python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from modulus.sym.geometry.tessellation import Tessellation from modulus.sym.geometry.primitives_3d import Box, Sphere, Cylinder, VectorizedBoxes from modulus.sym.utils.io.vtk import var_to_polyvtk from stl import mesh as np_mesh import time def speed_check(geo, nr_points): tic = time.time() s = geo.sample_boundary(nr_points=nr_points) surface_sample_time = time.time() - tic var_to_polyvtk(s, "boundary") tic = time.time() s = geo.sample_interior(nr_points=nr_points, compute_sdf_derivatives=False) volume_sample_time = time.time() - tic var_to_polyvtk(s, "interior") print( "Surface sample (seconds per million point): {:.3e}".format( 1000000 * surface_sample_time / nr_points ) ) print( "Volume sample (seconds per million point): {:.3e}".format( 1000000 * volume_sample_time / nr_points ) ) if __name__ == "__main__": # number of points to sample for speed test nr_points = 1000000 # tesselated geometry speed test mesh = np_mesh.Mesh.from_file("./stl_files/tessellated_example.stl") geo = Tessellation(mesh) print("Tesselated Speed Test") print("Number of triangles: {:d}".format(mesh.vectors.shape[0])) speed_check(geo, nr_points) # primitives speed test box = Box(point_1=(-1, -1, -1), point_2=(1, 1, 1)) sphere = Sphere(center=(0, 0, 0), radius=1.2) cylinder_1 = Cylinder(center=(0, 0, 0), radius=0.5, height=2) cylinder_2 = cylinder_1.rotate(angle=float(np.pi / 2.0), axis="x") cylinder_3 = cylinder_1.rotate(angle=float(np.pi / 2.0), axis="y") all_cylinders = cylinder_1 + cylinder_2 + cylinder_3 box_minus_sphere = box & sphere geo = box_minus_sphere - all_cylinders print("CSG Speed Test") speed_check(geo, nr_points) # make boxes for many body check nr_boxes = [10, 100, 500] boxes = [] for i in range(max(nr_boxes)): x_pos = (np.sqrt(5.0) * i % 0.8) + 0.1 y_pos = (np.sqrt(3.0) * i % 0.8) + 0.1 z_pos = (np.sqrt(7.0) * i % 0.8) + 0.1 boxes.append( np.array( [[x_pos, x_pos + 0.05], [y_pos, y_pos + 0.05], [z_pos, z_pos + 0.05]] ) ) boxes = np.array(boxes) for nr_b in nr_boxes: # csg many object speed test geo = Box((0, 0, 0), (1, 1, 1)) for i in range(nr_b): geo = geo - Box(tuple(boxes[i, :, 0]), tuple(boxes[i, :, 1])) print("CSG Many Box Speed Test, Number of Boxes " + str(nr_b)) speed_check(geo, nr_points)
modulus-sym-main
examples/geometry/speed_test.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import numpy as np from modulus.sym.geometry.tessellation import Tessellation from modulus.sym.geometry.discrete_geometry import DiscreteGeometry from modulus.sym.utils.io.vtk import var_to_polyvtk from modulus.sym.geometry.parameterization import Parameterization, Parameter if __name__ == "__main__": # make geometry for each bracket bracket_files = glob.glob("./bracket_stl/*.stl") bracket_files.sort() brackets = [] radius = [] width = [] for f in bracket_files: # get param values radius.append(float(f.split("_")[3])) width.append(float(f.split("_")[5][:-4])) # make geometry brackets.append(Tessellation.from_stl(f)) # make discretely parameterized geometry parameterization = Parameterization( { Parameter("radius"): np.array(radius)[:, None], Parameter("width"): np.array(width)[:, None], } ) geo = DiscreteGeometry(brackets, parameterization) # sample geometry over entire parameter range s = geo.sample_boundary(nr_points=1000000) var_to_polyvtk(s, "parameterized_bracket_boundary") s = geo.sample_interior(nr_points=1000000) var_to_polyvtk(s, "parameterized_bracket_interior")
modulus-sym-main
examples/geometry/parameterized_tesselated_example.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from modulus.sym.geometry.primitives_2d import Rectangle, Circle from modulus.sym.utils.io.vtk import var_to_polyvtk from modulus.sym.geometry.parameterization import Parameterization, Parameter if __name__ == "__main__": # make plate with parameterized hole # make parameterized primitives plate = Rectangle(point_1=(-1, -1), point_2=(1, 1)) y_pos = Parameter("y_pos") parameterization = Parameterization({y_pos: (-1, 1)}) circle = Circle(center=(0, y_pos), radius=0.3, parameterization=parameterization) geo = plate - circle # sample geometry over entire parameter range s = geo.sample_boundary(nr_points=100000) var_to_polyvtk(s, "parameterized_boundary") s = geo.sample_interior(nr_points=100000) var_to_polyvtk(s, "parameterized_interior") # sample specific parameter s = geo.sample_boundary( nr_points=100000, parameterization=Parameterization({y_pos: 0}) ) var_to_polyvtk(s, "y_pos_zero_boundary") s = geo.sample_interior( nr_points=100000, parameterization=Parameterization({y_pos: 0}) ) var_to_polyvtk(s, "y_pos_zero_interior")
modulus-sym-main
examples/geometry/parameterized_example.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import matplotlib.pyplot as plt import numpy as np from sympy import Number, Symbol, Heaviside, atan, sin, cos, sqrt import os from modulus.sym.geometry.primitives_2d import Polygon from modulus.sym.geometry.parameterization import Parameterization, Parameter from modulus.sym.utils.io.vtk import var_to_polyvtk # Naca implementation modified from https://stackoverflow.com/questions/31815041/plotting-a-naca-4-series-airfoil # https://en.wikipedia.org/wiki/NACA_airfoil#Equation_for_a_cambered_4-digit_NACA_airfoil def camber_line(x, m, p, c): cl = [] for xi in x: cond_1 = Heaviside(xi, 0) * Heaviside((c * p) - xi, 0) cond_2 = Heaviside(-xi, 0) + Heaviside(xi - (c * p), 0) v_1 = m * (xi / p**2) * (2.0 * p - (xi / c)) v_2 = m * ((c - xi) / (1 - p) ** 2) * (1.0 + (xi / c) - 2.0 * p) cl.append(cond_1 * v_1 + cond_2 * v_2) return cl def dyc_over_dx(x, m, p, c): dd = [] for xi in x: cond_1 = Heaviside(xi) * Heaviside((c * p) - xi) cond_2 = Heaviside(-xi) + Heaviside(xi - (c * p)) v_1 = ((2.0 * m) / p**2) * (p - xi / c) v_2 = (2.0 * m) / (1 - p**2) * (p - xi / c) dd.append(atan(cond_1 * v_1 + cond_2 * v_2)) return dd def thickness(x, t, c): th = [] for xi in x: term1 = 0.2969 * (sqrt(xi / c)) term2 = -0.1260 * (xi / c) term3 = -0.3516 * (xi / c) ** 2 term4 = 0.2843 * (xi / c) ** 3 term5 = -0.1015 * (xi / c) ** 4 th.append(5 * t * c * (term1 + term2 + term3 + term4 + term5)) return th def naca4(x, m, p, t, c=1): th = dyc_over_dx(x, m, p, c) yt = thickness(x, t, c) yc = camber_line(x, m, p, c) line = [] for xi, thi, yti, yci in zip(x, th, yt, yc): line.append((xi - yti * sin(thi), yci + yti * cos(thi))) x.reverse() th.reverse() yt.reverse() yc.reverse() for xi, thi, yti, yci in zip(x, th, yt, yc): line.append((xi + yti * sin(thi), yci - yti * cos(thi))) return line if __name__ == "__main__": # make parameters for naca airfoil m = 0.02 p = 0.4 t = 0.12 c = 1.0 # make naca geometry x = [x for x in np.linspace(0, 0.2, 10)] + [x for x in np.linspace(0.2, 1.0, 10)][ 1: ] # higher res in front line = naca4(x, m, p, t, c)[:-1] geo = Polygon(line) # sample different parameters s = geo.sample_boundary(nr_points=100000) var_to_polyvtk(s, "naca_boundary") s = geo.sample_interior(nr_points=100000) var_to_polyvtk(s, "naca_interior")
modulus-sym-main
examples/geometry/naca_airfoil.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from modulus.sym.geometry.primitives_3d import Box, Sphere, Cylinder from modulus.sym.utils.io.vtk import var_to_polyvtk if __name__ == "__main__": # number of points to sample nr_points = 100000 # make standard constructive solid geometry example # make primitives box = Box(point_1=(-1, -1, -1), point_2=(1, 1, 1)) sphere = Sphere(center=(0, 0, 0), radius=1.2) cylinder_1 = Cylinder(center=(0, 0, 0), radius=0.5, height=2) cylinder_2 = cylinder_1.rotate(angle=float(np.pi / 2.0), axis="x") cylinder_3 = cylinder_1.rotate(angle=float(np.pi / 2.0), axis="y") # combine with boolean operations all_cylinders = cylinder_1 + cylinder_2 + cylinder_3 box_minus_sphere = box & sphere geo = box_minus_sphere - all_cylinders # sample geometry for plotting in Paraview s = geo.sample_boundary(nr_points=nr_points) var_to_polyvtk(s, "boundary") print("Surface Area: {:.3f}".format(np.sum(s["area"]))) s = geo.sample_interior(nr_points=nr_points, compute_sdf_derivatives=True) var_to_polyvtk(s, "interior") print("Volume: {:.3f}".format(np.sum(s["area"]))) # apply transformations geo = geo.scale(0.5) geo = geo.rotate(angle=np.pi / 4, axis="z") geo = geo.rotate(angle=np.pi / 4, axis="y") geo = geo.repeat(spacing=4.0, repeat_lower=(-1, -1, -1), repeat_higher=(1, 1, 1)) # sample geometry for plotting in Paraview s = geo.sample_boundary(nr_points=nr_points) var_to_polyvtk(s, "repeated_boundary") print("Repeated Surface Area: {:.3f}".format(np.sum(s["area"]))) s = geo.sample_interior(nr_points=nr_points, compute_sdf_derivatives=True) var_to_polyvtk(s, "repeated_interior") print("Repeated Volume: {:.3f}".format(np.sum(s["area"])))
modulus-sym-main
examples/geometry/csg_example.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Reference: https://www.mathworks.com/help/pde/ug/deflection-analysis-of-a-bracket.html """ import os import warnings import numpy as np from sympy import Symbol, Eq, And import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box, Cylinder from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.linear_elasticity import LinearElasticity @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # Specify parameters nu = 0.3 E = 100e9 lambda_ = nu * E / ((1 + nu) * (1 - 2 * nu)) mu = E / (2 * (1 + nu)) mu_c = 0.01 * mu lambda_ = lambda_ / mu_c mu = mu / mu_c characteristic_length = 1.0 characteristic_displacement = 1e-4 sigma_normalization = characteristic_length / (characteristic_displacement * mu_c) T = -4e4 * sigma_normalization # make list of nodes to unroll graph on le = LinearElasticity(lambda_=lambda_, mu=mu, dim=3) disp_net = instantiate_arch( input_keys=[Key("x"), Key("y"), Key("z")], output_keys=[Key("u"), Key("v"), Key("w")], cfg=cfg.arch.fully_connected, ) stress_net = instantiate_arch( input_keys=[Key("x"), Key("y"), Key("z")], output_keys=[ Key("sigma_xx"), Key("sigma_yy"), Key("sigma_zz"), Key("sigma_xy"), Key("sigma_xz"), Key("sigma_yz"), ], cfg=cfg.arch.fully_connected, ) nodes = ( le.make_nodes() + [disp_net.make_node(name="displacement_network")] + [stress_net.make_node(name="stress_network")] ) # add constraints to solver # make geometry x, y, z = Symbol("x"), Symbol("y"), Symbol("z") support_origin = (-1, -1, -1) support_dim = (0.25, 2, 2) bracket_origin = (-0.75, -1, -0.1) bracket_dim = (1.75, 2, 0.2) cylinder_radius = 0.1 cylinder_height = 2.0 aux_lower_origin = (-0.75, -1, -0.1 - cylinder_radius) aux_lower_dim = (cylinder_radius, 2, cylinder_radius) aux_upper_origin = (-0.75, -1, 0.1) aux_upper_dim = (cylinder_radius, 2, cylinder_radius) cylinder_lower_center = (-0.75 + cylinder_radius, 0, 0) cylinder_upper_center = (-0.75 + cylinder_radius, 0, 0) cylinder_hole_radius = 0.7 cylinder_hole_height = 0.5 cylinder_hole_center = (0.125, 0, 0) support = Box( support_origin, ( support_origin[0] + support_dim[0], support_origin[1] + support_dim[1], support_origin[2] + support_dim[2], ), ) bracket = Box( bracket_origin, ( bracket_origin[0] + bracket_dim[0], bracket_origin[1] + bracket_dim[1], bracket_origin[2] + bracket_dim[2], ), ) aux_lower = Box( aux_lower_origin, ( aux_lower_origin[0] + aux_lower_dim[0], aux_lower_origin[1] + aux_lower_dim[1], aux_lower_origin[2] + aux_lower_dim[2], ), ) aux_upper = Box( aux_upper_origin, ( aux_upper_origin[0] + aux_upper_dim[0], aux_upper_origin[1] + aux_upper_dim[1], aux_upper_origin[2] + aux_upper_dim[2], ), ) cylinder_lower = Cylinder(cylinder_lower_center, cylinder_radius, cylinder_height) cylinder_upper = Cylinder(cylinder_upper_center, cylinder_radius, cylinder_height) cylinder_hole = Cylinder( cylinder_hole_center, cylinder_hole_radius, cylinder_hole_height ) cylinder_lower = cylinder_lower.rotate(np.pi / 2, "x") cylinder_upper = cylinder_upper.rotate(np.pi / 2, "x") cylinder_lower = cylinder_lower.translate([0, 0, -0.1 - cylinder_radius]) cylinder_upper = cylinder_upper.translate([0, 0, 0.1 + cylinder_radius]) curve_lower = aux_lower - cylinder_lower curve_upper = aux_upper - cylinder_upper geo = support + bracket + curve_lower + curve_upper - cylinder_hole # Doamin bounds bounds_x = (-1, 1) bounds_y = (-1, 1) bounds_z = (-1, 1) bounds_support_x = (-1, -0.65) bounds_support_y = (-1, 1) bounds_support_z = (-1, 1) bounds_bracket_x = (-0.65, 1) bounds_bracket_y = (-1, 1) bounds_bracket_z = (-0.1, 0.1) # make domain domain = Domain() # back BC backBC = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"u": 0, "v": 0, "w": 0}, batch_size=cfg.batch_size.backBC, lambda_weighting={"u": 10, "v": 10, "w": 10}, criteria=Eq(x, support_origin[0]), ) domain.add_constraint(backBC, "backBC") # front BC frontBC = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"traction_x": 0, "traction_y": 0, "traction_z": T}, batch_size=cfg.batch_size.frontBC, criteria=Eq(x, bracket_origin[0] + bracket_dim[0]), ) domain.add_constraint(frontBC, "frontBC") # surface BC surfaceBC = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"traction_x": 0, "traction_y": 0, "traction_z": 0}, batch_size=cfg.batch_size.surfaceBC, criteria=And((x > support_origin[0]), (x < bracket_origin[0] + bracket_dim[0])), ) domain.add_constraint(surfaceBC, "surfaceBC") # support interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={ "equilibrium_x": 0.0, "equilibrium_y": 0.0, "equilibrium_z": 0.0, "stress_disp_xx": 0.0, "stress_disp_yy": 0.0, "stress_disp_zz": 0.0, "stress_disp_xy": 0.0, "stress_disp_xz": 0.0, "stress_disp_yz": 0.0, }, batch_size=cfg.batch_size.interior_support, bounds={x: bounds_support_x, y: bounds_support_y, z: bounds_support_z}, lambda_weighting={ "equilibrium_x": Symbol("sdf"), "equilibrium_y": Symbol("sdf"), "equilibrium_z": Symbol("sdf"), "stress_disp_xx": Symbol("sdf"), "stress_disp_yy": Symbol("sdf"), "stress_disp_zz": Symbol("sdf"), "stress_disp_xy": Symbol("sdf"), "stress_disp_xz": Symbol("sdf"), "stress_disp_yz": Symbol("sdf"), }, ) domain.add_constraint(interior, "interior_support") # bracket interior interior = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={ "equilibrium_x": 0.0, "equilibrium_y": 0.0, "equilibrium_z": 0.0, "stress_disp_xx": 0.0, "stress_disp_yy": 0.0, "stress_disp_zz": 0.0, "stress_disp_xy": 0.0, "stress_disp_xz": 0.0, "stress_disp_yz": 0.0, }, batch_size=cfg.batch_size.interior_bracket, bounds={x: bounds_bracket_x, y: bounds_bracket_y, z: bounds_bracket_z}, lambda_weighting={ "equilibrium_x": Symbol("sdf"), "equilibrium_y": Symbol("sdf"), "equilibrium_z": Symbol("sdf"), "stress_disp_xx": Symbol("sdf"), "stress_disp_yy": Symbol("sdf"), "stress_disp_zz": Symbol("sdf"), "stress_disp_xy": Symbol("sdf"), "stress_disp_xz": Symbol("sdf"), "stress_disp_yz": Symbol("sdf"), }, ) domain.add_constraint(interior, "interior_bracket") # add validation data mapping = { "X Location (m)": "x", "Y Location (m)": "y", "Z Location (m)": "z", "Directional Deformation (m)": "u", } mapping_v = {"Directional Deformation (m)": "v"} mapping_w = {"Directional Deformation (m)": "w"} mapping_sxx = {"Normal Stress (Pa)": "sigma_xx"} mapping_syy = {"Normal Stress (Pa)": "sigma_yy"} mapping_szz = {"Normal Stress (Pa)": "sigma_zz"} mapping_sxy = {"Shear Stress (Pa)": "sigma_xy"} mapping_sxz = {"Shear Stress (Pa)": "sigma_xz"} mapping_syz = {"Shear Stress (Pa)": "sigma_yz"} file_path = "commercial_solver" if os.path.exists(to_absolute_path(file_path)): commercial_solver_var = csv_to_dict( to_absolute_path("commercial_solver/deformation_x.txt"), mapping, delimiter="\t", ) commercial_solver_var_v = csv_to_dict( to_absolute_path("commercial_solver/deformation_y.txt"), mapping_v, delimiter="\t", ) commercial_solver_var_w = csv_to_dict( to_absolute_path("commercial_solver/deformation_z.txt"), mapping_w, delimiter="\t", ) commercial_solver_var_sxx = csv_to_dict( to_absolute_path("commercial_solver/normal_x.txt"), mapping_sxx, delimiter="\t", ) commercial_solver_var_syy = csv_to_dict( to_absolute_path("commercial_solver/normal_y.txt"), mapping_syy, delimiter="\t", ) commercial_solver_var_szz = csv_to_dict( to_absolute_path("commercial_solver/normal_z.txt"), mapping_szz, delimiter="\t", ) commercial_solver_var_sxy = csv_to_dict( to_absolute_path("commercial_solver/shear_xy.txt"), mapping_sxy, delimiter="\t", ) commercial_solver_var_sxz = csv_to_dict( to_absolute_path("commercial_solver/shear_xz.txt"), mapping_sxz, delimiter="\t", ) commercial_solver_var_syz = csv_to_dict( to_absolute_path("commercial_solver/shear_yz.txt"), mapping_syz, delimiter="\t", ) commercial_solver_var["x"] = commercial_solver_var["x"] commercial_solver_var["y"] = commercial_solver_var["y"] commercial_solver_var["z"] = commercial_solver_var["z"] commercial_solver_var["u"] = ( commercial_solver_var["u"] / characteristic_displacement ) commercial_solver_var["v"] = ( commercial_solver_var_v["v"] / characteristic_displacement ) commercial_solver_var["w"] = ( commercial_solver_var_w["w"] / characteristic_displacement ) commercial_solver_var["sigma_xx"] = ( commercial_solver_var_sxx["sigma_xx"] * sigma_normalization ) commercial_solver_var["sigma_yy"] = ( commercial_solver_var_syy["sigma_yy"] * sigma_normalization ) commercial_solver_var["sigma_zz"] = ( commercial_solver_var_szz["sigma_zz"] * sigma_normalization ) commercial_solver_var["sigma_xy"] = ( commercial_solver_var_sxy["sigma_xy"] * sigma_normalization ) commercial_solver_var["sigma_xz"] = ( commercial_solver_var_sxz["sigma_xz"] * sigma_normalization ) commercial_solver_var["sigma_yz"] = ( commercial_solver_var_syz["sigma_yz"] * sigma_normalization ) commercial_solver_invar = { key: value for key, value in commercial_solver_var.items() if key in ["x", "y", "z"] } commercial_solver_outvar = { key: value for key, value in commercial_solver_var.items() if key in [ "u", "v", "w", "sigma_xx", "sigma_yy", "sigma_zz", "sigma_xy", "sigma_xz", "sigma_yz", ] } commercial_solver_validator = PointwiseValidator( nodes=nodes, invar=commercial_solver_invar, true_outvar=commercial_solver_outvar, batch_size=128, ) domain.add_validator(commercial_solver_validator) # add inferencer data grid_inference = PointwiseInferencer( nodes=nodes, invar=commercial_solver_invar, output_names=[ "u", "v", "w", "sigma_xx", "sigma_yy", "sigma_zz", "sigma_xy", "sigma_xz", "sigma_yz", ], batch_size=128, ) domain.add_inferencer(grid_inference, "inf_data") else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/bracket/bracket.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import torch import numpy as np from sympy import Symbol, Eq import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle, Line, Channel2D from modulus.sym.utils.sympy.functions import parabola from modulus.sym.utils.io import csv_to_dict from modulus.sym.eq.pdes.navier_stokes import NavierStokes, GradNormal from modulus.sym.eq.pdes.basic import NormalDotVec from modulus.sym.eq.pdes.turbulence_zero_eq import ZeroEquation from modulus.sym.eq.pdes.advection_diffusion import AdvectionDiffusion from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.geometry import Parameterization, Parameter @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # params for domain channel_length = (-2.5, 2.5) channel_width = (-0.5, 0.5) heat_sink_origin = (-1, -0.3) nr_heat_sink_fins = 3 gap = 0.15 + 0.1 heat_sink_length = 1.0 heat_sink_fin_thickness = 0.1 inlet_vel = 1.5 heat_sink_temp = 350 base_temp = 293.498 nu = 0.01 diffusivity = 0.01 / 5 # define sympy varaibles to parametize domain curves x, y = Symbol("x"), Symbol("y") # define geometry channel = Channel2D( (channel_length[0], channel_width[0]), (channel_length[1], channel_width[1]) ) heat_sink = Rectangle( heat_sink_origin, ( heat_sink_origin[0] + heat_sink_length, heat_sink_origin[1] + heat_sink_fin_thickness, ), ) for i in range(1, nr_heat_sink_fins): heat_sink_origin = (heat_sink_origin[0], heat_sink_origin[1] + gap) fin = Rectangle( heat_sink_origin, ( heat_sink_origin[0] + heat_sink_length, heat_sink_origin[1] + heat_sink_fin_thickness, ), ) heat_sink = heat_sink + fin geo = channel - heat_sink inlet = Line( (channel_length[0], channel_width[0]), (channel_length[0], channel_width[1]), -1 ) outlet = Line( (channel_length[1], channel_width[0]), (channel_length[1], channel_width[1]), 1 ) x_pos = Parameter("x_pos") integral_line = Line( (x_pos, channel_width[0]), (x_pos, channel_width[1]), 1, parameterization=Parameterization({x_pos: channel_length}), ) # make list of nodes to unroll graph on ze = ZeroEquation( nu=nu, rho=1.0, dim=2, max_distance=(channel_width[1] - channel_width[0]) / 2 ) ns = NavierStokes(nu=ze.equations["nu"], rho=1.0, dim=2, time=False) ade = AdvectionDiffusion(T="c", rho=1.0, D=diffusivity, dim=2, time=False) gn_c = GradNormal("c", dim=2, time=False) normal_dot_vel = NormalDotVec(["u", "v"]) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v"), Key("p")], cfg=cfg.arch.fully_connected, ) heat_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("c")], cfg=cfg.arch.fully_connected, ) nodes = ( ns.make_nodes() + ze.make_nodes() + ade.make_nodes(detach_names=["u", "v"]) + gn_c.make_nodes() + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network")] + [heat_net.make_node(name="heat_network")] ) # make domain domain = Domain() # inlet inlet_parabola = parabola( y, inter_1=channel_width[0], inter_2=channel_width[1], height=inlet_vel ) inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=inlet, outvar={"u": inlet_parabola, "v": 0, "c": 0}, batch_size=cfg.batch_size.inlet, ) domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=outlet, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, ) domain.add_constraint(outlet, "outlet") # heat_sink wall hs_wall = PointwiseBoundaryConstraint( nodes=nodes, geometry=heat_sink, outvar={"u": 0, "v": 0, "c": (heat_sink_temp - base_temp) / 273.15}, batch_size=cfg.batch_size.hs_wall, ) domain.add_constraint(hs_wall, "heat_sink_wall") # channel wall channel_wall = PointwiseBoundaryConstraint( nodes=nodes, geometry=channel, outvar={"u": 0, "v": 0, "normal_gradient_c": 0}, batch_size=cfg.batch_size.channel_wall, ) domain.add_constraint(channel_wall, "channel_wall") # interior flow interior_flow = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0}, batch_size=cfg.batch_size.interior_flow, compute_sdf_derivatives=True, lambda_weighting={ "continuity": Symbol("sdf"), "momentum_x": Symbol("sdf"), "momentum_y": Symbol("sdf"), }, ) domain.add_constraint(interior_flow, "interior_flow") # interior heat interior_heat = PointwiseInteriorConstraint( nodes=nodes, geometry=geo, outvar={"advection_diffusion_c": 0}, batch_size=cfg.batch_size.interior_heat, lambda_weighting={ "advection_diffusion_c": 1.0, }, ) domain.add_constraint(interior_heat, "interior_heat") # integral continuity def integral_criteria(invar, params): sdf = geo.sdf(invar, params) return np.greater(sdf["sdf"], 0) integral_continuity = IntegralBoundaryConstraint( nodes=nodes, geometry=integral_line, outvar={"normal_dot_vel": 1}, batch_size=cfg.batch_size.num_integral_continuity, integral_batch_size=cfg.batch_size.integral_continuity, lambda_weighting={"normal_dot_vel": 0.1}, criteria=integral_criteria, ) domain.add_constraint(integral_continuity, "integral_continuity") # add validation data file_path = "openfoam/heat_sink_zeroEq_Pr5_mesh20.csv" if os.path.exists(to_absolute_path(file_path)): mapping = { "Points:0": "x", "Points:1": "y", "U:0": "u", "U:1": "v", "p": "p", "d": "sdf", "nuT": "nu", "T": "c", } openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_var["nu"] += nu openfoam_var["c"] += -base_temp openfoam_var["c"] /= 273.15 openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y", "sdf"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "p", "c"] # Removing "nu" } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy, ) domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # monitors for force, residuals and temperature global_monitor = PointwiseMonitor( geo.sample_interior(100), output_names=["continuity", "momentum_x", "momentum_y"], metrics={ "mass_imbalance": lambda var: torch.sum( var["area"] * torch.abs(var["continuity"]) ), "momentum_imbalance": lambda var: torch.sum( var["area"] * (torch.abs(var["momentum_x"]) + torch.abs(var["momentum_y"])) ), }, nodes=nodes, requires_grad=True, ) domain.add_monitor(global_monitor) force = PointwiseMonitor( heat_sink.sample_boundary(100), output_names=["p"], metrics={ "force_x": lambda var: torch.sum(var["normal_x"] * var["area"] * var["p"]), "force_y": lambda var: torch.sum(var["normal_y"] * var["area"] * var["p"]), }, nodes=nodes, ) domain.add_monitor(force) peakT = PointwiseMonitor( heat_sink.sample_boundary(100), output_names=["c"], metrics={"peakT": lambda var: torch.max(var["c"])}, nodes=nodes, ) domain.add_monitor(peakT) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/three_fin_2d/heat_sink.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import warnings import torch import numpy as np from sympy import Symbol, Eq import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_2d import Rectangle, Line, Channel2D from modulus.sym.utils.sympy.functions import parabola from modulus.sym.utils.io import csv_to_dict from modulus.sym.eq.pdes.navier_stokes import NavierStokes, GradNormal from modulus.sym.eq.pdes.basic import NormalDotVec from modulus.sym.eq.pdes.turbulence_zero_eq import ZeroEquation from modulus.sym.eq.pdes.advection_diffusion import AdvectionDiffusion from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, PointwiseConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.key import Key from modulus.sym.node import Node @modulus.sym.main(config_path="conf_inverse", config_name="config") def run(cfg: ModulusConfig) -> None: nu, D = Symbol("nu"), Symbol("D") # make list of nodes to unroll graph on ns = NavierStokes(nu=nu, rho=1.0, dim=2, time=False) ade = AdvectionDiffusion(T="c", rho=1.0, D=D, dim=2, time=False) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v"), Key("p")], cfg=cfg.arch.fully_connected, ) heat_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("c")], cfg=cfg.arch.fully_connected, ) invert_net_nu = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("nu")], cfg=cfg.arch.fully_connected, ) invert_net_D = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("D")], cfg=cfg.arch.fully_connected, ) nodes = ( ns.make_nodes( detach_names=[ "u", "u__x", "u__x__x", "u__y", "u__y__y", "v", "v__x", "v__x__x", "v__y", "v__y__y", "p", "p__x", "p__y", ] ) + ade.make_nodes( detach_names=["u", "v", "c", "c__x", "c__y", "c__x__x", "c__y__y"] ) + [flow_net.make_node(name="flow_network")] + [heat_net.make_node(name="heat_network")] + [invert_net_nu.make_node(name="invert_nu_network")] + [invert_net_D.make_node(name="invert_D_network")] ) base_temp = 293.498 # OpenFOAM data file_path = "openfoam/heat_sink_Pr5_clipped2.csv" if not os.path.exists(to_absolute_path(file_path)): warnings.warn( f"Directory {file_path} does not exist. Cannot continue. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) sys.exit() mapping = { "Points:0": "x", "Points:1": "y", "U:0": "u", "U:1": "v", "p": "p", "T": "c", } openfoam_var = csv_to_dict( to_absolute_path("openfoam/heat_sink_Pr5_clipped2.csv"), mapping ) openfoam_var["c"] = openfoam_var["c"] / base_temp - 1.0 openfoam_invar_numpy = { key: value for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u", "v", "p", "c"] } openfoam_outvar_numpy["continuity"] = np.zeros_like(openfoam_outvar_numpy["u"]) openfoam_outvar_numpy["momentum_x"] = np.zeros_like(openfoam_outvar_numpy["u"]) openfoam_outvar_numpy["momentum_y"] = np.zeros_like(openfoam_outvar_numpy["u"]) openfoam_outvar_numpy["advection_diffusion_c"] = np.zeros_like( openfoam_outvar_numpy["u"] ) # make domain domain = Domain() # interior data = PointwiseConstraint.from_numpy( nodes=nodes, invar=openfoam_invar_numpy, outvar=openfoam_outvar_numpy, batch_size=cfg.batch_size.data, ) domain.add_constraint(data, "interior_data") # add monitors monitor = PointwiseMonitor( openfoam_invar_numpy, output_names=["nu"], metrics={"mean_nu": lambda var: torch.mean(var["nu"])}, nodes=nodes, ) domain.add_monitor(monitor) monitor = PointwiseMonitor( openfoam_invar_numpy, output_names=["D"], metrics={"mean_D": lambda var: torch.mean(var["D"])}, nodes=nodes, ) domain.add_monitor(monitor) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/three_fin_2d/heat_sink_inverse.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from limerock_geometry import LimeRock # make limerock limerock = LimeRock() ############# # Real Params ############# # fluid params fluid_viscosity = 1.84e-05 # kg/m-s fluid_density = 1.1614 # kg/m3 fluid_specific_heat = 1005 # J/(kg K) fluid_conductivity = 0.0261 # W/(m K) # copper params copper_density = 8930 # kg/m3 copper_specific_heat = 385 # J/(kg K) copper_conductivity = 385 # W/(m K) # boundary params inlet_velocity = 5.7 # m/s inlet_temp = 0 # K # source source_term = 2127.71 # K/m source_origin = (-0.061667, -0.15833, limerock.geo_bounds_lower[2]) source_dim = (0.1285, 0.31667, 0) ################ # Non dim params ################ length_scale = 0.0575 # m velocity_scale = 5.7 # m/s time_scale = length_scale / velocity_scale # s density_scale = 1.1614 # kg/m3 mass_scale = density_scale * length_scale**3 # kg pressure_scale = mass_scale / (length_scale * time_scale**2) # kg / (m s**2) temp_scale = 273.15 # K watt_scale = (mass_scale * length_scale**2) / (time_scale**3) # kg m**2 / s**3 joule_scale = (mass_scale * length_scale**2) / (time_scale**2) # kg * m**2 / s**2 ############################## # Nondimensionalization Params ############################## # fluid params nd_fluid_viscosity = fluid_viscosity / ( length_scale**2 / time_scale ) # need to divide by density to get previous viscosity nd_fluid_density = fluid_density / density_scale nd_fluid_specific_heat = fluid_specific_heat / (joule_scale / (mass_scale * temp_scale)) nd_fluid_conductivity = fluid_conductivity / (watt_scale / (length_scale * temp_scale)) nd_fluid_diffusivity = nd_fluid_conductivity / ( nd_fluid_specific_heat * nd_fluid_density ) # copper params nd_copper_density = copper_density / (mass_scale / length_scale**3) nd_copper_specific_heat = copper_specific_heat / ( joule_scale / (mass_scale * temp_scale) ) nd_copper_conductivity = copper_conductivity / ( watt_scale / (length_scale * temp_scale) ) nd_copper_diffusivity = nd_copper_conductivity / ( nd_copper_specific_heat * nd_copper_density ) # boundary params nd_inlet_velocity = inlet_velocity / velocity_scale nd_volumetric_flow = limerock.inlet_area * nd_inlet_velocity nd_inlet_temp = inlet_temp / temp_scale nd_source_term = source_term / (temp_scale / length_scale)
modulus-sym-main
examples/limerock/limerock_hFTB/limerock_properties.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sympy import tanh, Symbol, Function from modulus.sym.eq.pde import PDE class FluxDiffusion(PDE): name = "FluxDiffusion" def __init__(self, D=0.01): # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # make input variables input_variables = {"x": x, "y": y, "z": z} # Flux of Temperature flux_theta_s_x = Function("flux_theta_s_x")(*input_variables) flux_theta_s_y = Function("flux_theta_s_y")(*input_variables) flux_theta_s_z = Function("flux_theta_s_z")(*input_variables) # set equations self.equations = {} self.equations["diffusion_theta_s"] = -( (D * flux_theta_s_x).diff(x) + (D * flux_theta_s_y).diff(y) + (D * flux_theta_s_z).diff(z) ) self.equations["compatibility_theta_s_x_y"] = D * ( flux_theta_s_x.diff(y) - flux_theta_s_y.diff(x) ) self.equations["compatibility_theta_s_x_z"] = D * ( flux_theta_s_x.diff(z) - flux_theta_s_z.diff(x) ) self.equations["compatibility_theta_s_y_z"] = D * ( flux_theta_s_y.diff(z) - flux_theta_s_z.diff(y) ) class FluxIntegrateDiffusion(PDE): name = "IntegrateDiffusion" def __init__(self): # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # make input variables input_variables = {"x": x, "y": y, "z": z} # Temperature theta_s = Function("theta_s")(*input_variables) flux_theta_s_x = Function("flux_theta_s_x")(*input_variables) flux_theta_s_y = Function("flux_theta_s_y")(*input_variables) flux_theta_s_z = Function("flux_theta_s_z")(*input_variables) # set equations self.equations = {} self.equations["integrate_diffusion_theta_s_x"] = ( theta_s.diff(x) - flux_theta_s_x ) self.equations["integrate_diffusion_theta_s_y"] = ( theta_s.diff(y) - flux_theta_s_y ) self.equations["integrate_diffusion_theta_s_z"] = ( theta_s.diff(z) - flux_theta_s_z ) class FluxGradNormal(PDE): def __init__(self): # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") normal_x = Symbol("normal_x") normal_y = Symbol("normal_y") normal_z = Symbol("normal_z") # make input variables input_variables = {"x": x, "y": y, "z": z} # variables to set the gradients (example Temperature) flux_theta_s_x = Function("flux_theta_s_x")(*input_variables) flux_theta_s_y = Function("flux_theta_s_y")(*input_variables) flux_theta_s_z = Function("flux_theta_s_z")(*input_variables) # set equations self.equations = {} self.equations["normal_gradient_flux_theta_s"] = ( normal_x * flux_theta_s_x + normal_y * flux_theta_s_y + normal_z * flux_theta_s_z ) class FluxRobin(PDE): def __init__(self, theta_f_conductivity, theta_s_conductivity, h): # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") normal_x = Symbol("normal_x") normal_y = Symbol("normal_y") normal_z = Symbol("normal_z") # make input variables input_variables = {"x": x, "y": y, "z": z} # variables to set the gradients (example Temperature) theta_s = Function("theta_s")(*input_variables) flux_theta_s_x = Function("flux_theta_s_x")(*input_variables) flux_theta_s_y = Function("flux_theta_s_y")(*input_variables) flux_theta_s_z = Function("flux_theta_s_z")(*input_variables) theta_f = Function("theta_f_prev_step")(*input_variables) # set equations flux_theta_f = -theta_f_conductivity * ( normal_x * theta_f.diff(x) + normal_y * theta_f.diff(y) + normal_z * theta_f.diff(z) ) ambient_theta_f = theta_f - (flux_theta_f / h) flux_theta_s = -theta_s_conductivity * ( normal_x * flux_theta_s_x + normal_y * flux_theta_s_y + normal_z * flux_theta_s_z ) self.equations = {} self.equations["robin_theta_s"] = ( flux_theta_s - h * (theta_s - ambient_theta_f) ) / theta_s_conductivity class Dirichlet(PDE): def __init__(self, lhs="theta_s", rhs="theta_f"): # save name for u self.lhs = lhs self.rhs = rhs # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # make input variables input_variables = {"x": x, "y": y, "z": z} # functions rhs = Function(rhs)(*input_variables) lhs = Function(lhs)(*input_variables) # set equations self.equations = {} self.equations["dirichlet_" + self.rhs + "_" + self.lhs] = rhs - lhs
modulus-sym-main
examples/limerock/limerock_hFTB/flux_diffusion.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.utils.data import DataLoader, Dataset from torch import Tensor import copy import numpy as np from sympy import Symbol, Eq, tanh, Or, And from omegaconf import DictConfig, OmegaConf import hydra from hydra.utils import to_absolute_path from typing import Dict import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import SequentialSolver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.models.arch import Arch from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.inferencer import PointVTKInferencer from modulus.sym.utils.io import ( VTKUniformGrid, ) from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.basic import NormalDotVec, GradNormal from modulus.sym.eq.pdes.advection_diffusion import AdvectionDiffusion from modulus.sym.distributed.manager import DistributedManager from limerock_properties import * from flux_diffusion import ( FluxDiffusion, FluxIntegrateDiffusion, FluxGradNormal, FluxRobin, Dirichlet, ) class hFTBArch(Arch): def __init__( self, arch: Arch, ) -> None: output_keys = arch.output_keys + [ Key(x.name + "_prev_step") for x in arch.output_keys ] super().__init__( input_keys=arch.input_keys, output_keys=output_keys, periodicity=arch.periodicity, ) # set networks for current and prev time window self.arch_prev_step = arch self.arch = copy.deepcopy(arch) for param, param_prev_step in zip( self.arch.parameters(), self.arch_prev_step.parameters() ): param_prev_step.requires_grad = False def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: y_prev_step = self.arch_prev_step.forward(in_vars) y = self.arch.forward(in_vars) for key, b in y_prev_step.items(): y[key + "_prev_step"] = b return y def move_network(self): for param, param_prev_step in zip( self.arch.parameters(), self.arch_prev_step.parameters() ): param_prev_step.data = param.detach().clone().data param_prev_step.requires_grad = False @modulus.sym.main(config_path="conf", config_name="conf_thermal") def run(cfg: ModulusConfig) -> None: if DistributedManager().distributed: print("Multi-GPU currently not supported for this example. Exiting.") return # make list of nodes to unroll graph on ad = AdvectionDiffusion( T="theta_f", rho=nd_fluid_density, D=nd_fluid_diffusivity, dim=3, time=False ) dif = FluxDiffusion(D=nd_copper_diffusivity) flow_grad_norm = GradNormal("theta_f", dim=3, time=False) solid_grad_norm = FluxGradNormal() integrate_flux_dif = FluxIntegrateDiffusion() robin_flux = FluxRobin( theta_f_conductivity=nd_fluid_conductivity, theta_s_conductivity=nd_copper_conductivity, h=500.0, ) dirichlet = Dirichlet(lhs="theta_f", rhs="theta_s") flow_net = FourierNetArch( input_keys=[Key("x"), Key("y"), Key("z")], output_keys=[Key("u"), Key("v"), Key("w"), Key("p")], ) f_net = FourierNetArch( input_keys=[Key("x"), Key("y"), Key("z")], output_keys=[Key("theta_f")] ) thermal_f_net = hFTBArch(f_net) thermal_s_net = FourierNetArch( input_keys=[Key("x"), Key("y"), Key("z")], output_keys=[Key("theta_s")] ) flux_s_net = FourierNetArch( input_keys=[Key("x"), Key("y"), Key("z")], output_keys=[ Key("flux_theta_s_x"), Key("flux_theta_s_y"), Key("flux_theta_s_z"), ], ) thermal_nodes = ( ad.make_nodes(detach_names=["u", "v", "w"]) + dif.make_nodes() + flow_grad_norm.make_nodes() + solid_grad_norm.make_nodes() + integrate_flux_dif.make_nodes( detach_names=["flux_theta_s_x", "flux_theta_s_y", "flux_theta_s_z"] ) + robin_flux.make_nodes( detach_names=[ "theta_f_prev_step", "theta_f_prev_step__x", "theta_f_prev_step__y", "theta_f_prev_step__z", ] ) + dirichlet.make_nodes(detach_names=["theta_s"]) + [flow_net.make_node(name="flow_network", optimize=False, jit=cfg.jit)] + [ thermal_f_net.make_node( name="thermal_fluid_network", optimize=True, jit=cfg.jit ) ] + [ thermal_s_net.make_node( name="thermal_solid_network", optimize=True, jit=cfg.jit ) ] + [flux_s_net.make_node(name="flux_solid_network", optimize=True, jit=cfg.jit)] ) # make domain for first cycle of hFTB cycle_1_domain = Domain("cycle_1") # add constraints to solver x, y, z = Symbol("x"), Symbol("y"), Symbol("z") import time as time tic = time.time() # inlet inlet = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=limerock.inlet, outvar={"theta_f": nd_inlet_temp}, batch_size=cfg.batch_size.inlet, batch_per_epoch=50, lambda_weighting={"theta_f": 1000.0}, ) cycle_1_domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=limerock.outlet, outvar={"normal_gradient_theta_f": 0}, batch_size=cfg.batch_size.outlet, lambda_weighting={"normal_gradient_theta_f": 1.0}, ) cycle_1_domain.add_constraint(outlet, "outlet") # channel walls insulating walls = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=limerock.geo, outvar={"normal_gradient_theta_f": 0}, batch_size=cfg.batch_size.no_slip, criteria=Or( Or( Eq(y, limerock.geo_bounds_lower[1]), Eq(z, limerock.geo_bounds_lower[2]) ), Or( Eq(y, limerock.geo_bounds_upper[1]), Eq(z, limerock.geo_bounds_upper[2]) ), ), lambda_weighting={"normal_gradient_theta_f": 1.0}, ) cycle_1_domain.add_constraint(walls, name="ChannelWalls") # flow interior low res away from heat sink lr_interior_f = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=limerock.geo, outvar={"advection_diffusion_theta_f": 0}, batch_size=cfg.batch_size.lr_interior_f, criteria=Or( (x < limerock.heat_sink_bounds[0]), (x > limerock.heat_sink_bounds[1]) ), lambda_weighting={"advection_diffusion_theta_f": 1000.0}, ) cycle_1_domain.add_constraint(lr_interior_f, "lr_interior_f") # flow interiror high res near heat sink hr_interior_f = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=limerock.geo, outvar={"advection_diffusion_theta_f": 0}, batch_size=cfg.batch_size.hr_interior_f, lambda_weighting={"advection_diffusion_theta_f": 1000.0}, criteria=And( (x > limerock.heat_sink_bounds[0]), (x < limerock.heat_sink_bounds[1]) ), ) cycle_1_domain.add_constraint(hr_interior_f, "hr_interior_f") # fluid solid interface interface = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=limerock.geo_solid, outvar={"theta_f": 0.05}, batch_size=cfg.batch_size.interface, criteria=z > limerock.geo_bounds_lower[2], lambda_weighting={"theta_f": 100.0}, ) cycle_1_domain.add_constraint(interface, "interface") # add inferencer data vtk_obj = VTKUniformGrid( bounds=[limerock.geo_bounds[x], limerock.geo_bounds[y], limerock.geo_bounds[z]], npoints=[256, 128, 256], export_map={"u": ["u", "v", "w"], "p": ["p"], "theta_f": ["theta_f"]}, ) def mask_fn(x, y, z): sdf = limerock.geo.sdf({"x": x, "y": y, "z": z}, {}) return sdf["sdf"] < 0 grid_inferencer = PointVTKInferencer( vtk_obj=vtk_obj, nodes=thermal_nodes, input_vtk_map={"x": "x", "y": "y", "z": "z"}, output_names=["u", "v", "w", "p", "theta_f"], mask_fn=mask_fn, mask_value=np.nan, requires_grad=False, batch_size=100000, ) cycle_1_domain.add_inferencer(grid_inferencer, "grid_inferencer") # make domain for all other cycles cycle_n_domain = Domain("cycle_n") # inlet cycle_n_domain.add_constraint(inlet, "inlet") # outlet cycle_n_domain.add_constraint(outlet, "outlet") # channel walls insulating cycle_n_domain.add_constraint(walls, name="ChannelWalls") # flow interior low res away from heat sink cycle_n_domain.add_constraint(lr_interior_f, "lr_interior_f") # flow interiror high res near heat sink cycle_n_domain.add_constraint(hr_interior_f, "hr_interior_f") # diffusion dictionaries diff_outvar = { "diffusion_theta_s": 0, "compatibility_theta_s_x_y": 0, "compatibility_theta_s_x_z": 0, "compatibility_theta_s_y_z": 0, "integrate_diffusion_theta_s_x": 0, "integrate_diffusion_theta_s_y": 0, "integrate_diffusion_theta_s_z": 0, } diff_lambda = { "diffusion_theta_s": 1000000.0, "compatibility_theta_s_x_y": 1.0, "compatibility_theta_s_x_z": 1.0, "compatibility_theta_s_y_z": 1.0, "integrate_diffusion_theta_s_x": 1.0, "integrate_diffusion_theta_s_y": 1.0, "integrate_diffusion_theta_s_z": 1.0, } # solid interior interior_s = PointwiseInteriorConstraint( nodes=thermal_nodes, geometry=limerock.geo_solid, outvar=diff_outvar, batch_size=cfg.batch_size.interior_s, lambda_weighting=diff_lambda, ) cycle_n_domain.add_constraint(interior_s, "interior_s") # limerock base sharpen_tanh = 60.0 source_func_xl = (tanh(sharpen_tanh * (x - source_origin[0])) + 1.0) / 2.0 source_func_xh = ( tanh(sharpen_tanh * ((source_origin[0] + source_dim[0]) - x)) + 1.0 ) / 2.0 source_func_yl = (tanh(sharpen_tanh * (y - source_origin[1])) + 1.0) / 2.0 source_func_yh = ( tanh(sharpen_tanh * ((source_origin[1] + source_dim[1]) - y)) + 1.0 ) / 2.0 gradient_normal = ( nd_source_term * source_func_xl * source_func_xh * source_func_yl * source_func_yh ) base = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=limerock.geo_solid, outvar={"normal_gradient_flux_theta_s": gradient_normal}, batch_size=cfg.batch_size.base, criteria=Eq(z, limerock.geo_bounds_lower[2]), lambda_weighting={"normal_gradient_flux_theta_s": 10.0}, ) cycle_n_domain.add_constraint(base, "base") # fluid solid interface interface = PointwiseBoundaryConstraint( nodes=thermal_nodes, geometry=limerock.geo_solid, outvar={"dirichlet_theta_s_theta_f": 0, "robin_theta_s": 0}, batch_size=cfg.batch_size.interface, criteria=z > limerock.geo_bounds_lower[2], lambda_weighting={"dirichlet_theta_s_theta_f": 100.0, "robin_theta_s": 1.0}, ) cycle_n_domain.add_constraint(interface, "interface") # add fluid inferencer data cycle_n_domain.add_inferencer(grid_inferencer, "grid_inferencer") # add solid inferencer data vtk_obj = VTKUniformGrid( bounds=[ limerock.geo_hr_bounds[x], limerock.geo_hr_bounds[y], limerock.geo_hr_bounds[z], ], npoints=[128, 128, 512], export_map={"theta_s": ["theta_s"]}, ) def mask_fn(x, y, z): sdf = limerock.geo.sdf({"x": x, "y": y, "z": z}, {}) return sdf["sdf"] > 0 grid_inferencer = PointVTKInferencer( vtk_obj=vtk_obj, nodes=thermal_nodes, input_vtk_map={"x": "x", "y": "y", "z": "z"}, output_names=["theta_s"], mask_fn=mask_fn, mask_value=np.nan, requires_grad=False, batch_size=100000, ) cycle_n_domain.add_inferencer(grid_inferencer, "grid_inferencer_solid") # peak temperature monitor invar_temp = limerock.geo_solid.sample_boundary( 10000, criteria=Eq(z, limerock.geo_bounds_lower[2]) ) peak_temp_monitor = PointwiseMonitor( invar_temp, output_names=["theta_s"], metrics={"peak_temp": lambda var: torch.max(var["theta_s"])}, nodes=thermal_nodes, ) cycle_n_domain.add_monitor(peak_temp_monitor) # make solver slv = SequentialSolver( cfg, [(1, cycle_1_domain), (20, cycle_n_domain)], custom_update_operation=thermal_f_net.move_network, ) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/limerock/limerock_hFTB/limerock_thermal.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import Modulus library from sympy import Symbol, Eq, tanh, Max import numpy as np import itertools from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.geometry import Parameterization, Parameter class LimeRock(object): def __init__(self): # scale STL self.scale = 5 / 0.3 self.translate = (0, 0, -0.055) # set fins self.nr_fins = 47 self.fin_gap = 0.0018 # make solids self.copper = None # parse file print("parsing stl file...") self._parse_file("../stl_files/limerock.stl") print("finished parsing") # inlet area self.inlet_area = (self.geo_bounds_upper[1] - self.geo_bounds_lower[1]) * ( self.geo_bounds_upper[2] - self.geo_bounds_lower[2] ) # geo self.heat_sink_bounds = (-0.7, 0.7) self.geo = self.channel - self.copper self.geo_solid = self.copper self.geo_bounds = { Symbol("x"): (self.geo_bounds_lower[0], self.geo_bounds_upper[0]), Symbol("y"): (self.geo_bounds_lower[1], self.geo_bounds_upper[1]), Symbol("z"): (self.geo_bounds_lower[2], self.geo_bounds_upper[2]), } self.geo_hr_bounds = { Symbol("x"): self.heat_sink_bounds, Symbol("y"): (self.geo_bounds_lower[1], self.geo_bounds_upper[1]), Symbol("z"): (self.geo_bounds_lower[2], self.geo_bounds_upper[2]), } # integral plane x_pos = Parameter("x_pos") self.integral_plane = Plane( (x_pos, self.geo_bounds_lower[1], self.geo_bounds_lower[2]), (x_pos, self.geo_bounds_upper[1], self.geo_bounds_upper[2]), 1, parameterization=Parameterization({x_pos: self.heat_sink_bounds}), ) def solid_names(self): return list(self.solids.keys()) def _parse_file(self, filename): # Read file reader = open(filename) sdf = 0 while True: line = reader.readline() if "solid" == line.split(" ")[0]: solid_name = line.split(" ")[-1].rstrip() bounds_lower, bounds_upper = self.read_solid(reader) if solid_name == "opening.1": self.inlet = Plane(bounds_lower, bounds_upper, -1) self.geo_bounds_lower = bounds_lower elif solid_name == "fan.1": self.outlet = Plane(bounds_lower, bounds_upper, 1) self.geo_bounds_upper = bounds_upper elif solid_name == "FIN": fin = Box(bounds_lower, bounds_upper) fin = fin.repeat( self.scale * self.fin_gap, repeat_lower=(0, 0, 0), repeat_higher=(0, 0, self.nr_fins - 1), center=_center(bounds_lower, bounds_upper), ) if self.copper is not None: self.copper = self.copper + fin else: self.copper = fin else: solid = Box(bounds_lower, bounds_upper) if self.copper is not None: self.copper = self.copper + solid else: self.copper = solid else: break self.channel = Channel(self.geo_bounds_lower, self.geo_bounds_upper) def read_solid(self, reader): # solid pieces faces = [] while True: line = reader.readline() split_line = line.split(" ") if len(split_line) == 0: break elif "endsolid" == split_line[0]: break elif "facet" == split_line[0]: curve = {} # read outer loop line _ = reader.readline() # read 3 vertices a_0 = [float(x) for x in reader.readline().split(" ")[-3:]] a_1 = [float(x) for x in reader.readline().split(" ")[-3:]] a_2 = [float(x) for x in reader.readline().split(" ")[-3:]] faces.append([a_0, a_1, a_2]) # read end loop/end facet _ = reader.readline() _ = reader.readline() faces = np.array(faces) bounds_lower = ( np.min(faces[..., 2]), np.min(faces[..., 1]), np.min(faces[..., 0]), ) # flip axis bounds_upper = ( np.max(faces[..., 2]), np.max(faces[..., 1]), np.max(faces[..., 0]), ) bounds_lower = tuple( [self.scale * (x + t) for x, t in zip(bounds_lower, self.translate)] ) bounds_upper = tuple( [self.scale * (x + t) for x, t in zip(bounds_upper, self.translate)] ) return bounds_lower, bounds_upper def _center(bounds_lower, bounds_upper): center_x = bounds_lower[0] + (bounds_upper[0] - bounds_lower[0]) / 2 center_y = bounds_lower[1] + (bounds_upper[1] - bounds_lower[1]) / 2 center_z = bounds_lower[2] + (bounds_upper[2] - bounds_lower[2]) / 2 return center_x, center_y, center_z
modulus-sym-main
examples/limerock/limerock_hFTB/limerock_geometry.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.utils.data import DataLoader, Dataset import numpy as np from sympy import Symbol, Eq, tanh, Or, And from omegaconf import DictConfig, OmegaConf import hydra from hydra.utils import to_absolute_path import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.inferencer import PointVTKInferencer from modulus.sym.utils.io import ( VTKUniformGrid, ) from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.turbulence_zero_eq import ZeroEquation from modulus.sym.eq.pdes.basic import NormalDotVec, GradNormal from limerock_properties import * @modulus.sym.main(config_path="conf", config_name="conf_flow") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on ze = ZeroEquation( nu=nd_fluid_viscosity / nd_fluid_density, dim=3, time=False, max_distance=0.479 ) ns = NavierStokes(nu=ze.equations["nu"], rho=nd_fluid_density, dim=3, time=False) normal_dot_vel = NormalDotVec() flow_net = FourierNetArch( input_keys=[Key("x"), Key("y"), Key("z")], output_keys=[Key("u"), Key("v"), Key("w"), Key("p")], ) flow_nodes = ( ns.make_nodes() + ze.make_nodes() + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network")] ) # make flow domain flow_domain = Domain() # add constraints to solver x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # inlet def channel_sdf(x, y, z): sdf = limerock.channel.sdf({"x": x, "y": y, "z": z}, {}) return sdf["sdf"] inlet = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=limerock.inlet, outvar={"u": nd_inlet_velocity, "v": 0, "w": 0}, batch_size=cfg.batch_size.inlet, lambda_weighting={"u": channel_sdf, "v": 1.0, "w": 1.0}, ) flow_domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=limerock.outlet, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, ) flow_domain.add_constraint(outlet, "outlet") # no slip no_slip = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=limerock.geo, outvar={"u": 0, "v": 0, "w": 0}, batch_size=cfg.batch_size.no_slip, batch_per_epoch=15000, ) flow_domain.add_constraint(no_slip, "no_slip") # flow interior low res away from limerock lr_interior = PointwiseInteriorConstraint( nodes=flow_nodes, geometry=limerock.geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0, "momentum_z": 0}, batch_size=cfg.batch_size.lr_interior, compute_sdf_derivatives=True, lambda_weighting={ "continuity": 3 * Symbol("sdf"), "momentum_x": 3 * Symbol("sdf"), "momentum_y": 3 * Symbol("sdf"), "momentum_z": 3 * Symbol("sdf"), }, criteria=Or( (x < limerock.heat_sink_bounds[0]), (x > limerock.heat_sink_bounds[1]) ), batch_per_epoch=2000, ) flow_domain.add_constraint(lr_interior, "lr_interior") # flow interior high res near limerock hr_interior = PointwiseInteriorConstraint( nodes=flow_nodes, geometry=limerock.geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0, "momentum_z": 0}, batch_size=cfg.batch_size.hr_interior, compute_sdf_derivatives=True, lambda_weighting={ "continuity": 3 * Symbol("sdf"), "momentum_x": 3 * Symbol("sdf"), "momentum_y": 3 * Symbol("sdf"), "momentum_z": 3 * Symbol("sdf"), }, criteria=And( (x > limerock.heat_sink_bounds[0]), (x < limerock.heat_sink_bounds[1]) ), batch_per_epoch=2000, ) flow_domain.add_constraint(hr_interior, "hr_interior") # integral continuity def integral_criteria(invar, params): sdf = limerock.geo.sdf(invar, params) return np.greater(sdf["sdf"], 0) integral_continuity = IntegralBoundaryConstraint( nodes=flow_nodes, geometry=limerock.integral_plane, outvar={"normal_dot_vel": nd_volumetric_flow}, batch_size=cfg.batch_size.num_integral_continuity, integral_batch_size=cfg.batch_size.integral_continuity, lambda_weighting={"normal_dot_vel": 0.1}, criteria=integral_criteria, ) flow_domain.add_constraint(integral_continuity, "integral_continuity") # add inferencer data vtk_obj = VTKUniformGrid( bounds=[limerock.geo_bounds[x], limerock.geo_bounds[y], limerock.geo_bounds[z]], npoints=[256, 128, 256], export_map={"u": ["u", "v", "w"], "p": ["p"]}, ) def mask_fn(x, y, z): sdf = limerock.geo.sdf({"x": x, "y": y, "z": z}, {}) return sdf["sdf"] < 0 grid_inference = PointVTKInferencer( vtk_obj=vtk_obj, nodes=flow_nodes, input_vtk_map={"x": "x", "y": "y", "z": "z"}, output_names=["u", "v", "w", "p"], mask_fn=mask_fn, mask_value=np.nan, requires_grad=False, batch_size=100000, ) flow_domain.add_inferencer(grid_inference, "grid_inference") # add monitor # front pressure plane_param_ranges = {Symbol("x_pos"): -0.7} invar_pressure = limerock.integral_plane.sample_boundary( 5000, parameterization=plane_param_ranges, ) front_pressure_monitor = PointwiseMonitor( invar_pressure, output_names=["p"], metrics={"front_pressure": lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) flow_domain.add_monitor(front_pressure_monitor) # back pressure plane_param_ranges = {Symbol("x_pos"): 0.7} invar_pressure = limerock.integral_plane.sample_boundary( 5000, parameterization=plane_param_ranges, ) back_pressure_monitor = PointwiseMonitor( invar_pressure, output_names=["p"], metrics={"back_pressure": lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) flow_domain.add_monitor(back_pressure_monitor) # make solver slv = Solver(cfg, flow_domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/limerock/limerock_hFTB/limerock_flow.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from limerock_geometry import LimeRock # make limerock limerock = LimeRock() # Real Params # fluid params fluid_viscosity = 1.84e-05 # kg/m-s fluid_density = 1.1614 # kg/m3 fluid_specific_heat = 1005 # J/kg-K fluid_conductivity = 0.0261 # W/m-K # copper params copper_density = 8930 # kg/m3 copper_specific_heat = 385 # J/kg-K copper_conductivity = 385 # W/m-K # boundary params length_scale = 0.0575 # m inlet_velocity = 5.7 # m/s inlet_velocity_normalized = 1.0 power = 120 # W ambient_temperature = 61 # degree Celsius # Nondimensionalization Params # fluid params nu = limerock.scale * fluid_viscosity / (fluid_density * inlet_velocity) rho = 1.0 volumetric_flow = limerock.inlet_area * inlet_velocity_normalized # heat params D_solid = 0.10 D_fluid = 0.02 source_grad = 1.5 source_area = 0.25**2 source_origin = (-0.061667, -0.15833, limerock.geo_bounds_lower[2]) source_dim = (0.1285, 0.31667, 0)
modulus-sym-main
examples/limerock/limerock_transfer_learning/limerock_properties.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import libraries import numpy as np import chaospy # define parameter ranges fin_front_top_cut_angle_ranges = (0.0, np.pi / 6.0) fin_front_bottom_cut_angle_ranges = (0.0, np.pi / 6.0) fin_back_top_cut_angle_ranges = (0.0, np.pi / 6.0) fin_back_bottom_cut_angle_ranges = (0.0, np.pi / 6.0) # generate samples samples = chaospy.generate_samples( order=30, domain=np.array( [ fin_front_top_cut_angle_ranges, fin_front_bottom_cut_angle_ranges, fin_back_top_cut_angle_ranges, fin_back_bottom_cut_angle_ranges, ] ).T, rule="halton", ) samples = samples.T np.random.shuffle(samples) np.savetxt("samples.txt", samples)
modulus-sym-main
examples/limerock/limerock_transfer_learning/sample_generator.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import libraries import numpy as np import csv import chaospy # load data samples = np.loadtxt("samples.txt") num_samples = len(samples) # read monitored values y_vec = [] for i in range(num_samples): front_pressure_dir = ( "./outputs/limerock_flow/tl_" + str(i) + "/monitors/front_pressure.csv" ) back_pressure_dir = ( "./outputs/limerock_flow/tl_" + str(i) + "/monitors/back_pressure.csv" ) with open(front_pressure_dir, "r", encoding="utf-8", errors="ignore") as scraped: front_pressure = float(scraped.readlines()[-1].split(",")[1]) with open(back_pressure_dir, "r", encoding="utf-8", errors="ignore") as scraped: back_pressure = float(scraped.readlines()[-1].split(",")[1]) pressure_drop = front_pressure - back_pressure y_vec.append(pressure_drop) y_vec = np.array(y_vec) # Split data into training and validation val_portion = 0.15 val_idx = np.random.choice( np.arange(num_samples, dtype=int), int(val_portion * num_samples), replace=False ) val_x, val_y = samples[val_idx], y_vec[val_idx] train_x, train_y = np.delete(samples, val_idx, axis=0).T, np.delete( y_vec, val_idx ).reshape(-1, 1) # Construct the PCE distribution = chaospy.J( chaospy.Uniform(0.0, np.pi / 6), chaospy.Uniform(0.0, np.pi / 6), chaospy.Uniform(0.0, np.pi / 6), chaospy.Uniform(0.0, np.pi / 6), ) expansion = chaospy.generate_expansion(2, distribution) poly = chaospy.fit_regression(expansion, train_x, train_y) # PCE closed form print("__________") print("PCE closd form:") print(poly) print("__________") # Validation print("PCE evaluatins:") for i in range(len(val_x)): pred = poly(val_x[i, 0], val_x[i, 1], val_x[i, 2], val_x[i, 3])[0] print("Sample:", val_x[i]) print("True val:", val_y[i]) print("Predicted val:", pred) print("Relative error (%):", abs(pred - val_y[i]) / val_y[i] * 100) print("__________")
modulus-sym-main
examples/limerock/limerock_transfer_learning/limerock_pce_surrogate.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sympy import Symbol, Eq, tanh, Max import numpy as np import itertools from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.geometry import Parameterization, Parameter fin_front_top_cut_angle = 0.0 fin_front_bottom_cut_angle = 0.0 fin_back_top_cut_angle = 0.0 fin_back_bottom_cut_angle = 0.0 """ If running for transfer learning: (1) Run sample_generator.py (2) Initialize networks with trained checkpoints in the config file (3) Change the configs for learning rate, decay rate, and max steps (4) Uncomment the following lines """ # sample_id = 0 # choose the sample ID # samples = np.loadtxt('./samples.txt') # samples = samples[sample_id,:] # fin_front_top_cut_angle = samples[0] # fin_front_bottom_cut_angle = samples[1] # fin_back_top_cut_angle = samples[2] # fin_back_bottom_cut_angle = samples[3] class LimeRock(object): def __init__(self): # scale STL self.scale = 5 / 0.3 self.translate = (0, 0, -0.055) # set fins self.nr_fins = 47 self.fin_gap = 0.0018 self.fin_gap_stl = 0.0018 # make solids self.copper = None # parse file print("parsing stl file...") self._parse_file("../stl_files/limerock.stl") print("finished parsing") # inlet area self.inlet_area = (self.geo_bounds_upper[1] - self.geo_bounds_lower[1]) * ( self.geo_bounds_upper[2] - self.geo_bounds_lower[2] ) # geo self.heat_sink_bounds = (-0.7, 0.7) self.geo = self.channel - self.copper self.geo_bounds = { Symbol("x"): (self.geo_bounds_lower[0], self.geo_bounds_upper[0]), Symbol("y"): (self.geo_bounds_lower[1], self.geo_bounds_upper[1]), Symbol("z"): (self.geo_bounds_lower[2], self.geo_bounds_upper[2]), } self.geo_hr_bounds = { Symbol("x"): self.heat_sink_bounds, Symbol("y"): (self.geo_bounds_lower[1], self.geo_bounds_upper[1]), Symbol("z"): (self.geo_bounds_lower[2], self.geo_bounds_upper[2]), } # integral plane x_pos = Parameter("x_pos") self.integral_plane = Plane( (x_pos, self.geo_bounds_lower[1], self.geo_bounds_lower[2]), (x_pos, self.geo_bounds_upper[1], self.geo_bounds_upper[2]), 1, parameterization=Parameterization({x_pos: self.heat_sink_bounds}), ) def solid_names(self): return list(self.solids.keys()) def _parse_file(self, filename): # Read file reader = open(filename) sdf = 0 while True: line = reader.readline() if "solid" == line.split(" ")[0]: solid_name = line.split(" ")[-1].rstrip() bounds_lower, bounds_upper = self.read_solid(reader) if solid_name == "opening.1": self.inlet = Plane(bounds_lower, bounds_upper, -1) self.geo_bounds_lower = bounds_lower elif solid_name == "fan.1": self.outlet = Plane(bounds_lower, bounds_upper, 1) self.geo_bounds_upper = bounds_upper elif solid_name == "FIN": center_stl = _center( bounds_lower, bounds_upper ) # center of the fin in stl file fin = Box(bounds_lower, bounds_upper) fin = fin.repeat( self.scale * self.fin_gap, repeat_lower=(0, 0, 0), repeat_higher=(0, 0, self.nr_fins - 1), center=center_stl, ) fin_top = ( center_stl[2] + (self.nr_fins - 1) * self.scale * self.fin_gap_stl + (bounds_upper[2] - bounds_lower[2]) / 2.0 ) # z value of the top fin upper-bound cut_box_back_bottom = Box( (bounds_lower[0], bounds_lower[1], bounds_lower[2] - 1.0), ( bounds_upper[0] + 1.0, bounds_upper[1], bounds_lower[2] - 3 * self.scale * self.fin_gap_stl, ), ) cut_box_back_bottom = cut_box_back_bottom.rotate( fin_back_bottom_cut_angle, axis="y", center=( bounds_lower[0], bounds_lower[1], bounds_lower[2] - 3 * self.scale * self.fin_gap_stl, ), ) cut_box_front_bottom = Box( (bounds_lower[0] - 1.0, bounds_lower[1], bounds_lower[2] - 1.0), ( bounds_upper[0], bounds_upper[1], bounds_lower[2] - 3 * self.scale * self.fin_gap_stl, ), ) cut_box_front_bottom = cut_box_front_bottom.rotate( -fin_front_bottom_cut_angle, axis="y", center=( bounds_upper[0], bounds_upper[1], bounds_lower[2] - 3 * self.scale * self.fin_gap_stl, ), ) cut_box_back_top = Box( ( bounds_lower[0], bounds_lower[1], fin_top + 3 * self.scale * self.fin_gap_stl, ), (bounds_upper[0] + 1.0, bounds_upper[1], fin_top + 1.0), ) cut_box_back_top = cut_box_back_top.rotate( -fin_back_top_cut_angle, axis="y", center=( bounds_lower[0], bounds_lower[1], fin_top + 3 * self.scale * self.fin_gap_stl, ), ) cut_box_front_top = Box( ( bounds_lower[0] - 1.0, bounds_lower[1], fin_top + 3 * self.scale * self.fin_gap_stl, ), (bounds_upper[0], bounds_upper[1], fin_top + 1.0), ) cut_box_front_top = cut_box_front_top.rotate( fin_front_top_cut_angle, axis="y", center=( bounds_upper[0], bounds_upper[1], fin_top + 3 * self.scale * self.fin_gap_stl, ), ) fin = ( fin - cut_box_back_bottom - cut_box_front_bottom - cut_box_back_top - cut_box_front_top ) if self.copper is not None: self.copper = self.copper + fin else: self.copper = fin else: solid = Box(bounds_lower, bounds_upper) if self.copper is not None: self.copper = self.copper + solid else: self.copper = solid else: break self.channel = Channel(self.geo_bounds_lower, self.geo_bounds_upper) def read_solid(self, reader): # solid pieces faces = [] while True: line = reader.readline() split_line = line.split(" ") if len(split_line) == 0: break elif "endsolid" == split_line[0]: break elif "facet" == split_line[0]: curve = {} # read outer loop line _ = reader.readline() # read 3 vertices a_0 = [float(x) for x in reader.readline().split(" ")[-3:]] a_1 = [float(x) for x in reader.readline().split(" ")[-3:]] a_2 = [float(x) for x in reader.readline().split(" ")[-3:]] faces.append([a_0, a_1, a_2]) # read end loop/end facet _ = reader.readline() _ = reader.readline() faces = np.array(faces) bounds_lower = ( np.min(faces[..., 2]), np.min(faces[..., 1]), np.min(faces[..., 0]), ) # flip axis bounds_upper = ( np.max(faces[..., 2]), np.max(faces[..., 1]), np.max(faces[..., 0]), ) bounds_lower = tuple( [self.scale * (x + t) for x, t in zip(bounds_lower, self.translate)] ) bounds_upper = tuple( [self.scale * (x + t) for x, t in zip(bounds_upper, self.translate)] ) return bounds_lower, bounds_upper def _center(bounds_lower, bounds_upper): center_x = bounds_lower[0] + (bounds_upper[0] - bounds_lower[0]) / 2 center_y = bounds_lower[1] + (bounds_upper[1] - bounds_lower[1]) / 2 center_z = bounds_lower[2] + (bounds_upper[2] - bounds_lower[2]) / 2 return center_x, center_y, center_z
modulus-sym-main
examples/limerock/limerock_transfer_learning/limerock_geometry.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.utils.data import DataLoader, Dataset import numpy as np from sympy import Symbol, Eq, tanh, Or, And import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_3d import Box, Channel, Plane from modulus.sym.models.fourier_net import FourierNetArch from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, IntegralBoundaryConstraint, ) from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.turbulence_zero_eq import ZeroEquation from modulus.sym.eq.pdes.basic import NormalDotVec, GradNormal from limerock_properties import * @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on ze = ZeroEquation(nu=nu, dim=3, time=False, max_distance=0.5) ns = NavierStokes(nu=ze.equations["nu"], rho=rho, dim=3, time=False) normal_dot_vel = NormalDotVec() flow_net = FourierNetArch( input_keys=[Key("x"), Key("y"), Key("z")], output_keys=[Key("u"), Key("v"), Key("w"), Key("p")], ) flow_nodes = ( ns.make_nodes() + ze.make_nodes() + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network")] ) # make flow domain flow_domain = Domain() # add constraints to solver x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # inlet def channel_sdf(x, y, z): sdf = limerock.channel.sdf({"x": x, "y": y, "z": z}, {}) return sdf["sdf"] inlet = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=limerock.inlet, outvar={"u": inlet_velocity_normalized, "v": 0, "w": 0}, batch_size=cfg.batch_size.inlet, batch_per_epoch=5000, lambda_weighting={"u": channel_sdf, "v": 1.0, "w": 1.0}, ) flow_domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=limerock.outlet, outvar={"p": 0}, batch_size=cfg.batch_size.outlet, batch_per_epoch=5000, ) flow_domain.add_constraint(outlet, "outlet") # no slip no_slip = PointwiseBoundaryConstraint( nodes=flow_nodes, geometry=limerock.geo, outvar={"u": 0, "v": 0, "w": 0}, batch_size=cfg.batch_size.no_slip, batch_per_epoch=15000, ) flow_domain.add_constraint(no_slip, "no_slip") # flow interior low res away from limerock lr_interior = PointwiseInteriorConstraint( nodes=flow_nodes, geometry=limerock.geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0, "momentum_z": 0}, batch_size=cfg.batch_size.lr_interior, batch_per_epoch=5000, compute_sdf_derivatives=True, lambda_weighting={ "continuity": 3 * Symbol("sdf"), "momentum_x": 3 * Symbol("sdf"), "momentum_y": 3 * Symbol("sdf"), "momentum_z": 3 * Symbol("sdf"), }, criteria=Or( (x < limerock.heat_sink_bounds[0]), (x > limerock.heat_sink_bounds[1]) ), ) flow_domain.add_constraint(lr_interior, "lr_interior") # flow interior high res near limerock hr_interior = PointwiseInteriorConstraint( nodes=flow_nodes, geometry=limerock.geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0, "momentum_z": 0}, batch_size=cfg.batch_size.hr_interior, batch_per_epoch=5000, compute_sdf_derivatives=True, lambda_weighting={ "continuity": 3 * Symbol("sdf"), "momentum_x": 3 * Symbol("sdf"), "momentum_y": 3 * Symbol("sdf"), "momentum_z": 3 * Symbol("sdf"), }, criteria=And( (x > limerock.heat_sink_bounds[0]), (x < limerock.heat_sink_bounds[1]) ), ) flow_domain.add_constraint(hr_interior, "hr_interior") # integral continuity def integral_criteria(invar, params): sdf = limerock.geo.sdf(invar, params) return np.greater(sdf["sdf"], 0) integral_continuity = IntegralBoundaryConstraint( nodes=flow_nodes, geometry=limerock.integral_plane, outvar={"normal_dot_vel": volumetric_flow}, batch_size=cfg.batch_size.num_integral_continuity, integral_batch_size=cfg.batch_size.integral_continuity, lambda_weighting={"normal_dot_vel": 0.1}, criteria=integral_criteria, ) flow_domain.add_constraint(integral_continuity, "integral_continuity") print("finished generating points") """# add inferencer data invar_flow_numpy = limerock.geo.sample_interior(10000, bounds=limerock.geo_bounds) point_cloud_inference = PointwiseInferencer(invar_flow_numpy, ["u", "v", "w", "p"], flow_nodes) flow_domain.add_inferencer(point_cloud_inference, "inf_data")""" # add monitor # front pressure plane_param_ranges = {Symbol("x_pos"): -0.7} invar_pressure = limerock.integral_plane.sample_boundary( 5000, parameterization=plane_param_ranges, ) front_pressure_monitor = PointwiseMonitor( invar_pressure, output_names=["p"], metrics={"front_pressure": lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) flow_domain.add_monitor(front_pressure_monitor) # back pressure plane_param_ranges = {Symbol("x_pos"): 0.7} invar_pressure = limerock.integral_plane.sample_boundary( 5000, parameterization=plane_param_ranges, ) back_pressure_monitor = PointwiseMonitor( invar_pressure, output_names=["p"], metrics={"back_pressure": lambda var: torch.mean(var["p"])}, nodes=flow_nodes, ) flow_domain.add_monitor(back_pressure_monitor) # make solver slv = Solver(cfg, flow_domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/limerock/limerock_transfer_learning/limerock_flow.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import numpy as np from sympy import Symbol, Eq import modulus.sym from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.utils.io import csv_to_dict from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry import Bounds from modulus.sym.geometry.primitives_2d import Line, Circle, Channel2D from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.eq.pdes.basic import NormalDotVec from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.key import Key from modulus.sym import quantity from modulus.sym.eq.non_dim import NonDimensionalizer, Scaler @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # physical quantities nu = quantity(0.02, "kg/(m*s)") rho = quantity(1.0, "kg/m^3") inlet_u = quantity(1.0, "m/s") inlet_v = quantity(0.0, "m/s") noslip_u = quantity(0.0, "m/s") noslip_v = quantity(0.0, "m/s") outlet_p = quantity(0.0, "pa") velocity_scale = inlet_u density_scale = rho length_scale = quantity(20, "m") nd = NonDimensionalizer( length_scale=length_scale, time_scale=length_scale / velocity_scale, mass_scale=density_scale * (length_scale**3), ) # geometry channel_length = (quantity(-10, "m"), quantity(30, "m")) channel_width = (quantity(-10, "m"), quantity(10, "m")) cylinder_center = (quantity(0, "m"), quantity(0, "m")) cylinder_radius = quantity(0.5, "m") channel_length_nd = tuple(map(lambda x: nd.ndim(x), channel_length)) channel_width_nd = tuple(map(lambda x: nd.ndim(x), channel_width)) cylinder_center_nd = tuple(map(lambda x: nd.ndim(x), cylinder_center)) cylinder_radius_nd = nd.ndim(cylinder_radius) channel = Channel2D( (channel_length_nd[0], channel_width_nd[0]), (channel_length_nd[1], channel_width_nd[1]), ) inlet = Line( (channel_length_nd[0], channel_width_nd[0]), (channel_length_nd[0], channel_width_nd[1]), normal=1, ) outlet = Line( (channel_length_nd[1], channel_width_nd[0]), (channel_length_nd[1], channel_width_nd[1]), normal=1, ) wall_top = Line( (channel_length_nd[1], channel_width_nd[0]), (channel_length_nd[1], channel_width_nd[1]), normal=1, ) cylinder = Circle(cylinder_center_nd, cylinder_radius_nd) volume_geo = channel - cylinder # make list of nodes to unroll graph on ns = NavierStokes(nu=nd.ndim(nu), rho=nd.ndim(rho), dim=2, time=False) normal_dot_vel = NormalDotVec(["u", "v"]) flow_net = instantiate_arch( input_keys=[Key("x"), Key("y")], output_keys=[Key("u"), Key("v"), Key("p")], cfg=cfg.arch.fully_connected, ) nodes = ( ns.make_nodes() + normal_dot_vel.make_nodes() + [flow_net.make_node(name="flow_network")] + Scaler( ["u", "v", "p"], ["u_scaled", "v_scaled", "p_scaled"], ["m/s", "m/s", "m^2/s^2"], nd, ).make_node() ) # make domain domain = Domain() x, y = Symbol("x"), Symbol("y") # inlet inlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=inlet, outvar={"u": nd.ndim(inlet_u), "v": nd.ndim(inlet_v)}, batch_size=cfg.batch_size.inlet, ) domain.add_constraint(inlet, "inlet") # outlet outlet = PointwiseBoundaryConstraint( nodes=nodes, geometry=outlet, outvar={"p": nd.ndim(outlet_p)}, batch_size=cfg.batch_size.outlet, ) domain.add_constraint(outlet, "outlet") # full slip (channel walls) walls = PointwiseBoundaryConstraint( nodes=nodes, geometry=channel, outvar={"u": nd.ndim(inlet_u), "v": nd.ndim(inlet_v)}, batch_size=cfg.batch_size.walls, ) domain.add_constraint(walls, "walls") # no slip no_slip = PointwiseBoundaryConstraint( nodes=nodes, geometry=cylinder, outvar={"u": nd.ndim(noslip_u), "v": nd.ndim(noslip_v)}, batch_size=cfg.batch_size.no_slip, ) domain.add_constraint(no_slip, "no_slip") # interior contraints interior = PointwiseInteriorConstraint( nodes=nodes, geometry=volume_geo, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0}, batch_size=cfg.batch_size.interior, bounds=Bounds({x: channel_length_nd, y: channel_width_nd}), ) domain.add_constraint(interior, "interior") # Loading validation data from CSV file_path = "openfoam/cylinder_nu_0.020.csv" if os.path.exists(to_absolute_path(file_path)): mapping = { "Points:0": "x", "Points:1": "y", "U:0": "u_scaled", "U:1": "v_scaled", "p": "p_scaled", } openfoam_var = csv_to_dict(to_absolute_path(file_path), mapping) openfoam_invar_numpy = { key: value / length_scale.magnitude for key, value in openfoam_var.items() if key in ["x", "y"] } openfoam_outvar_numpy = { key: value for key, value in openfoam_var.items() if key in ["u_scaled", "v_scaled", "p_scaled"] } openfoam_validator = PointwiseValidator( nodes=nodes, invar=openfoam_invar_numpy, true_outvar=openfoam_outvar_numpy ) domain.add_validator(openfoam_validator) else: warnings.warn( f"Directory {file_path} does not exist. Will skip adding validators. Please download the additional files from NGC https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_sym_examples_supplemental_materials" ) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
modulus-sym-main
examples/cylinder/cylinder_2d.py
#!/usr/bin/env python3 # Copyright 2017 The Kubernetes Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Extract strings from command files and externalize into translation files. Expects to be run from the root directory of the repository. Usage: extract.py pkg/kubectl/cmd/apply.go """ import fileinput import sys import re class MatchHandler(object): """ Simple holder for a regular expression and a function to run if that regular expression matches a line. The function should expect (re.match, file, linenumber) as parameters """ def __init__(self, regex, replace_fn): self.regex = re.compile(regex) self.replace_fn = replace_fn def short_replace(match, file, line_number): """Replace a Short: ... cobra command description with an internationalization """ sys.stdout.write('{}i18n.T({}),\n'.format(match.group(1), match.group(2))) SHORT_MATCH = MatchHandler(r'(\s+Short:\s+)("[^"]+"),', short_replace) def import_replace(match, file, line_number): """Add an extra import for the i18n library. Doesn't try to be smart and detect if it's already present, assumes a gofmt round wil fix things. """ sys.stdout.write('{}\n"k8s.io/kubectl/pkg/util/i18n"\n'.format(match.group(1))) IMPORT_MATCH = MatchHandler('(.*"k8s.io/kubectl/pkg/cmd/util")', import_replace) def string_flag_replace(match, file, line_number): """Replace a cmd.Flags().String("...", "", "...") with an internationalization """ sys.stdout.write('{}i18n.T("{})"))\n'.format(match.group(1), match.group(2))) STRING_FLAG_MATCH = MatchHandler('(\s+cmd\.Flags\(\).String\("[^"]*", "[^"]*", )"([^"]*)"\)', string_flag_replace) def long_string_replace(match, file, line_number): return '{}i18n.T({}){}'.format(match.group(1), match.group(2), match.group(3)) LONG_DESC_MATCH = MatchHandler('(LongDesc\()(`[^`]+`)([^\n]\n)', long_string_replace) EXAMPLE_MATCH = MatchHandler('(Examples\()(`[^`]+`)([^\n]\n)', long_string_replace) def replace(filename, matchers, multiline_matchers): """Given a file and a set of matchers, run those matchers across the file and replace it with the results. """ # Run all the matchers line_number = 0 for line in fileinput.input(filename, inplace=True): line_number += 1 matched = False for matcher in matchers: match = matcher.regex.match(line) if match: matcher.replace_fn(match, filename, line_number) matched = True break if not matched: sys.stdout.write(line) sys.stdout.flush() with open(filename, 'r') as datafile: content = datafile.read() for matcher in multiline_matchers: match = matcher.regex.search(content) while match: rep = matcher.replace_fn(match, filename, 0) # Escape back references in the replacement string # (And escape for Python) # (And escape for regex) rep = re.sub('\\\\(\\d)', '\\\\\\\\\\1', rep) content = matcher.regex.sub(rep, content, 1) match = matcher.regex.search(content) sys.stdout.write(content) # gofmt the file again from subprocess import call call(["goimports", "-w", filename]) replace(sys.argv[1], [SHORT_MATCH, IMPORT_MATCH, STRING_FLAG_MATCH], [LONG_DESC_MATCH, EXAMPLE_MATCH])
k8s-driver-manager-master
vendor/k8s.io/kubectl/pkg/util/i18n/translations/extract.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Instantiate the TAO-API docker container for developers.""" import argparse from distutils.version import LooseVersion import json import os import subprocess import sys ROOT_DIR = os.getenv("NV_TAO_API_TOP", os.getcwd()) with open(os.path.join(ROOT_DIR, "docker/manifest.json"), "r") as m_file: docker_config = json.load(m_file) DOCKER_REGISTRY = docker_config["registry"] DOCKER_REPOSITORY = docker_config["repository"] DOCKER_DIGEST = docker_config["digest"] DOCKER_COMMAND = "docker" HOME_PATH = os.path.expanduser("~") MOUNTS_PATH = os.path.join(HOME_PATH, ".tao_mounts.json") def get_docker_mounts_from_file(mounts_file=MOUNTS_PATH): """Check for docker mounts in ~/.tao_mounts.json.""" if not os.path.exists(mounts_file): return [] with open(mounts_file, 'r') as mfile: data = json.load(mfile) assert "Mounts" in list(data.keys()), "Invalid json file. Requires Mounts key." return data["Mounts"] def format_mounts(mount_points): """Format mount points to docker recognizable commands.""" formatted_mounts = [] # Traverse through mount points and add format them for the docker command. for mount_point in mount_points: assert "source" in list(mount_point.keys()), "destination" in list(mount_point.keys()) mount = "{}:{}".format(mount_point["source"], mount_point["destination"]) formatted_mounts.append(mount) return formatted_mounts def check_image_exists(docker_image): """Check if the image exists locally.""" check_command = '{} images | grep "\\<{}\\>" >/dev/null 2>&1'.format(DOCKER_COMMAND, docker_image) rc = subprocess.call(check_command, stdout=sys.stderr, shell=True) return rc == 0 def pull_base_container(docker_image): """Pull the default base container.""" pull_command = "{} pull {}@{}".format(DOCKER_COMMAND, docker_image, DOCKER_DIGEST) rc = subprocess.call(pull_command, stdout=sys.stderr, shell=True) return rc == 0 def get_formatted_mounts(mount_file): """Simple function to get default mount points.""" default_mounts = get_docker_mounts_from_file(mount_file) return format_mounts(default_mounts) def check_mounts(formatted_mounts): """Check the formatted mount commands.""" assert type(formatted_mounts) == list for mounts in formatted_mounts: source_path = mounts.split(":")[0] if not os.path.exists(source_path): raise ValueError("Path doesn't exist: {}".format(source_path)) return True def get_docker_gpus_prefix(gpus): """Get the docker command gpu's prefix.""" docker_version = ( subprocess.check_output( ["docker", "version", "--format={{ .Server.APIVersion }}"] ) .strip() .decode() ) if LooseVersion(docker_version) > LooseVersion("1.40"): # You are using the latest version of docker using # --gpus instead of the nvidia runtime. gpu_string = "--gpus " if gpus == "all": gpu_string += "all" else: gpu_string += "\'\"device={}\"\'".format(gpus) else: # Stick to the older version of getting the gpu's using runtime=nvidia gpu_string = "--runtime=nvidia -e NVIDIA_DRIVER_CAPABILITIES=all " if gpus != "none": gpu_string += "-e NVIDIA_VISIBLE_DEVICES={}".format(gpus) return gpu_string def instantiate_dev_docker(gpus, mount_file, mount_cli_list, env_var_list, tag, command, ulimit=None, shm_size="16G", run_as_user=False): """Instiate the docker container.""" docker_image = "{}/{}@{}".format(DOCKER_REGISTRY, DOCKER_REPOSITORY, DOCKER_DIGEST) if tag is not None: docker_image = "{}/{}:{}".format(DOCKER_REGISTRY, DOCKER_REPOSITORY, tag) # Invoking the nvidia docker. gpu_string = get_docker_gpus_prefix(gpus) # Prefix for the run command. run_command = "{} run -it --rm".format(DOCKER_COMMAND) # get default mount points. formatted_mounts = get_formatted_mounts(MOUNTS_PATH) # get mounts from cli mount file. formatted_mounts += get_formatted_mounts(mount_file) if mount_cli_list is not None: formatted_mounts.extend(mount_cli_list) assert check_mounts(formatted_mounts), "Mounts don't exists, Please make sure the paths all exist." mount_string = "-v {}:/tao-api ".format(os.getenv("NV_TAO_API_TOP", os.getcwd())) # Defining env variables. env_variables = "-e PYTHONPATH={}:$PYTHONPATH ".format("/tao-api/api") for env in env_var_list: if "=" not in env: print(f"invalid env variable definition. skipping this {env}") continue env_variables += "-e {} ".format(env) for path in formatted_mounts: mount_string += "-v {} ".format(path) # Setting shared memory. shm_option = "--shm-size {}".format(shm_size) # Setting ulimits for host ulimit_options = "" if ulimit is not None: for param in ulimit: ulimit_options += "--ulimit {} ".format(param) user_option = "" if run_as_user: user_option = "--user {}:{}".format(os.getuid(), os.getgid()) final_command = "{} {} {} {} {} {} {} {} {}".format( run_command, gpu_string, mount_string, env_variables, shm_option, ulimit_options, user_option, docker_image, " ".join(command) ) return subprocess.check_call(final_command, stdout=sys.stderr, shell=True) def parse_cli_args(args=None): """Parse run container command line.""" parser = argparse.ArgumentParser(prog="tao_api", description="Tool to run the API container.", add_help=True) parser.add_argument( "--gpus", default="all", type=str, help="Comma separated GPU indices to be exposed to the docker." ) parser.add_argument("--volume", action="append", type=str, default=[], help="Volumes to bind.") parser.add_argument("--env", action="append", type=str, default=[], help="Environment variables to bind.") parser.add_argument("--mounts_file", help="Path to the mounts file.", default="", type=str) parser.add_argument("--shm_size", help="Shared memory size for docker", default="16G", type=str) parser.add_argument("--run_as_user", help="Flag to run as user", action="store_true", default=False) parser.add_argument("--tag", help="The tag value for the local dev docker.", default=None, type=str) parser.add_argument("--ulimit", action='append', help="Docker ulimits for the host machine." ) args = vars(parser.parse_args(args)) return args def main(cl_args=None): """Start docker container.""" index = cl_args.index("--") # Split args to the tao docker wrapper and the command to be run inside the docker. tao_api_args = cl_args[:index] command_args = cl_args[index + 1:] # parse command line args. args = parse_cli_args(tao_api_args) docker_image = "{}/{}".format(DOCKER_REGISTRY, DOCKER_REPOSITORY) if args["tag"] is not None: docker_image = "{}:{}".format(docker_image, args["tag"]) if not check_image_exists(docker_image): assert pull_base_container(docker_image), "The base container doesn't exist locally and " "the pull failed." try: instantiate_dev_docker( args["gpus"], args["mounts_file"], args["volume"], args["env"], args["tag"], command_args, args["ulimit"], args["shm_size"], args["run_as_user"] ) except subprocess.CalledProcessError: # Do nothing - the errors are printed in entrypoint launch. pass if __name__ == "__main__": main(sys.argv[1:])
tao_front_end_services-main
runner/tao_api.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Launcher .""" """TAO-Client SDK version""" MAJOR = "5" MINOR = "0.0" PATCH = "1" PRE_RELEASE = '' # Getting the build number. def get_build_info(): """Get the build version number.""" # required since setup.py runs a version string and global imports aren't executed. import os # noqa pylint: disable=import-outside-toplevel build_file = "../build.info" if not os.path.exists(build_file): raise FileNotFoundError("Build file doesn't exist.") patch = 0 with open(build_file, 'r', encoding="utf-8") as bfile: patch = bfile.read().strip() assert bfile.closed, "Build file wasn't closed properly." return patch try: PATCH = get_build_info() except FileNotFoundError: pass # Use the following formatting: (major, minor, patch, pre-release) VERSION = (MAJOR, MINOR, PATCH, PRE_RELEASE) # Version of the library. __version__ = '.'.join(map(str, VERSION[:3])) + ''.join(VERSION[3:]) # Version of the file format. __format_version__ = 2 # Other package info. __package_name__ = "nvidia-tao-client" __description__ = "NVIDIA's package for using REST-API via TAO-Client." __keywords__ = "nvidia, tao, api" __contact_names__ = "Varun Praveen" __contact_emails__ = "[email protected]" __license__ = "NVIDIA Proprietary Software"
tao_front_end_services-main
cli/version.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tao-toolkit API module"""
tao_front_end_services-main
cli/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup script to build the TAO Toolkit client package.""" import os import setuptools import sys CLI_SOURCE_PATH = os.getcwd() def get_version_details(): """Simple function to get packages for setup.py.""" # Get current __version__. version_locals = {} with open('version.py', 'r', encoding="utf-8") as version_file: exec(version_file.read(), {}, version_locals) # pylint: disable=W0122 return version_locals def get_requirements(package_root): """Simple function to get packages.""" with open(os.path.join(package_root, "requirements-pip.txt"), 'r', encoding="utf-8") as req_file: requirements = [r.replace('\n', '') for r in req_file.readlines()] return requirements def find_packages(package_name): """List of packages. Args: package_name (str): Name of the package. Returns: packages (list): List of packages. """ packages = setuptools.find_packages(package_name) packages = [f"{package_name}.{f}" for f in packages] packages.append(package_name) return packages def main(args=sys.argv[1:]): """Main wrapper to run setup.py""" # Get package related information. version_locals = get_version_details() install_requirements = get_requirements(CLI_SOURCE_PATH) print(f'Building wheel with version number {version_locals["__version__"]}') PACKAGE_LIST = [ "tao_cli" ] setuptools_packages = [] for package_name in PACKAGE_LIST: setuptools_packages.extend(find_packages(package_name)) # TODO: Modify script entry points setuptools.setup( name=version_locals["__package_name__"], version=version_locals['__version__'], description=version_locals["__description__"], author=version_locals["__contact_names__"], author_email=version_locals["__contact_emails__"], classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable # 6 - Mature # 7 - Inactive 'Intended Audience :: Developers', # Indicate what your project relates to 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', 'Environment :: Console', 'License :: Other/Proprietary License', f'Programming Language :: Python :: {sys.version_info.major}', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], keywords=version_locals["__keywords__"], license="NVIDIA Proprietary Software", packages=setuptools_packages, package_data={ '': ['*.pyc', "*.yaml", "*.so"] }, install_requires=install_requirements, zip_safe=False, entry_points={ 'console_scripts': [ 'tao-client=tao_cli.tao:cli', ] } ) if __name__ == "__main__": main()
tao_front_end_services-main
cli/setup.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defining enums for dataset and model formats and types""" import enum class dataset_format(str, enum.Enum): """Class defining dataset formats in enum""" default = "default" kitti = "kitti" lprnet = "lprnet" coco = "coco" raw = "raw" coco_raw = "coco_raw" custom = "custom" unet = "unet" classification_pyt = "classification_pyt" class dataset_type(str, enum.Enum): """Class defining dataset types in enum""" semantic_segmentation = "semantic_segmentation" image_classification = "image_classification" object_detection = "object_detection" character_recognition = "character_recognition" instance_segmentation = "instance_segmentation" bpnet = "bpnet" fpenet = "fpenet" action_recognition = "action_recognition" ml_recog = "ml_recog" ocdnet = "ocdnet" ocrnet = "ocrnet" optical_inspection = "optical_inspection" pointpillars = "pointpillars" pose_classification = "pose_classification" re_identification = "re_identification" class network_type(str, enum.Enum): """Class defining network types in enum""" # TF1 CV networks detectnet_v2 = "detectnet_v2" dssd = "dssd" efficientdet_tf1 = "efficientdet_tf1" lprnet = "lprnet" unet = "unet" multitask_classification = "multitask_classification" classification_tf1 = "classification_tf1" mask_rcnn = "mask_rcnn" ssd = "ssd" retinanet = "retinanet" faster_rcnn = "faster_rcnn" yolo_v3 = "yolo_v3" yolo_v4 = "yolo_v4" yolo_v4_tiny = "yolo_v4_tiny" # TF1 DRIVEIX networks bpnet = "bpnet" fpenet = "fpenet" # TF2 CV networks classification_tf2 = "classification_tf2" efficientdet_tf2 = "efficientdet_tf2" # PYTORCH CV networks action_recognition = "action_recognition" classification_pyt = "classification_pyt" deformable_detr = "deformable_detr" dino = "dino" mal = "mal" ml_recog = "ml_recog" ocdnet = "ocdnet" ocrnet = "ocrnet" optical_inspection = "optical_inspection" pointpillars = "pointpillars" pose_classification = "pose_classification" segformer = "segformer" re_identification = "re_identification" # PYTORCH TTS spectro_gen = "spectro_gen" vocoder = "vocoder" # Data Services annotations = "annotations" analytics = "analytics" auto_label = "auto_label" augmentation = "augmentation"
tao_front_end_services-main
cli/tao_cli/constants.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Add click network groups to the cli command""" import click from tao_cli.login import login # TF1 CV networks from tao_cli.networks.detectnet_v2 import detectnet_v2 from tao_cli.networks.dssd import dssd from tao_cli.networks.efficientdet_tf1 import efficientdet_tf1 from tao_cli.networks.lprnet import lprnet from tao_cli.networks.unet import unet from tao_cli.networks.multi_task_classification import multitask_classification from tao_cli.networks.multi_class_classification_tf1 import classification_tf1 from tao_cli.networks.mask_rcnn import mask_rcnn from tao_cli.networks.ssd import ssd from tao_cli.networks.retinanet import retinanet from tao_cli.networks.faster_rcnn import faster_rcnn from tao_cli.networks.yolo_v3 import yolo_v3 from tao_cli.networks.yolo_v4 import yolo_v4 from tao_cli.networks.yolo_v4_tiny import yolo_v4_tiny # TF1 DRIVEIX networks from tao_cli.networks.bpnet import bpnet from tao_cli.networks.fpenet import fpenet # TF2 CV networks from tao_cli.networks.multi_class_classification_tf2 import classification_tf2 from tao_cli.networks.efficientdet_tf2 import efficientdet_tf2 # PYTORCH CV networks from tao_cli.networks.action_recognition import action_recognition from tao_cli.networks.multi_class_classification_pyt import classification_pyt from tao_cli.networks.mal import mal from tao_cli.networks.ml_recog import ml_recog from tao_cli.networks.ocdnet import ocdnet from tao_cli.networks.ocrnet import ocrnet from tao_cli.networks.optical_inspection import optical_inspection from tao_cli.networks.pointpillars import pointpillars from tao_cli.networks.pose_classification import pose_classification from tao_cli.networks.re_identification import re_identification from tao_cli.networks.segformer import segformer from tao_cli.networks.deformable_detr import deformable_detr from tao_cli.networks.dino import dino # Data Services from tao_cli.networks.annotations import annotations from tao_cli.networks.analytics import analytics from tao_cli.networks.auto_label import auto_label from tao_cli.networks.augmentation import augmentation @click.group() @click.version_option(package_name='nvidia-tao-client') @click.pass_context def cli(ctx): """Create base nvidia-tao-client group""" pass cli.add_command(login) # TF1 CV networks cli.add_command(detectnet_v2) cli.add_command(dssd) cli.add_command(efficientdet_tf2) cli.add_command(lprnet) cli.add_command(unet) cli.add_command(multitask_classification) cli.add_command(classification_tf1) cli.add_command(mask_rcnn) cli.add_command(ssd) cli.add_command(retinanet) cli.add_command(faster_rcnn) cli.add_command(yolo_v3) cli.add_command(yolo_v4) cli.add_command(yolo_v4_tiny) # TF1 DRIVEIX networks cli.add_command(bpnet) cli.add_command(fpenet) # TF2 CV networks cli.add_command(classification_tf2) cli.add_command(efficientdet_tf1) # PYTORCH CV networks cli.add_command(action_recognition) cli.add_command(classification_pyt) cli.add_command(mal) cli.add_command(ml_recog) cli.add_command(ocdnet) cli.add_command(ocrnet) cli.add_command(optical_inspection) cli.add_command(pointpillars) cli.add_command(pose_classification) cli.add_command(re_identification) cli.add_command(segformer) cli.add_command(deformable_detr) cli.add_command(dino) # Data Services cli.add_command(annotations) cli.add_command(analytics) cli.add_command(auto_label) cli.add_command(augmentation) if __name__ == '__main__': cli()
tao_front_end_services-main
cli/tao_cli/tao.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Client CLI module"""
tao_front_end_services-main
cli/tao_cli/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Login modules""" import requests import click import json import os @click.command() @click.option('--ngc-api-key', prompt='ngc_api_key', help='Your NGC API KEY.', required=True) def login(ngc_api_key): """User login method""" base_url = os.getenv('BASE_URL', 'http://localhost/api/v1') endpoint = base_url + "/login/" + ngc_api_key response = requests.get(endpoint) click.echo(json.dumps(response.json()))
tao_front_end_services-main
cli/tao_cli/login.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO-Client base actions module""" import json import requests import os class Actions: """Base class which defines API functions for general actions""" def __init__(self): """Initialize the actions base class""" self.user = os.getenv('USER', 'nobody') self.base_url = os.getenv('BASE_URL', 'http://localhost/api/v1/') + f"/user/{self.user}" self.token = os.getenv('TOKEN', 'invalid') self.headers = {"Authorization": f"Bearer {self.token}"} self.sub_action = self.__class__.__name__.lower() def get_action_spec(self, id, action): """Return spec dictionary for the action passed""" endpoint = self.base_url + f"/{self.sub_action}/{id}/specs/{action}/schema" response = requests.get(endpoint, headers=self.headers) data = response.json()["default"] return data def get_automl_defaults(self, id, action): """Return automl parameters enabled for a network""" endpoint = self.base_url + f"/{self.sub_action}/{id}/specs/{action}/schema" response = requests.get(endpoint, headers=self.headers) data = response.json()["automl_default_parameters"] return data def run_action(self, id, job, action): """Submit post request for an action""" data = json.dumps({"job": job, "actions": action}) endpoint = self.base_url + f"/{self.sub_action}/{id}/job" response = requests.post(endpoint, data=data, headers=self.headers) job_id = response.json()[0] return job_id def model_job_cancel(self, id, job): """Pause a running job""" endpoint = self.base_url + f"/{self.sub_action}/{id}/job/{job}/cancel" requests.post(endpoint, headers=self.headers) def model_job_resume(self, id, job): """Resume a paused job""" endpoint = self.base_url + f"/{self.sub_action}/{id}/job/{job}/resume" requests.post(endpoint, headers=self.headers)
tao_front_end_services-main
cli/tao_cli/cli_actions/actions.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO client cli actions module"""
tao_front_end_services-main
cli/tao_cli/cli_actions/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO-Client model module""" import json import requests from tao_cli.cli_actions.actions import Actions class Model(Actions): """Class which defines API functions for model specific actions""" # def __init__(self): # """Intialize Model class""" # super().__init__() def model_create(self, network_arch, encryption_key): """Create a model and return the id""" data = json.dumps({"network_arch": network_arch, "encryption_key": encryption_key}) endpoint = self.base_url + "/model" response = requests.post(endpoint, data=data, headers=self.headers) id = response.json()["id"] return id
tao_front_end_services-main
cli/tao_cli/cli_actions/model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO-Client dataset module""" import json import requests from tao_cli.cli_actions.actions import Actions class Dataset(Actions): """Class which defines API functions for dataset specific actions""" # def __init__(self): # """Intialize Dataset class""" # super().__init__() def dataset_create(self, dataset_type, dataset_format): """Create a dataset and return the id""" data = json.dumps({"type": dataset_type, "format": dataset_format}) endpoint = self.base_url + "/dataset" response = requests.post(endpoint, data=data, headers=self.headers) id = response.json()["id"] return id
tao_front_end_services-main
cli/tao_cli/cli_actions/dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Multi-class classification tf1 tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def classification_tf1(): """Create Multi-class classification tf1 model click group""" pass @classification_tf1.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @classification_tf1.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @classification_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/multi_class_classification_tf1.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """EfficientDet tf1 tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def efficientdet_tf1(): """Create EfficientDet tf1 model click group""" pass @efficientdet_tf1.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @efficientdet_tf1.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @efficientdet_tf1.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/efficientdet_tf1.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Multi-Class Classification-Pyt # import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def classification_pyt(): pass @classification_pyt.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @classification_pyt.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @classification_pyt.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @classification_pyt.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @classification_pyt.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @classification_pyt.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @classification_pyt.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @classification_pyt.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @classification_pyt.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @classification_pyt.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @classification_pyt.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @classification_pyt.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @classification_pyt.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or convert job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @classification_pyt.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @classification_pyt.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/multi_class_classification_pyt.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OCRNET tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def ocdnet(): """Create DetectNet V2 model click group""" pass @ocdnet.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @ocdnet.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @ocdnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/ocdnet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """LPRNET tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def lprnet(): """Create LPRNET model click group""" pass @lprnet.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @lprnet.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or convert job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @lprnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/lprnet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Data Services - Auto Labeling # import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def auto_label(): pass @auto_label.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @auto_label.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) def model_create(network_arch): """Create a model and return the id""" id = model_obj.model_create(network_arch, "") click.echo(f"{id}") @auto_label.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_action_defaults(id): """Return default action spec""" data = model_obj.get_action_spec(id, "generate") click.echo(json.dumps(data, indent=2)) @auto_label.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def execute_action(id): """Run action""" job_id = model_obj.run_action(id, None, ["generate"]) click.echo(f"{job_id}")
tao_front_end_services-main
cli/tao_cli/networks/auto_label.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """YOLO v3 tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def yolo_v3(): """Create YOLO v3 model click group""" pass @yolo_v3.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @yolo_v3.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @yolo_v3.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @yolo_v3.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @yolo_v3.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/yolo_v3.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SSD tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def ssd(): """Create SSD model click group""" pass @ssd.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @ssd.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @ssd.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @ssd.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @ssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/ssd.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unet tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def unet(): """Create Unet model click group""" pass @unet.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @unet.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @unet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/unet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Data Services - Data Augmentation # import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def augmentation(): pass @augmentation.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @augmentation.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) def model_create(network_arch): """Create a model and return the id""" id = model_obj.model_create(network_arch, "") click.echo(f"{id}") @augmentation.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_action_defaults(id): """Return default action spec""" data = model_obj.get_action_spec(id, "generate") click.echo(json.dumps(data, indent=2)) @augmentation.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def execute_action(id): """Run action""" job_id = model_obj.run_action(id, None, ["generate"]) click.echo(f"{job_id}")
tao_front_end_services-main
cli/tao_cli/networks/augmentation.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BPNet tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def bpnet(): """Create BPNet model click group""" pass @bpnet.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @bpnet.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @bpnet.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @bpnet.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_trtexec_defaults(id): """Return default trtexec spec""" data = model_obj.get_action_spec(id, "trtexec") click.echo(json.dumps(data, indent=2)) @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_trtexec(id, job): """Run trtexec action""" job_id = model_obj.run_action(id, job, ["trtexec"]) click.echo(f"{job_id}") @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or convert job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @bpnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/bpnet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """FasterRCNN tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def faster_rcnn(): """Create FasterRCNN model click group""" pass @faster_rcnn.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @faster_rcnn.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @faster_rcnn.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @faster_rcnn.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @faster_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/faster_rcnn.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OCRNET tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def ml_recog(): """Create DetectNet V2 model click group""" pass @ml_recog.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @ml_recog.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @ml_recog.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @ml_recog.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @ml_recog.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @ml_recog.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @ml_recog.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @ml_recog.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @ml_recog.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @ml_recog.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @ml_recog.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @ml_recog.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @ml_recog.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @ml_recog.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @ml_recog.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/ml_recog.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO-Client individual network modules"""
tao_front_end_services-main
cli/tao_cli/networks/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Action Recognition tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def action_recognition(): """Create model click group""" pass @action_recognition.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @action_recognition.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @action_recognition.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @action_recognition.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @action_recognition.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @action_recognition.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @action_recognition.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @action_recognition.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @action_recognition.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @action_recognition.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @action_recognition.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or convert job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @action_recognition.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @action_recognition.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/action_recognition.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Multi-task classification tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def multitask_classification(): """Create Multi-task classification model click group""" pass @multitask_classification.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @multitask_classification.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @multitask_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/multi_task_classification.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pose Classification tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def pose_classification(): """Create Pose Classification model click group""" pass @pose_classification.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @pose_classification.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @pose_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @pose_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @pose_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @pose_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @pose_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @pose_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @pose_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @pose_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @pose_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or convert job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @pose_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @pose_classification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/pose_classification.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Deformable-DETR tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def deformable_detr(): """Create Deformable-DETR model click group""" pass @deformable_detr.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @deformable_detr.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @deformable_detr.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @deformable_detr.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @deformable_detr.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @deformable_detr.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @deformable_detr.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @deformable_detr.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @deformable_detr.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @deformable_detr.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @deformable_detr.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @deformable_detr.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @deformable_detr.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or convert job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @deformable_detr.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @deformable_detr.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/deformable_detr.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """FPENET tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def fpenet(): """Create FPENET model click group""" pass @fpenet.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @fpenet.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @fpenet.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @fpenet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @fpenet.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @fpenet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @fpenet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @fpenet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @fpenet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @fpenet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @fpenet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @fpenet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @fpenet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @fpenet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or convert job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @fpenet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @fpenet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/fpenet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAL tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def mal(): """Create MAL model click group""" pass @mal.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @mal.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @mal.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @mal.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @mal.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @mal.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @mal.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @mal.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @mal.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or convert job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @mal.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @mal.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/mal.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DSSD tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def dssd(): """Create DSSD model click group""" pass @dssd.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @dssd.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @dssd.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @dssd.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @dssd.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/dssd.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DetectNet V2 tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def detectnet_v2(): """Create DetectNet V2 model click group""" pass @detectnet_v2.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @detectnet_v2.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @detectnet_v2.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @detectnet_v2.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @detectnet_v2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/detectnet_v2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pointpillars tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def pointpillars(): """Create Pointpillars model click group""" pass @pointpillars.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @pointpillars.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @pointpillars.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @pointpillars.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or convert job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @pointpillars.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/pointpillars.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MaskRCNN tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def mask_rcnn(): """Create MaskRCNN model click group""" pass @mask_rcnn.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @mask_rcnn.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @mask_rcnn.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @mask_rcnn.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @mask_rcnn.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/mask_rcnn.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OCRNET tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def ocrnet(): """Create DetectNet V2 model click group""" pass @ocrnet.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @ocrnet.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @ocrnet.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @ocrnet.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @ocrnet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/ocrnet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Data Services - Analytics # import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def analytics(): pass @analytics.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @analytics.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) def model_create(network_arch): """Create a model and return the id""" id = model_obj.model_create(network_arch, "") click.echo(f"{id}") @analytics.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--action', prompt='action', help='The action to be performed.', required=True) def model_action_defaults(id, action): """Return default action spec""" data = model_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @analytics.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--action', prompt='action', help='The action to be performed.', required=True) def execute_action(id, action): """Run action""" job_id = model_obj.run_action(id, None, [action]) click.echo(f"{job_id}")
tao_front_end_services-main
cli/tao_cli/networks/analytics.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RetinaNet tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def retinanet(): """Create RetinaNet model click group""" pass @retinanet.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @retinanet.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @retinanet.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @retinanet.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @retinanet.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/retinanet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """YOLO v4 tiny tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def yolo_v4_tiny(): """Create YOLO v4 tiny model click group""" pass @yolo_v4_tiny.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @yolo_v4_tiny.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @yolo_v4_tiny.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/yolo_v4_tiny.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """YOLO v4 tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def yolo_v4(): """Create YOLO v4 model click group""" pass @yolo_v4.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @yolo_v4.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @yolo_v4.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @yolo_v4.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @yolo_v4.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/yolo_v4.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OCRNET tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def optical_inspection(): """Create DetectNet V2 model click group""" pass @optical_inspection.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @optical_inspection.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @optical_inspection.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/optical_inspection.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dino tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def dino(): """Create Dino model click group""" pass @dino.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @dino.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @dino.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @dino.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @dino.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @dino.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @dino.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @dino.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @dino.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @dino.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @dino.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @dino.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @dino.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or convert job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @dino.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @dino.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/dino.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Data Services - Data Format Conversion # import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def annotations(): pass @annotations.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @annotations.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) def model_create(network_arch): """Create a model and return the id""" id = model_obj.model_create(network_arch, "") click.echo(f"{id}") @annotations.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_action_defaults(id): """Return default action spec""" data = model_obj.get_action_spec(id, "convert") click.echo(json.dumps(data, indent=2)) @annotations.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def execute_action(id): """Run action""" job_id = model_obj.run_action(id, None, ["convert"]) click.echo(f"{job_id}")
tao_front_end_services-main
cli/tao_cli/networks/annotations.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Multi-class classification tf2 tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def classification_tf2(): """Create Multi-class classification tf2 model click group""" pass @classification_tf2.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @classification_tf2.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @classification_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/multi_class_classification_tf2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """EfficientDet tf2 tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def efficientdet_tf2(): """Create EfficientDet tf2 model click group""" pass @efficientdet_tf2.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert_defaults(id, action): """Return default dataset convert spec""" data = dataset_obj.get_action_spec(id, action) click.echo(json.dumps(data, indent=2)) @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The dataset ID.', required=True) @click.option('--action', prompt='action', help='The dataset convert action.', required=True) def dataset_convert(id, action): """Run dataset_convert action""" job_id = dataset_obj.run_action(id=id, job=None, action=[action]) click.echo(f"{job_id}") @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def dataset_job_cancel(id, job): """Pause/Cancel a running dataset job""" job = dataset_obj.dataset_job_cancel(id, job) click.echo(f"{job}") @efficientdet_tf2.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or gen_trt_engine job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_prune_defaults(id): """Return default prune spec""" data = model_obj.get_action_spec(id, "prune") click.echo(json.dumps(data, indent=2)) @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train job ID.', required=False, default=None) def model_prune(id, job): """Run prune action""" job_id = model_obj.run_action(id, job, ["prune"]) click.echo(f"{job_id}") @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_retrain_defaults(id): """Return default retrain spec""" data = model_obj.get_action_spec(id, "retrain") click.echo(json.dumps(data, indent=2)) @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The prune job ID.', required=False, default=None) def model_retrain(id, job): """Run retrain action""" job_id = model_obj.run_action(id, job, ["retrain"]) click.echo(f"{job_id}") @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @efficientdet_tf2.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/efficientdet_tf2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Segformer tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def segformer(): """Create Segformer model click group""" pass @segformer.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @segformer.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @segformer.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @segformer.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @segformer.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @segformer.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @segformer.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @segformer.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @segformer.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @segformer.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_gen_trt_engine_defaults(id): """Return default gen_trt_engine spec""" data = model_obj.get_action_spec(id, "gen_trt_engine") click.echo(json.dumps(data, indent=2)) @segformer.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The export job ID.', required=False, default=None) def model_gen_trt_engine(id, job): """Run gen_trt_engine action""" job_id = model_obj.run_action(id, job, ["gen_trt_engine"]) click.echo(f"{job_id}") @segformer.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @segformer.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or convert job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @segformer.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @segformer.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/segformer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Re-Identification tao-client modules""" import click import json from tao_cli.cli_actions.dataset import Dataset from tao_cli.cli_actions.model import Model from tao_cli.constants import dataset_format, dataset_type, network_type dataset_obj = Dataset() model_obj = Model() @click.group() def re_identification(): """Create Re-Identification model click group""" pass @re_identification.command() @click.option('--dataset_type', prompt='dataset_type', type=click.Choice(dataset_type), help='The dataset type.', required=True) @click.option('--dataset_format', prompt='dataset_format', type=click.Choice(dataset_format), help='The dataset format.', required=True) def dataset_create(dataset_type, dataset_format): """Create a dataset and return the id""" id = dataset_obj.dataset_create(dataset_type, dataset_format) click.echo(f"{id}") @re_identification.command() @click.option('--network_arch', prompt='network_arch', type=click.Choice(network_type), help='Network architecture.', required=True) @click.option('--encryption_key', prompt='encryption_key', help='Encryption_key.', required=True) def model_create(network_arch, encryption_key): """Create a model and return the id""" id = model_obj.model_create(network_arch, encryption_key) click.echo(f"{id}") @re_identification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_train_defaults(id): """Return default train spec""" data = model_obj.get_action_spec(id, "train") click.echo(json.dumps(data, indent=2)) @re_identification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_automl_defaults(id): """Return default automl parameters""" data = model_obj.get_automl_defaults(id, "train") click.echo(json.dumps(data, indent=2)) @re_identification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The dataset convert job ID.', required=False, default=None) def model_train(id, job): """Run train action""" job_id = model_obj.run_action(id, job, ["train"]) click.echo(f"{job_id}") @re_identification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_evaluate_defaults(id): """Return default evaluate spec""" data = model_obj.get_action_spec(id, "evaluate") click.echo(json.dumps(data, indent=2)) @re_identification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_evaluate(id, job): """Run evaluate action""" job_id = model_obj.run_action(id, job, ["evaluate"]) click.echo(f"{job_id}") @re_identification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_export_defaults(id): """Return default export spec""" data = model_obj.get_action_spec(id, "export") click.echo(json.dumps(data, indent=2)) @re_identification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune or retrain job ID.', required=False, default=None) def model_export(id, job): """Run export action""" job_id = model_obj.run_action(id, job, ["export"]) click.echo(f"{job_id}") @re_identification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) def model_inference_defaults(id): """Return default inference spec""" data = model_obj.get_action_spec(id, "inference") click.echo(json.dumps(data, indent=2)) @re_identification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', help='The train, prune, retrain, export or convert job ID.', required=False, default=None) def model_inference(id, job): """Run inference action""" job_id = model_obj.run_action(id, job, ["inference"]) click.echo(f"{job_id}") @re_identification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_cancel(id, job): """Pause a running job""" model_obj.model_job_cancel(id, job) click.echo(f"{job}") @re_identification.command() @click.option('--id', prompt='id', help='The model ID.', required=True) @click.option('--job', prompt='job', help='The job ID.', required=True) def model_job_resume(id, job): """Resume a paused job""" model_obj.model_job_resume(id, job) click.echo(f"{job}")
tao_front_end_services-main
cli/tao_cli/networks/re_identification.py
#!/usr/bin/env python3 # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Download metadata info for all ptm models supported""" import os import csv import copy import json import uuid import subprocess import datetime from handlers.utilities import read_network_config def __get_existing_models(rootdir): existing_models = [] for subdir in os.listdir(rootdir): with open(rootdir + '/' + subdir + '/metadata.json', 'r', encoding='utf-8') as infile: existing_models.append(json.load(infile)) return existing_models def __model_exists(models, ngc_path): return bool(next(filter(lambda x: x.get('ngc_path', None) == ngc_path, models), None)) def __get_pretrained_models_from_ngc(): ngc_models = [] cached_commands = {} with open('pretrained_models.csv', 'r', encoding='utf-8') as f: csv_reader = csv.DictReader(f) for row in csv_reader: model = dict(row) command = f"ngc registry model list {model['ngc_path']} --format_type json" print(command) cached_command = cached_commands.get(command) if cached_command is None: model_details = json.loads(subprocess.run(['/bin/bash', '-c', command], stdout=subprocess.PIPE, check=False).stdout.decode('utf-8')) assert model_details cached_commands[command] = model_details = model_details[0] else: model_details = cached_command metadata = {} metadata['public'] = True metadata['read_only'] = True metadata['network_arch'] = model['network_arch'] metadata['dataset_type'] = read_network_config(metadata["network_arch"])["api_params"]["dataset_type"] metadata['actions'] = read_network_config(metadata["network_arch"])["api_params"]["actions"] metadata['name'] = model['displayName'] metadata['description'] = model_details.get('description', 'TAO Pretrained Model') metadata['logo'] = 'https://www.nvidia.com' metadata['ptm'] = [] metadata['train_datasets'] = [] metadata['eval_dataset'] = None metadata['calibration_dataset'] = None metadata['inference_dataset'] = None metadata['version'] = model_details.get('versionId', '') metadata['created_on'] = metadata['last_modified'] = model_details.get('createdDate', datetime.datetime.now().isoformat()) metadata['ngc_path'] = model['ngc_path'] metadata['additional_id_info'] = None ngc_models.append(metadata.copy()) return ngc_models def __create_model(rootdir, metadata): metadata['id'] = str(uuid.uuid4()) ptm_metadatas = [metadata] if metadata["network_arch"] == "lprnet": ptm_metadatas = [] for model_type in ("us", "ch"): pc_metadata = copy.deepcopy(metadata) pc_metadata['id'] = str(uuid.uuid4()) pc_metadata['additional_id_info'] = model_type ptm_metadatas.append(pc_metadata) if metadata["network_arch"] == "action_recognition" and metadata["ngc_path"] == "nvidia/tao/actionrecognitionnet:trainable_v1.0": ptm_metadatas = [] for model_type in ("3d", "2d"): ac_metadata = copy.deepcopy(metadata) ac_metadata['id'] = str(uuid.uuid4()) ac_metadata['additional_id_info'] = model_type ptm_metadatas.append(ac_metadata) if metadata["network_arch"] == "action_recognition" and metadata["ngc_path"] == "nvidia/tao/actionrecognitionnet:trainable_v2.0": ptm_metadatas = [] for platform in ("a100", "xavier"): for model_type in ("3d", "2d"): ac_metadata = copy.deepcopy(metadata) ac_metadata['id'] = str(uuid.uuid4()) ac_metadata['additional_id_info'] = platform + "," + model_type ptm_metadatas.append(ac_metadata) for ptm_metadata in ptm_metadatas: ptm_id = ptm_metadata['id'] path = rootdir + '/' + ptm_id if not os.path.exists(path): os.makedirs(path) with open(path + '/metadata.json', 'w', encoding='utf-8') as outfile: json.dump(ptm_metadata, outfile, indent=2, sort_keys=False) def sync(path='/shared'): """Downloads metadata info for ngc hosted ptm models""" admin_uuid = uuid.UUID(int=0) rootdir = path + '/users/' + str(admin_uuid) + '/models' if not os.path.exists(rootdir): os.makedirs(rootdir) existing_models = __get_existing_models(rootdir) pretrained_models = __get_pretrained_models_from_ngc() for ptm in pretrained_models: if not __model_exists(existing_models, ptm.get('ngc_path', '')): __create_model(rootdir, ptm) if __name__ == '__main__': sync('shared')
tao_front_end_services-main
api/pretrained_models.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """AutoML main handler""" from automl.controller import Controller from automl.bayesian import Bayesian from automl.hyperband import HyperBand from automl.params import generate_hyperparams_to_search from handlers.utilities import JobContext import ast import argparse def automl_start(root, network, jc, resume, automl_algorithm, automl_max_recommendations, automl_delete_intermediate_ckpt, automl_R, automl_nu, metric, epoch_multiplier, automl_add_hyperparameters, automl_remove_hyperparameters): """Starts the automl controller""" parameters = generate_hyperparams_to_search(jc.network, automl_add_hyperparameters, automl_remove_hyperparameters, "/".join(root.split("/")[0:-2])) if resume: if automl_algorithm.lower() in ("hyperband", "h"): brain = HyperBand.load_state(root=root, parameters=parameters, R=int(automl_R), nu=int(automl_nu), network=network, epoch_multiplier=int(epoch_multiplier)) elif automl_algorithm.lower() in ("bayesian", "b"): brain = Bayesian.load_state(root, parameters) controller = Controller.load_state(root, network, brain, jc, automl_max_recommendations, automl_delete_intermediate_ckpt, metric, automl_algorithm.lower()) controller.start() else: if automl_algorithm.lower() in ("hyperband", "h"): brain = HyperBand(root=root, parameters=parameters, R=int(automl_R), nu=int(automl_nu), network=network, epoch_multiplier=int(epoch_multiplier)) elif automl_algorithm.lower() in ("bayesian", "b"): brain = Bayesian(root, parameters) controller = Controller(root, network, brain, jc, automl_max_recommendations, automl_delete_intermediate_ckpt, metric, automl_algorithm.lower()) controller.start() return if __name__ == "__main__": parser = argparse.ArgumentParser(prog='AutoML controller', description='Run AutoML.') parser.add_argument( '--root', type=str, ) parser.add_argument( '--automl_job_id', type=str, ) parser.add_argument( '--network', type=str, ) parser.add_argument( '--model_id', type=str, ) parser.add_argument( '--resume', type=str, ) parser.add_argument( '--automl_algorithm', type=str, ) parser.add_argument( '--automl_max_recommendations', type=str, ) parser.add_argument( '--automl_delete_intermediate_ckpt', type=str, ) parser.add_argument( '--automl_R', type=str, ) parser.add_argument( '--automl_nu', type=str, ) parser.add_argument( '--metric', type=str, ) parser.add_argument( '--epoch_multiplier', type=str, ) parser.add_argument( '--automl_add_hyperparameters', type=str, ) parser.add_argument( '--automl_remove_hyperparameters', type=str, ) args = parser.parse_args() root = args.root automl_job_id = args.automl_job_id network = args.network handler_id = args.model_id jc = JobContext(automl_job_id, None, network, "train", handler_id) resume = args.resume == "True" automl_algorithm = args.automl_algorithm automl_max_recommendations = args.automl_max_recommendations automl_delete_intermediate_ckpt = args.automl_delete_intermediate_ckpt automl_R = args.automl_R automl_nu = args.automl_nu metric = args.metric epoch_multiplier = args.epoch_multiplier automl_add_hyperparameters = ast.literal_eval(args.automl_add_hyperparameters) automl_remove_hyperparameters = ast.literal_eval(args.automl_remove_hyperparameters) automl_start( root=root, network=network, jc=jc, resume=resume, automl_algorithm=automl_algorithm, automl_max_recommendations=automl_max_recommendations, automl_delete_intermediate_ckpt=automl_delete_intermediate_ckpt, automl_R=automl_R, automl_nu=automl_nu, metric=metric, epoch_multiplier=epoch_multiplier, automl_add_hyperparameters=automl_add_hyperparameters, automl_remove_hyperparameters=automl_remove_hyperparameters)
tao_front_end_services-main
api/automl_start.py
#!/usr/bin/env python3 # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API modules defining schemas and endpoints""" import sys import json from apispec import APISpec from apispec.ext.marshmallow import MarshmallowPlugin from apispec_webframeworks.flask import FlaskPlugin from flask import Flask, request, jsonify, make_response, render_template, send_from_directory from marshmallow import Schema, fields from marshmallow_enum import EnumField, Enum from filter_utils import filtering, pagination from auth_utils import credentials, authentication, access_control from health_utils import health_check from handlers.app_handler import AppHandler as app_handler from handlers.utilities import validate_uuid from job_utils.workflow import Workflow flask_plugin = FlaskPlugin() marshmallow_plugin = MarshmallowPlugin() # # Create an APISpec # spec = APISpec( title='TAO Toolkit API', version='v5.0.0', openapi_version='3.0.3', info={"description": 'TAO Toolkit API document'}, tags=[ {"name": 'DATASET', "description": 'Endpoints related to Dataset'}, {"name": 'MODEL', "description": 'Endpoints related to Model'} ], plugins=[flask_plugin, marshmallow_plugin], ) # # Enum stuff for APISpecs # def enum_to_properties(self, field, **kwargs): """ Add an OpenAPI extension for marshmallow_enum.EnumField instances """ if isinstance(field, EnumField): return {'type': 'string', 'enum': [m.name for m in field.enum]} return {} marshmallow_plugin.converter.add_attribute_function(enum_to_properties) # # Global schemas and enums # class DatasetUploadSchema(Schema): """Class defining dataset upload schema""" message = fields.Str(allow_none=True) class ErrorRspSchema(Schema): """Class defining error response schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True error_desc = fields.Str() error_code = fields.Int() class JobStatusEnum(Enum): """Class defining job status enum""" Done = 'Done' Running = 'Running' Error = 'Error' Pending = "Pending" # # Flask app # app = Flask(__name__) app.config['JSON_SORT_KEYS'] = False # # JobResultSchema # class DetailedStatusSchema(Schema): """Class defining Status schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True date = fields.Str() time = fields.Str() message = fields.Str() status = fields.Str() class GraphSchema(Schema): """Class defining Graph schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True metric = fields.Str(allow_none=True) x_min = fields.Int(allow_none=True) x_max = fields.Int(allow_none=True) y_min = fields.Float(allow_none=True) y_max = fields.Float(allow_none=True) values = fields.Dict(keys=fields.Int(allow_none=True), values=fields.Float(allow_none=True)) units = fields.Str(allow_none=True) class CategoryWiseSchema(Schema): """Class defining CategoryWise schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True category = fields.Str() value = fields.Float(allow_none=True) class CategorySchema(Schema): """Class defining Category schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True metric = fields.Str() category_wise_values = fields.List(fields.Nested(CategoryWiseSchema, allow_none=True)) class KPISchema(Schema): """Class defining KPI schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True metric = fields.Str(allow_none=True) values = fields.Dict(keys=fields.Int(allow_none=True), values=fields.Float(allow_none=True)) class AutoMLResultsSchema(Schema): """Class defining AutoML results schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True metric = fields.Str(allow_none=True) value = fields.Float(allow_none=True) class StatsSchema(Schema): """Class defining results stats schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True metric = fields.Str(allow_none=True) value = fields.Str(allow_none=True) class JobResultSchema(Schema): """Class defining job results schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True detailed_status = fields.Nested(DetailedStatusSchema, allow_none=True) graphical = fields.List(fields.Nested(GraphSchema, allow_none=True)) categorical = fields.List(fields.Nested(CategorySchema, allow_none=True)) kpi = fields.List(fields.Nested(KPISchema, allow_none=True)) automl_result = fields.List(fields.Nested(AutoMLResultsSchema, allow_none=True)) stats = fields.List(fields.Nested(StatsSchema, allow_none=True)) epoch = fields.Int(allow_none=True) max_epoch = fields.Int(allow_none=True) time_per_epoch = fields.Str(allow_none=True) time_per_iter = fields.Str(allow_none=True) cur_iter = fields.Int(allow_none=True) eta = fields.Str(allow_none=True) # # DATASET API # class DatasetActions(Schema): """Class defining dataset actions schema""" job = fields.UUID(allow_none=True) actions = fields.List(fields.Str()) class DatasetTypeEnum(Enum): """Class defining dataset type enum""" object_detection = 'object_detection' semantic_segmentation = 'semantic_segmentation' image_classification = 'image_classification' instance_segmentation = 'instance_segmentation' character_recognition = 'character_recognition' bpnet = 'bpnet' fpenet = 'fpenet' action_recognition = 'action_recognition' pointpillars = 'pointpillars' pose_classification = 'pose_classification' ml_recog = 'ml_recog' ocdnet = 'ocdnet' ocrnet = 'ocrnet' optical_inspection = 'optical_inspection' re_identification = 're_identification' class DatasetFormatEnum(Enum): """Class defining dataset format enum""" kitti = 'kitti' pascal_voc = 'pascal_voc' raw = 'raw' coco_raw = 'coco_raw' unet = 'unet' coco = 'coco' lprnet = 'lprnet' default = 'default' custom = 'custom' classification_pyt = 'classification_pyt' class DatasetReqSchema(Schema): """Class defining dataset request schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True name = fields.Str() description = fields.Str() version = fields.Str() logo = fields.URL() type = EnumField(DatasetTypeEnum) format = EnumField(DatasetFormatEnum) class DatasetJobResultCategoriesSchema(Schema): """Class defining dataset job result categories schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True category = fields.Str() count = fields.Int() class DatasetJobResultTotalSchema(Schema): """Class defining dataset job result total schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True images = fields.Int() labels = fields.Int() class DatasetJobSchema(Schema): """Class defining dataset job result total schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True id = fields.UUID() parent_id = fields.UUID(allow_none=True) created_on = fields.DateTime() last_modified = fields.DateTime() action = fields.Str() status = EnumField(JobStatusEnum) result = fields.Nested(JobResultSchema) class DatasetRspSchema(Schema): """Class defining dataset response schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True id = fields.UUID() created_on = fields.DateTime() last_modified = fields.DateTime() name = fields.Str() description = fields.Str() version = fields.Str() logo = fields.URL(allow_none=True) type = EnumField(DatasetTypeEnum) format = EnumField(DatasetFormatEnum) actions = fields.List(fields.Str()) jobs = fields.List(fields.Nested(DatasetJobSchema)) class DatasetListRspSchema(Schema): """Class defining dataset list response schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True datasets = fields.List(fields.Nested(DatasetRspSchema)) class DatasetJobListSchema(Schema): """Class defining dataset list schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True jobs = fields.List(fields.Nested(DatasetJobSchema)) @app.route('/api/v1/user/<user_id>/dataset', methods=['GET']) def dataset_list(user_id): """List Datasets. --- get: tags: - DATASET summary: List Datasets description: Returns the list of Datasets parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: skip in: query description: Optional skip for pagination required: false schema: type: integer - name: size in: query description: Optional size for pagination required: false schema: type: integer - name: sort in: query description: Optional sort required: false schema: type: string enum: ["date-descending", "date-ascending", "name-descending", "name-ascending" ] - name: name in: query description: Optional name filter required: false schema: type: string - name: type in: query description: Optional type filter required: false schema: type: string enum: [ "object_detection", "semantic_segmentation", "image_classification" ] responses: 200: description: Returned list of Datasets content: application/json: schema: type: array items: DatasetRspSchema """ message = validate_uuid(user_id=user_id) if message: return make_response(jsonify(message), 400) datasets = app_handler.list_datasets(user_id) filtered_datasets = filtering.apply(request.args, datasets) paginated_datasets = pagination.apply(request.args, filtered_datasets) pagination_total = len(filtered_datasets) metadata = {"datasets": paginated_datasets} schema = DatasetListRspSchema() response = make_response(jsonify(schema.dump(schema.load(metadata))['datasets'])) response.headers['X-Pagination-Total'] = str(pagination_total) return response @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>', methods=['GET']) def dataset_retrieve(user_id, dataset_id): """Retrieve Dataset. --- get: tags: - DATASET summary: Retrieve Dataset description: Returns the Dataset parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID of Dataset to return required: true schema: type: string format: uuid responses: 200: description: Returned Dataset content: application/json: schema: DatasetRspSchema 404: description: User or Dataset not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.retrieve_dataset(user_id, dataset_id) # Get schema schema = None if response.code == 200: schema = DatasetRspSchema() else: schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>', methods=['DELETE']) def dataset_delete(user_id, dataset_id): """Delete Dataset. --- delete: tags: - DATASET summary: Delete Dataset description: Cancels all related running jobs and returns the deleted Dataset parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID of Dataset to delete required: true schema: type: string format: uuid responses: 200: description: Deleted Dataset content: application/json: schema: DatasetRspSchema 400: description: Bad request, see reply body for details content: application/json: schema: ErrorRspSchema 404: description: User or Dataset not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.delete_dataset(user_id, dataset_id) # Get schema schema = None if response.code == 200: schema = DatasetRspSchema() else: schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset', methods=['POST']) def dataset_create(user_id): """Create new Dataset. --- post: tags: - DATASET summary: Create new Dataset description: Returns the new Dataset parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid requestBody: content: application/json: schema: DatasetReqSchema description: Initial metadata for new Dataset (type and format required) required: true responses: 201: description: Retuned the new Dataset content: application/json: schema: DatasetRspSchema 400: description: Bad request, see reply body for details content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id) if message: return make_response(jsonify(message), 400) request_dict = request.get_json(force=True) # Get response response = app_handler.create_dataset(user_id, request_dict) # Get schema schema = None if response.code == 201: schema = DatasetRspSchema() else: schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>', methods=['PUT']) def dataset_update(user_id, dataset_id): """Update Dataset. --- put: tags: - DATASET summary: Update Dataset description: Returns the updated Dataset parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID of Dataset to update required: true schema: type: string format: uuid requestBody: content: application/json: schema: DatasetReqSchema description: Updated metadata for Dataset required: true responses: 200: description: Returned the updated Dataset content: application/json: schema: DatasetRspSchema 400: description: Bad request, see reply body for details content: application/json: schema: ErrorRspSchema 404: description: User or Dataset not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id) if message: return make_response(jsonify(message), 400) request_dict = request.get_json(force=True) # Get response response = app_handler.update_dataset(user_id, dataset_id, request_dict) # Get schema schema = None if response.code == 200: schema = DatasetRspSchema() else: schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>', methods=['PATCH']) def dataset_partial_update(user_id, dataset_id): """Partial update Dataset. --- patch: tags: - DATASET summary: Partial update Dataset description: Returns the updated Dataset parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID of Dataset to update required: true schema: type: string format: uuid requestBody: content: application/json: schema: DatasetReqSchema description: Updated metadata for Dataset required: true responses: 200: description: Returned the updated Dataset content: application/json: schema: DatasetRspSchema 400: description: Bad request, see reply body for details content: application/json: schema: ErrorRspSchema 404: description: User or Dataset not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id) if message: return make_response(jsonify(message), 400) request_dict = request.get_json(force=True) # Get response response = app_handler.update_dataset(user_id, dataset_id, request_dict) # Get schema schema = None if response.code == 200: schema = DatasetRspSchema() else: schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route("/api/v1/user/<user_id>/dataset/<dataset_id>/upload", methods=["POST"]) def dataset_upload(user_id, dataset_id): """Upload Dataset. --- post: tags: - DATASET summary: Upload Dataset description: Upload training and testing data parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID of Dataset required: true schema: type: string format: uuid requestBody: content: multipart/form-data: schema: DatasetUploadSchema description: Data file to upload (a tar.gz file) required: true responses: 201: description: Upload sucessful 400: description: Bad request, see reply body for details content: application/json: schema: ErrorRspSchema 404: description: User or Dataset not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id) if message: return make_response(jsonify(message), 400) file_tgz = request.files.get("file", None) # Get response print("Triggering API call to upload data to server", file=sys.stderr) response = app_handler.upload_dataset(user_id, dataset_id, file_tgz) print("API call to upload data to server complete", file=sys.stderr) # Get schema schema = None if response.code == 201: schema = DatasetUploadSchema() print("Returning success response", file=sys.stderr) schema_dict = schema.dump({"message": "Data successfully uploaded"}) else: schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>/specs/<action>/schema', methods=['GET']) def dataset_specs_schema(user_id, dataset_id, action): """Retrieve Specs schema. --- get: tags: - DATASET summary: Retrieve Specs schema description: Returns the Specs schema for a given action parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID for Dataset required: true schema: type: string format: uuid - name: action in: path description: Action name required: true schema: type: string responses: 200: description: Returned the Specs schema for given action content: application/json: schema: type: object 404: description: User, Dataset or Action not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.get_spec_schema(user_id, dataset_id, action, "dataset") # Get schema schema = None if response.code == 200: return make_response(jsonify(response.data), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>/specs/<action>', methods=['GET']) def dataset_specs_retrieve(user_id, dataset_id, action): """Retrieve Dataset Specs. --- get: tags: - DATASET summary: Retrieve Dataset Specs description: Returns the saved Dataset Specs for a given action parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID of Dataset required: true schema: type: string format: uuid - name: action in: path description: Action name required: true schema: type: string responses: 200: description: Returned the saved Dataset Specs for specified action content: application/json: schema: type: object 404: description: User, Dataset or Action not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.get_spec(user_id, dataset_id, action, "dataset") # Get schema schema = None if response.code == 200: return make_response(jsonify(response.data), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>/specs/<action>', methods=['POST']) def dataset_specs_save(user_id, dataset_id, action): """Save Dataset Specs. --- post: tags: - DATASET summary: Save Dataset Specs description: Save the Dataset Specs for a given action parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID of Dataset required: true schema: type: string format: uuid - name: action in: path description: Action name required: true schema: type: string requestBody: content: application/json: schema: type: object description: Dataset Specs required: true responses: 201: description: Returned the saved Dataset Specs for specified action content: application/json: schema: type: object 400: description: Invalid specs content: application/json: schema: ErrorRspSchema 404: description: User, Dataset or Action not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id) if message: return make_response(jsonify(message), 400) request_dict = request.get_json(force=True) # Get response response = app_handler.save_spec(user_id, dataset_id, action, request_dict, "dataset") # Get schema schema = None if response.code == 201: return make_response(jsonify(response.data), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>/specs/<action>', methods=['PUT']) def dataset_specs_update(user_id, dataset_id, action): """Update Dataset Specs. --- put: tags: - DATASET summary: Update Dataset Specs description: Update the Dataset Specs for a given action parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID of Dataset required: true schema: type: string format: uuid - name: action in: path description: Action name required: true schema: type: string requestBody: content: application/json: schema: type: object description: Dataset Specs required: true responses: 200: description: Returned the updated Dataset Specs for specified action content: application/json: schema: type: object 400: description: Invalid specs content: application/json: schema: ErrorRspSchema 404: description: User, Dataset or Action not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id) if message: return make_response(jsonify(message), 400) request_dict = request.get_json(force=True) # Get response response = app_handler.update_spec(user_id, dataset_id, action, request_dict, "dataset") # Get schema schema = None if response.code == 200: return make_response(jsonify(response.data), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>/job', methods=['POST']) def dataset_job_run(user_id, dataset_id): """Run Dataset Jobs. --- post: tags: - DATASET summary: Run Dataset Jobs description: Asynchronously starts a list of Dataset Actions and returns corresponding Job IDs parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID for Dataset required: true schema: type: string format: uuid requestBody: content: application/json: schema: type: array items: DatasetActions responses: 201: description: Returned the list of Job IDs corresponding to requested Dataset Actions content: application/json: schema: type: array items: type: string 404: description: User or Dataset not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id) if message: return make_response(jsonify(message), 400) request_data = request.get_json(force=True).copy() request_schema_data = DatasetActions().load(request_data) requested_job = request_schema_data.get('job', None) if requested_job: requested_job = str(requested_job) requested_actions = request_schema_data.get('actions', []) # Get response response = app_handler.job_run(user_id, dataset_id, requested_job, requested_actions, "dataset") # Get schema schema = None if response.code == 201: return make_response(jsonify(response.data), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>/job', methods=['GET']) def dataset_job_list(user_id, dataset_id): """List Jobs for Dataset. --- get: tags: - DATASET summary: List Jobs for Dataset description: Returns the list of Jobs parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID for Dataset required: true schema: type: string format: uuid - name: skip in: query description: Optional skip for pagination required: false schema: type: integer - name: size in: query description: Optional size for pagination required: false schema: type: integer - name: sort in: query description: Optional sort required: false schema: type: string enum: ["date-descending", "date-ascending" ] responses: 200: description: Returned list of Jobs content: application/json: schema: type: array items: DatasetJobSchema 404: description: User or Dataset not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.job_list(user_id, dataset_id, "dataset") # Get schema schema = None if response.code == 200: pagination_total = 0 metadata = {"jobs": response.data} schema = DatasetJobListSchema() response = make_response(jsonify(schema.dump(schema.load(metadata))['jobs'])) response.headers['X-Pagination-Total'] = str(pagination_total) return response schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>/job/<job_id>', methods=['GET']) def dataset_job_retrieve(user_id, dataset_id, job_id): """Retrieve Job for Dataset. --- get: tags: - DATASET summary: Retrieve Job for Dataset description: Returns the Job parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID of Dataset required: true schema: type: string format: uuid - name: job_id in: path description: Job ID required: true schema: type: string format: uuid responses: 200: description: Returned Job content: application/json: schema: DatasetJobSchema 404: description: User, Dataset or Job not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id, job_id=job_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.job_retrieve(user_id, dataset_id, job_id, "dataset") # Get schema schema = None if response.code == 200: schema = DatasetJobSchema() else: schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>/job/<job_id>/cancel', methods=['POST']) def dataset_job_cancel(user_id, dataset_id, job_id): """Cancel Dataset Job. --- post: tags: - DATASET summary: Cancel Dataset Job description: Cancel Dataset Job parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID for Dataset required: true schema: type: string format: uuid - name: job_id in: path description: ID for Job required: true schema: type: string format: uuid responses: 200: description: Successfully requested cancelation of specified Job ID (asynchronous) 404: description: User, Dataset or Job not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id, job_id=job_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.job_cancel(user_id, dataset_id, job_id, "dataset") # Get schema schema = None if response.code == 200: return make_response(jsonify({}), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>/job/<job_id>', methods=['DELETE']) def dataset_job_delete(user_id, dataset_id, job_id): """Delete Dataset Job. --- delete: tags: - DATASET summary: Delete Dataset Job description: delete Dataset Job parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID for Dataset required: true schema: type: string format: uuid - name: job_id in: path description: ID for Job required: true schema: type: string format: uuid responses: 200: description: Successfully requested deletion of specified Job ID 400: description: Bad request, see reply body for details content: application/json: schema: ErrorRspSchema 404: description: User, Dataset or Job not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id, job_id=job_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.job_delete(user_id, dataset_id, job_id, "dataset") # Get schema schema = None if response.code == 200: return make_response(jsonify({}), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/dataset/<dataset_id>/job/<job_id>/download', methods=['GET']) def dataset_job_download(user_id, dataset_id, job_id): """Download Job Artifacts. --- get: tags: - DATASET summary: Download Job Artifacts description: Download the Artifacts produced by a given job parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: dataset_id in: path description: ID of Dataset required: true schema: type: string format: uuid - name: job_id in: path description: Job ID required: true schema: type: string format: uuid responses: 200: description: Returned Job Artifacts content: application/octet-stream: schema: type: string format: binary 404: description: User, Model or Job not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, dataset_id=dataset_id, job_id=job_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.job_download(user_id, dataset_id, job_id, "dataset") # Get schema schema = None if response.code == 200: file_path = response.data # Response is assumed to have the file path file_dir = "/".join(file_path.split("/")[:-1]) file_name = file_path.split("/")[-1] # infer the name return send_from_directory(file_dir, file_name, as_attachment=True) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) # # MODEL API # class ModelActions(Schema): """Class defining model actions schema""" job = fields.UUID(allow_none=True) actions = fields.List(fields.Str()) class ModelNetworkArchEnum(Enum): """Class defining model network architecure enum""" # OD Networks tf detectnet_v2 = 'detectnet_v2' faster_rcnn = 'faster_rcnn' yolo_v4 = 'yolo_v4' yolo_v4_tiny = 'yolo_v4_tiny' yolo_v3 = 'yolo_v3' ssd = 'ssd' dssd = 'dssd' retinanet = 'retinanet' # Other tf networks unet = 'unet' lprnet = 'lprnet' classification_tf1 = 'classification_tf1' classification_tf2 = 'classification_tf2' efficientdet_tf1 = 'efficientdet_tf1' efficientdet_tf2 = 'efficientdet_tf2' mask_rcnn = 'mask_rcnn' multitask_classification = 'multitask_classification' # DriveIX networks bpnet = 'bpnet' fpenet = 'fpenet' # PyT CV networks action_recognition = 'action_recognition' classification_pyt = 'classification_pyt' mal = 'mal' ml_recog = 'ml_recog' ocdnet = 'ocdnet' ocrnet = 'ocrnet' optical_inspection = 'optical_inspection' pointpillars = 'pointpillars' pose_classification = 'pose_classification' re_identification = 're_identification' deformable_detr = 'deformable_detr' dino = 'dino' segformer = 'segformer' # Data analytics networks annotations = "annotations" analytics = "analytics" augmentation = "augmentation" auto_label = "auto_label" class ModelReqSchema(Schema): """Class defining model request schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True name = fields.Str() description = fields.Str() version = fields.Str() logo = fields.URL() ngc_path = fields.Str() additional_id_info = fields.Str() encryption_key = fields.Str(required=True) network_arch = EnumField(ModelNetworkArchEnum) ptm = fields.List(fields.UUID()) eval_dataset = fields.UUID() inference_dataset = fields.UUID() calibration_dataset = fields.UUID() train_datasets = fields.List(fields.UUID()) read_only = fields.Bool() public = fields.Bool() class ModelJobSchema(Schema): """Class defining model job schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True id = fields.UUID() parent_id = fields.UUID(allow_none=True) created_on = fields.DateTime() last_modified = fields.DateTime() action = fields.Str() status = EnumField(JobStatusEnum) result = fields.Nested(JobResultSchema) class ModelRspSchema(Schema): """Class defining model respnse schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True id = fields.UUID() created_on = fields.DateTime() last_modified = fields.DateTime() name = fields.Str() description = fields.Str() version = fields.Str() logo = fields.URL(allow_none=True) ngc_path = fields.Str(allow_none=True) additional_id_info = fields.Str(allow_none=True) encryption_key = fields.Str() network_arch = EnumField(ModelNetworkArchEnum) ptm = fields.List(fields.UUID()) dataset_type = EnumField(DatasetTypeEnum) eval_dataset = fields.UUID(allow_none=True) inference_dataset = fields.UUID(allow_none=True) calibration_dataset = fields.UUID(allow_none=True) train_datasets = fields.List(fields.UUID()) read_only = fields.Bool() public = fields.Bool() actions = fields.List(fields.Str()) jobs = fields.List(fields.Nested(ModelJobSchema)) automl_enabled = fields.Bool(allow_none=True) automl_algorithm = fields.Str(allow_none=True) automl_max_recommendations = fields.Int(allow_none=True) automl_delete_intermediate_ckpt = fields.Bool(allow_none=True) automl_R = fields.Int(allow_none=True) automl_nu = fields.Int(allow_none=True) metric = fields.Str(allow_none=True) epoch_multiplier = fields.Int(allow_none=True) automl_add_hyperparameters = fields.Str(allow_none=True) automl_remove_hyperparameters = fields.Str(allow_none=True) class ModelListRspSchema(Schema): """Class defining model list response schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True models = fields.List(fields.Nested(ModelRspSchema)) class ModelJobListSchema(Schema): """Class defining model job list schema""" class Meta: """Class enabling sorting field values by the order in which they are declared""" ordered = True jobs = fields.List(fields.Nested(ModelJobSchema)) @app.route('/api/v1/user/<user_id>/model', methods=['GET']) def model_list(user_id): """List Models. --- get: tags: - MODEL summary: List Models description: Returns the list of Models parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: skip in: query description: Optional skip for pagination required: false schema: type: integer - name: size in: query description: Optional size for pagination required: false schema: type: integer - name: sort in: query description: Optional sort required: false schema: type: string enum: ["date-descending", "date-ascending", "name-descending", "name-ascending" ] - name: name in: query description: Optional name filter required: false schema: type: string - name: arch in: query description: Optional network architecture filter required: false schema: type: string enum: [ "detectnet_v2" ] - name: read_only in: query description: Optional read_only filter required: false allowEmptyValue: true schema: type: boolean responses: 200: description: Returned the list of Models content: application/json: schema: type: array items: ModelRspSchema """ message = validate_uuid(user_id=user_id) if message: return make_response(jsonify(message), 400) models = app_handler.list_models(user_id) filtered_models = filtering.apply(request.args, models) paginated_models = pagination.apply(request.args, filtered_models) pagination_total = len(filtered_models) metadata = {"models": paginated_models} schema = ModelListRspSchema() response = make_response(jsonify(schema.dump(schema.load(metadata))['models'])) response.headers['X-Pagination-Total'] = str(pagination_total) return response @app.route('/api/v1/user/<user_id>/model/<model_id>', methods=['GET']) def model_retrieve(user_id, model_id): """Retrieve Model. --- get: tags: - MODEL summary: Retrieve Model description: Returns the Model parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID of Model to return required: true schema: type: string format: uuid responses: 200: description: Returned the Model content: application/json: schema: ModelRspSchema 404: description: User or Model not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.retrieve_model(user_id, model_id) # Get schema schema = None if response.code == 200: schema = ModelRspSchema() else: schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>', methods=['DELETE']) def model_delete(user_id, model_id): """Delete Model. --- delete: tags: - MODEL summary: Delete Model description: Cancels all related running jobs and returns the deleted Model parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID of Model to delete required: true schema: type: string format: uuid responses: 200: description: Returned the deleted Model content: application/json: schema: ModelRspSchema 404: description: User or Model not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.delete_model(user_id, model_id) # Get schema schema = None if response.code == 200: schema = ModelRspSchema() else: schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model', methods=['POST']) def model_create(user_id): """Create new Model. --- post: tags: - MODEL summary: Create new Model description: Returns the new Model parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid requestBody: content: application/json: schema: ModelReqSchema description: Initial metadata for new Model (ptm or network_arch required) required: true responses: 201: description: Returned the new Model content: application/json: schema: ModelRspSchema 400: description: Bad request, see reply body for details content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id) if message: return make_response(jsonify(message), 400) request_dict = request.get_json(force=True) # Get response response = app_handler.create_model(user_id, request_dict) # Get schema schema = None if response.code == 201: schema = ModelRspSchema() else: schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>', methods=['PUT']) def model_update(user_id, model_id): """Update Model. --- put: tags: - MODEL summary: Update Model description: Returns the updated Model parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID of Model to update required: true schema: type: string format: uuid requestBody: content: application/json: schema: ModelReqSchema description: Updated metadata for Model required: true responses: 200: description: Returned the updated Model content: application/json: schema: ModelRspSchema 400: description: Bad request, see reply body for details content: application/json: schema: ErrorRspSchema 404: description: User or Model not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id) if message: return make_response(jsonify(message), 400) request_dict = request.get_json(force=True) # Get response response = app_handler.update_model(user_id, model_id, request_dict) # Get schema schema = None if response.code == 200: schema = ModelRspSchema() else: schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>', methods=['PATCH']) def model_partial_update(user_id, model_id): """Partial update Model. --- patch: tags: - MODEL summary: Partial update Model description: Returns the updated Model parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID of Model to update required: true schema: type: string format: uuid requestBody: content: application/json: schema: ModelReqSchema description: Updated metadata for Model required: true responses: 200: description: Returned the updated Model content: application/json: schema: ModelRspSchema 400: description: Bad request, see reply body for details content: application/json: schema: ErrorRspSchema 404: description: User or Model not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id) if message: return make_response(jsonify(message), 400) request_dict = request.get_json(force=True) # Get response response = app_handler.update_model(user_id, model_id, request_dict) # Get schema schema = None if response.code == 200: schema = ModelRspSchema() else: schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>/specs/<action>/schema', methods=['GET']) def model_specs_schema(user_id, model_id, action): """Retrieve Specs schema. --- get: tags: - MODEL summary: Retrieve Specs schema description: Returns the Specs schema for a given action parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID for Model required: true schema: type: string format: uuid - name: action in: path description: Action name required: true schema: type: string responses: 200: description: Returned the Specs schema for given action content: application/json: schema: type: object 404: description: Dataset or Action not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.get_spec_schema(user_id, model_id, action, "model") # Get schema schema = None if response.code == 200: return make_response(jsonify(response.data), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>/specs/<action>', methods=['GET']) def model_specs_retrieve(user_id, model_id, action): """Retrieve Model Specs. --- get: tags: - MODEL summary: Retrieve Model Specs description: Returns the Model Specs for a given action parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID of Model required: true schema: type: string format: uuid - name: action in: path description: Action name required: true schema: type: string responses: 200: description: Returned the Model Specs for specified action content: application/json: schema: type: object 404: description: User, Model or Action not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.get_spec(user_id, model_id, action, "model") # Get schema schema = None if response.code == 200: return make_response(jsonify(response.data), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>/specs/<action>', methods=['POST']) def model_specs_save(user_id, model_id, action): """Save Model Specs. --- post: tags: - MODEL summary: Save Model Specs description: Save the Model Specs for a given action parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID of Model required: true schema: type: string format: uuid - name: action in: path description: Action name required: true schema: type: string requestBody: content: application/json: schema: type: object description: Model Specs required: true responses: 201: description: Returned the saved Model Specs for specified action content: application/json: schema: type: object 400: description: Invalid specs content: application/json: schema: ErrorRspSchema 404: description: User, Model or Action not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id) if message: return make_response(jsonify(message), 400) request_dict = request.get_json(force=True) # Get response response = app_handler.save_spec(user_id, model_id, action, request_dict, "model") # Get schema schema = None if response.code == 201: return make_response(jsonify(response.data), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>/specs/<action>', methods=['PUT']) def model_specs_update(user_id, model_id, action): """Update Model Specs. --- put: tags: - MODEL summary: Update Model Specs description: Update the Model Specs for a given action parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID of Model required: true schema: type: string format: uuid - name: action in: path description: Action name required: true schema: type: string requestBody: content: application/json: schema: type: object description: Model Specs required: true responses: 200: description: Returned the updated Model Specs for specified action content: application/json: schema: type: object 400: description: Invalid specs content: application/json: schema: ErrorRspSchema 404: description: User, Model or Action not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id) if message: return make_response(jsonify(message), 400) request_dict = request.get_json(force=True) # Get response response = app_handler.save_spec(user_id, model_id, action, request_dict, "model") # Get schema schema = None if response.code == 200: return make_response(jsonify(response.data), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>/job', methods=['POST']) def model_job_run(user_id, model_id): """Run Model Jobs. --- post: tags: - MODEL summary: Run Model Jobs description: Asynchronously starts a list of Model Actions and returns corresponding Job IDs parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID for Model required: true schema: type: string format: uuid requestBody: content: application/json: schema: type: array items: ModelActions responses: 201: description: Returned the list of Job IDs corresponding to requested Model Actions content: application/json: schema: type: array items: type: string 404: description: User or Model not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id) if message: return make_response(jsonify(message), 400) request_data = request.get_json(force=True).copy() request_schema_data = ModelActions().load(request_data) requested_job = request_schema_data.get('job', None) if requested_job: requested_job = str(requested_job) requested_actions = request_schema_data.get('actions', []) # Get response response = app_handler.job_run(user_id, model_id, requested_job, requested_actions, "model") # Get schema schema = None if response.code == 201: return make_response(jsonify(response.data), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>/job', methods=['GET']) def model_job_list(user_id, model_id): """List Jobs for Model. --- get: tags: - MODEL summary: List Jobs for Model description: Returns the list of Jobs parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID for Model required: true schema: type: string format: uuid - name: skip in: query description: Optional skip for pagination required: false schema: type: integer - name: size in: query description: Optional size for pagination required: false schema: type: integer - name: sort in: query description: Optional sort required: false schema: type: string enum: ["date-descending", "date-ascending" ] responses: 200: description: Returned list of Jobs content: application/json: schema: type: array items: ModelJobSchema 404: description: User or Model not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.job_list(user_id, model_id, "model") # Get schema schema = None if response.code == 200: pagination_total = 0 metadata = {"jobs": response.data} schema = ModelJobListSchema() response = make_response(jsonify(schema.dump(schema.load(metadata))['jobs'])) response.headers['X-Pagination-Total'] = str(pagination_total) return response schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>/job/<job_id>', methods=['GET']) def model_job_retrieve(user_id, model_id, job_id): """Retrieve Job for Model. --- get: tags: - MODEL summary: Retrieve Job for Model description: Returns the Job parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID of Model required: true schema: type: string format: uuid - name: job_id in: path description: Job ID required: true schema: type: string format: uuid responses: 200: description: Returned Job content: application/json: schema: ModelJobSchema 404: description: User, Model or Job not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id, job_id=job_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.job_retrieve(user_id, model_id, job_id, "model") # Get schema schema = None if response.code == 200: schema = ModelJobSchema() else: schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>/job/<job_id>/cancel', methods=['POST']) def model_job_cancel(user_id, model_id, job_id): """Cancel Model Job (or pause training). --- post: tags: - MODEL summary: Cancel Model Job or pause training description: Cancel Model Job or pause training parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID for Model required: true schema: type: string format: uuid - name: job_id in: path description: ID for Job required: true schema: type: string format: uuid responses: 200: description: Successfully requested cancelation or training pause of specified Job ID (asynchronous) 404: description: User, Model or Job not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id, job_id=job_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.job_cancel(user_id, model_id, job_id, "model") # Get schema schema = None if response.code == 200: return make_response(jsonify({}), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>/job/<job_id>', methods=['DELETE']) def model_job_delete(user_id, model_id, job_id): """Cancel Model Job (or pause training). --- post: tags: - MODEL summary: Cancel Model Job or pause training description: Cancel Model Job or pause training parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID for Model required: true schema: type: string format: uuid - name: job_id in: path description: ID for Job required: true schema: type: string format: uuid responses: 200: description: Successfully requested cancelation or training pause of specified Job ID (asynchronous) 404: description: User, Model or Job not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id, job_id=job_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.job_delete(user_id, model_id, job_id, "model") # Get schema schema = None if response.code == 200: return make_response(jsonify({}), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>/job/<job_id>/resume', methods=['POST']) def model_job_resume(user_id, model_id, job_id): """Resume Model Job - train/retrain only. --- post: tags: - MODEL summary: Resume Model Job description: Resume Model Job - train/retrain only parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID for Model required: true schema: type: string format: uuid - name: job_id in: path description: ID for Job required: true schema: type: string format: uuid responses: 200: description: Successfully requested resume of specified Job ID (asynchronous) 404: description: User, Model or Job not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id, job_id=job_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.resume_model_job(user_id, model_id, job_id, "model") # Get schema schema = None if response.code == 200: return make_response(jsonify({}), response.code) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) @app.route('/api/v1/user/<user_id>/model/<model_id>/job/<job_id>/download', methods=['GET']) def model_job_download(user_id, model_id, job_id): """Download Job Artifacts. --- get: tags: - MODEL summary: Download Job Artifacts description: Download the Artifacts produced by a given job parameters: - name: user_id in: path description: User ID required: true schema: type: string format: uuid - name: model_id in: path description: ID of Model required: true schema: type: string format: uuid - name: job_id in: path description: Job ID required: true schema: type: string format: uuid responses: 200: description: Returned Job Artifacts content: application/octet-stream: schema: type: string format: binary 404: description: User, Model or Job not found content: application/json: schema: ErrorRspSchema """ message = validate_uuid(user_id=user_id, model_id=model_id, job_id=job_id) if message: return make_response(jsonify(message), 400) # Get response response = app_handler.job_download(user_id, model_id, job_id, "model") # Get schema schema = None if response.code == 200: file_path = response.data # Response is assumed to have the file path file_dir = "/".join(file_path.split("/")[:-1]) file_name = file_path.split("/")[-1] # infer the name return send_from_directory(file_dir, file_name, as_attachment=True) schema = ErrorRspSchema() # Load metadata in schema and return schema_dict = schema.dump(schema.load(response.data)) return make_response(jsonify(schema_dict), response.code) # # HEALTH API # @app.route('/api/v1/health', methods=['GET']) def api_health(): """api health endpoint""" return make_response(jsonify(['liveness', 'readiness'])) @app.route('/api/v1/health/liveness', methods=['GET']) def liveness(): """api liveness endpoint""" live_state = health_check.check_logging() if live_state: return make_response(jsonify("OK"), 201) return make_response(jsonify("Error"), 400) @app.route('/api/v1/health/readiness', methods=['GET']) def readiness(): """api readiness endpoint""" ready_state = health_check.check_logging() and health_check.check_k8s() and Workflow.healthy() if ready_state: return make_response(jsonify("OK"), 201) return make_response(jsonify("Error"), 400) # # BASIC API # @app.route('/', methods=['GET']) def root(): """api root endpoint""" return make_response(jsonify(['api', 'openapi.yaml', 'openapi.json', 'redoc', 'swagger'])) @app.route('/api', methods=['GET']) def version_list(): """version list endpoint""" return make_response(jsonify(['v1'])) @app.route('/api/v1', methods=['GET']) def version_v1(): """version endpoint""" return make_response(jsonify(['login', 'user', 'auth', 'health'])) @app.route('/api/v1/user', methods=['GET']) def user_list(): """user list endpoint""" error = {"error_desc": "Listing users is not authorized: Missing User ID", "error_code": 1} return make_response(jsonify(ErrorRspSchema().dump(error)), 403) @app.route('/api/v1/user/<user_id>', methods=['GET']) def user(user_id): """user endpoint""" message = validate_uuid(user_id=user_id) if message: return make_response(jsonify(message), 400) return make_response(jsonify(['dataset', 'model'])) @app.route('/api/v1/auth', methods=['GET']) def auth(): """authentication endpoint""" # retrieve jwt from headers token = '' url = request.headers.get('X-Original-Url', '') print('URL: ' + str(url), flush=True) authorization = request.headers.get('Authorization', '') authorization_parts = authorization.split() if len(authorization_parts) == 2 and authorization_parts[0].lower() == 'bearer': token = authorization_parts[1] print('Token: ...' + str(token)[-10:], flush=True) # authentication user_id, err = authentication.validate(token) if err: print("Unauthorized: " + err, flush=True) return make_response(jsonify({}), 401) # access control err = access_control.validate(url, user_id) if err: print("Forbidden: " + err, flush=True) return make_response(jsonify({}), 403) return make_response(jsonify({'user_id': user_id}), 200) @app.route('/openapi.yaml', methods=['GET']) def openapi_yaml(): """openapi_yaml endpoint""" r = make_response(spec.to_yaml()) r.mimetype = 'text/x-yaml' return r @app.route('/openapi.json', methods=['GET']) def openapi_json(): """openapi_json endpoint""" r = make_response(json.dumps(spec.to_dict(), indent=2)) r.mimetype = 'application/json' return r @app.route('/redoc', methods=['GET']) def redoc(): """redoc endpoint""" return render_template('redoc.html') @app.route('/swagger', methods=['GET']) def swagger(): """swagger endpoint""" return render_template('swagger.html') @app.route('/api/v1/login/<key>', methods=['GET']) def login(key): """Login endpoint""" creds, err = credentials.get_from_ngc(key) if err: print("Unauthorized: " + err, flush=True) return make_response(jsonify({}), 401) return make_response(jsonify(creds), 200) # # End of APIs # with app.test_request_context(): spec.path(view=login) spec.path(view=dataset_list) spec.path(view=dataset_retrieve) spec.path(view=dataset_delete) spec.path(view=dataset_create) spec.path(view=dataset_update) spec.path(view=dataset_partial_update) spec.path(view=dataset_upload) spec.path(view=dataset_specs_schema) spec.path(view=dataset_specs_retrieve) spec.path(view=dataset_specs_save) spec.path(view=dataset_specs_update) spec.path(view=dataset_job_run) spec.path(view=dataset_job_list) spec.path(view=dataset_job_retrieve) spec.path(view=dataset_job_cancel) spec.path(view=dataset_job_delete) spec.path(view=dataset_job_download) spec.path(view=model_list) spec.path(view=model_retrieve) spec.path(view=model_delete) spec.path(view=model_create) spec.path(view=model_update) spec.path(view=model_partial_update) spec.path(view=model_specs_schema) spec.path(view=model_specs_retrieve) spec.path(view=model_specs_save) spec.path(view=model_specs_update) spec.path(view=model_job_run) spec.path(view=model_job_list) spec.path(view=model_job_retrieve) spec.path(view=model_job_cancel) spec.path(view=model_job_delete) spec.path(view=model_job_resume) spec.path(view=model_job_download) if __name__ == '__main__': # app.run(host='0.0.0.0', port=8000) app.run()
tao_front_end_services-main
api/app.py
#!/usr/bin/env python3 # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Start API workflow""" import threading from job_utils.workflow import Workflow Workflow.start() for thread in threading.enumerate(): if thread.name == "WorkflowThreadTAO": thread.join()
tao_front_end_services-main
api/workflow.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility function to convert spec csv to json schema""" import csv import json __type_mapping = { 'collection': 'object', 'list': 'array', 'float': 'number', 'bool': 'boolean', 'integer': 'integer', 'string': 'string', 'str': 'string', 'int': 'integer', 'dict': 'object', 'const': 'const', 'ordered': 'ordered', 'categorical': 'categorical', 'ordered_int': 'ordered_int', 'enum': 'string' } def __basic_type_fix(value_type, value): """Converts spec values based on their datatype""" if value in (None, ''): return None if value in ('inf', '-inf'): return float(value) if value_type in ('integer', 'ordered_int'): return int(value) if value_type == 'number': return float(value) if value_type == 'boolean': return str(value).lower() == "true" if value_type == 'array': return json.loads(value) if value_type == 'object': return json.loads(value) return value def __array_type_fix(value_type, value): """Converts spec values in an array based on their datatype""" if value in (None, ''): return None # We dont need this for list / dict (examples, valid_options only for simple types) # if value_type in ["array","object"]: # return None values = value.replace(' ', '').split(',') if value_type == 'integer': return [int(i) for i in values] if value_type == 'number': return [float(i) for i in values] if value_type == 'boolean': return [str(i).lower() == "true" for i in values] if value_type == 'array': return [json.loads(i) for i in values] if value_type == 'object': return [json.loads(i) for i in values] return values def __merge(d1, d2): """Merges two dictionaries""" for key in d2.keys(): if key not in d1: d1[key] = d2[key] elif d1[key] is None: d1[key] = d2[key] elif type(d1[key]) is list and type(d2[key]) is list: if d1[key] != [] and type(d1[key][0]) is dict: for i in range(0, min(len(d1[key]), len(d2[key]))): __merge(d1[key][i], d2[key][i]) else: d1[key] = d1[key] + [i for i in d2[key] if i not in d1[key]] elif type(d2[key]) is not dict: d1[key] = d2[key] else: __merge(d1[key], d2[key]) return d1 def harden_parameter_name(parameter): """Fix parameter names by removing flanking "." and remove all spaces""" if not parameter: return None return parameter.rstrip(".").lstrip(".").replace(" ", "") def harden_value_type(value_type): """If value type is an unknown, make it string""" if value_type not in __type_mapping.keys(): return "string" return value_type def harden_numerical_value(value): """If the value cannot become a float, then return None""" if value: try: float(value) return value except: return None else: return None def convert(path, classes=[]): """Convert csv spec to json schema""" array_parameters = [] schema = {} with open(path, mode='r', encoding='utf-8-sig') as f: reader = csv.DictReader(f) for row in reader: # get row data parameter = row.get('parameter') # if parameter: # parameter = harden_parameter_name(parameter) display_name = row.get('display_name') value_type = row.get('value_type') # if value_type: # value_type = harden_value_type(value_type) description = row.get('description') default_value = row.get('default_value') examples = row.get('examples') valid_min = row.get('valid_min') # if valid_min: # valid_min = harden_numerical_value(valid_min) valid_max = row.get('valid_max') # if valid_max: # valid_max = harden_numerical_value(valid_max) valid_options = row.get('valid_options') required = row.get('required') popular = row.get('popular') automl_enabled = row.get('automl_enabled') regex = row.get('regex') link = row.get('link') # convert value type value_type = __type_mapping.get(value_type) if value_type is None: continue if value_type == 'array': array_parameters.append(parameter) # fix data types default_value = __basic_type_fix(value_type, default_value) valid_min = __basic_type_fix(value_type, valid_min) valid_max = __basic_type_fix(value_type, valid_max) valid_options = __array_type_fix(value_type, valid_options) examples = __array_type_fix(value_type, examples) # compose object params = parameter.split('.') last_param = params.pop() if value_type == 'const': obj = {'type': 'object', 'properties': {last_param: {'const': default_value}}, 'default': {last_param: default_value}} else: obj = {'type': 'object', 'properties': {last_param: {'type': value_type}}} # add known object details props = obj['properties'][last_param] if display_name not in (None, ''): props['title'] = display_name if description not in (None, ''): props['description'] = description if examples not in (None, []): props['examples'] = examples if default_value not in (None, ''): props['default'] = default_value obj['default'] = {last_param: default_value} if valid_min is not None: props['minimum'] = valid_min if valid_max is not None: props['maximum'] = valid_max if valid_options not in (None, []): props['enum'] = valid_options if regex not in (None, '') and value_type == 'string': props['pattern'] = regex if link is not None and link.startswith('http'): props['link'] = link if required is not None and required.lower() == 'yes': if obj.get('required') is None: obj['required'] = [] obj['required'].append(last_param) if popular is not None and popular.lower() == 'yes': if obj.get('popular') is None: obj['popular'] = [] obj['popular'].append(last_param) if automl_enabled is not None and automl_enabled.lower() == 'true': if obj.get('automl_default_parameters') is None: obj['automl_default_parameters'] = [] obj['automl_default_parameters'].append(parameter) # special override of default with array of class strings isArray = parameter in array_parameters if classes != [] and isArray: if parameter == 'inferencer_config.target_classes': obj['default'] = {last_param: classes} # add object hierarchy while len(params) > 0: joined_params = '.'.join(params) isArray = joined_params in array_parameters isRequired = obj.get('required') is not None isPopular = obj.get('popular') is not None hasDefault = obj.get('default') is not None isAutomlenabled = obj.get('automl_default_parameters') is not None param = params.pop() if isArray: default = [] if hasDefault: default = [obj['default']] if classes != []: # dynamic patching of default for given dataset classes if joined_params == 'classwise_config': if hasDefault: default = [__merge({'key': c}, obj['default']) for c in classes] else: default = [{'key': c} for c in classes] elif joined_params == 'bbox_handler_config.classwise_bbox_handler_config': if hasDefault: default = [__merge({'key': c, 'value': {'output_map': c}}, obj['default']) for c in classes] else: default = [{'key': c, 'value': {'output_map': c}} for c in classes] elif joined_params == 'dataset_config.target_class_mapping': default = [{'key': c, 'value': c} for c in classes] obj = { 'type': 'object', 'properties': { param: { 'type': 'array', 'items': obj, 'default': default } } } if hasDefault or default != []: obj['default'] = {param: default} else: default = obj.get('default') obj = { 'type': 'object', 'properties': {param: obj} } if hasDefault: obj['default'] = {param: default} if isRequired: obj['required'] = [param] if isPopular: obj['popular'] = [param] if isAutomlenabled: if not schema.get('automl_default_parameters'): schema['automl_default_parameters'] = [parameter] else: schema['automl_default_parameters'].append(parameter) # update schema with obj __merge(schema, obj) # return json schema return schema
tao_front_end_services-main
api/specs_utils/csv_to_json_schema.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Json to yaml file conversion""" import yaml import json def yml(data): """Writes the dictionary data into yaml file""" if type(data) is dict: data.pop("version", None) return yaml.safe_dump(data) def convert(path): """Reads from json and dumps into yaml file""" data = '{}' with open(path, mode='r', encoding='utf-8-sig') as f: data = json.load(f) return yml(data)
tao_front_end_services-main
api/specs_utils/json_to_yaml.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API specs utils module"""
tao_front_end_services-main
api/specs_utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Json to kitti file conversion""" import json def kitti(data, level=0): """Writes the dictionary data into kitti file""" if type(data) is dict and level == 0: data.pop("version", None) specs = [] level_space = '' for _ in range(level): level_space += ' ' for key in data: if data[key] is None: continue if type(data[key]) is dict: specs.append(level_space + key + ' {') specs.append(kitti(data[key], level + 1)) specs.append(level_space + '}') elif type(data[key]) is list: for d in data[key]: t = type(d) s = str(d) isEnum = bool(s.startswith('__') and s.endswith('__')) if type(d) is dict: specs.append(level_space + key + ' {') specs.append(kitti(d, level + 1)) specs.append(level_space + '}') # WARNING: LIST OF LIST NOT SUPPORTED else: if isEnum: specs.append(level_space + key + ': ' + s[2:-2]) elif t in [bool, int, float]: specs.append(level_space + key + ': ' + s) else: specs.append(level_space + key + ': "' + s + '"') else: t = type(data[key]) s = str(data[key]) isEnum = bool(s.startswith('__') and s.endswith('__')) if isEnum: specs.append(level_space + key + ': ' + s[2:-2]) elif t in [bool, int, float]: specs.append(level_space + key + ': ' + s) else: specs.append(level_space + key + ': "' + s + '"') return '\n'.join(specs) def convert(path): # NOTE: Not calling this function. Just using kitti() in current workflow. """Reads from json and dumps into kitti file""" data = '{}' with open(path, mode='r', encoding='utf-8-sig') as f: data = json.load(f) # remove version from schema for now since containers do not yet support it return kitti(data)
tao_front_end_services-main
api/specs_utils/json_to_kitti.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Json spec schema hardening modules""" import copy from specs_utils import csv_to_json_schema from jsonschema import validate as validationDriver, exceptions def __merge(d1, d2): """Merge 2 dictionaries""" for key in d2.keys(): if key not in d1: d1[key] = d2[key] elif d1[key] is None: d1[key] = d2[key] elif type(d1[key]) is list and type(d2[key]) is list: if d1[key] != [] and type(d1[key][0]) is dict: for i in range(0, min(len(d1[key]), len(d2[key]))): __merge(d1[key][i], d2[key][i]) else: d1[key] = d1[key] + [i for i in d2[key] if i not in d1[key]] elif type(d2[key]) is not dict: d1[key] = d2[key] else: __merge(d1[key], d2[key]) return d1 def harden(data, schema): """Harden the schema provided""" return __merge(copy.deepcopy(schema['default']), data) def validate(data, schema): """Validate the schema provided""" try: validationDriver(instance=data, schema=schema) except exceptions.ValidationError as e: return e.message return None # test code if __name__ == '__main__': schema = csv_to_json_schema.convert("specs/detectnet_v2/detectnet_v2 - train.csv") # positive test hardened_data = harden(data={'random_seed': 99}, schema=schema) err = validate(data=hardened_data, schema=schema) if err: print(err) # negative test err = validate(data={'random_seed': 99}, schema=schema) if err: print(err)
tao_front_end_services-main
api/specs_utils/hardening.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Authentication utils session modules""" import os import yaml import functools import threading def synchronized(wrapped): """Decorator function for thread synchronization""" lock = threading.Lock() @functools.wraps(wrapped) def _wrap(*args, **kwargs): with lock: return wrapped(*args, **kwargs) return _wrap @synchronized def set_session(creds): """Append/Pop sessions""" sessions = [] session = creds filename = os.path.join('/', 'shared', 'users', "sessions.yaml") try: with open(filename, "r", encoding='utf-8') as infile: sessions = yaml.safe_load(infile) if type(sessions) != list: # corrupted file? sessions = [] if len(session) > 1000: # keep a max of 1000 active sessions sessions.pop(0) # remove oldest known session except: pass sessions.append(session) with open(filename, "w", encoding='utf-8') as outfile: yaml.dump(sessions, outfile, sort_keys=False) @synchronized def get(token): """Read session from sessions.yaml file""" sessions = [] user = None filename = os.path.join('/', 'shared', 'users', "sessions.yaml") try: with open(filename, "r", encoding='utf-8') as infile: sessions = yaml.safe_load(infile) if type(sessions) != list: # corrupted file? sessions = [] except: pass for session in reversed(sessions): if str(session.get('token')) == str(token): user = session.get('user_id') break return user
tao_front_end_services-main
api/auth_utils/sessions.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Authentication utils credential modules""" import jwt import sys import uuid import requests from auth_utils import __ngc_jwks_client, sessions def get_from_ngc(key): """Get signing key from token""" err = None creds = None try: r = requests.get('https://authn.nvidia.com/token?service=ngc', headers={'Accept': 'application/json', 'Authorization': 'ApiKey ' + key}) if r.status_code != 200: err = 'Credentials error: Invalid NGC_API_KEY: ' + key return creds, err token = r.json().get('token') user = None payload = {} signing_key = __ngc_jwks_client.get_signing_key_from_jwt(token) payload = jwt.decode( token, signing_key.key, audience="ngc", algorithms=["RS256"] ) user = uuid.uuid5(uuid.UUID(int=0), payload.get('sub')) creds = {'user_id': str(user), 'token': token} except Exception as e: err = 'Credentials error: ' + str(e) if not err: print('Adding trusted user: ' + str(creds.get('user_id')), file=sys.stderr) sessions.set_session(creds) return creds, err
tao_front_end_services-main
api/auth_utils/credentials.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API authentication utils moduke""" import jwt __ngc_jwks_client = jwt.PyJWKClient("https://authn.nvidia.com/pubJWKS") __starfleet_jwks_client = jwt.PyJWKClient("https://login.nvidia.com/.well-known/jwks.json")
tao_front_end_services-main
api/auth_utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Authentication utils validation modules""" import jwt import uuid import sys import os from auth_utils import __ngc_jwks_client, __starfleet_jwks_client, sessions def validate(token): """Validate Authentication""" err = None user = sessions.get(token) if user is not None: print('Found trusted user: ' + str(user), file=sys.stderr) else: user, err = _validate_ngc(token) if not err: print('Adding trusted user: ' + str(user), file=sys.stderr) sessions.set_session({'user_id': str(user), 'token': token}) else: user, err = _validate_starfleet(token) if not err: print('Adding trusted user: ' + str(user), file=sys.stderr) sessions.set_session({'user_id': str(user), 'token': token}) return user, err def _validate_ngc(token): """Validate Authentication via ngc""" err = None user = None payload = {} try: signing_key = __ngc_jwks_client.get_signing_key_from_jwt(token) payload = jwt.decode( token, signing_key.key, audience="ngc", algorithms=["RS256"] ) user = uuid.uuid5(uuid.UUID(int=0), payload.get('sub')) except Exception as e: err = 'Token error: ' + str(e) return user, err def _validate_starfleet(token): """Validate Authentication via starfleet""" client_id = os.getenv('AUTH_CLIENT_ID', default='bnSePYullXlG-504nOZeNAXemGF6DhoCdYR8ysm088w') payload = {} err = None try: signing_key = __starfleet_jwks_client.get_signing_key_from_jwt(token) payload = jwt.decode( token, signing_key.key, algorithms=["ES256"], audience=client_id ) except Exception as e: err = 'Token error: ' + str(e) user = payload.get('external_id') if not err and not user: err = 'Token error: unknown user' return user, err
tao_front_end_services-main
api/auth_utils/authentication.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # http://<server>:<port>/<namespace>/api/v1/user/<user_id>/model?<params> # ['', '<namespace', 'api', 'v1', 'user', '<user_id>', 'model'] """Authentication utils access control modeules""" def _remove_prefix(text, prefix): """Removes prefix from given text and returns it""" if text.startswith(prefix): return text[len(prefix):] return text def validate(url, user_id): """Validate URL format""" user_id = str(user_id) err = "Invalid URI path for user " + user_id tmp = _remove_prefix(url, 'http://') tmp = _remove_prefix(tmp, 'https://') tmp = _remove_prefix(tmp, tmp.split('/')[0]) tmp = tmp.split('?')[0] parts = tmp.split('/') # check for user ID match in URL path, with or without domain name in path if (len(parts) >= 5 and parts[3] == 'user' and parts[4] == user_id): err = None elif (len(parts) >= 6 and parts[4] == 'user' and parts[5] == user_id): err = None return err
tao_front_end_services-main
api/auth_utils/access_control.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """AutoML read parameters modules""" from handlers.utilities import Code from handlers.utilities import AUTOML_DISABLED_NETWORKS from specs_utils import csv_to_json_schema import os import json import pandas as pd _VALID_TYPES = ["int", "integer", "float", "ordered_int", "bool", "ordered", "categorical"] def get_flatten_specs(dict_spec, flat_specs, parent=""): """Flatten nested dictionary""" for key, value in dict_spec.items(): if isinstance(value, dict): get_flatten_specs(value, flat_specs, parent + key + ".") else: flat_key = parent + key flat_specs[flat_key] = value def generate_hyperparams_to_search(network_arch, automl_add_hyperparameters, automl_remove_hyperparameters, handler_root): """Use train.csv spec of the network to choose the parameters of AutoML Returns: a list of dict for AutoML supported networks """ if network_arch not in AUTOML_DISABLED_NETWORKS: DIR_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) CSV_PATH = os.path.join(DIR_PATH, "specs_utils", "specs", network_arch, f"{network_arch} - train.csv") if not os.path.exists(CSV_PATH): return Code(404, {}, "Default specs do not exist for action") original_train_spec = csv_to_json_schema.convert(CSV_PATH)["default"] original_spec_with_keys_flattened = {} get_flatten_specs(original_train_spec, original_spec_with_keys_flattened) with open(f"{handler_root}/specs/train.json", "r", encoding='utf-8') as f: updated_train_spec = json.load(f) updated_spec_with_keys_flattened = {} get_flatten_specs(updated_train_spec, updated_spec_with_keys_flattened) deleted_params = original_spec_with_keys_flattened.keys() - updated_spec_with_keys_flattened data_frame = pd.read_csv(CSV_PATH) data_frame = data_frame[data_frame['value_type'].isin(_VALID_TYPES)] if network_arch == "faster_rcnn": automl_default_params = data_frame.loc[data_frame['automl_enabled'] == True]['parameter'].tolist() # pylint: disable=C0121 # noqa: E712 if "model_config.input_image_config.size_height_width.height" in automl_default_params or "model_config.input_image_config.size_height_width.height" in automl_add_hyperparameters: if "augmentation_config.preprocessing.output_image_height" in automl_remove_hyperparameters: automl_remove_hyperparameters.remove("augmentation_config.preprocessing.output_image_height") data_frame.loc[data_frame.parameter.isin(['augmentation_config.preprocessing.output_image_height']), 'automl_enabled'] = True if "model_config.input_image_config.size_height_width.width" in automl_default_params or "model_config.input_image_config.size_height_width.width" in automl_add_hyperparameters: if "augmentation_config.preprocessing.output_image_width" in automl_remove_hyperparameters: automl_remove_hyperparameters.remove("augmentation_config.preprocessing.output_image_width") data_frame.loc[data_frame.parameter.isin(['augmentation_config.preprocessing.output_image_width']), 'automl_enabled'] = True data_frame = data_frame.loc[data_frame['automl_enabled'] != False] # pylint: disable=C0121 # noqa: E712 # Push params that are dependent on other params to the bottom data_frame = data_frame.sort_values(by=['depends_on']) data_frame = data_frame[::-1] data_frame.loc[data_frame.parameter.isin(automl_remove_hyperparameters), 'automl_enabled'] = False data_frame.loc[data_frame.parameter.isin(automl_add_hyperparameters), 'automl_enabled'] = True automl_params = data_frame.loc[data_frame['automl_enabled'] == True] # pylint: disable=C0121 # noqa: E712 automl_params = automl_params.loc[~automl_params['parameter'].isin(deleted_params)] automl_params = automl_params[["parameter", "value_type", "default_value", "valid_min", "valid_max", "valid_options", "math_cond", "parent_param", "depends_on"]] return automl_params.to_dict('records') return {}
tao_front_end_services-main
api/automl/params.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """AutoML controller modules""" import os import time import json import sys from copy import deepcopy from automl.utils import Recommendation, ResumeRecommendation, JobStates, report_healthy from handlers.utilities import StatusParser, _ITER_MODELS, _PURPOSE_BUILT_MODELS, read_network_config from handlers.stateless_handlers import update_job_status from job_utils.automl_job_utils import on_new_automl_job, on_delete_automl_job, on_cancel_automl_job import uuid import shutil import glob time_per_epoch = 0 time_per_epoch_counter = 0 class Controller: """ Abstractly, just a collection of threads and a switch to start and stop them - start(): Start all threads needed to run AutoML - stop(): Stop all threads started by start() - generate_recommendations(): Runs the automl algorithm to generate and analyze recommendations - read_results(): Listens to experiments - write_results(): Routinely updates a controller_data.json to help Handlers """ def __init__(self, root, network, brain, automl_context, max_recommendations, delete_intermediate_ckpt, metric, automl_algorithm): """Initialize the Automl Controller class Args: root: handler root network: model name brain: Bayesian/Hyperband class object automl_context: job context with regards to automl max_recommendations: max_recommendation parameter value (for Bayesian) delete_intermediate_ckpt: boolean value to delete/not-delete checkpoints which don't correspond to the best model metric: metric name which will be used to choose best models automl_algorithm: automl algorithm name """ self.brain = brain self.recommendations = [] self.root = root self.network = network self.completed_recommendations = 0 self.max_recommendations = int(max_recommendations) self.delete_intermediate_ckpt = bool(delete_intermediate_ckpt) self.automl_algorithm = automl_algorithm self.metric = metric self.network_metric_mapping = {"action_recognition": "val_acc", "bpnet": "loss", "classification_pyt": "loss", "classification_tf1": "validation_accuracy", "classification_tf2": "val_accuracy", "deformable_detr": "val_mAP50", "detectnet_v2": "mean average precision", "dino": "val_mAP50", "dssd": "mean average precision", "efficientdet_tf1": "AP50", "efficientdet_tf2": "AP50", "faster_rcnn": "mean average precision", "fpenet": "evaluation_cost ", "lprnet": "validation_accuracy", "ml_recog": "val Precision at Rank 1", "multitask_classification": "mean accuracy", "mask_rcnn": "mask_AP", "ocdnet": "hmean", "ocrnet": "val_acc", "optical_inspection": "val_acc", "pointpillars": "loss", "pose_classification": "val_acc", "re_identification": "cmc_rank_1", "retinanet": "mean average precision", "ssd": "mean average precision", "segformer": "Mean IOU", "unet": "loss", "yolo_v3": "mean average precision", "yolo_v4": "mean average precision", "yolo_v4_tiny": "mean average precision"} if self.automl_algorithm in ("hyperband", "h") and self.network in ("bpnet", "multitask_classification", "unet"): self.metric_key = "loss" self.metric = "loss" elif self.metric == "kpi": self.metric_key = self.network_metric_mapping[self.network] else: self.metric_key = self.metric self.brain.reverse_sort = True self.min_max = max if self.metric == "loss" or self.metric_key in ("loss", "evaluation_cost "): self.brain.reverse_sort = False self.min_max = min self.best_epoch_number = 0 self.best_model_copied = False self.ckpt_path = {} self.old_bracket = 0 self.hyperband_cancel_condition_seen = False self.eta = "Will be updated after completing one epoch" self.remaining_epochs_in_experiment = float("inf") self.average_time_per_epoch = float("inf") self.automl_context = automl_context self.on_new_automl_job = lambda jc: on_new_automl_job(self.automl_context, jc) def start(self): """Starts the automl controller""" report_healthy(self.root + "/controller.log", "Starting", clear=False) self._execute_loop() update_job_status(self.automl_context.handler_id, self.automl_context.id, status="Done") on_delete_automl_job(self.automl_context.handler_id, self.automl_context.id) def save_state(self): """Save the self.recommendations into a controller.json""" recs_dict = [ele.__dict__ for ele in self.recommendations] file_path = self.root + "/controller.json" with open(file_path, 'w', encoding='utf-8') as f: json.dump(recs_dict, f, separators=(',', ':'), sort_keys=True, indent=4) @staticmethod def load_state(root, network, brain, automl_context, max_recommendations, delete_intermediate_ckpt, metric, automl_algorithm): """Loads a Controller object from pre-existing root""" ctrl = Controller(root, network, brain, automl_context, max_recommendations, delete_intermediate_ckpt, metric, automl_algorithm) ctrl.recommendations = [] # Restore the recommendations file_path = root + "/controller.json" with open(file_path, 'r', encoding='utf-8') as f: recs_dict = json.loads(f.read()) for rec_dict in recs_dict: rec = Recommendation(rec_dict["id"], rec_dict["specs"]) rec.update_result(rec_dict["result"]) rec.update_status(rec_dict["status"]) rec.assign_job_id(rec_dict["job_id"]) ctrl.recommendations.append(rec) # Handle temp_rec # temp_rec is a recommendation that started, but never ended # Usually, if the controller is stopped before a recommendation is done, it might have to be started / resumed again file_path = root + "/current_rec.json" with open(file_path, 'r', encoding='utf-8') as f: temp_rec = json.loads(f.read()) ctrl.recommendations[temp_rec].update_status(JobStates.success) ctrl.save_state() # ctrl.on_new_automl_job(ctrl.recommendations[temp_rec]) return ctrl def _execute_loop(self): """A loop that does the 3 things in order 1.See if any new recommendation is up to execute 2.Reads results of newly done experiments 3.Writes AutoML status into a file which can be shown to the end user """ update_job_status(self.automl_context.handler_id, self.automl_context.id, status="Running") while True: automl_status_file = self.root + "/controller.json" if os.path.exists(automl_status_file): with open(automl_status_file, encoding='utf-8') as f: automl_status = json.load(f) self.completed_recommendations = len(automl_status) if (self.completed_recommendations == self.max_recommendations and automl_status[self.max_recommendations - 1]['status'] in ('success', 'failure') and self.automl_algorithm in ("bayesian", "b")) or (self.automl_algorithm in ("hyperband", "h") and self.brain.done()): report_healthy(self.root + "/controller.log", "Stopping", clear=False) # Find best model based on mAP self.find_best_model() if self.best_model_copied: # Delete final extra checkpoints after finish training for rec in self.recommendations: expt_root = os.path.join(self.root, "experiment_" + str(rec.id)) self.get_best_checkpoint_path(expt_root, rec) self.delete_not_best_model_checkpoints(expt_root, rec, True) self.eta = 0.0 self.remaining_epochs_in_experiment = 0.0 self.write_results() return self.run_experiments() self.read_results() self.write_results() time.sleep(4) def run_experiments(self): """Generate recommendation from brain if a new job is requested, add it to self.recommendations and execute it (add it to workflow) if a resume is requested, add the relevant recommendation to the workflow """ if self.automl_algorithm in ("bayesian", "b") and len(self.recommendations) == self.max_recommendations: return history = deepcopy(self.recommendations) recommended_specs = self.brain.generate_recommendations(history) assert len(recommended_specs) in [0, 1], "At most one recommendation" for spec in recommended_specs: print("Recommendation gotten", file=sys.stderr) self.best_epoch_number = 0 if type(spec) == dict: # Save brain state and update current recommendation self.hyperband_cancel_condition_seen = False self.brain.save_state() # update temp_rec new_id = len(self.recommendations) file_path = self.root + "/current_rec.json" with open(file_path, 'w', encoding='utf-8') as f: json.dump(new_id, f, separators=(',', ':'), sort_keys=True, indent=4) # Run new recommendation rec = Recommendation(new_id, spec) job_id = str(uuid.uuid4()) # Assign job_id for this recommendation rec.assign_job_id(job_id) self.recommendations.append(rec) self.save_state() self.on_new_automl_job(rec) report_healthy(self.root + "/controller.log", "Job started", clear=False) elif type(spec) == ResumeRecommendation: self.hyperband_cancel_condition_seen = False rec_id = spec.id # Save brain state and update current recommendation self.brain.save_state() # update temp_rec file_path = self.root + "/current_rec.json" with open(file_path, 'w', encoding='utf-8') as f: json.dump(rec_id, f, separators=(',', ':'), sort_keys=True, indent=4) assert self.recommendations[rec_id].id == rec_id # Make sure the self.recommendations[rec_id] indeed has 'id' field = rec_id self.recommendations[rec_id].specs = spec.specs.copy() self.recommendations[rec_id].update_status(JobStates.pending) # Remove previous files (except checkpoints) from experiment folder. expt_name = "experiment_" + str(rec_id) expt_path = os.path.join(self.root, expt_name) if os.path.exists(expt_path): expt_file_name = glob.glob(expt_path + "/**/*.txt", recursive=True) + glob.glob(expt_path + "/**/*.json", recursive=True) + glob.glob(expt_path + "/**/*event*", recursive=True) + glob.glob(expt_path + "/**/*lightning_logs*", recursive=True) for file_name in expt_file_name: if os.path.isfile(file_name): os.remove(file_name) self.save_state() self.on_new_automl_job(self.recommendations[rec_id]) report_healthy(self.root + "/controller.log", "Job started", clear=False) def read_results(self): """Update results for each recommendation""" flag = False for rec in self.recommendations: old_status = rec.status job_name = rec.job_id if not job_name: continue expt_name = "experiment_" + str(rec.id) expt_root = os.path.join(self.root, expt_name) # If rec already changed to Success, no need to check if rec.status in [JobStates.success, JobStates.failure]: if self.delete_intermediate_ckpt: self.delete_checkpoint_files(expt_root) # Remove the checkpoints from not best model brain_file_path = self.root + "/brain.json" if os.path.exists(brain_file_path): with open(brain_file_path, 'r', encoding='utf-8') as u: brain_dict = json.loads(u.read()) if self.automl_algorithm in ("bayesian", "b") or self.old_bracket != brain_dict.get("bracket", 0): flag = self.delete_not_best_model_checkpoints(expt_root, rec, flag) continue status_file = os.path.join(self.root, expt_name, "status.json") status_parser = StatusParser(status_file, self.network, expt_root) new_results = status_parser.update_results() self.calculate_eta(new_results) validation_map_processed = False # Force termination of the case for hyperband training if self.automl_algorithm in ("hyperband", "h"): brain_file_path = self.root + "/brain.json" if os.path.exists(brain_file_path): with open(brain_file_path, 'r', encoding='utf-8') as u: brain_dict = json.loads(u.read()) # if the experiment is in the last set of bracket, do not cancel job. for result_key in new_results.keys(): if self.hyperband_cancel_condition_seen or result_key in ("epoch", "cur_iter"): if not isinstance(new_results.get(result_key, None), type(None)): self.brain_epoch_number = float(brain_dict.get("epoch_number", float('inf'))) if len(brain_dict.get("ni", [float('-inf')])[str(brain_dict.get("bracket", 0))]) != (brain_dict.get("sh_iter", float('inf')) + 1): if self.hyperband_cancel_condition_seen or new_results.get(result_key) > self.brain_epoch_number: self.hyperband_cancel_condition_seen = True # Cancel the current running job and change the job state to success validation_map = self.read_metric(results=new_results) if validation_map != 0.0: rec.update_status(JobStates.success) validation_map_processed = True self.hyperband_cancel_condition_seen = False on_cancel_automl_job(rec.job_id) self.get_best_checkpoint_path(expt_root, rec) self.delete_checkpoint_files(expt_root) # Status is read from the status.json and not from K8s # status.json needs to be reliable status = "" if rec.status == JobStates.success: status = JobStates.success elif new_results.get("detailed_status"): status = new_results["detailed_status"].get("status", JobStates.pending).lower() if not status: status = JobStates.pending if status in [JobStates.success, JobStates.failure]: if not validation_map_processed: validation_map = self.read_metric(results=new_results) if status == JobStates.failure: if self.brain.reverse_sort: validation_map = 1e-7 else: validation_map = float('inf') if validation_map != 0.0: rec.update_result(validation_map) self.save_state() if old_status != status: rec.update_status(status) self.save_state() if status == JobStates.success: container_log_file = f"{self.root}/experiment_{rec.id}/log.txt" if os.path.exists(container_log_file): with open(container_log_file, "a", encoding='utf-8') as f: f.write("\nEOF\n") if rec.status in [JobStates.success, JobStates.failure] and self.delete_intermediate_ckpt: # Retain the latest checkpoint and remove others in experiment folder self.get_best_checkpoint_path(expt_root, rec) self.delete_checkpoint_files(expt_root) if self.automl_algorithm in ("hyperband", "h"): if os.path.exists(brain_file_path): self.old_bracket = brain_dict.get("bracket", 0) def calculate_eta(self, new_results): """Calculate estimated time remaining for automl job""" global time_per_epoch global time_per_epoch_counter for result_key in new_results.keys(): if result_key in ("epoch", "cur_iter") and new_results.get(result_key): current_epoch = new_results.get(result_key) if result_key == "cur_iter": time_per_key = "time_per_iter" else: time_per_key = "time_per_epoch" time_per_epoch_string = new_results.get(time_per_key, "0:0:0.0") if time_per_epoch_string: format_time_per_epoch = time.strptime(time_per_epoch_string.split(".")[0], '%H:%M:%S') time_per_epoch += (format_time_per_epoch.tm_hour * 60 * 60 + format_time_per_epoch.tm_min * 60 + format_time_per_epoch.tm_sec) else: time_per_epoch = 0 time_per_epoch_counter += 1 self.average_time_per_epoch = time_per_epoch / time_per_epoch_counter if self.automl_algorithm in ("bayesian", "b"): remaining_epochs = self.brain.num_epochs_per_experiment - current_epoch self.remaining_epochs_in_experiment = remaining_epochs + (self.max_recommendations - self.completed_recommendations) * (self.brain.num_epochs_per_experiment) self.eta = self.remaining_epochs_in_experiment * self.average_time_per_epoch self.eta /= 60 self.eta = round(self.eta, 2) elif self.automl_algorithm in ("hyperband", "h"): current_sh_allowed_epochs = self.brain.ri[self.brain.bracket][self.brain.sh_iter] * self.brain.epoch_multiplier current_sh_remaining_epochs = (self.brain.ni[self.brain.bracket][self.brain.sh_iter] - self.brain.expt_iter) * current_sh_allowed_epochs if current_epoch < current_sh_allowed_epochs: current_sh_remaining_epochs += ((current_sh_allowed_epochs - current_epoch)) future_sh_epochs = 0.0 for bracket in range(self.brain.bracket, len(self.brain.ni)): for remaining_sh in range(self.brain.sh_iter + 1, len(self.brain.ri[bracket])): current_sh_epochs = self.brain.ri[bracket][remaining_sh] if remaining_sh != 0: current_sh_epochs -= self.brain.ri[bracket][remaining_sh - 1] future_sh_epochs += self.brain.ni[bracket][remaining_sh] * current_sh_epochs * self.brain.epoch_multiplier self.remaining_epochs_in_experiment = current_sh_remaining_epochs + future_sh_epochs self.eta = self.remaining_epochs_in_experiment * self.average_time_per_epoch self.eta /= 60 self.eta = round(self.eta, 2) def write_results(self): """Update stats value and write to automl_metadata.json""" controller_json = os.path.join(self.root, "automl_metadata.json") # Best mAP seen till now result_dict = {} try: if self.recommendations[-1].result == 0.0: result_dict[f"best_{self.metric_key}"] = self.min_max(self.recommendations[:-1], key=lambda rec: rec.result).result else: result_dict[f"best_{self.metric_key}"] = self.min_max(self.recommendations, key=lambda rec: rec.result).result except: result_dict[f"best_{self.metric_key}"] = 0.0 eta_msg_suffix = "" if type(self.eta) == float: eta_msg_suffix = " minutes remaining approximately" result_dict["Estimated time for automl completion"] = str(self.eta) + eta_msg_suffix result_dict["Current experiment number"] = len(self.recommendations) if self.network in _ITER_MODELS: result_dict["Number of iters yet to start"] = self.remaining_epochs_in_experiment result_dict["Time per iter in seconds"] = round(self.average_time_per_epoch, 2) else: result_dict["Number of epochs yet to start"] = self.remaining_epochs_in_experiment result_dict["Time per epoch in seconds"] = round(self.average_time_per_epoch, 2) # Num failed jobs is one KPI # Num successful jobs is one KPI with open(controller_json, "w+", encoding='utf-8') as f: f.write(json.dumps(result_dict, indent=4)) def find_best_model(self): """Find best model based on metric value chosen and copy those artifacts to best_model folder""" print("Finding best recommendation config", file=sys.stderr) try: best_mAP = self.min_max(self.recommendations, key=lambda rec: rec.result).result except: best_mAP = 0.0 return for rec in self.recommendations: job_name = rec.job_id if not job_name: continue expt_folder = os.path.join(self.root, "experiment_" + str(rec.id)) if os.path.exists(expt_folder) and (rec.status == JobStates.success and rec.result == best_mAP) and (glob.glob(expt_folder + "/**/*.tlt", recursive=True) + glob.glob(expt_folder + "/**/*.hdf5", recursive=True) + glob.glob(expt_folder + "/**/*.pth", recursive=True)): self.best_model_copied = True api_params = read_network_config(self.network)["api_params"] spec_path = os.path.join(self.root, f"recommendation_{rec.id}.{api_params['spec_backend']}") best_model_folder = os.path.join(self.root, "best_model") shutil.copytree(expt_folder, best_model_folder) shutil.copy(spec_path, os.path.join(self.root, "best_model")) shutil.copy(os.path.join(self.root, "controller.json"), best_model_folder) break def get_best_checkpoint_path(self, path, recommendation): """Assign the checkpoint with the best metric value for supported models; for others call the 'find latest checkpoint method'""" self.ckpt_path[path] = {} if self.network in ("bpnet", "classification_pyt", "detectnet_v2", "fpenet", "pointpillars", "efficientdet_tf1", "faster_rcnn", "mask_rcnn", "segformer", "unet"): format_epoch_number = str(self.best_epoch_number) else: format_epoch_number = f"{self.best_epoch_number:03}" recommendation.best_epoch_number = format_epoch_number find_trained_tlt = glob.glob(f"{path}/*{format_epoch_number}.tlt") + glob.glob(f"{path}/train/*{format_epoch_number}.tlt") + glob.glob(f"{path}/weights/*{format_epoch_number}.tlt") find_trained_hdf5 = glob.glob(f"{path}/*{format_epoch_number}.hdf5") + glob.glob(f"{path}/train/*{format_epoch_number}.hdf5") + glob.glob(f"{path}/weights/*{format_epoch_number}.hdf5") find_trained_pth = glob.glob(f"{path}/*{format_epoch_number}.pth") + glob.glob(f"{path}/train/*{format_epoch_number}.pth") + glob.glob(f"{path}/weights/*{format_epoch_number}.pth") find_trained_ckzip = glob.glob(f"{path}/*{format_epoch_number}.ckzip") + glob.glob(f"{path}/train/*{format_epoch_number}.ckzip") + glob.glob(f"{path}/weights/*{format_epoch_number}.ckzip") if find_trained_tlt: self.ckpt_path[path]["tlt"] = find_trained_tlt[0] if find_trained_hdf5: self.ckpt_path[path]["hdf5"] = find_trained_hdf5[0] if find_trained_pth: self.ckpt_path[path]["pth"] = find_trained_pth[0] if find_trained_ckzip: self.ckpt_path[path]["ckzip"] = find_trained_ckzip[0] def delete_checkpoint_files(self, path): """Remove the extra checkpoints generated after the on_cancel_automl_job""" trained_files = glob.glob(path + "/**/*.tlt", recursive=True) + glob.glob(path + "/**/*.hdf5", recursive=True) + glob.glob(path + "/**/*.pth", recursive=True) + glob.glob(path + "/**/*.ckzip", recursive=True) + glob.glob(path + "/**/*.resume", recursive=True) + glob.glob(path + "/**/*lightning_logs*", recursive=True) for files in trained_files: if files not in self.ckpt_path[path].values(): if os.path.isfile(files): os.remove(files) def delete_not_best_model_checkpoints(self, path, rec, flag): """Remove the checkpoints which don't correspond to the best result""" try: if self.recommendations[-1].result == 0.0: best_mAP = self.min_max(self.recommendations[:-1], key=lambda rec: rec.result).result else: best_mAP = self.min_max(self.recommendations, key=lambda rec: rec.result).result except: best_mAP = 0.0 if rec.result != best_mAP or bool(flag): trained_files = glob.glob(path + "/**/*.tlt", recursive=True) + glob.glob(path + "/**/*.hdf5", recursive=True) + glob.glob(path + "/**/*.pth", recursive=True) + glob.glob(path + "/**/*.ckzip", recursive=True) + glob.glob(path + "/**/*.resume", recursive=True) + glob.glob(path + "/**/*event*", recursive=True) + glob.glob(path + "/**/*lightning_logs*", recursive=True) for files in trained_files: if os.path.isfile(files): os.remove(files) else: flag = True return flag def trim_list(self, metric_list): """Retains only the tuples whose epoch numbers are <= required epochs""" trimmed_list = [] for tuple_var in metric_list: if tuple_var[0] >= 0: if self.automl_algorithm in ("bayesian", "b") or (self.network == "pointpillars" and tuple_var[0] < self.brain_epoch_number) or (self.network != "pointpillars" and tuple_var[0] <= self.brain_epoch_number): trimmed_list.append(tuple_var) return trimmed_list def read_metric(self, results): """ Parses the status parser object and returns the metric of interest result: value from status_parser.update_results() returns: the metric requested in normalized float """ metric_value = 0.0 if self.metric == "loss": result_type = "graphical" else: result_type = "kpi" try: if result_type not in results.keys() or not results[result_type]: return metric_value for log in results[result_type]: if self.metric == "loss": criterion = "loss" elif self.metric == "kpi": criterion = self.network_metric_mapping[self.network] else: criterion = self.metric if log["metric"] == criterion: if log["values"]: values_to_search = self.trim_list(log["values"].items()) if self.automl_algorithm in ("hyperband", "h"): with open(self.root + "/brain.json", 'r', encoding='utf-8') as u: brain_dict = json.loads(u.read()) if (len(brain_dict.get("ni", [float('-inf')])[str(brain_dict.get("bracket", 0))]) != (brain_dict.get("sh_iter", float('inf')) + 1)): self.best_epoch_number, metric_value = values_to_search[-1] else: self.best_epoch_number, metric_value = sorted(values_to_search, key=lambda x: x[1], reverse=self.brain.reverse_sort)[0] else: self.best_epoch_number, metric_value = sorted(sorted(values_to_search, key=lambda x: x[0], reverse=True), key=lambda x: x[1], reverse=self.brain.reverse_sort)[0] metric_value = float(metric_value) except Exception as e: print("Requested metric not found, defaulting to 0.0", file=sys.stderr) print(str(e), file=sys.stderr) if self.brain.reverse_sort: metric_value = float('inf') else: metric_value = 0.0 if self.network in ("pointpillars", "fpenet"): # status json epoch number is 1 less than epoch number generated in checkppoint file self.best_epoch_number += 1 elif self.network in _PURPOSE_BUILT_MODELS or self.network in ("deformable_detr", "dino"): # epoch number in checkpoint starts from 0 or models whose validation logs are generated before the training logs self.best_epoch_number -= 1 print(f"Metric returned is {metric_value} at epoch/iter {self.best_epoch_number}", file=sys.stderr) return metric_value + 1e-07
tao_front_end_services-main
api/automl/controller.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Hyperband AutoML algorithm modules""" import numpy as np import json import os import math from automl.utils import ResumeRecommendation, JobStates, fix_input_dimension, get_valid_range, clamp_value, report_healthy from handlers.utilities import load_json_spec np.random.seed(95051) class HyperBand: """Hyperband AutoML algorithm class""" def __init__(self, root, parameters, R, nu, network, epoch_multiplier): """Initialize the Hyperband algorithm class Args: root: handler root parameters: automl sweepable parameters R: the maximum amount of resource that can be allocated to a single configuration nu: an input that controls the proportion of configurations discarded in each round of SuccessiveHalving epoch_multiplier: multiplying factor for epochs """ self.root = root self.parameters = parameters self.parent_params = {} report_healthy(self.root + "/controller.log", "Hyperband init", clear=True) self.epoch_multiplier = int(epoch_multiplier) self.ni = {} self.ri = {} self.brackets_and_sh_sequence(R, nu) self.epoch_number = 0 self.resume_epoch_number = 0 # State variables self.bracket = 0 # Bracket self.override_num_epochs(self.ri[self.bracket][-1] * self.epoch_multiplier) self.sh_iter = 0 # SH iteration self.experiments_considered = [] self.expt_iter = 0 # Recommendations within the SH self.complete = False self.reverse_sort = True def brackets_and_sh_sequence(self, R, nu): """Generate ni,ri arrays based on R and nu values""" smax = int(np.log(R) / np.log(nu)) for itr, s in enumerate(range(smax, 0, -1)): # This would be range(smax,-1,-1) to follow the paper, but the last bracket has n recommendations and no pruning and they are just random recs. Unless using a Bayesian HP recommendation, this can be 0 self.ni[itr] = [] self.ri[itr] = [] n = int(math.ceil(int((smax + 1) / (s + 1)) * (nu**s))) r = int(R / (nu**s)) for s_idx in range(s + 1): ni = int(n * (nu**(-s_idx))) ri = int(r * (nu**s_idx)) self.ni[itr].append(ni) self.ri[itr].append(ri) def override_num_epochs(self, num_epochs): """Override num epochs parameter in train spec file""" spec = load_json_spec(self.root + "/../specs/train.json") for key1 in spec: if key1 in ("training_config", "train_config", "train"): for key2 in spec[key1]: if key2 in ("num_epochs", "epochs", "n_epochs", "max_iters"): spec[key1][key2] = num_epochs elif key2 in ("train_config"): for key3 in spec[key1][key2]: if key3 == "runner": for key4 in spec[key1][key2][key3]: if key4 == "max_epochs": spec[key1][key2][key3][key4] = num_epochs elif key1 in ("num_epochs"): spec[key1] = num_epochs with open(self.root + "/../specs/train.json", 'w', encoding='utf-8') as f: json.dump(spec, f, separators=(',', ':'), sort_keys=True, indent=4) # Generate a random sample for a parameter from params.py def sample_parameter(self, parameter_config): """Generate a random value for the parameter passed""" tp = parameter_config.get("value_type") default_value = parameter_config.get("default_value", None) math_cond = parameter_config.get("math_cond", None) parent_param = parameter_config.get("parent_param", None) if tp in ("int", "integer"): if parameter_config["parameter"] == "augmentation_config.preprocessing.output_image_height": if "model_config.input_image_config.size_height_width.height" in self.parent_params.keys(): return self.parent_params["model_config.input_image_config.size_height_width.height"] if parameter_config["parameter"] == "augmentation_config.preprocessing.output_image_width": if "model_config.input_image_config.size_height_width.width" in self.parent_params.keys(): return self.parent_params["model_config.input_image_config.size_height_width.width"] v_min = parameter_config.get("valid_min", "") v_max = parameter_config.get("valid_max", "") if v_min == "" or v_max == "": return int(default_value) if (type(v_min) != str and math.isnan(v_min)) or (type(v_max) != str and math.isnan(v_max)): return int(default_value) v_min = int(v_min) if (type(v_max) != str and math.isinf(v_max)) or v_max == "inf": v_max = int(default_value) else: v_max = int(v_max) random_int = np.random.randint(v_min, v_max + 1) if type(math_cond) == str: factor = int(math_cond.split(" ")[1]) random_int = fix_input_dimension(random_int, factor) if not (type(parent_param) == float and math.isnan(parent_param)): if (type(parent_param) == str and parent_param != "nan" and parent_param == "TRUE") or (type(parent_param) == bool and parent_param): self.parent_params[parameter_config.get("parameter")] = random_int return random_int if tp == "float": v_min = parameter_config.get("valid_min", "") v_max = parameter_config.get("valid_max", "") if v_min == "" or v_max == "": return float(default_value) if (type(v_min) != str and math.isnan(v_min)) or (type(v_max) != str and math.isnan(v_max)): return float(default_value) v_min, v_max = get_valid_range(parameter_config, self.parent_params) random_float = np.random.uniform(low=v_min, high=v_max) random_float = clamp_value(random_float, v_min, v_max) if not (type(parent_param) == float and math.isnan(parent_param)): if (type(parent_param) == str and parent_param != "nan" and parent_param == "TRUE") or (type(parent_param) == bool and parent_param): self.parent_params[parameter_config.get("parameter")] = random_float return random_float if tp == "bool": return np.random.randint(0, 2) == 1 if tp == "ordered_int": if parameter_config.get("valid_options", "") == "": return default_value valid_values = parameter_config.get("valid_options") sample = int(np.random.choice(valid_values.split(","))) return sample if tp in ("categorical", "ordered"): if parameter_config.get("valid_options", "") == "": return default_value valid_values = parameter_config.get("valid_options") sample = np.random.choice(valid_values.split(",")) return sample return default_value def save_state(self): """Save the Hyperband algorithm related variables to brain.json""" state_dict = {} state_dict["bracket"] = self.bracket state_dict["sh_iter"] = self.sh_iter state_dict["expt_iter"] = self.expt_iter state_dict["complete"] = self.complete state_dict["epoch_number"] = self.epoch_number state_dict["resume_epoch_number"] = self.resume_epoch_number state_dict["epoch_multiplier"] = self.epoch_multiplier state_dict["ni"] = self.ni state_dict["ri"] = self.ri file_path = self.root + "/brain.json" with open(file_path, 'w', encoding='utf-8') as f: json.dump(state_dict, f, separators=(',', ':'), sort_keys=True, indent=4) @staticmethod def load_state(root, parameters, R, nu, network, epoch_multiplier): """Load the Hyperband algorithm related variables to brain.json""" file_path = root + "/brain.json" if not os.path.exists(file_path): return HyperBand(root, parameters, R, nu, network, epoch_multiplier) with open(file_path, 'r', encoding='utf-8') as f: json_loaded = json.loads(f.read()) brain = HyperBand(root, parameters, R, nu, network, epoch_multiplier) # Load state (Remember everything) brain.bracket = json_loaded["bracket"] # Bracket brain.sh_iter = json_loaded["sh_iter"] # SH iteration brain.expt_iter = json_loaded["expt_iter"] # Recommendations within the SH brain.complete = json_loaded["complete"] brain.epoch_number = json_loaded["epoch_number"] brain.resume_epoch_number = json_loaded["resume_epoch_number"] return brain def _generate_one_recommendation(self, history): """Updates the counter variables and performs successive halving""" if self.complete: return None num = self.ni[self.bracket][self.sh_iter] if self.expt_iter == num: self.expt_iter = 0 self.sh_iter += 1 if self.sh_iter == len(self.ni[self.bracket]): self.sh_iter = 0 self.bracket += 1 if self.bracket in self.ri.keys(): self.override_num_epochs(self.ri[self.bracket][-1] * self.epoch_multiplier) if self.bracket > max(list(self.ni.keys())): self.complete = True return None if self.sh_iter == 0: specs = self._generate_random_parameters() self.epoch_number = self.ri[self.bracket][self.sh_iter] * self.epoch_multiplier to_return = specs else: # Do successive halving on the last bracket # Here, we are sloppy in defining the window, but we assume runs that run for more epochs will be better # We take history[-bracket_size:] and prune this at every SH step lower = -1 * self.ni.get(self.bracket, [0])[0] self.resume_epoch_number = int(self.ri[self.bracket][self.sh_iter - 1] * self.epoch_multiplier) if self.expt_iter == 0: if self.sh_iter == 1: self.experiments_considered = sorted(history[lower:], key=lambda rec: rec.result, reverse=self.reverse_sort)[0:self.ni[self.bracket][self.sh_iter]] else: for experiment in self.experiments_considered: experiment.result = history[experiment.id].result self.experiments_considered = sorted(self.experiments_considered, key=lambda rec: rec.result, reverse=self.reverse_sort)[0:self.ni[self.bracket][self.sh_iter]] self.epoch_number = self.ri[self.bracket][self.sh_iter] * self.epoch_multiplier resumerec = ResumeRecommendation(self.experiments_considered[self.expt_iter].id, self.experiments_considered[self.expt_iter].specs) to_return = resumerec self.expt_iter += 1 return to_return def done(self): """Return if Hyperband algorithm is complete or not""" return self.complete def _generate_random_parameters(self): """Generates random parameter values for a recommendation""" hyperparam_dict = {} for param in self.parameters: name = param["parameter"] rec = self.sample_parameter(param) hyperparam_dict[name] = rec return hyperparam_dict def generate_recommendations(self, history): """Generates recommendations for the controller to run""" if history == []: rec1 = self._generate_one_recommendation(history) assert type(rec1) == dict self.track_id = 0 return [rec1] if history[self.track_id].status not in [JobStates.success, JobStates.failure]: return [] rec = self._generate_one_recommendation(history) if type(rec) == dict: self.track_id = len(history) return [rec] if type(rec) == ResumeRecommendation: self.track_id = rec.id return [rec] return []
tao_front_end_services-main
api/automl/hyperband.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """AutoML moduke"""
tao_front_end_services-main
api/automl/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for AutoML""" import os import math import glob import datetime from kubernetes import client import time def fix_input_dimension(dimension_value, factor=32): """Return dimension as a multiple of factor""" if int(dimension_value) % factor == 0: return dimension_value return (int(dimension_value / factor) + 1) * factor def clamp_value(value, v_min, v_max): """Clamps value within the given range""" if value >= v_max: epsilon = v_max / 10 if epsilon == 0.0: epsilon = 0.0000001 value = v_max - epsilon if value <= v_min: epsilon = v_min / 10 if epsilon == 0.0: epsilon = 0.0000001 value = v_min + epsilon return value def get_valid_range(parameter_config, parent_params): """Compute the clamp range for the given parameter""" v_min = float(parameter_config.get("valid_min")) v_max = float(parameter_config.get("valid_max")) default_value = float(parameter_config.get("default_value")) if math.isinf(v_min): v_min = default_value if math.isinf(v_max): v_max = default_value dependent_on_param = parameter_config.get("depends_on", None) if type(dependent_on_param) == str: dependent_on_param_op = dependent_on_param.split(" ")[0] dependent_on_param_name = dependent_on_param.split(" ")[1] if dependent_on_param_name in parent_params.keys(): limit_value = parent_params[dependent_on_param_name] else: limit_value = default_value epsilon = 0.000001 if limit_value == epsilon: epsilon /= 10 if dependent_on_param_op == ">": v_min = limit_value + epsilon elif dependent_on_param_op == ">=": v_min = limit_value elif dependent_on_param_op == "<": v_max = limit_value - epsilon elif dependent_on_param_op == "<=": v_max = limit_value return v_min, v_max def report_healthy(path, message, clear=False): """Write health message to the provided file""" mode = "w" if clear else "a" with open(path, mode, encoding='utf-8') as f: f.write(f"Healthy at {datetime.datetime.now().isoformat()}\n") if message: f.write(str(message) + "\n") def wait_for_job_completion(job_id): """Check if the provided job_id is actively running and wait until completion""" while True: ret = client.BatchV1Api().list_job_for_all_namespaces() active_jobs = [job.metadata.name for job in ret.items] active_jobs = list(set(active_jobs)) if job_id not in active_jobs: break time.sleep(5) def delete_lingering_checkpoints(epoch_number, path): """Delete checkpoints which are present even after job deletion""" trained_files = glob.glob(path + "/**/*.tlt", recursive=True) + glob.glob(path + "/**/*.hdf5", recursive=True) + glob.glob(path + "/**/*.pth", recursive=True) + glob.glob(path + "/**/*.ckzip", recursive=True) + glob.glob(path + "/**/*lightning_logs*", recursive=True) for file_name in trained_files: if os.path.isfile(file_name): if not (f"{epoch_number}.tlt" in file_name or f"{epoch_number}.hdf5" in file_name or f"{epoch_number}.pth" in file_name or f"{epoch_number}.ckzip" in file_name): os.remove(file_name) class Recommendation: """Recommendation class for AutoML recommendations""" def __init__(self, identifier, specs): """Initialize the Recommendation class Args: identity: the id of the recommendation specs: the specs/config of the recommendation """ assert type(identifier) == int self.id = identifier assert type(specs) == dict self.specs = specs self.job_id = None self.status = JobStates.pending self.result = 0.0 self.best_epoch_number = "" def items(self): """Returns specs.items""" return self.specs.items() def get(self, key): """Returns value of requested key in the spec""" return self.specs.get(key, None) def assign_job_id(self, job_id): """Associates provided job id to the class objects job id""" assert type(job_id) == str self.job_id = job_id def update_result(self, result): """Update the result value""" result = float(result) assert type(result) == float self.result = result def update_status(self, status): """Update the status value""" assert type(status) == str self.status = status def __repr__(self): """Constructs a dictionary with the class members and returns them""" return f"id: {self.id}\njob_id: {self.job_id}\nresult: {self.result}\nstatus: {self.status}" class ResumeRecommendation: """Recommendation class for Hyperband resume experiments""" def __init__(self, identity, specs): """Initialize the ResumeRecommendation class Args: identity: the id of the recommendation specs: the specs/config of the recommendation """ self.id = identity self.specs = specs class JobStates(): """Various states of an automl job""" pending = "pending" running = "running" success = "success" failure = "failure" error = "error" # alias for failure done = "done" # alias for success
tao_front_end_services-main
api/automl/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bayesian AutoML algorithm modules""" import numpy as np import os import json import math from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import ConstantKernel, Matern from scipy.stats import norm from scipy.optimize import minimize from automl.utils import JobStates, fix_input_dimension, get_valid_range, clamp_value, report_healthy from handlers.utilities import load_json_spec np.random.seed(95051) class Bayesian: """Bayesian AutoML algorithm class""" def __init__(self, root, parameters): """Initialize the Bayesian algorithm class Args: root: handler root parameters: automl sweepable parameters """ self.root = root self.parameters = parameters self.parent_params = {} length_scale = [1.0] * len(self.parameters) m52 = ConstantKernel(1.0) * Matern(length_scale=length_scale, nu=2.5) # m52 = ConstantKernel(1.0) * Matern(length_scale=1.0, nu=2.5) # is another option self.gp = GaussianProcessRegressor( kernel=m52, alpha=1e-10, optimizer="fmin_l_bfgs_b", n_restarts_optimizer=10, random_state=95051 ) # The following 2 need to be stored self.Xs = [] self.ys = [] self.xi = 0.01 self.num_restarts = 5 self.num_epochs_per_experiment = self.get_total_epochs() report_healthy(self.root + "/controller.log", "Bayesian init", clear=True) def convert_parameter(self, parameter_config, suggestion): """Convert 0 to 1 GP prediction into a possible value""" tp = parameter_config.get("value_type") default_value = parameter_config.get("default_value", None) math_cond = parameter_config.get("math_cond", None) parent_param = parameter_config.get("parent_param", None) if tp in ("int", "integer"): if parameter_config["parameter"] == "augmentation_config.preprocessing.output_image_height": if "model_config.input_image_config.size_height_width.height" in self.parent_params.keys(): return self.parent_params["model_config.input_image_config.size_height_width.height"] if parameter_config["parameter"] == "augmentation_config.preprocessing.output_image_width": if "model_config.input_image_config.size_height_width.width" in self.parent_params.keys(): return self.parent_params["model_config.input_image_config.size_height_width.width"] v_min = parameter_config.get("valid_min", "") v_max = parameter_config.get("valid_max", "") if v_min == "" or v_max == "": return int(default_value) if (type(v_min) != str and math.isnan(v_min)) or (type(v_max) != str and math.isnan(v_max)): return int(default_value) v_min = int(v_min) if (type(v_max) != str and math.isinf(v_max)) or v_max == "inf": v_max = int(default_value) else: v_max = int(v_max) random_int = np.random.randint(v_min, v_max + 1) if type(math_cond) == str: factor = int(math_cond.split(" ")[1]) random_int = fix_input_dimension(random_int, factor) if not (type(parent_param) == float and math.isnan(parent_param)): if (type(parent_param) == str and parent_param != "nan" and parent_param == "TRUE") or (type(parent_param) == bool and parent_param): self.parent_params[parameter_config.get("parameter")] = random_int return random_int if tp == "float": v_min = parameter_config.get("valid_min", "") v_max = parameter_config.get("valid_max", "") if v_min == "" or v_max == "": return float(default_value) if (type(v_min) != str and math.isnan(v_min)) or (type(v_max) != str and math.isnan(v_max)): return float(default_value) v_min, v_max = get_valid_range(parameter_config, self.parent_params) normalized = suggestion * (v_max - v_min) + v_min quantized = clamp_value(normalized, v_min, v_max) if not (type(parent_param) == float and math.isnan(parent_param)): if (type(parent_param) == str and parent_param != "nan" and parent_param == "TRUE") or (type(parent_param) == bool and parent_param): self.parent_params[parameter_config.get("parameter")] = quantized return quantized if tp == "bool": return np.random.randint(0, 2) == 1 if tp == "ordered_int": if parameter_config.get("valid_options", "") == "": return default_value valid_values = parameter_config.get("valid_options") sample = int(np.random.choice(valid_values.split(","))) return sample if tp in ("categorical", "ordered"): if parameter_config.get("valid_options", "") == "": return default_value valid_values = parameter_config.get("valid_options") sample = np.random.choice(valid_values.split(",")) return sample return default_value def save_state(self): """Save the Bayesian algorithm related variables to brain.json""" state_dict = {} state_dict["Xs"] = np.array(self.Xs).tolist() # List of np arrays state_dict["ys"] = np.array(self.ys).tolist() # List file_path = self.root + "/brain.json" with open(file_path, 'w', encoding='utf-8') as f: json.dump(state_dict, f, separators=(',', ':'), sort_keys=True, indent=4) @staticmethod def load_state(root, parameters): """Load the Bayesian algorithm related variables to brain.json""" file_path = root + "/brain.json" if not os.path.exists(file_path): return Bayesian(root) with open(file_path, 'r', encoding='utf-8') as f: json_loaded = json.loads(f.read()) Xs = [] for x in json_loaded["Xs"]: Xs.append(np.array(x)) ys = json_loaded["ys"] bayesian = Bayesian(root, parameters) # Load state (Remember everything) bayesian.Xs = Xs bayesian.ys = ys len_y = len(ys) bayesian.gp.fit(np.array(Xs[:len_y]), np.array(ys)) return bayesian def generate_recommendations(self, history): """Generates parameter values and appends to recommendations""" if history == []: # default recommendation => random points # TODO: In production, this must be default values for a baseline suggestions = np.random.rand(len(self.parameters)) self.Xs.append(suggestions) recommendations = [] for param_dict, suggestion in zip(self.parameters, suggestions): recommendations.append(self.convert_parameter(param_dict, suggestion)) return [dict(zip([param["parameter"] for param in self.parameters], recommendations))] # This function will be called every 5 seconds or so. # If no change in history, dont give a recommendation # ie - wait for previous recommendation to finish if history[-1].status not in [JobStates.success, JobStates.failure]: return [] # Update the GP based on results self.ys.append(history[-1].result) self.update_gp() # Generate one recommendation # Generate "suggestions" which are in [0.0, 1.0] by optimizing EI suggestions = self.optimize_ei() # length = len(self.parameters), np.array type self.Xs.append(suggestions) # Convert the suggestions to recommendations based on parameter type # Assume one:one mapping between self.parameters and suggestions recommendations = [] assert len(self.parameters) == len(suggestions) for param_dict, suggestion in zip(self.parameters, suggestions): recommendations.append(self.convert_parameter(param_dict, suggestion)) return [dict(zip([param["parameter"] for param in self.parameters], recommendations))] def update_gp(self): """Update gausian regressor parameters""" Xs_npy = np.array(self.Xs) ys_npy = np.array(self.ys) self.gp.fit(Xs_npy, ys_npy) def optimize_ei(self): """Optmize expected improvement functions""" best_ei = 1.0 best_x = None dim = len(self.Xs[0]) bounds = [(0, 1)] * len(self.parameters) for _ in range(self.num_restarts): x0 = np.random.rand(dim) res = minimize(self._expected_improvement, x0=x0, bounds=bounds, method='L-BFGS-B') if res.fun < best_ei: best_ei = res.fun best_x = res.x return best_x.reshape(-1) """ Used from: http://krasserm.github.io/2018/03/21/bayesian-optimization/ """ def _expected_improvement(self, X): """ Computes the EI at points X based on existing samples X_sample and Y_sample using a Gaussian process surrogate model. Args: X: Points at which EI shall be computed (m x d). X_sample: Sample locations (n x d). Y_sample: Sample values (n x 1). gpr: A GaussianProcessRegressor fitted to samples. xi: Exploitation-exploration trade-off parameter. Returns: Expected improvements at points X. """ X = X.reshape(1, -1) mu, sigma = self.gp.predict(X, return_std=True) mu_sample = self.gp.predict(np.array(self.Xs)) sigma = sigma.reshape(-1, 1) # Needed for noise-based model, # otherwise use np.max(Y_sample). # See also section 2.4 in [1] mu_sample_opt = np.max(mu_sample) with np.errstate(divide='warn'): imp = mu - mu_sample_opt - self.xi Z = imp / sigma ei = imp * norm.cdf(Z) + sigma * norm.pdf(Z) ei[sigma == 0.0] = 0.0 return -1 * ei[0, 0] def get_total_epochs(self): """Get the epoch/iter number from train.json""" spec = load_json_spec(self.root + "/../specs/train.json") max_epoch = 100.0 for key1 in spec: if key1 in ("training_config", "train_config", "train"): for key2 in spec[key1]: if key2 in ("num_epochs", "epochs", "n_epochs", "max_iters"): max_epoch = float(spec[key1][key2]) elif key2 in ("train_config"): for key3 in spec[key1][key2]: if key3 == "runner": for key4 in spec[key1][key2][key3]: if key4 == "max_epochs": max_epoch = float(spec[key1][key2][key3][key4]) elif key1 in ("num_epochs"): max_epoch = float(spec[key1]) return max_epoch
tao_front_end_services-main
api/automl/bayesian.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API health utils module"""
tao_front_end_services-main
api/health_utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Health check endpoints - Liveliness - Readiness """ import tempfile import os from kubernetes import client, config def check_logging(): """Checks if we are able to create and write into files""" try: file, path = tempfile.mkstemp() with os.fdopen(file, 'w') as tmp: tmp.write('Logging online!') os.remove(path) return True except: return False def check_k8s(): """Checks if we are able to initialize kubernetes client""" try: with open('/var/run/secrets/kubernetes.io/serviceaccount/namespace', 'r', encoding='utf-8') as f: current_name_space = f.read() os.getenv('NAMESPACE', default=current_name_space) config.load_incluster_config() client.BatchV1Api() return True except: return False
tao_front_end_services-main
api/health_utils/health_check.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Util functions for AutoML jobs""" import sys import threading from handlers.stateless_handlers import get_public_models, get_handler_metadata from handlers.utilities import download_ptm from job_utils.workflow import Workflow, Job, Dependency from job_utils import executor as jobDriver def get_ptm_id_from_recommendation(specs, network_arch): """Dynamicaly obtain ptm id based on the backbone and num_layers chosen""" backbone_arch = specs.get("backbone", "resnet") num_layers = specs.get("num_layers", 34) match_string = f":{backbone_arch}{num_layers}" ptm_id = None for model_id in get_public_models(): metadata = get_handler_metadata(model_id) ngc_path_exists = metadata.get("ngc_path", None) is not None correct_arch = metadata.get("network_arch", "") == network_arch ptm_string_match = match_string in metadata.get("ngc_path", "") if ngc_path_exists and correct_arch and ptm_string_match: ptm_id = metadata.get("id", None) return ptm_id def on_new_automl_job(automl_context, recommendation): """Assigns dependencies for the automl recommendation job; Creates job_context dictionary and enqueues the job to workflow """ # Controller interacts with this # Download NGC pretrained model as a background process ptm_id = get_ptm_id_from_recommendation(recommendation.specs, automl_context.network) # Background process to download this PTM if ptm_id: job_run_thread = threading.Thread(target=download_ptm, args=(ptm_id,)) job_run_thread.start() # automl_context is same as JobContext that was created for AutoML job recommendation_id = recommendation.id deps = [] deps.append(Dependency(type="automl", name=str(recommendation_id))) if ptm_id: deps.append(Dependency(type="automl_ptm", name=str(ptm_id))) deps.append(Dependency(type="dataset")) deps.append(Dependency(type="gpu")) deps.append(Dependency(type="automl_specs")) job = { 'id': automl_context.id, 'parent_id': None, 'priority': 2, 'action': "train", 'network': automl_context.network, 'handler_id': automl_context.handler_id, 'created_on': automl_context.created_on, 'last_modified': automl_context.last_modified, 'dependencies': deps } j = Job(**job) Workflow.enqueue(j) print("Recommendation submitted to workflow", file=sys.stderr) def on_delete_automl_job(handler_id, job_id): """Dequeue the automl job""" # AutoML handler stop would handle this # automl_context is same as JobContext that was created for AutoML job Workflow.dequeue(handler_id, job_id) def on_cancel_automl_job(job_id): """Delete the job from k8's jobs""" jobDriver.delete(job_id)
tao_front_end_services-main
api/job_utils/automl_job_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API job utils module"""
tao_front_end_services-main
api/job_utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Workflow manager for normal model actions""" import os from job_utils.workflow import Workflow, Job, Dependency from handlers.stateless_handlers import get_handler_spec_root from handlers.utilities import load_json_spec def on_new_job(job_contexts): """Assigns dependencies for a new job; Creates job_context dictionary and enqueues the job to workflow """ for job_context in job_contexts: deps = [] deps.append(Dependency(type="parent")) deps.append(Dependency(type="specs")) deps.append(Dependency(type="model")) deps.append(Dependency(type="dataset")) if job_context.action not in ["convert", "dataset_convert", "kmeans"]: deps.append(Dependency(type="gpu")) elif job_context.action in ("convert", "gen_trt_engine"): spec_json_path = os.path.join(get_handler_spec_root(job_context.handler_id), job_context.action, ".json") config = load_json_spec(spec_json_path) if config.get("platform"): deps.append(Dependency(type="gpu", name=config["platform"])) job = { 'id': job_context.id, 'parent_id': job_context.parent_id, 'priority': 1, 'action': job_context.action, 'network': job_context.network, 'handler_id': job_context.handler_id, 'created_on': job_context.created_on, 'last_modified': job_context.last_modified, 'dependencies': deps } j = Job(**job) Workflow.enqueue(j) def on_delete_job(handler_id, job_id): """Dequeue a job""" Workflow.dequeue(handler_id, job_id)
tao_front_end_services-main
api/job_utils/workflow_driver.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Job Workflow modules""" import os import yaml import threading import functools import datetime import time import uuid import glob from pathlib import Path from queue import PriorityQueue from dataclasses import dataclass, field, asdict from handlers.utilities import read_network_config from handlers.actions import ACTIONS_TO_FUNCTIONS, AutoMLPipeline from handlers.stateless_handlers import get_root, get_handler_root from job_utils.dependencies import dependency_type_map, dependency_check_default def synchronized(wrapped): """Decorator function for synchronizing threaded functions""" lock = threading.Lock() @functools.wraps(wrapped) def _wrap(*args, **kwargs): with lock: return wrapped(*args, **kwargs) return _wrap @dataclass class IdedItem: """Base class for representing id's in uuid""" id: uuid.UUID = field(default=uuid.uuid4()) @dataclass(order=True) class PrioritizedItem: """Base class for prioritizing items""" priority: int = field(default=1) created_on: str = field(default=datetime.datetime.now().isoformat()) @dataclass class Dependency: """Base class for representing dependecies""" type: str = field(default=None) name: str = field(default=None) @dataclass class Job(PrioritizedItem, IdedItem): """Class for representing jobs""" last_modified: str = field(compare=False, default=datetime.datetime.now().isoformat()) action: str = field(compare=False, default=None) dependencies: list = field(compare=False, default=None) # More parameters for Job from JobContext parent_id: uuid.UUID = field(compare=False, default=uuid.uuid4()) network: str = field(compare=False, default=None) handler_id: uuid.UUID = field(compare=False, default=uuid.uuid4()) def dependency_check(job_context, dependency): """Checks if depencies for the job are met""" dependency_check_fn = dependency_type_map.get(dependency.type, dependency_check_default) dependency_met = dependency_check_fn(job_context, dependency) return dependency_met def execute_job(job_context): """Starts a thread on pipelines present in actions.py""" isautoml = False for dep in job_context.dependencies: if dep.type == "automl": isautoml = True break if not isautoml: # Get action, network action = job_context.action network = job_context.network # Get the correct ActionPipeline - build specs, build run command, launch K8s job, monitor status, run post-job steps network_config = read_network_config(network) action_pipeline_name = network_config["api_params"]["actions_pipe"].get(action, "") action_pipeline = ACTIONS_TO_FUNCTIONS[action_pipeline_name] _Actionpipeline = action_pipeline(job_context) # Thread this! job_run_thread = threading.Thread(target=_Actionpipeline.run, args=()) job_run_thread.start() else: # AUTOML Job # TODO: At test time, sequentially run it and not as a thread to catch errors _AutoMLPipeline = AutoMLPipeline(job_context) job_run_thread = threading.Thread(target=_AutoMLPipeline.run, args=()) job_run_thread.start() # AutoMLPipeline(job_context) return True @synchronized def still_exists(job_to_check): """Checks if the the job is yet to be executed/queued or not""" filename = os.path.join(get_handler_root(job_to_check.handler_id), "jobs.yaml") jobs = read_jobs(filename) for _, job in enumerate(jobs): if job.id == job_to_check.id: return True return False @synchronized def report_healthy(message, clear=False): """Writes healthy message with timestamp""" path = "/shared/health.txt" Path(path).touch() mode = "w" if clear else "a" with open(path, mode, encoding='utf-8') as f: f.write(f"Healthy at {datetime.datetime.now().isoformat()}\n") if message: f.write(str(message) + "\n") @synchronized def read_jobs(yaml_file): """Reads a job yaml file and convert to job contexts""" jobs = [] if not os.path.exists(yaml_file): return [] with open(yaml_file, "r", encoding='utf-8') as file: jobs_raw = yaml.safe_load(file) if not jobs_raw: return [] # convert yaml to Jobs and put it in the priority queue for job in jobs_raw: j = Job(**job) j.dependencies = [] for d in job.get('dependencies'): j.dependencies.append(Dependency(**d)) jobs.append(j) return jobs @synchronized def write_jobs(yaml_file, jobs): """Writes list of Job objects into the yaml_file""" with open(yaml_file, 'w', encoding='utf-8') as file: yaml.dump([asdict(i) for i in jobs], file, sort_keys=False) @synchronized def scan_for_jobs(): """Scans for new jobs and queues them if dependencies are met""" while True: report_healthy("Workflow has waken up", clear=True) # Create global queue queue = PriorityQueue() # Read all jobs.yaml files into one queue pattern = get_root() + "**/**/**/jobs.yaml" job_files = glob.glob(pattern) for job_file in job_files: for j in read_jobs(job_file): queue.put(j) len_q = len(queue.queue) report_healthy(f"Found {len_q} pending jobs") # Parse to dequeue jobs_to_dequeue = [] list.sort(queue.queue) for i in range(len(queue.queue)): # check dependencies job = queue.queue[i] report_healthy(f"{job.id} with action {job.action}: Checking dependencies") report_healthy(f"Total dependencies: {len(job.dependencies)}") all_met = True for dep in job.dependencies: if not dependency_check(job, dep): report_healthy(f"Unmet dependency: {dep.type}") all_met = False # if all dependencies are met if all_met and still_exists(job): # execute job # check is job is there in the jobs.yaml still report_healthy(f"{job.id} with action {job.action}: All dependencies met") if execute_job(job): # dequeue job jobs_to_dequeue.append(job) for job in jobs_to_dequeue: Workflow.dequeue(job.handler_id, job.id) report_healthy("Workflow going to sleep") time.sleep(15) class Workflow: """ Workflow is an abstraction that can run on multiple threads. Its use is to be able to perform dependency checks and spawn off K8s jobs Currently, jobs are packaged inside the ActionPipeline that runs as a thread """ @staticmethod def start(): """Method used to initialize the workflow. Starts a thread if thread is not there from before""" # Make sure there is no other Workflow thread for thread in threading.enumerate(): if thread.name == "WorkflowThreadTAO": return False t = threading.Thread(target=scan_for_jobs) t.name = 'WorkflowThreadTAO' t.daemon = True t.start() return True @staticmethod def enqueue(job): """Method used from outside to put a job into the workflow""" # Simply prints the job inside the filename # Called only by on_new_job() filename = os.path.join(get_handler_root(job.handler_id), "jobs.yaml") jobs = read_jobs(filename) jobs.append(job) write_jobs(filename, jobs) @staticmethod def dequeue(handler_id, job_id): """Method used from outside to remove a job from the workflow""" # Simply remove the job from the filename # Read all jobs filename = os.path.join(get_handler_root(handler_id), "jobs.yaml") jobs = read_jobs(filename) # Delete job_id's job from the list for idx, job in enumerate(jobs): if job.id == job_id: del jobs[idx] # Write it back as is write_jobs(filename, jobs) @staticmethod def healthy(): """Method used to see if the workflow thread is running""" try: path = "/shared/health.txt" # current time and last health modified time must be less than 100 seconds return (time.time() - os.path.getmtime(path)) <= 100 except: return False
tao_front_end_services-main
api/job_utils/workflow.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Dependency check modules 1. Dataset - train (tfrecords, labels, images), evaluate, inference, calibration datasets depending on task 2. Model - ptm, resume, .tlt from parent, .engine from parent, class map for some tasks, cal cache from parent for convert 3. Platflorm - GPU 4. Specs validation - Use Steve's code hardening 5. Parent job done? - Poll status from metadata """ import os import json from handlers.utilities import get_handler_root, load_json_spec, search_for_ptm, NO_PTM_MODELS from handlers.stateless_handlers import get_handler_spec_root, get_handler_job_metadata, get_handler_metadata from job_utils import executor def dependency_check_parent(job_context, dependency): """Check if parent job is valid and in Done status""" parent_job_id = job_context.parent_id # If no parent job, this is always True if parent_job_id is None: return True handler_id = job_context.handler_id parent_status = get_handler_job_metadata(handler_id, parent_job_id).get("status", "Error") parent_root = os.path.join(get_handler_root(handler_id), parent_job_id) # Parent Job must be done # Parent job output folder must exist return bool(parent_status == "Done" and os.path.isdir(parent_root)) def dependency_check_specs(job_context, dependency): """Check if valid spec exists for the requested action""" network = job_context.network action = job_context.action handler_id = job_context.handler_id DIR_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) CSV_PATH = os.path.join(DIR_PATH, "specs_utils", "specs", network, f"{network} - {action}.csv") if not os.path.exists(CSV_PATH): metadata = get_handler_metadata(handler_id) # Try secondary format for CSV_PATH => "<network> - <action>__<dataset-format>.csv" fmt = metadata.get("format", "_") CSV_PATH = os.path.join(DIR_PATH, "specs_utils", "specs", network, f"{network} - {action}__{fmt}.csv") handler_spec_root = get_handler_spec_root(handler_id) spec_json_path = os.path.join(handler_spec_root, action + ".json") load_json_spec(spec_json_path) return bool(os.path.exists(spec_json_path)) def dependency_check_dataset(job_context, dependency): """Returns always true for dataset dependency check""" return True def dependency_check_model(job_context, dependency): """Checks if valid ptm model exists""" network = job_context.network handler_id = job_context.handler_id handler_metadata = get_handler_metadata(handler_id) # If it is a dataset, no model dependency if "train_datasets" not in handler_metadata.keys(): return True if network in NO_PTM_MODELS: return True ptm_ids = handler_metadata.get("ptm", None) for ptm_id in ptm_ids: if not ptm_id: return False if not search_for_ptm(get_handler_root(ptm_id), network=network): return False return True def dependency_check_automl_specs(job_context, dependency): """Checks if train.json is present for automl job""" spec_json_path = os.path.join(get_handler_spec_root(job_context.handler_id), "train.json") return bool(os.path.exists(spec_json_path)) def dependency_check_gpu(job_context, dependency): """Check if GPU dependency is met""" return executor.dependency_check(accelerator=dependency.name) def dependency_check_default(job_context, dependency): """Returns a default value of False when dependency type is not present in dependency_type_map""" return False def dependency_check_automl(job_context, dependency): """Makes sure the controller.json has the rec_number requested at the time of creation""" rec_number = int(dependency.name) root = get_handler_root(job_context.handler_id) # Check if recommendation number is there and can be loaded file_path = root + f"/{job_context.id}/controller.json" if not os.path.exists(file_path): return False with open(file_path, 'r', encoding='utf-8') as f: recs_dict = json.loads(f.read()) try: recs_dict[rec_number] return True except: return False def dependency_check_automl_ptm(job_context, dependency): """Checks if valid ptm model exists for automl job""" network = job_context.network ptm_id = dependency.name if ptm_id: return bool(search_for_ptm(get_handler_root(ptm_id), network=network)) return True dependency_type_map = { 'parent': dependency_check_parent, 'specs': dependency_check_specs, 'dataset': dependency_check_dataset, 'model': dependency_check_model, 'gpu': dependency_check_gpu, "automl": dependency_check_automl, "automl_ptm": dependency_check_automl_ptm, "automl_specs": dependency_check_automl_specs }
tao_front_end_services-main
api/job_utils/dependencies.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Kubernetes job manager modules""" from kubernetes import client, config import os import sys def create(job_name, image, command, num_gpu=-1, accelerator=None): """Creates a kubernetes job""" command = 'umask 0 && ' + command if num_gpu == -1: num_gpu = int(os.getenv('NUM_GPU_PER_NODE', default='1')) telemetry_opt_out = os.getenv('TELEMETRY_OPT_OUT', default='no') wand_api_key = os.getenv('WANDB_API_KEY', default='') clearml_web_host = os.getenv('CLEARML_WEB_HOST', default='https://app.clear.ml') clearml_api_host = os.getenv('CLEARML_API_HOST', default='https://api.clear.ml') clearml_files_host = os.getenv('CLEARML_FILES_HOST', default='https://files.clear.ml') clearml_api_access_key = os.getenv('CLEARML_API_ACCESS_KEY', default='') clearml_api_secret_key = os.getenv('CLEARML_API_SECRET_KEY', default='') node_selector = {'accelerator': str(accelerator)} if not accelerator: node_selector = None with open('/var/run/secrets/kubernetes.io/serviceaccount/namespace', 'r', encoding='utf-8') as f: current_name_space = f.read() name_space = os.getenv('NAMESPACE', default=current_name_space) claim_name = os.getenv('CLAIMNAME', 'tao-toolkit-api-pvc') image_pull_secret = os.getenv('IMAGEPULLSECRET', default='imagepullsecret') config.load_incluster_config() api_instance = client.BatchV1Api() shared_volume_mount = client.V1VolumeMount( name="shared-data", mount_path="/shared") dshm_volume_mount = client.V1VolumeMount( name="dshm", mount_path="/dev/shm") resources = client.V1ResourceRequirements( limits={ 'nvidia.com/gpu': str(num_gpu) }) capabilities = client.V1Capabilities( add=['SYS_PTRACE'] ) security_context = client.V1SecurityContext( capabilities=capabilities ) num_gpu_env = client.V1EnvVar( name="NUM_GPU_PER_NODE", value=str(num_gpu)) telemetry_opt_out_env = client.V1EnvVar( name="TELEMETRY_OPT_OUT", value=telemetry_opt_out) wandb_api_key_env = client.V1EnvVar( name="WANDB_API_KEY", value=wand_api_key) clearml_web_host_env = client.V1EnvVar( name="CLEARML_WEB_HOST", value=clearml_web_host) clearml_api_host_env = client.V1EnvVar( name="CLEARML_API_HOST", value=clearml_api_host) clearml_files_host_env = client.V1EnvVar( name="CLEARML_FILES_HOST", value=clearml_files_host) clearml_api_access_key_env = client.V1EnvVar( name="CLEARML_API_ACCESS_KEY", value=clearml_api_access_key) clearml_api_secret_key_env = client.V1EnvVar( name="CLEARML_API_SECRET_KEY", value=clearml_api_secret_key) container = client.V1Container( name="container", image=image, env=[ num_gpu_env, telemetry_opt_out_env, wandb_api_key_env, clearml_web_host_env, clearml_api_host_env, clearml_files_host_env, clearml_api_access_key_env, clearml_api_secret_key_env ], command=["/bin/bash", "-c"], args=[command], resources=resources, volume_mounts=[shared_volume_mount, dshm_volume_mount], security_context=security_context) shared_volume = client.V1Volume( name="shared-data", persistent_volume_claim=client.V1PersistentVolumeClaimVolumeSource(claim_name=claim_name)) dshm_volume = client.V1Volume( name="dshm", empty_dir=client.V1EmptyDirVolumeSource(medium='Memory')) template = client.V1PodTemplateSpec( metadata=client.V1ObjectMeta( labels={"purpose": "tao-toolkit-job"} ), spec=client.V1PodSpec( image_pull_secrets=[client.V1LocalObjectReference(name=image_pull_secret)], containers=[container], volumes=[shared_volume, dshm_volume], node_selector=node_selector, restart_policy="Never")) spec = client.V1JobSpec( ttl_seconds_after_finished=100, template=template, backoff_limit=0) job = client.V1Job( api_version="batch/v1", kind="Job", metadata=client.V1ObjectMeta(name=job_name), spec=spec) if os.getenv('BACKEND') == "moebius-cloud": # Create an instance of the API class # example https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/CustomObjectsApi.md#create_namespaced_custom_object api_instance = client.CustomObjectsApi(None) group = 'moebius-job-manager.nvidia.io' # str | The custom resource's group name version = 'v1alpha1' # str | The custom resource's version namespace = name_space plural = 'cloudjobs' # str | The custom resource's plural name. For TPRs this would be lowercase plural kind. cloud_job_body = { "apiVersion": "moebius-job-manager.nvidia.io/v1alpha1", "kind": "CloudJob", "metadata": { "name": job_name + "-moebius", "labels": {"job-name": job_name, "purpose": "tao-toolkit-job", "gputype": str(accelerator) } }, "spec": {"job": job, "jobName": job_name, "jobAction": "validate", "jobGpu": str(accelerator), "jobType": "train_model" } } try: api_instance.create_namespaced_custom_object(group, version, namespace, plural, body=cloud_job_body) return except Exception as e: print("CloudJob creation failuers") print(e) return else: try: api_instance.create_namespaced_job( body=job, namespace=name_space) return except: return def status(job_name): """Returns status of kubernetes job""" with open('/var/run/secrets/kubernetes.io/serviceaccount/namespace', 'r', encoding='utf-8') as f: current_name_space = f.read() name_space = os.getenv('NAMESPACE', default=current_name_space) config.load_incluster_config() cloudjob_api_response = None if os.getenv('BACKEND') == "moebius-cloud": api_instance = client.CustomObjectsApi(None) group = 'moebius-job-manager.nvidia.io' # str | The custom resource's group name version = 'v1alpha1' # str | The custom resource's version plural = 'cloudjobs' # str | The custom resource's plural name. For TPRs this would be lowercase plural kind. name = job_name + "-moebius" # str | the custom object's name try: cloudjob_api_response = api_instance.get_namespaced_custom_object(group, version, name_space, plural, name) except Exception as e: print(e) return "Error" api_instance = client.BatchV1Api() try: api_response = api_instance.read_namespaced_job_status( name=job_name, namespace=name_space) # print("Job status='%s'" % str(api_response.status), file=sys.stderr) # active_pods = 0 if api_response.status.active is None else api_response.status.active #TODO: NOTE: Currently assuming one pod if api_response.status.succeeded is not None: return "Done" if api_response.status.failed is not None: return "Error" return "Running" except: # moebius-cloud is in process of creating batchjob. if os.getenv('BACKEND') == "moebius-cloud": if cloudjob_api_response is not None: return "Creating" return "Error" def delete(job_name): """Deletes a kubernetes job""" with open('/var/run/secrets/kubernetes.io/serviceaccount/namespace', 'r', encoding='utf-8') as f: current_name_space = f.read() name_space = os.getenv('NAMESPACE', default=current_name_space) config.load_incluster_config() if os.getenv('BACKEND') == "moebius-cloud": api_instance = client.CustomObjectsApi(None) group = 'moebius-job-manager.nvidia.io' # str | The custom resource's group name version = 'v1alpha1' # str | The custom resource's version namespace = name_space plural = 'cloudjobs' # str | The custom resource's plural name. For TPRs this would be lowercase plural kind. namespace = name_space name = job_name + "-moebius" # str | the custom object's name grace_period_seconds = 10 # int | The duration in seconds before the object should be deleted. Value must be non-negative integer. The value zero indicates delete immediately. If this value is nil, the default grace period for the specified type will be used. Defaults to a per object value if not specified. zero means delete immediately. (optional) orphan_dependents = True # bool | Deprecated: please use the PropagationPolicy, this field will be deprecated in 1.7. Should the dependent objects be orphaned. If true/false, the \"orphan\" finalizer will be added to/removed from the object's finalizers list. Either this field or PropagationPolicy may be set, but not both. (optional) body = client.V1DeleteOptions() # V1DeleteOptions | (optional) try: api_response = api_instance.delete_namespaced_custom_object(group, version, namespace, plural, name, grace_period_seconds=grace_period_seconds, orphan_dependents=orphan_dependents, body=body, propagation_policy='Foreground') return except Exception as e: print("CloudJob failed to delete.") print(e) return else: api_instance = client.BatchV1Api() try: api_response = api_instance.delete_namespaced_job( name=job_name, namespace=name_space, body=client.V1DeleteOptions( propagation_policy='Foreground', grace_period_seconds=5)) print(f"Job deleted. status='{str(api_response.status)}'", file=sys.stderr) return except: print("Job failed to delete.", file=sys.stderr) return def list_namespace_jobs(): """List kubernetes job in a namespace""" with open('/var/run/secrets/kubernetes.io/serviceaccount/namespace', 'r', encoding='utf-8') as f: current_name_space = f.read() name_space = os.getenv('NAMESPACE', default=current_name_space) config.load_incluster_config() api_instance = client.BatchV1Api() api_response = None try: api_response = api_instance.list_namespaced_job(namespace=name_space, label_selector="purpose=tao-toolkit-job", watch=False, limit=1000) except: pass return api_response def dependency_check(num_gpu=-1, accelerator=None): """Checks for GPU dependency""" if num_gpu == -1: num_gpu = int(os.getenv('NUM_GPU_PER_NODE', default='1')) label_selector = 'accelerator=' + str(accelerator) if not accelerator: label_selector = None config.load_incluster_config() v1 = client.CoreV1Api() nodes = {} # how many GPUs allocatable per node ret = v1.list_node(label_selector=label_selector) if ret.items: for i in ret.items: if i.status and i.status.allocatable: for k, v in i.status.allocatable.items(): if k == 'nvidia.com/gpu': nodes[i.metadata.name] = int(v) break # how many GPUs requested for each node ret = v1.list_pod_for_all_namespaces() if ret.items: for i in ret.items: if i.spec.node_name is not None: if i.spec and i.spec.containers: for c in i.spec.containers: if c.resources and c.resources.requests: for k, v in c.resources.requests.items(): if k == 'nvidia.com/gpu': current = nodes.get(i.spec.node_name, 0) nodes[i.spec.node_name] = max(0, current - int(v)) # do I have enough GPUs on one of the nodes for k, v in nodes.items(): if v >= num_gpu: return True return False
tao_front_end_services-main
api/job_utils/executor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API response filtering modules""" def apply(args, data): """Filter results based on the arguments provided""" filter_sort = args.get('sort') filter_name = args.get('name') filter_type = args.get('type') filter_arch = args.get('network_arch') filter_read_only = args.get('read_only') if filter_name is not None: data = list(filter(lambda d: d.get('name') == filter_name, data)) if filter_type is not None: data = list(filter(lambda d: d.get('type') == filter_type, data)) if filter_arch is not None: data = list(filter(lambda d: d.get('network_arch') == filter_arch, data)) if filter_read_only is not None: filter_read_only_as_boolean = filter_read_only == 'true' data = list(filter(lambda d: d.get('read_only') == filter_read_only_as_boolean, data)) if filter_sort == 'name-ascending': data = sorted(data, key=lambda d: '' + d.get('name') + ':' + d.get('version'), reverse=False) elif filter_sort == 'name-descending': data = sorted(data, key=lambda d: '' + d.get('name') + ':' + d.get('version'), reverse=True) elif filter_sort == 'date-ascending': data = sorted(data, key=lambda d: d.get('last_modified'), reverse=False) else: # filter_sort == 'date-descending' data = sorted(data, key=lambda d: d.get('last_modified'), reverse=True) return data
tao_front_end_services-main
api/filter_utils/filtering.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API filtering responses module"""
tao_front_end_services-main
api/filter_utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API response pagination modules""" def apply(args, data): """Apply pagination to reduce the number of results that are returned""" pagination_skip = args.get('skip') pagination_size = args.get('size') if pagination_skip is not None: try: data = data[int(pagination_skip):] except: pass if pagination_size is not None: try: data = data[:int(pagination_size)] except: pass return data
tao_front_end_services-main
api/filter_utils/pagination.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset upload modules""" import tarfile import os import glob import sys from handlers.utilities import Code from handlers.utilities import run_system_command, get_handler_root # Simple helper class for ease of code migration class SimpleHandler: """Helper class holding dataset information""" def __init__(self, handler_metadata): """Initialize the Handler helper class""" self.root = get_handler_root(handler_metadata.get("id")) self.type = handler_metadata.get("type") self.format = handler_metadata.get("format") def _extract_images(tar_path, dest): """Function to extract images, other directories on same level as images to root of dataset""" # Infer how many components to strip to get images,labels to top of dataset directory # Assumes: images, other necessary directories are in the same level with tarfile.open(tar_path) as tar: strip_components = 0 names = [tinfo.name for tinfo in tar.getmembers()] for name in names: if "/images/" in name: strip_components = name.split("/").index("images") break # Build shell command for untarring untar_command = f"tar -xf {tar_path} --strip-components={strip_components} -C {dest}/" # Run shell command print("Untarring data started", file=sys.stderr) run_system_command(untar_command) print("Untarring data complete", file=sys.stderr) # Remove .tar.gz file print("Removing data tar file", file=sys.stderr) os.remove(tar_path) print("Deleted data tar file", file=sys.stderr) def write_dir_contents(directory, file): """Write contents of a directory to a file""" with open(file, "w", encoding='utf-8') as f: for dir_files in sorted(glob.glob(directory + "/*")): f.write(dir_files + "\n") def _untar_and_delete(tar_path, dest): """Run untar command and delete the tar file""" # Build shell command for untarring untar_command = f"tar -xf {tar_path} -C {dest}/" # Run shell command run_system_command(untar_command) # Remove .tar.gz file os.remove(tar_path) def object_detection(tar_path, handler_metadata): """ OD Dataset structure Upload - uploads and untars - /images - /labels Convert - /tfrecords (generated by dataset convert) - /tfrecords/classes.json - A json file with a list Augment - Creates temp output folders and moves them to /images and /labels """ handler = SimpleHandler(handler_metadata) try: _extract_images(tar_path, handler.root) # Validate images and labels paths exist assert os.path.exists(os.path.join(handler.root, "images")) if handler.format == "kitti": assert os.path.exists(os.path.join(handler.root, "labels")) elif handler.format == "coco": assert os.path.exists(os.path.join(handler.root, "annotations.json")) elif handler.format == "coco_raw": assert os.path.exists(os.path.join(handler.root, "label_map.txt")) msg = "Upload successful" return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) instance_segmentation = object_detection def semantic_segmentation(tar_path, handler_metadata): """ Upload - uploads and creates .txt files - /images/ - /masks/ No Actions """ handler = SimpleHandler(handler_metadata) try: _extract_images(tar_path, handler.root) # Validate images and masks paths exist assert os.path.exists(os.path.join(handler.root, "images")) write_dir_contents(os.path.join(handler.root, "images"), os.path.join(handler.root, "images.txt")) if handler.format == "unet": assert os.path.exists(os.path.join(handler.root, "masks")) write_dir_contents(os.path.join(handler.root, "masks"), os.path.join(handler.root, "masks.txt")) elif handler.format == "coco": assert os.path.exists(os.path.join(handler.root, "annotations.json")) msg = "Upload successful" return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) def character_recognition(tar_path, handler_metadata): """ LPRNET Dataset structure Upload - uploads and untars - /images - /labels - /characters.txt """ handler = SimpleHandler(handler_metadata) try: _extract_images(tar_path, handler.root) # Validate images and labels paths exist assert os.path.exists(os.path.join(handler.root, "image")) if handler.format != "raw": assert os.path.exists(os.path.join(handler.root, "label")) assert os.path.exists(os.path.join(handler.root, "characters.txt")) msg = "Upload successful" return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) def ocrnet(tar_path, handler_metadata): """ OCRNET Dataset structure Upload - uploads and untars - /train/gt_new.txt: train dataset - /test/gt_new.txt: val dataset """ handler = SimpleHandler(handler_metadata) try: _extract_images(tar_path, handler.root) # Validate images and labels paths exist assert os.path.exists(os.path.join(handler.root, "character_list")) assert os.path.exists(os.path.join(handler.root, "train")) or os.path.exists(os.path.join(handler.root, "test")) if os.path.exists(os.path.join(handler.root, "train")): os.system(f"chmod -R 777 {os.path.join(handler.root, 'train')}") if os.path.exists(os.path.join(handler.root, "test")): os.system(f"chmod -R 777 {os.path.join(handler.root, 'test')}") assert os.path.exists(os.path.join(handler.root, "train/gt_new.txt")) or os.path.exists(os.path.join(handler.root, "test/gt_new.txt")) msg = "Upload successful" return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) def ocdnet(tar_path, handler_metadata): """ OCDNET Dataset structure Upload - uploads and untars - /train/img: train images - /train/gt: train ground_truth - /test/img: val images - /test/gt: val ground_truth """ handler = SimpleHandler(handler_metadata) try: _extract_images(tar_path, handler.root) # Validate images and labels paths exist assert os.path.exists(os.path.join(handler.root, "train/img")) or os.path.exists(os.path.join(handler.root, "test/img")) assert os.path.exists(os.path.join(handler.root, "train/gt")) or os.path.exists(os.path.join(handler.root, "test/gt")) msg = "Upload successful" return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) def optical_inspection(tar_path, handler_metadata): """ Optical Inspection Dataset structure Upload - uploads and untars - images: images - dataset.csv: ground_truth """ handler = SimpleHandler(handler_metadata) try: _extract_images(tar_path, handler.root) # Validate images and labels paths exist assert os.path.exists(os.path.join(handler.root, "images")) and os.path.exists(os.path.join(handler.root, "dataset.csv")) msg = "Upload successful" return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) def ml_recog(tar_path, handler_metadata): """ Metric Learning Recognition Dataset structure Upload - uploads and untars - metric_learning_recognition/ - retail-product-checkout-dataset/ - retail-product-checkout-dataset_classification_demo/ - known_classes - unknown_classes """ handler = SimpleHandler(handler_metadata) try: _extract_images(tar_path, handler.root) # Validate images and labels paths exist assert os.path.exists(os.path.join(handler.root, "metric_learning_recognition")) assert os.path.exists(os.path.join(handler.root, "metric_learning_recognition", "retail-product-checkout-dataset_classification_demo")) msg = "Upload successful" return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) def image_classification(tar_path, handler_metadata): """ Raw: images/ Default: images/<class1> images/<class2> ... Custom: images/ train.csv val.csv """ handler = SimpleHandler(handler_metadata) try: print("Extracting images from data tarball file", file=sys.stderr) _extract_images(tar_path, handler.root) print("Extraction complete", file=sys.stderr) # Validate images and labels paths exist assert len(glob.glob(os.path.join(handler.root, "images*"))) == 1 if handler.format == "custom": assert os.path.exists(os.path.join(handler.root, "val.csv")) if handler.format == "classification_pyt": assert os.path.exists(os.path.join(handler.root, "classes.txt")) msg = "Upload successful" print("Returning sucess code to the api call", file=sys.stderr) return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) def bpnet(tar_path, handler_metadata): """ OD Dataset structure Upload - uploads and untars - /images - /labels Convert - /tfrecords (generated by dataset convert) - /tfrecords/classes.json - A json file with a list Augment - Creates temp output folders and moves them to /images and /labels """ handler = SimpleHandler(handler_metadata) try: _extract_images(tar_path, handler.root) # Validate images and labels paths exist assert os.path.exists(os.path.join(handler.root, "annotations")) assert os.path.exists(os.path.join(handler.root, "annotations", "person_keypoints_train2017.json")) assert os.path.exists(os.path.join(handler.root, "annotations", "person_keypoints_val2017.json")) assert os.path.exists(os.path.join(handler.root, "train2017")) assert os.path.exists(os.path.join(handler.root, "val2017")) assert os.path.exists(os.path.join(handler.root, "coco_spec.json")) os.system(f"chmod -R 777 {os.path.join(handler.root, 'coco_spec.json')}") assert os.path.exists(os.path.join(handler.root, "bpnet_18joints.json")) assert os.path.exists(os.path.join(handler.root, "infer_spec.yaml")) msg = "Upload successful" return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) def fpenet(tar_path, handler_metadata): """ Default: data/afw data/afw.json or data/afw_10.json ... """ handler = SimpleHandler(handler_metadata) try: print("Extracting images from data tarball file", file=sys.stderr) _extract_images(tar_path, handler.root) print("Extraction complete", file=sys.stderr) # Validate images and labels paths exist assert os.path.exists(os.path.join(handler.root, "data", "afw")) assert (os.path.exists(os.path.join(handler.root, "data", "afw", "afw.json")) or os.path.exists(os.path.join(handler.root, "data", "afw_10", "afw_10.json"))) assert os.path.exists(os.path.join(handler.root, "data.json")) os.system(f"chmod -R 777 {os.path.join(handler.root, 'data')}") os.system(f"chmod -R 777 {os.path.join(handler.root, 'data.json')}") msg = "Upload successful" print("Returning sucess code to the api call", file=sys.stderr) return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) def action_recognition(tar_path, handler_metadata): """ Default: train test ... """ handler = SimpleHandler(handler_metadata) try: print("Extracting images from data tarball file", file=sys.stderr) _extract_images(tar_path, handler.root) print("Extraction complete", file=sys.stderr) # Validate images and labels paths exist assert os.path.exists(os.path.join(handler.root, "train")) assert os.path.exists(os.path.join(handler.root, "test")) msg = "Upload successful" print("Returning sucess code to the api call", file=sys.stderr) return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) def pointpillars(tar_path, handler_metadata): """ OD Dataset structure Upload - uploads and untars - /images - /labels - /velodyne - /calib """ handler = SimpleHandler(handler_metadata) try: _extract_images(tar_path, handler.root) # Validate images and labels paths exist assert os.path.exists(os.path.join(handler.root, "train", "label")) assert os.path.exists(os.path.join(handler.root, "train", "lidar")) assert os.path.exists(os.path.join(handler.root, "val", "label")) assert os.path.exists(os.path.join(handler.root, "val", "lidar")) msg = "Upload successful" return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) def pose_classification(tar_path, handler_metadata): """ Default: kinetics/nvidia : root_folder_path files: train_data.npy train_label.npy val_data.pkl val_label.pkl ... """ handler = SimpleHandler(handler_metadata) try: print("Extracting images from data tarball file", file=sys.stderr) _extract_images(tar_path, handler.root) print("Extraction complete", file=sys.stderr) # Validate images and labels paths exist assert os.path.exists(os.path.join(handler.root, "kinetics")) or os.path.exists(os.path.join(handler.root, "nvidia")) model_type = "" if os.path.exists(os.path.join(handler.root, "kinetics")): model_type = "kinetics" elif os.path.exists(os.path.join(handler.root, "nvidia")): model_type = "nvidia" assert os.path.exists(os.path.join(handler.root, model_type, "train_data.npy")) and os.path.exists(os.path.join(handler.root, model_type, "train_label.pkl")) and os.path.exists(os.path.join(handler.root, model_type, "val_data.npy")) and os.path.exists(os.path.join(handler.root, model_type, "val_label.pkl")) msg = "Upload successful" print("Returning sucess code to the api call", file=sys.stderr) return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) def re_identification(tar_path, handler_metadata): """ Default: sample_train sample_test sample_test ... """ handler = SimpleHandler(handler_metadata) try: print("Extracting images from data tarball file", file=sys.stderr) _extract_images(tar_path, handler.root) print("Extraction complete", file=sys.stderr) # Validate images and labels paths exist assert os.path.exists(os.path.join(handler.root, "sample_train")) and os.path.exists(os.path.join(handler.root, "sample_test")) and os.path.exists(os.path.join(handler.root, "sample_query")) msg = "Upload successful" print("Returning sucess code to the api call", file=sys.stderr) return Code(201, {}, msg) except: msg = "Invalid tar file / tar file with no images and/or labels directory" return Code(400, {}, msg) DS_UPLOAD_TO_FUNCTIONS = {"object_detection": object_detection, "semantic_segmentation": semantic_segmentation, "character_recognition": character_recognition, "image_classification": image_classification, "instance_segmentation": instance_segmentation, "bpnet": bpnet, "fpenet": fpenet, "action_recognition": action_recognition, "ml_recog": ml_recog, "ocdnet": ocdnet, "ocrnet": ocrnet, "optical_inspection": optical_inspection, "pointpillars": pointpillars, "pose_classification": pose_classification, "re_identification": re_identification}
tao_front_end_services-main
api/handlers/ds_upload.py