e-8 @dataclass class AdamaxConf(OptimizerConf): _target_: str = "torch.optim.Adamax" lr: float = 2.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1e-8 weight_decay: float = 0 @dataclass class ASGDConf(OptimizerConf): _target_: str = "torch.optim.ASGD" lr: float = 1.0e-2 lambd: float = 1.0e-4 alpha: float = 0.75 t0: float = 1000000.0 weight_decay: float = 0 @dataclass class NAdamConf(OptimizerConf): _target_: str = "torch.optim.NAdam" lr: float = 2.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1e-8 weight_decay: float = 0 momentum_decay: float = 0.004 @dataclass class RAdamConf(OptimizerConf): _target_: str = "torch.optim.RAdam" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1e-8 weight_decay: float = 0 @dataclass class RMSpropConf(OptimizerConf): _target_: str = "torch.optim.RMSprop" lr: float = 1.0e-2 alpha: float = 0.99 eps: float = 1e-8 weight_decay: float = 0 momentum: float = 0 centered: bool = False @dataclass class RpropConf(OptimizerConf): _target_: str = "torch.optim.Rprop" lr: float = 1.0e-2 etas: List[float] = field(default_factory=lambda: [0.5, 1.2]) step_sizes: List[float] = field(default_factory=lambda: [1.0e-6, 50]) @dataclass class A2GradExpConf(OptimizerConf): _target_: str = "torch_optimizer.A2GradExp" lr: float = 1e-2 # LR not support for optim, but needed to not fail schedulers beta: float = 10.0 lips: float = 10.0 @dataclass class A2GradIncConf(OptimizerConf): _target_: str = "torch_optimizer.A2GradInc" lr: float = 1e-2 # LR not support for optim, but needed to not fail schedulers beta: float = 10.0 lips: float = 10.0 @dataclass class A2GradUniConf(OptimizerConf): _target_: str = "torch_optimizer.A2GradUni" lr: float = 1e-2 # LR not support for optim, but needed to not fail schedulers beta: float = 10.0 lips: float = 10.0 @dataclass class AccSGDConf(OptimizerConf): _target_: str = "torch_optimizer.AccSGD" lr: float = 1.0e-3 kappa: float = 1000.0 xi: float = 10.0 small_const: float = 0.7 weight_decay: float = 0 @dataclass class AdaBeliefConf(OptimizerConf): _target_: str = "torch_optimizer.AdaBelief" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1.0e-3 weight_decay: float = 0 amsgrad: bool = False weight_decouple: bool = False fixed_decay: bool = False rectify: bool = False @dataclass class AdaBoundConf(OptimizerConf): _target_: str = "torch_optimizer.AdaBound" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) final_lr: float = 0.1 gamma: float = 1e-3 eps: float = 1e-8 weight_decay: float = 0 amsbound: bool = False @dataclass class AdaModConf(OptimizerConf): _target_: str = "torch_optimizer.AdaMod" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) beta3: float = 0.999 eps: float = 1e-8 weight_decay: float = 0 @dataclass class AdafactorConf(OptimizerConf): _target_: str = "torch_optimizer.Adafactor" lr: float = 1.0e-3 eps2: List[float] = field(default_factory=lambda: [1e-30, 1e-3]) clip_threshold: float = 1.0 decay_rate: float = -0.8 beta1: Any = None weight_decay: float = 0 scale_parameter: bool = True relative_step: bool = True warmup_init: bool = False @dataclass class AdamPConf(OptimizerConf): _target_: str = "torch_optimizer.AdamP" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1e-8 weight_decay: float = 0 delta: float = 0.1 wd_ratio: float = 0.1 @dataclass class AggMoConf(OptimizerConf): _target_: str = "torch_optimizer.AggMo" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.0, 0.9, 0.99]) weight_decay: float = 0 @dataclass class ApolloConf(OptimizerConf): _target_: str = "torch_optimizer.Apollo" lr: float = 1.0e-2 beta: float = 0.9 eps: float = 1e-4 warmup: int = 0 init_lr: float = 0.01 weight_decay: float = 0 @dataclass class DiffGradConf(OptimizerConf): _target_: str = "torch_optimizer.DiffGrad" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1e-8 weight_decay: float = 0 @dataclass class LambConf(OptimizerConf): _target_: str = "torch_optimizer.Lamb" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1e-8 weight_decay: float = 0 @dataclass class MADGRADConf(OptimizerConf): _target_: str = "torch_optimizer.MADGRAD" lr: float = 1.0e-2 momentum: float = 0.9 weight_decay: float = 0 eps: float = 1e-6 @dataclass class NovoGradConf(OptimizerConf): _target_: str = "torch_optimizer.NovoGrad" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1e-8 weight_decay: float = 0 grad_averaging: bool = False amsgrad: bool = False @dataclass class PIDConf(OptimizerConf): _target_: str = "torch_optimizer.PID" lr: float = 1.0e-3 momentum: float = 0 dampening: float = 0 weight_decay: float = 1e-2 integral: float = 5.0 derivative: float = 10.0 @dataclass class QHAdamConf(OptimizerConf): _target_: str = "torch_optimizer.QHAdam" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) nus: List[float] = field(default_factory=lambda: [1.0, 1.0]) weight_decay: float = 0 decouple_weight_decay: bool = False eps: float = 1e-8 @dataclass class QHMConf(OptimizerConf): _target_: str = "torch_optimizer.QHM" lr: float = 1.0e-3 momentum: float = 0 nu: float = 0.7 weight_decay: float = 1e-2 weight_decay_type: str = "grad" @dataclass class RangerConf(OptimizerConf): _target_: str = "torch_optimizer.Ranger" lr: float = 1.0e-3 alpha: float = 0.5 k: int = 6 N_sma_threshhold: int = 5 betas: List[float] = field(default_factory=lambda: [0.95, 0.999]) eps: float = 1e-5 weight_decay: float = 0 @dataclass class RangerQHConf(OptimizerConf): _target_: str = "torch_optimizer.RangerQH" lr: float = 1.0e-3 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) nus: List[float] = field(default_factory=lambda: [0.7, 1.0]) weight_decay: float = 0 k: int = 6 alpha: float = 0.5 decouple_weight_decay: bool = False eps: float = 1e-8 @dataclass class RangerVAConf(OptimizerConf): _target_: str = "torch_optimizer.RangerVA" lr: float = 1.0e-3 alpha: float = 0.5 k: int = 6 n_sma_threshhold: int = 5 betas: List[float] = field(default_factory=lambda: [0.95, 0.999]) eps: float = 1e-5 weight_decay: float = 0 amsgrad: bool = True transformer: str = "softplus" smooth: int = 50 grad_transformer: str = "square" @dataclass class SGDPConf(OptimizerConf): _target_: str = "torch_optimizer.SGDP" lr: float = 1.0e-3 momentum: float = 0 dampening: float = 0 weight_decay: float = 1e-2 nesterov: bool = False delta: float = 0.1 wd_ratio: float = 0.1 @dataclass class SGDWConf(OptimizerConf): _target_: str = "torch_optimizer.SGDW" lr: float = 1.0e-3 momentum: float = 0 dampening: float = 0 weight_decay: float = 1e-2 nesterov: bool = False @dataclass class SWATSConf(OptimizerConf): _target_: str = "torch_optimizer.SWATS" lr: float = 1.0e-1 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1e-3 weight_decay: float = 0 amsgrad: bool = False nesterov: bool = False @dataclass class ShampooConf(OptimizerConf): _target_: str = "torch_optimizer.Shampoo" lr: float = 1.0e-1 momentum: float = 0 weight_decay: float = 0 epsilon: float = 1e-4 update_freq: int = 1 @dataclass class YogiConf(OptimizerConf): _target_: str = "torch_optimizer.Yogi" lr: float = 1.0e-2 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) eps: float = 1e-3 initial_accumulator: float = 1e-6 weight_decay: float = 0 def register_optimizer_configs() -> None: cs = ConfigStore.instance() cs.store( group="optimizer", name="adam", node=AdamConf, ) cs.store( group="optimizer", name="sgd", node=SGDConf, ) cs.store( group="optimizer", name="adahessian", node=AdahessianConf, ) cs.store( group="optimizer", name="bfgs", node=BFGSConf, ) cs.store( group="optimizer", name="adadelta", node=AdadeltaConf, ) cs.store( group="optimizer", name="adagrad", node=AdagradConf, ) cs.store( group="optimizer", name="adamw", node=AdamWConf, ) cs.store( group="optimizer", name="sparse_adam", node=SparseAdamConf, ) cs.store( group="optimizer", name="adamax", node=AdamaxConf, ) cs.store( group="optimizer", name="asgd", node=ASGDConf, ) cs.store( group="optimizer", name="nadam", node=NAdamConf, ) cs.store( group="optimizer", name="radam", node=RAdamConf, ) cs.store( group="optimizer", name="rmsprop", node=RMSpropConf, ) cs.store( group="optimizer", name="rprop", node=RpropConf, ) cs.store( group="optimizer", name="a2grad_exp", node=A2GradExpConf, ) cs.store( group="optimizer", name="a2grad_inc", node=A2GradIncConf, ) cs.store( group="optimizer", name="a2grad_uni", node=A2GradUniConf, ) cs.store( group="optimizer", name="accsgd", node=AccSGDConf, ) cs.store( group="optimizer", name="adabelief", node=AdaBeliefConf, ) cs.store( group="optimizer", name="adabound", node=AdaBoundConf, ) cs.store( group="optimizer", name="adamod", node=AdaModConf, ) cs.store( group="optimizer", name="adafactor", node=AdafactorConf, ) cs.store( group="optimizer", name="adamp", node=AdamPConf, ) cs.store( group="optimizer", name="aggmo", node=AggMoConf, ) cs.store( group="optimizer", name="apollo", node=ApolloConf, ) cs.store( group="optimizer", name="diffgrad", node=DiffGradConf, ) cs.store( group="optimizer", name="lamb", node=LambConf, ) cs.store( group="optimizer", name="madgrad", node=MADGRADConf, ) cs.store( group="optimizer", name="novograd", node=NovoGradConf, ) cs.store( group="optimizer", name="pid", node=PIDConf, ) cs.store( group="optimizer", name="qhadam", node=QHAdamConf, ) cs.store( group="optimizer", name="qhm", node=QHMConf, ) cs.store( group="optimizer", name="ranger", node=RangerConf, ) cs.store( group="optimizer", name="ranger_qh", node=RangerQHConf, ) cs.store( group="optimizer", name="ranger_va", node=RangerVAConf, ) cs.store( group="optimizer", name="sgdp", node=SGDPConf, ) cs.store( group="optimizer", name="sgdw", node=SGDWConf, ) cs.store( group="optimizer", name="swats", node=SWATSConf, ) cs.store( group="optimizer", name="shampoo", node=ShampooConf, ) cs.store( group="optimizer", name="yogi", node=YogiConf, )
modulus-sym-main
modulus/sym/hydra/optimizer.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Supported PyTorch scheduler configs """ import torch from dataclasses import dataclass from hydra.core.config_store import ConfigStore from omegaconf import MISSING @dataclass class SchedulerConf: _target_ = MISSING @dataclass class ExponentialLRConf(SchedulerConf): _target_: str = "torch.optim.lr_scheduler.ExponentialLR" gamma: float = 0.99998718 @dataclass class TFExponentialLRConf(SchedulerConf): _target_: str = "custom" _name_: str = "tf.ExponentialLR" decay_rate: float = 0.95 decay_steps: int = 1000 @dataclass class CosineAnnealingLRConf(SchedulerConf): _target_: str = "torch.optim.lr_scheduler.CosineAnnealingLR" T_max: int = 1000 eta_min: float = 0 last_epoch: int = -1 @dataclass class CosineAnnealingWarmRestartsConf(SchedulerConf): _target_: str = "torch.optim.lr_scheduler.CosineAnnealingWarmRestarts" T_0: int = 1000 T_mult: int = 1 eta_min: float = 0 last_epoch: int = -1 def register_scheduler_configs() -> None: cs = ConfigStore.instance() cs.store( group="scheduler", name="exponential_lr", node=ExponentialLRConf, ) cs.store( group="scheduler", name="tf_exponential_lr", node=TFExponentialLRConf, ) cs.store( group="scheduler", name="cosine_annealing", node=CosineAnnealingLRConf, ) cs.store( group="scheduler", name="cosine_annealing_warm_restarts", node=CosineAnnealingWarmRestartsConf, )
modulus-sym-main
modulus/sym/hydra/scheduler.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Profiler config """ from dataclasses import dataclass, field from hydra.core.config_store import ConfigStore from omegaconf import MISSING, SI, II from typing import Any, Union, List, Dict @dataclass class ProfilerConf: profile: bool = MISSING start_step: int = MISSING end_step: int = MISSING @dataclass class NvtxProfiler(ProfilerConf): name: str = "nvtx" profile: bool = False start_step: int = 0 end_step: int = 100 @dataclass class TensorBoardProfiler(ProfilerConf): name: str = "tensorboard" profile: bool = False start_step: int = 0 end_step: int = 100 warmup: int = 5 repeat: int = 1 filename: str = "${hydra.job.override_dirname}-${hydra.job.name}.profile" def register_profiler_configs() -> None: cs = ConfigStore.instance() cs.store( group="profiler", name="nvtx", node=NvtxProfiler, ) cs.store( group="profiler", name="tensorboard", node=TensorBoardProfiler, )
modulus-sym-main
modulus/sym/hydra/profiler.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Supported modulus training paradigms """ import torch from dataclasses import dataclass from hydra.core.config_store import ConfigStore from omegaconf import MISSING, II from typing import Any from .loss import NTKConf @dataclass class TrainingConf: max_steps: int = MISSING grad_agg_freq: int = MISSING rec_results_freq: int = MISSING rec_validation_freq: int = MISSING rec_inference_freq: int = MISSING rec_monitor_freq: int = MISSING rec_constraint_freq: int = MISSING save_network_freq: int = MISSING print_stats_freq: int = MISSING summary_freq: int = MISSING amp: bool = MISSING amp_dtype: str = MISSING @dataclass class DefaultTraining(TrainingConf): max_steps: int = 10000 grad_agg_freq: int = 1 rec_results_freq: int = 1000 rec_validation_freq: int = II("training.rec_results_freq") rec_inference_freq: int = II("training.rec_results_freq") rec_monitor_freq: int = II("training.rec_results_freq") rec_constraint_freq: int = II("training.rec_results_freq") save_network_freq: int = 1000 print_stats_freq: int = 100 summary_freq: int = 1000 amp: bool = False amp_dtype: str = "float16" ntk: NTKConf = NTKConf() @dataclass class VariationalTraining(DefaultTraining): test_function: str = MISSING use_quadratures: bool = False @dataclass class StopCriterionConf: metric: Any = MISSING min_delta: Any = MISSING patience: int = MISSING mode: str = MISSING freq: int = MISSING strict: bool = MISSING @dataclass class DefaultStopCriterion(StopCriterionConf): metric: Any = None min_delta: Any = None patience: int = 50000 mode: str = "min" freq: int = 1000 strict: bool = False def register_training_configs() -> None: cs = ConfigStore.instance() cs.store( group="training", name="default_training", node=DefaultTraining, ) cs.store( group="training", name="variational_training", node=VariationalTraining, ) cs.store( group="stop_criterion", name="default_stop_criterion", node=DefaultStopCriterion, )
modulus-sym-main
modulus/sym/hydra/training.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.models.interpolation import interpolation import torch import numpy as np def test_interpolation(): # set device device = "cuda" if torch.cuda.is_available() else "cpu" # make context grid to do interpolation from grid = [(-1, 2, 30), (-1, 2, 30), (-1, 2, 30)] np_linspace = [np.linspace(x[0], x[1], x[2]) for x in grid] np_mesh_grid = np.meshgrid(*np_linspace, indexing="ij") np_mesh_grid = np.stack(np_mesh_grid, axis=0) mesh_grid = torch.tensor(np_mesh_grid, dtype=torch.float32).to(device) sin_grid = torch.sin( mesh_grid[0:1, :, :] + mesh_grid[1:2, :, :] ** 2 + mesh_grid[2:3, :, :] ** 3 ).to(device) # make query points to evaluate on nr_points = 100 query_points = ( torch.stack( [ torch.linspace(0.0, 1.0, nr_points), torch.linspace(0.0, 1.0, nr_points), torch.linspace(0.0, 1.0, nr_points), ], axis=-1, ) .to(device) .requires_grad_(True) ) # compute interpolation interpolation_types = [ "nearest_neighbor", "linear", "smooth_step_1", "smooth_step_2", "gaussian", ] for i_type in interpolation_types: # perform interpolation computed_interpolation = interpolation( query_points, sin_grid, grid=grid, interpolation_type=i_type, mem_speed_trade=False, ) # compare to numpy np_computed_interpolation = computed_interpolation.cpu().detach().numpy() np_ground_truth = ( ( torch.sin( query_points[:, 0:1] + query_points[:, 1:2] ** 2 + query_points[:, 2:3] ** 3 ) ) .cpu() .detach() .numpy() ) difference = np.linalg.norm( (np_computed_interpolation - np_ground_truth) / nr_points ) # verify assert difference < 1e-2, "Test failed!"
modulus-sym-main
test/test_interpolation.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from modulus.sym.eq.derivatives import MeshlessFiniteDerivative from modulus.sym.node import Node from modulus.sym.key import Key from modulus.sym.graph import Graph class SineNet(torch.nn.Module): def forward(self, inputs): return { "y": (inputs["w"] ** 3) * torch.sin(inputs["x"]), "z": inputs["w"] * torch.cos(inputs["x"]), } class ParabolaNet(torch.nn.Module): def forward(self, inputs): return { "p": (inputs["nu"] ** 3) + inputs["x"], "q": 2 * inputs["z"], } def test_meshless_finite_deriv(): # Define sinisoidal function node function_node = Node( inputs=[Key("w"), Key("x")], outputs=[Key("y"), Key("z")], evaluate=SineNet(), name="Test Node", ) # Define finite derivative node deriv = MeshlessFiniteDerivative.make_node( node_model=function_node, derivatives=[ Key("y", derivatives=[Key("x"), Key("w")]), Key("y", derivatives=[Key("x")]), Key("y", derivatives=[Key("w"), Key("w"), Key("w")]), Key("z", derivatives=[Key("x"), Key("x")]), Key("z", derivatives=[Key("x"), Key("x"), Key("x"), Key("x")]), ], dx=0.01, order=2, max_batch_size=15, ) inputs = {"x": torch.randn(5, 1).double(), "w": torch.randn(5, 1).double()} inputs.update(function_node.evaluate(inputs)) # Forward to get y outputs = deriv.evaluate(inputs) assert torch.allclose( outputs["y__x"].double(), (inputs["w"] ** 3) * torch.cos(inputs["x"]), atol=1e-3 ), "First derivative test failed" assert torch.allclose( outputs["z__x__x"].double(), -inputs["w"] * torch.cos(inputs["x"]), atol=1e-3 ), "Second derivative test failed" assert torch.allclose( outputs["y__x__w"].double(), 3 * inputs["w"] ** 2 * torch.cos(inputs["x"]), atol=1e-3, ), "Mixed second derivative test failed" assert torch.allclose( outputs["y__w__w__w"].double(), 6 * torch.sin(inputs["x"]), atol=1e-3 ), "Third derivative test failed" assert torch.allclose( outputs["z__x__x__x__x"].double(), inputs["w"] * torch.cos(inputs["x"]), atol=1e-3, ), "Forth derivative test failed" # Testing forth order derivs deriv = MeshlessFiniteDerivative.make_node( node_model=function_node, derivatives=[ Key("y", derivatives=[Key("x")]), Key("z", derivatives=[Key("x"), Key("x")]), ], dx=0.01, order=4, max_batch_size=20, ) inputs = {"x": torch.randn(5, 1).double(), "w": torch.randn(5, 1).double()} inputs.update(function_node.evaluate(inputs)) # Forward to get y outputs = deriv.evaluate(inputs) assert torch.allclose( outputs["y__x"].double(), (inputs["w"] ** 3) * torch.cos(inputs["x"]), atol=1e-2 ), "Forth order first derivative test failed" assert torch.allclose( outputs["z__x__x"].double(), -inputs["w"] * torch.cos(inputs["x"]), atol=1e-2 ), "Forth order second derivative test failed" # Multinode checks function_node_2 = Node( inputs=[Key("nu"), Key("w"), Key("z")], outputs=[Key("p"), Key("q")], evaluate=ParabolaNet(), name="Test Node 2", ) # Define finite derivative node deriv = MeshlessFiniteDerivative.make_node( node_model=Graph( nodes=[function_node, function_node_2], invar=[Key("w"), Key("x"), Key("nu")], req_names=[Key("p"), Key("q")], ), derivatives=[ Key("p", derivatives=[Key("nu")]), Key("q", derivatives=[Key("x"), Key("w")]), ], dx=0.01, ) inputs = { "x": torch.randn(5, 1).double(), "w": torch.randn(5, 1).double(), "nu": torch.randn(5, 1).double(), } outputs = deriv.evaluate(inputs) assert torch.allclose( outputs["p__nu"].double(), 3 * (inputs["nu"] ** 2), atol=1e-3 ), "Multi-node first derivative test failed" assert torch.allclose( outputs["q__x__w"].double(), 2 * -torch.sin(inputs["x"]), atol=1e-3 ), "Multi-node second derivative test failed" # Testing callable dx def dx_func(count: int): # First pass should be inaccurate if count == 1: return 10.0 else: return 0.01 deriv = MeshlessFiniteDerivative.make_node( node_model=function_node, derivatives=[ Key("y", derivatives=[Key("x")]), ], dx=dx_func, order=2, ) inputs = {"x": torch.randn(5, 1).double(), "w": torch.randn(5, 1).double()} inputs.update(function_node.evaluate(inputs)) # Forward to get y outputs_1 = deriv.evaluate(inputs) # Inaccruate pass outputs_2 = deriv.evaluate(inputs) # Accruate pass assert not torch.allclose( outputs_1["y__x"].double(), (inputs["w"] ** 3) * torch.cos(inputs["x"]), atol=1e-3, ), "Callable dx first derivative test failed" assert torch.allclose( outputs_2["y__x"].double(), (inputs["w"] ** 3) * torch.cos(inputs["x"]), atol=1e-3, ), "Callable dx first derivative test failed" class GradModel(torch.nn.Module): def forward(self, inputs): return {"u": torch.cos(inputs["x"]), "v": torch.sin(inputs["y"])} def test_meshless_finite_deriv_grads(): # Testing gradient calcs # TODO: Grad tests for every grad model = GradModel() dx = 0.01 deriv = MeshlessFiniteDerivative.make_node( node_model=model, derivatives=[ Key("u", derivatives=[Key("x")]), Key("v", derivatives=[Key("y"), Key("y")]), ], dx=dx, ) # == First derivative test == inputs_mfd = {"x": torch.randn(5, 1).double(), "y": torch.randn(5, 1).double()} inputs_mfd["x"].requires_grad = True inputs_mfd["y"].requires_grad = True inputs_mfd.update(model.forward(inputs_mfd)) outputs = deriv.evaluate(inputs_mfd) loss = outputs["u__x"].sum() loss.backward() # Auto diff calc inputs_auto = inputs_mfd["x"].detach().clone() inputs_auto.requires_grad = True inputs_up1 = torch.cos(inputs_auto + dx) inputs_um1 = torch.cos(inputs_auto - dx) grad = (inputs_up1 - inputs_um1) / (2.0 * dx) loss = grad.sum() loss.backward() assert torch.allclose( inputs_auto.grad, inputs_mfd["x"].grad, atol=1e-3, ), "First derivative gradient test failed" # == Second derivative test == loss = outputs["v__y__y"].sum() loss.backward() # Auto diff calc inputs_auto = inputs_mfd["y"].detach().clone() inputs_auto.requires_grad = True inputs = torch.sin(inputs_auto) inputs_up1 = torch.sin(inputs_auto + dx) inputs_um1 = torch.sin(inputs_auto - dx) grad = (inputs_up1 - 2 * inputs + inputs_um1) / (dx * dx) loss = grad.sum() loss.backward() assert torch.allclose( inputs_auto.grad, inputs_mfd["y"].grad, atol=1e-3, ), "Second derivative gradient test failed" if __name__ == "__main__": test_meshless_finite_deriv() test_meshless_finite_deriv_grads()
modulus-sym-main
test/test_meshless_finite_dirv.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import GPUtil import os import pytest import argparse from pytest import ExitCode from termcolor import colored if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--testdir", default=".") args = parser.parse_args() os.system("nvidia-smi") availible_gpus = GPUtil.getAvailable(limit=8) if len(availible_gpus) == 0: print(colored(f"No free GPUs found on DGX 4850", "red")) raise RuntimeError() else: os.environ["CUDA_VISIBLE_DEVICES"] = str(availible_gpus[-1]) print(colored(f"=== Using GPU {availible_gpus[-1]} ===", "blue")) retcode = pytest.main(["-x", args.testdir]) if ExitCode.OK == retcode: print(colored("UNIT TESTS PASSED! :D", "green")) else: print(colored("UNIT TESTS FAILED!", "red")) raise ValueError(f"Pytest returned error code {retcode}")
modulus-sym-main
test/run_tests.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
modulus-sym-main
test/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from modulus.sym.models.layers import SpectralConv1d, SpectralConv2d, SpectralConv3d class SpectralConv1d_old(nn.Module): def __init__(self, in_channels: int, out_channels: int, modes1: int): super(SpectralConv1d_old, self).__init__() """ 1D Fourier layer. It does FFT, linear transform, and Inverse FFT. """ self.in_channels = in_channels self.out_channels = out_channels self.modes1 = ( modes1 # Number of Fourier modes to multiply, at most floor(N/2) + 1 ) self.scale = 1 / (in_channels * out_channels) self.weights1 = nn.Parameter( self.scale * torch.rand(in_channels, out_channels, self.modes1, dtype=torch.cfloat) ) # Complex multiplication def compl_mul1d(self, input, weights): # (batch, in_channel, x ), (in_channel, out_channel, x) -> (batch, out_channel, x) return torch.einsum("bix,iox->box", input, weights) def forward(self, x): bsize = x.shape[0] # Compute Fourier coeffcients up to factor of e^(- something constant) x_ft = torch.fft.rfft(x) # Multiply relevant Fourier modes out_ft = torch.zeros( bsize, self.out_channels, x.size(-1) // 2 + 1, device=x.device, dtype=torch.cfloat, ) out_ft[:, :, : self.modes1] = self.compl_mul1d( x_ft[:, :, : self.modes1], self.weights1 ) # Return to physical space x = torch.fft.irfft(out_ft, n=x.size(-1)) return x class SpectralConv2d_old(nn.Module): def __init__(self, in_channels, out_channels, modes1, modes2): super(SpectralConv2d_old, self).__init__() """ 2D Fourier layer. It does FFT, linear transform, and Inverse FFT. """ self.in_channels = in_channels self.out_channels = out_channels self.modes1 = ( modes1 # Number of Fourier modes to multiply, at most floor(N/2) + 1 ) self.modes2 = modes2 self.scale = 1 / (in_channels * out_channels) self.weights1 = nn.Parameter( self.scale * torch.rand( in_channels, out_channels, self.modes1, self.modes2, dtype=torch.cfloat ) ) self.weights2 = nn.Parameter( self.scale * torch.rand( in_channels, out_channels, self.modes1, self.modes2, dtype=torch.cfloat ) ) # Complex multiplication def compl_mul2d(self, input, weights): # (batch, in_channel, x,y ), (in_channel, out_channel, x,y) -> (batch, out_channel, x,y) return torch.einsum("bixy,ioxy->boxy", input, weights) def forward(self, x): batchsize = x.shape[0] # Compute Fourier coeffcients up to factor of e^(- something constant) x_ft = torch.fft.rfft2(x) # Multiply relevant Fourier modes out_ft = torch.zeros( batchsize, self.out_channels, x.size(-2), x.size(-1) // 2 + 1, dtype=torch.cfloat, device=x.device, ) out_ft[:, :, : self.modes1, : self.modes2] = self.compl_mul2d( x_ft[:, :, : self.modes1, : self.modes2], self.weights1 ) out_ft[:, :, -self.modes1 :, : self.modes2] = self.compl_mul2d( x_ft[:, :, -self.modes1 :, : self.modes2], self.weights2 ) # Return to physical space x = torch.fft.irfft2(out_ft, s=(x.size(-2), x.size(-1))) return x class SpectralConv3d_old(nn.Module): def __init__(self, in_channels, out_channels, modes1, modes2, modes3): super(SpectralConv3d_old, self).__init__() """ 3D Fourier layer. It does FFT, linear transform, and Inverse FFT. """ self.in_channels = in_channels self.out_channels = out_channels self.modes1 = ( modes1 # Number of Fourier modes to multiply, at most floor(N/2) + 1 ) self.modes2 = modes2 self.modes3 = modes3 self.scale = 1 / (in_channels * out_channels) self.weights1 = nn.Parameter( self.scale * torch.rand( in_channels, out_channels, self.modes1, self.modes2, self.modes3, dtype=torch.cfloat, ) ) self.weights2 = nn.Parameter( self.scale * torch.rand( in_channels, out_channels, self.modes1, self.modes2, self.modes3, dtype=torch.cfloat, ) ) self.weights3 = nn.Parameter( self.scale * torch.rand( in_channels, out_channels, self.modes1, self.modes2, self.modes3, dtype=torch.cfloat, ) ) self.weights4 = nn.Parameter( self.scale * torch.rand( in_channels, out_channels, self.modes1, self.modes2, self.modes3, dtype=torch.cfloat, ) ) # Complex multiplication def compl_mul3d(self, input, weights): # (batch, in_channel, x,y,t ), (in_channel, out_channel, x,y,t) -> (batch, out_channel, x,y,t) return torch.einsum("bixyz,ioxyz->boxyz", input, weights) def forward(self, x): batchsize = x.shape[0] # Compute Fourier coeffcients up to factor of e^(- something constant) x_ft = torch.fft.rfftn(x, dim=[-3, -2, -1]) # Multiply relevant Fourier modes out_ft = torch.zeros( batchsize, self.out_channels, x.size(-3), x.size(-2), x.size(-1) // 2 + 1, dtype=torch.cfloat, device=x.device, ) out_ft[:, :, : self.modes1, : self.modes2, : self.modes3] = self.compl_mul3d( x_ft[:, :, : self.modes1, : self.modes2, : self.modes3], self.weights1 ) out_ft[:, :, -self.modes1 :, : self.modes2, : self.modes3] = self.compl_mul3d( x_ft[:, :, -self.modes1 :, : self.modes2, : self.modes3], self.weights2 ) out_ft[:, :, : self.modes1, -self.modes2 :, : self.modes3] = self.compl_mul3d( x_ft[:, :, : self.modes1, -self.modes2 :, : self.modes3], self.weights3 ) out_ft[:, :, -self.modes1 :, -self.modes2 :, : self.modes3] = self.compl_mul3d( x_ft[:, :, -self.modes1 :, -self.modes2 :, : self.modes3], self.weights4 ) # Return to physical space x = torch.fft.irfftn(out_ft, s=(x.size(-3), x.size(-2), x.size(-1))) return x def test_spectral_convs(): in_channels = 2 out_channels = 3 modes = 4 sc1d_old = SpectralConv1d_old(in_channels, out_channels, modes) # Init weights sc1d_old.weights1.data = torch.complex( torch.randn(in_channels, out_channels, modes), torch.randn(in_channels, out_channels, modes), ) sc1d = SpectralConv1d(in_channels, out_channels, modes) # Copy to new model sc1d.weights1.data = torch.stack( [sc1d_old.weights1.real, sc1d_old.weights1.imag], dim=-1 ) inputs = torch.randn(5, in_channels, 32) # Forward pass of spectral conv output_old = sc1d_old(inputs) output = sc1d(inputs) assert torch.allclose( output_old, output, rtol=1e-3, atol=1e-3 ), "Spectral conv 1d mismatch" sc2d_old = SpectralConv2d_old(in_channels, out_channels, modes, modes) sc2d_old.weights1.data = torch.complex( torch.randn(in_channels, out_channels, modes, modes), torch.randn(in_channels, out_channels, modes, modes), ) sc2d_old.weights2.data = torch.complex( torch.randn(in_channels, out_channels, modes, modes), torch.randn(in_channels, out_channels, modes, modes), ) sc2d = SpectralConv2d(in_channels, out_channels, modes, modes) # Copy to new model sc2d.weights1.data = torch.stack( [sc2d_old.weights1.real, sc2d_old.weights1.imag], dim=-1 ) sc2d.weights2.data = torch.stack( [sc2d_old.weights2.real, sc2d_old.weights2.imag], dim=-1 ) inputs = torch.randn(5, in_channels, 32, 32) # Forward pass of spectral conv output_old = sc2d_old(inputs) output = sc2d(inputs) assert torch.allclose( output_old, output, rtol=1e-3, atol=1e-3 ), "Spectral conv 2d mismatch" sc3d_old = SpectralConv3d_old(in_channels, out_channels, modes, modes, modes) sc3d_old.weights1.data = torch.complex( torch.randn(in_channels, out_channels, modes, modes, modes), torch.randn(in_channels, out_channels, modes, modes, modes), ) sc3d_old.weights2.data = torch.complex( torch.randn(in_channels, out_channels, modes, modes, modes), torch.randn(in_channels, out_channels, modes, modes, modes), ) sc3d_old.weights3.data = torch.complex( torch.randn(in_channels, out_channels, modes, modes, modes), torch.randn(in_channels, out_channels, modes, modes, modes), ) sc3d_old.weights4.data = torch.complex( torch.randn(in_channels, out_channels, modes, modes, modes), torch.randn(in_channels, out_channels, modes, modes, modes), ) sc3d = SpectralConv3d(in_channels, out_channels, modes, modes, modes) # Copy to new model sc3d.weights1.data = torch.stack( [sc3d_old.weights1.real, sc3d_old.weights1.imag], dim=-1 ) sc3d.weights2.data = torch.stack( [sc3d_old.weights2.real, sc3d_old.weights2.imag], dim=-1 ) sc3d.weights3.data = torch.stack( [sc3d_old.weights3.real, sc3d_old.weights3.imag], dim=-1 ) sc3d.weights4.data = torch.stack( [sc3d_old.weights4.real, sc3d_old.weights4.imag], dim=-1 ) inputs = torch.randn(5, in_channels, 32, 32, 32) # Forward pass of spectral conv output_old = sc3d_old(inputs) output = sc3d(inputs) assert torch.allclose( output_old, output, rtol=1e-3, atol=1e-3 ), "Spectral conv 3d mismatch" test_spectral_convs()
modulus-sym-main
test/test_spectral_convs.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sympy import Symbol import numpy as np from pathlib import Path from modulus.sym.geometry.tessellation import Tessellation from modulus.sym.geometry import Parameterization dir_path = Path(__file__).parent def test_tesselated_geometry(): # read in cube file cube = Tessellation.from_stl(dir_path / "stls/cube.stl") # sample boundary boundary = cube.sample_boundary( 1000, parameterization=Parameterization({Symbol("fake_param"): 1}) ) # sample interior interior = cube.sample_interior( 1000, parameterization=Parameterization({Symbol("fake_param"): 1}) ) # check if surface area is right for boundary assert np.isclose(np.sum(boundary["area"]), 6.0) # check if volume is right for interior assert np.isclose(np.sum(interior["area"]), 1.0)
modulus-sym-main
test/test_tesselated_geometry.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from modulus.sym.utils.sympy import SympyToTorch import sympy def test_sympy_node(): # Define SymPy symbol and expression x = sympy.Symbol("x") y = sympy.Symbol("y") expr = sympy.Max(sympy.sin(x), sympy.cos(y)) # Get numpy reference x_np = np.random.random(10) y_np = np.random.random(10) expr_np = np.maximum(np.sin(x_np), np.cos(y_np)) sn = SympyToTorch(expr, "node") # Choose device to run on and copy data from numpy device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") x_th = torch.tensor(x_np, dtype=torch.float32, device=device) y_th = torch.tensor(y_np, dtype=torch.float32, device=device) assert np.allclose(x_th.cpu().detach().numpy(), x_np) assert np.allclose(y_th.cpu().detach().numpy(), y_np) # Run the compiled function on input tensors var = {"x": x_th, "y": y_th} expr_th = sn(var) expr_th_out = expr_th["node"].cpu().detach().numpy() assert np.allclose(expr_th_out, expr_np, rtol=1.0e-3), "SymPy printer test failed!" if __name__ == "__main__": test_sympy_node()
modulus-sym-main
test/test_sympy_node.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import torch from typing import List, Optional from modulus.sym.key import Key from modulus.sym.constants import diff from modulus.sym.eq.derivatives import Derivative class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y, z): return ( 1.5 * x * x + torch.sin(y) + torch.exp(z), 2 * x * x + torch.cos(y) + torch.exp(-z), 1.5 * x * x + torch.sin(y) + torch.exp(z), 2 * x * x + torch.cos(y) + torch.exp(-z), ) def validate_gradients( x, y, z, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, dpdx, dpdy, dpdz ): # Check against exact solution assert torch.allclose(dudx, 3 * x), "x derivative of u failed" assert torch.allclose(dudy, torch.cos(y)), "y derivative of u failed" assert torch.allclose(dudz, torch.exp(z)), "z derivative of u failed" assert torch.allclose(dvdx, 4 * x), "x derivative of v failed" assert torch.allclose(dvdy, -torch.sin(y)), "y derivative of v failed" assert torch.allclose(dvdz, -torch.exp(-z)), "z derivative of v failed" assert torch.allclose(dwdx, 3 * x), "x derivative of w failed" assert torch.allclose(dwdy, torch.cos(y)), "y derivative of w failed" assert torch.allclose(dwdz, torch.exp(z)), "z derivative of w failed" assert torch.allclose(dpdx, 4 * x), "x derivative of p failed" assert torch.allclose(dpdy, -torch.sin(y)), "y derivative of p failed" assert torch.allclose(dpdz, -torch.exp(-z)), "z derivative of p failed" def test_derivative_node(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Set up input coordinates batch_size = 128 x = torch.rand(batch_size, 1, dtype=torch.float32, requires_grad=True).to(device) y = torch.rand(batch_size, 1, dtype=torch.float32, requires_grad=True).to(device) z = torch.rand(batch_size, 1, dtype=torch.float32, requires_grad=True).to(device) # Instantiate the model and compute outputs model = torch.jit.script(Model()).to(device) u, v, w, p = model(x, y, z) input_vars = [ Key.from_str("x"), Key.from_str("y"), Key.from_str("z"), Key.from_str("u"), Key.from_str("v"), Key.from_str("w"), Key.from_str("p"), ] derivs = [ Key.from_str(diff("u", "x")), Key.from_str(diff("u", "y")), Key.from_str(diff("u", "z")), Key.from_str(diff("v", "x")), Key.from_str(diff("v", "y")), Key.from_str(diff("v", "z")), Key.from_str(diff("w", "x")), Key.from_str(diff("w", "y")), Key.from_str(diff("w", "z")), Key.from_str(diff("p", "x")), Key.from_str(diff("p", "y")), Key.from_str(diff("p", "z")), ] dnode = Derivative.make_node(input_vars, derivs, jit=False) input_dict = dict(zip((str(v) for v in input_vars), [x, y, z, u, v, w, p])) derivs_dict = dnode.evaluate(input_dict) validate_gradients(x, y, z, *(derivs_dict[str(d)] for d in derivs)) if __name__ == "__main__": test_derivative_node()
modulus-sym-main
test/test_derivatives.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from modulus.sym.loss import ( PointwiseLossNorm, DecayedPointwiseLossNorm, IntegralLossNorm, DecayedIntegralLossNorm, ) def test_loss_norm(): # make pointwise test values invar = {"x": torch.arange(10)[:, None], "area": torch.ones(10)[:, None] / 10} pred_outvar = {"u": torch.arange(10)[:, None]} true_outvar = {"u": torch.arange(10)[:, None] + 2} lambda_weighting = {"u": torch.ones(10)[:, None]} # Test Pointwise l2 loss = PointwiseLossNorm(2) l = loss.forward(invar, pred_outvar, true_outvar, lambda_weighting, step=0) assert torch.isclose(l["u"], torch.tensor(4.0)) # Test Pointwise l1 loss = PointwiseLossNorm(1) l = loss.forward(invar, pred_outvar, true_outvar, lambda_weighting, step=0) assert torch.isclose(l["u"], torch.tensor(2.0)) # Test Decayed Pointwise l2 loss = DecayedPointwiseLossNorm(2, 1, decay_steps=1000, decay_rate=0.5) l = loss.forward(invar, pred_outvar, true_outvar, lambda_weighting, step=0) assert torch.isclose(l["u"], torch.tensor(4.0)) l = loss.forward(invar, pred_outvar, true_outvar, lambda_weighting, step=1000) assert torch.isclose(l["u"], torch.tensor(2.82842712)) l = loss.forward(invar, pred_outvar, true_outvar, lambda_weighting, step=1000000) assert torch.isclose(l["u"], torch.tensor(2.0)) # make Integral test values list_invar = [ {"x": torch.arange(10)[:, None], "area": torch.ones(10)[:, None] / 10} ] list_pred_outvar = [{"u": torch.arange(10)[:, None]}] list_true_outvar = [{"u": torch.tensor(2.5)[None, None]}] list_lambda_weighting = [{"u": torch.ones(1)[None, None]}] # Test Integral l2 loss = IntegralLossNorm(2) l = loss.forward( list_invar, list_pred_outvar, list_true_outvar, list_lambda_weighting, step=0 ) assert torch.isclose(l["u"], torch.tensor(4.0)) # Test Integral l1 loss = IntegralLossNorm(1) l = loss.forward( list_invar, list_pred_outvar, list_true_outvar, list_lambda_weighting, step=0 ) assert torch.isclose(l["u"], torch.tensor(2.0)) # Test Decayed Integral l2 loss = DecayedIntegralLossNorm(2, 1, decay_steps=1000, decay_rate=0.5) l = loss.forward( list_invar, list_pred_outvar, list_true_outvar, list_lambda_weighting, step=0 ) assert torch.isclose(l["u"], torch.tensor(4.0)) l = loss.forward( list_invar, list_pred_outvar, list_true_outvar, list_lambda_weighting, step=1000 ) assert torch.isclose(l["u"], torch.tensor(2.82842712)) l = loss.forward( list_invar, list_pred_outvar, list_true_outvar, list_lambda_weighting, step=1000000, ) assert torch.isclose(l["u"], torch.tensor(2.0))
modulus-sym-main
test/test_loss.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import torch from typing import Dict, List, Optional from modulus.sym.key import Key from modulus.sym.constants import diff from modulus.sym.node import Node from modulus.sym.graph import Graph from modulus.sym.eq.derivatives import MeshlessFiniteDerivative class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: x, y, z = inputs["x"], inputs["y"], inputs["z"] return { "u": 1.5 * x * x + torch.sin(y) + torch.exp(z), "v": 2 * x * x + torch.cos(y) + torch.exp(-z), "w": 1.5 * x * x + torch.sin(y) + torch.exp(z), "p": 2 * x * x + torch.cos(y) + torch.exp(-z), } class Loss(torch.nn.Module): def __init__(self): super().__init__() self.input_keys: List[str] = [diff("u", "x"), diff("v", "y"), diff("w", "z")] def forward(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: divergence = ( inputs[self.input_keys[0]] + inputs[self.input_keys[1]] + inputs[self.input_keys[2]] ) return {"divergence_loss": torch.square(divergence).mean()} def validate_divergence_loss(x, y, z, divergence_loss, rtol=1e-5, atol=1e-8): dudx = 3 * x dvdy = -torch.sin(y) dwdz = torch.exp(z) divergence_loss_exact = torch.square(dudx + dvdy + dwdz).mean() assert torch.allclose(divergence_loss, divergence_loss_exact, rtol, atol) def test_graph(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Set up input coordinates batch_size = 128 x = torch.rand(batch_size, 1, dtype=torch.float32, requires_grad=True).to(device) y = torch.rand(batch_size, 1, dtype=torch.float32, requires_grad=True).to(device) z = torch.rand(batch_size, 1, dtype=torch.float32, requires_grad=True).to(device) # Instantiate the model and compute outputs model = torch.jit.script(Model()).to(device) model_node = Node(["x", "y", "z"], ["u", "v", "w", "p"], model, name="Model") loss = torch.jit.script(Loss()).to(device) loss_node = Node( [diff("u", "x"), diff("v", "y"), diff("w", "z")], ["divergence_loss"], loss, name="Loss", ) nodes = [model_node, loss_node] input_vars = [Key.from_str("x"), Key.from_str("y"), Key.from_str("z")] output_vars = [ Key.from_str("u"), Key.from_str("v"), Key.from_str("w"), Key.from_str("p"), Key.from_str("divergence_loss"), ] graph = Graph(nodes, input_vars, output_vars) input_dict = dict(zip((str(v) for v in input_vars), [x, y, z])) output_dict = graph(input_dict) validate_divergence_loss(x, y, z, output_dict["divergence_loss"]) def test_graph_no_loss_node(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Set up input coordinates batch_size = 128 x = torch.rand(batch_size, 1, dtype=torch.float32, requires_grad=True).to(device) y = torch.rand(batch_size, 1, dtype=torch.float32, requires_grad=True).to(device) z = torch.rand(batch_size, 1, dtype=torch.float32, requires_grad=True).to(device) # Instantiate the model and compute outputs model = torch.jit.script(Model()).to(device) model_node = Node(["x", "y", "z"], ["u", "v", "w", "p"], model, name="Model") loss = torch.jit.script(Loss()).to(device) loss_node = Node( [diff("u", "x"), diff("v", "y"), diff("w", "z")], ["divergence_loss"], loss, name="Loss", ) nodes = [model_node] input_vars = [Key.from_str("x"), Key.from_str("y"), Key.from_str("z")] output_vars = [ Key.from_str("u__x"), Key.from_str("v__y"), Key.from_str("w__z"), ] graph = Graph(nodes, input_vars, output_vars) input_dict = dict(zip((str(v) for v in input_vars), [x, y, z])) output_dict = graph(input_dict) # Calc loss manually loss = Loss() output_dict.update(loss(output_dict)) validate_divergence_loss(x, y, z, output_dict["divergence_loss"]) def test_mfd_graph(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Set up input coordinates batch_size = 32 x = torch.rand(batch_size, 1, dtype=torch.float32, requires_grad=True).to(device) y = torch.rand(batch_size, 1, dtype=torch.float32, requires_grad=True).to(device) z = torch.rand(batch_size, 1, dtype=torch.float32, requires_grad=True).to(device) # Instantiate the model and compute outputs model = torch.jit.script(Model()).to(device) model_node = Node(["x", "y", "z"], ["u", "v", "w", "p"], model, name="Model") loss = torch.jit.script(Loss()).to(device) loss_node = Node( [diff("u", "x"), diff("v", "y"), diff("w", "z")], ["divergence_loss"], loss, name="Loss", ) nodes = [model_node, loss_node] input_vars = [Key.from_str("x"), Key.from_str("y"), Key.from_str("z")] output_vars = [ Key.from_str("u"), Key.from_str("v"), Key.from_str("w"), Key.from_str("p"), Key.from_str("divergence_loss"), ] # Test meshless finite derivative node in graph mfd_node = MeshlessFiniteDerivative.make_node( node_model=model, derivatives=[ Key("u", derivatives=[Key("x")]), Key("v", derivatives=[Key("y")]), Key("w", derivatives=[Key("z")]), ], dx=0.001, ) graph = Graph(nodes + [mfd_node], input_vars, output_vars) input_dict = dict(zip((str(v) for v in input_vars), [x, y, z])) output_dict = graph(input_dict) # Need to raise allclose atol here because finite diff is approximate validate_divergence_loss(x, y, z, output_dict["divergence_loss"], atol=1e-3) if __name__ == "__main__": test_graph() test_graph_no_loss_node() test_mfd_graph()
modulus-sym-main
test/test_graph.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from pathlib import Path from modulus.sym.geometry import Parameterization, Parameter, Bounds from modulus.sym.geometry.primitives_1d import Point1D, Line1D from modulus.sym.geometry.primitives_2d import ( Line, Channel2D, Rectangle, Circle, Triangle, Ellipse, Polygon, ) from modulus.sym.geometry.primitives_3d import ( Plane, Channel, Box, Sphere, Cylinder, Torus, Cone, TriangularPrism, Tetrahedron, IsoTriangularPrism, ElliCylinder, ) from modulus.sym.geometry.tessellation import Tessellation from modulus.sym.utils.io.vtk import var_to_polyvtk dir_path = Path(__file__).parent def check_geometry( geo, criteria=None, parameterization=None, bounds=None, boundary_area=None, interior_area=None, max_sdf=None, compute_sdf_derivatives=True, check_bounds=None, debug=False, ): if debug: print("checking geo: " + str(geo)) # check boundary if boundary_area is not None: boundary = geo.sample_boundary( 1000, criteria=criteria, parameterization=parameterization ) if debug: var_to_polyvtk(boundary, "boundary.vtp") assert np.isclose(np.sum(boundary["area"]), boundary_area, rtol=1e-1) # check interior if interior_area is not None: interior = geo.sample_interior( 1000, criteria=criteria, parameterization=parameterization, bounds=bounds, compute_sdf_derivatives=compute_sdf_derivatives, ) if debug: var_to_polyvtk(interior, "interior.vtp") assert np.isclose(np.sum(interior["area"]), interior_area, rtol=1e-1) if max_sdf is not None: assert np.max(interior["sdf"]) < max_sdf if compute_sdf_derivatives: sdf_diff = np.concatenate( [interior["sdf__" + d] for d in geo.dims], axis=-1 ) assert np.all( np.isclose(np.mean(np.linalg.norm(sdf_diff, axis=1)), 1.0, rtol=1e-1) ) def test_primitives(): # point 1d g = Point1D(1) check_geometry(g, boundary_area=1) # line 1d g = Line1D(1, 2.5) check_geometry(g, boundary_area=2, interior_area=1.5, max_sdf=0.75) # line g = Line((1, 0), (1, 2.5), normal=1) check_geometry(g, boundary_area=2.5) # channel g = Channel2D((0, 0), (2, 3)) check_geometry(g, boundary_area=4, interior_area=6, max_sdf=1.5) # rectangle g = Rectangle((0, 0), (2, 3)) check_geometry(g, boundary_area=10, interior_area=6, max_sdf=1.0) # circle g = Circle((0, 2), 2) check_geometry(g, boundary_area=4 * np.pi, interior_area=4 * np.pi, max_sdf=2.0) # triangle g = Triangle((0, 0.5), 1, 1) check_geometry( g, boundary_area=1.0 + 2 * np.sqrt(0.5**2 + 1.0), interior_area=0.5, max_sdf=0.30897, ) # ellipse g = Ellipse((0, 2), 1, 2) check_geometry(g, boundary_area=9.688448, interior_area=2 * np.pi, max_sdf=1.0) # polygon g = Polygon([(0, 0), (2, 0), (2, 1), (1, 2), (0, 1)]) check_geometry(g, boundary_area=4 + 2 * np.sqrt(2), interior_area=3.0) # plane g = Plane((0, -1, 0), (0, 1, 2)) check_geometry(g, boundary_area=4) # channel g = Channel((0, 0, -1), (2, 3, 4)) check_geometry(g, boundary_area=32, interior_area=30, max_sdf=1.5) # box g = Box((0, 0, -1), (2, 3, 4)) check_geometry(g, boundary_area=62, interior_area=30, max_sdf=1) # sphere g = Sphere((0, 1, 2), 2) check_geometry(g, boundary_area=16 * np.pi, interior_area=np.pi * 8 * 4 / 3.0) # cylinder g = Cylinder((0, 1, 2), 2, 3) check_geometry(g, boundary_area=20 * np.pi, interior_area=12 * np.pi, max_sdf=1.5) # torus g = Torus((0, 1, 2), 2, 1) check_geometry( g, boundary_area=8 * np.pi**2, interior_area=4 * np.pi**2, max_sdf=1 ) """ # cone g = Cone((0, 1, 2), 1, 3) checks.append((g, np.pi*(1+np.sqrt(10)), np.pi, 0, None)) # triangular prism g = TriangularPrism((0, 1, 2), 1, 2) checks.append((g, 6*np.sqrt(2) + 1, 2, 0, None)) # tetrahedron g = Tetrahedron((0, 1, 2), 1) checks.append((g, np.sqrt(3), 1.0/(6.0*np.sqrt(2)), 0, None)) """ # box scale g = Box((0, 0, 0), (1, 2, 3)) g = g.scale(2) check_geometry(g, boundary_area=88, interior_area=48, max_sdf=1) # box translate g = Box((0, 0, 0), (1, 2, 3)) g = g.translate((0, 1, 2)) check_geometry(g, boundary_area=22, interior_area=6, max_sdf=0.5) # box rotate g = Box((0, 0, 0), (1, 2, 3)) g = g.rotate(np.pi / 4.0, axis="x", center=(10, -1, 20)) g = g.rotate(np.pi / 4.0, axis="y") g = g.rotate(np.pi / 4.0, axis="z", center=(10, -10, 20)) check_geometry(g, boundary_area=22, interior_area=6, max_sdf=0.5) # repeat operation g = Sphere((0, 0, 0), 0.5) g = g.repeat(1.5, [-1, -1, -1], [3, 3, 3]) check_geometry( g, boundary_area=np.pi * 5**3, interior_area=(1.0 / 6.0) * np.pi * 5**3, max_sdf=0.5, ) # tessellated geometry g = Tessellation.from_stl(dir_path / "stls/cube.stl") check_geometry(g, boundary_area=6, interior_area=1.0, max_sdf=0.5) # tessellated with primitives geometry g = Tessellation.from_stl(dir_path / "stls/cube.stl") - Box( (-0.5, -0.5, -0.5), (0.5, 0.5, 0.5) ) check_geometry(g, boundary_area=6, interior_area=0.875) # Integral plane sdf_fn = Tessellation.from_stl(dir_path / "stls/cube.stl") - Box( (-0.5, -0.5, -0.5), (0.5, 0.5, 0.5) ) def _interior_criteria(sdf_fn): def interior_criteria(invar, params): sdf = sdf_fn.sdf(invar, params) return np.greater(sdf["sdf"], 0) return interior_criteria g = Plane((0.25, 0, 0), (0.25, 1, 1)) check_geometry(g, boundary_area=0.75, criteria=_interior_criteria(sdf_fn)) # test parameterization radius = Parameter("radius") angle = Parameter("angle") g = Circle((0, 0, 0), radius, parameterization=Parameterization({radius: (1, 2)})) g = Rectangle((-2, -2, -2), (2, 2, 2)) - g g = g.rotate( angle=angle, parameterization=Parameterization({angle: (0, 2.0 * np.pi)}) ) check_geometry(g, boundary_area=16 + 3 * np.pi) check_geometry( g, boundary_area=16 + 2 * np.pi, parameterization=Parameterization({radius: 1, angle: np.pi}), ) test_primitives()
modulus-sym-main
test/test_geometry.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from modulus.sym.utils.sympy import torch_lambdify import sympy def test_lambdify(): # Define SymPy symbol and expression x = sympy.Symbol("x") y = sympy.Symbol("y") expr = sympy.Max(sympy.sin(x), sympy.cos(y)) # Get numpy reference x_np = np.random.random(10) y_np = np.random.random(10) expr_np = np.maximum(np.sin(x_np), np.cos(y_np)) # Compile SymPy expression to the framework lam_tf = torch_lambdify(expr, ["x", "y"]) # Choose device to run on and copy data from numpy device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") x_th = torch.tensor(x_np, dtype=torch.float32, device=device) y_th = torch.tensor(y_np, dtype=torch.float32, device=device) assert np.allclose(x_th.cpu().detach().numpy(), x_np) assert np.allclose(y_th.cpu().detach().numpy(), y_np) # Run the compiled function on input tensors expr_th = lam_tf([x_th, y_th]) expr_th_out = expr_th.cpu().detach().numpy() assert np.allclose(expr_th_out, expr_np, rtol=1.0e-3), "SymPy printer test failed!" if __name__ == "__main__": test_lambdify()
modulus-sym-main
test/test_sympy_printer.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.eq.pdes.basic import GradNormal, Curl import torch import numpy as np import os def test_normal_gradient_equation(): # test data for normal gradient x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) t = np.random.rand(1024, 1) normal_x = np.random.rand(1024, 1) normal_y = np.random.rand(1024, 1) normal_z = np.random.rand(1024, 1) u = np.exp(2 * x + y + z + t) u__x = 2 * np.exp(2 * x + y + z + t) u__y = 1 * np.exp(2 * x + y + z + t) u__z = 1 * np.exp(2 * x + y + z + t) normal_gradient_u_true = normal_x * u__x + normal_y * u__y + normal_z * u__z normal_gradient_eq = GradNormal(T="u", dim=3, time=True) evaluations = normal_gradient_eq.make_nodes()[0].evaluate( { "u__x": torch.tensor(u__x, dtype=torch.float32), "u__y": torch.tensor(u__y, dtype=torch.float32), "u__z": torch.tensor(u__z, dtype=torch.float32), "normal_x": torch.tensor(normal_x, dtype=torch.float32), "normal_y": torch.tensor(normal_y, dtype=torch.float32), "normal_z": torch.tensor(normal_z, dtype=torch.float32), } ) normal_gradient_u_eval_pred = evaluations["normal_gradient_u"].numpy() # verify PDE computation assert np.allclose( normal_gradient_u_eval_pred, normal_gradient_u_true ), "Test Failed!" def test_curl(): # test data for curl equation x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) a = np.exp(2 * x + y + z) b = np.exp(x + 2 * y + z) c = np.exp(x + y + 2 * z) a__x = 2 * np.exp(2 * x + y + z) a__y = 1 * np.exp(2 * x + y + z) a__z = 1 * np.exp(2 * x + y + z) b__x = 1 * np.exp(x + 2 * y + z) b__y = 2 * np.exp(x + 2 * y + z) b__z = 1 * np.exp(x + 2 * y + z) c__x = 1 * np.exp(x + y + 2 * z) c__y = 1 * np.exp(x + y + 2 * z) c__z = 2 * np.exp(x + y + 2 * z) u_true = c__y - b__z v_true = a__z - c__x w_true = b__x - a__y curl_eq = Curl(("a", "b", "c"), ("u", "v", "w")) evaluations_u = curl_eq.make_nodes()[0].evaluate( { "c__y": torch.tensor(c__y, dtype=torch.float32), "b__z": torch.tensor(b__z, dtype=torch.float32), } ) evaluations_v = curl_eq.make_nodes()[1].evaluate( { "a__z": torch.tensor(a__z, dtype=torch.float32), "c__x": torch.tensor(c__x, dtype=torch.float32), } ) evaluations_w = curl_eq.make_nodes()[2].evaluate( { "b__x": torch.tensor(b__x, dtype=torch.float32), "a__y": torch.tensor(a__y, dtype=torch.float32), } ) u_eval_pred = evaluations_u["u"].numpy() v_eval_pred = evaluations_v["v"].numpy() w_eval_pred = evaluations_w["w"].numpy() # verify PDE computation assert np.allclose(u_eval_pred, u_true, atol=1e-4), "Test Failed!" assert np.allclose(v_eval_pred, v_true, atol=1e-4), "Test Failed!" assert np.allclose(w_eval_pred, w_true, atol=1e-4), "Test Failed!" if __name__ == "__main__": test_normal_gradient_equation() test_curl()
modulus-sym-main
test/test_pdes/test_basic.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.eq.pdes.navier_stokes import NavierStokes import torch import numpy as np import os def test_navier_stokes_equation(): # test data for navier stokes equation x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) t = np.random.rand(1024, 1) u = np.exp(2 * x + y + z + t) v = np.exp(x + 2 * y + z + t) w = np.exp(x + y + 2 * z + t) p = np.exp(x + y + z + t) rho = 1.0 nu = 0.2 u__t = 1 * np.exp(2 * x + y + z + t) u__x = 2 * np.exp(2 * x + y + z + t) u__y = 1 * np.exp(2 * x + y + z + t) u__z = 1 * np.exp(2 * x + y + z + t) u__x__x = 2 * 2 * np.exp(2 * x + y + z + t) u__y__y = 1 * 1 * np.exp(2 * x + y + z + t) u__z__z = 1 * 1 * np.exp(2 * x + y + z + t) u__x__y = 1 * 2 * np.exp(2 * x + y + z + t) u__x__z = 1 * 2 * np.exp(2 * x + y + z + t) u__y__z = 1 * 1 * np.exp(2 * x + y + z + t) u__y__x = u__x__y u__z__x = u__x__z u__z__y = u__y__z v__t = 1 * np.exp(x + 2 * y + z + t) v__x = 1 * np.exp(x + 2 * y + z + t) v__y = 2 * np.exp(x + 2 * y + z + t) v__z = 1 * np.exp(x + 2 * y + z + t) v__x__x = 1 * 1 * np.exp(x + 2 * y + z + t) v__y__y = 2 * 2 * np.exp(x + 2 * y + z + t) v__z__z = 1 * 1 * np.exp(x + 2 * y + z + t) v__x__y = 2 * 1 * np.exp(x + 2 * y + z + t) v__x__z = 1 * 1 * np.exp(x + 2 * y + z + t) v__y__z = 1 * 2 * np.exp(x + 2 * y + z + t) v__y__x = v__x__y v__z__x = v__x__z v__z__y = v__y__z w__t = 1 * np.exp(x + y + 2 * z + t) w__x = 1 * np.exp(x + y + 2 * z + t) w__y = 1 * np.exp(x + y + 2 * z + t) w__z = 2 * np.exp(x + y + 2 * z + t) w__x__x = 1 * 1 * np.exp(x + y + 2 * z + t) w__y__y = 1 * 1 * np.exp(x + y + 2 * z + t) w__z__z = 2 * 2 * np.exp(x + y + 2 * z + t) w__x__y = 1 * 1 * np.exp(x + y + 2 * z + t) w__x__z = 2 * 1 * np.exp(x + y + 2 * z + t) w__y__z = 2 * 1 * np.exp(x + y + 2 * z + t) w__y__x = w__x__y w__z__x = w__x__z w__z__y = w__y__z p__x = 1 * np.exp(x + y + z + t) p__y = 1 * np.exp(x + y + z + t) p__z = 1 * np.exp(x + y + z + t) continuity_equation_true = 0 + rho * u__x + rho * v__y + rho * w__z momentum_x_equation_true = ( rho * u__t + u * rho * u__x + v * rho * u__y + w * rho * u__z + p__x - rho * nu * u__x__x - rho * nu * u__y__y - rho * nu * u__z__z ) momentum_y_equation_true = ( rho * v__t + u * rho * v__x + v * rho * v__y + w * rho * v__z + p__y - rho * nu * v__x__x - rho * nu * v__y__y - rho * nu * v__z__z ) momentum_z_equation_true = ( rho * w__t + u * rho * w__x + v * rho * w__y + w * rho * w__z + p__z - rho * nu * w__x__x - rho * nu * w__y__y - rho * nu * w__z__z ) navier_stokes_eq = NavierStokes(nu=nu, rho=rho, dim=3, time=True) evaluations_continuity = navier_stokes_eq.make_nodes()[0].evaluate( { "u__x": torch.tensor(u__x, dtype=torch.float32), "v__y": torch.tensor(v__y, dtype=torch.float32), "w__z": torch.tensor(w__z, dtype=torch.float32), } ) evaluations_momentum_x = navier_stokes_eq.make_nodes()[1].evaluate( { "u__t": torch.tensor(u__t, dtype=torch.float32), "u__x": torch.tensor(u__x, dtype=torch.float32), "u__y": torch.tensor(u__y, dtype=torch.float32), "u__z": torch.tensor(u__z, dtype=torch.float32), "u__x__x": torch.tensor(u__x__x, dtype=torch.float32), "u__y__y": torch.tensor(u__y__y, dtype=torch.float32), "u__z__z": torch.tensor(u__z__z, dtype=torch.float32), "p__x": torch.tensor(p__x, dtype=torch.float32), "u": torch.tensor(u, dtype=torch.float32), "v": torch.tensor(v, dtype=torch.float32), "w": torch.tensor(w, dtype=torch.float32), } ) evaluations_momentum_y = navier_stokes_eq.make_nodes()[2].evaluate( { "v__t": torch.tensor(v__t, dtype=torch.float32), "v__x": torch.tensor(v__x, dtype=torch.float32), "v__y": torch.tensor(v__y, dtype=torch.float32), "v__z": torch.tensor(v__z, dtype=torch.float32), "v__x__x": torch.tensor(v__x__x, dtype=torch.float32), "v__y__y": torch.tensor(v__y__y, dtype=torch.float32), "v__z__z": torch.tensor(v__z__z, dtype=torch.float32), "p__y": torch.tensor(p__y, dtype=torch.float32), "u": torch.tensor(u, dtype=torch.float32), "v": torch.tensor(v, dtype=torch.float32), "w": torch.tensor(w, dtype=torch.float32), } ) evaluations_momentum_z = navier_stokes_eq.make_nodes()[3].evaluate( { "w__t": torch.tensor(w__t, dtype=torch.float32), "w__x": torch.tensor(w__x, dtype=torch.float32), "w__y": torch.tensor(w__y, dtype=torch.float32), "w__z": torch.tensor(w__z, dtype=torch.float32), "w__x__x": torch.tensor(w__x__x, dtype=torch.float32), "w__y__y": torch.tensor(w__y__y, dtype=torch.float32), "w__z__z": torch.tensor(w__z__z, dtype=torch.float32), "p__z": torch.tensor(p__z, dtype=torch.float32), "u": torch.tensor(u, dtype=torch.float32), "v": torch.tensor(v, dtype=torch.float32), "w": torch.tensor(w, dtype=torch.float32), } ) continuity_eq_eval_pred = evaluations_continuity["continuity"].numpy() momentum_x_eq_eval_pred = evaluations_momentum_x["momentum_x"].numpy() momentum_y_eq_eval_pred = evaluations_momentum_y["momentum_y"].numpy() momentum_z_eq_eval_pred = evaluations_momentum_z["momentum_z"].numpy() # verify PDE computation assert np.allclose( continuity_eq_eval_pred, continuity_equation_true ), "Test Failed!" assert np.allclose( momentum_x_eq_eval_pred, momentum_x_equation_true ), "Test Failed!" assert np.allclose( momentum_y_eq_eval_pred, momentum_y_equation_true ), "Test Failed!" assert np.allclose( momentum_z_eq_eval_pred, momentum_z_equation_true ), "Test Failed!" if __name__ == "__main__": test_navier_stokes_equation()
modulus-sym-main
test/test_pdes/test_navier_stokes.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch import os from modulus.sym.eq.pdes.wave_equation import WaveEquation, HelmholtzEquation def test_wave_equation(): # test data for wave equation x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) t = np.random.rand(1024, 1) u = np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) c = 0.1 u__t__t = -np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) u__x__x = -np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) u__y__y = -np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) u__z__z = -np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) wave_equation_true = u__t__t - c * c * u__x__x - c * c * u__y__y - c * c * u__z__z # evaluate the equation eq = WaveEquation(u="u", c=c, dim=3, time=True) evaluations = eq.make_nodes()[0].evaluate( { "u__x__x": torch.tensor(u__x__x, dtype=torch.float32), "u__y__y": torch.tensor(u__y__y, dtype=torch.float32), "u__z__z": torch.tensor(u__z__z, dtype=torch.float32), "u__t__t": torch.tensor(u__t__t, dtype=torch.float32), } ) eq_eval = evaluations["wave_equation"].numpy() # verify PDE computation assert np.allclose(eq_eval, wave_equation_true), "Test Failed!" def test_helmholtz_equation(): # test data for helmholtz equation x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) u = np.sin(x) * np.sin(y) * np.sin(z) k = 0.1 u__x__x = -np.sin(x) * np.sin(y) * np.sin(z) u__y__y = -np.sin(x) * np.sin(y) * np.sin(z) u__z__z = -np.sin(x) * np.sin(y) * np.sin(z) helmholtz_equation_true = -(k**2 * u + u__x__x + u__y__y + u__z__z) # evaluate the equation eq = HelmholtzEquation(u="u", k=k, dim=3) evaluations = eq.make_nodes()[0].evaluate( { "u": torch.tensor(u, dtype=torch.float32), "u__x__x": torch.tensor(u__x__x, dtype=torch.float32), "u__y__y": torch.tensor(u__y__y, dtype=torch.float32), "u__z__z": torch.tensor(u__z__z, dtype=torch.float32), } ) eq_eval = evaluations["helmholtz"].numpy() # verify PDE computation assert np.allclose(eq_eval, helmholtz_equation_true), "Test Failed!" if __name__ == "__main__": test_wave_equation() test_helmholtz_equation()
modulus-sym-main
test/test_pdes/test_wave_equation.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch import os from modulus.sym.eq.pdes.advection_diffusion import AdvectionDiffusion def test_advection_diffusion(): # test data for advection diffusion equation x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) t = np.random.rand(1024, 1) T = np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) u = np.exp(2 * x + y + z) v = np.exp(x + 2 * y + z) w = np.exp(x + y + 2 * z) rho = 1.0 D = 0.1 T__t = -np.sin(x) * np.sin(y) * np.sin(z) * np.sin(t) T__x = np.cos(x) * np.sin(y) * np.sin(z) * np.cos(t) T__y = np.sin(x) * np.cos(y) * np.sin(z) * np.cos(t) T__z = np.sin(x) * np.sin(y) * np.cos(z) * np.cos(t) T__x__x = -np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) T__y__y = -np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) T__z__z = -np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) advection = u * T__x + v * T__y + w * T__z diffusion = D * T__x__x + D * T__y__y + D * T__z__z curl = 0 advection_diffusion_equation_true = T__t + advection + T * curl - diffusion # evaluate the equation eq = AdvectionDiffusion(T="T", D=D, rho=float(rho), dim=3, time=True) evaluations = eq.make_nodes()[0].evaluate( { "T__t": torch.tensor(T__t, dtype=torch.float32), "T__x": torch.tensor(T__x, dtype=torch.float32), "T__y": torch.tensor(T__y, dtype=torch.float32), "T__z": torch.tensor(T__z, dtype=torch.float32), "T__x__x": torch.tensor(T__x__x, dtype=torch.float32), "T__y__y": torch.tensor(T__y__y, dtype=torch.float32), "T__z__z": torch.tensor(T__z__z, dtype=torch.float32), "u": torch.tensor(u, dtype=torch.float32), "v": torch.tensor(v, dtype=torch.float32), "w": torch.tensor(w, dtype=torch.float32), } ) eq_eval = evaluations["advection_diffusion_T"].numpy() # verify PDE computation assert np.allclose(eq_eval, advection_diffusion_equation_true), "Test Failed!" if __name__ == "__main__": test_advection_diffusion()
modulus-sym-main
test/test_pdes/test_advection_diffusion.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch import os from modulus.sym.eq.pdes.signed_distance_function import ScreenedPoissonDistance def test_screened_poisson_distance_equation(): # test data for screened poisson distance x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) distance = np.exp(x + y + z) distance__x = np.exp(x + y + z) distance__y = np.exp(x + y + z) distance__z = np.exp(x + y + z) distance__x__x = np.exp(x + y + z) distance__y__y = np.exp(x + y + z) distance__z__z = np.exp(x + y + z) tau = 0.1 sdf_grad = 1 - distance__x**2 - distance__y**2 - distance__z**2 poisson = np.sqrt(tau) * (distance__x__x + distance__y__y + distance__z__z) screened_poisson_distance_true = sdf_grad + poisson # evaluate the equation screened_poisson_distance_eq = ScreenedPoissonDistance( distance="distance", tau=tau, dim=3 ) evaluations = screened_poisson_distance_eq.make_nodes()[0].evaluate( { "distance__x": torch.tensor(distance__x, dtype=torch.float32), "distance__y": torch.tensor(distance__y, dtype=torch.float32), "distance__z": torch.tensor(distance__z, dtype=torch.float32), "distance__x__x": torch.tensor(distance__x__x, dtype=torch.float32), "distance__y__y": torch.tensor(distance__y__y, dtype=torch.float32), "distance__z__z": torch.tensor(distance__z__z, dtype=torch.float32), } ) screened_poisson_distance_eq_eval_pred = evaluations[ "screened_poisson_distance" ].numpy() # verify PDE computation assert np.allclose( screened_poisson_distance_eq_eval_pred, screened_poisson_distance_true ), "Test Failed!" if __name__ == "__main__": test_screened_poisson_distance_equation()
modulus-sym-main
test/test_pdes/test_screened_poisson_distance.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch import os from modulus.sym.eq.pdes.diffusion import Diffusion, DiffusionInterface def test_diffusion_equation(): # test data for diffusion equation x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) t = np.random.rand(1024, 1) u = np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) D = 0.1 Q = 0.1 u__t = -np.sin(x) * np.sin(y) * np.sin(z) * np.sin(t) u__x = np.cos(x) * np.sin(y) * np.sin(z) * np.cos(t) u__y = np.sin(x) * np.cos(y) * np.sin(z) * np.cos(t) u__z = np.sin(x) * np.sin(y) * np.cos(z) * np.cos(t) u__x__x = -np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) u__y__y = -np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) u__z__z = -np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) diffusion_equation_true = u__t - D * u__x__x - D * u__y__y - D * u__z__z - Q # evaluate the equation eq = Diffusion(T="u", D=D, Q=Q, dim=3, time=True) evaluations = eq.make_nodes()[0].evaluate( { "u__x__x": torch.tensor(u__x__x, dtype=torch.float32), "u__y__y": torch.tensor(u__y__y, dtype=torch.float32), "u__z__z": torch.tensor(u__z__z, dtype=torch.float32), "u__t": torch.tensor(u__t, dtype=torch.float32), } ) eq_eval = evaluations["diffusion_u"].numpy() # verify PDE computation assert np.allclose(eq_eval, diffusion_equation_true), "Test Failed!" def test_diffusion_interface(): # test data for diffusion interface x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) t = np.random.rand(1024, 1) normal_x = np.random.rand(1024, 1) normal_y = np.random.rand(1024, 1) normal_z = np.random.rand(1024, 1) u_1 = np.sin(x) * np.sin(y) * np.sin(z) * np.cos(t) u_2 = np.cos(x) * np.cos(y) * np.cos(z) * np.sin(t) D_1 = 0.1 D_2 = 100 u_1__x = np.cos(x) * np.sin(y) * np.sin(z) * np.cos(t) u_1__y = np.sin(x) * np.cos(y) * np.sin(z) * np.cos(t) u_1__z = np.sin(x) * np.sin(y) * np.cos(z) * np.cos(t) u_2__x = -np.sin(x) * np.cos(y) * np.cos(z) * np.sin(t) u_2__y = -np.cos(x) * np.sin(y) * np.cos(z) * np.sin(t) u_2__z = -np.cos(x) * np.cos(y) * np.sin(z) * np.sin(t) diffusion_interface_dirichlet_u_1_u_2_true = u_1 - u_2 diffusion_interface_neumann_u_1_u_2_true = D_1 * ( normal_x * u_1__x + normal_y * u_1__y + normal_z * u_1__z ) - D_2 * (normal_x * u_2__x + normal_y * u_2__y + normal_z * u_2__z) # evaluate the equation eq = DiffusionInterface(T_1="u_1", T_2="u_2", D_1=D_1, D_2=D_2, dim=3, time=True) evaluations = eq.make_nodes()[0].evaluate( { "u_1": torch.tensor(u_1, dtype=torch.float32), "u_2": torch.tensor(u_2, dtype=torch.float32), } ) eq_1_eval = evaluations["diffusion_interface_dirichlet_u_1_u_2"].numpy() evaluations = eq.make_nodes()[1].evaluate( { "u_1": torch.tensor(u_1, dtype=torch.float32), "u_2": torch.tensor(u_2, dtype=torch.float32), "u_1__x": torch.tensor(u_1__x, dtype=torch.float32), "u_1__y": torch.tensor(u_1__y, dtype=torch.float32), "u_1__z": torch.tensor(u_1__z, dtype=torch.float32), "u_2__x": torch.tensor(u_2__x, dtype=torch.float32), "u_2__y": torch.tensor(u_2__y, dtype=torch.float32), "u_2__z": torch.tensor(u_2__z, dtype=torch.float32), "normal_x": torch.tensor(normal_x, dtype=torch.float32), "normal_y": torch.tensor(normal_y, dtype=torch.float32), "normal_z": torch.tensor(normal_z, dtype=torch.float32), } ) eq_2_eval = evaluations["diffusion_interface_neumann_u_1_u_2"].numpy() # verify PDE computation assert np.allclose( eq_1_eval, diffusion_interface_dirichlet_u_1_u_2_true ), "Test Failed!" assert np.allclose( eq_2_eval, diffusion_interface_neumann_u_1_u_2_true ), "Test Failed!" if __name__ == "__main__": test_diffusion_equation() test_diffusion_interface()
modulus-sym-main
test/test_pdes/test_diffusion.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.eq.pdes.turbulence_zero_eq import ZeroEquation import torch import numpy as np import os def test_zero_equation(): # test data for zero equation x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) t = np.random.rand(1024, 1) u = np.exp(2 * x + y + z + t) v = np.exp(x + 2 * y + z + t) w = np.exp(x + y + 2 * z + t) u__x = 2 * np.exp(2 * x + y + z + t) u__y = 1 * np.exp(2 * x + y + z + t) u__z = 1 * np.exp(2 * x + y + z + t) v__x = 1 * np.exp(x + 2 * y + z + t) v__y = 2 * np.exp(x + 2 * y + z + t) v__z = 1 * np.exp(x + 2 * y + z + t) w__x = 1 * np.exp(x + y + 2 * z + t) w__y = 1 * np.exp(x + y + 2 * z + t) w__z = 2 * np.exp(x + y + 2 * z + t) normal_distance = np.exp(x + y + z) rho = 1.0 nu = 0.2 max_distance = 0.5 mixing_length = np.minimum(0.419 * normal_distance, 0.09 * max_distance) G = ( 2 * u__x**2 + 2 * v__y**2 + 2 * w__z**2 + (u__y + v__x) ** 2 + (u__z + w__x) ** 2 + (v__z + w__y) ** 2 ) nu_true = nu + rho * mixing_length**2 * np.sqrt(G) zero_eq = ZeroEquation(nu=nu, max_distance=max_distance, rho=rho, dim=3, time=True) evaluations_zero_eq = zero_eq.make_nodes()[0].evaluate( { "u__x": torch.tensor(u__x, dtype=torch.float32), "u__y": torch.tensor(u__y, dtype=torch.float32), "u__z": torch.tensor(u__z, dtype=torch.float32), "v__x": torch.tensor(v__x, dtype=torch.float32), "v__y": torch.tensor(v__y, dtype=torch.float32), "v__z": torch.tensor(v__z, dtype=torch.float32), "w__x": torch.tensor(w__x, dtype=torch.float32), "w__y": torch.tensor(w__y, dtype=torch.float32), "w__z": torch.tensor(w__z, dtype=torch.float32), "sdf": torch.tensor(normal_distance, dtype=torch.float32), } ) zero_eq_eval_pred = evaluations_zero_eq["nu"].numpy() # verify PDE computation assert np.allclose(zero_eq_eval_pred, nu_true), "Test Failed!" if __name__ == "__main__": test_zero_equation()
modulus-sym-main
test/test_pdes/test_zero_equation.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.eq.pdes.linear_elasticity import ( LinearElasticity, LinearElasticityPlaneStress, ) import torch import numpy as np import os def test_linear_elasticity_equations(): # test data for linear elasticity equations x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) t = np.random.rand(1024, 1) normal_x = np.random.rand(1024, 1) normal_y = np.random.rand(1024, 1) normal_z = np.random.rand(1024, 1) u = np.exp(2 * x + y + z + t) v = np.exp(x + 2 * y + z + t) w = np.exp(x + y + 2 * z + t) u__t__t = 1 * np.exp(2 * x + y + z + t) v__t__t = 1 * np.exp(x + 2 * y + z + t) w__t__t = 1 * np.exp(x + y + 2 * z + t) u__x = 2 * np.exp(2 * x + y + z + t) u__y = 1 * np.exp(2 * x + y + z + t) u__z = 1 * np.exp(2 * x + y + z + t) u__x__x = 2 * 2 * np.exp(2 * x + y + z + t) u__y__y = 1 * 1 * np.exp(2 * x + y + z + t) u__z__z = 1 * 1 * np.exp(2 * x + y + z + t) u__x__y = 1 * 2 * np.exp(2 * x + y + z + t) u__x__z = 1 * 2 * np.exp(2 * x + y + z + t) u__y__z = 1 * 1 * np.exp(2 * x + y + z + t) u__y__x = u__x__y u__z__x = u__x__z u__z__y = u__y__z v__x = 1 * np.exp(x + 2 * y + z + t) v__y = 2 * np.exp(x + 2 * y + z + t) v__z = 1 * np.exp(x + 2 * y + z + t) v__x__x = 1 * 1 * np.exp(x + 2 * y + z + t) v__y__y = 2 * 2 * np.exp(x + 2 * y + z + t) v__z__z = 1 * 1 * np.exp(x + 2 * y + z + t) v__x__y = 2 * 1 * np.exp(x + 2 * y + z + t) v__x__z = 1 * 1 * np.exp(x + 2 * y + z + t) v__y__z = 1 * 2 * np.exp(x + 2 * y + z + t) v__y__x = v__x__y v__z__x = v__x__z v__z__y = v__y__z w__x = 1 * np.exp(x + y + 2 * z + t) w__y = 1 * np.exp(x + y + 2 * z + t) w__z = 2 * np.exp(x + y + 2 * z + t) w__x__x = 1 * 1 * np.exp(x + y + 2 * z + t) w__y__y = 1 * 1 * np.exp(x + y + 2 * z + t) w__z__z = 2 * 2 * np.exp(x + y + 2 * z + t) w__x__y = 1 * 1 * np.exp(x + y + 2 * z + t) w__x__z = 2 * 1 * np.exp(x + y + 2 * z + t) w__y__z = 2 * 1 * np.exp(x + y + 2 * z + t) w__y__x = w__x__y w__z__x = w__x__z w__z__y = w__y__z sigma_xx = np.sin(x) * np.cos(y) * np.cos(z) sigma_yy = np.cos(x) * np.sin(y) * np.cos(z) sigma_zz = np.cos(x) * np.cos(y) * np.sin(z) sigma_xy = np.sin(x) * np.sin(y) * np.cos(z) sigma_xz = np.sin(x) * np.cos(y) * np.sin(z) sigma_yz = np.cos(x) * np.sin(y) * np.sin(z) sigma_xx__x = np.cos(x) * np.cos(y) * np.cos(z) sigma_yy__y = np.cos(x) * np.cos(y) * np.cos(z) sigma_zz__z = np.cos(x) * np.cos(y) * np.cos(z) sigma_xy__x = np.cos(x) * np.sin(y) * np.cos(z) sigma_xy__y = np.sin(x) * np.cos(y) * np.cos(z) sigma_xz__x = np.cos(x) * np.cos(y) * np.sin(z) sigma_xz__z = np.sin(x) * np.cos(y) * np.cos(z) sigma_yz__y = np.cos(x) * np.cos(y) * np.sin(z) sigma_yz__z = np.cos(x) * np.sin(y) * np.cos(z) E = 1.0 nu = 0.1 lambda_ = nu * E / ((1 + nu) * (1 - 2 * nu)) mu = E / (2 * (1 + nu)) rho = 10.0 stress_disp_xx_true = lambda_ * (u__x + v__y + w__z) + 2 * mu * u__x - sigma_xx stress_disp_yy_true = lambda_ * (u__x + v__y + w__z) + 2 * mu * v__y - sigma_yy stress_disp_zz_true = lambda_ * (u__x + v__y + w__z) + 2 * mu * w__z - sigma_zz stress_disp_xy_true = mu * (u__y + v__x) - sigma_xy stress_disp_xz_true = mu * (u__z + w__x) - sigma_xz stress_disp_yz_true = mu * (v__z + w__y) - sigma_yz equilibrium_x_true = rho * u__t__t - (sigma_xx__x + sigma_xy__y + sigma_xz__z) equilibrium_y_true = rho * v__t__t - (sigma_xy__x + sigma_yy__y + sigma_yz__z) equilibrium_z_true = rho * w__t__t - (sigma_xz__x + sigma_yz__y + sigma_zz__z) traction_x_true = normal_x * sigma_xx + normal_y * sigma_xy + normal_z * sigma_xz traction_y_true = normal_x * sigma_xy + normal_y * sigma_yy + normal_z * sigma_yz traction_z_true = normal_x * sigma_xz + normal_y * sigma_yz + normal_z * sigma_zz navier_x_true = ( rho * u__t__t - (lambda_ + mu) * (u__x__x + v__y__x + w__z__x) - mu * (u__x__x + u__y__y + u__z__z) ) navier_y_true = ( rho * v__t__t - (lambda_ + mu) * (u__x__y + v__y__y + w__z__y) - mu * (v__x__x + v__y__y + v__z__z) ) navier_z_true = ( rho * w__t__t - (lambda_ + mu) * (u__x__z + v__y__z + w__z__z) - mu * (w__x__x + w__y__y + w__z__z) ) linear_elasticity_eq = LinearElasticity(nu=nu, E=E, rho=rho, dim=3, time=True) evaluations_stress_disp_xx = linear_elasticity_eq.make_nodes()[0].evaluate( { "u__x": torch.tensor(u__x, dtype=torch.float32), "v__y": torch.tensor(v__y, dtype=torch.float32), "w__z": torch.tensor(w__z, dtype=torch.float32), "sigma_xx": torch.tensor(sigma_xx, dtype=torch.float32), } ) evaluations_stress_disp_yy = linear_elasticity_eq.make_nodes()[1].evaluate( { "u__x": torch.tensor(u__x, dtype=torch.float32), "v__y": torch.tensor(v__y, dtype=torch.float32), "w__z": torch.tensor(w__z, dtype=torch.float32), "sigma_yy": torch.tensor(sigma_yy, dtype=torch.float32), } ) evaluations_stress_disp_zz = linear_elasticity_eq.make_nodes()[2].evaluate( { "u__x": torch.tensor(u__x, dtype=torch.float32), "v__y": torch.tensor(v__y, dtype=torch.float32), "w__z": torch.tensor(w__z, dtype=torch.float32), "sigma_zz": torch.tensor(sigma_zz, dtype=torch.float32), } ) evaluations_stress_disp_xy = linear_elasticity_eq.make_nodes()[3].evaluate( { "u__y": torch.tensor(u__y, dtype=torch.float32), "v__x": torch.tensor(v__x, dtype=torch.float32), "sigma_xy": torch.tensor(sigma_xy, dtype=torch.float32), } ) evaluations_stress_disp_xz = linear_elasticity_eq.make_nodes()[4].evaluate( { "u__z": torch.tensor(u__z, dtype=torch.float32), "w__x": torch.tensor(w__x, dtype=torch.float32), "sigma_xz": torch.tensor(sigma_xz, dtype=torch.float32), } ) evaluations_stress_disp_yz = linear_elasticity_eq.make_nodes()[5].evaluate( { "v__z": torch.tensor(v__z, dtype=torch.float32), "w__y": torch.tensor(w__y, dtype=torch.float32), "sigma_yz": torch.tensor(sigma_yz, dtype=torch.float32), } ) evaluations_equilibrium_x = linear_elasticity_eq.make_nodes()[6].evaluate( { "u__t__t": torch.tensor(u__t__t, dtype=torch.float32), "sigma_xx__x": torch.tensor(sigma_xx__x, dtype=torch.float32), "sigma_xy__y": torch.tensor(sigma_xy__y, dtype=torch.float32), "sigma_xz__z": torch.tensor(sigma_xz__z, dtype=torch.float32), } ) evaluations_equilibrium_y = linear_elasticity_eq.make_nodes()[7].evaluate( { "v__t__t": torch.tensor(v__t__t, dtype=torch.float32), "sigma_xy__x": torch.tensor(sigma_xy__x, dtype=torch.float32), "sigma_yy__y": torch.tensor(sigma_yy__y, dtype=torch.float32), "sigma_yz__z": torch.tensor(sigma_yz__z, dtype=torch.float32), } ) evaluations_equilibrium_z = linear_elasticity_eq.make_nodes()[8].evaluate( { "w__t__t": torch.tensor(w__t__t, dtype=torch.float32), "sigma_xz__x": torch.tensor(sigma_xz__x, dtype=torch.float32), "sigma_yz__y": torch.tensor(sigma_yz__y, dtype=torch.float32), "sigma_zz__z": torch.tensor(sigma_zz__z, dtype=torch.float32), } ) evaluations_traction_x = linear_elasticity_eq.make_nodes()[9].evaluate( { "normal_x": torch.tensor(normal_x, dtype=torch.float32), "normal_y": torch.tensor(normal_y, dtype=torch.float32), "normal_z": torch.tensor(normal_z, dtype=torch.float32), "sigma_xx": torch.tensor(sigma_xx, dtype=torch.float32), "sigma_xy": torch.tensor(sigma_xy, dtype=torch.float32), "sigma_xz": torch.tensor(sigma_xz, dtype=torch.float32), } ) evaluations_traction_y = linear_elasticity_eq.make_nodes()[10].evaluate( { "normal_x": torch.tensor(normal_x, dtype=torch.float32), "normal_y": torch.tensor(normal_y, dtype=torch.float32), "normal_z": torch.tensor(normal_z, dtype=torch.float32), "sigma_yy": torch.tensor(sigma_yy, dtype=torch.float32), "sigma_xy": torch.tensor(sigma_xy, dtype=torch.float32), "sigma_yz": torch.tensor(sigma_yz, dtype=torch.float32), } ) evaluations_traction_z = linear_elasticity_eq.make_nodes()[11].evaluate( { "normal_x": torch.tensor(normal_x, dtype=torch.float32), "normal_y": torch.tensor(normal_y, dtype=torch.float32), "normal_z": torch.tensor(normal_z, dtype=torch.float32), "sigma_zz": torch.tensor(sigma_zz, dtype=torch.float32), "sigma_xz": torch.tensor(sigma_xz, dtype=torch.float32), "sigma_yz": torch.tensor(sigma_yz, dtype=torch.float32), } ) evaluations_navier_x = linear_elasticity_eq.make_nodes()[12].evaluate( { "u__t__t": torch.tensor(u__t__t, dtype=torch.float32), "u__x__x": torch.tensor(u__x__x, dtype=torch.float32), "v__x__y": torch.tensor(v__x__y, dtype=torch.float32), "w__x__z": torch.tensor(w__x__z, dtype=torch.float32), "u__y__y": torch.tensor(u__y__y, dtype=torch.float32), "u__z__z": torch.tensor(u__z__z, dtype=torch.float32), } ) evaluations_navier_y = linear_elasticity_eq.make_nodes()[13].evaluate( { "v__t__t": torch.tensor(v__t__t, dtype=torch.float32), "u__x__y": torch.tensor(u__x__y, dtype=torch.float32), "v__y__y": torch.tensor(v__y__y, dtype=torch.float32), "w__y__z": torch.tensor(w__y__z, dtype=torch.float32), "v__x__x": torch.tensor(v__x__x, dtype=torch.float32), "v__z__z": torch.tensor(v__z__z, dtype=torch.float32), } ) evaluations_navier_z = linear_elasticity_eq.make_nodes()[14].evaluate( { "w__t__t": torch.tensor(w__t__t, dtype=torch.float32), "u__x__z": torch.tensor(u__x__z, dtype=torch.float32), "v__y__z": torch.tensor(v__y__z, dtype=torch.float32), "w__x__x": torch.tensor(w__x__x, dtype=torch.float32), "w__y__y": torch.tensor(w__y__y, dtype=torch.float32), "w__z__z": torch.tensor(w__z__z, dtype=torch.float32), } ) stress_disp_xx_eval_pred = evaluations_stress_disp_xx["stress_disp_xx"].numpy() stress_disp_yy_eval_pred = evaluations_stress_disp_yy["stress_disp_yy"].numpy() stress_disp_zz_eval_pred = evaluations_stress_disp_zz["stress_disp_zz"].numpy() stress_disp_xy_eval_pred = evaluations_stress_disp_xy["stress_disp_xy"].numpy() stress_disp_xz_eval_pred = evaluations_stress_disp_xz["stress_disp_xz"].numpy() stress_disp_yz_eval_pred = evaluations_stress_disp_yz["stress_disp_yz"].numpy() equilibrium_x_eval_pred = evaluations_equilibrium_x["equilibrium_x"].numpy() equilibrium_y_eval_pred = evaluations_equilibrium_y["equilibrium_y"].numpy() equilibrium_z_eval_pred = evaluations_equilibrium_z["equilibrium_z"].numpy() traction_x_eval_pred = evaluations_traction_x["traction_x"].numpy() traction_y_eval_pred = evaluations_traction_y["traction_y"].numpy() traction_z_eval_pred = evaluations_traction_z["traction_z"].numpy() navier_x_eval_pred = evaluations_navier_x["navier_x"].numpy() navier_y_eval_pred = evaluations_navier_y["navier_y"].numpy() navier_z_eval_pred = evaluations_navier_z["navier_z"].numpy() # verify PDE computation assert np.allclose(stress_disp_xx_eval_pred, stress_disp_xx_true), "Test Failed!" assert np.allclose(stress_disp_yy_eval_pred, stress_disp_yy_true), "Test Failed!" assert np.allclose(stress_disp_zz_eval_pred, stress_disp_zz_true), "Test Failed!" assert np.allclose(stress_disp_xy_eval_pred, stress_disp_xy_true), "Test Failed!" assert np.allclose(stress_disp_xz_eval_pred, stress_disp_xz_true), "Test Failed!" assert np.allclose(stress_disp_yz_eval_pred, stress_disp_yz_true), "Test Failed!" assert np.allclose(equilibrium_x_eval_pred, equilibrium_x_true), "Test Failed!" assert np.allclose(equilibrium_y_eval_pred, equilibrium_y_true), "Test Failed!" assert np.allclose(equilibrium_z_eval_pred, equilibrium_z_true), "Test Failed!" assert np.allclose(traction_x_eval_pred, traction_x_true), "Test Failed!" assert np.allclose(traction_y_eval_pred, traction_y_true), "Test Failed!" assert np.allclose(traction_z_eval_pred, traction_z_true), "Test Failed!" assert np.allclose(navier_x_eval_pred, navier_x_true, rtol=1e-3), "Test Failed!" assert np.allclose(navier_y_eval_pred, navier_y_true, rtol=1e-3), "Test Failed!" assert np.allclose(navier_z_eval_pred, navier_z_true, rtol=1e-3), "Test Failed!" def test_linear_elasticity_plane_stress_equations(): # test data for linear elasticity plane stress x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) t = np.random.rand(1024, 1) normal_x = np.random.rand(1024, 1) normal_y = np.random.rand(1024, 1) u = np.exp(2 * x + y + t) v = np.exp(x + 2 * y + t) sigma_xx = np.sin(x) * np.cos(y) sigma_yy = np.cos(x) * np.sin(y) sigma_xy = np.sin(x) * np.sin(y) u__t__t = 1 * np.exp(2 * x + y + t) v__t__t = 1 * np.exp(x + 2 * y + t) u__x = 2 * np.exp(2 * x + y + t) u__y = 1 * np.exp(2 * x + y + t) u__x__x = 2 * 2 * np.exp(2 * x + y + t) u__y__y = 1 * 1 * np.exp(2 * x + y + t) u__x__y = 1 * 2 * np.exp(2 * x + y + t) u__y__x = u__x__y v__x = 1 * np.exp(x + 2 * y + t) v__y = 2 * np.exp(x + 2 * y + t) v__x__x = 1 * 1 * np.exp(x + 2 * y + t) v__y__y = 2 * 2 * np.exp(x + 2 * y + t) v__x__y = 2 * 1 * np.exp(x + 2 * y + t) v__y__x = v__x__y sigma_xx__x = np.cos(x) * np.cos(y) sigma_yy__y = np.cos(x) * np.cos(y) sigma_xy__x = np.cos(x) * np.sin(y) sigma_xy__y = np.sin(x) * np.cos(y) E = 1.0 nu = 0.1 lambda_ = nu * E / ((1 + nu) * (1 - 2 * nu)) mu = E / (2 * (1 + nu)) rho = 10.0 w_z = -lambda_ / (lambda_ + 2 * mu) * (u__x + v__y) stress_disp_xx_true = lambda_ * (u__x + v__y + w_z) + 2 * mu * u__x - sigma_xx stress_disp_yy_true = lambda_ * (u__x + v__y + w_z) + 2 * mu * v__y - sigma_yy stress_disp_xy_true = mu * (u__y + v__x) - sigma_xy equilibrium_x_true = rho * u__t__t - (sigma_xx__x + sigma_xy__y) equilibrium_y_true = rho * v__t__t - (sigma_xy__x + sigma_yy__y) traction_x_true = normal_x * sigma_xx + normal_y * sigma_xy traction_y_true = normal_x * sigma_xy + normal_y * sigma_yy linear_elasticity_eq = LinearElasticityPlaneStress(nu=nu, E=E, rho=rho, time=True) evaluations_stress_disp_xx = linear_elasticity_eq.make_nodes()[0].evaluate( { "u__x": torch.tensor(u__x, dtype=torch.float32), "v__y": torch.tensor(v__y, dtype=torch.float32), "sigma_xx": torch.tensor(sigma_xx, dtype=torch.float32), } ) evaluations_stress_disp_yy = linear_elasticity_eq.make_nodes()[1].evaluate( { "u__x": torch.tensor(u__x, dtype=torch.float32), "v__y": torch.tensor(v__y, dtype=torch.float32), "sigma_yy": torch.tensor(sigma_yy, dtype=torch.float32), } ) evaluations_stress_disp_xy = linear_elasticity_eq.make_nodes()[2].evaluate( { "u__y": torch.tensor(u__y, dtype=torch.float32), "v__x": torch.tensor(v__x, dtype=torch.float32), "sigma_xy": torch.tensor(sigma_xy, dtype=torch.float32), } ) evaluations_equilibrium_x = linear_elasticity_eq.make_nodes()[3].evaluate( { "u__t__t": torch.tensor(u__t__t, dtype=torch.float32), "sigma_xx__x": torch.tensor(sigma_xx__x, dtype=torch.float32), "sigma_xy__y": torch.tensor(sigma_xy__y, dtype=torch.float32), } ) evaluations_equilibrium_y = linear_elasticity_eq.make_nodes()[4].evaluate( { "v__t__t": torch.tensor(v__t__t, dtype=torch.float32), "sigma_xy__x": torch.tensor(sigma_xy__x, dtype=torch.float32), "sigma_yy__y": torch.tensor(sigma_yy__y, dtype=torch.float32), } ) evaluations_traction_x = linear_elasticity_eq.make_nodes()[5].evaluate( { "normal_x": torch.tensor(normal_x, dtype=torch.float32), "normal_y": torch.tensor(normal_y, dtype=torch.float32), "sigma_xx": torch.tensor(sigma_xx, dtype=torch.float32), "sigma_xy": torch.tensor(sigma_xy, dtype=torch.float32), } ) evaluations_traction_y = linear_elasticity_eq.make_nodes()[6].evaluate( { "normal_x": torch.tensor(normal_x, dtype=torch.float32), "normal_y": torch.tensor(normal_y, dtype=torch.float32), "sigma_yy": torch.tensor(sigma_yy, dtype=torch.float32), "sigma_xy": torch.tensor(sigma_xy, dtype=torch.float32), } ) stress_disp_xx_eval_pred = evaluations_stress_disp_xx["stress_disp_xx"].numpy() stress_disp_yy_eval_pred = evaluations_stress_disp_yy["stress_disp_yy"].numpy() stress_disp_xy_eval_pred = evaluations_stress_disp_xy["stress_disp_xy"].numpy() equilibrium_x_eval_pred = evaluations_equilibrium_x["equilibrium_x"].numpy() equilibrium_y_eval_pred = evaluations_equilibrium_y["equilibrium_y"].numpy() traction_x_eval_pred = evaluations_traction_x["traction_x"].numpy() traction_y_eval_pred = evaluations_traction_y["traction_y"].numpy() # verify PDE computation assert np.allclose(stress_disp_xx_eval_pred, stress_disp_xx_true), "Test Failed!" assert np.allclose(stress_disp_yy_eval_pred, stress_disp_yy_true), "Test Failed!" assert np.allclose(stress_disp_xy_eval_pred, stress_disp_xy_true), "Test Failed!" assert np.allclose(equilibrium_x_eval_pred, equilibrium_x_true), "Test Failed!" assert np.allclose(equilibrium_y_eval_pred, equilibrium_y_true), "Test Failed!" assert np.allclose(traction_x_eval_pred, traction_x_true), "Test Failed!" assert np.allclose(traction_y_eval_pred, traction_y_true), "Test Failed!" if __name__ == "__main__": test_linear_elasticity_equations() test_linear_elasticity_plane_stress_equations()
modulus-sym-main
test/test_pdes/test_linear_elasticity.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.eq.pdes.electromagnetic import MaxwellFreqReal, SommerfeldBC, PEC import torch import numpy as np import os def test_maxwell_freq_real(): # test data for frequency domain Maxwell's equations x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) ux = np.exp(1 * x + 1 * y + 1 * z) uy = np.exp(2 * x + 2 * y + 2 * z) uz = np.exp(3 * x + 3 * y + 3 * z) ux__x = 1 * np.exp(1 * x + 1 * y + 1 * z) uy__x = 2 * np.exp(2 * x + 2 * y + 2 * z) uz__x = 3 * np.exp(3 * x + 3 * y + 3 * z) ux__y = 1 * np.exp(1 * x + 1 * y + 1 * z) uy__y = 2 * np.exp(2 * x + 2 * y + 2 * z) uz__y = 3 * np.exp(3 * x + 3 * y + 3 * z) ux__z = 1 * np.exp(1 * x + 1 * y + 1 * z) uy__z = 2 * np.exp(2 * x + 2 * y + 2 * z) uz__z = 3 * np.exp(3 * x + 3 * y + 3 * z) ux__x__x = 1 * np.exp(1 * x + 1 * y + 1 * z) ux__x__y = 1 * np.exp(1 * x + 1 * y + 1 * z) ux__x__z = 1 * np.exp(1 * x + 1 * y + 1 * z) ux__y__x = ux__x__y ux__y__y = 1 * np.exp(1 * x + 1 * y + 1 * z) ux__y__z = 1 * np.exp(1 * x + 1 * y + 1 * z) ux__z__x = ux__x__z ux__z__y = ux__y__z ux__z__z = 1 * np.exp(1 * x + 1 * y + 1 * z) uy__x__x = 4 * np.exp(2 * x + 2 * y + 2 * z) uy__x__y = 4 * np.exp(2 * x + 2 * y + 2 * z) uy__x__z = 4 * np.exp(2 * x + 2 * y + 2 * z) uy__y__x = uy__x__y uy__y__y = 4 * np.exp(2 * x + 2 * y + 2 * z) uy__y__z = 4 * np.exp(2 * x + 2 * y + 2 * z) uy__z__x = uy__x__z uy__z__y = uy__y__z uy__z__z = 4 * np.exp(2 * x + 2 * y + 2 * z) uz__x__x = 9 * np.exp(3 * x + 3 * y + 3 * z) uz__x__y = 9 * np.exp(3 * x + 3 * y + 3 * z) uz__x__z = 9 * np.exp(3 * x + 3 * y + 3 * z) uz__y__x = uz__x__y uz__y__y = 9 * np.exp(3 * x + 3 * y + 3 * z) uz__y__z = 9 * np.exp(3 * x + 3 * y + 3 * z) uz__z__x = uz__x__z uz__z__y = uz__y__z uz__z__z = 9 * np.exp(3 * x + 3 * y + 3 * z) curlux = uz__y - uy__z # 3*np.exp(3*x + 3*y + 3*z) - 2*np.exp(2*x + 2*y + 2*z) curluy = ux__z - uz__x # 1*np.exp(1*x + 1*y + 1*z) - 3*np.exp(3*x + 3*y + 3*z) curluz = uy__x - ux__y # 2*np.exp(2*x + 2*y + 2*z) - 1*np.exp(1*x + 1*y + 1*z) curlcurlux = ( 4 * np.exp(2 * x + 2 * y + 2 * z) - 1 * np.exp(1 * x + 1 * y + 1 * z) - 1 * np.exp(1 * x + 1 * y + 1 * z) + 9 * np.exp(3 * x + 3 * y + 3 * z) ) # uy__x__y - ux__y__y - ux__z__z + uz__x__z #curluz__y - curluy__z curlcurluy = ( 9 * np.exp(3 * x + 3 * y + 3 * z) - 4 * np.exp(2 * x + 2 * y + 2 * z) - 4 * np.exp(2 * x + 2 * y + 2 * z) + 1 * np.exp(1 * x + 1 * y + 1 * z) ) # uz__y__z - uy__z__z - uy__x__x + ux__y__x #curlux__z - curluz__x curlcurluz = ( 1 * np.exp(1 * x + 1 * y + 1 * z) - 9 * np.exp(3 * x + 3 * y + 3 * z) - 9 * np.exp(3 * x + 3 * y + 3 * z) + 4 * np.exp(2 * x + 2 * y + 2 * z) ) # ux__z__x - uz__x__x - uz__y__y + uy__z__y #curluy__x - curlux__y k = 0.1 Maxwell_Freq_real_x_true = curlcurlux - k**2 * ux Maxwell_Freq_real_y_true = curlcurluy - k**2 * uy Maxwell_Freq_real_z_true = curlcurluz - k**2 * uz maxwell_eq = MaxwellFreqReal(k=k) evaluations_MaxwellFreqReal_x = maxwell_eq.make_nodes()[0].evaluate( { "ux": torch.tensor(ux, dtype=torch.float32), "uy__x__y": torch.tensor(uy__x__y, dtype=torch.float32), "ux__y__y": torch.tensor(ux__y__y, dtype=torch.float32), "ux__z__z": torch.tensor(ux__z__z, dtype=torch.float32), "uz__x__z": torch.tensor(uz__x__z, dtype=torch.float32), } ) evaluations_MaxwellFreqReal_y = maxwell_eq.make_nodes()[1].evaluate( { "uy": torch.tensor(uy, dtype=torch.float32), "uz__y__z": torch.tensor(uz__y__z, dtype=torch.float32), "uy__z__z": torch.tensor(uy__z__z, dtype=torch.float32), "uy__x__x": torch.tensor(uy__x__x, dtype=torch.float32), "ux__x__y": torch.tensor(ux__x__y, dtype=torch.float32), } ) evaluations_MaxwellFreqReal_z = maxwell_eq.make_nodes()[2].evaluate( { "uz": torch.tensor(uz, dtype=torch.float32), "ux__x__z": torch.tensor(ux__x__z, dtype=torch.float32), "uz__x__x": torch.tensor(uz__x__x, dtype=torch.float32), "uz__y__y": torch.tensor(uz__y__y, dtype=torch.float32), "uy__y__z": torch.tensor(uy__y__z, dtype=torch.float32), } ) Maxwell_Freq_real_x_eval_pred = evaluations_MaxwellFreqReal_x[ "Maxwell_Freq_real_x" ].numpy() Maxwell_Freq_real_y_eval_pred = evaluations_MaxwellFreqReal_y[ "Maxwell_Freq_real_y" ].numpy() Maxwell_Freq_real_z_eval_pred = evaluations_MaxwellFreqReal_z[ "Maxwell_Freq_real_z" ].numpy() # verify PDE computation assert np.allclose( Maxwell_Freq_real_x_eval_pred, Maxwell_Freq_real_x_true ), "Test Failed!" assert np.allclose( Maxwell_Freq_real_y_eval_pred, Maxwell_Freq_real_y_true ), "Test Failed!" assert np.allclose( Maxwell_Freq_real_z_eval_pred, Maxwell_Freq_real_z_true ), "Test Failed!" def test_sommerfeld_bc(): # test data for SommerfeldBC x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) normal_x = np.random.rand(1024, 1) normal_y = np.random.rand(1024, 1) normal_z = np.random.rand(1024, 1) ux = np.exp(1 * x + 1 * y + 1 * z) uy = np.exp(2 * x + 2 * y + 2 * z) uz = np.exp(3 * x + 3 * y + 3 * z) ux__x = 1 * np.exp(1 * x + 1 * y + 1 * z) uy__x = 2 * np.exp(2 * x + 2 * y + 2 * z) uz__x = 3 * np.exp(3 * x + 3 * y + 3 * z) ux__y = 1 * np.exp(1 * x + 1 * y + 1 * z) uy__y = 2 * np.exp(2 * x + 2 * y + 2 * z) uz__y = 3 * np.exp(3 * x + 3 * y + 3 * z) ux__z = 1 * np.exp(1 * x + 1 * y + 1 * z) uy__z = 2 * np.exp(2 * x + 2 * y + 2 * z) uz__z = 3 * np.exp(3 * x + 3 * y + 3 * z) curlux = uz__y - uy__z # 3*np.exp(3*x + 3*y + 3*z) - 2*np.exp(2*x + 2*y + 2*z) curluy = ux__z - uz__x # 1*np.exp(1*x + 1*y + 1*z) - 3*np.exp(3*x + 3*y + 3*z) curluz = uy__x - ux__y # 2*np.exp(2*x + 2*y + 2*z) - 1*np.exp(1*x + 1*y + 1*z) SommerfeldBC_real_x_true = normal_y * curluz - normal_z * curluy SommerfeldBC_real_y_true = normal_z * curlux - normal_x * curluz SommerfeldBC_real_z_true = normal_x * curluy - normal_y * curlux sommerfeld_bc = SommerfeldBC() evaluations_SommerfeldBC_real_x = sommerfeld_bc.make_nodes()[0].evaluate( { "normal_y": torch.tensor(normal_y, dtype=torch.float32), "normal_z": torch.tensor(normal_z, dtype=torch.float32), "ux__y": torch.tensor(ux__y, dtype=torch.float32), "uy__x": torch.tensor(uy__x, dtype=torch.float32), "ux__z": torch.tensor(ux__z, dtype=torch.float32), "uz__x": torch.tensor(uz__x, dtype=torch.float32), } ) evaluations_SommerfeldBC_real_y = sommerfeld_bc.make_nodes()[1].evaluate( { "normal_x": torch.tensor(normal_x, dtype=torch.float32), "normal_z": torch.tensor(normal_z, dtype=torch.float32), "ux__y": torch.tensor(ux__y, dtype=torch.float32), "uy__x": torch.tensor(uy__x, dtype=torch.float32), "uy__z": torch.tensor(uy__z, dtype=torch.float32), "uz__y": torch.tensor(uz__y, dtype=torch.float32), } ) evaluations_SommerfeldBC_real_z = sommerfeld_bc.make_nodes()[2].evaluate( { "normal_x": torch.tensor(normal_x, dtype=torch.float32), "normal_y": torch.tensor(normal_y, dtype=torch.float32), "ux__z": torch.tensor(ux__z, dtype=torch.float32), "uz__x": torch.tensor(uz__x, dtype=torch.float32), "uy__z": torch.tensor(uy__z, dtype=torch.float32), "uz__y": torch.tensor(uz__y, dtype=torch.float32), } ) SommerfeldBC_real_x_eval_pred = evaluations_SommerfeldBC_real_x[ "SommerfeldBC_real_x" ].numpy() SommerfeldBC_real_y_eval_pred = evaluations_SommerfeldBC_real_y[ "SommerfeldBC_real_y" ].numpy() SommerfeldBC_real_z_eval_pred = evaluations_SommerfeldBC_real_z[ "SommerfeldBC_real_z" ].numpy() # verify PDE computation assert np.allclose( SommerfeldBC_real_x_eval_pred, SommerfeldBC_real_x_true, atol=1e-4 ), "Test Failed!" assert np.allclose( SommerfeldBC_real_y_eval_pred, SommerfeldBC_real_y_true, atol=1e-4 ), "Test Failed!" assert np.allclose( SommerfeldBC_real_z_eval_pred, SommerfeldBC_real_z_true, atol=1e-4 ), "Test Failed!" def test_pec(): # test data for PEC x = np.random.rand(1024, 1) y = np.random.rand(1024, 1) z = np.random.rand(1024, 1) normal_x = np.random.rand(1024, 1) normal_y = np.random.rand(1024, 1) normal_z = np.random.rand(1024, 1) ux = np.exp(1 * x + 1 * y + 1 * z) uy = np.exp(2 * x + 2 * y + 2 * z) uz = np.exp(3 * x + 3 * y + 3 * z) PEC_x_true = normal_y * uz - normal_z * uy PEC_y_true = normal_z * ux - normal_x * uz PEC_z_true = normal_x * uy - normal_y * ux pec = PEC() evaluations_PEC_x = pec.make_nodes()[0].evaluate( { "normal_y": torch.tensor(normal_y, dtype=torch.float32), "normal_z": torch.tensor(normal_z, dtype=torch.float32), "uz": torch.tensor(uz, dtype=torch.float32), "uy": torch.tensor(uy, dtype=torch.float32), } ) evaluations_PEC_y = pec.make_nodes()[1].evaluate( { "normal_x": torch.tensor(normal_x, dtype=torch.float32), "normal_z": torch.tensor(normal_z, dtype=torch.float32), "ux": torch.tensor(ux, dtype=torch.float32), "uz": torch.tensor(uz, dtype=torch.float32), } ) evaluations_PEC_z = pec.make_nodes()[2].evaluate( { "normal_x": torch.tensor(normal_x, dtype=torch.float32), "normal_y": torch.tensor(normal_y, dtype=torch.float32), "ux": torch.tensor(ux, dtype=torch.float32), "uy": torch.tensor(uy, dtype=torch.float32), } ) PEC_x_eval_pred = evaluations_PEC_x["PEC_x"].numpy() PEC_y_eval_pred = evaluations_PEC_y["PEC_y"].numpy() PEC_z_eval_pred = evaluations_PEC_z["PEC_z"].numpy() # verify PDE computation assert np.allclose(PEC_x_eval_pred, PEC_x_true, atol=1e-4), "Test Failed!" assert np.allclose(PEC_y_eval_pred, PEC_y_true, atol=1e-4), "Test Failed!" assert np.allclose(PEC_z_eval_pred, PEC_z_true, atol=1e-4), "Test Failed!" if __name__ == "__main__": test_maxwell_freq_real() test_sommerfeld_bc() test_pec()
modulus-sym-main
test/test_pdes/test_electromagnetic.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.models.deeponet import DeepONetArch from modulus.sym.models.fully_connected import FullyConnectedArch from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.models.pix2pix import Pix2PixArch import torch import numpy as np from modulus.sym.key import Key import pytest from modulus.sym.graph import Graph from modulus.sym.models.arch import FuncArch from .model_test_utils import validate_func_arch_net # ensure torch.rand() is deterministic _ = torch.manual_seed(0) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # disable tf32 for accuracy torch.backends.cuda.matmul.allow_tf32 = False @pytest.mark.parametrize( "branch_input_keys", [[Key("a", 100)], [Key("a", 100, scale=(1.0, 2.0))]] ) @pytest.mark.parametrize("validate_with_dict_forward", [True, False]) @pytest.mark.parametrize("dim", [1, 2]) def test_func_arch_deeponet(branch_input_keys, validate_with_dict_forward, dim): deriv_keys = [Key.from_str("u__x"), Key.from_str("u__x__x")] branch_net = FullyConnectedArch( input_keys=branch_input_keys, output_keys=[Key("branch", 128)], nr_layers=4, layer_size=128, ) trunk_net = FourierNetArch( input_keys=[Key("x", 1)], output_keys=[Key("trunk", 128)], nr_layers=4, layer_size=128, frequencies=("axis", [i for i in range(5)]), ) ref_net = DeepONetArch( branch_net=branch_net, trunk_net=trunk_net, output_keys=[Key("u")], ) validate_func_arch_net(ref_net, deriv_keys, validate_with_dict_forward) @pytest.mark.parametrize("validate_with_dict_forward", [True, False]) def test_func_arch_deeponet_with_pix2pix(validate_with_dict_forward): """ deeponet does not support FuncArch if branch_net is Pix2PixArch. """ deriv_keys = [Key.from_str("sol__x"), Key.from_str("sol__x__x")] branch_input_keys = [Key("coeff")] output_keys = [Key("sol")] branch_net = Pix2PixArch( input_keys=branch_input_keys, output_keys=[Key("branch")], # hard set in deeponet dimension=2, conv_layer_size=32, ) trunk_net = FourierNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("trunk", 256)], # hard set in deeponet nr_layers=5, layer_size=128, frequencies=("axis", [i for i in range(5)]), ) ref_net = DeepONetArch( branch_net=branch_net, trunk_net=trunk_net, output_keys=output_keys, branch_dim=1024, ) if validate_with_dict_forward: ref_net.forward = ref_net._dict_forward ref_graph = Graph( [ ref_net.make_node("ref_net", jit=False), ], ref_net.input_keys, deriv_keys + [Key("sol")], func_arch=False, ).to(device) # deeponet with pix2pix should not support func_arch assert not ref_net.supports_func_arch # there is nothing happened even if we enable func_arch ft_graph = Graph( [ ref_net.make_node("ref_net", jit=False), ], ref_net.input_keys, deriv_keys + [Key("sol")], func_arch=True, ).to(device) # there should be no FuncArch instance for node in ft_graph.node_evaluation_order: evaluate = node.evaluate assert not isinstance(evaluate, FuncArch) # check result x = torch.rand([100, 1], device=device).requires_grad_() y = torch.rand([100, 1], device=device).requires_grad_() coeff = torch.rand( [100, branch_input_keys[0].size, 32, 32], device=device ).requires_grad_() in_vars = {"x": x, "y": y, "coeff": coeff} ft_out = ft_graph(in_vars) ref_out = ref_graph(in_vars) for k in ref_out.keys(): assert torch.allclose(ref_out[k], ft_out[k], atol=6e-5)
modulus-sym-main
test/test_models/test_deeponet.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.models.fully_connected import FullyConnectedArch import torch import numpy as np from pathlib import Path from modulus.sym.key import Key import pytest from .model_test_utils import validate_func_arch_net dir_path = Path(__file__).parent def make_dict(nr_layers): _dict = dict() names = [("weight", "weights"), ("bias", "biases"), ("weight_g", "alphas")] for i in range(nr_layers): for pt_name, tf_name in names: _dict["_impl.layers." + str(i) + ".linear." + pt_name] = ( "fc" + str(i) + "/" + tf_name + ":0" ) for pt_name, tf_name in names[:2]: _dict["_impl.final_layer.linear." + pt_name] = "fc_final/" + tf_name + ":0" return _dict @pytest.mark.parametrize("jit", [True, False]) def test_fully_connected(jit): filename = dir_path / "data/test_fully_connected.npz" test_data = np.load(filename, allow_pickle=True) data_in = test_data["data_in"] Wbs = test_data["Wbs"][()] params = test_data["params"][()] # create graph arch = FullyConnectedArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], layer_size=params["layer_size"], nr_layers=params["nr_layers"], ) if jit: arch = torch.jit.script(arch) name_dict = make_dict(params["nr_layers"]) for _name, _tensor in arch.named_parameters(): if _tensor.requires_grad: _tensor.data = torch.from_numpy(Wbs[name_dict[_name]].T) data_out2 = arch( {"x": torch.from_numpy(data_in[:, 0:1]), "y": torch.from_numpy(data_in[:, 1:2])} ) data_out2 = data_out2["u"].detach().numpy() # load outputs data_out1 = test_data["data_out"] # verify assert np.allclose(data_out1, data_out2, rtol=1e-3), "Test failed!" print("Success!") def validate_func_arch_fully_connected( input_keys, output_keys, periodicity, deriv_keys, validate_with_dict_forward ): ref_net = FullyConnectedArch( input_keys=input_keys, output_keys=output_keys, periodicity=periodicity, nr_layers=3, ) ft_net = validate_func_arch_net(ref_net, deriv_keys, validate_with_dict_forward) return ft_net @pytest.mark.parametrize( "input_keys", [ [Key("x"), Key("y")], [Key("x"), Key("y", scale=(1.0, 2.0))], # input scale [Key("x"), Key("z", size=100), Key("y")], # input size larger than 1 ], ) @pytest.mark.parametrize( "output_keys", [ [Key("u"), Key("v"), Key("p")], # output scale and output size larger than 1 [Key("u"), Key("v"), Key("p", scale=(1.0, 2.0)), Key("w", size=100)], ], ) @pytest.mark.parametrize( "periodicity", [ {}, {"x": (0.0, 2 * torch.pi)}, {"x": (0.0, 2 * torch.pi), "y": (torch.pi, 4 * torch.pi)}, ], ) @pytest.mark.parametrize("validate_with_dict_forward", [True, False]) def test_func_arch_fully_connected( input_keys, output_keys, periodicity, validate_with_dict_forward ): # need full jacobian deriv_keys = [ Key.from_str("u__x"), Key.from_str("v__y"), Key.from_str("p__x"), ] ft_net = validate_func_arch_fully_connected( input_keys, output_keys, periodicity, deriv_keys, validate_with_dict_forward ) assert torch.allclose(ft_net.needed_output_dims, torch.tensor([0, 1, 2])) # need partial jacobian deriv_keys = [ Key.from_str("u__x"), Key.from_str("p__x"), ] ft_net = validate_func_arch_fully_connected( input_keys, output_keys, periodicity, deriv_keys, validate_with_dict_forward ) assert torch.allclose(ft_net.needed_output_dims, torch.tensor([0, 2])) # need partial jacobian deriv_keys = [ Key.from_str("v__y"), ] ft_net = validate_func_arch_fully_connected( input_keys, output_keys, periodicity, deriv_keys, validate_with_dict_forward ) assert torch.allclose(ft_net.needed_output_dims, torch.tensor([1])) # need full hessian deriv_keys = [ Key.from_str("u__x__x"), Key.from_str("v__y__y"), Key.from_str("p__x__x"), ] ft_net = validate_func_arch_fully_connected( input_keys, output_keys, periodicity, deriv_keys, validate_with_dict_forward ) assert torch.allclose(ft_net.needed_output_dims, torch.tensor([0, 1, 2])) # need full hessian deriv_keys = [ Key.from_str("u__x__x"), Key.from_str("v__y__y"), Key.from_str("p__x"), ] ft_net = validate_func_arch_fully_connected( input_keys, output_keys, periodicity, deriv_keys, validate_with_dict_forward ) assert torch.allclose(ft_net.needed_output_dims, torch.tensor([0, 1, 2])) # need partial hessian deriv_keys = [ Key.from_str("u__x__x"), Key.from_str("p__x__x"), ] ft_net = validate_func_arch_fully_connected( input_keys, output_keys, periodicity, deriv_keys, validate_with_dict_forward ) assert torch.allclose(ft_net.needed_output_dims, torch.tensor([0, 2])) if __name__ == "__main__": test_fully_connected(True) test_fully_connected(False)
modulus-sym-main
test/test_models/test_fully_connected.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import torch import pytest from packaging import version from modulus.sym.manager import JitManager from modulus.sym.utils.benchmark import profile, timeit from modulus.sym.models.layers.activation import Activation, get_activation_fn # Allow fusing single node, and prevent tiny autodiff graph are inlined/reverted. # These flags are automatically set when specifying jit_manager.enabled is True. # User needs to set these flags manually if they would like to fuse activation # function for standalone code. # # torch._C._jit_set_nvfuser_single_node_mode(True) # torch._C._debug_set_autodiff_subgraph_inlining(False) skip_if_no_gpu = pytest.mark.skipif( not torch.cuda.is_available(), reason="There is no GPU to run this test" ) def test_activation_jit(): jit_manager = JitManager() jit_manager.enabled = True jit_manager.arch_mode = "only_activation" for act in Activation: act_scripted = get_activation_fn(act) assert isinstance( act_scripted, (torch.jit.ScriptFunction, torch.jit.ScriptModule) ) def sin(x): return torch.sin(x) sin_scripted = get_activation_fn(sin) assert isinstance(sin_scripted, torch.jit.ScriptFunction) @skip_if_no_gpu def test_activation_fused_silu(): """ Make sure SiLU derivative kernels are fused when jit_manager.arch_mode == "only_activation". We need to rely on the fused SiLU derivative kernels for AMP, because the unfused path may have intermediate results that overflow the FP16 dynamic range. """ jit_manager = JitManager() jit_manager.enabled = True jit_manager.arch_mode = "only_activation" jit_manager.use_nvfuser = True silu_scripted = get_activation_fn(Activation.SILU) assert isinstance(silu_scripted, torch.jit.ScriptFunction) device = "cuda" batch_size = 10000 x = torch.rand([batch_size, 512], device=device, requires_grad=True) I_N = torch.ones_like(x) def run(func, order, *args): torch.cuda.nvtx.range_push("forward") y = func(*args) torch.cuda.nvtx.range_pop() if order >= 1: torch.cuda.nvtx.range_push("1st order") (y__x,) = torch.autograd.grad(y, [x], I_N, create_graph=True) torch.cuda.nvtx.range_pop() if order >= 2: torch.cuda.nvtx.range_push("2nd order") (y__x__x,) = torch.autograd.grad(y__x, [x], I_N, create_graph=True) torch.cuda.nvtx.range_pop() if order >= 3: torch.cuda.nvtx.range_push("3rd order") (y__x__x__x,) = torch.autograd.grad(y__x__x, [x], I_N, create_graph=True) torch.cuda.nvtx.range_pop() def cleanup_events(event_keys): keys = ["cuLaunchKernel", "cudaLaunchKernel", "cudaDeviceSynchronize"] for evt in keys: if evt in event_keys: event_keys.remove(evt) return event_keys # benchmark silu = torch.nn.functional.silu timeit(run, silu, 1, x, label="silu_1st", verbose=True) timeit(run, silu_scripted, 1, x, label="silu_scripted_1st", verbose=True) timeit(run, silu, 2, x, label="silu_2nd", verbose=True) timeit(run, silu_scripted, 2, x, label="silu_scripted_2nd", verbose=True) timeit(run, silu, 3, x, label="silu_3rd", verbose=True) timeit(run, silu_scripted, 3, x, label="silu_scripted_3rd", verbose=True) # profile and get the number of kernels verbose = False # set to True to debug _, events = profile( run, silu_scripted, 1, x, label="silu_scripted_1st", verbose=verbose ) event_keys = cleanup_events([evt.key for evt in events]) num_kernels = len(event_keys) print("silu_scripted_1st num_events: ", num_kernels) if version.parse(torch.__version__) >= version.parse("1.12.9"): # this depends on the SiLU autodiff PR: https://github.com/pytorch/pytorch/pull/81724 # fwd + 1st_deriv kernels assert num_kernels == 2 else: warnings.warn(f"Fused SiLU is not supported for torch {torch.__version__}") _, events = profile( run, silu_scripted, 2, x, label="silu_scripted_2nd", verbose=verbose ) event_keys = cleanup_events([evt.key for evt in events]) num_kernels = len(event_keys) print("silu_scripted_2nd num_events: ", num_kernels) if version.parse(torch.__version__) >= version.parse("1.12.9"): # fwd + 1st_deriv + 2nd_deriv kernels assert num_kernels == 3 else: warnings.warn(f"Fused SiLU is not supported for torch {torch.__version__}") _, events = profile( run, silu_scripted, 3, x, label="silu_scripted_3rd", verbose=verbose ) event_keys = cleanup_events([evt.key for evt in events]) num_kernels = len(event_keys) print("silu_scripted_3rd num_events: ", num_kernels) if version.parse(torch.__version__) >= version.parse("1.12.9"): # fwd + 1st_deriv + 2nd_deriv + 3rd_deriv kernels assert num_kernels <= 6 else: warnings.warn(f"Fused SiLU is not supported for torch {torch.__version__}") if __name__ == "__main__": test_activation_jit() test_activation_fused_silu()
modulus-sym-main
test/test_models/test_activation.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from modulus.sym.graph import Graph from modulus.sym.key import Key from modulus.sym.models.arch import FuncArch, Arch from typing import List # ensure torch.rand() is deterministic _ = torch.manual_seed(0) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # disable tf32 for accuracy torch.backends.cuda.matmul.allow_tf32 = False def validate_func_arch_net( ref_net: Arch, deriv_keys: List[Key], validate_with_dict_forward: bool, ): """ Using double precision for testing. """ if validate_with_dict_forward: ref_net.forward = ref_net._dict_forward ref_graph = ( Graph( [ ref_net.make_node("ref_net", jit=False), ], ref_net.input_keys, deriv_keys + ref_net.output_keys, func_arch=False, ) .double() .to(device) ) ft_net = FuncArch(arch=ref_net, deriv_keys=deriv_keys).double().to(device) # check result batch_size = 20 in_vars = { v.name: torch.rand( [batch_size, v.size], device=device, dtype=torch.double ).requires_grad_() for v in ref_net.input_keys } ft_out = ft_net(in_vars) ref_out = ref_graph(in_vars) for k in ref_out.keys(): assert torch.allclose(ref_out[k], ft_out[k]) return ft_net
modulus-sym-main
test/test_models/model_test_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from modulus.sym.constants import diff from modulus.sym.key import Key from modulus.sym.models.arch import Arch # ensure torch.rand() is deterministic torch.manual_seed(0) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def test_slice_input(): # prepare inputs x = torch.rand([100, 1]) y = torch.rand([100, 2]) z = torch.rand([100, 1]) input_variables = {"x": x, "y": y, "z": z} input_keys = [Key("x", 1), Key("y", 2), Key("z", 1)] input_key_dict = {str(var): var.size for var in input_keys} ipt = Arch.prepare_input(input_variables, input_key_dict.keys(), {}, dim=-1) slice_keys = ["x", "z"] # expected result expected = Arch.prepare_input(input_variables, slice_keys, {}, dim=-1) # sliced result slice_index = Arch.prepare_slice_index(input_key_dict, slice_keys) result = Arch.slice_input(ipt, slice_index, dim=-1) assert torch.allclose(result, expected) slice_keys = ["y", "z"] # expected result expected = Arch.prepare_input(input_variables, slice_keys, {}, dim=-1) # sliced result slice_index = Arch.prepare_slice_index(input_key_dict, slice_keys) result = Arch.slice_input(ipt, slice_index, dim=-1) assert torch.allclose(result, expected) def validate_process_input_output(input_variables, arch): # -------------------------- input -------------------------- # expected expected = Arch.prepare_input( input_variables, arch.input_key_dict.keys(), {}, dim=-1, input_scales=arch.input_scales, periodicity=arch.periodicity, ) # result result = Arch.concat_input(input_variables, arch.input_key_dict.keys(), {}, dim=-1) result = Arch.process_input( result, arch.input_scales_tensor, arch.periodicity, arch.input_key_dict, dim=-1 ) # check result assert torch.allclose(expected, result) # -------------------------- output -------------------------- batch_size, output_size = expected.shape[0], sum(arch.output_key_dict.values()) y = torch.rand([batch_size, output_size]) # expected expected = Arch.prepare_output( y, arch.output_key_dict, dim=-1, output_scales=arch.output_scales, ) # result result = Arch.process_output(y, output_scales_tensor=arch.output_scales_tensor) result = Arch.split_output(result, output_dict=arch.output_key_dict, dim=-1) # check result assert expected.keys() == result.keys() for key in expected: assert torch.allclose(expected[key], result[key]) def test_process_input_output(): # prepare inputs x = torch.ones([100, 1]) y = torch.ones([100, 2]) z = torch.ones([100, 1]) input_variables = {"x": x, "y": y, "z": z} # no input scales input_keys = [Key("x", 1), Key("y", 2), Key("z", 1)] output_keys = [Key("u", 1), Key("v", 1)] arch = Arch(input_keys, output_keys) validate_process_input_output(input_variables, arch) assert arch.input_scales_tensor is None assert arch.output_scales_tensor is None # input scales input_keys = [ Key("x", 1, scale=(0.0, 1.0)), Key("y", 2, scale=(0.0, 2.0)), Key("z", 1, scale=(0.0, 3.0)), ] output_keys = [Key("u", 1, scale=(1.0, 2.0)), Key("v", 1)] arch = Arch(input_keys, output_keys) validate_process_input_output(input_variables, arch) assert torch.allclose( arch.input_scales_tensor, torch.tensor([[0.0, 0.0, 0.0, 0.0], [1.0, 2.0, 2.0, 3.0]]), ) assert torch.allclose( arch.output_scales_tensor, torch.tensor([[1.0, 0.0], [2.0, 1.0]]) ) # input scales and also periodicity arch = Arch( input_keys, output_keys, periodicity={"x": (0.0, 2 * torch.pi), "y": (torch.pi, 4 * torch.pi)}, ) validate_process_input_output(input_variables, arch) if __name__ == "__main__": test_slice_input() test_process_input_output()
modulus-sym-main
test/test_models/test_arch.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import torch from modulus.sym.key import Key from modulus.sym.models.super_res_net import SRResNetArch def test_srresnet(): # check 3D model = SRResNetArch( input_keys=[Key("x", size=4)], output_keys=[Key("y", size=4), Key("z", size=2)], n_resid_blocks=8, scaling_factor=8, ) bsize = 4 x = {"x": torch.randn((bsize, 4, 32, 20, 8))} outvar = model.forward(x) # Check output size assert outvar["y"].shape == (bsize, 4, 256, 160, 64) assert outvar["z"].shape == (bsize, 2, 256, 160, 64) # check 3D model = SRResNetArch( input_keys=[Key("x", size=4)], output_keys=[Key("y", size=3), Key("z", size=1)], n_resid_blocks=8, scaling_factor=2, ) bsize = 2 x = {"x": torch.randn((bsize, 4, 24, 24, 20))} outvar = model.forward(x) # Check output size assert outvar["y"].shape == (bsize, 3, 48, 48, 40) assert outvar["z"].shape == (bsize, 1, 48, 48, 40) # check 3D model = SRResNetArch( input_keys=[Key("x", size=4)], output_keys=[Key("y", size=3), Key("z", size=3)], n_resid_blocks=8, scaling_factor=2, ) bsize = 5 x = {"x": torch.randn((bsize, 4, 16, 16, 32))} outvar = model.forward(x) # Check output size assert outvar["y"].shape == (bsize, 3, 32, 32, 64) assert outvar["z"].shape == (bsize, 3, 32, 32, 64)
modulus-sym-main
test/test_models/test_super_res.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.models.siren import SirenArch import torch import numpy as np from pathlib import Path from modulus.sym.key import Key import pytest from .model_test_utils import validate_func_arch_net dir_path = Path(__file__).parent def make_dict(nr_layers): _dict = dict() names = [("weight", "weights"), ("bias", "biases")] for i in range(nr_layers + 1): for pt_name, tf_name in names: _dict["layers." + str(i) + ".linear." + pt_name] = ( "fc" + str(i) + "/" + tf_name + ":0" ) return _dict def test_siren(): filename = dir_path / "data/test_siren.npz" test_data = np.load(filename, allow_pickle=True) data_in = test_data["data_in"] Wbs = test_data["Wbs"][()] params = test_data["params"][()] # create graph arch = SirenArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], layer_size=params["layer_size"], nr_layers=params["nr_layers"], first_omega=params["first_omega"], omega=params["omega"], ) name_dict = make_dict(params["nr_layers"]) for _name, _tensor in arch.named_parameters(): if _tensor.requires_grad: _tensor.data = torch.from_numpy(Wbs[name_dict[_name]].T) data_out2 = arch( {"x": torch.from_numpy(data_in[:, 0:1]), "y": torch.from_numpy(data_in[:, 1:2])} ) data_out2 = data_out2["u"].detach().numpy() # load outputs data_out1 = test_data["data_out"] # verify assert np.allclose(data_out1, data_out2, rtol=1e-3), "Test failed!" print("Success!") def validate_tensor_normalize(input_variables, arch): # expected expected = arch._normalize(input_variables, arch.normalization) expected = SirenArch.concat_input(expected, arch.input_key_dict.keys(), dim=-1) # result result = SirenArch.concat_input(input_variables, arch.input_key_dict.keys(), dim=-1) result = SirenArch._tensor_normalize(result, arch.normalization_tensor) # check result assert torch.allclose(expected, result) def test_tensor_normalize(): # prepare inputs x = torch.ones([100, 1]) y = torch.ones([100, 2]) z = torch.ones([100, 1]) input_variables = {"x": x, "y": y, "z": z} input_keys = [Key("x", 1), Key("y", 2), Key("z", 1)] output_keys = [Key("u", 1), Key("v", 1)] # normalization is None normalization = None arch = SirenArch(input_keys, output_keys, normalization=normalization) validate_tensor_normalize(input_variables, arch) assert arch.normalization_tensor is None # normalization for part of the inputs, z will use no_op_norm normalization = {"x": (-2.5, 2.5), "y": (-2.5, 2.5)} arch = SirenArch(input_keys, output_keys, normalization=normalization) validate_tensor_normalize(input_variables, arch) assert torch.allclose( arch.normalization_tensor, torch.tensor([[-2.5, -2.5, -2.5, -1.0], [2.5, 2.5, 2.5, 1.0]]), ) # normalization for all inputs normalization = {"x": (-2.5, 2.5), "y": (-2.5, 2.5), "z": (-3.5, 3.5)} arch = SirenArch(input_keys, output_keys, normalization=normalization) validate_tensor_normalize(input_variables, arch) assert torch.allclose( arch.normalization_tensor, torch.tensor([[-2.5, -2.5, -2.5, -3.5], [2.5, 2.5, 2.5, 3.5]]), ) @pytest.mark.parametrize( "input_keys", [[Key("x"), Key("y")], [Key("x"), Key("y", scale=(1.0, 2.0))]] ) @pytest.mark.parametrize("validate_with_dict_forward", [True, False]) @pytest.mark.parametrize("normalization", [None, {"x": (-2.5, 2.5), "y": (-2.5, 2.5)}]) def test_func_arch_siren(input_keys, validate_with_dict_forward, normalization): deriv_keys = [ Key.from_str("u__x"), Key.from_str("u__x__x"), Key.from_str("v__y"), Key.from_str("v__y__y"), ] ref_net = SirenArch( input_keys=input_keys, output_keys=[Key("u"), Key("v")], normalization=normalization, ) validate_func_arch_net(ref_net, deriv_keys, validate_with_dict_forward) if __name__ == "__main__": test_siren() test_tensor_normalize()
modulus-sym-main
test/test_models/test_siren.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.models.fourier_net import FourierNetArch import torch import numpy as np from pathlib import Path from modulus.sym.key import Key import pytest from .model_test_utils import validate_func_arch_net dir_path = Path(__file__).parent def make_dict(nr_layers): _dict = dict() names = [("weight", "weights"), ("bias", "biases"), ("weight_g", "alphas")] for i in range(nr_layers): for pt_name, tf_name in names: _dict["fc.layers." + str(i) + ".linear." + pt_name] = ( "fc" + str(i) + "/" + tf_name + ":0" ) for pt_name, tf_name in names[:2]: _dict["fc.final_layer.linear." + pt_name] = "fc_final/" + tf_name + ":0" return _dict def test_fourier_net(): filename = dir_path / "data/test_fourier.npz" test_data = np.load(filename, allow_pickle=True) data_in = test_data["data_in"] Wbs = test_data["Wbs"][()] params = test_data["params"][()] frequencies = test_data["frequencies"] frequencies_params = test_data["frequencies_params"] # create graph arch = FourierNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], frequencies=("axis,diagonal", frequencies), frequencies_params=("axis,diagonal", frequencies_params), layer_size=params["layer_size"], nr_layers=params["nr_layers"], ) name_dict = make_dict(params["nr_layers"]) for _name, _tensor in arch.named_parameters(): if _tensor.requires_grad: _tensor.data = torch.from_numpy(Wbs[name_dict[_name]].T) arch.fourier_layer_xyzt.frequencies = torch.from_numpy( Wbs["fourier_layer_xyzt:0"].T ) data_out2 = arch( {"x": torch.from_numpy(data_in[:, 0:1]), "y": torch.from_numpy(data_in[:, 1:2])} ) data_out2 = data_out2["u"].detach().numpy() # load outputs data_out1 = test_data["data_out"] # verify assert np.allclose(data_out1, data_out2, rtol=1e-3), "Test failed!" print("Success!") @pytest.mark.parametrize( "input_keys", [[Key("x"), Key("y")], [Key("x"), Key("y", scale=(1.0, 2.0))]] ) @pytest.mark.parametrize("validate_with_dict_forward", [True, False]) def test_func_arch_fourier_net(input_keys, validate_with_dict_forward): deriv_keys = [ Key.from_str("u__x"), Key.from_str("u__x__x"), Key.from_str("v__y"), Key.from_str("v__y__y"), ] ref_net = FourierNetArch( input_keys=input_keys, output_keys=[Key("u"), Key("v")], ) validate_func_arch_net(ref_net, deriv_keys, validate_with_dict_forward) test_fourier_net()
modulus-sym-main
test/test_models/test_fourier_net.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import pytest from modulus.sym.models.arch import FuncArch from modulus.sym.key import Key from modulus.sym.graph import Graph from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.models.fully_connected import FullyConnectedArch from modulus.sym.manager import JitManager # ensure torch.rand() is deterministic torch.manual_seed(0) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Disable tf32 for accuracy: # FuncArch uses BatchedTensors, and the floating point calculation # results could be different. torch.backends.cuda.matmul.allow_tf32 = False @pytest.mark.parametrize("jit_activation", [True, False]) def test_func_arch_graph_1(jit_activation): """ Explicitly specify the needed derivative terms as Graph argument. """ # setup jit_manager jit_manager = JitManager() jit_manager.enabled = jit_activation jit_manager.arch_mode = "only_activation" deriv_keys = [ Key.from_str("u__x"), Key.from_str("u__x__x"), Key.from_str("v__y"), Key.from_str("v__y__y"), ] network = FullyConnectedArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v")], ) nodes = [network.make_node("ref_net", jit=False)] ft_graph = Graph( nodes, [Key("x"), Key("y")], req_names=deriv_keys, func_arch=True, ).to(device) ref_graph = Graph( nodes, [Key("x"), Key("y")], req_names=deriv_keys, func_arch=False, ).to(device) if jit_activation: # ensure we are using fused SiLU from torchscript assert isinstance( network._impl.layers[0].callable_activation_fn, torch.jit.ScriptFunction ) # check FuncArch presence func_arch_node = None for node in ft_graph.node_evaluation_order: evaluate = node.evaluate if isinstance(evaluate, FuncArch): func_arch_node = node assert func_arch_node is not None, "No FuncArch found in the graph" # check result x = torch.rand([100, 1], device=device).requires_grad_() y = torch.rand([100, 1], device=device).requires_grad_() in_vars = {"x": x, "y": y} ft_out = ft_graph(in_vars) ref_out = ref_graph(in_vars) for k in ref_out.keys(): assert torch.allclose(ref_out[k], ft_out[k], atol=5e-5) @pytest.mark.parametrize("func_arch_allow_partial_hessian", [True, False]) def test_func_arch_graph_2(func_arch_allow_partial_hessian): """ Test the graph could automatically add intermediate derivatives to FuncArch. """ # the ldc example flow_net = FullyConnectedArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v"), Key("p")], ) ns = NavierStokes(nu=0.01, rho=1.0, dim=2, time=False) nodes = ns.make_nodes() + [flow_net.make_node(name="flow_network", jit=False)] ft_graph = Graph( nodes, [Key("x"), Key("y")], req_names=Key.convert_list(["continuity", "momentum_x", "momentum_y"]), func_arch=True, func_arch_allow_partial_hessian=func_arch_allow_partial_hessian, ).to(device) ref_graph = Graph( nodes, [Key("x"), Key("y")], req_names=Key.convert_list(["continuity", "momentum_x", "momentum_y"]), func_arch=False, ).to(device) # check FuncArch presence func_arch_node = None for node in ft_graph.node_evaluation_order: evaluate = node.evaluate if isinstance(evaluate, FuncArch): func_arch_node = node assert func_arch_node is not None, "No FuncArch found in the graph" # check allow_partial_hessian flag expected_outputs = [ "u", "v", "p", "u__y", "v__x", "u__x", "v__y", "u__x__x", "v__y__y", "u__y__y", "v__x__x", ] if not func_arch_allow_partial_hessian: expected_outputs += [ "p__y", "p__x", ] ft_outputs = [str(key) for key in func_arch_node.outputs] assert len(ft_outputs) == len(expected_outputs) assert sorted(ft_outputs) == sorted(expected_outputs) # check result x = torch.rand([100, 1], device=device).requires_grad_() y = torch.rand([100, 1], device=device).requires_grad_() in_vars = {"x": x, "y": y} ft_out = ft_graph(in_vars) ref_out = ref_graph(in_vars) for k in ref_out.keys(): assert torch.allclose(ref_out[k], ft_out[k], atol=1e-4) def test_get_key_dim(): input_keys = [Key("x", 1), Key("y", 1), Key("z", 1)] key_dims = FuncArch._get_key_dim(input_keys) expected = {"x": 0, "y": 1, "z": 2} for key in key_dims: assert expected[key] == key_dims[key] input_keys = [Key("x", 1), Key("y", 2), Key("z", 1)] key_dims = FuncArch._get_key_dim(input_keys) expected = {"x": 0, "z": 3} for key in key_dims: assert expected[key] == key_dims[key] input_keys = [Key("x", 100), Key("y", 1), Key("z", 1)] key_dims = FuncArch._get_key_dim(input_keys) expected = {"y": 100, "z": 101} for key in key_dims: assert expected[key] == key_dims[key] if __name__ == "__main__": test_func_arch_graph_1(True) test_func_arch_graph_1(False) test_func_arch_graph_2(True) test_func_arch_graph_2(False) test_get_key_dim()
modulus-sym-main
test/test_models/test_func_arch.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
modulus-sym-main
test/test_models/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import torch from modulus.sym.key import Key from modulus.sym.models.afno import AFNOArch ######################## # load & verify ######################## def test_afno(): # Construct FNO model model = AFNOArch( input_keys=[Key("x", size=2)], output_keys=[Key("u", size=2), Key("p")], img_shape=(240, 240), patch_size=16, embed_dim=256, depth=4, num_blocks=8, ) # Testing JIT node = model.make_node(name="AFNO", jit=True) bsize = 5 invar = { "x": torch.randn(bsize, 2, 240, 240), } # Model forward outvar = node.evaluate(invar) # Check output size assert outvar["u"].shape == (bsize, 2, 240, 240) assert outvar["p"].shape == (bsize, 1, 240, 240) test_afno()
modulus-sym-main
test/test_models/test_afno.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.models.fused_mlp import ( FusedMLPArch, FusedFourierNetArch, FusedGridEncodingNetArch, ) import torch import numpy as np from modulus.sym.key import Key import pytest layer_size_params = [ pytest.param(128, id="fused_128"), pytest.param(256, id="cutlass_256"), ] def make_dict(nr_layers): _dict = dict() names = [("weight", "weights"), ("bias", "biases"), ("weight_g", "alphas")] for i in range(nr_layers): for pt_name, tf_name in names: _dict["_impl.layers." + str(i) + ".linear." + pt_name] = ( "fc" + str(i) + "/" + tf_name + ":0" ) for pt_name, tf_name in names[:2]: _dict["_impl.final_layer.linear." + pt_name] = "fc_final/" + tf_name + ":0" return _dict @pytest.mark.parametrize("layer_size", layer_size_params) def test_fully_fused_mlp(layer_size): batch_size = 1024 data_in = np.random.random((batch_size, 2)) fully_fused = False if layer_size in set([16, 32, 64, 128]): fully_fused = True # create graph arch = FusedMLPArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], layer_size=layer_size, nr_layers=6, fully_fused=fully_fused, ) data_out2 = arch( { "x": torch.from_numpy(data_in[:, 0:1]).cuda(), "y": torch.from_numpy(data_in[:, 1:2]).cuda(), } ) data_out2 = data_out2["u"].cpu().detach().numpy() # TODO: Figure out arch.params slicing to initialize pytorch model # and compare TCNN output to that # assert np.allclose(data_out1, data_out2, rtol=1e-3), "Test failed!" @pytest.mark.parametrize("layer_size", layer_size_params) def test_fused_fourier_net(layer_size): batch_size = 1024 data_in = np.random.random((batch_size, 2)) fully_fused = False if layer_size in set([16, 32, 64, 128]): fully_fused = True # create graph arch = FusedFourierNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], layer_size=layer_size, nr_layers=6, fully_fused=fully_fused, n_frequencies=12, ) data_out2 = arch( { "x": torch.from_numpy(data_in[:, 0:1]).cuda(), "y": torch.from_numpy(data_in[:, 1:2]).cuda(), } ) data_out2 = data_out2["u"].cpu().detach().numpy() # TODO: Figure out arch.params slicing to initialize pytorch model # and compare TCNN output to that # assert np.allclose(data_out1, data_out2, rtol=1e-3), "Test failed!" @pytest.mark.parametrize("layer_size", layer_size_params) def test_fused_grid_encoding_net(layer_size): batch_size = 1024 data_in = np.random.random((batch_size, 2)) fully_fused = False if layer_size in set([16, 32, 64, 128]): fully_fused = True # create graph arch = FusedGridEncodingNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], layer_size=layer_size, nr_layers=6, fully_fused=fully_fused, indexing="Hash", n_levels=16, n_features_per_level=2, log2_hashmap_size=19, base_resolution=16, per_level_scale=2.0, interpolation="Smoothstep", ) data_out2 = arch( { "x": torch.from_numpy(data_in[:, 0:1]).cuda(), "y": torch.from_numpy(data_in[:, 1:2]).cuda(), } ) data_out2 = data_out2["u"].cpu().detach().numpy() # TODO: Figure out arch.params slicing to initialize pytorch model # and compare TCNN output to that # assert np.allclose(data_out1, data_out2, rtol=1e-3), "Test failed!" if __name__ == "__main__": # Fused MLP tests test_fully_fused_mlp(128) # Fully Fused MLP test_fully_fused_mlp(256) # Cutlass MLP # Fused Fourier Net tests test_fused_fourier_net(128) # Fully Fused MLP test_fused_fourier_net(256) # Cutlass MLP # Fused Grid encoding tests test_fused_grid_encoding_net(128) # Fully Fused MLP test_fused_grid_encoding_net(256) # Cutlass MLP
modulus-sym-main
test/test_models/test_fused_mlp.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.models.dgm import DGMArch import torch import numpy as np from pathlib import Path from modulus.sym.key import Key import pytest from .model_test_utils import validate_func_arch_net dir_path = Path(__file__).parent def make_dict(nr_layers): _dict = dict() names = [("weight", "weights"), ("bias", "biases"), ("weight_g", "alphas")] dgm_name = ["z", "g", "r", "h"] # start layer for pt_name, tf_name in names: _dict["fc_start.linear." + pt_name] = "fc_start/" + tf_name + ":0" # end layer for pt_name, tf_name in names[:2]: _dict["fc_end.linear." + pt_name] = "fc_end/" + tf_name + ":0" # middle layers for i in range(nr_layers - 1): for dn in dgm_name: _dict["dgm_layers." + str(i) + "." + dn + ".bias"] = ( "dgm_" + dn + str(i + 1) + "/biases:0" ) _dict["dgm_layers." + str(i) + "." + dn + ".linear_1.weight"] = ( "dgm_" + dn + str(i + 1) + "/weights1:0" ) _dict["dgm_layers." + str(i) + "." + dn + ".linear_2.weight"] = ( "dgm_" + dn + str(i + 1) + "/weights2:0" ) _dict["dgm_layers." + str(i) + "." + dn + ".linear_1.weight_g"] = ( "dgm_" + dn + str(i + 1) + "/alphas1:0" ) _dict["dgm_layers." + str(i) + "." + dn + ".linear_2.weight_g"] = ( "dgm_" + dn + str(i + 1) + "/alphas2:0" ) return _dict def test_dgm(): filename = dir_path / "data/test_dgm.npz" test_data = np.load(filename, allow_pickle=True) data_in = test_data["data_in"] Wbs = test_data["Wbs"][()] params = test_data["params"][()] # create graph arch = DGMArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], layer_size=params["layer_size"], nr_layers=params["nr_layers"], ) name_dict = make_dict(params["nr_layers"]) for _name, _tensor in arch.named_parameters(): if _tensor.requires_grad: _tensor.data = torch.from_numpy(Wbs[name_dict[_name]].T) data_out2 = arch( {"x": torch.from_numpy(data_in[:, 0:1]), "y": torch.from_numpy(data_in[:, 1:2])} ) data_out2 = data_out2["u"].detach().numpy() # load outputs data_out1 = test_data["data_out"] # verify assert np.allclose(data_out1, data_out2, rtol=1e-3), "Test failed!" print("Success!") @pytest.mark.parametrize( "input_keys", [[Key("x"), Key("y")], [Key("x"), Key("y", scale=(1.0, 2.0))]] ) @pytest.mark.parametrize("validate_with_dict_forward", [True, False]) def test_func_arch_dgm(input_keys, validate_with_dict_forward): deriv_keys = [ Key.from_str("u__x"), Key.from_str("u__x__x"), Key.from_str("v__y"), Key.from_str("v__y__y"), ] ref_net = DGMArch( input_keys=input_keys, output_keys=[Key("u"), Key("v")], ) validate_func_arch_net(ref_net, deriv_keys, validate_with_dict_forward) if __name__ == "__main__": test_dgm()
modulus-sym-main
test/test_models/test_dgm.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.models.multiplicative_filter_net import ( MultiplicativeFilterNetArch, FilterType, ) import torch import numpy as np from pathlib import Path from modulus.sym.key import Key import pytest from .model_test_utils import validate_func_arch_net dir_path = Path(__file__).parent def make_dict(nr_layers): _dict = dict() names = [("weight", "weights"), ("bias", "biases"), ("weight_g", "alphas")] tri_names = ("frequency", "phase") for tri_name in tri_names: _dict["first_filter." + tri_name] = "fourier_filter_first_" + tri_name + ":0" for i in range(nr_layers): for pt_name, tf_name in names: _dict["fc_layers." + str(i) + ".linear." + pt_name] = ( "fc_" + str(i) + "/" + tf_name + ":0" ) for tri_name in tri_names: _dict["filters." + str(i) + "." + tri_name] = ( "fourier_filter_layer" + str(i) + "_" + tri_name + ":0" ) for pt_name, tf_name in names[:2]: _dict["final_layer.linear." + pt_name] = "fc_final/" + tf_name + ":0" return _dict def test_multiplicative_filter(): filename = dir_path / "data/test_multiplicative_filter.npz" test_data = np.load(filename, allow_pickle=True) data_in = test_data["data_in"] Wbs = test_data["Wbs"][()] params = test_data["params"][()] # create graph arch = MultiplicativeFilterNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], layer_size=params["layer_size"], nr_layers=params["nr_layers"], ) name_dict = make_dict(params["nr_layers"]) for _name, _tensor in arch.named_parameters(): if _tensor.requires_grad: if "filter" in _name: _tensor.data = torch.from_numpy(Wbs[name_dict[_name]]) else: _tensor.data = torch.from_numpy(Wbs[name_dict[_name]].T) data_out2 = arch( {"x": torch.from_numpy(data_in[:, 0:1]), "y": torch.from_numpy(data_in[:, 1:2])} ) data_out2 = data_out2["u"].detach().numpy() # load outputs data_out1 = test_data["data_out"] # verify assert np.allclose(data_out1, data_out2, atol=1e-4), "Test failed!" print("Success!") @pytest.mark.parametrize( "input_keys", [[Key("x"), Key("y")], [Key("x"), Key("y", scale=(1.0, 2.0))]] ) @pytest.mark.parametrize("validate_with_dict_forward", [True, False]) @pytest.mark.parametrize("normalization", [None, {"x": (-2.5, 2.5), "y": (-2.5, 2.5)}]) @pytest.mark.parametrize("filter_type", [FilterType.FOURIER, FilterType.GABOR]) def test_func_arch_multiplicative_filter( input_keys, validate_with_dict_forward, normalization, filter_type ): deriv_keys = [ Key.from_str("u__x"), Key.from_str("u__x__x"), Key.from_str("v__y"), Key.from_str("v__y__y"), ] ref_net = MultiplicativeFilterNetArch( input_keys=input_keys, output_keys=[Key("u"), Key("v")], normalization=normalization, filter_type=filter_type, ) validate_func_arch_net(ref_net, deriv_keys, validate_with_dict_forward) if __name__ == "__main__": test_multiplicative_filter()
modulus-sym-main
test/test_models/test_multiplicative_filter.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import torch from modulus.sym.key import Key from modulus.sym.models.fno import FNOArch from modulus.sym.models.fully_connected import FullyConnectedArch ######################## # load & verify ######################## def test_fno_1d(): # Construct FNO model decoder = FullyConnectedArch( input_keys=[Key("z", size=32)], output_keys=[Key("u", size=2), Key("p")], nr_layers=1, layer_size=8, ) model = FNOArch( input_keys=[Key("x", size=2)], decoder_net=decoder, dimension=1, fno_modes=4, padding=0, ) # Testing JIT model.make_node(name="FNO1d", jit=True) bsize = 5 invar = { "x": torch.randn(bsize, 2, 64), } # Model forward outvar = model(invar) # Check output size assert outvar["u"].shape == (bsize, 2, 64) assert outvar["p"].shape == (bsize, 1, 64) def test_fno_2d(): # Construct FNO model decoder = FullyConnectedArch( input_keys=[Key("z", size=32)], output_keys=[Key("u", size=2), Key("p")], nr_layers=2, layer_size=16, ) model = FNOArch( input_keys=[Key("x"), Key("y"), Key("rho", size=2)], decoder_net=decoder, dimension=2, fno_modes=16, ) # Testing JIT model.make_node(name="FNO2d", jit=True) bsize = 5 invar = { "x": torch.randn(bsize, 1, 32, 32), "y": torch.randn(bsize, 1, 32, 32), "rho": torch.randn(bsize, 2, 32, 32), } # Model forward outvar = model(invar) # Check output size assert outvar["u"].shape == (bsize, 2, 32, 32) assert outvar["p"].shape == (bsize, 1, 32, 32) def test_fno_3d(): # Construct FNO model decoder = FullyConnectedArch( input_keys=[Key("z", size=32)], output_keys=[Key("u"), Key("v")], nr_layers=1, layer_size=8, ) model = FNOArch( input_keys=[Key("x", size=3), Key("y")], decoder_net=decoder, dimension=3, fno_modes=16, ) # Testing JIT model.make_node(name="FNO3d", jit=True) bsize = 5 invar = { "x": torch.randn(bsize, 3, 32, 32, 32), "y": torch.randn(bsize, 1, 32, 32, 32), } # Model forward outvar = model(invar) # Check output size assert outvar["u"].shape == (bsize, 1, 32, 32, 32) assert outvar["v"].shape == (bsize, 1, 32, 32, 32) def test_fno(): test_fno_1d() test_fno_2d() test_fno_3d() test_fno()
modulus-sym-main
test/test_models/test_fno.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.models.highway_fourier_net import HighwayFourierNetArch from pathlib import Path import torch import numpy as np from modulus.sym.key import Key import pytest from .model_test_utils import validate_func_arch_net dir_path = Path(__file__).parent def make_dict(nr_layers): _dict = dict() names = [("weight", "weights"), ("bias", "biases"), ("weight_g", "alphas")] for layer_name in ("fc_t", "fc_v"): for pt_name, tf_name in names: _dict[layer_name + ".linear." + pt_name] = layer_name + "/" + tf_name + ":0" for i in range(nr_layers): for pt_name, tf_name in names: _dict["fc_layers." + str(i) + ".linear." + pt_name] = ( "fc" + str(i) + "/" + tf_name + ":0" ) for pt_name, tf_name in names[:2]: _dict["final_layer.linear." + pt_name] = "fc_final/" + tf_name + ":0" return _dict def test_highway_fourier_net(): filename = dir_path / "data/test_highway_fourier.npz" test_data = np.load(filename, allow_pickle=True) data_in = test_data["data_in"] Wbs = test_data["Wbs"][()] params = test_data["params"][()] frequencies = test_data["frequencies"] frequencies_params = test_data["frequencies_params"] # create graph arch = HighwayFourierNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], frequencies=("axis,diagonal", frequencies), frequencies_params=("axis,diagonal", frequencies_params), layer_size=params["layer_size"], nr_layers=params["nr_layers"], ) name_dict = make_dict(params["nr_layers"]) for _name, _tensor in arch.named_parameters(): if _tensor.requires_grad: _tensor.data = torch.from_numpy(Wbs[name_dict[_name]].T) arch.fourier_layer_xyzt.frequencies = torch.from_numpy( Wbs["fourier_layer_xyzt:0"].T ) data_out2 = arch( {"x": torch.from_numpy(data_in[:, 0:1]), "y": torch.from_numpy(data_in[:, 1:2])} ) data_out2 = data_out2["u"].detach().numpy() # load outputs data_out1 = test_data["data_out"] # verify assert np.allclose(data_out1, data_out2, rtol=1e-3), "Test failed!" print("Success!") @pytest.mark.parametrize( "input_keys", [[Key("x"), Key("y")], [Key("x"), Key("y", scale=(1.0, 2.0))]] ) @pytest.mark.parametrize("validate_with_dict_forward", [True, False]) def test_func_arch_highway_fourier(input_keys, validate_with_dict_forward): deriv_keys = [ Key.from_str("u__x"), Key.from_str("u__x__x"), Key.from_str("v__y"), Key.from_str("v__y__y"), ] ref_net = HighwayFourierNetArch( input_keys=input_keys, output_keys=[Key("u"), Key("v")], ) validate_func_arch_net(ref_net, deriv_keys, validate_with_dict_forward) test_highway_fourier_net()
modulus-sym-main
test/test_models/test_highway_fourier.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import torch from modulus.sym.key import Key from modulus.sym.models.pix2pix import Pix2PixArch def test_pix2pix(): # check 1D model = Pix2PixArch( input_keys=[Key("x", size=4)], output_keys=[Key("y", size=4), Key("z", size=2)], dimension=1, scaling_factor=2, ) bsize = 4 x = {"x": torch.randn((bsize, 4, 32))} outvar = model.forward(x) # Check output size assert outvar["y"].shape == (bsize, 4, 64) assert outvar["z"].shape == (bsize, 2, 64) # check 2D model = Pix2PixArch( input_keys=[Key("x", size=2)], output_keys=[Key("y", size=2), Key("z", size=1)], dimension=2, n_downsampling=1, scaling_factor=4, ) bsize = 4 x = {"x": torch.randn((bsize, 2, 28, 28))} outvar = model.forward(x) # Check output size assert outvar["y"].shape == (bsize, 2, 112, 112) assert outvar["z"].shape == (bsize, 1, 112, 112) # check 3D model = Pix2PixArch( input_keys=[Key("x", size=1)], output_keys=[Key("y", size=2), Key("z", size=2)], dimension=3, ) bsize = 4 x = {"x": torch.randn((bsize, 1, 64, 64, 64))} outvar = model.forward(x) # Check output size assert outvar["y"].shape == (bsize, 2, 64, 64, 64) assert outvar["z"].shape == (bsize, 2, 64, 64, 64)
modulus-sym-main
test/test_models/test_pix2pix.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.models.radial_basis import RadialBasisArch import torch import numpy as np from pathlib import Path from modulus.sym.key import Key import pytest from .model_test_utils import validate_func_arch_net dir_path = Path(__file__).parent def make_dict(): _dict = dict() _dict["fc_layer.linear.weight"] = "fc_final/weights:0" _dict["fc_layer.linear.bias"] = "fc_final/biases:0" return _dict def test_radial_basis(): filename = dir_path / "data/test_radial_basis.npz" test_data = np.load(filename, allow_pickle=True) data_in = test_data["data_in"] Wbs = test_data["Wbs"][()] params = test_data["params"][()] # create graph arch = RadialBasisArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], bounds={"x": [0.0, 1.0], "y": [0.0, 1.0]}, nr_centers=params["nr_centers"], sigma=params["sigma"], ) name_dict = make_dict() center_data = np.hstack( (Wbs["c_x:0"].reshape((-1, 1)), Wbs["c_y:0"].reshape((-1, 1))) ) for _name, _tensor in arch.named_parameters(): if _name == "centers": _tensor.data = torch.from_numpy(center_data) else: _tensor.data = torch.from_numpy(Wbs[name_dict[_name]].T) data_out2 = arch( {"x": torch.from_numpy(data_in[:, 0:1]), "y": torch.from_numpy(data_in[:, 1:2])} ) data_out2 = data_out2["u"].detach().numpy() # load outputs data_out1 = test_data["data_out"] # verify assert np.allclose(data_out1, data_out2, rtol=1e-3), "Test failed!" print("Success!") @pytest.mark.parametrize( "input_keys", [[Key("x"), Key("y")], [Key("x"), Key("y", scale=(1.0, 2.0))]] ) @pytest.mark.parametrize("validate_with_dict_forward", [True, False]) def test_func_arch_radial_basis(input_keys, validate_with_dict_forward): deriv_keys = [ Key.from_str("u__x"), Key.from_str("u__x__x"), Key.from_str("v__y"), Key.from_str("v__y__y"), ] ref_net = RadialBasisArch( input_keys=input_keys, output_keys=[Key("u"), Key("v")], bounds={"x": [0.0, 1.0], "y": [0.0, 1.0]}, ) validate_func_arch_net(ref_net, deriv_keys, validate_with_dict_forward) if __name__ == "__main__": test_radial_basis()
modulus-sym-main
test/test_models/test_radial_basis.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.models.multiscale_fourier_net import MultiscaleFourierNetArch import torch import numpy as np from pathlib import Path from modulus.sym.key import Key import pytest from .model_test_utils import validate_func_arch_net dir_path = Path(__file__).parent def make_dict(nr_layers): _dict = dict() names = [("weight", "weights"), ("bias", "biases"), ("weight_g", "alphas")] for i in range(nr_layers): for pt_name, tf_name in names: _dict["fc_layers." + str(i) + ".linear." + pt_name] = ( "fc" + str(i) + "/" + tf_name + ":0" ) for pt_name, tf_name in names[:2]: _dict["final_layer.linear." + pt_name] = "fc_final/" + tf_name + ":0" return _dict def test_multiscale_fourier_net(): filename = dir_path / "data/test_multiscale_fourier.npz" test_data = np.load(filename, allow_pickle=True) data_in = test_data["data_in"] Wbs = test_data["Wbs"][()] params = test_data["params"][()] frequency_1 = tuple( [test_data["frequency_1_name"][()]] + list(test_data["frequency_1_data"]) ) frequency_2 = tuple( [test_data["frequency_2_name"][()]] + list(test_data["frequency_2_data"]) ) frequencies = test_data["frequencies"] frequencies_params = test_data["frequencies_params"] # create graph arch = MultiscaleFourierNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], frequencies=(frequency_1, frequency_2), frequencies_params=(frequency_1, frequency_2), layer_size=params["layer_size"], nr_layers=params["nr_layers"], ) name_dict = make_dict(params["nr_layers"]) for _name, _tensor in arch.named_parameters(): if _tensor.requires_grad: _tensor.data = torch.from_numpy(Wbs[name_dict[_name]].T) arch.fourier_layers_xyzt[0].frequencies = torch.from_numpy( Wbs["fourier_layer_xyzt_0:0"].T ) arch.fourier_layers_xyzt[1].frequencies = torch.from_numpy( Wbs["fourier_layer_xyzt_1:0"].T ) data_out2 = arch( {"x": torch.from_numpy(data_in[:, 0:1]), "y": torch.from_numpy(data_in[:, 1:2])} ) data_out2 = data_out2["u"].detach().numpy() # load outputs data_out1 = test_data["data_out"] # verify assert np.allclose(data_out1, data_out2, rtol=1e-3), "Test failed!" print("Success!") @pytest.mark.parametrize( "input_keys", [[Key("x"), Key("y")], [Key("x"), Key("y", scale=(1.0, 2.0))]] ) @pytest.mark.parametrize("validate_with_dict_forward", [True, False]) def test_func_arch_multiscale_fourier_net(input_keys, validate_with_dict_forward): deriv_keys = [ Key.from_str("u__x"), Key.from_str("u__x__x"), Key.from_str("v__y"), Key.from_str("v__y__y"), ] ref_net = MultiscaleFourierNetArch( input_keys=input_keys, output_keys=[Key("u"), Key("v")], frequencies=(("gaussian", 1, 256), ("gaussian", 10, 256)), frequencies_params=(("gaussian", 1, 256), ("gaussian", 10, 256)), ) validate_func_arch_net(ref_net, deriv_keys, validate_with_dict_forward) test_multiscale_fourier_net()
modulus-sym-main
test/test_models/test_multiscale_fourier.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.models.modified_fourier_net import ModifiedFourierNetArch import torch import numpy as np from pathlib import Path from modulus.sym.key import Key import pytest from .model_test_utils import validate_func_arch_net dir_path = Path(__file__).parent def make_dict(nr_layers): _dict = dict() names = [("weight", "weights"), ("bias", "biases"), ("weight_g", "alphas")] for layer_name in ("fc_u", "fc_v"): for pt_name, tf_name in names: _dict[layer_name + ".linear." + pt_name] = layer_name + "/" + tf_name + ":0" for i in range(nr_layers): for pt_name, tf_name in names: if i == 0: _dict["fc_" + str(i) + ".linear." + pt_name] = ( "fc" + str(i) + "/" + tf_name + ":0" ) else: _dict["fc_layers." + str(i - 1) + ".linear." + pt_name] = ( "fc" + str(i) + "/" + tf_name + ":0" ) for pt_name, tf_name in names[:2]: _dict["final_layer.linear." + pt_name] = "fc_final/" + tf_name + ":0" return _dict def test_modified_fourier_net(): filename = dir_path / "data/test_modified_fourier.npz" test_data = np.load(filename, allow_pickle=True) data_in = test_data["data_in"] Wbs = test_data["Wbs"][()] params = test_data["params"][()] frequencies = test_data["frequencies"] frequencies_params = test_data["frequencies_params"] # create graph arch = ModifiedFourierNetArch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u")], frequencies=("axis,diagonal", frequencies), frequencies_params=("axis,diagonal", frequencies_params), layer_size=params["layer_size"], nr_layers=params["nr_layers"], ) name_dict = make_dict(params["nr_layers"]) for _name, _tensor in arch.named_parameters(): if _tensor.requires_grad: _tensor.data = torch.from_numpy(Wbs[name_dict[_name]].T) arch.fourier_layer_xyzt.frequencies = torch.from_numpy( Wbs["fourier_layer_xyzt:0"].T ) data_out2 = arch( {"x": torch.from_numpy(data_in[:, 0:1]), "y": torch.from_numpy(data_in[:, 1:2])} ) data_out2 = data_out2["u"].detach().numpy() # load outputs data_out1 = test_data["data_out"] # verify assert np.allclose(data_out1, data_out2, rtol=1e-3), "Test failed!" print("Success!") @pytest.mark.parametrize( "input_keys", [[Key("x"), Key("y")], [Key("x"), Key("y", scale=(1.0, 2.0))]] ) @pytest.mark.parametrize("validate_with_dict_forward", [True, False]) def test_func_arch_modified_fourier_net(input_keys, validate_with_dict_forward): deriv_keys = [ Key.from_str("u__x"), Key.from_str("u__x__x"), Key.from_str("v__y"), Key.from_str("v__y__y"), ] ref_net = ModifiedFourierNetArch( input_keys=input_keys, output_keys=[Key("u"), Key("v")], ) validate_func_arch_net(ref_net, deriv_keys, validate_with_dict_forward) test_modified_fourier_net()
modulus-sym-main
test/test_models/test_modified_fourier.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter import operator from functools import reduce from functools import partial torch.manual_seed(0) np.random.seed(0) cuda_device = torch.device("cpu:0") ################################################################ # 2d fourier neural operator # Based on: https://github.com/zongyi-li/fourier_neural_operator/blob/master/fourier_2d.py ################################################################ class SpectralConv2d(nn.Module): def __init__(self, in_channels, out_channels, modes1, modes2): super().__init__() """ 2D Fourier layer. It does FFT, linear transform, and Inverse FFT. """ self.in_channels = in_channels self.out_channels = out_channels self.modes1 = ( modes1 # Number of Fourier modes to multiply, at most floor(N/2) + 1 ) self.modes2 = modes2 self.scale = 1 / (in_channels * out_channels) self.weights1 = nn.Parameter( self.scale * torch.rand( in_channels, out_channels, self.modes1, self.modes2, dtype=torch.cfloat ) ) self.weights2 = nn.Parameter( self.scale * torch.rand( in_channels, out_channels, self.modes1, self.modes2, dtype=torch.cfloat ) ) # Complex multiplication def compl_mul2d(self, input, weights): # (batch, in_channel, x,y ), (in_channel, out_channel, x,y) -> (batch, out_channel, x,y) return torch.einsum("bixy,ioxy->boxy", input, weights) def forward(self, x): batchsize = x.shape[0] # Compute Fourier coeffcients up to factor of e^(- something constant) x_ft = torch.fft.rfft2(x) # Multiply relevant Fourier modes out_ft = torch.zeros( batchsize, self.out_channels, x.size(-2), x.size(-1) // 2 + 1, dtype=torch.cfloat, device=x.device, ) out_ft[:, :, : self.modes1, : self.modes2] = self.compl_mul2d( x_ft[:, :, : self.modes1, : self.modes2], self.weights1 ) out_ft[:, :, -self.modes1 :, : self.modes2] = self.compl_mul2d( x_ft[:, :, -self.modes1 :, : self.modes2], self.weights2 ) # Return to physical space x = torch.fft.irfft2(out_ft, s=(x.size(-2), x.size(-1))) return x class FNO2d(nn.Module): def __init__(self, modes1, modes2, width): super().__init__() """ The overall network. It contains 4 layers of the Fourier layer. 1. Lift the input to the desire channel dimension by self.fc0 . 2. 4 layers of the integral operators u' = (W + K)(u). W defined by self.w; K defined by self.conv . 3. Project from the channel space to the output space by self.fc1 and self.fc2 . input: the solution of the coefficient function and locations (a(x, y), x, y) input shape: (batchsize, x=s, y=s, c=3) output: the solution output shape: (batchsize, x=s, y=s, c=1) """ self.modes1 = modes1 self.modes2 = modes2 self.width = width self.padding = 9 # pad the domain if input is non-periodic self.fc0 = nn.Linear(3, self.width) # input channel is 3: (a(x, y), x, y) self.conv0 = SpectralConv2d(self.width, self.width, self.modes1, self.modes2) self.conv1 = SpectralConv2d(self.width, self.width, self.modes1, self.modes2) self.conv2 = SpectralConv2d(self.width, self.width, self.modes1, self.modes2) self.conv3 = SpectralConv2d(self.width, self.width, self.modes1, self.modes2) self.w0 = nn.Conv2d(self.width, self.width, 1) self.w1 = nn.Conv2d(self.width, self.width, 1) self.w2 = nn.Conv2d(self.width, self.width, 1) self.w3 = nn.Conv2d(self.width, self.width, 1) self.fc1 = nn.Linear(self.width, 128) self.fc2 = nn.Linear(128, 1) def forward(self, x): batchsize = x.shape[0] grid = self.get_grid(x.shape, x.device) x = torch.cat((x, grid), dim=-1) x = self.fc0(x) x = x.permute(0, 3, 1, 2) x = F.pad(x, [0, self.padding, 0, self.padding]) x1 = self.conv0(x) x2 = self.w0(x) x = x1 + x2 x = F.gelu(x) x1 = self.conv1(x) x2 = self.w1(x) x = x1 + x2 x = F.gelu(x) x1 = self.conv2(x) x2 = self.w2(x) x = x1 + x2 x = F.gelu(x) x1 = self.conv3(x) x2 = self.w3(x) x = x1 + x2 x = x[..., : -self.padding, : -self.padding] x = x.permute(0, 2, 3, 1) x = self.fc1(x) x = F.gelu(x) x = self.fc2(x) return x def get_grid(self, shape, device): batchsize, size_x, size_y = shape[0], shape[1], shape[2] gridx = torch.tensor(np.linspace(0, 1, size_x), dtype=torch.float) gridx = gridx.reshape(1, size_x, 1, 1).repeat([batchsize, 1, size_y, 1]) gridy = torch.tensor(np.linspace(0, 1, size_y), dtype=torch.float) gridy = gridy.reshape(1, 1, size_y, 1).repeat([batchsize, size_x, 1, 1]) return torch.cat((gridx, gridy), dim=-1).to(device) ################################################################ # configurations ################################################################ modes = 12 width = 32 model = FNO2d(modes, modes, width).to(cuda_device) x_numpy = np.random.rand(100, 50, 50, 1).astype(np.float32) x_tensor = torch.from_numpy(x_numpy).to(cuda_device) y_tensor = model(x_tensor) y_numpy = y_tensor.detach().numpy() Wbs = { _name: _value.data.detach().numpy() for _name, _value in model.named_parameters() } params = {"modes": [modes, modes], "width": width, "padding": [9, 9]} np.savez_compressed( "test_fno2d.npz", data_in=x_numpy, data_out=y_numpy, params=params, Wbs=Wbs )
modulus-sym-main
test/test_models/data/fno2d_generate_data.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from re import S import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import math torch.manual_seed(0) np.random.seed(0) cuda_device = torch.device("cpu:0") ################################################################ # Baseline AFNO implementation from Jiadeeps original wind dataset implementation # Based on: https://github.com/zongyi-li/fourier_neural_operator/blob/master/fourier_1d.py ################################################################ def compl_mul_add_act( a: torch.Tensor, b: torch.Tensor, c: torch.Tensor ) -> torch.Tensor: tmp = torch.einsum("bxykis,kiot->stbxyko", a, b) res = ( torch.stack( [tmp[0, 0, ...] - tmp[1, 1, ...], tmp[1, 0, ...] + tmp[0, 1, ...]], dim=-1 ) + c ) return res def compl_mul_add_act_c( a: torch.Tensor, b: torch.Tensor, c: torch.Tensor ) -> torch.Tensor: tmp = torch.einsum("bxyki,kio->bxyko", a, b) res = tmp + c return res def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 with torch.no_grad(): l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) tensor.uniform_(2 * l - 1, 2 * u - 1) tensor.erfinv_() tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): r"""Fills the input Tensor with values drawn from a truncated normal distribution. """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) def drop_path( x: torch.Tensor, drop_prob: float = 0.0, training: bool = False ) -> torch.Tensor: """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" if drop_prob == 0.0 or not training: return x keep_prob = 1.0 - drop_prob shape = (x.shape[0],) + (1,) * ( x.ndim - 1 ) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super().__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Mlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) if drop > 0.0 else nn.Identity() def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class AFNO2D(nn.Module): def __init__( self, hidden_size, num_blocks=8, sparsity_threshold=0.01, hard_thresholding_fraction=1, hidden_size_factor=1, ): super().__init__() assert ( hidden_size % num_blocks == 0 ), f"hidden_size {hidden_size} should be divisble by num_blocks {num_blocks}" self.hidden_size = hidden_size self.sparsity_threshold = sparsity_threshold self.num_blocks = num_blocks self.block_size = self.hidden_size // self.num_blocks self.hard_thresholding_fraction = hard_thresholding_fraction self.hidden_size_factor = hidden_size_factor self.scale = 0.02 # new self.w1 = nn.Parameter( self.scale * torch.randn( self.num_blocks, self.block_size, self.block_size * self.hidden_size_factor, 2, ) ) self.b1 = nn.Parameter( self.scale * torch.randn(self.num_blocks, self.block_size * self.hidden_size_factor, 2) ) self.w2 = nn.Parameter( self.scale * torch.randn( self.num_blocks, self.block_size * self.hidden_size_factor, self.block_size, 2, ) ) self.b2 = nn.Parameter( self.scale * torch.randn(self.num_blocks, self.block_size, 2) ) def forward(self, x): bias = x dtype = x.dtype x = x.float() B, H, W, C = x.shape total_modes = H // 2 + 1 kept_modes = int(total_modes * self.hard_thresholding_fraction) x = torch.fft.rfft2(x, dim=(1, 2), norm="ortho") x = x.view(B, H, W // 2 + 1, self.num_blocks, self.block_size) # new x = torch.view_as_real(x) o2 = torch.zeros(x.shape, device=x.device) o1 = F.relu( compl_mul_add_act( x[ :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes, ..., ], self.w1, self.b1, ) ) o2[ :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes, ... ] = compl_mul_add_act(o1, self.w2, self.b2) # finalize x = F.softshrink(o2, lambd=self.sparsity_threshold) x = torch.view_as_complex(x) x = x.reshape(B, H, W // 2 + 1, C) x = torch.fft.irfft2(x, s=(H, W), dim=(1, 2), norm="ortho") x = x.type(dtype) return x + bias class Block(nn.Module): def __init__( self, dim, mlp_ratio=4.0, drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, double_skip=True, num_blocks=8, sparsity_threshold=0.01, hard_thresholding_fraction=1.0, ): super().__init__() # print("LN normalized shape", dim) self.norm1 = norm_layer(dim) self.filter = AFNO2D( dim, num_blocks, sparsity_threshold, hard_thresholding_fraction ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() # original self.norm2 = norm_layer(dim) # new # self.norm2 = norm_layer((h, w, dim)) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) self.double_skip = double_skip def forward(self, x): residual = x x = self.norm1(x) x = self.filter(x) if self.double_skip: x = x + residual residual = x x = self.norm2(x) x = self.mlp(x) x = self.drop_path(x) x = x + residual return x class AFNONet(nn.Module): def __init__( self, img_size=(720, 1440), patch_size=(16, 16), in_chans=2, out_chans=2, embed_dim=768, depth=12, mlp_ratio=4.0, drop_rate=0.0, drop_path_rate=0.0, num_blocks=16, sparsity_threshold=0.01, hard_thresholding_fraction=1.0, ): super().__init__() self.img_size = img_size self.patch_size = patch_size self.in_chans = in_chans self.out_chans = out_chans self.embed_dim = embed_dim self.num_features = self.embed_dim = embed_dim self.num_blocks = num_blocks norm_layer = partial(nn.LayerNorm, eps=1e-6) self.patch_embed = PatchEmbed( img_size=img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=embed_dim, ) num_patches = self.patch_embed.num_patches # new: x = B, C, H*W self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, num_patches)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] self.blocks = nn.ModuleList( [ Block( dim=embed_dim, mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i], norm_layer=norm_layer, num_blocks=self.num_blocks, sparsity_threshold=sparsity_threshold, hard_thresholding_fraction=hard_thresholding_fraction, ) for i in range(depth) ] ) # new self.head = nn.Conv2d( embed_dim, self.out_chans * self.patch_size[0] * self.patch_size[1], 1, bias=False, ) trunc_normal_(self.pos_embed, std=0.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {"pos_embed", "cls_token"} def forward_features(self, x): b, h, w = x.shape[0], x.shape[-2], x.shape[-1] x = self.patch_embed(x) x = x + self.pos_embed x = self.pos_drop(x) # new x = x.reshape( b, self.embed_dim, h // self.patch_size[0], w // self.patch_size[1] ) # transpose here to see if rest is OK: (B, H, W, C) x = x.permute((0, 2, 3, 1)).contiguous() for blk in self.blocks: x = blk(x) # permute back: (B, C, H, W) x = x.permute((0, 3, 1, 2)).contiguous() return x def forward(self, x): # new: B, C, H, W b, h, w = x.shape[0], x.shape[-2], x.shape[-1] x = self.forward_features(x) x = self.head(x) xv = x.view( b, self.patch_size[0], self.patch_size[1], -1, h // self.patch_size[0], w // self.patch_size[1], ) xvt = torch.permute(xv, (0, 3, 4, 1, 5, 2)).contiguous() x = xvt.view(b, -1, h, w) return x class PatchEmbed(nn.Module): def __init__( self, img_size=(224, 224), patch_size=(16, 16), in_chans=3, embed_dim=768 ): super().__init__() num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) def forward(self, x): B, C, H, W = x.shape assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2) return x ################################################################ # configurations ################################################################ img_size = (64, 64) patch_size = (16, 16) in_channels = 2 out_channels = 5 n_layers = 4 modes = 16 embed_dim = 64 model = AFNONet( img_size=img_size, patch_size=patch_size, in_chans=in_channels, out_chans=out_channels, embed_dim=embed_dim, depth=n_layers, # Number of model layers mlp_ratio=4.0, drop_rate=0.0, drop_path_rate=0.0, num_blocks=modes, # Number of modes ).to(cuda_device) x_numpy = np.random.rand(2, in_channels, img_size[0], img_size[1]).astype(np.float32) x_tensor = torch.from_numpy(x_numpy).to(cuda_device) y_tensor = model(x_tensor) y_numpy = y_tensor.detach().numpy() Wbs = { _name: _value.data.detach().numpy() for _name, _value in model.named_parameters() } params = { "modes": modes, "img_size": img_size, "patch_size": patch_size, "in_channels": in_channels, "out_channels": out_channels, "n_layers": n_layers, "modes": modes, "embed_dim": embed_dim, } np.savez_compressed( "test_ano.npz", data_in=x_numpy, data_out=y_numpy, params=params, Wbs=Wbs )
modulus-sym-main
test/test_models/data/ano_generate_data.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter import operator from functools import reduce from functools import partial torch.manual_seed(0) np.random.seed(0) cuda_device = torch.device("cpu:0") ################################################################ # 3d fourier neural operator # Based on: https://github.com/zongyi-li/fourier_neural_operator/blob/master/fourier_3d.py ################################################################ class SpectralConv3d(nn.Module): def __init__(self, in_channels, out_channels, modes1, modes2, modes3): super().__init__() """ 3D Fourier layer. It does FFT, linear transform, and Inverse FFT. """ self.in_channels = in_channels self.out_channels = out_channels self.modes1 = ( modes1 # Number of Fourier modes to multiply, at most floor(N/2) + 1 ) self.modes2 = modes2 self.modes3 = modes3 self.scale = 1 / (in_channels * out_channels) self.weights1 = nn.Parameter( self.scale * torch.rand( in_channels, out_channels, self.modes1, self.modes2, self.modes3, dtype=torch.cfloat, ) ) self.weights2 = nn.Parameter( self.scale * torch.rand( in_channels, out_channels, self.modes1, self.modes2, self.modes3, dtype=torch.cfloat, ) ) self.weights3 = nn.Parameter( self.scale * torch.rand( in_channels, out_channels, self.modes1, self.modes2, self.modes3, dtype=torch.cfloat, ) ) self.weights4 = nn.Parameter( self.scale * torch.rand( in_channels, out_channels, self.modes1, self.modes2, self.modes3, dtype=torch.cfloat, ) ) # Complex multiplication def compl_mul3d(self, input, weights): # (batch, in_channel, x,y,t ), (in_channel, out_channel, x,y,t) -> (batch, out_channel, x,y,t) return torch.einsum("bixyz,ioxyz->boxyz", input, weights) def forward(self, x): batchsize = x.shape[0] # Compute Fourier coeffcients up to factor of e^(- something constant) x_ft = torch.fft.rfftn(x, dim=[-3, -2, -1]) # Multiply relevant Fourier modes out_ft = torch.zeros( batchsize, self.out_channels, x.size(-3), x.size(-2), x.size(-1) // 2 + 1, dtype=torch.cfloat, device=x.device, ) out_ft[:, :, : self.modes1, : self.modes2, : self.modes3] = self.compl_mul3d( x_ft[:, :, : self.modes1, : self.modes2, : self.modes3], self.weights1 ) out_ft[:, :, -self.modes1 :, : self.modes2, : self.modes3] = self.compl_mul3d( x_ft[:, :, -self.modes1 :, : self.modes2, : self.modes3], self.weights2 ) out_ft[:, :, : self.modes1, -self.modes2 :, : self.modes3] = self.compl_mul3d( x_ft[:, :, : self.modes1, -self.modes2 :, : self.modes3], self.weights3 ) out_ft[:, :, -self.modes1 :, -self.modes2 :, : self.modes3] = self.compl_mul3d( x_ft[:, :, -self.modes1 :, -self.modes2 :, : self.modes3], self.weights4 ) # Return to physical space x = torch.fft.irfftn(out_ft, s=(x.size(-3), x.size(-2), x.size(-1))) return x class FNO3d(nn.Module): def __init__(self, modes1, modes2, modes3, width): super().__init__() """ The overall network. It contains 4 layers of the Fourier layer. 1. Lift the input to the desire channel dimension by self.fc0 . 2. 4 layers of the integral operators u' = (W + K)(u). W defined by self.w; K defined by self.conv . 3. Project from the channel space to the output space by self.fc1 and self.fc2 . input: the solution of the first 10 timesteps + 3 locations (u(1, x, y), ..., u(10, x, y), x, y, t). It's a constant function in time, except for the last index. input shape: (batchsize, x=64, y=64, t=40, c=13) output: the solution of the next 40 timesteps output shape: (batchsize, x=64, y=64, t=40, c=1) """ self.modes1 = modes1 self.modes2 = modes2 self.modes3 = modes3 self.width = width self.padding = 6 # pad the domain if input is non-periodic self.fc0 = nn.Linear(4, self.width) # input channel is 12: the solution of the first 10 timesteps + 3 locations (u(1, x, y), ..., u(10, x, y), x, y, t) self.conv0 = SpectralConv3d( self.width, self.width, self.modes1, self.modes2, self.modes3 ) self.conv1 = SpectralConv3d( self.width, self.width, self.modes1, self.modes2, self.modes3 ) self.conv2 = SpectralConv3d( self.width, self.width, self.modes1, self.modes2, self.modes3 ) self.conv3 = SpectralConv3d( self.width, self.width, self.modes1, self.modes2, self.modes3 ) self.w0 = nn.Conv3d(self.width, self.width, 1) self.w1 = nn.Conv3d(self.width, self.width, 1) self.w2 = nn.Conv3d(self.width, self.width, 1) self.w3 = nn.Conv3d(self.width, self.width, 1) self.fc1 = nn.Linear(self.width, 128) self.fc2 = nn.Linear(128, 1) def forward(self, x): batchsize = x.shape[0] grid = self.get_grid(x.shape, x.device) x = torch.cat((x, grid), dim=-1) x = self.fc0(x) x = x.permute(0, 4, 1, 2, 3) x = F.pad(x, [0, self.padding]) # pad the domain if input is non-periodic x1 = self.conv0(x) x2 = self.w0(x) x = x1 + x2 x = F.gelu(x) x1 = self.conv1(x) x2 = self.w1(x) x = x1 + x2 x = F.gelu(x) x1 = self.conv2(x) x2 = self.w2(x) x = x1 + x2 x = F.gelu(x) x1 = self.conv3(x) x2 = self.w3(x) x = x1 + x2 x = x[..., : -self.padding] x = x.permute(0, 2, 3, 4, 1) # pad the domain if input is non-periodic x = self.fc1(x) x = F.gelu(x) x = self.fc2(x) return x def get_grid(self, shape, device): batchsize, size_x, size_y, size_z = shape[0], shape[1], shape[2], shape[3] gridx = torch.tensor(np.linspace(0, 1, size_x), dtype=torch.float) gridx = gridx.reshape(1, size_x, 1, 1, 1).repeat( [batchsize, 1, size_y, size_z, 1] ) gridy = torch.tensor(np.linspace(0, 1, size_y), dtype=torch.float) gridy = gridy.reshape(1, 1, size_y, 1, 1).repeat( [batchsize, size_x, 1, size_z, 1] ) gridz = torch.tensor(np.linspace(0, 1, size_z), dtype=torch.float) gridz = gridz.reshape(1, 1, 1, size_z, 1).repeat( [batchsize, size_x, size_y, 1, 1] ) return torch.cat((gridx, gridy, gridz), dim=-1).to(device) ################################################################ # configurations ################################################################ modes = 5 width = 5 model = FNO3d(modes, modes, modes, width).to(cuda_device) x_numpy = np.random.rand(5, 10, 10, 10, 1).astype(np.float32) x_tensor = torch.from_numpy(x_numpy).to(cuda_device) y_tensor = model(x_tensor) y_numpy = y_tensor.detach().numpy() Wbs = { _name: _value.data.detach().numpy() for _name, _value in model.named_parameters() } params = {"modes": [modes, modes, modes], "width": width, "padding": [6, 0, 0]} np.savez_compressed( "test_fno3d.npz", data_in=x_numpy, data_out=y_numpy, params=params, Wbs=Wbs )
modulus-sym-main
test/test_models/data/fno3d_generate_data.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter import operator from functools import reduce from functools import partial torch.manual_seed(0) np.random.seed(0) cuda_device = torch.device("cpu:0") ################################################################ # 1d fourier neural operator # Based on: https://github.com/zongyi-li/fourier_neural_operator/blob/master/fourier_1d.py ################################################################ class SpectralConv1d(nn.Module): def __init__(self, in_channels, out_channels, modes1): super().__init__() """ 1D Fourier layer. It does FFT, linear transform, and Inverse FFT. """ self.in_channels = in_channels self.out_channels = out_channels self.modes1 = ( modes1 # Number of Fourier modes to multiply, at most floor(N/2) + 1 ) self.scale = 1 / (in_channels * out_channels) self.weights1 = nn.Parameter( self.scale * torch.rand(in_channels, out_channels, self.modes1, dtype=torch.cfloat) ) # Complex multiplication def compl_mul1d(self, input, weights): # (batch, in_channel, x ), (in_channel, out_channel, x) -> (batch, out_channel, x) return torch.einsum("bix,iox->box", input, weights) def forward(self, x): batchsize = x.shape[0] # Compute Fourier coeffcients up to factor of e^(- something constant) x_ft = torch.fft.rfft(x) # Multiply relevant Fourier modes out_ft = torch.zeros( batchsize, self.out_channels, x.size(-1) // 2 + 1, device=x.device, dtype=torch.cfloat, ) out_ft[:, :, : self.modes1] = self.compl_mul1d( x_ft[:, :, : self.modes1], self.weights1 ) # Return to physical space x = torch.fft.irfft(out_ft, n=x.size(-1)) return x class FNO1d(nn.Module): def __init__(self, modes, width): super().__init__() """ The overall network. It contains 4 layers of the Fourier layer. 1. Lift the input to the desire channel dimension by self.fc0 . 2. 4 layers of the integral operators u' = (W + K)(u). W defined by self.w; K defined by self.conv . 3. Project from the channel space to the output space by self.fc1 and self.fc2 . input: the solution of the initial condition and location (a(x), x) input shape: (batchsize, x=s, c=2) output: the solution of a later timestep output shape: (batchsize, x=s, c=1) """ self.modes1 = modes self.width = width self.padding = 2 # pad the domain if input is non-periodic self.fc0 = nn.Linear(2, self.width) # input channel is 2: (a(x), x) self.conv0 = SpectralConv1d(self.width, self.width, self.modes1) self.conv1 = SpectralConv1d(self.width, self.width, self.modes1) self.conv2 = SpectralConv1d(self.width, self.width, self.modes1) self.conv3 = SpectralConv1d(self.width, self.width, self.modes1) self.w0 = nn.Conv1d(self.width, self.width, 1) self.w1 = nn.Conv1d(self.width, self.width, 1) self.w2 = nn.Conv1d(self.width, self.width, 1) self.w3 = nn.Conv1d(self.width, self.width, 1) self.fc1 = nn.Linear(self.width, 128) self.fc2 = nn.Linear(128, 1) def forward(self, x): grid = self.get_grid(x.shape, x.device) batchsize = x.shape[0] x = torch.cat((x, grid), dim=-1) x = self.fc0(x) x = x.permute(0, 2, 1) x = F.pad(x, [0, self.padding]) # pad the domain if input is non-periodic x1 = self.conv0(x) x2 = self.w0(x) x = x1 + x2 x = F.gelu(x) x1 = self.conv1(x) x2 = self.w1(x) x = x1 + x2 x = F.gelu(x) x1 = self.conv2(x) x2 = self.w2(x) x = x1 + x2 x = F.gelu(x) x1 = self.conv3(x) x2 = self.w3(x) x = x1 + x2 x = x[..., : -self.padding] # pad the domain if input is non-periodic x = x.permute(0, 2, 1) x = self.fc1(x) x = F.gelu(x) x = self.fc2(x) return x def get_grid(self, shape, device): batchsize, size_x = shape[0], shape[1] gridx = torch.tensor(np.linspace(0, 1, size_x), dtype=torch.float) gridx = gridx.reshape(1, size_x, 1).repeat([batchsize, 1, 1]) return gridx.to(device) ################################################################ # configurations ################################################################ modes = 16 width = 64 model = FNO1d(modes, width).to(cuda_device) x_numpy = np.random.rand(100, 100, 1).astype(np.float32) x_tensor = torch.from_numpy(x_numpy).to(cuda_device) y_tensor = model(x_tensor) y_numpy = y_tensor.detach().numpy() Wbs = { _name: _value.data.detach().numpy() for _name, _value in model.named_parameters() } params = {"modes": modes, "width": width, "padding": 2} np.savez_compressed( "test_fno1d.npz", data_in=x_numpy, data_out=y_numpy, params=params, Wbs=Wbs )
modulus-sym-main
test/test_models/data/fno1d_generate_data.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from modulus.sym.utils.benchmark import timeit skip_if_no_gpu = pytest.mark.skipif( not torch.cuda.is_available(), reason="There is no GPU to run this test" ) @skip_if_no_gpu def test_timeit(): def func(): torch.zeros(2**20, device="cuda").exp().cos().sin() cpu_timing_ms = timeit(func, cpu_timing=False) cuda_event_timing_ms = timeit(func, cpu_timing=True) assert cpu_timing_ms - cuda_event_timing_ms < 0.1 if __name__ == "__main__": test_timeit()
modulus-sym-main
test/test_utils/test_benchmark.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import modulus from modulus.sym.key import Key from modulus.sym.hydra import to_yaml, instantiate_arch from modulus.sym.hydra.config import ModulusConfig from modulus.sym.models.afno.distributed import DistributedAFNONet from modulus.sym.distributed.manager import DistributedManager import os import torch # Set model parallel size to 2 os.environ["MODEL_PARALLEL_SIZE"] = "2" @modulus.sym.main(config_path="conf", config_name="config_AFNO") def run(cfg: ModulusConfig) -> None: manager = DistributedManager() model_rank = manager.group_rank(name="model_parallel") model_size = manager.group_size(name="model_parallel") # Check that GPUs are available if not manager.cuda: print("WARNING: No GPUs available. Exiting...") return # Check that world_size is a multiple of model parallel size if manager.world_size % 2 != 0: print( "WARNING: Total world size not a multiple of model parallel size (2). Exiting..." ) return input_keys = [Key("coeff", scale=(7.48360e00, 4.49996e00))] output_keys = [Key("sol", scale=(5.74634e-03, 3.88433e-03))] img_shape = (720, 1440) # make list of nodes to unroll graph on model = instantiate_arch( input_keys=input_keys, output_keys=output_keys, cfg=cfg.arch.distributed_afno, img_shape=img_shape, ) nodes = [model.make_node(name="Distributed AFNO", jit=cfg.jit)] model = model.to(manager.device) sample = { str(k): torch.randn(1, k.size, *img_shape).to(manager.device) for k in input_keys } # Run model in a loop for i in range(4): # Forward pass result = model(sample) # Compute loss loss = torch.square(result["sol"]).sum() # Backward pass loss.backward() expected_result_shape = [1, output_keys[0].size, *img_shape] result_shape = list(result["sol"].shape) assert ( result_shape == expected_result_shape ), f"Incorrect result size. Expected {expected_result_shape}, got {local_result_shape}" if __name__ == "__main__": run()
modulus-sym-main
test/test_distributed/test_afno_distributed_arch.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import modulus from modulus.sym.hydra import to_yaml, instantiate_arch from modulus.sym.hydra.config import ModulusConfig from modulus.sym.models.afno.distributed import DistributedAFNONet from modulus.sym.distributed.manager import DistributedManager import os import torch # Set model parallel size to 2 os.environ["MODEL_PARALLEL_SIZE"] = "2" @modulus.sym.main(config_path="conf", config_name="config_AFNO") def run(cfg: ModulusConfig) -> None: input_is_matmul_parallel = False output_is_matmul_parallel = False in_chans = 3 out_chans = 10 embed_dim = 768 manager = DistributedManager() # Check that GPUs are available if not manager.cuda: print("WARNING: No GPUs available. Exiting...") return # Check that world_size is a multiple of model parallel size if manager.world_size % 2 != 0: print( "WARNING: Total world size not a multiple of model parallel size (2). Exiting..." ) return model = DistributedAFNONet( img_size=(720, 1440), patch_size=(4, 4), in_chans=in_chans, out_chans=out_chans, embed_dim=embed_dim, input_is_matmul_parallel=input_is_matmul_parallel, output_is_matmul_parallel=output_is_matmul_parallel, ).to(manager.device) model_rank = manager.group_rank(name="model_parallel") model_size = manager.group_size(name="model_parallel") # Check that model is using the correct local embedding size expected_embed_dim_local = embed_dim // model_size assert ( model.embed_dim_local == expected_embed_dim_local ), f"Incorrect local embedding size. Expected {expected_embed_dim_local}, got {model.embed_dim_local}" sample = torch.randn(1, in_chans, 720, 1440) local_in_chans_start = 0 local_in_chans_end = in_chans if input_is_matmul_parallel: chunk = (in_chans + model_size - 1) // model_size local_in_chans_start = model_rank * chunk local_in_chans_end = min(in_chans, local_in_chans_start + chunk) # Get sample and run through the model local_sample = (sample[:, local_in_chans_start:local_in_chans_end, :, :]).to( manager.device ) # Run model in a loop for i in range(4): # Forward pass local_result = model(local_sample) # Compute loss loss = torch.square(local_result).sum() # Backward pass loss.backward() local_out_chans = out_chans if output_is_matmul_parallel: chunk = (out_chans + model_size - 1) // model_size local_out_chans_start = model_rank * chunk local_out_chans_end = min(out_chans, local_out_chans_start + chunk) local_out_chans = local_out_chans_end - local_out_chans_start expected_result_shape = [1, local_out_chans, 720, 1440] local_result_shape = list(local_result.shape) assert ( local_result_shape == expected_result_shape ), f"Incorrect result size. Expected {expected_result_shape}, got {local_result_shape}" if __name__ == "__main__": run()
modulus-sym-main
test/test_distributed/test_afno_distributed.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from sympy import Symbol, Eq, cos, sin, pi from modulus.sym.node import Node from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.geometry.primitives_3d import Plane from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, VariationalDomainConstraint, ) from modulus.sym.loss import Loss from modulus.sym.geometry.parameterization import Parameterization, Bounds # TODO: Add some more complex geometery that is the union of multiple shapes to check boundary sampling def test_PointwiseBoundaryConstraint(): "define a sinusodial node, create pointwise boundary constraints over it and check their losses are zero" ntests = 10 for fixed_dataset in [True, False]: # define sinusodial node x, y = Symbol("x"), Symbol("y") node = Node.from_sympy(cos(x) + sin(y), "u") # make geometry height = pi width = pi rec = Rectangle((0, 0), (width, height)) # top wall top_wall = PointwiseBoundaryConstraint( nodes=[node], geometry=rec, outvar={"u": cos(x) + sin(height)}, batch_size=1000, criteria=Eq(y, height), fixed_dataset=fixed_dataset, batch_per_epoch=2 * ntests, ) # right wall right_wall = PointwiseBoundaryConstraint( nodes=[node], geometry=rec, outvar={"u": cos(width) + sin(y)}, batch_size=1000, criteria=Eq(x, width), fixed_dataset=fixed_dataset, batch_per_epoch=2 * ntests, ) # bottom wall bottom_wall = PointwiseBoundaryConstraint( nodes=[node], geometry=rec, outvar={"u": cos(x) + sin(0)}, batch_size=1000, criteria=Eq(y, 0), fixed_dataset=fixed_dataset, batch_per_epoch=2 * ntests, ) # left wall left_wall = PointwiseBoundaryConstraint( nodes=[node], geometry=rec, outvar={"u": cos(0) + sin(y)}, batch_size=1000, criteria=Eq(x, 0), fixed_dataset=fixed_dataset, batch_per_epoch=2 * ntests, ) height = float(height) width = float(width) for _ in range(ntests): # check losses are zero top_wall.load_data() top_wall.forward() loss = top_wall.loss(step=0) assert torch.isclose(loss["u"], torch.tensor(0.0), rtol=1e-5, atol=1e-5) right_wall.load_data() right_wall.forward() loss = right_wall.loss(step=0) assert torch.isclose(loss["u"], torch.tensor(0.0), rtol=1e-5, atol=1e-5) bottom_wall.load_data() bottom_wall.forward() loss = bottom_wall.loss(step=0) assert torch.isclose(loss["u"], torch.tensor(0.0), rtol=1e-5, atol=1e-5) left_wall.load_data() left_wall.forward() loss = left_wall.loss(step=0) assert torch.isclose(loss["u"], torch.tensor(0.0), rtol=1e-5, atol=1e-5) # check invars correct invar, _, _ = next(top_wall.dataloader) assert torch.allclose( invar["y"], height * torch.ones_like(invar["y"]), rtol=1e-5, atol=1e-5 ) assert torch.all(torch.logical_and(invar["x"] <= width, invar["x"] >= 0)) invar, _, _ = next(right_wall.dataloader) assert torch.allclose( invar["x"], width * torch.ones_like(invar["x"]), rtol=1e-5, atol=1e-5 ) assert torch.all(torch.logical_and(invar["y"] <= height, invar["y"] >= 0)) invar, _, _ = next(bottom_wall.dataloader) assert torch.allclose( invar["y"], torch.zeros_like(invar["y"]), rtol=1e-5, atol=1e-5 ) assert torch.all(torch.logical_and(invar["x"] <= width, invar["x"] >= 0)) invar, _, _ = next(left_wall.dataloader) assert torch.allclose( invar["x"], torch.zeros_like(invar["x"]), rtol=1e-5, atol=1e-5 ) assert torch.all(torch.logical_and(invar["y"] <= height, invar["y"] >= 0)) def test_PointwiseInteriorConstraint(): "define a sinusodial node, create pointwise interior constraint over it and check its loss is zero" ntests = 10 for fixed_dataset in [True, False]: # define sinusodial node x, y = Symbol("x"), Symbol("y") node = Node.from_sympy(cos(x) + sin(y), "u") # make geometry height = 3.14159 width = 3.14159 rec = Rectangle((0, 0), (width, height)) constraint = PointwiseInteriorConstraint( nodes=[node], geometry=rec, outvar={"u": cos(x) + sin(y)}, bounds=Bounds({x: (0, width), y: (0, height)}), batch_size=1000, fixed_dataset=fixed_dataset, batch_per_epoch=2 * ntests, ) height = float(height) width = float(width) for _ in range(ntests): # check loss is zero constraint.load_data() constraint.forward() loss = constraint.loss(step=0) assert torch.isclose(loss["u"], torch.tensor(0.0), rtol=1e-5, atol=1e-5) # check invar correct invar, _, _ = next(constraint.dataloader) assert torch.all(torch.logical_and(invar["x"] <= width, invar["x"] >= 0)) assert torch.all(torch.logical_and(invar["y"] <= height, invar["y"] >= 0)) def test_IntegralBoundaryConstraint(): "define a parabola node, create integral boundary constraint over it and check its loss is zero" ntests = 10 for fixed_dataset in [True, False]: # define parabola node node = Node.from_sympy(Symbol("z") ** 2, "u") # make geometry plane = Plane((0, 0, 0), (0, 2, 1), 1) # make constraint constraint = IntegralBoundaryConstraint( nodes=[node], geometry=plane, outvar={"u": 1.0 / 3.0}, batch_size=1, integral_batch_size=100000, batch_per_epoch=ntests, fixed_dataset=fixed_dataset, criteria=Symbol("y") > 1, ) for _ in range(ntests): # check loss is zero constraint.load_data() constraint.forward() loss = constraint.loss(step=0) assert torch.isclose(loss["u"], torch.tensor(0.0), rtol=1e-3, atol=1e-3) # define parabola node node = Node.from_sympy(Symbol("z") ** 3 + Symbol("y") ** 3, "u") # make geometry z_len = Symbol("z_len") y_len = Symbol("y_len") plane = Plane((0, -y_len, -z_len), (0, y_len, z_len), 1) # make constraint constraint = IntegralBoundaryConstraint( nodes=[node], geometry=plane, outvar={"u": 0}, batch_size=1, integral_batch_size=100000, batch_per_epoch=ntests, fixed_dataset=fixed_dataset, parameterization=Parameterization({y_len: (0.1, 1.0), z_len: (0.1, 1.0)}), ) for _ in range(ntests): # check loss is zero constraint.load_data() constraint.forward() loss = constraint.loss(step=0) assert torch.isclose(loss["u"], torch.tensor(0.0), rtol=1e-3, atol=1e-3) def test_VariationalDomainConstraint(): "define a parabola node, create variational domain constraint over it and check its loss is zero" ntests = 10 # define parabola node x, y = Symbol("x"), Symbol("y") node = Node.from_sympy(x**2 + y**2, "u") # make geometry rec = Rectangle((-0.5, -0.5), (0.5, 0.5)) # define variational loss class VariationalLoss(Loss): "fake loss for testing only" def forward(self, list_invar, list_outvar, step): losses = [] for invar, outvar in zip(list_invar, list_outvar): expected = invar["x"] ** 2 + invar["y"] ** 2 losses.append(torch.sum(outvar["u"] - expected)) return {"u": sum(losses)} # make constraint constraint = VariationalDomainConstraint( nodes=[node], geometry=rec, outvar_names=["u"], boundary_batch_size=1000, interior_batch_size=2000, batch_per_epoch=ntests, interior_bounds=Bounds({x: (-0.5, 0.5), y: (-0.5, 0.5)}), loss=VariationalLoss(), ) for _ in range(ntests): # check loss is zero constraint.load_data() constraint.forward() loss = constraint.loss(step=0) assert torch.isclose(loss["u"], torch.tensor(0.0), rtol=1e-5, atol=1e-5) if __name__ == "__main__": test_PointwiseBoundaryConstraint() test_PointwiseInteriorConstraint() test_IntegralBoundaryConstraint() test_VariationalDomainConstraint()
modulus-sym-main
test/test_constraints/test_continuous_constraints.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from sympy import Symbol from modulus.sym.node import Node from modulus.sym.domain.constraint.discrete import ( SupervisedGridConstraint, DeepONetConstraint_Data, DeepONetConstraint_Physics, ) from modulus.sym.dataset import DictGridDataset def test_SupervisedGridConstraint(): "define a parabola node, create grid constraint over it and check its loss is zero" # define parabola node node = Node.from_sympy(Symbol("x") ** 2 + Symbol("y") ** 2, "u") # define 2D grid inputs x, y = np.meshgrid(np.linspace(0, 1, 10), np.linspace(0, 1, 10)) # define targets u = x**2 + y**2 # make dataset dataset = DictGridDataset( invar={"x": x[np.newaxis, :], "y": y[np.newaxis, :]}, outvar={"u": u[np.newaxis, :]}, ) # make constraint constraint = SupervisedGridConstraint( nodes=[node], dataset=dataset, batch_size=1, ) # check loss is zero constraint.load_data() constraint.forward() loss = constraint.loss(step=0) assert torch.isclose(loss["u"], torch.tensor(0.0), rtol=1e-5, atol=1e-5) def test_DeepONetConstraints(): "define a parabola node, create deeponet constraints over it and check their losses are zero" # define parabola node node = Node.from_sympy(Symbol("x") ** 2 + Symbol("y") ** 2, "u") # define 2D grid inputs x, y = np.meshgrid(np.linspace(0, 1, 10), np.linspace(0, 1, 10)) # define targets u = x**2 + y**2 # make dataset invar_branch = {"x": x[np.newaxis, :]} invar_trunk = {"y": y[np.newaxis, :]} outvar = {"u": u[np.newaxis, :]} # make constraint constraint = DeepONetConstraint_Data( nodes=[node], invar_branch=invar_branch, invar_trunk=invar_trunk, outvar=outvar, batch_size=1, ) # check loss is zero constraint.load_data() constraint.forward() loss = constraint.loss(step=0) assert torch.isclose(loss["u"], torch.tensor(0.0), rtol=1e-5, atol=1e-5) # define parabola node class Parabola(torch.nn.Module): def forward(self, invar): x, y = invar["x"], invar["y"] u = x**2 + y**2 u = u.reshape((-1, 1)) # reshape output return {"u": u} node = Node(inputs=["x", "y"], outputs="u", evaluate=Parabola()) # make constraint constraint = DeepONetConstraint_Physics( nodes=[node], invar_branch=invar_branch, invar_trunk=invar_trunk, outvar=outvar, batch_size=1, ) # check loss is zero constraint.load_data() constraint.forward() loss = constraint.loss(step=0) assert torch.isclose(loss["u"], torch.tensor(0.0), rtol=1e-5, atol=1e-5) if __name__ == "__main__": test_SupervisedGridConstraint() test_DeepONetConstraints()
modulus-sym-main
test/test_constraints/test_discrete_constraints.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import torch from torch import nn from modulus.sym.loss.aggregator import Relobralo class FitToPoly(nn.Module): def __init__(self): super().__init__() self.w = nn.Parameter(torch.ones((512, 512))) self.b = nn.Parameter(torch.ones(512, 1)) def forward(self, x): x1, x2, x3 = x[:, 0:1], x[:, 1:2], x[:, 2:3] losses = { "loss_x": (torch.relu(torch.mm(self.w, x1) + self.b - x1**2)) .abs() .mean(), "loss_y": (torch.relu(torch.mm(self.w, x2) + self.b - x2**2.0)) .abs() .mean(), "loss_z": (torch.relu(torch.mm(self.w, x3) + self.b + x3**2.0)) .abs() .mean(), } return losses def test_loss_aggregator(): # set device device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load data filename = os.path.join( os.path.dirname(__file__), "test_aggregator_data/Relobralo_data.npz" ) configs = np.load(filename, allow_pickle=True) x_np = torch.tensor(configs["x_np"][()]).to(device) w_np, b_np, loss_np = ( configs["w_np"][()], configs["b_np"][()], configs["loss_np"][()], ) total_steps, learning_rate = ( configs["total_steps"][()], configs["learning_rate"][()], ) # Instantiate the optimizer, scheduler, aggregator, and loss fucntion loss_function = torch.jit.script(FitToPoly()).to(device) aggregator = Relobralo(loss_function.parameters(), 3) optimizer = torch.optim.SGD(loss_function.parameters(), lr=learning_rate) scheduler = torch.optim.lr_scheduler.ConstantLR(optimizer) # Training loop for step in range(total_steps): optimizer.zero_grad() train_losses = loss_function(x_np) train_loss = aggregator(train_losses, step) train_loss.backward() optimizer.step() scheduler.step() # check outputs w_out = list(loss_function.parameters())[0].cpu().detach().numpy() b_out = list(loss_function.parameters())[1].cpu().detach().numpy() loss_out = train_loss.cpu().detach().numpy() # print(w_out,w_np, b_out,b_np, loss_out,loss_np) assert np.allclose(loss_np, loss_out, rtol=1e-4, atol=1e-4) assert np.allclose(w_np, w_out, rtol=1e-4, atol=1e-4) assert np.allclose(b_np, b_out, rtol=1e-4, atol=1e-4) if __name__ == "__main__": test_loss_aggregator()
modulus-sym-main
test/test_aggregator/test_relobralo.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import torch from torch import nn from modulus.sym.loss.aggregator import LRAnnealing class FitToPoly(nn.Module): def __init__(self): super().__init__() self.w = nn.Parameter(torch.ones((512, 512))) self.b = nn.Parameter(torch.ones(512, 1)) def forward(self, x): x1, x2, x3 = x[:, 0:1], x[:, 1:2], x[:, 2:3] losses = { "loss_x": (torch.relu(torch.mm(self.w, x1) + self.b - x1**2)) .abs() .mean(), "loss_y": (torch.relu(torch.mm(self.w, x2) + self.b - x2**2.0)) .abs() .mean(), "loss_z": (torch.relu(torch.mm(self.w, x3) + self.b + x3**2.0)) .abs() .mean(), } return losses def test_loss_aggregator(): # set device device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load data filename = os.path.join( os.path.dirname(__file__), "test_aggregator_data/LRAnnealing_data.npz" ) configs = np.load(filename, allow_pickle=True) x_np = torch.tensor(configs["x_np"][()]).to(device) w_np, b_np, loss_np = ( configs["w_np"][()], configs["b_np"][()], configs["loss_np"][()], ) total_steps, learning_rate = ( configs["total_steps"][()], configs["learning_rate"][()], ) # Instantiate the optimizer, scheduler, aggregator, and loss fucntion loss_function = torch.jit.script(FitToPoly()).to(device) aggregator = LRAnnealing(loss_function.parameters(), 3) optimizer = torch.optim.SGD(loss_function.parameters(), lr=learning_rate) scheduler = torch.optim.lr_scheduler.ConstantLR(optimizer) # Training loop for step in range(total_steps): optimizer.zero_grad() train_losses = loss_function(x_np) train_loss = aggregator(train_losses, step) train_loss.backward() optimizer.step() scheduler.step() # check outputs w_out = list(loss_function.parameters())[0].cpu().detach().numpy() b_out = list(loss_function.parameters())[1].cpu().detach().numpy() loss_out = train_loss.cpu().detach().numpy() assert np.allclose(loss_np, loss_out, rtol=1e-4, atol=1e-4) assert np.allclose(w_np, w_out, rtol=1e-4, atol=1e-4) assert np.allclose(b_np, b_out, rtol=1e-4, atol=1e-4) if __name__ == "__main__": test_loss_aggregator()
modulus-sym-main
test/test_aggregator/test_lrannealing.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import torch from torch import nn from modulus.sym.loss.aggregator import Sum class FitToPoly(nn.Module): def __init__(self): super().__init__() self.w = nn.Parameter(torch.ones((512, 512))) self.b = nn.Parameter(torch.ones(512, 1)) def forward(self, x): x1, x2, x3 = x[:, 0:1], x[:, 1:2], x[:, 2:3] losses = { "loss_x": (torch.relu(torch.mm(self.w, x1) + self.b - x1**2)) .abs() .mean(), "loss_y": (torch.relu(torch.mm(self.w, x2) + self.b - x2**2.0)) .abs() .mean(), "loss_z": (torch.relu(torch.mm(self.w, x3) + self.b + x3**2.0)) .abs() .mean(), } return losses def test_loss_aggregator(): # set device device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load data filename = os.path.join( os.path.dirname(__file__), "test_aggregator_data/Sum_data.npz" ) configs = np.load(filename, allow_pickle=True) x_np = torch.tensor(configs["x_np"][()]).to(device) w_np, b_np, loss_np = ( configs["w_np"][()], configs["b_np"][()], configs["loss_np"][()], ) total_steps, learning_rate = ( configs["total_steps"][()], configs["learning_rate"][()], ) # Instantiate the optimizer, scheduler, aggregator, and loss fucntion loss_function = torch.jit.script(FitToPoly()).to(device) aggregator = Sum(loss_function.parameters(), 3) optimizer = torch.optim.SGD(loss_function.parameters(), lr=learning_rate) scheduler = torch.optim.lr_scheduler.ConstantLR(optimizer) # Training loop for step in range(total_steps): optimizer.zero_grad() train_losses = loss_function(x_np) train_loss = aggregator(train_losses, step) train_loss.backward() optimizer.step() scheduler.step() # check outputs w_out = list(loss_function.parameters())[0].cpu().detach().numpy() b_out = list(loss_function.parameters())[1].cpu().detach().numpy() loss_out = train_loss.cpu().detach().numpy() assert np.allclose(loss_np, loss_out, rtol=1e-4, atol=1e-4) assert np.allclose(w_np, w_out, rtol=1e-4, atol=1e-4) assert np.allclose(b_np, b_out, rtol=1e-4, atol=1e-4) if __name__ == "__main__": test_loss_aggregator()
modulus-sym-main
test/test_aggregator/test_sum.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import torch from torch import nn from modulus.sym.loss.aggregator import HomoscedasticUncertainty class FitToPoly(nn.Module): def __init__(self): super().__init__() self.w = nn.Parameter(torch.ones((512, 512))) self.b = nn.Parameter(torch.ones(512, 1)) def forward(self, x): x1, x2, x3 = x[:, 0:1], x[:, 1:2], x[:, 2:3] losses = { "loss_x": (torch.relu(torch.mm(self.w, x1) + self.b - x1**2)) .abs() .mean(), "loss_y": (torch.relu(torch.mm(self.w, x2) + self.b - x2**2.0)) .abs() .mean(), "loss_z": (torch.relu(torch.mm(self.w, x3) + self.b + x3**2.0)) .abs() .mean(), } return losses def test_loss_aggregator(): # set device device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load data filename = os.path.join( os.path.dirname(__file__), "test_aggregator_data/HomoscedasticUncertainty_data.npz", ) configs = np.load(filename, allow_pickle=True) x_np = torch.tensor(configs["x_np"][()]).to(device) w_np, b_np, loss_np = ( configs["w_np"][()], configs["b_np"][()], configs["loss_np"][()], ) total_steps, learning_rate = ( configs["total_steps"][()], configs["learning_rate"][()], ) # Instantiate the optimizer, scheduler, aggregator, and loss fucntion loss_function = torch.jit.script(FitToPoly()).to(device) aggregator = HomoscedasticUncertainty(loss_function.parameters(), 3) optimizer = torch.optim.SGD(loss_function.parameters(), lr=learning_rate) scheduler = torch.optim.lr_scheduler.ConstantLR(optimizer) # Training loop for step in range(total_steps): optimizer.zero_grad() train_losses = loss_function(x_np) train_loss = aggregator(train_losses, step) train_loss.backward() optimizer.step() scheduler.step() # check outputs w_out = list(loss_function.parameters())[0].cpu().detach().numpy() b_out = list(loss_function.parameters())[1].cpu().detach().numpy() loss_out = train_loss.cpu().detach().numpy() assert np.allclose(loss_np, loss_out, rtol=1e-4, atol=1e-4) assert np.allclose(w_np, w_out, rtol=1e-4, atol=1e-4) assert np.allclose(b_np, b_out, rtol=1e-4, atol=1e-4) if __name__ == "__main__": test_loss_aggregator()
modulus-sym-main
test/test_aggregator/test_uncertainty.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import torch from torch import nn from modulus.sym.loss.aggregator import GradNorm class FitToPoly(nn.Module): def __init__(self): super().__init__() self.w = nn.Parameter(torch.ones((512, 512))) self.b = nn.Parameter(torch.ones(512, 1)) def forward(self, x): x1, x2, x3 = x[:, 0:1], x[:, 1:2], x[:, 2:3] losses = { "loss_x": (torch.relu(torch.mm(self.w, x1) + self.b - x1**2)) .abs() .mean(), "loss_y": (torch.relu(torch.mm(self.w, x2) + self.b - x2**2.0)) .abs() .mean(), "loss_z": (torch.relu(torch.mm(self.w, x3) + self.b + x3**2.0)) .abs() .mean(), } return losses def test_loss_aggregator(): # set device device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load data filename = os.path.join( os.path.dirname(__file__), "test_aggregator_data/GradNorm_data.npz" ) configs = np.load(filename, allow_pickle=True) x_np = torch.tensor(configs["x_np"][()]).to(device) w_np, b_np, loss_np = ( configs["w_np"][()], configs["b_np"][()], configs["loss_np"][()], ) total_steps, learning_rate = ( configs["total_steps"][()], configs["learning_rate"][()], ) # Instantiate the optimizer, scheduler, aggregator, and loss fucntion loss_function = torch.jit.script(FitToPoly()).to(device) aggregator = GradNorm(loss_function.parameters(), 3) optimizer = torch.optim.SGD(loss_function.parameters(), lr=learning_rate) scheduler = torch.optim.lr_scheduler.ConstantLR(optimizer) # Training loop for step in range(total_steps): optimizer.zero_grad() train_losses = loss_function(x_np) train_loss = aggregator(train_losses, step) train_loss.backward() optimizer.step() scheduler.step() # check outputs w_out = list(loss_function.parameters())[0].cpu().detach().numpy() b_out = list(loss_function.parameters())[1].cpu().detach().numpy() loss_out = train_loss.cpu().detach().numpy() assert np.allclose(loss_np, loss_out, rtol=1e-4, atol=1e-4) assert np.allclose(w_np, w_out, rtol=1e-4, atol=1e-4) assert np.allclose(b_np, b_out, rtol=1e-4, atol=1e-4) if __name__ == "__main__": test_loss_aggregator()
modulus-sym-main
test/test_aggregator/test_gradnorm.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import torch from torch import nn from modulus.sym.loss.aggregator import SoftAdapt class FitToPoly(nn.Module): def __init__(self): super().__init__() self.w = nn.Parameter(torch.ones((512, 512))) self.b = nn.Parameter(torch.ones(512, 1)) def forward(self, x): x1, x2, x3 = x[:, 0:1], x[:, 1:2], x[:, 2:3] losses = { "loss_x": (torch.relu(torch.mm(self.w, x1) + self.b - x1**2)) .abs() .mean(), "loss_y": (torch.relu(torch.mm(self.w, x2) + self.b - x2**2.0)) .abs() .mean(), "loss_z": (torch.relu(torch.mm(self.w, x3) + self.b + x3**2.0)) .abs() .mean(), } return losses def test_loss_aggregator(): # set device device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load data filename = os.path.join( os.path.dirname(__file__), "test_aggregator_data/SoftAdapt_data.npz" ) configs = np.load(filename, allow_pickle=True) x_np = torch.tensor(configs["x_np"][()]).to(device) w_np, b_np, loss_np = ( configs["w_np"][()], configs["b_np"][()], configs["loss_np"][()], ) total_steps, learning_rate = ( configs["total_steps"][()], configs["learning_rate"][()], ) # Instantiate the optimizer, scheduler, aggregator, and loss fucntion loss_function = torch.jit.script(FitToPoly()).to(device) aggregator = SoftAdapt(loss_function.parameters(), 3) optimizer = torch.optim.SGD(loss_function.parameters(), lr=learning_rate) scheduler = torch.optim.lr_scheduler.ConstantLR(optimizer) # Training loop for step in range(total_steps): optimizer.zero_grad() train_losses = loss_function(x_np) train_loss = aggregator(train_losses, step) train_loss.backward() optimizer.step() scheduler.step() # check outputs w_out = list(loss_function.parameters())[0].cpu().detach().numpy() b_out = list(loss_function.parameters())[1].cpu().detach().numpy() loss_out = train_loss.cpu().detach().numpy() assert np.allclose(loss_np, loss_out, rtol=1e-4, atol=1e-4) assert np.allclose(w_np, w_out, rtol=1e-4, atol=1e-4) assert np.allclose(b_np, b_out, rtol=1e-4, atol=1e-4) if __name__ == "__main__": test_loss_aggregator()
modulus-sym-main
test/test_aggregator/test_softadapt.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A script to check that copyright headers exists""" import argparse import itertools import re import sys import json from datetime import datetime from pathlib import Path def get_top_comments(_data): """ Get all lines where comments should exist """ lines_to_extract = [] for i, line in enumerate(_data): # If empty line, skip if line in ["", "\n", "", "\r", "\r\n"]: continue # If it is a comment line, we should get it if line.startswith("#"): lines_to_extract.append(i) # Assume all copyright headers occur before any import or from statements # and not enclosed in a comment block elif "import" in line: break elif "from" in line: break comments = [] for line in lines_to_extract: comments.append(_data[line]) return comments def main(): with open(Path(__file__).parent.resolve() / Path("config.json")) as f: config = json.loads(f.read()) print(f"License check config:") print(json.dumps(config, sort_keys=True, indent=4)) current_year = int(datetime.today().year) starting_year = 2023 python_header_path = Path(__file__).parent.resolve() / Path( config["copyright_file"] ) working_path = Path(__file__).parent.resolve() / Path(config["dir"]) exts = config["include-ext"] with open(python_header_path, "r", encoding="utf-8") as original: pyheader = original.read().split("\n") pyheader_lines = len(pyheader) # Build list of files to check exclude_paths = [ (Path(__file__).parent / Path(path)).resolve().rglob("*") for path in config["exclude-dir"] ] all_exclude_paths = itertools.chain.from_iterable(exclude_paths) exclude_filenames = [p for p in all_exclude_paths if p.suffix in exts] filenames = [p for p in working_path.resolve().rglob("*") if p.suffix in exts] filenames = [ filename for filename in filenames if filename not in exclude_filenames ] problematic_files = [] gpl_files = [] for filename in filenames: with open(str(filename), "r", encoding="utf-8") as original: data = original.readlines() data = get_top_comments(data) if data and "# ignore_header_test" in data[0]: continue if len(data) < pyheader_lines - 1: print(f"{filename} has less header lines than the copyright template") problematic_files.append(filename) continue found = False for i, line in enumerate(data): if re.search(re.compile("Copyright.*NVIDIA.*", re.IGNORECASE), line): found = True # Check 1st line manually year_good = False for year in range(starting_year, current_year + 1): year_line = pyheader[0].format(CURRENT_YEAR=year) if year_line in data[i]: year_good = True break year_line_aff = year_line.split(".") year_line_aff = ( year_line_aff[0] + " & AFFILIATES." + year_line_aff[1] ) if year_line_aff in data[i]: year_good = True break if not year_good: problematic_files.append(filename) print(f"{filename} had an error with the year") break # while "opyright" in data[i]: # i += 1 # for j in range(1, pyheader_lines): # if pyheader[j] not in data[i + j - 1]: # problematic_files.append(filename) # print(f"{filename} missed the line: {pyheader[j]}") # break if found: break if not found: print(f"{filename} did not match the regex: `Copyright.*NVIDIA.*`") problematic_files.append(filename) # test if GPL license exists for lines in data: if "gpl" in lines.lower(): gpl_files.append(filename) break if len(problematic_files) > 0: print( "test_header.py found the following files that might not have a copyright header:" ) for _file in problematic_files: print(_file) if len(gpl_files) > 0: print("test_header.py found the following files that might have GPL copyright:") for _file in gpl_files: print(_file) assert len(problematic_files) == 0, "header test failed!" assert len(gpl_files) == 0, "found gpl license, header test failed!" print("Success: File headers look good!") if __name__ == "__main__": main()
modulus-sym-main
test/ci_tests/header_check.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from sympy import Symbol, sin from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.dataset import ( DictImportanceSampledPointwiseIterableDataset, ) from modulus.sym.domain.constraint.utils import _compute_outvar from modulus.sym.geometry.parameterization import Bounds def test_DictImportanceSampledPointwiseIterableDataset(): "sample sin function on a rectangle with importance measure sqrt(x**2 + y**2) and check its integral is zero" torch.manual_seed(123) np.random.seed(123) # make rectangle rec = Rectangle((-0.5, -0.5), (0.5, 0.5)) # sample interior invar = rec.sample_interior( 100000, bounds=Bounds({Symbol("x"): (-0.5, 0.5), Symbol("y"): (-0.5, 0.5)}), ) # compute outvar outvar = _compute_outvar(invar, {"u": sin(2 * np.pi * Symbol("x") / 0.5)}) # create importance measure def importance_measure(invar): return ((invar["x"] ** 2 + invar["y"] ** 2) ** (0.5)) + 0.01 # make importance dataset dataset = DictImportanceSampledPointwiseIterableDataset( invar=invar, outvar=outvar, batch_size=10000, importance_measure=importance_measure, ) # sample importance dataset invar, outvar, lambda_weighting = next(iter(dataset)) # check integral calculation assert np.isclose(torch.sum(outvar["u"] * invar["area"]), 0.0, rtol=1e-2, atol=1e-2) if __name__ == "__main__": test_DictImportanceSampledPointwiseIterableDataset()
modulus-sym-main
test/test_datasets/test_continuous_datasets.py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # -- Project information ----------------------------------------------------- import os import sphinx_rtd_theme from modulus.sym import __version__ as version project = 'NVIDIA Modulus Symbolic' copyright = '2023, NVIDIA Modulus Team' author = 'NVIDIA Modulus Team' release = version # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. # Add any paths that contain templates here, relative to this directory. # templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [ '_build', 'external', 'README.md', 'CONTRIBUTING.md', 'LICENSE.txt', 'tests', '**.ipynb_checkpoints' ] # Fake imports autodoc_mock_imports = [ 'pysdf', 'quadpy', 'functorch' ] extensions=[ 'recommonmark', 'sphinx.ext.mathjax', 'sphinx.ext.todo', 'sphinx.ext.autosectionlabel', 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'nbsphinx' ] #source_parsers = { '.md': 'recommonmark.parser.CommonMarkParser',} source_suffix = {'.rst':'restructuredtext', '.md':'markdown'} pdf_documents = [('index', u'rst2pdf', u'Sample rst2pdf doc', u'Your Name'),] napoleon_custom_sections = ['Variable Shape'] # -- Options for HTML output ------------------------------------------------- # HTML theme options html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_theme = "sphinx_rtd_theme" html_theme_options = { 'logo_only': True, 'display_version': True, 'prev_next_buttons_location': 'bottom', 'style_external_links': False, 'style_nav_header_background': '#000000', # Toc options 'collapse_navigation': False, 'sticky_navigation': False, # 'navigation_depth': 10, 'sidebarwidth': 12, 'includehidden': True, 'titles_only': False } # Additional html options html_static_path = ['_static'] html_css_files = [ 'css/nvidia_styles.css', ] html_js_files = [ 'js/pk_scripts.js' ] # html_last_updated_fmt = '' # Additional sphinx switches math_number_all = True todo_include_todos = True numfig = True _PREAMBLE = r""" \usepackage{amsmath} \usepackage{esint} \usepackage{mathtools} \usepackage{stmaryrd} """ latex_elements = { 'preamble': _PREAMBLE, # other settings go here } latex_preamble =[ ('\\usepackage{amssymb}', '\\usepackage{amsmath}', '\\usepackage{amsxtra}', '\\usepackage{bm}', '\\usepackage{esint}', '\\usepackage{mathtools}', '\\usepackage{stmaryrd}'), ] autosectionlabel_maxdepth = 1
modulus-sym-main
docs/conf.py
from git import Repo from pathlib import Path import datetime from pytz import timezone import re import gitlab import argparse def get_commit_files( repo_path: Path, branch_name: str, day_range: int = 1, max_count: int = 100 ): """Gets a list for files changed in commits for past number of days Parameters ---------- repo_path : Path Path to git repo branch_name : str Branch to use for commits day_range : int, optional Number of past days to look for commits, by default 1 max_count : int, optional Max number of commits to look at , by default 100 Returns ------- Dict[str, Tuple[int, str]] Dictionary of changes files with the latest commit time and hash """ assert repo_path.is_dir(), "Invalid repo folder path" repo = Repo(repo_path) assert not repo.bare, "Repo is bare" assert branch_name in repo.heads, "Branch name {} not found in available heads" branch = repo.heads[branch_name] files = {} # Iterates from newest to oldest commit for commit in list( repo.iter_commits( rev=branch, since=f"{day_range}.days.ago", max_count=max_count ) ): for file in commit.stats.files.keys(): if file not in files: files[file] = tuple([commit.committed_date, commit.hexsha]) return files def get_doc_codeblock_files(userguide_path: Path, file_pattern: str = "*.rst"): """Looks through RST files for any references to example python files Parameters ---------- userguide_path : Path Path to user guide RST files file_pattern : str, optional Pattern for file types to parse, by default "*.rst" Returns ------- Dict[str, Dict[str, List[int]]] Dictionary of python files that are contained in doc files with line numbers. Returned dictionary maps between python file to a dictionary containing each documentation file and line numbers it is referenced. """ assert userguide_path.is_dir(), "Invalid repo folder path" regex_pattern = re.compile("\/modulus\/examples\/(.+?)\.py") files = {} for doc_file in userguide_path.rglob(file_pattern): for i, line in enumerate(open(doc_file)): for match in re.finditer(regex_pattern, line): python_file = str(Path(*Path(match.group()).parts[3:])) doc_file_local = str(Path(*Path(doc_file).parts[1:])) if not python_file in files: files[python_file] = {str(doc_file_local): [i + 1]} else: if doc_file_local in files[python_file]: files[python_file][doc_file_local].append(i + 1) else: files[python_file][doc_file_local] = [i + 1] return files def create_gitlab_issue(commit_files, doc_files, gl_token: str): """Creates a Gitlab issue if changed files are present Parameters ---------- commit_files : Dict[str, Tuple[int, str]] Dictionary of changes files with the latest commit time and hash doc_files : Dict[str, Dict[str, List[int]]] Dictionary of python files that are contained in doc files with line numbers. gl_token : str Gitlab API access token, should be passed in via program arguement (do not hard code!) """ # .git urls examples_repo_url = ( "https://gitlab-master.nvidia.com/simnet/examples/-/blob/develop/" ) docs_repo_url = "https://gitlab-master.nvidia.com/simnet/docs/-/blob/develop/" ug_folder = "user_guide/" def file_desc(file_name, commit_time_stamp, commit_hash, doc_files): # Create description string for one updated file # Convert time-stamp to string in pacific time commit_time = datetime.datetime.fromtimestamp(commit_time_stamp) commit_time = commit_time.astimezone(timezone("US/Pacific")) desc_str = f"---\n\n" desc_str += f"[{file_name}]({examples_repo_url}{file_name})\n\n" desc_str += f":date: Editted: {commit_time.strftime('%Y-%m-%d %H:%M PST')}\n\n" desc_str += f":fox: Commit: simnet/examples@{commit_hash[:8]}\n\n" desc_str += ":mag: Files to check:\n" for doc_file in doc_files.keys(): doc_file = Path(doc_file) desc_str += f"- {doc_file.name} : " for line in doc_files[str(doc_file)]: desc_str += f"[L{line}]({docs_repo_url}{ug_folder}{str(doc_file)}#L{line}), " desc_str = desc_str[:-2] desc_str += "\n\n" return desc_str todays_date = datetime.date.today() issue_title = f"[Overwatch] Example files updated {todays_date.month}/{todays_date.day}/{todays_date.year}" issue_desc = "### :robot: Overwatch Detected Files:\n\n" issue_desc += "This is an automated issue created by CI Example Overwatch bot.\n\n" changed_files = False # Loop over changed files in detected commits for commit_file_name in commit_files.keys(): if commit_file_name in doc_files: issue_desc += file_desc( commit_file_name, commit_files[commit_file_name][0], commit_files[commit_file_name][1], doc_files[commit_file_name], ) changed_files = True # If no updated files just return if not changed_files: print("No updated files detected.") return else: print("File changes detected, creating issue.") # Log into gitlab and create issue gl = gitlab.Gitlab("https://gitlab-master.nvidia.com", private_token=gl_token) p = gl.projects.get("simnet/docs") p.issues.create( { "title": issue_title, "description": issue_desc, "labels": ["user guide", "update"], } ) if __name__ == "__main__": # This should be ran outside of the doc repo directory (1 level up) p = argparse.ArgumentParser() p.add_argument("--gitlab-token", type=str, default=None, help="Gitlab API token") p.add_argument( "--day-range", type=int, default=1, help="Day range to check commits" ) args = vars(p.parse_args()) # Paths inside CI docker container user_guide_path = Path("./user_guide") example_repo_path = Path("./external/examples") print("Parsing .rst files for python references") doc_files = get_doc_codeblock_files(user_guide_path) print("Checking examples repo for recent commits") commit_files = get_commit_files( example_repo_path, "develop", day_range=args["day_range"] ) print("Checking for relevant file changes") create_gitlab_issue(commit_files, doc_files, args["gitlab_token"])
modulus-sym-main
docs/test/overwatch.py
import re import json from pathlib import Path from turtle import color from spellchecker import SpellChecker from string import punctuation from typing import List, Set from termcolor import colored class RSTSpellChecker: def __init__(self, spell_checker: SpellChecker): self.spell_checker = spell_checker self.sphinx_block = False # Word regex, these are ran for every word so compile once up here. # Numeric regex # https://stackoverflow.com/questions/1323364/in-python-how-to-check-if-a-string-only-contains-certain-characters # [Prefix syms][nums][intermediate syms][trailing nums][end syms] self.re_numeric = re.compile(r"^[+\-(vx]*[0-9]+[+\-xe \.]*[0-9]*[xDk%\.]*$") # Left over sphinx keys self.re_sphinx_keys = re.compile(r"\s*(:alt:)\s*") # Stuff from python code blocks and url stuff self.re_code_words = re.compile(r"(.*\.py|.*\.html|.*\.org|.*\.com|.*\.vti|.*\.vtu|.*\.vtp)") # All caps for abbrv (can have trailing s) self.re_caps = re.compile(r"^[^a-z]*[s]?$") def check_sphinx_block(self, line:str) -> bool: """Determins if line is in a code, math or table block based on indent whitespace Parameters ---------- line : str line of text Returns ------- bool If line is in code block """ # code block re_sphinx_code_block = re.compile(r"^\s*\.\.\s+(code::|code-block::)") # math or table block re_sphinx_math_block = re.compile(r"^\s*\.\.\s+(math::|table::)") # Leading white space check re_white_space = re.compile( r"^(\s{2,}|\t+)" ) # Assuming tab spacing has at least 2 spaces # Check for start of code or math block if bool(re_sphinx_code_block.search(line)): self.sphinx_block = True return self.sphinx_block elif bool(re_sphinx_math_block.search(line)): self.sphinx_block = True return self.sphinx_block # Else check to see if exempt line or non-indendent line if self.sphinx_block: # End of code block is a line with no white space at the start (no-indent) if ( not bool(re_white_space.search(line)) and len(re.sub("[\s+]", "", line)) > 0 ): self.sphinx_block = False return self.sphinx_block def exempt_lines(self, line: str) -> bool: """Checks if line should be exempt from checking, this applys for various sphinx sections such as code blocks, figures, tables, etc. Parameters ---------- line : str line of text Returns ------- bool If line should be skipped """ re_sphinx_code_ref = re.compile( r"code::|role::|literalinclude:|:language:|:lines:|:format:|:start-after:|:end-before:" ) re_sphinx_fig_ref = re.compile( r"(^..\s*figure::|^\s*:width:|^\s*:align:|^\s*:name:|^\s*:header-rows:)" ) re_title_boaders = re.compile(r"^=+\s+$|^~+\s+$|^\^+\s+$") re_sphinx_citation = re.compile(r"^\s*\.\. \[#.*\]") re_sphinx_ref_target = re.compile(r"^\s*\.\.\s+\_.*:\s*$") re_sphinx_math = re.compile(r"^\s*\.\.\s+math::") if bool(re_sphinx_code_ref.search(line)): return True elif bool(re_sphinx_fig_ref.search(line)): return True elif bool(re_title_boaders.search(line)): return True elif bool(re_sphinx_citation.search(line)): return True elif bool(re_sphinx_ref_target.search(line)): return True elif bool(re_sphinx_math.search(line)): return True return False def exempt_word(self, word: str) -> bool: """Checks for words that should be exempt from spell checking Parameters ---------- word : str Word string Returns ------- bool If work should be exempt """ # Numericals (numbers, #-#, #x#) if bool(self.re_numeric.search(word)): return True if bool(self.re_sphinx_keys.search(word)): return True if bool(self.re_code_words.search(word)): return True # All cap abbrive if bool(self.re_caps.search(word)): return True # Works with back-slashes (escape characters, aka weird stuff) if "\\" in word: return True return False def prepare_line(self, line: str) -> List[str]: """Prepares test line for parsing, will check if line should be skipped, remove any sphinx keywords, then split into words based on white space. Parameters ---------- line : str Line of text Returns ------- List[str] List of keywords """ # Check if line is in sphinx block or is an exempt line if self.check_sphinx_block(line): return [] if self.exempt_lines(line): return [] # Remove specifc parts of the line that are sphinx items re_sphinx_inline = re.compile(r"(:ref:|:math:|:numref:|:eq:|:code:)`.*?`") re_sphinx_code = re.compile(r"(``.*?``|`.*?`)") re_sphinx_cite = re.compile(r"\[#.*?\]\_") re_sphinx_link = re.compile(r"<.*?>`\_") re_sphinx_block_titles = re.compile( r"(\.\.\s+table::|\.\.\s+list-table::|\.\.\s+note::)" ) line = line.strip("\n") if bool(re_sphinx_inline.search(line)): line = re_sphinx_inline.sub(r"", line) if bool(re_sphinx_code.search(line)): line = re_sphinx_code.sub(r"", line) if bool(re_sphinx_cite.search(line)): line = re_sphinx_cite.sub(r"", line) if bool(re_sphinx_link.search(line)): line = re_sphinx_link.sub(r"", line) if bool(re_sphinx_block_titles.search(line)): line = re_sphinx_block_titles.sub(r"", line) # Split up sentence into words words = re.split(r"(\s+|/)", line) # Filter empty strings words = list(filter(None, words)) return words def get_unknown_words(self, line: str) -> List[str]: """Gets unknown words not present in spelling dictionary Parameters ---------- line : str Line of text to parse Returns ------- List[str] List of unknown words (if any) """ # Clean line and split into list of words words = self.prepare_line(line) # Primative plural word checking re_plural = re.compile(r"(\’s|\'s|s\'|s\’|s|\(s\))$") unknown_words = [] for word0 in words: # Check for miss-spelling of word and without trailing s if word0 in self.spell_checker or self.exempt_word(word0): continue # Strip punctuation and check again word = word0.strip(punctuation) if word in self.spell_checker or self.exempt_word(word): continue # Add dot after stripping punctuation for abbrv word = word0.strip(punctuation) + "." if word in self.spell_checker or self.exempt_word(word): continue # Strip plural / posessive word = re_plural.sub(r"", word0) if word in self.spell_checker or self.exempt_word(word): continue # Strip plural after punctuation word = re_plural.sub(r"", word0.strip(punctuation)) if word in self.spell_checker or self.exempt_word(word): continue # If none of these combos worked mark as unknown unknown_words.append(word0.strip(punctuation)) return unknown_words def test_rst_spelling( userguide_path: Path, en_dictionary_path: Path = Path("./test/en_dictionary.json.gz"), extra_dictionary_path: Path = Path("./test/modulus_dictionary.json"), file_pattern: str = "*.rst", ): """Looks through RST files for any references to example python files Parameters ---------- userguide_path : Path Path to user guide RST files en_dictionary_path: Path, optional Path to english dictionary extra_dictionary_path: Path, optional Path to additional Modulus dictionary file_pattern : str, optional Pattern for file types to parse, by default "*.rst" Raises ------- ValueError: If spelling errors have been found """ assert userguide_path.is_dir(), "Invalid user guide folder path" assert en_dictionary_path.is_file(), "Invalid english dictionary path" assert extra_dictionary_path.is_file(), "Invalid additional dictionary path" spell = SpellChecker(language=None, distance=2) spell.word_frequency.load_dictionary(str(en_dictionary_path), encoding = "utf-8") # Can be used to export current dictionary for merging dicts # spell.export('en_dictionary.json.gz', gzipped=True) # Load extra words data = json.load(open(extra_dictionary_path)) spell.word_frequency.load_words(data["dictionary"]) rst_checker = RSTSpellChecker(spell) spelling_errors = [] spelling_warnings = [] for doc_file in userguide_path.rglob(file_pattern): for i, line in enumerate(open(doc_file)): # Clean line and split into list of words words = rst_checker.get_unknown_words(line) for word in words: # Get the most likely correction corr_word = spell.correction(word) # If there is a potential correct work in dictionary flag as error if not corr_word == word: err_msg = f'Found potential spelling error: "{word.lower()}", did you mean "{corr_word}"?' + "\n" err_msg += f"Located in File: {doc_file}, Line: {i}, Word: {word}" + "\n" spelling_errors.append(colored(err_msg, "red")) # Otherwise make it a warning as a unrecognizable word else: err_msg = f"Unknown word: {word}, consider adding to dictionary." + "\n" err_msg += f"Located in File: {doc_file}, Line: {i}, Word: {word}" + "\n" spelling_warnings.append(colored(err_msg, "yellow")) # Print warnings if len(spelling_warnings) > 0: print(colored("Spelling WARNINGS:", "yellow")) for msg in spelling_warnings: print(msg) # Print likely spelling errors if len(spelling_errors) > 0: print(colored("Spelling ERRORS:", "red")) for msg in spelling_errors: print(msg) if len(spelling_errors) > 0: raise ValueError("Spelling errors found, either correct or add new words to dictionary.") if __name__ == "__main__": # Paths inside CI docker container user_guide_path = Path("./user_guide") test_rst_spelling(user_guide_path)
modulus-sym-main
docs/test/test_spelling.py
from pathlib import Path from sphinx.application import Sphinx import logging logger = logging.getLogger(__name__) def build_html(src_dir: Path, warning_file: Path = Path("./warnings.txt")): """Builds sphinx HTML files Parameters ---------- src_dir : Path Path to base directory of documentation with conf.py warning_file : Path, optional File name/ path for logging warnings/errors, by default Path("./warnings.txt") """ # Main arguments conf_dir = src_dir build_dir = src_dir / Path("_build") doctree_dir = build_dir / Path("doctrees") html_dir = build_dir / Path("html") builder = "html" # Write warning messages to a file (instead of stderr) try: warning_file.unlink() except OSError as e: print("Couldn't delete old warning file") warning = open(warning_file, "w") # clean build path if it exists try: build_dir.unlink() except OSError as e: print("Couldn't delete build directory") # Create the Sphinx application object app = Sphinx(src_dir, conf_dir, html_dir, doctree_dir, builder, warning=warning) # Run the build app.build() if __name__ == "__main__": build_html(Path("."))
modulus-sym-main
docs/test/build_html.py
from pathlib import Path from sphinx.application import Sphinx import logging def check_error_log( warning_file: Path = Path("./warnings.txt"), ignore_docstrings: bool = True, ignore_warnings: bool = True, ): """Checks the error log of Sphinx app for errors/warnings Parameters ---------- warning_file : Path, optional Path to error log files from sphinx, by default Path("./warnings.txt") ignore_docstrings : bool, optional Ignore docstring related errors, by default True ignore_warnings : bool, optional Ignore sphinx warnings, by default True Raises ------ SystemError If error/warning is found which is not ignored """ assert warning_file.is_file(), "Error log not found" errors = [] with open(warning_file) as file: lines = file.read().splitlines() # Loop over lines i = 0 print(f"Number of lines in warnings log file: {len(lines)}") while i < len(lines): line_str = lines[i] # Make sure multi-line errors are included # Sphinx logs end with this escape character we can check for (for color) while not "[39;49;00m" in line_str and i < len(lines): i += 1 line_str = line_str + lines[i] i += 1 # Ignore warnings if ignore_warnings and "WARNING" in line_str: print(f"Ignoring docstring warning: {line_str}") continue # Ignore docstring issues elif ignore_docstrings and ".py:docstring" in line_str: print(f"Ignoring docstring issue: {line_str}") continue else: errors.append(str(line_str)) if len(errors) > 0: print("Errors found when building docs:") for error in errors: print(error) raise SystemError("Sphinx build failed") if __name__ == "__main__": check_error_log(ignore_warnings=False)
modulus-sym-main
docs/test/test_html.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import numpy as np import torch import torch.nn.functional as F import os import modulus from modulus.sym.hydra import ModulusConfig from modulus.sym.hydra import to_absolute_path from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.utils.io.plotter import GridValidatorPlotter from NVRS import * from utilities import load_FNO_dataset2, preprocess_FNO_mat from ops import dx, ddx from modulus.sym.models.fno import * import shutil import cupy as cp import scipy.io as sio import requests from modulus.sym.utils.io.plotter import ValidatorPlotter torch.set_default_dtype(torch.float32) def download_file_from_google_drive(id, destination): URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params={"id": id, "confirm": 1}, stream=True) token = get_confirm_token(response) if token: params = {"id": id, "confirm": token} response = session.get(URL, params=params, stream=True) save_response_content(response, destination) def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith("download_warning"): return value return None def save_response_content(response, destination): CHUNK_SIZE = 32768 with open(destination, "wb") as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) class CustomValidatorPlotterP(ValidatorPlotter): def __init__( self, timmee, max_t, MAXZ, pini_alt, nx, ny, wells, steppi, tc2, dt, injectors, producers, N_injw, N_pr, ): self.timmee = timmee self.max_t = max_t self.MAXZ = MAXZ self.pini_alt = pini_alt self.nx = nx self.ny = ny self.wells = wells self.steppi = steppi self.tc2 = tc2 self.dt = dt self.injectors = injectors self.producers = producers self.N_injw = N_injw self.N_pr = N_pr def __call__(self, invar, true_outvar, pred_outvar): "Custom plotting function for validator" # get input variables pressure_true, pressure_pred = true_outvar["pressure"], pred_outvar["pressure"] # make plot f_big = [] Time_vector = np.zeros((self.steppi)) Accuracy_presure = np.zeros((self.steppi, 2)) for itt in range(self.steppi): look = (pressure_pred[0, itt, :, :, :]) * self.pini_alt lookf = (pressure_true[0, itt, :, :, :]) * self.pini_alt diff1 = abs(look - lookf) XX, YY = np.meshgrid(np.arange(self.nx), np.arange(self.ny)) f_2 = plt.figure(figsize=(12, 12), dpi=100) plt.subplot(3, 3, 1) plt.pcolormesh(XX.T, YY.T, look[0, :, :], cmap="jet") plt.title("Layer 1 - Pressure PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf[0, :, :], (-1,))), np.max(np.reshape(lookf[0, :, :], (-1,))), ) cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 2) plt.pcolormesh(XX.T, YY.T, lookf[0, :, :], cmap="jet") plt.title(" Layer 1 - Pressure CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 3) plt.pcolormesh(XX.T, YY.T, abs(look[0, :, :] - lookf[0, :, :]), cmap="jet") plt.title(" Layer 1 - Pressure (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 4) plt.pcolormesh(XX.T, YY.T, look[1, :, :], cmap="jet") plt.title("Layer 2 - Pressure PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf[1, :, :], (-1,))), np.max(np.reshape(lookf[1, :, :], (-1,))), ) cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 5) plt.pcolormesh(XX.T, YY.T, lookf[1, :, :], cmap="jet") plt.title(" Layer 2 - Pressure CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 6) plt.pcolormesh(XX.T, YY.T, abs(look[1, :, :] - lookf[1, :, :]), cmap="jet") plt.title(" Layer 2 - Pressure (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 7) plt.pcolormesh(XX.T, YY.T, look[2, :, :], cmap="jet") plt.title("Layer 3 - Pressure PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf[2, :, :], (-1,))), np.max(np.reshape(lookf[2, :, :], (-1,))), ) cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 8) plt.pcolormesh(XX.T, YY.T, lookf[2, :, :], cmap="jet") plt.title(" Layer 3 - Pressure CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 9) plt.pcolormesh(XX.T, YY.T, abs(look[2, :, :] - lookf[2, :, :]), cmap="jet") plt.title(" Layer 3 - Pressure (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" plt.suptitle(tita, fontsize=16) # name = namet + str(int(itt)) + '.png' # plt.savefig(name) # #plt.show() # plt.clf() namez = "pressure_simulations" + str(int(itt)) yes = (f_2, namez) f_big.append(yes) f_3 = plt.figure(figsize=(20, 20), dpi=200) ax1 = f_3.add_subplot(131, projection="3d") Plot_Modulus( ax1, self.nx, self.ny, self.nz, Reinvent(look), self.N_injw, self.N_pr, "pressure Modulus", self.injectors, self.producers, ) ax2 = f_3.add_subplot(132, projection="3d") Plot_Modulus( ax2, self.nx, self.ny, self.nz, Reinvent(lookf), self.N_injw, self.N_pr, "pressure Numerical", self.injectors, self.producers, ) ax3 = f_3.add_subplot(133, projection="3d") Plot_Modulus( ax3, self.nx, self.ny, self.nz, Reinvent(diff1), self.N_injw, self.N_pr, "pressure diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = ( "3D Map - Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" ) plt.suptitle(tita, fontsize=16) namez = "Simulations3Dp" + str(int(itt)) yes2 = (f_3, namez) f_big.append(yes2) R2p, L2p = compute_metrics(look.ravel()), lookf.ravel() Accuracy_presure[itt, 0] = R2p Accuracy_presure[itt, 1] = L2p fig4, axs = plt.subplots(2, 1, figsize=(10, 10)) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) # Plot R2 accuracies for i, data in enumerate([Accuracy_presure]): axs[0, i].plot( Time_vector, data[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) axs[0, i].set_title(["Pressure"][i], fontproperties=font) axs[0, i].set_xlabel("Time (days)", fontproperties=font) axs[0, i].set_ylabel("R2(%)", fontproperties=font) # Plot L2 accuracies for i, data in enumerate([Accuracy_presure]): axs[1, i].plot( Time_vector, data[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) axs[1, i].set_title(["Pressure"][i], fontproperties=font) axs[1, i].set_xlabel("Time (days)", fontproperties=font) axs[1, i].set_ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2_pressure" yes21 = (fig4, namez) f_big.append(yes21) return f_big class CustomValidatorPlotterS(ValidatorPlotter): def __init__( self, timmee, max_t, MAXZ, pini_alt, nx, ny, wells, steppi, tc2, dt, injectors, producers, N_injw, N_pr, ): self.timmee = timmee self.max_t = max_t self.MAXZ = MAXZ self.pini_alt = pini_alt self.nx = nx self.ny = ny self.wells = wells self.steppi = steppi self.tc2 = tc2 self.dt = dt self.injectors = injectors self.producers = producers self.N_injw = N_injw self.N_pr = N_pr def __call__(self, invar, true_outvar, pred_outvar): "Custom plotting function for validator" # get input variables water_true, water_pred = true_outvar["water_sat"], pred_outvar["water_sat"] # make plot f_big = [] Accuracy_oil = np.zeros((self.steppi, 2)) Accuracy_water = np.zeros((self.steppi, 2)) Time_vector = np.zeros((self.steppi)) for itt in range(self.steppi): XX, YY = np.meshgrid(np.arange(self.nx), np.arange(self.ny)) f_2 = plt.figure(figsize=(20, 20), dpi=100) look_sat = water_pred[0, itt, :, :, :] look_oil = 1 - look_sat lookf_sat = water_true[0, itt, :, :, :] lookf_oil = 1 - lookf_sat diff1_wat = abs(look_sat - lookf_sat) diff1_oil = abs(look_oil - lookf_oil) plt.subplot(6, 3, 1) plt.pcolormesh(XX.T, YY.T, look_sat[0, :, :], cmap="jet") plt.title(" Layer 1 - water_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_sat[0, :, :], (-1,))), np.max(np.reshape(lookf_sat[0, :, :], (-1,))), ) cbar1.ax.set_ylabel(" water_sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 2) plt.pcolormesh(XX.T, YY.T, lookf_sat[0, :, :], cmap="jet") plt.title(" Layer 1 - water_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 3) plt.pcolormesh(XX.T, YY.T, diff1_wat[0, :, :], cmap="jet") plt.title(" Layer 1- water_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat ", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 4) plt.pcolormesh(XX.T, YY.T, look_sat[1, :, :], cmap="jet") plt.title(" Layer 2 - water_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_sat[1, :, :], (-1,))), np.max(np.reshape(lookf_sat[1, :, :], (-1,))), ) cbar1.ax.set_ylabel(" water_sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 5) plt.pcolormesh(XX.T, YY.T, lookf_sat[1, :, :], cmap="jet") plt.title(" Layer 2 - water_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 6) plt.pcolormesh(XX.T, YY.T, diff1_wat[1, :, :], cmap="jet") plt.title(" Layer 2- water_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat ", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 7) plt.pcolormesh(XX.T, YY.T, look_sat[2, :, :], cmap="jet") plt.title(" Layer 3 - water_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_sat[2, :, :], (-1,))), np.max(np.reshape(lookf_sat[2, :, :], (-1,))), ) cbar1.ax.set_ylabel(" water_sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 8) plt.pcolormesh(XX.T, YY.T, lookf_sat[2, :, :], cmap="jet") plt.title(" Layer 3 - water_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 9) plt.pcolormesh(XX.T, YY.T, diff1_wat[2, :, :], cmap="jet") plt.title(" Layer 3- water_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat ", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 10) plt.pcolormesh(XX.T, YY.T, look_oil[0, :, :], cmap="jet") plt.title(" Layer 1 - oil_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_oil[0, :, :], (-1,))), np.max(np.reshape(lookf_oil[0, :, :], (-1,))), ) cbar1.ax.set_ylabel(" oil_sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 11) plt.pcolormesh(XX.T, YY.T, lookf_oil[0, :, :], cmap="jet") plt.title(" Layer 1 - oil_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 12) plt.pcolormesh(XX.T, YY.T, diff1_oil[0, :, :], cmap="jet") plt.title(" Layer 1 - oil_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat ", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 13) plt.pcolormesh(XX.T, YY.T, look_oil[1, :, :], cmap="jet") plt.title(" Layer 2 - oil_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_oil[1, :, :], (-1,))), np.max(np.reshape(lookf_oil[1, :, :], (-1,))), ) cbar1.ax.set_ylabel(" oil_sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 14) plt.pcolormesh(XX.T, YY.T, lookf_oil[1, :, :], cmap="jet") plt.title(" Layer 2 - oil_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 15) plt.pcolormesh(XX.T, YY.T, diff1_oil[1, :, :], cmap="jet") plt.title(" Layer 2 - oil_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat ", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 16) plt.pcolormesh(XX.T, YY.T, look_oil[2, :, :], cmap="jet") plt.title(" Layer 3 - oil_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_oil[2, :, :], (-1,))), np.max(np.reshape(lookf_oil[2, :, :], (-1,))), ) cbar1.ax.set_ylabel(" oil_sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 17) plt.pcolormesh(XX.T, YY.T, lookf_oil[2, :, :], cmap="jet") plt.title(" Layer 3 - oil_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 18) plt.pcolormesh(XX.T, YY.T, diff1_oil[2, :, :], cmap="jet") plt.title(" Layer 3 - oil_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat ", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" plt.suptitle(tita, fontsize=16) # name = namet + str(int(itt)) + '.png' # plt.savefig(name) # #plt.show() # plt.clf() namez = "saturation_simulations" + str(int(itt)) yes = (f_2, namez) f_big.append(yes) R2o, L2o = compute_metrics(look_oil.ravel()), lookf_oil.ravel() Accuracy_oil[itt, 0] = R2o Accuracy_oil[itt, 1] = L2o f_3 = plt.figure(figsize=(20, 20), dpi=200) ax1 = f_3.add_subplot(231, projection="3d") Plot_Modulus( ax1, self.nx, self.ny, self.nz, Reinvent(look_sat), self.N_injw, self.N_pr, "water Modulus", self.injectors, self.producers, ) ax2 = f_3.add_subplot(232, projection="3d") Plot_Modulus( ax2, self.nx, self.ny, self.nz, Reinvent(lookf_sat), self.N_injw, self.N_pr, "water Numerical", self.injectors, self.producers, ) ax3 = f_3.add_subplot(233, projection="3d") Plot_Modulus( ax3, self.nx, self.ny, self.nz, Reinvent(diff1_sat), self.N_injw, self.N_pr, "water diff", self.injectors, self.producers, ) ax4 = f_3.add_subplot(234, projection="3d") Plot_Modulus( ax4, self.nx, self.ny, self.nz, Reinvent(look_oil), self.N_injw, self.N_pr, "water Modulus", self.injectors, self.producers, ) ax5 = f_3.add_subplot(235, projection="3d") Plot_Modulus( ax5, self.nx, self.ny, self.nz, Reinvent(lookf_oil), self.N_injw, self.N_pr, "water Numerical", self.injectors, self.producers, ) ax6 = f_3.add_subplot(236, projection="3d") Plot_Modulus( ax6, self.nx, self.ny, self.nz, Reinvent(diff1_oil), self.N_injw, self.N_pr, "water diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = ( "3D Map - Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" ) plt.suptitle(tita, fontsize=16) namez = "Simulations3Ds" + str(int(itt)) yes2 = (f_3, namez) f_big.append(yes2) fig4, axs = plt.subplots(2, 2, figsize=(20, 10)) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) # Plot R2 accuracies for i, data in enumerate([Accuracy_water, Accuracy_oil]): axs[0, i].plot( Time_vector, data[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) axs[0, i].set_title( ["Water_saturation", "Oil_saturation"][i], fontproperties=font ) axs[0, i].set_xlabel("Time (days)", fontproperties=font) axs[0, i].set_ylabel("R2(%)", fontproperties=font) # Plot L2 accuracies for i, data in enumerate([Accuracy_water, Accuracy_oil]): axs[1, i].plot( Time_vector, data[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) axs[1, i].set_title( ["Water_saturation", "Oil_saturation"][i], fontproperties=font ) axs[1, i].set_xlabel("Time (days)", fontproperties=font) axs[1, i].set_ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2_saturations" yes21 = (fig4, namez) f_big.append(yes21) return f_big # [pde-loss] # define custom class for black oil model class Black_oil(torch.nn.Module): "Custom Black oil PDE definition for PINO" def __init__( self, UIR, pini_alt, LUB, HUB, aay, bby, SWI, SWR, UW, BW, UO, BO, MAXZ, nx, ny, nz, ): super().__init__() self.UIR = UIR self.UWR = UIR self.pini_alt = pini_alt self.LUB = LUB self.HUB = HUB self.aay = aay self.bby = bby self.SWI = SWI self.SWR = SWR self.UW = UW self.BW = BW self.UO = UO self.BO = BO self.MAXZ = MAXZ self.nx = nx self.ny = ny self.nz = nz def forward(self, input_var: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: # get inputs u = input_var["pressure"] perm = input_var["perm"] fin = input_var["Q"] finwater = input_var["Qw"] dt = input_var["Time"] pini = input_var["Pini"] poro = input_var["Phi"] sini = input_var["Swini"] sat = input_var["water_sat"] siniuse = sini[0, 0, 0, 0, 0] dtin = dt * self.MAXZ dxf = 1.0 / u.shape[3] u = u * self.pini_alt pini = pini * self.pini_alt # Pressure equation Loss fin = fin * self.UIR finwater = finwater * self.UIR cuda = 0 device = torch.device(f"cuda:{cuda}" if torch.cuda.is_available() else "cpu") # print(pressurey.shape) p_loss = torch.zeros_like(u).to(device, torch.float32) s_loss = torch.zeros_like(u).to(device, torch.float32) a = perm # absolute permeability v_min, v_max = self.LUB, self.HUB new_min, new_max = self.aay, self.bby m = (new_max - new_min) / (v_max - v_min) b = new_min - m * v_min a = m * a + b finusew = finwater dta = dtin pressure = u # water_sat = sat prior_pressure = torch.zeros( sat.shape[0], sat.shape[1], self.nz, self.nx, self.ny ).to(device, torch.float32) prior_pressure[:, 0, :, :, :] = self.pini_alt * ( torch.ones(sat.shape[0], self.nz, self.nx, self.ny).to( device, torch.float32 ) ) prior_pressure[:, 1:, :, :, :] = u[:, :-1, :, :, :] # dsp = u - prior_pressure #dp prior_sat = torch.zeros( sat.shape[0], sat.shape[1], self.nz, self.nx, self.ny ).to(device, torch.float32) prior_sat[:, 0, :, :, :] = siniuse * ( torch.ones(sat.shape[0], self.nz, self.nx, self.ny).to( device, torch.float32 ) ) prior_sat[:, 1:, :, :, :] = sat[:, :-1, :, :, :] dsw = sat - prior_sat # ds dsw = torch.clip(dsw, 0.001, None) S = torch.div( torch.sub(prior_sat, self.SWI, alpha=1), (1 - self.SWI - self.SWR) ) # Pressure equation Loss Mw = torch.divide(torch.square(S), (self.UW * self.BW)) # Water mobility Mo = torch.div( torch.square(torch.sub(torch.ones(S.shape, device=u.device), S)), (self.UO * self.BO), ) Mt = Mw + Mo a1 = torch.mul(Mt, a) # overall Effective permeability a1water = torch.mul(Mw, a) # water Effective permeability # compute first dffrential gulpa = [] gulp2a = [] for m in range(sat.shape[0]): # Batch inn_now = pressure[m, :, :, :, :] gulp = [] gulp2 = [] for i in range(self.nz): now = inn_now[:, i, :, :][:, None, :, :] dudx_fdma = dx( now, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dudy_fdma = dx( now, dx=dxf, channel=0, dim=1, order=1, padding="replication" ) gulp.append(dudx_fdma) gulp2.append(dudy_fdma) check = torch.stack(gulp, 2)[:, 0, :, :, :] check2 = torch.stack(gulp2, 2)[:, 0, :, :] gulpa.append(check) gulp2a.append(check2) dudx_fdm = torch.stack(gulpa, 0) dudy_fdm = torch.stack(gulp2a, 0) # Compute second diffrential gulpa = [] gulp2a = [] for m in range(sat.shape[0]): # Batch inn_now = pressure[m, :, :, :, :] gulp = [] gulp2 = [] for i in range(self.nz): now = inn_now[:, i, :, :][:, None, :, :] dudx_fdma = ddx( now, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dudy_fdma = ddx( now, dx=dxf, channel=0, dim=1, order=1, padding="replication" ) gulp.append(dudx_fdma) gulp2.append(dudy_fdma) check = torch.stack(gulp, 2)[:, 0, :, :, :] check2 = torch.stack(gulp2, 2)[:, 0, :, :] gulpa.append(check) gulp2a.append(check2) dduddx_fdm = torch.stack(gulpa, 0) dduddy_fdm = torch.stack(gulp2a, 0) gulp = [] gulp2 = [] for i in range(self.nz): inn_now2 = a1[:, :, i, :, :] dudx_fdma = dx( inn_now2, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dudy_fdma = dx( inn_now2, dx=dxf, channel=0, dim=1, order=1, padding="replication" ) gulp.append(dudx_fdma) gulp2.append(dudy_fdma) dcdx = torch.stack(gulp, 2) dcdy = torch.stack(gulp2, 2) # Expand dcdx # dss = dcdx dsout = torch.zeros((sat.shape[0], sat.shape[1], self.nz, self.nx, self.ny)).to( device, torch.float32 ) for k in range(dcdx.shape[0]): see = dcdx[k, :, :, :, :] gulp = [] for i in range(sat.shape[1]): gulp.append(see) checkken = torch.vstack(gulp) dsout[k, :, :, :, :] = checkken dcdx = dsout dsout = torch.zeros((sat.shape[0], sat.shape[1], self.nz, self.nx, self.ny)).to( device, torch.float32 ) for k in range(dcdx.shape[0]): see = dcdy[k, :, :, :, :] gulp = [] for i in range(sat.shape[1]): gulp.append(see) checkken = torch.vstack(gulp) dsout[k, :, :, :, :] = checkken dcdy = dsout darcy_pressure = ( fin + (dcdx * dudx_fdm) + (a1 * dduddx_fdm) + (dcdy * dudy_fdm) + (a1 * dduddy_fdm) ) # Zero outer boundary # darcy_pressure = F.pad(darcy_pressure[:, :, 2:-2, 2:-2], [2, 2, 2, 2], "constant", 0) darcy_pressure = dxf * darcy_pressure * 1e-5 p_loss = darcy_pressure # Saruration equation loss dudx = dudx_fdm dudy = dudy_fdm dduddx = dduddx_fdm dduddy = dduddy_fdm gulp = [] gulp2 = [] for i in range(self.nz): inn_now2 = a1water[:, :, i, :, :] dudx_fdma = dx( inn_now2, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dudy_fdma = dx( inn_now2, dx=dxf, channel=0, dim=1, order=1, padding="replication" ) gulp.append(dudx_fdma) gulp2.append(dudy_fdma) dadx = torch.stack(gulp, 2) dady = torch.stack(gulp2, 2) dsout = torch.zeros((sat.shape[0], sat.shape[1], self.nz, self.nx, self.ny)).to( device, torch.float32 ) for k in range(dadx.shape[0]): see = dadx[k, :, :, :, :] gulp = [] for i in range(sat.shape[1]): gulp.append(see) checkken = torch.vstack(gulp) dsout[k, :, :, :, :] = checkken dadx = dsout dsout = torch.zeros((sat.shape[0], sat.shape[1], self.nz, self.nx, self.ny)).to( device, torch.float32 ) for k in range(dady.shape[0]): see = dady[k, :, :, :, :] gulp = [] for i in range(sat.shape[1]): gulp.append(see) checkken = torch.vstack(gulp) dsout[k, :, :, :, :] = checkken dady = dsout flux = (dadx * dudx) + (a1water * dduddx) + (dady * dudy) + (a1water * dduddy) fifth = poro * (dsw / dta) toge = flux + finusew darcy_saturation = fifth - toge # Zero outer boundary # darcy_saturation = F.pad(darcy_saturation[:, :, 2:-2, 2:-2], [2, 2, 2, 2], "constant", 0) darcy_saturation = dxf * darcy_saturation * 1e-5 s_loss = darcy_saturation # output_var["darcy_saturation"] = torch.mean(s_loss,dim = 0)[None,:,:,:] output_var = {"pressured": p_loss, "saturationd": s_loss} return output_var # [pde-loss] @modulus.sym.main(config_path="conf", config_name="config_PINO") def run(cfg: ModulusConfig) -> None: print("") print("------------------------------------------------------------------") print("") print("\n") print("|-----------------------------------------------------------------|") print("| TRAIN THE MODEL USING A 3D PINO APPROACH: |") print("|-----------------------------------------------------------------|") print("") wells = np.array( [ 1, 24, 1, 1, 1, 1, 31, 1, 1, 31, 31, 1, 7, 9, 2, 14, 12, 2, 28, 19, 2, 14, 27, 2, ] ) wells = np.reshape(wells, (-1, 3), "C") oldfolder = os.getcwd() os.chdir(oldfolder) # Varaibles needed for NVRS nx = cfg.custom.NVRS.nx ny = cfg.custom.NVRS.ny nz = cfg.custom.NVRS.nz BO = cfg.custom.NVRS.BO # oil formation volume factor BW = cfg.custom.NVRS.BW # Water formation volume factor UW = cfg.custom.NVRS.UW # water viscosity in cP UO = cfg.custom.NVRS.UO # oil viscosity in cP DX = cfg.custom.NVRS.DX # size of pixel in x direction DY = cfg.custom.NVRS.DY # sixze of pixel in y direction DZ = cfg.custom.NVRS.DZ # sizze of pixel in z direction DX = cp.float32(DX) DY = cp.float32(DY) UW = cp.float32(UW) # water viscosity in cP UO = cp.float32(UO) # oil viscosity in cP SWI = cp.float32(cfg.custom.NVRS.SWI) SWR = cp.float32(cfg.custom.NVRS.SWR) pini_alt = cfg.custom.NVRS.pini_alt BW = cp.float32(BW) # Water formation volume factor BO = cp.float32(BO) # Oil formation volume factor # training LUB = cfg.custom.NVRS.LUB HUB = cfg.custom.NVRS.HUB # Permeability rescale aay, bby = cfg.custom.NVRS.aay, cfg.custom.NVRS.bby # Permeability range mD # Low_K, High_K = aay,bby # batch_size = cfg.custom.NVRS.batch_size #'size of simulated labelled data to run' timmee = ( cfg.custom.NVRS.timmee ) # float(input ('Enter the time step interval duration for simulation (days): ')) max_t = ( cfg.custom.NVRS.max_t ) # float(input ('Enter the maximum time in days for simulation(days): ')) MAXZ = cfg.custom.NVRS.MAXZ # reference maximum time in days of simulation steppi = int(max_t / timmee) factorr = cfg.custom.NVRS.factorr # from [0 1] excluding the limits for PermZ LIR = cfg.custom.NVRS.LIR # lower injection rate UIR = cfg.custom.NVRS.UIR # uppwer injection rate input_channel = ( cfg.custom.NVRS.input_channel ) # [Perm, Q,QW,Phi,dt, initial_pressure, initial_water_sat] injectors = cfg.custom.WELLSPECS.water_injector_wells producers = cfg.custom.WELLSPECS.producer_wells N_injw = len(cfg.custom.WELLSPECS.water_injector_wells) # Number of water injectors N_pr = len(cfg.custom.WELLSPECS.producer_wells) # Number of producers # tc2 = Equivalent_time(timmee,2100,timmee,max_t) tc2 = Equivalent_time(timmee, MAXZ, timmee, max_t) dt = np.diff(tc2)[0] # Time-step bb = os.path.isfile(to_absolute_path("../PACKETS/Training4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1wYyREUcpp0qLhbRItG5RMPeRMxVtntDi", to_absolute_path("../PACKETS/Training4.mat"), ) print("...Downlaod completed.......") print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Training4.mat")) X_data1 = matt["INPUT"] data_use1 = matt["OUTPUT"] else: print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Training4.mat")) X_data1 = matt["INPUT"] data_use1 = matt["OUTPUT"] bb = os.path.isfile(to_absolute_path("../PACKETS/Test4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1PX2XFG1-elzQItvkUERJqeOerTO2kevq", to_absolute_path("../PACKETS/Test4.mat"), ) print("...Downlaod completed.......") print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data2 = matt["INPUT"] data_use2 = matt["OUTPUT"] else: print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data2 = matt["INPUT"] data_use2 = matt["OUTPUT"] cPerm = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Permeability cQ = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Overall source/sink term cQw = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Sink term cPhi = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Porosity cTime = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Time index cPini = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Initial pressure cSini = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Initial water saturation cPress = np.zeros((X_data1.shape[0], steppi, nz, nx, ny)) # Pressure cSat = np.zeros((X_data1.shape[0], steppi, nz, nx, ny)) # Water saturation for kk in range(X_data1.shape[0]): perm = X_data1[kk, 0, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cPerm[kk, :, :, :, :] = permin perm = X_data1[kk, 1, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cQ[kk, :, :, :, :] = permin perm = X_data1[kk, 2, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cQw[kk, :, :, :, :] = permin perm = X_data1[kk, 3, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cPhi[kk, :, :, :, :] = permin perm = X_data1[kk, 4, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cTime[kk, :, :, :, :] = permin perm = X_data1[kk, 5, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cPini[kk, :, :, :, :] = permin perm = X_data1[kk, 6, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cSini[kk, :, :, :, :] = permin perm = data_use1[kk, :steppi, :, :, :] perm_big = np.zeros((steppi, nz, nx, ny)) for mum in range(steppi): use = perm[mum, :, :, :] mum1 = np.zeros((nz, nx, ny)) for i in range(nz): mum1[i, :, :] = use[:, :, i] perm_big[mum, :, :, :] = mum1 cPress[kk, :, :, :, :] = np.clip(perm_big, 1 / pini_alt, 2.0) perm = data_use1[kk, steppi:, :, :, :] perm_big = np.zeros((steppi, nz, nx, ny)) for mum in range(steppi): use = perm[mum, :, :, :] mum1 = np.zeros((nz, nx, ny)) for i in range(nz): mum1[i, :, :] = use[:, :, i] perm_big[mum, :, :, :] = mum1 cSat[kk, :, :, :, :] = perm_big sio.savemat( to_absolute_path("../PACKETS/simulationstrain.mat"), { "perm": cPerm, "Q": cQ, "Qw": cQw, "Phi": cPhi, "Time": cTime, "Pini": cPini, "Swini": cSini, "pressure": cPress, "water_sat": cSat, }, ) preprocess_FNO_mat(to_absolute_path("../PACKETS/simulationstrain.mat")) cPerm = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Permeability cQ = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Overall source/sink term cQw = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Sink term cPhi = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Porosity cTime = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Time index cPini = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Initial pressure cSini = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Initial water saturation cPress = np.zeros((X_data2.shape[0], steppi, nz, nx, ny)) # Pressure cSat = np.zeros((X_data2.shape[0], steppi, nz, nx, ny)) # Water saturation for kk in range(X_data2.shape[0]): perm = X_data2[kk, 0, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cPerm[kk, :, :, :, :] = permin perm = X_data2[kk, 1, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cQ[kk, :, :, :, :] = permin perm = X_data2[kk, 2, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cQw[kk, :, :, :, :] = permin perm = X_data2[kk, 3, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cPhi[kk, :, :, :, :] = permin perm = X_data2[kk, 4, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cTime[kk, :, :, :, :] = permin perm = X_data2[kk, 5, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cPini[kk, :, :, :, :] = permin perm = X_data2[kk, 6, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cSini[kk, :, :, :, :] = permin perm = data_use2[kk, :steppi, :, :, :] perm_big = np.zeros((steppi, nz, nx, ny)) for mum in range(steppi): use = perm[mum, :, :, :] mum1 = np.zeros((nz, nx, ny)) for i in range(nz): mum1[i, :, :] = use[:, :, i] perm_big[mum, :, :, :] = mum1 cPress[kk, :, :, :, :] = np.clip(perm_big, 1 / pini_alt, 2.0) perm = data_use2[kk, steppi:, :, :, :] perm_big = np.zeros((steppi, nz, nx, ny)) for mum in range(steppi): use = perm[mum, :, :, :] mum1 = np.zeros((nz, nx, ny)) for i in range(nz): mum1[i, :, :] = use[:, :, i] perm_big[mum, :, :, :] = mum1 cSat[kk, :, :, :, :] = perm_big sio.savemat( to_absolute_path("../PACKETS/simulationstest.mat"), { "perm": cPerm, "Q": cQ, "Qw": cQw, "Phi": cPhi, "Time": cTime, "Pini": cPini, "Swini": cSini, "pressure": cPress, "water_sat": cSat, }, ) preprocess_FNO_mat(to_absolute_path("../PACKETS/simulationstest.mat")) # load training/ test data input_keys = [ Key("perm", scale=(5.38467e-01, 2.29917e-01)), Key("Q", scale=(1.33266e-03, 3.08151e-02)), Key("Qw", scale=(1.39516e-03, 3.07869e-02)), Key("Phi", scale=(2.69233e-01, 1.14958e-01)), Key("Time", scale=(1.66666e-02, 1.08033e-07)), Key("Pini", scale=(1.00000e00, 0.00000e00)), Key("Swini", scale=(1.99998e-01, 2.07125e-06)), ] output_keys_pressure = [Key("pressure", scale=(1.16260e00, 5.75724e-01))] output_keys_saturation = [Key("water_sat", scale=(3.61902e-01, 1.97300e-01))] invar_train, outvar_train_pressure, outvar_train_saturation = load_FNO_dataset2( to_absolute_path("../PACKETS/simulationstrain.hdf5"), [k.name for k in input_keys], [k.name for k in output_keys_pressure], [k.name for k in output_keys_saturation], n_examples=cfg.custom.ntrain, ) invar_test, outvar_test_pressure, outvar_test_saturation = load_FNO_dataset2( to_absolute_path("../PACKETS/simulationstest.hdf5"), [k.name for k in input_keys], [k.name for k in output_keys_pressure], [k.name for k in output_keys_saturation], n_examples=cfg.custom.ntest, ) # add additional constraining values for darcy variable outvar_train_pressure["pressured"] = np.zeros_like( outvar_train_pressure["pressure"] ) outvar_train_saturation["saturationd"] = np.zeros_like( outvar_train_saturation["water_sat"] ) # outvar_train1_pressure["pressured"] = np.zeros_like(outvar_train1_pressure["pressure"]) # outvar_train1_saturation["saturationd"] = np.zeros_like(outvar_train1_saturation["water_sat"]) train_dataset_pressure = DictGridDataset(invar_train, outvar_train_pressure) train_dataset_saturation = DictGridDataset(invar_train, outvar_train_saturation) test_dataset_pressure = DictGridDataset(invar_test, outvar_test_pressure) test_dataset_saturation = DictGridDataset(invar_test, outvar_test_saturation) # [init-node] # Define FNO model for forward model (pressure) decoder1 = ConvFullyConnectedArch( [Key("z", size=32)], [Key("pressure", size=steppi)] ) fno_pressure = FNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], fno_modes=16, dimension=3, padding=13, nr_fno_layers=4, decoder_net=decoder1, ) # Define FNO model for forward model (saturation) decoder2 = ConvFullyConnectedArch( [Key("z", size=32)], [Key("water_sat", size=steppi)] ) fno_saturation = FNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], fno_modes=16, dimension=3, padding=13, nr_fno_layers=4, decoder_net=decoder2, ) inputs = [ "perm", "Q", "Qw", "Phi", "Time", "Pini", "Swini", "pressure", "water_sat", ] darcyy = Node( inputs=inputs, outputs=[ "pressured", "saturationd", ], evaluate=Black_oil( UIR, pini_alt, LUB, HUB, aay, bby, SWI, SWR, UW, BW, UO, BO, MAXZ, nx, ny, nz, ), name="Darcy node", ) nodes = ( [darcyy] + [fno_pressure.make_node("pino_forward_model_pressure", jit=cfg.jit)] + [fno_saturation.make_node("pino_forward_model_saturation", jit=cfg.jit)] ) # [constraint] # make domain domain = Domain() # add constraints to domain supervised_pressure = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset_pressure, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised_pressure, "supervised_pressure") supervised_saturation = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset_saturation, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised_saturation, "supervised_saturation") # [constraint] # add validator # test_pressure = GridValidator( # nodes, # dataset=test_dataset_pressure, # batch_size=cfg.batch_size.test, # plotter=CustomValidatorPlotterP(timmee,max_t,MAXZ,pini_alt,nx,ny,\ # wells,steppi,tc2,dt,dt,injectors,producers,N_injw,N_pr), # requires_grad=False, # ) test_pressure = GridValidator( nodes, dataset=test_dataset_pressure, batch_size=cfg.batch_size.test, requires_grad=False, ) domain.add_validator(test_pressure, "test_pressure") # test_saturation = GridValidator( # nodes, # dataset=test_dataset_saturation, # batch_size=cfg.batch_size.test, # plotter=CustomValidatorPlotterS(timmee,max_t,MAXZ,pini_alt,nx,ny,\ # wells,steppi,tc2,dt,dt,injectors,producers,N_injw,N_pr), # requires_grad=False, # ) test_saturation = GridValidator( nodes, dataset=test_dataset_saturation, batch_size=cfg.batch_size.test, requires_grad=False, ) domain.add_validator(test_saturation, "test_saturation") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/reservoir_simulation/3D/src/Forward_problem_PINO.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum import math from typing import Callable from typing import Optional from typing import Union from typing import List from typing import Tuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor class Activation(enum.Enum): ELU = enum.auto() LEAKY_RELU = enum.auto() MISH = enum.auto() POLY = enum.auto() RELU = enum.auto() GELU = enum.auto() SELU = enum.auto() PRELU = enum.auto() SIGMOID = enum.auto() SILU = enum.auto() SIN = enum.auto() SQUAREPLUS = enum.auto() SOFTPLUS = enum.auto() TANH = enum.auto() IDENTITY = enum.auto() def identity(x: Tensor) -> Tensor: return x def squareplus(x: Tensor) -> Tensor: b = 4 return 0.5 * (x + torch.sqrt(x * x + b)) def gelu(x: Tensor) -> Tensor: # Applies GELU approximation, slower than sigmoid but more accurate. See: https://github.com/hendrycks/GELUs # Standard GELU that is present in PyTorch does not JIT compile! return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 + 0.044715 * x * x))) # return 0.5 * x * (1 + torch.tanh(torch.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x, 3)))) class WeightNormLinear(nn.Module): def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None: super().__init__() self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.empty((out_features, in_features))) self.weight_g = nn.Parameter(torch.empty((out_features, 1))) if bias: self.bias = nn.Parameter(torch.empty(out_features)) else: self.register_parameter("bias", None) self.reset_parameters() def reset_parameters(self) -> None: nn.init.xavier_uniform_(self.weight) nn.init.constant_(self.weight_g, 1.0) if self.bias is not None: nn.init.constant_(self.bias, 0.0) def forward(self, input: Tensor) -> Tensor: norm = self.weight.norm(dim=1, p=2, keepdim=True) weight = self.weight_g * self.weight / norm return F.linear(input, weight, self.bias) def extra_repr(self) -> str: return "in_features={}, out_features={}, bias={}".format( self.in_features, self.out_features, self.bias is not None ) def get_activation_fn( activation: Union[Activation, Callable[[Tensor], Tensor]], module: bool = False, **kwargs # Optional parameters ) -> Callable[[Tensor], Tensor]: activation_mapping = { Activation.ELU: F.elu, Activation.LEAKY_RELU: F.leaky_relu, Activation.MISH: F.mish, Activation.RELU: F.relu, Activation.GELU: F.gelu, Activation.SELU: F.selu, Activation.SIGMOID: torch.sigmoid, Activation.SILU: F.silu, Activation.SIN: torch.sin, Activation.SQUAREPLUS: squareplus, Activation.SOFTPLUS: F.softplus, Activation.TANH: torch.tanh, Activation.IDENTITY: identity, } # Some activations have parameters in them thus must # be in a Module before forward call module_activation_mapping = { Activation.ELU: nn.ELU, Activation.LEAKY_RELU: nn.LeakyReLU, Activation.MISH: nn.Mish, Activation.RELU: nn.ReLU, Activation.GELU: nn.GLU, Activation.SELU: nn.SELU, Activation.PRELU: nn.PReLU, Activation.SIGMOID: nn.Sigmoid, Activation.SILU: nn.SiLU, Activation.TANH: nn.Tanh, } if activation in activation_mapping and not module: activation_fn = activation_mapping[activation] elif activation in module_activation_mapping: activation_fn = module_activation_mapping[activation](**kwargs) else: activation_fn = activation return activation_fn class FCLayer(nn.Module): def __init__( self, in_features: int, out_features: int, activation_fn: Union[ Activation, Callable[[Tensor], Tensor] ] = Activation.IDENTITY, weight_norm: bool = False, activation_par: Optional[nn.Parameter] = None, ) -> None: super().__init__() self.activation_fn = activation_fn self.callable_activation_fn = get_activation_fn(activation_fn) self.weight_norm = weight_norm self.activation_par = activation_par if weight_norm: self.linear = WeightNormLinear(in_features, out_features, bias=True) else: self.linear = nn.Linear(in_features, out_features, bias=True) self.reset_parameters() def exec_activation_fn(self, x: Tensor) -> Tensor: return self.callable_activation_fn(x) def reset_parameters(self) -> None: nn.init.constant_(self.linear.bias, 0) nn.init.xavier_uniform_(self.linear.weight) if self.weight_norm: nn.init.constant_(self.linear.weight_g, 1.0) def forward(self, x: Tensor) -> Tensor: x = self.linear(x) if self.activation_fn is not Activation.IDENTITY: if self.activation_par is None: x = self.exec_activation_fn(x) else: x = self.exec_activation_fn(self.activation_par * x) return x # FC like layer for image channels class ConvFCLayer(nn.Module): def __init__( self, activation_fn: Union[ Activation, Callable[[Tensor], Tensor] ] = Activation.IDENTITY, activation_par: Optional[nn.Parameter] = None, ) -> None: super().__init__() self.activation_fn = activation_fn self.callable_activation_fn = get_activation_fn(activation_fn) self.activation_par = activation_par def exec_activation_fn(self, x: Tensor) -> Tensor: return self.callable_activation_fn(x) def apply_activation(self, x: Tensor) -> Tensor: if self.activation_fn is not Activation.IDENTITY: if self.activation_par is None: x = self.exec_activation_fn(x) else: x = self.exec_activation_fn(self.activation_par * x) return x class Conv1dFCLayer(ConvFCLayer): def __init__( self, in_channels: int, out_channels: int, activation_fn: Union[ Activation, Callable[[Tensor], Tensor] ] = Activation.IDENTITY, activation_par: Optional[nn.Parameter] = None, ) -> None: super().__init__(activation_fn, activation_par) self.in_channels = in_channels self.out_channels = out_channels self.conv = nn.Conv1d(in_channels, out_channels, kernel_size=1, bias=True) self.reset_parameters() def reset_parameters(self) -> None: nn.init.constant_(self.conv.bias, 0) nn.init.xavier_uniform_(self.conv.weight) def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.apply_activation(x) return x class Conv2dFCLayer(ConvFCLayer): def __init__( self, in_channels: int, out_channels: int, activation_fn: Union[ Activation, Callable[[Tensor], Tensor] ] = Activation.IDENTITY, activation_par: Optional[nn.Parameter] = None, ) -> None: super().__init__(activation_fn, activation_par) self.in_channels = in_channels self.out_channels = out_channels self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=True) self.reset_parameters() def reset_parameters(self) -> None: nn.init.constant_(self.conv.bias, 0) self.conv.bias.requires_grad = False nn.init.xavier_uniform_(self.conv.weight) def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.apply_activation(x) return x class Conv3dFCLayer(ConvFCLayer): def __init__( self, in_channels: int, out_channels: int, activation_fn: Union[ Activation, Callable[[Tensor], Tensor] ] = Activation.IDENTITY, activation_par: Optional[nn.Parameter] = None, ) -> None: super().__init__(activation_fn, activation_par) self.in_channels = in_channels self.out_channels = out_channels self.conv = nn.Conv3d(in_channels, out_channels, kernel_size=1, bias=True) self.reset_parameters() def reset_parameters(self) -> None: nn.init.constant_(self.conv.bias, 0) nn.init.xavier_uniform_(self.conv.weight) def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.apply_activation(x) return x class SirenLayerType(enum.Enum): FIRST = enum.auto() HIDDEN = enum.auto() LAST = enum.auto() class SirenLayer(nn.Module): def __init__( self, in_features: int, out_features: int, layer_type: SirenLayerType = SirenLayerType.HIDDEN, omega_0: float = 30.0, ) -> None: super().__init__() self.in_features = in_features self.layer_type = layer_type self.omega_0 = omega_0 self.linear = nn.Linear(in_features, out_features, bias=True) self.apply_activation = layer_type in { SirenLayerType.FIRST, SirenLayerType.HIDDEN, } self.reset_parameters() def reset_parameters(self) -> None: weight_ranges = { SirenLayerType.FIRST: 1.0 / self.in_features, SirenLayerType.HIDDEN: math.sqrt(6.0 / self.in_features) / self.omega_0, SirenLayerType.LAST: math.sqrt(6.0 / self.in_features), } weight_range = weight_ranges[self.layer_type] nn.init.uniform_(self.linear.weight, -weight_range, weight_range) k_sqrt = math.sqrt(1.0 / self.in_features) nn.init.uniform_(self.linear.bias, -k_sqrt, k_sqrt) def forward(self, x: Tensor) -> Tensor: x = self.linear(x) if self.apply_activation: x = torch.sin(self.omega_0 * x) return x class FourierLayer(nn.Module): def __init__( self, in_features: int, frequencies, ) -> None: super().__init__() # To do: Need more robust way for these params if isinstance(frequencies[0], str): if "gaussian" in frequencies[0]: nr_freq = frequencies[2] np_f = ( np.random.normal(0, 1, size=(nr_freq, in_features)) * frequencies[1] ) else: nr_freq = len(frequencies[1]) np_f = [] if "full" in frequencies[0]: np_f_i = np.meshgrid( *[np.array(frequencies[1]) for _ in range(in_features)], indexing="ij", ) np_f.append( np.reshape( np.stack(np_f_i, axis=-1), (nr_freq**in_features, in_features), ) ) if "axis" in frequencies[0]: np_f_i = np.zeros((nr_freq, in_features, in_features)) for i in range(in_features): np_f_i[:, i, i] = np.reshape( np.array(frequencies[1]), (nr_freq) ) np_f.append( np.reshape(np_f_i, (nr_freq * in_features, in_features)) ) if "diagonal" in frequencies[0]: np_f_i = np.reshape(np.array(frequencies[1]), (nr_freq, 1, 1)) np_f_i = np.tile(np_f_i, (1, in_features, in_features)) np_f_i = np.reshape(np_f_i, (nr_freq * in_features, in_features)) np_f.append(np_f_i) np_f = np.concatenate(np_f, axis=-2) else: np_f = frequencies # [nr_freq, in_features] frequencies = torch.tensor(np_f, dtype=torch.get_default_dtype()) frequencies = frequencies.t().contiguous() self.register_buffer("frequencies", frequencies) def out_features(self) -> int: return int(self.frequencies.size(1) * 2) def forward(self, x: Tensor) -> Tensor: x_hat = torch.matmul(x, self.frequencies) x_sin = torch.sin(2.0 * math.pi * x_hat) x_cos = torch.cos(2.0 * math.pi * x_hat) x_i = torch.cat([x_sin, x_cos], dim=-1) return x_i class FourierFilter(nn.Module): def __init__( self, in_features: int, layer_size: int, nr_layers: int, input_scale: float, ) -> None: super().__init__() self.weight_scale = input_scale / math.sqrt(nr_layers + 1) self.frequency = nn.Parameter(torch.empty(in_features, layer_size)) self.phase = nn.Parameter(torch.empty(1, layer_size)) self.reset_parameters() def reset_parameters(self) -> None: nn.init.xavier_uniform_(self.frequency) nn.init.uniform_(self.phase, -math.pi, math.pi) def forward(self, x: Tensor) -> Tensor: frequency = self.weight_scale * self.frequency x_i = torch.sin(torch.matmul(x, 2.0 * math.pi * frequency) + self.phase) return x_i class GaborFilter(nn.Module): def __init__( self, in_features: int, layer_size: int, nr_layers: int, input_scale: float, alpha: float, beta: float, ) -> None: super().__init__() self.layer_size = layer_size self.alpha = alpha self.beta = beta self.weight_scale = input_scale / math.sqrt(nr_layers + 1) self.frequency = nn.Parameter(torch.empty(in_features, layer_size)) self.phase = nn.Parameter(torch.empty(1, layer_size)) self.mu = nn.Parameter(torch.empty(in_features, layer_size)) self.gamma = nn.Parameter(torch.empty(1, layer_size)) self.reset_parameters() def reset_parameters(self) -> None: nn.init.xavier_uniform_(self.frequency) nn.init.uniform_(self.phase, -math.pi, math.pi) nn.init.uniform_(self.mu, -1.0, 1.0) with torch.no_grad(): self.gamma.copy_( torch.from_numpy( np.random.gamma(self.alpha, 1.0 / self.beta, (1, self.layer_size)), ) ) def forward(self, x: Tensor) -> Tensor: frequency = self.weight_scale * (self.frequency * self.gamma.sqrt()) x_c = x.unsqueeze(-1) x_c = x_c - self.mu x_c = torch.square(x_c.norm(p=2, dim=1)) x_c = torch.exp(-0.5 * x_c * self.gamma) x_i = x_c * torch.sin(torch.matmul(x, 2.0 * math.pi * frequency) + self.phase) return x_i class DGMLayer(nn.Module): def __init__( self, in_features_1: int, in_features_2: int, out_features: int, activation_fn: Union[ Activation, Callable[[Tensor], Tensor] ] = Activation.IDENTITY, weight_norm: bool = False, activation_par: Optional[nn.Parameter] = None, ) -> None: super().__init__() self.activation_fn = activation_fn self.callable_activation_fn = get_activation_fn(activation_fn) self.weight_norm = weight_norm self.activation_par = activation_par if weight_norm: self.linear_1 = WeightNormLinear(in_features_1, out_features, bias=False) self.linear_2 = WeightNormLinear(in_features_2, out_features, bias=False) else: self.linear_1 = nn.Linear(in_features_1, out_features, bias=False) self.linear_2 = nn.Linear(in_features_2, out_features, bias=False) self.bias = nn.Parameter(torch.empty(out_features)) self.reset_parameters() def exec_activation_fn(self, x: Tensor) -> Tensor: return self.callable_activation_fn(x) def reset_parameters(self) -> None: nn.init.xavier_uniform_(self.linear_1.weight) nn.init.xavier_uniform_(self.linear_2.weight) nn.init.constant_(self.bias, 0) if self.weight_norm: nn.init.constant_(self.linear_1.weight_g, 1.0) nn.init.constant_(self.linear_2.weight_g, 1.0) def forward(self, input_1: Tensor, input_2: Tensor) -> Tensor: x = self.linear_1(input_1) + self.linear_2(input_2) + self.bias if self.activation_fn is not Activation.IDENTITY: if self.activation_par is None: x = self.exec_activation_fn(x) else: x = self.exec_activation_fn(self.activation_par * x) return x class SpectralConv1d(nn.Module): def __init__(self, in_channels: int, out_channels: int, modes1: int): super().__init__() """ 1D Fourier layer. It does FFT, linear transform, and Inverse FFT. """ self.in_channels = in_channels self.out_channels = out_channels self.modes1 = ( modes1 # Number of Fourier modes to multiply, at most floor(N/2) + 1 ) self.scale = 1 / (in_channels * out_channels) self.weights1 = nn.Parameter( torch.empty(in_channels, out_channels, self.modes1, 2) ) self.reset_parameters() # Complex multiplication def compl_mul1d( self, input: Tensor, weights: Tensor, ) -> Tensor: # (batch, in_channel, x ), (in_channel, out_channel, x) -> (batch, out_channel, x) cweights = torch.view_as_complex(weights) return torch.einsum("bix,iox->box", input, cweights) def forward(self, x: Tensor) -> Tensor: bsize = x.shape[0] # Compute Fourier coeffcients up to factor of e^(- something constant) x_ft = torch.fft.rfft(x) # Multiply relevant Fourier modes out_ft = torch.zeros( bsize, self.out_channels, x.size(-1) // 2 + 1, device=x.device, dtype=torch.cfloat, ) out_ft[:, :, : self.modes1] = self.compl_mul1d( x_ft[:, :, : self.modes1], self.weights1, ) # Return to physical space x = torch.fft.irfft(out_ft, n=x.size(-1)) return x def reset_parameters(self): self.weights1.data = self.scale * torch.rand(self.weights1.data.shape) class SpectralConv2d(nn.Module): def __init__(self, in_channels, out_channels, modes1, modes2): super().__init__() """ 2D Fourier layer. It does FFT, linear transform, and Inverse FFT. """ self.in_channels = in_channels self.out_channels = out_channels self.modes1 = ( modes1 # Number of Fourier modes to multiply, at most floor(N/2) + 1 ) self.modes2 = modes2 self.scale = 1 / (in_channels * out_channels) self.weights1 = nn.Parameter( torch.empty(in_channels, out_channels, self.modes1, self.modes2, 2) ) self.weights2 = nn.Parameter( torch.empty(in_channels, out_channels, self.modes1, self.modes2, 2) ) self.reset_parameters() # Complex multiplication def compl_mul2d(self, input: Tensor, weights: Tensor) -> Tensor: # (batch, in_channel, x, y), (in_channel, out_channel, x, y) -> (batch, out_channel, x, y) cweights = torch.view_as_complex(weights) return torch.einsum("bixy,ioxy->boxy", input, cweights) def forward(self, x: Tensor) -> Tensor: batchsize = x.shape[0] # Compute Fourier coeffcients up to factor of e^(- something constant) x_ft = torch.fft.rfft2(x) # Multiply relevant Fourier modes out_ft = torch.zeros( batchsize, self.out_channels, x.size(-2), x.size(-1) // 2 + 1, dtype=torch.cfloat, device=x.device, ) out_ft[:, :, : self.modes1, : self.modes2] = self.compl_mul2d( x_ft[:, :, : self.modes1, : self.modes2], self.weights1, ) out_ft[:, :, -self.modes1 :, : self.modes2] = self.compl_mul2d( x_ft[:, :, -self.modes1 :, : self.modes2], self.weights2, ) # Return to physical space x = torch.fft.irfft2(out_ft, s=(x.size(-2), x.size(-1))) return x def reset_parameters(self): self.weights1.data = self.scale * torch.rand(self.weights1.data.shape) self.weights2.data = self.scale * torch.rand(self.weights2.data.shape) class SpectralConv3d(nn.Module): def __init__(self, in_channels, out_channels, modes1, modes2, modes3): super().__init__() """ 3D Fourier layer. It does FFT, linear transform, and Inverse FFT. """ self.in_channels = in_channels self.out_channels = out_channels self.modes1 = ( modes1 # Number of Fourier modes to multiply, at most floor(N/2) + 1 ) self.modes2 = modes2 self.modes3 = modes3 self.scale = 1 / (in_channels * out_channels) self.weights1 = nn.Parameter( torch.empty( in_channels, out_channels, self.modes1, self.modes2, self.modes3, 2 ) ) self.weights2 = nn.Parameter( torch.empty( in_channels, out_channels, self.modes1, self.modes2, self.modes3, 2 ) ) self.weights3 = nn.Parameter( torch.empty( in_channels, out_channels, self.modes1, self.modes2, self.modes3, 2 ) ) self.weights4 = nn.Parameter( torch.empty( in_channels, out_channels, self.modes1, self.modes2, self.modes3, 2 ) ) self.reset_parameters() # Complex multiplication def compl_mul3d( self, input: Tensor, weights: Tensor, ) -> Tensor: # (batch, in_channel, x, y, z), (in_channel, out_channel, x, y, z) -> (batch, out_channel, x, y, z) cweights = torch.view_as_complex(weights) return torch.einsum("bixyz,ioxyz->boxyz", input, cweights) def forward(self, x: Tensor) -> Tensor: batchsize = x.shape[0] # Compute Fourier coeffcients up to factor of e^(- something constant) x_ft = torch.fft.rfftn(x, dim=[-3, -2, -1]) # Multiply relevant Fourier modes out_ft = torch.zeros( batchsize, self.out_channels, x.size(-3), x.size(-2), x.size(-1) // 2 + 1, dtype=torch.cfloat, device=x.device, ) out_ft[:, :, : self.modes1, : self.modes2, : self.modes3] = self.compl_mul3d( x_ft[:, :, : self.modes1, : self.modes2, : self.modes3], self.weights1 ) out_ft[:, :, -self.modes1 :, : self.modes2, : self.modes3] = self.compl_mul3d( x_ft[:, :, -self.modes1 :, : self.modes2, : self.modes3], self.weights2 ) out_ft[:, :, : self.modes1, -self.modes2 :, : self.modes3] = self.compl_mul3d( x_ft[:, :, : self.modes1, -self.modes2 :, : self.modes3], self.weights3 ) out_ft[:, :, -self.modes1 :, -self.modes2 :, : self.modes3] = self.compl_mul3d( x_ft[:, :, -self.modes1 :, -self.modes2 :, : self.modes3], self.weights4 ) # Return to physical space x = torch.fft.irfftn(out_ft, s=(x.size(-3), x.size(-2), x.size(-1))) return x def reset_parameters(self): self.weights1.data = self.scale * torch.rand(self.weights1.data.shape) self.weights2.data = self.scale * torch.rand(self.weights2.data.shape) self.weights3.data = self.scale * torch.rand(self.weights3.data.shape) self.weights4.data = self.scale * torch.rand(self.weights4.data.shape) def fourier_derivatives(x: Tensor, l: List[float]) -> Tuple[Tensor, Tensor]: # check that input shape maches domain length assert len(x.shape) - 2 == len(l), "input shape doesn't match domain dims" # set pi from numpy pi = float(np.pi) # get needed dims batchsize = x.size(0) n = x.shape[2:] dim = len(l) # get device device = x.device # compute fourier transform x_h = torch.fft.fftn(x, dim=list(range(2, dim + 2))) # make wavenumbers k_x = [] for i, nx in enumerate(n): k_x.append( torch.cat( ( torch.arange(start=0, end=nx // 2, step=1, device=device), torch.arange(start=-nx // 2, end=0, step=1, device=device), ), 0, ).reshape((i + 2) * [1] + [nx] + (dim - i - 1) * [1]) ) # compute laplacian in fourier space j = torch.complex( torch.tensor([0.0], device=device), torch.tensor([1.0], device=device) ) # Cuda graphs does not work here wx_h = [j * k_x_i * x_h * (2 * pi / l[i]) for i, k_x_i in enumerate(k_x)] wxx_h = [ j * k_x_i * wx_h_i * (2 * pi / l[i]) for i, (wx_h_i, k_x_i) in enumerate(zip(wx_h, k_x)) ] # inverse fourier transform out wx = torch.cat( [torch.fft.ifftn(wx_h_i, dim=list(range(2, dim + 2))).real for wx_h_i in wx_h], dim=1, ) wxx = torch.cat( [ torch.fft.ifftn(wxx_h_i, dim=list(range(2, dim + 2))).real for wxx_h_i in wxx_h ], dim=1, ) return (wx, wxx) def hessian_tanh_fc_layer( u: Tensor, ux: Tensor, uxx: Tensor, weights_1: Tensor, weights_2: Tensor, bias_1: Tensor, ) -> Tuple[Tensor]: # dim for einsum dim = len(u.shape) - 2 dim_str = "xyz"[:dim] # compute first order derivatives of input # compute first layer if dim == 1: u_hidden = F.conv1d(u, weights_1, bias_1) elif dim == 2: u_hidden = F.conv2d(u, weights_1, bias_1) elif dim == 3: u_hidden = F.conv3d(u, weights_1, bias_1) # compute derivative hidden layer diff_tanh = 1 / torch.cosh(u_hidden) ** 2 # compute diff(f(g)) diff_fg = torch.einsum( "mi" + dim_str + ",bm" + dim_str + ",km" + dim_str + "->bi" + dim_str, weights_1, diff_tanh, weights_2, ) # compute diff(f(g)) * diff(g) vx = [ torch.einsum("bi" + dim_str + ",bi" + dim_str + "->b" + dim_str, diff_fg, w) for w in ux ] vx = [torch.unsqueeze(w, dim=1) for w in vx] # compute diagonal of hessian # double derivative of hidden layer diff_diff_tanh = -2 * diff_tanh * torch.tanh(u_hidden) # compute diff(g) * hessian(f) * diff(g) vxx1 = [ torch.einsum( "bi" + dim_str + ",mi" + dim_str + ",bm" + dim_str + ",mj" + dim_str + ",bj" + dim_str + "->b" + dim_str, w, weights_1, weights_2 * diff_diff_tanh, weights_1, w, ) for w in ux ] # (b,x,y,t) # compute diff(f) * hessian(g) vxx2 = [ torch.einsum("bi" + dim_str + ",bi" + dim_str + "->b" + dim_str, diff_fg, w) for w in uxx ] vxx = [torch.unsqueeze(a + b, dim=1) for a, b in zip(vxx1, vxx2)] return (vx, vxx)
modulus-sym-main
examples/reservoir_simulation/3D/src/layers_torch.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np from math import ceil, floor def deriveSizeFromScale(img_shape, scale): output_shape = [] for k in range(2): output_shape.append(int(ceil(scale[k] * img_shape[k]))) return output_shape def deriveScaleFromSize(img_shape_in, img_shape_out): scale = [] for k in range(2): scale.append(1.0 * img_shape_out[k] / img_shape_in[k]) return scale def triangle(x): x = np.array(x).astype(np.float64) lessthanzero = np.logical_and((x >= -1), x < 0) greaterthanzero = np.logical_and((x <= 1), x >= 0) f = np.multiply((x + 1), lessthanzero) + np.multiply((1 - x), greaterthanzero) return f def cubic(x): x = np.array(x).astype(np.float64) absx = np.absolute(x) absx2 = np.multiply(absx, absx) absx3 = np.multiply(absx2, absx) f = np.multiply(1.5 * absx3 - 2.5 * absx2 + 1, absx <= 1) + np.multiply( -0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2, (1 < absx) & (absx <= 2) ) return f def contributions(in_length, out_length, scale, kernel, k_width): if scale < 1: h = lambda x: scale * kernel(scale * x) kernel_width = 1.0 * k_width / scale else: h = kernel kernel_width = k_width x = np.arange(1, out_length + 1).astype(np.float64) u = x / scale + 0.5 * (1 - 1 / scale) left = np.floor(u - kernel_width / 2) P = int(ceil(kernel_width)) + 2 ind = np.expand_dims(left, axis=1) + np.arange(P) - 1 # -1 because indexing from 0 indices = ind.astype(np.int32) weights = h(np.expand_dims(u, axis=1) - indices - 1) # -1 because indexing from 0 weights = np.divide(weights, np.expand_dims(np.sum(weights, axis=1), axis=1)) aux = np.concatenate( (np.arange(in_length), np.arange(in_length - 1, -1, step=-1)) ).astype(np.int32) indices = aux[np.mod(indices, aux.size)] ind2store = np.nonzero(np.any(weights, axis=0)) weights = weights[:, ind2store] indices = indices[:, ind2store] return weights, indices def imresizemex(inimg, weights, indices, dim): in_shape = inimg.shape w_shape = weights.shape out_shape = list(in_shape) out_shape[dim] = w_shape[0] outimg = np.zeros(out_shape) if dim == 0: for i_img in range(in_shape[1]): for i_w in range(w_shape[0]): w = weights[i_w, :] ind = indices[i_w, :] im_slice = inimg[ind, i_img].astype(np.float64) outimg[i_w, i_img] = np.sum( np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0 ) elif dim == 1: for i_img in range(in_shape[0]): for i_w in range(w_shape[0]): w = weights[i_w, :] ind = indices[i_w, :] im_slice = inimg[i_img, ind].astype(np.float64) outimg[i_img, i_w] = np.sum( np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0 ) if inimg.dtype == np.uint8: outimg = np.clip(outimg, 0, 255) return np.around(outimg).astype(np.uint8) else: return outimg def imresizevec(inimg, weights, indices, dim): wshape = weights.shape if dim == 0: weights = weights.reshape((wshape[0], wshape[2], 1, 1)) outimg = np.sum( weights * ((inimg[indices].squeeze(axis=1)).astype(np.float64)), axis=1 ) elif dim == 1: weights = weights.reshape((1, wshape[0], wshape[2], 1)) outimg = np.sum( weights * ((inimg[:, indices].squeeze(axis=2)).astype(np.float64)), axis=2 ) if inimg.dtype == np.uint8: outimg = np.clip(outimg, 0, 255) return np.around(outimg).astype(np.uint8) else: return outimg def resizeAlongDim(A, dim, weights, indices, mode="vec"): if mode == "org": out = imresizemex(A, weights, indices, dim) else: out = imresizevec(A, weights, indices, dim) return out def imresize(I, scalar_scale=None, method="bicubic", output_shape=None, mode="vec"): if method == "bicubic": kernel = cubic elif method == "bilinear": kernel = triangle else: print("Error: Unidentified method supplied") kernel_width = 4.0 # Fill scale and output_size if scalar_scale is not None: scalar_scale = float(scalar_scale) scale = [scalar_scale, scalar_scale] output_size = deriveSizeFromScale(I.shape, scale) elif output_shape is not None: scale = deriveScaleFromSize(I.shape, output_shape) output_size = list(output_shape) else: print("Error: scalar_scale OR output_shape should be defined!") return scale_np = np.array(scale) order = np.argsort(scale_np) weights = [] indices = [] for k in range(2): w, ind = contributions( I.shape[k], output_size[k], scale[k], kernel, kernel_width ) weights.append(w) indices.append(ind) B = np.copy(I) flag2D = False if B.ndim == 2: B = np.expand_dims(B, axis=2) flag2D = True for k in range(2): dim = order[k] B = resizeAlongDim(B, dim, weights[dim], indices[dim], mode) if flag2D: B = np.squeeze(B, axis=2) return B def convertDouble2Byte(I): B = np.clip(I, 0.0, 1.0) B = 255 * B return np.around(B).astype(np.uint8)
modulus-sym-main
examples/reservoir_simulation/3D/src/imresize.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Nvidia Finite volume reservoir simulator with flexible solver AMG to solve the pressure and saturation well possed inverse problem Geostatistics packages are also provided @Author: Clement Etienam """ print(".........................IMPORT SOME LIBRARIES.....................") import os import numpy as np def is_available(): """ Check NVIDIA with nvidia-smi command Returning code 0 if no error, it means NVIDIA is installed Other codes mean not installed """ code = os.system("nvidia-smi") return code Yet = is_available() if Yet == 0: print("GPU Available with CUDA") try: import pyamgx except: pyamgx = None import cupy as cp from numba import cuda print(cuda.detect()) # Print the GPU information import tensorflow as tf os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True sess = tf.compat.v1.InteractiveSession(config=config) # import pyamgx from cupyx.scipy.sparse import csr_matrix, spmatrix clementtt = 0 else: print("No GPU Available") import numpy as cp from scipy.sparse import csr_matrix clementtt = 1 import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from sklearn.cluster import MiniBatchKMeans import os.path import torch # import yaml from scipy import interpolate import multiprocessing import mpslib as mps import numpy.matlib from scipy.spatial.distance import cdist from pyDOE import lhs import matplotlib.colors from matplotlib import cm from shutil import rmtree from kneed import KneeLocator import numpy # from PIL import Image from scipy.fftpack import dct import numpy.matlib import matplotlib.lines as mlines # os.environ['KERAS_BACKEND'] = 'tensorflow' import os.path import time import random import os.path from datetime import timedelta # import dolfin as df import sys from numpy import * import scipy.optimize.lbfgsb as lbfgsb import numpy.linalg from numpy.linalg import norm from scipy.fftpack.realtransforms import idct import numpy.ma as ma from matplotlib.font_manager import FontProperties import logging import os import matplotlib as mpl from FyeldGenerator import generate_field from imresize import * import warnings warnings.filterwarnings("ignore") os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = "0" # I have just 1 GPU from cpuinfo import get_cpu_info # Prints a json string describing the cpu s = get_cpu_info() print("Cpu info") for k, v in s.items(): print(f"\t{k}: {v}") cores = multiprocessing.cpu_count() import math logger = logging.getLogger(__name__) # numpy.random.seed(99) print(" ") print(" This computer has %d cores, which will all be utilised in parallel " % cores) print(" ") print("......................DEFINE SOME FUNCTIONS.....................") def Reinvent(matt): nx, ny, nz = matt.shape[1], matt.shape[2], matt.shape[0] dess = np.zeros((nx, ny, nz)) for i in range(nz): dess[:, :, i] = matt[i, :, :] return dess def Add_marker(plt, XX, YY, locc): """ Function to add marker to given coordinates on a matplotlib plot less Copy code Parameters: plt: a matplotlib.pyplot object to add the markers to XX: a numpy array of X coordinates YY: a numpy array of Y coordinates locc: a numpy array of locations where markers need to be added Return: None """ # iterate through each location for i in range(locc.shape[0]): a = locc[i, :] xloc = int(a[0]) yloc = int(a[1]) # if the location type is 2, add an upward pointing marker if a[2] == 2: plt.scatter( XX.T[xloc - 1, yloc - 1] + 0.5, YY.T[xloc - 1, yloc - 1] + 0.5, s=100, marker="^", color="white", ) # otherwise, add a downward pointing marker else: plt.scatter( XX.T[xloc - 1, yloc - 1] + 0.5, YY.T[xloc - 1, yloc - 1] + 0.5, s=100, marker="v", color="white", ) def check_cupy_sparse_matrix(A): """ Function to check if a matrix is a Cupy sparse matrix and convert it to a CSR matrix if necessary Parameters: A: a sparse matrix Return: A: a CSR matrix """ if not isinstance(A, spmatrix): # Convert the matrix to a csr matrix if it is not already a cupy sparse matrix A = csr_matrix(A) return A def Plot_RSM_percentile(pertoutt, True_mat, Namesz): timezz = True_mat[:, 0].reshape(-1, 1) P10 = pertoutt plt.figure(figsize=(40, 40)) plt.subplot(4, 4, 1) plt.plot(timezz, True_mat[:, 1], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 1], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("BHP(Psia)", fontsize=13) # plt.ylim((0,25000)) plt.title("I1", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 2) plt.plot(timezz, True_mat[:, 2], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 2], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("BHP(Psia)", fontsize=13) # plt.ylim((0,25000)) plt.title("I2", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 3) plt.plot(timezz, True_mat[:, 3], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 3], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("BHP(Psia)", fontsize=13) # plt.ylim((0,25000)) plt.title("I3", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 4) plt.plot(timezz, True_mat[:, 4], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 4], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("BHP(Psia)", fontsize=13) # plt.ylim((0,25000)) plt.title("I4", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 5) plt.plot(timezz, True_mat[:, 5], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 5], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{oil}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P1", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 6) plt.plot(timezz, True_mat[:, 6], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 6], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{oil}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P2", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 7) plt.plot(timezz, True_mat[:, 7], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 7], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{oil}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P3", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 8) plt.plot(timezz, True_mat[:, 8], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 8], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{oil}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P4", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 9) plt.plot(timezz, True_mat[:, 9], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 9], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{water}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P1", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 10) plt.plot(timezz, True_mat[:, 10], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 10], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{water}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P2", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 11) plt.plot(timezz, True_mat[:, 11], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 11], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{water}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P3", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 12) plt.plot(timezz, True_mat[:, 12], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 12], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{water}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P4", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 13) plt.plot(timezz, True_mat[:, 13], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 13], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$WWCT{%}$", fontsize=13) # plt.ylim((0,25000)) plt.title("P1", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 14) plt.plot(timezz, True_mat[:, 14], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 14], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$WWCT{%}$", fontsize=13) # plt.ylim((0,25000)) plt.title("P2", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 15) plt.plot(timezz, True_mat[:, 15], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 15], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$WWCT{%}$", fontsize=13) # plt.ylim((0,25000)) plt.title("P3", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 16) plt.plot(timezz, True_mat[:, 16], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 16], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$WWCT{%}$", fontsize=13) # plt.ylim((0,25000)) plt.title("P4", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() # os.chdir('RESULTS') plt.savefig( Namesz ) # save as png # preventing the figures from showing # os.chdir(oldfolder) plt.clf() plt.close() def Plot_performance( PINN, PINN2, trueF, nx, ny, namet, UIR, itt, dt, MAXZ, pini_alt, steppi, wells ): look = (PINN[itt, :, :, :]) * pini_alt look_sat = PINN2[itt, :, :, :] look_oil = 1 - look_sat lookf = (trueF[itt, :, :, :]) * pini_alt # print(lookf.shape) lookf_sat = trueF[itt + steppi, :, :, :] lookf_oil = 1 - lookf_sat XX, YY = np.meshgrid(np.arange(nx), np.arange(ny)) plt.figure(figsize=(15, 15)) plt.subplot(3, 3, 1) plt.pcolormesh(XX.T, YY.T, look[0, :, :], cmap="jet") plt.title(" Layer 1 - Pressure PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf[:, :, 0], (-1,))), np.max(np.reshape(lookf[:, :, 0], (-1,))), ) cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 4) plt.pcolormesh(XX.T, YY.T, look[1, :, :], cmap="jet") plt.title(" Layer 2 - Pressure PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf[:, :, 1], (-1,))), np.max(np.reshape(lookf[:, :, 1], (-1,))), ) cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 7) plt.pcolormesh(XX.T, YY.T, look[2, :, :], cmap="jet") plt.title(" Layer 3 - Pressure PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf[:, :, 2], (-1,))), np.max(np.reshape(lookf[:, :, 2], (-1,))), ) cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 2) plt.pcolormesh(XX.T, YY.T, lookf[:, :, 0], cmap="jet") plt.title(" Layer 1 - Pressure CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 5) plt.pcolormesh(XX.T, YY.T, lookf[:, :, 1], cmap="jet") plt.title(" Layer 2 - Pressure CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 8) plt.pcolormesh(XX.T, YY.T, lookf[:, :, 2], cmap="jet") plt.title(" Layer 3 - Pressure CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 3) plt.pcolormesh(XX.T, YY.T, abs(look[0, :, :] - lookf[:, :, 0]), cmap="jet") plt.title(" Layer 1 - Pressure (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 6) plt.pcolormesh(XX.T, YY.T, abs(look[1, :, :] - lookf[:, :, 1]), cmap="jet") plt.title(" Layer 2 - Pressure (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 9) plt.pcolormesh(XX.T, YY.T, abs(look[2, :, :] - lookf[:, :, 2]), cmap="jet") plt.title(" Layer 3 - Pressure (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * dt * MAXZ)) + " days" plt.suptitle(tita, fontsize=16) name = "pressure_evolution" + str(int(itt)) + ".png" plt.savefig(name) # plt.show() plt.clf() XX, YY = np.meshgrid(np.arange(nx), np.arange(ny)) plt.figure(figsize=(15, 15)) plt.subplot(3, 3, 1) plt.pcolormesh(XX.T, YY.T, look_sat[0, :, :], cmap="jet") plt.title("Layer 1 - water_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_sat[:, :, 0], (-1,))), np.max(np.reshape(lookf_sat[:, :, 0], (-1,))), ) cbar1.ax.set_ylabel(" water_sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 4) plt.pcolormesh(XX.T, YY.T, look_sat[1, :, :], cmap="jet") plt.title("Layer 2 - water_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_sat[:, :, 1], (-1,))), np.max(np.reshape(lookf_sat[:, :, 1], (-1,))), ) cbar1.ax.set_ylabel(" water_sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 7) plt.pcolormesh(XX.T, YY.T, look_sat[2, :, :], cmap="jet") plt.title("Layer 3 - water_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_sat[:, :, 2], (-1,))), np.max(np.reshape(lookf_sat[:, :, 2], (-1,))), ) cbar1.ax.set_ylabel(" water_sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 2) plt.pcolormesh(XX.T, YY.T, lookf_sat[:, :, 0], cmap="jet") plt.title("Layer 1 - water_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat", fontsize=13) # plt.clim(np.min(np.reshape(lookf_sat,(-1,))),np.max(np.reshape(lookf_sat,(-1,)))) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 5) plt.pcolormesh(XX.T, YY.T, lookf_sat[:, :, 1], cmap="jet") plt.title("Layer 2 - water_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat", fontsize=13) # plt.clim(np.min(np.reshape(lookf_sat,(-1,))),np.max(np.reshape(lookf_sat,(-1,)))) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 8) plt.pcolormesh(XX.T, YY.T, lookf_sat[:, :, 2], cmap="jet") plt.title("Layer 3 - water_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat", fontsize=13) # plt.clim(np.min(np.reshape(lookf_sat,(-1,))),np.max(np.reshape(lookf_sat,(-1,)))) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 3) plt.pcolormesh(XX.T, YY.T, abs(look_sat[0, :, :] - lookf_sat[:, :, 0]), cmap="jet") plt.title("Layer 1 - water_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat ", fontsize=13) # plt.clim(np.min(np.reshape(lookf_sat,(-1,))),np.max(np.reshape(lookf_sat,(-1,)))) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 6) plt.pcolormesh(XX.T, YY.T, abs(look_sat[1, :, :] - lookf_sat[:, :, 1]), cmap="jet") plt.title("Layer 2 - water_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat ", fontsize=13) # plt.clim(np.min(np.reshape(lookf_sat,(-1,))),np.max(np.reshape(lookf_sat,(-1,)))) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 9) plt.pcolormesh(XX.T, YY.T, abs(look_sat[2, :, :] - lookf_sat[:, :, 2]), cmap="jet") plt.title("Layer 3 - water_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat ", fontsize=13) # plt.clim(np.min(np.reshape(lookf_sat,(-1,))),np.max(np.reshape(lookf_sat,(-1,)))) Add_marker(plt, XX, YY, wells) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * dt * MAXZ)) + " days" plt.suptitle(tita, fontsize=16) name = "water_evolution" + str(int(itt)) + ".png" plt.savefig(name) # plt.show() plt.clf() XX, YY = np.meshgrid(np.arange(nx), np.arange(ny)) plt.figure(figsize=(15, 15)) plt.subplot(3, 3, 1) plt.pcolormesh(XX.T, YY.T, look_oil[0, :, :], cmap="jet") plt.title("Layer 1- oil_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_oil[:, :, 0], (-1,))), np.max(np.reshape(lookf_oil[:, :, 0], (-1,))), ) cbar1.ax.set_ylabel(" oil_sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 4) plt.pcolormesh(XX.T, YY.T, look_oil[1, :, :], cmap="jet") plt.title("Layer 2 - oil_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_oil[:, :, 1], (-1,))), np.max(np.reshape(lookf_oil[:, :, 1], (-1,))), ) cbar1.ax.set_ylabel(" oil_sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 7) plt.pcolormesh(XX.T, YY.T, look_oil[2, :, :], cmap="jet") plt.title("Layer 3 - oil_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_oil[:, :, 2], (-1,))), np.max(np.reshape(lookf_oil[:, :, 2], (-1,))), ) cbar1.ax.set_ylabel(" oil_sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 2) plt.pcolormesh(XX.T, YY.T, lookf_oil[:, :, 0], cmap="jet") plt.title(" Layer 1 - oil_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 5) plt.pcolormesh(XX.T, YY.T, lookf_oil[:, :, 1], cmap="jet") plt.title(" Layer 2 - oil_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 8) plt.pcolormesh(XX.T, YY.T, lookf_oil[:, :, 2], cmap="jet") plt.title(" Layer 3 - oil_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 3) plt.pcolormesh(XX.T, YY.T, abs(look_oil[0, :, :] - lookf_oil[:, :, 0]), cmap="jet") plt.title(" Layer 1 - oil_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat ", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 6) plt.pcolormesh(XX.T, YY.T, abs(look_oil[1, :, :] - lookf_oil[:, :, 1]), cmap="jet") plt.title(" Layer 2 - oil_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat ", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 9) plt.pcolormesh(XX.T, YY.T, abs(look_oil[2, :, :] - lookf_oil[:, :, 2]), cmap="jet") plt.title(" Layer 3 - oil_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat ", fontsize=13) Add_marker(plt, XX, YY, wells) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * dt * MAXZ)) + " days" plt.suptitle(tita, fontsize=16) name = "oil_evolution" + str(int(itt)) + ".png" plt.savefig(name) # plt.show() plt.clf() def Plot_performance2( trueF, nx, ny, namet, UIR, itt, dt, MAXZ, pini_alt, steppi, wells ): lookf = (trueF[itt, :, :, :]) * pini_alt lookf_sat = trueF[itt + steppi, :, :, :] lookf_oil = 1 - lookf_sat XX, YY = np.meshgrid(np.arange(nx), np.arange(ny)) plt.figure(figsize=(15, 15)) plt.subplot(3, 3, 1) plt.pcolormesh(XX.T, YY.T, lookf[:, :, 0], cmap="jet") plt.title(" Layer 1 - Pressure CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 4) plt.pcolormesh(XX.T, YY.T, lookf[:, :, 1], cmap="jet") plt.title(" Layer 2 - Pressure CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 7) plt.pcolormesh(XX.T, YY.T, lookf[:, :, 2], cmap="jet") plt.title(" Layer 3 - Pressure CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 2) plt.pcolormesh(XX.T, YY.T, lookf_sat[:, :, 0], cmap="jet") plt.title("Layer 1 - water_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat", fontsize=13) # plt.clim(np.min(np.reshape(lookf_sat,(-1,))),np.max(np.reshape(lookf_sat,(-1,)))) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 5) plt.pcolormesh(XX.T, YY.T, lookf_sat[:, :, 1], cmap="jet") plt.title("Layer 2 - water_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat", fontsize=13) # plt.clim(np.min(np.reshape(lookf_sat,(-1,))),np.max(np.reshape(lookf_sat,(-1,)))) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 8) plt.pcolormesh(XX.T, YY.T, lookf_sat[:, :, 2], cmap="jet") plt.title("Layer 3 - water_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat", fontsize=13) # plt.clim(np.min(np.reshape(lookf_sat,(-1,))),np.max(np.reshape(lookf_sat,(-1,)))) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 3) plt.pcolormesh(XX.T, YY.T, lookf_oil[:, :, 0], cmap="jet") plt.title(" Layer 1 - oil_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 6) plt.pcolormesh(XX.T, YY.T, lookf_oil[:, :, 1], cmap="jet") plt.title(" Layer 2 - oil_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 9) plt.pcolormesh(XX.T, YY.T, lookf_oil[:, :, 2], cmap="jet") plt.title(" Layer 3 - oil_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * dt * MAXZ)) + " days" plt.suptitle(tita, fontsize=16) name = "evolution" + str(int(itt)) + ".png" plt.savefig(name) # plt.show() plt.clf() # Geostatistics module def intial_ensemble(Nx, Ny, Nz, N, permx): """ Geostatistics module Function to generate an initial ensemble of permeability fields using Multiple-Point Statistics (MPS) Parameters: Nx: an integer representing the number of grid cells in the x-direction Ny: an integer representing the number of grid cells in the y-direction Nz: an integer representing the number of grid cells in the z-direction N: an integer representing the number of realizations in the ensemble permx: a numpy array representing the permeability field TI Return: ensemble: a numpy array representing the ensemble of permeability fields """ # import MPSlib O = mps.mpslib() # set the MPS method to 'mps_snesim_tree' O = mps.mpslib(method="mps_snesim_tree") # set the number of realizations to N O.par["n_real"] = N # set the permeability field TI k = permx kjenn = k O.ti = kjenn # set the simulation grid size O.par["simulation_grid_size"] = (Ny, Nx, Nz) # run MPS simulation in parallel O.run_parallel() # get the ensemble of realizations ensemble = O.sim # reformat the ensemble ens = [] for kk in range(N): temp = np.reshape(ensemble[kk], (-1, 1), "F") ens.append(temp) ensemble = np.hstack(ens) # remove temporary files generated during MPS simulation from glob import glob for f3 in glob("thread*"): rmtree(f3) for f4 in glob("*mps_snesim_tree_*"): os.remove(f4) for f4 in glob("*ti_thread_*"): os.remove(f4) return ensemble def initial_ensemble_gaussian(Nx, Ny, Nz, N, minn, maxx): """ Function to generate an initial ensemble of permeability fields using Gaussian distribution Parameters: Nx: an integer representing the number of grid cells in the x-direction Ny: an integer representing the number of grid cells in the y-direction Nz: an integer representing the number of grid cells in the z-direction N: an integer representing the number of realizations in the ensemble minn: a float representing the minimum value of the permeability field maxx: a float representing the maximum value of the permeability field Return: fensemble: a numpy array representing the ensemble of permeability fields """ shape = (Nx, Ny) distrib = "gaussian" fensemble = np.zeros((Nx * Ny * Nz, N)) for k in range(N): fout = [] # generate a 3D field for j in range(Nz): field = generate_field(distrib, Pkgen(3), shape) field = imresize(field, output_shape=shape) foo = np.reshape(field, (-1, 1), "F") fout.append(foo) fout = np.vstack(fout) # scale the field to the desired range clfy = MinMaxScaler(feature_range=(minn, maxx)) (clfy.fit(fout)) fout = clfy.transform(fout) fensemble[:, k] = np.ravel(fout) return fensemble def Pkgen(n): def Pk(k): return np.power(k, -n) return Pk # Draw samples from a normal distribution def distrib(shape): a = np.random.normal(loc=0, scale=1, size=shape) b = np.random.normal(loc=0, scale=1, size=shape) return a + 1j * b def Peaceman_well( inn, ooutp, oouts, MAXZ, mazw, s1, LUB, HUB, aay, bby, DX, steppi, pini_alt, SWI, SWR, UW, BW, DZ, rwell, skin, UO, BO, pwf_producer, dt, N_inj, N_pr, CFD, nz, ): """ Calculates the pressure and flow rates for an injection and production well using the Peaceman model. Args: - inn (dictionary): dictionary containing the input parameters (including permeability and injection/production rates) - ooutp (numpy array): 4D numpy array containing pressure values for each time step and grid cell - oouts (numpy array): 4D numpy array containing saturation values for each time step and grid cell - MAXZ (float): length of the reservoir in the z-direction - mazw (float): the injection/production well location in the z-direction - s1 (float): the length of the computational domain in the z-direction - LUB (float): the upper bound of the rescaled permeability - HUB (float): the lower bound of the rescaled permeability - aay (float): the upper bound of the original permeability - bby (float): the lower bound of the original permeability - DX (float): the cell size in the x-direction - steppi (int): number of time steps - pini_alt (float): the initial pressure - SWI (float): the initial water saturation - SWR (float): the residual water saturation - UW (float): the viscosity of water - BW (float): the formation volume factor of water - DZ (float): the cell thickness in the z-direction - rwell (float): the well radius - skin (float): the skin factor - UO (float): the viscosity of oil - BO (float): the formation volume factor of oil - pwf_producer (float): the desired pressure at the producer well - dt (float): the time step - N_inj (int): the number of injection wells - N_pr (int): the number of production wells - nz (int): the number of cells in the z-direction Returns: - overr (numpy array): an array containing the time and flow rates (in BHP, qoil, qwater, and wct) for each time step """ matI = Reinvent(inn["Qw"][0, 0, :, :, :].detach().cpu().numpy()) matP = Reinvent(inn["Q"][0, 0, :, :, :].detach().cpu().numpy()) Injector_location = np.where(matI.ravel() > 0)[0] producer_location = np.where(matP.ravel() < 0)[0] PERM = Reinvent(inn["perm"][0, 0, :, :, :].detach().cpu().numpy()) PERM = rescale_linear_pytorch_numpy( np.reshape(PERM, (-1,), "F"), LUB, HUB, aay, bby ) kuse_inj = PERM[Injector_location] kuse_prod = PERM[producer_location] RE = 0.2 * DX Baa = [] Timz = [] # print(ooutp.shape) for kk in range(steppi): Ptito = ooutp[0, kk, :, :, :] Stito = oouts[0, kk, :, :, :] if CFD == 0: Ptito = Reinvent(Ptito) Stito = Reinvent(Stito) else: pass average_pressure = ( Ptito.ravel()[producer_location] ) * pini_alt # np.mean(Ptito.ravel()) * pini_alt #* (1/aug) p_inj = (Ptito.ravel()[Injector_location]) * pini_alt # *(1/aug) # p_prod = (Ptito.ravel()[producer_location] ) * pini_alt S = Stito.ravel().reshape(-1, 1) Sout = (S - SWI) / (1 - SWI - SWR) Krw = Sout**2 # Water mobility Kro = (1 - Sout) ** 2 # Oil mobility krwuse = Krw.ravel()[Injector_location] krwusep = Krw.ravel()[producer_location] krouse = Kro.ravel()[producer_location] up = UW * BW down = 2 * np.pi * kuse_inj * krwuse * DZ right = np.log(RE / rwell) + skin temp = (up / down) * right # temp[temp ==-inf] = 0 Pwf = p_inj + temp Pwf = np.abs(Pwf) BHP = np.sum(np.reshape(Pwf, (-1, N_inj), "C"), axis=0) / nz up = UO * BO down = 2 * np.pi * kuse_prod * krouse * DZ right = np.log(RE / rwell) + skin J = down / (up * right) # drawdown = p_prod - pwf_producer drawdown = average_pressure - pwf_producer qoil = np.abs(-(drawdown * J)) qoil = np.sum(np.reshape(qoil, (-1, N_pr), "C"), axis=0) / nz up = UW * BW down = 2 * np.pi * kuse_prod * krwusep * DZ right = np.log(RE / rwell) + skin J = down / (up * right) # drawdown = p_prod - pwf_producer drawdown = average_pressure - pwf_producer qwater = np.abs(-(drawdown * J)) qwater = np.sum(np.reshape(qwater, (-1, N_pr), "C"), axis=0) / nz # qwater[qwater==0] = 0 # water cut wct = (qwater / (qwater + qoil)) * np.float32(100) timz = ((kk + 1) * dt) * MAXZ # timz = timz.reshape(1,1) qs = [BHP, qoil, qwater, wct] # print(qs.shape) qs = np.asarray(qs) qs = qs.reshape(1, -1) Baa.append(qs) Timz.append(timz) Baa = np.vstack(Baa) Timz = np.vstack(Timz) overr = np.hstack([Timz, Baa]) return overr # np.vstack(B) # Points generation def test_points_gen(n_test, nder, interval=(-1.0, 1.0), distrib="random", **kwargs): return { "random": lambda n_test, nder: (interval[1] - interval[0]) * np.random.rand(n_test, nder) + interval[0], "lhs": lambda n_test, nder: (interval[1] - interval[0]) * lhs(nder, samples=n_test, **kwargs) + interval[0], }[distrib.lower()](n_test, nder) def getoptimumk(X): distortions = [] Kss = range(1, 10) for k in Kss: kmeanModel = MiniBatchKMeans(n_clusters=k).fit(X) kmeanModel.fit(X) distortions.append( sum(np.min(cdist(X, kmeanModel.cluster_centers_, "euclidean"), axis=1)) / X.shape[0] ) myarray = np.array(distortions) knn = KneeLocator( Kss, myarray, curve="convex", direction="decreasing", interp_method="interp1d" ) kuse = knn.knee # Plot the elbow plt.figure(figsize=(10, 10)) plt.plot(Kss, distortions, "bx-") plt.xlabel("cluster size") plt.ylabel("Distortion") plt.title("optimal n_clusters for machine") plt.savefig("machine_elbow.png") plt.clf() return kuse class LpLoss(object): """ loss function with rel/abs Lp loss """ def __init__(self, d=2, p=2, size_average=True, reduction=True): super(LpLoss, self).__init__() # Dimension and Lp-norm type are postive assert d > 0 and p > 0 self.d = d self.p = p self.reduction = reduction self.size_average = size_average def abs(self, x, y): num_examples = x.size()[0] # Assume uniform mesh h = 1.0 / (x.size()[1] - 1.0) all_norms = (h ** (self.d / self.p)) * torch.norm( x.view(num_examples, -1) - y.view(num_examples, -1), self.p, 1 ) if self.reduction: if self.size_average: return torch.mean(all_norms) else: return torch.sum(all_norms) return all_norms def rel(self, x, y): num_examples = x.size()[0] diff_norms = torch.norm( x.reshape(num_examples, -1) - y.reshape(num_examples, -1), self.p, 1 ) y_norms = torch.norm(y.reshape(num_examples, -1), self.p, 1) if self.reduction: if self.size_average: return torch.mean(diff_norms / y_norms) else: return torch.sum(diff_norms / y_norms) return diff_norms / y_norms def __call__(self, x, y): return self.rel(x, y) def H(y, t0=0): """ Step fn with step at t0 """ h = np.zeros_like(y) args = tuple([slice(0, y.shape[i]) for i in y.ndim]) def smoothn( y, nS0=10, axis=None, smoothOrder=2.0, sd=None, verbose=False, s0=None, z0=None, isrobust=False, W=None, s=None, MaxIter=100, TolZ=1e-3, weightstr="bisquare", ): if type(y) == ma.core.MaskedArray: # masked array # is_masked = True mask = y.mask y = np.array(y) y[mask] = 0.0 if np.any(W != None): W = np.array(W) W[mask] = 0.0 if np.any(sd != None): W = np.array(1.0 / sd**2) W[mask] = 0.0 sd = None y[mask] = np.nan if np.any(sd != None): sd_ = np.array(sd) mask = sd > 0.0 W = np.zeros_like(sd_) W[mask] = 1.0 / sd_[mask] ** 2 sd = None if np.any(W != None): W = W / W.max() sizy = y.shape # sort axis if axis == None: axis = tuple(np.arange(y.ndim)) noe = y.size # number of elements if noe < 2: z = y exitflag = 0 Wtot = 0 return z, s, exitflag, Wtot # --- # Smoothness parameter and weights # if s != None: # s = [] if np.all(W == None): W = np.ones(sizy) # if z0 == None: # z0 = y.copy() # --- # "Weighting function" criterion weightstr = weightstr.lower() # --- # Weights. Zero weights are assigned to not finite values (Inf or NaN), # (Inf/NaN values = missing data). IsFinite = np.array(np.isfinite(y)).astype(bool) nof = IsFinite.sum() # number of finite elements W = W * IsFinite if any(W < 0): raise RuntimeError("smoothn:NegativeWeights", "Weights must all be >=0") else: # W = W/np.max(W) pass # --- # Weighted or missing data? isweighted = any(W != 1) # --- # Robust smoothing? # isrobust # --- # Automatic smoothing? isauto = not s # --- # DCTN and IDCTN are required try: from scipy.fftpack.realtransforms import dct, idct except: z = y exitflag = -1 Wtot = 0 return z, s, exitflag, Wtot ## Creation of the Lambda tensor # --- # Lambda contains the eingenvalues of the difference matrix used in this # penalized least squares process. axis = tuple(np.array(axis).flatten()) d = y.ndim Lambda = np.zeros(sizy) for i in axis: # create a 1 x d array (so e.g. [1,1] for a 2D case siz0 = np.ones((1, y.ndim))[0].astype(int) siz0[i] = sizy[i] # cos(pi*(reshape(1:sizy(i),siz0)-1)/sizy(i))) # (arange(1,sizy[i]+1).reshape(siz0) - 1.)/sizy[i] Lambda = Lambda + ( np.cos(np.pi * (np.arange(1, sizy[i] + 1) - 1.0) / sizy[i]).reshape(siz0) ) # else: # Lambda = Lambda + siz0 Lambda = -2.0 * (len(axis) - Lambda) if not isauto: Gamma = 1.0 / (1 + (s * abs(Lambda)) ** smoothOrder) ## Upper and lower bound for the smoothness parameter # The average leverage (h) is by definition in [0 1]. Weak smoothing occurs # if h is close to 1, while over-smoothing appears when h is near 0. Upper # and lower bounds for h are given to avoid under- or over-smoothing. See # equation relating h to the smoothness parameter (Equation #12 in the # referenced CSDA paper). N = sum(np.array(sizy) != 1) # tensor rank of the y-array hMin = 1e-6 hMax = 0.99 # (h/n)**2 = (1 + a)/( 2 a) # a = 1/(2 (h/n)**2 -1) # where a = sqrt(1 + 16 s) # (a**2 -1)/16 try: sMinBnd = np.sqrt( ( ((1 + np.sqrt(1 + 8 * hMax ** (2.0 / N))) / 4.0 / hMax ** (2.0 / N)) ** 2 - 1 ) / 16.0 ) sMaxBnd = np.sqrt( ( ((1 + np.sqrt(1 + 8 * hMin ** (2.0 / N))) / 4.0 / hMin ** (2.0 / N)) ** 2 - 1 ) / 16.0 ) except: sMinBnd = None sMaxBnd = None ## Initialize before iterating # --- Wtot = W # --- Initial conditions for z if isweighted: # --- With weighted/missing data # An initial guess is provided to ensure faster convergence. For that # purpose, a nearest neighbor interpolation followed by a coarse # smoothing are performed. # --- if z0 != None: # an initial guess (z0) has been provided z = z0 else: z = y # InitialGuess(y,IsFinite); z[~IsFinite] = 0.0 else: z = np.zeros(sizy) # --- z0 = z y[~IsFinite] = 0 # arbitrary values for missing y-data # --- tol = 1.0 RobustIterativeProcess = True RobustStep = 1 nit = 0 # --- Error on p. Smoothness parameter s = 10^p errp = 0.1 # opt = optimset('TolX',errp); # --- Relaxation factor RF: to speedup convergence RF = 1 + 0.75 * isweighted # ?? ## Main iterative process # --- if isauto: try: xpost = np.array([(0.9 * np.log10(sMinBnd) + np.log10(sMaxBnd) * 0.1)]) except: np.array([100.0]) else: xpost = np.array([np.log10(s)]) while RobustIterativeProcess: # --- "amount" of weights (see the function GCVscore) aow = sum(Wtot) / noe # 0 < aow <= 1 # --- while tol > TolZ and nit < MaxIter: if verbose: print("tol", tol, "nit", nit) nit = nit + 1 DCTy = dctND(Wtot * (y - z) + z, f=dct) if isauto and not np.remainder(np.log2(nit), 1): # --- # The generalized cross-validation (GCV) method is used. # We seek the smoothing parameter s that minimizes the GCV # score i.e. s = Argmin(GCVscore). # Because this process is time-consuming, it is performed from # time to time (when nit is a power of 2) # --- # errp in here somewhere # xpost,f,d = lbfgsb.fmin_l_bfgs_b(gcv,xpost,fprime=None,factr=10.,\ # approx_grad=True,bounds=[(log10(sMinBnd),log10(sMaxBnd))],\ # args=(Lambda,aow,DCTy,IsFinite,Wtot,y,nof,noe)) # if we have no clue what value of s to use, better span the # possible range to get a reasonable starting point ... # only need to do it once though. nS0 is teh number of samples used if not s0: ss = np.arange(nS0) * (1.0 / (nS0 - 1.0)) * ( np.log10(sMaxBnd) - np.log10(sMinBnd) ) + np.log10(sMinBnd) g = np.zeros_like(ss) for i, p in enumerate(ss): g[i] = gcv( p, Lambda, aow, DCTy, IsFinite, Wtot, y, nof, noe, smoothOrder, ) # print 10**p,g[i] xpost = [ss[g == g.min()]] # print '===============' # print nit,tol,g.min(),xpost[0],s # print '===============' else: xpost = [s0] xpost, f, d = lbfgsb.fmin_l_bfgs_b( gcv, xpost, fprime=None, factr=1e7, approx_grad=True, bounds=[(np.log10(sMinBnd), np.log10(sMaxBnd))], args=(Lambda, aow, DCTy, IsFinite, Wtot, y, nof, noe, smoothOrder), ) s = 10 ** xpost[0] # update the value we use for the initial s estimate s0 = xpost[0] Gamma = 1.0 / (1 + (s * abs(Lambda)) ** smoothOrder) z = RF * dctND(Gamma * DCTy, f=idct) + (1 - RF) * z # if no weighted/missing data => tol=0 (no iteration) tol = isweighted * norm(z0 - z) / norm(z) z0 = z # re-initialization exitflag = nit < MaxIter if isrobust: # -- Robust Smoothing: iteratively re-weighted process # --- average leverage h = np.sqrt(1 + 16.0 * s) h = np.sqrt(1 + h) / np.sqrt(2) / h h = h**N # --- take robust weights into account Wtot = W * RobustWeights(y - z, IsFinite, h, weightstr) # --- re-initialize for another iterative weighted process isweighted = True tol = 1 nit = 0 # --- RobustStep = RobustStep + 1 RobustIterativeProcess = RobustStep < 3 # 3 robust steps are enough. else: RobustIterativeProcess = False # stop the whole process ## Warning messages # --- if isauto: if abs(np.log10(s) - np.log10(sMinBnd)) < errp: warning( "MATLAB:smoothn:SLowerBound", [ "s = %.3f " % (s) + ": the lower bound for s " + "has been reached. Put s as an input variable if required." ], ) elif abs(np.log10(s) - np.log10(sMaxBnd)) < errp: warning( "MATLAB:smoothn:SUpperBound", [ "s = %.3f " % (s) + ": the upper bound for s " + "has been reached. Put s as an input variable if required." ], ) return z, s, exitflag, Wtot def warning(s1, s2): print(s1) print(s2[0]) ## GCV score # --- # function GCVscore = gcv(p) def gcv(p, Lambda, aow, DCTy, IsFinite, Wtot, y, nof, noe, smoothOrder): # Search the smoothing parameter s that minimizes the GCV score # --- s = 10**p Gamma = 1.0 / (1 + (s * abs(Lambda)) ** smoothOrder) # --- RSS = Residual sum-of-squares if aow > 0.9: # aow = 1 means that all of the data are equally weighted # very much faster: does not require any inverse DCT RSS = norm(DCTy * (Gamma - 1.0)) ** 2 else: # take account of the weights to calculate RSS: yhat = dctND(Gamma * DCTy, f=idct) RSS = norm(np.sqrt(Wtot[IsFinite]) * (y[IsFinite] - yhat[IsFinite])) ** 2 # --- TrH = sum(Gamma) GCVscore = RSS / float(nof) / (1.0 - TrH / float(noe)) ** 2 return GCVscore ## Robust weights # function W = RobustWeights(r,I,h,wstr) def RobustWeights(r, I, h, wstr): # weights for robust smoothing. MAD = np.median(abs(r[I] - np.median(r[I]))) # median absolute deviation u = abs(r / (1.4826 * MAD) / np.sqrt(1 - h)) # studentized residuals if wstr == "cauchy": c = 2.385 W = 1.0 / (1 + (u / c) ** 2) # Cauchy weights elif wstr == "talworth": c = 2.795 W = u < c # Talworth weights else: c = 4.685 W = (1 - (u / c) ** 2) ** 2.0 * ((u / c) < 1) # bisquare weights W[np.isnan(W)] = 0 return W ## Initial Guess with weighted/missing data # function z = InitialGuess(y,I) def InitialGuess(y, I): # -- nearest neighbor interpolation (in case of missing values) if any(~I): try: from scipy.ndimage.morphology import distance_transform_edt # if license('test','image_toolbox') # [z,L] = bwdist(I); L = distance_transform_edt(1 - I) z = y z[~I] = y[L[~I]] except: # If BWDIST does not exist, NaN values are all replaced with the # same scalar. The initial guess is not optimal and a warning # message thus appears. z = y z[~I] = np.mean(y[I]) else: z = y # coarse fast smoothing z = dctND(z, f=dct) k = np.array(z.shape) m = np.ceil(k / 10) + 1 d = [] for i in np.xrange(len(k)): d.append(np.arange(m[i], k[i])) d = np.array(d).astype(int) z[d] = 0.0 z = dctND(z, f=idct) return z def dctND(data, f=dct): nd = len(data.shape) if nd == 1: return f(data, norm="ortho", type=2) elif nd == 2: return f(f(data, norm="ortho", type=2).T, norm="ortho", type=2).T elif nd == 3: return f( f(f(data, norm="ortho", type=2, axis=0), norm="ortho", type=2, axis=1), norm="ortho", type=2, axis=2, ) elif nd == 4: return f( f( f(f(data, norm="ortho", type=2, axis=0), norm="ortho", type=2, axis=1), norm="ortho", type=2, axis=2, ), norm="ortho", type=2, axis=3, ) def peaks(n): """ Mimic basic of matlab peaks fn """ xp = np.arange(n) [x, y] = np.meshgrid(xp, xp) z = np.zeros_like(x).astype(float) for i in np.xrange(n / 5): x0 = random() * n y0 = random() * n sdx = random() * n / 4.0 sdy = sdx c = random() * 2 - 1.0 f = np.exp( -(((x - x0) / sdx) ** 2) - ((y - y0) / sdy) ** 2 - (((x - x0) / sdx)) * ((y - y0) / sdy) * c ) # f /= f.sum() f *= random() z += f return z def RelPerm2(Sa, UW, UO, BW, BO, SWI, SWR, nx, ny, nz): """ Computes the relative permeability and its derivative w.r.t saturation S, based on Brooks and Corey model. Parameters ---------- Sa : array_like Saturation value. UW : float Water viscosity. UO : float Oil viscosity. BW : float Water formation volume factor. BO : float Oil formation volume factor. SWI : float Initial water saturation. SWR : float Residual water saturation. nx, ny, nz : int The number of grid cells in x, y, and z directions. Returns ------- Mw : array_like Water relative permeability. Mo : array_like Oil relative permeability. dMw : array_like Water relative permeability derivative w.r.t saturation. dMo : array_like Oil relative permeability derivative w.r.t saturation. """ S = (Sa - SWI) / (1 - SWI - SWR) Mw = (S**2) / (UW * BW) # Water mobility Mo = (1 - S) ** 2 / (UO * BO) # Oil mobility dMw = 2 * S / (UW * BW) / (1 - SWI - SWR) dMo = -2 * (1 - S) / (UO * BO) / (1 - SWI - SWR) return ( cp.reshape(Mw, (-1, 1), "F"), cp.reshape(Mo, (-1, 1), "F"), cp.reshape(dMw, (-1, 1), "F"), cp.reshape(dMo, (-1, 1), "F"), ) def calc_mu_g(p): # Avergae reservoir pressure mu_g = 3e-10 * p**2 + 1e-6 * p + 0.0133 return mu_g def calc_rs(p_bub, p): # p=average reservoir pressure if p < p_bub: rs_factor = 1 else: rs_factor = 0 rs = 178.11**2 / 5.615 * ((p / p_bub) ** 1.3 * rs_factor + (1 - rs_factor)) return rs def calc_dp(p_bub, p_atm, p): if p < p_bub: dp = p_atm - p else: dp = p_atm - p_bub return dp def calc_bg(p_bub, p_atm, p): # P is avergae reservoir pressure b_g = 1 / (cp.exp(1.7e-3 * calc_dp(p_bub, p_atm, p))) return b_g def calc_bo(p_bub, p_atm, CFO, p): # p is average reservoir pressure if p < p_bub: b_o = 1 / cp.exp(-8e-5 * (p_atm - p)) else: b_o = 1 / (cp.exp(-8e-5 * (p_atm - p_bub)) * cp.exp(-CFO * (p - p_bub))) return b_o def ProgressBar(Total, Progress, BarLength=20, ProgressIcon="#", BarIcon="-"): try: # You can't have a progress bar with zero or negative length. if BarLength < 1: BarLength = 20 # Use status variable for going to the next line after progress completion. Status = "" # Calcuting progress between 0 and 1 for percentage. Progress = float(Progress) / float(Total) # Doing this conditions at final progressing. if Progress >= 1.0: Progress = 1 Status = "\r\n" # Going to the next line # Calculating how many places should be filled Block = int(round(BarLength * Progress)) # Show this Bar = "[{}] {:.0f}% {}".format( ProgressIcon * Block + BarIcon * (BarLength - Block), round(Progress * 100, 0), Status, ) return Bar except: return "ERROR" def ShowBar(Bar): sys.stdout.write(Bar) sys.stdout.flush() def Equivalent_time(tim1, max_t1, tim2, max_t2): tk2 = tim1 / max_t1 tc2 = np.arange(0.0, 1 + tk2, tk2) tc2[tc2 >= 1] = 1 tc2 = tc2.reshape(-1, 1) # reference scaled to 1 tc2r = np.arange(0.0, max_t1 + tim1, tim1) tc2r[tc2r >= max_t1] = max_t1 tc2r = tc2r.reshape(-1, 1) # reference original func = interpolate.interp1d(tc2r.ravel(), tc2.ravel()) tc2rr = np.arange(0.0, max_t2 + tim2, tim2) tc2rr[tc2rr >= max_t2] = max_t2 tc2rr = tc2rr.reshape(-1, 1) # reference original ynew = func(tc2rr.ravel()) return ynew def simulator_to_python(a): kk = a.shape[2] anew = [] for i in range(kk): afirst = a[:, :, i] afirst = afirst.T afirst = cp.reshape(afirst, (-1, 1), "F") anew.append(afirst) return cp.vstack(anew) def python_to_simulator(a, ny, nx, nz): a = cp.reshape(a, (-1, 1), "F") a = cp.reshape(a, (ny, nx, nz), "F") anew = [] for i in range(nz): afirst = a[:, :, i] afirst = afirst.T anew.append(afirst) return cp.vstack(anew) def compute_f( pressure, kuse, krouse, krwuse, rwell1, skin, pwf_producer1, UO, BO, DX, UW, BW, DZ ): RE = 0.2 * cp.asarray(DX) up = UO * BO # facc = tf.constant(10,dtype = tf.float64) DZ = cp.asarray(DZ) down = 2.0 * cp.pi * kuse * krouse * DZ # down = piit * pii * krouse * DZ1 right = cp.log(RE / cp.asarray(rwell1)) + cp.asarray(skin) J = down / (up * right) drawdown = pressure - cp.asarray(pwf_producer1) qoil = -((drawdown) * J) aa = qoil * 1e-5 # aa[aa<=0] = 0 # print(aa) # water production up2 = UW * BW down = 2.0 * cp.pi * kuse * krwuse * DZ J = down / (up2 * right) drawdown = pressure - cp.asarray(pwf_producer1) qwater = -((drawdown) * J) aaw = qwater * 1e-5 # aaw = (qwater) # aaw[aaw<=0] = 0 # print(qwater) ouut = aa + aaw return -(ouut) # outnew def rescale_linear(array, new_min, new_max): """Rescale an arrary linearly.""" minimum, maximum = np.min(array), np.max(array) m = (new_max - new_min) / (maximum - minimum) b = new_min - m * minimum return m * array + b def rescale_linear_numpy_pytorch(array, new_min, new_max, minimum, maximum): """Rescale an arrary linearly.""" m = (new_max - new_min) / (maximum - minimum) b = new_min - m * minimum return m * array + b def rescale_linear_pytorch_numpy(array, new_min, new_max, minimum, maximum): """Rescale an arrary linearly.""" m = (maximum - minimum) / (new_max - new_min) b = minimum - m * new_min return m * array + b def compute_metrics(y_true, y_pred): y_true_mean = np.mean(y_true) TSS = np.sum((y_true - y_true_mean) ** 2) RSS = np.sum((y_true - y_pred) ** 2) R2 = 1 - (RSS / TSS) L2_accuracy = 1 - np.sqrt(RSS) / np.sqrt(TSS) return R2, L2_accuracy def Add_marker2(plt, XX, YY, injectors, producers): """ Function to add marker to given coordinates on a matplotlib plot less Copy code Parameters: plt: a matplotlib.pyplot object to add the markers to XX: a numpy array of X coordinates YY: a numpy array of Y coordinates locc: a numpy array of locations where markers need to be added Return: None """ n_inj = len(injectors) # Number of injectors n_prod = len(producers) # Number of producers for mm in range(n_inj): usethis = injectors[mm] xloc = int(usethis[0]) yloc = int(usethis[1]) discrip = str(usethis[8]) plt.scatter( XX.T[xloc - 1, yloc - 1] + 0.5, YY.T[xloc - 1, yloc - 1] + 0.5, s=200, marker="v", color="white", ) plt.text( XX.T[xloc - 1, yloc - 1] + 0.5, YY.T[xloc - 1, yloc - 1] + 0.5, discrip, color="black", weight="bold", horizontalalignment="center", verticalalignment="center", fontsize=12, ) for mm in range(n_prod): usethis = producers[mm] xloc = int(usethis[0]) yloc = int(usethis[1]) discrip = str(usethis[8]) plt.scatter( XX.T[xloc - 1, yloc - 1] + 0.5, YY.T[xloc - 1, yloc - 1] + 0.5, s=200, marker="^", color="white", ) plt.text( XX.T[xloc - 1, yloc - 1] + 0.5, YY.T[xloc - 1, yloc - 1] + 0.5, discrip, color="black", weight="bold", horizontalalignment="center", verticalalignment="center", fontsize=12, ) def Plot_2D(XX, YY, plt, nx, ny, nz, Truee, N_injw, N_pr, varii, injectors, producers): Pressz = np.reshape(Truee, (nx, ny, nz), "F") maxii = max(Pressz.ravel()) minii = min(Pressz.ravel()) avg_2d = np.mean(Pressz, axis=2) avg_2d[avg_2d == 0] = np.nan # Convert zeros to NaNs # XX, YY = np.meshgrid(np.arange(nx),np.arange(ny)) # plt.subplot(224) plt.pcolormesh(XX.T, YY.T, avg_2d, cmap="jet") cbar = plt.colorbar() if varii == "perm": cbar.set_label("Log K(mD)", fontsize=11) plt.title("Permeability Field with well locations", fontsize=11, weight="bold") elif varii == "water Modulus": cbar.set_label("water saturation", fontsize=11) plt.title("water saturation -Modulus", fontsize=11, weight="bold") elif varii == "water Numerical": cbar.set_label("water saturation", fontsize=11) plt.title("water saturation - Numerical", fontsize=11, weight="bold") elif varii == "water diff": cbar.set_label("unit", fontsize=11) plt.title( "water saturation - (Numerical(GPU) -Modulus)", fontsize=11, weight="bold" ) elif varii == "oil Modulus": cbar.set_label("Oil saturation", fontsize=11) plt.title("Oil saturation -Modulus", fontsize=11, weight="bold") elif varii == "oil Numerical": cbar.set_label("Oil saturation", fontsize=11) plt.title("Oil saturation - Numerical", fontsize=11, weight="bold") elif varii == "oil diff": cbar.set_label("unit", fontsize=11) plt.title( "oil saturation - (Numerical(GPU) -Modulus)", fontsize=11, weight="bold" ) elif varii == "pressure Modulus": cbar.set_label("pressure(psia)", fontsize=11) plt.title("Pressure -Modulus", fontsize=11, weight="bold") elif varii == "pressure Numerical": cbar.set_label("pressure(psia)", fontsize=11) plt.title("Pressure -Numerical", fontsize=11, weight="bold") elif varii == "pressure diff": cbar.set_label("unit", fontsize=11) plt.title("Pressure - (Numerical(GPU) -Modulus)", fontsize=11, weight="bold") elif varii == "porosity": cbar.set_label("porosity", fontsize=11) plt.title("Porosity Field", fontsize=11, weight="bold") cbar.mappable.set_clim(minii, maxii) plt.ylabel("Y", fontsize=11) plt.xlabel("X", fontsize=11) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) Add_marker2(plt, XX, YY, injectors, producers) def Plot_Modulus(ax, nx, ny, nz, Truee, N_injw, N_pr, varii, injectors, producers): # matplotlib.use('Agg') Pressz = np.reshape(Truee, (nx, ny, nz), "F") avg_2d = np.mean(Pressz, axis=2) avg_2d[avg_2d == 0] = np.nan # Convert zeros to NaNs maxii = max(Pressz.ravel()) minii = min(Pressz.ravel()) Pressz = Pressz / maxii masked_Pressz = Pressz colors = plt.cm.jet(masked_Pressz) # colors[np.isnan(Pressz), :3] = 1 # set color to white for NaN values # alpha = np.where(np.isnan(Pressz), 0.0, 0.8) # set alpha to 0 for NaN values norm = mpl.colors.Normalize(vmin=minii, vmax=maxii) arr_3d = Pressz # fig = plt.figure(figsize=(20, 20), dpi = 200) # ax = fig.add_subplot(221, projection='3d') # Shift the coordinates to center the points at the voxel locations x, y, z = np.indices((arr_3d.shape)) x = x + 0.5 y = y + 0.5 z = z + 0.5 # Set the colors of each voxel using a jet colormap # colors = plt.cm.jet(arr_3d) # norm = matplotlib.colors.Normalize(vmin=minii, vmax=maxii) # Plot each voxel and save the mappable object ax.voxels(arr_3d, facecolors=colors, alpha=0.5, edgecolor="none", shade=True) m = cm.ScalarMappable(cmap=plt.cm.jet, norm=norm) m.set_array([]) # Add a colorbar for the mappable object # plt.colorbar(mappable) # Set the axis labels and title ax.set_xlabel("X axis") ax.set_ylabel("Y axis") ax.set_zlabel("Z axis") # ax.set_title(titti,fontsize= 14) # Set axis limits to reflect the extent of each axis of the matrix ax.set_xlim(0, arr_3d.shape[0]) ax.set_ylim(0, arr_3d.shape[1]) ax.set_zlim(0, arr_3d.shape[2]) # ax.set_zlim(0, 60) # Remove the grid ax.grid(False) # Set lighting to bright # ax.set_facecolor('white') # Set the aspect ratio of the plot ax.set_box_aspect([nx, ny, nz]) # Set the projection type to orthogonal ax.set_proj_type("ortho") # Remove the tick labels on each axis ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) ax.set_xticks([]) ax.set_yticks([]) ax.set_zticks([]) # Remove the tick lines on each axis ax.xaxis._axinfo["tick"]["inward_factor"] = 0 ax.xaxis._axinfo["tick"]["outward_factor"] = 0.4 ax.yaxis._axinfo["tick"]["inward_factor"] = 0 ax.yaxis._axinfo["tick"]["outward_factor"] = 0.4 ax.zaxis._axinfo["tick"]["inward_factor"] = 0 ax.zaxis._axinfo["tick"]["outward_factor"] = 0.4 # Set the azimuth and elevation to make the plot brighter ax.view_init(elev=30, azim=45) n_inj = N_injw # Number of injectors n_prod = N_pr # Number of producers for mm in range(n_inj): usethis = injectors[mm] xloc = int(usethis[0]) yloc = int(usethis[1]) discrip = str(usethis[-1]) # Define the direction of the line line_dir = (0, 0, (nz * 2) + 7) # Define the coordinates of the line end x_line_end = xloc + line_dir[0] y_line_end = yloc + line_dir[1] z_line_end = 0 + line_dir[2] ax.plot([xloc, xloc], [yloc, yloc], [0, (nz * 2) + 7], "blue", linewidth=1) ax.text( x_line_end, y_line_end, z_line_end, discrip, color="blue", weight="bold", fontsize=5, ) for mm in range(n_prod): usethis = producers[mm] xloc = int(usethis[0]) yloc = int(usethis[1]) discrip = str(usethis[-1]) # Define the direction of the line line_dir = (0, 0, (nz * 2) + 5) # Define the coordinates of the line end x_line_end = xloc + line_dir[0] y_line_end = yloc + line_dir[1] z_line_end = 0 + line_dir[2] ax.plot([xloc, xloc], [yloc, yloc], [0, (nz * 2) + 5], "r", linewidth=1) ax.text( x_line_end, y_line_end, z_line_end, discrip, color="g", weight="bold", fontsize=5, ) blue_line = mlines.Line2D([], [], color="blue", linewidth=2, label="water injector") green_line = mlines.Line2D([], [], color="red", linewidth=2, label="oil Producer") # Add the legend to the plot ax.legend(handles=[blue_line, green_line], loc="lower left", fontsize=9) # Add a horizontal colorbar to the plot cbar = plt.colorbar(m, orientation="horizontal", shrink=0.5) if varii == "perm": cbar.set_label("Log K(mD)", fontsize=12) ax.set_title( "Permeability Field with well locations", fontsize=12, weight="bold" ) elif varii == "water Modulus": cbar.set_label("water saturation", fontsize=12) ax.set_title("water saturation -Modulus", fontsize=12, weight="bold") elif varii == "water Numerical": cbar.set_label("water saturation", fontsize=12) ax.set_title("water saturation - Numerical(GPU)", fontsize=12, weight="bold") elif varii == "water diff": cbar.set_label("unit", fontsize=12) ax.set_title( "water saturation - (Numerical(GPU) -Modulus))", fontsize=12, weight="bold" ) elif varii == "oil Modulus": cbar.set_label("Oil saturation", fontsize=12) ax.set_title("Oil saturation -Modulus", fontsize=12, weight="bold") elif varii == "oil Numerical": cbar.set_label("Oil saturation", fontsize=12) ax.set_title("Oil saturation - Numerical(GPU)", fontsize=12, weight="bold") elif varii == "oil diff": cbar.set_label("unit", fontsize=12) ax.set_title( "oil saturation - (Numerical(GPU) -Modulus))", fontsize=12, weight="bold" ) elif varii == "pressure Modulus": cbar.set_label("pressure", fontsize=12) ax.set_title("Pressure -Modulus", fontsize=12, weight="bold") elif varii == "pressure Numerical": cbar.set_label("pressure", fontsize=12) ax.set_title("Pressure -Numerical(GPU)", fontsize=12, weight="bold") elif varii == "pressure diff": cbar.set_label("unit", fontsize=12) ax.set_title( "Pressure - (Numerical(GPU) -Modulus))", fontsize=12, weight="bold" ) elif varii == "porosity": cbar.set_label("porosity", fontsize=12) ax.set_title("Porosity Field", fontsize=12, weight="bold") cbar.mappable.set_clim(minii, maxii) def Plot_Models(True_mat): colors = ["r", "b", "k"] linestyles = ["-", "--", "--"] markers = ["o", "v", "*"] timezz = True_mat[0][:, 0].reshape(-1, 1) plt.figure(figsize=(40, 40)) plt.subplot(4, 4, 1) plt.plot( timezz, True_mat[0][:, 1], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 1], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 1], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("BHP(Psia)", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("I1", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 2) plt.plot( timezz, True_mat[0][:, 2], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 2], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 2], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("BHP(Psia)", fontsize=13) # plt.ylim((0,25000)) plt.title("I2", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 3) plt.plot( timezz, True_mat[0][:, 3], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 3], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 3], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("BHP(Psia)", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("I3", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 4) plt.plot( timezz, True_mat[0][:, 4], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 4], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 4], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("BHP(Psia)", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("I4", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 5) plt.plot( timezz, True_mat[0][:, 5], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 5], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 5], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{oil}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P1", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 6) plt.plot( timezz, True_mat[0][:, 6], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 6], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 6], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{oil}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P2", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 7) plt.plot( timezz, True_mat[0][:, 7], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 7], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 7], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{oil}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P3", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 8) plt.plot( timezz, True_mat[0][:, 8], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 8], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 8], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{oil}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P4", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 9) plt.plot( timezz, True_mat[0][:, 9], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 9], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 9], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{water}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P1", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 10) plt.plot( timezz, True_mat[0][:, 10], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 10], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 10], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{water}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P2", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 11) plt.plot( timezz, True_mat[0][:, 11], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 11], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 11], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{water}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P3", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 12) plt.plot( timezz, True_mat[0][:, 12], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 12], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 12], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{water}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P4", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 13) plt.plot( timezz, True_mat[0][:, 13], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 13], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 13], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$WWCT{%}$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P1", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 14) plt.plot( timezz, True_mat[0][:, 14], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 14], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 14], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$WWCT{%}$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P2", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 15) plt.plot( timezz, True_mat[0][:, 15], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 15], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 15], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$WWCT{%}$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P1", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 16) plt.plot( timezz, True_mat[0][:, 16], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 16], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 16], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$WWCT{%}$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P1", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) # plt.legend() legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") # os.chdir('RESULTS') plt.savefig( "Compare_models.png" ) # save as png # preventing the figures from showing # os.chdir(oldfolder) plt.clf() plt.close() def Plot_bar(True_mat): a1 = rmsee(True_mat[1][:, 1:].ravel(), True_mat[0][:, 1:].ravel()) a2 = rmsee(True_mat[2][:, 1:].ravel(), True_mat[0][:, 1:].ravel()) models = ["FNO", "PINO"] rmse_values = [a1, a2] colors = ["red", "blue"] # Create a bar chart plt.figure(figsize=(10, 10)) plt.bar(models, rmse_values, color=colors) # Add a title and labels plt.title("RMSE accuracy", weight="bold", fontsize=16) # Add x and y labels with bold and bigger font plt.xlabel("Surrogate Models", weight="bold", fontsize=14) plt.ylabel("RMSE", weight="bold", fontsize=14) plt.savefig( "Bar_chat.png" ) # save as png # preventing the figures from showing # os.chdir(oldfolder) plt.clf() plt.close() def rmsee(predictions, targets): noww = predictions.reshape(-1, 1) measurment = targets.reshape(-1, 1) rmse_val = (np.sum(((noww - measurment) ** 2))) ** (0.5) / (measurment.shape[0]) # the square root of the mean of the squared differences return rmse_val
modulus-sym-main
examples/reservoir_simulation/3D/src/NVRS.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn.functional as F def dx(inpt, dx, channel, dim, order=1, padding="zeros"): "Compute first order numerical derivatives of input tensor" var = inpt[:, channel : channel + 1, :, :] # get filter if order == 1: ddx1D = torch.Tensor( [ -0.5, 0.0, 0.5, ] ).to(inpt.device) elif order == 3: ddx1D = torch.Tensor( [ -1.0 / 60.0, 3.0 / 20.0, -3.0 / 4.0, 0.0, 3.0 / 4.0, -3.0 / 20.0, 1.0 / 60.0, ] ).to(inpt.device) ddx3D = torch.reshape(ddx1D, shape=[1, 1] + dim * [1] + [-1] + (1 - dim) * [1]) # apply convolution if padding == "zeros": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "constant", 0) elif padding == "replication": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "replicate") output = F.conv2d(var, ddx3D, padding="valid") output = (1.0 / dx) * output if dim == 0: output = output[:, :, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2] elif dim == 1: output = output[:, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2, :] return output def ddx(inpt, dx, channel, dim, order=1, padding="zeros"): "Compute second order numerical derivatives of input tensor" var = inpt[:, channel : channel + 1, :, :] # get filter if order == 1: ddx1D = torch.Tensor( [ 1.0, -2.0, 1.0, ] ).to(inpt.device) elif order == 3: ddx1D = torch.Tensor( [ 1.0 / 90.0, -3.0 / 20.0, 3.0 / 2.0, -49.0 / 18.0, 3.0 / 2.0, -3.0 / 20.0, 1.0 / 90.0, ] ).to(inpt.device) ddx3D = torch.reshape(ddx1D, shape=[1, 1] + dim * [1] + [-1] + (1 - dim) * [1]) # apply convolution if padding == "zeros": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "constant", 0) elif padding == "replication": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "replicate") output = F.conv2d(var, ddx3D, padding="valid") output = (1.0 / dx**2) * output if dim == 0: output = output[:, :, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2] elif dim == 1: output = output[:, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2, :] return output
modulus-sym-main
examples/reservoir_simulation/3D/src/ops.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from modulus.sym.hydra import to_absolute_path from modulus.sym.key import Key from NVRS import * from modulus.sym.models.fno import * import shutil import pandas as pd import scipy.io as sio import torch import yaml from multiprocessing import Lock, Value from PIL import Image import requests import concurrent.futures def read_yaml(fname): """Read Yaml file into a dict of parameters""" print(f"Read simulation plan from {fname}...") with open(fname, "r") as stream: try: data = yaml.safe_load(stream) # print(data) except yaml.YAMLError as exc: print(exc) return data def download_file_from_google_drive(id, destination): URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params={"id": id, "confirm": 1}, stream=True) token = get_confirm_token(response) if token: params = {"id": id, "confirm": token} response = session.get(URL, params=params, stream=True) save_response_content(response, destination) def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith("download_warning"): return value return None def save_response_content(response, destination): CHUNK_SIZE = 32768 with open(destination, "wb") as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) def process_chunk(chunk): chunk_results = [] for kk in chunk: result = process_step(kk) chunk_results.append(result) with lock: Runs = len(chunks) processed_chunks.value += 1 completion_percentage = (processed_chunks.value / len(chunks)) * 100 remaining_percentage = 100 - completion_percentage # print(f"Processed chunk {processed_chunks.value}. {completion_percentage:.2f}% completed. {remaining_percentage:.2f}% remaining.") progressBar = "\rPlotting Progress: " + ProgressBar( Runs, processed_chunks.value, Runs ) ShowBar(progressBar) # time.sleep(1) return chunk_results def sort_key(s): """Extract the number from the filename for sorting.""" return int(re.search(r"\d+", s).group()) def process_step(kk): f_3 = plt.figure(figsize=(20, 20), dpi=200) current_time = int((kk + 1) * dt * MAXZ) f_3 = plt.figure(figsize=(20, 20), dpi=200) look = Reinvent(ouut_p[0, kk, :, :, :]) look = look * pini_alt lookf = Reinvent(cPress[0, kk, :, :, :]) lookf = lookf * pini_alt diff1 = abs(look - lookf) ax1 = f_3.add_subplot(331, projection="3d") Plot_Modulus( ax1, nx, ny, nz, look, N_injw, N_pr, "pressure Modulus", injectors, producers ) ax2 = f_3.add_subplot(332, projection="3d") Plot_Modulus( ax2, nx, ny, nz, lookf, N_injw, N_pr, "pressure Numerical", injectors, producers ) ax3 = f_3.add_subplot(333, projection="3d") Plot_Modulus( ax3, nx, ny, nz, diff1, N_injw, N_pr, "pressure diff", injectors, producers ) R2p, L2p = compute_metrics(look.ravel(), lookf.ravel()) look = Reinvent(ouut_s[0, kk, :, :, :]) lookf = Reinvent(cSat[0, kk, :, :, :]) diff1 = abs(look - lookf) ax1 = f_3.add_subplot(334, projection="3d") Plot_Modulus( ax1, nx, ny, nz, look, N_injw, N_pr, "water Modulus", injectors, producers ) ax2 = f_3.add_subplot(335, projection="3d") Plot_Modulus( ax2, nx, ny, nz, lookf, N_injw, N_pr, "water Numerical", injectors, producers ) ax3 = f_3.add_subplot(336, projection="3d") Plot_Modulus( ax3, nx, ny, nz, diff1, N_injw, N_pr, "water diff", injectors, producers ) R2w, L2w = compute_metrics(look.ravel(), lookf.ravel()) look = 1 - (Reinvent(ouut_s[0, kk, :, :, :])) lookf = 1 - (Reinvent(cSat[0, kk, :, :, :])) diff1 = abs(look - lookf) ax1 = f_3.add_subplot(337, projection="3d") Plot_Modulus( ax1, nx, ny, nz, look, N_injw, N_pr, "oil Modulus", injectors, producers ) ax2 = f_3.add_subplot(338, projection="3d") Plot_Modulus( ax2, nx, ny, nz, lookf, N_injw, N_pr, "oil Numerical", injectors, producers ) ax3 = f_3.add_subplot(339, projection="3d") Plot_Modulus(ax3, nx, ny, nz, diff1, N_injw, N_pr, "oil diff", injectors, producers) R2o, L2o = compute_metrics(look.ravel(), lookf.ravel()) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(current_time) + " days" plt.suptitle(tita, fontsize=16) plt.savefig("Dynamic" + str(int(kk))) plt.clf() plt.close() return current_time, (R2p, L2p), (R2w, L2w), (R2o, L2o) oldfolder = os.getcwd() os.chdir(oldfolder) surrogate = None while True: surrogate = int( input( "Select surrogate method type:\n1=FNO\n\ 2=PINO\n" ) ) if (surrogate > 2) or (surrogate < 1): # raise SyntaxError('please select value between 1-2') print("") print("please try again and select value between 1-2") else: break if not os.path.exists("../COMPARE_RESULTS"): os.makedirs("../COMPARE_RESULTS") if surrogate == 1: folderr = "../COMPARE_RESULTS/FNO" if not os.path.exists("../COMPARE_RESULTS/FNO"): os.makedirs("../COMPARE_RESULTS/FNO") else: shutil.rmtree("../COMPARE_RESULTS/FNO") os.makedirs("../COMPARE_RESULTS/FNO") elif surrogate == 2: folderr = "../COMPARE_RESULTS/PINO" if not os.path.exists("../COMPARE_RESULTS/PINO"): os.makedirs("../COMPARE_RESULTS/PINO") else: shutil.rmtree("../COMPARE_RESULTS/PINO") os.makedirs("../COMPARE_RESULTS/PINO") if not os.path.exists("../PACKETS"): os.makedirs("../PACKETS") else: pass # Varaibles needed for NVRS plan = read_yaml("conf/config_PINO.yaml") injectors = plan["custom"]["WELLSPECS"]["water_injector_wells"] producers = plan["custom"]["WELLSPECS"]["producer_wells"] N_injw = len( plan["custom"]["WELLSPECS"]["water_injector_wells"] ) # Number of water injectors N_pr = len(plan["custom"]["WELLSPECS"]["producer_wells"]) # Number of producers # Varaibles needed for NVRS nx = plan["custom"]["NVRS"]["nx"] ny = plan["custom"]["NVRS"]["ny"] nz = plan["custom"]["NVRS"]["nz"] BO = plan["custom"]["NVRS"]["BO"] # oil formation volume factor BW = plan["custom"]["NVRS"]["BW"] # Water formation volume factor UW = plan["custom"]["NVRS"]["UW"] # water viscosity in cP UO = plan["custom"]["NVRS"]["UO"] # oil viscosity in cP DX = plan["custom"]["NVRS"]["DX"] # size of pixel in x direction DY = plan["custom"]["NVRS"]["DY"] # sixze of pixel in y direction DZ = plan["custom"]["NVRS"]["DZ"] # sizze of pixel in z direction DX = cp.float32(DX) DY = cp.float32(DY) UW = cp.float32(UW) # water viscosity in cP UO = cp.float32(UO) # oil viscosity in cP SWI = cp.float32(plan["custom"]["NVRS"]["SWI"]) SWR = cp.float32(plan["custom"]["NVRS"]["SWR"]) CFO = cp.float32(plan["custom"]["NVRS"]["CFO"]) # oil compressibility in 1/psi IWSw = plan["custom"]["NVRS"]["IWSw"] # initial water saturation pini_alt = plan["custom"]["NVRS"]["pini_alt"] # print(pini_alt) P1 = cp.float32(pini_alt) # Bubble point pressure psia PB = P1 mpor, hpor = ( plan["custom"]["NVRS"]["mpor"], plan["custom"]["NVRS"]["hpor"], ) # minimum and maximum porosity BW = cp.float32(BW) # Water formation volume factor BO = cp.float32(BO) # Oil formation volume factor PATM = cp.float32(plan["custom"]["NVRS"]["PATM"]) # Atmospheric pressure in psi # training LUB, HUB = ( plan["custom"]["NVRS"]["LUB"], plan["custom"]["NVRS"]["HUB"], ) # Permeability rescale aay, bby = ( plan["custom"]["NVRS"]["aay"], plan["custom"]["NVRS"]["bby"], ) # Permeability range mD Low_K, High_K = aay, bby batch_size = plan["custom"]["NVRS"][ "batch_size" ] #'size of simulated labelled dtaa to run' timmee = plan["custom"]["NVRS"][ "timmee" ] # float(input ('Enter the time step interval duration for simulation (days): ')) max_t = plan["custom"]["NVRS"][ "max_t" ] # float(input ('Enter the maximum time in days for simulation(days): ')) MAXZ = plan["custom"]["NVRS"]["MAXZ"] # reference maximum time in days of simulation steppi = int(max_t / timmee) choice = 1 # 1= Non-Gaussian prior, 2 = Gaussian prior factorr = 0.1 # from [0 1] excluding the limits for PermZ LIR = plan["custom"]["NVRS"]["LIR"] # lower injection rate UIR = plan["custom"]["NVRS"]["UIR"] # uppwer injection rate RE = 0.2 * DX rwell = 200 # well radius skin = 0 # well deformation pwf_producer = 100 cuda = 0 input_channel = 7 # [Perm, Q,QW,Phi,dt, initial_pressure, initial_water_sat] device = torch.device(f"cuda:{cuda}" if torch.cuda.is_available() else "cpu") N_inj = 4 N_pr = 4 # dt = timmee/max_t # tc2 = Equivalent_time(timmee,2100,timmee,max_t) tc2 = Equivalent_time(timmee, MAXZ, timmee, max_t) dt = np.diff(tc2)[0] # Time-step # 4 injector and 4 producer wells wells = np.array( [1, 24, 1, 1, 1, 1, 31, 1, 1, 31, 31, 1, 7, 9, 2, 14, 12, 2, 28, 19, 2, 14, 27, 2] ) wells = np.reshape(wells, (-1, 3), "C") bb = os.path.isfile(to_absolute_path("../PACKETS/Test4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1PX2XFG1-elzQItvkUERJqeOerTO2kevq", to_absolute_path("../PACKETS/Test4.mat") ) print("...Downlaod completed.......") print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data11 = matt["INPUT"] data_use11 = matt["OUTPUT"] else: print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data11 = matt["INPUT"] data_use11 = matt["OUTPUT"] index = np.random.choice(X_data11.shape[0], 1, replace=False) index = 253 X_data1 = X_data11[index, :, :, :][None, :, :, :, :] data_use1 = data_use11[index, :, :, :][None, :, :, :, :] X_data2 = X_data1 Ne = 1 ini_ensemble1 = np.zeros((Ne, 1, nz, nx, ny), dtype=np.float32) ini_ensemble2 = np.zeros((Ne, 1, nz, nx, ny), dtype=np.float32) ini_ensemble3 = np.zeros((Ne, 1, nz, nx, ny), dtype=np.float32) ini_ensemble4 = np.zeros((Ne, 1, nz, nx, ny), dtype=np.float32) ini_ensemble5 = np.zeros((Ne, 1, nz, nx, ny), dtype=np.float32) ini_ensemble6 = np.zeros((Ne, 1, nz, nx, ny), dtype=np.float32) ini_ensemble7 = np.zeros((Ne, 1, nz, nx, ny), dtype=np.float32) cPress = np.zeros((Ne, steppi, nz, nx, ny)) # Pressure cSat = np.zeros((Ne, steppi, nz, nx, ny)) # Water saturation for kk in range(X_data2.shape[0]): perm = X_data2[kk, 0, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] ini_ensemble1[kk, :, :, :, :] = permin perm = X_data2[kk, 1, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] ini_ensemble2[kk, :, :, :, :] = permin perm = X_data2[kk, 2, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] ini_ensemble3[kk, :, :, :, :] = permin perm = X_data2[kk, 3, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] ini_ensemble4[kk, :, :, :, :] = permin perm = X_data2[kk, 4, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] ini_ensemble5[kk, :, :, :, :] = permin perm = X_data2[kk, 5, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] ini_ensemble6[kk, :, :, :, :] = permin perm = X_data2[kk, 6, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] ini_ensemble7[kk, :, :, :, :] = permin perm = data_use1[kk, :steppi, :, :, :] perm_big = np.zeros((steppi, nz, nx, ny)) for mum in range(steppi): use = perm[mum, :, :, :] mum1 = np.zeros((nz, nx, ny)) for i in range(nz): mum1[i, :, :] = use[:, :, i] perm_big[mum, :, :, :] = mum1 cPress[kk, :, :, :, :] = perm_big perm = data_use1[kk, steppi:, :, :, :] perm_big = np.zeros((steppi, nz, nx, ny)) for mum in range(steppi): use = perm[mum, :, :, :] mum1 = np.zeros((nz, nx, ny)) for i in range(nz): mum1[i, :, :] = use[:, :, i] perm_big[mum, :, :, :] = mum1 cSat[kk, :, :, :, :] = perm_big print("") print("Finished constructing Pytorch inputs") print("*******************Load the trained Forward models*******************") decoder1 = ConvFullyConnectedArch([Key("z", size=32)], [Key("pressure", size=steppi)]) modelP = FNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], fno_modes=16, dimension=3, padding=13, nr_fno_layers=4, decoder_net=decoder1, ) decoder2 = ConvFullyConnectedArch([Key("z", size=32)], [Key("water_sat", size=steppi)]) modelS = FNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], fno_modes=16, dimension=3, padding=13, nr_fno_layers=4, decoder_net=decoder2, ) if surrogate == 1: print("-----------------Surrogate Model learned with FNO----------------") if not os.path.exists(("outputs/Forward_problem_FNO/ResSim/")): os.makedirs(("outputs/Forward_problem_FNO/ResSim/")) else: pass bb = os.path.isfile( "outputs/Forward_problem_FNO/ResSim/fno_forward_model_pressure.0.pth" ) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "11cr3-7zvAZA5zI1SpfevZOQhsYuzAJjy", "outputs/Forward_problem_FNO/ResSim/fno_forward_model_pressure.0.pth", ) print("...Downlaod completed.......") os.chdir("outputs/Forward_problem_FNO/ResSim") print(" Surrogate model learned with FNO") modelP.load_state_dict(torch.load("fno_forward_model_pressure.0.pth")) modelP = modelP.to(device) modelP.eval() os.chdir(oldfolder) else: os.chdir("outputs/Forward_problem_FNO/ResSim") print(" Surrogate model learned with FNO") modelP.load_state_dict(torch.load("fno_forward_model_pressure.0.pth")) modelP = modelP.to(device) modelP.eval() os.chdir(oldfolder) bba = os.path.isfile( "outputs/Forward_problem_FNO/ResSim/fno_forward_model_saturation.0.pth" ) if bba == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1EnYGi6MiJum-i-QzbRrpmvsqdR0KSa9a", "outputs/Forward_problem_FNO/ResSim/fno_forward_model_saturation.0.pth", ) print("...Downlaod completed.......") os.chdir("outputs/Forward_problem_FNO/ResSim") print(" Surrogate model learned with FNO") modelS.load_state_dict(torch.load("fno_forward_model_saturation.0.pth")) modelS = modelS.to(device) modelS.eval() os.chdir(oldfolder) else: os.chdir("outputs/Forward_problem_FNO/ResSim") print(" Surrogate model learned with FNO") modelS.load_state_dict(torch.load("fno_forward_model_saturation.0.pth")) modelS = modelS.to(device) modelS.eval() os.chdir(oldfolder) else: print("-----------------Surrogate Model learned with PINO----------------") if not os.path.exists(("outputs/Forward_problem_PINO/ResSim/")): os.makedirs(("outputs/Forward_problem_PINO/ResSim/")) else: pass bb = os.path.isfile( "outputs/Forward_problem_PINO/ResSim/pino_forward_model_pressure.0.pth" ) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1unX_CW5_9aTV97LqkRWkYElwsjGkLYdl", "outputs/Forward_problem_PINO/ResSim/pino_forward_model_pressure.0.pth", ) print("...Downlaod completed.......") os.chdir("outputs/Forward_problem_PINO/ResSim") print(" Surrogate model learned with PINO") modelP.load_state_dict(torch.load("pino_forward_model_pressure.0.pth")) modelP = modelP.to(device) modelP.eval() os.chdir(oldfolder) else: os.chdir("outputs/Forward_problem_PINO/ResSim") print(" Surrogate model learned with PINO") modelP.load_state_dict(torch.load("pino_forward_model_pressure.0.pth")) modelP = modelP.to(device) modelP.eval() os.chdir(oldfolder) bba = os.path.isfile( "outputs/Forward_problem_PINO/ResSim/pino_forward_model_saturation.0.pth" ) if bba == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1d9Vk9UiVU0sUV2KSh_H4gyH5OVUl2rqS", "outputs/Forward_problem_PINO/ResSim/pino_forward_model_saturation.0.pth", ) print("...Downlaod completed.......") os.chdir("outputs/Forward_problem_PINO/ResSim") print(" Surrogate model learned with PINO") modelS.load_state_dict(torch.load("pino_forward_model_saturation.0.pth")) modelS = modelS.to(device) modelS.eval() os.chdir(oldfolder) else: os.chdir("outputs/Forward_problem_PINO/ResSim") print(" Surrogate model learned with PINO") modelS.load_state_dict(torch.load("pino_forward_model_saturation.0.pth")) modelS = modelS.to(device) modelS.eval() os.chdir(oldfolder) print("********************Model Loaded*************************************") inn = { "perm": torch.from_numpy(ini_ensemble1).to(device, torch.float32), "Q": torch.from_numpy(ini_ensemble2).to(device, dtype=torch.float32), "Qw": torch.from_numpy(ini_ensemble3).to(device, dtype=torch.float32), "Phi": torch.from_numpy(ini_ensemble4).to(device, dtype=torch.float32), "Time": torch.from_numpy(ini_ensemble5).to(device, dtype=torch.float32), "Pini": torch.from_numpy(ini_ensemble6).to(device, dtype=torch.float32), "Swini": torch.from_numpy(ini_ensemble7).to(device, dtype=torch.float32), } print("") print("predicting with surrogate model") start_time_plots1 = time.time() ouut_p = modelP(inn)["pressure"].detach().cpu().numpy() ouut_s = modelS(inn)["water_sat"].detach().cpu().numpy() elapsed_time_secs = time.time() - start_time_plots1 msg = "Surrogate Reservoir simulation took: %s secs (Wall clock time)" % timedelta( seconds=round(elapsed_time_secs) ) print(msg) print("") ouut_oil = np.ones_like(ouut_s) - ouut_s print("") print("Plotting outputs") os.chdir(folderr) Runs = steppi ty = np.arange(1, Runs + 1) Time_vector = np.zeros((steppi)) Accuracy_presure = np.zeros((steppi, 2)) Accuracy_oil = np.zeros((steppi, 2)) Accuracy_water = np.zeros((steppi, 2)) lock = Lock() processed_chunks = Value("i", 0) NUM_CORES = 12 # specify the number of cores you want to use # Split the range of steps into chunks chunks = [ list(range(i, min(i + steppi // NUM_CORES, steppi))) for i in range(0, steppi, steppi // NUM_CORES) ] with concurrent.futures.ProcessPoolExecutor(max_workers=NUM_CORES) as executor: chunked_results = list(executor.map(process_chunk, chunks)) # Flatten the chunked results to get the ordered results results = [result for sublist in chunked_results for result in sublist] for kk, (current_time, acc_pressure, acc_oil, acc_water) in enumerate(results): Time_vector[kk] = current_time Accuracy_presure[kk] = acc_pressure Accuracy_oil[kk] = acc_oil Accuracy_water[kk] = acc_water fig4 = plt.figure(figsize=(20, 20), dpi=100) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=11, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=11, ) # Plot R2 accuracies plt.subplot(2, 3, 1) plt.plot( Time_vector, Accuracy_presure[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("Pressure", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) plt.subplot(2, 3, 2) plt.plot( Time_vector, Accuracy_water[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("water saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) plt.subplot(2, 3, 3) plt.plot( Time_vector, Accuracy_oil[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("oil saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) # Plot L2 accuracies plt.subplot(2, 3, 4) plt.plot( Time_vector, Accuracy_presure[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("Pressure", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.subplot(2, 3, 5) plt.plot( Time_vector, Accuracy_water[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("water saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.subplot(2, 3, 6) plt.plot( Time_vector, Accuracy_oil[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("oil saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2.png" plt.savefig(namez) plt.clf() plt.close() print("") print("Now - Creating GIF") import glob import re frames = [] imgs = sorted(glob.glob("*Dynamic*"), key=sort_key) for i in imgs: new_frame = Image.open(i) frames.append(new_frame) frames[0].save( "Evolution.gif", format="GIF", append_images=frames[1:], save_all=True, duration=500, loop=0, ) from glob import glob for f3 in glob("*Dynamic*"): os.remove(f3) print("") print("Saving prediction in CSV file") spittsbig = [ "Time(DAY)", "I1 - WBHP(PSIA)", "I2 - WBHP (PSIA)", "I3 - WBHP(PSIA)", "I4 - WBHP(PSIA)", "P1 - WOPR(BBL/DAY)", "P2 - WOPR(BBL/DAY)", "P3 - WOPR(BBL/DAY)", "P4 - WOPR(BBL/DAY)", "P1 - WWPR(BBL/DAY)", "P2 - WWPR(BBL/DAY)", "P3 - WWPR(BBL/DAY)", "P4 - WWPR(BBL/DAY)", "P1 - WWCT(%)", "P2 - WWCT(%)", "P3 - WWCT(%)", "P4 - WWCT(%)", ] see = Peaceman_well( inn, ouut_p, ouut_s, MAXZ, 1, 1e1, LUB, HUB, aay, bby, DX, steppi, pini_alt, SWI, SWR, UW, BW, DZ, rwell, skin, UO, BO, pwf_producer, dt, N_inj, N_pr, 0, nz, ) seeTrue = Peaceman_well( inn, cPress, cSat, MAXZ, 0, 1e1, LUB, HUB, aay, bby, DX, steppi, pini_alt, SWI, SWR, UW, BW, DZ, rwell, skin, UO, BO, pwf_producer, dt, N_inj, N_pr, 0, nz, ) seeuse = pd.DataFrame(see) seeuse.to_csv("RSM_MODULUS.csv", header=spittsbig, sep=",") seeuse.drop(columns=seeuse.columns[0], axis=1, inplace=True) seeuset = pd.DataFrame(seeTrue) seeuset.to_csv("RSM_NUMERICAL.csv", header=spittsbig, sep=",") seeuset.drop(columns=seeuset.columns[0], axis=1, inplace=True) Plot_RSM_percentile(see, seeTrue, "Compare.png") os.chdir(oldfolder) print("") print("-------------------PROGRAM EXECUTED-----------------------------------")
modulus-sym-main
examples/reservoir_simulation/3D/src/Compare_FVM_surrogate.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import os import modulus import torch from modulus.sym.hydra import ModulusConfig from modulus.sym.hydra import to_absolute_path from modulus.sym.key import Key from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.utils.io.plotter import GridValidatorPlotter from NVRS import * from utilities import load_FNO_dataset2, preprocess_FNO_mat from modulus.sym.models.fno import * import shutil import cupy as cp from skimage.transform import resize import scipy.io as sio import requests torch.set_default_dtype(torch.float32) def download_file_from_google_drive(id, destination): URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params={"id": id, "confirm": 1}, stream=True) token = get_confirm_token(response) if token: params = {"id": id, "confirm": token} response = session.get(URL, params=params, stream=True) save_response_content(response, destination) def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith("download_warning"): return value return None def save_response_content(response, destination): CHUNK_SIZE = 32768 with open(destination, "wb") as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) from modulus.sym.utils.io.plotter import ValidatorPlotter class CustomValidatorPlotterP(ValidatorPlotter): def __init__( self, timmee, max_t, MAXZ, pini_alt, nx, ny, wells, steppi, tc2, dt, injectors, producers, N_injw, N_pr, ): self.timmee = timmee self.max_t = max_t self.MAXZ = MAXZ self.pini_alt = pini_alt self.nx = nx self.ny = ny self.wells = wells self.steppi = steppi self.tc2 = tc2 self.dt = dt self.injectors = injectors self.producers = producers self.N_injw = N_injw self.N_pr = N_pr def __call__(self, invar, true_outvar, pred_outvar): "Custom plotting function for validator" # get input variables pressure_true, pressure_pred = true_outvar["pressure"], pred_outvar["pressure"] # make plot f_big = [] Time_vector = np.zeros((self.steppi)) Accuracy_presure = np.zeros((self.steppi, 2)) for itt in range(self.steppi): look = (pressure_pred[0, itt, :, :, :]) * self.pini_alt lookf = (pressure_true[0, itt, :, :, :]) * self.pini_alt diff1 = abs(look - lookf) XX, YY = np.meshgrid(np.arange(self.nx), np.arange(self.ny)) f_2 = plt.figure(figsize=(12, 12), dpi=100) plt.subplot(3, 3, 1) plt.pcolormesh(XX.T, YY.T, look[0, :, :], cmap="jet") plt.title("Layer 1 - Pressure FNO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf[0, :, :], (-1,))), np.max(np.reshape(lookf[0, :, :], (-1,))), ) cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 2) plt.pcolormesh(XX.T, YY.T, lookf[0, :, :], cmap="jet") plt.title(" Layer 1 - Pressure CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 3) plt.pcolormesh(XX.T, YY.T, abs(look[0, :, :] - lookf[0, :, :]), cmap="jet") plt.title(" Layer 1 - Pressure (CFD - FNO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 4) plt.pcolormesh(XX.T, YY.T, look[1, :, :], cmap="jet") plt.title("Layer 2 - Pressure FNO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf[1, :, :], (-1,))), np.max(np.reshape(lookf[1, :, :], (-1,))), ) cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 5) plt.pcolormesh(XX.T, YY.T, lookf[1, :, :], cmap="jet") plt.title(" Layer 2 - Pressure CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 6) plt.pcolormesh(XX.T, YY.T, abs(look[1, :, :] - lookf[1, :, :]), cmap="jet") plt.title(" Layer 2 - Pressure (CFD - FNO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 7) plt.pcolormesh(XX.T, YY.T, look[2, :, :], cmap="jet") plt.title("Layer 3 - Pressure PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf[2, :, :], (-1,))), np.max(np.reshape(lookf[2, :, :], (-1,))), ) cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 8) plt.pcolormesh(XX.T, YY.T, lookf[2, :, :], cmap="jet") plt.title(" Layer 3 - Pressure CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(3, 3, 9) plt.pcolormesh(XX.T, YY.T, abs(look[2, :, :] - lookf[2, :, :]), cmap="jet") plt.title(" Layer 3 - Pressure (CFD - FNO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" plt.suptitle(tita, fontsize=16) # name = namet + str(int(itt)) + '.png' # plt.savefig(name) # #plt.show() # plt.clf() namez = "pressure_simulations" + str(int(itt)) yes = (f_2, namez) f_big.append(yes) f_3 = plt.figure(figsize=(20, 20), dpi=200) ax1 = f_3.add_subplot(131, projection="3d") Plot_Modulus( ax1, self.nx, self.ny, self.nz, Reinvent(look), self.N_injw, self.N_pr, "pressure Modulus", self.injectors, self.producers, ) ax2 = f_3.add_subplot(132, projection="3d") Plot_Modulus( ax2, self.nx, self.ny, self.nz, Reinvent(lookf), self.N_injw, self.N_pr, "pressure Numerical", self.injectors, self.producers, ) ax3 = f_3.add_subplot(133, projection="3d") Plot_Modulus( ax3, self.nx, self.ny, self.nz, Reinvent(diff1), self.N_injw, self.N_pr, "pressure diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = ( "3D Map - Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" ) plt.suptitle(tita, fontsize=16) namez = "Simulations3Dp" + str(int(itt)) yes2 = (f_3, namez) f_big.append(yes2) R2p, L2p = compute_metrics(look.ravel()), lookf.ravel() Accuracy_presure[itt, 0] = R2p Accuracy_presure[itt, 1] = L2p fig4, axs = plt.subplots(2, 1, figsize=(10, 10)) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) # Plot R2 accuracies for i, data in enumerate([Accuracy_presure]): axs[0, i].plot( Time_vector, data[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) axs[0, i].set_title(["Pressure"][i], fontproperties=font) axs[0, i].set_xlabel("Time (days)", fontproperties=font) axs[0, i].set_ylabel("R2(%)", fontproperties=font) # Plot L2 accuracies for i, data in enumerate([Accuracy_presure]): axs[1, i].plot( Time_vector, data[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) axs[1, i].set_title(["Pressure"][i], fontproperties=font) axs[1, i].set_xlabel("Time (days)", fontproperties=font) axs[1, i].set_ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2_pressure" yes21 = (fig4, namez) f_big.append(yes21) return f_big class CustomValidatorPlotterS(ValidatorPlotter): def __init__( self, timmee, max_t, MAXZ, pini_alt, nx, ny, wells, steppi, tc2, dt, injectors, producers, N_injw, N_pr, ): self.timmee = timmee self.max_t = max_t self.MAXZ = MAXZ self.pini_alt = pini_alt self.nx = nx self.ny = ny self.wells = wells self.steppi = steppi self.tc2 = tc2 self.dt = dt self.injectors = injectors self.producers = producers self.N_injw = N_injw self.N_pr = N_pr def __call__(self, invar, true_outvar, pred_outvar): "Custom plotting function for validator" # get input variables water_true, water_pred = true_outvar["water_sat"], pred_outvar["water_sat"] # make plot f_big = [] Accuracy_oil = np.zeros((self.steppi, 2)) Accuracy_water = np.zeros((self.steppi, 2)) Time_vector = np.zeros((self.steppi)) for itt in range(self.steppi): XX, YY = np.meshgrid(np.arange(self.nx), np.arange(self.ny)) f_2 = plt.figure(figsize=(20, 20), dpi=100) look_sat = water_pred[0, itt, :, :, :] look_oil = 1 - look_sat lookf_sat = water_true[0, itt, :, :, :] lookf_oil = 1 - lookf_sat diff1_wat = abs(look_sat - lookf_sat) diff1_oil = abs(look_oil - lookf_oil) plt.subplot(6, 3, 1) plt.pcolormesh(XX.T, YY.T, look_sat[0, :, :], cmap="jet") plt.title(" Layer 1 - water_sat FNO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_sat[0, :, :], (-1,))), np.max(np.reshape(lookf_sat[0, :, :], (-1,))), ) cbar1.ax.set_ylabel(" water_sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 2) plt.pcolormesh(XX.T, YY.T, lookf_sat[0, :, :], cmap="jet") plt.title(" Layer 1 - water_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 3) plt.pcolormesh(XX.T, YY.T, diff1_wat[0, :, :], cmap="jet") plt.title(" Layer 1- water_sat (CFD - FNO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat ", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 4) plt.pcolormesh(XX.T, YY.T, look_sat[1, :, :], cmap="jet") plt.title(" Layer 2 - water_sat FNO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_sat[1, :, :], (-1,))), np.max(np.reshape(lookf_sat[1, :, :], (-1,))), ) cbar1.ax.set_ylabel(" water_sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 5) plt.pcolormesh(XX.T, YY.T, lookf_sat[1, :, :], cmap="jet") plt.title(" Layer 2 - water_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 6) plt.pcolormesh(XX.T, YY.T, diff1_wat[1, :, :], cmap="jet") plt.title(" Layer 2- water_sat (CFD - FNO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat ", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 7) plt.pcolormesh(XX.T, YY.T, look_sat[2, :, :], cmap="jet") plt.title(" Layer 3 - water_sat FNO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_sat[2, :, :], (-1,))), np.max(np.reshape(lookf_sat[2, :, :], (-1,))), ) cbar1.ax.set_ylabel(" water_sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 8) plt.pcolormesh(XX.T, YY.T, lookf_sat[2, :, :], cmap="jet") plt.title(" Layer 3 - water_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 9) plt.pcolormesh(XX.T, YY.T, diff1_wat[2, :, :], cmap="jet") plt.title(" Layer 3- water_sat (CFD - FNO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat ", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 10) plt.pcolormesh(XX.T, YY.T, look_oil[0, :, :], cmap="jet") plt.title(" Layer 1 - oil_sat FNO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_oil[0, :, :], (-1,))), np.max(np.reshape(lookf_oil[0, :, :], (-1,))), ) cbar1.ax.set_ylabel(" oil_sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 11) plt.pcolormesh(XX.T, YY.T, lookf_oil[0, :, :], cmap="jet") plt.title(" Layer 1 - oil_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 12) plt.pcolormesh(XX.T, YY.T, diff1_oil[0, :, :], cmap="jet") plt.title(" Layer 1 - oil_sat (CFD - FNO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat ", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 13) plt.pcolormesh(XX.T, YY.T, look_oil[1, :, :], cmap="jet") plt.title(" Layer 2 - oil_sat FNO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_oil[1, :, :], (-1,))), np.max(np.reshape(lookf_oil[1, :, :], (-1,))), ) cbar1.ax.set_ylabel(" oil_sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 14) plt.pcolormesh(XX.T, YY.T, lookf_oil[1, :, :], cmap="jet") plt.title(" Layer 2 - oil_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 15) plt.pcolormesh(XX.T, YY.T, diff1_oil[1, :, :], cmap="jet") plt.title(" Layer 2 - oil_sat (CFD - FNO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat ", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 16) plt.pcolormesh(XX.T, YY.T, look_oil[2, :, :], cmap="jet") plt.title(" Layer 3 - oil_sat FNO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim( np.min(np.reshape(lookf_oil[2, :, :], (-1,))), np.max(np.reshape(lookf_oil[2, :, :], (-1,))), ) cbar1.ax.set_ylabel(" oil_sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 17) plt.pcolormesh(XX.T, YY.T, lookf_oil[2, :, :], cmap="jet") plt.title(" Layer 3 - oil_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.subplot(6, 3, 18) plt.pcolormesh(XX.T, YY.T, diff1_oil[2, :, :], cmap="jet") plt.title(" Layer 3 - oil_sat (CFD - FNO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (self.nx - 1), 0, (self.ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat ", fontsize=13) Add_marker(plt, XX, YY, self.wells) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" plt.suptitle(tita, fontsize=16) # name = namet + str(int(itt)) + '.png' # plt.savefig(name) # #plt.show() # plt.clf() namez = "saturation_simulations" + str(int(itt)) yes = (f_2, namez) f_big.append(yes) R2o, L2o = compute_metrics(look_oil.ravel()), lookf_oil.ravel() Accuracy_oil[itt, 0] = R2o Accuracy_oil[itt, 1] = L2o f_3 = plt.figure(figsize=(20, 20), dpi=200) ax1 = f_3.add_subplot(231, projection="3d") Plot_Modulus( ax1, self.nx, self.ny, self.nz, Reinvent(look_sat), self.N_injw, self.N_pr, "water Modulus", self.injectors, self.producers, ) ax2 = f_3.add_subplot(232, projection="3d") Plot_Modulus( ax2, self.nx, self.ny, self.nz, Reinvent(lookf_sat), self.N_injw, self.N_pr, "water Numerical", self.injectors, self.producers, ) ax3 = f_3.add_subplot(233, projection="3d") Plot_Modulus( ax3, self.nx, self.ny, self.nz, Reinvent(diff1_sat), self.N_injw, self.N_pr, "water diff", self.injectors, self.producers, ) ax4 = f_3.add_subplot(234, projection="3d") Plot_Modulus( ax4, self.nx, self.ny, self.nz, Reinvent(look_oil), self.N_injw, self.N_pr, "water Modulus", self.injectors, self.producers, ) ax5 = f_3.add_subplot(235, projection="3d") Plot_Modulus( ax5, self.nx, self.ny, self.nz, Reinvent(lookf_oil), self.N_injw, self.N_pr, "water Numerical", self.injectors, self.producers, ) ax6 = f_3.add_subplot(236, projection="3d") Plot_Modulus( ax6, self.nx, self.ny, self.nz, Reinvent(diff1_oil), self.N_injw, self.N_pr, "water diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = ( "3D Map - Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" ) plt.suptitle(tita, fontsize=16) namez = "Simulations3Ds" + str(int(itt)) yes2 = (f_3, namez) f_big.append(yes2) fig4, axs = plt.subplots(2, 2, figsize=(20, 10)) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) # Plot R2 accuracies for i, data in enumerate([Accuracy_water, Accuracy_oil]): axs[0, i].plot( Time_vector, data[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) axs[0, i].set_title( ["Water_saturation", "Oil_saturation"][i], fontproperties=font ) axs[0, i].set_xlabel("Time (days)", fontproperties=font) axs[0, i].set_ylabel("R2(%)", fontproperties=font) # Plot L2 accuracies for i, data in enumerate([Accuracy_water, Accuracy_oil]): axs[1, i].plot( Time_vector, data[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) axs[1, i].set_title( ["Water_saturation", "Oil_saturation"][i], fontproperties=font ) axs[1, i].set_xlabel("Time (days)", fontproperties=font) axs[1, i].set_ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2_saturations" yes21 = (fig4, namez) f_big.append(yes21) return f_big @modulus.sym.main(config_path="conf", config_name="config_FNO") def run(cfg: ModulusConfig) -> None: print("") print("------------------------------------------------------------------") print("") print("\n") print("|-----------------------------------------------------------------|") print("| TRAIN THE MODEL USING A 3D FNO APPROACH: |") print("|-----------------------------------------------------------------|") print("") wells = np.array( [ 1, 24, 1, 1, 1, 1, 31, 1, 1, 31, 31, 1, 7, 9, 2, 14, 12, 2, 28, 19, 2, 14, 27, 2, ] ) wells = np.reshape(wells, (-1, 3), "C") oldfolder = os.getcwd() os.chdir(oldfolder) if not os.path.exists(to_absolute_path("../PACKETS")): os.makedirs(to_absolute_path("../PACKETS")) else: pass # Varaibles needed for NVRS nx = cfg.custom.NVRS.nx ny = cfg.custom.NVRS.ny nz = cfg.custom.NVRS.nz BO = cfg.custom.NVRS.BO # oil formation volume factor BW = cfg.custom.NVRS.BW # Water formation volume factor UW = cfg.custom.NVRS.UW # water viscosity in cP UO = cfg.custom.NVRS.UO # oil viscosity in cP DX = cfg.custom.NVRS.DX # size of pixel in x direction DY = cfg.custom.NVRS.DY # sixze of pixel in y direction DZ = cfg.custom.NVRS.DZ # sizze of pixel in z direction DX = cp.float32(DX) DY = cp.float32(DY) UW = cp.float32(UW) # water viscosity in cP UO = cp.float32(UO) # oil viscosity in cP SWI = cp.float32(cfg.custom.NVRS.SWI) SWR = cp.float32(cfg.custom.NVRS.SWR) pini_alt = cfg.custom.NVRS.pini_alt BW = cp.float32(BW) # Water formation volume factor BO = cp.float32(BO) # Oil formation volume factor # training LUB = cfg.custom.NVRS.LUB HUB = cfg.custom.NVRS.HUB # Permeability rescale aay, bby = cfg.custom.NVRS.aay, cfg.custom.NVRS.bby # Permeability range mD # Low_K, High_K = aay,bby # batch_size = cfg.custom.NVRS.batch_size #'size of simulated labelled data to run' timmee = ( cfg.custom.NVRS.timmee ) # float(input ('Enter the time step interval duration for simulation (days): ')) max_t = ( cfg.custom.NVRS.max_t ) # float(input ('Enter the maximum time in days for simulation(days): ')) MAXZ = cfg.custom.NVRS.MAXZ # reference maximum time in days of simulation steppi = int(max_t / timmee) factorr = cfg.custom.NVRS.factorr # from [0 1] excluding the limits for PermZ LIR = cfg.custom.NVRS.LIR # lower injection rate UIR = cfg.custom.NVRS.UIR # uppwer injection rate input_channel = ( cfg.custom.NVRS.input_channel ) # [Perm, Q,QW,Phi,dt, initial_pressure, initial_water_sat] injectors = cfg.custom.WELLSPECS.water_injector_wells producers = cfg.custom.WELLSPECS.producer_wells N_injw = len(cfg.custom.WELLSPECS.water_injector_wells) # Number of water injectors N_pr = len(cfg.custom.WELLSPECS.producer_wells) # Number of producers # tc2 = Equivalent_time(timmee,2100,timmee,max_t) tc2 = Equivalent_time(timmee, MAXZ, timmee, max_t) dt = np.diff(tc2)[0] # Time-step bb = os.path.isfile(to_absolute_path("../PACKETS/Training4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1wYyREUcpp0qLhbRItG5RMPeRMxVtntDi", to_absolute_path("../PACKETS/Training4.mat"), ) print("...Downlaod completed.......") print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Training4.mat")) X_data1 = matt["INPUT"] data_use1 = matt["OUTPUT"] else: print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Training4.mat")) X_data1 = matt["INPUT"] data_use1 = matt["OUTPUT"] bb = os.path.isfile(to_absolute_path("../PACKETS/Test4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1PX2XFG1-elzQItvkUERJqeOerTO2kevq", to_absolute_path("../PACKETS/Test4.mat"), ) print("...Downlaod completed.......") print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data2 = matt["INPUT"] data_use2 = matt["OUTPUT"] else: print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data2 = matt["INPUT"] data_use2 = matt["OUTPUT"] cPerm = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Permeability cQ = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Overall source/sink term cQw = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Sink term cPhi = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Porosity cTime = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Time index cPini = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Initial pressure cSini = np.zeros((X_data1.shape[0], 1, nz, nx, ny)) # Initial water saturation cPress = np.zeros((X_data1.shape[0], steppi, nz, nx, ny)) # Pressure cSat = np.zeros((X_data1.shape[0], steppi, nz, nx, ny)) # Water saturation for kk in range(X_data1.shape[0]): perm = X_data1[kk, 0, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cPerm[kk, :, :, :, :] = permin perm = X_data1[kk, 1, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cQ[kk, :, :, :, :] = permin perm = X_data1[kk, 2, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cQw[kk, :, :, :, :] = permin perm = X_data1[kk, 3, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cPhi[kk, :, :, :, :] = permin perm = X_data1[kk, 4, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cTime[kk, :, :, :, :] = permin perm = X_data1[kk, 5, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cPini[kk, :, :, :, :] = permin perm = X_data1[kk, 6, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cSini[kk, :, :, :, :] = permin perm = data_use1[kk, :steppi, :, :, :] perm_big = np.zeros((steppi, nz, nx, ny)) for mum in range(steppi): use = perm[mum, :, :, :] mum1 = np.zeros((nz, nx, ny)) for i in range(nz): mum1[i, :, :] = use[:, :, i] perm_big[mum, :, :, :] = mum1 cPress[kk, :, :, :, :] = np.clip(perm_big, 1 / pini_alt, 2.0) perm = data_use1[kk, steppi:, :, :, :] perm_big = np.zeros((steppi, nz, nx, ny)) for mum in range(steppi): use = perm[mum, :, :, :] mum1 = np.zeros((nz, nx, ny)) for i in range(nz): mum1[i, :, :] = use[:, :, i] perm_big[mum, :, :, :] = mum1 cSat[kk, :, :, :, :] = perm_big sio.savemat( to_absolute_path("../PACKETS/simulationstrain.mat"), { "perm": cPerm, "Q": cQ, "Qw": cQw, "Phi": cPhi, "Time": cTime, "Pini": cPini, "Swini": cSini, "pressure": cPress, "water_sat": cSat, }, ) preprocess_FNO_mat(to_absolute_path("../PACKETS/simulationstrain.mat")) cPerm = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Permeability cQ = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Overall source/sink term cQw = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Sink term cPhi = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Porosity cTime = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Time index cPini = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Initial pressure cSini = np.zeros((X_data2.shape[0], 1, nz, nx, ny)) # Initial water saturation cPress = np.zeros((X_data2.shape[0], steppi, nz, nx, ny)) # Pressure cSat = np.zeros((X_data2.shape[0], steppi, nz, nx, ny)) # Water saturation for kk in range(X_data2.shape[0]): perm = X_data2[kk, 0, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cPerm[kk, :, :, :, :] = permin perm = X_data2[kk, 1, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cQ[kk, :, :, :, :] = permin perm = X_data2[kk, 2, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cQw[kk, :, :, :, :] = permin perm = X_data2[kk, 3, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cPhi[kk, :, :, :, :] = permin perm = X_data2[kk, 4, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cTime[kk, :, :, :, :] = permin perm = X_data2[kk, 5, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cPini[kk, :, :, :, :] = permin perm = X_data2[kk, 6, :, :, :] permin = np.zeros((1, nz, nx, ny)) for i in range(nz): permin[0, i, :, :] = perm[:, :, i] cSini[kk, :, :, :, :] = permin perm = data_use2[kk, :steppi, :, :, :] perm_big = np.zeros((steppi, nz, nx, ny)) for mum in range(steppi): use = perm[mum, :, :, :] mum1 = np.zeros((nz, nx, ny)) for i in range(nz): mum1[i, :, :] = use[:, :, i] perm_big[mum, :, :, :] = mum1 cPress[kk, :, :, :, :] = np.clip(perm_big, 1 / pini_alt, 2.0) perm = data_use2[kk, steppi:, :, :, :] perm_big = np.zeros((steppi, nz, nx, ny)) for mum in range(steppi): use = perm[mum, :, :, :] mum1 = np.zeros((nz, nx, ny)) for i in range(nz): mum1[i, :, :] = use[:, :, i] perm_big[mum, :, :, :] = mum1 cSat[kk, :, :, :, :] = perm_big sio.savemat( to_absolute_path("../PACKETS/simulationstest.mat"), { "perm": cPerm, "Q": cQ, "Qw": cQw, "Phi": cPhi, "Time": cTime, "Pini": cPini, "Swini": cSini, "pressure": cPress, "water_sat": cSat, }, ) preprocess_FNO_mat(to_absolute_path("../PACKETS/simulationstest.mat")) # load training/ test data input_keys = [ Key("perm", scale=(5.38467e-01, 2.29917e-01)), Key("Q", scale=(1.33266e-03, 3.08151e-02)), Key("Qw", scale=(1.39516e-03, 3.07869e-02)), Key("Phi", scale=(2.69233e-01, 1.14958e-01)), Key("Time", scale=(1.66666e-02, 1.08033e-07)), Key("Pini", scale=(1.00000e00, 0.00000e00)), Key("Swini", scale=(1.99998e-01, 2.07125e-06)), ] output_keys_pressure = [Key("pressure", scale=(1.16260e00, 5.75724e-01))] output_keys_saturation = [Key("water_sat", scale=(3.61902e-01, 1.97300e-01))] invar_train, outvar_train_pressure, outvar_train_saturation = load_FNO_dataset2( to_absolute_path("../PACKETS/simulationstrain.hdf5"), [k.name for k in input_keys], [k.name for k in output_keys_pressure], [k.name for k in output_keys_saturation], n_examples=cfg.custom.ntrain, ) invar_test, outvar_test_pressure, outvar_test_saturation = load_FNO_dataset2( to_absolute_path("../PACKETS/simulationstest.hdf5"), [k.name for k in input_keys], [k.name for k in output_keys_pressure], [k.name for k in output_keys_saturation], n_examples=cfg.custom.ntest, ) train_dataset_pressure = DictGridDataset(invar_train, outvar_train_pressure) train_dataset_saturation = DictGridDataset(invar_train, outvar_train_saturation) test_dataset_pressure = DictGridDataset(invar_test, outvar_test_pressure) test_dataset_saturation = DictGridDataset(invar_test, outvar_test_saturation) # [init-node] # Make custom Darcy residual node for PINO # Define FNO model for forward model (pressure) decoder1 = ConvFullyConnectedArch( [Key("z", size=32)], [Key("pressure", size=steppi)] ) fno_pressure = FNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], fno_modes=16, dimension=3, padding=13, nr_fno_layers=4, decoder_net=decoder1, ) # Define FNO model for forward model (saturation) decoder2 = ConvFullyConnectedArch( [Key("z", size=32)], [Key("water_sat", size=steppi)] ) fno_saturation = FNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], fno_modes=16, dimension=3, padding=13, nr_fno_layers=4, decoder_net=decoder2, ) nodes = [fno_pressure.make_node("fno_forward_model_pressure")] + [ fno_saturation.make_node("fno_forward_model_saturation") ] # [constraint] # make domain domain = Domain() # add constraints to domain supervised_pressure = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset_pressure, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised_pressure, "supervised_pressure") supervised_saturation = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset_saturation, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised_saturation, "supervised_saturation") # test_pressure = GridValidator( # nodes, # dataset=test_dataset_pressure, # batch_size=cfg.batch_size.test, # plotter=CustomValidatorPlotterP(timmee,max_t,MAXZ,pini_alt,nx,ny,\ # wells,steppi,tc2,dt,dt,injectors,producers,N_injw,N_pr), # requires_grad=False, # ) test_pressure = GridValidator( nodes, dataset=test_dataset_pressure, batch_size=cfg.batch_size.test, requires_grad=False, ) domain.add_validator(test_pressure, "test_pressure") # test_saturation = GridValidator( # nodes, # dataset=test_dataset_saturation, # batch_size=cfg.batch_size.test, # plotter=CustomValidatorPlotterS(timmee,max_t,MAXZ,pini_alt,nx,ny,\ # wells,steppi,tc2,dt,dt,injectors,producers,N_injw,N_pr), # requires_grad=False, # ) test_saturation = GridValidator( nodes, dataset=test_dataset_saturation, batch_size=cfg.batch_size.test, requires_grad=False, ) domain.add_validator(test_saturation, "test_saturation") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/reservoir_simulation/3D/src/Forward_problem_FNO.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 24 21:33:56 2023 @author: clementetienam """ import os from modulus.sym.hydra import to_absolute_path from modulus.sym.key import Key from NVRS import * from modulus.sym.models.fno import * from modulus.sym.models.afno.afno import * import shutil import pandas as pd import scipy.io as sio import torch import yaml from PIL import Image oldfolder = os.getcwd() os.chdir(oldfolder) data = [] os.chdir("../COMPARE_RESULTS/FNO") True_measurement = pd.read_csv("RSM_NUMERICAL.csv") True_measurement = True_measurement.values.astype(np.float32)[:, 1:] data.append(True_measurement) FNO = pd.read_csv("RSM_MODULUS.csv") FNO = FNO.values.astype(np.float32)[:, 1:] data.append(FNO) os.chdir(oldfolder) os.chdir("../COMPARE_RESULTS/PINO") PINO = pd.read_csv("RSM_MODULUS.csv") PINO = PINO.values.astype(np.float32)[:, 1:] data.append(PINO) os.chdir(oldfolder) os.chdir(oldfolder) os.chdir("../COMPARE_RESULTS") Plot_Models(data) Plot_bar(data) os.chdir(oldfolder)
modulus-sym-main
examples/reservoir_simulation/3D/src/Compare_Models.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import zipfile try: import gdown except: gdown = None import scipy.io import numpy as np import h5py from modulus.sym.hydra import to_absolute_path # list of FNO dataset url ids on drive: https://drive.google.com/drive/folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt- _FNO_datatsets_ids = { "Darcy_241": "1ViDqN7nc_VCnMackiXv_d7CHZANAFKzV", "Darcy_421": "1Z1uxG9R8AdAGJprG5STcphysjm56_0Jf", } _FNO_dataset_names = { "Darcy_241": ( "piececonst_r241_N1024_smooth1.hdf5", "piececonst_r241_N1024_smooth2.hdf5", ), "Darcy_421": ( "piececonst_r421_N1024_smooth1.hdf5", "piececonst_r421_N1024_smooth2.hdf5", ), } def load_FNO_dataset(path, input_keys, output_keys, n_examples=None): "Loads a FNO dataset" if not path.endswith(".hdf5"): raise Exception( ".hdf5 file required: please use utilities.preprocess_FNO_mat to convert .mat file" ) # load data path = to_absolute_path(path) data = h5py.File(path, "r") _ks = [k for k in data.keys() if not k.startswith("__")] print(f"loaded: {path}\navaliable keys: {_ks}") # parse data invar, outvar = dict(), dict() for d, keys in [(invar, input_keys), (outvar, output_keys)]: for k in keys: # get data x = data[k] # N, C, H, W # cut examples out if n_examples is not None: x = x[:n_examples] # print out normalisation values print(f"selected key: {k}, mean: {x.mean():.5e}, std: {x.std():.5e}") d[k] = x del data return (invar, outvar) def load_FNO_dataset2(path, input_keys, output_keys, output_keys2, n_examples=None): "Loads a FNO dataset" if not path.endswith(".hdf5"): raise Exception( ".hdf5 file required: please use utilities.preprocess_FNO_mat to convert .mat file" ) # load data path = to_absolute_path(path) data = h5py.File(path, "r") _ks = [k for k in data.keys() if not k.startswith("__")] print(f"loaded: {path}\navaliable keys: {_ks}") # parse data invar, outvar, outvar2 = dict(), dict(), dict() for d, keys in [ (invar, input_keys), (outvar, output_keys), (outvar2, output_keys2), ]: for k in keys: # get data x = data[k] # N, C, H, W # cut examples out if n_examples is not None: x = x[:n_examples] # print out normalisation values print(f"selected key: {k}, mean: {x.mean():.5e}, std: {x.std():.5e}") d[k] = x del data return (invar, outvar, outvar2) def load_FNO_dataset4(path, input_keys, n_examples=None): "Loads a FNO dataset" if not path.endswith(".hdf5"): raise Exception( ".hdf5 file required: please use utilities.preprocess_FNO_mat to convert .mat file" ) # load data path = to_absolute_path(path) data = h5py.File(path, "r") _ks = [k for k in data.keys() if not k.startswith("__")] print(f"loaded: {path}\navaliable keys: {_ks}") # parse data invar = dict() for d, keys in [(invar, input_keys)]: for k in keys: # get data x = data[k] # N, C, H, W # cut examples out if n_examples is not None: x = x[:n_examples] # print out normalisation values print(f"selected key: {k}, mean: {x.mean():.5e}, std: {x.std():.5e}") d[k] = x del data return invar def load_deeponet_dataset( path, input_keys, output_keys, n_examples=None, filter_size=8 ): "Loads a deeponet dataset" # load dataset invar, outvar = load_FNO_dataset(path, input_keys, output_keys, n_examples) # reduce shape needed for deeponet for key, value in invar.items(): invar[key] = value[:, :, ::filter_size, ::filter_size] for key, value in outvar.items(): outvar[key] = value[:, :, ::filter_size, ::filter_size] res = next(iter(invar.values())).shape[-1] nr_points_per_sample = res**2 # tile invar tiled_invar = { key: np.concatenate( [ np.tile(value[i], (nr_points_per_sample, 1, 1, 1)) for i in range(n_examples) ] ) for key, value in invar.items() } # tile outvar tiled_outvar = {key: value.flatten()[:, None] for key, value in outvar.items()} # add cord points x = np.linspace(0.0, 1.0, res) y = np.linspace(0.0, 1.0, res) x, y = [a.flatten()[:, None] for a in np.meshgrid(x, y)] tiled_invar["x"] = np.concatenate(n_examples * [x], axis=0) tiled_invar["y"] = np.concatenate(n_examples * [y], axis=0) return (tiled_invar, tiled_outvar) def download_FNO_dataset(name, outdir="datasets/"): "Tries to download FNO dataset from drive" if name not in _FNO_datatsets_ids: raise Exception( f"Error: FNO dataset {name} not recognised, select one from {list(_FNO_datatsets_ids.keys())}" ) id = _FNO_datatsets_ids[name] outdir = to_absolute_path(outdir) + "/" namedir = f"{outdir}{name}/" # skip if already exists exists = True for file_name in _FNO_dataset_names[name]: if not os.path.isfile(namedir + file_name): exists = False break if exists: return print(f"FNO dataset {name} not detected, downloading dataset") # Make sure we have gdown installed if gdown is None: raise ModuleNotFoundError("gdown package is required to download the dataset!") # get output directory os.makedirs(namedir, exist_ok=True) # download dataset zippath = f"{outdir}{name}.zip" _download_file_from_google_drive(id, zippath) # unzip with zipfile.ZipFile(zippath, "r") as f: f.extractall(namedir) os.remove(zippath) # preprocess files for file in os.listdir(namedir): if file.endswith(".mat"): matpath = f"{namedir}{file}" preprocess_FNO_mat(matpath) os.remove(matpath) def _download_file_from_google_drive(id, path): "Downloads a file from google drive" # use gdown library to download file gdown.download(id=id, output=path) def preprocess_FNO_mat(path): "Convert a FNO .mat file to a hdf5 file, adding extra dimension to data arrays" assert path.endswith(".mat") data = scipy.io.loadmat(path) ks = [k for k in data.keys() if not k.startswith("__")] with h5py.File(path[:-4] + ".hdf5", "w") as f: for k in ks: # x = np.expand_dims(data[k], axis=1) # N, C, H, W x = data[k] f.create_dataset( k, data=x, dtype="float32" ) # note h5 files larger than .mat because no compression used
modulus-sym-main
examples/reservoir_simulation/3D/src/utilities.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from typing import Dict # Import from Modulus from modulus.sym.loss.aggregator import Aggregator class CustomSum(Aggregator): """ Loss aggregation by summation """ def __init__(self, params, num_losses, weights=None): super().__init__(params, num_losses, weights) def forward(self, losses: Dict[str, torch.Tensor], step: int) -> torch.Tensor: """ Aggregates the losses by summation Parameters ---------- losses : Dict[str, torch.Tensor] A dictionary of losses step : int Optimizer step Returns ------- loss : torch.Tensor Aggregated loss """ # weigh losses losses = self.weigh_losses(losses, self.weights) # Initialize loss loss: torch.Tensor = torch.zeros_like(self.init_loss) smoothness = 0.0005 # use 0.0005 to smoothen the transition over ~10k steps step_tensor = torch.tensor(step, dtype=torch.float32) decay_weight1 = (torch.tanh((10000 - step_tensor) * smoothness) + 1.0) * 0.5 lambda_pressure = 1.0 lambda_saturation = 1.0 # # Add losses for key in losses.keys(): if "pressure" in key: loss += lambda_pressure * (1 - decay_weight1) * ((losses[key])) if "water_sat" in key: loss += lambda_saturation * (1 - decay_weight1) * ((losses[key])) return loss
modulus-sym-main
examples/reservoir_simulation/3D/src/custom_aggregator_FNO.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from typing import Dict # Import from Modulus from modulus.sym.loss.aggregator import Aggregator class CustomSum(Aggregator): """ Loss aggregation by summation """ def __init__(self, params, num_losses, weights=None): super().__init__(params, num_losses, weights) def forward(self, losses: Dict[str, torch.Tensor], step: int) -> torch.Tensor: """ Aggregates the losses by summation Parameters ---------- losses : Dict[str, torch.Tensor] A dictionary of losses step : int Optimizer step Returns ------- loss : torch.Tensor Aggregated loss """ # weigh losses losses = self.weigh_losses(losses, self.weights) # Initialize loss loss: torch.Tensor = torch.zeros_like(self.init_loss) smoothness = 0.0005 # use 0.0005 to smoothen the transition over ~10k steps step_tensor = torch.tensor(step, dtype=torch.float32) decay_weight1 = (torch.tanh((10000 - step_tensor) * smoothness) + 1.0) * 0.5 lambda_pressure = 1.0 lambda_saturation = 1.0 lambda_pressured = 0.1 lambda_saturationd = 0.1 # # Add losses for key in losses.keys(): if "pressure" in key: loss += lambda_pressure * (1 - decay_weight1) * ((losses[key])) if "water_sat" in key: loss += lambda_saturation * (1 - decay_weight1) * ((losses[key])) if "pressured" in key: loss += lambda_pressured * (1 - decay_weight1) * ((losses[key])) if "saturationd" in key: loss += lambda_saturationd * (1 - decay_weight1) * ((losses[key])) return loss
modulus-sym-main
examples/reservoir_simulation/3D/src/custom_aggregator_PINO.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import numpy as np import torch import torch.nn.functional as F import os import modulus from modulus.sym.hydra import ModulusConfig from modulus.sym.hydra import to_absolute_path from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.utils.io.plotter import GridValidatorPlotter from NVRS import * from utilities import load_FNO_dataset2, preprocess_FNO_mat from ops import dx, ddx from modulus.sym.models.fno import * import shutil import cupy as cp import scipy.io as sio import requests from modulus.sym.utils.io.plotter import ValidatorPlotter torch.set_default_dtype(torch.float32) def download_file_from_google_drive(id, destination): URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params={"id": id, "confirm": 1}, stream=True) token = get_confirm_token(response) if token: params = {"id": id, "confirm": token} response = session.get(URL, params=params, stream=True) save_response_content(response, destination) def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith("download_warning"): return value return None def save_response_content(response, destination): CHUNK_SIZE = 32768 with open(destination, "wb") as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) class CustomValidatorPlotterP(ValidatorPlotter): def __init__( self, timmee, max_t, MAXZ, pini_alt, nx, ny, nz, steppi, tc2, dt, injectors, producers, N_injw, N_pr, ): self.timmee = timmee self.max_t = max_t self.MAXZ = MAXZ self.pini_alt = pini_alt self.nx = nx self.ny = ny self.nz = nz self.steppi = steppi self.tc2 = tc2 self.dt = dt self.injectors = injectors self.producers = producers self.N_injw = N_injw self.N_pr = N_pr def __call__(self, invar, true_outvar, pred_outvar): "Custom plotting function for validator" # get input variables # get and interpolate output variable pressure_true, pressure_pred = true_outvar["pressure"], pred_outvar["pressure"] # make plot f_big = [] Time_vector = np.zeros((self.steppi)) Accuracy_presure = np.zeros((self.steppi, 2)) for itt in range(self.steppi): Time_vector[itt] = int((itt + 1) * self.dt * self.MAXZ) look = (pressure_pred[0, itt, :, :]) * self.pini_alt lookf = (pressure_true[0, itt, :, :]) * self.pini_alt diff1 = abs(look - lookf) XX, YY = np.meshgrid(np.arange(self.nx), np.arange(self.ny)) f_2 = plt.figure(figsize=(10, 10), dpi=100) plt.subplot(1, 3, 1) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, look, self.N_injw, self.N_pr, "pressure Modulus", self.injectors, self.producers, ) plt.subplot(1, 3, 2) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, lookf, self.N_injw, self.N_pr, "pressure Numerical", self.injectors, self.producers, ) plt.subplot(1, 3, 3) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, diff1, self.N_injw, self.N_pr, "pressure diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" plt.suptitle(tita, fontsize=16) namez = "pressure_simulations" + str(int(itt)) yes = (f_2, namez) f_big.append(yes) # plt.clf() plt.close() R2p, L2p = compute_metrics(look.ravel(), lookf.ravel()) Accuracy_presure[itt, 0] = R2p Accuracy_presure[itt, 1] = L2p f_3 = plt.figure(figsize=(20, 20), dpi=200) ax1 = f_3.add_subplot(131, projection="3d") Plot_Modulus( ax1, self.nx, self.ny, self.nz, look, self.N_injw, self.N_pr, "pressure Modulus", self.injectors, self.producers, ) ax2 = f_3.add_subplot(132, projection="3d") Plot_Modulus( ax2, self.nx, self.ny, self.nz, lookf, self.N_injw, self.N_pr, "pressure Numerical", self.injectors, self.producers, ) ax3 = f_3.add_subplot(133, projection="3d") Plot_Modulus( ax3, self.nx, self.ny, self.nz, diff1, self.N_injw, self.N_pr, "pressure diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = ( "3D Map - Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" ) plt.suptitle(tita, fontsize=20, weight="bold") namez = "Simulations3Dp" + str(int(itt)) yes2 = (f_3, namez) f_big.append(yes2) # plt.clf() plt.close() fig4 = plt.figure(figsize=(10, 10), dpi=200) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) # Plot R2 accuracies plt.subplot(2, 1, 1) plt.plot( Time_vector, Accuracy_presure[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("Pressure", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) # Plot L2 accuracies plt.subplot(2, 1, 2) plt.plot( Time_vector, Accuracy_presure[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("Pressure", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2_pressure" yes21 = (fig4, namez) f_big.append(yes21) # plt.clf() plt.close() return f_big class CustomValidatorPlotterS(ValidatorPlotter): def __init__( self, timmee, max_t, MAXZ, pini_alt, nx, ny, nz, steppi, tc2, dt, injectors, producers, N_injw, N_pr, ): self.timmee = timmee self.max_t = max_t self.MAXZ = MAXZ self.pini_alt = pini_alt self.nx = nx self.ny = ny self.nz = nz self.steppi = steppi self.tc2 = tc2 self.dt = dt self.injectors = injectors self.producers = producers self.N_injw = N_injw self.N_pr = N_pr def __call__(self, invar, true_outvar, pred_outvar): "Custom plotting function for validator" # get input variables water_true, water_pred = true_outvar["water_sat"], pred_outvar["water_sat"] # make plot f_big = [] Accuracy_oil = np.zeros((self.steppi, 2)) Accuracy_water = np.zeros((self.steppi, 2)) Time_vector = np.zeros((self.steppi)) for itt in range(self.steppi): Time_vector[itt] = int((itt + 1) * self.dt * self.MAXZ) XX, YY = np.meshgrid(np.arange(self.nx), np.arange(self.ny)) f_2 = plt.figure(figsize=(12, 12), dpi=100) look_sat = water_pred[0, itt, :, :] # *1e-2 look_oil = 1 - look_sat lookf_sat = water_true[0, itt, :, :] # * 1e-2 lookf_oil = 1 - lookf_sat diff1_wat = abs(look_sat - lookf_sat) diff1_oil = abs(look_oil - lookf_oil) plt.subplot(2, 3, 1) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, look_sat, self.N_injw, self.N_pr, "water Modulus", self.injectors, self.producers, ) plt.subplot(2, 3, 2) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, lookf_sat, self.N_injw, self.N_pr, "water Numerical", self.injectors, self.producers, ) plt.subplot(2, 3, 3) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, diff1_wat, self.N_injw, self.N_pr, "water diff", self.injectors, self.producers, ) R2w, L2w = compute_metrics(look_sat.ravel(), lookf_sat.ravel()) Accuracy_water[itt, 0] = R2w Accuracy_water[itt, 1] = L2w plt.subplot(2, 3, 4) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, look_oil, self.N_injw, self.N_pr, "oil Modulus", self.injectors, self.producers, ) plt.subplot(2, 3, 5) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, lookf_oil, self.N_injw, self.N_pr, "oil Numerical", self.injectors, self.producers, ) plt.subplot(2, 3, 6) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, diff1_oil, self.N_injw, self.N_pr, "oil diff", self.injectors, self.producers, ) R2o, L2o = compute_metrics(look_oil.ravel(), lookf_oil.ravel()) Accuracy_oil[itt, 0] = R2o Accuracy_oil[itt, 1] = L2o plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" plt.suptitle(tita, fontsize=16) namez = "saturation_simulations" + str(int(itt)) yes = (f_2, namez) f_big.append(yes) # plt.clf() plt.close() f_3 = plt.figure(figsize=(20, 20), dpi=200) ax1 = f_3.add_subplot(231, projection="3d") Plot_Modulus( ax1, self.nx, self.ny, self.nz, look_sat, self.N_injw, self.N_pr, "water Modulus", self.injectors, self.producers, ) ax2 = f_3.add_subplot(232, projection="3d") Plot_Modulus( ax2, self.nx, self.ny, self.nz, lookf_sat, self.N_injw, self.N_pr, "water Numerical", self.injectors, self.producers, ) ax3 = f_3.add_subplot(233, projection="3d") Plot_Modulus( ax3, self.nx, self.ny, self.nz, diff1_wat, self.N_injw, self.N_pr, "water diff", self.injectors, self.producers, ) ax4 = f_3.add_subplot(234, projection="3d") Plot_Modulus( ax4, self.nx, self.ny, self.nz, look_oil, self.N_injw, self.N_pr, "oil Modulus", self.injectors, self.producers, ) ax5 = f_3.add_subplot(235, projection="3d") Plot_Modulus( ax5, self.nx, self.ny, self.nz, lookf_oil, self.N_injw, self.N_pr, "oil Numerical", self.injectors, self.producers, ) ax6 = f_3.add_subplot(236, projection="3d") Plot_Modulus( ax6, self.nx, self.ny, self.nz, diff1_oil, self.N_injw, self.N_pr, "oil diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = ( "3D Map - Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" ) plt.suptitle(tita, fontsize=20, weight="bold") namez = "Simulations3Ds" + str(int(itt)) yes2 = (f_3, namez) f_big.append(yes2) # plt.clf() plt.close() fig4 = plt.figure(figsize=(20, 20), dpi=200) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) plt.subplot(2, 2, 1) plt.plot( Time_vector, Accuracy_water[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("water_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) plt.subplot(2, 2, 2) plt.plot( Time_vector, Accuracy_oil[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("oil_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) plt.subplot(2, 2, 3) plt.plot( Time_vector, Accuracy_water[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("water_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.subplot(2, 2, 4) plt.plot( Time_vector, Accuracy_oil[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("oil_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2_saturations" yes21 = (fig4, namez) f_big.append(yes21) # plt.clf() plt.close() return f_big # [pde-loss] # define custom class for black oil model class Black_oil(torch.nn.Module): "Custom Black oil PDE definition for PINO" def __init__( self, UIR, pini_alt, LUB, HUB, aay, bby, SWI, SWR, UW, BW, UO, BO, MAXZ, nx, ny, approach, ): super().__init__() self.UIR = UIR self.UWR = UIR self.pini_alt = pini_alt self.LUB = LUB self.HUB = HUB self.aay = aay self.bby = bby self.SWI = SWI self.SWR = SWR self.UW = UW self.BW = BW self.UO = UO self.BO = BO self.MAXZ = MAXZ self.nx = nx self.ny = ny self.approach = approach def forward(self, input_var: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: # get inputs u = input_var["pressure"] perm = input_var["perm"] fin = input_var["Q"] finwater = input_var["Qw"] dt = input_var["Time"] pini = input_var["Pini"] poro = input_var["Phi"] sini = input_var["Swini"] sat = input_var["water_sat"] siniuse = sini[0, 0, 0, 0] dtin = dt * self.MAXZ dxf = 1.0 / u.shape[3] if self.approach == 1: u = u * self.pini_alt pini = pini * self.pini_alt # Pressure equation Loss fin = fin * self.UIR finwater = finwater * self.UIR cuda = 0 device = torch.device( f"cuda:{cuda}" if torch.cuda.is_available() else "cpu" ) # print(pressurey.shape) p_loss = torch.zeros_like(u).to(device, torch.float32) s_loss = torch.zeros_like(u).to(device, torch.float32) a = perm # absolute permeability v_min, v_max = self.LUB, self.HUB new_min, new_max = self.aay, self.bby m = (new_max - new_min) / (v_max - v_min) b = new_min - m * v_min a = m * a + b finuse = fin finusew = finwater dta = dtin pressure = u # water_sat = sat prior_pressure = torch.zeros( sat.shape[0], sat.shape[1], self.nx, self.ny ).to(device, torch.float32) prior_pressure[:, 0, :, :] = self.pini_alt * ( torch.ones(sat.shape[0], self.nx, self.ny).to(device, torch.float32) ) prior_pressure[:, 1:, :, :] = u[:, :-1, :, :] # dsp = u - prior_pressure #dp prior_sat = torch.zeros(sat.shape[0], sat.shape[1], self.nx, self.ny).to( device, torch.float32 ) prior_sat[:, 0, :, :] = siniuse * ( torch.ones(sat.shape[0], self.nx, self.ny).to(device, torch.float32) ) prior_sat[:, 1:, :, :] = sat[:, :-1, :, :] dsw = sat - prior_sat # ds dsw = torch.clip(dsw, 0.001, None) S = torch.div( torch.sub(prior_sat, self.SWI, alpha=1), (1 - self.SWI - self.SWR) ) # Pressure equation Loss Mw = torch.divide(torch.square(S), (self.UW * self.BW)) # Water mobility Mo = torch.div( torch.square(torch.sub(torch.ones(S.shape, device=u.device), S)), (self.UO * self.BO), ) # krw = torch.square(S) # kroil = torch.square(torch.sub(torch.ones(S.shape,\ # device = u.device),S)) Mt = Mw + Mo a1 = torch.mul(Mt, a) # overall Effective permeability a1water = torch.mul(Mw, a) # water Effective permeability # compute first dffrential gulpa = [] gulp2a = [] for m in range(sat.shape[0]): # Batch inn_now = pressure[m, :, :, :][:, None, :, :] dudx_fdma = dx( inn_now, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dudy_fdma = dx( inn_now, dx=dxf, channel=0, dim=1, order=1, padding="replication" ) gulpa.append(dudx_fdma) gulp2a.append(dudy_fdma) dudx_fdm = torch.stack(gulpa, 0)[:, :, 0, :, :] dudy_fdm = torch.stack(gulp2a, 0)[:, :, 0, :, :] # Compute second diffrential gulpa = [] gulp2a = [] for m in range(sat.shape[0]): # Batch inn_now = pressure[m, :, :, :][:, None, :, :] dudx_fdma = ddx( inn_now, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dudy_fdma = ddx( inn_now, dx=dxf, channel=0, dim=1, order=1, padding="replication" ) gulpa.append(dudx_fdma) gulp2a.append(dudy_fdma) dduddx_fdm = torch.stack(gulpa, 0)[:, :, 0, :, :] dduddy_fdm = torch.stack(gulp2a, 0)[:, :, 0, :, :] inn_now2 = a1 dcdx = dx( inn_now2, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dcdy = dx( inn_now2, dx=dxf, channel=0, dim=1, order=1, padding="replication" ) darcy_pressure = ( fin + (dcdx * dudx_fdm) + (a1 * dduddx_fdm) + (dcdy * dudy_fdm) + (a1 * dduddy_fdm) ) # Zero outer boundary # darcy_pressure = F.pad(darcy_pressure[:, :, 2:-2, 2:-2], [2, 2, 2, 2], "constant", 0) darcy_pressure = dxf * darcy_pressure * 1e-7 p_loss = darcy_pressure # Saruration equation loss dudx = dudx_fdm dudy = dudy_fdm dduddx = dduddx_fdm dduddy = dduddy_fdm inn_now2 = a1water dadx = dx( inn_now2, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dady = dx( inn_now2, dx=dxf, channel=0, dim=1, order=1, padding="replication" ) flux = ( (dadx * dudx) + (a1water * dduddx) + (dady * dudy) + (a1water * dduddy) ) fifth = poro * (dsw / dta) toge = flux + finusew darcy_saturation = fifth - toge # Zero outer boundary # darcy_saturation = F.pad(darcy_saturation[:, :, 2:-2, 2:-2], [2, 2, 2, 2], "constant", 0) darcy_saturation = dxf * darcy_saturation * 1e-7 s_loss = darcy_saturation # Slower but more accurate implementation elif self.approach == 2: u = u * self.pini_alt pini = pini * self.pini_alt # Pressure equation Loss fin = fin * self.UIR finwater = finwater * self.UIR cuda = 0 device = torch.device( f"cuda:{cuda}" if torch.cuda.is_available() else "cpu" ) # print(pressurey.shape) p_loss = torch.zeros_like(u).to(device, torch.float32) s_loss = torch.zeros_like(u).to(device, torch.float32) # print(sat.shape) # output_var = dict() for zig in range(sat.shape[0]): for count in range(sat.shape[1]): if count == 0: prior_sat = sini[zig, 0, :, :][None, None, :, :] prior_pressure = pini[zig, 0, :, :][None, None, :, :] else: prior_sat = sat[zig, (count - 1), :, :][None, None, :, :] prior_pressure = u[zig, count - 1, :, :][None, None, :, :] pressure = u[zig, count, :, :][None, None, :, :] water_sat = sat[zig, count, :, :][None, None, :, :] finuse = fin a = perm[zig, 0, :, :][None, None, :, :] v_min, v_max = self.LUB, self.HUB new_min, new_max = self.aay, self.bby m = (new_max - new_min) / (v_max - v_min) b = new_min - m * v_min a = m * a + b S = torch.div( torch.sub(prior_sat, self.SWI, alpha=1), (1 - self.SWI - self.SWR), ) # Pressure equation Loss Mw = torch.divide( torch.square(S), (self.UW * self.BW) ) # Water mobility Mo = torch.div( torch.square( torch.sub(torch.ones(S.shape, device=u.device), S) ), (self.UO * self.BO), ) Mt = Mw + Mo a1 = torch.mul(Mt, a) # Effective permeability ua = pressure a2 = a1 dyf = 1.0 / u.shape[3] # FDM gradients dudx_fdm = dx( ua, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dudy_fdm = dx( ua, dx=dyf, channel=0, dim=1, order=1, padding="replication" ) dduddx_fdm = ddx( ua, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dduddy_fdm = ddx( ua, dx=dyf, channel=0, dim=1, order=1, padding="replication" ) dcdx = dx( a2, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dcdy = dx( a2, dx=dyf, channel=0, dim=1, order=1, padding="replication" ) # compute darcy equation darcy_pressure = ( finuse[zig, 0, :, :][None, None, :, :] + (dcdx * dudx_fdm) + (a2 * dduddx_fdm) + (dcdy * dudy_fdm) + (a2 * dduddy_fdm) ) # Zero outer boundary # darcy_pressure = F.pad(darcy_pressure[:, :, 2:-2, 2:-2], [2, 2, 2, 2], "constant", 0) darcy_pressure = dxf * darcy_pressure * 1e-7 p_loss[zig, count, :, :] = darcy_pressure # output_var["darcy_pressure"] = torch.mean(p_loss,dim = 0)[None,:,:,:] # Saturation equation Loss finuse = finwater[zig, 0, :, :][None, None, :, :] dsw = water_sat - prior_sat dsw = torch.clip(dsw, 0.001, None) dta = dtin[zig, 0, :, :][None, None, :, :] Mw = torch.divide( torch.square(S), (self.UW * self.BW) ) # Water mobility Mt = Mw a1 = torch.mul(Mt, a) # Effective permeability to water ua = pressure a2 = a1 dudx = dx( ua, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dudy = dx( ua, dx=dyf, channel=0, dim=1, order=1, padding="replication" ) dduddx = ddx( ua, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dduddy = ddx( ua, dx=dyf, channel=0, dim=1, order=1, padding="replication" ) dadx = dx( a2, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dady = dx( a2, dx=dyf, channel=0, dim=1, order=1, padding="replication" ) flux = (dadx * dudx) + (a2 * dduddx) + (dady * dudy) + (a2 * dduddy) # flux = flux[:,0,:,:] # temp = dsw_dt # fourth = poro * CFW * prior_sat * (dsp/dta) fifth = poro[zig, 0, :, :][None, None, :, :] * (dsw / dta) toge = flux + finuse darcy_saturation = fifth - toge # Zero outer boundary # darcy_saturation = F.pad(darcy_saturation[:, :, 2:-2, 2:-2], [2, 2, 2, 2], "constant", 0) darcy_saturation = dxf * darcy_saturation * 1e-7 # print(darcy_saturation.shape) s_loss[zig, count, :, :] = darcy_saturation output_var = {"pressured": p_loss, "saturationd": s_loss} return output_var # [pde-loss] @modulus.sym.main(config_path="conf", config_name="config_PINO") def run(cfg: ModulusConfig) -> None: print("") print("------------------------------------------------------------------") print("") print("\n") print("|-----------------------------------------------------------------|") print("| TRAIN THE MODEL USING A 2D PINO APPROACH: |") print("|-----------------------------------------------------------------|") print("") oldfolder = os.getcwd() os.chdir(oldfolder) default = None while True: default = int( input("Select 1 = use default values | 2 = Use user defined values \n") ) if (default > 2) or (default < 1): # raise SyntaxError('please select value between 1-2') print("") print("please try again and select value between 1-2") else: break if not os.path.exists(to_absolute_path("../PACKETS")): os.makedirs(to_absolute_path("../PACKETS")) else: pass if default == 1: approach = 1 else: approach = None while True: print("Remark: Option 3 is not fully computed") approach = int( input( "Select computation of spatial gradients -\n\ 1 = Approximate and fast computation\n\ 2 = Exact but slighly slower computation using FDM\n\ 3 = Exact gradient using FNO\n: " ) ) if (approach > 3) or (approach < 1): # raise SyntaxError('please select value between 1-2') print("") print("please try again and select value between 1-3") else: break # Varaibles needed for NVRS nx = cfg.custom.NVRS.nx ny = cfg.custom.NVRS.ny nz = cfg.custom.NVRS.nz BO = cfg.custom.NVRS.BO # oil formation volume factor BW = cfg.custom.NVRS.BW # Water formation volume factor UW = cfg.custom.NVRS.UW # water viscosity in cP UO = cfg.custom.NVRS.UO # oil viscosity in cP DX = cfg.custom.NVRS.DX # size of pixel in x direction DY = cfg.custom.NVRS.DY # sixze of pixel in y direction DZ = cfg.custom.NVRS.DZ # sizze of pixel in z direction DX = cp.float32(DX) DY = cp.float32(DY) UW = cp.float32(UW) # water viscosity in cP UO = cp.float32(UO) # oil viscosity in cP SWI = cp.float32(cfg.custom.NVRS.SWI) SWR = cp.float32(cfg.custom.NVRS.SWR) pini_alt = cfg.custom.NVRS.pini_alt BW = cp.float32(BW) # Water formation volume factor BO = cp.float32(BO) # Oil formation volume factor # training LUB = cfg.custom.NVRS.LUB HUB = cfg.custom.NVRS.HUB # Permeability rescale aay, bby = cfg.custom.NVRS.aay, cfg.custom.NVRS.bby # Permeability range mD # Low_K, High_K = aay,bby # batch_size = cfg.custom.NVRS.batch_size #'size of simulated labelled data to run' timmee = ( cfg.custom.NVRS.timmee ) # float(input ('Enter the time step interval duration for simulation (days): ')) max_t = ( cfg.custom.NVRS.max_t ) # float(input ('Enter the maximum time in days for simulation(days): ')) MAXZ = cfg.custom.NVRS.MAXZ # reference maximum time in days of simulation steppi = int(max_t / timmee) factorr = cfg.custom.NVRS.factorr # from [0 1] excluding the limits for PermZ LIR = cfg.custom.NVRS.LIR # lower injection rate UIR = cfg.custom.NVRS.UIR # uppwer injection rate input_channel = ( cfg.custom.NVRS.input_channel ) # [Perm, Q,QW,Phi,dt, initial_pressure, initial_water_sat] injectors = cfg.custom.WELLSPECS.water_injector_wells producers = cfg.custom.WELLSPECS.producer_wells N_injw = len(cfg.custom.WELLSPECS.water_injector_wells) # Number of water injectors N_pr = len(cfg.custom.WELLSPECS.producer_wells) # Number of producers # tc2 = Equivalent_time(timmee,2100,timmee,max_t) tc2 = Equivalent_time(timmee, MAXZ, timmee, max_t) dt = np.diff(tc2)[0] # Time-step bb = os.path.isfile(to_absolute_path("../PACKETS/Training4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1I-27_S53ORRFB_hIN_41r3Ntc6PpOE40", to_absolute_path("../PACKETS/Training4.mat"), ) print("...Downlaod completed.......") print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Training4.mat")) X_data1 = matt["INPUT"] data_use1 = matt["OUTPUT"] else: print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Training4.mat")) X_data1 = matt["INPUT"] data_use1 = matt["OUTPUT"] bb = os.path.isfile(to_absolute_path("../PACKETS/Test4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1G4Cvg8eIObyBK0eoo7iX-0hhMTnpJktj", to_absolute_path("../PACKETS/Test4.mat"), ) print("...Downlaod completed.......") print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data2 = matt["INPUT"] data_use2 = matt["OUTPUT"] else: print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data2 = matt["INPUT"] data_use2 = matt["OUTPUT"] cPerm = np.zeros((X_data1.shape[0], 1, nx, ny)) # Permeability cQ = np.zeros((X_data1.shape[0], 1, nx, ny)) # Overall source/sink term cQw = np.zeros((X_data1.shape[0], 1, nx, ny)) # Sink term cPhi = np.zeros((X_data1.shape[0], 1, nx, ny)) # Porosity cTime = np.zeros((X_data1.shape[0], 1, nx, ny)) # Time index cPini = np.zeros((X_data1.shape[0], 1, nx, ny)) # Initial pressure cSini = np.zeros((X_data1.shape[0], 1, nx, ny)) # Initial water saturation cPress = np.zeros((X_data1.shape[0], steppi, nx, ny)) # Pressure cSat = np.zeros((X_data1.shape[0], steppi, nx, ny)) # Water saturation for kk in range(X_data1.shape[0]): perm = X_data1[kk, 0, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPerm[kk, :, :, :] = permin perm = X_data1[kk, 1, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQ[kk, :, :, :] = permin perm = X_data1[kk, 2, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQw[kk, :, :, :] = permin perm = X_data1[kk, 3, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPhi[kk, :, :, :] = permin perm = X_data1[kk, 4, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cTime[kk, :, :, :] = permin perm = X_data1[kk, 5, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPini[kk, :, :, :] = permin perm = X_data1[kk, 6, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cSini[kk, :, :, :] = permin perm = data_use1[kk, :steppi, :, :] cPress[kk, :, :, :] = perm # np.clip(perm ,1/pini_alt,1.) perm = data_use1[kk, steppi:, :, :] cSat[kk, :, :, :] = perm sio.savemat( to_absolute_path("../PACKETS/simulationstrain.mat"), { "perm": cPerm, "Q": cQ, "Qw": cQw, "Phi": cPhi, "Time": cTime, "Pini": cPini, "Swini": cSini, "pressure": cPress, "water_sat": cSat, }, ) preprocess_FNO_mat(to_absolute_path("../PACKETS/simulationstrain.mat")) cPerm = np.zeros((X_data2.shape[0], 1, nx, ny)) # Permeability cQ = np.zeros((X_data2.shape[0], 1, nx, ny)) # Overall source/sink term cQw = np.zeros((X_data2.shape[0], 1, nx, ny)) # Sink term cPhi = np.zeros((X_data2.shape[0], 1, nx, ny)) # Porosity cTime = np.zeros((X_data2.shape[0], 1, nx, ny)) # Time index cPini = np.zeros((X_data2.shape[0], 1, nx, ny)) # Initial pressure cSini = np.zeros((X_data2.shape[0], 1, nx, ny)) # Initial water saturation cPress = np.zeros((X_data2.shape[0], steppi, nx, ny)) # Pressure cSat = np.zeros((X_data2.shape[0], steppi, nx, ny)) # Water saturation for kk in range(X_data2.shape[0]): perm = X_data2[kk, 0, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPerm[kk, :, :, :] = permin perm = X_data2[kk, 1, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQ[kk, :, :, :] = permin perm = X_data2[kk, 2, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQw[kk, :, :, :] = permin perm = X_data2[kk, 3, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPhi[kk, :, :, :] = permin perm = X_data2[kk, 4, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cTime[kk, :, :, :] = permin perm = X_data2[kk, 5, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPini[kk, :, :, :] = permin perm = X_data2[kk, 6, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cSini[kk, :, :, :] = permin perm = data_use2[kk, :steppi, :, :] cPress[kk, :, :, :] = perm # np.clip(perm ,1/pini_alt,1.) perm = data_use2[kk, steppi:, :, :] cSat[kk, :, :, :] = perm sio.savemat( to_absolute_path("../PACKETS/simulationstest.mat"), { "perm": cPerm, "Q": cQ, "Qw": cQw, "Phi": cPhi, "Time": cTime, "Pini": cPini, "Swini": cSini, "pressure": cPress, "water_sat": cSat, }, ) preprocess_FNO_mat(to_absolute_path("../PACKETS/simulationstest.mat")) # load training/ test data # load training/ test data input_keys = [ Key("perm", scale=(3.46327e-01, 3.53179e-01)), Key("Q", scale=(1.94683e-03, 3.70558e-02)), Key("Qw", scale=(2.03866e-03, 3.70199e-02)), Key("Phi", scale=(1.73163e-01, 1.76590e-01)), Key("Time", scale=(1.66667e-02, 7.45058e-09)), Key("Pini", scale=(1.00000e00, 0.00000e00)), Key("Swini", scale=(2.00000e-01, 4.91738e-07)), ] output_keys_pressure = [Key("pressure", scale=(2.87008e-01, 1.85386e-01))] output_keys_saturation = [Key("water_sat", scale=(3.12903e-01, 1.79786e-01))] invar_train, outvar_train_pressure, outvar_train_saturation = load_FNO_dataset2( to_absolute_path("../PACKETS/simulationstrain.hdf5"), [k.name for k in input_keys], [k.name for k in output_keys_pressure], [k.name for k in output_keys_saturation], n_examples=cfg.custom.ntrain, ) invar_test, outvar_test_pressure, outvar_test_saturation = load_FNO_dataset2( to_absolute_path("../PACKETS/simulationstest.hdf5"), [k.name for k in input_keys], [k.name for k in output_keys_pressure], [k.name for k in output_keys_saturation], n_examples=cfg.custom.ntest, ) # add additional constraining values for darcy variable outvar_train_pressure["pressured"] = np.zeros_like( outvar_train_pressure["pressure"] ) outvar_train_saturation["saturationd"] = np.zeros_like( outvar_train_saturation["water_sat"] ) train_dataset_pressure = DictGridDataset(invar_train, outvar_train_pressure) train_dataset_saturation = DictGridDataset(invar_train, outvar_train_saturation) test_dataset_pressure = DictGridDataset(invar_test, outvar_test_pressure) test_dataset_saturation = DictGridDataset(invar_test, outvar_test_saturation) # [init-node] # Define FNO model for forward model (pressure) decoder1 = ConvFullyConnectedArch( [Key("z", size=32)], [Key("pressure", size=steppi)] ) fno_pressure = FNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], dimension=2, decoder_net=decoder1, ) # Define FNO model for forward model (saturation) decoder2 = ConvFullyConnectedArch( [Key("z", size=32)], [Key("water_sat", size=steppi)] ) fno_saturation = FNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], dimension=2, decoder_net=decoder2, ) # if approach ==3: # derivatives = [ # Key("pressure", derivatives=[Key("x")]), # Key("pressure", derivatives=[Key("y")]), # Key("pressure", derivatives=[Key("x"), Key("x")]), # Key("pressure", derivatives=[Key("y"), Key("y")]), # ] # fno_pressure.add_pino_gradients( # derivatives=derivatives, # domain_length=[nx, ny], # ) inputs = [ "perm", "Q", "Qw", "Phi", "Time", "Pini", "Swini", "pressure", "water_sat", ] # if approach ==3: # inputs += [ # "pressure__x", # "pressure__y", # ] darcyy = Node( inputs=inputs, outputs=[ "pressured", "saturationd", ], evaluate=Black_oil( UIR, pini_alt, LUB, HUB, aay, bby, SWI, SWR, UW, BW, UO, BO, MAXZ, nx, ny, approach, ), name="Darcy node", ) nodes = ( [darcyy] + [fno_pressure.make_node("pino_forward_model_pressure", jit=cfg.jit)] + [fno_saturation.make_node("pino_forward_model_saturation", jit=cfg.jit)] ) # [constraint] # make domain domain = Domain() # add constraints to domain supervised_pressure = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset_pressure, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised_pressure, "supervised_pressure") supervised_saturation = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset_saturation, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised_saturation, "supervised_saturation") # [constraint] # add validator # [constraint] # add validator # test_pressure = GridValidator( # nodes, # dataset=test_dataset_pressure, # batch_size=1, # plotter=CustomValidatorPlotterP(timmee,max_t,MAXZ,pini_alt,nx,ny,nz,\ # steppi,tc2,dt,injectors,producers,N_injw,N_pr), # requires_grad=False, # ) test_pressure = GridValidator( nodes, dataset=test_dataset_pressure, batch_size=1, requires_grad=False, ) domain.add_validator(test_pressure, "test_pressure") # test_saturation = GridValidator( # nodes, # dataset=test_dataset_saturation, # batch_size=1, # plotter=CustomValidatorPlotterS(timmee,max_t,MAXZ,pini_alt,nx,ny,nz,\ # steppi,tc2,dt,injectors,producers,N_injw,N_pr), # requires_grad=False, # ) test_saturation = GridValidator( nodes, dataset=test_dataset_saturation, batch_size=1, requires_grad=False, ) domain.add_validator(test_saturation, "test_saturation") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/reservoir_simulation/2D/src/Forward_problem_PINO.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np from math import ceil, floor def deriveSizeFromScale(img_shape, scale): output_shape = [] for k in range(2): output_shape.append(int(ceil(scale[k] * img_shape[k]))) return output_shape def deriveScaleFromSize(img_shape_in, img_shape_out): scale = [] for k in range(2): scale.append(1.0 * img_shape_out[k] / img_shape_in[k]) return scale def triangle(x): x = np.array(x).astype(np.float64) lessthanzero = np.logical_and((x >= -1), x < 0) greaterthanzero = np.logical_and((x <= 1), x >= 0) f = np.multiply((x + 1), lessthanzero) + np.multiply((1 - x), greaterthanzero) return f def cubic(x): x = np.array(x).astype(np.float64) absx = np.absolute(x) absx2 = np.multiply(absx, absx) absx3 = np.multiply(absx2, absx) f = np.multiply(1.5 * absx3 - 2.5 * absx2 + 1, absx <= 1) + np.multiply( -0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2, (1 < absx) & (absx <= 2) ) return f def contributions(in_length, out_length, scale, kernel, k_width): if scale < 1: h = lambda x: scale * kernel(scale * x) kernel_width = 1.0 * k_width / scale else: h = kernel kernel_width = k_width x = np.arange(1, out_length + 1).astype(np.float64) u = x / scale + 0.5 * (1 - 1 / scale) left = np.floor(u - kernel_width / 2) P = int(ceil(kernel_width)) + 2 ind = np.expand_dims(left, axis=1) + np.arange(P) - 1 # -1 because indexing from 0 indices = ind.astype(np.int32) weights = h(np.expand_dims(u, axis=1) - indices - 1) # -1 because indexing from 0 weights = np.divide(weights, np.expand_dims(np.sum(weights, axis=1), axis=1)) aux = np.concatenate( (np.arange(in_length), np.arange(in_length - 1, -1, step=-1)) ).astype(np.int32) indices = aux[np.mod(indices, aux.size)] ind2store = np.nonzero(np.any(weights, axis=0)) weights = weights[:, ind2store] indices = indices[:, ind2store] return weights, indices def imresizemex(inimg, weights, indices, dim): in_shape = inimg.shape w_shape = weights.shape out_shape = list(in_shape) out_shape[dim] = w_shape[0] outimg = np.zeros(out_shape) if dim == 0: for i_img in range(in_shape[1]): for i_w in range(w_shape[0]): w = weights[i_w, :] ind = indices[i_w, :] im_slice = inimg[ind, i_img].astype(np.float64) outimg[i_w, i_img] = np.sum( np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0 ) elif dim == 1: for i_img in range(in_shape[0]): for i_w in range(w_shape[0]): w = weights[i_w, :] ind = indices[i_w, :] im_slice = inimg[i_img, ind].astype(np.float64) outimg[i_img, i_w] = np.sum( np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0 ) if inimg.dtype == np.uint8: outimg = np.clip(outimg, 0, 255) return np.around(outimg).astype(np.uint8) else: return outimg def imresizevec(inimg, weights, indices, dim): wshape = weights.shape if dim == 0: weights = weights.reshape((wshape[0], wshape[2], 1, 1)) outimg = np.sum( weights * ((inimg[indices].squeeze(axis=1)).astype(np.float64)), axis=1 ) elif dim == 1: weights = weights.reshape((1, wshape[0], wshape[2], 1)) outimg = np.sum( weights * ((inimg[:, indices].squeeze(axis=2)).astype(np.float64)), axis=2 ) if inimg.dtype == np.uint8: outimg = np.clip(outimg, 0, 255) return np.around(outimg).astype(np.uint8) else: return outimg def resizeAlongDim(A, dim, weights, indices, mode="vec"): if mode == "org": out = imresizemex(A, weights, indices, dim) else: out = imresizevec(A, weights, indices, dim) return out def imresize(I, scalar_scale=None, method="bicubic", output_shape=None, mode="vec"): if method == "bicubic": kernel = cubic elif method == "bilinear": kernel = triangle else: print("Error: Unidentified method supplied") kernel_width = 4.0 # Fill scale and output_size if scalar_scale is not None: scalar_scale = float(scalar_scale) scale = [scalar_scale, scalar_scale] output_size = deriveSizeFromScale(I.shape, scale) elif output_shape is not None: scale = deriveScaleFromSize(I.shape, output_shape) output_size = list(output_shape) else: print("Error: scalar_scale OR output_shape should be defined!") return scale_np = np.array(scale) order = np.argsort(scale_np) weights = [] indices = [] for k in range(2): w, ind = contributions( I.shape[k], output_size[k], scale[k], kernel, kernel_width ) weights.append(w) indices.append(ind) B = np.copy(I) flag2D = False if B.ndim == 2: B = np.expand_dims(B, axis=2) flag2D = True for k in range(2): dim = order[k] B = resizeAlongDim(B, dim, weights[dim], indices[dim], mode) if flag2D: B = np.squeeze(B, axis=2) return B def convertDouble2Byte(I): B = np.clip(I, 0.0, 1.0) B = 255 * B return np.around(B).astype(np.uint8)
modulus-sym-main
examples/reservoir_simulation/2D/src/imresize.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import numpy as np import torch import torch.nn.functional as F import os import modulus from modulus.sym.hydra import ModulusConfig from modulus.sym.hydra import to_absolute_path from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import DictGridDataset from modulus.sym.utils.io.plotter import GridValidatorPlotter from NVRS import * from utilities import load_FNO_dataset2, preprocess_FNO_mat from ops import dx, ddx from modulus.sym.models.afno.afno import * import shutil import cupy as cp import scipy.io as sio import requests from modulus.sym.utils.io.plotter import ValidatorPlotter torch.set_default_dtype(torch.float32) def download_file_from_google_drive(id, destination): URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params={"id": id, "confirm": 1}, stream=True) token = get_confirm_token(response) if token: params = {"id": id, "confirm": token} response = session.get(URL, params=params, stream=True) save_response_content(response, destination) def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith("download_warning"): return value return None def save_response_content(response, destination): CHUNK_SIZE = 32768 with open(destination, "wb") as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) class CustomValidatorPlotterP(ValidatorPlotter): def __init__( self, timmee, max_t, MAXZ, pini_alt, nx, ny, nz, steppi, tc2, dt, injectors, producers, N_injw, N_pr, ): self.timmee = timmee self.max_t = max_t self.MAXZ = MAXZ self.pini_alt = pini_alt self.nx = nx self.ny = ny self.nz = nz self.steppi = steppi self.tc2 = tc2 self.dt = dt self.injectors = injectors self.producers = producers self.N_injw = N_injw self.N_pr = N_pr def __call__(self, invar, true_outvar, pred_outvar): "Custom plotting function for validator" # get input variables # get and interpolate output variable pressure_true, pressure_pred = true_outvar["pressure"], pred_outvar["pressure"] # make plot f_big = [] Time_vector = np.zeros((self.steppi)) Accuracy_presure = np.zeros((self.steppi, 2)) for itt in range(self.steppi): Time_vector[itt] = int((itt + 1) * self.dt * self.MAXZ) look = (pressure_pred[0, itt, :, :]) * self.pini_alt lookf = (pressure_true[0, itt, :, :]) * self.pini_alt diff1 = abs(look - lookf) XX, YY = np.meshgrid(np.arange(self.nx), np.arange(self.ny)) f_2 = plt.figure(figsize=(10, 10), dpi=100) plt.subplot(1, 3, 1) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, look, self.N_injw, self.N_pr, "pressure Modulus", self.injectors, self.producers, ) plt.subplot(1, 3, 2) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, lookf, self.N_injw, self.N_pr, "pressure Numerical", self.injectors, self.producers, ) plt.subplot(1, 3, 3) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, diff1, self.N_injw, self.N_pr, "pressure diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" plt.suptitle(tita, fontsize=16) namez = "pressure_simulations" + str(int(itt)) yes = (f_2, namez) f_big.append(yes) # plt.clf() plt.close() R2p, L2p = compute_metrics(look.ravel(), lookf.ravel()) Accuracy_presure[itt, 0] = R2p Accuracy_presure[itt, 1] = L2p f_3 = plt.figure(figsize=(20, 20), dpi=200) ax1 = f_3.add_subplot(131, projection="3d") Plot_Modulus( ax1, self.nx, self.ny, self.nz, look, self.N_injw, self.N_pr, "pressure Modulus", self.injectors, self.producers, ) ax2 = f_3.add_subplot(132, projection="3d") Plot_Modulus( ax2, self.nx, self.ny, self.nz, lookf, self.N_injw, self.N_pr, "pressure Numerical", self.injectors, self.producers, ) ax3 = f_3.add_subplot(133, projection="3d") Plot_Modulus( ax3, self.nx, self.ny, self.nz, diff1, self.N_injw, self.N_pr, "pressure diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = ( "3D Map - Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" ) plt.suptitle(tita, fontsize=20, weight="bold") namez = "Simulations3Dp" + str(int(itt)) yes2 = (f_3, namez) f_big.append(yes2) # plt.clf() plt.close() fig4 = plt.figure(figsize=(10, 10), dpi=200) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) # Plot R2 accuracies plt.subplot(2, 1, 1) plt.plot( Time_vector, Accuracy_presure[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("Pressure", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) # Plot L2 accuracies plt.subplot(2, 1, 2) plt.plot( Time_vector, Accuracy_presure[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("Pressure", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2_pressure" yes21 = (fig4, namez) f_big.append(yes21) # plt.clf() plt.close() return f_big class CustomValidatorPlotterS(ValidatorPlotter): def __init__( self, timmee, max_t, MAXZ, pini_alt, nx, ny, nz, steppi, tc2, dt, injectors, producers, N_injw, N_pr, ): self.timmee = timmee self.max_t = max_t self.MAXZ = MAXZ self.pini_alt = pini_alt self.nx = nx self.ny = ny self.nz = nz self.steppi = steppi self.tc2 = tc2 self.dt = dt self.injectors = injectors self.producers = producers self.N_injw = N_injw self.N_pr = N_pr def __call__(self, invar, true_outvar, pred_outvar): "Custom plotting function for validator" # get input variables water_true, water_pred = true_outvar["water_sat"], pred_outvar["water_sat"] # make plot f_big = [] Accuracy_oil = np.zeros((self.steppi, 2)) Accuracy_water = np.zeros((self.steppi, 2)) Time_vector = np.zeros((self.steppi)) for itt in range(self.steppi): Time_vector[itt] = int((itt + 1) * self.dt * self.MAXZ) XX, YY = np.meshgrid(np.arange(self.nx), np.arange(self.ny)) f_2 = plt.figure(figsize=(12, 12), dpi=100) look_sat = water_pred[0, itt, :, :] # *1e-2 look_oil = 1 - look_sat lookf_sat = water_true[0, itt, :, :] # * 1e-2 lookf_oil = 1 - lookf_sat diff1_wat = abs(look_sat - lookf_sat) diff1_oil = abs(look_oil - lookf_oil) plt.subplot(2, 3, 1) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, look_sat, self.N_injw, self.N_pr, "water Modulus", self.injectors, self.producers, ) plt.subplot(2, 3, 2) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, lookf_sat, self.N_injw, self.N_pr, "water Numerical", self.injectors, self.producers, ) plt.subplot(2, 3, 3) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, diff1_wat, self.N_injw, self.N_pr, "water diff", self.injectors, self.producers, ) R2w, L2w = compute_metrics(look_sat.ravel(), lookf_sat.ravel()) Accuracy_water[itt, 0] = R2w Accuracy_water[itt, 1] = L2w plt.subplot(2, 3, 4) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, look_oil, self.N_injw, self.N_pr, "oil Modulus", self.injectors, self.producers, ) plt.subplot(2, 3, 5) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, lookf_oil, self.N_injw, self.N_pr, "oil Numerical", self.injectors, self.producers, ) plt.subplot(2, 3, 6) Plot_2D( XX, YY, plt, self.nx, self.ny, self.nz, diff1_oil, self.N_injw, self.N_pr, "oil diff", self.injectors, self.producers, ) R2o, L2o = compute_metrics(look_oil.ravel(), lookf_oil.ravel()) Accuracy_oil[itt, 0] = R2o Accuracy_oil[itt, 1] = L2o plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" plt.suptitle(tita, fontsize=16) namez = "saturation_simulations" + str(int(itt)) yes = (f_2, namez) f_big.append(yes) # plt.clf() plt.close() f_3 = plt.figure(figsize=(20, 20), dpi=200) ax1 = f_3.add_subplot(231, projection="3d") Plot_Modulus( ax1, self.nx, self.ny, self.nz, look_sat, self.N_injw, self.N_pr, "water Modulus", self.injectors, self.producers, ) ax2 = f_3.add_subplot(232, projection="3d") Plot_Modulus( ax2, self.nx, self.ny, self.nz, lookf_sat, self.N_injw, self.N_pr, "water Numerical", self.injectors, self.producers, ) ax3 = f_3.add_subplot(233, projection="3d") Plot_Modulus( ax3, self.nx, self.ny, self.nz, diff1_wat, self.N_injw, self.N_pr, "water diff", self.injectors, self.producers, ) ax4 = f_3.add_subplot(234, projection="3d") Plot_Modulus( ax4, self.nx, self.ny, self.nz, look_oil, self.N_injw, self.N_pr, "oil Modulus", self.injectors, self.producers, ) ax5 = f_3.add_subplot(235, projection="3d") Plot_Modulus( ax5, self.nx, self.ny, self.nz, lookf_oil, self.N_injw, self.N_pr, "oil Numerical", self.injectors, self.producers, ) ax6 = f_3.add_subplot(236, projection="3d") Plot_Modulus( ax6, self.nx, self.ny, self.nz, diff1_oil, self.N_injw, self.N_pr, "oil diff", self.injectors, self.producers, ) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = ( "3D Map - Timestep --" + str(int((itt + 1) * self.dt * self.MAXZ)) + " days" ) plt.suptitle(tita, fontsize=20, weight="bold") namez = "Simulations3Ds" + str(int(itt)) yes2 = (f_3, namez) f_big.append(yes2) # plt.clf() plt.close() fig4 = plt.figure(figsize=(20, 20), dpi=200) font = FontProperties() font.set_family("Helvetica") font.set_weight("bold") fig4.text( 0.5, 0.98, "R2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) fig4.text( 0.5, 0.49, "L2(%) Accuracy - Modulus/Numerical(GPU)", ha="center", va="center", fontproperties=font, fontsize=16, ) plt.subplot(2, 2, 1) plt.plot( Time_vector, Accuracy_water[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("water_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) plt.subplot(2, 2, 2) plt.plot( Time_vector, Accuracy_oil[:, 0], label="R2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("oil_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("R2(%)", fontproperties=font) plt.subplot(2, 2, 3) plt.plot( Time_vector, Accuracy_water[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("water_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.subplot(2, 2, 4) plt.plot( Time_vector, Accuracy_oil[:, 1], label="L2", marker="*", markerfacecolor="red", markeredgecolor="red", linewidth=0.5, ) plt.title("oil_saturation", fontproperties=font) plt.xlabel("Time (days)", fontproperties=font) plt.ylabel("L2(%)", fontproperties=font) plt.tight_layout(rect=[0, 0.05, 1, 0.93]) namez = "R2L2_saturations" yes21 = (fig4, namez) f_big.append(yes21) # plt.clf() plt.close() return f_big # [pde-loss] # define custom class for black oil model class Black_oil(torch.nn.Module): "Custom Black oil PDE definition for AFNO" def __init__( self, UIR, pini_alt, LUB, HUB, aay, bby, SWI, SWR, UW, BW, UO, BO, MAXZ, nx, ny, approach, ): super().__init__() self.UIR = UIR self.UWR = UIR self.pini_alt = pini_alt self.LUB = LUB self.HUB = HUB self.aay = aay self.bby = bby self.SWI = SWI self.SWR = SWR self.UW = UW self.BW = BW self.UO = UO self.BO = BO self.MAXZ = MAXZ self.nx = nx self.ny = ny self.approach = approach def forward(self, input_var: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: # get inputs u = input_var["pressure"] perm = input_var["perm"] fin = input_var["Q"] finwater = input_var["Qw"] dt = input_var["Time"] pini = input_var["Pini"] poro = input_var["Phi"] sini = input_var["Swini"] sat = input_var["water_sat"] siniuse = sini[0, 0, 0, 0] dtin = dt * self.MAXZ dxf = 1.0 / u.shape[3] if self.approach == 1: u = u * self.pini_alt pini = pini * self.pini_alt # Pressure equation Loss fin = fin * self.UIR finwater = finwater * self.UIR cuda = 0 device = torch.device( f"cuda:{cuda}" if torch.cuda.is_available() else "cpu" ) # print(pressurey.shape) p_loss = torch.zeros_like(u).to(device, torch.float32) s_loss = torch.zeros_like(u).to(device, torch.float32) a = perm # absolute permeability v_min, v_max = self.LUB, self.HUB new_min, new_max = self.aay, self.bby m = (new_max - new_min) / (v_max - v_min) b = new_min - m * v_min a = m * a + b finuse = fin finusew = finwater dta = dtin pressure = u # water_sat = sat prior_pressure = torch.zeros( sat.shape[0], sat.shape[1], self.nx, self.ny ).to(device, torch.float32) prior_pressure[:, 0, :, :] = self.pini_alt * ( torch.ones(sat.shape[0], self.nx, self.ny).to(device, torch.float32) ) prior_pressure[:, 1:, :, :] = u[:, :-1, :, :] # dsp = u - prior_pressure #dp prior_sat = torch.zeros(sat.shape[0], sat.shape[1], self.nx, self.ny).to( device, torch.float32 ) prior_sat[:, 0, :, :] = siniuse * ( torch.ones(sat.shape[0], self.nx, self.ny).to(device, torch.float32) ) prior_sat[:, 1:, :, :] = sat[:, :-1, :, :] dsw = sat - prior_sat # ds dsw = torch.clip(dsw, 0.001, None) S = torch.div( torch.sub(prior_sat, self.SWI, alpha=1), (1 - self.SWI - self.SWR) ) # Pressure equation Loss Mw = torch.divide(torch.square(S), (self.UW * self.BW)) # Water mobility Mo = torch.div( torch.square(torch.sub(torch.ones(S.shape, device=u.device), S)), (self.UO * self.BO), ) krw = torch.square(S) kroil = torch.square(torch.sub(torch.ones(S.shape, device=u.device), S)) Mt = Mw + Mo a1 = torch.mul(Mt, a) # overall Effective permeability a1water = torch.mul(Mw, a) # water Effective permeability # compute first dffrential gulpa = [] gulp2a = [] for m in range(sat.shape[0]): # Batch inn_now = pressure[m, :, :, :][:, None, :, :] dudx_fdma = dx( inn_now, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dudy_fdma = dx( inn_now, dx=dxf, channel=0, dim=1, order=1, padding="replication" ) gulpa.append(dudx_fdma) gulp2a.append(dudy_fdma) dudx_fdm = torch.stack(gulpa, 0)[:, :, 0, :, :] dudy_fdm = torch.stack(gulp2a, 0)[:, :, 0, :, :] # Compute second diffrential gulpa = [] gulp2a = [] for m in range(sat.shape[0]): # Batch inn_now = pressure[m, :, :, :][:, None, :, :] dudx_fdma = ddx( inn_now, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dudy_fdma = ddx( inn_now, dx=dxf, channel=0, dim=1, order=1, padding="replication" ) gulpa.append(dudx_fdma) gulp2a.append(dudy_fdma) dduddx_fdm = torch.stack(gulpa, 0)[:, :, 0, :, :] dduddy_fdm = torch.stack(gulp2a, 0)[:, :, 0, :, :] inn_now2 = a1 dcdx = dx( inn_now2, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dcdy = dx( inn_now2, dx=dxf, channel=0, dim=1, order=1, padding="replication" ) darcy_pressure = ( fin + (dcdx * dudx_fdm) + (a1 * dduddx_fdm) + (dcdy * dudy_fdm) + (a1 * dduddy_fdm) ) # Zero outer boundary # darcy_pressure = F.pad(darcy_pressure[:, :, 2:-2, 2:-2], [2, 2, 2, 2], "constant", 0) darcy_pressure = dxf * darcy_pressure * 1e-7 p_loss = darcy_pressure # Saruration equation loss dudx = dudx_fdm dudy = dudy_fdm dduddx = dduddx_fdm dduddy = dduddy_fdm inn_now2 = a1water dadx = dx( inn_now2, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dady = dx( inn_now2, dx=dxf, channel=0, dim=1, order=1, padding="replication" ) flux = ( (dadx * dudx) + (a1water * dduddx) + (dady * dudy) + (a1water * dduddy) ) fifth = poro * (dsw / dta) toge = flux + finusew darcy_saturation = fifth - toge # Zero outer boundary # darcy_saturation = F.pad(darcy_saturation[:, :, 2:-2, 2:-2], [2, 2, 2, 2], "constant", 0) darcy_saturation = dxf * darcy_saturation * 1e-7 s_loss = darcy_saturation # Slower but more accurate implementation elif self.approach == 2: u = u * self.pini_alt pini = pini * self.pini_alt # Pressure equation Loss fin = fin * self.UIR finwater = finwater * self.UIR cuda = 0 device = torch.device( f"cuda:{cuda}" if torch.cuda.is_available() else "cpu" ) # print(pressurey.shape) p_loss = torch.zeros_like(u).to(device, torch.float32) s_loss = torch.zeros_like(u).to(device, torch.float32) # print(sat.shape) # output_var = dict() for zig in range(sat.shape[0]): for count in range(sat.shape[1]): if count == 0: prior_sat = sini[zig, 0, :, :][None, None, :, :] prior_pressure = pini[zig, 0, :, :][None, None, :, :] else: prior_sat = sat[zig, (count - 1), :, :][None, None, :, :] prior_pressure = u[zig, count - 1, :, :][None, None, :, :] pressure = u[zig, count, :, :][None, None, :, :] water_sat = sat[zig, count, :, :][None, None, :, :] finuse = fin a = perm[zig, 0, :, :][None, None, :, :] v_min, v_max = self.LUB, self.HUB new_min, new_max = self.aay, self.bby m = (new_max - new_min) / (v_max - v_min) b = new_min - m * v_min a = m * a + b S = torch.div( torch.sub(prior_sat, self.SWI, alpha=1), (1 - self.SWI - self.SWR), ) # Pressure equation Loss Mw = torch.divide( torch.square(S), (self.UW * self.BW) ) # Water mobility Mo = torch.div( torch.square( torch.sub(torch.ones(S.shape, device=u.device), S) ), (self.UO * self.BO), ) Mt = Mw + Mo a1 = torch.mul(Mt, a) # Effective permeability ua = pressure a2 = a1 dyf = 1.0 / u.shape[3] # FDM gradients dudx_fdm = dx( ua, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dudy_fdm = dx( ua, dx=dyf, channel=0, dim=1, order=1, padding="replication" ) dduddx_fdm = ddx( ua, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dduddy_fdm = ddx( ua, dx=dyf, channel=0, dim=1, order=1, padding="replication" ) dcdx = dx( a2, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dcdy = dx( a2, dx=dyf, channel=0, dim=1, order=1, padding="replication" ) # compute darcy equation darcy_pressure = ( finuse[zig, 0, :, :][None, None, :, :] + (dcdx * dudx_fdm) + (a2 * dduddx_fdm) + (dcdy * dudy_fdm) + (a2 * dduddy_fdm) ) # Zero outer boundary # darcy_pressure = F.pad(darcy_pressure[:, :, 2:-2, 2:-2], [2, 2, 2, 2], "constant", 0) darcy_pressure = dxf * darcy_pressure * 1e-7 p_loss[zig, count, :, :] = darcy_pressure # output_var["darcy_pressure"] = torch.mean(p_loss,dim = 0)[None,:,:,:] # Saturation equation Loss finuse = finwater[zig, 0, :, :][None, None, :, :] dsw = water_sat - prior_sat dsw = torch.clip(dsw, 0.001, None) dta = dtin[zig, 0, :, :][None, None, :, :] Mw = torch.divide( torch.square(S), (self.UW * self.BW) ) # Water mobility Mt = Mw a1 = torch.mul(Mt, a) # Effective permeability to water ua = pressure a2 = a1 dudx = dx( ua, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dudy = dx( ua, dx=dyf, channel=0, dim=1, order=1, padding="replication" ) dduddx = ddx( ua, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dduddy = ddx( ua, dx=dyf, channel=0, dim=1, order=1, padding="replication" ) dadx = dx( a2, dx=dxf, channel=0, dim=0, order=1, padding="replication" ) dady = dx( a2, dx=dyf, channel=0, dim=1, order=1, padding="replication" ) flux = (dadx * dudx) + (a2 * dduddx) + (dady * dudy) + (a2 * dduddy) # flux = flux[:,0,:,:] # temp = dsw_dt # fourth = poro * CFW * prior_sat * (dsp/dta) fifth = poro[zig, 0, :, :][None, None, :, :] * (dsw / dta) toge = flux + finuse darcy_saturation = fifth - toge # Zero outer boundary # darcy_saturation = F.pad(darcy_saturation[:, :, 2:-2, 2:-2], [2, 2, 2, 2], "constant", 0) darcy_saturation = dxf * darcy_saturation * 1e-7 # print(darcy_saturation.shape) s_loss[zig, count, :, :] = darcy_saturation output_var = {"pressured": p_loss, "saturationd": s_loss} return output_var # [pde-loss] @modulus.sym.main(config_path="conf", config_name="config_PINO") def run(cfg: ModulusConfig) -> None: print("") print("------------------------------------------------------------------") print("") print("\n") print("|-----------------------------------------------------------------|") print("| TRAIN THE MODEL USING A 2D PHYSICS DRIVEN AFNO APPROACH: |") print("|-----------------------------------------------------------------|") print("") oldfolder = os.getcwd() os.chdir(oldfolder) default = None while True: default = int( input("Select 1 = use default values | 2 = Use user defined values \n") ) if (default > 2) or (default < 1): # raise SyntaxError('please select value between 1-2') print("") print("please try again and select value between 1-2") else: break if not os.path.exists(to_absolute_path("../PACKETS")): os.makedirs(to_absolute_path("../PACKETS")) else: pass if default == 1: approach = 1 else: approach = None while True: print("Remark: Option 3 is not fully computed") approach = int( input( "Select computation of spatial gradients -\n\ 1 = Approximate and fast computation\n\ 2 = Exact but slighly slower computation using FDM\n\ 3 = Exact gradient using FNO\n: " ) ) if (approach > 3) or (approach < 1): # raise SyntaxError('please select value between 1-2') print("") print("please try again and select value between 1-3") else: break # Varaibles needed for NVRS # Varaibles needed for NVRS nx = cfg.custom.NVRS.nx ny = cfg.custom.NVRS.ny nz = cfg.custom.NVRS.nz BO = cfg.custom.NVRS.BO # oil formation volume factor BW = cfg.custom.NVRS.BW # Water formation volume factor UW = cfg.custom.NVRS.UW # water viscosity in cP UO = cfg.custom.NVRS.UO # oil viscosity in cP DX = cfg.custom.NVRS.DX # size of pixel in x direction DY = cfg.custom.NVRS.DY # sixze of pixel in y direction DZ = cfg.custom.NVRS.DZ # sizze of pixel in z direction DX = cp.float32(DX) DY = cp.float32(DY) UW = cp.float32(UW) # water viscosity in cP UO = cp.float32(UO) # oil viscosity in cP SWI = cp.float32(cfg.custom.NVRS.SWI) SWR = cp.float32(cfg.custom.NVRS.SWR) CFO = cp.float32(cfg.custom.NVRS.CFO) # oil compressibility in 1/psi IWSw = cfg.custom.NVRS.IWSw # initial water saturation pini_alt = cfg.custom.NVRS.pini_alt P1 = cp.float32(pini_alt) # Bubble point pressure psia PB = P1 mpor = cfg.custom.NVRS.mpor hpor = cfg.custom.NVRS.hpor # minimum and maximum porosity BW = cp.float32(BW) # Water formation volume factor BO = cp.float32(BO) # Oil formation volume factor PATM = cp.float32(cfg.custom.NVRS.PATM) # Atmospheric pressure in psi # training LUB = cfg.custom.NVRS.LUB HUB = cfg.custom.NVRS.HUB # Permeability rescale aay, bby = cfg.custom.NVRS.aay, cfg.custom.NVRS.bby # Permeability range mD Low_K, High_K = aay, bby batch_size = cfg.custom.NVRS.batch_size #'size of simulated labelled data to run' timmee = ( cfg.custom.NVRS.timmee ) # float(input ('Enter the time step interval duration for simulation (days): ')) max_t = ( cfg.custom.NVRS.max_t ) # float(input ('Enter the maximum time in days for simulation(days): ')) MAXZ = cfg.custom.NVRS.MAXZ # reference maximum time in days of simulation steppi = int(max_t / timmee) factorr = cfg.custom.NVRS.factorr # from [0 1] excluding the limits for PermZ LIR = cfg.custom.NVRS.LIR # lower injection rate UIR = cfg.custom.NVRS.UIR # uppwer injection rate input_channel = ( cfg.custom.NVRS.input_channel ) # [Perm, Q,QW,Phi,dt, initial_pressure, initial_water_sat] injectors = cfg.custom.WELLSPECS.water_injector_wells producers = cfg.custom.WELLSPECS.producer_wells N_injw = len(cfg.custom.WELLSPECS.water_injector_wells) # Number of water injectors N_pr = len(cfg.custom.WELLSPECS.producer_wells) # Number of producers # tc2 = Equivalent_time(timmee,2100,timmee,max_t) tc2 = Equivalent_time(timmee, MAXZ, timmee, max_t) dt = np.diff(tc2)[0] # Time-step bb = os.path.isfile(to_absolute_path("../PACKETS/Training4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1I-27_S53ORRFB_hIN_41r3Ntc6PpOE40", to_absolute_path("../PACKETS/Training4.mat"), ) print("...Downlaod completed.......") print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Training4.mat")) X_data1 = matt["INPUT"] data_use1 = matt["OUTPUT"] else: print("Load simulated labelled training data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Training4.mat")) X_data1 = matt["INPUT"] data_use1 = matt["OUTPUT"] bb = os.path.isfile(to_absolute_path("../PACKETS/Test4.mat")) if bb == False: print("....Downloading Please hold.........") download_file_from_google_drive( "1G4Cvg8eIObyBK0eoo7iX-0hhMTnpJktj", to_absolute_path("../PACKETS/Test4.mat"), ) print("...Downlaod completed.......") print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data2 = matt["INPUT"] data_use2 = matt["OUTPUT"] else: print("Load simulated labelled test data from MAT file") matt = sio.loadmat(to_absolute_path("../PACKETS/Test4.mat")) X_data2 = matt["INPUT"] data_use2 = matt["OUTPUT"] cPerm = np.zeros((X_data1.shape[0], 1, nx, ny)) # Permeability cQ = np.zeros((X_data1.shape[0], 1, nx, ny)) # Overall source/sink term cQw = np.zeros((X_data1.shape[0], 1, nx, ny)) # Sink term cPhi = np.zeros((X_data1.shape[0], 1, nx, ny)) # Porosity cTime = np.zeros((X_data1.shape[0], 1, nx, ny)) # Time index cPini = np.zeros((X_data1.shape[0], 1, nx, ny)) # Initial pressure cSini = np.zeros((X_data1.shape[0], 1, nx, ny)) # Initial water saturation cPress = np.zeros((X_data1.shape[0], steppi, nx, ny)) # Pressure cSat = np.zeros((X_data1.shape[0], steppi, nx, ny)) # Water saturation for kk in range(X_data1.shape[0]): perm = X_data1[kk, 0, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPerm[kk, :, :, :] = permin perm = X_data1[kk, 1, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQ[kk, :, :, :] = permin perm = X_data1[kk, 2, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQw[kk, :, :, :] = permin perm = X_data1[kk, 3, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPhi[kk, :, :, :] = permin perm = X_data1[kk, 4, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cTime[kk, :, :, :] = permin perm = X_data1[kk, 5, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPini[kk, :, :, :] = permin perm = X_data1[kk, 6, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cSini[kk, :, :, :] = permin perm = data_use1[kk, :steppi, :, :] cPress[kk, :, :, :] = perm # np.clip(perm ,1/pini_alt,1.) perm = data_use1[kk, steppi:, :, :] cSat[kk, :, :, :] = perm sio.savemat( to_absolute_path("../PACKETS/simulationstrain.mat"), { "perm": cPerm, "Q": cQ, "Qw": cQw, "Phi": cPhi, "Time": cTime, "Pini": cPini, "Swini": cSini, "pressure": cPress, "water_sat": cSat, }, ) preprocess_FNO_mat(to_absolute_path("../PACKETS/simulationstrain.mat")) cPerm = np.zeros((X_data2.shape[0], 1, nx, ny)) # Permeability cQ = np.zeros((X_data2.shape[0], 1, nx, ny)) # Overall source/sink term cQw = np.zeros((X_data2.shape[0], 1, nx, ny)) # Sink term cPhi = np.zeros((X_data2.shape[0], 1, nx, ny)) # Porosity cTime = np.zeros((X_data2.shape[0], 1, nx, ny)) # Time index cPini = np.zeros((X_data2.shape[0], 1, nx, ny)) # Initial pressure cSini = np.zeros((X_data2.shape[0], 1, nx, ny)) # Initial water saturation cPress = np.zeros((X_data2.shape[0], steppi, nx, ny)) # Pressure cSat = np.zeros((X_data2.shape[0], steppi, nx, ny)) # Water saturation for kk in range(X_data2.shape[0]): perm = X_data2[kk, 0, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPerm[kk, :, :, :] = permin perm = X_data2[kk, 1, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQ[kk, :, :, :] = permin perm = X_data2[kk, 2, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cQw[kk, :, :, :] = permin perm = X_data2[kk, 3, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPhi[kk, :, :, :] = permin perm = X_data2[kk, 4, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cTime[kk, :, :, :] = permin perm = X_data2[kk, 5, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cPini[kk, :, :, :] = permin perm = X_data2[kk, 6, :, :] permin = np.zeros((1, nx, ny)) permin[0, :, :] = perm cSini[kk, :, :, :] = permin perm = data_use2[kk, :steppi, :, :] cPress[kk, :, :, :] = perm # np.clip(perm ,1/pini_alt,1.) perm = data_use2[kk, steppi:, :, :] cSat[kk, :, :, :] = perm sio.savemat( to_absolute_path("../PACKETS/simulationstest.mat"), { "perm": cPerm, "Q": cQ, "Qw": cQw, "Phi": cPhi, "Time": cTime, "Pini": cPini, "Swini": cSini, "pressure": cPress, "water_sat": cSat, }, ) preprocess_FNO_mat(to_absolute_path("../PACKETS/simulationstest.mat")) # load training/ test data # load training/ test data input_keys = [ Key("perm", scale=(3.46327e-01, 3.53179e-01)), Key("Q", scale=(1.94683e-03, 3.70558e-02)), Key("Qw", scale=(2.03866e-03, 3.70199e-02)), Key("Phi", scale=(1.73163e-01, 1.76590e-01)), Key("Time", scale=(1.66667e-02, 7.45058e-09)), Key("Pini", scale=(1.00000e00, 0.00000e00)), Key("Swini", scale=(2.00000e-01, 4.91738e-07)), ] output_keys_pressure = [Key("pressure", scale=(2.87008e-01, 1.85386e-01))] output_keys_saturation = [Key("water_sat", scale=(3.12903e-01, 1.79786e-01))] invar_train, outvar_train_pressure, outvar_train_saturation = load_FNO_dataset2( to_absolute_path("../PACKETS/simulationstrain.hdf5"), [k.name for k in input_keys], [k.name for k in output_keys_pressure], [k.name for k in output_keys_saturation], n_examples=cfg.custom.ntrain, ) invar_test, outvar_test_pressure, outvar_test_saturation = load_FNO_dataset2( to_absolute_path("../PACKETS/simulationstest.hdf5"), [k.name for k in input_keys], [k.name for k in output_keys_pressure], [k.name for k in output_keys_saturation], n_examples=cfg.custom.ntest, ) # add additional constraining values for darcy variable outvar_train_pressure["pressured"] = np.zeros_like( outvar_train_pressure["pressure"] ) outvar_train_saturation["saturationd"] = np.zeros_like( outvar_train_saturation["water_sat"] ) train_dataset_pressure = DictGridDataset(invar_train, outvar_train_pressure) train_dataset_saturation = DictGridDataset(invar_train, outvar_train_saturation) test_dataset_pressure = DictGridDataset(invar_test, outvar_test_pressure) test_dataset_saturation = DictGridDataset(invar_test, outvar_test_saturation) # [init-node] # Define AFNO model for forward model (pressure) afno_pressure = AFNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], [Key("pressure", size=steppi)], (nx, ny), patch_size=3, ) # Define AFNO model for forward model (saturation) afno_saturation = AFNOArch( [ Key("perm", size=1), Key("Q", size=1), Key("Qw", size=1), Key("Phi", size=1), Key("Time", size=1), Key("Pini", size=1), Key("Swini", size=1), ], [Key("water_sat", size=steppi)], (nx, ny), patch_size=3, ) # if approach ==3: # derivatives = [ # Key("pressure", derivatives=[Key("x")]), # Key("pressure", derivatives=[Key("y")]), # Key("pressure", derivatives=[Key("x"), Key("x")]), # Key("pressure", derivatives=[Key("y"), Key("y")]), # ] # afno_pressure.add_pino_gradients( # derivatives=derivatives, # domain_length=[nx, ny], # ) inputs = [ "perm", "Q", "Qw", "Phi", "Time", "Pini", "Swini", "pressure", "water_sat", ] # if approach ==3: # inputs += [ # "pressure__x", # "pressure__y", # ] darcyy = Node( inputs=inputs, outputs=[ "pressured", "saturationd", ], evaluate=Black_oil( UIR, pini_alt, LUB, HUB, aay, bby, SWI, SWR, UW, BW, UO, BO, MAXZ, nx, ny, approach, ), name="Darcy node", ) nodes = ( [darcyy] + [afno_pressure.make_node("afnop_forward_model_pressure", jit=cfg.jit)] + [afno_saturation.make_node("afnop_forward_model_saturation", jit=cfg.jit)] ) # [constraint] # make domain domain = Domain() # add constraints to domain supervised_pressure = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset_pressure, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised_pressure, "supervised_pressure") supervised_saturation = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset_saturation, batch_size=cfg.batch_size.grid, ) domain.add_constraint(supervised_saturation, "supervised_saturation") # [constraint] # add validator # [constraint] # add validator # test_pressure = GridValidator( # nodes, # dataset=test_dataset_pressure, # batch_size=1, # plotter=CustomValidatorPlotterP(timmee,max_t,MAXZ,pini_alt,nx,ny,nz,\ # steppi,tc2,dt,injectors,producers,N_injw,N_pr), # requires_grad=False, # ) test_pressure = GridValidator( nodes, dataset=test_dataset_pressure, batch_size=1, requires_grad=False, ) domain.add_validator(test_pressure, "test_pressure") # test_saturation = GridValidator( # nodes, # dataset=test_dataset_saturation, # batch_size=1, # plotter=CustomValidatorPlotterS(timmee,max_t,MAXZ,pini_alt,nx,ny,nz,\ # steppi,tc2,dt,injectors,producers,N_injw,N_pr), # requires_grad=False, # ) test_saturation = GridValidator( nodes, dataset=test_dataset_saturation, batch_size=1, requires_grad=False, ) domain.add_validator(test_saturation, "test_saturation") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/reservoir_simulation/2D/src/Forward_problem_AFNOP.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Nvidia Finite volume reservoir simulator with flexible solver AMG to solve the pressure and saturation well possed inverse problem Geostatistics packages are also provided @Author: Clement Etienam """ print(".........................IMPORT SOME LIBRARIES.....................") import os import numpy as np def is_available(): """ Check NVIDIA with nvidia-smi command Returning code 0 if no error, it means NVIDIA is installed Other codes mean not installed """ code = os.system("nvidia-smi") return code Yet = is_available() if Yet == 0: print("GPU Available with CUDA") try: import pyamgx except: pyamgx = None import cupy as cp from numba import cuda print(cuda.detect()) # Print the GPU information import tensorflow as tf os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True sess = tf.compat.v1.InteractiveSession(config=config) # import pyamgx from cupyx.scipy.sparse import csr_matrix, spmatrix clementtt = 0 else: print("No GPU Available") import numpy as cp from scipy.sparse import csr_matrix clementtt = 1 import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from sklearn.cluster import MiniBatchKMeans import os.path import torch from scipy import interpolate import multiprocessing import mpslib as mps import numpy.matlib from scipy.spatial.distance import cdist from pyDOE import lhs import matplotlib.colors from matplotlib import cm from shutil import rmtree from kneed import KneeLocator import numpy # from PIL import Image from scipy.fftpack import dct import numpy.matlib import matplotlib.lines as mlines # os.environ['KERAS_BACKEND'] = 'tensorflow' import os.path import time import random import os.path from datetime import timedelta # import dolfin as df import sys from numpy import * import scipy.optimize.lbfgsb as lbfgsb import numpy.linalg from numpy.linalg import norm from scipy.fftpack.realtransforms import idct import numpy.ma as ma from matplotlib.font_manager import FontProperties import logging import os import matplotlib as mpl from FyeldGenerator import generate_field from imresize import * import warnings warnings.filterwarnings("ignore") os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = "0" # I have just 1 GPU from cpuinfo import get_cpu_info # Prints a json string describing the cpu s = get_cpu_info() print("Cpu info") for k, v in s.items(): print(f"\t{k}: {v}") cores = multiprocessing.cpu_count() import math logger = logging.getLogger(__name__) # numpy.random.seed(99) print(" ") print(" This computer has %d cores, which will all be utilised in parallel " % cores) print(" ") print("......................DEFINE SOME FUNCTIONS.....................") def compute_metrics(y_true, y_pred): y_true_mean = np.mean(y_true) TSS = np.sum((y_true - y_true_mean) ** 2) RSS = np.sum((y_true - y_pred) ** 2) R2 = 1 - (RSS / TSS) L2_accuracy = 1 - np.sqrt(RSS) / np.sqrt(TSS) return R2 * 100, L2_accuracy * 100 def Add_marker(plt, XX, YY, locc): """ Function to add marker to given coordinates on a matplotlib plot less Copy code Parameters: plt: a matplotlib.pyplot object to add the markers to XX: a numpy array of X coordinates YY: a numpy array of Y coordinates locc: a numpy array of locations where markers need to be added Return: None """ # iterate through each location for i in range(locc.shape[0]): a = locc[i, :] xloc = int(a[0]) yloc = int(a[1]) # if the location type is 2, add an upward pointing marker if a[2] == 2: plt.scatter( XX.T[xloc - 1, yloc - 1] + 0.5, YY.T[xloc - 1, yloc - 1] + 0.5, s=100, marker="^", color="white", ) # otherwise, add a downward pointing marker else: plt.scatter( XX.T[xloc - 1, yloc - 1] + 0.5, YY.T[xloc - 1, yloc - 1] + 0.5, s=100, marker="v", color="white", ) def check_cupy_sparse_matrix(A): """ Function to check if a matrix is a Cupy sparse matrix and convert it to a CSR matrix if necessary Parameters: A: a sparse matrix Return: A: a CSR matrix """ if not isinstance(A, spmatrix): # Convert the matrix to a csr matrix if it is not already a cupy sparse matrix A = csr_matrix(A) return A def Plot_RSM_percentile(pertoutt, True_mat, Namesz): timezz = True_mat[:, 0].reshape(-1, 1) P10 = pertoutt plt.figure(figsize=(40, 40)) plt.subplot(4, 4, 1) plt.plot(timezz, True_mat[:, 1], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 1], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("BHP(Psia)", fontsize=13) # plt.ylim((0,25000)) plt.title("I1", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 2) plt.plot(timezz, True_mat[:, 2], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 2], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("BHP(Psia)", fontsize=13) # plt.ylim((0,25000)) plt.title("I2", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 3) plt.plot(timezz, True_mat[:, 3], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 3], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("BHP(Psia)", fontsize=13) # plt.ylim((0,25000)) plt.title("I3", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 4) plt.plot(timezz, True_mat[:, 4], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 4], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("BHP(Psia)", fontsize=13) # plt.ylim((0,25000)) plt.title("I4", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 5) plt.plot(timezz, True_mat[:, 5], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 5], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{oil}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P1", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 6) plt.plot(timezz, True_mat[:, 6], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 6], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{oil}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P2", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 7) plt.plot(timezz, True_mat[:, 7], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 7], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{oil}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P3", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 8) plt.plot(timezz, True_mat[:, 8], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 8], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{oil}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P4", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 9) plt.plot(timezz, True_mat[:, 9], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 9], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{water}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P1", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 10) plt.plot(timezz, True_mat[:, 10], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 10], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{water}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P2", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 11) plt.plot(timezz, True_mat[:, 11], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 11], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{water}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P3", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 12) plt.plot(timezz, True_mat[:, 12], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 12], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{water}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P4", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 13) plt.plot(timezz, True_mat[:, 13], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 13], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$WWCT{%}$", fontsize=13) # plt.ylim((0,25000)) plt.title("P1", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 14) plt.plot(timezz, True_mat[:, 14], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 14], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$WWCT{%}$", fontsize=13) # plt.ylim((0,25000)) plt.title("P2", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 15) plt.plot(timezz, True_mat[:, 15], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 15], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$WWCT{%}$", fontsize=13) # plt.ylim((0,25000)) plt.title("P3", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(4, 4, 16) plt.plot(timezz, True_mat[:, 16], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 16], color="blue", lw="2", label="PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$WWCT{%}$", fontsize=13) # plt.ylim((0,25000)) plt.title("P4", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() # os.chdir('RESULTS') plt.savefig( Namesz ) # save as png # preventing the figures from showing # os.chdir(oldfolder) plt.clf() plt.close() def Plot_RSM_percentile2(pertoutt, P12, True_mat, Namesz): timezz = True_mat[:, 0].reshape(-1, 1) P10 = pertoutt plt.figure(figsize=(20, 20)) plt.subplot(3, 4, 1) plt.plot(timezz, True_mat[:, 5], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 5], color="blue", lw="2", label="MAP PINO Model") plt.plot(timezz, P12[:, 5], color="k", lw="2", label="MEAN PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{oil}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P1", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(3, 4, 2) plt.plot(timezz, True_mat[:, 6], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 6], color="blue", lw="2", label="MAP PINO Model") plt.plot(timezz, P12[:, 6], color="k", lw="2", label="MEAN PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{oil}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P2", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(3, 4, 3) plt.plot(timezz, True_mat[:, 7], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 7], color="blue", lw="2", label="MAP PINO Model") plt.plot(timezz, P12[:, 7], color="k", lw="2", label="MEAN PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{oil}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P3", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(3, 4, 4) plt.plot(timezz, True_mat[:, 8], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 8], color="blue", lw="2", label="MAP PINO Model") plt.plot(timezz, P12[:, 8], color="k", lw="2", label="MEAN PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{oil}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P4", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(3, 4, 5) plt.plot(timezz, True_mat[:, 9], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 9], color="blue", lw="2", label="MAP PINO Model") plt.plot(timezz, P12[:, 9], color="k", lw="2", label="MEAN PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{water}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P1", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(3, 4, 6) plt.plot(timezz, True_mat[:, 10], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 10], color="blue", lw="2", label="MAP PINO Model") plt.plot(timezz, P12[:, 10], color="k", lw="2", label="MEAN PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{water}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P2", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(3, 4, 7) plt.plot(timezz, True_mat[:, 11], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 11], color="blue", lw="2", label="MAP PINO Model") plt.plot(timezz, P12[:, 11], color="k", lw="2", label="MEAN PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{water}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P3", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(3, 4, 8) plt.plot(timezz, True_mat[:, 12], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 12], color="blue", lw="2", label="MAP PINO Model") plt.plot(timezz, P12[:, 12], color="k", lw="2", label="MEAN PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$Q_{water}(bbl/day)$", fontsize=13) # plt.ylim((0,25000)) plt.title("P4", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(3, 4, 9) plt.plot(timezz, True_mat[:, 13], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 13], color="blue", lw="2", label="MAP PINO Model") plt.plot(timezz, P12[:, 13], color="k", lw="2", label="MEAN PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$WWCT{%}$", fontsize=13) # plt.ylim((0,25000)) plt.title("P1", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(3, 4, 10) plt.plot(timezz, True_mat[:, 14], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 14], color="blue", lw="2", label="MAP PINO Model") plt.plot(timezz, P12[:, 14], color="k", lw="2", label="MEAN PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$WWCT{%}$", fontsize=13) # plt.ylim((0,25000)) plt.title("P2", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(3, 4, 11) plt.plot(timezz, True_mat[:, 15], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 15], color="blue", lw="2", label=" MAP PINO Model") plt.plot(timezz, P12[:, 15], color="k", lw="2", label="MEAN PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$WWCT{%}$", fontsize=13) # plt.ylim((0,25000)) plt.title("P3", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() plt.subplot(3, 4, 12) plt.plot(timezz, True_mat[:, 16], color="red", lw="2", label="model") plt.plot(timezz, P10[:, 16], color="blue", lw="2", label="MAP PINO Model") plt.plot(timezz, P12[:, 16], color="k", lw="2", label="MEAN PINO Model") plt.xlabel("Time (days)", fontsize=13) plt.ylabel("$WWCT{%}$", fontsize=13) # plt.ylim((0,25000)) plt.title("P4", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) plt.legend() # os.chdir('RESULTS') plt.savefig( Namesz ) # save as png # preventing the figures from showing # os.chdir(oldfolder) plt.clf() plt.close() def Plot_performance( PINN, PINN2, trueF, nx, ny, namet, UIR, itt, dt, MAXZ, pini_alt, steppi, wells ): look = (PINN[itt, :, :]) * pini_alt look_sat = PINN2[itt, :, :] look_oil = 1 - look_sat lookf = (trueF[itt, :, :]) * pini_alt lookf_sat = trueF[itt + steppi, :, :] lookf_oil = 1 - lookf_sat diff1 = abs(look - lookf) diff1_wat = abs(look_sat - lookf_sat) diff1_oil = abs(look_oil - lookf_oil) XX, YY = np.meshgrid(np.arange(nx), np.arange(ny)) plt.figure(figsize=(12, 12)) plt.subplot(3, 3, 1) plt.pcolormesh(XX.T, YY.T, look, cmap="jet") plt.title("Pressure PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim(np.min(np.reshape(lookf, (-1,))), np.max(np.reshape(lookf, (-1,)))) cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 2) plt.pcolormesh(XX.T, YY.T, lookf, cmap="jet") plt.title("Pressure CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 3) plt.pcolormesh(XX.T, YY.T, diff1, cmap="jet") plt.title("Pressure (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" Pressure (psia)", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 4) plt.pcolormesh(XX.T, YY.T, look_sat, cmap="jet") plt.title("water_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim(np.min(np.reshape(lookf_sat, (-1,))), np.max(np.reshape(lookf_sat, (-1,)))) cbar1.ax.set_ylabel(" water_sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 5) plt.pcolormesh(XX.T, YY.T, lookf_sat, cmap="jet") plt.title("water_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 6) plt.pcolormesh(XX.T, YY.T, diff1_wat, cmap="jet") plt.title("water_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" water sat ", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 7) plt.pcolormesh(XX.T, YY.T, look_oil, cmap="jet") plt.title("oil_sat PINO", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() plt.clim(np.min(np.reshape(lookf_oil, (-1,))), np.max(np.reshape(lookf_oil, (-1,)))) cbar1.ax.set_ylabel(" oil_sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 8) plt.pcolormesh(XX.T, YY.T, lookf_oil, cmap="jet") plt.title("oil_sat CFD", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat", fontsize=13) Add_marker(plt, XX, YY, wells) plt.subplot(3, 3, 9) plt.pcolormesh(XX.T, YY.T, diff1_oil, cmap="jet") plt.title("oil_sat (CFD - PINO)", fontsize=13) plt.ylabel("Y", fontsize=13) plt.xlabel("X", fontsize=13) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) cbar1 = plt.colorbar() cbar1.ax.set_ylabel(" oil sat ", fontsize=13) Add_marker(plt, XX, YY, wells) plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * dt * MAXZ)) + " days" plt.suptitle(tita, fontsize=16) name = namet + str(int(itt)) + ".png" plt.savefig(name) # plt.show() plt.clf() # Geostatistics module def intial_ensemble(Nx, Ny, Nz, N, permx): """ Geostatistics module Function to generate an initial ensemble of permeability fields using Multiple-Point Statistics (MPS) Parameters: Nx: an integer representing the number of grid cells in the x-direction Ny: an integer representing the number of grid cells in the y-direction Nz: an integer representing the number of grid cells in the z-direction N: an integer representing the number of realizations in the ensemble permx: a numpy array representing the permeability field TI Return: ensemble: a numpy array representing the ensemble of permeability fields """ # import MPSlib O = mps.mpslib() # set the MPS method to 'mps_snesim_tree' O = mps.mpslib(method="mps_snesim_tree") # set the number of realizations to N O.par["n_real"] = N # set the permeability field TI k = permx kjenn = k O.ti = kjenn # set the simulation grid size O.par["simulation_grid_size"] = (Ny, Nx, Nz) # run MPS simulation in parallel O.run_parallel() # get the ensemble of realizations ensemble = O.sim # reformat the ensemble ens = [] for kk in range(N): temp = np.reshape(ensemble[kk], (-1, 1), "F") ens.append(temp) ensemble = np.hstack(ens) # remove temporary files generated during MPS simulation from glob import glob for f3 in glob("thread*"): rmtree(f3) for f4 in glob("*mps_snesim_tree_*"): os.remove(f4) for f4 in glob("*ti_thread_*"): os.remove(f4) return ensemble def initial_ensemble_gaussian(Nx, Ny, Nz, N, minn, maxx): """ Function to generate an initial ensemble of permeability fields using Gaussian distribution Parameters: Nx: an integer representing the number of grid cells in the x-direction Ny: an integer representing the number of grid cells in the y-direction Nz: an integer representing the number of grid cells in the z-direction N: an integer representing the number of realizations in the ensemble minn: a float representing the minimum value of the permeability field maxx: a float representing the maximum value of the permeability field Return: fensemble: a numpy array representing the ensemble of permeability fields """ shape = (Nx, Ny) distrib = "gaussian" fensemble = np.zeros((Nx * Ny * Nz, N)) for k in range(N): fout = [] # generate a 3D field for j in range(Nz): field = generate_field(distrib, Pkgen(3), shape) field = imresize(field, output_shape=shape) foo = np.reshape(field, (-1, 1), "F") fout.append(foo) fout = np.vstack(fout) # scale the field to the desired range clfy = MinMaxScaler(feature_range=(minn, maxx)) (clfy.fit(fout)) fout = clfy.transform(fout) fensemble[:, k] = np.ravel(fout) return fensemble def Pkgen(n): def Pk(k): return np.power(k, -n) return Pk # Draw samples from a normal distribution def distrib(shape): a = np.random.normal(loc=0, scale=1, size=shape) b = np.random.normal(loc=0, scale=1, size=shape) return a + 1j * b def Peaceman_well( inn, ooutp, oouts, MAXZ, mazw, s1, LUB, HUB, aay, bby, DX, steppi, pini_alt, SWI, SWR, UW, BW, DZ, rwell, skin, UO, BO, pwf_producer, dt, N_inj, N_pr, nz, ): """ Calculates the pressure and flow rates for an injection and production well using the Peaceman model. Args: - inn (dictionary): dictionary containing the input parameters (including permeability and injection/production rates) - ooutp (numpy array): 4D numpy array containing pressure values for each time step and grid cell - oouts (numpy array): 4D numpy array containing saturation values for each time step and grid cell - MAXZ (float): length of the reservoir in the z-direction - mazw (float): the injection/production well location in the z-direction - s1 (float): the length of the computational domain in the z-direction - LUB (float): the upper bound of the rescaled permeability - HUB (float): the lower bound of the rescaled permeability - aay (float): the upper bound of the original permeability - bby (float): the lower bound of the original permeability - DX (float): the cell size in the x-direction - steppi (int): number of time steps - pini_alt (float): the initial pressure - SWI (float): the initial water saturation - SWR (float): the residual water saturation - UW (float): the viscosity of water - BW (float): the formation volume factor of water - DZ (float): the cell thickness in the z-direction - rwell (float): the well radius - skin (float): the skin factor - UO (float): the viscosity of oil - BO (float): the formation volume factor of oil - pwf_producer (float): the desired pressure at the producer well - dt (float): the time step - N_inj (int): the number of injection wells - N_pr (int): the number of production wells - nz (int): the number of cells in the z-direction Returns: - overr (numpy array): an array containing the time and flow rates (in BHP, qoil, qwater, and wct) for each time step """ Injector_location = np.where( inn["Qw"][0, 0, :, :].detach().cpu().numpy().ravel() > 0 )[0] producer_location = np.where( inn["Q"][0, 0, :, :].detach().cpu().numpy().ravel() < 0 )[0] PERM = rescale_linear_pytorch_numpy( np.reshape(inn["perm"][0, 0, :, :].detach().cpu().numpy(), (-1,), "F"), LUB, HUB, aay, bby, ) kuse_inj = PERM[Injector_location] kuse_prod = PERM[producer_location] RE = 0.2 * DX Baa = [] Timz = [] for kk in range(steppi): Ptito = ooutp[:, kk, :, :] Stito = oouts[:, kk, :, :] # average_pressure = np.mean(Ptito.ravel()) * pini_alt average_pressure = (Ptito.ravel()[producer_location]) * pini_alt p_inj = (Ptito.ravel()[Injector_location]) * pini_alt # p_prod = (Ptito.ravel()[producer_location] ) * pini_alt S = Stito.ravel().reshape(-1, 1) Sout = (S - SWI) / (1 - SWI - SWR) Krw = Sout**2 # Water mobility Kro = (1 - Sout) ** 2 # Oil mobility krwuse = Krw.ravel()[Injector_location] krwusep = Krw.ravel()[producer_location] krouse = Kro.ravel()[producer_location] up = UW * BW down = 2 * np.pi * kuse_inj * krwuse * DZ right = np.log(RE / rwell) + skin temp = (up / down) * right # temp[temp ==-inf] = 0 Pwf = p_inj + temp Pwf = np.abs(Pwf) BHP = np.sum(np.reshape(Pwf, (-1, N_inj), "C"), axis=0) / nz up = UO * BO down = 2 * np.pi * kuse_prod * krouse * DZ right = np.log(RE / rwell) + skin J = down / (up * right) # drawdown = p_prod - pwf_producer drawdown = average_pressure - pwf_producer qoil = np.abs(-(drawdown * J)) qoil = np.sum(np.reshape(qoil, (-1, N_pr), "C"), axis=0) / nz up = UW * BW down = 2 * np.pi * kuse_prod * krwusep * DZ right = np.log(RE / rwell) + skin J = down / (up * right) # drawdown = p_prod - pwf_producer drawdown = average_pressure - pwf_producer qwater = np.abs(-(drawdown * J)) qwater = np.sum(np.reshape(qwater, (-1, N_pr), "C"), axis=0) / nz # qwater[qwater==0] = 0 # water cut wct = (qwater / (qwater + qoil)) * np.float32(100) timz = ((kk + 1) * dt) * MAXZ # timz = timz.reshape(1,1) qs = [BHP, qoil, qwater, wct] # print(qs.shape) qs = np.asarray(qs) qs = qs.reshape(1, -1) Baa.append(qs) Timz.append(timz) Baa = np.vstack(Baa) Timz = np.vstack(Timz) overr = np.hstack([Timz, Baa]) return overr # np.vstack(B) def Peaceman_well2( inn, ooutp, oouts, MAXZ, mazw, s1, LUB, HUB, aay, bby, DX, steppi, pini_alt, SWI, SWR, UW, BW, DZ, rwell, skin, UO, BO, pwf_producer, dt, N_inj, N_pr, nz, ): """ Calculates the pressure and flow rates for an injection and production well using the Peaceman model. Args: - inn (dictionary): dictionary containing the input parameters (including permeability and injection/production rates) - ooutp (numpy array): 4D numpy array containing pressure values for each time step and grid cell - oouts (numpy array): 4D numpy array containing saturation values for each time step and grid cell - MAXZ (float): length of the reservoir in the z-direction - mazw (float): the injection/production well location in the z-direction - s1 (float): the length of the computational domain in the z-direction - LUB (float): the upper bound of the rescaled permeability - HUB (float): the lower bound of the rescaled permeability - aay (float): the upper bound of the original permeability - bby (float): the lower bound of the original permeability - DX (float): the cell size in the x-direction - steppi (int): number of time steps - pini_alt (float): the initial pressure - SWI (float): the initial water saturation - SWR (float): the residual water saturation - UW (float): the viscosity of water - BW (float): the formation volume factor of water - DZ (float): the cell thickness in the z-direction - rwell (float): the well radius - skin (float): the skin factor - UO (float): the viscosity of oil - BO (float): the formation volume factor of oil - pwf_producer (float): the desired pressure at the producer well - dt (float): the time step - N_inj (int): the number of injection wells - N_pr (int): the number of production wells - nz (int): the number of cells in the z-direction Returns: - overr (numpy array): an array containing the time and flow rates (in BHP, qoil, qwater, and wct) for each time step """ Injector_location = np.where( inn["Qw"][0, 0, :, :].detach().cpu().numpy().ravel() > 0 )[0] producer_location = np.where( inn["Q"][0, 0, :, :].detach().cpu().numpy().ravel() < 0 )[0] # PERM = np.reshape(inn["perm"][0,0,:,:].detach().cpu().numpy(),(-1,),'F') PERM = rescale_linear_pytorch_numpy( np.reshape(inn["perm"][0, 0, :, :].detach().cpu().numpy(), (-1,), "F"), LUB, HUB, aay, bby, ) kuse_inj = PERM[Injector_location] kuse_prod = PERM[producer_location] RE = 0.2 * DX Baa = [] Timz = [] for kk in range(steppi): Ptito = ooutp[:, kk, :, :] Stito = oouts[:, kk, :, :] # average_pressure = np.mean(Ptito.ravel()) * pini_alt average_pressure = (Ptito.ravel()[producer_location]) * pini_alt p_inj = (Ptito.ravel()[Injector_location]) * pini_alt # p_prod = (Ptito.ravel()[producer_location] ) * pini_alt S = Stito.ravel().reshape(-1, 1) Sout = (S - SWI) / (1 - SWI - SWR) Krw = Sout**2 # Water mobility Kro = (1 - Sout) ** 2 # Oil mobility krwuse = Krw.ravel()[Injector_location] krwusep = Krw.ravel()[producer_location] krouse = Kro.ravel()[producer_location] up = UW * BW down = 2 * np.pi * kuse_inj * krwuse * DZ right = np.log(RE / rwell) + skin temp = (up / down) * right # temp[temp ==-inf] = 0 Pwf = p_inj + temp Pwf = np.abs(Pwf) BHP = np.sum(np.reshape(Pwf, (-1, N_inj), "C"), axis=0) / nz up = UO * BO down = 2 * np.pi * kuse_prod * krouse * DZ right = np.log(RE / rwell) + skin J = down / (up * right) # drawdown = p_prod - pwf_producer drawdown = average_pressure - pwf_producer qoil = np.abs(-(drawdown * J)) qoil = np.sum(np.reshape(qoil, (-1, N_pr), "C"), axis=0) / nz up = UW * BW down = 2 * np.pi * kuse_prod * krwusep * DZ right = np.log(RE / rwell) + skin J = down / (up * right) # drawdown = p_prod - pwf_producer drawdown = average_pressure - pwf_producer qwater = np.abs(-(drawdown * J)) qwater = np.sum(np.reshape(qwater, (-1, N_pr), "C"), axis=0) / nz # qwater[qwater==0] = 0 # water cut wct = (qwater / (qwater + qoil)) * np.float32(100) timz = ((kk + 1) * dt) * MAXZ # timz = timz.reshape(1,1) qs = [BHP, qoil, qwater, wct] # print(qs.shape) qs = np.asarray(qs) qs = qs.reshape(1, -1) Baa.append(qs) Timz.append(timz) Baa = np.vstack(Baa) Timz = np.vstack(Timz) overr = np.hstack([Timz, Baa]) return overr # np.vstack(B) # Points generation def test_points_gen(n_test, nder, interval=(-1.0, 1.0), distrib="random", **kwargs): return { "random": lambda n_test, nder: (interval[1] - interval[0]) * np.random.rand(n_test, nder) + interval[0], "lhs": lambda n_test, nder: (interval[1] - interval[0]) * lhs(nder, samples=n_test, **kwargs) + interval[0], }[distrib.lower()](n_test, nder) def getoptimumk(X): distortions = [] Kss = range(1, 10) for k in Kss: kmeanModel = MiniBatchKMeans(n_clusters=k).fit(X) kmeanModel.fit(X) distortions.append( sum(np.min(cdist(X, kmeanModel.cluster_centers_, "euclidean"), axis=1)) / X.shape[0] ) myarray = np.array(distortions) knn = KneeLocator( Kss, myarray, curve="convex", direction="decreasing", interp_method="interp1d" ) kuse = knn.knee # Plot the elbow plt.figure(figsize=(10, 10)) plt.plot(Kss, distortions, "bx-") plt.xlabel("cluster size") plt.ylabel("Distortion") plt.title("optimal n_clusters for machine") plt.savefig("machine_elbow.png") plt.clf() return kuse class LpLoss(object): """ loss function with rel/abs Lp loss """ def __init__(self, d=2, p=2, size_average=True, reduction=True): super(LpLoss, self).__init__() # Dimension and Lp-norm type are postive assert d > 0 and p > 0 self.d = d self.p = p self.reduction = reduction self.size_average = size_average def abs(self, x, y): num_examples = x.size()[0] # Assume uniform mesh h = 1.0 / (x.size()[1] - 1.0) all_norms = (h ** (self.d / self.p)) * torch.norm( x.view(num_examples, -1) - y.view(num_examples, -1), self.p, 1 ) if self.reduction: if self.size_average: return torch.mean(all_norms) else: return torch.sum(all_norms) return all_norms def rel(self, x, y): num_examples = x.size()[0] diff_norms = torch.norm( x.reshape(num_examples, -1) - y.reshape(num_examples, -1), self.p, 1 ) y_norms = torch.norm(y.reshape(num_examples, -1), self.p, 1) if self.reduction: if self.size_average: return torch.mean(diff_norms / y_norms) else: return torch.sum(diff_norms / y_norms) return diff_norms / y_norms def __call__(self, x, y): return self.rel(x, y) # def H(y,t0=0): # ''' # Step fn with step at t0 # ''' # h = np.zeros_like(y) # args = tuple([slice(0,y.shape[i]) for i in y.ndim]) def smoothn( y, nS0=10, axis=None, smoothOrder=2.0, sd=None, verbose=False, s0=None, z0=None, isrobust=False, W=None, s=None, MaxIter=100, TolZ=1e-3, weightstr="bisquare", ): if type(y) == ma.core.MaskedArray: # masked array # is_masked = True mask = y.mask y = np.array(y) y[mask] = 0.0 if np.any(W != None): W = np.array(W) W[mask] = 0.0 if np.any(sd != None): W = np.array(1.0 / sd**2) W[mask] = 0.0 sd = None y[mask] = np.nan if np.any(sd != None): sd_ = np.array(sd) mask = sd > 0.0 W = np.zeros_like(sd_) W[mask] = 1.0 / sd_[mask] ** 2 sd = None if np.any(W != None): W = W / W.max() sizy = y.shape # sort axis if axis == None: axis = tuple(np.arange(y.ndim)) noe = y.size # number of elements if noe < 2: z = y exitflag = 0 Wtot = 0 return z, s, exitflag, Wtot # --- # Smoothness parameter and weights # if s != None: # s = [] if np.all(W == None): W = np.ones(sizy) # if z0 == None: # z0 = y.copy() # --- # "Weighting function" criterion weightstr = weightstr.lower() # --- # Weights. Zero weights are assigned to not finite values (Inf or NaN), # (Inf/NaN values = missing data). IsFinite = np.array(np.isfinite(y)).astype(bool) nof = IsFinite.sum() # number of finite elements W = W * IsFinite if any(W < 0): raise RuntimeError("smoothn:NegativeWeights", "Weights must all be >=0") else: # W = W/np.max(W) pass # --- # Weighted or missing data? isweighted = any(W != 1) # --- # Robust smoothing? # isrobust # --- # Automatic smoothing? isauto = not s # --- # DCTN and IDCTN are required try: from scipy.fftpack.realtransforms import dct, idct except: z = y exitflag = -1 Wtot = 0 return z, s, exitflag, Wtot ## Creation of the Lambda tensor # --- # Lambda contains the eingenvalues of the difference matrix used in this # penalized least squares process. axis = tuple(np.array(axis).flatten()) d = y.ndim Lambda = np.zeros(sizy) for i in axis: # create a 1 x d array (so e.g. [1,1] for a 2D case siz0 = np.ones((1, y.ndim))[0].astype(int) siz0[i] = sizy[i] # cos(pi*(reshape(1:sizy(i),siz0)-1)/sizy(i))) # (arange(1,sizy[i]+1).reshape(siz0) - 1.)/sizy[i] Lambda = Lambda + ( np.cos(np.pi * (np.arange(1, sizy[i] + 1) - 1.0) / sizy[i]).reshape(siz0) ) # else: # Lambda = Lambda + siz0 Lambda = -2.0 * (len(axis) - Lambda) if not isauto: Gamma = 1.0 / (1 + (s * abs(Lambda)) ** smoothOrder) ## Upper and lower bound for the smoothness parameter # The average leverage (h) is by definition in [0 1]. Weak smoothing occurs # if h is close to 1, while over-smoothing appears when h is near 0. Upper # and lower bounds for h are given to avoid under- or over-smoothing. See # equation relating h to the smoothness parameter (Equation #12 in the # referenced CSDA paper). N = sum(np.array(sizy) != 1) # tensor rank of the y-array hMin = 1e-6 hMax = 0.99 # (h/n)**2 = (1 + a)/( 2 a) # a = 1/(2 (h/n)**2 -1) # where a = sqrt(1 + 16 s) # (a**2 -1)/16 try: sMinBnd = np.sqrt( ( ((1 + np.sqrt(1 + 8 * hMax ** (2.0 / N))) / 4.0 / hMax ** (2.0 / N)) ** 2 - 1 ) / 16.0 ) sMaxBnd = np.sqrt( ( ((1 + np.sqrt(1 + 8 * hMin ** (2.0 / N))) / 4.0 / hMin ** (2.0 / N)) ** 2 - 1 ) / 16.0 ) except: sMinBnd = None sMaxBnd = None ## Initialize before iterating # --- Wtot = W # --- Initial conditions for z if isweighted: # --- With weighted/missing data # An initial guess is provided to ensure faster convergence. For that # purpose, a nearest neighbor interpolation followed by a coarse # smoothing are performed. # --- if z0 != None: # an initial guess (z0) has been provided z = z0 else: z = y # InitialGuess(y,IsFinite); z[~IsFinite] = 0.0 else: z = np.zeros(sizy) # --- z0 = z y[~IsFinite] = 0 # arbitrary values for missing y-data # --- tol = 1.0 RobustIterativeProcess = True RobustStep = 1 nit = 0 # --- Error on p. Smoothness parameter s = 10^p errp = 0.1 # opt = optimset('TolX',errp); # --- Relaxation factor RF: to speedup convergence RF = 1 + 0.75 * isweighted # ?? ## Main iterative process # --- if isauto: try: xpost = np.array([(0.9 * np.log10(sMinBnd) + np.log10(sMaxBnd) * 0.1)]) except: np.array([100.0]) else: xpost = np.array([np.log10(s)]) while RobustIterativeProcess: # --- "amount" of weights (see the function GCVscore) aow = sum(Wtot) / noe # 0 < aow <= 1 # --- while tol > TolZ and nit < MaxIter: if verbose: print("tol", tol, "nit", nit) nit = nit + 1 DCTy = dctND(Wtot * (y - z) + z, f=dct) if isauto and not np.remainder(np.log2(nit), 1): # --- # The generalized cross-validation (GCV) method is used. # We seek the smoothing parameter s that minimizes the GCV # score i.e. s = Argmin(GCVscore). # Because this process is time-consuming, it is performed from # time to time (when nit is a power of 2) # --- # errp in here somewhere # xpost,f,d = lbfgsb.fmin_l_bfgs_b(gcv,xpost,fprime=None,factr=10.,\ # approx_grad=True,bounds=[(log10(sMinBnd),log10(sMaxBnd))],\ # args=(Lambda,aow,DCTy,IsFinite,Wtot,y,nof,noe)) # if we have no clue what value of s to use, better span the # possible range to get a reasonable starting point ... # only need to do it once though. nS0 is teh number of samples used if not s0: ss = np.arange(nS0) * (1.0 / (nS0 - 1.0)) * ( np.log10(sMaxBnd) - np.log10(sMinBnd) ) + np.log10(sMinBnd) g = np.zeros_like(ss) for i, p in enumerate(ss): g[i] = gcv( p, Lambda, aow, DCTy, IsFinite, Wtot, y, nof, noe, smoothOrder, ) # print 10**p,g[i] xpost = [ss[g == g.min()]] # print '===============' # print nit,tol,g.min(),xpost[0],s # print '===============' else: xpost = [s0] xpost, f, d = lbfgsb.fmin_l_bfgs_b( gcv, xpost, fprime=None, factr=1e7, approx_grad=True, bounds=[(np.log10(sMinBnd), np.log10(sMaxBnd))], args=(Lambda, aow, DCTy, IsFinite, Wtot, y, nof, noe, smoothOrder), ) s = 10 ** xpost[0] # update the value we use for the initial s estimate s0 = xpost[0] Gamma = 1.0 / (1 + (s * abs(Lambda)) ** smoothOrder) z = RF * dctND(Gamma * DCTy, f=idct) + (1 - RF) * z # if no weighted/missing data => tol=0 (no iteration) tol = isweighted * norm(z0 - z) / norm(z) z0 = z # re-initialization exitflag = nit < MaxIter if isrobust: # -- Robust Smoothing: iteratively re-weighted process # --- average leverage h = np.sqrt(1 + 16.0 * s) h = np.sqrt(1 + h) / np.sqrt(2) / h h = h**N # --- take robust weights into account Wtot = W * RobustWeights(y - z, IsFinite, h, weightstr) # --- re-initialize for another iterative weighted process isweighted = True tol = 1 nit = 0 # --- RobustStep = RobustStep + 1 RobustIterativeProcess = RobustStep < 3 # 3 robust steps are enough. else: RobustIterativeProcess = False # stop the whole process ## Warning messages # --- if isauto: if abs(np.log10(s) - np.log10(sMinBnd)) < errp: warning( "MATLAB:smoothn:SLowerBound", [ "s = %.3f " % (s) + ": the lower bound for s " + "has been reached. Put s as an input variable if required." ], ) elif abs(np.log10(s) - np.log10(sMaxBnd)) < errp: warning( "MATLAB:smoothn:SUpperBound", [ "s = %.3f " % (s) + ": the upper bound for s " + "has been reached. Put s as an input variable if required." ], ) return z, s, exitflag, Wtot def warning(s1, s2): print(s1) print(s2[0]) ## GCV score # --- # function GCVscore = gcv(p) def gcv(p, Lambda, aow, DCTy, IsFinite, Wtot, y, nof, noe, smoothOrder): # Search the smoothing parameter s that minimizes the GCV score # --- s = 10**p Gamma = 1.0 / (1 + (s * abs(Lambda)) ** smoothOrder) # --- RSS = Residual sum-of-squares if aow > 0.9: # aow = 1 means that all of the data are equally weighted # very much faster: does not require any inverse DCT RSS = norm(DCTy * (Gamma - 1.0)) ** 2 else: # take account of the weights to calculate RSS: yhat = dctND(Gamma * DCTy, f=idct) RSS = norm(np.sqrt(Wtot[IsFinite]) * (y[IsFinite] - yhat[IsFinite])) ** 2 # --- TrH = sum(Gamma) GCVscore = RSS / float(nof) / (1.0 - TrH / float(noe)) ** 2 return GCVscore ## Robust weights # function W = RobustWeights(r,I,h,wstr) def RobustWeights(r, I, h, wstr): # weights for robust smoothing. MAD = np.median(abs(r[I] - np.median(r[I]))) # median absolute deviation u = abs(r / (1.4826 * MAD) / np.sqrt(1 - h)) # studentized residuals if wstr == "cauchy": c = 2.385 W = 1.0 / (1 + (u / c) ** 2) # Cauchy weights elif wstr == "talworth": c = 2.795 W = u < c # Talworth weights else: c = 4.685 W = (1 - (u / c) ** 2) ** 2.0 * ((u / c) < 1) # bisquare weights W[np.isnan(W)] = 0 return W ## Initial Guess with weighted/missing data # function z = InitialGuess(y,I) def InitialGuess(y, I): # -- nearest neighbor interpolation (in case of missing values) if any(~I): try: from scipy.ndimage.morphology import distance_transform_edt # if license('test','image_toolbox') # [z,L] = bwdist(I); L = distance_transform_edt(1 - I) z = y z[~I] = y[L[~I]] except: # If BWDIST does not exist, NaN values are all replaced with the # same scalar. The initial guess is not optimal and a warning # message thus appears. z = y z[~I] = np.mean(y[I]) else: z = y # coarse fast smoothing z = dctND(z, f=dct) k = np.array(z.shape) m = np.ceil(k / 10) + 1 d = [] for i in np.xrange(len(k)): d.append(np.arange(m[i], k[i])) d = np.array(d).astype(int) z[d] = 0.0 z = dctND(z, f=idct) return z def dctND(data, f=dct): nd = len(data.shape) if nd == 1: return f(data, norm="ortho", type=2) elif nd == 2: return f(f(data, norm="ortho", type=2).T, norm="ortho", type=2).T elif nd == 3: return f( f(f(data, norm="ortho", type=2, axis=0), norm="ortho", type=2, axis=1), norm="ortho", type=2, axis=2, ) elif nd == 4: return f( f( f(f(data, norm="ortho", type=2, axis=0), norm="ortho", type=2, axis=1), norm="ortho", type=2, axis=2, ), norm="ortho", type=2, axis=3, ) def peaks(n): """ Mimic basic of matlab peaks fn """ xp = np.arange(n) [x, y] = np.meshgrid(xp, xp) z = np.zeros_like(x).astype(float) for i in np.xrange(n / 5): x0 = random() * n y0 = random() * n sdx = random() * n / 4.0 sdy = sdx c = random() * 2 - 1.0 f = np.exp( -(((x - x0) / sdx) ** 2) - ((y - y0) / sdy) ** 2 - (((x - x0) / sdx)) * ((y - y0) / sdy) * c ) # f /= f.sum() f *= random() z += f return z def RelPerm2(Sa, UW, UO, BW, BO, SWI, SWR, nx, ny, nz): """ Computes the relative permeability and its derivative w.r.t saturation S, based on Brooks and Corey model. Parameters ---------- Sa : array_like Saturation value. UW : float Water viscosity. UO : float Oil viscosity. BW : float Water formation volume factor. BO : float Oil formation volume factor. SWI : float Initial water saturation. SWR : float Residual water saturation. nx, ny, nz : int The number of grid cells in x, y, and z directions. Returns ------- Mw : array_like Water relative permeability. Mo : array_like Oil relative permeability. dMw : array_like Water relative permeability derivative w.r.t saturation. dMo : array_like Oil relative permeability derivative w.r.t saturation. """ S = (Sa - SWI) / (1 - SWI - SWR) Mw = (S**2) / (UW * BW) # Water mobility Mo = ((1 - S) ** 2) / (UO * BO) # Oil mobility dMw = 2 * S / (UW * BW) / (1 - SWI - SWR) dMo = -2 * (1 - S) / (UO * BO) / (1 - SWI - SWR) return ( cp.reshape(Mw, (-1, 1), "F"), cp.reshape(Mo, (-1, 1), "F"), cp.reshape(dMw, (-1, 1), "F"), cp.reshape(dMo, (-1, 1), "F"), ) def calc_mu_g(p): # Avergae reservoir pressure mu_g = 3e-10 * p**2 + 1e-6 * p + 0.0133 return mu_g def calc_rs(p_bub, p): # p=average reservoir pressure if p < p_bub: rs_factor = 1 else: rs_factor = 0 rs = 178.11**2 / 5.615 * ((p / p_bub) ** 1.3 * rs_factor + (1 - rs_factor)) return rs def calc_dp(p_bub, p_atm, p): if p < p_bub: dp = p_atm - p else: dp = p_atm - p_bub return dp def calc_bg(p_bub, p_atm, p): # P is avergae reservoir pressure b_g = 1 / (cp.exp(1.7e-3 * calc_dp(p_bub, p_atm, p))) return b_g def calc_bo(p_bub, p_atm, CFO, p): # p is average reservoir pressure if p < p_bub: b_o = 1 / cp.exp(-8e-5 * (p_atm - p)) else: b_o = 1 / (cp.exp(-8e-5 * (p_atm - p_bub)) * cp.exp(-CFO * (p - p_bub))) return b_o def ProgressBar(Total, Progress, BarLength=20, ProgressIcon="#", BarIcon="-"): try: # You can't have a progress bar with zero or negative length. if BarLength < 1: BarLength = 20 # Use status variable for going to the next line after progress completion. Status = "" # Calcuting progress between 0 and 1 for percentage. Progress = float(Progress) / float(Total) # Doing this conditions at final progressing. if Progress >= 1.0: Progress = 1 Status = "\r\n" # Going to the next line # Calculating how many places should be filled Block = int(round(BarLength * Progress)) # Show this Bar = "[{}] {:.0f}% {}".format( ProgressIcon * Block + BarIcon * (BarLength - Block), round(Progress * 100, 0), Status, ) return Bar except: return "ERROR" def ShowBar(Bar): sys.stdout.write(Bar) sys.stdout.flush() def Equivalent_time(tim1, max_t1, tim2, max_t2): tk2 = tim1 / max_t1 tc2 = np.arange(0.0, 1 + tk2, tk2) tc2[tc2 >= 1] = 1 tc2 = tc2.reshape(-1, 1) # reference scaled to 1 tc2r = np.arange(0.0, max_t1 + tim1, tim1) tc2r[tc2r >= max_t1] = max_t1 tc2r = tc2r.reshape(-1, 1) # reference original func = interpolate.interp1d(tc2r.ravel(), tc2.ravel()) tc2rr = np.arange(0.0, max_t2 + tim2, tim2) tc2rr[tc2rr >= max_t2] = max_t2 tc2rr = tc2rr.reshape(-1, 1) # reference original ynew = func(tc2rr.ravel()) return ynew def No_Sim( ini, nx, ny, nz, max_t, Dx, Dy, Dz, BO, BW, CFL, timmee, MAXZ, factorr, steppi, LIR, UIR, LUB, HUB, aay, bby, mpor, hpor, dt, IWSw, PB, PATM, CFO, method, SWI, SWR, UW, UO, typee, step2, pini_alt, input_channel, pena, ): paramss = ini Ne = paramss.shape[1] ct = np.zeros((Ne, input_channel, nx, ny), dtype=np.float32) kka = np.random.randint(LIR, UIR + 1, (1, Ne)) A = np.zeros((nx, ny, nz)) A1 = np.zeros((nx, ny, nz)) for kk in range(Ne): ct1 = np.zeros((input_channel, nx, ny), dtype=np.float32) print(str(kk + 1) + " | " + str(Ne)) # a = np.reshape(paramss[:,kk],(nx,ny,nz),'F') points = np.reshape( np.random.randint(1, nx, 16), (-1, 2), "F" ) # 16 is total number of wells Injcl = points[:4, :] prodcl = points[4:, :] inj_rate = kka[:, kk] at1 = paramss[:, kk] at1 = rescale_linear_numpy_pytorch(at1, LUB, HUB, aay, bby) at2 = paramss[:, kk] at2 = rescale_linear(at2, mpor, hpor) at1 = np.reshape(at1, (nx, ny, nz), "F") at2 = np.reshape(at2, (nx, ny, nz), "F") atemp = np.zeros((nx, ny, nz)) atemp[:, :, 0] = at1[:, :, 0] if pena == 1: for jj in range(nz): for m in range(prodcl.shape[0]): A[prodcl[m, :][0], prodcl[m, :][1], jj] = -50 for m in range(Injcl.shape[0]): A[Injcl[m, :][0], Injcl[m, :][1], jj] = inj_rate for m in range(Injcl.shape[0]): A1[Injcl[m, :][0], Injcl[m, :][1], jj] = inj_rate else: for jj in range(nz): A[1, 24, jj] = inj_rate A[3, 3, jj] = inj_rate A[31, 1, jj] = inj_rate A[31, 31, jj] = inj_rate A[7, 9, jj] = -50 A[14, 12, jj] = -50 A[28, 19, jj] = -50 A[14, 27, jj] = -50 A1[1, 24, jj] = inj_rate A1[3, 3, jj] = inj_rate A1[31, 1, jj] = inj_rate A1[31, 31, jj] = inj_rate quse1 = A ct1[0, :, :] = at1[:, :, 0] # permeability ct1[1, :, :] = quse1[:, :, 0] / UIR # Overall f ct1[2, :, :] = A1[:, :, 0] / UIR # f for water injection ct1[3, :, :] = at2[:, :, 0] # porosity ct1[4, :, :] = dt * np.ones((nx, ny)) ct1[5, :, :] = np.ones((nx, ny)) # Initial pressure ct1[6, :, :] = IWSw * np.ones((nx, ny)) # Initial water saturation ct[kk, :, :, :] = ct1 return ct def compute_f( pressure, kuse, krouse, krwuse, rwell1, skin, pwf_producer1, UO, BO, DX, UW, BW, DZ ): RE = 0.2 * cp.asarray(DX) up = UO * BO # facc = tf.constant(10,dtype = tf.float64) DZ = cp.asarray(DZ) down = 2.0 * cp.pi * kuse * krouse * DZ # down = piit * pii * krouse * DZ1 right = cp.log(RE / cp.asarray(rwell1)) + cp.asarray(skin) J = down / (up * right) drawdown = pressure - cp.asarray(pwf_producer1) qoil = -((drawdown) * J) aa = qoil * 1e-5 # aa[aa<=0] = 0 # print(aa) # water production up2 = UW * BW down = 2.0 * cp.pi * kuse * krwuse * DZ J = down / (up2 * right) drawdown = pressure - cp.asarray(pwf_producer1) qwater = -((drawdown) * J) aaw = qwater * 1e-5 # aaw = (qwater) # aaw[aaw<=0] = 0 # print(qwater) ouut = aa + aaw return -(ouut) # outnew def rescale_linear(array, new_min, new_max): """Rescale an arrary linearly.""" minimum, maximum = np.min(array), np.max(array) m = (new_max - new_min) / (maximum - minimum) b = new_min - m * minimum return m * array + b def rescale_linear_numpy_pytorch(array, new_min, new_max, minimum, maximum): """Rescale an arrary linearly.""" m = (new_max - new_min) / (maximum - minimum) b = new_min - m * minimum return m * array + b def rescale_linear_pytorch_numpy(array, new_min, new_max, minimum, maximum): """Rescale an arrary linearly.""" m = (maximum - minimum) / (new_max - new_min) b = minimum - m * new_min return m * array + b def Add_marker2(plt, XX, YY, injectors, producers): """ Function to add marker to given coordinates on a matplotlib plot less Copy code Parameters: plt: a matplotlib.pyplot object to add the markers to XX: a numpy array of X coordinates YY: a numpy array of Y coordinates locc: a numpy array of locations where markers need to be added Return: None """ n_inj = len(injectors) # Number of injectors n_prod = len(producers) # Number of producers for mm in range(n_inj): usethis = injectors[mm] xloc = int(usethis[0]) yloc = int(usethis[1]) discrip = str(usethis[-1]) plt.scatter( XX.T[xloc - 1, yloc - 1] + 0.5, YY.T[xloc - 1, yloc - 1] + 0.5, s=200, marker="v", color="white", ) plt.text( XX.T[xloc - 1, yloc - 1] + 0.5, YY.T[xloc - 1, yloc - 1] + 0.5, discrip, color="black", weight="bold", horizontalalignment="center", verticalalignment="center", fontsize=12, ) for mm in range(n_prod): usethis = producers[mm] xloc = int(usethis[0]) yloc = int(usethis[1]) discrip = str(usethis[-1]) plt.scatter( XX.T[xloc - 1, yloc - 1] + 0.5, YY.T[xloc - 1, yloc - 1] + 0.5, s=200, marker="^", color="white", ) plt.text( XX.T[xloc - 1, yloc - 1] + 0.5, YY.T[xloc - 1, yloc - 1] + 0.5, discrip, color="black", weight="bold", horizontalalignment="center", verticalalignment="center", fontsize=12, ) def Plot_2D(XX, YY, plt, nx, ny, nz, Truee, N_injw, N_pr, varii, injectors, producers): Pressz = np.reshape(Truee, (nx, ny, nz), "F") maxii = max(Pressz.ravel()) minii = min(Pressz.ravel()) avg_2d = np.mean(Pressz, axis=2) avg_2d[avg_2d == 0] = np.nan # Convert zeros to NaNs # XX, YY = np.meshgrid(np.arange(nx),np.arange(ny)) # plt.subplot(224) plt.pcolormesh(XX.T, YY.T, avg_2d, cmap="jet") cbar = plt.colorbar() if varii == "perm": cbar.set_label("Log K(mD)", fontsize=11) plt.title("Permeability Field with well locations", fontsize=11, weight="bold") elif varii == "water Modulus": cbar.set_label("water saturation", fontsize=11) plt.title("water saturation -Modulus", fontsize=11, weight="bold") elif varii == "water Numerical": cbar.set_label("water saturation", fontsize=11) plt.title("water saturation - Numerical", fontsize=11, weight="bold") elif varii == "water diff": cbar.set_label("unit", fontsize=11) plt.title( "water saturation - (Numerical(GPU) -Modulus)", fontsize=11, weight="bold" ) elif varii == "oil Modulus": cbar.set_label("Oil saturation", fontsize=11) plt.title("Oil saturation -Modulus", fontsize=11, weight="bold") elif varii == "oil Numerical": cbar.set_label("Oil saturation", fontsize=11) plt.title("Oil saturation - Numerical", fontsize=11, weight="bold") elif varii == "oil diff": cbar.set_label("unit", fontsize=11) plt.title( "oil saturation - (Numerical(GPU) -Modulus)", fontsize=11, weight="bold" ) elif varii == "pressure Modulus": cbar.set_label("pressure(psia)", fontsize=11) plt.title("Pressure -Modulus", fontsize=11, weight="bold") elif varii == "pressure Numerical": cbar.set_label("pressure(psia)", fontsize=11) plt.title("Pressure -Numerical", fontsize=11, weight="bold") elif varii == "pressure diff": cbar.set_label("unit", fontsize=11) plt.title("Pressure - (Numerical(GPU) -Modulus)", fontsize=11, weight="bold") elif varii == "porosity": cbar.set_label("porosity", fontsize=11) plt.title("Porosity Field", fontsize=11, weight="bold") cbar.mappable.set_clim(minii, maxii) plt.ylabel("Y", fontsize=11) plt.xlabel("X", fontsize=11) plt.axis([0, (nx - 1), 0, (ny - 1)]) plt.gca().set_xticks([]) plt.gca().set_yticks([]) Add_marker2(plt, XX, YY, injectors, producers) def Plot_Modulus(ax, nx, ny, nz, Truee, N_injw, N_pr, varii, injectors, producers): # matplotlib.use('Agg') Pressz = np.reshape(Truee, (nx, ny, nz), "F") avg_2d = np.mean(Pressz, axis=2) avg_2d[avg_2d == 0] = np.nan # Convert zeros to NaNs maxii = max(Pressz.ravel()) minii = min(Pressz.ravel()) Pressz = Pressz / maxii masked_Pressz = Pressz colors = plt.cm.jet(masked_Pressz) # colors[np.isnan(Pressz), :3] = 1 # set color to white for NaN values # alpha = np.where(np.isnan(Pressz), 0.0, 0.8) # set alpha to 0 for NaN values norm = mpl.colors.Normalize(vmin=minii, vmax=maxii) arr_3d = Pressz # fig = plt.figure(figsize=(20, 20), dpi = 200) # ax = fig.add_subplot(221, projection='3d') # Shift the coordinates to center the points at the voxel locations x, y, z = np.indices((arr_3d.shape)) x = x + 0.5 y = y + 0.5 z = z + 0.5 # Set the colors of each voxel using a jet colormap # colors = plt.cm.jet(arr_3d) # norm = matplotlib.colors.Normalize(vmin=minii, vmax=maxii) # Plot each voxel and save the mappable object ax.voxels(arr_3d, facecolors=colors, alpha=0.5, edgecolor="none", shade=True) m = cm.ScalarMappable(cmap=plt.cm.jet, norm=norm) m.set_array([]) # Add a colorbar for the mappable object # plt.colorbar(mappable) # Set the axis labels and title ax.set_xlabel("X axis") ax.set_ylabel("Y axis") ax.set_zlabel("Z axis") # ax.set_title(titti,fontsize= 14) # Set axis limits to reflect the extent of each axis of the matrix ax.set_xlim(0, arr_3d.shape[0]) ax.set_ylim(0, arr_3d.shape[1]) ax.set_zlim(0, arr_3d.shape[2]) # ax.set_zlim(0, 60) # Remove the grid ax.grid(False) # Set lighting to bright # ax.set_facecolor('white') # Set the aspect ratio of the plot ax.set_box_aspect([nx, ny, nz]) # Set the projection type to orthogonal ax.set_proj_type("ortho") # Remove the tick labels on each axis ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) ax.set_xticks([]) ax.set_yticks([]) ax.set_zticks([]) # Remove the tick lines on each axis ax.xaxis._axinfo["tick"]["inward_factor"] = 0 ax.xaxis._axinfo["tick"]["outward_factor"] = 0.4 ax.yaxis._axinfo["tick"]["inward_factor"] = 0 ax.yaxis._axinfo["tick"]["outward_factor"] = 0.4 ax.zaxis._axinfo["tick"]["inward_factor"] = 0 ax.zaxis._axinfo["tick"]["outward_factor"] = 0.4 # Set the azimuth and elevation to make the plot brighter ax.view_init(elev=30, azim=45) n_inj = N_injw # Number of injectors n_prod = N_pr # Number of producers for mm in range(n_inj): usethis = injectors[mm] xloc = int(usethis[0]) yloc = int(usethis[1]) discrip = str(usethis[-1]) # Define the direction of the line line_dir = (0, 0, (nz * 2) + 7) # Define the coordinates of the line end x_line_end = xloc + line_dir[0] y_line_end = yloc + line_dir[1] z_line_end = 0 + line_dir[2] ax.plot([xloc, xloc], [yloc, yloc], [0, (nz * 2) + 7], "blue", linewidth=1) ax.text( x_line_end, y_line_end, z_line_end, discrip, color="blue", weight="bold", fontsize=5, ) for mm in range(n_prod): usethis = producers[mm] xloc = int(usethis[0]) yloc = int(usethis[1]) discrip = str(usethis[-1]) # Define the direction of the line line_dir = (0, 0, (nz * 2) + 5) # Define the coordinates of the line end x_line_end = xloc + line_dir[0] y_line_end = yloc + line_dir[1] z_line_end = 0 + line_dir[2] ax.plot([xloc, xloc], [yloc, yloc], [0, (nz * 2) + 5], "r", linewidth=1) ax.text( x_line_end, y_line_end, z_line_end, discrip, color="g", weight="bold", fontsize=5, ) blue_line = mlines.Line2D([], [], color="blue", linewidth=2, label="water injector") green_line = mlines.Line2D([], [], color="red", linewidth=2, label="oil Producer") # Add the legend to the plot ax.legend(handles=[blue_line, green_line], loc="lower left", fontsize=9) # Add a horizontal colorbar to the plot cbar = plt.colorbar(m, orientation="horizontal", shrink=0.5) if varii == "perm": cbar.set_label("Log K(mD)", fontsize=12) ax.set_title( "Permeability Field with well locations", fontsize=12, weight="bold" ) elif varii == "water Modulus": cbar.set_label("water saturation", fontsize=12) ax.set_title("water saturation -Modulus", fontsize=12, weight="bold") elif varii == "water Numerical": cbar.set_label("water saturation", fontsize=12) ax.set_title("water saturation - Numerical(GPU)", fontsize=12, weight="bold") elif varii == "water diff": cbar.set_label("unit", fontsize=12) ax.set_title( "water saturation - (Numerical(GPU) -Modulus))", fontsize=12, weight="bold" ) elif varii == "oil Modulus": cbar.set_label("Oil saturation", fontsize=12) ax.set_title("Oil saturation -Modulus", fontsize=12, weight="bold") elif varii == "oil Numerical": cbar.set_label("Oil saturation", fontsize=12) ax.set_title("Oil saturation - Numerical(GPU)", fontsize=12, weight="bold") elif varii == "oil diff": cbar.set_label("unit", fontsize=12) ax.set_title( "oil saturation - (Numerical(GPU) -Modulus))", fontsize=12, weight="bold" ) elif varii == "pressure Modulus": cbar.set_label("pressure", fontsize=12) ax.set_title("Pressure -Modulus", fontsize=12, weight="bold") elif varii == "pressure Numerical": cbar.set_label("pressure", fontsize=12) ax.set_title("Pressure -Numerical(GPU)", fontsize=12, weight="bold") elif varii == "pressure diff": cbar.set_label("unit", fontsize=12) ax.set_title( "Pressure - (Numerical(GPU) -Modulus))", fontsize=12, weight="bold" ) elif varii == "porosity": cbar.set_label("porosity", fontsize=12) ax.set_title("Porosity Field", fontsize=12, weight="bold") cbar.mappable.set_clim(minii, maxii) def plot3d2(arr_3d, nx, ny, nz, itt, dt, MAXZ, namet, titti, maxii, minii): """ Plot a 3D array with matplotlib and annotate specific points on the plot. Args: arr_3d (np.ndarray): 3D array to plot. nx (int): number of cells in the x direction. ny (int): number of cells in the y direction. nz (int): number of cells in the z direction. itt (int): current iteration number. dt (float): time step. MAXZ (int): maximum number of iterations in the z direction. namet (str): name of the file to save the plot. titti (str): title of the plot. maxii (float): maximum value of the colorbar. minii (float): minimum value of the colorbar. Returns: None. """ fig = plt.figure(figsize=(12, 12), dpi=100) ax = fig.add_subplot(111, projection="3d") # Shift the coordinates to center the points at the voxel locations x, y, z = np.indices((arr_3d.shape)) x = x + 0.5 y = y + 0.5 z = z + 0.5 # Set the colors of each voxel using a jet colormap colors = plt.cm.jet(arr_3d) norm = matplotlib.colors.Normalize(vmin=minii, vmax=maxii) # Plot each voxel and save the mappable object ax.voxels(arr_3d, facecolors=colors, alpha=0.5, edgecolor="none", shade=True) m = cm.ScalarMappable(cmap=plt.cm.jet, norm=norm) m.set_array([]) if titti == "Pressure": plt.colorbar(m, fraction=0.02, pad=0.1, label="Pressure [psia]") elif titti == "water_sat": plt.colorbar(m, fraction=0.02, pad=0.1, label="water_sat [units]") else: plt.colorbar(m, fraction=0.02, pad=0.1, label="oil_sat [units]") # Add a colorbar for the mappable object # plt.colorbar(mappable) # Set the axis labels and title ax.set_xlabel("X axis") ax.set_ylabel("Y axis") ax.set_zlabel("Z axis") ax.set_title(titti, fontsize=14) # Set axis limits to reflect the extent of each axis of the matrix ax.set_xlim(0, arr_3d.shape[0]) ax.set_ylim(0, arr_3d.shape[1]) ax.set_zlim(0, arr_3d.shape[2]) # Remove the grid ax.grid(False) # Set lighting to bright ax.set_facecolor("white") # Set the aspect ratio of the plot ax.set_box_aspect([nx, ny, 2]) # Set the projection type to orthogonal ax.set_proj_type("ortho") # Remove the tick labels on each axis ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) ax.set_xticks([]) ax.set_yticks([]) ax.set_zticks([]) # Remove the tick lines on each axis ax.xaxis._axinfo["tick"]["inward_factor"] = 0 ax.xaxis._axinfo["tick"]["outward_factor"] = 0.4 ax.yaxis._axinfo["tick"]["inward_factor"] = 0 ax.yaxis._axinfo["tick"]["outward_factor"] = 0.4 ax.zaxis._axinfo["tick"]["inward_factor"] = 0 ax.zaxis._axinfo["tick"]["outward_factor"] = 0.4 # Set the azimuth and elevation to make the plot brighter ax.view_init(elev=30, azim=45) # Define the coordinates of the voxel voxel_loc = (1, 24, 0) # Define the direction of the line line_dir = (0, 0, 5) # Define the coordinates of the line end x_line_end = voxel_loc[0] + line_dir[0] y_line_end = voxel_loc[1] + line_dir[1] z_line_end = voxel_loc[2] + line_dir[2] ax.plot([1, 1], [24, 24], [0, 5], "black", linewidth=2) ax.text(x_line_end, y_line_end, z_line_end, "I1", color="black", fontsize=16) # Define the coordinates of the voxel voxel_loc = (1, 1, 0) # Define the direction of the line line_dir = (0, 0, 10) # Define the coordinates of the line end x_line_end = voxel_loc[0] + line_dir[0] y_line_end = voxel_loc[1] + line_dir[1] z_line_end = voxel_loc[2] + line_dir[2] ax.plot([1, 1], [1, 1], [0, 10], "black", linewidth=2) ax.text(x_line_end, y_line_end, z_line_end, "I2", color="black", fontsize=16) # Define the coordinates of the voxel voxel_loc = (31, 1, 0) # Define the direction of the line line_dir = (0, 0, 7) # Define the coordinates of the line end x_line_end = voxel_loc[0] + line_dir[0] y_line_end = voxel_loc[1] + line_dir[1] z_line_end = voxel_loc[2] + line_dir[2] ax.plot([31, 31], [1, 1], [0, 7], "black", linewidth=2) ax.text(x_line_end, y_line_end, z_line_end, "I3", color="black", fontsize=16) # Define the coordinates of the voxel voxel_loc = (31, 31, 0) # Define the direction of the line line_dir = (0, 0, 8) # Define the coordinates of the line end x_line_end = voxel_loc[0] + line_dir[0] y_line_end = voxel_loc[1] + line_dir[1] z_line_end = voxel_loc[2] + line_dir[2] ax.plot([31, 31], [31, 31], [0, 8], "black", linewidth=2) ax.text(x_line_end, y_line_end, z_line_end, "I4", color="black", fontsize=20) # Define the coordinates of the voxel voxel_loc = (7, 9, 0) # Define the direction of the line line_dir = (0, 0, 8) # Define the coordinates of the line end x_line_end = voxel_loc[0] + line_dir[0] y_line_end = voxel_loc[1] + line_dir[1] z_line_end = voxel_loc[2] + line_dir[2] ax.plot([7, 7], [9, 9], [0, 8], "r", linewidth=2) ax.text(x_line_end, y_line_end, z_line_end, "P1", color="r", fontsize=16) # Define the coordinates of the voxel voxel_loc = (14, 12, 0) # Define the direction of the line line_dir = (0, 0, 10) # Define the coordinates of the line end x_line_end = voxel_loc[0] + line_dir[0] y_line_end = voxel_loc[1] + line_dir[1] z_line_end = voxel_loc[2] + line_dir[2] ax.plot([14, 14], [12, 12], [0, 10], "r", linewidth=2) ax.text(x_line_end, y_line_end, z_line_end, "P2", color="r", fontsize=16) # Define the coordinates of the voxel voxel_loc = (28, 19, 0) # Define the direction of the line line_dir = (0, 0, 15) # Define the coordinates of the line end x_line_end = voxel_loc[0] + line_dir[0] y_line_end = voxel_loc[1] + line_dir[1] z_line_end = voxel_loc[2] + line_dir[2] ax.plot([28, 28], [19, 19], [0, 15], "r", linewidth=2) ax.text(x_line_end, y_line_end, z_line_end, "P3", color="r", fontsize=16) # Define the coordinates of the voxel voxel_loc = (14, 27, 0) # Define the direction of the line line_dir = (0, 0, 15) # Define the coordinates of the line end x_line_end = voxel_loc[0] + line_dir[0] y_line_end = voxel_loc[1] + line_dir[1] z_line_end = voxel_loc[2] + line_dir[2] ax.plot([14, 14], [27, 27], [0, 15], "r", linewidth=2) ax.text(x_line_end, y_line_end, z_line_end, "P4", color="r", fontsize=16) # plt.show() plt.tight_layout(rect=[0, 0, 1, 0.95]) tita = "Timestep --" + str(int((itt + 1) * dt * MAXZ)) + " days" plt.suptitle(tita, fontsize=16) name = namet + str(int(itt)) + ".png" plt.savefig(name) # plt.show() plt.clf() def Plot_Models(True_mat): colors = ["r", "b", "g", "k", "#9467bd"] linestyles = ["-", "--", ":", "-.", "-", "--", ":"] markers = ["o", "s", "v", "*", "X"] timezz = True_mat[0][:, 0].reshape(-1, 1) plt.figure(figsize=(40, 40)) plt.subplot(4, 4, 1) plt.plot( timezz, True_mat[0][:, 1], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 1], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 1], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 1], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 1], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("BHP(Psia)", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("I1", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 2) plt.plot( timezz, True_mat[0][:, 2], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 2], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 2], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 2], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 2], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("BHP(Psia)", fontsize=13) # plt.ylim((0,25000)) plt.title("I2", fontsize=13) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 3) plt.plot( timezz, True_mat[0][:, 3], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 3], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 3], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 3], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 3], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("BHP(Psia)", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("I3", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 4) plt.plot( timezz, True_mat[0][:, 4], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 4], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 4], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 4], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 4], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("BHP(Psia)", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("I4", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 5) plt.plot( timezz, True_mat[0][:, 5], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 5], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 5], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 5], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 5], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{oil}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P1", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 6) plt.plot( timezz, True_mat[0][:, 6], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 6], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 6], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 6], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 6], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{oil}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P2", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 7) plt.plot( timezz, True_mat[0][:, 7], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 7], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 7], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 7], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 7], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{oil}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P3", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 8) plt.plot( timezz, True_mat[0][:, 8], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 8], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 8], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 8], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 8], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{oil}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P4", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 9) plt.plot( timezz, True_mat[0][:, 9], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 9], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 9], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 9], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 9], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{water}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P1", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 10) plt.plot( timezz, True_mat[0][:, 10], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 10], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 10], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 10], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 10], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{water}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P2", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 11) plt.plot( timezz, True_mat[0][:, 11], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 11], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 11], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 11], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 11], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{water}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P3", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 12) plt.plot( timezz, True_mat[0][:, 12], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 12], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 12], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 12], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 12], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$Q_{water}(bbl/day)$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P4", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 13) plt.plot( timezz, True_mat[0][:, 13], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 13], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 13], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 13], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 13], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$WWCT{%}$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P1", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 14) plt.plot( timezz, True_mat[0][:, 14], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 14], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 14], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 14], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 14], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$WWCT{%}$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P2", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 15) plt.plot( timezz, True_mat[0][:, 15], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 15], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 15], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 15], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 15], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$WWCT{%}$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P1", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") plt.subplot(4, 4, 16) plt.plot( timezz, True_mat[0][:, 16], linestyle=linestyles[0], marker=markers[0], markersize=1, color=colors[0], lw="2", label="Numerical Model", ) plt.plot( timezz, True_mat[1][:, 16], linestyle=linestyles[1], marker=markers[1], markersize=1, color=colors[1], lw="2", label="FNO", ) plt.plot( timezz, True_mat[2][:, 16], linestyle=linestyles[2], marker=markers[2], markersize=1, color=colors[2], lw="2", label="PINO", ) plt.plot( timezz, True_mat[3][:, 16], linestyle=linestyles[3], marker=markers[3], markersize=1, color=colors[3], lw="2", label="AFNOP", ) plt.plot( timezz, True_mat[4][:, 16], linestyle=linestyles[4], marker=markers[4], markersize=1, color=colors[4], lw="2", label="AFNOD", ) plt.xlabel("Time (days)", weight="bold", fontsize=14) plt.ylabel("$WWCT{%}$", weight="bold", fontsize=14) # plt.ylim((0,25000)) plt.title("P1", weight="bold", fontsize=14) plt.ylim(ymin=0) plt.xlim(xmin=0) # plt.legend() legend = plt.legend(fontsize="large", title_fontsize="large") for text in legend.get_texts(): text.set_weight("bold") # os.chdir('RESULTS') plt.savefig( "Compare_models.png" ) # save as png # preventing the figures from showing # os.chdir(oldfolder) plt.clf() plt.close() def Plot_bar(True_mat): a1 = rmsee(True_mat[1][:, 1:].ravel(), True_mat[0][:, 1:].ravel()) a2 = rmsee(True_mat[2][:, 1:].ravel(), True_mat[0][:, 1:].ravel()) a3 = rmsee(True_mat[3][:, 1:].ravel(), True_mat[0][:, 1:].ravel()) a4 = rmsee(True_mat[4][:, 1:].ravel(), True_mat[0][:, 1:].ravel()) models = ["FNO", "PINO", "AFNOP", "AFNOD"] rmse_values = [a1, a2, a3, a4] colors = ["red", "blue", "green", "purple"] # Create a bar chart plt.figure(figsize=(10, 10)) plt.bar(models, rmse_values, color=colors) # Add a title and labels plt.title("RMSE accuracy", weight="bold", fontsize=16) # Add x and y labels with bold and bigger font plt.xlabel("Surrogate Models", weight="bold", fontsize=14) plt.ylabel("RMSE", weight="bold", fontsize=14) plt.savefig( "Bar_chat.png" ) # save as png # preventing the figures from showing # os.chdir(oldfolder) plt.clf() plt.close() def rmsee(predictions, targets): noww = predictions.reshape(-1, 1) measurment = targets.reshape(-1, 1) rmse_val = (np.sum(((noww - measurment) ** 2))) ** (0.5) / (measurment.shape[0]) # the square root of the mean of the squared differences return rmse_val
modulus-sym-main
examples/reservoir_simulation/2D/src/NVRS.py